WorldWideScience

Sample records for single molecular detection

  1. DNA detection and single nucleotide mutation identification using SERS for molecular diagnostics and global health

    Science.gov (United States)

    Ngo, Hoan T.; Gandra, Naveen; Fales, Andrew M.; Taylor, Steve M.; Vo-Dinh, Tuan

    2017-02-01

    Nucleic acid-based molecular diagnostics at the point-of-care (POC) and in resource-limited settings is still a challenge. We present a sensitive yet simple DNA detection method with single nucleotide polymorphism (SNP) identification capability. The detection scheme involves sandwich hybridization of magnetic beads conjugated with capture probes, target sequences, and ultrabright surface-enhanced Raman Scattering (SERS) nanorattles conjugated with reporter probes. Upon hybridization, the sandwich probes are concentrated at the detection focus controlled by a magnetic system for SERS measurements. The ultrabright SERS nanorattles, consisting of a core and a shell with resonance Raman reporters loaded in the gap space between the core and the shell, serve as SERS tags for ultrasensitive signal detection. Specific DNA sequences of the malaria parasite Plasmodium falciparum and dengue virus 1 (DENV1) were used as the model marker system. Detection limit of approximately 100 attomoles was achieved. Single nucleotide polymorphism (SNP) discrimination of wild type malaria DNA and mutant malaria DNA, which confers resistance to artemisinin drugs, was also demonstrated. The results demonstrate the molecular diagnostic potential of the nanorattle-based method to both detect and genotype infectious pathogens. The method's simplicity makes it a suitable candidate for molecular diagnosis at the POC and in resource-limited settings.

  2. Single molecule detection, thermal fluctuation and life

    Science.gov (United States)

    YANAGIDA, Toshio; ISHII, Yoshiharu

    2017-01-01

    Single molecule detection has contributed to our understanding of the unique mechanisms of life. Unlike artificial man-made machines, biological molecular machines integrate thermal noises rather than avoid them. For example, single molecule detection has demonstrated that myosin motors undergo biased Brownian motion for stepwise movement and that single protein molecules spontaneously change their conformation, for switching to interactions with other proteins, in response to thermal fluctuation. Thus, molecular machines have flexibility and efficiency not seen in artificial machines. PMID:28190869

  3. Diffracted X-ray tracking: new system for single molecular detection with X-rays

    CERN Document Server

    Sasaki, Y C; Adachi, S; Suzuki, Y; Yagi, N

    2001-01-01

    We propose a new X-ray methodology for direct observations of the behaviors of single molecular units in real time and real space. This new system, which we call Diffracted X-ray Tracking (DXT), monitors the Brownian motions of a single molecular unit by observations of X-ray diffracted spots from a nanocrystal, tightly bound to the individual single molecular unit in bio-systems. DXT does not determine any translational movements, but only orientational movements.

  4. Diffracted X-ray tracking: new system for single molecular detection with X-rays

    International Nuclear Information System (INIS)

    Sasaki, Y.C.; Okumura, Y.; Adachi, S.; Suzuki, Y.; Yagi, N.

    2001-01-01

    We propose a new X-ray methodology for direct observations of the behaviors of single molecular units in real time and real space. This new system, which we call Diffracted X-ray Tracking (DXT), monitors the Brownian motions of a single molecular unit by observations of X-ray diffracted spots from a nanocrystal, tightly bound to the individual single molecular unit in bio-systems. DXT does not determine any translational movements, but only orientational movements

  5. Piezoelectric sensors based on molecular imprinted polymers for detection of low molecular mass analytes.

    Science.gov (United States)

    Uludağ, Yildiz; Piletsky, Sergey A; Turner, Anthony P F; Cooper, Matthew A

    2007-11-01

    Biomimetic recognition elements employed for the detection of analytes are commonly based on proteinaceous affibodies, immunoglobulins, single-chain and single-domain antibody fragments or aptamers. The alternative supra-molecular approach using a molecularly imprinted polymer now has proven utility in numerous applications ranging from liquid chromatography to bioassays. Despite inherent advantages compared with biochemical/biological recognition (which include robustness, storage endurance and lower costs) there are few contributions that describe quantitative analytical applications of molecularly imprinted polymers for relevant small molecular mass compounds in real-world samples. There is, however, significant literature describing the use of low-power, portable piezoelectric transducers to detect analytes in environmental monitoring and other application areas. Here we review the combination of molecularly imprinted polymers as recognition elements with piezoelectric biosensors for quantitative detection of small molecules. Analytes are classified by type and sample matrix presentation and various molecularly imprinted polymer synthetic fabrication strategies are also reviewed.

  6. Novel approaches for single molecule activation and detection

    CERN Document Server

    Benfenati, Fabio; Torre, Vincent

    2014-01-01

    How can we obtain tools able to process and exchange information at the molecular scale In order to do this, it is necessary to activate and detect single molecules under controlled conditions. This book focuses on the generation of biologically-inspired molecular devices. These devices are based on the developments of new photonic tools able to activate and stimulate single molecule machines. Additionally, new light sensitive molecules can be selectively activated by photonic tools. These technological innovations will provide a way to control activation of single light-sensitive molecules, a

  7. A Biofunctional Molecular Beacon for Detecting Single Base Mutations in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Haiyan Dong

    2016-01-01

    Full Text Available The development of a convenient and sensitive biosensing system to detect specific DNA sequences is an important issue in the field of genetic disease therapy. As a classic DNA detection technique, molecular beacon (MB is often used in the biosensing system. However, it has intrinsic drawbacks, including high assay cost, complicated chemical modification, and operational complexity. In this study, we developed a simple and cost-effective label-free multifunctional MB (LMMB by integrating elements of polymerization primer, template, target recognition, and G-quadruplex into one entity to detect target DNA. The core technique was accomplished by introducing a G-hairpin that features fragments of both G-quadruplex and target DNA recognition in the G-hairpin stem. Hybridization between LMMB and target DNA triggered conformational change between the G-hairpin and the common C-hairpin, resulting in significant SYBR-green signal amplification. The hybridization continues to the isothermal circular strand-displacement polymerization and accumulation of the double-stranded fragments, causing the uninterrupted extension of the LMMB without a need of chemical modification and other assistant DNA sequences. The novel and programmable LMMB could detect target DNA with sensitivity at 250 pmol/l with a linear range from 2 to 100 nmol/l and the relative standard deviation of 7.98%. The LMMB could sense a single base mutation from the normal DNA, and polymerase chain reaction (PCR amplicons of the mutant-type cell line from the wild-type one. The total time required for preparation and assaying was only 25 minutes. Apparently, the LMMB shows great potential for detecting DNA and its mutations in biosamples, and therefore it opens up a new prospect for genetic disease therapy.

  8. Molecular detection by active Fano-sensor

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Yifei; Guo, Zhongyi [School of Computer and Information, Hefei University of Technology, Hefei, 230009 (China)

    2017-04-15

    The optical properties and sensing performances of the molecular sensors based on plasmonic Fano-resonance (PFR) nanostructures have been numerically investigated in detail. The on-resonance sensor, in which the Fano-resonance position is overlapping with the absorption-band of the detected molecules perfectly, reveals a powerful ability to detect the molecules with a low concentration or thin thickness. By the bias-modulation of a single-layer graphene, the Fano-resonance position of the nanostructures can be tuned effectively. On being modulated properly, the PFR sensor shows an ultrahigh performance because of the unprecedentedly high overlap of the Fano-resonance position with the absorption-band of molecules, which is enabling superior signal strength in the molecular detections based on their vibrational fingerprints. Our proposed strategy may enable the development of dynamic sensors and open exciting prospects for bio-sensing. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. A molecular beacon microarray based on a quantum dot label for detecting single nucleotide polymorphisms.

    Science.gov (United States)

    Guo, Qingsheng; Bai, Zhixiong; Liu, Yuqian; Sun, Qingjiang

    2016-03-15

    In this work, we report the application of streptavidin-coated quantum dot (strAV-QD) in molecular beacon (MB) microarray assays by using the strAV-QD to label the immobilized MB, avoiding target labeling and meanwhile obviating the use of amplification. The MBs are stem-loop structured oligodeoxynucleotides, modified with a thiol and a biotin at two terminals of the stem. With the strAV-QD labeling an "opened" MB rather than a "closed" MB via streptavidin-biotin reaction, a sensitive and specific detection of label-free target DNA sequence is demonstrated by the MB microarray, with a signal-to-background ratio of 8. The immobilized MBs can be perfectly regenerated, allowing the reuse of the microarray. The MB microarray also is able to detect single nucleotide polymorphisms, exhibiting genotype-dependent fluorescence signals. It is demonstrated that the MB microarray can perform as a 4-to-2 encoder, compressing the genotype information into two outputs. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Non-destructive state detection for quantum logic spectroscopy of molecular ions.

    Science.gov (United States)

    Wolf, Fabian; Wan, Yong; Heip, Jan C; Gebert, Florian; Shi, Chunyan; Schmidt, Piet O

    2016-02-25

    Precision laser spectroscopy of cold and trapped molecular ions is a powerful tool in fundamental physics--used, for example, in determining fundamental constants, testing for their possible variation in the laboratory, and searching for a possible electric dipole moment of the electron. However, the absence of cycling transitions in molecules poses a challenge for direct laser cooling of the ions, and for controlling and detecting their quantum states. Previously used state-detection techniques based on photodissociation or chemical reactions are destructive and therefore inefficient, restricting the achievable resolution in laser spectroscopy. Here, we experimentally demonstrate non-destructive detection of the quantum state of a single trapped molecular ion through its strong Coulomb coupling to a well controlled, co-trapped atomic ion. An algorithm based on a state-dependent optical dipole force changes the internal state of the atom according to the internal state of the molecule. We show that individual quantum states in the molecular ion can be distinguished by the strength of their coupling to the optical dipole force. We also observe quantum jumps (induced by black-body radiation) between rotational states of a single molecular ion. Using the detuning dependence of the state-detection signal, we implement a variant of quantum logic spectroscopy of a molecular resonance. Our state-detection technique is relevant to a wide range of molecular ions, and could be applied to state-controlled quantum chemistry and to spectroscopic investigations of molecules that serve as probes for interstellar clouds.

  11. Microcavity single virus detection and sizing with molecular sensitivity

    Science.gov (United States)

    Dantham, V. R.; Holler, S.; Kolchenko, V.; Wan, Z.; Arnold, S.

    2013-02-01

    We report the label-free detection and sizing of the smallest individual RNA virus, MS2 by a spherical microcavity. Mass of this virus is ~6 ag and produces a theoretical resonance shift ~0.25 fm upon adsorbing an individual virus at the equator of the bare microcavity, which is well below the r.m.s background noise of 2 fm. However, detection was accomplished with ease (S/N = 8, Q = 4x105) using a single dipole stimulated plasmonic-nanoshell as a microcavity wavelength shift enhancer. Analytical expressions based on the "reactive sensing principle" are developed to extract the radius of the virus from the measured signals. Estimated limit of detection for these experiments was ~0.4 ag or 240 kDa below the size of all known viruses, largest globular and elongated proteins [Phosphofructokinase (345 kDa) and Fibrinogen (390 kDa), respectively].

  12. SISGR: Room Temperature Single-Molecule Detection and Imaging by Stimulated Emission Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Xiaoliang Sunney [Harvard Univ., Cambridge, MA (United States). Dept. of Chemistry and Chemical Biology

    2017-03-13

    Single-molecule spectroscopy has made considerable impact on many disciplines including chemistry, physics, and biology. To date, most single-molecule spectroscopy work is accomplished by detecting fluorescence. On the other hand, many naturally occurring chromophores, such as retinal, hemoglobin and cytochromes, do not have detectable fluorescence. There is an emerging need for single-molecule spectroscopy techniques that do not require fluorescence. In the last proposal period, we have successfully demonstrated stimulated emission microscopy, single molecule absorption, and stimulated Raman microscopy based on a high-frequency modulation transfer technique. These first-of-a- kind new spectroscopy/microscopy methods tremendously improved our ability to observe molecules that fluorescence weakly, even to the limit of single molecule detection for absorption measurement. All of these methods employ two laser beams: one (pump beam) excites a single molecule to a real or virtual excited state, and the other (probe beam) monitors the absorption/emission property of the single. We extract the intensity change of the probe beam with high sensitivity by implementing a high-frequency phase-sensitive detection scheme, which offers orders of magnitude improvement in detection sensitivity over direct absorption/emission measurement. However, single molecule detection based on fluorescence or absorption is fundamentally limited due to their broad spectral response. It is important to explore other avenues in single molecule detection and imaging which provides higher molecular specificity for studying a wide variety of heterogeneous chemical and biological systems. This proposal aimed to achieve single-molecule detection sensitivity with near resonance stimulated Raman scattering (SRS) microscopy. SRS microscopy was developed in our lab as a powerful technique for imaging heterogeneous samples based on their intrinsic vibrational contrasts, which provides much higher molecular

  13. Single molecule transistor based nanopore for the detection of nicotine

    Energy Technology Data Exchange (ETDEWEB)

    Ray, S. J., E-mail: ray.sjr@gmail.com [Institute of Materials Science, Technical University of Darmstadt, Alarich-Weiss-Str. 2, 64287 Darmstadt (Germany)

    2014-12-28

    A nanopore based detection methodology was proposed and investigated for the detection of Nicotine. This technique uses a Single Molecular Transistor working as a nanopore operational in the Coulomb Blockade regime. When the Nicotine molecule is pulled through the nanopore area surrounded by the Source(S), Drain (D), and Gate electrodes, the charge stability diagram can detect the presence of the molecule and is unique for a specific molecular structure. Due to the weak coupling between the different electrodes which is set by the nanopore size, the molecular energy states stay almost unaffected by the electrostatic environment that can be realised from the charge stability diagram. Identification of different orientation and position of the Nicotine molecule within the nanopore area can be made from specific regions of overlap between different charge states on the stability diagram that could be used as an electronic fingerprint for detection. This method could be advantageous and useful to detect the presence of Nicotine in smoke which is usually performed using chemical chromatography techniques.

  14. Single molecule transistor based nanopore for the detection of nicotine

    Science.gov (United States)

    Ray, S. J.

    2014-12-01

    A nanopore based detection methodology was proposed and investigated for the detection of Nicotine. This technique uses a Single Molecular Transistor working as a nanopore operational in the Coulomb Blockade regime. When the Nicotine molecule is pulled through the nanopore area surrounded by the Source(S), Drain (D), and Gate electrodes, the charge stability diagram can detect the presence of the molecule and is unique for a specific molecular structure. Due to the weak coupling between the different electrodes which is set by the nanopore size, the molecular energy states stay almost unaffected by the electrostatic environment that can be realised from the charge stability diagram. Identification of different orientation and position of the Nicotine molecule within the nanopore area can be made from specific regions of overlap between different charge states on the stability diagram that could be used as an electronic fingerprint for detection. This method could be advantageous and useful to detect the presence of Nicotine in smoke which is usually performed using chemical chromatography techniques.

  15. F F1-ATPase as biosensor to detect single virus

    International Nuclear Information System (INIS)

    Liu, XiaoLong; Zhang, Yun; Yue, JiaChang; Jiang, PeiDong; Zhang, ZhenXi

    2006-01-01

    F F 1 -ATPase within chromatophore was constructed as a biosensor (immuno-rotary biosensor) for the purpose of capturing single virus. Capture of virus was based on antibody-antigen reaction. The detection of virus based on proton flux change driven by ATP-synthesis of F F 1 -ATPase, which was indicated by F1300, was directly observed by a fluorescence microscope. The results demonstrate that the biosensor loading of virus particles has remarkable signal-to-noise ratio (3.8:1) compared to its control at single molecular level, and will be convenient, quick, and even super-sensitive for detecting virus particles

  16. Single Turnover at Molecular Polymerization Catalysts Reveals Spatiotemporally Resolved Reactions.

    Science.gov (United States)

    Easter, Quinn T; Blum, Suzanne A

    2017-10-23

    Multiple active individual molecular ruthenium catalysts have been pinpointed within growing polynorbornene, thereby revealing information on the reaction dynamics and location that is unavailable through traditional ensemble experiments. This is the first single-turnover imaging of a molecular catalyst by fluorescence microscopy and allows detection of individual monomer reactions at an industrially important molecular ruthenium ring-opening metathesis polymerization (ROMP) catalyst under synthetically relevant conditions (e.g. unmodified industrial catalyst, ambient pressure, condensed phase, ca. 0.03 m monomer). These results further establish the key fundamentals of this imaging technique for characterizing the reactivity and location of active molecular catalysts even when they are the minor components. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Molecular detection of pathogens in water--the pros and cons of molecular techniques.

    Science.gov (United States)

    Girones, Rosina; Ferrús, Maria Antonia; Alonso, José Luis; Rodriguez-Manzano, Jesus; Calgua, Byron; Corrêa, Adriana de Abreu; Hundesa, Ayalkibet; Carratala, Anna; Bofill-Mas, Sílvia

    2010-08-01

    Pollution of water by sewage and run-off from farms produces a serious public health problem in many countries. Viruses, along with bacteria and protozoa in the intestine or in urine are shed and transported through the sewer system. Even in highly industrialized countries, pathogens, including viruses, are prevalent throughout the environment. Molecular methods are used to monitor viral, bacterial, and protozoan pathogens, and to track pathogen- and source-specific markers in the environment. Molecular techniques, specifically polymerase chain reaction-based methods, provide sensitive, rapid, and quantitative analytical tools with which to study such pathogens, including new or emerging strains. These techniques are used to evaluate the microbiological quality of food and water, and to assess the efficiency of virus removal in drinking and wastewater treatment plants. The range of methods available for the application of molecular techniques has increased, and the costs involved have fallen. These developments have allowed the potential standardization and automation of certain techniques. In some cases they facilitate the identification, genotyping, enumeration, viability assessment, and source-tracking of human and animal contamination. Additionally, recent improvements in detection technologies have allowed the simultaneous detection of multiple targets in a single assay. However, the molecular techniques available today and those under development require further refinement in order to be standardized and applicable to a diversity of matrices. Water disinfection treatments may have an effect on the viability of pathogens and the numbers obtained by molecular techniques may overestimate the quantification of infectious microorganisms. The pros and cons of molecular techniques for the detection and quantification of pathogens in water are discussed. (c) 2010 Elsevier Ltd. All rights reserved.

  18. Single particle detecting telescope system

    International Nuclear Information System (INIS)

    Yamamoto, I.; Tomiyama, T.; Iga, Y.; Komatsubara, T.; Kanada, M.; Yamashita, Y.; Wada, T.; Furukawa, S.

    1981-01-01

    We constructed the single particle detecting telescope system for detecting a fractionally charged particle. The telescope consists of position detecting counters, wall-less multi-cell chambers, single detecting circuits and microcomputer system as data I/0 processor. Especially, a frequency of double particle is compared the case of the single particle detecting with the case of an ordinary measurement

  19. Molecular Detection of Antimicrobial Resistance

    Science.gov (United States)

    Fluit, Ad C.; Visser, Maarten R.; Schmitz, Franz-Josef

    2001-01-01

    The determination of antimicrobial susceptibility of a clinical isolate, especially with increasing resistance, is often crucial for the optimal antimicrobial therapy of infected patients. Nucleic acid-based assays for the detection of resistance may offer advantages over phenotypic assays. Examples are the detection of the methicillin resistance-encoding mecA gene in staphylococci, rifampin resistance in Mycobacterium tuberculosis, and the spread of resistance determinants across the globe. However, molecular assays for the detection of resistance have a number of limitations. New resistance mechanisms may be missed, and in some cases the number of different genes makes generating an assay too costly to compete with phenotypic assays. In addition, proper quality control for molecular assays poses a problem for many laboratories, and this results in questionable results at best. The development of new molecular techniques, e.g., PCR using molecular beacons and DNA chips, expands the possibilities for monitoring resistance. Although molecular techniques for the detection of antimicrobial resistance clearly are winning a place in routine diagnostics, phenotypic assays are still the method of choice for most resistance determinations. In this review, we describe the applications of molecular techniques for the detection of antimicrobial resistance and the current state of the art. PMID:11585788

  20. A new microcavity design for single molecule detection

    International Nuclear Information System (INIS)

    Steiner, M.; Schleifenbaum, F.; Stupperich, C.; Failla, A.V.; Hartschuh, A.; Meixner, A.J.

    2006-01-01

    We present a new microcavity design which allows for efficient detection of single molecules by measuring the molecular fluorescence emission coupled into a resonant cavity mode. The Fabry-Perot-type microresonator consists of two silver mirrors separated by a thin polymer film doped with dye molecules in ultralow concenctration. By slightly tilting one of the mirrors different cavity lengths can be selected within the same sample. Locally, on a μm scale, the microcavity still acts as a planar Fabry-Perot resonator. Using scanning confocal fluorescence microscopy, single emitters on resonance with a single mode of the microresonator can be spatially addressed. Our microcavity is demonstrated to be well-suited for investigating the coupling mechanism between single quantum emitters and single modes of the electromagnetic field. The microcavity layout could be integrated in a lab-on-a-microchip design for ultrasensitive microfluidic analytics and can be considered as an important improvement for single photon sources based on single molecules operating at room temperature

  1. Molecular detection of airborne Coccidioides in Tucson, Arizona

    Science.gov (United States)

    Chow, Nancy A.; Griffin, Dale W.; Barker, Bridget M.; Loparev, Vladimir N.; Litvintseva, Anastasia P.

    2016-01-01

    Environmental surveillance of the soil-dwelling fungus Coccidioides is essential for the prevention of Valley fever, a disease primarily caused by inhalation of the arthroconidia. Methods for collecting and detectingCoccidioides in soil samples are currently in use by several laboratories; however, a method utilizing current air sampling technologies has not been formally demonstrated for the capture of airborne arthroconidia. In this study, we collected air/dust samples at two sites (Site A and Site B) in the endemic region of Tucson, Arizona, and tested a variety of air samplers and membrane matrices. We then employed a single-tube nested qPCR assay for molecular detection. At both sites, numerous soil samples (n = 10 at Site A and n = 24 at Site B) were collected and Coccidioides was detected in two samples (20%) at Site A and in eight samples (33%) at Site B. Of the 25 air/dust samples collected at both sites using five different air sampling methods, we detected Coccidioides in three samples from site B. All three samples were collected using a high-volume sampler with glass-fiber filters. In this report, we describe these methods and propose the use of these air sampling and molecular detection strategies for environmental surveillance of Coccidioides.

  2. Single-cell transcriptomics uncovers distinct molecular signatures of stem cells in chronic myeloid leukemia.

    Science.gov (United States)

    Giustacchini, Alice; Thongjuea, Supat; Barkas, Nikolaos; Woll, Petter S; Povinelli, Benjamin J; Booth, Christopher A G; Sopp, Paul; Norfo, Ruggiero; Rodriguez-Meira, Alba; Ashley, Neil; Jamieson, Lauren; Vyas, Paresh; Anderson, Kristina; Segerstolpe, Åsa; Qian, Hong; Olsson-Strömberg, Ulla; Mustjoki, Satu; Sandberg, Rickard; Jacobsen, Sten Eirik W; Mead, Adam J

    2017-06-01

    Recent advances in single-cell transcriptomics are ideally placed to unravel intratumoral heterogeneity and selective resistance of cancer stem cell (SC) subpopulations to molecularly targeted cancer therapies. However, current single-cell RNA-sequencing approaches lack the sensitivity required to reliably detect somatic mutations. We developed a method that combines high-sensitivity mutation detection with whole-transcriptome analysis of the same single cell. We applied this technique to analyze more than 2,000 SCs from patients with chronic myeloid leukemia (CML) throughout the disease course, revealing heterogeneity of CML-SCs, including the identification of a subgroup of CML-SCs with a distinct molecular signature that selectively persisted during prolonged therapy. Analysis of nonleukemic SCs from patients with CML also provided new insights into cell-extrinsic disruption of hematopoiesis in CML associated with clinical outcome. Furthermore, we used this single-cell approach to identify a blast-crisis-specific SC population, which was also present in a subclone of CML-SCs during the chronic phase in a patient who subsequently developed blast crisis. This approach, which might be broadly applied to any malignancy, illustrates how single-cell analysis can identify subpopulations of therapy-resistant SCs that are not apparent through cell-population analysis.

  3. Quantum Dot Platform for Single-Cell Molecular Profiling

    Science.gov (United States)

    Zrazhevskiy, Pavel S.

    In-depth understanding of the nature of cell physiology and ability to diagnose and control the progression of pathological processes heavily rely on untangling the complexity of intracellular molecular mechanisms and pathways. Therefore, comprehensive molecular profiling of individual cells within the context of their natural tissue or cell culture microenvironment is essential. In principle, this goal can be achieved by tagging each molecular target with a unique reporter probe and detecting its localization with high sensitivity at sub-cellular resolution, primarily via microscopy-based imaging. Yet, neither widely used conventional methods nor more advanced nanoparticle-based techniques have been able to address this task up to date. High multiplexing potential of fluorescent probes is heavily restrained by the inability to uniquely match probes with corresponding molecular targets. This issue is especially relevant for quantum dot probes---while simultaneous spectral imaging of up to 10 different probes is possible, only few can be used concurrently for staining with existing methods. To fully utilize multiplexing potential of quantum dots, it is necessary to design a new staining platform featuring unique assignment of each target to a corresponding quantum dot probe. This dissertation presents two complementary versatile approaches towards achieving comprehensive single-cell molecular profiling and describes engineering of quantum dot probes specifically tailored for each staining method. Analysis of expanded molecular profiles is achieved through augmenting parallel multiplexing capacity with performing several staining cycles on the same specimen in sequential manner. In contrast to other methods utilizing quantum dots or other nanoparticles, which often involve sophisticated probe synthesis, the platform technology presented here takes advantage of simple covalent bioconjugation and non-covalent self-assembly mechanisms for straightforward probe

  4. Photoionisation detection of single 87Rb-atoms using channel electron multipliers

    International Nuclear Information System (INIS)

    Henkel, Florian Alexander

    2011-01-01

    Fast and efficient detection of single atoms is a universal requirement concerning modern experiments in atom physics, quantum optics, and precision spectroscopy. In particular for future quantum information and quantum communication technologies, the efficient readout of qubit states encoded in single atoms or ions is an elementary prerequisite. The rapid development in the field of quantum optics and atom optics in the recent years has enabled to prepare individual atoms as quantum memories or arrays of single atoms as qubit registers. With such systems, the implementation of quantum computation or quantum communication protocols seems feasible. This thesis describes a novel detection scheme which enables fast and efficient state analysis of single neutral atoms. The detection scheme is based on photoionisation and consists of two parts: the hyperfine-state selective photoionisation of single atoms and the registration of the generated photoion-electron pairs via two channel electron multipliers (CEMs). In this work, both parts were investigated in two separate experiments. For the first step, a photoionisation probability of p ion =0.991 within an ionisation time of t ion =386 ns is achieved for a single 87 Rb-atom in an optical dipole trap. For the second part, a compact detection system for the ionisation fragments was developed consisting of two opposing CEM detectors. Measurements show that single neutral atoms can be detected via their ionisation fragments with a detection efficiency of η atom =0.991 within a detection time of t det =415.5 ns. In a future combined setup, this will allow the state-selective readout of optically trapped, single neutral 87 Rb-atoms via photoionisation detection with an estimated detection efficiency η=0.982 and a detection time of t tot = 802 ns. Although initially developed for single 87 Rb-atoms, the concept of photoionisation detection is in principle generally applicable to any atomic or molecular species. As efficient

  5. Prostate Cancer Detection by Molecular Urinalysis

    Science.gov (United States)

    2011-04-01

    subjected to physical manipulation, thus creating the potential for their non- invasive detection in either urine or expressed prostatic fluid ( EPF ...samples or EPF . The recent application of molecular techniques to the study of PC has led to the identification of several novel molecular alterations...focused on detecting such molecular changes in the urine or EPF [7-12,15]. Paralleling the advances in biomarker discovery, sig- nificant advances in

  6. Molecular clouds without detectable CO

    International Nuclear Information System (INIS)

    Blitz, L.; Bazell, D.; Desert, F.X.

    1990-01-01

    The clouds identified by Desert, Bazell, and Boulanger (DBB clouds) in their search for high-latitude molecular clouds were observed in the CO (J = 1-0) line, but only 13 percent of the sample was detected. The remaining 87 percent are diffuse molecular clouds with CO abundances of about 10 to the -6th, a typical value for diffuse clouds. This hypothesis is shown to be consistent with Copernicus data. The DBB clouds are shown to be an essentially complete catalog of diffuse molecular clouds in the solar vicinity. The total molecular surface density in the vicinity of the sun is then only about 20 percent greater than the 1.3 solar masses/sq pc determined by Dame et al. (1987). Analysis of the CO detections indicates that there is a sharp threshold in extinction of 0.25 mag before CO is detectable and is derived from the IRAS I(100) micron threshold of 4 MJy/sr. This threshold is presumably where the CO abundance exhibits a sharp increase 18 refs

  7. Detection of kinetic change points in piece-wise linear single molecule motion

    Science.gov (United States)

    Hill, Flynn R.; van Oijen, Antoine M.; Duderstadt, Karl E.

    2018-03-01

    Single-molecule approaches present a powerful way to obtain detailed kinetic information at the molecular level. However, the identification of small rate changes is often hindered by the considerable noise present in such single-molecule kinetic data. We present a general method to detect such kinetic change points in trajectories of motion of processive single molecules having Gaussian noise, with a minimum number of parameters and without the need of an assumed kinetic model beyond piece-wise linearity of motion. Kinetic change points are detected using a likelihood ratio test in which the probability of no change is compared to the probability of a change occurring, given the experimental noise. A predetermined confidence interval minimizes the occurrence of false detections. Applying the method recursively to all sub-regions of a single molecule trajectory ensures that all kinetic change points are located. The algorithm presented allows rigorous and quantitative determination of kinetic change points in noisy single molecule observations without the need for filtering or binning, which reduce temporal resolution and obscure dynamics. The statistical framework for the approach and implementation details are discussed. The detection power of the algorithm is assessed using simulations with both single kinetic changes and multiple kinetic changes that typically arise in observations of single-molecule DNA-replication reactions. Implementations of the algorithm are provided in ImageJ plugin format written in Java and in the Julia language for numeric computing, with accompanying Jupyter Notebooks to allow reproduction of the analysis presented here.

  8. Molecular imaging and optical diagnosis from single molecule to human body

    International Nuclear Information System (INIS)

    Tamura, Mamoru

    2006-01-01

    The combination of molecular biology and optelectronics has given rise to open a new field, bio-photonics, in the 21st century. In this review, recent advances in several in vitro and in vivo single-molecule detection methods for animals are discussed. The possible applications of optical diagnosis are also included, which are optical mammography, diffuse optical tomography and fluorescence endoscopy. The potential of the light use of in diagnosis is emphasized. (author)

  9. Photoionisation detection of single {sup 87}Rb-atoms using channel electron multipliers

    Energy Technology Data Exchange (ETDEWEB)

    Henkel, Florian Alexander

    2011-09-02

    atomic or molecular species. As efficient readout unit for single atoms or even ions, it might represent a considerable alternative to conventional detection methods due to the high optical access and the large sensitive volume of the CEM detection system. Additionally, its spatial selectivity makes it particularly suited for the readout of single atomic qubit sites in arrays of neutral atoms as required in future applications such as the quantum-repeater or quantum computation with neutral atoms. The obtained high detection efficiency {eta} and fast detection time t{sub tot} of the new detection method fulfill the demanding detector requirements for a future loophole-free test of Bell's inequality under strict Einstein locality conditions using two optically trapped, entangled {sup 87}Rb-atoms at remote locations. In such a configuration, the locality and the detection loophole can be simultaneously closed in one experiment. (orig.)

  10. Single-molecule detection of dihydroazulene photo-thermal reaction using break junction technique

    Science.gov (United States)

    Huang, Cancan; Jevric, Martyn; Borges, Anders; Olsen, Stine T.; Hamill, Joseph M.; Zheng, Jue-Ting; Yang, Yang; Rudnev, Alexander; Baghernejad, Masoud; Broekmann, Peter; Petersen, Anne Ugleholdt; Wandlowski, Thomas; Mikkelsen, Kurt V.; Solomon, Gemma C.; Brøndsted Nielsen, Mogens; Hong, Wenjing

    2017-05-01

    Charge transport by tunnelling is one of the most ubiquitous elementary processes in nature. Small structural changes in a molecular junction can lead to significant difference in the single-molecule electronic properties, offering a tremendous opportunity to examine a reaction on the single-molecule scale by monitoring the conductance changes. Here, we explore the potential of the single-molecule break junction technique in the detection of photo-thermal reaction processes of a photochromic dihydroazulene/vinylheptafulvene system. Statistical analysis of the break junction experiments provides a quantitative approach for probing the reaction kinetics and reversibility, including the occurrence of isomerization during the reaction. The product ratios observed when switching the system in the junction does not follow those observed in solution studies (both experiment and theory), suggesting that the junction environment was perturbing the process significantly. This study opens the possibility of using nano-structured environments like molecular junctions to tailor product ratios in chemical reactions.

  11. Surface based detection schemes for molecular interferometry experiments - implications and possible applications

    Science.gov (United States)

    Juffmann, Thomas; Milic, Adriana; Muellneritsch, Michael; Arndt, Markus

    2011-03-01

    Surface based detection schemes for molecular interferometry experiments might be crucial in the search for the quantum properties of larger and larger objects since they provide single particle sensitivity. Here we report on molecular interferograms of different biomolecules imaged using fluorescence microscopy. Being able to watch the build-up of an interferogram live and in situ reveals the matter-wave behavior of these complex molecules in an unprecedented way. We examine several problems encountered due to van-der-Waals forces between the molecules and the diffraction grating and discuss possible ways to circumvent these. Especially the advent of ultra-thin (1-100 atomic layers) diffraction masks might path the way towards molecular holography. We also discuss other possible applications such as coherent molecular microscopy.

  12. Single particle detection: Phase control in submicron Hall sensors

    International Nuclear Information System (INIS)

    Di Michele, Lorenzo; Shelly, Connor; Gallop, John; Kazakova, Olga

    2010-01-01

    We present a phase-sensitive ac-dc Hall magnetometry method which allows a clear and reliable separation of real and parasitic magnetic signals of a very small magnitude. High-sensitivity semiconductor-based Hall crosses are generally accepted as a preferential solution for non-invasive detection of superparamagnetic nanobeads used in molecular biology, nanomedicine, and nanochemistry. However, detection of such small beads is often hindered by inductive pick-up and other spurious signals. The present work demonstrates an unambiguous experimental route for detection of small magnetic moments and provides a simple theoretical background for it. The reliability of the method has been tested for a variety of InSb Hall sensors in the range 600 nm-5 μm. Complete characterization of empty devices, involving Hall coefficients and noise measurements, has been performed and detection of a single FePt bead with diameter of 140 nm and magnetic moment of μ≅10 8 μ B has been achieved with a 600 nm-wide sensor.

  13. Molecular electronics--resonant transport through single molecules.

    Science.gov (United States)

    Lörtscher, Emanuel; Riel, Heike

    2010-01-01

    The mechanically controllable break-junction technique (MCBJ) enables us to investigate charge transport through an individually contacted and addressed molecule in ultra-high vacuum (UHV) environment at variable temperature ranging from room temperature down to 4 K. Using a statistical measurement and analysis approach, we acquire current-voltage (I-V) characteristics during the repeated formation, manipulation, and breaking of a molecular junction. At low temperatures, voltages accessing the first molecular orbitals in resonance can be applied, providing spectroscopic information about the junction's energy landscape, in particular about the molecular level alignment in respect to the Fermi energy of the electrodes. Thereby, we can investigate the non-linear transport properties of various types of functional molecules and explore their potential use as functional building blocks for future nano-electronics. An example will be given by the reversible and controllable switching between two distinct conductive states of a single molecule. As a proof-of-principle for functional molecular devices, a single-molecule memory element will be demonstrated.

  14. Nonlinear and Nonsymmetric Single-Molecule Electronic Properties Towards Molecular Information Processing.

    Science.gov (United States)

    Tamaki, Takashi; Ogawa, Takuji

    2017-09-05

    This review highlights molecular design for nonlinear and nonsymmetric single-molecule electronic properties such as rectification, negative differential resistance, and switching, which are important components of future single-molecule information processing devices. Perspectives on integrated "molecular circuits" are also provided. Nonlinear and nonsymmetric single-molecule electronics can be designed by utilizing (1) asymmetric molecular cores, (2) asymmetric anchoring groups, (3) an asymmetric junction environment, and (4) asymmetric electrode materials. This review mainly focuses on the design of molecular cores.

  15. Controlling single-molecule junction conductance by molecular interactions

    Science.gov (United States)

    Kitaguchi, Y.; Habuka, S.; Okuyama, H.; Hatta, S.; Aruga, T.; Frederiksen, T.; Paulsson, M.; Ueba, H.

    2015-01-01

    For the rational design of single-molecular electronic devices, it is essential to understand environmental effects on the electronic properties of a working molecule. Here we investigate the impact of molecular interactions on the single-molecule conductance by accurately positioning individual molecules on the electrode. To achieve reproducible and precise conductivity measurements, we utilize relatively weak π-bonding between a phenoxy molecule and a STM-tip to form and cleave one contact to the molecule. The anchoring to the other electrode is kept stable using a chalcogen atom with strong bonding to a Cu(110) substrate. These non-destructive measurements permit us to investigate the variation in single-molecule conductance under different but controlled environmental conditions. Combined with density functional theory calculations, we clarify the role of the electrostatic field in the environmental effect that influences the molecular level alignment. PMID:26135251

  16. Molecular spintronics using single-molecule magnets

    Science.gov (United States)

    Bogani, Lapo; Wernsdorfer, Wolfgang

    2008-03-01

    A revolution in electronics is in view, with the contemporary evolution of the two novel disciplines of spintronics and molecular electronics. A fundamental link between these two fields can be established using molecular magnetic materials and, in particular, single-molecule magnets. Here, we review the first progress in the resulting field, molecular spintronics, which will enable the manipulation of spin and charges in electronic devices containing one or more molecules. We discuss the advantages over more conventional materials, and the potential applications in information storage and processing. We also outline current challenges in the field, and propose convenient schemes to overcome them.

  17. A Locked Nucleic Acid Probe Based on Selective Salt-Induced Effect Detects Single Nucleotide Polymorphisms

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2015-01-01

    Full Text Available Detection of single based genetic mutation by using oligonucleotide probes is one of the common methods of detecting single nucleotide polymorphisms at known loci. In this paper, we demonstrated a hybridization system which included a buffer solution that produced selective salt-induced effect and a locked nucleic acid modified 12 nt oligonucleotide probe. The hybridization system is suitable for hybridization under room temperature. By using magnetic nanoparticles as carriers for PCR products, the SNPs (MDR1 C3435T/A from 45 volunteers were analyzed, and the results were consistent with the results from pyrophosphoric acid sequencing. The method presented in this paper differs from the traditional method of using molecular beacons to detect SNPs in that it is suitable for research institutions lacking real-time quantitative PCR detecting systems, to detect PCR products at room temperature.

  18. Preparation and coherent manipulation of pure quantum states of a single molecular ion

    Science.gov (United States)

    Chou, Chin-Wen; Kurz, Christoph; Hume, David B.; Plessow, Philipp N.; Leibrandt, David R.; Leibfried, Dietrich

    2017-05-01

    Laser cooling and trapping of atoms and atomic ions has led to advances including the observation of exotic phases of matter, the development of precision sensors and state-of-the-art atomic clocks. The same level of control in molecules could also lead to important developments such as controlled chemical reactions and sensitive probes of fundamental theories, but the vibrational and rotational degrees of freedom in molecules pose a challenge for controlling their quantum mechanical states. Here we use quantum-logic spectroscopy, which maps quantum information between two ion species, to prepare and non-destructively detect quantum mechanical states in molecular ions. We develop a general technique for optical pumping and preparation of the molecule into a pure initial state. This enables us to observe high-resolution spectra in a single ion (CaH+) and coherent phenomena such as Rabi flopping and Ramsey fringes. The protocol requires a single, far-off-resonant laser that is not specific to the molecule, so many other molecular ions, including polyatomic species, could be treated using the same methods in the same apparatus by changing the molecular source. Combined with the long interrogation times afforded by ion traps, a broad range of molecular ions could be studied with unprecedented control and precision. Our technique thus represents a critical step towards applications such as precision molecular spectroscopy, stringent tests of fundamental physics, quantum computing and precision control of molecular dynamics.

  19. Fabrication and characterization of a solid-state nanopore with self-aligned carbon nanoelectrodes for molecular detection

    International Nuclear Information System (INIS)

    Spinney, Patrick S; Collins, Scott D; Smith, Rosemary L; Howitt, David G

    2012-01-01

    Stochastic molecular sensors based on resistive pulse nanopore modalities are envisioned as facile DNA sequencers. However, recent advances in nanotechnology fabrication have highlighted promising alternative detection mechanisms with higher sensitivity and potential single-base resolution. In this paper we present the novel self-aligned fabrication of a solid-state nanopore device with integrated transverse graphene-like carbon nanoelectrodes for polyelectrolyte molecular detection. The electrochemical transduction mechanism is characterized and found to result primarily from thermionic emission between the two transverse electrodes. Response of the nanopore to Lambda dsDNA and short (16-mer) ssDNA is demonstrated and distinguished. (paper)

  20. Parallel Molecular Distributed Detection With Brownian Motion.

    Science.gov (United States)

    Rogers, Uri; Koh, Min-Sung

    2016-12-01

    This paper explores the in vivo distributed detection of an undesired biological agent's (BAs) biomarkers by a group of biological sized nanomachines in an aqueous medium under drift. The term distributed, indicates that the system information relative to the BAs presence is dispersed across the collection of nanomachines, where each nanomachine possesses limited communication, computation, and movement capabilities. Using Brownian motion with drift, a probabilistic detection and optimal data fusion framework, coined molecular distributed detection, will be introduced that combines theory from both molecular communication and distributed detection. Using the optimal data fusion framework as a guide, simulation indicates that a sub-optimal fusion method exists, allowing for a significant reduction in implementation complexity while retaining BA detection accuracy.

  1. Remote detection of single emitters via optical waveguides

    Science.gov (United States)

    Then, Patrick; Razinskas, Gary; Feichtner, Thorsten; Haas, Philippe; Wild, Andreas; Bellini, Nicola; Osellame, Roberto; Cerullo, Giulio; Hecht, Bert

    2014-05-01

    The integration of lab-on-a-chip technologies with single-molecule detection techniques may enable new applications in analytical chemistry, biotechnology, and medicine. We describe a method based on the reciprocity theorem of electromagnetic theory to determine and optimize the detection efficiency of photons emitted by single quantum emitters through truncated dielectric waveguides of arbitrary shape positioned in their proximity. We demonstrate experimentally that detection of single quantum emitters via such waveguides is possible, confirming the predicted behavior of the detection efficiency. Our findings blaze the trail towards efficient lensless single-emitter detection compatible with large-scale optofluidic integration.

  2. Single Molecule Detection in Living Biological Cells using Carbon Nanotube Optical Probes

    Science.gov (United States)

    Strano, Michael

    2009-03-01

    Nanoscale sensing elements offer promise for single molecule analyte detection in physically or biologically constrained environments. Molecular adsorption can be amplified via modulation of sharp singularities in the electronic density of states that arise from 1D quantum confinement [1]. Single-walled carbon nanotubes (SWNT), as single molecule optical sensors [2-3], offer unique advantages such as photostable near-infrared (n-IR) emission for prolonged detection through biological media, single-molecule sensitivity and, nearly orthogonal optical modes for signal transduction that can be used to identify distinct classes of analytes. Selective binding to the SWNT surface is difficult to engineer [4]. In this lecture, we will briefly review the immerging field of fluorescent diagnostics using band gap emission from SWNT. In recent work, we demonstrate that even a single pair of SWNT provides at least four optical modes that can be modulated to uniquely fingerprint chemical agents by the degree to which they alter either the emission band intensity or wavelength. We validate this identification method in vitro by demonstrating detection and identification of six genotoxic analytes, including chemotherapeutic drugs and reactive oxygen species (ROS), which are spectroscopically differentiated into four distinct classes. We also demonstrate single-molecule sensitivity in detecting hydrogen peroxide, one of the most common genotoxins and an important cellular signal. Finally, we employ our sensing and fingerprinting method of these analytes in real time within live 3T3 cells, demonstrating the first multiplexed optical detection from a nanoscale biosensor and the first label-free tool to optically discriminate between genotoxins. We will also discuss our recent efforts to fabricate biomedical sensors for real time detection of glucose and other important physiologically relevant analytes in-vivo. The response of embedded SWNT in a swellable hydrogel construct to

  3. Detecting Single-Nucleotides by Tunneling Current Measurements at Sub-MHz Temporal Resolution.

    Science.gov (United States)

    Morikawa, Takanori; Yokota, Kazumichi; Tanimoto, Sachie; Tsutsui, Makusu; Taniguchi, Masateru

    2017-04-18

    Label-free detection of single-nucleotides was performed by fast tunneling current measurements in a polar solvent at 1 MHz sampling rate using SiO₂-protected Au nanoprobes. Short current spikes were observed, suggestive of trapping/detrapping of individual nucleotides between the nanoelectrodes. The fall and rise features of the electrical signatures indicated signal retardation by capacitance effects with a time constant of about 10 microseconds. The high temporal resolution revealed current fluctuations, reflecting the molecular conformation degrees of freedom in the electrode gap. The method presented in this work may enable direct characterizations of dynamic changes in single-molecule conformations in an electrode gap in liquid.

  4. Selective detection of SO2 at room temperature based on organoplatinum functionalized single-walled carbon nanotube field effect transistors

    NARCIS (Netherlands)

    Cid, C.C.; Jimenez-Cadena, G.; Riu, J.; Maroto, A.; Rius, F.X.; Batema, G.D.; van Koten, G.

    2009-01-01

    We report a field effect transistor (FET) based on a network of single-walled carbon nanotubes (SWCNTs) that for the first time can selectively detect a single gaseous molecule in air by chemically functionalizing the SWCNTs with a selective molecular receptor. As a target model we used SO2. The

  5. Thermally modulated nano-trampoline material as smart skin for gas molecular mass detection

    Science.gov (United States)

    Xia, Hua

    2012-06-01

    Conventional multi-component gas analysis is based either on laser spectroscopy, laser and photoacoustic absorption at specific wavelengths, or on gas chromatography by separating the components of a gas mixture primarily due to boiling point (or vapor pressure) differences. This paper will present a new gas molecular mass detection method based on thermally modulated nano-trampoline material as smart skin for gas molecular mass detection by fiber Bragg grating-based gas sensors. Such a nanomaterial and fiber Bragg grating integrated sensing device has been designed to be operated either at high-energy level (highly thermal strained status) or at low-energy level (low thermal strained status). Thermal energy absorption of gas molecular trigs the sensing device transition from high-thermal-energy status to low-thermal- energy status. Experiment has shown that thermal energy variation due to gas molecular thermal energy absorption is dependent upon the gas molecular mass, and can be detected by fiber Bragg resonant wavelength shift with a linear function from 17 kg/kmol to 32 kg/kmol and a sensitivity of 0.025 kg/kmol for a 5 micron-thick nano-trampoline structure and fiber Bragg grating integrated gas sensing device. The laboratory and field validation data have further demonstrated its fast response characteristics and reliability to be online gas analysis instrument for measuring effective gas molecular mass from single-component gas, binary-component gas mixture, and multi-gas mixture. The potential industrial applications include fouling and surge control for gas charge centrifugal compressor ethylene production, gas purity for hydrogen-cooled generator, gasification for syngas production, gasoline/diesel and natural gas fuel quality monitoring for consumer market.

  6. Towards high-throughput molecular detection of Plasmodium: new approaches and molecular markers

    Directory of Open Access Journals (Sweden)

    Rogier Christophe

    2009-04-01

    Full Text Available Abstract Background Several strategies are currently deployed in many countries in the tropics to strengthen malaria control toward malaria elimination. To measure the impact of any intervention, there is a need to detect malaria properly. Mostly, decisions still rely on microscopy diagnosis. But sensitive diagnosis tools enabling to deal with a large number of samples are needed. The molecular detection approach offers a much higher sensitivity, and the flexibility to be automated and upgraded. Methods Two new molecular methods were developed: dot18S, a Plasmodium-specific nested PCR based on the 18S rRNA gene followed by dot-blot detection of species by using species-specific probes and CYTB, a Plasmodium-specific nested PCR based on cytochrome b gene followed by species detection using SNP analysis. The results were compared to those obtained with microscopic examination and the "standard" 18S rRNA gene based nested PCR using species specific primers. 337 samples were diagnosed. Results Compared to the microscopy the three molecular methods were more sensitive, greatly increasing the estimated prevalence of Plasmodium infection, including P. malariae and P. ovale. A high rate of mixed infections was uncovered with about one third of the villagers infected with more than one malaria parasite species. Dot18S and CYTB sensitivity outranged the "standard" nested PCR method, CYTB being the most sensitive. As a consequence, compared to the "standard" nested PCR method for the detection of Plasmodium spp., the sensitivity of dot18S and CYTB was respectively 95.3% and 97.3%. Consistent detection of Plasmodium spp. by the three molecular methods was obtained for 83% of tested isolates. Contradictory results were mostly related to detection of Plasmodium malariae and Plasmodium ovale in mixed infections, due to an "all-or-none" detection effect at low-level parasitaemia. Conclusion A large reservoir of asymptomatic infections was uncovered using the

  7. Research Update: Molecular electronics: The single-molecule switch and transistor

    Directory of Open Access Journals (Sweden)

    Kai Sotthewes

    2014-01-01

    Full Text Available In order to design and realize single-molecule devices it is essential to have a good understanding of the properties of an individual molecule. For electronic applications, the most important property of a molecule is its conductance. Here we show how a single octanethiol molecule can be connected to macroscopic leads and how the transport properties of the molecule can be measured. Based on this knowledge we have realized two single-molecule devices: a molecular switch and a molecular transistor. The switch can be opened and closed at will by carefully adjusting the separation between the electrical contacts and the voltage drop across the contacts. This single-molecular switch operates in a broad temperature range from cryogenic temperatures all the way up to room temperature. Via mechanical gating, i.e., compressing or stretching of the octanethiol molecule, by varying the contact's interspace, we are able to systematically adjust the conductance of the electrode-octanethiol-electrode junction. This two-terminal single-molecule transistor is very robust, but the amplification factor is rather limited.

  8. Optical Fiber Nanotips Coated with Molecular Beacons for DNA Detection

    Directory of Open Access Journals (Sweden)

    Ambra Giannetti

    2015-04-01

    Full Text Available Optical fiber sensors, thanks to their compactness, fast response and real-time measurements, have a large impact in the fields of life science research, drug discovery and medical diagnostics. In recent years, advances in nanotechnology have resulted in the development of nanotools, capable of entering the single cell, resulting in new nanobiosensors useful for the detection of biomolecules inside living cells. In this paper, we provide an application of a nanotip coupled with molecular beacons (MBs for the detection of DNA. The MBs were characterized by hybridization studies with a complementary target to prove their functionality both free in solution and immobilized onto a solid support. The solid support chosen as substrate for the immobilization of the MBs was a 30 nm tapered tip of an optical fiber, fabricated by chemical etching. With this set-up promising results were obtained and a limit of detection (LOD of 0.57 nM was reached, opening up the possibility of using the proposed nanotip to detect mRNAs inside the cytoplasm of living cells.

  9. Adaptive Detection and ISI Mitigation for Mobile Molecular Communication.

    Science.gov (United States)

    Chang, Ge; Lin, Lin; Yan, Hao

    2018-03-01

    Current studies on modulation and detection schemes in molecular communication mainly focus on the scenarios with static transmitters and receivers. However, mobile molecular communication is needed in many envisioned applications, such as target tracking and drug delivery. Until now, investigations about mobile molecular communication have been limited. In this paper, a static transmitter and a mobile bacterium-based receiver performing random walk are considered. In this mobile scenario, the channel impulse response changes due to the dynamic change of the distance between the transmitter and the receiver. Detection schemes based on fixed distance fail in signal detection in such a scenario. Furthermore, the intersymbol interference (ISI) effect becomes more complex due to the dynamic character of the signal which makes the estimation and mitigation of the ISI even more difficult. In this paper, an adaptive ISI mitigation method and two adaptive detection schemes are proposed for this mobile scenario. In the proposed scheme, adaptive ISI mitigation, estimation of dynamic distance, and the corresponding impulse response reconstruction are performed in each symbol interval. Based on the dynamic channel impulse response in each interval, two adaptive detection schemes, concentration-based adaptive threshold detection and peak-time-based adaptive detection, are proposed for signal detection. Simulations demonstrate that the ISI effect is significantly reduced and the adaptive detection schemes are reliable and robust for mobile molecular communication.

  10. In Vitro Selection of a Single-Stranded DNA Molecular Recognition Element Specific for Bromacil

    Directory of Open Access Journals (Sweden)

    Ryan M. Williams

    2014-01-01

    Full Text Available Bromacil is a widely used herbicide that is known to contaminate environmental systems. Due to the hazards it presents and inefficient detection methods, it is necessary to create a rapid and efficient sensing device. Towards this end, we have utilized a stringent in vitro selection method to identify single-stranded DNA molecular recognition elements (MRE specific for bromacil. We have identified one MRE with high affinity (Kd=9.6 nM and specificity for bromacil compared to negative targets of selection and other pesticides. The selected ssDNA MRE will be useful as the sensing element in a field-deployable bromacil detection device.

  11. Molecular detection of human bacterial pathogens

    National Research Council Canada - National Science Library

    Liu, Dongyou

    2011-01-01

    .... Molecular Detection of Human Bacterial Pathogens addresses this issue, with international scientists in respective bacterial pathogen research and diagnosis providing expert summaries on current...

  12. Recent Advances in Molecular Technologies and Their Application in Pathogen Detection in Foods with Particular Reference to Yersinia

    Directory of Open Access Journals (Sweden)

    Jin Gui

    2011-01-01

    Full Text Available Yersinia enterocolitica is an important zoonotic pathogen that can cause yersiniosis in humans and animals. Food has been suggested to be the main source of yersiniosis. It is critical for the researchers to be able to detect Yersinia or any other foodborne pathogen with increased sensitivity and specificity, as well as in real-time, in the case of a foodborne disease outbreak. Conventional detection methods are known to be labor intensive, time consuming, or expensive. On the other hand, more sensitive molecular-based detection methods like next generation sequencing, microarray, and many others are capable of providing faster results. DNA testing is now possible on a single molecule, and high-throughput analysis allows multiple detection reactions to be performed at once, thus allowing a range of characteristics to be rapidly and simultaneously determined. Despite better detection efficiencies, results derived using molecular biology methods can be affected by the various food matrixes. With the improvements in sample preparation, data analysis, and testing procedures, molecular detection techniques will likely continue to simplify and increase the speed of detection while simultaneously improving the sensitivity and specificity for tracking pathogens in food matrices.

  13. Direct determination of recoil ion detection efficiency for coincidence time-of-flight studies of molecular fragmentation

    International Nuclear Information System (INIS)

    Ben-Itzhak, I.; Carnes, K.D.; Ginther, S.G.; Johnson, D.T.; Norris, P.J.; Weaver, O.L.

    1993-01-01

    Molecular fragmentation of diatomic and small polyatomic molecules caused by fast ion impact has been studied. The evaluation of the cross sections of the different fragmentation channels depends strongly on the recoil ion detection efficiency, ε r (single ions proportional to ε r , and ion pairs to ε 2 r , etc.). A method is suggested for the direct determination of this detection efficiency. This method is based on the fact that fast H + + CH 4 collisions produce C 2+ fragments only in coincidence with H + and H + 2 fragments, that is, there is a negligible number of C 2+ singles, if any. The measured yield of C 2+ singles is therefore due to events in which the H + m of the H + m + C 2+ ion pair was not detected and thus is proportional to 1 - ε r . Methane fragmentation caused by 1 MeV proton impact is used to evaluate directly the recoil ion detection efficiency and to demonstrate the method of deriving the cross sections of all breakup channels. (orig.)

  14. The Evolution of Advanced Molecular Diagnostics for the Detection and Characterization of Mycoplasma pneumoniae.

    Science.gov (United States)

    Diaz, Maureen H; Winchell, Jonas M

    2016-01-01

    Over the past decade there have been significant advancements in the methods used for detecting and characterizing Mycoplasma pneumoniae, a common cause of respiratory illness and community-acquired pneumonia worldwide. The repertoire of available molecular diagnostics has greatly expanded from nucleic acid amplification techniques (NAATs) that encompass a variety of chemistries used for detection, to more sophisticated characterizing methods such as multi-locus variable-number tandem-repeat analysis (MLVA), Multi-locus sequence typing (MLST), matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS), single nucleotide polymorphism typing, and numerous macrolide susceptibility profiling methods, among others. These many molecular-based approaches have been developed and employed to continually increase the level of discrimination and characterization in order to better understand the epidemiology and biology of M. pneumoniae. This review will summarize recent molecular techniques and procedures and lend perspective to how each has enhanced the current understanding of this organism and will emphasize how Next Generation Sequencing may serve as a resource for researchers to gain a more comprehensive understanding of the genomic complexities of this insidious pathogen.

  15. New Molecular Detections in TMC-1 with the Green Bank Telescope: Carbon-Chain and Aromatic Molecules

    Science.gov (United States)

    Burkhardt, Andrew Michael

    2018-01-01

    Polycyclic aromatic hydrocarbons (PAHs) and polycyclic aromatic nitrogen heterocycles PA(N)Hs are believed to be widespread throughout the Universe, and are likely responsible for the unidentified infrared bands. However, the individual detection of aromatic molecules has been limited to a single weak absorption feature of an infrared bending mode of benzene (c-C6H6). The cold core TMC-1 has long been a source of new molecular detections, particularly for unsaturated carbon-rich molecules that are appealing potential precursors of PA(N)Hs. Through deep observations with the Green Bank Telescope of TMC-1, we report the first rotational detection of an aromatic molecule, benzonitrile (c-C6H5CN), along with 8 new isotopologues of HC5N and HC7N and an entirely new molecular family (HC5O, HC7O). These new detections provide crucial insights to the formation of PAHs and the underlying carbon-chain chemistry of dark clouds.

  16. Approaches to single photon detection

    International Nuclear Information System (INIS)

    Thew, R.T.; Curtz, N.; Eraerds, P.; Walenta, N.; Gautier, J.-D.; Koller, E.; Zhang, J.; Gisin, N.; Zbinden, H.

    2009-01-01

    We present recent results on our development of single photon detectors, including: gated and free-running InGaAs/InP avalanche photodiodes (APDs); hybrid detection systems based on sum-frequency generation (SFG) and Si APDs-SFG-Si APDs; and SSPDs (superconducting single photon detectors), for telecom wavelengths; as well as SiPM (Silicon photomultiplier) detectors operating in the visible regime.

  17. Molecular Ultrasound Imaging for the Detection of Neural Inflammation

    Science.gov (United States)

    Volz, Kevin R.

    Molecular imaging is a form of nanotechnology that enables the noninvasive examination of biological processes in vivo. Radiopharmaceutical agents are used to selectively target biochemical markers, which permits their detection and evaluation. Early visualization of molecular variations indicative of pathophysiological processes can aid in patient diagnoses and management decisions. Molecular imaging is performed by introducing molecular probes into the body. Molecular probes are often contrast agents that have been nanoengineered to selectively target and tether to molecules, enabling their radiologic identification. Ultrasound contrast agents have been demonstrated as an effective method of detecting perfusion at the tissue level. Through a nanoengineering process, ultrasound contrast agents can be targeted to specific molecules, thereby extending ultrasound's capabilities from the tissue to molecular level. Molecular ultrasound, or targeted contrast enhanced ultrasound (TCEUS), has recently emerged as a popular molecular imaging technique due to its ability to provide real-time anatomical and functional information in the absence of ionizing radiation. However, molecular ultrasound represents a novel form of molecular imaging, and consequently remains largely preclinical. A review of the TCEUS literature revealed multiple preclinical studies demonstrating its success in detecting inflammation in a variety of tissues. Although, a gap was identified in the existing evidence, as TCEUS effectiveness for detection of neural inflammation in the spinal cord was unable to be uncovered. This gap in knowledge, coupled with the profound impacts that this TCEUS application could have clinically, provided rationale for its exploration, and use as contributory evidence for the molecular ultrasound body of literature. An animal model that underwent a contusive spinal cord injury was used to establish preclinical evidence of TCEUS to detect neural inflammation. Imaging was

  18. Nonequilibrium Chemical Effects in Single-Molecule SERS Revealed by Ab Initio Molecular Dynamics Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Sean A.; Apra, Edoardo; Govind, Niranjan; Hess, Wayne P.; El-Khoury, Patrick Z.

    2017-02-03

    Recent developments in nanophotonics have paved the way for achieving significant advances in the realm of single molecule chemical detection, imaging, and dynamics. In particular, surface-enhanced Raman scattering (SERS) is a powerful analytical technique that is now routinely used to identify the chemical identity of single molecules. Understanding how nanoscale physical and chemical processes affect single molecule SERS spectra and selection rules is a challenging task, and is still actively debated. Herein, we explore underappreciated chemical phenomena in ultrasensitive SERS. We observe a fluctuating excited electronic state manifold, governed by the conformational dynamics of a molecule (4,4’-dimercaptostilbene, DMS) interacting with a metallic cluster (Ag20). This affects our simulated single molecule SERS spectra; the time trajectories of a molecule interacting with its unique local environment dictates the relative intensities of the observable Raman-active vibrational states. Ab initio molecular dynamics of a model Ag20-DMS system are used to illustrate both concepts in light of recent experimental results.

  19. Molecular electronics with single molecules in solid-state devices

    DEFF Research Database (Denmark)

    Moth-Poulsen, Kasper; Bjørnholm, Thomas

    2009-01-01

    The ultimate aim of molecular electronics is to understand and master single-molecule devices. Based on the latest results on electron transport in single molecules in solid-state devices, we focus here on new insights into the influence of metal electrodes on the energy spectrum of the molecule...

  20. Lab-on-chip components for molecular detection

    Science.gov (United States)

    Adam, Tijjani; Dhahi, Th S.; Mohammed, Mohammed; Hashim, U.; Noriman, N. Z.; Dahham, Omar S.

    2017-09-01

    We successfully fabricated Lab on chip components and integrated for possible use in biomedical application. The sensor was fabricated by using conventional photolithography method integrated with PDMS micro channels for smooth delivery of sample to the sensing domain. The sensor was silanized and aminated with 3-Aminopropyl triethoxysilane (APTES) to functionalize the surface with biomolecules and create molecular binding chemistry. The resulting Si-O-Si- components were functionalized with oligonucleotides probe of HPV, which interacted with the single stranded HPV DNA target to create a field across on the device. The fabrication, immobilization and hybridization processes were characterized with current voltage (I-V) characterization (KEITHLEY, 6487). The sensor show selectivity for the HPV DNA target in a linear range from concentration 0.1 nM to 1 µM. This strategy presented a simple, rapid and sensitive platform for HPV detection and would become a powerful tool for pathogenic microorganisms screening in clinical diagnosis.

  1. Practical Application of Aptamer-Based Biosensors in Detection of Low Molecular Weight Pollutants in Water Sources

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2018-02-01

    Full Text Available Water pollution has become one of the leading causes of human health problems. Low molecular weight pollutants, even at trace concentrations in water sources, have aroused global attention due to their toxicity after long-time exposure. There is an increased demand for appropriate methods to detect these pollutants in aquatic systems. Aptamers, single-stranded DNA or RNA, have high affinity and specificity to each of their target molecule, similar to antigen-antibody interaction. Aptamers can be selected using a method called Systematic Evolution of Ligands by EXponential enrichment (SELEX. Recent years we have witnessed great progress in developing aptamer selection and aptamer-based sensors for low molecular weight pollutants in water sources, such as tap water, seawater, lake water, river water, as well as wastewater and its effluents. This review provides an overview of aptamer-based methods as a novel approach for detecting low molecular weight pollutants in water sources.

  2. Molecular detection methods of resistance to antituberculosis drugs in Mycobacterium tuberculosis.

    Science.gov (United States)

    Brossier, F; Sougakoff, W

    2017-09-01

    Molecular methods predict drug resistance several weeks before phenotypic methods and enable rapid implementation of appropriate therapeutic treatment. We aimed to detail the most representative molecular tools used in routine practice for the rapid detection of resistance to antituberculosis drugs among Mycobacterium tuberculosis strains. The molecular diagnosis of resistance to antituberculosis drugs in clinical samples or from in vitro cultures is based on the detection of the most common mutations in the genes involved in the development of resistance in M. tuberculosis strains (encoding either protein targets of antibiotics, or antibiotic activating enzymes) by commercial molecular kits or by sequencing. Three hypotheses could explain the discrepancies between the genotypic results and the phenotypic drug susceptibility testing results: a low percentage of resistant mutants precluding the detection by genotypic methods on the primary culture; a low level of resistance not detected by phenotypic testing; and other resistance mechanisms not yet characterized. Molecular methods have varying sensitivity with regards to detecting antituberculosis drug resistance; that is why phenotypic susceptibility testing methods are mandatory for detecting antituberculosis drug-resistant isolates that have not been detected by molecular methods. The questionable ability of existing phenotypic and genotypic drug susceptibility testing to properly classify strains as susceptible or resistant, and at what level of resistance, was raised for several antituberculosis agents. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Molecular techniques: An overview of methods for the detection of ...

    African Journals Online (AJOL)

    Several DNA molecular markers are now available for use in surveillance and investigation of food-borne outbreaks that were previously difficult to detect. The results from several sources of literature indicate substantially different degrees of sensitivities between conventional detection methods and molecular-based ...

  4. Molecular single photon double K-shell ionization

    International Nuclear Information System (INIS)

    Penent, F.; Nakano, M.; Tashiro, M.; Grozdanov, T.P.; Žitnik, M.; Carniato, S.; Selles, P.; Andric, L.; Lablanquie, P.; Palaudoux, J.; Shigemasa, E.; Iwayama, H.; Hikosaka, Y.; Soejima, K.; Suzuki, I.H.; Kouchi, N.; Ito, K.

    2014-01-01

    We have studied single photon double K-shell ionization of small molecules (N 2 , CO, C 2 H 2n (n = 1–3), …) and the Auger decay of the resulting double core hole (DCH) molecular ions thanks to multi-electron coincidence spectroscopy using a magnetic bottle time-of-flight spectrometer. The relative cross-sections for single-site (K −2 ) and two-site (K −1 K −1 ) double K-shell ionization with respect to single K-shell (K −1 ) ionization have been measured that gives important information on the mechanisms of single photon double ionization. The spectroscopy of two-site (K −1 K −1 ) DCH states in the C 2 H 2n (n = 1–3) series shows important chemical shifts due to a strong dependence on the C-C bond length. In addition, the complete cascade Auger decay following single site (K −2 ) ionization has been obtained

  5. The evolution of advanced molecular diagnostics for the detection and characterization of Mycoplasma pneumoniae

    Directory of Open Access Journals (Sweden)

    Maureen H. Diaz

    2016-03-01

    Full Text Available Over the past several years there have been significant advancements in the methods used for detecting and characterizing Mycoplasma pneumoniae, a common cause of respiratory illness and community-acquired pneumonia worldwide. The repertoire of available molecular diagnostics has greatly expanded from nucleic acid amplification techniques (NAATs that encompass a variety of chemistries used for detection, to more sophisticated characterizing methods such as multi-locus variable-number tandem-repeat analysis and sequencing typing (MLVA and MLST, respectively, matrix-assisted laser desorption ionization–time-of-flight mass spectrometry (MALDI-TOF MS, single nucleotide polymorphism (SNP typing, and numerous macrolide susceptibility profiling methods, among others. These many molecular-based approaches have been developed and employed to continually increase the level of discrimination and characterization in order to better understand the epidemiology and biology of M. pneumoniae. This review will summarize recent molecular techniques and procedures and lend perspective to how each has enhanced the current understanding of this organism and will emphasize how Next Generation Sequencing may serve as a resource for researchers to gain a more comprehensive understanding of the genomic complexities of this insidious pathogen.

  6. Comprehensive detection of diverse exon 19 deletion mutations of EGFR in lung Cancer by a single probe set.

    Science.gov (United States)

    Bae, Jin Ho; Jo, Seong-Min; Kim, Hak-Sung

    2015-12-15

    Detection of exon 19 deletion mutation of EGFR, one of the most frequently occurring mutations in lung cancer, provides the crucial information for diagnosis and treatment guideline in non-small-cell lung cancer (NSCLC). Here, we demonstrate a simple and efficient method to detect various exon 19 deletion mutations of EGFR using a single probe set comprising of an oligo-quencher (oligo-Q) and a molecular beacon (MB). While the MB hybridizes to both the wild and mutant target DNA, the oligo-Q only binds to the wild target DNA, leading to a fluorescent signal in case of deletion mutation. This enables the comprehensive detection of the diverse exon 19 deletion mutations using a single probe set. We demonstrated the utility and efficiency of the approach by detecting the frequent exon 19 deletion mutations of EGFR through a real-time PCR and in situ fluorescence imaging. Our approach enabled the detection of genomic DNA as low as 0.02 ng, showing a detection limit of 2% in a heterogeneous DNA mixture, and could be used for detecting mutations in a single cell level. The present MB and oligo-Q dual probe system can be used for diagnosis and treatment guideline in NSCLC. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Comment on ’Single Pentacene Molecules Detected by Fluorescence Excitation in a P-Terphenyl Crystal’

    Science.gov (United States)

    1990-12-10

    8217 NO 11 TITLE (include Security Classification) Comment on "Single Pentacene Molecules Detected by Fluorescence Excitation in a p-Terphenyl Crystal" 12...8217 {Continue on reverse it necessary and identify by block numboer) Using h--,Ihly efficient Fluorescence excitation spectroscov of individual pentacene ...molecular impurities in p-terphenvl crystals, we have observed that some pentacene defects exhibit spcntaneous spectral jumps in their resonance frequency at

  8. In Vitro Selection of Single-Stranded DNA Molecular Recognition Elements against S. aureus Alpha Toxin and Sensitive Detection in Human Serum

    Directory of Open Access Journals (Sweden)

    Ka L. Hong

    2015-01-01

    Full Text Available Alpha toxin is one of the major virulence factors secreted by Staphylococcus aureus, a bacterium that is responsible for a wide variety of infections in both community and hospital settings. Due to the prevalence of S. aureus related infections and the emergence of methicillin-resistant S. aureus, rapid and accurate diagnosis of S. aureus infections is crucial in benefiting patient health outcomes. In this study, a rigorous Systematic Evolution of Ligands by Exponential Enrichment (SELEX variant previously developed by our laboratory was utilized to select a single-stranded DNA molecular recognition element (MRE targeting alpha toxin with high affinity and specificity. At the end of the 12-round selection, the selected MRE had an equilibrium dissociation constant (Kd of 93.7 ± 7.0 nM. Additionally, a modified sandwich enzyme-linked immunosorbent assay (ELISA was developed by using the selected ssDNA MRE as the toxin-capturing element and a sensitive detection of 200 nM alpha toxin in undiluted human serum samples was achieved.

  9. The role of nanotechnology in single-cell detection: a review.

    Science.gov (United States)

    Wang, Changling; Zhang, Yuxiang; Xia, Mingdian; Zhu, Xingxi; Qi, Shitao; Shen, Huaqiang; Liu, Tiebing; Tang, Liming

    2014-10-01

    Biological processes in single cells, such as signal transduction, DNA duplication, and protein synthesis and trafficking, occur in subcellular compartments at nanoscale level. Achieving high spatial-temporal resolution, high sensitivity, and high specificity in single-cell detection poses a great challenge. Nanotechnology, which has been widely applied in the fields of medicine, electronics, biomaterials, and energy production, has the potential to provide solutions for single-cell detection. Here we present a review of the use of nanotechnology in single-cell detection over the past two decades. First, we review the main areas of scientific interest, including morphology, ion concentration, DNA, RNA, protein, intracellular temperature, elements, and mechanical properties. Second, four categories of application of nanotechnology to single-cell detection are described: nanomanipulation, nanodevices, nanomaterials as labels, and nano Secondary ion mass spectrometry. Finally, the prospects and future trends in single-cell detection and analysis are discussed.

  10. Detection of DNA damage based on metal-mediated molecular beacon and DNA strands displacement reaction

    Science.gov (United States)

    Xiong, Yanxiang; Wei, Min; Wei, Wei; Yin, Lihong; Pu, Yuepu; Liu, Songqin

    2014-01-01

    DNA hairpin structure probes are usually designed by forming intra-molecular duplex based on Watson-Crick hydrogen bonds. In this paper, a molecular beacon based on silver ions-mediated cytosine-Ag+-cytosine base pairs was used to detect DNA. The inherent characteristic of the metal ligation facilitated the design of functional probe and the adjustment of its binding strength compared to traditional DNA hairpin structure probes, which make it be used to detect DNA in a simple, rapid and easy way with the help of DNA strands displacement reaction. The method was sensitive and also possesses the good specificity to differentiate the single base mismatched DNA from the complementary DNA. It was also successfully applied to study the damage effect of classic genotoxicity chemicals such as styrene oxide and sodium arsenite on DNA, which was significant in food science, environmental science and pharmaceutical science.

  11. Extreme Ultraviolet to Visible Dispersed Single Photon Detection for Highly Sensitive Sensing of Fundamental Processes in Diverse Samples

    Directory of Open Access Journals (Sweden)

    Andreas Hans

    2018-05-01

    Full Text Available The detection of a single photon is the most sensitive method for sensing of photon emission. A common technique for single photon detection uses microchannel plate arrays combined with photocathodes and position sensitive anodes. Here, we report on the combination of such detectors with grating diffraction spectrometers, constituting a low-noise wavelength resolving photon spectroscopy apparatus with versatile applicability. We recapitulate the operation principle of such detectors and present the details of the experimental set-up, which we use to investigate fundamental mechanisms in atomic and molecular systems after excitation with tuneable synchrotron radiation. Extensions for time and polarization resolved measurements are described and examples of recent applications in current research are given.

  12. Tuneable graphene nanopores for single biomolecule detection.

    Science.gov (United States)

    Al-Dirini, Feras; Mohammed, Mahmood A; Hossain, Md Sharafat; Hossain, Faruque M; Nirmalathas, Ampalavanapillai; Skafidas, Efstratios

    2016-05-21

    Solid-state nanopores are promising candidates for next generation DNA and protein sequencing. However, once fabricated, such devices lack tuneability, which greatly restricts their biosensing capabilities. Here we propose a new class of solid-state graphene-based nanopore devices that exhibit a unique capability of self-tuneability, which is used to control their conductance, tuning it to levels comparable to the changes caused by the translocation of a single biomolecule, and hence, enabling high detection sensitivities. Our presented quantum simulation results suggest that the smallest amino acid, glycine, when present in water and in an aqueous saline solution can be detected with high sensitivity, up to a 90% change in conductance. Our results also suggest that passivating the device with nitrogen, making it an n-type device, greatly enhances its sensitivity, and makes it highly sensitive to not only the translocation of a single biomolecule, but more interestingly to intramolecular electrostatics within the biomolecule. Sensitive detection of the carboxyl group within the glycine molecule, which carries a charge equivalent to a single electron, is achieved with a conductance change that reaches as high as 99% when present in an aqueous saline solution. The presented findings suggest that tuneable graphene nanopores, with their capability of probing intramolecular electrostatics, could pave the way towards a new generation of single biomolecule detection devices.

  13. Conformational Smear Characterization and Binning of Single-Molecule Conductance Measurements for Enhanced Molecular Recognition.

    Science.gov (United States)

    Korshoj, Lee E; Afsari, Sepideh; Chatterjee, Anushree; Nagpal, Prashant

    2017-11-01

    Electronic conduction or charge transport through single molecules depends primarily on molecular structure and anchoring groups and forms the basis for a wide range of studies from molecular electronics to DNA sequencing. Several high-throughput nanoelectronic methods such as mechanical break junctions, nanopores, conductive atomic force microscopy, scanning tunneling break junctions, and static nanoscale electrodes are often used for measuring single-molecule conductance. In these measurements, "smearing" due to conformational changes and other entropic factors leads to large variances in the observed molecular conductance, especially in individual measurements. Here, we show a method for characterizing smear in single-molecule conductance measurements and demonstrate how binning measurements according to smear can significantly enhance the use of individual conductance measurements for molecular recognition. Using quantum point contact measurements on single nucleotides within DNA macromolecules, we demonstrate that the distance over which molecular junctions are maintained is a measure of smear, and the resulting variance in unbiased single measurements depends on this smear parameter. Our ability to identify individual DNA nucleotides at 20× coverage increases from 81.3% accuracy without smear analysis to 93.9% with smear characterization and binning (SCRIB). Furthermore, merely 7 conductance measurements (7× coverage) are needed to achieve 97.8% accuracy for DNA nucleotide recognition when only low molecular smear measurements are used, which represents a significant improvement over contemporary sequencing methods. These results have important implications in a broad range of molecular electronics applications from designing robust molecular switches to nanoelectronic DNA sequencing.

  14. Tuning electron transport through a single molecular junction by bridge modification

    International Nuclear Information System (INIS)

    Li, Xiao-Fei; Qiu, Qi; Luo, Yi

    2014-01-01

    The possibility of controlling electron transport in a single molecular junction represents the ultimate goal of molecular electronics. Here, we report that the modification of bridging group makes it possible to improve the performance and obtain new functions in a single cross-conjugated molecular junction, designed from a recently synthesized bipolar molecule bithiophene naphthalene diimide. Our first principles results show that the bipolar characteristic remains after the molecule was modified and sandwiched between two metal electrodes. Rectifying is the intrinsic characteristic of the molecular junction and its performance can be enhanced by replacing the saturated bridging group with an unsaturated group. A further improvement of the rectifying and a robust negative differential resistance (NDR) behavior can be achieved by the modification of unsaturated bridge. It is revealed that the modification can induce a deviation angle about 4° between the donor and the acceptor π-conjugations, making it possible to enhance the communication between the two π systems. Meanwhile, the low energy frontier orbitals of the junction can move close to the Fermi level and encounter in energy at certain biases, thus a transport channel with a considerable transmission can be formed near the Fermi level only at a narrow bias regime, resulting in the improvement of rectifying and the robust NDR behavior. This finding could be useful for the design of single molecular devices.

  15. DETECTION OF MOLECULAR GAS IN VOID GALAXIES: IMPLICATIONS FOR STAR FORMATION IN ISOLATED ENVIRONMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Das, M.; Honey, M. [Indian Institute of Astrophysics, Bangalore (India); Saito, T. [Department of Astronomy, Graduate school of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 133-0033 (Japan); Iono, D. [Chile Observatory, NAOJ (Japan); Ramya, S., E-mail: mousumi@iiap.res.in [Shanghai Astronomical Observatory, Shanghai (China)

    2015-12-10

    We present the detection of molecular gas from galaxies located in nearby voids using the CO(1–0) line emission as a tracer. The observations were performed using the 45 m single dish radio telescope of the Nobeyama Radio Observatory. Void galaxies lie in the most underdense parts of our universe and a significant fraction of them are gas rich, late-type spiral galaxies. Although isolated, they have ongoing star formation but appear to be slowly evolving compared to galaxies in denser environments. Not much is known about their star formation properties or cold gas content. In this study, we searched for molecular gas in five void galaxies. The galaxies were selected based on their relatively high IRAS fluxes or Hα line luminosities, both of which signify ongoing star formation. All five galaxies appear to be isolated and two lie within the Bootes void. We detected CO(1–0) emission from four of the five galaxies in our sample and their molecular gas masses lie between 10{sup 8} and 10{sup 9} M{sub ⊙}. We conducted follow-up Hα imaging observations of three detected galaxies using the Himalayan Chandra Telescope and determined their star formation rates (SFRs) from their Hα fluxes. The SFR varies from 0.2 to 1 M{sub ⊙} yr{sup −1}; which is similar to that observed in local galaxies. Our study indicates that although void galaxies reside in underdense regions, their disks contain molecular gas and have SFRs similar to galaxies in denser environments. We discuss the implications of our results.

  16. The long tail of molecular alterations in non-small cell lung cancer: a single-institution experience of next-generation sequencing in clinical molecular diagnostics.

    Science.gov (United States)

    Fumagalli, Caterina; Vacirca, Davide; Rappa, Alessandra; Passaro, Antonio; Guarize, Juliana; Rafaniello Raviele, Paola; de Marinis, Filippo; Spaggiari, Lorenzo; Casadio, Chiara; Viale, Giuseppe; Barberis, Massimo; Guerini-Rocco, Elena

    2018-03-13

    Molecular profiling of advanced non-small cell lung cancers (NSCLC) is essential to identify patients who may benefit from targeted treatments. In the last years, the number of potentially actionable molecular alterations has rapidly increased. Next-generation sequencing allows for the analysis of multiple genes simultaneously. To evaluate the feasibility and the throughput of next-generation sequencing in clinical molecular diagnostics of advanced NSCLC. A single-institution cohort of 535 non-squamous NSCLC was profiled using a next-generation sequencing panel targeting 22 actionable and cancer-related genes. 441 non-squamous NSCLC (82.4%) harboured at least one gene alteration, including 340 cases (63.6%) with clinically relevant molecular aberrations. Mutations have been detected in all but one gene ( FGFR1 ) of the panel. Recurrent alterations were observed in KRAS , TP53 , EGFR , STK11 and MET genes, whereas the remaining genes were mutated in <5% of the cases. Concurrent mutations were detected in 183 tumours (34.2%), mostly impairing KRAS or EGFR in association with TP53 alterations. The study highlights the feasibility of targeted next-generation sequencing in clinical setting. The majority of NSCLC harboured mutations in clinically relevant genes, thus identifying patients who might benefit from different targeted therapies. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  17. Molecular Methods for the Detection of Mycoplasma and Ureaplasma Infections in Humans

    Science.gov (United States)

    Waites, Ken B.; Xiao, Li; Paralanov, Vanya; Viscardi, Rose M.; Glass, John I.

    2012-01-01

    Mycoplasma and Ureaplasma species are well-known human pathogens responsible for a broad array of inflammatory conditions involving the respiratory and urogenital tracts of neonates, children, and adults. Greater attention is being given to these organisms in diagnostic microbiology, largely as a result of improved methods for their laboratory detection, made possible by powerful molecular-based techniques that can be used for primary detection in clinical specimens. For slow-growing species, such as Mycoplasma pneumoniae and Mycoplasma genitalium, molecular-based detection is the only practical means for rapid microbiological diagnosis. Most molecular-based methods used for detection and characterization of conventional bacteria have been applied to these organisms. A complete genome sequence is available for one or more strains of all of the important human pathogens in the Mycoplasma and Ureaplasma genera. Information gained from genome analyses and improvements in efficiency of DNA sequencing are expected to significantly advance the field of molecular detection and genotyping during the next few years. This review provides a summary and critical review of methods suitable for detection and characterization of mycoplasmas and ureaplasmas of humans, with emphasis on molecular genotypic techniques. PMID:22819362

  18. Single particle and molecular assembly analysis of polyribosomes by single- and double-tilt cryo electron tomography

    Energy Technology Data Exchange (ETDEWEB)

    Myasnikov, Alexander G. [IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Department of Integrative Structural Biology, Centre National de la Recherche Scientifique (CNRS) UMR 7104/ Institut National de la Santé de la Recherche Médicale INSERM U964/ Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch (France); Afonina, Zhanna A. [Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region (Russian Federation); Klaholz, Bruno P., E-mail: klaholz@igbmc.fr [IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Department of Integrative Structural Biology, Centre National de la Recherche Scientifique (CNRS) UMR 7104/ Institut National de la Santé de la Recherche Médicale INSERM U964/ Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch (France)

    2013-03-15

    Cryo electron tomography (cryo-ET) can provide cellular and molecular structural information on various biological samples. However, the detailed interpretation of tomograms reconstructed from single-tilt data tends to suffer from low signal-to-noise ratio and artefacts caused by some systematically missing angular views. While these can be overcome by sub-tomogram averaging, they remain limiting for the analysis of unique structures. Double-tilt ET can improve the tomogram quality by acquiring a second tilt series after an in-plane rotation, but its usage is not widespread yet because it is considered technically demanding and it is rarely used under cryo conditions. Here we show that double-tilt cryo-ET improves the quality of 3D reconstructions so significantly that even single particle analysis can be envisaged despite of the intrinsically low image contrast obtained from frozen-hydrated specimens. This is illustrated by the analysis of eukaryotic polyribosomes in which individual ribosomes were reconstructed using single-tilt, partial and full double-tilt geometries. The improved tomograms favour the faster convergence of iterative sub-tomogram averaging and allow a better 3D classification using multivariate statistical analysis. Our study of single particles and molecular assemblies within polysomes illustrates that the dual-axis approach is particularly useful for cryo applications of ET, both for unique objects and for structures that can be classified and averaged. - Highlights: ► Double-tilt cryo-ET improves 3D reconstructions thus making single particle analysis possible. ► Dual-axis cryo-ET data favour a faster convergence of iterative sub-tomogram averaging. ► Individual ribosomes were reconstructed from single-tilt, partial/ full double-tilt geometries. ► Double-tilt cryo-ET facilitates analysis of larger molecular assemblies such as in cell sections. ► Dual-axis cryo-ET is applicable to unique objects and to structures that can be

  19. A tight-binding model of the transmission probability through a molecular junction; a single molecule vs. a molecular layer

    International Nuclear Information System (INIS)

    Landau, A.; Nitzan, A.

    2006-01-01

    Full Text: Molecular electronics, one of the major fields of the current effort in nano-science, may be de ed as the study of electronic behaviors, devices and applications that depend on the properties of matter at the molecular scale. If the miniaturization trend of microelectronic devices is to continue, elements such as transistors and contacts will soon shrink to single molecules. The promise of these new technological breakthroughs has been major driving force in this ld. Moreover, the consideration of molecular systems as electronic devices has raised new fundamental questions. In particular, while traditional quantum chemistry deals with electronically closed systems, we now face problems involving molecular systems that are open to their electronic environment, moreover, function in far from equilibrium situations. A generic molecular junction is made of two electrodes connected by a molecular spacer that takes the form of a molecular chain of varying length or a molecular layer of varying thickness. We use a simple nearest-neighbors tight-biding model with the non-equilibrium Green's function (NEGF) method to investigate and compare between a self-assembled monolayer (SAM), finite molecular layer (FML), and single molecule (SM) chemisorption to a surface of a metal substrate. In addition, we examine the difference in the transmission probability through a SAM, FML and SM sandwiched between two metallic electrodes. Dramatic differences are observed between the SM, FML and SAM density of electronic states and transmission functions. In addition, we analyze the effects of changing different physical parameters such as molecule-substrate interaction, molecule-molecule interactions, etc; interesting effects that pertain to the conduction properties of single molecules and molecular layers are observed. Intriguing results are attained when we investigate the commensurability of the SAM with the metallic surface

  20. Neuronal synchrony detection on single-electron neural networks

    International Nuclear Information System (INIS)

    Oya, Takahide; Asai, Tetsuya; Kagaya, Ryo; Hirose, Tetsuya; Amemiya, Yoshihito

    2006-01-01

    Synchrony detection between burst and non-burst spikes is known to be one functional example of depressing synapses. Kanazawa et al. demonstrated synchrony detection with MOS depressing synapse circuits. They found that the performance of a network with depressing synapses that discriminates between burst and random input spikes increases non-monotonically as the static device mismatch is increased. We designed a single-electron depressing synapse and constructed the same network as in Kanazawa's study to develop noise-tolerant single-electron circuits. We examined the temperature characteristics and explored possible architecture that enables single-electron circuits to operate at T > 0 K

  1. Molecular detection of Cylindrocarpon destructans in infected ...

    African Journals Online (AJOL)

    use

    2012-05-24

    May 24, 2012 ... Molecular detection of Cylindrocarpon destructans in infected Chinese ginseng .... EDTA and potassium acetate (pH 5.5) were added to provide final concentrations of 100 ..... Variation in Nectria radicicola and its anamorph ...

  2. Cancer molecular markers: A guide to cancer detection and management.

    Science.gov (United States)

    Nair, Meera; Sandhu, Sardul Singh; Sharma, Anil Kumar

    2018-02-08

    Cancer is generally caused by the molecular alterations which lead to specific mutations. Advances in molecular biology have provided an impetus to the study of cancers with valuable prognostic and predictive significance. Over the hindsight various attempts have been undertaken by scientists worldwide, in the management of cancer; where, we have witnessed a number of molecular markers which allow the early detection of cancers and lead to a decrease in its mortality rate. Recent advances in oncology have led to the discovery of cancer markers that has allowed early detection and targeted therapy of tumors. In this context, current review provides a detail outlook on various molecular markers for diagnosis, prognosis and management of therapeutic response in cancer patients. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Single Molecules as Optical Probes for Structure and Dynamics

    Science.gov (United States)

    Orrit, Michel

    Single molecules and single nanoparticles are convenient links between the nanoscale world and the laboratory. We discuss the limits for their optical detection by three different methods: fluorescence, direct absorption, and photothermal detection. We briefly review some recent illustrations of qualitatively new information gathered from single-molecule signals: intermittency of the fluorescence intensity, acoustic vibrations of nanoparticles (1-100 GHz) or of extended defects in molecular crystals (0.1-1 MHz), and dynamical heterogeneity in glass-forming molecular liquids. We conclude with an outlook of future uses of single-molecule methods in physical chemistry, soft matter, and material science.

  4. Nanoscale heterostructures with molecular-scale single-crystal metal wires.

    Science.gov (United States)

    Kundu, Paromita; Halder, Aditi; Viswanath, B; Kundu, Dipan; Ramanath, Ganpati; Ravishankar, N

    2010-01-13

    Creating nanoscale heterostructures with molecular-scale (synthesis of nanoscale heterostructures with single-crystal molecular-scale Au nanowires attached to different nanostructure substrates. Our method involves the formation of Au nanoparticle seeds by the reduction of rocksalt AuCl nanocubes heterogeneously nucleated on the substrates and subsequent nanowire growth by oriented attachment of Au nanoparticles from the solution phase. Nanoscale heterostructures fabricated by such site-specific nucleation and growth are attractive for many applications including nanoelectronic device wiring, catalysis, and sensing.

  5. Single-nanoparticle detection with slot-mode photonic crystal cavities

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Cheng; Kita, Shota; Lončar, Marko, E-mail: loncar@seas.harvard.edu [School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States); Quan, Qimin [Rowland Institute at Harvard University, Cambridge, Massachusetts 02142 (United States); Li, Yihang [School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States); Department of Electronic Engineering, Tsinghua University, Beijing 100084 (China)

    2015-06-29

    Optical cavities that are capable for detecting single nanoparticles could lead to great progress in early stage disease diagnostics and the study of biological interactions on the single-molecule level. In particular, photonic crystal (PhC) cavities are excellent platforms for label-free single-nanoparticle detection, owing to their high quality (Q) factors and wavelength-scale modal volumes. Here, we demonstrate the design and fabrication of a high-Q (>10{sup 4}) slot-mode PhC nanobeam cavity, which is able to strongly confine light in the slotted regions. The enhanced light-matter interaction results in an order of magnitude improvement in both refractive index sensitivity (439 nm/RIU) and single-nanoparticle sensitivity compared with conventional dielectric-mode PhC cavities. Detection of single polystyrene nanoparticles with radii of 20 nm and 30 nm is demonstrated in aqueous environments (D{sub 2}O), without additional laser and temperature stabilization techniques.

  6. Molecular investigation of evaporation of biodroplets containing single-strand DNA on graphene surface.

    Science.gov (United States)

    Akbari, Fahimeh; Foroutan, Masumeh

    2018-02-14

    In this study, the water droplet behaviour of four different types of single-strand DNA with homogeneous base sequence on a graphene substrate during evaporation of the droplet was investigated using molecular dynamics (MD) simulation. The simulation results indicated that the evaporation depended on the DNA sequence. The observed changes can be divided into four parts: (i) vaporization mode, (ii) evaporation flux, (iii) mechanism of single-strand placement on the surface, and (iv) consideration of remaining single strands after evaporation. Our simulation observations indicated different evaporation modes for thymine biodroplets as compared to those for other biodroplets. The evaporation of the thymine biodroplets occurred with an increase in the contact angle, while that of the other biodroplets occur in a constant contact angle mode. Moreover, thymine biodroplets generate the lowest contact line compared to other single strands, and it is always placed far away from the centre of the droplets during evaporation. Investigating variations in the evaporation flux shows that thymine has the highest evaporation flux and guanine has the lowest. Moreover, during initial evaporation, the flux of evaporation increases at the triple point of the biodroplets containing thymine single strands, while it decreases in the other biodroplets. The following observation was obtained from the study of the placement of single strands on the substrate: guanine and thymine interacted slower than other single strands during evaporation with graphene, adenine single strand had a higher folding during evaporation, and guanine single strand showed the lowest end-to-end distance. The investigation of single-strand DNA after evaporation shows that adenine produces the most stable structure at the end of evaporation. In addition, cytosine is the most stretched single-strand DNA due to its lack of internal π-π stacking and hydrogen bonding. Therefore, cytosine single strand is more

  7. MicroCantilever (MC) based nanomechanical sensor for detection of molecular interactions

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kyung [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    Specific aims of this study are to investigate the mechanism governing surface stress generation associated with chemical or molecular binding on functionalized microcantilevers. Formation of affinity complexes on cantilever surfaces leads to charge redistribution, configurational change and steric hindrance between neighboring molecules resulting in surface stress change and measureable cantilever deformation. A novel interferometry technique employing two adjacent micromachined cantilevers (a sensing/reference pair) was utilized to measure the cantilever deformation. The sensing principle is that binding/reaction of specific chemical or biological species on the sensing cantilever transduces to mechanical deformation. The differential bending of the sensing cantilever respect to the reference cantilever ensures that measured response is insensitive to environmental disturbances. As a proof of principle for the measurement technique, surface stress changes associated with: self-assembly of alkanethiol, hybridization of ssDNA, and the formation of cocaine-aptamer complexes were measured. Dissociation constant (Kd) for each molecular reaction was utilized to estimate the surface coverage of affinity complexes. In the cases of DNA hybridization and cocaine-aptamer binding, measured surface stress was found to be dependent on the surface coverage of the affinity complexes. In order to achieve a better sensitivity for DNA hybridization, immobilization of receptor molecules was modified to enhance the deformation of underlying surface. Single-stranded DNA (ssDNA) strands with thiol-modification on both 3-foot and 5-foot ends were immobilized on the gold surface such that both ends are attached to the gold surface. Immobilization condition was controlled to obtain similar receptor density as single-thiolated DNA strands. Hybridization of double-thiolated DNA strands leads to an almost two orders of magnitude increase in cantilever deformation. In both DNA

  8. Diffusion of Supercritical Fluids through Single-Layer Nanoporous Solids: Theory and Molecular Simulations.

    Science.gov (United States)

    Oulebsir, Fouad; Vermorel, Romain; Galliero, Guillaume

    2018-01-16

    With the advent of graphene material, membranes based on single-layer nanoporous solids appear as promising devices for fluid separation, be it liquid or gaseous mixtures. The design of such architectured porous materials would greatly benefit from accurate models that can predict their transport and separation properties. More specifically, there is no universal understanding of how parameters such as temperature, fluid loading conditions, or the ratio of the pore size to the fluid molecular diameter influence the permeation process. In this study, we address the problem of pure supercritical fluids diffusing through simplified models of single-layer porous materials. Basically, we investigate a toy model that consists of a single-layer lattice of Lennard-Jones interaction sites with a slit gap of controllable width. We performed extensive equilibrium and biased molecular dynamics simulations to document the physical mechanisms involved at the molecular scale. We propose a general constitutive equation for the diffusional transport coefficient derived from classical statistical mechanics and kinetic theory, which can be further simplified in the ideal gas limit. This transport coefficient relates the molecular flux to the fluid density jump across the single-layer membrane. It is found to be proportional to the accessible surface porosity of the single-layer porous solid and to a thermodynamic factor accounting for the inhomogeneity of the fluid close to the pore entrance. Both quantities directly depend on the potential of mean force that results from molecular interactions between solid and fluid atoms. Comparisons with the simulations data show that the kinetic model captures how narrowing the pore size below the fluid molecular diameter lowers dramatically the value of the transport coefficient. Furthermore, we demonstrate that our general constitutive equation allows for a consistent interpretation of the intricate effects of temperature and fluid loading

  9. Single-walled carbon nanotubes based chemiresistive genosensor for label-free detection of human rheumatic heart disease

    Science.gov (United States)

    Singh, Swati; Kumar, Ashok; Khare, Shashi; Mulchandani, Ashok; Rajesh

    2014-11-01

    A specific and ultrasensitive, label free single-walled carbon nanotubes (SWNTs) based chemiresistive genosensor was fabricated for the early detection of Streptococcus pyogenes infection in human causing rheumatic heart disease. The mga gene of S. pyogenes specific 24 mer ssDNA probe was covalently immobilized on SWNT through a molecular bilinker, 1-pyrenemethylamine, using carbodiimide coupling reaction. The sensor was characterized by the current-voltage (I-V) characteristic curve and scanning electron microscopy. The sensing performance of the sensor was studied with respect to changes in conductance in SWNT channel based on hybridization of the target S. pyogenes single stranded genomic DNA (ssG-DNA) to its complementary 24 mer ssDNA probe. The sensor shows negligible response to non-complementary Staphylococcus aureus ssG-DNA, confirming the specificity of the sensor only with S. pyogenes. The genosensor exhibited a linear response to S. pyogenes G-DNA from 1 to1000 ng ml-1 with a limit of detection of 0.16 ng ml-1.

  10. Single-photon light detection with transition-edge sensors

    International Nuclear Information System (INIS)

    Rajteri, M.; Taralli, E.; Portesi, C.; Monticone, E.

    2008-01-01

    Transition-Edge Sensors (TESs) are micro calorimeters that measure the energy of incident single-photons by the resistance increase of a superconducting film biased within the superconducting-to-normal transition. TES are able to detect single photons from x-ray to IR with an intrinsic energy resolution and photon-number discrimination capability. Metrological, astronomical and quantum communication applications are the fields where these properties can be particularly important. In this work, we report about characterization of different TESs based on Ti films. Single-photons have been detected from 200 nm to 800 nm working at T c ∼ 100 m K. Using a pulsed laser at 690 nm we have demonstrated the capability to resolve up to five photons.

  11. A comprehensive experiment for molecular biology: Determination of single nucleotide polymorphism in human REV3 gene using PCR-RFLP.

    Science.gov (United States)

    Zhang, Xu; Shao, Meng; Gao, Lu; Zhao, Yuanyuan; Sun, Zixuan; Zhou, Liping; Yan, Yongmin; Shao, Qixiang; Xu, Wenrong; Qian, Hui

    2017-07-08

    Laboratory exercise is helpful for medical students to understand the basic principles of molecular biology and to learn about the practical applications of molecular biology. We have designed a lab course on molecular biology about the determination of single nucleotide polymorphism (SNP) in human REV3 gene, the product of which is a subunit of DNA polymerase ζ and SNPs in this gene are associated with altered susceptibility to cancer. This newly designed experiment is composed of three parts, including genomic DNA extraction, gene amplification by PCR, and genotyping by RFLP. By combining these activities, the students are not only able to learn a series of biotechniques in molecular biology, but also acquire the ability to link the learned knowledge with practical applications. This comprehensive experiment will help the medical students improve the conceptual understanding of SNP and the technical understanding of SNP detection. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(4):299-304, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  12. Manipulation and control of a single molecular rotor on Au (111) surface

    International Nuclear Information System (INIS)

    Hai-Gang, Zhang; Jin-Hai, Mao; Qi, Liu; Nan, Jiang; Hai-Tao, Zhou; Hai-Ming, Guo; Dong-Xia, Shi; Hong-Jun, Gao

    2010-01-01

    Three different methods are used to manipulate and control phthalocyanine based single molecular rotors on Au (111) surface: (1) changing the molecular structure to alter the rotation potential; (2) using the tunnelling current of the scanning tunnelling microscope (STM) to change the thermal equilibrium of the molecular rotor; (3) artificial manipulation of the molecular rotor to switch the rotation on or off by an STM tip. Furthermore, a molecular 'gear wheel' is successfully achieved with two neighbouring molecules. (cross-disciplinary physics and related areas of science and technology)

  13. Molecular detection of salmonella species from selected vegetables ...

    African Journals Online (AJOL)

    Molecular detection of salmonella species from selected vegetables sold in a north-central ... African Journal of Clinical and Experimental Microbiology ... of the pure isolates testing positive as being pathogenic after biochemical analysis.

  14. Early Detection of Breast Cancer Using Molecular Beacons

    National Research Council Canada - National Science Library

    Yang, Lily

    2008-01-01

    .... We proposed to use molecular beacon technology to detect the level of expression of several biomarker genes that are highly expressed in breast cancer cells but not in normal breast epithelial cells...

  15. Molecular electronics with single molecules in solid-state devices.

    Science.gov (United States)

    Moth-Poulsen, Kasper; Bjørnholm, Thomas

    2009-09-01

    The ultimate aim of molecular electronics is to understand and master single-molecule devices. Based on the latest results on electron transport in single molecules in solid-state devices, we focus here on new insights into the influence of metal electrodes on the energy spectrum of the molecule, and on how the electron transport properties of the molecule depend on the strength of the electronic coupling between it and the electrodes. A variety of phenomena are observed depending on whether this coupling is weak, intermediate or strong.

  16. Molecular detection of eukaryotes in a single human stool sample from Senegal.

    Directory of Open Access Journals (Sweden)

    Ibrahim Hamad

    Full Text Available BACKGROUND: Microbial eukaryotes represent an important component of the human gut microbiome, with different beneficial or harmful roles; some species are commensal or mutualistic, whereas others are opportunistic or parasitic. The diversity of eukaryotes inhabiting humans remains relatively unexplored because of either the low abundance of these organisms in human gut or because they have received limited attention from a whole-community perspective. METHODOLOGY/PRINCIPAL FINDING: In this study, a single fecal sample from a healthy African male was studied using both culture-dependent methods and extended molecular methods targeting the 18S rRNA and ITS sequences. Our results revealed that very few fungi, including Candida spp., Galactomyces spp., and Trichosporon asahii, could be isolated using culture-based methods. In contrast, a relatively a high number of eukaryotic species could be identified in this fecal sample when culture-independent methods based on various primer sets were used. A total of 27 species from one sample were found among the 977 analyzed clones. The clone libraries were dominated by fungi (716 clones/977, 73.3%, corresponding to 16 different species. In addition, 187 sequences out of 977 (19.2% corresponded to 9 different species of plants; 59 sequences (6% belonged to other micro-eukaryotes in the gut, including Entamoeba hartmanni and Blastocystis sp; and only 15 clones/977 (1.5% were related to human 18S rRNA sequences. CONCLUSION: Our results revealed a complex eukaryotic community in the volunteer's gut, with fungi being the most abundant species in the stool sample. Larger investigations are needed to assess the generality of these results and to understand their roles in human health and disease.

  17. Quantitative Molecular Imaging with a Single Gd-Based Contrast Agent Reveals Specific Tumor Binding and Retention in Vivo.

    Science.gov (United States)

    Johansen, Mette L; Gao, Ying; Hutnick, Melanie A; Craig, Sonya E L; Pokorski, Jonathan K; Flask, Chris A; Brady-Kalnay, Susann M

    2017-06-06

    Magnetic resonance imaging (MRI) has become an indispensable tool in the diagnosis and treatment of many diseases, especially cancer. However, the poor sensitivity of MRI relative to other imaging modalities, such as PET, has hindered the development and clinical use of molecular MRI contrast agents that could provide vital diagnostic information by specifically locating a molecular target altered in the disease process. This work describes the specific and sustained in vivo binding and retention of a protein tyrosine phosphatase mu (PTPμ)-targeted, molecular magnetic resonance (MR) contrast agent with a single gadolinium (Gd) chelate using a quantitative MRI T 1 mapping technique in glioma xenografts. Quantitative T 1 mapping is an imaging method used to measure the longitudinal relaxation time, the T 1 relaxation time, of protons in a magnetic field after excitation by a radiofrequency pulse. T 1 relaxation times can in turn be used to calculate the concentration of a gadolinium-containing contrast agent in a region of interest, thereby allowing the retention or clearance of an agent to be quantified. In this context, retention is a measure of molecular contrast agent binding. Using conventional peptide chemistry, a PTPμ-targeted peptide was linked to a chelator that had been conjugated to a lysine residue. Following complexation with Gd, this PTPμ-targeted molecular contrast agent containing a single Gd ion showed significant tumor enhancement and a sustained increase in Gd concentration in both heterotopic and orthotopic tumors using dynamic quantitative MRI. This single Gd-containing PTPμ agent was more effective than our previous version with three Gd ions. Differences between nonspecific and specific agents, due to specific tumor binding, can be determined within the first 30 min after agent administration by examining clearance rates. This more facile chemistry, when combined with quantitative MR techniques, allows for widespread adoption by academic

  18. A Novel Drug-Mouse Phenotypic Similarity Method Detects Molecular Determinants of Drug Effects.

    Directory of Open Access Journals (Sweden)

    Jeanette Prinz

    2016-09-01

    Full Text Available The molecular mechanisms that translate drug treatment into beneficial and unwanted effects are largely unknown. We present here a novel approach to detect gene-drug and gene-side effect associations based on the phenotypic similarity of drugs and single gene perturbations in mice that account for the polypharmacological property of drugs. We scored the phenotypic similarity of human side effect profiles of 1,667 small molecules and biologicals to profiles of phenotypic traits of 5,384 mouse genes. The benchmarking with known relationships revealed a strong enrichment of physical and indirect drug-target connections, causative drug target-side effect links as well as gene-drug links involved in pharmacogenetic associations among phenotypically similar gene-drug pairs. The validation by in vitro assays and the experimental verification of an unknown connection between oxandrolone and prokineticin receptor 2 reinforces the ability of this method to provide new molecular insights underlying drug treatment. Thus, this approach may aid in the proposal of novel and personalized treatments.

  19. Detection of single quantum dots in model organisms with sheet illumination microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, Mike; Nozadze, Revaz; Gan, Qiang; Zelman-Femiak, Monika; Ermolayev, Vladimir [Molecular Microscopy Group, Rudolf Virchow Center, University of Wuerzburg, Versbacher Str. 9, D-97078 Wuerzburg (Germany); Wagner, Toni U. [Institute of Physiological Chemistry I, Biocenter, University of Wuerzburg, Am Hubland, D-97074 Wuerzburg (Germany); Harms, Gregory S., E-mail: gregory.harms@virchow.uni-wuerzburg.de [Molecular Microscopy Group, Rudolf Virchow Center, University of Wuerzburg, Versbacher Str. 9, D-97078 Wuerzburg (Germany)

    2009-12-18

    Single-molecule detection and tracking is important for observing biomolecule interactions in the microenvironment. Here we report selective plane illumination microscopy (SPIM) with single-molecule detection in living organisms, which enables fast imaging and single-molecule tracking and optical penetration beyond 300 {mu}m. We detected single nanocrystals in Drosophila larvae and zebrafish embryo. We also report our first tracking of single quantum dots during zebrafish development, which displays a transition from flow to confined motion prior to the blastula stage. The new SPIM setup represents a new technique, which enables fast single-molecule imaging and tracking in living systems.

  20. Detection of single quantum dots in model organisms with sheet illumination microscopy

    International Nuclear Information System (INIS)

    Friedrich, Mike; Nozadze, Revaz; Gan, Qiang; Zelman-Femiak, Monika; Ermolayev, Vladimir; Wagner, Toni U.; Harms, Gregory S.

    2009-01-01

    Single-molecule detection and tracking is important for observing biomolecule interactions in the microenvironment. Here we report selective plane illumination microscopy (SPIM) with single-molecule detection in living organisms, which enables fast imaging and single-molecule tracking and optical penetration beyond 300 μm. We detected single nanocrystals in Drosophila larvae and zebrafish embryo. We also report our first tracking of single quantum dots during zebrafish development, which displays a transition from flow to confined motion prior to the blastula stage. The new SPIM setup represents a new technique, which enables fast single-molecule imaging and tracking in living systems.

  1. Molecular methods for the detection of mutations.

    Science.gov (United States)

    Monteiro, C; Marcelino, L A; Conde, A R; Saraiva, C; Giphart-Gassler, M; De Nooij-van Dalen, A G; Van Buuren-van Seggelen, V; Van der Keur, M; May, C A; Cole, J; Lehmann, A R; Steinsgrimsdottir, H; Beare, D; Capulas, E; Armour, J A

    2000-01-01

    We report the results of a collaborative study aimed at developing reliable, direct assays for mutation in human cells. The project used common lymphoblastoid cell lines, both with and without mutagen treatment, as a shared resource to validate the development of new molecular methods for the detection of low-level mutations in the presence of a large excess of normal alleles. As the "gold standard, " hprt mutation frequencies were also measured on the same samples. The methods under development included i) the restriction site mutation (RSM) assay, in which mutations lead to the destruction of a restriction site; ii) minisatellite length-change mutation, in which mutations lead to alleles containing new numbers of tandem repeat units; iii) loss of heterozygosity for HLA epitopes, in which antibodies can be used to direct selection for mutant cells; iv) multiple fluorescence-based long linker arm nucleotides assay (mf-LLA) technology, for the detection of substitutional mutations; v) detection of alterations in the TP53 locus using a (CA) array as the target for the screening; and vi) PCR analysis of lymphocytes for the presence of the BCL2 t(14:18) translocation. The relative merits of these molecular methods are discussed, and a comparison made with more "traditional" methods.

  2. A molecular quantum spin network controlled by a single qubit.

    Science.gov (United States)

    Schlipf, Lukas; Oeckinghaus, Thomas; Xu, Kebiao; Dasari, Durga Bhaktavatsala Rao; Zappe, Andrea; de Oliveira, Felipe Fávaro; Kern, Bastian; Azarkh, Mykhailo; Drescher, Malte; Ternes, Markus; Kern, Klaus; Wrachtrup, Jörg; Finkler, Amit

    2017-08-01

    Scalable quantum technologies require an unprecedented combination of precision and complexity for designing stable structures of well-controllable quantum systems on the nanoscale. It is a challenging task to find a suitable elementary building block, of which a quantum network can be comprised in a scalable way. We present the working principle of such a basic unit, engineered using molecular chemistry, whose collective control and readout are executed using a nitrogen vacancy (NV) center in diamond. The basic unit we investigate is a synthetic polyproline with electron spins localized on attached molecular side groups separated by a few nanometers. We demonstrate the collective readout and coherent manipulation of very few (≤ 6) of these S = 1/2 electronic spin systems and access their direct dipolar coupling tensor. Our results show that it is feasible to use spin-labeled peptides as a resource for a molecular qubit-based network, while at the same time providing simple optical readout of single quantum states through NV magnetometry. This work lays the foundation for building arbitrary quantum networks using well-established chemistry methods, which has many applications ranging from mapping distances in single molecules to quantum information processing.

  3. Soft matter interactions at the molecular scale: interaction forces and energies between single hydrophobic model peptides.

    Science.gov (United States)

    Stock, Philipp; Utzig, Thomas; Valtiner, Markus

    2017-02-08

    In all realms of soft matter research a fundamental understanding of the structure/property relationships based on molecular interactions is crucial for developing a framework for the targeted design of soft materials. However, a molecular picture is often difficult to ascertain and yet essential for understanding the many different competing interactions at play, including entropies and cooperativities, hydration effects, and the enormous design space of soft matter. Here, we characterized for the first time the interaction between single hydrophobic molecules quantitatively using atomic force microscopy, and demonstrated that single molecular hydrophobic interaction free energies are dominated by the area of the smallest interacting hydrophobe. The interaction free energy amounts to 3-4 kT per hydrophobic unit. Also, we find that the transition state of the hydrophobic interactions is located at 3 Å with respect to the ground state, based on Bell-Evans theory. Our results provide a new path for understanding the nature of hydrophobic interactions at the single molecular scale. Our approach enables us to systematically vary hydrophobic and any other interaction type by utilizing peptide chemistry providing a strategic advancement to unravel molecular surface and soft matter interactions at the single molecular scale.

  4. Detection of sputtered molecular doubly charged anions: a comparison of secondary-ion mass spectrometry (SIMS) and accelerator mass spectrometry (AMS)

    International Nuclear Information System (INIS)

    Gnaser, Hubert; Golser, Robin; Kutschera, Walter; Priller, Alfred; Steier, Peter; Vockenhuber, Christof

    2004-01-01

    The detection of small molecular dianions by secondary-ion mass spectrometry (SIMS) and by accelerator mass spectrometry (AMS) is compared. In SIMS, the existence of these dianions can be identified safely if the total mass number of the molecule is odd and the dianion is hence detected at a half-integral mass number. The occurrence of fragmentation processes which may interfere with this scheme, is illustrated by means of the energy spectra of singly and doubly charged negative cluster ions. As compared to SIMS, AMS can rely, in addition, on the break-up of molecular species in the stripping process: this allows to monitor the simultaneous arrival of several atomic constituents with a clear energetic pattern in coincidence at the detector. This feature is exemplified for the C 10 2- dianion

  5. Electrochromic Molecular Imprinting Sensor for Visual and Smartphone-Based Detections.

    Science.gov (United States)

    Capoferri, Denise; Álvarez-Diduk, Ruslan; Del Carlo, Michele; Compagnone, Dario; Merkoçi, Arben

    2018-05-01

    Electrochromic effect and molecularly imprinted technology have been used to develop a sensitive and selective electrochromic sensor. The polymeric matrices obtained using the imprinting technology are robust molecular recognition elements and have the potential to mimic natural recognition entities with very high selectivity. The electrochromic behavior of iridium oxide nanoparticles (IrOx NPs) as physicochemical transducer together with a molecularly imprinted polymer (MIP) as recognition layer resulted in a fast and efficient translation of the detection event. The sensor was fabricated using screen-printing technology with indium tin oxide as a transparent working electrode; IrOx NPs where electrodeposited onto the electrode followed by thermal polymerization of polypyrrole in the presence of the analyte (chlorpyrifos). Two different approaches were used to detect and quantify the pesticide: direct visual detection and smartphone imaging. Application of different oxidation potentials for 10 s resulted in color changes directly related to the concentration of the analyte. For smartphone imaging, at fixed potential, the concentration of the analyte was dependent on the color intensity of the electrode. The electrochromic sensor detects a highly toxic compound (chlorpyrifos) with a 100 fM and 1 mM dynamic range. So far, to the best of our knowledge, this is the first work where an electrochromic MIP sensor uses the electrochromic properties of IrOx to detect a certain analyte with high selectivity and sensitivity.

  6. Molecular detection of Rickettsia typhi in cats and fleas.

    Directory of Open Access Journals (Sweden)

    Maria Mercedes Nogueras

    Full Text Available BACKGROUND: Rickettsiatyphi is the etiological agent of murine typhus (MT, a disease transmitted by two cycles: rat-flea-rat, and peridomestic cycle. Murine typhus is often misdiagnosed and underreported. A correct diagnosis is important because MT can cause severe illness and death. Our previous seroprevalence results pointed to presence of human R. typhi infection in our region; however, no clinical case has been reported. Although cats have been related to MT, no naturally infected cat has been described. The aim of the study is to confirm the existence of R. typhi in our location analyzing its presence in cats and fleas. METHODOLOGY/PRINCIPAL FINDINGS: 221 cats and 80 fleas were collected from Veterinary clinics, shelters, and the street (2001-2009. Variables surveyed were: date of collection, age, sex, municipality, living place, outdoor activities, demographic area, healthy status, contact with animals, and ectoparasite infestation. IgG against R. typhi were evaluated by indirect immunofluorescence assay. Molecular detection in cats and fleas was performed by real-time PCR. Cultures were performed in those cats with positive molecular detection. Statistical analysis was carried out using SPSS. A p < 0.05 was considered significant. Thirty-five (15.8% cats were seropositive. There were no significant associations among seropositivity and any variables. R. typhi was detected in 5 blood and 2 cultures. High titres and molecular detection were observed in stray cats and pets, as well as in spring and winter. All fleas were Ctenocephalides felis. R. typhi was detected in 44 fleas (55%, from shelters and pets. Co-infection with R. felis was observed. CONCLUSIONS: Although no clinical case has been described in this area, the presence of R. typhi in cats and fleas is demonstrated. Moreover, a considerable percentage of those animals lived in households. To our knowledge, this is the first time R. typhi is detected in naturally infected cats.

  7. Recombinations in staphylococcal cassette chromosome mec elements compromise the molecular detection of methicillin resistance in Staphylococcus aureus

    KAUST Repository

    Hill-Cawthorne, Grant A.

    2014-06-27

    Clinical laboratories are increasingly using molecular tests for methicillin-resistant Staphylococcus aureus (MRSA) screening. However, primers have to be targeted to a variable chromosomal region, the staphylococcal cassette chromosome mec (SCCmec). We initially screened 726 MRSA isolates from a single UK hospital trust by recombinase polymerase amplification (RPA), a novel, isothermal alternative to PCR. Undetected isolates were further characterised using multilocus sequence, spa typing and whole genome sequencing. 96% of our tested phenotypically MRSA isolates contained one of the six orfX-SCCmec junctions our RPA test and commercially available molecular tests target. However 30 isolates could not be detected. Sequencing of 24 of these isolates demonstrated recombinations within the SCCmec element with novel insertions that interfered with the RPA, preventing identification as MRSA. This result suggests that clinical laboratories cannot rely solely upon molecular assays to reliably detect all methicillin-resistance. The presence of significant recombinations in the SCCmec element, where the majority of assays target their primers, suggests that there will continue to be isolates that escape identification. We caution that dependence on amplification-based molecular assays will continue to result in failure to diagnose a small proportion (?4%) of MRSA isolates, unless the true level of SCCmec natural diversity is determined by whole genome sequencing of a large collection of MRSA isolates. © 2014 Hill-Cawthorne et al.

  8. Recombinations in staphylococcal cassette chromosome mec elements compromise the molecular detection of methicillin resistance in Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Grant A Hill-Cawthorne

    Full Text Available Clinical laboratories are increasingly using molecular tests for methicillin-resistant Staphylococcus aureus (MRSA screening. However, primers have to be targeted to a variable chromosomal region, the staphylococcal cassette chromosome mec (SCCmec. We initially screened 726 MRSA isolates from a single UK hospital trust by recombinase polymerase amplification (RPA, a novel, isothermal alternative to PCR. Undetected isolates were further characterised using multilocus sequence, spa typing and whole genome sequencing. 96% of our tested phenotypically MRSA isolates contained one of the six orfX-SCCmec junctions our RPA test and commercially available molecular tests target. However 30 isolates could not be detected. Sequencing of 24 of these isolates demonstrated recombinations within the SCCmec element with novel insertions that interfered with the RPA, preventing identification as MRSA. This result suggests that clinical laboratories cannot rely solely upon molecular assays to reliably detect all methicillin-resistance. The presence of significant recombinations in the SCCmec element, where the majority of assays target their primers, suggests that there will continue to be isolates that escape identification. We caution that dependence on amplification-based molecular assays will continue to result in failure to diagnose a small proportion (∼4% of MRSA isolates, unless the true level of SCCmec natural diversity is determined by whole genome sequencing of a large collection of MRSA isolates.

  9. Recombinations in staphylococcal cassette chromosome mec elements compromise the molecular detection of methicillin resistance in Staphylococcus aureus

    KAUST Repository

    Hill-Cawthorne, Grant A.; Hudson, Lyndsey O.; Abd El Ghany, Moataz; Piepenburg, Olaf; Nair, Mridul; Dodgson, Andrew; Forrest, Matthew S.; Clark, Taane G.; Pain, Arnab

    2014-01-01

    Clinical laboratories are increasingly using molecular tests for methicillin-resistant Staphylococcus aureus (MRSA) screening. However, primers have to be targeted to a variable chromosomal region, the staphylococcal cassette chromosome mec (SCCmec). We initially screened 726 MRSA isolates from a single UK hospital trust by recombinase polymerase amplification (RPA), a novel, isothermal alternative to PCR. Undetected isolates were further characterised using multilocus sequence, spa typing and whole genome sequencing. 96% of our tested phenotypically MRSA isolates contained one of the six orfX-SCCmec junctions our RPA test and commercially available molecular tests target. However 30 isolates could not be detected. Sequencing of 24 of these isolates demonstrated recombinations within the SCCmec element with novel insertions that interfered with the RPA, preventing identification as MRSA. This result suggests that clinical laboratories cannot rely solely upon molecular assays to reliably detect all methicillin-resistance. The presence of significant recombinations in the SCCmec element, where the majority of assays target their primers, suggests that there will continue to be isolates that escape identification. We caution that dependence on amplification-based molecular assays will continue to result in failure to diagnose a small proportion (?4%) of MRSA isolates, unless the true level of SCCmec natural diversity is determined by whole genome sequencing of a large collection of MRSA isolates. © 2014 Hill-Cawthorne et al.

  10. Multispectral optical tweezers for molecular diagnostics of single biological cells

    Science.gov (United States)

    Butler, Corey; Fardad, Shima; Sincore, Alex; Vangheluwe, Marie; Baudelet, Matthieu; Richardson, Martin

    2012-03-01

    Optical trapping of single biological cells has become an established technique for controlling and studying fundamental behavior of single cells with their environment without having "many-body" interference. The development of such an instrument for optical diagnostics (including Raman and fluorescence for molecular diagnostics) via laser spectroscopy with either the "trapping" beam or secondary beams is still in progress. This paper shows the development of modular multi-spectral imaging optical tweezers combining Raman and Fluorescence diagnostics of biological cells.

  11. Silver-Stained Fibrin Zymography: Separation of Proteases and Activity Detection Using a Single Substrate-Containing Gel.

    Science.gov (United States)

    Park, Chang-Su; Kang, Dae-Ook; Choi, Nack-Shick

    2017-01-01

    Silver-stained fibrin zymography for separation of protease bands and activity detection using a single substrate gel was designed. The method takes advantage of the nano-scale sensitivity of both zymography and silver staining. After sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis (PAGE) in a gel containing fibrin (protease substrate), the gel was incubated in enzyme reaction buffer and the zymogram gel was silver-stained. Bands with protease activity were stained with silver in clear areas where the protein substrate had been degraded. The molecular sizes of proteases were accurately determined.

  12. Single-walled carbon nanotubes based chemiresistive genosensor for label-free detection of human rheumatic heart disease

    International Nuclear Information System (INIS)

    Singh, Swati; Kumar, Ashok; Khare, Shashi; Mulchandani, Ashok; Rajesh

    2014-01-01

    A specific and ultrasensitive, label free single-walled carbon nanotubes (SWNTs) based chemiresistive genosensor was fabricated for the early detection of Streptococcus pyogenes infection in human causing rheumatic heart disease. The mga gene of S. pyogenes specific 24 mer ssDNA probe was covalently immobilized on SWNT through a molecular bilinker, 1-pyrenemethylamine, using carbodiimide coupling reaction. The sensor was characterized by the current-voltage (I-V) characteristic curve and scanning electron microscopy. The sensing performance of the sensor was studied with respect to changes in conductance in SWNT channel based on hybridization of the target S. pyogenes single stranded genomic DNA (ssG-DNA) to its complementary 24 mer ssDNA probe. The sensor shows negligible response to non-complementary Staphylococcus aureus ssG-DNA, confirming the specificity of the sensor only with S. pyogenes. The genosensor exhibited a linear response to S. pyogenes G-DNA from 1 to1000 ng ml −1 with a limit of detection of 0.16 ng ml −1

  13. Single-walled carbon nanotubes based chemiresistive genosensor for label-free detection of human rheumatic heart disease

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Swati; Kumar, Ashok, E-mail: rajesh-csir@yahoo.com, E-mail: ashokigib@rediffmail.com [CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007 (India); Academy of Scientific and Innovative Research (AcSIR), New Delhi (India); Khare, Shashi [National Centre for Disease Control, Sham Nath Marg, Delhi 110054 (India); Mulchandani, Ashok [Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521 (United States); Rajesh, E-mail: rajesh-csir@yahoo.com, E-mail: ashokigib@rediffmail.com [CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India)

    2014-11-24

    A specific and ultrasensitive, label free single-walled carbon nanotubes (SWNTs) based chemiresistive genosensor was fabricated for the early detection of Streptococcus pyogenes infection in human causing rheumatic heart disease. The mga gene of S. pyogenes specific 24 mer ssDNA probe was covalently immobilized on SWNT through a molecular bilinker, 1-pyrenemethylamine, using carbodiimide coupling reaction. The sensor was characterized by the current-voltage (I-V) characteristic curve and scanning electron microscopy. The sensing performance of the sensor was studied with respect to changes in conductance in SWNT channel based on hybridization of the target S. pyogenes single stranded genomic DNA (ssG-DNA) to its complementary 24 mer ssDNA probe. The sensor shows negligible response to non-complementary Staphylococcus aureus ssG-DNA, confirming the specificity of the sensor only with S. pyogenes. The genosensor exhibited a linear response to S. pyogenes G-DNA from 1 to1000 ng ml{sup −1} with a limit of detection of 0.16 ng ml{sup −1}.

  14. Molecular discriminators using single wall carbon nanotubes

    International Nuclear Information System (INIS)

    Bhattacharyya, Tamoghna; Dasgupta, Anjan Kr; Ray, Nihar Ranjan; Sarkar, Sabyasachi

    2012-01-01

    The interaction between single wall carbon nanotubes (SWNTs) and amphiphilic molecules has been studied in a solid phase. SWNTs are allowed to interact with different amphiphilic probes (e.g. lipids) in a narrow capillary interface. Contact between strong hydrophobic and amphiphilic interfaces leads to a molecular restructuring of the lipids at the interface. The geometry of the diffusion front and the rate and the extent of diffusion of the interface are dependent on the structure of the lipid at the interface. Lecithin having a linear tail showed greater mobility of the interface as compared to a branched tail lipid like dipalmitoyl phosphatidylcholine, indicating the hydrophobic interaction between single wall carbon nanotube core and the hydrophobic tail of the lipid. Solid phase interactions between SWNT and lipids can thus become a very simple but efficient means of discriminating amphiphilic molecules in general and lipids in particular. (paper)

  15. Exploring the energy landscape of biopolymers using single molecule force spectroscopy and molecular simulations

    OpenAIRE

    Hyeon, Changbong

    2010-01-01

    In recent years, single molecule force techniques have opened a new avenue to decipher the folding landscapes of biopolymers by allowing us to watch and manipulate the dynamics of individual proteins and nucleic acids. In single molecule force experiments, quantitative analyses of measurements employing sound theoretical models and molecular simulations play central role more than any other field. With a brief description of basic theories for force mechanics and molecular simulation techniqu...

  16. Molecular excitations: a new way to detect Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Va' vra, J.

    2014-09-01

    We believe that the Dark Matter (DM) search should be expanded into the domain of detectors sensitive to molecular excitations, and so that we should create detectors which are more sensitive to collisions with very light WIMPs. In this paper we investigate in detail diatomic molecules, such as fused silica material with large OH-molecule content, and water molecules. Presently, we do not have suitable low-cost IR detectors to observe single photons, however some OH-molecular excitations extend to visible and UV wavelengths and can be measured by bialkali photocathodes. There are many other chemical substances with diatomic molecules, or more complex oil molecules, which could be also investigated. This idea invites searches in experiments having large target volumes of such materials coupled to a large array of single-photon detectors with bialkali or infrared-sensitive photocathodes.

  17. Molecular detection of drug resistance in microbes by isotopic techniques: The IAEA experience

    International Nuclear Information System (INIS)

    Dar, L.; Boussaha, A.; Padhy, A.K.; Khan, B.

    2003-01-01

    The International Atomic Energy Agency (IAEA) supports various programmes on the uses of radionuclide techniques in the management of human communicable diseases. An important issue, being addressed through several technology transfer projects, is the detection of drug resistance in microbes by radioisotope based molecular-biology diagnostic procedures. The techniques employed include dot blot hybridisation with P-32 labelled oligonucleotide probes to detect point mutations, associated with drug resistance, in microbial genes amplified by the polymerase chain reaction (PCR). Molecular methods have been used for the detection of drug resistance in the malarial parasite, Plasmodium falciparum, and in Mycobacterium tuberculosis. Radioisotope based molecular-biology methods have been demonstrated to have comparative advantages in being sensitive, specific, cost-effective, and suitable for application to large-scale molecular surveillance for drug resistance. (author)

  18. Highly sensitive and rapid bacteria detection using molecular beacon-Au nanoparticles hybrid nanoprobes.

    Science.gov (United States)

    Cao, Jing; Feng, Chao; Liu, Yan; Wang, Shouyu; Liu, Fei

    2014-07-15

    Since many diseases are caused by pathogenic bacterial infections, accurate and rapid detection of pathogenic bacteria is in urgent need to timely apply appropriate treatments and to reduce economic costs. To end this, we designed molecular beacon-Au nanoparticle hybrid nanoprobes to improve the bacterial detection efficiency and sensitivity. Here, we show that the designed molecular beacon modified Au nanoparticles could specifically recognize synthetic DNAs targets and can readily detect targets in clinical samples. Moreover, the hybrid nanoprobes can recognize Escherichia coli within an hour at a concentration of 10(2) cfu/ml, which is 1000-folds sensitive than using molecular beacon directly. Our results show that the molecular beacon-Au nanoparticle hybrid nanoprobes have great potential in medical and biological applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Single particle tracking and single molecule energy transfer

    CERN Document Server

    Bräuchle, Christoph; Michaelis, Jens

    2009-01-01

    Closing a gap in the literature, this handbook gathers all the information on single particle tracking and single molecule energy transfer. It covers all aspects of this hot and modern topic, from detecting virus entry to membrane diffusion, and from protein folding using spFRET to coupled dye systems, as well recent achievements in the field. Throughout, the first-class editors and top international authors present content of the highest quality, making this a must-have for physical chemists, spectroscopists, molecular physicists and biochemists.

  20. Comparison of Molecular Typing Methods Useful for Detecting Clusters of Campylobacter jejuni and C. coli Isolates through Routine Surveillance

    Science.gov (United States)

    Taboada, Eduardo; Grant, Christopher C. R.; Blakeston, Connie; Pollari, Frank; Marshall, Barbara; Rahn, Kris; MacKinnon, Joanne; Daignault, Danielle; Pillai, Dylan; Ng, Lai-King

    2012-01-01

    Campylobacter spp. may be responsible for unreported outbreaks of food-borne disease. The detection of these outbreaks is made more difficult by the fact that appropriate methods for detecting clusters of Campylobacter have not been well defined. We have compared the characteristics of five molecular typing methods on Campylobacter jejuni and C. coli isolates obtained from human and nonhuman sources during sentinel site surveillance during a 3-year period. Comparative genomic fingerprinting (CGF) appears to be one of the optimal methods for the detection of clusters of cases, and it could be supplemented by the sequencing of the flaA gene short variable region (flaA SVR sequence typing), with or without subsequent multilocus sequence typing (MLST). Different methods may be optimal for uncovering different aspects of source attribution. Finally, the use of several different molecular typing or analysis methods for comparing individuals within a population reveals much more about that population than a single method. Similarly, comparing several different typing methods reveals a great deal about differences in how the methods group individuals within the population. PMID:22162562

  1. Single molecule DNA detection with an atomic vapor notch filter

    Energy Technology Data Exchange (ETDEWEB)

    Uhland, Denis; Rendler, Torsten; Widmann, Matthias; Lee, Sang-Yun [University of Stuttgart and Stuttgart Research Center of Photonic Engineering (SCoPE) and IQST, 3rd Physics Institute, Stuttgart (Germany); Wrachtrup, Joerg; Gerhardt, Ilja [University of Stuttgart and Stuttgart Research Center of Photonic Engineering (SCoPE) and IQST, 3rd Physics Institute, Stuttgart (Germany); Max Planck Institute for Solid State Research, Stuttgart (Germany)

    2015-12-01

    The detection of single molecules has facilitated many advances in life- and material-science. Commonly the fluorescence of dye molecules is detected, which are attached to a non-fluorescent structure under study. For fluorescence microscopy one desires to maximize the detection efficiency together with an efficient suppression of undesired laser leakage. Here we present the use of the narrow-band filtering properties of hot atomic sodium vapor to selectively filter the excitation light from the red-shifted fluorescence of dye labeled single-stranded DNA molecules. A statistical analysis proves an enhancement in detection efficiency of more than 15% in a confocal and in a wide-field configuration. (orig.)

  2. Single-cell multiple gene expression analysis based on single-molecule-detection microarray assay for multi-DNA determination

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lu [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Wang, Xianwei [School of Life Sciences, Shandong University, Jinan 250100 (China); Zhang, Xiaoli [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Wang, Jinxing [School of Life Sciences, Shandong University, Jinan 250100 (China); Jin, Wenrui, E-mail: jwr@sdu.edu.cn [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)

    2015-01-07

    Highlights: • A single-molecule-detection (SMD) microarray for 10 samples is fabricated. • The based-SMD microarray assay (SMA) can determine 8 DNAs for each sample. • The limit of detection of SMA is as low as 1.3 × 10{sup −16} mol L{sup −1}. • The SMA can be applied in single-cell multiple gene expression analysis. - Abstract: We report a novel ultra-sensitive and high-selective single-molecule-detection microarray assay (SMA) for multiple DNA determination. In the SMA, a capture DNA (DNAc) microarray consisting of 10 subarrays with 9 spots for each subarray is fabricated on a silanized glass coverslip as the substrate. On the subarrays, the spot-to-spot spacing is 500 μm and each spot has a diameter of ∼300 μm. The sequence of the DNAcs on the 9 spots of a subarray is different, to determine 8 types of target DNAs (DNAts). Thus, 8 types of DNAts are captured to their complementary DNAcs at 8 spots of a subarray, respectively, and then labeled with quantum dots (QDs) attached to 8 types of detection DNAs (DNAds) with different sequences. The ninth spot is used to detect the blank value. In order to determine the same 8 types of DNAts in 10 samples, the 10 DNAc-modified subarrays on the microarray are identical. Fluorescence single-molecule images of the QD-labeled DNAts on each spot of the subarray are acquired using a home-made single-molecule microarray reader. The amounts of the DNAts are quantified by counting the bright dots from the QDs. For a microarray, 8 types of DNAts in 10 samples can be quantified in parallel. The limit of detection of the SMA for DNA determination is as low as 1.3 × 10{sup −16} mol L{sup −1}. The SMA for multi-DNA determination can also be applied in single-cell multiple gene expression analysis through quantification of complementary DNAs (cDNAs) corresponding to multiple messenger RNAs (mRNAs) in single cells. To do so, total RNA in single cells is extracted and reversely transcribed into their cDNAs. Three

  3. Detection of DNA damage by using hairpin molecular beacon probes and graphene oxide.

    Science.gov (United States)

    Zhou, Jie; Lu, Qian; Tong, Ying; Wei, Wei; Liu, Songqin

    2012-09-15

    A hairpin molecular beacon tagged with carboxyfluorescein in combination with graphene oxide as a quencher reagent was used to detect the DNA damage by chemical reagents. The fluorescence of molecular beacon was quenched sharply by graphene oxide; while in the presence of its complementary DNA the quenching efficiency decreased because their hybridization prevented the strong adsorbability of molecular beacon on graphene oxide. If the complementary DNA was damaged by a chemical reagent and could not form intact duplex structure with molecular beacon, more molecular beacon would adsorb on graphene oxide increasing the quenching efficiency. Thus, damaged DNA could be detected based on different quenching efficiencies afforded by damaged and intact complementary DNA. The damage effects of chlorpyrifos-methyl and three metabolites of styrene such as mandelieaeids, phenylglyoxylieaeids and epoxystyrene on DNA were studied as models. The method for detection of DNA damage was reliable, rapid and simple compared to the biological methods. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Real-world comparison of two molecular methods for detection of respiratory viruses

    Directory of Open Access Journals (Sweden)

    Miller E Kathryn

    2011-06-01

    Full Text Available Abstract Background Molecular polymerase chain reaction (PCR based assays are increasingly used to diagnose viral respiratory infections and conduct epidemiology studies. Molecular assays have generally been evaluated by comparing them to conventional direct fluorescent antibody (DFA or viral culture techniques, with few published direct comparisons between molecular methods or between institutions. We sought to perform a real-world comparison of two molecular respiratory viral diagnostic methods between two experienced respiratory virus research laboratories. Methods We tested nasal and throat swab specimens obtained from 225 infants with respiratory illness for 11 common respiratory viruses using both a multiplex assay (Respiratory MultiCode-PLx Assay [RMA] and individual real-time RT-PCR (RT-rtPCR. Results Both assays detected viruses in more than 70% of specimens, but there was discordance. The RMA assay detected significantly more human metapneumovirus (HMPV and respiratory syncytial virus (RSV, while RT-rtPCR detected significantly more influenza A. We speculated that primer differences accounted for these discrepancies and redesigned the primers and probes for influenza A in the RMA assay, and for HMPV and RSV in the RT-rtPCR assay. The tests were then repeated and again compared. The new primers led to improved detection of HMPV and RSV by RT-rtPCR assay, but the RMA assay remained similar in terms of influenza detection. Conclusions Given the absence of a gold standard, clinical and research laboratories should regularly correlate the results of molecular assays with other PCR based assays, other laboratories, and with standard virologic methods to ensure consistency and accuracy.

  5. Molecular dynamics simulations of single siloxane dendrimers: Molecular structure and intramolecular mobility of terminal groups

    Science.gov (United States)

    Kurbatov, A. O.; Balabaev, N. K.; Mazo, M. A.; Kramarenko, E. Yu.

    2018-01-01

    Molecular dynamics simulations of two types of isolated siloxane dendrimers of various generations (from the 2nd to the 8th) have been performed for temperatures ranging from 150 K to 600 K. The first type of dendrimer molecules has short spacers consisting of a single oxygen atom. In the dendrimers of the second type, spacers are longer and comprised of two oxygen atoms separated by a single silicon atom. A comparative analysis of molecular macroscopic parameters such as the gyration radius and the shape factor as well as atom distributions within dendrimer interior has been performed for varying generation number, temperature, and spacer length. It has been found that the short-spacer dendrimers of the 7th and 8th generations have a stressed central part with elongated bonds and deformed valence angles. Investigation of the time evolution of radial displacements of the terminal Si atoms has shown that a fraction of the Si groups have a reduced mobility. Therefore, rather long time trajectories (of the order of tens of nanoseconds) are required to study dendrimer intramolecular dynamics.

  6. Towards Controlled Single-Molecule Manipulation Using “Real-Time” Molecular Dynamics Simulation: A GPU Implementation

    Directory of Open Access Journals (Sweden)

    Dyon van Vreumingen

    2018-05-01

    Full Text Available Molecular electronics saw its birth with the idea to build electronic circuitry with single molecules as individual components. Even though commercial applications are still modest, it has served an important part in the study of fundamental physics at the scale of single atoms and molecules. It is now a routine procedure in many research groups around the world to connect a single molecule between two metallic leads. What is unknown is the nature of this coupling between the molecule and the leads. We have demonstrated recently (Tewari, 2018, Ph.D. Thesis our new setup based on a scanning tunneling microscope, which can be used to controllably manipulate single molecules and atomic chains. In this article, we will present the extension of our molecular dynamic simulator attached to this system for the manipulation of single molecules in real time using a graphics processing unit (GPU. This will not only aid in controlled lift-off of single molecules, but will also provide details about changes in the molecular conformations during the manipulation. This information could serve as important input for theoretical models and for bridging the gap between the theory and experiments.

  7. Molecular detection of carbapenemase-producing genes in referral ...

    African Journals Online (AJOL)

    Molecular confirmation of carbapenemase-producing Enterobacteriaceae (CPE) was introduced in South Africa (SA) at the end of 2011. We report on the detection of these resistance genes based on referral isolates. Enterobacteriaceae with non-susceptibility to any of the carbapenems according to defined criteria for ...

  8. Computational exploration of single-protein mechanics by steered molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Sotomayor, Marcos [Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio (United States)

    2015-12-31

    Hair cell mechanotransduction happens in tens of microseconds, involves forces of a few picoNewtons, and is mediated by nanometer-scale molecular conformational changes. As proteins involved in this process become identified and their high resolution structures become available, multiple tools are being used to explore their “single-molecule responses” to force. Optical tweezers and atomic force microscopy offer exquisite force and extension resolution, but cannot reach the high loading rates expected for high frequency auditory stimuli. Molecular dynamics (MD) simulations can reach these fast time scales, and also provide a unique view of the molecular events underlying protein mechanics, but its predictions must be experimentally verified. Thus a combination of simulations and experiments might be appropriate to study the molecular mechanics of hearing. Here I review the basics of MD simulations and the different methods used to apply force and study protein mechanics in silico. Simulations of tip link proteins are used to illustrate the advantages and limitations of this method.

  9. Detectable states, cycle fluxes, and motility scaling of molecular motor kinesin: An integrative kinetic graph theory analysis

    Science.gov (United States)

    Ren, Jie

    2017-12-01

    The process by which a kinesin motor couples its ATPase activity with concerted mechanical hand-over-hand steps is a foremost topic of molecular motor physics. Two major routes toward elucidating kinesin mechanisms are the motility performance characterization of velocity and run length, and single-molecular state detection experiments. However, these two sets of experimental approaches are largely uncoupled to date. Here, we introduce an integrative motility state analysis based on a theorized kinetic graph theory for kinesin, which, on one hand, is validated by a wealth of accumulated motility data, and, on the other hand, allows for rigorous quantification of state occurrences and chemomechanical cycling probabilities. An interesting linear scaling for kinesin motility performance across species is discussed as well. An integrative kinetic graph theory analysis provides a powerful tool to bridge motility and state characterization experiments, so as to forge a unified effort for the elucidation of the working mechanisms of molecular motors.

  10. Electrochemistry of single molecules and biomolecules, molecular scale nanostructures, and low-dimensional systems

    DEFF Research Database (Denmark)

    Nazmutdinov, Renat R.; Zinkicheva, Tamara T.; Zinkicheva, Tamara T.

    2018-01-01

    Electrochemistry at ultra-small scales, where even the single molecule or biomolecule can be characterized and manipulated, is on the way to a consolidated status. At the same time molecular electrochemistry is expanding into other areas of sophisticated nano- and molecular scale systems includin...... molecular scale metal and semiconductor nanoparticles (NPs) and other nanostructures, e.g. nanotubes, “nanoflowers” etc.. The new structures offer both new electronic properties and highly confined novel charge transfer environments....

  11. Application of single-chip microcomputer in radiation detection

    International Nuclear Information System (INIS)

    Zhang Songshou

    1993-01-01

    The single-chip microcomputer has some advantages in many aspects for example the strong function, the small volume, the low-power, firmed and reliable. It is used widely in the control of industry, instrument, communication and machine, etc.. The paper introduces that the single-chip microcomputer is used in radiation detection, mostly including the use of control, linear, compensation, calculation, prefabricated change, improving precision and training

  12. Atomic-resolution single-spin magnetic resonance detection concept based on tunneling force microscopy

    Science.gov (United States)

    Payne, A.; Ambal, K.; Boehme, C.; Williams, C. C.

    2015-05-01

    A study of a force detected single-spin magnetic resonance measurement concept with atomic spatial resolution is presented. The method is based upon electrostatic force detection of spin-selection rule controlled single-electron tunneling between two electrically isolated paramagnetic states. Single-spin magnetic resonance detection is possible by measuring the force detected tunneling charge noise on and off spin resonance. Simulation results of this charge noise, based upon physical models of the tunneling and spin physics, are directly compared to measured atomic force microscopy system noise. The results show that the approach could provide single-spin measurement of electrically isolated qubit states with atomic spatial resolution at room temperature.

  13. Detection of Waterborne Viruses Using High Affinity Molecularly Imprinted Polymers.

    Science.gov (United States)

    Altintas, Zeynep; Gittens, Micah; Guerreiro, Antonio; Thompson, Katy-Anne; Walker, Jimmy; Piletsky, Sergey; Tothill, Ibtisam E

    2015-07-07

    Molecularly imprinted polymers (MIPs) are artificial receptor ligands which can recognize and specifically bind to a target molecule. They are more resistant to chemical and biological damage and inactivation than antibodies. Therefore, target specific-MIP nanoparticles are aimed to develop and implemented to biosensors for the detection of biological toxic agents such as viruses, bacteria, and fungi toxins that cause many diseases and death due to the environmental contamination. For the first time, a molecularly imprinted polymer (MIP) targeting the bacteriophage MS2 as the template was investigated using a novel solid-phase synthesis method to obtain the artificial affinity ligand for the detection and removal of waterborne viruses through optical-based sensors. A high affinity between the artificial ligand and the target was found, and a regenerative MIP-based virus detection assay was successfully developed using a new surface plasmon resonance (SPR)-biosensor which provides an alternative technology for the specific detection and removal of waterborne viruses that lead to high disease and death rates all over the world.

  14. Spectrally resolved single-molecule electrometry

    Science.gov (United States)

    Ruggeri, F.; Krishnan, M.

    2018-03-01

    Escape-time electrometry is a recently developed experimental technique that offers the ability to measure the effective electrical charge of a single biomolecule in solution with sub-elementary charge precision. The approach relies on measuring the average escape-time of a single charged macromolecule or molecular species transiently confined in an electrostatic fluidic trap. Comparing the experiments with the predictions of a mean-field model of molecular electrostatics, we have found that the measured effective charge even reports on molecular conformation, e.g., folded or disordered state, and non-uniform charge distribution in disordered proteins or polyelectrolytes. Here we demonstrate the ability to use the spectral dimension to distinguish minute differences in electrical charge between individual molecules or molecular species in a single simultaneous measurement, under identical experimental conditions. Using one spectral channel for referenced measurement, this kind of photophysical distinguishability essentially eliminates the need for accurate knowledge of key experimental parameters, otherwise obtained through intensive characterization of the experimental setup. As examples, we demonstrate the ability to detect small differences (˜5%) in the length of double-stranded DNA fragments as well as single amino acid exchange in an intrinsically disordered protein, prothymosin α.

  15. Modified Single Photo-diode (MSPD) Detection Technique for SAC-OCDMA System

    Science.gov (United States)

    Abdulqader, Sarah G.; Fadhil, Hilal A.; Aljunid, S. A.

    2015-03-01

    In this paper, a new detection technique called modified single photo-diode (MSPD) detection for SAC-OCDMA system is proposed. The proposed system based on the single photo-diode (SPD) detection technique. The new detection technique is proposed to overcome the limitation of phase-induced intensity noise (PIIN) in SPD detection technique. However, the proposed detection is based on an optical hard limiter (OHL) followed by a SPD and a low-pass filter (LPF) in order to suppress the phase intensity noise (PIIN) at the receiver side. The results show that the MSPD detection based on OHL has a good performance even when the transmission distance is long, which is different from the case of SPD detection technique. Therefore, the MSPD detection technique is shown to be effective to improve the bit error rate (BER<10-9) and to suppress the noise in the practical optical fiber network.

  16. A highly selective molecularly imprinted electrochemiluminescence sensor for ultra-trace beryllium detection

    International Nuclear Information System (INIS)

    Li, Jianping; Ma, Fei; Wei, Xiaoping; Fu, Cong; Pan, Hongcheng

    2015-01-01

    Graphical abstract: A novel molecular imprinted electrochemiluminescence sensor was fabricated for ultra-trace Be 2+ detection with an extremely lower detection limit based on the luminol–H 2 O 2 ECL system. - Highlights: • A novel molecular imprinted electrochemiluminescence sensor was fabricated for ultra-trace Be 2+ detection. • Imprint cavities in the MIPs from elution the Be–PAR complex could provide more recognition sites for analytes. • ECL emission produced by the luminol–H 2 O 2 ECL system, which was applied to detect Be 2+ . • It gave an extremely lower detection limit (2.35 × 10 −11 mol L −1 ) than the reported methods. - Abstract: A new molecularly imprinted electrochemiluminescence (ECL) sensor was proposed for highly sensitive and selective determination of ultratrace Be 2+ determination. The complex of Be 2+ with 4-(2-pyridylazo)-resorcinol (PAR) was chosen as the template molecule for the molecularly imprinted polymer (MIP). In this assay, the complex molecule could be eluted from the MIP, and the cavities formed could then selectively recognize the complex molecules. The cavities formed could also work as the tunnel for the transfer of probe molecules to produce sound responsive signal. The determination was based on the intensity of the signal, which was proportional to the concentrations of the complex molecule in the sample solution, and the Be 2+ concentration could then be determined indirectly. The results showed that in the range of 7 × 10 −11 mol L −1 to 8.0 × 10 −9 mol L −1 , the ECL intensity had a linear relationship with the Be 2+ concentrations, with the limit of detection of 2.35 × 10 −11 mol L −1 . This method was successfully used to detect Be 2+ in real water samples

  17. Variable contact gap single-molecule conductance determination for a series of conjugated molecular bridges

    DEFF Research Database (Denmark)

    Haiss, W.; Wang, Christian; Jitchati, R.

    2008-01-01

    It is now becoming clear that the characteristics of the whole junction are important in determining the conductance of single molecules bound between two metal contacts. This paper shows through measurements on a series of seven conjugated molecular bridges that contact separation is an importan...... that conductance increases rather dramatically at higher tilt angle away from the normal for conformationally rigid molecular wires and that this increase in conductance arises from increased electronic coupling between the molecular bridge and the gold contacts.......It is now becoming clear that the characteristics of the whole junction are important in determining the conductance of single molecules bound between two metal contacts. This paper shows through measurements on a series of seven conjugated molecular bridges that contact separation is an important......-distance curves and knowledge of the terminal to terminal length of the molecular wire. The contact gap separation dependence is interpreted as arising from tilting of these molecules in the junction and this model is underpinned by ab initio transport computations. In this respect we make the general observation...

  18. Accurate Detection of Methicillin-Resistant Staphylococcus aureus in Mixtures by Use of Single-Bacterium Duplex Droplet Digital PCR.

    Science.gov (United States)

    Luo, Jun; Li, Junhua; Yang, Hang; Yu, Junping; Wei, Hongping

    2017-10-01

    Accurate and rapid identification of methicillin-resistant Staphylococcus aureus (MRSA) is needed to screen MRSA carriers and improve treatment. The current widely used duplex PCR methods are not able to differentiate MRSA from coexisting methicillin-susceptible S. aureus (MSSA) or other methicillin-resistant staphylococci. In this study, we aimed to develop a direct method for accurate and rapid detection of MRSA in clinical samples from open environments, such as nasal swabs. The new molecular assay is based on detecting the cooccurrence of nuc and mecA markers in a single bacterial cell by utilizing droplet digital PCR (ddPCR) with the chimeric lysin ClyH for cell lysis. The method consists of (i) dispersion of an intact single bacterium into nanoliter droplets, (ii) temperature-controlled release of genomic DNA (gDNA) by ClyH at 37°C, and (iii) amplification and detection of the markers ( nuc and mecA ) using standard TaqMan chemistries with ddPCR. Results were analyzed based on MRSA index ratios used for indicating the presence of the duplex-positive markers in droplets. The method was able to achieve an absolute limit of detection (LOD) of 2,900 CFU/ml for MRSA in nasal swabs spiked with excess amounts of Escherichia coli , MSSA, and other mecA -positive bacteria within 4 h. Initial testing of 104 nasal swabs showed that the method had 100% agreement with the standard culture method, while the normal duplex qPCR method had only about 87.5% agreement. The single-bacterium duplex ddPCR assay is rapid and powerful for more accurate detection of MRSA directly from clinical specimens. Copyright © 2017 American Society for Microbiology.

  19. Detection of enterotoxigenic Clostridium perfringens in meat samples by using molecular methods.

    Science.gov (United States)

    Kaneko, Ikuko; Miyamoto, Kazuaki; Mimura, Kanako; Yumine, Natsuko; Utsunomiya, Hirotoshi; Akimoto, Shigeru; McClane, Bruce A

    2011-11-01

    To prevent food-borne bacterial diseases and to trace bacterial contamination events to foods, microbial source tracking (MST) methods provide important epidemiological information. To apply molecular methods to MST, it is necessary not only to amplify bacterial cells to detection limit levels but also to prepare DNA with reduced inhibitory compounds and contamination. Isolates carrying the Clostridium perfringens enterotoxin gene (cpe) on the chromosome or a plasmid rank among the most important food-borne pathogens. Previous surveys indicated that cpe-positive C. perfringens isolates are present in only ∼5% of nonoutbreak food samples and then only at low numbers, usually less than 3 cells/g. In this study, four molecular assays for the detection of cpe-positive C. perfringens isolates, i.e., ordinary PCR, nested PCR, real-time PCR, and loop-mediated isothermal amplification (LAMP), were developed and evaluated for their reliability using purified DNA. For use in the artificial contamination of meat samples, DNA templates were prepared by three different commercial DNA preparation kits. The four molecular assays always detected cpe when >10³ cells/g of cpe-positive C. perfringens were present, using any kit. Of three tested commercial DNA preparation kits, the InstaGene matrix kit appeared to be most suitable for the testing of a large number of samples. By using the InstaGene matrix kit, the four molecular assays efficiently detected cpe using DNA prepared from enrichment culture specimens of meat samples contaminated with low numbers of cpe-positive C. perfringens vegetative cells or spores. Overall, the current study developed molecular assay protocols for MST to detect the contamination of foods with low numbers of cells, and at a low frequency, of cpe-positive C. perfringens isolates.

  20. Detection of Enterotoxigenic Clostridium perfringens in Meat Samples by Using Molecular Methods▿

    Science.gov (United States)

    Kaneko, Ikuko; Miyamoto, Kazuaki; Mimura, Kanako; Yumine, Natsuko; Utsunomiya, Hirotoshi; Akimoto, Shigeru; McClane, Bruce A.

    2011-01-01

    To prevent food-borne bacterial diseases and to trace bacterial contamination events to foods, microbial source tracking (MST) methods provide important epidemiological information. To apply molecular methods to MST, it is necessary not only to amplify bacterial cells to detection limit levels but also to prepare DNA with reduced inhibitory compounds and contamination. Isolates carrying the Clostridium perfringens enterotoxin gene (cpe) on the chromosome or a plasmid rank among the most important food-borne pathogens. Previous surveys indicated that cpe-positive C. perfringens isolates are present in only ∼5% of nonoutbreak food samples and then only at low numbers, usually less than 3 cells/g. In this study, four molecular assays for the detection of cpe-positive C. perfringens isolates, i.e., ordinary PCR, nested PCR, real-time PCR, and loop-mediated isothermal amplification (LAMP), were developed and evaluated for their reliability using purified DNA. For use in the artificial contamination of meat samples, DNA templates were prepared by three different commercial DNA preparation kits. The four molecular assays always detected cpe when >103 cells/g of cpe-positive C. perfringens were present, using any kit. Of three tested commercial DNA preparation kits, the InstaGene matrix kit appeared to be most suitable for the testing of a large number of samples. By using the InstaGene matrix kit, the four molecular assays efficiently detected cpe using DNA prepared from enrichment culture specimens of meat samples contaminated with low numbers of cpe-positive C. perfringens vegetative cells or spores. Overall, the current study developed molecular assay protocols for MST to detect the contamination of foods with low numbers of cells, and at a low frequency, of cpe-positive C. perfringens isolates. PMID:21890671

  1. Molecular modelling of a chemodosimeter for the selective detection ...

    Indian Academy of Sciences (India)

    Wintec

    Molecular modelling of a chemodosimeter for the selective detection of. As(III) ion in water. † ... high levels of arsenic cause severe skin diseases in- cluding skin cancer ..... Special Attention to Groundwater in SE Asia (eds) D. Chakraborti, A ...

  2. Experimental thermodynamics of single molecular motor.

    Science.gov (United States)

    Toyabe, Shoichi; Muneyuki, Eiro

    2013-01-01

    Molecular motor is a nano-sized chemical engine that converts chemical free energy to mechanical motions. Hence, the energetics is as important as kinetics in order to understand its operation principle. We review experiments to evaluate the thermodynamic properties of a rotational F1-ATPase motor (F1-motor) at a single-molecule level. We show that the F1-motor achieves 100% thermo dynamic efficiency at the stalled state. Furthermore, the motor reduces the internal irreversible heat inside the motor to almost zero and achieves a highly-efficient free energy transduction close to 100% during rotations far from quasistatic process. We discuss the mechanism of how the F1-motor achieves such a high efficiency, which highlights the remarkable property of the nano-sized engine F1-motor.

  3. Molecular analysis of single oocyst of Eimeria by whole genome amplification (WGA) based nested PCR.

    Science.gov (United States)

    Wang, Yunzhou; Tao, Geru; Cui, Yujuan; Lv, Qiyao; Xie, Li; Li, Yuan; Suo, Xun; Qin, Yinghe; Xiao, Lihua; Liu, Xianyong

    2014-09-01

    PCR-based molecular tools are widely used for the identification and characterization of protozoa. Here we report the molecular analysis of Eimeria species using combined methods of whole genome amplification (WGA) and nested PCR. Single oocyst of Eimeria stiedai or Eimeriamedia was directly used for random amplification of the genomic DNA with either primer extension preamplification (PEP) or multiple displacement amplification (MDA), and then the WGA product was used as template in nested PCR with species-specific primers for ITS-1, 18S rDNA and 23S rDNA of E. stiedai and E. media. WGA-based PCR was successful for the amplification of these genes from single oocyst. For the species identification of single oocyst isolated from mixed E. stiedai or E. media, the results from WGA-based PCR were exactly in accordance with those from morphological identification, suggesting the availability of this method in molecular analysis of eimerian parasites at the single oocyst level. WGA-based PCR method can also be applied for the identification and genetic characterization of other protists. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Molecular analysis of cross-bacterial contamination detected in ...

    African Journals Online (AJOL)

    ... the isolate Delftia acidovorans BP(R2) and it is also coupled to protein with molecular weight 25-26 KDa. As well as, this bacterial contamination was the reason for the false positive results observed during the detection of HCV infections. Journal of Applied Sciences and Environmental Management Vol. 9(1) 2005: 5-10.

  5. Electronic structure of surface-supported bis(phthalocyaninato) terbium(III) single molecular magnets.

    Science.gov (United States)

    Vitali, Lucia; Fabris, Stefano; Conte, Adriano Mosca; Brink, Susan; Ruben, Mario; Baroni, Stefano; Kern, Klaus

    2008-10-01

    The electronic structure of isolated bis(phthalocyaninato) terbium(III) molecules, a novel single-molecular-magnet (SMM), supported on the Cu(111) surface has been characterized by density functional theory and scanning tunneling spectroscopy. These studies reveal that the interaction with the metal surface preserves both the molecular structure and the large spin magnetic moment of the metal center. The 4f electron states are not perturbed by the adsorption while a strong molecular/metal interaction can induce the suppression of the minor spin contribution delocalized over the molecular ligands. The calculations show that the inherent spin magnetic moment of the molecule is only weakly affected by the interaction with the surface and suggest that the SMM character might be preserved.

  6. Molecularly imprinted fluorescent probe based on FRET for selective and sensitive detection of doxorubicin

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhifeng, E-mail: 897061147@qq.com [College of Chemistry and Materials Science, Hengyang Normal University, Key Laboratory of Functional Organometallic Materials of Hunan Province University, Hengyang 421008 (China); Deng, Peihong; Li, Junhua [College of Chemistry and Materials Science, Hengyang Normal University, Key Laboratory of Functional Organometallic Materials of Hunan Province University, Hengyang 421008 (China); Xu, Li [Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou 510642 (China); Tang, Siping [College of Chemistry and Materials Science, Hengyang Normal University, Key Laboratory of Functional Organometallic Materials of Hunan Province University, Hengyang 421008 (China)

    2017-04-15

    Highlights: • FRET-based molecularly imprinted probe for detection of doxorubicin was prepared. • The detection limit of the probe was 13.8 nM for doxorubicin. • The FRET-based probe had a higher selectivity for the template than ordinary MIMs. - Abstract: In this work, a new type of fluorescent probe for detection of doxorubicin has been constructed by the combined use of fluorescence resonance energy transfer (FRET) technology and molecular imprinting technique (MIT). Using doxorubicin as the template, the molecularly imprinted polymer thin layer was fabricated on the surfaces of carbon dot (CD) modified silica by sol-gel polymerization. The excitation energy of the fluorescent donor (CDs) could be transferred to the fluorescent acceptor (doxorubicin). The FRET based fluorescent probe demonstrated high sensitivity and selectivity for doxorubicin. The detection limit was 13.8 nM. The fluorescent probe was successfully applied for detecting doxorubicin in doxorubicin-spiked plasmas with a recovery of 96.8–103.8%, a relative standard deviation (RSD) of 1.3–2.8%. The strategy for construction of FRET-based molecularly imprinted materials developed in this work is very promising for analytical applications.

  7. Massively Parallel, Molecular Analysis Platform Developed Using a CMOS Integrated Circuit With Biological Nanopores

    Science.gov (United States)

    Roever, Stefan

    2012-01-01

    A massively parallel, low cost molecular analysis platform will dramatically change the nature of protein, molecular and genomics research, DNA sequencing, and ultimately, molecular diagnostics. An integrated circuit (IC) with 264 sensors was fabricated using standard CMOS semiconductor processing technology. Each of these sensors is individually controlled with precision analog circuitry and is capable of single molecule measurements. Under electronic and software control, the IC was used to demonstrate the feasibility of creating and detecting lipid bilayers and biological nanopores using wild type α-hemolysin. The ability to dynamically create bilayers over each of the sensors will greatly accelerate pore development and pore mutation analysis. In addition, the noise performance of the IC was measured to be 30fA(rms). With this noise performance, single base detection of DNA was demonstrated using α-hemolysin. The data shows that a single molecule, electrical detection platform using biological nanopores can be operationalized and can ultimately scale to millions of sensors. Such a massively parallel platform will revolutionize molecular analysis and will completely change the field of molecular diagnostics in the future.

  8. Molecular Detection and Characterization of Goat Isolate of Taenia hydatigena in Turkey

    Directory of Open Access Journals (Sweden)

    Armagan Erdem Utuk

    2012-01-01

    Full Text Available The aim of this study was to provide molecular detection and characterization of the goat isolate of Taenia hydatigena from Ankara province of Turkey. For this purpose, PCR amplification of small subunit ribosomal RNA (rrnS and partial sequencing of mitochondrial cytochrome c oxidase subunit 1 (mt-CO1 genes were performed in a one-month-old dead goat. According to rrnS-PCR results, parasites were identified as Taenia spp., and partial sequence of mt-CO1 gene was corresponding to T. hydatigena. At the end of the study, we concluded that molecular tools can be used to define species of parasites in cases where the key morphologic features cannot be detected. Nucleotide sequence data of Turkish goat isolate of T. hydatigena was submitted to GenBank for other researchers interested in this subject. By this study, molecular detection and characterization of T. hydatigena was done for the first time in Turkey.

  9. Method for improved selectivity in photo-activation and detection of molecular diagnostic agents

    Science.gov (United States)

    Wachter, Eric A.; Fisher, Walter G.; Dees, H. Craig

    1998-01-01

    A method for the imaging of a particular volume of plant or animal tissue, wherein the plant or animal tissue contains at least one photo-active molecular agent. The method includes the steps of treating the particular volume of the plant or animal tissue with light sufficient to promote a simultaneous two-photon excitation of the photo-active molecular agent contained in the particular volume of the plant or animal tissue, photo-activating at least one of the at least one photo-active molecular agent in the particular volume of the plant or animal tissue, thereby producing at least one photo-activated molecular agent, wherein the at least one photo-activated molecular agent emits energy, detecting the energy emitted by the at least one photo-activated molecular agent, and producing a detected energy signal which is characteristic of the particular volume of plant or animal tissue. The present invention is also a method for the imaging of a particular volume of material, wherein the material contains at least one photo-active molecular agent.

  10. Methods for improved selectivity in photo-activation and detection of molecular diagnostic agents

    Science.gov (United States)

    Wachter, Eric A [Oak Ridge, TN; Fisher, Walter G [Knoxville, TN; Dees, H Craig [Knoxville, TN

    2008-03-18

    A method for the imaging of a particular volume of plant or animal tissue, wherein the plant or animal tissue contains at least one photo-active molecular agent. The method comprises the steps of treating the particular volume of the plant or animal tissue with light sufficient to promote a simultaneous two-photon excitation of the photo-active molecular agent contained in the particular volume of the plant or animal tissue, photo-activating at least one of the at least one photo-active molecular agent in the particular volume of the plant or animal tissue, thereby producing at least one photo-activated molecular agent, wherein the at least one photo-activated molecular agent emits energy, detecting the energy emitted by the at least one photo-activated molecular agent, and producing a detected energy signal which is characteristic of the particular volume of plant or animal tissue. The present invention also provides a method for the imaging of a particular volume of material, wherein the material contains at least one photo-active molecular agent.

  11. Waveguide-integrated single- and multi-photon detection at telecom wavelengths using superconducting nanowires

    International Nuclear Information System (INIS)

    Ferrari, Simone; Kahl, Oliver; Kovalyuk, Vadim; Goltsman, Gregory N.; Korneev, Alexander; Pernice, Wolfram H. P.

    2015-01-01

    We investigate single- and multi-photon detection regimes of superconducting nanowire detectors embedded in silicon nitride nanophotonic circuits. At near-infrared wavelengths, simultaneous detection of up to three photons is observed for 120 nm wide nanowires biased far from the critical current, while narrow nanowires below 100 nm provide efficient single photon detection. A theoretical model is proposed to determine the different detection regimes and to calculate the corresponding internal quantum efficiency. The predicted saturation of the internal quantum efficiency in the single photon regime agrees well with plateau behavior observed at high bias currents

  12. Waveguide-integrated single- and multi-photon detection at telecom wavelengths using superconducting nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, Simone; Kahl, Oliver [Institute of Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe 76132 (Germany); Kovalyuk, Vadim [Institute of Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe 76132 (Germany); Department of Physics, Moscow State Pedagogical University, Moscow 119992 (Russian Federation); Goltsman, Gregory N. [Department of Physics, Moscow State Pedagogical University, Moscow 119992 (Russian Federation); National Research University Higher School of Economics, 20 Myasnitskaya Ulitsa, Moscow 101000 (Russian Federation); Korneev, Alexander [Department of Physics, Moscow State Pedagogical University, Moscow 119992 (Russian Federation); Moscow Institute of Physics and Technology (State University), Moscow 141700 (Russian Federation); Pernice, Wolfram H. P., E-mail: wolfram.pernice@kit.edu [Institute of Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe 76132 (Germany); Department of Physics, University of Münster, 48149 Münster (Germany)

    2015-04-13

    We investigate single- and multi-photon detection regimes of superconducting nanowire detectors embedded in silicon nitride nanophotonic circuits. At near-infrared wavelengths, simultaneous detection of up to three photons is observed for 120 nm wide nanowires biased far from the critical current, while narrow nanowires below 100 nm provide efficient single photon detection. A theoretical model is proposed to determine the different detection regimes and to calculate the corresponding internal quantum efficiency. The predicted saturation of the internal quantum efficiency in the single photon regime agrees well with plateau behavior observed at high bias currents.

  13. Evaluation of four molecular methods to detect Leishmania infection in dogs.

    Science.gov (United States)

    Albuquerque, Andreia; Campino, Lenea; Cardoso, Luís; Cortes, Sofia

    2017-03-13

    Canine leishmaniasis, a zoonotic disease caused by Leishmania infantum vectored by phlebotomine sand flies, is considered a relevant veterinary and public health problem in various countries, namely in the Mediterranean basin and Brazil, where dogs are considered the main reservoir hosts. Not only diseased dogs but also those subclinically infected play a relevant role in the transmission of L. infantum to vectors; therefore, early diagnosis is essential, under both a clinical and an epidemiological perspective. Molecular tools can be a more accurate and sensitive approach for diagnosis, with a wide range of protocols currently in use. The aim of the present report was to compare four PCR based protocols for the diagnosis of canine Leishmania infection in a cohort of dogs from the Douro region, Portugal. A total of 229 bone marrow samples were collected from dogs living in the Douro region, an endemic region for leishmaniasis. Four PCR protocols were evaluated for Leishmania DNA detection in canine samples, three single (ITS1-PCR, MC-PCR and Uni21/Lmj4-PCR) and one nested (nested SSU rRNA-PCR). Two of the protocols were based on nuclear targets and the other two on kinetoplastid targets. The higher overall percentage of infected dogs was detected with the nested SSU rRNA-PCR (37.6%), which also was able to detect Leishmania DNA in a higher number of samples from apparently healthy dogs (25.3%). The ITS1-PCR presented the lowest level of Leishmania detection. Nested SSU rRNA-PCR is an appropriate method to detect Leishmania infection in dogs. Accurate and early diagnosis in clinically suspect as well as apparently healthy dogs is essential, in order to treat and protect animals and public health and contribute to the control and awareness of the disease.

  14. Direct detection of the optical field beyond single polarization mode.

    Science.gov (United States)

    Che, Di; Sun, Chuanbowen; Shieh, William

    2018-02-05

    Direct detection is traditionally regarded as a detection method that recovers only the optical intensity. Compared with coherent detection, it owns a natural advantage-the simplicity-but lacks a crucial capability of field recovery that enables not only the multi-dimensional modulation, but also the digital compensation of the fiber impairments linear with the optical field. Full-field detection is crucial to increase the capacity-distance product of optical transmission systems. A variety of methods have been investigated to directly detect the optical field of the single polarization mode, which normally sends a carrier traveling with the signal for self-coherent detection. The crux, however, is that any optical transmission medium supports at least two propagating modes (e.g. single mode fiber supports two polarization modes), and until now there is no direct detection that can recover the complete set of optical fields beyond one polarization, due to the well-known carrier fading issue after mode demultiplexing induced by the random mode coupling. To avoid the fading, direct detection receivers should recover the signal in an intensity space isomorphic to the optical field without loss of any degrees of freedom, and a bridge should be built between the field and its isomorphic space for the multi-mode field recovery. Based on this thinking, we propose, for the first time, the direct detection of dual polarization modes by a novel receiver concept, the Stokes-space field receiver (SSFR) and its extension, the generalized SSFR for multiple spatial modes. The idea is verified by a dual-polarization field recovery of a polarization-multiplexed complex signal over an 80-km single mode fiber transmission. SSFR can be applied to a much wider range of fields beyond optical communications such as coherent sensing and imaging, where simple field recovery without an extra local laser is desired for enhanced system performance.

  15. THE DETECTION OF A HOT MOLECULAR CORE IN THE LARGE MAGELLANIC CLOUD WITH ALMA

    International Nuclear Information System (INIS)

    Shimonishi, Takashi; Onaka, Takashi; Kawamura, Akiko; Aikawa, Yuri

    2016-01-01

    We report the first detection of a hot molecular core outside our Galaxy based on radio observations with ALMA toward a high-mass young stellar object (YSO) in a nearby low metallicity galaxy, the Large Magellanic Cloud (LMC). Molecular emission lines of CO, C 17 O, HCO + , H 13 CO + , H 2 CO, NO, SiO, H 2 CS, 33 SO, 32 SO 2 , 34 SO 2 , and 33 SO 2 are detected from a compact region (∼0.1 pc) associated with a high-mass YSO, ST11. The temperature of molecular gas is estimated to be higher than 100 K based on rotation diagram analysis of SO 2 and 34 SO 2 lines. The compact source size, warm gas temperature, high density, and rich molecular lines around a high-mass protostar suggest that ST11 is associated with a hot molecular core. We find that the molecular abundances of the LMC hot core are significantly different from those of Galactic hot cores. The abundances of CH 3 OH, H 2 CO, and HNCO are remarkably lower compared to Galactic hot cores by at least 1–3 orders of magnitude. We suggest that these abundances are characterized by the deficiency of molecules whose formation requires the hydrogenation of CO on grain surfaces. In contrast, NO shows a high abundance in ST11 despite the notably low abundance of nitrogen in the LMC. A multitude of SO 2 and its isotopologue line detections in ST11 imply that SO 2 can be a key molecular tracer of hot core chemistry in metal-poor environments. Furthermore, we find molecular outflows around the hot core, which is the second detection of an extragalactic protostellar outflow. In this paper, we discuss the physical and chemical characteristics of a hot molecular core in the low metallicity environment.

  16. A Molecularly Imprinted Polymer (MIP)-Coated Microbeam MEMS Sensor for Chemical Detection

    Science.gov (United States)

    2015-09-01

    ARL-RP-0536 ● SEP 2015 US Army Research Laboratory A Molecularly Imprinted Polymer (MIP)- Coated Microbeam MEMS Sensor for...ARL-RP-0536 ● SEP 2015 US Army Research Laboratory A Molecularly Imprinted Polymer (MIP)- Coated Microbeam MEMS Sensor for Chemical...TITLE AND SUBTITLE A Molecularly Imprinted Polymer (MIP)-Coated Microbeam MEMS Sensor for Chemical Detection 5a. CONTRACT NUMBER 5b. GRANT NUMBER

  17. Programmable autonomous synthesis of single-stranded DNA

    Science.gov (United States)

    Kishi, Jocelyn Y.; Schaus, Thomas E.; Gopalkrishnan, Nikhil; Xuan, Feng; Yin, Peng

    2018-02-01

    DNA performs diverse functional roles in biology, nanotechnology and biotechnology, but current methods for autonomously synthesizing arbitrary single-stranded DNA are limited. Here, we introduce the concept of primer exchange reaction (PER) cascades, which grow nascent single-stranded DNA with user-specified sequences following prescribed reaction pathways. PER synthesis happens in a programmable, autonomous, in situ and environmentally responsive fashion, providing a platform for engineering molecular circuits and devices with a wide range of sensing, monitoring, recording, signal-processing and actuation capabilities. We experimentally demonstrate a nanodevice that transduces the detection of a trigger RNA into the production of a DNAzyme that degrades an independent RNA substrate, a signal amplifier that conditionally synthesizes long fluorescent strands only in the presence of a particular RNA signal, molecular computing circuits that evaluate logic (AND, OR, NOT) combinations of RNA inputs, and a temporal molecular event recorder that records in the PER transcript the order in which distinct RNA inputs are sequentially detected.

  18. Single photon detection in a waveguide-coupled Ge-on-Si lateral avalanche photodiode.

    Science.gov (United States)

    Martinez, Nicholas J D; Gehl, Michael; Derose, Christopher T; Starbuck, Andrew L; Pomerene, Andrew T; Lentine, Anthony L; Trotter, Douglas C; Davids, Paul S

    2017-07-10

    We examine gated-Geiger mode operation of an integrated waveguide-coupled Ge-on-Si lateral avalanche photodiode (APD) and demonstrate single photon detection at low dark count for this mode of operation. Our integrated waveguide-coupled APD is fabricated using a selective epitaxial Ge-on-Si growth process resulting in a separate absorption and charge multiplication (SACM) design compatible with our silicon photonics platform. Single photon detection efficiency and dark count rate is measured as a function of temperature in order to understand and optimize performance characteristics in this device. We report single photon detection of 5.27% at 1310 nm and a dark count rate of 534 kHz at 80 K for a Ge-on-Si single photon avalanche diode. Dark count rate is the lowest for a Ge-on-Si single photon detector in this range of temperatures while maintaining competitive detection efficiency. A jitter of 105 ps was measured for this device.

  19. Molecular biophysics: detection and characterization of damage in molecular, cellular, and physiological systems

    International Nuclear Information System (INIS)

    Danyluk, S.S.

    1979-01-01

    This section contains summaries of research on the detection and characterization of damage in molecular, cellular, and physiological systems. Projects under investigation in this section include: chemical synthesis of nucleic acid derivatives; structural and conformational properties of biological molecules in solution; crystallographic and chemical studies of immunoglobulin structure; instrument design and development for x-ray and neutron scattering studies of biological molecules; and chromobiology and circadian regulation

  20. Molecular-dynamic simulations of the thermophysical properties of hexanitrohexaazaisowurtzitane single crystal at high pressures and temperatures

    Science.gov (United States)

    Kozlova, S. A.; Gubin, S. A.; Maklashova, I. V.; Selezenev, A. A.

    2017-11-01

    Molecular dynamic simulations of isothermal compression parameters are performed for a hexanitrohexaazaisowurtzitane single crystal (C6H6O12N12) using a modified ReaxFF-log reactive force field. It is shown that the pressure-compression ratio curve for a single C6H6O12N12 crystal at constant temperature T = 300 K in pressure range P = 0.05-40 GPa is in satisfactory agreement with experimental compression isotherms obtained for a single C6H6O12N12 crystal. Hugoniot molecular-dynamic simulations of the shock-wave hydrostatic compression of a single C6H6O12N12 crystal are performed. Along with Hugoniot temperature-pressure curves, calculated shock-wave pressure-compression ratios for a single C6H6O12N12 crystal are obtained for a wide pressure range of P = 1-40 GPa. It is established that the percussive adiabat obtained for a single C6H6O12N12 crystal is in a good agreement with the experimental data. All calculations are performed using a LAMMPS molecular dynamics simulation software package that provides a ReaxFF-lg reactive force field to support the approach.

  1. Heat-transfer resistance at solid-liquid interfaces: a tool for the detection of single-nucleotide polymorphisms in DNA.

    Science.gov (United States)

    van Grinsven, Bart; Vanden Bon, Natalie; Strauven, Hannelore; Grieten, Lars; Murib, Mohammed; Monroy, Kathia L Jiménez; Janssens, Stoffel D; Haenen, Ken; Schöning, Michael J; Vermeeren, Veronique; Ameloot, Marcel; Michiels, Luc; Thoelen, Ronald; De Ceuninck, Ward; Wagner, Patrick

    2012-03-27

    In this article, we report on the heat-transfer resistance at interfaces as a novel, denaturation-based method to detect single-nucleotide polymorphisms in DNA. We observed that a molecular brush of double-stranded DNA grafted onto synthetic diamond surfaces does not notably affect the heat-transfer resistance at the solid-to-liquid interface. In contrast to this, molecular brushes of single-stranded DNA cause, surprisingly, a substantially higher heat-transfer resistance and behave like a thermally insulating layer. This effect can be utilized to identify ds-DNA melting temperatures via the switching from low- to high heat-transfer resistance. The melting temperatures identified with this method for different DNA duplexes (29 base pairs without and with built-in mutations) correlate nicely with data calculated by modeling. The method is fast, label-free (without the need for fluorescent or radioactive markers), allows for repetitive measurements, and can also be extended toward array formats. Reference measurements by confocal fluorescence microscopy and impedance spectroscopy confirm that the switching of heat-transfer resistance upon denaturation is indeed related to the thermal on-chip denaturation of DNA. © 2012 American Chemical Society

  2. Molecular detection of TasA gene in endophytic Bacillus species ...

    African Journals Online (AJOL)

    Molecular detection of TasA gene in endophytic Bacillus species and characterization of the gene in Bacillus amyloliquefaciens. ... African Journal of Biotechnology ... in Bacillus amyloliquefaciens PEBA20 and 7 strains of Bacillus subtilis, ...

  3. Molecular approaches to detect and study the organisms causing ...

    African Journals Online (AJOL)

    This review will summarise the molecular approaches used to detect and analyse the genomes of Babesia bovis, B. bigemina and Anaplasma marginale which cause bovine babesiosis and anaplasmosis. These tick borne diseases are widely distributed in Africa, Asia, Australia, and Central and South America and for ...

  4. Direct detection of a single photon by humans

    Science.gov (United States)

    Tinsley, Jonathan N.; Molodtsov, Maxim I.; Prevedel, Robert; Wartmann, David; Espigulé-Pons, Jofre; Lauwers, Mattias; Vaziri, Alipasha

    2016-01-01

    Despite investigations for over 70 years, the absolute limits of human vision have remained unclear. Rod cells respond to individual photons, yet whether a single-photon incident on the eye can be perceived by a human subject has remained a fundamental open question. Here we report that humans can detect a single-photon incident on the cornea with a probability significantly above chance. This was achieved by implementing a combination of a psychophysics procedure with a quantum light source that can generate single-photon states of light. We further discover that the probability of reporting a single photon is modulated by the presence of an earlier photon, suggesting a priming process that temporarily enhances the effective gain of the visual system on the timescale of seconds. PMID:27434854

  5. Quencher-free molecular beacon tethering 7-hydroxycoumarin detects targets through protonation/deprotonation.

    Science.gov (United States)

    Kashida, Hiromu; Yamaguchi, Kyohei; Hara, Yuichi; Asanuma, Hiroyuki

    2012-07-15

    In this study, we synthesized a simple but efficient quencher-free molecular beacon tethering 7-hydroxycoumarin on D-threoninol based on its pK(a) change. The pK(a) of 7-hydroxycoumarin in a single strand was determined as 8.8, whereas that intercalated in the duplex was over 10. This large pK(a) shift (more than 1.2) upon hybridization could be attributed to the anionic and hydrophobic microenvironment inside the DNA duplex. Because 7-hydroxycoumarin quenches its fluorescence upon protonation, the emission intensity of the duplex at pH 8.5 was 1/15 that of the single strand. We applied this quenching mechanism to the preparation of a quencher-free molecular beacon by introducing the dye into the middle of the stem part. In the absence of the target, the stem region formed a duplex and fluorescence was quenched. However, when the target was added, the molecular beacon opened and the dye was deprotonated. As a result, the emission intensity of the molecular beacon with the target was 10 times higher than that without the target. Accordingly, a quencher-free molecular beacon utilizing the pK(a) change was successfully developed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. [Development of molecular detection of food-borne pathogenic bacteria using miniaturized microfluidic devices].

    Science.gov (United States)

    Iván, Kristóf; Maráz, Anna

    2015-12-20

    Detection and identification of food-borne pathogenic bacteria are key points for the assurance of microbiological food safety. Traditional culture-based methods are more and more replaced by or supplemented with nucleic acid based molecular techniques, targeting specific (preferably virulence) genes in the genomes. Internationally validated DNA amplification - most frequently real-time polymerase chain reaction - methods are applied by the food microbiological testing laboratories for routine analysis, which will result not only in shortening the time for results but they also improve the performance characteristics (e.g. sensitivity, specificity) of the methods. Beside numerous advantages of the polymerase chain reaction based techniques for routine microbiological analysis certain drawbacks have to be mentioned, such as the high cost of the equipment and reagents, as well as the risk of contamination of the laboratory environment by the polymerase chain reaction amplicons, which require construction of an isolated laboratory system. Lab-on-a-chip systems can integrate most of these laboratory processes within a miniaturized device that delivers the same specificity and reliability as the standard protocols. The benefits of miniaturized devices are: simple - often automated - use, small overall size, portability, sterility due to single use possibility. These miniaturized rapid diagnostic tests are being researched and developed at the best research centers around the globe implementing various sample preparation and molecular DNA amplification methods on-chip. In parallel, the aim of the authors' research is to develop microfluidic Lab-on-a-chip devices for the detection and identification of food-borne pathogenic bacteria.

  7. Measuring Conductance of Phenylenediamine as a Molecular Sensor

    Directory of Open Access Journals (Sweden)

    Taekyeong Kim

    2015-01-01

    Full Text Available We report experimental measurements of molecular conductance as a single molecular sensor by using scanning tunneling microscope-based break-junction (STM-BJ technique. The gap was created after Au atomic point contact was ruptured, and the target molecule was inserted and bonded to the top and bottom electrodes. We successfully measured the conductance for a series of amine-terminated oligophenyl molecules by forming the molecular junctions with Au electrodes. The measured conductance decays exponentially with molecular backbone length, enabling us to detect the type of molecules as a molecular sensor. Furthermore, we demonstrated reversible binary switching in a molecular junction by mechanical control of the gap between the electrodes. Since our method allows us to measure the conductance of a single molecule in ambient conditions, it should open up various practical molecular sensing applications.

  8. Trace detection of organic compounds in complex sample matrixes by single photon ionization ion trap mass spectrometry: real-time detection of security-relevant compounds and online analysis of the coffee-roasting process.

    Science.gov (United States)

    Schramm, Elisabeth; Kürten, Andreas; Hölzer, Jasper; Mitschke, Stefan; Mühlberger, Fabian; Sklorz, Martin; Wieser, Jochen; Ulrich, Andreas; Pütz, Michael; Schulte-Ladbeck, Rasmus; Schultze, Rainer; Curtius, Joachim; Borrmann, Stephan; Zimmermann, Ralf

    2009-06-01

    An in-house-built ion trap mass spectrometer combined with a soft ionization source has been set up and tested. As ionization source, an electron beam pumped vacuum UV (VUV) excimer lamp (EBEL) was used for single-photon ionization. It was shown that soft ionization allows the reduction of fragmentation of the target analytes and the suppression of most matrix components. Therefore, the combination of photon ionization with the tandem mass spectrometry (MS/MS) capability of an ion trap yields a powerful tool for molecular ion peak detection and identification of organic trace compounds in complex matrixes. This setup was successfully tested for two different applications. The first one is the detection of security-relevant substances like explosives, narcotics, and chemical warfare agents. One test substance from each of these groups was chosen and detected successfully with single photon ionization ion trap mass spectrometry (SPI-ITMS) MS/MS measurements. Additionally, first tests were performed, demonstrating that this method is not influenced by matrix compounds. The second field of application is the detection of process gases. Here, exhaust gas from coffee roasting was analyzed in real time, and some of its compounds were identified using MS/MS studies.

  9. Manipulating localized molecular orbitals by single-atom contacts.

    Science.gov (United States)

    Wang, Weihua; Shi, Xingqiang; Lin, Chensheng; Zhang, Rui Qin; Minot, Christian; Van Hove, Michel A; Hong, Yuning; Tang, Ben Zhong; Lin, Nian

    2010-09-17

    We have fabricated atom-molecule contacts by attachment of single Cu atoms to terpyridine side groups of bis-terpyridine tetra-phenyl ethylene molecules on a Cu(111) surface. By means of scanning tunneling microscopy, spectroscopy, and density functional calculations, we have found that, due to the localization characteristics of molecular orbitals, the Cu-atom contact modifies the state localized at the terpyridine side group which is in contact with the Cu atom but does not affect the states localized at other parts of the molecule. These results illustrate the contact effects at individual orbitals and offer possibilities to manipulate orbital alignments within molecules.

  10. Single-Labeled Oligonucleotides Showing Fluorescence Changes upon Hybridization with Target Nucleic Acids

    Directory of Open Access Journals (Sweden)

    Gil Tae Hwang

    2018-01-01

    Full Text Available Sequence-specific detection of nucleic acids has been intensively studied in the field of molecular diagnostics. In particular, the detection and analysis of single-nucleotide polymorphisms (SNPs is crucial for the identification of disease-causing genes and diagnosis of diseases. Sequence-specific hybridization probes, such as molecular beacons bearing the fluorophore and quencher at both ends of the stem, have been developed to enable DNA mutation detection. Interestingly, DNA mutations can be detected using fluorescently labeled oligonucleotide probes with only one fluorophore. This review summarizes recent research on single-labeled oligonucleotide probes that exhibit fluorescence changes after encountering target nucleic acids, such as guanine-quenching probes, cyanine-containing probes, probes containing a fluorophore-labeled base, and microenvironment-sensitive probes.

  11. Single Nanoparticle Detection Using Optical Microcavities.

    Science.gov (United States)

    Zhi, Yanyan; Yu, Xiao-Chong; Gong, Qihuang; Yang, Lan; Xiao, Yun-Feng

    2017-03-01

    Detection of nanoscale objects is highly desirable in various fields such as early-stage disease diagnosis, environmental monitoring and homeland security. Optical microcavity sensors are renowned for ultrahigh sensitivities due to strongly enhanced light-matter interaction. This review focuses on single nanoparticle detection using optical whispering gallery microcavities and photonic crystal microcavities, both of which have been developing rapidly over the past few years. The reactive and dissipative sensing methods, characterized by light-analyte interactions, are explained explicitly. The sensitivity and the detection limit are essentially determined by the cavity properties, and are limited by the various noise sources in the measurements. On the one hand, recent advances include significant sensitivity enhancement using techniques to construct novel microcavity structures with reduced mode volumes, to localize the mode field, or to introduce optical gain. On the other hand, researchers attempt to lower the detection limit by improving the spectral resolution, which can be implemented by suppressing the experimental noises. We also review the methods of achieving a better temporal resolution by employing mode locking techniques or cavity ring up spectroscopy. In conclusion, outlooks on the possible ways to implement microcavity-based sensing devices and potential applications are provided. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Molecular detection of disease resistance genes to powdery mildew ...

    African Journals Online (AJOL)

    A study was conducted to detect the presence of disease resistance genes to infection of wheat powdery mildew (Blumeria graminis f. sp. tritici) in selected wheat cultivars from China using molecular markers. Genomic DNA of sixty cultivars was extracted and tested for the presence of selected prominent resistance genes to ...

  13. Single-atom detection on a chip: from realization to application

    Energy Technology Data Exchange (ETDEWEB)

    Stibor, A; Bender, H; Kuehnhold, S; Fortagh, J; Zimmermann, C; Guenther, A, E-mail: aguenth@pit.physik.uni-tuebingen.d [CQ Center for Collective Quantum Phenomena and their Applications, Eberhard-Karls-Universitaet Tuebingen, Auf der Morgenstelle 14, D-72076 Tuebingen (Germany)

    2010-06-15

    In this paper, we describe the preparation and detection of ultracold atoms on a microchip with single-atom sensitivity. The detection scheme is based on multi-photon ionization of atoms and the subsequent guiding of the generated ions by ion optics to a channel electron multiplier. We resolve single atoms with a detection efficiency above 60%. The detector is suitable for real-time observations of static and dynamic processes in ultracold quantum gases. Although the ionization is destructive, sampling a small subset of the atomic distribution is sufficient for the determination of the desired information. We take full high-resolution spectra of ultracold atoms by ionizing only 5% of the atoms. Using an additional microwave near 6.8 GHz, the detection scheme becomes energy, position and state selective. This can be used for in situ determination of the energy distribution and temperature of atom clouds inside the trap and applied for future correlation measurements.

  14. Induction of prophage lambda by chlorinated organics: Detection of some single-species/single-site carcinogens

    Energy Technology Data Exchange (ETDEWEB)

    DeMarini, D.M.; Brooks, H.G. (Environmental Protection Agency, Research Triangle Park, NC (United States))

    1992-01-01

    Twenty-eight chlorinated organic compounds were evaluated for their ability to induce DNA damage using the Microscreen prophage-induction assay in Escherichia coli. Comparison of the performance characteristics of the prophage-induction and Salmonella assays to rodent carcinogenicity assays showed that the prophage-induction assay had a somewhat higher specificity than did the Salmonella assay (70% vs. 50%); sensitivity, concordance, and positive and negative predictivity were similar for the two microbial assays. The Microscreen prophage-induction assay failed to detect eight carcinogens, perhaps due to toxicity or other unknown factors; five of these eight carcinogens were detected by the Salmonella assay. However, the prophage-induction assay did detect six carcinogens that were not detected by the Salmonella assay, and five of these were single-species, single-site carcinogens, mostly mouse liver carcinogens. Some of these carcinogens, such as the chloroethanes, produce free radicals, which may be the basis for their carcinogenicity and ability to induce prophage. The prophage-induction (or other SOS) assay may be useful in identifying some genotoxic chlorinated carcinogens that induce DNA damage that do not revert the standard Salmonella tester strains.

  15. Single molecular biology: coming of age in DNA replication.

    Science.gov (United States)

    Liu, Xiao-Jing; Lou, Hui-Qiang

    2017-09-20

    DNA replication is an essential process of the living organisms. To achieve precise and reliable replication, DNA polymerases play a central role in DNA synthesis. Previous investigations have shown that the average rates of DNA synthesis on the leading and lagging strands in a replisome must be similar to avoid the formation of significant gaps in the nascent strands. The underlying mechanism has been assumed to be coordination between leading- and lagging-strand polymerases. However, Kowalczykowski's lab members recently performed single molecule techniques in E. coli and showed the real-time behavior of a replisome. The leading- and lagging-strand polymerases function stochastically and independently. Furthermore, when a DNA polymerase is paused, the helicase slows down in a self-regulating fail-safe mechanism, akin to a ''dead-man's switch''. Based on the real-time single-molecular observation, the authors propose that leading- and lagging-strand polymerases synthesize DNA stochastically within a Gaussian distribution. Along with the development and application of single-molecule techniques, we will witness a new age of DNA replication and other biological researches.

  16. Molecular Etiology of Hereditary Single-Side Deafness

    Science.gov (United States)

    Kim, Shin Hye; Kim, Ah Reum; Choi, Hyun Seok; Kim, Min Young; Chun, Eun Hi; Oh, Seung-Ha; Choi, Byung Yoon

    2015-01-01

    Abstract Unilateral sensorineural hearing loss (USNHL)/single-side deafness (SSD) is a frequently encountered disability in children. The etiology of a substantial portion of USNHL/SSD still remains unknown, and genetic causes have not been clearly elucidated. In this study, the authors evaluated the heritability of USNHL/SSD. The authors sequentially recruited 50 unrelated children with SSD. For an etiologic diagnosis, we performed a rigorous review on the phenotypes of family members of all children and conducted, if necessary, molecular genetic tests including targeted exome sequencing of 129 deafness genes. Among the 50 SSD children cohort, the authors identify 4 (8%) unrelated SSD probands from 4 families (SH136, SB173, SB177, and SB199) with another hearing impaired family members. Notably, all 4 probands in our cohort with a familial history of SSD also have pigmentary abnormalities such as brown freckles or premature gray hair within first degree relatives, which may indicate that genes whose products are involved with pigmentary disorder could be candidates for heritable SSD. Indeed, SH136 and SB199 turned out to segregate a mutation in MITF and PAX3, respectively, leading to a molecular diagnosis of Waardenburg syndrome (WS). We report, for the first time in the literature, a significant heritability of pediatric SSD. There is a strong association between the heritability of USNHL/SSD and the pigmentary abnormality, shedding a new light on the understanding of the molecular basis of heritable USNHL/SSD. In case of children with congenital SSD, it would be mandatory to rigorously screen pigmentary abnormalities. WS should also be included in the differential diagnosis of children with USNHL/SSD, especially in a familial form. PMID:26512583

  17. Estimating single molecule conductance from spontaneous evolution of a molecular contact

    Science.gov (United States)

    Gil, M.; Malinowski, T.; Iazykov, M.; Klein, H. R.

    2018-03-01

    We present an original method to estimate the conductivity of a single molecule anchored to nanometric-sized metallic electrodes, using a Mechanically Controlled Break Junction operated at room temperature in the liquid. We record the conductance through the metal/molecules/metal nanocontact while keeping the metallic electrodes at a fixed distance. Taking advantage of thermal diffusion and electromigration, we let the contact naturally explore the more stable configurations around a chosen conductance value. The conductance of a single molecule is estimated from a statistical analysis of raw conductance and conductance standard deviation data for molecular contacts containing up to 14 molecules. The single molecule conductance values are interpreted as time-averaged conductance of an ensemble of conformers at thermal equilibrium.

  18. Detection mechanism of perovskite BFO (1 1 1) membrane for FOX-7 and TATB gases: molecular-scale insight into sensing ultratrace explosives

    Science.gov (United States)

    Bian, Liang; Li, Hai-long; Song, Mian-Xin; Dong, Fa-Qin; Zhang, Xiao-yan; Hou, Wen-ping

    2017-03-01

    Perovskite bismuth ferrite-BFO (1 1 1) membranes, as potential-sensitive electrochemical sensors, are investigated for the detection of high-energy-density materials by molecular dynamics (MD) and density functional theory (DFT) calculations. For the detection mechanism of the sensitive 1, 1-diamino-2, 2-dinitroethylene (FOX-7) gases, both a cation bridge and electrostatic models can be used to explain the STM signatures as 0.02-0.04 V (single) and 0.03~0.05 V (coverage) over a wide range (0-0.1 V) of bias voltages. For insensitive 1, 3, 5-triamino-2, 4, 6-trinitrobenzene (TATB) gases interacting with the surface of a BFO (1 1 1) membrane, the charge signature can be as high as 0.08 V (coverage: 0.06 V). Analysis indicates a significant difference from the detection mechanism observed for FOX-7 gases; that is, the molecularly intact bidentate bridge configuration with only -\\text{NO}2- bonds binds to both Fe and Bi atoms. These differences are attributed so that the surface O2- of BFO will capture a part of the surface electron of the -NO2 group, creating a 2p-hole defect (h+) which annihilates a spinning upward (↑) Fe3+, forming a spinning downward (↓) Fe2+. The -NO2 electron decreases 0.35 e (single FOX-7; coverage FOX-7: 0.24 e) and 0.56 e (single TATB; coverage TATB: 0.06 e). Such a system could open up new ideas in the design and application of BFO-based sensors.

  19. Direct single-molecule dynamic detection of chemical reactions.

    Science.gov (United States)

    Guan, Jianxin; Jia, Chuancheng; Li, Yanwei; Liu, Zitong; Wang, Jinying; Yang, Zhongyue; Gu, Chunhui; Su, Dingkai; Houk, Kendall N; Zhang, Deqing; Guo, Xuefeng

    2018-02-01

    Single-molecule detection can reveal time trajectories and reaction pathways of individual intermediates/transition states in chemical reactions and biological processes, which is of fundamental importance to elucidate their intrinsic mechanisms. We present a reliable, label-free single-molecule approach that allows us to directly explore the dynamic process of basic chemical reactions at the single-event level by using stable graphene-molecule single-molecule junctions. These junctions are constructed by covalently connecting a single molecule with a 9-fluorenone center to nanogapped graphene electrodes. For the first time, real-time single-molecule electrical measurements unambiguously show reproducible large-amplitude two-level fluctuations that are highly dependent on solvent environments in a nucleophilic addition reaction of hydroxylamine to a carbonyl group. Both theoretical simulations and ensemble experiments prove that this observation originates from the reversible transition between the reactant and a new intermediate state within a time scale of a few microseconds. These investigations open up a new route that is able to be immediately applied to probe fast single-molecule physics or biophysics with high time resolution, making an important contribution to broad fields beyond reaction chemistry.

  20. Molecular tips for scanning tunneling microscopy: intermolecular electron tunneling for single-molecule recognition and electronics.

    Science.gov (United States)

    Nishino, Tomoaki

    2014-01-01

    This paper reviews the development of molecular tips for scanning tunneling microscopy (STM). Molecular tips offer many advantages: first is their ability to perform chemically selective imaging because of chemical interactions between the sample and the molecular tip, thus improving a major drawback of conventional STM. Rational design of the molecular tip allows sophisticated chemical recognition; e.g., chiral recognition and selective visualization of atomic defects in carbon nanotubes. Another advantage is that they provide a unique method to quantify electron transfer between single molecules. Understanding such electron transfer is mandatory for the realization of molecular electronics.

  1. Single-Cell Detection of Secreted Aβ and sAPPα from Human IPSC-Derived Neurons and Astrocytes.

    Science.gov (United States)

    Liao, Mei-Chen; Muratore, Christina R; Gierahn, Todd M; Sullivan, Sarah E; Srikanth, Priya; De Jager, Philip L; Love, J Christopher; Young-Pearse, Tracy L

    2016-02-03

    Secreted factors play a central role in normal and pathological processes in every tissue in the body. The brain is composed of a highly complex milieu of different cell types and few methods exist that can identify which individual cells in a complex mixture are secreting specific analytes. By identifying which cells are responsible, we can better understand neural physiology and pathophysiology, more readily identify the underlying pathways responsible for analyte production, and ultimately use this information to guide the development of novel therapeutic strategies that target the cell types of relevance. We present here a method for detecting analytes secreted from single human induced pluripotent stem cell (iPSC)-derived neural cells and have applied the method to measure amyloid β (Aβ) and soluble amyloid precursor protein-alpha (sAPPα), analytes central to Alzheimer's disease pathogenesis. Through these studies, we have uncovered the dynamic range of secretion profiles of these analytes from single iPSC-derived neuronal and glial cells and have molecularly characterized subpopulations of these cells through immunostaining and gene expression analyses. In examining Aβ and sAPPα secretion from single cells, we were able to identify previously unappreciated complexities in the biology of APP cleavage that could not otherwise have been found by studying averaged responses over pools of cells. This technique can be readily adapted to the detection of other analytes secreted by neural cells, which would have the potential to open new perspectives into human CNS development and dysfunction. We have established a technology that, for the first time, detects secreted analytes from single human neurons and astrocytes. We examine secretion of the Alzheimer's disease-relevant factors amyloid β (Aβ) and soluble amyloid precursor protein-alpha (sAPPα) and present novel findings that could not have been observed without a single-cell analytical platform. First, we

  2. Single-Shot Quantum Nondemolition Detection of Individual Itinerant Microwave Photons

    Science.gov (United States)

    Besse, Jean-Claude; Gasparinetti, Simone; Collodo, Michele C.; Walter, Theo; Kurpiers, Philipp; Pechal, Marek; Eichler, Christopher; Wallraff, Andreas

    2018-04-01

    Single-photon detection is an essential component in many experiments in quantum optics, but it remains challenging in the microwave domain. We realize a quantum nondemolition detector for propagating microwave photons and characterize its performance using a single-photon source. To this aim, we implement a cavity-assisted conditional phase gate between the incoming photon and a superconducting artificial atom. By reading out the state of this atom in a single shot, we reach an external (internal) photon-detection fidelity of 50% (71%), limited by transmission efficiency between the source and the detector (75%) and the coherence properties of the qubit. By characterizing the coherence and average number of photons in the field reflected off the detector, we demonstrate its quantum nondemolition nature. We envisage applications in generating heralded remote entanglement between qubits and for realizing logic gates between propagating microwave photons.

  3. Molecular Sensors for Moisture Detection by Moessbauer Spectroscopy

    International Nuclear Information System (INIS)

    Renz, F.; Souza, P. A. de; Klingelhoefer, G.; Goodwin, H. A.

    2002-01-01

    A parameter of importance in various industrial and commercial applications is sensitivity to moisture. A new class of molecular sensors which enable the qualitative and quantitative determination of air moisture (high selectivity and sensitivity) by application of Moessbauer spectroscopy as the probe technique has been investigated. The electronic properties of the iron-containing sensor depend upon the presence of moisture which is taken up by it and this process is accompanied by a change in electronic spin ground state which can be detected by Moessbauer spectroscopy. The sensor is suitable for in-field and industrial application using the recently developed Moessbauer spectrometer MIMOS II. Possible suitability for the detection of moisture in extraterrestrial environments is considered.

  4. Distributed Detection with Collisions in a Random, Single-Hop Wireless Sensor Network

    Science.gov (United States)

    2013-05-26

    public release; distribution is unlimited. Distributed detection with collisions in a random, single-hop wireless sensor network The views, opinions...1274 2 ABSTRACT Distributed detection with collisions in a random, single-hop wireless sensor network Report Title We consider the problem of... WIRELESS SENSOR NETWORK Gene T. Whipps?† Emre Ertin† Randolph L. Moses† ?U.S. Army Research Laboratory, Adelphi, MD 20783 †The Ohio State University

  5. Direct detection of single-nucleotide polymorphisms in bacterial DNA by SNPtrap

    DEFF Research Database (Denmark)

    Grønlund, Hugo Ahlm; Moen, Birgitte; Hoorfar, Jeffrey

    2011-01-01

    A major challenge with single-nucleotide polymorphism (SNP) fingerprinting of bacteria and higher organisms is the combination of genome-wide screenings with the potential of multiplexing and accurate SNP detection. Single-nucleotide extension by the minisequencing principle represents a technolo...

  6. Rotation Detection Using the Precession of Molecular Electric Dipole Moment

    Science.gov (United States)

    Ke, Yi; Deng, Xiao-Bing; Hu, Zhong-Kun

    2017-11-01

    We present a method to detect the rotation by using the precession of molecular electric dipole moment in a static electric field. The molecular electric dipole moments are polarized under the static electric field and a nonzero electric polarization vector emerges in the molecular gas. A resonant radio-frequency pulse electric field is applied to realize a 90° flip of the electric polarization vector of a particular rotational state. After the pulse electric field, the electric polarization vector precesses under the static electric field. The rotation induces a shift in the precession frequency which is measured to deduce the angular velocity of the rotation. The fundamental sensitivity limit of this method is estimated. This work is only a proposal and does not involve experimental results.

  7. Stochastic adaptation and fold-change detection: from single-cell to population behavior

    Directory of Open Access Journals (Sweden)

    Leier André

    2011-02-01

    Full Text Available Abstract Background In cell signaling terminology, adaptation refers to a system's capability of returning to its equilibrium upon a transient response. To achieve this, a network has to be both sensitive and precise. Namely, the system must display a significant output response upon stimulation, and later on return to pre-stimulation levels. If the system settles at the exact same equilibrium, adaptation is said to be 'perfect'. Examples of adaptation mechanisms include temperature regulation, calcium regulation and bacterial chemotaxis. Results We present models of the simplest adaptation architecture, a two-state protein system, in a stochastic setting. Furthermore, we consider differences between individual and collective adaptive behavior, and show how our system displays fold-change detection properties. Our analysis and simulations highlight why adaptation needs to be understood in terms of probability, and not in strict numbers of molecules. Most importantly, selection of appropriate parameters in this simple linear setting may yield populations of cells displaying adaptation, while single cells do not. Conclusions Single cell behavior cannot be inferred from population measurements and, sometimes, collective behavior cannot be determined from the individuals. By consequence, adaptation can many times be considered a purely emergent property of the collective system. This is a clear example where biological ergodicity cannot be assumed, just as is also the case when cell replication rates are not homogeneous, or depend on the cell state. Our analysis shows, for the first time, how ergodicity cannot be taken for granted in simple linear examples either. The latter holds even when cells are considered isolated and devoid of replication capabilities (cell-cycle arrested. We also show how a simple linear adaptation scheme displays fold-change detection properties, and how rupture of ergodicity prevails in scenarios where transitions between

  8. Single Nucleotide Polymorphism Detection Using Au-Decorated Single-Walled Carbon Nanotube Field Effect Transistors

    Directory of Open Access Journals (Sweden)

    Keum-Ju Lee

    2011-01-01

    Full Text Available We demonstrate that Au-cluster-decorated single-walled carbon nanotubes (SWNTs may be used to discriminate single nucleotide polymorphism (SNP. Nanoscale Au clusters were formed on the side walls of carbon nanotubes in a transistor geometry using electrochemical deposition. The effect of Au cluster decoration appeared as hole doping when electrical transport characteristics were examined. Thiolated single-stranded probe peptide nucleic acid (PNA was successfully immobilized on Au clusters decorating single-walled carbon nanotube field-effect transistors (SWNT-FETs, resulting in a conductance decrease that could be explained by a decrease in Au work function upon adsorption of thiolated PNA. Although a target single-stranded DNA (ssDNA with a single mismatch did not cause any change in electrical conductance, a clear decrease in conductance was observed with matched ssDNA, thereby showing the possibility of SNP (single nucleotide polymorphism detection using Au-cluster-decorated SWNT-FETs. However, a power to discriminate SNP target is lost in high ionic environment. We can conclude that observed SNP discrimination in low ionic environment is due to the hampered binding of SNP target on nanoscale surfaces in low ionic conditions.

  9. Detecting single viruses and nanoparticles using whispering gallery microlasers.

    Science.gov (United States)

    He, Lina; Ozdemir, Sahin Kaya; Zhu, Jiangang; Kim, Woosung; Yang, Lan

    2011-06-26

    There is a strong demand for portable systems that can detect and characterize individual pathogens and other nanoscale objects without the use of labels, for applications in human health, homeland security, environmental monitoring and diagnostics. However, most nanoscale objects of interest have low polarizabilities due to their small size and low refractive index contrast with the surrounding medium. This leads to weak light-matter interactions, and thus makes the label-free detection of single nanoparticles very difficult. Micro- and nano-photonic devices have emerged as highly sensitive platforms for such applications, because the combination of high quality factor Q and small mode volume V leads to significantly enhanced light-matter interactions. For example, whispering gallery mode microresonators have been used to detect and characterize single influenza virions and polystyrene nanoparticles with a radius of 30 nm (ref. 12) by measuring in the transmission spectrum either the resonance shift or mode splitting induced by the nanoscale objects. Increasing Q leads to a narrower resonance linewidth, which makes it possible to resolve smaller changes in the transmission spectrum, and thus leads to improved performance. Here, we report a whispering gallery mode microlaser-based real-time and label-free detection method that can detect individual 15-nm-radius polystyrene nanoparticles, 10-nm gold nanoparticles and influenza A virions in air, and 30 nm polystyrene nanoparticles in water. Our approach relies on measuring changes in the beat note that is produced when an ultra-narrow emission line from a whispering gallery mode microlaser is split into two modes by a nanoscale object, and these two modes then interfere. The ultimate detection limit is set by the laser linewidth, which can be made much narrower than the resonance linewidth of any passive resonator. This means that microlaser sensors have the potential to detect objects that are too small to be

  10. Single molecules and nanotechnology

    CERN Document Server

    Vogel, Horst

    2007-01-01

    This book focuses on recent advances in the rapidly evolving field of single molecule research. These advances are of importance for the investigation of biopolymers and cellular biochemical reactions, and are essential to the development of quantitative biology. Written by leading experts in the field, the articles cover a broad range of topics, including: quantum photonics of organic dyes and inorganic nanoparticles their use in detecting properties of single molecules the monitoring of single molecule (enzymatic) reactions single protein (un)folding in nanometer-sized confined volumes the dynamics of molecular interactions in biological cells The book is written for advanced students and scientists who wish to survey the concepts, techniques and results of single molecule research and assess them for their own scientific activities.

  11. Possibility designing half-wave and full-wave molecular rectifiers by using single benzene molecule

    Science.gov (United States)

    Abbas, Mohammed A.; Hanoon, Falah H.; Al-Badry, Lafy F.

    2018-02-01

    This work focused on possibility designing half-wave and full-wave molecular rectifiers by using single and two benzene rings, respectively. The benzene rings were threaded by a magnetic flux that changes over time. The quantum interference effect was considered as the basic idea in the rectification action, the para and meta configurations were investigated. All the calculations are performed by using steady-state theoretical model, which is based on the time-dependent Hamiltonian model. The electrical conductance and the electric current are considered as DC output signals of half-wave and full-wave molecular rectifiers. The finding in this work opens up the exciting potential to use these molecular rectifiers in molecular electronics.

  12. Communication: atomic force detection of single-molecule nonlinear optical vibrational spectroscopy.

    Science.gov (United States)

    Saurabh, Prasoon; Mukamel, Shaul

    2014-04-28

    Atomic Force Microscopy (AFM) allows for a highly sensitive detection of spectroscopic signals. This has been first demonstrated for NMR of a single molecule and recently extended to stimulated Raman in the optical regime. We theoretically investigate the use of optical forces to detect time and frequency domain nonlinear optical signals. We show that, with proper phase matching, the AFM-detected signals closely resemble coherent heterodyne-detected signals. Applications are made to AFM-detected and heterodyne-detected vibrational resonances in Coherent Anti-Stokes Raman Spectroscopy (χ((3))) and sum or difference frequency generation (χ((2))).

  13. Real-time single airborne nanoparticle detection with nanomechanical resonant filter-fiber

    DEFF Research Database (Denmark)

    Schmid, Silvan; Kurek, Maksymilian; Adolphsen, Jens Q

    2013-01-01

    Nanomechanical resonators have an unprecedented mass sensitivity sufficient to detect single molecules, viruses or nanoparticles. The challenge with nanomechanical mass sensors is the direction of nano-sized samples onto the resonator. In this work we present an efficient inertial sampling...... study of single filter-fiber behavior. We present the direct measurement of diffusive nanoparticle collection on a single filter-fiber qualitatively confirming Langmuir's model from 1942....

  14. Amperometric detection of morphine based on poly(3,4-ethylenedioxythiophene) immobilized molecularly imprinted polymer particles prepared by precipitation polymerization

    International Nuclear Information System (INIS)

    Ho, K.-C.; Yeh, W.-M.; Tung, T.-S.; Liao, J.-Y.

    2005-01-01

    Molecular imprinting is a novel technique used for chiral separation, artificial antibodies, sensors, and assays. Typically, molecular imprinted polymers (MIPs) are monoliths with irregular shapes. However, microspherical shapes with more uniform size can be obtained by the method of precipitation polymerization, which offers a higher active surface area by manipulating its compositions. In this study, MIP particles for the target molecule, morphine, were synthesized using a precipitation polymerization method that is more facile than the previous one that produced a thermally polymerized bulk. The conducting polymer, poly(3,4-ethylenedioxythiophene) (PEDOT), was utilized to immobilize the MIP particles onto the indium tin oxide (ITO) glass as a MIP/PEDOT-modified electrode. The sensitivity for the MIP/PEDOT-modified electrode with MIP particles was 41.63 μA/cm 2 mM, which is more sensitive than that with non-MIP particles or that of a single PEDOT film with no incorporated particles in detecting morphine ranging from 0.1 to 2 mM. The detection limit was 0.3 mM (S/N = 3). In addition, we presented that the modified electrode can discriminate codeine that plays an interfering species

  15. Reverse engineering of an affinity-switchable molecular interaction characterized by atomic force microscopy single-molecule force spectroscopy.

    Science.gov (United States)

    Anselmetti, Dario; Bartels, Frank Wilco; Becker, Anke; Decker, Björn; Eckel, Rainer; McIntosh, Matthew; Mattay, Jochen; Plattner, Patrik; Ros, Robert; Schäfer, Christian; Sewald, Norbert

    2008-02-19

    Tunable and switchable interaction between molecules is a key for regulation and control of cellular processes. The translation of the underlying physicochemical principles to synthetic and switchable functional entities and molecules that can mimic the corresponding molecular functions is called reverse molecular engineering. We quantitatively investigated autoinducer-regulated DNA-protein interaction in bacterial gene regulation processes with single atomic force microscopy (AFM) molecule force spectroscopy in vitro, and developed an artificial bistable molecular host-guest system that can be controlled and regulated by external signals (UV light exposure and thermal energy). The intermolecular binding functionality (affinity) and its reproducible and reversible switching has been proven by AFM force spectroscopy at the single-molecule level. This affinity-tunable optomechanical switch will allow novel applications with respect to molecular manipulation, nanoscale rewritable molecular memories, and/or artificial ion channels, which will serve for the controlled transport and release of ions and neutral compounds in the future.

  16. Effect of Chain Conformation on the Single-Molecule Melting Force in Polymer Single Crystals: Steered Molecular Dynamics Simulations Study.

    Science.gov (United States)

    Feng, Wei; Wang, Zhigang; Zhang, Wenke

    2017-02-28

    Understanding the relationship between polymer chain conformation as well as the chain composition within the single crystal and the mechanical properties of the corresponding single polymer chain will facilitate the rational design of high performance polymer materials. Here three model systems of polymer single crystals, namely poly(ethylene oxide) (PEO), polyethylene (PE), and nylon-66 (PA66) have been chosen to study the effects of chain conformation, helical (PEO) versus planar zigzag conformation (PE, PA66), and chain composition (PE versus PA66) on the mechanical properties of a single polymer chain. To do that, steered molecular dynamics simulations were performed on those polymer single crystals by pulling individual polymer chains out of the crystals. Our results show that the patterns of force-extension curve as well as the chain moving mode are closely related to the conformation of the polymer chain in the single crystal. In addition, hydrogen bonds can enhance greatly the force required to stretch the polymer chain out of the single crystal. The dynamic breaking and reformation of multivalent hydrogen bonds have been observed for the first time in PA66 at the single molecule level.

  17. High-fidelity state detection and tomography of a single-ion Zeeman qubit

    International Nuclear Information System (INIS)

    Keselman, A; Glickman, Y; Akerman, N; Kotler, S; Ozeri, R

    2011-01-01

    We demonstrate high-fidelity Zeeman qubit state detection in a single trapped 88 Sr + ion. Qubit readout is performed by shelving one of the qubit states to a metastable level using a narrow linewidth diode laser at 674 nm, followed by state-selective fluorescence detection. The average fidelity reached for the readout of the qubit state is 0.9989(1). We then measure the fidelity of state tomography, averaged over all possible single-qubit states, which is 0.9979(2). We also fully characterize the detection process using quantum process tomography. This readout fidelity is compatible with recent estimates of the detection error threshold required for fault-tolerant computation, whereas high-fidelity state tomography opens the way for high-precision quantum process tomography.

  18. High-fidelity state detection and tomography of a single-ion Zeeman qubit

    Energy Technology Data Exchange (ETDEWEB)

    Keselman, A; Glickman, Y; Akerman, N; Kotler, S; Ozeri, R, E-mail: ozeri@weizmann.ac.il [Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100 (Israel)

    2011-07-15

    We demonstrate high-fidelity Zeeman qubit state detection in a single trapped {sup 88}Sr{sup +} ion. Qubit readout is performed by shelving one of the qubit states to a metastable level using a narrow linewidth diode laser at 674 nm, followed by state-selective fluorescence detection. The average fidelity reached for the readout of the qubit state is 0.9989(1). We then measure the fidelity of state tomography, averaged over all possible single-qubit states, which is 0.9979(2). We also fully characterize the detection process using quantum process tomography. This readout fidelity is compatible with recent estimates of the detection error threshold required for fault-tolerant computation, whereas high-fidelity state tomography opens the way for high-precision quantum process tomography.

  19. Comparison of molecular tests for the diagnosis of malaria in Honduras.

    Science.gov (United States)

    Fontecha, Gustavo A; Mendoza, Meisy; Banegas, Engels; Poorak, Mitra; De Oliveira, Alexandre M; Mancero, Tamara; Udhayakumar, Venkatachalam; Lucchi, Naomi W; Mejia, Rosa E

    2012-04-18

    Honduras is a tropical country with more than 70% of its population living at risk of being infected with either Plasmodium vivax or Plasmodium falciparum. Laboratory diagnosis is a very important factor for adequate treatment and management of malaria. In Honduras, malaria is diagnosed by both, microscopy and rapid diagnostic tests and to date, no molecular methods have been implemented for routine diagnosis. However, since mixed infections, and asymptomatic and low-parasitaemic cases are difficult to detect by light microscopy alone, identifying appropriate molecular tools for diagnostic applications in Honduras deserves further study. The present study investigated the utility of different molecular tests for the diagnosis of malaria in Honduras. A total of 138 blood samples collected as part of a clinical trial to assess the efficacy of chloroquine were used: 69 microscopically confirmed P. falciparum positive samples obtained on the day of enrollment and 69 follow-up samples obtained 28 days after chloroquine treatment and shown to be malaria negative by microscopy. Sensitivity and specificity of microscopy was compared to an 18 s ribosomal RNA gene-based nested PCR, two single-PCR reactions designed to detect Plasmodium falciparum infections, one single-PCR to detect Plasmodium vivax infections, and one multiplex one-step PCR reaction to detect both parasite species. Of the 69 microscopically positive P. falciparum samples, 68 were confirmed to be P. falciparum-positive by two of the molecular tests used. The one sample not detected as P. falciparum by any of the molecular tests was shown to be P. vivax-positive by a reference molecular test indicating a misdiagnosis by microscopy. The reference molecular test detected five cases of P. vivax/P. falciparum mixed infections, which were not recognized by microscopy as mixed infections. Only two of these mixed infections were recognized by a multiplex test while a P. vivax-specific polymerase chain reaction (PCR

  20. Smartphone-Based Mobile Detection Platform for Molecular Diagnostics and Spatiotemporal Disease Mapping.

    Science.gov (United States)

    Song, Jinzhao; Pandian, Vikram; Mauk, Michael G; Bau, Haim H; Cherry, Sara; Tisi, Laurence C; Liu, Changchun

    2018-04-03

    Rapid and quantitative molecular diagnostics in the field, at home, and at remote clinics is essential for evidence-based disease management, control, and prevention. Conventional molecular diagnostics requires extensive sample preparation, relatively sophisticated instruments, and trained personnel, restricting its use to centralized laboratories. To overcome these limitations, we designed a simple, inexpensive, hand-held, smartphone-based mobile detection platform, dubbed "smart-connected cup" (SCC), for rapid, connected, and quantitative molecular diagnostics. Our platform combines bioluminescent assay in real-time and loop-mediated isothermal amplification (BART-LAMP) technology with smartphone-based detection, eliminating the need for an excitation source and optical filters that are essential in fluorescent-based detection. The incubation heating for the isothermal amplification is provided, electricity-free, with an exothermic chemical reaction, and incubation temperature is regulated with a phase change material. A custom Android App was developed for bioluminescent signal monitoring and analysis, target quantification, data sharing, and spatiotemporal mapping of disease. SCC's utility is demonstrated by quantitative detection of Zika virus (ZIKV) in urine and saliva and HIV in blood within 45 min. We demonstrate SCC's connectivity for disease spatiotemporal mapping with a custom-designed website. Such a smart- and connected-diagnostic system does not require any lab facilities and is suitable for use at home, in the field, in the clinic, and particularly in resource-limited settings in the context of Internet of Medical Things (IoMT).

  1. Real-time Bacterial Detection by Single Cell Based Sensors UsingSynchrotron FTIR Spectromicroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Veiseh, Mandana; Veiseh, Omid; Martin, Michael C.; Bertozzi,Carolyn; Zhang, Miqin

    2005-08-10

    Microarrays of single macrophage cell based sensors weredeveloped and demonstrated for real time bacterium detection bysynchrotron FTIR microscopy. The cells were patterned on gold-SiO2substrates via a surface engineering technique by which the goldelectrodes were immobilized with fibronectin to mediate cell adhesion andthe silicon oxide background were passivated with PEG to resist proteinadsorption and cell adhesion. Cellular morphology and IR spectra ofsingle, double, and triple cells on gold electrodes exposed tolipopolysaccharide (LPS) of different concentrations were compared toreveal the detection capabilities of these biosensors. The single-cellbased sensors were found to generate the most significant IR wave numbervariation and thus provide the highest detection sensitivity. Changes inmorphology and IR spectrum for single cells exposed to LPS were found tobe time- and concentration-dependent and correlated with each other verywell. FTIR spectra from single cell arrays of gold electrodes withsurface area of 25 mu-m2, 100 mu-m2, and 400 mu-m2 were acquired usingboth synchrotron and conventional FTIR spectromicroscopes to study thesensitivity of detection. The results indicated that the developedsingle-cell platform can be used with conventional FTIRspectromicroscopy. This technique provides real-time, label-free, andrapid bacterial detection, and may allow for statistic and highthroughput analyses, and portability.

  2. On the combination of molecular replacement and single-wavelength anomalous diffraction phasing for automated structure determination

    International Nuclear Information System (INIS)

    Panjikar, Santosh; Parthasarathy, Venkataraman; Lamzin, Victor S.; Weiss, Manfred S.; Tucker, Paul A.

    2009-01-01

    The combination of molecular replacement and single-wavelength anomalous diffraction improves the performance of automated structure determination with Auto-Rickshaw. A combination of molecular replacement and single-wavelength anomalous diffraction phasing has been incorporated into the automated structure-determination platform Auto-Rickshaw. The complete MRSAD procedure includes molecular replacement, model refinement, experimental phasing, phase improvement and automated model building. The improvement over the standard SAD or MR approaches is illustrated by ten test cases taken from the JCSG diffraction data-set database. Poor MR or SAD phases with phase errors larger than 70° can be improved using the described procedure and a large fraction of the model can be determined in a purely automatic manner from X-ray data extending to better than 2.6 Å resolution

  3. Optimizing detection filters for single-grain optical dating of quartz

    International Nuclear Information System (INIS)

    Ballarini, M.; Wallinga, J.; Duller, G.A.T.; Brouwer, J.C.; Bos, A.J.J.; Van Eijk, C.W.E.

    2005-01-01

    We investigate the use of different optical detection filters for single-grain optically stimulated luminescence (OSL) measurements of quartz samples with a Riso TL/OSL single-grain reader. We selected three filter combinations that considerably improve the light detection efficiency when compared with the 7.5 mm U340 filters that are routinely used. These are the UG1+BG4 filter combination, the 2 mm UG1 and the 2.5 mm U340 filters, which allow a greater transmission in the quartz emission band. This leads to two benefits: (1) more grains can be accepted for equivalent dose analysis, and (2) OSL responses on individual grains are determined with a greater precision. While these three alternative filter combinations perform equally well if compared to each other, we suggest the 2.5 mm thick Hoya U340 to be the filter of choice as it allows the use of blue-diode and IR-diode stimulation sources for bleaching purposes and feldspar detection

  4. Molecular imaging: current status and emerging strategies

    International Nuclear Information System (INIS)

    Pysz, M.A.; Gambhir, S.S.; Willmann, J.K.

    2010-01-01

    In vivo molecular imaging has a great potential to impact medicine by detecting diseases in early stages (screening), identifying extent of disease, selecting disease- and patient-specific treatment (personalized medicine), applying a directed or targeted therapy, and measuring molecular-specific effects of treatment. Current clinical molecular imaging approaches primarily use positron-emission tomography (PET) or single photon-emission computed tomography (SPECT)-based techniques. In ongoing preclinical research, novel molecular targets of different diseases are identified and, sophisticated and multifunctional contrast agents for imaging these molecular targets are developed along with new technologies and instrumentation for multi-modality molecular imaging. Contrast-enhanced molecular ultrasound (US) with molecularly-targeted contrast microbubbles is explored as a clinically translatable molecular imaging strategy for screening, diagnosing, and monitoring diseases at the molecular level. Optical imaging with fluorescent molecular probes and US imaging with molecularly-targeted microbubbles are attractive strategies as they provide real-time imaging, are relatively inexpensive, produce images with high spatial resolution, and do not involve exposure to ionizing irradiation. Raman spectroscopy/microscopy has emerged as a molecular optical imaging strategy for ultrasensitive detection of multiple biomolecules/biochemicals with both in vivo and ex vivo versatility. Photoacoustic imaging is a hybrid of optical and US techniques involving optically-excitable molecularly-targeted contrast agents and quantitative detection of resulting oscillatory contrast agent movement with US. Current preclinical findings and advances in instrumentation, such as endoscopes and microcatheters, suggest that these molecular imaging methods have numerous potential clinical applications and will be translated into clinical use in the near future.

  5. Molecular Processes Studied at a Single-Molecule Level Using DNA Origami Nanostructures and Atomic Force Microscopy

    Directory of Open Access Journals (Sweden)

    Ilko Bald

    2014-09-01

    Full Text Available DNA origami nanostructures allow for the arrangement of different functionalities such as proteins, specific DNA structures, nanoparticles, and various chemical modifications with unprecedented precision. The arranged functional entities can be visualized by atomic force microscopy (AFM which enables the study of molecular processes at a single-molecular level. Examples comprise the investigation of chemical reactions, electron-induced bond breaking, enzymatic binding and cleavage events, and conformational transitions in DNA. In this paper, we provide an overview of the advances achieved in the field of single-molecule investigations by applying atomic force microscopy to functionalized DNA origami substrates.

  6. Single-site Lennard-Jones models via polynomial chaos surrogates of Monte Carlo molecular simulation

    KAUST Repository

    Kadoura, Ahmad Salim; Siripatana, Adil; Sun, Shuyu; Knio, Omar; Hoteit, Ibrahim

    2016-01-01

    In this work, two Polynomial Chaos (PC) surrogates were generated to reproduce Monte Carlo (MC) molecular simulation results of the canonical (single-phase) and the NVT-Gibbs (two-phase) ensembles for a system of normalized structureless Lennard

  7. Size-dependent single electron transfer and semi-metal-to-insulator transitions in molecular metal oxide electronics

    Science.gov (United States)

    Balliou, Angelika; Bouroushian, Mirtat; Douvas, Antonios M.; Skoulatakis, George; Kennou, Stella; Glezos, Nikos

    2018-07-01

    All-inorganic self-arranged molecular transition metal oxide hyperstructures based on polyoxometalate molecules (POMs) are fabricated and tested as electronically tunable components in emerging electronic devices. POM hyperstructures reveal great potential as charging nodes of tunable charging level for molecular memories and as enhancers of interfacial electron/hole injection for photovoltaic stacks. STM, UPS, UV–vis spectroscopy and AFM measurements show that this functionality stems from the films’ ability to structurally tune their HOMO–LUMO levels and electron localization length at room temperature. By adapting POM nanocluster size in solution, self-doping and current modulation of four orders of magnitude is monitored on a single nanocluster on SiO2 at voltages as low as 3 Volt. Structurally driven insulator-to-semi-metal transitions and size-dependent current regulation through single electron tunneling are demonstrated and examined with respect to the stereochemical and electronic structure of the molecular entities. This extends the value of self-assembly as a tool for correlation length and electronic properties tuning and demonstrate POM hyperstructures’ plausibility for on-chip molecular electronics operative at room temperature.

  8. Size-dependent single electron transfer and semi-metal-to-insulator transitions in molecular metal oxide electronics.

    Science.gov (United States)

    Balliou, Angelika; Bouroushian, Mirtat; Douvas, Antonios M; Skoulatakis, George; Kennou, Stella; Glezos, Nikos

    2018-07-06

    All-inorganic self-arranged molecular transition metal oxide hyperstructures based on polyoxometalate molecules (POMs) are fabricated and tested as electronically tunable components in emerging electronic devices. POM hyperstructures reveal great potential as charging nodes of tunable charging level for molecular memories and as enhancers of interfacial electron/hole injection for photovoltaic stacks. STM, UPS, UV-vis spectroscopy and AFM measurements show that this functionality stems from the films' ability to structurally tune their HOMO-LUMO levels and electron localization length at room temperature. By adapting POM nanocluster size in solution, self-doping and current modulation of four orders of magnitude is monitored on a single nanocluster on SiO 2 at voltages as low as 3 Volt. Structurally driven insulator-to-semi-metal transitions and size-dependent current regulation through single electron tunneling are demonstrated and examined with respect to the stereochemical and electronic structure of the molecular entities. This extends the value of self-assembly as a tool for correlation length and electronic properties tuning and demonstrate POM hyperstructures' plausibility for on-chip molecular electronics operative at room temperature.

  9. Rapid and Sensitive Detection of BLAD in Cattle Population

    Directory of Open Access Journals (Sweden)

    Daniela Elena Ilie

    2014-05-01

    Full Text Available Bovine leukocyte adhesion deficiency (BLAD is an autosomal recessive disorder with negative impact on dairy cattle breeding. The molecular basis of BLAD is a single point mutation (A→G, resulting in a single amino acid substitution (aspartic acid → glycine at amino acid 128 in the adhesion molecule CD18. The object of this study was to establish a fast and sensitive molecular genotyping assay to detect BLAD carriers using high-resolution melting (HRM curve analysis. We tested animals with known genotypes for BLAD that were previously confirmed by PCR-RFLP method, and then examined the sensitivity of mutation detection using PCR followed by HRM curve analysis. BLAD carriers were readily detectable using HRM assay. Thus, the PCR-HRM genotyping method is a rapid, easily interpretable, reliable and cost-effective assay for BLAD mutant allele detection. This assay can be useful in cattle genotyping and genetic selection.

  10. Identification of single-copy orthologous genes between Physalis and Solanum lycopersicum and analysis of genetic diversity in Physalis using molecular markers.

    Science.gov (United States)

    Wei, Jingli; Hu, Xiaorong; Yang, Jingjing; Yang, Wencai

    2012-01-01

    The genus Physalis includes a number of commercially important edible and ornamental species. Its high nutritional value and potential medicinal properties leads to the increased commercial interest in the products of this genus worldwide. However, lack of molecular markers prevents the detailed study of genetics and phylogeny in Physalis, which limits the progress of breeding. In the present study, we compared the DNA sequences between Physalis and tomato, and attempted to analyze genetic diversity in Physalis using tomato markers. Blasting 23180 DNA sequences derived from Physalis against the International Tomato Annotation Group (ITAG) Release2.3 Predicted CDS (SL2.40) discovered 3356 single-copy orthologous genes between them. A total of 38 accessions from at least six species of Physalis were subjected to genetic diversity analysis using 97 tomato markers and 25 SSR markers derived from P. peruviana. Majority (73.2%) of tomato markers could amplify DNA fragments from at least one accession of Physalis. Diversity in Physalis at molecular level was also detected. The average Nei's genetic distance between accessions was 0.3806 with a range of 0.2865 to 0.7091. These results indicated Physalis and tomato had similarity at both molecular marker and DNA sequence levels. Therefore, the molecular markers developed in tomato can be used in genetic study in Physalis.

  11. Hlaallele Detection Using Molecular Techniques

    Directory of Open Access Journals (Sweden)

    Philip A. Dyer

    1993-01-01

    Full Text Available There are now many molecular biological techniques available to define HLA class I and class II alleles. Some of these are also applicable to other human polymorphic genes, in particular to those non-HLA genes encoded within the Mhc. The range of techniques available allows laboratories to choose those most suited to their purpose. The routine laboratory supporting solid organ transplants will need to type large numbers of potential recipients over a period of time, probably using PCR-SSOP while donors will be typed singly and rapidly using PCR-SSP with HLA allele compatibility determined by heteroduplex analysis. Laboratories supporting bone marrow transplantation, where time is less pressing, can choose from the whole range of techniques to determine accurately donor recipient Mhc compatibility. For disease studies, techniques defining precise HLA allele sequence polymorphisms are needed and high sample numbers have to be accommodated. When an association is established allele sequencing has to be used. In the near future, the precise role of HLA alleles in transplantation and disease susceptibility is likely to be established unambiguously.

  12. Molecular gated-AlGaN/GaN high electron mobility transistor for pH detection.

    Science.gov (United States)

    Ding, Xiangzhen; Yang, Shuai; Miao, Bin; Gu, Le; Gu, Zhiqi; Zhang, Jian; Wu, Baojun; Wang, Hong; Wu, Dongmin; Li, Jiadong

    2018-04-18

    A molecular gated-AlGaN/GaN high electron mobility transistor has been developed for pH detection. The sensing surface of the sensor was modified with 3-aminopropyltriethoxysilane to provide amphoteric amine groups, which would play the role of receptors for pH detection. On modification with 3-aminopropyltriethoxysilane, the transistor exhibits good chemical stability in hydrochloric acid solution and is sensitive for pH detection. Thus, our molecular gated-AlGaN/GaN high electron mobility transistor acheived good electrical performances such as chemical stability (remained stable in hydrochloric acid solution), good sensitivity (37.17 μA/pH) and low hysteresis. The results indicate a promising future for high-quality sensors for pH detection.

  13. Detection of multidrug resistance using molecular nuclear technique

    International Nuclear Information System (INIS)

    Lee, Jae Tae; Ahn, Byeong Cheol

    2004-01-01

    Although the outcome of cancer patients after cytotoxic chemotherapy is related diverse mechanisms, multidrug resistance (MDR) for chemotherapeutic drugs due to cellular P-glycoprotein (Pgp) or multidrug-resistance associated protein (MRP) is most important factor in the chemotherapy failure to cancer. A large number of pharmacologic compounds, including verapamil, quinidine, tamoxifen, cyclosporin A and quinolone derivatives have been reported to overcome MDR. Single photon emission computed tomography (SPECT) and positron emission tomography (PET) are available for the detection of Pgp and MRP-mediated transporter. 99 m-Tc-MIBI and other 99 m-Tc-radiopharmaceuticals are substrates for Pgp and MRP, and have been used in clinical studies for tumor imaging, and to visualize blockade of Pgp-mediated transport after modulation of Pgp pump. Colchicine, verapamil and daunorubicin labeled with 11 C have been evaluated for the quantification of Pgp-mediated transport with PET in vivo and reported to be feasible substrates with which to image Pgp function in tumors. Leukotrienes are specific substrates for MRP and N-( 11 C)acetyl-leukotriene E4 provides an opportunity to study MRP function non-invasively in vivo. SPECT and PET pharmaceuticals have successfully used to evaluate pharmacologic effects of MDR modulators. Imaging of MDR and reversal of MDR with bioluminescence in a living animal is also evaluated for future clinical trial. We have described recent advances in molecular imaging of MDR and reviewed recent publications regarding feasibility of SPECT and PET imaging to study the functionality of MDR transporters in vivo

  14. Linear-after-the-exponential polymerase chain reaction and allied technologies. Real-time detection strategies for rapid, reliable diagnosis from single cells.

    Science.gov (United States)

    Pierce, Kenneth E; Wangh, Lawrence J

    2007-01-01

    Accurate detection of gene sequences in single cells is the ultimate challenge to polymerase chain reaction (PCR) sensitivity. Unfortunately, commonly used conventional and real-time PCR techniques are often too unreliable at that level to provide the accuracy needed for clinical diagnosis. Here we provide details of linear-after-the-exponential-PCR (LATE-PCR), a method similar to asymmetric PCR in the use of primers at different concentrations, but with novel design criteria to ensure high efficiency and specificity. Compared with conventional PCR, LATE-PCR increases the signal strength and allele discrimination capability of oligonucleotide probes such as molecular beacons and reduces variability among replicate samples. The analysis of real-time kinetics of LATE-PCR signals provides a means for improving the accuracy of single cell genetic diagnosis.

  15. A three-step vehicle detection framework for range estimation using a single camera

    CSIR Research Space (South Africa)

    Kanjee, R

    2015-12-01

    Full Text Available This paper proposes and validates a real-time onroad vehicle detection system, which uses a single camera for the purpose of intelligent driver assistance. A three-step vehicle detection framework is presented to detect and track the target vehicle...

  16. Improving Single-Carbon-Nanotube-Electrode Contacts Using Molecular Electronics.

    Science.gov (United States)

    Krittayavathananon, Atiweena; Ngamchuea, Kamonwad; Li, Xiuting; Batchelor-McAuley, Christopher; Kätelhön, Enno; Chaisiwamongkhol, Korbua; Sawangphruk, Montree; Compton, Richard G

    2017-08-17

    We report the use of an electroactive species, acetaminophen, to modify the electrical connection between a carbon nanotube (CNT) and an electrode. By applying a potential across two electrodes, some of the CNTs in solution occasionally contact the electrified interface and bridge between two electrodes. By observing a single CNT contact between two microbands of an interdigitated Au electrode in the presence and absence of acetaminophen, the role of the molecular species at the electronic junction is revealed. As compared with the pure CNT, the current magnitude of the acetaminophen-modified CNTs significantly increases with the applied potentials, indicating that the molecule species improves the junction properties probably via redox shuttling.

  17. Microfluidic platform for multiplexed detection in single cells and methods thereof

    Science.gov (United States)

    Wu, Meiye; Singh, Anup K.

    2018-05-01

    The present invention relates to a microfluidic device and platform configured to conduct multiplexed analysis within the device. In particular, the device allows multiple targets to be detected on a single-cell level. Also provided are methods of performing multiplexed analyses to detect one or more target nucleic acids, proteins, and post-translational modifications.

  18. Early detection of Pseudomonas aeruginosa – comparison of conventional versus molecular (PCR detection directly from adult patients with cystic fibrosis (CF

    Directory of Open Access Journals (Sweden)

    Moore John E

    2004-10-01

    Full Text Available Abstract Background Pseudomonas aeruginosa (PA is the most important bacterial pathogen in patients with cystic fibrosis (CF patients. Currently, routine bacteriological culture on selective/non- selective culture media is the cornerstone of microbiological detection. The aim of this study was to compare isolation rates of PA by conventional culture and molecular (PCR detection directly from sputum. Methods Adult patients (n = 57 attending the regional adult CF centre in Northern Ireland, provided fresh sputum following airways clearance exercise. Following processing of the specimen with sputasol (1:1 vol, the specimen was examined for the presence of PA by plating onto a combination of culture media (Pseudomonas isolation agar, Blood agar & McConkey agar. In addition, from the same specimen, genomic bacterial DNA was extracted (1 ml and was amplified employing two sequence-specific targets, namely (i the outer membrane protein (oprL gene locus and (ii the exotoxin A (ETA gene locus. Results By sputum culture, there were 30 patients positive for PA, whereas by molecular techniques, there were 35 positive patients. In 39 patients (22 PA +ve & 17 PA -ve, there was complete agreement between molecular and conventional detection and with both PCR gene loci. The oprL locus was more sensitive than the ETA locus, as the former was positive in 10 more patients and there were no patients where the ETA was positive and the oprL target negative. Where a PCR +ve/culture -ve result was recorded (10 patients, we followed these patients and recorded that 5 of these patients converted to being culture-positive at times ranging from 4–17 months later, with a mean lag time of 4.5 months. Conclusions This study indicates that molecular detection of PA in sputum employing the oprL gene target, is a useful technique in the early detection of PA, gaining on average 4.5 months over conventional culture. It now remains to be established whether aggressive antibiotic

  19. Implementation of molecularly imprinted polymer beads for surface enhanced Raman detection.

    Science.gov (United States)

    Kamra, Tripta; Zhou, Tongchang; Montelius, Lars; Schnadt, Joachim; Ye, Lei

    2015-01-01

    Molecularly imprinted polymers (MIPs) have a predesigned molecular recognition capability that can be used to build robust chemical sensors. MIP-based chemical sensors allow label-free detection and are particularly interesting due to their simple operation. In this work we report the use of thiol-terminated MIP microspheres to construct surfaces for detection of a model organic analyte, nicotine, by surface enhanced Raman scattering (SERS). The nicotine-imprinted microspheres are synthesized by RAFT precipitation polymerization and converted into thiol-terminated microspheres through aminolysis. The thiol groups on the MIP surface allow the microspheres to be immobilized on a gold-coated substrate. Three different strategies are investigated to achieve surface enhanced Raman scattering in the vicinity of the imprinted sites: (1) direct sputtering of gold nanoparticles, (2) immobilization of gold colloids through the MIP's thiol groups, and (3) trapping of the MIP microspheres in a patterned SERS substrate. For the first time we show that large MIP microspheres can be turned into selective SERS surfaces through the three different approaches of assembly. The MIP-based sensing surfaces are used to detect nicotine to demonstrate the proof of concept. As synthesis and surface functionalization of MIP microspheres and nanoparticles are well established, the methods reported in this work are handy and efficient for constructing label-free chemical sensors, in particular for those based on SERS detection.

  20. Investigation of photobleaching and saturation of single molecules by fluorophore recrossing events

    Energy Technology Data Exchange (ETDEWEB)

    Burrows, Sean M.; Reif, Randall D. [Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061 (United States); Pappas, Dimitri [Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061 (United States)], E-mail: d.pappas@ttu.edu

    2007-08-15

    A method for investigation of photobleaching and saturation of single molecules by fluorophore recrossing events in a laser beam is described. The diffraction-limited probe volumes encountered in single-molecule detection (SMD) produce high excitation irradiance, which can decrease available signal. The single molecules of several dyes were detected and the data was used to extract interpeak times above a defined threshold value. The interpeak times revealed the number of fluorophore recrossing events. The number of molecules detected that were within 2 ms of each other represented a molecular recrossing for this work. Calcein, fluorescein and R-phycoerythrin were analyzed and the saturation irradiance and photobleaching effects were determined as a function of irradiance. This approach is simple and it serves as a method of optimizing experimental conditions for single-molecule detection.

  1. Detection of single atoms by resonance ionization spectroscopy

    International Nuclear Information System (INIS)

    Hurst, G.S.

    1986-01-01

    Rutherford's idea for counting individual atoms can, in principle, be implemented for nearly any type of atom, whether stable or radioactive, by using methods of resonance ionization. With the RIS technique, a laser is tuned to a wavelength which will promote a valence electron in a Z-selected atom to an excited level. Additional resonance or nonresonance photoabsorption steps are used to achieve nearly 100% ionization efficiencies. Hence, the RIS process can be saturated for the Z-selected atoms; and since detectors are available for counting either single electrons or positive ions, one-atom detection is possible. Some examples are given of one-atom detection, including that of the noble gases, in order to show complementarity with AMS methods. For instance, the detection of 81 Kr using RIS has interesting applications for solar neutrino research, ice-cap dating, and groundwater dating. 39 refs., 7 figs., 2 tabs

  2. Evaluation of Flinders Technology Associates cards for storage and molecular detection of avian metapneumoviruses.

    Science.gov (United States)

    Awad, Faez; Baylis, Matthew; Jones, Richard C; Ganapathy, Kannan

    2014-01-01

    The feasibility of using Flinders Technology Associates (FTA) cards for the molecular detection of avian metapneumovirus (aMPV) by reverse transcriptase-polymerase chain reaction (RT-PCR) was investigated. Findings showed that no virus isolation was possible from aMPV-inoculated FTA cards, confirming viral inactivation upon contact with the cards. The detection limits of aMPV from the FTA card and tracheal organ culture medium were 10(1.5) median ciliostatic doses/ml and 10(0.75) median ciliostatic doses/ml respectively. It was possible to perform molecular characterization of both subtypes A and B aMPV using inoculated FTA cards stored for up to 60 days at 4 to 6°C. Tissues of the turbinate, trachea and lung of aMPV-infected chicks sampled either by direct impression smears or by inoculation of the tissue homogenate supernatants onto the FTA cards were positive by RT-PCR. However, the latter yielded more detections. FTA cards are suitable for collecting and transporting aMPV-positive samples, providing a reliable and hazard-free source of RNA for molecular characterization.

  3. Spin models for the single molecular magnet Mn12-AC

    Science.gov (United States)

    Al-Saqer, Mohamad A.

    2005-11-01

    The single molecular magnet (SMM) Mn12-AC attracted the attention of scientists since the discovery of its magnetic hystereses which are accompanied by sudden jumps in magnetic moments at low temperature. Unlike conventional bulk magnets, hysteresis in SMMs is of molecular origin. This qualifies them as candidates for next generation of high density storage media where a molecule which is at most few nanometers in size can be used to store a bit of information. However, the jumps in these hystereses, due to spin tunneling, can lead to undesired loss of information. Mn12-AC molecule contains twelve magnetic ions antiferromagnetically coupled by exchanges leading to S = 10 ground state manifold. The magnetic ions are surrounded by ligands which isolate them magnetically from neighboring molecules. The lowest state of S = 9 manifold is believed to lie at about 40 K above the ground state. Therefore, at low temperatures, the molecule is considered as a single uncoupled moment of spin S = 10. Such model has been used widely to understand phenomena exhibited by the molecule at low temperatures including the tunneling of its spin, while a little attention has been paid for the multi-spin nature of the molecule. Using the 8-spin model, we demonstrate that in order to understand the phenomena of tunneling, a full spin description of the molecule is required. We utilized a calculation scheme where a fraction of energy levels are used in the calculations and the influence of levels having higher energy is neglected. From the dependence of tunnel splittings on the number of states include, we conclude that models based on restricting the number of energy levels (single-spin and 8-spin models) lead to unreliable results of tunnel splitting calculations. To attack the full 12-spin model, we employed the Davidson algorithm to calculated lowest energy levels produced by exchange interactions and single ion anisotropies. The model reproduces the anisotropy properties at low

  4. Multi-scale Modeling of Compressible Single-phase Flow in Porous Media using Molecular Simulation

    KAUST Repository

    Saad, Ahmed Mohamed

    2016-01-01

    potential model that accounts for the molecular quadrupole moment of fluids with non-spherical molecules such as CO2. The potential model was used to simulate the thermodynamic equilibrium properties for single-phase and two-phase systems using the canonical

  5. A Microchip for Integrated Single-Cell Gene Expression Profiling and Genotoxicity Detection

    Directory of Open Access Journals (Sweden)

    Hui Dong

    2016-09-01

    Full Text Available Microfluidics-based single-cell study is an emerging approach in personalized treatment or precision medicine studies. Single-cell gene expression holds a potential to provide treatment selections with maximized efficacy to help cancer patients based on a genetic understanding of their disease. This work presents a multi-layer microchip for single-cell multiplexed gene expression profiling and genotoxicity detection. Treated by three drug reagents (i.e., methyl methanesulfonate, docetaxel and colchicine with varied concentrations and time lengths, individual human cancer cells (MDA-MB-231 are lysed on-chip, and the released mRNA templates are captured and reversely transcribed into single strand DNA. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH, cyclin-dependent kinase inhibitor 1A (CDKN1A, and aurora kinase A (AURKA genes from single cells are amplified and real-time quantified through multiplex polymerase chain reaction. The microchip is capable of integrating all steps of single-cell multiplexed gene expression profiling, and providing precision detection of drug induced genotoxic stress. Throughput has been set to be 18, and can be further increased following the same approach. Numerical simulation of on-chip single cell trapping and heat transfer has been employed to evaluate the chip design and operation.

  6. Spatially Extended and High-Velocity Dispersion Molecular Component in Spiral Galaxies: Single-Dish Versus Interferometric Observations

    Science.gov (United States)

    Caldú-Primo, Anahi; Schruba, Andreas; Walter, Fabian; Leroy, Adam; Bolatto, Alberto D.; Vogel, Stuart

    2015-02-01

    Recent studies of the molecular medium in nearby galaxies have provided mounting evidence that the molecular gas can exist in two phases: one that is clumpy and organized as molecular clouds and another one that is more diffuse. This last component has a higher velocity dispersion than the clumpy one. In order to investigate these two molecular components further, we compare the fluxes and line widths of CO in NGC 4736 and NGC 5055, two nearby spiral galaxies for which high-quality interferometric as well as single-dish data sets are available. Our analysis leads to two main results: (1) employing three different methods, we determine the flux recovery of the interferometer as compared to the single-dish to be within a range of 35%-74% for NGC 4736 and 81%-92% for NGC 5055, and (2) when focusing on high (S/N ≥ 5) lines of sight (LOSs), the single-dish line widths are larger by ˜(40 ± 20)% than the ones derived from interferometric data, which is in agreement with stacking all LOSs. These results point to a molecular gas component that is distributed over spatial scales larger than 30″(˜1 kpc), and is therefore filtered out by the interferometer. The available observations do not allow us to distinguish between a truly diffuse gas morphology and a uniform distribution of small clouds that are separated by less than the synthesized beam size (˜3″ or ˜100 pc), as they would both be invisible for the interferometer. This high velocity dispersion component has a dispersion similar to what is found in the atomic medium, as traced through observations of the H i line.

  7. High resolution surface scanning of Thick-GEM for single photo-electron detection

    International Nuclear Information System (INIS)

    Hamar, G.; Varga, D.

    2012-01-01

    An optical system for high resolution scanning of TGEM UV photon detection systems is introduced. The structure exploits the combination of a single Au-coated TGEM under study, and an asymmetric MWPC (Close Cathode Chamber) as post-amplification stage. A pulsed UV LED source with emission down to 240 nm has been focused to a spot of 0.07 mm on the TGEM surface, and single photo-electron charge spectra has been recorded over selected two dimensional regions. This way, the TGEM gain (order of 10–100) and TGEM photo-electron detection efficiency is clearly separated, unlike in case of continuous illumination. The surface structure connected to the TGEM photon detection is well observable, including inefficiencies in the holes and at the symmetry points between holes. The detection efficiency as well as the gas gain are fluctuating from hole to hole. The gain is constant in the hexagon around any hole, pointing to the fact that the gain depends on hole geometry, and less on the position where the electron enters. The detection probability map strongly changes with the field strength above the TGEM surface, in relation to the change of the actual surface field configuration. The results can be confronted with position-dependent simulations of TGEM electron transfer and gas multiplication. -- Highlights: ► First demonstration of Thick GEM surface scanning with single photo-electrons. ► Resolution of 0.1 mm is sufficient to identify structures connected to TGEM surface field structure. ► Gain and detection efficiency and separately measurable. ► Detection efficiency is high in a ring around the holes, and gain is constant in the hexagonal collection regions.

  8. Redox-Triggered Bonding-Induced Emission of Thiol-Functionalized Gold Nanoclusters for Luminescence Turn-On Detection of Molecular Oxygen.

    Science.gov (United States)

    Ao, Hang; Feng, Hui; Zhao, Mengting; Zhao, Meizhi; Chen, Jianrong; Qian, Zhaosheng

    2017-11-22

    Most optical sensors for molecular oxygen were developed based on the quenching effect of the luminescence of oxygen-sensitive probes; however, the signal turn-off mode of these probes is undesirable to quantify and visualize molecular oxygen. Herein, we report a novel luminescence turn-on detection strategy for molecular oxygen via the specific oxygen-triggered bonding-induced emission of thiol-functionalized gold nanoclusters. Thiol-functionalized gold nanoclusters were prepared by a facile one-step synthesis, and as-prepared gold nanoclusters possess significant aggregation-induced emission (AIE) property. It is the first time to discover the oxygen-triggered bonding-induced emission (BIE) behavior of gold nanoclusters, which results in disulfide-linked covalent bonding assemblies with intensely red luminescence. This specific redox-triggered BIE is capable of quantitatively detecting dissolved oxygen in aqueous solution in a light-up manner, and trace amount of dissolved oxygen at ppb level is achieved based on this detection method. A facile and convenient test strip for oxygen detection was also developed to monitor molecular oxygen in a gas matrix. Covalent bonding-induced emission is proven to be a more efficient way to attain high brightness of AIEgens than a physical aggregation-induced emission process, and provides a more convenient and desirable detection method for molecular oxygen than the previous sensors.

  9. Detection of Single Pt Nanoparticle Collisions by Open-Circuit Potential Changes at Ag Ultramicroelectrode

    International Nuclear Information System (INIS)

    Mun, Seon Kyu; Shin, Changhwan; Kwon, Seong Jung

    2016-01-01

    Single platinum (Pt) nanoparticle (NP) collisions were investigated with open-circuit potential (OCP) using a silver (Ag) ultramicroelectrode (UME). The Ag UME showed higher sensitivity to single Pt NP detection by the OCP method than gold (Au) UME. The detection of ⁓2 nm radius Pt NP collisions was carried out successfully using Ag UME. The magnitude of the potential step and collision frequency for the single Pt NP collision on Ag UME was investigated and compared with those of the previous work done on Au UME.

  10. Detection of Molecular Oxygen at Low Concentrations Using Quartz Enhanced Photoacoustic Spectroscopy

    Directory of Open Access Journals (Sweden)

    Andreas Pohlkötter

    2010-09-01

    Full Text Available Molecular oxygen is detected at low concentrations using photoacoustic spectroscopy despite its unfavorable photoacoustic properties. The system consists of a seed laser diode, a tapered amplifier and a quartz tuning fork based spectrophone, thus employing quartz enhanced photoacoustic spectroscopy (QEPAS. With this system a detection limit of 13 ppm is reached with a compact and long term stable setup. Further improvement of the detection limit is possible by adding suitable gases to the sample gas that promote the radiationless de-excitation of the oxygen molecules.

  11. Molecular beacon probes-base multiplex NASBA Real-time for detection of HIV-1 and HCV.

    Science.gov (United States)

    Mohammadi-Yeganeh, S; Paryan, M; Mirab Samiee, S; Kia, V; Rezvan, H

    2012-06-01

    Developed in 1991, nucleic acid sequence-based amplification (NASBA) has been introduced as a rapid molecular diagnostic technique, where it has been shown to give quicker results than PCR, and it can also be more sensitive. This paper describes the development of a molecular beacon-based multiplex NASBA assay for simultaneous detection of HIV-1 and HCV in plasma samples. A well-conserved region in the HIV-1 pol gene and 5'-NCR of HCV genome were used for primers and molecular beacon design. The performance features of HCV/HIV-1 multiplex NASBA assay including analytical sensitivity and specificity, clinical sensitivity and clinical specificity were evaluated. The analysis of scalar concentrations of the samples indicated that the limit of quantification of the assay was beacon probes detected all HCV genotypes and all major variants of HIV-1. This method may represent a relatively inexpensive isothermal method for detection of HIV-1/HCV co-infection in monitoring of patients.

  12. Molecular detection and characterization of beak and feather disease virus in psittacine birds in Tehran, Iran.

    Science.gov (United States)

    Haddadmarandi, M R; Madani, S A; Nili, H; Ghorbani, A

    2018-01-01

    Beak and feather disease virus (BFDV), a member of genus circovirus, is a small, non-enveloped, single stranded DNA virus. Although BFDVs are among the most well studied circoviruses, there is little to no information about BFDVs in Iran. The aim of the present study was to detect and identify BFDV molecules from the birds referred to the avian clinic of The Faculty of Veterinary Medicine, Tehran University, Iran. A total of 55 DNA samples were extracted from birds from nine different species of the order psittaciformes. A robust conventional polymerase chain reaction (PCR) was applied to detect the rep gene of the virus. Ten out of 55 samples, from four different species, were tested positive for BFDVs in PCR ( Melopsittacus undulates (4), Psittacula Krameri (3), Psittacus erithacus (2), Platycercus eximius (1)). Molecular identification of the detected BFDVs was performed based on their rep gene sequences. The phylogenetic analysis revealed that the Iranian BFDVs from this study were clustered into four genetically distinct clades belonging to different genetic subtypes of BFDVs (L1, N1, T1, and I4). Although the relation between the samples and their related subtypes in the tree are discussed, further studies are needed to elucidate the host specificity and incidence of the BFDVs from different genetic subtypes.

  13. Detecting earthquakes over a seismic network using single-station similarity measures

    Science.gov (United States)

    Bergen, Karianne J.; Beroza, Gregory C.

    2018-06-01

    New blind waveform-similarity-based detection methods, such as Fingerprint and Similarity Thresholding (FAST), have shown promise for detecting weak signals in long-duration, continuous waveform data. While blind detectors are capable of identifying similar or repeating waveforms without templates, they can also be susceptible to false detections due to local correlated noise. In this work, we present a set of three new methods that allow us to extend single-station similarity-based detection over a seismic network; event-pair extraction, pairwise pseudo-association, and event resolution complete a post-processing pipeline that combines single-station similarity measures (e.g. FAST sparse similarity matrix) from each station in a network into a list of candidate events. The core technique, pairwise pseudo-association, leverages the pairwise structure of event detections in its network detection model, which allows it to identify events observed at multiple stations in the network without modeling the expected moveout. Though our approach is general, we apply it to extend FAST over a sparse seismic network. We demonstrate that our network-based extension of FAST is both sensitive and maintains a low false detection rate. As a test case, we apply our approach to 2 weeks of continuous waveform data from five stations during the foreshock sequence prior to the 2014 Mw 8.2 Iquique earthquake. Our method identifies nearly five times as many events as the local seismicity catalogue (including 95 per cent of the catalogue events), and less than 1 per cent of these candidate events are false detections.

  14. Highly sensitive detection of NT-proBNP by molecular motor

    Directory of Open Access Journals (Sweden)

    Jie Zhang

    2017-03-01

    Full Text Available FoF1-ATPase is an active rotary motor, and generates three-ATP for each rotation. At saturated substrate concentration, the motor can achieve about 103 r.p.m, which means one motor can generate about 105 ATP molecules during 30 min. Here, we constituted a novel nanodevice with a molecular rotary motor and a “battery”, FoF1-ATPase and chromatophore, and presented a novel method of sandwich type rotary biosensor based on ε subunit with one target-to-one motor, in which one target corresponds 105 ATP molecules as detection signals during 30 min. The target such as NT-proBNP detection demonstrated that this novel nanodevice has potential to be developed into an ultrasensitive biosensor to detect low expressed targets.

  15. Detection of gas molecules on single Mn adatom adsorbed graphyne: a DFT-D study

    Science.gov (United States)

    Lu, Zhansheng; Lv, Peng; Ma, Dongwei; Yang, Xinwei; Li, Shuo; Yang, Zongxian

    2018-02-01

    As one of the prominent applications in intelligent systems, gas sensing technology has attracted great interest in both industry and academia. In the current study, the pristine graphyne (GY) without and with a single Mn atom is investigated to detect the gas molecules (CO, CH4, CO2, NH3, NO and O2). The pristine GY is promising to detect O2 molecules because of its chemical adsorption on GY with large electron transfer. The great stability of the Mn/GY is found, and the Mn atom prefers to anchor at the alkyne ring as a single atom. Upon single Mn atom anchoring, the sensitivity and selectivity of GY based gas sensors is significantly improved for various molecules, except CH4. The recovery time of the Mn/GY after detecting the gas molecules may help to appraise the detection efficiency for the Mn/GY. The current study will help to understand the mechanism of detecting the gas molecules, and extend the potentially fascinating applications of GY-based materials.

  16. Quantum logic for the control and manipulation of molecular ions using a frequency comb

    International Nuclear Information System (INIS)

    Ding, S; Matsukevich, D N

    2012-01-01

    We propose a scheme for the preparation, manipulation and detection of quantum states of single molecular ions. In this scheme, molecular and atomic ions are confined in radio-frequency Paul trap and share common modes of motion. A frequency comb laser field is used to drive stimulated Raman transitions that couple internal states of the molecular ion with the motion of ions. State transfer from the molecular ion to the atomic ion via the common mode of motion results in efficient state detection for the molecule. The coupling of molecular states to the motion and the subsequent sideband cooling of the ions provide a way to prepare the molecular ion in a well-defined state. (paper)

  17. Reverse-Transcriptase PCR Detection of Leptospira: Absence of Agreement with Single-Specimen Microscopic Agglutination Testing.

    Science.gov (United States)

    Waggoner, Jesse J; Balassiano, Ilana; Mohamed-Hadley, Alisha; Vital-Brazil, Juliana Magalhães; Sahoo, Malaya K; Pinsky, Benjamin A

    2015-01-01

    Reference diagnostic tests for leptospirosis include nucleic acid amplification tests, bacterial culture, and microscopic agglutination testing (MAT) of acute and convalescent serum. However, clinical laboratories often do not receive paired specimens. In the current study, we tested serum samples using a highly sensitive real-time nucleic acid amplification test for Leptospira and compared results to MAT performed on the same specimens. 478 serum samples from suspected leptospirosis cases in Rio de Janeiro were tested using a real-time RT-PCR for the diagnosis of leptospirosis, malaria and dengue (the Lepto-MD assay). The Lepto-MD assay detects all species of Leptospira (saprophytic, intermediate, and pathogenic), and in the current study, we demonstrate that this assay amplifies both Leptospira RNA and DNA. Dengue virus RNA was identified in 10 patients, and no cases of malaria were detected. A total of 65 samples (13.6%) were positive for Leptospira: 35 samples (7.3%) in the Lepto-MD assay, 33 samples (6.9%) by MAT, and 3 samples tested positive by both (kappa statistic 0.02). Poor agreement between methods was consistent regardless of the titer used to define positive MAT results or the day of disease at sample collection. Leptospira nucleic acids were detected in the Lepto-MD assay as late as day 22, and cycle threshold values did not differ based on the day of disease. When Lepto-MD assay results were added to the MAT results for all patients in 2008 (n=818), the number of detected leptospirosis cases increased by 30.4%, from 102 (12.5%) to 133 (16.3%). This study demonstrates a lack of agreement between nucleic acid detection of Leptospira and single-specimen MAT, which may result from the clearance of bacteremia coinciding with the appearance of agglutinating antibodies. A combined testing strategy for acute leptospirosis, including molecular and serologic testing, appears necessary to maximize case detection.

  18. Culture- and molecular-based detection of swine-adapted Salmonella shed by avian scavengers.

    Science.gov (United States)

    Blanco, Guillermo; Díaz de Tuesta, Juan A

    2018-04-13

    Salmonella can play an important role as a disease agent in wildlife, which can then act as carriers and reservoirs of sanitary importance at the livestock-human interface. Transmission from livestock to avian scavengers can occur when these species consume contaminated carcasses and meat remains in supplementary feeding stations and rubbish dumps. We compared the performance of PCR-based detection with conventional culture-based methods to detect Salmonella in the faeces of red kites (Milvus milvus) and griffon vultures (Gyps fulvus) in central Spain. The occurrence of culturable Salmonella was intermediate in red kites (1.9%, n=52) and high in griffon vultures (26.3%, n=99). These proportions were clearly higher with PCR-based detection (13.5% and 40.4%, respectively). Confirmation cultures failed to grow Salmonella in all faecal samples positive by the molecular assay but negative by the initial conventional culture in both scavenger species, indicating the occurrence of false (non-culturable) positives by PCR-based detection. This suggests that the molecular assay is highly sensitive to detecting viable Salmonella in cultures, but also partial genomes and dead or unviable bacteria from past infections or contamination. Thus, the actual occurrence of Salmonella in a particular sampling time period can be underestimated when using only culture detection. The serovars found in the scavenger faeces were among the most frequently isolated in pigs from Spain and other EU countries, especially those generally recognized as swine-adapted monophasic variants of S. Typhimurium. Because the studied species obtain much of their food from pig carcasses, this livestock may be the primary source of Salmonella via direct ingestion of infected carcasses and indirectly via contamination due to the unsanitary conditions found in supplementary feeding stations established for scavenger conservation. Combining culture- and molecular-based detection is encouraged to understand the

  19. Molecular relapse in chronic myelogenous leukemia patients after bone marrow transplantation detected by polymerase chain reaction

    International Nuclear Information System (INIS)

    Sawyers, C.L.; Timson, L.; Clark, S.S.; Witte, O.N.; Champlin, R.; Kawasaki, E.S.

    1990-01-01

    Relapse of chronic myelogenous leukemia after bone marrow transplantation can be detected by using clinical, cytogenetic, or molecular tools. A modification of the polymerase chain reaction can be used in patients to detect low levels of the BCR-ABL-encoded mRNA transcript, a specific marker for chronic myelogenous leukemia. Early detection of relapse after bone marrow transplantation could potentially alter treatment decisions. The authors prospectively evaluated 19 patients for evidence of molecular relapse, cytogenetic relapse, and clinical relapse after bone marrow transplantation. They used the polymerase chain reaction to detect residual BCR-ABL mRNA in patients followed up to 45 months after treatment and found 4 patients with BCR-ABL mRNA expression following bone marrow transplantation. Fifteen patients did not express detectable BCR-ABL mRNA. All 19 patients remain in clinical remission. In this prospective study of chronic myelogenous leukemia patients treated with bone marrow transplantation, molecular relapse preceded cytogenetic relapse in those patients who persistently express BCR-ABL mRNA. They recommend using standard clinical and cytogenetic testing to make patient care decisions until further follow-up determines the clinical outcome of those patients with residual BCR-ABL mRNA transcripts detected by polymerase chain reaction

  20. Single- and multi-frequency detection of surface displacements via scanning probe microscopy.

    Science.gov (United States)

    Romanyuk, Konstantin; Luchkin, Sergey Yu; Ivanov, Maxim; Kalinin, Arseny; Kholkin, Andrei L

    2015-02-01

    Piezoresponse force microscopy (PFM) provides a novel opportunity to detect picometer-level displacements induced by an electric field applied through a conducting tip of an atomic force microscope (AFM). Recently, it was discovered that superb vertical sensitivity provided by PFM is high enough to monitor electric-field-induced ionic displacements in solids, the technique being referred to as electrochemical strain microscopy (ESM). ESM has been implemented only in multi-frequency detection modes such as dual AC resonance tracking (DART) and band excitation, where the response is recorded within a finite frequency range, typically around the first contact resonance. In this paper, we analyze and compare signal-to-noise ratios of the conventional single-frequency method with multi-frequency regimes of measuring surface displacements. Single-frequency detection ESM is demonstrated using a commercial AFM.

  1. High resolution surface scanning of Thick-GEM for single photo-electron detection

    Energy Technology Data Exchange (ETDEWEB)

    Hamar, G., E-mail: hamar.gergo@wigner.mta.hu [Wigner Research Centre for Physics, Budapest (Hungary); Varga, D., E-mail: vdezso@mail.cern.ch [Eoetvoes Lorand University, Budapest (Hungary)

    2012-12-01

    An optical system for high resolution scanning of TGEM UV photon detection systems is introduced. The structure exploits the combination of a single Au-coated TGEM under study, and an asymmetric MWPC (Close Cathode Chamber) as post-amplification stage. A pulsed UV LED source with emission down to 240 nm has been focused to a spot of 0.07 mm on the TGEM surface, and single photo-electron charge spectra has been recorded over selected two dimensional regions. This way, the TGEM gain (order of 10-100) and TGEM photo-electron detection efficiency is clearly separated, unlike in case of continuous illumination. The surface structure connected to the TGEM photon detection is well observable, including inefficiencies in the holes and at the symmetry points between holes. The detection efficiency as well as the gas gain are fluctuating from hole to hole. The gain is constant in the hexagon around any hole, pointing to the fact that the gain depends on hole geometry, and less on the position where the electron enters. The detection probability map strongly changes with the field strength above the TGEM surface, in relation to the change of the actual surface field configuration. The results can be confronted with position-dependent simulations of TGEM electron transfer and gas multiplication. -- Highlights: Black-Right-Pointing-Pointer First demonstration of Thick GEM surface scanning with single photo-electrons. Black-Right-Pointing-Pointer Resolution of 0.1 mm is sufficient to identify structures connected to TGEM surface field structure. Black-Right-Pointing-Pointer Gain and detection efficiency and separately measurable. Black-Right-Pointing-Pointer Detection efficiency is high in a ring around the holes, and gain is constant in the hexagonal collection regions.

  2. Interaction of molecular oxygen with single wall nanotubes: Role of surfactant contamination

    International Nuclear Information System (INIS)

    Larciprete, R.; Goldoni, A.; Lizzit, S.

    2003-01-01

    The interaction of molecular oxygen with single wall nanotubes in the form of a commercial bucky paper was investigated by high resolution photoemission spectroscopy. Sodium contamination was found in the sample, which was completely removed only after prolonged heating at 1250 K. The C 1s core level spectrum measured on the sample annealed to 1020 K dramatically changed upon exposure to molecular oxygen. On the contrary, when exposing the Na-free SWNTs to several KL of O 2 , the sample remained oxygen free and no modification in the C 1s core level was observed. Therefore the observed sensitivity of the sample to O 2 was due to a Na mediated oxidation, determining a charge transfer from the C tubes to the Na-O complex

  3. Molecular detection of Capillaria philippinensis: An emerging zoonosis in Egypt.

    Science.gov (United States)

    El-Dib, Nadia A; El-Badry, Ayman A; Ta-Tang, Thuy-Huong; Rubio, Jose M

    2015-07-01

    Human infection with Capillaria philippinensis is accidental; however, it may end fatally if not diagnosed and treated in the proper time. The first case was detected in the Philippines in 1963, but later reported in other countries around the world, including Egypt. In this report, molecular diagnosis using a specific nested PCR for detection of C. philippinensis in faeces is described based on the amplification of small ribosomal subunit. The test showed sensitivity and specificity, as it detected all the positive cases and gave no cross-reaction with human DNA and DNA of other tested parasites. This method can be very useful not only for improvement of diagnosis, but also to understand the different environmental routes of transmission by detection of C. philippinensis DNA-stages in the possible fish intermediate hosts and reservoir animal host, helping to improve strategies for surveillance and prevention of human disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Single amino acid substitution in important hemoglobinopathies does not disturb molecular function and biological process

    Directory of Open Access Journals (Sweden)

    Viroj Wiwanitkit

    2008-06-01

    Full Text Available Viroj WiwanitkitDepartment of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, ThailandAbstract: Hemoglobin is an important protein found in the red cells of many animals. In humans, the hemoglobin is mainly distributed in the red blood cell. Single amino acid substitution is the main pathogenesis of most hemoglobin disorders. Here, the author used a new gene ontology technology to predict the molecular function and biological process of four important hemoglobin disorders with single substitution. The four studied important abnormal hemoglobins (Hb with single substitution included Hb S, Hb E, Hb C, and Hb J-Baltimore. Using the GoFigure server, the molecular function and biological process in normal and abnormal hemoglobins was predicted. Compared with normal hemoglobin, all studied abnormal hemoglobins had the same function and biological process. This indicated that the overall function of oxygen transportation is not disturbed in the studied hemoglobin disorders. Clinical findings of oxygen depletion in abnormal hemoglobin should therefore be due to the other processes rather than genomics, proteomics, and expression levels.Keywords: hemoglobin, amino acid, substitution, function

  5. Use of FTA filter paper for the molecular detection of Newcastle disease virus.

    Science.gov (United States)

    Perozo, Francisco; Villegas, Pedro; Estevez, Carlos; Alvarado, Iván; Purvis, Linda B

    2006-04-01

    The feasibility of using Flinders Technology Associates filter papers (FTA cards) to collect allantoic fluid and chicken tissue samples for Newcastle disease virus (NDV) molecular detection was evaluated. Trizol RNA extraction and one-step reverse transcriptase-polymerase chain reaction (RT-PCR) were used. FTA cards allowed NDV identification from allantoic fluid with a titre of 10(5.8) median embryo lethal doses/ml. The inactivated virus remained stable on the cards for 15 days. NDV was detected from FTA imprints of the trachea, lung, caecal tonsil and cloacal faeces of experimentally infected birds. RT-PCR detection from FTA cards was confirmed by homologous frozen-tissue RT-PCR and virus isolation. Direct nucleotide sequence of the amplified F gene allowed prediction of NDV virulence. No virus isolation was possible from the FTA inactivated samples, indicating viral inactivation upon contact. The FTA cards are suitable for collecting and transporting NDV-positive samples, providing a reliable source of RNA for molecular characterization and a hazard-free sample.

  6. Spatially extended and high-velocity dispersion molecular component in spiral galaxies: Single-dish versus interferometric observations

    International Nuclear Information System (INIS)

    Caldú-Primo, Anahi; Walter, Fabian; Schruba, Andreas; Leroy, Adam; Bolatto, Alberto D.; Vogel, Stuart

    2015-01-01

    Recent studies of the molecular medium in nearby galaxies have provided mounting evidence that the molecular gas can exist in two phases: one that is clumpy and organized as molecular clouds and another one that is more diffuse. This last component has a higher velocity dispersion than the clumpy one. In order to investigate these two molecular components further, we compare the fluxes and line widths of CO in NGC 4736 and NGC 5055, two nearby spiral galaxies for which high-quality interferometric as well as single-dish data sets are available. Our analysis leads to two main results: (1) employing three different methods, we determine the flux recovery of the interferometer as compared to the single-dish to be within a range of 35%–74% for NGC 4736 and 81%–92% for NGC 5055, and (2) when focusing on high (S/N ≥ 5) lines of sight (LOSs), the single-dish line widths are larger by ∼(40 ± 20)% than the ones derived from interferometric data, which is in agreement with stacking all LOSs. These results point to a molecular gas component that is distributed over spatial scales larger than 30″(∼1 kpc), and is therefore filtered out by the interferometer. The available observations do not allow us to distinguish between a truly diffuse gas morphology and a uniform distribution of small clouds that are separated by less than the synthesized beam size (∼3″ or ∼100 pc), as they would both be invisible for the interferometer. This high velocity dispersion component has a dispersion similar to what is found in the atomic medium, as traced through observations of the H i line.

  7. A Comprehensive Experiment for Molecular Biology: Determination of Single Nucleotide Polymorphism in Human REV3 Gene Using PCR-RFLP

    Science.gov (United States)

    Zhang, Xu; Shao, Meng; Gao, Lu; Zhao, Yuanyuan; Sun, Zixuan; Zhou, Liping; Yan, Yongmin; Shao, Qixiang; Xu, Wenrong; Qian, Hui

    2017-01-01

    Laboratory exercise is helpful for medical students to understand the basic principles of molecular biology and to learn about the practical applications of molecular biology. We have designed a lab course on molecular biology about the determination of single nucleotide polymorphism (SNP) in human REV3 gene, the product of which is a subunit of…

  8. Visual detection of 2,4,6-trinitrotolune by molecularly imprinted colloidal array photonic crystal

    International Nuclear Information System (INIS)

    Lu, Wei; Asher, Sanford A.; Meng, Zihui; Yan, Zequn; Xue, Min; Qiu, Lili; Yi, Da

    2016-01-01

    Graphical abstract: Molecularly imprinted colloidal array (MICA) was explored for the selective visual detection of TNT with color changing from green to red. And molecularly imprinted colloidal particles (MICs) were evaluated for the adsorption capacity and the imprinting efficiency. The MICA had excellent flexibility, reversibility and stability. It promised high potential for the visual semi-quantitative detection of other explosives. - Highlights: • Molecularly imprinted colloidal array (MICA) was used to visually detect TNT. • The relationship of particle size, diffracted wavelength and color was discussed. • The adsorption capacity and imprinting efficiency of MICs were calculated. • MICA had short response time, high selectivity, good reversibility and stability. • MICA had high potential to be used in other customed visual explosive detection. - Abstract: We developed a photonic crystal (PhC) sensor for the quantification of 2,4,6-trinitrotoluene (TNT) in solution. Monodisperse (210 nm in diameter) molecularly imprinted colloidal particles (MICs) for TNT were prepared by the emulsion polymerization of methyl methacrylate and acrylamide in the presence of TNT as a template. The MICs were then self-assembled into close-packed opal PhC films. The adsorption capacity of the MICs for TNT was 64 mg TNT/g. The diffraction from the PhC depended on the TNT concentration in a methanol/water (3/2, v/v) potassium dihydrogen phosphate buffer solution (pH = 7.0, 30 mM). The limit of detection (LOD) of the sensor was 1.03 μg. The color of the molecularly imprinted colloidal array (MICA) changed from green to red with an 84 nm diffraction red shift when the TNT concentration increased to 20 mM. The sensor response time was 3 min. The PhC sensor was selective for TNT compared to similar compounds such as 2,4,6-trinitrophenol, 2,4-dinitrotoluene, 2,6-dinitrotoluene, 2-nitromesitylene, 4-nitrotoluene, 2-nitrotoluene, 1,3-dinitrobenzene, methylbenzene, 4-nitrophenol

  9. Visual detection of 2,4,6-trinitrotolune by molecularly imprinted colloidal array photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wei [School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing, 100081 (China); Asher, Sanford A., E-mail: asher@pitt.edu [Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Meng, Zihui, E-mail: m_zihui@yahoo.com [School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing, 100081 (China); Yan, Zequn [School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing, 100081 (China); Xue, Min, E-mail: minxue@bit.edu.cn [School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing, 100081 (China); Qiu, Lili, E-mail: qiulili@bit.edu.cn [School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing, 100081 (China); Yi, Da [School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing, 100081 (China)

    2016-10-05

    Graphical abstract: Molecularly imprinted colloidal array (MICA) was explored for the selective visual detection of TNT with color changing from green to red. And molecularly imprinted colloidal particles (MICs) were evaluated for the adsorption capacity and the imprinting efficiency. The MICA had excellent flexibility, reversibility and stability. It promised high potential for the visual semi-quantitative detection of other explosives. - Highlights: • Molecularly imprinted colloidal array (MICA) was used to visually detect TNT. • The relationship of particle size, diffracted wavelength and color was discussed. • The adsorption capacity and imprinting efficiency of MICs were calculated. • MICA had short response time, high selectivity, good reversibility and stability. • MICA had high potential to be used in other customed visual explosive detection. - Abstract: We developed a photonic crystal (PhC) sensor for the quantification of 2,4,6-trinitrotoluene (TNT) in solution. Monodisperse (210 nm in diameter) molecularly imprinted colloidal particles (MICs) for TNT were prepared by the emulsion polymerization of methyl methacrylate and acrylamide in the presence of TNT as a template. The MICs were then self-assembled into close-packed opal PhC films. The adsorption capacity of the MICs for TNT was 64 mg TNT/g. The diffraction from the PhC depended on the TNT concentration in a methanol/water (3/2, v/v) potassium dihydrogen phosphate buffer solution (pH = 7.0, 30 mM). The limit of detection (LOD) of the sensor was 1.03 μg. The color of the molecularly imprinted colloidal array (MICA) changed from green to red with an 84 nm diffraction red shift when the TNT concentration increased to 20 mM. The sensor response time was 3 min. The PhC sensor was selective for TNT compared to similar compounds such as 2,4,6-trinitrophenol, 2,4-dinitrotoluene, 2,6-dinitrotoluene, 2-nitromesitylene, 4-nitrotoluene, 2-nitrotoluene, 1,3-dinitrobenzene, methylbenzene, 4-nitrophenol

  10. Single-Molecule Stochastic Resonance

    Directory of Open Access Journals (Sweden)

    K. Hayashi

    2012-08-01

    Full Text Available Stochastic resonance (SR is a well-known phenomenon in dynamical systems. It consists of the amplification and optimization of the response of a system assisted by stochastic (random or probabilistic noise. Here we carry out the first experimental study of SR in single DNA hairpins which exhibit cooperatively transitions from folded to unfolded configurations under the action of an oscillating mechanical force applied with optical tweezers. By varying the frequency of the force oscillation, we investigate the folding and unfolding kinetics of DNA hairpins in a periodically driven bistable free-energy potential. We measure several SR quantifiers under varied conditions of the experimental setup such as trap stiffness and length of the molecular handles used for single-molecule manipulation. We find that a good quantifier of the SR is the signal-to-noise ratio (SNR of the spectral density of measured fluctuations in molecular extension of the DNA hairpins. The frequency dependence of the SNR exhibits a peak at a frequency value given by the resonance-matching condition. Finally, we carry out experiments on short hairpins that show how SR might be useful for enhancing the detection of conformational molecular transitions of low SNR.

  11. Atomically precise graphene nanoribbon heterojunctions from a single molecular precursor

    Science.gov (United States)

    Nguyen, Giang D.; Tsai, Hsin-Zon; Omrani, Arash A.; Marangoni, Tomas; Wu, Meng; Rizzo, Daniel J.; Rodgers, Griffin F.; Cloke, Ryan R.; Durr, Rebecca A.; Sakai, Yuki; Liou, Franklin; Aikawa, Andrew S.; Chelikowsky, James R.; Louie, Steven G.; Fischer, Felix R.; Crommie, Michael F.

    2017-11-01

    The rational bottom-up synthesis of atomically defined graphene nanoribbon (GNR) heterojunctions represents an enabling technology for the design of nanoscale electronic devices. Synthetic strategies used thus far have relied on the random copolymerization of two electronically distinct molecular precursors to yield GNR heterojunctions. Here we report the fabrication and electronic characterization of atomically precise GNR heterojunctions prepared through late-stage functionalization of chevron GNRs obtained from a single precursor. Post-growth excitation of fully cyclized GNRs induces cleavage of sacrificial carbonyl groups, resulting in atomically well-defined heterojunctions within a single GNR. The GNR heterojunction structure was characterized using bond-resolved scanning tunnelling microscopy, which enables chemical bond imaging at T = 4.5 K. Scanning tunnelling spectroscopy reveals that band alignment across the heterojunction interface yields a type II heterojunction, in agreement with first-principles calculations. GNR heterojunction band realignment proceeds over a distance less than 1 nm, leading to extremely large effective fields.

  12. Single photon detection and localization accuracy with an ebCMOS camera

    Energy Technology Data Exchange (ETDEWEB)

    Cajgfinger, T. [CNRS/IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne F-69622 (France); Dominjon, A., E-mail: agnes.dominjon@nao.ac.jp [Université de Lyon, Université de Lyon 1, Lyon 69003 France. (France); Barbier, R. [CNRS/IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne F-69622 (France); Université de Lyon, Université de Lyon 1, Lyon 69003 France. (France)

    2015-07-01

    The CMOS sensor technologies evolve very fast and offer today very promising solutions to existing issues facing by imaging camera systems. CMOS sensors are very attractive for fast and sensitive imaging thanks to their low pixel noise (1e-) and their possibility of backside illumination. The ebCMOS group of IPNL has produced a camera system dedicated to Low Light Level detection and based on a 640 kPixels ebCMOS with its acquisition system. After reminding the principle of detection of an ebCMOS and the characteristics of our prototype, we confront our camera to other imaging systems. We compare the identification efficiency and the localization accuracy of a point source by four different photo-detection devices: the scientific CMOS (sCMOS), the Charge Coupled Device (CDD), the Electron Multiplying CCD (emCCD) and the Electron Bombarded CMOS (ebCMOS). Our ebCMOS camera is able to identify a single photon source in less than 10 ms with a localization accuracy better than 1 µm. We report as well efficiency measurement and the false positive identification of the ebCMOS camera by identifying more than hundreds of single photon sources in parallel. About 700 spots are identified with a detection efficiency higher than 90% and a false positive percentage lower than 5. With these measurements, we show that our target tracking algorithm can be implemented in real time at 500 frames per second under a photon flux of the order of 8000 photons per frame. These results demonstrate that the ebCMOS camera concept with its single photon detection and target tracking algorithm is one of the best devices for low light and fast applications such as bioluminescence imaging, quantum dots tracking or adaptive optics.

  13. Detection and Molecular Characterization of Gemycircularvirus from Environmental Samples in Brazil.

    Science.gov (United States)

    da Silva Assis, Matheus Ribeiro; Vieira, Carmen Baur; Fioretti, Julia Monassa; Rocha, Mônica Simões; de Almeida, Pedro Ivo Neves; Miagostovich, Marize Pereira; Fumian, Tulio Machado

    2016-12-01

    Gemycircularvirus (GemyCV) is a group of viruses which has been recently proposed as a new viral genus detected in fecal and environmental samples around the world. GemyCVs have been detected in human blood, brain tissue, cerebrospinal fluid, and stool sample. In the present study, we demonstrate for the first time, through molecular detection and characterization, the presence of GemyCVs in environmental samples from Brazil. Our results show a percentage of positivity ranging from 69 (25/36) to 97 % (35/36) in river water samples collected in Manaus, Amazon region, and wastewater from a wastewater treatment plant located in Rio de Janeiro, respectively, revealing GemyCVs as an important environmental contaminant.

  14. Nonlinear ultrasonic fatigue crack detection using a single piezoelectric transducer

    Science.gov (United States)

    An, Yun-Kyu; Lee, Dong Jun

    2016-04-01

    This paper proposes a new nonlinear ultrasonic technique for fatigue crack detection using a single piezoelectric transducer (PZT). The proposed technique identifies a fatigue crack using linear (α) and nonlinear (β) parameters obtained from only a single PZT mounted on a target structure. Based on the different physical characteristics of α and β, a fatigue crack-induced feature is able to be effectively isolated from the inherent nonlinearity of a target structure and data acquisition system. The proposed technique requires much simpler test setup and less processing costs than the existing nonlinear ultrasonic techniques, but fast and powerful. To validate the proposed technique, a real fatigue crack is created in an aluminum plate, and then false positive and negative tests are carried out under varying temperature conditions. The experimental results reveal that the fatigue crack is successfully detected, and no positive false alarm is indicated.

  15. Ship Detection Using Transfer Learned Single Shot Multi Box Detector

    Directory of Open Access Journals (Sweden)

    Nie Gu-Hong

    2017-01-01

    Full Text Available Ship detection in satellite images is a challenging task. In this paper, we introduce a transfer learned Single Shot MultiBox Detector (SSD for ship detection. To this end, a state-of-the-art object detection model pre-trained from a large number of natural images was transfer learned for ship detection with limited labeled satellite images. To the best of our knowledge, this could be one of the first studies which introduce SSD into ship detection on satellite images. Experiments demonstrated that our method could achieve 87.9% AP at 47 FPS using NVIDIA TITAN X. In comparison with Faster R-CNN, 6.7% AP improvement could be achieved. Effects of the observation resolution has also been studied with the changing input sizes among 300 × 300, 600 × 600 and 900 × 900. It has been noted that the detection accuracy declined sharply with the decreasing resolution that is mainly caused by the missing small ships.

  16. Single reaction, real time RT-PCR detection of all known avian and human metapneumoviruses.

    Science.gov (United States)

    Lemaitre, E; Allée, C; Vabret, A; Eterradossi, N; Brown, P A

    2018-01-01

    Current molecular methods for the detection of avian and human metapneumovirus (AMPV, HMPV) are specifically targeted towards each virus species or individual subgroups of these. Here a broad range SYBR Green I real time RT-PCR was developed which amplified a highly conserved fragment of sequence in the N open reading frame. This method was sufficiently efficient and specific in detecting all MPVs. Its validation according to the NF U47-600 norm for the four AMPV subgroups estimated low limits of detection between 1000 and 10copies/μL, similar with detection levels described previously for real time RT-PCRs targeting specific subgroups. RNA viruses present a challenge for the design of durable molecular diagnostic test due to the rate of change in their genome sequences which can vary substantially in different areas and over time. The fact that the regions of sequence for primer hybridization in the described method have remained sufficiently conserved since the AMPV and HMPV diverged, should give the best chance of continued detection of current subgroups and of potential unknown or future emerging MPV strains. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Identification of single-copy orthologous genes between Physalis and Solanum lycopersicum and analysis of genetic diversity in Physalis using molecular markers.

    Directory of Open Access Journals (Sweden)

    Jingli Wei

    Full Text Available The genus Physalis includes a number of commercially important edible and ornamental species. Its high nutritional value and potential medicinal properties leads to the increased commercial interest in the products of this genus worldwide. However, lack of molecular markers prevents the detailed study of genetics and phylogeny in Physalis, which limits the progress of breeding. In the present study, we compared the DNA sequences between Physalis and tomato, and attempted to analyze genetic diversity in Physalis using tomato markers. Blasting 23180 DNA sequences derived from Physalis against the International Tomato Annotation Group (ITAG Release2.3 Predicted CDS (SL2.40 discovered 3356 single-copy orthologous genes between them. A total of 38 accessions from at least six species of Physalis were subjected to genetic diversity analysis using 97 tomato markers and 25 SSR markers derived from P. peruviana. Majority (73.2% of tomato markers could amplify DNA fragments from at least one accession of Physalis. Diversity in Physalis at molecular level was also detected. The average Nei's genetic distance between accessions was 0.3806 with a range of 0.2865 to 0.7091. These results indicated Physalis and tomato had similarity at both molecular marker and DNA sequence levels. Therefore, the molecular markers developed in tomato can be used in genetic study in Physalis.

  18. Robust fault detection and isolation technique for single-input/single-output closed-loop control systems that exhibit actuator and sensor faults

    DEFF Research Database (Denmark)

    Izadi-Zamanabadi, Roozbeh; Alavi, S. M. Mahdi; Hayes, M. J.

    2008-01-01

    An integrated quantitative feedback design and frequency-based fault detection and isolation (FDI) approach is presented for single-input/single-output systems. A novel design methodology, based on shaping the system frequency response, is proposed to generate an appropriate residual signal...

  19. Nano-Electromechanical Systems: Displacement Detection and the Mechanical Single Electron Shuttle

    Science.gov (United States)

    Blick, R. H.; Beil, F. W.; Höhberger, E.; Erbe, A.; Weiss, C.

    For an introduction to nano-electromechanical systems we present measurements on nanomechanical resonators operating in the radio frequency range. We discuss in detail two different schemes of displacement detection for mechanical resonators, namely conventional reflection measurements of a probing signal and direct detection by capacitive coupling via a gate electrode. For capacitive detection we employ an on-chip preamplifier, which enables direct measurements of the resonator's disp lacement. We observe that the mechanical quality factor of the resonator depends on the detection technique applied, which is verified in model calculations and report on the detection of sub-harmonics. In the second part we extend our investigations to include transport of single electrons through an electron island on the tip of a nanomachined mechanical pendulum. The pendulum is operated by applying a modulating electromagnetic field in the range of 1 - 200 MHz, leading to mechanical oscillations between two laterally integrated source and drain contacts. Forming tunneling barriers the metallic tip shuttles single electrons from source to drain. The resulting tunneling current shows distinct features corresponding to the discrete mechanical eigenfrequencies of the pendulum. We report on measurements covering the temperature range from 300 K down to 4.2 K. The transport properties of the device are compared in detail to model calculations based on a Master-equation approach.

  20. Single photon detection in the SQS mode

    International Nuclear Information System (INIS)

    Alves, M.A.; Fraga, M.M.; Lima, E.P. de; Marques, R.F.; Neves, F.; Policarpo, A.

    1997-01-01

    Results are presented concerning the detection of single UV photons in self quenching streamer detectors by photoionization of one of the gas mixture components, in this case TEA (tri ethyl-amine), whose molecules have low photoionization potential and large absorption cross section. As a UV light source, a gas scintillation counter filled with krypton was used, whose emission light spectrum, centered at approximately 150 nm, overlaps well the photoionization spectrum of TEA. The mixtures studied were argon/ethane/TEA, argon/isobutane/TEA, argon/ethane/methylal/TEA and argon/isobutane/methylal/ TEA. (author). 4 refs., 4 figs

  1. Optimized acoustic biochip integrated with microfluidics for biomarkers detection in molecular diagnostics.

    Science.gov (United States)

    Papadakis, G; Friedt, J M; Eck, M; Rabus, D; Jobst, G; Gizeli, E

    2017-09-01

    The development of integrated platforms incorporating an acoustic device as the detection element requires addressing simultaneously several challenges of technological and scientific nature. The present work was focused on the design of a microfluidic module, which, combined with a dual or array type Love wave acoustic chip could be applied to biomedical applications and molecular diagnostics. Based on a systematic study we optimized the mechanics of the flow cell attachment and the sealing material so that fluidic interfacing/encapsulation would impose minimal losses to the acoustic wave. We have also investigated combinations of operating frequencies with waveguide materials and thicknesses for maximum sensitivity during the detection of protein and DNA biomarkers. Within our investigations neutravidin was used as a model protein biomarker and unpurified PCR amplified Salmonella DNA as the model genetic target. Our results clearly indicate the need for experimental verification of the optimum engineering and analytical parameters, in order to develop commercially viable systems for integrated analysis. The good reproducibility of the signal together with the ability of the array biochip to detect multiple samples hold promise for the future use of the integrated system in a Lab-on-a-Chip platform for application to molecular diagnostics.

  2. Detection of Candida species in pregnant Chinese women with a molecular beacon method.

    Science.gov (United States)

    Zhai, Yanhong; Liu, Jing; Zhou, Li; Ji, Tongzhen; Meng, Lingxin; Gao, Yang; Liu, Ran; Wang, Xiao; Li, Lin; Lu, Binghuai; Cao, Zheng

    2018-04-20

    Candida pathogens are commonly found in women and can cause vulvovaginal candidiasis (VVC), whose infection rate is further increased during pregnancy. We aimed to study the Candida prevalence and strain distribution in pregnant Chinese women with a molecular beacon assay. From March 2016 to February 2017, a total of 993 pregnant women attending routine antenatal visits at the Beijing Obstetrics and Gynecology Hospital were enrolled. For Candida detection and identification, a unique molecular beacon assay was presented and compared with a traditional phenotypic method. Antifungal susceptibility was tested with the following agents: 5-flucytosine, amphotericin B, fluconazole, itraconazole and voriconazole. The prevalence of Candida was found to be 21.8 % when using the molecular method and 15.0 % when using the phenotypic method. The distribution of the Candida spp. was listed in order of decreasing prevalence: Candida albicans (79.8 %), Candida glabrata (13.5 %), Candida parapsilosis (3.7 %), Candida krusei (2.2 %) and Candida tropicalis (1.1 %). We found that 90.7 % of the Candida detection results were consistent between the molecular and the phenotypic methods. In the cases where the sequencing analyses for the Candida isolates resulted in inconsistent identification, the molecular method showed higher sensitivity than the phenotypic method (96.0 vs 64.6 %). C. albicans, C. glabrata and C. parapsilosis were essentially susceptible to all five antifungal agents tested, whereas C. tropicalis and C. krusei were susceptible to voriconazole and amphotericin B. By exhibiting good sensitivity and specificity, the molecular assay may offer a fast and accurate Candida screening platform for pregnant women.

  3. Combined, solid-state molecular property and gamma spectrometers for CBRNE detection

    Science.gov (United States)

    Rogers, Ben; Grate, Jay; Pearson, Brett; Gallagher, Neal; Wise, Barry; Whitten, Ralph; Adams, Jesse

    2013-05-01

    Nevada Nanotech Systems, Inc. (Nevada Nano) has developed a multi-sensor solution to Chemical, Biological, Radiological, Nuclear and Explosives (CBRNE) detection that combines the Molecular Property Spectrometer™ (MPS™)—a micro-electro-mechanical chip-based technology capable of measuring a variety of thermodynamic and electrostatic molecular properties of sampled vapors and particles—and a compact, high-resolution, solid-state gamma spectrometer module for identifying radioactive materials, including isotopes used in dirty bombs and nuclear weapons. By conducting multiple measurements, the system can provide a more complete characterization of an unknown sample, leading to a more accurate identification. Positive identifications of threats are communicated using an integrated wireless module. Currently, system development is focused on detection of commercial, military and improvised explosives, radioactive materials, and chemical threats. The system can be configured for a variety of CBRNE applications, including handheld wands and swab-type threat detectors requiring short sample times, and ultra-high sensitivity detectors in which longer sampling times are used. Here we provide an overview of the system design and operation and present results from preliminary testing.

  4. Catalytic molecularly imprinted polymer membranes: development of the biomimetic sensor for phenols detection.

    Science.gov (United States)

    Sergeyeva, T A; Slinchenko, O A; Gorbach, L A; Matyushov, V F; Brovko, O O; Piletsky, S A; Sergeeva, L M; Elska, G V

    2010-02-05

    Portable biomimetic sensor devices for the express control of phenols content in water were developed. The synthetic binding sites mimicking active site of the enzyme tyrosinase were formed in the structure of free-standing molecularly imprinted polymer membranes. Molecularly imprinted polymer membranes with the catalytic activity were obtained by co-polymerization of the complex Cu(II)-catechol-urocanic acid ethyl ester with (tri)ethyleneglycoldimethacrylate, and oligourethaneacrylate. Addition of the elastic component oligourethaneacrylate provided formation of the highly cross-linked polymer with the catalytic activity in a form of thin, flexible, and mechanically stable membrane. High accessibility of the artificial catalytic sites for the interaction with the analyzed phenol molecules was achieved due to addition of linear polymer (polyethyleneglycol Mw 20,000) to the initial monomer mixture before the polymerization. As a result, typical semi-interpenetrating polymer networks (semi-IPNs) were formed. The cross-linked component of the semi-IPN was represented by the highly cross-linked catalytic molecularly imprinted polymer, while the linear one was represented by polyethyleneglycol Mw 20,000. Extraction of the linear polymer from the fully formed semi-IPN resulted in formation of large pores in the membranes' structure. Concentration of phenols in the analyzed samples was detected using universal portable device oxymeter with the oxygen electrode in a close contact with the catalytic molecularly imprinted polymer membrane as a transducer. The detection limit of phenols detection using the developed sensor system based on polymers-biomimics with the optimized composition comprised 0.063 mM, while the linear range of the sensor comprised 0.063-1 mM. The working characteristics of the portable sensor devices were investigated. Storage stability of sensor systems at room temperature comprised 12 months (87%). As compared to traditional methods of phenols

  5. Molecular detection of Toxoplasma gondii in snakes.

    Science.gov (United States)

    Nasiri, Vahid; Teymurzadeh, Shohreh; Karimi, Gholamreza; Nasiri, Mehdi

    2016-10-01

    Toxoplasma gondii, an obligate intracellular protozoan parasite, is responsible for one of the most common zoonotic parasitic diseases in almost all warm-blooded vertebrates worldwide, and it is estimated that about one-third of the world human population is chronically infected with this parasite. Little is known about the circulation of T. gondii in snakes and this study for the first time aimed to evaluate the infection rates of snakes by this parasite by PCR methods. The brain of 68 Snakes, that were collected between May 2012 and September 2015 and died after the hold in captivity, under which they were kept for taking poisons, were examined for the presence of this parasite. DNA was extracted and Nested-PCR method was carried out with two of pairs of primers to detect the 344 bp fragment of T. gondii GRA6 gene. Five positive nested-PCR products were directly sequenced in the forward and reverse directions by Sequetech Company (Mountain View, CA). T. gondii GRA6 gene were detected from 55 (80.88%) of 68 snakes brains. Sequencing of the GRA6 gene revealed 98-100% of similarity with T. gondii sequences deposited in GenBank. To our knowledge, this is the first study of molecular detection of T. gondii in snakes and our findings show a higher frequency of this organism among them. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. KRAS and BRAF Mutation Detection: Is Immunohistochemistry a Possible Alternative to Molecular Biology in Colorectal Cancer?

    Directory of Open Access Journals (Sweden)

    Nicolas Piton

    2015-01-01

    Full Text Available KRAS genotyping is mandatory in metastatic colorectal cancer treatment prior to undertaking antiepidermal growth factor receptor (EGFR monoclonal antibody therapy. BRAF V600E mutation is often present in colorectal carcinoma with CpG island methylator phenotype and microsatellite instability. Currently, KRAS and BRAF evaluation is based on molecular biology techniques such as SNaPshot or Sanger sequencing. As molecular testing is performed on formalin-fixed paraffin-embedded (FFPE samples, immunodetection would appear to be an attractive alternative for detecting mutations. Thus, our objective was to assess the validity of KRAS and BRAF immunodetection of mutations compared with the genotyping reference method in colorectal adenocarcinoma. KRAS and BRAF genotyping was assessed by SNaPshot. A rabbit anti-human KRAS polyclonal antibody was tested on 33 FFPE colorectal tumor samples with known KRAS status. Additionally, a mouse anti-human BRAF monoclonal antibody was tested on 30 FFPE tumor samples with known BRAF status. KRAS immunostaining demonstrated both poor sensitivity (27% and specificity (64% in detecting KRAS mutation. Conversely, BRAF immunohistochemistry showed perfect sensitivity (100% and specificity (100% in detecting V600E mutation. Although molecular biology remains the reference method for detecting KRAS mutation, immunohistochemistry could be an attractive method for detecting BRAF V600E mutation in colorectal cancer.

  7. KRAS and BRAF Mutation Detection: Is Immunohistochemistry a Possible Alternative to Molecular Biology in Colorectal Cancer?

    Science.gov (United States)

    Borrini, Francesco; Bolognese, Antonio; Lamy, Aude; Sabourin, Jean-Christophe

    2015-01-01

    KRAS genotyping is mandatory in metastatic colorectal cancer treatment prior to undertaking antiepidermal growth factor receptor (EGFR) monoclonal antibody therapy. BRAF V600E mutation is often present in colorectal carcinoma with CpG island methylator phenotype and microsatellite instability. Currently, KRAS and BRAF evaluation is based on molecular biology techniques such as SNaPshot or Sanger sequencing. As molecular testing is performed on formalin-fixed paraffin-embedded (FFPE) samples, immunodetection would appear to be an attractive alternative for detecting mutations. Thus, our objective was to assess the validity of KRAS and BRAF immunodetection of mutations compared with the genotyping reference method in colorectal adenocarcinoma. KRAS and BRAF genotyping was assessed by SNaPshot. A rabbit anti-human KRAS polyclonal antibody was tested on 33 FFPE colorectal tumor samples with known KRAS status. Additionally, a mouse anti-human BRAF monoclonal antibody was tested on 30 FFPE tumor samples with known BRAF status. KRAS immunostaining demonstrated both poor sensitivity (27%) and specificity (64%) in detecting KRAS mutation. Conversely, BRAF immunohistochemistry showed perfect sensitivity (100%) and specificity (100%) in detecting V600E mutation. Although molecular biology remains the reference method for detecting KRAS mutation, immunohistochemistry could be an attractive method for detecting BRAF V600E mutation in colorectal cancer. PMID:25983749

  8. Single and double charge transfer in Be/sup 4+/+He collisions: A molecular (Feshbach) approach

    International Nuclear Information System (INIS)

    Martin, F.; Riera, A.; Yaez, M.

    1986-01-01

    In recent articles, we pointed out the fundamental difference between the molecular treatment of processes involving a multicharged ion and hydrogen or helium atoms, which is the (formal) autoionizing character of the molecular channels, and we reported a (new) implementation of the Feshbach method to calculate the molecular energies and couplings. In the present work we use the wave functions calculated with this Feshbach method for the BeHe/sup 4+/ quasimolecule, introduce a common translation factor in the formalism, and calculate the single and double charge-exchange cross sections in Be/sup 4+/+He(1s 2 ) collisions for impact energies 0.2--20 keV/amu. The mechanisms of the processes are discussed in detail

  9. Single and double charge transfer in Be/sup 4+/+He collisions: A molecular (Feshbach) approach

    Energy Technology Data Exchange (ETDEWEB)

    Martin, F.; Riera, A.; Yaez, M.

    1986-12-01

    In recent articles, we pointed out the fundamental difference between the molecular treatment of processes involving a multicharged ion and hydrogen or helium atoms, which is the (formal) autoionizing character of the molecular channels, and we reported a (new) implementation of the Feshbach method to calculate the molecular energies and couplings. In the present work we use the wave functions calculated with this Feshbach method for the BeHe/sup 4+/ quasimolecule, introduce a common translation factor in the formalism, and calculate the single and double charge-exchange cross sections in Be/sup 4+/+He(1s/sup 2/) collisions for impact energies 0.2--20 keV/amu. The mechanisms of the processes are discussed in detail.

  10. Pumping $ac$ Josephson current in the Single Molecular Magnets by spin nutation

    OpenAIRE

    Abdollahipour, B.; Abouie, J.; Rostami, A. A.

    2012-01-01

    We demonstrate that an {\\it ac} Josephson current is pumped through the Single Molecular Magnets (SMM) by the spin nutation. The spin nutation is generated by applying a time dependent magnetic field to the SMM. We obtain the flowing charge current through the junction by working in the tunneling limit and employing Green's function technique. At the resonance conditions some discontinuities and divergencies are appeared in the normal and Josephson currents, respectively. Such discontinuities...

  11. Comparison of three molecular methods for the detection and speciation of Plasmodium vivax and Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Price Ric N

    2007-09-01

    Full Text Available Abstract Background Accurate diagnosis of Plasmodium spp. is essential for the rational treatment of malaria. Despite its many disadvantages, microscopic examination of blood smears remains the current "gold standard" for malaria detection and speciation. PCR assays offer an alternative to microscopy which has been shown to have superior sensitivity and specificity. Unfortunately few comparative studies have been done on the various molecular based speciation methods. Methods The sensitivity, specificity and cost effectiveness of three molecular techniques were compared for the detection and speciation of Plasmodium falciparum and Plasmodium vivax from dried blood spots collected from 136 patients in western Thailand. The results from the three molecular speciation techniques (nested PCR, multiplex PCR, and real-time PCR were used to develop a molecular consensus (two or more identical PCR results as an alternative gold standard. Results According to the molecular consensus, 9.6% (13/136 of microscopic diagnoses yielded false negative results. Multiplex PCR failed to detect P. vivax in three mixed isolates, and the nested PCR gave a false positive P. falciparum result in one case. Although the real-time PCR melting curve analysis was the most expensive method, it was 100% sensitive and specific and least time consuming of the three molecular techniques investigated. Conclusion Although microscopy remains the most appropriate method for clinical diagnosis in a field setting, its use as a gold standard may result in apparent false positive results by superior techniques. Future studies should consider using more than one established molecular methods as a new gold standard to assess novel malaria diagnostic kits and PCR assays.

  12. Current and future molecular diagnostics for ocular infectious diseases.

    Science.gov (United States)

    Doan, Thuy; Pinsky, Benjamin A

    2016-11-01

    Confirmation of ocular infections can pose great challenges to the clinician. A fundamental limitation is the small amounts of specimen that can be obtained from the eye. Molecular diagnostics can circumvent this limitation and have been shown to be more sensitive than conventional culture. The purpose of this review is to describe new molecular methods and to discuss the applications of next-generation sequencing-based approaches in the diagnosis of ocular infections. Efforts have focused on improving the sensitivity of pathogen detection using molecular methods. This review describes a new molecular target for Toxoplasma gondii-directed polymerase chain reaction assays. Molecular diagnostics for Chlamydia trachomatis and Acanthamoeba species are also discussed. Finally, we describe a hypothesis-free approach, metagenomic deep sequencing, which can detect DNA and RNA pathogens from a single specimen in one test. In some cases, this method can provide the geographic location and timing of the infection. Pathogen-directed PCRs have been powerful tools in the diagnosis of ocular infections for over 20 years. The use of next-generation sequencing-based approaches, when available, will further improve sensitivity of detection with the potential to improve patient care.

  13. Nested-PCR real time as alternative molecular tool for detection of Borrelia burgdorferi compared to the classical serological diagnosis of the blood.

    Science.gov (United States)

    Sroka-Oleksiak, Agnieszka; Ufir, Krzysztof; Salamon, Dominika; Bulanda, Malgorzata; Gosiewski, Tomasz

    Lyme disease, caused by Borrelia burgdorferi, is a multisystem disease that often makes difficulties to recognize caused by their genetic heterogenity. Currently, the gold standard for the detection of Lyme disease (LD) is serologic diagnostics based mainly on tests: ELISA and Western blot (WB). These methods, however, are subject to consider- able defect, especially in the initial phase of infection due to the occurrence of so-called serological window period and low specificity. For this reason, they might be replaced by molecular methods, for example polymerase chain reaction (PCR), which should be more sensitivity and specificity. In the present study we attempt to optimize the PCR reaction conditions and enhance existing test sensitivity by applying the equivalent of real time PCR - nested PCR for detection B. burgdorferi DNA in the patient's blood. The study involved 94 blood samples of patients with suspected LD. From each sample, 1.5 ml of blood was used for the isolation of bacterial DNA and PCR real time am- plification and its equivalent, in nested version. The remaining part earmarked for serologi- cal testing. Optimization of the reaction conditions made experimentally, using gradient of the temperature and gradient of the magnesium ions concentration for reaction real time in nested-PCR and PCR version. The results show that the nested-PCR real time, has a much higher sensitivity 45 (47.8%) of positive results for the detection of B. burgdorferi compared to the single- variety, without a preceding pre-amplification 2 (2.1%). Serological methods allowed the detection of infection in 41 (43.6%) samples. These results support of the nested PCR method as a better molecular tool for the detection of B. burgdorferi infection than classical PCR real time reaction. The nested-PCR real time method may be considered as a complement to ELISA and WB mainly in the early stages of infection, when in the blood circulating B. burgdorferi cells. By contrast, the

  14. Direct Determination of Molecular Weight Distribution of Calf-Thymus DNAs and Study of Their Fragmentation under Ultrasonic and Low-Energy IR Irradiations. A Charge Detection Mass Spectrometry Investigation.

    Science.gov (United States)

    Halim, Mohammad A; Bertorelle, Franck; Doussineau, Tristan; Antoine, Rodolphe

    2018-06-09

    Calf-thymus (CT-DNA) is widely used as binding agent. The commercial samples are known to be "highly polymerized DNA" samples. CT-DNA is known to be fragile in particular upon ultrasonic wave irradiation. Degradation products might have dramatic consequence on its bio-sensing activity, and an accurate determination of the molecular weight distribution and stability of commercial samples is highly demanded. We investigated the sensitivity of charge detection mass spectrometry (CDMS), a single-molecule MS method, both with single-pass and ion trap CDMS ("Benner" trap) modes to the determination of the composition and stability (under multiphoton IR irradiation) of calf-thymus DNAs. We also investigated the changes of molecular weight distributions in the course of sonication by irradiating ultrasonic wave to CT-DNA. We report for the first time, the direct molecular weight (MW) distribution of DNA sodium salt from calf-thymus revealing two populations at high (~10 MDa) and low (~3 MDa) molecular weights. We evidence a transition between the high-MW to the low-MW distribution, confirming that the low-MW distribution results from degradation of CT-DNA. Finally, we report also IRMPD experiments carried out on trapped single-stranded linear DNAs from calf-thymus allowing to extract their activation energy for unimolecular dissociation. We show that single-pass CDMS is a direct, efficient and accurate MS-based approach to determine the composition of calf-thymus DNAs. Furthermore, ion trap CDMS allows us to evaluate the stability (both under multiphoton IR irradiation and in the course of sonication by irradiating ultrasonic wave) of calf-thymus DNAs. This article is protected by copyright. All rights reserved.

  15. Detecting Stems in Dense and Homogeneous Forest Using Single-Scan TLS

    Directory of Open Access Journals (Sweden)

    Shaobo Xia

    2015-10-01

    Full Text Available Stem characteristics of plants are of great importance to both ecology study and forest management. Terrestrial laser scanning (TLS may provide an effective way to characterize the fine-scale structures of vegetation. However, clumping plants, dense foliage and thin structure could intensify the shadowing effect and pose a series of problems in identifying stems, distinguishing neighboring stems, and merging disconnected stem parts in point clouds. This paper presents a new method to automatically detect stems in dense and homogeneous forest using single-scan TLS data. Stem points are first identified with a two-scale classification method. Then a clustering approach is used to group the candidate stem points. Finally, a direction-growing algorithm based on a simple stem curve model is applied to merge stem points. Field experiments were carried out in two different bamboo plots with a stem density of about 7500 stems/ha. Overall accuracy of the stem detection is 88% and the quality of detected stems is mainly affected by the shadowing effect. Results indicate that the proposed method is feasible and effective in detection of bamboo stems using TLS data, and can be applied to other species of single-stem plants in dense forests.

  16. Single-trial lie detection using a combined fNIRS-polygraph system

    Science.gov (United States)

    Bhutta, M. Raheel; Hong, Melissa J.; Kim, Yun-Hee; Hong, Keum-Shik

    2015-01-01

    Deception is a human behavior that many people experience in daily life. It involves complex neuronal activities in addition to several physiological changes in the body. A polygraph, which can measure some of the physiological responses from the body, has been widely employed in lie-detection. Many researchers, however, believe that lie detection can become more precise if the neuronal changes that occur in the process of deception can be isolated and measured. In this study, we combine both measures (i.e., physiological and neuronal changes) for enhanced lie-detection. Specifically, to investigate the deception-related hemodynamic response, functional near-infrared spectroscopy (fNIRS) is applied at the prefrontal cortex besides a commercially available polygraph system. A mock crime scenario with a single-trial stimulus is set up as a deception protocol. The acquired data are classified into “true” and “lie” classes based on the fNIRS-based hemoglobin-concentration changes and polygraph-based physiological signal changes. Linear discriminant analysis is utilized as a classifier. The results indicate that the combined fNIRS-polygraph system delivers much higher classification accuracy than that of a singular system. This study demonstrates a plausible solution toward single-trial lie-detection by combining fNIRS and the polygraph. PMID:26082733

  17. Single-trial lie detection using a combined fNIRS-polygraph system

    Directory of Open Access Journals (Sweden)

    M. Raheel eBhutta

    2015-06-01

    Full Text Available Deception is a human behavior that many people experience in daily life. It involves complex neuronal activities in addition to several physiological changes in the body. A polygraph, which can measure some of the physiological responses from the body, has been widely employed in lie-detection. Many researchers, however, believe that lie detection can become more precise if the neuronal changes that occur in the process of deception can be isolated and measured. In this study, we combine both measures (i.e., physiological and neuronal changes for enhanced lie-detection. Specifically, to investigate the deception-related hemodynamic response, functional near-infrared spectroscopy (fNIRS is applied at the prefrontal cortex besides a commercially available polygraph system. A mock crime scenario with a single-trial stimulus is set up as a deception protocol. The acquired data are classified into true and lie classes based on the fNIRS-based hemoglobin-concentration changes and polygraph-based physiological signal changes. Linear discriminant analysis is utilized as a classifier. The results indicate that the combined fNIRS-polygraph system delivers much higher classification accuracy than that of a singular system. This study demonstrates a plausible solution toward single-trial lie-detection by combining fNIRS and the polygraph.

  18. Single cell detection using a magnetic zigzag nanowire biosensor.

    Science.gov (United States)

    Huang, Hao-Ting; Ger, Tzong-Rong; Lin, Ya-Hui; Wei, Zung-Hang

    2013-08-07

    A magnetic zigzag nanowire device was designed for single cell biosensing. Nanowires with widths of 150, 300, 500, and 800 nm were fabricated on silicon trenches by electron beam lithography, electron beam evaporation, and lift-off processes. Magnetoresistance measurements were performed before and after the attachment of a single magnetic cell to the nanowires to characterize the magnetic signal change due to the influence of the magnetic cell. Magnetoresistance responses were measured in different magnetic field directions, and the results showed that this nanowire device can be used for multi-directional detection. It was observed that the highest switching field variation occurred in a 150 nm wide nanowire when the field was perpendicular to the substrate plane. On the other hand, the highest magnetoresistance ratio variation occurred in a 800 nm wide nanowire also when the field was perpendicular to the substrate plane. Besides, the trench-structured substrate proposed in this study can fix the magnetic cell to the sensor in a fluid environment, and the stray field generated by the corners of the magnetic zigzag nanowires has the function of actively attracting the magnetic cells for detection.

  19. Detection of Acute Gastroenteritis Agents By Molecular Methods

    Directory of Open Access Journals (Sweden)

    Şafak Göktaş

    2018-03-01

    Full Text Available Objective: Gastroenteritis is the most important cause of morbidity and mortality in all age groups all over the world. Multiplex PCR tests give sensitive and specific results in the investigation of bacterial, viral, parasitic agents. In this study, it was aimed to determine the agents of the stool specimens of patients with acute diarrhea by multiplex PCR. Materials and Methods: Stool sample taken from 471 patients sent to Istanbul Gelişim Laboratories between January 1, 2015 and September 30, 2016 was included in the study. All stool samples were processed according to manufacturer’s instructions with GastroFinder SMART 18 FAST multiplex PCR test (Pathofinder, Holland. 18 different gastrointestinal pathogens were diagnosed in one study. Results: Of the 471 patients stool sample included in the study. The agent was negative in 241 (51.2%, while the agent was isolated in 230 (48.8%. 190 (82% had a single pathogen, 40 had two or more pathogens. Of the 190 samples detected with single agent, 149 (31.6% were bacterial, 26 (5.5% were parasitic and 15 (3.1% were viral agents. Of the 149 bacterial agents, 108 (23% was detected as Salmonella spp, 14 (6% as EHEC, 8 (3.5% as Clostridium difficile toxin A / B, 8 (3.5% as Campylobacter spp., 7 (3% Aeromonas spp., 2 (0.8% Yersinia enterocolitica, 2 (0.8% Enterotoxigenic E. coli (ETEC. Of 26 parasitic agents, 18 (7.8% was detected as Giardia lamblia, 6 (2.6% as Dientamoeba fragilis and 2 (0.8% as Cryptosporidium spp. Conclusion: Identification of enteric pathogens by multiplex PCR will avoids the use of unnecessary antibiotic treatments

  20. High-throughput SNP genotyping: combining tag SNPs and molecular beacons

    CSIR Research Space (South Africa)

    Barreiro, LB

    2009-10-01

    Full Text Available In the last decade, molecular beacons have emerged to become a widely used tool in the multiplex typing of single nucleotide polymorphisms (SNPs). Improvements in detection technologies in instrumentation and chemistries to label these probes have...

  1. Molecular dynamics simulation of a DNA containing a single strand break

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, H.; Siebers, G.; Furukawa, A.; Otagiri, N.; Osman, R

    2002-07-01

    Molecular dynamics simulations were performed for a dodecamer DNA containing a single strand break (SSB), which has been represented by a 3'-OH deoxyribose and 5'-OH phosphate in the middle of the strand. Molecular force field parameters of the 5'-OH phosphate region were determined from an ab initio calculation at the HF/6-31G level using the program package GAMESS. The DNA was placed in a periodic boundary box with water molecules and Na+ counter-ions to produce a neutralised system. After minimisation, the system was heated to 300 K, equilibrated and a production run at constant NTP was executed for 1 ns using AMBER 4.1. Snapshots of the SSB-containing DNA and a detailed analysis of the equilibriated average structure revealed surprisingly small conformational changes compared to normal DNA. However, dynamic properties calculated using the essential dynamics method showed some features that may be important for the recognition of this damage by repair enzymes. (author)

  2. [Single-molecule detection and characterization of DNA replication based on DNA origami].

    Science.gov (United States)

    Wang, Qi; Fan, Youjie; Li, Bin

    2014-08-01

    To investigate single-molecule detection and characterization of DNA replication. Single-stranded DNA (ssDNA) as the template of DNA replication was attached to DNA origami by a hybridization reaction based on the complementary base-pairing principle. DNA replication catalyzed by E.coli DNA polymerase I Klenow Fragment (KF) was detected using atomic force microscopy (AFM). The height variations between the ssDNA and the double-stranded DNA (dsDNA), the distribution of KF during DNA replication and biotin-streptavidin (BA) complexes on the DNA strand after replication were detected. Agarose gel electrophoresis was employed to analyze the changes in the DNA after replication. The designed ssDNA could be anchored on the target positions of over 50% of the DNA origami. The KF was capable of binding to the ssDNA fixed on DNA origami and performing its catalytic activities, and was finally dissociated from the DNA after replication. The height of DNA strand increased by about 0.7 nm after replication. The addition of streptavidin also resulted in an DNA height increase to about 4.9 nm due to the formation of BA complexes on the biotinylated dsDNA. The resulting dsDNA and BA complex were subsequently confirmed by agarose gel electrophoresis. The combination of AFM and DNA origami allows detection and characterization of DNA replication at the single molecule level, and this approach provides better insights into the mechanism of DNA polymerase and the factors affecting DNA replication.

  3. Molecular dynamics simulation of AFM studies of a single polymer chain

    International Nuclear Information System (INIS)

    Wang Wenhai; Kistler, Kurt A.; Sadeghipour, Keya; Baran, George

    2008-01-01

    Single polymer chain force-extension behavior measured by Atomic Force Microscopy (AFM) was interpreted by molecular dynamics (MD) simulation performed by applying a bead-spring (coarse-graining) model in which the bond potential function between adjacent beads is described by a worm-like chain (WLC) model. Simulation results indicate that caution should be applied when interpreting experimental AFM data, because the data vary depending on the point of AFM tip-polymer chain attachment. This approach offers an effective way for eventual analysis of the mechanical behavior of complex polymer networks

  4. Molecular dynamics simulation of AFM studies of a single polymer chain

    Energy Technology Data Exchange (ETDEWEB)

    Wang Wenhai [Center for Bioengineering and Biomaterials, College of Engineering, Temple University, 1947 N. 12th Street, Philadelphia, PA 19122 (United States); Kistler, Kurt A. [Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA 19122 (United States); Sadeghipour, Keya [Center for Bioengineering and Biomaterials, College of Engineering, Temple University, 1947 N. 12th Street, Philadelphia, PA 19122 (United States); Baran, George [Center for Bioengineering and Biomaterials, College of Engineering, Temple University, 1947 N. 12th Street, Philadelphia, PA 19122 (United States)], E-mail: grbaran@temple.edu

    2008-11-24

    Single polymer chain force-extension behavior measured by Atomic Force Microscopy (AFM) was interpreted by molecular dynamics (MD) simulation performed by applying a bead-spring (coarse-graining) model in which the bond potential function between adjacent beads is described by a worm-like chain (WLC) model. Simulation results indicate that caution should be applied when interpreting experimental AFM data, because the data vary depending on the point of AFM tip-polymer chain attachment. This approach offers an effective way for eventual analysis of the mechanical behavior of complex polymer networks.

  5. Molecular and serological detection of Ehrlichia canis and Babesia vogeli in dogs in Colombia.

    Science.gov (United States)

    Vargas-Hernández, G; André, M R; Faria, J L M; Munhoz, T D; Hernandez-Rodriguez, M; Machado, R Z; Tinucci-Costa, M

    2012-05-25

    Ehrlichiosis and babesiosis are tick-borne diseases, caused mainly by Ehrlichia canis and Babesia canis, respectively, with a worldwide occurrence in dogs, whose main vector is the brown-dog tick, Rhipicephalus sanguineus. The present work aimed to detect the presence of E. canis and Babesia sp. in 91 dog blood samples in Colombia, by molecular and serological techniques. We also performed sequence alignment to indicate the identity of the parasite species infecting these animals. The present work shows the first molecular detection of E. canis and B. vogeli in dogs from Colombia. Immunoglobulin-G (IgG) antibodies to E. canis and Babesia vogeli were found in 75 (82.4%) and 47 (51.6%) sampled dogs, respectively. Thirty-seven (40.6%) and 5 (5.5%) dogs were positive in PCR for E. canis and Babesia sp., respectively. After sequencing, amplicons showed 99% of identity with isolates of E. canis and B. vogeli. The phylogenetic trees based on 16S rRNA-Anaplasmataceae sequences and 18S rRNA-piroplasmid sequences supported the identity of the found E. canis and B. vogeli DNAs, respectively. The present work shows the first molecular detection of E. canis and B. vogeli in dogs in Colombia. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. A micromotor based on polymer single crystals and nanoparticles: toward functional versatility

    Science.gov (United States)

    Liu, Mei; Liu, Limei; Gao, Wenlong; Su, Miaoda; Ge, Ya; Shi, Lili; Zhang, Hui; Dong, Bin; Li, Christopher Y.

    2014-07-01

    We report a multifunctional micromotor fabricated by the self-assembly technique using multifunctional materials, i.e. polymer single crystals and nanoparticles, as basic building blocks. Not only can this micromotor achieve autonomous and directed movement, it also possesses unprecedented functions, including enzymatic degradation-induced micromotor disassembly, sustained release and molecular detection.We report a multifunctional micromotor fabricated by the self-assembly technique using multifunctional materials, i.e. polymer single crystals and nanoparticles, as basic building blocks. Not only can this micromotor achieve autonomous and directed movement, it also possesses unprecedented functions, including enzymatic degradation-induced micromotor disassembly, sustained release and molecular detection. Electronic supplementary information (ESI) available: Experimental section, Fig. S1-S8 and Video S1-S4. See DOI: 10.1039/c4nr02593h

  7. Investigating Alkylsilane Monolayer Tribology at a Single-Asperity Contact with Molecular Dynamics Simulation.

    Science.gov (United States)

    Summers, Andrew Z; Iacovella, Christopher R; Cummings, Peter T; McCabe, Clare

    2017-10-24

    Chemisorbed monolayer films are known to possess favorable characteristics for nanoscale lubrication of micro- and nanoelectromechanical systems (MEMS/NEMS). Prior studies have shown that the friction observed for monolayer-coated surfaces features a strong dependence on the geometry of contact. Specifically, tip-like geometries have been shown to penetrate into monolayer films, inducing defects in the monolayer chains and leading to plowing mechanisms during shear, which result in higher coefficients of friction (COF) than those observed for planar geometries. In this work, we use molecular dynamics simulations to examine the tribology of model silica single-asperity contacts under shear with monolayer-coated substrates featuring various film densities. It is observed that lower monolayer densities lead to reduced COFs, in contrast to results for planar systems where COF is found to be nearly independent of monolayer density. This is attributed to a liquid-like response to shear, whereby fewer defects are imparted in monolayer chains from the asperity, and chains are easily displaced by the tip as a result of the higher free volume. This transition in the mechanism of molecular plowing suggests that liquid-like films should provide favorable lubrication at single-asperity contacts.

  8. Quantum Tunneling of Magnetization in Single Molecular Magnets Coupled to Ferromagnetic Reservoirs

    OpenAIRE

    Misiorny, Maciej; Barnas, Józef

    2006-01-01

    The role of spin polarized reservoirs in quantum tunneling of magnetization and relaxation processes in a single molecular magnet (SMM) is investigated theoretically. The SMM is exchange-coupled to the reservoirs and also subjected to a magnetic field varying in time, which enables the quantum tunneling of magnetization (QTM). The spin relaxation times are calculated from the Fermi golden rule. The exchange interaction with tunneling electrons is shown to affect the spin reversal due to QTM. ...

  9. Magnetic Switching of a Single Molecular Magnet due to Spin-Polarized Current

    OpenAIRE

    Misiorny, Maciej; Barnas, Józef

    2006-01-01

    Magnetic switching of a single molecular magnet (SMM) due to spin-polarized current flowing between ferromagnetic metallic electrodes is investigated theoretically. Magnetic moments of the electrodes are assumed to be collinear and parallel to the magnetic easy axis of the molecule. Electrons tunneling through a barrier between magnetic leads are coupled to the SMM via exchange interaction. The current flowing through the system as well as the spin relaxation times of the SMM are calculated f...

  10. Site-Selection in Single-Molecule Junction for Highly Reproducible Molecular Electronics.

    Science.gov (United States)

    Kaneko, Satoshi; Murai, Daigo; Marqués-González, Santiago; Nakamura, Hisao; Komoto, Yuki; Fujii, Shintaro; Nishino, Tomoaki; Ikeda, Katsuyoshi; Tsukagoshi, Kazuhito; Kiguchi, Manabu

    2016-02-03

    Adsorption sites of molecules critically determine the electric/photonic properties and the stability of heterogeneous molecule-metal interfaces. Then, selectivity of adsorption site is essential for development of the fields including organic electronics, catalysis, and biology. However, due to current technical limitations, site-selectivity, i.e., precise determination of the molecular adsorption site, remains a major challenge because of difficulty in precise selection of meaningful one among the sites. We have succeeded the single site-selection at a single-molecule junction by performing newly developed hybrid technique: simultaneous characterization of surface enhanced Raman scattering (SERS) and current-voltage (I-V) measurements. The I-V response of 1,4-benzenedithiol junctions reveals the existence of three metastable states arising from different adsorption sites. Notably, correlated SERS measurements show selectivity toward one of the adsorption sites: "bridge sites". This site-selectivity represents an essential step toward the reliable integration of individual molecules on metallic surfaces. Furthermore, the hybrid spectro-electric technique reveals the dependence of the SERS intensity on the strength of the molecule-metal interaction, showing the interdependence between the optical and electronic properties in single-molecule junctions.

  11. Cleavage and formation of molecular dinitrogen in a single system assisted by molybdenum complexes bearing ferrocenyldiphosphine.

    Science.gov (United States)

    Miyazaki, Takamasa; Tanaka, Hiromasa; Tanabe, Yoshiaki; Yuki, Masahiro; Nakajima, Kazunari; Yoshizawa, Kazunari; Nishibayashi, Yoshiaki

    2014-10-20

    The N≡N bond of molecular dinitrogen bridging two molybdenum atoms in the pentamethylcyclopentadienyl molybdenum complexes that bear ferrocenyldiphosphine as an auxiliary ligand is homolytically cleaved under visible light irradiation at room temperature to afford two molar molybdenum nitride complexes. Conversely, the bridging molecular dinitrogen is reformed by the oxidation of the molybdenum nitride complex at room temperature. This result provides a successful example of the cleavage and formation of molecular dinitrogen induced by a pair of two different external stimuli using a single system assisted by molybdenum complexes bearing ferrocenyldiphosphine under ambient conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Impact of transition from microscopy to molecular screening for detection of intestinal protozoa in Dutch patients.

    Science.gov (United States)

    Svraka-Latifovic, S; Bouter, S; Naus, H; Bakker, L J; Timmerman, C P; Dorigo-Zetsma, J W

    2014-11-01

    Detection of intestinal protozoa by PCR methods has been described as being sensitive and specific, and as improving the diagnostic yield. Here we present the outcome of the transition from microscopy to molecular screening for detection of a select group of intestinal protozoa in faeces in our laboratory. Introduction of molecular screening for intestinal protozoa resulted in higher sensitivity, reduced hands-on-time, reduced time-to-results, leading to improved diagnostic efficiency. © 2014 The Authors Clinical Microbiology and Infection © 2014 European Society of Clinical Microbiology and Infectious Diseases.

  13. A Lateral Flow Biosensor for the Detection of Single Nucleotide Polymorphisms.

    Science.gov (United States)

    Zeng, Lingwen; Xiao, Zhuo

    2017-01-01

    A lateral flow biosensor (LFB) is introduced for the detection of single nucleotide polymorphisms (SNPs). The assay is composed of two steps: circular strand displacement reaction and lateral flow biosensor detection. In step 1, the nucleotide at SNP site is recognized by T4 DNA ligase and the signal is amplified by strand displacement DNA polymerase, which can be accomplished at a constant temperature. In step 2, the reaction product of step 1 is detected by a lateral flow biosensor, which is a rapid and cost effective tool for nuclei acid detection. Comparing with conventional methods, it requires no complicated machines. It is suitable for the use of point of care diagnostics. Therefore, this simple, cost effective, robust, and promising LFB detection method of SNP has great potential for the detection of genetic diseases, personalized medicine, cancer related mutations, and drug-resistant mutations of infectious agents.

  14. Performance of Four Transport and Storage Systems for Molecular Detection of Multidrug-Resistant Tuberculosis

    Science.gov (United States)

    Rabodoarivelo, Marie Sylvianne; Imperiale, Bélen; andrianiavomikotroka, Rina; Brandao, Angela; Kumar, Parveen; Singh, Sarman; Ferrazoli, Lucilaine; Morcillo, Nora; Rasolofo, Voahangy; Palomino, Juan Carlos; Vandamme, Peter; Martin, Anandi

    2015-01-01

    Background Detection of drug-resistant tuberculosis is essential for the control of the disease but it is often hampered by the limitation of transport and storage of samples from remote locations to the reference laboratory. We performed a retrospective field study to evaluate the performance of four supports enabling the transport and storage of samples to be used for molecular detection of drug resistance using the GenoType MTBDRplus. Methods Two hundred Mycobacterium tuberculosis strains were selected and spotted on slides, FTA cards, GenoCards, and in ethanol. GenoType MTBDRplus was subsequently performed with the DNA extracted from these supports. Sensitivity and specificity were calculated and compared to the results obtained by drug susceptibility testing. Results For all supports, the overall sensitivity and specificity for detection of resistance to RIF was between 95% and 100%, and for INH between 95% and 98%. Conclusion The four transport and storage supports showed a good sensitivity and specificity for the detection of resistance to RIF and INH in M. tuberculosis strains using the GenoType MTBDRplus. These supports can be maintained at room temperature and could represent an important alternative cost-effective method useful for rapid molecular detection of drug-resistant TB in low-resource settings. PMID:26431352

  15. Molecular detection of Phytophthora ramorum by real-time PCR using Taqman, SYBR Green and molecular beacons with three genes

    Science.gov (United States)

    G.J. Bilodeau; C.A. Lévesque; A.W.A.M. De Cock; C. Duchaine; G. Kristjansson; R.C. Hamelin

    2006-01-01

    Sudden oak death, caused by Phytophthora ramorum, is a severe disease that can affect numerous species of trees and shrubs. This pathogen has been spread via nursery stock, and quarantine measures are currently in place to prevent further spread. Molecular assays have been developed to rapidly detect and identify P. ramorum, but...

  16. Strong exciton-photon coupling in organic single crystal microcavity with high molecular orientation

    Energy Technology Data Exchange (ETDEWEB)

    Goto, Kaname [Department of Electronics, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585 (Japan); Yamashita, Kenichi, E-mail: yamasita@kit.ac.jp [Faculty of Electrical Engineering and Electronics, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585 (Japan); Yanagi, Hisao [Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0192 (Japan); Yamao, Takeshi; Hotta, Shu [Faculty of Materials Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585 (Japan)

    2016-08-08

    Strong exciton-photon coupling has been observed in a highly oriented organic single crystal microcavity. This microcavity consists of a thiophene/phenylene co-oligomer (TPCO) single crystal laminated on a high-reflection distributed Bragg reflector. In the TPCO crystal, molecular transition dipole was strongly polarized along a certain horizontal directions with respect to the main crystal plane. This dipole polarization causes significantly large anisotropies in the exciton transition and optical constants. Especially the anisotropic exciton transition was found to provide the strong enhancement in the coupling with the cavity mode, which was demonstrated by a Rabi splitting energy as large as ∼100 meV even in the “half-vertical cavity surface emitting lasing” microcavity structure.

  17. Strong exciton-photon coupling in organic single crystal microcavity with high molecular orientation

    Science.gov (United States)

    Goto, Kaname; Yamashita, Kenichi; Yanagi, Hisao; Yamao, Takeshi; Hotta, Shu

    2016-08-01

    Strong exciton-photon coupling has been observed in a highly oriented organic single crystal microcavity. This microcavity consists of a thiophene/phenylene co-oligomer (TPCO) single crystal laminated on a high-reflection distributed Bragg reflector. In the TPCO crystal, molecular transition dipole was strongly polarized along a certain horizontal directions with respect to the main crystal plane. This dipole polarization causes significantly large anisotropies in the exciton transition and optical constants. Especially the anisotropic exciton transition was found to provide the strong enhancement in the coupling with the cavity mode, which was demonstrated by a Rabi splitting energy as large as ˜100 meV even in the "half-vertical cavity surface emitting lasing" microcavity structure.

  18. Strong exciton-photon coupling in organic single crystal microcavity with high molecular orientation

    International Nuclear Information System (INIS)

    Goto, Kaname; Yamashita, Kenichi; Yanagi, Hisao; Yamao, Takeshi; Hotta, Shu

    2016-01-01

    Strong exciton-photon coupling has been observed in a highly oriented organic single crystal microcavity. This microcavity consists of a thiophene/phenylene co-oligomer (TPCO) single crystal laminated on a high-reflection distributed Bragg reflector. In the TPCO crystal, molecular transition dipole was strongly polarized along a certain horizontal directions with respect to the main crystal plane. This dipole polarization causes significantly large anisotropies in the exciton transition and optical constants. Especially the anisotropic exciton transition was found to provide the strong enhancement in the coupling with the cavity mode, which was demonstrated by a Rabi splitting energy as large as ∼100 meV even in the “half-vertical cavity surface emitting lasing” microcavity structure.

  19. Visual detection of glial cell line-derived neurotrophic factor based on a molecular translator and isothermal strand-displacement polymerization reaction.

    Science.gov (United States)

    Zhang, Li-Yong; Xing, Tao; Du, Li-Xin; Li, Qing-Min; Liu, Wei-Dong; Wang, Ji-Yue; Cai, Jing

    2015-01-01

    Glial cell line-derived neurotrophic factor (GDNF) is a small protein that potently promotes the survival of many types of neurons. Detection of GDNF is vital to monitoring the survival of sympathetic and sensory neurons. However, the specific method for GDNF detection is also un-discovered. The purpose of this study is to explore the method for protein detection of GDNF. A novel visual detection method based on a molecular translator and isothermal strand-displacement polymerization reaction (ISDPR) has been proposed for the detection of GDNF. In this study, a molecular translator was employed to convert the input protein to output deoxyribonucleic acid signal, which was further amplified by ISDPR. The product of ISDPR was detected by a lateral flow biosensor within 30 minutes. This novel visual detection method based on a molecular translator and ISDPR has very high sensitivity and selectivity, with a dynamic response ranging from 1 pg/mL to 10 ng/mL, and the detection limit was 1 pg/mL of GDNF. This novel visual detection method exhibits high sensitivity and selectivity, which is very simple and universal for GDNF detection to help disease therapy in clinical practice.

  20. An all-electric single-molecule motor.

    Science.gov (United States)

    Seldenthuis, Johannes S; Prins, Ferry; Thijssen, Joseph M; van der Zant, Herre S J

    2010-11-23

    Many types of molecular motors have been proposed and synthesized in recent years, displaying different kinds of motion, and fueled by different driving forces such as light, heat, or chemical reactions. We propose a new type of molecular motor based on electric field actuation and electric current detection of the rotational motion of a molecular dipole embedded in a three-terminal single-molecule device. The key aspect of this all-electronic design is the conjugated backbone of the molecule, which simultaneously provides the potential landscape of the rotor orientation and a real-time measure of that orientation through the modulation of the conductivity. Using quantum chemistry calculations, we show that this approach provides full control over the speed and continuity of motion, thereby combining electrical and mechanical control at the molecular level over a wide range of temperatures. Moreover, chemistry can be used to change all key parameters of the device, enabling a variety of new experiments on molecular motors.

  1. Kondo peak splitting and Kondo dip in single molecular magnet junctions

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Pengbin, E-mail: 120233951@qq.com [Institute of Solid State Physics, Shanxi Datong University, Datong 037009 (China); Shi, Yunlong; Sun, Zhu [Institute of Solid State Physics, Shanxi Datong University, Datong 037009 (China); Nie, Yi-Hang [Institute of Theoretical Physics, Shanxi University, Taiyuan 030006 (China); Luo, Hong-Gang [Center for Interdisciplinary Studies & Key Laboratory for Magnetism and Magnetic Materials of the MoE, Lanzhou University, Lanzhou 730000 (China); Beijing Computational Science Research Center, Beijing 100084 (China)

    2016-01-15

    Many factors containing bias, spin–orbit coupling, magnetic fields applied, and so on can strongly influence the Kondo effect, and one of the consequences is Kondo peak splitting (KPS). It is natural that KPS should also appear when another spin degree of freedom is involved. In this work we study the KPS effects of single molecular magnets (SMM) coupled with two metallic leads in low-temperature regime. It is found that the Kondo transport properties are strongly influenced by the exchange coupling and anisotropy of the magnetic core. By employing Green's function method in Hubbard operator representation, we give an analytical expression for local retarded Green's function of SMM and discussed its low-temperature transport properties. We find that the anisotropy term behaves as a magnetic field and the splitting behavior of exchange coupling is quite similar to the spin–orbit coupling. These splitting behaviors are explained by introducing inter-level or intra-level transitions, which account for the seven-peak splitting structure. Moreover, we find a Kondo dip at Fermi level under proper parameters. These Kondo peak splitting behaviors in SMM deepen our understanding to Kondo physics and should be observed in the future experiments. - Highlights: • We study Kondo peak splitting in single molecular magnets. • We study Kondo effect by Hubbard operator Green's function method. • We find Kondo peak splitting structures and a Kondo dip at Fermi level. • The exchange coupling and magnetic anisotropy induce fine splitting structure. • The splitting structures are explained by inter-level or intra-level transitions.

  2. Charge transport in single photochromic molecular junctions

    Science.gov (United States)

    Kim, Youngsang; Pietsch, T.; Scheer, Elke; Hellmuth, T.; Pauly, F.; Sysoiev, D.; Huhn, T.; Exner, T.; Groth, U.; Steiner, U.; Erbe, A.

    2012-02-01

    Recently, photoswitchable molecules, i.e. diarylethene, gained significant interest due to their applicability in data storage media, as optical switches, and in novel logic circuits [1]. Diarylethene-derivative molecules are the most promising candidates to design electronic functional elements, because of their excellent thermal stability, high fatigue resistance, and negligible change upon switching [1]. Here, we present the preferential conductance of specifically designed sulfur-free diarylethene molecules [2] bridging the mechanically controlled break-junctions at low temperatures [3]. The molecular energy levels and electrode couplings are obtained by evaluating the current-voltage characteristics using the single-level model [4]. The charge transport mechanism of different types of diarylethene molecules is investigated, and the results are discussed within the framework of novel theoretical predictions. [4pt] [1] M. Del Valle etal., Nat Nanotechnol 2, 176 (2007) S. J. van der Molen etal., Nano. Lett. 9, 76 (2009).[0pt] [2] D. Sysoiev etal., Chem. Eur. J. 17, 6663 (2011).[0pt] [3] Y. Kim etal., Phys. Rev. Lett. 106, 196804 (2011).[0pt] [4] Y. Kim etal., Nano Lett. 11, 3734 (2011). L. Zotti etal., Small 6, 1529 (2010).

  3. Molecular assays for the detection of prostate tumor derived nucleic acids in peripheral blood

    Directory of Open Access Journals (Sweden)

    Kinnunen Martin

    2010-07-01

    Full Text Available Abstract Background Prostate cancer is the second leading cause of cancer mortality in American men. Although serum PSA testing is widely used for early detection, more specific prognostic tests are needed to guide treatment decisions. Recently, the enumeration of circulating prostate epithelial cells has been shown to correlate with disease recurrence and metastasis following definitive treatment. The purpose of our study was to investigate an immunomagnetic fractionation procedure to enrich circulating prostate tumor cells (CTCs from peripheral blood specimens, and to apply amplified molecular assays for the detection of prostate-specific markers (PSA, PCA3 and TMPRSS2:ERG gene fusion mRNAs. Results As few as five prostate cancer cells were detected per 5 mL of whole blood in model system experiments using anti-EpCAM magnetic particles alone or in combination with anti-PSMA magnetic particles. In our experiments, anti-EpCAM magnetic particles alone exhibited equivalent or better analytical performance with patient samples compared to a combination of anti-EpCAM + anti-PSMA magnetic particles. Up to 39% of men with advanced prostate cancer tested positive with one or more of the molecular assays tested, whereas control samples from men with benign prostate hyperplasia gave consistently negative results as expected. Interestingly, for the vast majority of men who tested positive for PSA mRNA following CTC enrichment, their matched plasma samples also tested positive, although CTC enrichment gave higher overall mRNA copy numbers. Conclusion CTCs were successfully enriched and detected in men with advanced prostate cancer using an immunomagnetic enrichment procedure coupled with amplified molecular assays for PSA, PCA3, and TMPRSS2:ERG gene fusion mRNAs. Our results indicate that men who test positive following CTC enrichment also exhibit higher detectable levels of non-cellular, circulating prostate-specific mRNAs.

  4. Failure of single electron descriptions of molecular orbital collision processes

    International Nuclear Information System (INIS)

    Elston, S.B.

    1978-01-01

    Inner-shell excitation occurring in low and moderate (keV range) energy collisions between light atomic and ionic systems is frequently describable in terms of molecular promotion mechanisms, which were extensively explored both theoretically and experimentally. The bulk of such studies have concentrated on processes understandable through the use of single- and independent-electron models. Nonetheless, it is possible to find cases of inner-shell excitation in relatively simple collision systems which involve nearly simultaneous multiple-electron transitions and transitions induced by inherently two-electron interactions. Evidence for these many- and nonindependent-electron phenomena in inner-shell excitation processes and the importance of considering such effects in the interpretation of collisionally induced excitation spectra is discussed. 13 references

  5. Ultrasensitive Detection of Single-Walled Carbon Nanotubes Using Surface Plasmon Resonance.

    Science.gov (United States)

    Jang, Daeho; Na, Wonhwi; Kang, Minwook; Kim, Namjoon; Shin, Sehyun

    2016-01-05

    Because single-walled carbon nanotubes (SWNTs) are known to be a potentially dangerous material, inducing cancers and other diseases, any possible leakage of SWNTs through an aquatic medium such as drinking water will result in a major public threat. To solve this problem, for the present study, a highly sensitive, quantitative detection method of SWNTs in an aqueous solution was developed using surface plasmon resonance (SPR) spectroscopy. For a highly sensitive and specific detection, a strong affinity conjugation with biotin-streptavidin was adopted on an SPR sensing mechanism. During the pretreatment process, the SWNT surface was functionalized and hydrophilized using a thymine-chain based biotinylated single-strand DNA linker (B-ssDNA) and bovine serum albumin (BSA). The pretreated SWNTs were captured on a sensing film, the surface of which was immobilized with streptavidin on biotinylated gold film. The captured SWNTs were measured in real-time using SPR spectroscopy. Specific binding with SWNTs was verified through several validation experiments. The present method using an SPR sensor is capable of detecting SWNTs of as low as 100 fg/mL, which is the lowest level reported thus far for carbon-nanotube detection. In addition, the SPR sensor showed a linear characteristic within the range of 100 pg/mL to 200 ng/mL. These findings imply that the present SPR sensing method can detect an extremely low level of SWNTs in an aquatic environment with high sensitivity and high specificity, and thus any potential leakage of SWNTs into an aquatic environment can be precisely monitored within a couple of hours.

  6. Practices and Exploration on Competition of Molecular Biological Detection Technology among Students in Food Quality and Safety Major

    Science.gov (United States)

    Chang, Yaning; Peng, Yuke; Li, Pengfei; Zhuang, Yingping

    2017-01-01

    With the increasing importance in the application of the molecular biological detection technology in the field of food safety, strengthening education in molecular biology experimental techniques is more necessary for the culture of the students in food quality and safety major. However, molecular biology experiments are not always in curricula…

  7. Molecular profiles of screen detected vs. symptomatic breast cancer and their impact on survival: results from a clinical series

    International Nuclear Information System (INIS)

    Crispo, Anna; Esposito, Emanuela; Amore, Alfonso; Di Bonito, Maurizio; Botti, Gerardo; Montella, Maurizio; Barba, Maddalena; D’Aiuto, Giuseppe; De Laurentiis, Michelino; Grimaldi, Maria; Rinaldo, Massimo; Caolo, Giuseppina; D’Aiuto, Massimiliano; Capasso, Immacolata

    2013-01-01

    Stage shift is widely considered a major determinant of the survival benefit conferred by breast cancer screening. However, factors and mechanisms underlying such a prognostic advantage need further clarification. We sought to compare the molecular characteristics of screen detected vs. symptomatic breast cancers and assess whether differences in tumour biology might translate into survival benefit. In a clinical series of 448 women with operable breast cancer, the Kaplan-Meier method and the log-rank test were used to estimate the likelihood of cancer recurrence and death. The Cox proportional hazard model was used for the multivariate analyses including mode of detection, age at diagnosis, tumour size, and lymph node status. These same models were applied to subgroups defined by molecular subtypes. Screen detected breast cancers tended to show more favourable clinicopathological features and survival outcomes compared to symptomatic cancers. The luminal A subtype was more common in women with mammography detected tumours than in symptomatic patients (68.5 vs. 59.0%, p=0.04). Data analysis across categories of molecular subtypes revealed significantly longer disease free and overall survival for screen detected cancers with a luminal A subtype only (p=0.01 and 0.02, respectively). For women with a luminal A subtype, the independent prognostic role of mode of detection on recurrence was confirmed in Cox proportional hazard models (p=0.03). An independent role of modality of detection on survival was also suggested (p=0.05). Molecular subtypes did not substantially explain the differences in survival outcomes between screened and symptomatic patients. However, our results suggest that molecular profiles might play a role in interpreting such differences at least partially. Further studies are warranted to reinterpret the efficacy of screening programmes in the light of tumour biology

  8. Adiabatic Cooling for Rovibrational Spectroscopy of Molecular Ions

    DEFF Research Database (Denmark)

    Fisher, Karin

    2017-01-01

    The field of cold molecular ions is a fast growing one, with applications in high resolution spectroscopy and metrology, the search for time variations of fundamental constants, cold chemistry and collisions, and quantum information processing, to name a few. The study of single molecular ions...... is attractive as it enables one to push the limits of spectroscopic accuracy. Non-destructive spectroscopic detection of molecular ions can be achieved by co-trapping with an easier to detect atomic ion. The ion chain has coupled motion, and transitions which change both the internal and motional states...... to the measured heating rates, almost perfectly fitting existing heating rate theory. Further, the same model successfully predicted the heating rates of the in-phase mode of a two-ion crystal, indicating that we can use it to predict the heating rates in experiments on molecule-atom chains. Adiabatic cooling...

  9. Multiplexed detection of metabolites of narcotic drugs from a single latent fingermark.

    Science.gov (United States)

    Hazarika, Pompi; Jickells, Sue M; Wolff, Kim; Russell, David A

    2010-11-15

    An immunoassay based technique is used for the detection of psychoactive substances in the sweat deposited within fingermarks of a narcotic drug user. Magnetic particles functionalized with antimorphine and antibenzoylecgonine antibodies were used for the detection of a metabolite of heroin (morphine) and a metabolite of cocaine (benzoylecgonine), respectively. The drug metabolites were detected individually as well as simultaneously from a single fingermark. The images of the fingermarks obtained using brightfield and fluorescence microscopy were of high evidential quality with resolution to enable identification of an individual in addition to providing information on drug usage.

  10. Single-cell Hi-C for genome-wide detection of chromatin interactions that occur simultaneously in a single cell.

    Science.gov (United States)

    Nagano, Takashi; Lubling, Yaniv; Yaffe, Eitan; Wingett, Steven W; Dean, Wendy; Tanay, Amos; Fraser, Peter

    2015-12-01

    Hi-C is a powerful method that provides pairwise information on genomic regions in spatial proximity in the nucleus. Hi-C requires millions of cells as input and, as genome organization varies from cell to cell, a limitation of Hi-C is that it only provides a population average of genome conformations. We developed single-cell Hi-C to create snapshots of thousands of chromatin interactions that occur simultaneously in a single cell. To adapt Hi-C to single-cell analysis, we modified the protocol to include in-nucleus ligation. This enables the isolation of single nuclei carrying Hi-C-ligated DNA into separate tubes, followed by reversal of cross-links, capture of biotinylated ligation junctions on streptavidin-coated magnetic beads and PCR amplification of single-cell Hi-C libraries. The entire laboratory protocol can be carried out in 1 week, and although we have demonstrated its use in mouse T helper (TH1) cells, it should be applicable to any cell type or species for which standard Hi-C has been successful. We also developed an analysis pipeline to filter noise and assess the quality of data sets in a few hours. Although the interactome maps produced by single-cell Hi-C are sparse, the data provide useful information to understand cellular variability in nuclear genome organization and chromosome structure. Standard wet and dry laboratory skills in molecular biology and computational analysis are required.

  11. Single intra-articular injection of high molecular weight hyaluronic acid for hip osteoarthritis.

    Science.gov (United States)

    Rivera, Fabrizio

    2016-03-01

    Intra-articular (IA) injection of hyaluronic acid (HA) into the hip joint appears to be safe and well tolerated but only a small number of randomized clinical trials in humans has been published. The objective of this prospective study was to evaluate the efficacy and safety of a single IA injection of high-molecular-weight (2800 kDa) HA (Coxarthrum) for hip osteoarthritis. All patients received a single IA administration of 2.5 % sodium hyaluronate (75 mg/3 mL) of high molecular weight. Fluoroscopy requires an iodized contrast medium (iopamidol, 1 ml) which highlights the capsule before administering HA. Patients were evaluated before IA injection (T0), after 3 months, after 6 months and after 1 year from injection. Results were evaluated by the Brief Pain Inventory (BPI II), Harris Hip Score and a visual analog scale of pain (pain VAS). All treated patients were considered for statistical analysis. Two hundred seven patients were included at T0. The mean age was 67 years (range 46-81). Regarding BPI severity score, changes in pain between T0 and the three following visits were statistically highly significant (p injection of Coxarthrum is effective from the third month and that the results are stable or continue to improve up to 1 year. IV.

  12. Abseq: Ultrahigh-throughput single cell protein profiling with droplet microfluidic barcoding

    Science.gov (United States)

    Shahi, Payam; Kim, Samuel C.; Haliburton, John R.; Gartner, Zev J.; Abate, Adam R.

    2017-03-01

    Proteins are the primary effectors of cellular function, including cellular metabolism, structural dynamics, and information processing. However, quantitative characterization of proteins at the single-cell level is challenging due to the tiny amount of protein available. Here, we present Abseq, a method to detect and quantitate proteins in single cells at ultrahigh throughput. Like flow and mass cytometry, Abseq uses specific antibodies to detect epitopes of interest; however, unlike these methods, antibodies are labeled with sequence tags that can be read out with microfluidic barcoding and DNA sequencing. We demonstrate this novel approach by characterizing surface proteins of different cell types at the single-cell level and distinguishing between the cells by their protein expression profiles. DNA-tagged antibodies provide multiple advantages for profiling proteins in single cells, including the ability to amplify low-abundance tags to make them detectable with sequencing, to use molecular indices for quantitative results, and essentially limitless multiplexing.

  13. Construction of intergeneric conjugal transfer for molecular genetic ...

    African Journals Online (AJOL)

    SAM

    2014-03-26

    Mar 26, 2014 ... The attB integration site in the S. mobaraensis genome was detected as a single attB ... present study, to promote the molecular genetic study of. S. mobaraensis .... further increase in the number of E. coli donor cells. (≥1.25 × 108) (Choi et .... rational mutagenesis and random mutagenesis. Appl. Microbiol.

  14. Single sources in the low-frequency gravitational wave sky: properties and time to detection by pulsar timing arrays

    Science.gov (United States)

    Kelley, Luke Zoltan; Blecha, Laura; Hernquist, Lars; Sesana, Alberto; Taylor, Stephen R.

    2018-06-01

    We calculate the properties, occurrence rates and detection prospects of individually resolvable `single sources' in the low-frequency gravitational wave (GW) spectrum. Our simulations use the population of galaxies and massive black hole binaries from the Illustris cosmological hydrodynamic simulations, coupled to comprehensive semi-analytic models of the binary merger process. Using mock pulsar timing arrays (PTA) with, for the first time, varying red-noise models, we calculate plausible detection prospects for GW single sources and the stochastic GW background (GWB). Contrary to previous results, we find that single sources are at least as detectable as the GW background. Using mock PTA, we find that these `foreground' sources (also `deterministic'/`continuous') are likely to be detected with ˜20 yr total observing baselines. Detection prospects, and indeed the overall properties of single sources, are only moderately sensitive to binary evolution parameters - namely eccentricity and environmental coupling, which can lead to differences of ˜5 yr in times to detection. Red noise has a stronger effect, roughly doubling the time to detection of the foreground between a white-noise only model (˜10-15 yr) and severe red noise (˜20-30 yr). The effect of red noise on the GWB is even stronger, suggesting that single source detections may be more robust. We find that typical signal-to-noise ratios for the foreground peak near f = 0.1 yr-1, and are much less sensitive to the continued addition of new pulsars to PTA.

  15. Towards single molecule biosensors using super-resolution fluorescence microscopy.

    Science.gov (United States)

    Lu, Xun; Nicovich, Philip R; Gaus, Katharina; Gooding, J Justin

    2017-07-15

    Conventional immunosensors require many binding events to give a single transducer output which represents the concentration of the analyte in the sample. Because of the requirements to selectively detect species in complex samples, immunosensing interfaces must allow immobilisation of antibodies while repelling nonspecific adsorption of other species. These requirements lead to quite sophisticated interfacial design, often with molecular level control, but we have no tools to characterise how well these interfaces work at the molecular level. The work reported herein is an initial feasibility study to show that antibody-antigen binding events can be monitored at the single molecule level using single molecule localisation microscopy (SMLM). The steps to achieve this first requires showing that indium tin oxide surfaces can be used for SMLM, then that these surfaces can be modified with self-assembled monolayers using organophosphonic acid derivatives, that the amount of antigens and antibodies on the surface can be controlled and monitored at the single molecule level and finally antibody binding to antigen modified surfaces can be monitored. The results show the amount of antibody that binds to an antigen modified surface is dependent on both the concentration of antigen on the surface and the concentration of antibody in solution. This study demonstrates the potential of SMLM for characterising biosensing interfaces and as the transducer in a massively parallel, wide field, single molecule detection scheme for quantitative analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. The Molecular Epidemiology and Genetic Environment of Carbapenemases Detected in Africa.

    Science.gov (United States)

    Sekyere, John Osei; Govinden, Usha; Essack, Sabiha

    2016-01-01

    Research articles describing carbapenemases and their genetic environments in Gram-negative bacteria were reviewed to determine the molecular epidemiology of carbapenemases in Africa. The emergence of resistance to the carbapenems, the last resort antibiotic for difficult to treat bacterial infections, affords clinicians few therapeutic options, with a resulting increase in morbidities, mortalities, and healthcare costs. However, the molecular epidemiology of carbapenemases throughout Africa is less described. Research articles and conference proceedings describing the genetic environment and molecular epidemiology of carbapenemases in Africa were retrieved from Google Scholar, Scifinder, Pubmed, Web of Science, and Science Direct databases. Predominant carbapenemase genes so far described in Africa include the blaOXA-48 type, blaIMP, blaVIM, and blaNDM in Acinetobacter baumannii, Klebsiella pneumoniae, Enterobacter cloacae, Citrobacter spp., and Escherichia coli carried on various plasmid types and sizes, transposons, and integrons. Class D and class B carbapenemases, mainly prevalent in A. baumannii, K. pneumoniae, E. cloacae, Citrobacter spp., and E. coli were the commonest carbapenemases. Carbapenemases are mainly reported in North and South Africa as under-resourced laboratories, lack of awareness and funding preclude the detection and reporting of carbapenemase-mediated resistance. Consequently, the true molecular epidemiology of carbapenemases and their genetic environment in Africa is still unknown.

  17. Performance evaluation of an automated single-channel sleep–wake detection algorithm

    Directory of Open Access Journals (Sweden)

    Kaplan RF

    2014-10-01

    Full Text Available Richard F Kaplan,1 Ying Wang,1 Kenneth A Loparo,1,2 Monica R Kelly,3 Richard R Bootzin3 1General Sleep Corporation, Euclid, OH, USA; 2Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, OH, USA; 3Department of Psychology, University of Arizona, Tucson, AZ, USA Background: A need exists, from both a clinical and a research standpoint, for objective sleep measurement systems that are both easy to use and can accurately assess sleep and wake. This study evaluates the output of an automated sleep–wake detection algorithm (Z-ALG used in the Zmachine (a portable, single-channel, electroencephalographic [EEG] acquisition and analysis system against laboratory polysomnography (PSG using a consensus of expert visual scorers. Methods: Overnight laboratory PSG studies from 99 subjects (52 females/47 males, 18–60 years, median age 32.7 years, including both normal sleepers and those with a variety of sleep disorders, were assessed. PSG data obtained from the differential mastoids (A1–A2 were assessed by Z-ALG, which determines sleep versus wake every 30 seconds using low-frequency, intermediate-frequency, and high-frequency and time domain EEG features. PSG data were independently scored by two to four certified PSG technologists, using standard Rechtschaffen and Kales guidelines, and these score files were combined on an epoch-by-epoch basis, using a majority voting rule, to generate a single score file per subject to compare against the Z-ALG output. Both epoch-by-epoch and standard sleep indices (eg, total sleep time, sleep efficiency, latency to persistent sleep, and wake after sleep onset were compared between the Z-ALG output and the technologist consensus score files. Results: Overall, the sensitivity and specificity for detecting sleep using the Z-ALG as compared to the technologist consensus are 95.5% and 92.5%, respectively, across all subjects, and the positive predictive value and the

  18. Polymerase-free measurement of microRNA-122 with single base specificity using single molecule arrays: Detection of drug-induced liver injury.

    Directory of Open Access Journals (Sweden)

    David M Rissin

    Full Text Available We have developed a single probe method for detecting microRNA from human serum using single molecule arrays, with sequence specificity down to a single base, and without the use of amplification by polymerases. An abasic peptide nucleic acid (PNA probe-containing a reactive amine instead of a nucleotide at a specific position in the sequence-for detecting a microRNA was conjugated to superparamagnetic beads. These beads were incubated with a sample containing microRNA, a biotinylated reactive nucleobase-containing an aldehyde group-that was complementary to the missing base in the probe sequence, and a reducing agent. When a target molecule with an exact match in sequence hybridized to the capture probe, the reactive nucleobase was covalently attached to the backbone of the probe by a dynamic covalent chemical reaction. Single molecules of the biotin-labeled probe were then labeled with streptavidin-β-galactosidase (SβG, the beads were resuspended in a fluorogenic enzyme substrate, loaded into an array of femtoliter wells, and sealed with oil. The array was imaged fluorescently to determine which beads were associated with single enzymes, and the average number of enzymes per bead was determined. The assay had a limit of detection of 500 fM, approximately 500 times more sensitive than a corresponding analog bead-based assay, with target specificity down to a single base mis-match. This assay was used to measure microRNA-122 (miR-122-an established biomarker of liver toxicity-extracted from the serum of patients who had acute liver injury due to acetaminophen, and control healthy patients. All patients with liver injury had higher levels of miR-122 in their serum compared to controls, and the concentrations measured correlated well with those determined using RT-qPCR. This approach allows rapid quantification of circulating microRNA with single-based specificity and a limit of quantification suitable for clinical use.

  19. Optical Detection and Sizing of Single Nano-Particles Using Continuous Wetting Films

    Science.gov (United States)

    Hennequin, Yves; McLeod, Euan; Mudanyali, Onur; Migliozzi, Daniel; Ozcan, Aydogan; Dinten, Jean-Marc

    2013-01-01

    The physical interaction between nano-scale objects and liquid interfaces can create unique optical properties, enhancing the signatures of the objects with sub-wavelength features. Here we show that the evaporation on a wetting substrate of a polymer solution containing sub-micrometer or nano-scale particles creates liquid micro-lenses that arise from the local deformations of the continuous wetting film. These micro-lenses have properties similar to axicon lenses that are known to create beams with a long depth of focus. This enhanced depth of focus allows detection of single nanoparticles using a low magnification microscope objective lens, achieving a relatively wide field-of-view, while also lifting the constraints on precise focusing onto the object plane. Hence, by creating these liquid axicon lenses through spatial deformations of a continuous thin wetting film, we transfer the challenge of imaging individual nano-particles to detecting the light focused by these lenses. As a proof of concept, we demonstrate the detection and sizing of single nano-particles (100 and 200 nm), CpGV granuloviruses as well as Staphylococcus epidermidis bacteria over a wide field of view of e.g., 5.10×3.75 mm2 using a ×5 objective lens with a numerical aperture of 0.15. In addition to conventional lens-based microscopy, this continuous wetting film based approach is also applicable to lensfree computational on-chip imaging, which can be used to detect single nano-particles over a large field-of-view of e.g., >20-30 mm2. These results could be especially useful for high-throughput field-analysis of nano-scale objects using compact and cost-effective microscope designs. PMID:23889001

  20. Sleep Apnoea Detection in Single Channel ECGs by Analyzing Heart Rate Dynamics

    National Research Council Canada - National Science Library

    Zywietz, C

    2001-01-01

    .... Sleep disorders are typically investigated by means of polysomnographic recordings. We have analyzed 70 eight-hour single-channel ECG recordings to find out to which extent sleep apneas may be detected from the ECG alone...

  1. Quantum Dot-Fullerene Based Molecular Beacon Nanosensors for Rapid, Highly Sensitive Nucleic Acid Detection.

    Science.gov (United States)

    Liu, Ye; Kannegulla, Akash; Wu, Bo; Cheng, Li-Jing

    2018-05-15

    Spherical fullerene (C 60 ) can quench the fluorescence of a quantum dot (QD) through energy transfer and charge transfer processes, with the quenching efficiency regulated by the number of proximate C 60 on each QD. With the quenching property and its small size compared with other nanoparticle-based quenchers, it is advantageous to group a QD reporter and multiple C 60 -labeled oligonucleotide probes to construct a molecular beacon (MB) probe for sensitive, robust nucleic acid detection. We demonstrated a rapid, high-sensitivity DNA detection method using the nanosensors composed of QD-C 60 based MBs carried by magnetic nanoparticles (MNPs). The assay was accelerated by first dispersing the nanosensors in analytes for highly efficient DNA capture resulting from short-distance 3-dimensional diffusion of targets to the sensor surface and then concentrating the nanosensors to a substrate by magnetic force to amplify the fluorescence signal for target quantification. The enhanced mass transport enabled a rapid detection (< 10 min) with a small sample volume (1-10 µl). The high signal-to-noise ratio produced by the QD-C 60 pairs and magnetic concentration yielded a detection limit of 100 fM (~106 target DNA copies for a 10 µl analyte). The rapid, sensitive, label-free detection method will benefit the applications in point-of-care molecular diagnostic technologies.

  2. Overt foot movement detection in one single Laplacian EEG derivation.

    Science.gov (United States)

    Solis-Escalante, Teodoro; Müller-Putz, Gernot; Pfurtscheller, Gert

    2008-10-30

    In this work one single Laplacian derivation and a full description of band power values in a broad frequency band are used to detect brisk foot movement execution in the ongoing EEG. Two support vector machines (SVM) are trained to detect the event-related desynchronization (ERD) during motor execution and the following beta rebound (event-related synchronization, ERS) independently. Their performance is measured through the simulation of an asynchronous brain switch. ERS (true positive rate=0.74+/-0.21) after motor execution is shown to be more stable than ERD (true positive rate=0.21+/-0.12). A novel combination of ERD and post-movement ERS is introduced. The SVM outputs are combined with a product rule to merge ERD and ERS detection. For this novel approach the average information transfer rate obtained was 11.19+/-3.61bits/min.

  3. An insight into the isolation, enumeration and molecular detection of Listeria monocytogenes in food

    Directory of Open Access Journals (Sweden)

    Jodi Woan-Fei Law

    2015-11-01

    Full Text Available Listeria monocytogenes, a foodborne pathogen that can cause listeriosis through the consumption of food contaminated with this pathogen. The ability of L. monocytogenes to survive in extreme conditions and cause food contaminations have become a major concern. Hence, routine microbiological food testing is necessary to prevent food contamination and outbreaks of foodborne illness. This review provides insight into the methods for cultural detection, enumeration and molecular identification of L. monocytogenes in various food samples. There are a number of enrichment and plating media that can be used for the isolation of L. monocytogenes from food samples. Enrichment media such as buffered Listeria Enrichment Broth (BLEB, Fraser broth and University of Vermont Medium (UVM Listeria enrichment broth are recommended by regulatory agencies such as FDA-BAM, USDA-FSIS and ISO. Many plating media are available for the isolation of L. monocytogenes, for instance, PALCAM, Oxford and other chromogenic media. Besides, reference methods like FDA-BAM, ISO 11290 method and USDA-FSIS method are usually applied for the cultural detection or enumeration of L. monocytogenes. MPN technique is applied for the enumeration of L. monocytogenes in the case of low level contamination. Molecular methods including polymerase chain reaction (PCR, multiplex polymerase chain reaction (mPCR, real-time/quantitative polymerase chain reaction (qPCR, nucleic acid sequence-based amplification (NASBA, loop-mediated isothermal amplification (LAMP, DNA microarray and Next Generation Sequencing (NGS technology for the detection and identification of L. monocytogenes are discussed in this review. Overall, molecular methods are rapid, sensitive, specific, time- and labour-saving. In future, there are chances for the development of new techniques for the detection and identification of foodborne with improved features.

  4. Comparison of Molecular and Phenotypic Methods for the Detection and Characterization of Carbapenem Resistant Enterobacteriaceae.

    Science.gov (United States)

    Somily, Ali M; Garaween, Ghada A; Abukhalid, Norah; Absar, Muhammad M; Senok, Abiola C

    2016-03-01

    In recent years, there has been a rapid dissemination of carbapenem resistant Enterobacteriaceae (CRE). This study aimed to compare phenotypic and molecular methods for detection and characterization of CRE isolates at a large tertiary care hospital in Saudi Arabia. This study was carried out between January 2011 and November 2013 at the King Khalid University Hospital (KKUH) in Saudi Arabia. Determination of presence of extended-spectrum beta-lactamases (ESBL) and carbapenem resistance was in accordance with Clinical and Laboratory Standards Institute (CLSI) guidelines. Phenotypic classification was done by the MASTDISCS(TM) ID inhibitor combination disk method. Genotypic characterization of ESBL and carbapenemase genes was performed by the Check-MDR CT102. Diversilab rep-PCR was used for the determination of clonal relationship. Of the 883 ESBL-positive Enterobacteriaceae detected during the study period, 14 (1.6%) isolates were carbapenem resistant. Both the molecular genotypic characterization and phenotypic testing were in agreement in the detection of all 8 metalo-beta-lactamases (MBL) producing isolates. Of these 8 MBL-producers, 5 were positive for blaNDM gene and 3 were positive for blaVIM gene. Molecular method identified additional blaOXA gene isolates while MASTDISCS(TM) ID detected one AmpC producer isolate. Both methods agreed in identifying 2 carbapenem resistant isolates which were negative for carbapenemase genes. Diversilab rep-PCR analysis of the 9 Klebsiella pneumoniae isolates revealed polyclonal distribution into eight clusters. MASTDISCS(TM) ID is a reliable simple cheap phenotypic method for detection of majority of carbapenemase genes with the exception of the blaOXA gene. We recommend to use such method in the clinical laboratory.

  5. Sensitivity of field tests, serological and molecular techniques for Plum Pox Virus detection in various tissues

    Directory of Open Access Journals (Sweden)

    Mojca VIRŠČEK MARN

    2015-12-01

    Full Text Available Sensitivity of field tests (AgriStrip  and Immunochromato, DAS-ELISA, two step RT-PCR and real-time RT-PCR for Plum pox virus (PPV detection was tested in various tissues of apricot, peach, plum and damson plum trees infected with isolates belonging to PPV-D, PPV-M or PPV-Rec, the three strains present in Slovenia. Flowers of apricot and plum in full bloom proved to be a very good source for detection of PPV. PPV could be detected with all tested techniques in symptomatic parts of leaves in May and with one exception even in the beginning of August, but it was not detected in asymptomatic leaves using field tests, DAS-ELISA and partly also molecular techniques. PPV was detected only in some of the samples of asymptomatic parts of the leaves with symptoms and of stalks by field tests and DAS-ELISA. Infections were not detected in buds in August using field tests or DAS-ELISA. Field tests are useful for confirmation of the PPV infection in symptomatic leaves, but in tissues without symptoms DAS-ELISA should be combined or replaced by molecular techniques.

  6. Measurement of single electron and nuclear spin states based on optically detected magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Berman, Gennady P [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Bishop, Alan R [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Chernobrod, Boris M [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Hawley, Marilyn E [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Brown, Geoffrey W [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Tsifrinovich, Vladimir I [Polytechnic University, Brooklyn, NY 11201 (United States)

    2006-05-15

    A novel approach for measurement of single electron and nuclear spin states is suggested. Our approach is based on optically detected magnetic resonance in a nano-probe located at the apex of an AFM tip. The method provides single electron spin sensitivity with nano-scale spatial resolution.

  7. Measurement of single electron and nuclear spin states based on optically detected magnetic resonance

    International Nuclear Information System (INIS)

    Berman, Gennady P; Bishop, Alan R; Chernobrod, Boris M; Hawley, Marilyn E; Brown, Geoffrey W; Tsifrinovich, Vladimir I

    2006-01-01

    A novel approach for measurement of single electron and nuclear spin states is suggested. Our approach is based on optically detected magnetic resonance in a nano-probe located at the apex of an AFM tip. The method provides single electron spin sensitivity with nano-scale spatial resolution

  8. Viral-Cellular DNA Junctions as Molecular Markers for Assessing Intra-Tumor Heterogeneity in Cervical Cancer and for the Detection of Circulating Tumor DNA

    Directory of Open Access Journals (Sweden)

    Katrin Carow

    2017-09-01

    Full Text Available The development of cervical cancer is frequently accompanied by the integration of human papillomaviruses (HPV DNA into the host genome. Viral-cellular junction sequences, which arise in consequence, are highly tumor specific. By using these fragments as markers for tumor cell origin, we examined cervical cancer clonality in the context of intra-tumor heterogeneity. Moreover, we assessed the potential of these fragments as molecular tumor markers and analyzed their suitability for the detection of circulating tumor DNA in sera of cervical cancer patients. For intra-tumor heterogeneity analyses tumors of 8 patients with up to 5 integration sites per tumor were included. Tumor islands were micro-dissected from cryosections of several tissue blocks representing different regions of the tumor. Each micro-dissected tumor area served as template for a single junction-specific PCR. For the detection of circulating tumor-DNA (ctDNA junction-specific PCR-assays were applied to sera of 21 patients. Samples were collected preoperatively and during the course of disease. In 7 of 8 tumors the integration site(s were shown to be homogenously distributed throughout different tumor regions. Only one tumor displayed intra-tumor heterogeneity. In 5 of 21 analyzed preoperative serum samples we specifically detected junction fragments. Junction-based detection of ctDNA was significantly associated with reduced recurrence-free survival. Our study provides evidence that HPV-DNA integration is as an early step in cervical carcinogenesis. Clonality with respect to HPV integration opens new perspectives for the application of viral-cellular junction sites as molecular biomarkers in a clinical setting such as disease monitoring.

  9. Conductometric Sensor for PAH Detection with Molecularly Imprinted Polymer as Recognition Layer

    Directory of Open Access Journals (Sweden)

    Usman Latif

    2018-03-01

    Full Text Available A conductometric sensor based on screen-printed interdigital gold electrodes on glass substrate coated with molecularly imprinted polyurethane layers was fabricated to detect polycyclic aromatic hydrocarbons (PAHs in water. The results prove that screen-printed interdigital electrodes are very suitable transducers to fabricate low-cost sensor systems for measuring change in resistance of PAH-imprinted layers while exposing to different PAHs. The sensor showed good selectivity to its templated molecules and high sensitivity with a detection limit of 1.3 nmol/L e.g., for anthracene in water which is lower than WHO’s permissible limit.

  10. Single-site Lennard-Jones models via polynomial chaos surrogates of Monte Carlo molecular simulation

    KAUST Repository

    Kadoura, Ahmad Salim

    2016-06-01

    In this work, two Polynomial Chaos (PC) surrogates were generated to reproduce Monte Carlo (MC) molecular simulation results of the canonical (single-phase) and the NVT-Gibbs (two-phase) ensembles for a system of normalized structureless Lennard-Jones (LJ) particles. The main advantage of such surrogates, once generated, is the capability of accurately computing the needed thermodynamic quantities in a few seconds, thus efficiently replacing the computationally expensive MC molecular simulations. Benefiting from the tremendous computational time reduction, the PC surrogates were used to conduct large-scale optimization in order to propose single-site LJ models for several simple molecules. Experimental data, a set of supercritical isotherms, and part of the two-phase envelope, of several pure components were used for tuning the LJ parameters (ε, σ). Based on the conducted optimization, excellent fit was obtained for different noble gases (Ar, Kr, and Xe) and other small molecules (CH4, N2, and CO). On the other hand, due to the simplicity of the LJ model used, dramatic deviations between simulation and experimental data were observed, especially in the two-phase region, for more complex molecules such as CO2 and C2 H6.

  11. Delving Deep into Multiscale Pedestrian Detection via Single Scale Feature Maps

    Directory of Open Access Journals (Sweden)

    Xinchuan Fu

    2018-04-01

    Full Text Available The standard pipeline in pedestrian detection is sliding a pedestrian model on an image feature pyramid to detect pedestrians of different scales. In this pipeline, feature pyramid construction is time consuming and becomes the bottleneck for fast detection. Recently, a method called multiresolution filtered channels (MRFC was proposed which only used single scale feature maps to achieve fast detection. However, there are two shortcomings in MRFC which limit its accuracy. One is that the receptive field correspondence in different scales is weak. Another is that the features used are not scale invariance. In this paper, two solutions are proposed to tackle with the two shortcomings respectively. Specifically, scale-aware pooling is proposed to make a better receptive field correspondence, and soft decision tree is proposed to relive scale variance problem. When coupled with efficient sliding window classification strategy, our detector achieves fast detecting speed at the same time with state-of-the-art accuracy.

  12. Replica Node Detection Using Enhanced Single Hop Detection with Clonal Selection Algorithm in Mobile Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    L. S. Sindhuja

    2016-01-01

    Full Text Available Security of Mobile Wireless Sensor Networks is a vital challenge as the sensor nodes are deployed in unattended environment and they are prone to various attacks. One among them is the node replication attack. In this, the physically insecure nodes are acquired by the adversary to clone them by having the same identity of the captured node, and the adversary deploys an unpredictable number of replicas throughout the network. Hence replica node detection is an important challenge in Mobile Wireless Sensor Networks. Various replica node detection techniques have been proposed to detect these replica nodes. These methods incur control overheads and the detection accuracy is low when the replica is selected as a witness node. This paper proposes to solve these issues by enhancing the Single Hop Detection (SHD method using the Clonal Selection algorithm to detect the clones by selecting the appropriate witness nodes. The advantages of the proposed method include (i increase in the detection ratio, (ii decrease in the control overhead, and (iii increase in throughput. The performance of the proposed work is measured using detection ratio, false detection ratio, packet delivery ratio, average delay, control overheads, and throughput. The implementation is done using ns-2 to exhibit the actuality of the proposed work.

  13. Single-Molecule Chemistry with Surface- and Tip-Enhanced Raman Spectroscopy.

    Science.gov (United States)

    Zrimsek, Alyssa B; Chiang, Naihao; Mattei, Michael; Zaleski, Stephanie; McAnally, Michael O; Chapman, Craig T; Henry, Anne-Isabelle; Schatz, George C; Van Duyne, Richard P

    2017-06-14

    Single-molecule (SM) surface-enhanced Raman spectroscopy (SERS) and tip-enhanced Raman spectroscopy (TERS) have emerged as analytical techniques for characterizing molecular systems in nanoscale environments. SERS and TERS use plasmonically enhanced Raman scattering to characterize the chemical information on single molecules. Additionally, TERS can image single molecules with subnanometer spatial resolution. In this review, we cover the development and history of SERS and TERS, including the concept of SERS hot spots and the plasmonic nanostructures necessary for SM detection, the past and current methodologies for verifying SMSERS, and investigations into understanding the signal heterogeneities observed with SMSERS. Moving on to TERS, we cover tip fabrication and the physical origins of the subnanometer spatial resolution. Then, we highlight recent advances of SMSERS and TERS in fields such as electrochemistry, catalysis, and SM electronics, which all benefit from the vibrational characterization of single molecules. SMSERS and TERS provide new insights on molecular behavior that would otherwise be obscured in an ensemble-averaged measurement.

  14. Simultaneous Detection of Human C-Terminal p53 Isoforms by Single Template Molecularly Imprinted Polymers (MIPs) Coupled with Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS)-Based Targeted Proteomics.

    Science.gov (United States)

    Jiang, Wenting; Liu, Liang; Chen, Yun

    2018-03-06

    Abnormal expression of C-terminal p53 isoforms α, β, and γ can cause the development of cancers including breast cancer. To date, much evidence has demonstrated that these isoforms can differentially regulate target genes and modulate their expression. Thus, quantification of individual isoforms may help to link clinical outcome to p53 status and to improve cancer patient treatment. However, there are few studies on accurate determination of p53 isoforms, probably due to sequence homology of these isoforms and also their low abundance. In this study, a targeted proteomics assay combining molecularly imprinted polymers (MIPs) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed for simultaneous quantification of C-terminal p53 isoforms. Isoform-specific surrogate peptides (i.e., KPLDGEYFTLQIR (peptide-α) for isoform α, KPLDGEYFTLQDQTSFQK (peptide-β) for isoform β, and KPLDGEYFTLQMLLDLR (peptide-γ) for isoform γ) were first selected and used in both MIPs enrichment and mass spectrometric detection. The common sequence KPLDGEYFTLQ of these three surrogate peptides was used as single template in MIPs. In addition to optimization of imprinting conditions and characterization of the prepared MIPs, binding affinity and cross-reactivity of the MIPs for each surrogate peptide were also evaluated. As a result, a LOQ of 5 nM was achieved, which was >15-fold more sensitive than that without MIPs. Finally, the assay was validated and applied to simultaneous quantitative analysis of C-terminal p53 isoforms α, β, and γ in several human breast cell lines (i.e., MCF-10A normal cells, MCF-7 and MDA-MB-231 cancer cells, and drug-resistant MCF-7/ADR cancer cells). This study is among the first to employ single template MIPs and cross-reactivity phenomenon to select isoform-specific surrogate peptides and enable simultaneous quantification of protein isoforms in LC-MS/MS-based targeted proteomics.

  15. Detection of colonic polyps in the elderly: Optimization of the single-contrast barium enema examination

    International Nuclear Information System (INIS)

    Gelfand, D.W.; Chen, Y.M.; Ott, D.J.; Munitz, H.A.

    1986-01-01

    Single-contrast studies account for 75% of barium enema examinations and are often performed in the elderly. By optimizing all factors, the following results were obtained: for polyps of less than 1 cm, 40 of 57 were detected (sensitivity, 70.2%); for polyps of 1 cm or larger, 33 of 35 were detected (sensitivity, 94%). Overall, 73 of 92 polyps were detected (sensitivity, 79.3%). These sensitivities result from meticulous preparation and the use of compression filming, low-density barium, moderate kilovoltages, high-resolution screens, remote control apparatus, and high-bandpass TV fluoroscopy. The authors conclude that an optimal single-contrast barium enema examination detects colonic polyps with a sensitivity approaching that of the double-contrast study and may be employed in elderly patients who cannot undergo the double-contrast study

  16. Automatic Shadow Detection and Removal from a Single Image.

    Science.gov (United States)

    Khan, Salman H; Bennamoun, Mohammed; Sohel, Ferdous; Togneri, Roberto

    2016-03-01

    We present a framework to automatically detect and remove shadows in real world scenes from a single image. Previous works on shadow detection put a lot of effort in designing shadow variant and invariant hand-crafted features. In contrast, our framework automatically learns the most relevant features in a supervised manner using multiple convolutional deep neural networks (ConvNets). The features are learned at the super-pixel level and along the dominant boundaries in the image. The predicted posteriors based on the learned features are fed to a conditional random field model to generate smooth shadow masks. Using the detected shadow masks, we propose a Bayesian formulation to accurately extract shadow matte and subsequently remove shadows. The Bayesian formulation is based on a novel model which accurately models the shadow generation process in the umbra and penumbra regions. The model parameters are efficiently estimated using an iterative optimization procedure. Our proposed framework consistently performed better than the state-of-the-art on all major shadow databases collected under a variety of conditions.

  17. Molecular detection of Borrelia burgdorferi sensu lato

    DEFF Research Database (Denmark)

    Lager, Malin; Faller, Maximilian; Wilhelmsson, Peter

    2017-01-01

    the protocols using 16S rRNA as the target gene, however, this concordance was mainly related to cDNA as the type of template. When comparing cDNA and DNA as the type of template the analytical sensitivity was in general higher for the protocols using DNA as template regardless of the use of target gene...... molecular detection by polymerase chain reaction (PCR) may serve as a complement. Aim: The purpose of this study was to evaluate the analytical sensitivity, analytical specificity and concordance of eight different real-time PCR methods at five laboratories in Sweden, Norway and Denmark. Method: Each...... participating laboratory was asked to analyse three different sets of samples (reference panels; all blinded) i) cDNA extracted and transcribed from water spiked with cultured Borrelia strains, ii) cerebrospinal fluid spiked with cultured Borrelia strains, and iii) DNA dilution series extracted from cultured...

  18. Plant genotoxicity: a molecular cytogenetic approach in plant bioassays.

    Science.gov (United States)

    Maluszynska, Jolanta; Juchimiuk, Jolanta

    2005-06-01

    It is important for the prevention of DNA changes caused by environment to understand the biological consequences of DNA damages and their molecular modes of action that lead to repair or alterations of the genetic material. Numerous genotoxicity assay systems have been developed to identify DNA reactive compounds. The available data show that plant bioassays are important tests in the detection of genotoxic contamination in the environment and the establishment of controlling systems. Plant system can detect a wide range of genetic damage, including gene mutations and chromosome aberrations. Recently introduced molecular cytogenetic methods allow analysis of genotoxicity, both at the chromosomal and DNA level. FISH gives a new possibility of the detection and analysis of chromosomal rearrangements in a great detail. DNA fragmentation can be estimated using the TUNEL test and the single cell gel electrophoresis (Comet assay).

  19. Selective detection of heavy metal ions by calixarene-based fluorescent molecular sensors

    Science.gov (United States)

    Zhang, Haitao; Faye, Djibril; Zhang, Han; Lefevre, Jean-Pierre; Delaire, J. A.; Leray, Isabelle

    2012-06-01

    The synthesis, spectroscopic characterization and complexing properties of calixarene-based fluorescent sensors are reported. The calixarene bearing four dansyl fluorophores (Calix-DANS4) exhibits a very high affinity for the detection of lead. A fluorimetric micro-device based on the use of a Y-shape microchannel was developed and allows lead detection with a 5 ppb detection limit. For mercury detection, a fluorescent molecular sensor containing a calixarene anchored with four 8-quinolinoloxy groups (Calix-Q) has been synthesized. The absorption and fluorescence spectra of this sensor are sensitive to the presence of metal cations. An efficient fluorescence quenching is observed upon mercury complexation because of a photoinduced electron transfer from the fluorophore to the bound mercury. Calix-Q shows a high selectivity towards Hg2+ over interfering cations (Na+, K+, Ca2+, Cu2+, Zn2+, Cd2+ and Pb2+) and a 70 ppb sensitivity.

  20. [Prediction of the molecular response to pertubations from single cell measurements].

    Science.gov (United States)

    Remacle, Françoise; Levine, Raphael D

    2014-12-01

    The response of protein signalization networks to perturbations is analysed from single cell measurements. This experimental approach allows characterizing the fluctuations in protein expression levels from cell to cell. The analysis is based on an information theoretic approach grounded in thermodynamics leading to a quantitative version of Le Chatelier principle which allows to predict the molecular response. Two systems are investigated: human macrophages subjected to lipopolysaccharide challenge, analogous to the immune response against Gram-negative bacteria and the response of the proteins involved in the mTOR signalizing network of GBM cancer cells to changes in partial oxygen pressure. © 2014 médecine/sciences – Inserm.

  1. Detection of gastritis by single- and double-contrast radiography

    International Nuclear Information System (INIS)

    Thoeni, R.F.; Goldberg, H.I.; Ominsky, S.; Cello, J.P.

    1983-01-01

    Sixty-eight patients with various types of gastritis, 23 patients with normal stomachs, and four patients with other gastric diseases were examined in a prospective study to assess the sensitivity and specificity of single-contrast (SC) and double-contrast (DC) upper gastrointestinal examinations in the evaluation of gastritis. All patients underwent endoscopy with biopsy followed first by DC and then by SC radiography. The respective sensitivities of SC and DC radiography were 58% and 72% for all examinations and 59% and 77% for adequate examinations only. The respective specificities were 59% and 55% based on all examinations. Useful radiographic features included polypoid defects and erosions detected by both methods, abnormal folds and flattened margins detected by the SC technique, and narrowed lumen and crenulated margins detected by the DC technique. In 93% of all cases, the correct diagnosis was based on two or more of these radiographic features. According to this study, the radiographic sensitivity in the detection of gastritis is reliable only in cases of moderate-to-severe disease and only when based on findings of the DC examination. Neither SC nor DC radiography should be used as the primary screening method for patients with suspected gastritis, and the radiographic diagnosis should be restricted to the terms ''erosive'' or ''nonerosive gastritis.''

  2. An eco-friendly molecularly imprinted fluorescence composite material based on carbon dots for fluorescent detection of 4-nitrophenol

    International Nuclear Information System (INIS)

    Hao, Tongfan; Wei, Xiao; Nie, Yijing; Zhou, Zhiping; Xu, Yeqing; Yan, Yongsheng

    2016-01-01

    We on report an eco-friendly molecularly imprinted material based on carbon dots (C-dots) via a facile and efficient sol–gel polymerization for selective fluorescence detection of 4-nitrophenol (4-NP). The amino-modified C-dots were firstly synthesized by a hydrothermal process using citric acid as the carbon source and poly(ethyleneimine) as the surface modifier, and then after a sol–gel molecular imprinting process, the molecularly imprinted fluorescence material was obtained. The material (MIP-C-dots) showed strong fluorescence from C-dots and high selectivity due to the presence of a molecular imprint. After the detection conditions were optimized, the relative fluorescence intensity (F_0/F) of MIP-C-dots presented a good linearity with 4-NP concentrations in the linear range of 0.2 − 50 μmol L"-"1 with a detection limit (3σ/k) of 0.06 μmol L"-"1. In addition, the correlation coefficient was 0.9978 and the imprinting factor was 2.76. The method was applicable to the determination of trace 4-NP in Yangtze River water samples and good recoveries from 92.6–107.3 % were obtained. The present study provides a general strategy to fabricate materials based on C-dots with good fluorescence property for selective fluorescence detection of organic pollutants. (author)

  3. Simultaneous Detection of Both Single Nucleotide Variations and Copy Number Alterations by Next-Generation Sequencing in Gorlin Syndrome.

    Directory of Open Access Journals (Sweden)

    Kei-ichi Morita

    Full Text Available Gorlin syndrome (GS is an autosomal dominant disorder that predisposes affected individuals to developmental defects and tumorigenesis, and caused mainly by heterozygous germline PTCH1 mutations. Despite exhaustive analysis, PTCH1 mutations are often unidentifiable in some patients; the failure to detect mutations is presumably because of mutations occurred in other causative genes or outside of analyzed regions of PTCH1, or copy number alterations (CNAs. In this study, we subjected a cohort of GS-affected individuals from six unrelated families to next-generation sequencing (NGS analysis for the combined screening of causative alterations in Hedgehog signaling pathway-related genes. Specific single nucleotide variations (SNVs of PTCH1 causing inferred amino acid changes were identified in four families (seven affected individuals, whereas CNAs within or around PTCH1 were found in two families in whom possible causative SNVs were not detected. Through a targeted resequencing of all coding exons, as well as simultaneous evaluation of copy number status using the alignment map files obtained via NGS, we found that GS phenotypes could be explained by PTCH1 mutations or deletions in all affected patients. Because it is advisable to evaluate CNAs of candidate causative genes in point mutation-negative cases, NGS methodology appears to be useful for improving molecular diagnosis through the simultaneous detection of both SNVs and CNAs in the targeted genes/regions.

  4. Simultaneous Detection of Both Single Nucleotide Variations and Copy Number Alterations by Next-Generation Sequencing in Gorlin Syndrome.

    Science.gov (United States)

    Morita, Kei-ichi; Naruto, Takuya; Tanimoto, Kousuke; Yasukawa, Chisato; Oikawa, Yu; Masuda, Kiyoshi; Imoto, Issei; Inazawa, Johji; Omura, Ken; Harada, Hiroyuki

    2015-01-01

    Gorlin syndrome (GS) is an autosomal dominant disorder that predisposes affected individuals to developmental defects and tumorigenesis, and caused mainly by heterozygous germline PTCH1 mutations. Despite exhaustive analysis, PTCH1 mutations are often unidentifiable in some patients; the failure to detect mutations is presumably because of mutations occurred in other causative genes or outside of analyzed regions of PTCH1, or copy number alterations (CNAs). In this study, we subjected a cohort of GS-affected individuals from six unrelated families to next-generation sequencing (NGS) analysis for the combined screening of causative alterations in Hedgehog signaling pathway-related genes. Specific single nucleotide variations (SNVs) of PTCH1 causing inferred amino acid changes were identified in four families (seven affected individuals), whereas CNAs within or around PTCH1 were found in two families in whom possible causative SNVs were not detected. Through a targeted resequencing of all coding exons, as well as simultaneous evaluation of copy number status using the alignment map files obtained via NGS, we found that GS phenotypes could be explained by PTCH1 mutations or deletions in all affected patients. Because it is advisable to evaluate CNAs of candidate causative genes in point mutation-negative cases, NGS methodology appears to be useful for improving molecular diagnosis through the simultaneous detection of both SNVs and CNAs in the targeted genes/regions.

  5. Rapid Isolation and Molecular Detection of Streptomycin-Producing Streptomycetes

    Directory of Open Access Journals (Sweden)

    M Motovali-bashi

    2006-07-01

    Full Text Available Introduction: Streptomyces species are mycelial, aerobic gram-positive bacteria that are isolated from soil and produce a diverse range of antibiotics. Streptomyces griseus produces the antibiotic, streptomycin and forms spores even in a liquid culture. The gene cluster for the production of Streptomycin antibiotic contains strR gene that encodes StrR, a pathway-specific regulator. Then, this pathway-specific regulator induces transcription of other streptomycin production genes in the gene cluster. The overall aim of this work was rapid isolation and molecular detection of streptomycin-producing Streptomycetes, especially S. griseus, from Iranian soils in order to manipulate them for increased production of streptomycin. Methods: This research used new initiative half-specific medium for isolation of Streptomycetes from natural environments, called FZmsn. The fifty colonies of Streptomyces strains grown on the surface of FZmsn medium isolated from environmental samples were defined on the basis of their morphological characteristics and light microscope studies. A set of primers was designed to detect strR by OLIGO software. Results: In colony-PCR reactions followed by gel electrophoresis, 6 colonies from Streptomyces strains colonies were detected as S. griseus colonies. Conclusion: These native Streptomyces strains will be used for genetic manipulation of S. griseus in order to increase production levels of streptomycin.

  6. Multi-scale Modeling of Compressible Single-phase Flow in Porous Media using Molecular Simulation

    KAUST Repository

    Saad, Ahmed Mohamed

    2016-05-01

    In this study, an efficient coupling between Monte Carlo (MC) molecular simulation and Darcy-scale flow in porous media is presented. The cell-centered finite difference method with a non-uniform rectangular mesh were used to discretize the simulation domain and solve the governing equations. To speed up the MC simulations, we implemented a recently developed scheme that quickly generates MC Markov chains out of pre-computed ones, based on the reweighting and reconstruction algorithm. This method astonishingly reduces the required computational time by MC simulations from hours to seconds. In addition, the reweighting and reconstruction scheme, which was originally designed to work with the LJ potential model, is extended to work with a potential model that accounts for the molecular quadrupole moment of fluids with non-spherical molecules such as CO2. The potential model was used to simulate the thermodynamic equilibrium properties for single-phase and two-phase systems using the canonical ensemble and the Gibbs ensemble, respectively. Comparing the simulation results with the experimental data showed that the implemented model has an excellent fit outperforming the standard LJ model. To demonstrate the strength of the proposed coupling in terms of computational time efficiency and numerical accuracy in fluid properties, various numerical experiments covering different compressible single-phase flow scenarios were conducted. The novelty in the introduced scheme is in allowing an efficient coupling of the molecular scale and Darcy scale in reservoir simulators. This leads to an accurate description of the thermodynamic behavior of the simulated reservoir fluids; consequently enhancing the confidence in the flow predictions in porous media.

  7. Innovative molecular-based fluorescent nanoparticles for multicolor single particle tracking in cells

    International Nuclear Information System (INIS)

    Daniel, Jonathan; Blanchard-Desce, Mireille; Godin, Antoine G; Palayret, Matthieu; Lounis, Brahim; Cognet, Laurent

    2016-01-01

    Based on an original molecular-based design, we present bright and photostable fluorescent organic nanoparticles (FONs) showing excellent colloidal stability in various aqueous environments. Complementary near-infrared emitting and green emitting FONs were prepared using a simple, fast and robust protocol. Both types of FONs could be simultaneously imaged at the single-particle level in solution as well as in biological environments using a monochromatic excitation and a dual-color fluorescence microscope. No evidence of acute cytotoxicity was found upon incubation of live cells with mixed solutions of FONs, and both types of nanoparticles were found internalized in the cells where their motion could be simultaneously tracked at video-rate up to minutes. These fluorescent organic nanoparticles open a novel non-toxic alternative to existing nanoparticles for imaging biological structures, compatible with live-cell experiments and specially fitted for multicolor single particle tracking. (paper)

  8. Single Molecule Raman Detection of Enkephalin on Silver Colloidal Particles

    DEFF Research Database (Denmark)

    Kneipp, Katrin; Kneipp, Holger; Abdali, Salim

    2004-01-01

    the Raman signal the enkephalin molecules have been attached to silver colloidal cluster structures. The experiments demonstrate that the SERS signal of the strongly enhanced ring breathing vibration of phenylalanine at 1000 cm-1 can be used as “intrinsic marker” for detecting a single enkephalin molecule...... and for monitoring its diffusion on the surface of the silver colloidal cluster without using a specific label molecule....

  9. Simultaneous observation of chemomechanical coupling of a molecular motor.

    Science.gov (United States)

    Nishizaka, Takayuki; Hasimoto, Yuh; Masaike, Tomoko

    2011-01-01

    F(1)-ATPase is the smallest rotary molecular motor ever found. Unidirectional rotation of the γ-shaft is driven by precisely coordinated sequential ATP hydrolysis reactions in three catalytic sites arranged 120° apart in the cylinder. Single-molecule observation allows us to directly watch the rotation of the shaft using micron-sized plastic beads. Additionally, an advanced version of "total internal reflection fluorescence microscope (TIRFM)" enables us to detect binding and release of energy currency through fluorescently labeled ATP. In this chapter, we describe how to set up the system for simultaneous observation of these two critical events. This specialized optical setup is applicable to a variety of research, not only molecular motors but also other single-molecule topics.

  10. Molecular Electronics

    DEFF Research Database (Denmark)

    Jennum, Karsten Stein

    This thesis includes the synthesis and characterisation of organic compounds designed for molecular electronics. The synthesised organic molecules are mainly based on two motifs, the obigo(phenyleneethynylenes) (OPE)s and tetrathiafulvalene (TTF) as shown below. These two scaffolds (OPE and TTF......) are chemically merged together to form cruciform-like structures that are an essential part of the thesis. The cruciform molecules were subjected to molecular conductance measurements to explore their capability towards single-crystal field-effect transistors (Part 1), molecular wires, and single electron......, however, was obtained by a study of a single molecular transistor. The investigated OPE5-TTF compound was captured in a three-terminal experiment, whereby manipulation of the molecule’s electronic spin was possible in different charge states. Thus, we demonstrated how the cruciform molecules could...

  11. Minimum Symbol Error Rate Detection in Single-Input Multiple-Output Channels with Markov Noise

    DEFF Research Database (Denmark)

    Christensen, Lars P.B.

    2005-01-01

    Minimum symbol error rate detection in Single-Input Multiple- Output(SIMO) channels with Markov noise is presented. The special case of zero-mean Gauss-Markov noise is examined closer as it only requires knowledge of the second-order moments. In this special case, it is shown that optimal detection...

  12. Molecular detection of Anaplasma bovis, Ehrlichia canis and Hepatozoon felis in cats from Luanda, Angola.

    Science.gov (United States)

    Oliveira, Ana Cristina; Luz, Maria Francisca; Granada, Sara; Vilhena, Hugo; Nachum-Biala, Yaarit; Lopes, Ana Patrícia; Cardoso, Luís; Baneth, Gad

    2018-03-20

    Molecular identification of tick-borne pathogen infection in cats from Africa is scarce. The presence of bacterial (Anaplasma and Ehrlichia) and protozoal (Babesia and Hepatozoon) agents was investigated in blood samples from 102 domestic cats from Luanda, Angola, by polymerase chain reaction and DNA sequencing. Three cats (2.9%) were found infected with Ehrlichia canis, three (2.9%) with Hepatozoon felis and one (1.0%) with Anaplasma bovis. The prevalence of infections with one single agent was 4.9%, and that of infection with two agents (i.e. E. canis and H. felis) was 1.0%. In total, six cats (5.9%) were found infected with at least one of the detected tick-borne agents. This is the first report of A. bovis, E. canis and H. felis in cats from Angola. To the best of our knowledge, A. bovis is also being reported for the first time in domestic cats outside of Japan. Cats are at a low to moderate risk of being infected with tick-borne agents in Luanda.

  13. Genetic characterization, species differentiation and detection of Fasciola spp. by molecular approaches.

    Science.gov (United States)

    Ai, Lin; Chen, Mu-Xin; Alasaad, Samer; Elsheikha, Hany M; Li, Juan; Li, Hai-Long; Lin, Rui-Qing; Zou, Feng-Cai; Zhu, Xing-Quan; Chen, Jia-Xu

    2011-06-10

    Liver flukes belonging to the genus Fasciola are among the causes of foodborne diseases of parasitic etiology. These parasites cause significant public health problems and substantial economic losses to the livestock industry. Therefore, it is important to definitively characterize the Fasciola species. Current phenotypic techniques fail to reflect the full extent of the diversity of Fasciola spp. In this respect, the use of molecular techniques to identify and differentiate Fasciola spp. offer considerable advantages. The advent of a variety of molecular genetic techniques also provides a powerful method to elucidate many aspects of Fasciola biology, epidemiology, and genetics. However, the discriminatory power of these molecular methods varies, as does the speed and ease of performance and cost. There is a need for the development of new methods to identify the mechanisms underpinning the origin and maintenance of genetic variation within and among Fasciola populations. The increasing application of the current and new methods will yield a much improved understanding of Fasciola epidemiology and evolution as well as more effective means of parasite control. Herein, we provide an overview of the molecular techniques that are being used for the genetic characterization, detection and genotyping of Fasciola spp..

  14. Detection of single-copy functional genes in prokaryotic cells by two-pass TSA-FISH with polynucleotide probes.

    Science.gov (United States)

    Kawakami, Shuji; Hasegawa, Takuya; Imachi, Hiroyuki; Yamaguchi, Takashi; Harada, Hideki; Ohashi, Akiyoshi; Kubota, Kengo

    2012-02-01

    In situ detection of functional genes with single-cell resolution is currently of interest to microbiologists. Here, we developed a two-pass tyramide signal amplification (TSA)-fluorescence in situ hybridization (FISH) protocol with PCR-derived polynucleotide probes for the detection of single-copy genes in prokaryotic cells. The mcrA gene and the apsA gene in methanogens and sulfate-reducing bacteria, respectively, were targeted. The protocol showed bright fluorescence with a good signal-to-noise ratio and achieved a high efficiency of detection (>98%). The discrimination threshold was approximately 82-89% sequence identity. Microorganisms possessing the mcrA or apsA gene in anaerobic sludge samples were successfully detected by two-pass TSA-FISH with polynucleotide probes. The developed protocol is useful for identifying single microbial cells based on functional gene sequences. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Synthesis of a molecularly defined single-active site heterogeneous catalyst for selective oxidation of N-heterocycles.

    Science.gov (United States)

    Zhang, Yujing; Pang, Shaofeng; Wei, Zhihong; Jiao, Haijun; Dai, Xingchao; Wang, Hongli; Shi, Feng

    2018-04-13

    Generally, a homogeneous catalyst exhibits good activity and defined active sites but it is difficult to recycle. Meanwhile, a heterogeneous catalyst can easily be reused but its active site is difficult to reveal. It is interesting to bridge the gap between homogeneous and heterogeneous catalysis via controllable construction of a heterogeneous catalyst containing defined active sites. Here, we report that a molecularly defined, single-active site heterogeneous catalyst has been designed and prepared via the oxidative polymerization of maleimide derivatives. These polymaleimide derivatives can be active catalysts for the selective oxidation of heterocyclic compounds to quinoline and indole via the recycling of -C=O and -C-OH groups, which was confirmed by tracing the reaction with GC-MS using maleimide as the catalyst and by FT-IR analysis with polymaleimide as the catalyst. These results might promote the development of heterogeneous catalysts with molecularly defined single active sites exhibiting a comparable activity to homogeneous catalysts.

  16. Mapping yeast origins of replication via single-stranded DNA detection.

    Science.gov (United States)

    Feng, Wenyi; Raghuraman, M K; Brewer, Bonita J

    2007-02-01

    Studies in th Saccharomyces cerevisiae have provided a framework for understanding how eukaryotic cells replicate their chromosomal DNA to ensure faithful transmission of genetic information to their daughter cells. In particular, S. cerevisiae is the first eukaryote to have its origins of replication mapped on a genomic scale, by three independent groups using three different microarray-based approaches. Here we describe a new technique of origin mapping via detection of single-stranded DNA in yeast. This method not only identified the majority of previously discovered origins, but also detected new ones. We have also shown that this technique can identify origins in Schizosaccharomyces pombe, illustrating the utility of this method for origin mapping in other eukaryotes.

  17. Fluorescence detection of single molecules using pulsed near-field optical excitation and time correlated photon counting

    International Nuclear Information System (INIS)

    Ambrose, W.P.; Goodwin, P.M.; Martin, J.C.; Keller, R.A.

    1994-01-01

    Pulsed excitation, time correlated single photon counting and time gated detection are used in near-field optical microscopy to enhance fluorescence images and measure the fluorescence lifetimes of single molecules of Rhodamine 6G on silica surfaces. Time gated detection is used to reject prompt scattered background and to improve the image signal to noise ratio. The excited state lifetime of a single Rhodamine 6G molecule is found to depend on the position of the near-field probe. We attribute the lifetime variations to spontaneous emission rate alterations by the fluorescence reflected from and quenching by the aluminum coated probe

  18. Picomolar selective detection of mercuric ion (Hg{sup 2+}) using a functionalized single plasmonic gold nanoparticle

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hyeon Don; Choi, Inhee; Yang, Young In; Hong, Surin; Lee, Suseung; Yi, Jongheop [School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 151-742 (Korea, Republic of); Kang, Taewook, E-mail: xinly601@snu.ac.kr, E-mail: iniini79@snu.ac.kr, E-mail: netmo00@snu.ac.kr, E-mail: pell2004@snu.ac.kr, E-mail: jazz1863@snu.ac.kr, E-mail: twkang@sogang.ac.kr, E-mail: jyi@snu.ac.kr [Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 121-742 (Korea, Republic of)

    2010-04-09

    A highly sensitive method for the selective detection and quantification of mercuric ions (Hg{sup 2+}) using single plasmonic gold nanoparticle (GNP)-based dark-field microspectroscopy (DFMS) is demonstrated. The method is based on the scattering property of a single GNP that is functionalized with thiolated molecules, which is altered when analytes bind to the functionalized GNP. The spectral resolution of the system is 0.26 nm and a linear response to Hg{sup 2+} was found in the dynamic range of 100 pM-10 {mu}M. The method permits Hg{sup 2+} to be detected at the picomolar level, which is a remarkable reduction in the detection limit, considering the currently proscribed Environmental Protection Agency regulation level (10 nM, or 2 ppb) and the detection limits of other optical methods for detecting Hg{sup 2+} (recently approx. 1-10 nM). In addition, Hg{sup 2+} can be sensitively detected in the presence of Cd{sup 2+}, Pb{sup 2+}, Cu{sup 2+}, Zn{sup 2+} and Ni{sup 2+}, which do not interfere with the analysis. Based on the findings reported herein, it is likely that single-nanoparticle-based metal ion sensing can be extended to the development of other chemo- and biosensors for the direct detection of specific targets in an intracellular environment as well as in environmental monitoring.

  19. Simplified molecular detection of Leishmania parasites in various clinical samples from patients with leishmaniasis

    NARCIS (Netherlands)

    Mugasa, Claire M.; Laurent, Thierry; Schoone, Gerard J.; Basiye, Frank L.; Saad, Alfarazdeg A.; El Safi, Sayda; Kager, Piet A.; Schallig, Henk Dfh

    2010-01-01

    ABSTRACT: BACKGROUND: Molecular methods to detect Leishmania parasites are considered specific and sensitive, but often not applied in endemic areas of developing countries due to technical complexity. In the present study isothermal, nucleic acid sequence based amplification (NASBA) was coupled to

  20. A new molecular diagnostic tool for quantitatively detecting and genotyping “Candidatus Liberibacter species”

    Science.gov (United States)

    A new molecular diagnostic method was developed for quantitative detection of “Candidatus Liberibacter” species associated with citrus Huanglongbing (“Ca. Liberibacter asiaticus”, “Ca. Liberibacter africanus” and “Ca. Liberibacter americanus”) and potato zebra chip disorder (“Ca. Liberibacter solana...

  1. Molecular detection of feline hemoplasmas in feral cats in Korea.

    Science.gov (United States)

    Yu, Do-Hyeon; Kim, Hyun-Wook; Desai, Atul R; Han, In-Ae; Li, Ying-Hua; Lee, Mi-Jin; Kim, In-Shik; Chae, Joon-Seok; Park, Jinho

    2007-12-01

    The purpose of this study was to determine if Mycoplasma haemofelis, 'Candidatus Mycoplasma haemominutum' exist in Korea. Three hundreds and thirty one feral cats were evaluated by using PCR assay targeting 16S rRNA gene sequence. Fourteen cats (4.2%) were positive for M. haemofelis, 34 cats (10.3%) were positive for 'Candidatus M. haemominutum' and 18 cats (5.4%) were positive for both species. Partial 16S rRNA gene sequences were closely (>98%) related to those from other countries. This is the first molecular detection of feline hemoplasmas in Korea.

  2. Endoleak detection using single-acquisition split-bolus dual-energy computer tomography (DECT)

    Energy Technology Data Exchange (ETDEWEB)

    Javor, D.; Wressnegger, A.; Unterhumer, S.; Kollndorfer, K.; Nolz, R.; Beitzke, D.; Loewe, C. [Medical University of Vienna, Department of Biomedical Imaging and Image-guided Therapy, Vienna (Austria)

    2017-04-15

    To assess a single-phase, dual-energy computed tomography (DECT) with a split-bolus technique and reconstruction of virtual non-enhanced images for the detection of endoleaks after endovascular aneurysm repair (EVAR). Fifty patients referred for routine follow-up post-EVAR CT and a history of at least one post-EVAR follow-up CT examination using our standard biphasic (arterial and venous phase) routine protocol (which was used as the reference standard) were included in this prospective trial. An in-patient comparison and an analysis of the split-bolus protocol and the previously used double-phase protocol were performed with regard to differences in diagnostic accuracy, radiation dose, and image quality. The analysis showed a significant reduction of radiation dose of up to 42 %, using the single-acquisition split-bolus protocol, while maintaining a comparable diagnostic accuracy (primary endoleak detection rate of 96 %). Image quality between the two protocols was comparable and only slightly inferior for the split-bolus scan (2.5 vs. 2.4). Using the single-acquisition, split-bolus approach allows for a significant dose reduction while maintaining high image quality, resulting in effective endoleak identification. (orig.)

  3. An insight into the isolation, enumeration, and molecular detection of Listeria monocytogenes in food

    Science.gov (United States)

    Law, Jodi Woan-Fei; Ab Mutalib, Nurul-Syakima; Chan, Kok-Gan; Lee, Learn-Han

    2015-01-01

    Listeria monocytogenes, a foodborne pathogen that can cause listeriosis through the consumption of food contaminated with this pathogen. The ability of L. monocytogenes to survive in extreme conditions and cause food contaminations have become a major concern. Hence, routine microbiological food testing is necessary to prevent food contamination and outbreaks of foodborne illness. This review provides insight into the methods for cultural detection, enumeration, and molecular identification of L. monocytogenes in various food samples. There are a number of enrichment and plating media that can be used for the isolation of L. monocytogenes from food samples. Enrichment media such as buffered Listeria enrichment broth, Fraser broth, and University of Vermont Medium (UVM) Listeria enrichment broth are recommended by regulatory agencies such as Food and Drug Administration-bacteriological and analytical method (FDA-BAM), US Department of Agriculture-Food and Safety (USDA-FSIS), and International Organization for Standardization (ISO). Many plating media are available for the isolation of L. monocytogenes, for instance, polymyxin acriflavin lithium-chloride ceftazidime aesculin mannitol, Oxford, and other chromogenic media. Besides, reference methods like FDA-BAM, ISO 11290 method, and USDA-FSIS method are usually applied for the cultural detection or enumeration of L. monocytogenes. most probable number technique is applied for the enumeration of L. monocytogenes in the case of low level contamination. Molecular methods including polymerase chain reaction, multiplex polymerase chain reaction, real-time/quantitative polymerase chain reaction, nucleic acid sequence-based amplification, loop-mediated isothermal amplification, DNA microarray, and next generation sequencing technology for the detection and identification of L. monocytogenes are discussed in this review. Overall, molecular methods are rapid, sensitive, specific, time- and labor-saving. In future, there are

  4. Supercontinuum Fourier transform spectrometry with balanced detection on a single photodiode

    International Nuclear Information System (INIS)

    Goncharov, Vasily V.; Hall, Gregory E.

    2016-01-01

    We demonstrate a method of combining a supercontinuum light source with a commercial Fourier transform spectrometer, using a novel approach to dual-beam balanced detection, implemented with phase-sensitive detection on a single light detector. A 40 dB reduction in the relative intensity noise is achieved for broadband light, analogous to conventional balanced detection methods using two matched photodetectors. Unlike conventional balanced detection, however, this method exploits the time structure of the broadband source to interleave signal and reference pulse trains in the time domain, recording the broadband differential signal at the fundamental pulse repetition frequency of the supercontinuum. The method is capable of real-time correction for instability in the supercontinuum spectral structure over a broad range of wavelengths and is compatible with commercially designed spectrometers. A proof-of-principle experimental setup is demonstrated for weak absorption in the 1500-1600 nm region.

  5. Carbon Nanotube Biosensors for Space Molecule Detection and Clinical Molecular Diagnostics

    Science.gov (United States)

    Han, Jie

    2001-01-01

    Both space molecule detection and clinical molecule diagnostics need to develop ultra sensitive biosensors for detection of less than attomole molecules such as amino acids for DNA. However all the electrode sensor systems including those fabricated from the existing carbon nanotubes, have a background level of nA (nanoAmp). This has limited DNA or other molecule detection to nA level or molecules whose concentration is, much higher than attomole level. A program has been created by NASA and NCI (National Cancer Institute) to exploit the possibility of carbon nanotube based biosensors to solve this problem for both's interest. In this talk, I will present our effort on the evaluation and novel design of carbon nanotubes as electrode biosensors with strategies to minimize background currents while maximizing signal intensity.The fabrication of nanotube electrode arrays, immobilization of molecular probes on nanotube electrodes and in vitro biosensor testing will also be discussed.

  6. Detection of irradiated food by the changes in protein molecular mass distribution

    International Nuclear Information System (INIS)

    Niciforovic, A.; Radojcic, M.; Milosavljevic, B.H.

    1998-01-01

    Complete text of publication follows. The present work deals with the radiation-induced damage of proteins, which is followed by the change in the molecular mass. The phenomenon was studied on protein rich samples, i.e., chicken meat and dehydrated egg white. The radiation dose applied was in the range of the ones used for food microbial control. Chicken drumstick and chicken white meat proteins were separated according to their molecular mass. The protein profile was compared to the meat samples irradiated in the frozen state with 5 kGy at 60 Co source. In the case of chicken white meat, irradiation produces both nonselective protein scission (e.g. the amount of proteins of molecular mass larger than 30 kDa decreases, while the amount of proteins of molecular mass smaller than 30 kDa increases), and selective protein scission (e.g. appearance of a protein fragment of molecular mass equal to 18 kDa). In the case of chicken drumstick proteins the irradiation induces both the protein scission and the aggregation. The changes are nonspecific as well as specific and the generation of Mm = 18 kDa protein fragment was observed again. Irradiation of aerated dehydrated egg white proteins produces only nonselective protein scission. The results are discussed in view of the routine application of SDS-PAGE method for the detection of irradiated foodstuff

  7. Evaluation of 3M molecular detection assay (MDA) Salmonella for the detection of Salmonella in selected foods: collaborative study.

    Science.gov (United States)

    Bird, Patrick; Fisher, Kiel; Boyle, Megan; Huffman, Travis; Benzinger, M Joseph; Bedinghaus, Paige; Flannery, Jonathan; Crowley, Erin; Agin, James; Goins, David; Benesh, DeAnn; David, John

    2013-01-01

    The 3M Molecular Detection Assay (MDA) Salmonella is used with the 3M Molecular Detection System for the detection of Salmonella spp. in food, food-related, and environmental samples after enrichment. The assay utilizes loop-mediated isothermal amplification to rapidly amplify Salmonella target DNA with high specificity and sensitivity, combined with bioluminescence to detect the amplification. The 3M MDA Salmonella method was compared using an unpaired study design in a multilaboratory collaborative study to the U.S. Department of Agriculture/Food Safety and Inspection Service-Microbiology Laboratory Guidebook (USDA/FSIS-MLG 4.05), Isolation and Identification of Salmonella from Meat, Poultry, Pasteurized Egg and Catfish Products for raw ground beef and the U.S. Food and Drug Administration/Bacteriological Analytical Manual (FDA/BAM) Chapter 5 Salmonella reference method for wet dog food following the current AOAC guidelines. A total of 20 laboratories participated. For the 3M MDA Salmonella method, raw ground beef was analyzed using 25 g test portions, and wet dog food was analyzed using 375 g test portions. For the reference methods, 25 g test portions of each matrix were analyzed. Each matrix was artificially contaminated with Salmonella at three inoculation levels: an uninoculated control level (0 CFU/test portion), a low inoculum level (0.2-2 CFU/test portion), and a high inoculum level (2-5 CFU/test portion). In this study, 1512 unpaired replicate samples were analyzed. Statistical analysis was conducted according to the probability of detection (POD). For the low-level raw ground beef test portions, the following dLPOD (difference between the POD of the reference and candidate method) values with 95% confidence intervals were obtained: -0.01 (-0.14, +0.12). For the low-level wet dog food test portions, the following dLPOD with 95% confidence intervals were obtained: -0.04 (-0.16, +0.09). No significant differences were observed in the number of positive

  8. Detection of high molecular weight proteins by MALDI imaging mass spectrometry.

    Science.gov (United States)

    Mainini, Veronica; Bovo, Giorgio; Chinello, Clizia; Gianazza, Erica; Grasso, Marco; Cattoretti, Giorgio; Magni, Fulvio

    2013-06-01

    MALDI imaging mass spectrometry (IMS) is a unique technology to explore the spatial distribution of biomolecules directly on tissues. It allows the in situ investigation of a large number of small proteins and peptides. Detection of high molecular weight proteins through MALDI IMS still represents an important challenge, as it would allow the direct investigation of the distribution of more proteins involved in biological processes, such as cytokines, enzymes, neuropeptide precursors and receptors. In this work we compare the traditional method performed with sinapinic acid with a comparable protocol using ferulic acid as the matrix. Data show a remarkable increase of signal acquisition in the mass range of 20k to 150k Th. Moreover, we report molecular images of biomolecules above 70k Th, demonstrating the possibility of expanding the application of this technology both in clinical investigations and basic science.

  9. Controlling the formation process and atomic structures of single pyrazine molecular junction by tuning the strength of the metal-molecule interaction.

    Science.gov (United States)

    Kaneko, Satoshi; Takahashi, Ryoji; Fujii, Shintaro; Nishino, Tomoaki; Kiguchi, Manabu

    2017-04-12

    The formation process and atomic structures were investigated for single pyrazine molecular junctions sandwiched by three different Au, Ag, and Cu electrodes using a mechanically controllable break junction technique in ultrahigh vacuum conditions at 300 K. We demonstrated that the formation process of the single-molecule junction crucially depended on the choice of the metal electrodes. While single-molecule junction showing two distinct conductance states were found for the Au electrodes, only the single conductance state was evident for the Ag electrodes, and there was no junction formation for the Cu electrodes. These results suggested that metal-molecule interaction dominates the formation process and probability of the single-molecule junction. In addition to the metal-molecule interaction, temperature affected the formation process of the single-molecule junction. The single pyrazine molecular junction formed between Au electrodes exhibited significant temperature dependence where the junction-formation probability was about 8% at 300 K, while there was no junction-formation at 100 K. Instead of the junction formation, an Au atomic wire was formed at the low temperature. This study provides insight into the tuning of the junction-forming process for single-molecule junctions, which is needed to construct device structures on a single molecule scale.

  10. Colorimetric biomimetic sensor systems based on molecularly imprinted polymer membranes for highly-selective detection of phenol in environmental samples

    Directory of Open Access Journals (Sweden)

    Sergeyeva T. A.

    2014-05-01

    Full Text Available Aim. Development of an easy-to-use colorimetric sensor system for fast and accurate detection of phenol in envi- ronmental samples. Methods. Technique of molecular imprinting, method of in situ polymerization of molecularly imprinted polymer membranes. Results. The proposed sensor is based on free-standing molecularly imprinted polymer (MIP membranes, synthesized by in situ polymerization, and having in their structure artificial binding sites capable of selective phenol recognition. The quantitative detection of phenol, selectively adsorbed by the MIP membranes, is based on its reaction with 4-aminoantipyrine, which gives a pink-colored product. The intensity of staining of the MIP membrane is proportional to phenol concentration in the analyzed sample. Phenol can be detected within the range 50 nM–10 mM with limit of detection 50 nM, which corresponds to the concentrations that have to be detected in natural and waste waters in accordance with environmental protection standards. Stability of the MIP-membrane-based sensors was assessed during 12 months storage at room temperature. Conclusions. The sensor system provides highly-selective and sensitive detection of phenol in both mo- del and real (drinking, natural, and waste water samples. As compared to traditional methods of phenol detection, the proposed system is characterized by simplicity of operation and can be used in non-laboratory conditions.

  11. Automatic detection and classification of artifacts in single-channel EEG

    DEFF Research Database (Denmark)

    Olund, Thomas; Duun-Henriksen, Jonas; Kjaer, Troels W.

    2014-01-01

    Ambulatory EEG monitoring can provide medical doctors important diagnostic information, without hospitalizing the patient. These recordings are however more exposed to noise and artifacts compared to clinically recorded EEG. An automatic artifact detection and classification algorithm for single......-channel EEG is proposed to help identifying these artifacts. Features are extracted from the EEG signal and wavelet subbands. Subsequently a selection algorithm is applied in order to identify the best discriminating features. A non-linear support vector machine is used to discriminate among different...... artifact classes using the selected features. Single-channel (Fp1-F7) EEG recordings are obtained from experiments with 12 healthy subjects performing artifact inducing movements. The dataset was used to construct and validate the model. Both subject-specific and generic implementation, are investigated...

  12. Colloidal crystal templated molecular imprinted polymer for the detection of 2-butoxyethanol in water contaminated by hydraulic fracturing.

    Science.gov (United States)

    Dai, Jingjing; Vu, Danh; Nagel, Susan; Lin, Chung-Ho; Fidalgo de Cortalezzi, Maria

    2017-12-06

    The authors describe a molecularly imprinted polymer (MIP) that enables detection of 2-butoxyethanol (2BE), a pollutant associated with hydraulic fracturing contamination. Detection is based on a combination of a colloidal crystal templating and a molecular imprinting. The MIPs are shown to display higher binding capacity for 2BE compared to non-imprinted films (NIPs), with imprinting efficiencies of ∼ 2. The tests rely on the optical effects that are displayed by the uniformly ordered porous structure of the material. The reflectance spectra of the polymer films have characteristic Bragg peaks whose location varies with the concentration of 2BE. Peaks undergo longwave red shifts up to 50 nm on exposure of the MIP to 2BE in concentrations in the range from 1 ppb to 100 ppm. This allows for quantitative estimates of the 2BE concentrations present in aqueous solutions. The material is intended for use in the early detection of contamination at hydraulic fracturing sites. Graphical abstract Molecularly imprinted polymers (MIPs) sensor with the sensing ability on reflectance spectra responding to the presence of 2-butoxyethanol (2BE) for early detection of hydraulic fracking contamination.

  13. Molecular Detection of Helicobacter pylori and its Antimicrobial Resistance in Brazzaville, Congo.

    Science.gov (United States)

    Ontsira Ngoyi, Esther Nina; Atipo Ibara, Blaise Irénée; Moyen, Rachelle; Ahoui Apendi, Philestine Clausina; Ibara, Jean Rosaire; Obengui, O; Ossibi Ibara, Roland Bienvenu; Nguimbi, Etienne; Niama, Rock Fabien; Ouamba, Jean Maurille; Yala, Fidèle; Abena, Ange Antoine; Vadivelu, Jamuna; Goh, Khean Lee; Menard, Armelle; Benejat, Lucie; Sifre, Elodie; Lehours, Philippe; Megraud, Francis

    2015-08-01

    Helicobacter pylori infection is involved in several gastroduodenal diseases which can be cured by antimicrobial treatment. The aim of this study was to determine the prevalence of H. pylori infection and its bacterial resistance to clarithromycin, fluoroquinolones, and tetracycline in Brazzaville, Congo, by using molecular methods. A cross- sectional study was carried out between September 2013 and April 2014. Biopsy specimens were obtained from patients scheduled for an upper gastrointestinal endoscopy and were sent to the French National Reference Center for Campylobacters and Helicobacters where they were tested by molecular methods for detection of H. pylori and clarithromycin resistance by real-time PCR using a fluorescence resonance energy transfer-melting curve analysis (FRET-MCA) protocol, for detection of tetracycline resistance by real-time PCR on 16S rRNA genes (rrnA and rrnB), for detection of point mutations in the quinolone resistance-determining regions (QRDR) of H. pylori gyrA gene, associated with resistance to quinolones, by PCR and sequencing. This study showed a high H. pylori prevalence (89%), low rates of clarithromycin and tetracycline resistance (1.7% and 2.5%, respectively), and a high rate of quinolone resistance (50%). Therefore, the use of standard clarithromycin-based triple therapy is still possible as an empiric first-line treatment as well as prescription of bismuth-based quadruple therapy, which includes tetracycline, but not a levofloxacin-based triple therapy because of the high rate of resistance to fluoroquinolones. © 2015 John Wiley & Sons Ltd.

  14. Optimal dynamic detection of explosives

    Energy Technology Data Exchange (ETDEWEB)

    Moore, David Steven [Los Alamos National Laboratory; Mcgrane, Shawn D [Los Alamos National Laboratory; Greenfield, Margo T [Los Alamos National Laboratory; Scharff, R J [Los Alamos National Laboratory; Rabitz, Herschel A [PRINCETON UNIV; Roslund, J [PRINCETON UNIV

    2009-01-01

    The detection of explosives is a notoriously difficult problem, especially at stand-off distances, due to their (generally) low vapor pressure, environmental and matrix interferences, and packaging. We are exploring optimal dynamic detection to exploit the best capabilities of recent advances in laser technology and recent discoveries in optimal shaping of laser pulses for control of molecular processes to significantly enhance the standoff detection of explosives. The core of the ODD-Ex technique is the introduction of optimally shaped laser pulses to simultaneously enhance sensitivity of explosives signatures while reducing the influence of noise and the signals from background interferents in the field (increase selectivity). These goals are being addressed by operating in an optimal nonlinear fashion, typically with a single shaped laser pulse inherently containing within it coherently locked control and probe sub-pulses. With sufficient bandwidth, the technique is capable of intrinsically providing orthogonal broad spectral information for data fusion, all from a single optimal pulse.

  15. An automated and fast approach to detect single-trial visual evoked potentials with application to brain-computer interface.

    Science.gov (United States)

    Tu, Yiheng; Hung, Yeung Sam; Hu, Li; Huang, Gan; Hu, Yong; Zhang, Zhiguo

    2014-12-01

    This study aims (1) to develop an automated and fast approach for detecting visual evoked potentials (VEPs) in single trials and (2) to apply the single-trial VEP detection approach in designing a real-time and high-performance brain-computer interface (BCI) system. The single-trial VEP detection approach uses common spatial pattern (CSP) as a spatial filter and wavelet filtering (WF) a temporal-spectral filter to jointly enhance the signal-to-noise ratio (SNR) of single-trial VEPs. The performance of the joint spatial-temporal-spectral filtering approach was assessed in a four-command VEP-based BCI system. The offline classification accuracy of the BCI system was significantly improved from 67.6±12.5% (raw data) to 97.3±2.1% (data filtered by CSP and WF). The proposed approach was successfully implemented in an online BCI system, where subjects could make 20 decisions in one minute with classification accuracy of 90%. The proposed single-trial detection approach is able to obtain robust and reliable VEP waveform in an automatic and fast way and it is applicable in VEP based online BCI systems. This approach provides a real-time and automated solution for single-trial detection of evoked potentials or event-related potentials (EPs/ERPs) in various paradigms, which could benefit many applications such as BCI and intraoperative monitoring. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  16. Manipulating molecular quantum states with classical metal atom inputs: demonstration of a single molecule NOR logic gate.

    Science.gov (United States)

    Soe, We-Hyo; Manzano, Carlos; Renaud, Nicolas; de Mendoza, Paula; De Sarkar, Abir; Ample, Francisco; Hliwa, Mohamed; Echavarren, Antonio M; Chandrasekhar, Natarajan; Joachim, Christian

    2011-02-22

    Quantum states of a trinaphthylene molecule were manipulated by putting its naphthyl branches in contact with single Au atoms. One Au atom carries 1-bit of classical information input that is converted into quantum information throughout the molecule. The Au-trinaphthylene electronic interactions give rise to measurable energy shifts of the molecular electronic states demonstrating a NOR logic gate functionality. The NOR truth table of the single molecule logic gate was characterized by means of scanning tunnelling spectroscopy.

  17. Simultaneous detection of the three ilarviruses affecting stone fruit trees by nonisotopic molecular hybridization and multiplex reverse-transcription polymerase chain reaction.

    Science.gov (United States)

    Saade, M; Aparicio, F; Sánchez-Navarro, J A; Herranz, M C; Myrta, A; Di Terlizzi, B; Pallás, V

    2000-12-01

    ABSTRACT The three most economically damaging ilarviruses affecting stone fruit trees on a worldwide scale are the related Prunus necrotic ringspot virus (PNRSV), Prune dwarf virus (PDV), and Apple mosaic virus (ApMV). Nonisotopic molecular hybridization and multiplex reverse-transcription polymerase chain reaction (RT-PCR) methodologies were developed that could detect all these viruses simultaneously. The latter technique was advantageous because it was discriminatory. For RT-PCR, a degenerate antisense primer was designed which was used in conjunction with three virus-specific sense primers. The amplification efficiencies for the detection of the three viruses in the multiplex RT-PCR reaction were identical to those obtained in the single RT-PCR reactions for individual viruses. This cocktail of primers was able to amplify sequences from all of the PNRSV, ApMV, and PDV isolates tested in five Prunus spp. hosts (almond, apricot, cherry, peach, and plum) occurring naturally in single or multiple infections. For ApMV isolates, differences in the electrophoretic mobilities of the PCR products were observed. The nucleotide sequence of the amplified products of two representative ApMV isolates was determined, and comparative analysis revealed the existence of a 28-nucleotide deletion in the sequence of isolates showing the faster electrophoretic mobility. To our knowledge, this is the first report on the simultaneous detection of three plant viruses by multiplex RT-PCR in woody hosts. This multiplex RT-PCR could be a useful time and cost saving method for indexing these three ilarviruses, which damage stone fruit tree yields, and for the analysis of mother plants in certification programs.

  18. Molecular imprinted polymer functionalized carbon nanotube sensors for detection of saccharides

    Science.gov (United States)

    Badhulika, Sushmee; Mulchandani, Ashok

    2015-08-01

    In this work, we report the synthesis and fabrication of an enzyme-free sugar sensor based on molecularly imprinted polymer (MIP) on the surface of single walled carbon nanotubes (SWNTs). Electropolymerization of 3-aminophenylboronic acid (3-APBA) in the presence of 10 M d-fructose and fluoride at neutral pH conditions resulted in the formation of a self-doped, molecularly imprinted conducting polymer (MICP) via the formation of a stable anionic boronic ester complex between poly(aniline boronic acid) and d-fructose. Template removal generated binding sites on the polymer matrix that were complementary to d-fructose both in structure, i.e., shape, size, and positioning of functional groups, thus enabling sensing of d-fructose with enhanced affinity and specificity over non-MIP based sensors. Using carbon nanotubes along with MICPs helped to develop an efficient electrochemical sensor by enhancing analyte recognition and signal generation. These sensors could be regenerated and used multiple times unlike conventional affinity based biosensors which suffer from physical and chemical stability.

  19. Quantum tunneling of magnetization in single molecular magnets coupled to ferromagnetic reservoirs

    Science.gov (United States)

    Misiorny, M.; Barnas, J.

    2007-04-01

    The role of spin polarized reservoirs in quantum tunneling of magnetization and relaxation processes in a single molecular magnet (SMM) is investigated theoretically. The SMM is exchange-coupled to the reservoirs and also subjected to a magnetic field varying in time, which enables the quantum tunneling of magnetization. The spin relaxation times are calculated from the Fermi golden rule. The exchange interaction of SMM and electrons in the leads is shown to affect the spin reversal due to quantum tunneling of magnetization. It is shown that the switching is associated with transfer of a certain charge between the leads.

  20. Single-site Lennard-Jones models via polynomial chaos surrogates of Monte Carlo molecular simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kadoura, Ahmad, E-mail: ahmad.kadoura@kaust.edu.sa, E-mail: adil.siripatana@kaust.edu.sa, E-mail: shuyu.sun@kaust.edu.sa, E-mail: omar.knio@kaust.edu.sa; Sun, Shuyu, E-mail: ahmad.kadoura@kaust.edu.sa, E-mail: adil.siripatana@kaust.edu.sa, E-mail: shuyu.sun@kaust.edu.sa, E-mail: omar.knio@kaust.edu.sa [Computational Transport Phenomena Laboratory, The Earth Sciences and Engineering Department, The Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900 (Saudi Arabia); Siripatana, Adil, E-mail: ahmad.kadoura@kaust.edu.sa, E-mail: adil.siripatana@kaust.edu.sa, E-mail: shuyu.sun@kaust.edu.sa, E-mail: omar.knio@kaust.edu.sa; Hoteit, Ibrahim, E-mail: ibrahim.hoteit@kaust.edu.sa [Earth Fluid Modeling and Predicting Group, The Earth Sciences and Engineering Department, The Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900 (Saudi Arabia); Knio, Omar, E-mail: ahmad.kadoura@kaust.edu.sa, E-mail: adil.siripatana@kaust.edu.sa, E-mail: shuyu.sun@kaust.edu.sa, E-mail: omar.knio@kaust.edu.sa [Uncertainty Quantification Center, The Applied Mathematics and Computational Science Department, The Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900 (Saudi Arabia)

    2016-06-07

    In this work, two Polynomial Chaos (PC) surrogates were generated to reproduce Monte Carlo (MC) molecular simulation results of the canonical (single-phase) and the NVT-Gibbs (two-phase) ensembles for a system of normalized structureless Lennard-Jones (LJ) particles. The main advantage of such surrogates, once generated, is the capability of accurately computing the needed thermodynamic quantities in a few seconds, thus efficiently replacing the computationally expensive MC molecular simulations. Benefiting from the tremendous computational time reduction, the PC surrogates were used to conduct large-scale optimization in order to propose single-site LJ models for several simple molecules. Experimental data, a set of supercritical isotherms, and part of the two-phase envelope, of several pure components were used for tuning the LJ parameters (ε, σ). Based on the conducted optimization, excellent fit was obtained for different noble gases (Ar, Kr, and Xe) and other small molecules (CH{sub 4}, N{sub 2}, and CO). On the other hand, due to the simplicity of the LJ model used, dramatic deviations between simulation and experimental data were observed, especially in the two-phase region, for more complex molecules such as CO{sub 2} and C{sub 2} H{sub 6}.

  1. A molecular beacon based on DNA-templated silver nanoclusters for the highly sensitive and selective multiplexed detection of virulence genes.

    Science.gov (United States)

    Han, Dan; Wei, Chunying

    2018-05-01

    In this work, we develop a fluorescent molecular beacon based on the DNA-templated silver nanoclusters (DNA-Ag NCs). The skillfully designed molecular beacon can be conveniently used for detection of diverse virulence genes as long as the corresponding recognition sequences are embedded. Importantly, the constructed detection system allows simultaneous detection of multiple nucleic acids, which is attributed to non-overlapping emission spectra of the as-synthesized silver nanoclusters. Based on the target-induced fluorescence enhancement, three infectious disease-related genes HIV, H1N1, and H5N1 are detected, and the corresponding detection limits are 3.53, 0.12 and 3.95nM, respectively. This design allows specific, versatile and simultaneous detection of diverse targets with easy operation and low cost. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Fluorescent molecularly imprinted polymer based on Navicula sp. frustules for optical detection of lysozyme.

    Science.gov (United States)

    Lim, Guat Wei; Lim, Jit Kang; Ahmad, Abdul Latif; Chan, Derek Juinn Chieh

    2016-03-01

    The direct correlation between disease and lysozyme (LYZ) levels in human body fluids makes the sensitive and convenient detection of LYZ the focus of scientific research. Fluorescent molecularly imprinted polymer has emerged as a new alternative for LYZ detection in order to resolve the limitation of immunoassays, which are expensive, unstable, require complex preparation, and are time consuming. In this study, a novel fluorescence molecularly imprinted polymer based on Navicula sp. frustules (FITC-MIP) has been synthesized via post-imprinting treatment for LYZ detection. Navicula sp. frustules were used as supported material because of their unique properties of moderate surface area, reproducibility, and biocompatibility, to address the drawbacks of nanoparticle core material with low adsorption capacity. The FITC acts as recognition signal and optical readout, whereas MIP provides LYZ selectivity. The synthesized FITC-MIP showed a response time as short as 5 min depending on the concentration of LYZ. It is found that the LYZ template can significantly quench the fluorescence intensity of FITC-MIP linearly within a concentration range of 0 to 0.025 mg mL(-1), which is well described by Stern-Volmer equation. The FITC-MIP can selectively and sensitively detect down to 0.0015 mg mL(-1) of LYZ concentration. The excellent sensing performance of FITC-MIP suggests that FITC-MIP is a potential biosensor in clinical diagnosis applications.

  3. Molecular techniques for the identification and detection of microorganisms relevant for the food industry

    NARCIS (Netherlands)

    Klijn, N.

    1996-01-01

    The research described in this thesis concerns the development and application in food microbiology of molecular identification and detection techniques based on 16S rRNA sequences. The technologies developed were applied to study the microbial ecology of two groups of bacteria, namely

  4. Application of a molecular beacon based real-time isothermal amplification (MBRTIA) technology for simultaneous detection of Bacillus cereus and Staphylococcus aureus.

    Science.gov (United States)

    Mandappa, I M; Joglekar, Prasanna; Manonmani, H K

    2015-07-01

    A multiplex real-time isothermal amplification assay was developed using molecular beacons for the detection of Bacillus cereus and Staphylococcus aureus by targeting four important virulence genes. A correlation between targeting highly accessible DNA sequences and isothermal amplification based molecular beacon efficiency and sensitivity was demonstrated using phi(Φ)29 DNA polymerase at a constant isothermal temperature of 30 °C. It was very selective and consistently detected down to 10(1) copies of DNA. The specificity and sensitivity of this assay, when tested with pure culture were high, surpassing those of currently used PCR assays for the detection of these organisms. The molecular beacon based real-time isothermal amplification (MBRTIA) assay could be carried out entirely in 96 well plates or well strips, enabling a rapid and high-throughput detection of food borne pathogens.

  5. Scrambled eggs: A highly sensitive molecular diagnostic workflow for Fasciola species specific detection from faecal samples.

    Directory of Open Access Journals (Sweden)

    Nichola Eliza Davies Calvani

    2017-09-01

    Full Text Available Fasciolosis, due to Fasciola hepatica and Fasciola gigantica, is a re-emerging zoonotic parasitic disease of worldwide importance. Human and animal infections are commonly diagnosed by the traditional sedimentation and faecal egg-counting technique. However, this technique is time-consuming and prone to sensitivity errors when a large number of samples must be processed or if the operator lacks sufficient experience. Additionally, diagnosis can only be made once the 12-week pre-patent period has passed. Recently, a commercially available coprological antigen ELISA has enabled detection of F. hepatica prior to the completion of the pre-patent period, providing earlier diagnosis and increased throughput, although species differentiation is not possible in areas of parasite sympatry. Real-time PCR offers the combined benefits of highly sensitive species differentiation for medium to large sample sizes. However, no molecular diagnostic workflow currently exists for the identification of Fasciola spp. in faecal samples.A new molecular diagnostic workflow for the highly-sensitive detection and quantification of Fasciola spp. in faecal samples was developed. The technique involves sedimenting and pelleting the samples prior to DNA isolation in order to concentrate the eggs, followed by disruption by bead-beating in a benchtop homogeniser to ensure access to DNA. Although both the new molecular workflow and the traditional sedimentation technique were sensitive and specific, the new molecular workflow enabled faster sample throughput in medium to large epidemiological studies, and provided the additional benefit of speciation. Further, good correlation (R2 = 0.74-0.76 was observed between the real-time PCR values and the faecal egg count (FEC using the new molecular workflow for all herds and sampling periods. Finally, no effect of storage in 70% ethanol was detected on sedimentation and DNA isolation outcomes; enabling transport of samples from endemic

  6. Scrambled eggs: A highly sensitive molecular diagnostic workflow for Fasciola species specific detection from faecal samples

    Science.gov (United States)

    Calvani, Nichola Eliza Davies; Windsor, Peter Andrew; Bush, Russell David

    2017-01-01

    Background Fasciolosis, due to Fasciola hepatica and Fasciola gigantica, is a re-emerging zoonotic parasitic disease of worldwide importance. Human and animal infections are commonly diagnosed by the traditional sedimentation and faecal egg-counting technique. However, this technique is time-consuming and prone to sensitivity errors when a large number of samples must be processed or if the operator lacks sufficient experience. Additionally, diagnosis can only be made once the 12-week pre-patent period has passed. Recently, a commercially available coprological antigen ELISA has enabled detection of F. hepatica prior to the completion of the pre-patent period, providing earlier diagnosis and increased throughput, although species differentiation is not possible in areas of parasite sympatry. Real-time PCR offers the combined benefits of highly sensitive species differentiation for medium to large sample sizes. However, no molecular diagnostic workflow currently exists for the identification of Fasciola spp. in faecal samples. Methodology/Principal findings A new molecular diagnostic workflow for the highly-sensitive detection and quantification of Fasciola spp. in faecal samples was developed. The technique involves sedimenting and pelleting the samples prior to DNA isolation in order to concentrate the eggs, followed by disruption by bead-beating in a benchtop homogeniser to ensure access to DNA. Although both the new molecular workflow and the traditional sedimentation technique were sensitive and specific, the new molecular workflow enabled faster sample throughput in medium to large epidemiological studies, and provided the additional benefit of speciation. Further, good correlation (R2 = 0.74–0.76) was observed between the real-time PCR values and the faecal egg count (FEC) using the new molecular workflow for all herds and sampling periods. Finally, no effect of storage in 70% ethanol was detected on sedimentation and DNA isolation outcomes; enabling

  7. Scrambled eggs: A highly sensitive molecular diagnostic workflow for Fasciola species specific detection from faecal samples.

    Science.gov (United States)

    Calvani, Nichola Eliza Davies; Windsor, Peter Andrew; Bush, Russell David; Šlapeta, Jan

    2017-09-01

    Fasciolosis, due to Fasciola hepatica and Fasciola gigantica, is a re-emerging zoonotic parasitic disease of worldwide importance. Human and animal infections are commonly diagnosed by the traditional sedimentation and faecal egg-counting technique. However, this technique is time-consuming and prone to sensitivity errors when a large number of samples must be processed or if the operator lacks sufficient experience. Additionally, diagnosis can only be made once the 12-week pre-patent period has passed. Recently, a commercially available coprological antigen ELISA has enabled detection of F. hepatica prior to the completion of the pre-patent period, providing earlier diagnosis and increased throughput, although species differentiation is not possible in areas of parasite sympatry. Real-time PCR offers the combined benefits of highly sensitive species differentiation for medium to large sample sizes. However, no molecular diagnostic workflow currently exists for the identification of Fasciola spp. in faecal samples. A new molecular diagnostic workflow for the highly-sensitive detection and quantification of Fasciola spp. in faecal samples was developed. The technique involves sedimenting and pelleting the samples prior to DNA isolation in order to concentrate the eggs, followed by disruption by bead-beating in a benchtop homogeniser to ensure access to DNA. Although both the new molecular workflow and the traditional sedimentation technique were sensitive and specific, the new molecular workflow enabled faster sample throughput in medium to large epidemiological studies, and provided the additional benefit of speciation. Further, good correlation (R2 = 0.74-0.76) was observed between the real-time PCR values and the faecal egg count (FEC) using the new molecular workflow for all herds and sampling periods. Finally, no effect of storage in 70% ethanol was detected on sedimentation and DNA isolation outcomes; enabling transport of samples from endemic to non

  8. Molecular Detection and Characterization of Tick-borne Pathogens in Dogs and Ticks from Nigeria

    Science.gov (United States)

    Kamani, Joshua; Baneth, Gad; Mumcuoglu, Kosta Y.; Waziri, Ndadilnasiya E.; Eyal, Osnat; Guthmann, Yifat; Harrus, Shimon

    2013-01-01

    Background Only limited information is currently available on the prevalence of vector borne and zoonotic pathogens in dogs and ticks in Nigeria. The aim of this study was to use molecular techniques to detect and characterize vector borne pathogens in dogs and ticks from Nigeria. Methodology/Principal Findings Blood samples and ticks (Rhipicephalus sanguineus, Rhipicephalus turanicus and Heamaphysalis leachi) collected from 181 dogs from Nigeria were molecularly screened for human and animal vector-borne pathogens by PCR and sequencing. DNA of Hepatozoon canis (41.4%), Ehrlichia canis (12.7%), Rickettsia spp. (8.8%), Babesia rossi (6.6%), Anaplasma platys (6.6%), Babesia vogeli (0.6%) and Theileria sp. (0.6%) was detected in the blood samples. DNA of E. canis (23.7%), H. canis (21.1%), Rickettsia spp. (10.5%), Candidatus Neoehrlichia mikurensis (5.3%) and A. platys (1.9%) was detected in 258 ticks collected from 42 of the 181 dogs. Co- infections with two pathogens were present in 37% of the dogs examined and one dog was co-infected with 3 pathogens. DNA of Rickettsia conorii israelensis was detected in one dog and Rhipicephalus sanguineus tick. DNA of another human pathogen, Candidatus N. mikurensis was detected in Rhipicephalus sanguineus and Heamaphysalis leachi ticks, and is the first description of Candidatus N. mikurensis in Africa. The Theileria sp. DNA detected in a local dog in this study had 98% sequence identity to Theileria ovis from sheep. Conclusions/Significance The results of this study indicate that human and animal pathogens are abundant in dogs and their ticks in Nigeria and portray the potential high risk of human exposure to infection with these agents. PMID:23505591

  9. Molecular detection and characterization of tick-borne pathogens in dogs and ticks from Nigeria.

    Directory of Open Access Journals (Sweden)

    Joshua Kamani

    Full Text Available BACKGROUND: Only limited information is currently available on the prevalence of vector borne and zoonotic pathogens in dogs and ticks in Nigeria. The aim of this study was to use molecular techniques to detect and characterize vector borne pathogens in dogs and ticks from Nigeria. METHODOLOGY/PRINCIPAL FINDINGS: Blood samples and ticks (Rhipicephalus sanguineus, Rhipicephalus turanicus and Heamaphysalis leachi collected from 181 dogs from Nigeria were molecularly screened for human and animal vector-borne pathogens by PCR and sequencing. DNA of Hepatozoon canis (41.4%, Ehrlichia canis (12.7%, Rickettsia spp. (8.8%, Babesia rossi (6.6%, Anaplasma platys (6.6%, Babesia vogeli (0.6% and Theileria sp. (0.6% was detected in the blood samples. DNA of E. canis (23.7%, H. canis (21.1%, Rickettsia spp. (10.5%, Candidatus Neoehrlichia mikurensis (5.3% and A. platys (1.9% was detected in 258 ticks collected from 42 of the 181 dogs. Co- infections with two pathogens were present in 37% of the dogs examined and one dog was co-infected with 3 pathogens. DNA of Rickettsia conorii israelensis was detected in one dog and Rhipicephalus sanguineus tick. DNA of another human pathogen, Candidatus N. mikurensis was detected in Rhipicephalus sanguineus and Heamaphysalis leachi ticks, and is the first description of Candidatus N. mikurensis in Africa. The Theileria sp. DNA detected in a local dog in this study had 98% sequence identity to Theileria ovis from sheep. CONCLUSIONS/SIGNIFICANCE: The results of this study indicate that human and animal pathogens are abundant in dogs and their ticks in Nigeria and portray the potential high risk of human exposure to infection with these agents.

  10. Practices and exploration on competition of molecular biological detection technology among students in food quality and safety major.

    Science.gov (United States)

    Chang, Yaning; Peng, Yuke; Li, Pengfei; Zhuang, Yingping

    2017-07-08

    With the increasing importance in the application of the molecular biological detection technology in the field of food safety, strengthening education in molecular biology experimental techniques is more necessary for the culture of the students in food quality and safety major. However, molecular biology experiments are not always in curricula of Food quality and safety Majors. This paper introduced a project "competition of molecular biological detection technology for food safety among undergraduate sophomore students in food quality and safety major", students participating in this project needed to learn the fundamental molecular biology experimental techniques such as the principles of molecular biology experiments and genome extraction, PCR and agarose gel electrophoresis analysis, and then design the experiments in groups to identify the meat species in pork and beef products using molecular biological methods. The students should complete the experimental report after basic experiments, write essays and make a presentation after the end of the designed experiments. This project aims to provide another way for food quality and safety majors to improve their knowledge of molecular biology, especially experimental technology, and enhances them to understand the scientific research activities as well as give them a chance to learn how to write a professional thesis. In addition, in line with the principle of an open laboratory, the project is also open to students in other majors in East China University of Science and Technology, in order to enhance students in other majors to understand the fields of molecular biology and food safety. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(4):343-350, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  11. Single reading with computer-aided detection performed by selected radiologists in a breast cancer screening program

    Energy Technology Data Exchange (ETDEWEB)

    Bargalló, Xavier, E-mail: xbarga@clinic.cat [Department of Radiology (CDIC), Hospital Clínic de Barcelona, C/ Villarroel, 170, 08036 Barcelona (Spain); Santamaría, Gorane; Amo, Montse del; Arguis, Pedro [Department of Radiology (CDIC), Hospital Clínic de Barcelona, C/ Villarroel, 170, 08036 Barcelona (Spain); Ríos, José [Biostatistics and Data Management Core Facility, IDIBAPS, (Hospital Clinic) C/ Mallorca, 183. Floor -1. Office #60. 08036 Barcelona (Spain); Grau, Jaume [Preventive Medicine and Epidemiology Unit, Hospital Clínic de Barcelona, C/ Villarroel, 170, 08036 Barcelona (Spain); Burrel, Marta; Cores, Enrique; Velasco, Martín [Department of Radiology (CDIC), Hospital Clínic de Barcelona, C/ Villarroel, 170, 08036 Barcelona (Spain)

    2014-11-15

    Highlights: • 1-The cancer detection rate of the screening program improved using a single reading protocol by experienced radiologists assisted by CAD. • 2-The cancer detection rate improved at the cost of increasing recall rate. • 3-CAD, used by breast radiologists, did not help to detect more cancers. - Abstract: Objectives: To assess the impact of shifting from a standard double reading plus arbitration protocol to a single reading by experienced radiologists assisted by computer-aided detection (CAD) in a breast cancer screening program. Methods: This was a prospective study approved by the ethics committee. Data from 21,321 consecutive screening mammograms in incident rounds (2010–2012) were read following a single reading plus CAD protocol and compared with data from 47,462 consecutive screening mammograms in incident rounds (2004–2010) that were interpreted following a double reading plus arbitration protocol. For the single reading, radiologists were selected on the basis of the appraisement of their previous performance. Results: Period 2010–2012 vs. period 2004–2010: Cancer detection rate (CDR): 6.1‰ (95% confidence interval: 5.1–7.2) vs. 5.25‰; Recall rate (RR): 7.02% (95% confidence interval: 6.7–7.4) vs. 7.24% (selected readers before arbitration) and vs. 3.94 (all readers after arbitration); Predictive positive value of recall: 8.69% vs. 13.32%. Average size of invasive cancers: 14.6 ± 9.5 mm vs. 14.3 ± 9.5 mm. Stage: 0 (22.3/26.1%); I (59.2/50.8%); II (19.2/17.1%); III (3.1/3.3%); IV (0/1.9%). Specialized breast radiologists performed better than general radiologists. Conclusions: The cancer detection rate of the screening program improved using a single reading protocol by experienced radiologists assisted by CAD, at the cost of a moderate increase of the recall rate mainly related to the lack of arbitration.

  12. Fluorescent Biosensors Based on Single-Molecule Counting.

    Science.gov (United States)

    Ma, Fei; Li, Ying; Tang, Bo; Zhang, Chun-Yang

    2016-09-20

    Biosensors for highly sensitive, selective, and rapid quantification of specific biomolecules make great contributions to biomedical research, especially molecular diagnostics. However, conventional methods for biomolecular assays often suffer from insufficient sensitivity and poor specificity. In some case (e.g., early disease diagnostics), the concentration of target biomolecules is too low to be detected by these routine approaches, and cumbersome procedures are needed to improve the detection sensitivity. Therefore, there is an urgent need for rapid and ultrasensitive analytical tools. In this respect, single-molecule fluorescence approaches may well satisfy the requirement and hold promising potential for the development of ultrasensitive biosensors. Encouragingly, owing to the advances in single-molecule microscopy and spectroscopy over past decades, the detection of single fluorescent molecule comes true, greatly boosting the development of highly sensitive biosensors. By in vitro/in vivo labeling of target biomolecules with proper fluorescent tags, the quantification of certain biomolecule at the single-molecule level is achieved. In comparison with conventional ensemble measurements, single-molecule detection-based analytical methods possess the advantages of ultrahigh sensitivity, good selectivity, rapid analysis time, and low sample consumption. Consequently, single-molecule detection may be potentially employed as an ideal analytical approach to quantify low-abundant biomolecules with rapidity and simplicity. In this Account, we will summarize our efforts for developing a series of ultrasensitive biosensors based on single-molecule counting. Single-molecule counting is a member of single-molecule detection technologies and may be used as a very simple and ultrasensitive method to quantify target molecules by simply counting the individual fluorescent bursts. In the fluorescent sensors, the signals of target biomolecules may be translated to the

  13. Genetic characterization, species differentiation and detection of Fasciola spp. by molecular approaches

    Directory of Open Access Journals (Sweden)

    Li Hai-Long

    2011-06-01

    Full Text Available Abstract Liver flukes belonging to the genus Fasciola are among the causes of foodborne diseases of parasitic etiology. These parasites cause significant public health problems and substantial economic losses to the livestock industry. Therefore, it is important to definitively characterize the Fasciola species. Current phenotypic techniques fail to reflect the full extent of the diversity of Fasciola spp. In this respect, the use of molecular techniques to identify and differentiate Fasciola spp. offer considerable advantages. The advent of a variety of molecular genetic techniques also provides a powerful method to elucidate many aspects of Fasciola biology, epidemiology, and genetics. However, the discriminatory power of these molecular methods varies, as does the speed and ease of performance and cost. There is a need for the development of new methods to identify the mechanisms underpinning the origin and maintenance of genetic variation within and among Fasciola populations. The increasing application of the current and new methods will yield a much improved understanding of Fasciola epidemiology and evolution as well as more effective means of parasite control. Herein, we provide an overview of the molecular techniques that are being used for the genetic characterization, detection and genotyping of Fasciola spp..

  14. Sensitive simultaneous detection of seven sexually transmitted agents in semen by multiplex-PCR and of HPV by single PCR.

    Directory of Open Access Journals (Sweden)

    Fabrícia Gimenes

    Full Text Available Sexually transmitted diseases (STDs may impair sperm parameters and functions thereby promoting male infertility. To date limited molecular studies were conducted to evaluate the frequency and type of such infections in semen Thus, we aimed at conceiving and validating a multiplex PCR (M-PCR assay for the simultaneous detection of the following STD pathogens in semen: Chlamydia trachomatis, Neisseria gonorrhoeae, Mycoplasma genitalium, Trichomonas vaginalis, Herpes virus simplex (HSV -1 and -2, and Treponema pallidum; We also investigated the potential usefulness of this M-PCR assay in screening programs for semen pathogens. In addition, we aimed: to detect human Papillomavirus (HPV and genotypes by single PCR (sPCR in the same semen samples; to determine the prevalence of the seven STDs, HPV and co-infections; to assess the possibility that these infections affect semen parameters and thus fertility. The overall validation parameters of M-PCR were extremely high including agreement (99.2%, sensitivity (100.00%, specificity (99.70%, positive (96.40% and negative predictive values (100.00% and accuracy (99.80%. The prevalence of STDs was very high (55.3%. Furthermore, associations were observed between STDs and changes in semen parameters, highlighting the importance of STD detection in semen. Thus, this M-PCR assay has great potential for application in semen screening programs for pathogens in infertility and STD clinics and in sperm banks.

  15. Laser-cooled atomic ions as probes of molecular ions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Kenneth R.; Viteri, C. Ricardo; Clark, Craig R.; Goeders, James E.; Khanyile, Ncamiso B.; Vittorini, Grahame D. [Schools of Chemistry and Biochemistry, Computational Science and Engineering and Physics, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2015-01-22

    Trapped laser-cooled atomic ions are a new tool for understanding cold molecular ions. The atomic ions not only sympathetically cool the molecular ions to millikelvin temperatures, but the bright atomic ion fluorescence can also serve as a detector of both molecular reactions and molecular spectra. We are working towards the detection of single molecular ion spectra by sympathetic heating spectroscopy. Sympathetic heating spectroscopy uses the coupled motion of two trapped ions to measure the spectra of one ion by observing changes in the fluorescence of the other ion. Sympathetic heating spectroscopy is a generalization of quantum logic spectroscopy, but does not require ions in the motional ground state or coherent control of the ion internal states. We have recently demonstrated this technique using two isotopes of Ca{sup +} [Phys. Rev. A, 81, 043428 (2010)]. Limits of the method and potential applications for molecular spectroscopy are discussed.

  16. Authenticated Quantum Key Distribution with Collective Detection using Single Photons

    Science.gov (United States)

    Huang, Wei; Xu, Bing-Jie; Duan, Ji-Tong; Liu, Bin; Su, Qi; He, Yuan-Hang; Jia, Heng-Yue

    2016-10-01

    We present two authenticated quantum key distribution (AQKD) protocols by utilizing the idea of collective (eavesdropping) detection. One is a two-party AQKD protocol, the other is a multiparty AQKD protocol with star network topology. In these protocols, the classical channels need not be assumed to be authenticated and the single photons are used as the quantum information carriers. To achieve mutual identity authentication and establish a random key in each of the proposed protocols, only one participant should be capable of preparing and measuring single photons, and the main quantum ability that the rest of the participants should have is just performing certain unitary operations. Security analysis shows that these protocols are free from various kinds of attacks, especially the impersonation attack and the man-in-the-middle (MITM) attack.

  17. The Influence of Single Nucleotide Polymorphism Microarray-Based Molecular Karyotype on Preimplantation Embryonic Development Potential.

    Directory of Open Access Journals (Sweden)

    Gang Li

    Full Text Available In order to investigate the influence of the molecular karyotype based on single nucleotide polymorphism (SNP microarray on embryonic development potential in preimplantation genetic diagnosis (PGD, we retrospectively analyzed the clinical data generated by PGD using embryos retrieved from parents with chromosome rearrangements in our center. In total, 929 embryos from 119 couples had exact diagnosis and development status. The blastocyst formation rate of balanced molecular karyotype embryos was 56.6% (276/488, which was significantly higher than that of genetic imbalanced embryos 24.5% (108/441 (P35 respectively. Blastocyst formation rates of male and female embryos were 44.5% (183/411 and 38.8% (201/518 respectively, with no significant difference between them (P>0.05. The rates of balanced molecular karyotype embryos vary from groups of embryos with different cell numbers at 68 hours after insemination. The blastocyst formation rate of embryos with 6-8 cells (48.1% was significantly higher than that of embryos with 8 cells (42.9% (P8 cells, embryos with 6-8 blastomeres have higher rate of balanced molecular karyotype and blastocyst formation.

  18. Facilitating adverse drug event detection in pharmacovigilance databases using molecular structure similarity: application to rhabdomyolysis

    Science.gov (United States)

    Vilar, Santiago; Harpaz, Rave; Chase, Herbert S; Costanzi, Stefano; Rabadan, Raul

    2011-01-01

    Background Adverse drug events (ADE) cause considerable harm to patients, and consequently their detection is critical for patient safety. The US Food and Drug Administration maintains an adverse event reporting system (AERS) to facilitate the detection of ADE in drugs. Various data mining approaches have been developed that use AERS to detect signals identifying associations between drugs and ADE. The signals must then be monitored further by domain experts, which is a time-consuming task. Objective To develop a new methodology that combines existing data mining algorithms with chemical information by analysis of molecular fingerprints to enhance initial ADE signals generated from AERS, and to provide a decision support mechanism to facilitate the identification of novel adverse events. Results The method achieved a significant improvement in precision in identifying known ADE, and a more than twofold signal enhancement when applied to the ADE rhabdomyolysis. The simplicity of the method assists in highlighting the etiology of the ADE by identifying structurally similar drugs. A set of drugs with strong evidence from both AERS and molecular fingerprint-based modeling is constructed for further analysis. Conclusion The results demonstrate that the proposed methodology could be used as a pharmacovigilance decision support tool to facilitate ADE detection. PMID:21946238

  19. Molecular computing towards a novel computing architecture for complex problem solving

    CERN Document Server

    Chang, Weng-Long

    2014-01-01

    This textbook introduces a concise approach to the design of molecular algorithms for students or researchers who are interested in dealing with complex problems. Through numerous examples and exercises, you will understand the main difference of molecular circuits and traditional digital circuits to manipulate the same problem and you will also learn how to design a molecular algorithm of solving any a problem from start to finish. The book starts with an introduction to computational aspects of digital computers and molecular computing, data representation of molecular computing, molecular operations of molecular computing and number representation of molecular computing, and provides many molecular algorithm to construct the parity generator and the parity checker of error-detection codes on digital communication, to encode integers of different formats, single precision and double precision of floating-point numbers, to implement addition and subtraction of unsigned integers, to construct logic operations...

  20. Design and synthesis of single-source molecular precursors to homogeneous multi-component oxide materials

    Science.gov (United States)

    Fujdala, Kyle Lee

    This dissertation describes the syntheses of single-source molecular precursors to multi-component oxide materials. These molecules possess a core metal or element with various combinations of -OSi(O tBu)3, -O2P(OtBu) 2, and -OB[OSi(OtBu)3] 2 ligands. Such molecules decompose under mild thermolytic conditions (models for oxide-supported metal species and multi-component oxides. Significantly, the first complexes to contain three or more heteroelements suitable for use in the TMP method have been synthesized. Compounds for use as single-source molecular precursors have been synthesized containing Al, B, Cr, Hf, Mo, V, W, and Zr, and their thermal transformations have been examined. Heterogeneous catalytic reactions have been examined for selected materials. Also, cothermolyses of molecular precursors and additional molecules (i.e., metal alkoxides) have been utilized to provide materials with several components for potential use as catalysts or catalyst supports. Reactions of one and two equivs of HOSi(OtBu) 3 with Cr(OtBu)4 afforded the first Cr(IV) alkoxysiloxy complexes (tBuO) 3CrOSi(OtBu)3 and ( tBuO)2Cr[OSi(OtBu) 3]2, respectively. The high-yielding, convenient synthesis of (tBuO)3CrOSi(O tBu)3 make this complex a useful single-source molecular precursor, via the TMP method, to Cr/Si/O materials. The thermal transformations of (tBuO)3CrOSi(O tBu)3 and (tBuO) 2Cr[OSi(OtBu)3]2 to chromia-silica materials occurr at low temperatures (≤180°C), to give isobutene as the major carbon-containing product. The material generated from the solid-state conversion of (tBuO) 3CrOSi(OtBu)3 (CrOS ss) has an unexpectedly high surface area of 315 m2 g-1 that is slightly reduced to 275 m2 g-1 after calcination at 500°C in O2. The xerogel obtained by the thermolysis of an n-octane solution of (tBuO)3CrOSi(O tBu)3 (CrOSixg) has a surface area of 315 m2 g-1 that is reduced to 205 m2 g-1 upon calcination at 500°C. Powder X-ray diffraction (PXRD) analysis revealed that Cr2O 3 is

  1. Molecular diagnosis of toxoplasmosis: value of the buffy coat for the detection of circulating Toxoplasma gondii.

    Science.gov (United States)

    Brenier-Pinchart, Marie-Pierre; Capderou, Elodie; Bertini, Rose-Laurence; Bailly, Sébastien; Fricker-Hidalgo, Hélène; Varlet-Marie, Emmanuelle; Murat, Jean-Benjamin; Sterkers, Yvon; Touafek, Fériel; Bastien, Patrick; Pelloux, Hervé

    2015-08-01

    Early detection of Toxoplasma tachyzoites circulating in blood using PCR is recommended for immunosuppressed patients at high risk for disseminated toxoplasmosis. Using a toxoplasmosis mouse model, we show that the sensitivity of detection is higher using buffy coat isolated from a large blood volume than using whole blood for this molecular monitoring. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Sensitivity of single and double contrast barium enema in the detection of colorectal carcinoma

    International Nuclear Information System (INIS)

    Myllylae, V.; Paeivansalo, M.; Laitinen, S.; Oulu Univ.

    1984-01-01

    The preoperative barium enema of the 188 colorectal carcinoma patients operated at the Oulu University Central Hospital (Finland) during 1977-1982 were examined retrospectively. Altogether 112 single contrast studies and 87 double contrast studies had been made on these patients. The single contrast barium enemas had resulted in a correct diagnosis of colorectal carcinoma in 93 cases (sensitivity 83%). The correct diagnosis in the double contrast studies numbered 71 (sensitivity 82%). Most of the overlooked carcinomas were located in the caecum, in the sigmoid or the rectum. Most of the errors made in the single contrast studies were due to detection errors and poor evacuation. The most common failures in double contrast enemas were detection errors and nonvisualisation of the sigmoid. The authors recommend use of the double contrast technique and suggest that the two methods of barium enema be used to complement each other. A false negative diagnosis delayed the operation of the colorectal carcinoma patients by 2.2 months (median). (orig.) [de

  3. Topoisomerase I as a Biomarker: Detection of Activity at the Single Molecule Level

    DEFF Research Database (Denmark)

    Proszek, Joanna; Roy, Amit; Jakobsen, Ann-Katrine

    2014-01-01

    in hTopI have been reported to result in CPT resistance. Therefore, hTOPI gene copy number, mRNA level, protein amount, and enzyme activity have been studied to explain differences in cellular response to CPT. We show that Rolling Circle Enhanced Enzyme Activity Detection (REEAD), allowing measurement...... of hTopI cleavage-religation activity at the single molecule level, may be used to detect posttranslational enzymatic differences influencing CPT response. These differences cannot be detected by analysis of hTopI gene copy number, mRNA amount, or protein amount, and only become apparent upon measuring...

  4. Toward in vivo detection of hydrogen peroxide with ultrasound molecular imaging

    Science.gov (United States)

    Olson, Emilia S.; Orozco, Jahir; Wu, Zhe; Malone, Christopher D.; Yi, Boemha; Gao, Wei; Eghtedari, Mohammad; Wang, Joseph; Mattrey, Robert F.

    2013-01-01

    We present a new class of ultrasound molecular imaging agents that extend upon the design of micromotors that are designed to move through fluids by catalyzing hydrogen peroxide (H2O2) and propelling forward by escaping oxygen microbubbles. Micromotor converters require 62 mm of H2O2 to move – 1000-fold higher than is expected in vivo. Here, we aim to prove that ultrasound can detect the expelled microbubbles, to determine the minimum H2O2 concentration needed for microbubble detection, explore alternate designs to detect the H2O2 produced by activated neutrophils and perform preliminary in vivo testing. Oxygen microbubbles were detected by ultrasound at 2.5 mm H2O2. Best results were achieved with a 400–500 nm spherical design with alternating surface coatings of catalase and PSS over a silica core. The lowest detection limit of 10–100 µm was achieved when assays were done in plasma. Using this design, we detected the H2O2 produced by freshly isolated PMA-activated neutrophils allowing their distinction from naïve neutrophils. Finally, we were also able to show that direct injection of these nanospheres into an abscess in vivo enhanced ultrasound signal only when they contained catalase, and only when injected into an abscess, likely because of the elevated levels of H2O2 produced by inflammatory mediators. PMID:23958028

  5. Molecular level computational studies of polyethylene and polyacrylonitrile composites containing single walled carbon nanotubes: effect of carboxylic acid functionalization on nanotube-polymer interfacial properties

    Directory of Open Access Journals (Sweden)

    Shayesteh eHaghighatpanah

    2014-09-01

    Full Text Available Molecular dynamics and molecular mechanics methods have been used to investigate additive-polymer interfacial properties in single walled carbon nanotube – polyethylene and single walled carbon nanotube – polyacrylonitrile composites. Properties such as the interfacial shear stress and bonding energy are similar for the two composites. In contrast, functionalizing the single walled carbon nanotubes with carboxylic acid groups leads to an increase in these properties, with a larger increase for the polar polyacrylonitrile composite. Increasing the percentage of carbon atoms that were functionalized from 1% to 5% also leads to an increase in the interfacial properties. In addition, the interfacial properties depend on the location of the functional groups on the single walled carbon nanotube wall.

  6. Applications of a single-molecule detection in early disease diagnosis and enzymatic reaction study

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jiangwei [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    Various single-molecule techniques were utilized for ultra-sensitive early diagnosis of viral DNA and antigen and basic mechanism study of enzymatic reactions. DNA of human papilloma virus (HPV) served as the screening target in a flow system. Alexa Fluor 532 (AF532) labeled single-stranded DNA probes were hybridized to the target HPV-16 DNA in solution. The individual hybridized molecules were imaged with an intensified charge-coupled device (ICCD) in two ways. In the single-color mode, target molecules were detected via fluorescence from hybridized probes only. This system could detect HPV-16 DNA in the presence of human genomic DNA down to 0.7 copy/cell and had a linear dynamic range of over 6 orders of magnitude. In the dual-color mode, fluorescence resonance energy transfer (FRET) was employed to achieve zero false-positive count. We also showed that DNA extracts from Pap test specimens did not interfere with the system. A surface-based method was used to improve the throughput of the flow system. HPV-16 DNA was hybridized to probes on a glass surface and detected with a total internal reflection fluorescence (TIRF) microscope. In the single-probe mode, the whole genome and target DNA were fluorescently labeled before hybridization, and the detection limit is similar to the flow system. In the dual-probe mode, a second probe was introduced. The linear dynamic range covers 1.44-7000 copies/cell, which is typical of early infection to near-cancer stages. The dual-probe method was tested with a crudely prepared sample. Even with reduced hybridization efficiency caused by the interference of cellular materials, we were still able to differentiate infected cells from healthy cells. Detection and quantification of viral antigen with a novel single-molecule immunosorbent assay (SMISA) was achieved. Antigen from human immunodeficiency virus type 1(HIV-1) was chosen to be the target in this study. The target was sandwiched between a monoclonal capture antibody and a

  7. Selective and reusable iron(II)-based molecular sensor for the vapor-phase detection of alcohols.

    Science.gov (United States)

    Naik, Anil D; Robeyns, Koen; Meunier, Christophe F; Léonard, Alexandre F; Rotaru, Aurelian; Tinant, Bernard; Filinchuk, Yaroslav; Su, Bao Lian; Garcia, Yann

    2014-02-03

    A mononuclear iron(II) neutral complex (1) is screened for sensing abilities for a wide spectrum of chemicals and to evaluate the response function toward physical perturbation like temperature and mechanical stress. Interestingly, 1 precisely detects methanol among an alcohol series. The sensing process is visually detectable, fatigue-resistant, highly selective, and reusable. The sensing ability is attributed to molecular sieving and subsequent spin-state change of iron centers, after a crystal-to-crystal transformation.

  8. Rationale for single molecule detection by means of Raman spectroscopy

    International Nuclear Information System (INIS)

    Gaponenko, S.V.; Guzatov, D.V.

    2009-01-01

    A consistent quantum electrodynamical description is proposed of Raman scattering of light by a molecule in a medium with a modified photon density of states. Enhanced local density of states near a metal nanobody is shown to increase a scattering rate by several orders of magnitude, thus providing a rationale for experimental detection of single molecules by means of Raman spectroscopy. For an ellipsoidal particle 10 14 -fold enhancement of the Raman scattering cross-section is obtained. (authors)

  9. A dynamic bead-based microarray for parallel DNA detection

    International Nuclear Information System (INIS)

    Sochol, R D; Lin, L; Casavant, B P; Dueck, M E; Lee, L P

    2011-01-01

    A microfluidic system has been designed and constructed by means of micromachining processes to integrate both microfluidic mixing of mobile microbeads and hydrodynamic microbead arraying capabilities on a single chip to simultaneously detect multiple bio-molecules. The prototype system has four parallel reaction chambers, which include microchannels of 18 × 50 µm 2 cross-sectional area and a microfluidic mixing section of 22 cm length. Parallel detection of multiple DNA oligonucleotide sequences was achieved via molecular beacon probes immobilized on polystyrene microbeads of 16 µm diameter. Experimental results show quantitative detection of three distinct DNA oligonucleotide sequences from the Hepatitis C viral (HCV) genome with single base-pair mismatch specificity. Our dynamic bead-based microarray offers an effective microfluidic platform to increase parallelization of reactions and improve microbead handling for various biological applications, including bio-molecule detection, medical diagnostics and drug screening

  10. Molecular assembly and electro polymerization of 3,4-ethylenedioxy thiophene on Au(100) single crystal electrode using in-situ electrochemical scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Garcia, Jonyl L.; Tongol, Bernard John V.; ShuehLin Yau

    2012-01-01

    Electrochemical scanning tunneling microscopy (Ec-STM) is a powerful technique that can provide molecular-level information regarding electrode surface processes in-situ in electrolyte solvent under ambient conditions. In this study, the adsorption and electro polymerization of an industrially important conducting polymer precursor, 3,4-ethylenedioxy thiophene (EDOT), on Au (100) single crystal was probed using Ec-STM. The Au (100) single crystal electrode substrate used for this study was fabricated using the well-known Clavilier's flame melting procedure. Cyclic voltammetry (CV) was used along with Ec-STM to characterize the bare, EDOT-modified, and poly(EDOT)-modified Au (100) single crystal electrode. Time-dependent Ec-STM imaging at 0.550 V showed the formation of an EDOT self-assembled monolayer through 2-D surface dillusion. The resulting EDOT molecular assembly on Au (100) single crystal electrode was found to fit in a 4√2χ3√2 unit cell. Difference in apparent corrugation between molecular rows was attributed to different angular orientation with respect to the substrate. The electro polymerization of EDOT on Au (100) single crystal electrode was done by potentiostatic and potentiodynamic methods. Both methods suggested a solution-process mechanism for EDOT electro polymerization. (author)

  11. Change Detection in Full and Dual Polarization, Single- and Multifrequency SAR Data

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg; Conradsen, Knut; Skriver, Henning

    2015-01-01

    of obtaining a smaller value of the test statistic are given. In a case study, airborne EMISAR C- and L-band SAR images from the spring of 1998 covering agricultural fields and wooded areas near Foulum, Denmark, are used in single- and bifrequency, bitemporal change detection with full and dual polarimetry...

  12. Molecular approaches for detection of the multi-drug resistant tuberculosis (MDR-TB in Bangladesh.

    Directory of Open Access Journals (Sweden)

    Tafsina Haque Aurin

    Full Text Available The principal obstacles in the treatment of tuberculosis (TB are delayed and inaccurate diagnosis which often leads to the onset of the drug resistant TB cases. To avail the appropriate treatment of the patients and to hinder the transmission of drug-resistant TB, accurate and rapid detection of resistant isolates is critical. Present study was designed to demonstrate the efficacy of molecular techniques inclusive of line probe assay (LPA and GeneXpert MTB/RIF methods for the detection of multi-drug resistant (MDR TB. Sputum samples from 300 different categories of treated and new TB cases were tested for the detection of possible mutation in the resistance specific genes (rpoB, inhA and katG through Genotype MTBDRplus assay or LPA and GeneXpert MTB/RIF tests. Culture based conventional drug susceptibility test (DST was also carried out to measure the efficacy of the molecular methods employed. Among 300 samples, 191 (63.7% and 193 (64.3% cases were found to be resistant against rifampicin in LPA and GeneXpert methods, respectively; while 189 (63% cases of rifampicin resistance were detected by conventional DST methods. On the other hand, 196 (65.3% and 191 (63.7% isolates showed isoniazid resistance as detected by LPA and conventional drug susceptibility test (DST, respectively. Among the drug resistant isolates (collectively 198 in LPA and 193 in conventional DST, 189 (95.6% and 187 (96.9% were considered to be MDR as examined by LPA and conventional DST, respectively. Category-II and -IV patients encountered higher frequency of drug resistance compared to those from category-I and new cases. Considering the higher sensitivity, specificity and accuracy along with the required time to results significantly shorter, our study supports the adoption of LPA and GeneXpert assay as efficient tools in detecting drug resistant TB in Bangladesh.

  13. Simultaneous determination of low-molecular-weight organic acids and chlorinated acid herbicides in environmental water by a portable CE system with contactless conductivity detection.

    Science.gov (United States)

    Xu, Yan; Wang, Weilong; Li, Sam Fong Yau

    2007-05-01

    This report describes a method to simultaneously determine 11 low-molecular-weight (LMW) organic acids and 16 chlorinated acid herbicides within a single run by a portable CE system with contactless conductivity detection (CCD) in a poly(vinyl alcohol) (PVA)-coated capillary. Under the optimized condition, the LODs of CE-CCD ranged from 0.056 to 0.270 ppm, which were better than for indirect UV (IUV) detection of the 11 LMW organic acids or UV detection of the 16 chlorinated acid herbicides. Combined with an on-line field-amplified sample stacking (FASS) procedure, sensitivity enhancement of 632- to 1078-fold was achieved, with satisfactory reproducibility (RSDs of migration times less than 2.2%, and RSDs of peak areas less than 5.1%). The FASS-CE-CCD method was successfully applied to determine the two groups of acidic pollutants in two kinds of environmental water samples. The portable CE-CCD system shows advantages such as simplicity, cost effectiveness, and miniaturization. Therefore, the method presented in this report has great potential for onsite analysis of various pollutants at the trace level.

  14. Inkjet-printed gold nanoparticle surfaces for the detection of low molecular weight biomolecules by laser desorption/ionization mass spectrometry.

    Science.gov (United States)

    Marsico, Alyssa L M; Creran, Brian; Duncan, Bradley; Elci, S Gokhan; Jiang, Ying; Onasch, Timothy B; Wormhoudt, Joda; Rotello, Vincent M; Vachet, Richard W

    2015-11-01

    Effective detection of low molecular weight compounds in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is often hindered by matrix interferences in the low m/z region of the mass spectrum. Here, we show that monolayer-protected gold nanoparticles (AuNPs) can serve as alternate matrices for the very sensitive detection of low molecular weight compounds such as amino acids. Amino acids can be detected at low fmol levels with minimal interferences by properly choosing the AuNP deposition method, density, size, and monolayer surface chemistry. By inkjet-printing AuNPs at various densities, we find that AuNP clusters are essential for obtaining the greatest sensitivity. Graphical Abstract ᅟ.

  15. Stability of detectability over 17 years at a single site and other lizard detection comparisons from Guam

    Science.gov (United States)

    Rodda, Gordon H.; Dean-Bradley, Kathryn; Campbell, Earl W.; Fritts, Thomas H.; Lardner, Bjorn; Yackel Adams, Amy A.; Reed, Robert N.

    2015-01-01

    To obtain quantitative information about population dynamics from counts of animals, the per capita detectabilities of each species must remain constant over the course of monitoring. We characterized lizard detection constancy for four species over 17 yr from a single site in northern Guam, a relatively benign situation because detection was relatively easy and we were able to hold constant the site, habitat type, species, season, and sampling method. We monitored two species of diurnal terrestrial skinks (Carlia ailanpalai [Curious Skink], Emoia caeruleocauda [Pacific Bluetailed Skink]) using glueboards placed on the ground in the shade for 3 h on rainless mornings, yielding 10,286 skink captures. We additionally monitored two species of nocturnal arboreal geckos (Hemidactylus frenatus [Common House Gecko]; Lepidodactylus lugubris [Mourning Gecko]) on the basis of 15,212 sightings. We compared these count samples to a series of complete censuses we conducted from four or more total removal plots (everything removed to mineral soil) totaling 400 m2(about 1% of study site) in each of the years 1995, 1999, and 2012, providing time-stamped quantification of detectability for each species. Unfortunately, the actual population trajectories taken by the four species were masked by unexplained variation in detectability. This observation of debilitating latent variability in lizard detectability under nearly ideal conditions undercuts our trust in population estimation techniques that fail to quantify venue-specific detectability, rely on pooled detection probability estimates, or assume that modulation in predefined environmental covariates suffices for estimating detectability.

  16. Latent Membrane Protein 1 as a molecular adjuvant for single-cycle lentiviral vaccines

    Directory of Open Access Journals (Sweden)

    Rahmberg Andrew R

    2011-05-01

    Full Text Available Abstract Background Molecular adjuvants are a promising method to enhance virus-specific immune responses and protect against HIV-1 infection. Immune activation by ligands for receptors such as CD40 can induce dendritic cell activation and maturation. Here we explore the incorporation of two CD40 mimics, Epstein Barr Virus gene LMP1 or an LMP1-CD40 chimera, into a strain of SIV that was engineered to be limited to a single cycle of infection. Results Full length LMP1 or the chimeric protein LMP1-CD40 was cloned into the nef-locus of single-cycle SIV. Human and Macaque monocyte derived macrophages and DC were infected with these viruses. Infected cells were analyzed for activation surface markers by flow cytometry. Cells were also analyzed for secretion of pro-inflammatory cytokines IL-1β, IL-6, IL-8, IL-12p70 and TNF by cytometric bead array. Conclusions Overall, single-cycle SIV expressing LMP1 and LMP1-CD40 produced a broad and potent TH1-biased immune response in human as well as rhesus macaque macrophages and DC when compared with control virus. Single-cycle SIV-LMP1 also enhanced antigen presentation by lentiviral vector vaccines, suggesting that LMP1-mediated immune activation may enhance lentiviral vector vaccines against HIV-1.

  17. Transcriptional profiling at whole population and single cell levels reveals somatosensory neuron molecular diversity

    Science.gov (United States)

    Chiu, Isaac M; Barrett, Lee B; Williams, Erika K; Strochlic, David E; Lee, Seungkyu; Weyer, Andy D; Lou, Shan; Bryman, Gregory S; Roberson, David P; Ghasemlou, Nader; Piccoli, Cara; Ahat, Ezgi; Wang, Victor; Cobos, Enrique J; Stucky, Cheryl L; Ma, Qiufu; Liberles, Stephen D; Woolf, Clifford J

    2014-01-01

    The somatosensory nervous system is critical for the organism's ability to respond to mechanical, thermal, and nociceptive stimuli. Somatosensory neurons are functionally and anatomically diverse but their molecular profiles are not well-defined. Here, we used transcriptional profiling to analyze the detailed molecular signatures of dorsal root ganglion (DRG) sensory neurons. We used two mouse reporter lines and surface IB4 labeling to purify three major non-overlapping classes of neurons: 1) IB4+SNS-Cre/TdTomato+, 2) IB4−SNS-Cre/TdTomato+, and 3) Parv-Cre/TdTomato+ cells, encompassing the majority of nociceptive, pruriceptive, and proprioceptive neurons. These neurons displayed distinct expression patterns of ion channels, transcription factors, and GPCRs. Highly parallel qRT-PCR analysis of 334 single neurons selected by membership of the three populations demonstrated further diversity, with unbiased clustering analysis identifying six distinct subgroups. These data significantly increase our knowledge of the molecular identities of known DRG populations and uncover potentially novel subsets, revealing the complexity and diversity of those neurons underlying somatosensation. DOI: http://dx.doi.org/10.7554/eLife.04660.001 PMID:25525749

  18. A Broad-Spectrum Infection Diagnostic that Detects Pathogen-Associated Molecular Patterns (PAMPs) in Whole Blood

    OpenAIRE

    Cartwright, Mark; Rottman, Martin; Shapiro, Nathan I.; Seiler, Benjamin; Lombardo, Patrick; Gamini, Nazita; Tomolonis, Julie; Watters, Alexander L.; Waterhouse, Anna; Leslie, Dan; Bolgen, Dana; Graveline, Amanda; Kang, Joo H.; Didar, Tohid; Dimitrakakis, Nikolaos

    2016-01-01

    Background: Blood cultures, and molecular diagnostic tests that directly detect pathogen DNA in blood, fail to detect bloodstream infections in most infected patients. Thus, there is a need for a rapid test that can diagnose the presence of infection to triage patients, guide therapy, and decrease the incidence of sepsis. Methods: An Enzyme-Linked Lectin-Sorbent Assay (ELLecSA) that uses magnetic microbeads coated with an engineered version of the human opsonin, Mannose Binding Lectin, contai...

  19. Detecting selection needs comparative data

    DEFF Research Database (Denmark)

    Nielsen, Rasmus; Hubisz, Melissa J.

    2005-01-01

    Positive selection at the molecular level is usually indicated by an increase in the ratio of non-synonymous to synonymous substitutions (dN/dS) in comparative data. However, Plotkin et al. 1 describe a new method for detecting positive selection based on a single nucleotide sequence. We show here...... that this method is particularly sensitive to assumptions regarding the underlying mutational processes and does not provide a reliable way to identify positive selection....

  20. Multiplex single-molecule interaction profiling of DNA-barcoded proteins.

    Science.gov (United States)

    Gu, Liangcai; Li, Chao; Aach, John; Hill, David E; Vidal, Marc; Church, George M

    2014-11-27

    In contrast with advances in massively parallel DNA sequencing, high-throughput protein analyses are often limited by ensemble measurements, individual analyte purification and hence compromised quality and cost-effectiveness. Single-molecule protein detection using optical methods is limited by the number of spectrally non-overlapping chromophores. Here we introduce a single-molecular-interaction sequencing (SMI-seq) technology for parallel protein interaction profiling leveraging single-molecule advantages. DNA barcodes are attached to proteins collectively via ribosome display or individually via enzymatic conjugation. Barcoded proteins are assayed en masse in aqueous solution and subsequently immobilized in a polyacrylamide thin film to construct a random single-molecule array, where barcoding DNAs are amplified into in situ polymerase colonies (polonies) and analysed by DNA sequencing. This method allows precise quantification of various proteins with a theoretical maximum array density of over one million polonies per square millimetre. Furthermore, protein interactions can be measured on the basis of the statistics of colocalized polonies arising from barcoding DNAs of interacting proteins. Two demanding applications, G-protein coupled receptor and antibody-binding profiling, are demonstrated. SMI-seq enables 'library versus library' screening in a one-pot assay, simultaneously interrogating molecular binding affinity and specificity.

  1. Fano Description of Single-Hydrocarbon Fluorescence Excited by a Scanning Tunneling Microscope.

    Science.gov (United States)

    Kröger, Jörg; Doppagne, Benjamin; Scheurer, Fabrice; Schull, Guillaume

    2018-06-13

    The detection of fluorescence with submolecular resolution enables the exploration of spatially varying photon yields and vibronic properties at the single-molecule level. By placing individual polycyclic aromatic hydrocarbon molecules into the plasmon cavity formed by the tip of a scanning tunneling microscope and a NaCl-covered Ag(111) surface, molecular light emission spectra are obtained that unravel vibrational progression. In addition, light spectra unveil a signature of the molecule even when the tunneling current is injected well separated from the molecular emitter. This signature exhibits a distance-dependent Fano profile that reflects the subtle interplay between inelastic tunneling electrons, the molecular exciton and localized plasmons in at-distance as well as on-molecule fluorescence. The presented findings open the path to luminescence of a different class of molecules than investigated before and contribute to the understanding of single-molecule luminescence at surfaces in a unified picture.

  2. Real-time stop sign detection and distance estimation using a single camera

    Science.gov (United States)

    Wang, Wenpeng; Su, Yuxuan; Cheng, Ming

    2018-04-01

    In modern world, the drastic development of driver assistance system has made driving a lot easier than before. In order to increase the safety onboard, a method was proposed to detect STOP sign and estimate distance using a single camera. In STOP sign detection, LBP-cascade classifier was applied to identify the sign in the image, and the principle of pinhole imaging was based for distance estimation. Road test was conducted using a detection system built with a CMOS camera and software developed by Python language with OpenCV library. Results shows that that the proposed system reach a detection accuracy of maximum of 97.6% at 10m, a minimum of 95.00% at 20m, and 5% max error in distance estimation. The results indicate that the system is effective and has the potential to be used in both autonomous driving and advanced driver assistance driving systems.

  3. A lateral flow biosensor for detection of single nucleotide polymorphism by circular strand displacement reaction.

    Science.gov (United States)

    Xiao, Zhuo; Lie, Puchang; Fang, Zhiyuan; Yu, Luxin; Chen, Junhua; Liu, Jie; Ge, Chenchen; Zhou, Xuemeng; Zeng, Lingwen

    2012-09-04

    A lateral flow biosensor for detection of single nucleotide polymorphism based on circular strand displacement reaction (CSDPR) has been developed. Taking advantage of high fidelity of T4 DNA ligase, signal amplification by CSDPR, and the optical properties of gold nanoparticles, this assay has reached a detection limit of 0.01 fM.

  4. Coordinating Center: Molecular and Cellular Findings of Screen-Detected Lesions | Division of Cancer Prevention

    Science.gov (United States)

    The Molecular and Cellular Characterization of Screen‐Detected Lesions ‐ Coordinating Center and Data Management Group will provide support for the participating studies responding to RFA CA14‐10. The coordinating center supports three main domains: network coordination, statistical support and computational analysis and protocol development and database support. Support for

  5. Biomimetic ELISA detection of malachite green based on molecularly imprinted polymer film.

    Science.gov (United States)

    Li, Lu; Peng, Ai-Hong; Lin, Zheng-Zhong; Zhong, Hui-Ping; Chen, Xiao-Mei; Huang, Zhi-Yong

    2017-08-15

    A highly selective and sensitive enzyme-linked immunosorbent assay (ELISA) was developed for the detection of malachite green (MG) using a molecularly imprinted polymer (MIP) film as bionic antibody. The MIP film, based on the self-polymerization of dopamine, was fabricated on the surfaces of a 96-well microplate. It showed specific recognition for MG in aqueous solution. A direct competitive ELISA method was established with the sensitivity reaching 10.31μgL -1 and the detection limit being 0.3μgL -1 . The cross-reactivity of two structural analogues to MG was less than 10%. The average recovery tested by MG standard spiking was 88.8% for bass and 90.4% for water, and the relative standard deviations were less than 3.6%. All the above results indicated that the developed method could be used to detect MG in fish and water samples rapidly, specifically and accurately. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. A Nanosensor for TNT Detection Based on Molecularly Imprinted Polymers and Surface Enhanced Raman Scattering

    Directory of Open Access Journals (Sweden)

    Mikella E. Hankus

    2011-03-01

    Full Text Available We report on a new sensor strategy that integrates molecularly imprinted polymers (MIPs with surface enhanced Raman scattering (SERS. The sensor was developed to detect the explosive, 2,4,6-trinitrotoluene (TNT. Micron thick films of sol gel-derived xerogels were deposited on a SERS-active surface as the sensing layer. Xerogels were molecularly imprinted for TNT using non-covalent interactions with the polymer matrix. Binding of the TNT within the polymer matrix results in unique SERS bands, which allow for detection and identification of the molecule in the MIP. This MIP-SERS sensor exhibits an apparent dissociation constant of (2.3 ± 0.3 × 10−5 M for TNT and a 3 µM detection limit. The response to TNT is reversible and the sensor is stable for at least 6 months. Key challenges, including developing a MIP formulation that is stable and integrated with the SERS substrate, and ensuring the MIP does not mask the spectral features of the target analyte through SERS polymer background, were successfully met. The results also suggest the MIP-SERS protocol can be extended to other target analytes of interest.

  7. Chemodosimeter-based fluorescent detection of L-cysteine after extracted by molecularly imprinted polymers.

    Science.gov (United States)

    Cai, Xiaoqiang; Li, Jinhua; Zhang, Zhong; Wang, Gang; Song, Xingliang; You, Jinmao; Chen, Lingxin

    2014-03-01

    A chemodosimeter-based fluorescent detection method coupled with molecularly imprinted polymers (MIPs) extraction was developed for determination of L-cysteine (L-Cys) by combining molecular imprinting technique with fluorescent chemodosimeter. The MIPs prepared by precipitation polymerization with L-Cys as template, possessed high specific surface area of 145 m(2)/g and good thermal stability without decomposition lower than 300 °C, and were successfully applied as an adsorbent with excellent selectivity for L-Cys over other amino acids, and enantioselectivity was also demonstrated. A novel chemodosimeter, rhodamine B1, was synthesized for discriminating L-Cys from its structurally similar homocysteine and glutathione as well as various possibly co-existing biospecies in aqueous solutions with notable fluorescence enhancement when adding L-Cys. As L-Cys was added with increasing concentrations, an emission band peaked at 580 nm occurred and significantly increased in fluorescence intensity, by which the L-Cys could be sensed optically. High detectability up to 12.5 nM was obtained. An excellent linearity was found within the wide range of 0.05-50 μM (r=0.9996), and reasonable relative standard deviations ranging from 0.3% to 3.5% were attained. Such typical features as high selectivity, high sensitivity, easy operation and low cost enabled this MIPs-fluorometry to be potentially applicable for routine detection of trace L-Cys. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Single photon detection and signal analysis for high sensitivity dosimetry based on optically stimulated luminescence with beryllium oxide

    Science.gov (United States)

    Radtke, J.; Sponner, J.; Jakobi, C.; Schneider, J.; Sommer, M.; Teichmann, T.; Ullrich, W.; Henniger, J.; Kormoll, T.

    2018-01-01

    Single photon detection applied to optically stimulated luminescence (OSL) dosimetry is a promising approach due to the low level of luminescence light and the known statistical behavior of single photon events. Time resolved detection allows to apply a variety of different and independent data analysis methods. Furthermore, using amplitude modulated stimulation impresses time- and frequency information into the OSL light and therefore allows for additional means of analysis. Considering the impressed frequency information, data analysis by using Fourier transform algorithms or other digital filters can be used for separating the OSL signal from unwanted light or events generated by other phenomena. This potentially lowers the detection limits of low dose measurements and might improve the reproducibility and stability of obtained data. In this work, an OSL system based on a single photon detector, a fast and accurate stimulation unit and an FPGA is presented. Different analysis algorithms which are applied to the single photon data are discussed.

  9. Deuteron NMR resolved mesogen vs. crosslinker molecular order and reorientational exchange in liquid single crystal elastomers

    Czech Academy of Sciences Publication Activity Database

    Milavec, J.; Domenici, V.; Zupančič, B.; Rešetič, A.; Bubnov, Alexej; Zalar, B.

    2016-01-01

    Roč. 18, č. 5 (2016), s. 4071-4077 ISSN 1463-9076 R&D Projects: GA ČR GA15-02843S; GA MŠk(CZ) LD14007 Grant - others:EU - ICT(XE) COST Action IC1208 Institutional support: RVO:68378271 Keywords : liquid single crystal elastomer * NMR * liquid crystal * molecular order * monomers Subject RIV: JJ - Other Materials Impact factor: 4.123, year: 2016

  10. Plasmonics and single-molecule detection in evaporated silver-island films

    Energy Technology Data Exchange (ETDEWEB)

    Moula, G.; Aroca, R.F. [Materials and Surface Science Group, University of Windsor, Ontario (Canada); Rodriguez-Oliveros, R.; Sanchez-Gil, J.A. [Instituto de Estructura de la Materia, Consejo Superior de Investigaciones Cientificas, Serrano 121, 28006 Madrid (Spain); Albella, P. [Centro de Fisica de Materiales (CSIC-UPV/EHU) and Donostia International Physics Center (DIPC), 20018 Donostia, San Sebastian (Spain)

    2012-11-15

    The plasmonic origin of surface-enhanced Raman scattering (SERS) leads to the concept of hotspots and plasmon coupling that can be realized in the interstitial regions, or on specially engineered, silver and gold nanostructures. It is also possible to achieve spatial locations of high local field or hotspots on silver-island films (SIF) allowing single-molecule detection (SMD). When a single monomolecular layer coating the SIFs contains dye molecules dispersed in it, single-molecule impurities, (with an average of one hundred dye molecules in 1 {mu}m{sup 2}, which is the field of view of the micro-Raman system), SMD is observed as a rare statistical event. Here, the SMD results for silver-island films are presented, with the same nominal mass thickness, but differing in the localized surface plasmon resonance that is a function of the temperature of substrate during deposition. A blue-shifted plasmon can be seen as a decrease in plasmon coupling for deposition at higher temperature. A simple two-particle model for localized plasmon resonance coupling calculations, including the shape and substrate effects seems to explain the trend of observations. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. A NASBA on microgel-tethered molecular-beacon microarray for real-time microbial molecular diagnostics.

    Science.gov (United States)

    Ma, Y; Dai, X; Hong, T; Munk, G B; Libera, M

    2016-12-19

    Despite their many advantages and successes, molecular beacon (MB) hybridization probes have not been extensively used in microarray formats because of the complicating probe-substrate interactions that increase the background intensity. We have previously shown that tethering to surface-patterned microgels is an effective means for localizing MB probes to specific surface locations in a microarray format while simultaneously maintaining them in as water-like an environment as possible and minimizing probe-surface interactions. Here we extend this approach to include both real-time detection together with integrated NASBA amplification. We fabricate small (∼250 μm × 250 μm) simplex, duplex, and five-plex assays with microarray spots of controllable size (∼20 μm diameter), position, and shape to detect bacteria and fungi in a bloodstream-infection model. The targets, primers, and microgel-tethered probes can be combined in a single isothermal reaction chamber with no post-amplification labelling. We extract total RNA from clinical blood samples and differentiate between Gram-positive and Gram-negative bloodstream infection in a duplex assay to detect RNA- amplicons. The sensitivity based on our current protocols in a simplex assay to detect specific ribosomal RNA sequences within total RNA extracted from S. aureus and E. coli cultures corresponds to tens of bacteria per ml. We furthermore show that the platform can detect RNA- amplicons from synthetic target DNA with 1 fM sensitivity in sample volumes that contain about 12 000 DNA molecules. These experiments demonstrate an alternative approach that can enable rapid and real-time microarray-based molecular diagnostics.

  12. Ionoluminescence analysis of glass scintillators and application to single-ion-hit real-time detection

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Akihito, E-mail: yokoyama.akihito@jaea.go.jp [Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515 (Japan); Takasaki Advanced Radiation Research Institute (TARRI), Japan Atomic Energy Agency (JAEA), 1233 Watanuki-machi, Takasaki, Gunma 370-1292 (Japan); Kada, Wataru [Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515 (Japan); Satoh, Takahiro; Koka, Masashi [Takasaki Advanced Radiation Research Institute (TARRI), Japan Atomic Energy Agency (JAEA), 1233 Watanuki-machi, Takasaki, Gunma 370-1292 (Japan); Shimada, Keisuke; Yokoata, Yuya; Miura, Kenta; Hanaizumi, Osamu [Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515 (Japan)

    2016-03-15

    In this paper, we propose and test a real-time detection system for single-ion hits using mega-electronvolt (MeV)-heavy ions. The system was constructed using G2000 and G9 glass scintillators, as well as an electron-multiplying charge-coupled device (EMCCD) camera combined with an inverted microscope with a 10× objective lens. Commercially available G2000 and G9 glass scintillators, which have been reported to exhibit strong photoluminescence at 489, 543, 585, and 622 nm as a result of the Tb{sup 3+} f–f transition, were employed for highly accurate ionized particle detection. The EMCCD camera had a resolution of 512 × 512 pixels, each with a size of 16 μm × 16 μm, and a maximum linear gain of 8 × 10{sup 5} electrons. For 260-MeV Ne, 3 ion hits/s were detected by our system. The intensity of the ionoluminescence (IL) peak induced by the heavy ions was 140 times the noise intensity. In contrast, the luminous diameter at the full width at half maximum (FWHM) in both the horizontal and vertical directions was calculated to be approximately 4.5 μm. These results suggest that our detection system can accurately detect single-ion hits with a diameter of the order of 1 μm.

  13. Metagenomic Detection Methods in Biopreparedness Outbreak Scenarios

    DEFF Research Database (Denmark)

    Karlsson, Oskar Erik; Hansen, Trine; Knutsson, Rickard

    2013-01-01

    In the field of diagnostic microbiology, rapid molecular methods are critically important for detecting pathogens. With rapid and accurate detection, preventive measures can be put in place early, thereby preventing loss of life and further spread of a disease. From a preparedness perspective...... of a clinical sample, creating a metagenome, in a single week of laboratory work. As new technologies emerge, their dissemination and capacity building must be facilitated, and criteria for use, as well as guidelines on how to report results, must be established. This article focuses on the use of metagenomics...

  14. WE-H-207A-09: Theoretical Limits to Molecular Biomarker Detection Using Magnetic Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, J [Dartmouth-Hitchcock Medical Center, Lebanon, NH (United States); Geisel School of Medicine, Dartmouth College, Hanover, NH (United States)

    2016-06-15

    Purpose: Estimate the limits of molecular biomarker detection using magnetic nanoparticle methods like in vivo ELISA. Methods: Magnetic nanoparticles in an alternating magnetic field produce a magnetization that can be detected at exceedingly low levels because the signal at the harmonic frequencies is uniquely produced by the nanoparticles. Because the magnetization can also be used to characterize the nanoparticle rotational freedom, the bound state can be found. If the nanoparticles are coated with molecules that bind the desired biomarker, the rotational freedom reflects the biomarker concentration. The irreducible noise limit is the thermal noise or Johnson noise of the tissue and the contrast that can be measured must be larger than that limit. The contrast produced is a function of the applied field and depends strongly on nanoparticle volume. We have estimated the contrast using a Langevin function of a single composite variable to approximate the full stochastic Langevin equation for nanoparticle dynamics. Results: The thermal noise for a bandwidth reasonable for spectroscopy suggests mid zeptomolar (10–21) to low attomolar (10–18) concentrations can be measured in a volume that is 10cm in scale. The suggested sensitivity is far below the physiologically concentrations of almost all critical biomarkers including cytokines (picomolar), hormones (nanomolar) and heat shock proteins. Conclusion: The sensitivity of in vivo ELISA concentration measurements should be sufficient to measure physiological concentrations of critical biomarkers like cytokines in vivo. Further the sensitivity should be sufficient to measure concentrations of other biomarkers that are six to eight orders of magnitude lower in concentration than immune signaling molecules like cytokines. NIH - 1U54CA151662-01 Department of Radiology.

  15. Molecular fountain.

    Energy Technology Data Exchange (ETDEWEB)

    Strecker, Kevin E.; Chandler, David W.

    2009-09-01

    A molecular fountain directs slowly moving molecules against gravity to further slow them to translational energies that they can be trapped and studied. If the molecules are initially slow enough they will return some time later to the position from which they were launched. Because this round trip time can be on the order of a second a single molecule can be observed for times sufficient to perform Hz level spectroscopy. The goal of this LDRD proposal was to construct a novel Molecular Fountain apparatus capable of producing dilute samples of molecules at near zero temperatures in well-defined user-selectable, quantum states. The slowly moving molecules used in this research are produced by the previously developed Kinematic Cooling technique, which uses a crossed atomic and molecular beam apparatus to generate single rotational level molecular samples moving slowly in the laboratory reference frame. The Kinematic Cooling technique produces cold molecules from a supersonic molecular beam via single collisions with a supersonic atomic beam. A single collision of an atom with a molecule occurring at the correct energy and relative velocity can cause a small fraction of the molecules to move very slowly vertically against gravity in the laboratory. These slowly moving molecules are captured by an electrostatic hexapole guiding field that both orients and focuses the molecules. The molecules are focused into the ionization region of a time-of-flight mass spectrometer and are ionized by laser radiation. The new molecular fountain apparatus was built utilizing a new design for molecular beam apparatus that has allowed us to miniaturize the apparatus. This new design minimizes the volumes and surface area of the machine allowing smaller pumps to maintain the necessary background pressures needed for these experiments.

  16. A Benchmark of Lidar-Based Single Tree Detection Methods Using Heterogeneous Forest Data from the Alpine Space

    Directory of Open Access Journals (Sweden)

    Lothar Eysn

    2015-05-01

    Full Text Available In this study, eight airborne laser scanning (ALS-based single tree detection methods are benchmarked and investigated. The methods were applied to a unique dataset originating from different regions of the Alpine Space covering different study areas, forest types, and structures. This is the first benchmark ever performed for different forests within the Alps. The evaluation of the detection results was carried out in a reproducible way by automatically matching them to precise in situ forest inventory data using a restricted nearest neighbor detection approach. Quantitative statistical parameters such as percentages of correctly matched trees and omission and commission errors are presented. The proposed automated matching procedure presented herein shows an overall accuracy of 97%. Method based analysis, investigations per forest type, and an overall benchmark performance are presented. The best matching rate was obtained for single-layered coniferous forests. Dominated trees were challenging for all methods. The overall performance shows a matching rate of 47%, which is comparable to results of other benchmarks performed in the past. The study provides new insight regarding the potential and limits of tree detection with ALS and underlines some key aspects regarding the choice of method when performing single tree detection for the various forest types encountered in alpine regions.

  17. Single-trial detection of visual evoked potentials by common spatial patterns and wavelet filtering for brain-computer interface.

    Science.gov (United States)

    Tu, Yiheng; Huang, Gan; Hung, Yeung Sam; Hu, Li; Hu, Yong; Zhang, Zhiguo

    2013-01-01

    Event-related potentials (ERPs) are widely used in brain-computer interface (BCI) systems as input signals conveying a subject's intention. A fast and reliable single-trial ERP detection method can be used to develop a BCI system with both high speed and high accuracy. However, most of single-trial ERP detection methods are developed for offline EEG analysis and thus have a high computational complexity and need manual operations. Therefore, they are not applicable to practical BCI systems, which require a low-complexity and automatic ERP detection method. This work presents a joint spatial-time-frequency filter that combines common spatial patterns (CSP) and wavelet filtering (WF) for improving the signal-to-noise (SNR) of visual evoked potentials (VEP), which can lead to a single-trial ERP-based BCI.

  18. Comparison of variations detection between whole-genome amplification methods used in single-cell resequencing

    DEFF Research Database (Denmark)

    Hou, Yong; Wu, Kui; Shi, Xulian

    2015-01-01

    methods, focusing particularly on variations detection. Low-coverage whole-genome sequencing revealed that DOP-PCR had the highest duplication ratio, but an even read distribution and the best reproducibility and accuracy for detection of copy-number variations (CNVs). However, MDA had significantly...... performance using SCRS amplified by different WGA methods. It will guide researchers to determine which WGA method is best suited to individual experimental needs at single-cell level....

  19. Single-molecule experiments in biological physics: methods and applications.

    Science.gov (United States)

    Ritort, F

    2006-08-16

    I review single-molecule experiments (SMEs) in biological physics. Recent technological developments have provided the tools to design and build scientific instruments of high enough sensitivity and precision to manipulate and visualize individual molecules and measure microscopic forces. Using SMEs it is possible to manipulate molecules one at a time and measure distributions describing molecular properties, characterize the kinetics of biomolecular reactions and detect molecular intermediates. SMEs provide additional information about thermodynamics and kinetics of biomolecular processes. This complements information obtained in traditional bulk assays. In SMEs it is also possible to measure small energies and detect large Brownian deviations in biomolecular reactions, thereby offering new methods and systems to scrutinize the basic foundations of statistical mechanics. This review is written at a very introductory level, emphasizing the importance of SMEs to scientists interested in knowing the common playground of ideas and the interdisciplinary topics accessible by these techniques. The review discusses SMEs from an experimental perspective, first exposing the most common experimental methodologies and later presenting various molecular systems where such techniques have been applied. I briefly discuss experimental techniques such as atomic-force microscopy (AFM), laser optical tweezers (LOTs), magnetic tweezers (MTs), biomembrane force probes (BFPs) and single-molecule fluorescence (SMF). I then present several applications of SME to the study of nucleic acids (DNA, RNA and DNA condensation) and proteins (protein-protein interactions, protein folding and molecular motors). Finally, I discuss applications of SMEs to the study of the nonequilibrium thermodynamics of small systems and the experimental verification of fluctuation theorems. I conclude with a discussion of open questions and future perspectives.

  20. Single-molecule experiments in biological physics: methods and applications

    International Nuclear Information System (INIS)

    Ritort, F

    2006-01-01

    I review single-molecule experiments (SMEs) in biological physics. Recent technological developments have provided the tools to design and build scientific instruments of high enough sensitivity and precision to manipulate and visualize individual molecules and measure microscopic forces. Using SMEs it is possible to manipulate molecules one at a time and measure distributions describing molecular properties, characterize the kinetics of biomolecular reactions and detect molecular intermediates. SMEs provide additional information about thermodynamics and kinetics of biomolecular processes. This complements information obtained in traditional bulk assays. In SMEs it is also possible to measure small energies and detect large Brownian deviations in biomolecular reactions, thereby offering new methods and systems to scrutinize the basic foundations of statistical mechanics. This review is written at a very introductory level, emphasizing the importance of SMEs to scientists interested in knowing the common playground of ideas and the interdisciplinary topics accessible by these techniques. The review discusses SMEs from an experimental perspective, first exposing the most common experimental methodologies and later presenting various molecular systems where such techniques have been applied. I briefly discuss experimental techniques such as atomic-force microscopy (AFM), laser optical tweezers (LOTs), magnetic tweezers (MTs), biomembrane force probes (BFPs) and single-molecule fluorescence (SMF). I then present several applications of SME to the study of nucleic acids (DNA, RNA and DNA condensation) and proteins (protein-protein interactions, protein folding and molecular motors). Finally, I discuss applications of SMEs to the study of the nonequilibrium thermodynamics of small systems and the experimental verification of fluctuation theorems. I conclude with a discussion of open questions and future perspectives. (topical review)

  1. Molecular detection with terahertz waves based on absorption-induced transparency metamaterials

    Science.gov (United States)

    G. Rodrigo, Sergio; Martín-Moreno, L.

    2016-10-01

    A system for the detection of spectral signatures of chemical compounds at the Terahertz regime is presented. The system consists on a holey metal film whereby the presence of a given substance provokes the appearance of spectral features in transmission and reflection induced by the molecular specimen. These induced effects can be regarded as an extraordinary optical transmission phenomenon called absorption-induced transparency (AIT). The phenomenon consist precisely in the appearance of peaks in transmission and dips in reflection after sputtering of a chemical compound onto an initially opaque holey metal film. The spectral signatures due to AIT occur unexpectedly close to the absorption energies of the molecules. The presence of a target, a chemical compound, would be thus revealed as a strong drop in reflectivity measurements. We theoretically predict the AIT based system would serve to detect amounts of hydrocyanic acid (HCN) at low rate concentrations.

  2. Quartz-Seq2: a high-throughput single-cell RNA-sequencing method that effectively uses limited sequence reads.

    Science.gov (United States)

    Sasagawa, Yohei; Danno, Hiroki; Takada, Hitomi; Ebisawa, Masashi; Tanaka, Kaori; Hayashi, Tetsutaro; Kurisaki, Akira; Nikaido, Itoshi

    2018-03-09

    High-throughput single-cell RNA-seq methods assign limited unique molecular identifier (UMI) counts as gene expression values to single cells from shallow sequence reads and detect limited gene counts. We thus developed a high-throughput single-cell RNA-seq method, Quartz-Seq2, to overcome these issues. Our improvements in the reaction steps make it possible to effectively convert initial reads to UMI counts, at a rate of 30-50%, and detect more genes. To demonstrate the power of Quartz-Seq2, we analyzed approximately 10,000 transcriptomes from in vitro embryonic stem cells and an in vivo stromal vascular fraction with a limited number of reads.

  3. Development of a red TL detection system for a single grain of quartz

    International Nuclear Information System (INIS)

    Yawata, T.; Hashimoto, T.

    2007-01-01

    Red thermoluminescence (RTL) of natural quartz grains offers many desirable properties for quaternary chronology and archaeological dating, although RTL measurements suffer from high thermal background due to black-body radiation on heating. To reduce the thermal background to as low a level as possible, a silver sample disc covered with a biotite plate with a sample hole was used in combination with a light guide, cluster heater, optical filters, and photomultiplier tube cooling to -20 deg. C in the present system. As a result, the thermal background decreased from 2x10 4 to 1000 cps in the temperature range 350-380 deg. C, resulting in a detection limit of approximately 100 cps, corresponding to the RTL signal from a single quartz grain (250-500μm) irradiated with 4.0 Gy. In addition, application of lower heating rates retarded the thermal quenching effect, resulting in high RTL signals, which are preferable for young or insensitive quartz samples. Using RTL measurements with the single quartz grain method under optimal RTL conditions, comparison of equivalent doses from artificially irradiated single quartz grains to the known dose was within the 20% measurement error. Based on equivalent dose determinations for single quartz grains, large irregularities on non-etched quartz surfaces might be very detrimental to the TL detection process. This result confirms that surface etching treatment is required to achieve reliable dating with high counting efficiency

  4. Temperature sensitivity of void nucleation and growth parameters for single crystal copper: a molecular dynamics study

    International Nuclear Information System (INIS)

    Rawat, S; Chavan, V M; Warrier, M; Chaturvedi, S

    2011-01-01

    The effect of temperature on the void nucleation and growth is studied using the molecular dynamics (MD) code LAMMPS (Large-Scale Atomic/Molecular Massively Parallel Simulator). Single crystal copper is triaxially expanded at 5 × 10 9  s −1 strain rate keeping the temperature constant. It is shown that the nucleation and growth of voids at these atomistic scales follows a macroscopic nucleation and growth (NAG) model. As the temperature increases there is a steady decrease in the nucleation and growth thresholds. As the melting point of copper is approached, a double-dip in the pressure–time profile is observed. Analysis of this double-dip shows that the first minimum corresponds to the disappearance of the long-range order due to the creation of stacking faults and the system no longer has a FCC structure. There is no nucleation of voids at this juncture. The second minimum corresponds to the nucleation and incipient growth of voids. We present the sensitivity of NAG parameters to temperature and the analysis of double-dip in the pressure–time profile for single crystal copper at 1250 K

  5. Magnetic switching of a single molecular magnet due to spin-polarized current

    Science.gov (United States)

    Misiorny, Maciej; Barnaś, Józef

    2007-04-01

    Magnetic switching of a single molecular magnet (SMM) due to spin-polarized current flowing between ferromagnetic metallic leads (electrodes) is investigated theoretically. Magnetic moments of the leads are assumed to be collinear and parallel to the magnetic easy axis of the molecule. Electrons tunneling through the barrier between magnetic leads are coupled to the SMM via exchange interaction. The current flowing through the system, as well as the spin relaxation times of the SMM, are calculated from the Fermi golden rule. It is shown that spin of the SMM can be reversed by applying a certain voltage between the two magnetic electrodes. Moreover, the switching may be visible in the corresponding current-voltage characteristics.

  6. Conventional and molecular methods used in the detection and subtyping of Yersinia enterocolitica in food.

    Science.gov (United States)

    Petsios, Stefanos; Fredriksson-Ahomaa, Maria; Sakkas, Hercules; Papadopoulou, Chrissanthy

    2016-11-21

    Yersinia enterocolitica is an important foodborne pathogen, but the prevalence in food is underestimated due to drawbacks in the detection methods. Problems arise from the low concentration of pathogenic strains present in food samples, similarities with other Enterobacteriaceae and Y. enterocolitica-like species and the heterogeneity of Y. enterocolitica as it comprises both pathogenic and non-pathogenic isolates. New rapid, cost-effective and more sensitive culture media and molecular techniques have been developed to overcome the drawbacks of conventional culture methods. Recent molecular subtyping methods have been applied to Y. enterocolitica strains to track infection sources and to investigate phylogenetic relationships between different Yersinia strains. Further application of modern subtyping tools such as WGS in a variety of bioserotypes, and comparison with other members of the genus will help to better understanding of the virulence determinants of pathogenic Y. enterocolitica, its mechanisms to cope in the host environments, and can contribute to the development of more specific detection and typing strategies.

  7. Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit

    Science.gov (United States)

    Pan, Weicheng; Wu, Haodi; Luo, Jiajun; Deng, Zhenzhou; Ge, Cong; Chen, Chao; Jiang, Xiaowei; Yin, Wan-Jian; Niu, Guangda; Zhu, Lujun; Yin, Lixiao; Zhou, Ying; Xie, Qingguo; Ke, Xiaoxing; Sui, Manling; Tang, Jiang

    2017-11-01

    Sensitive X-ray detection is crucial for medical diagnosis, industrial inspection and scientific research. The recently described hybrid lead halide perovskites have demonstrated low-cost fabrication and outstanding performance for direct X-ray detection, but they all contain toxic Pb in a soluble form. Here, we report sensitive X-ray detectors using solution-processed double perovskite Cs2AgBiBr6 single crystals. Through thermal annealing and surface treatment, we largely eliminate Ag+/Bi3+ disordering and improve the crystal resistivity, resulting in a detector with a minimum detectable dose rate as low as 59.7 nGyair s-1, comparable to the latest record of 0.036 μGyair s-1 using CH3NH3PbBr3 single crystals. Suppressed ion migration in Cs2AgBiBr6 permits relatively large external bias, guaranteeing efficient charge collection without a substantial increase in noise current and thus enabling the low detection limit.

  8. Trade study of leakage detection, monitoring, and mitigation technologies to support Hanford single-shell waste retrieval

    International Nuclear Information System (INIS)

    Hertzel, J.S.

    1996-03-01

    The U.S. Department of Energy has established the Tank Waste Remediation System to safely manage and dispose of low-level, high-level, and transuranic wastes currently stored in underground storage tanks at the Hanford Site in Eastern Washington. This report supports the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone No. M-45-08-T01 and addresses additional issues regarding single-shell tank leakage detection, monitoring, and mitigation technologies and provide an indication of the scope of leakage detection, monitoring, and mitigation activities necessary to support the Tank Waste Remedial System Initial Single-shell Tank Retrieval System project

  9. Single Versus Multiple Events Error Potential Detection in a BCI-Controlled Car Game With Continuous and Discrete Feedback.

    Science.gov (United States)

    Kreilinger, Alex; Hiebel, Hannah; Müller-Putz, Gernot R

    2016-03-01

    This work aimed to find and evaluate a new method for detecting errors in continuous brain-computer interface (BCI) applications. Instead of classifying errors on a single-trial basis, the new method was based on multiple events (MEs) analysis to increase the accuracy of error detection. In a BCI-driven car game, based on motor imagery (MI), discrete events were triggered whenever subjects collided with coins and/or barriers. Coins counted as correct events, whereas barriers were errors. This new method, termed ME method, combined and averaged the classification results of single events (SEs) and determined the correctness of MI trials, which consisted of event sequences instead of SEs. The benefit of this method was evaluated in an offline simulation. In an online experiment, the new method was used to detect erroneous MI trials. Such MI trials were discarded and could be repeated by the users. We found that, even with low SE error potential (ErrP) detection rates, feasible accuracies can be achieved when combining MEs to distinguish erroneous from correct MI trials. Online, all subjects reached higher scores with error detection than without, at the cost of longer times needed for completing the game. Findings suggest that ErrP detection may become a reliable tool for monitoring continuous states in BCI applications when combining MEs. This paper demonstrates a novel technique for detecting errors in online continuous BCI applications, which yields promising results even with low single-trial detection rates.

  10. Hairpin-Hairpin Molecular Beacon Interactions for Detection of Survivin mRNA in Malignant SW480 Cells.

    Science.gov (United States)

    Ratajczak, Katarzyna; Krazinski, Bartlomiej E; Kowalczyk, Anna E; Dworakowska, Beata; Jakiela, Slawomir; Stobiecka, Magdalena

    2018-05-07

    Cancer biomarkers offer unique prospects for the development of cancer diagnostics and therapy. One of such biomarkers, protein survivin (Sur), exhibits strong antiapoptotic and proliferation-enhancing properties and is heavily expressed in multiple cancers. Thus, it can be utilized to provide new modalities for modulating the cell-growth rate, essential for effective cancer treatment. Herein, we have focused on the development of a new survivin-based cancer detection platform for colorectal cancer cells SW480 using a turn-on fluorescence oligonucleotide molecular beacon (MB) probe, encoded to recognize Sur messenger RNA (mRNA). Contrary to the expectations, we have found that both the complementary target oligonucleotide strands as well as the single- and double-mismatch targets, instead of exhibiting the anticipated simple random conformations, preferentially formed secondary structure motifs by folding into small-loop hairpin structures. Such a conformation may interfere with, or even undermine, the biorecognition process. To gain better understanding of the interactions involved, we have replaced the classical Tyagi-Kramer model of interactions between a straight target oligonucleotide strand and a hairpin MB with a new model to account for the hairpin-hairpin interactions as the biorecognition principle. A detailed mechanism of these interactions has been proposed. Furthermore, in experimental work, we have demonstrated an efficient transfection of malignant SW480 cells with SurMB probes containing a fluorophore Joe (SurMB-Joe) using liposomal nanocarriers. The green emission from SurMB-Joe in transfected cancer cells, due to the hybridization of the SurMB-Joe loop with Sur mRNA hairpin target, corroborates Sur overexpression. On the other hand, healthy human-colon epithelial cells CCD 841 CoN show only negligible expression of survivin mRNA. These experiments provide the proof-of-concept for distinguishing between the cancer and normal cells by the proposed

  11. Highly sensitive immunoassay of protein molecules based on single nanoparticle fluorescence detection in a nanowell

    Science.gov (United States)

    Han, Jin-Hee; Kim, Hee-Joo; Lakshmana, Sudheendra; Gee, Shirley J.; Hammock, Bruce D.; Kennedy, Ian M.

    2011-03-01

    A nanoarray based-single molecule detection system was developed for detecting proteins with extremely high sensitivity. The nanoarray was able to effectively trap nanoparticles conjugated with biological sample into nanowells by integrating with an electrophoretic particle entrapment system (EPES). The nanoarray/EPES is superior to other biosensor using immunoassays in terms of saving the amounts of biological solution and enhancing kinetics of antibody binding due to reduced steric hindrance from the neighboring biological molecules. The nanoarray patterned onto a layer of PMMA and LOL on conductive and transparent indium tin oxide (ITO)-glass slide by using e-beam lithography. The suspension of 500 nm-fluorescent (green emission)-carboxylated polystyrene (PS) particles coated with protein-A followed by BDE 47 polyclonal antibody was added to the chip that was connected to the positive voltage. The droplet was covered by another ITO-coated-glass slide and connected to a ground terminal. After trapping the particles into the nanowells, the solution of different concentrations of anti-rabbit- IgG labeled with Alexa 532 was added for an immunoassay. A single molecule detection system could quantify the anti-rabbit IgG down to atto-mole level by counting photons emitted from the fluorescent dye bound to a single nanoparticle in a nanowell.

  12. How to get more from less. Comments on "Extracting physics of life at the molecular level: A review of single-molecule data analyses" by W. Colomb and S.K. Sarkar

    Science.gov (United States)

    Sachs, Frederick; Flomenbom, Ophir

    2015-06-01

    Measuring individual entities at room temperature has become routine due to improvements in technology. We can study ion channels (since the 70s), quantum dots (since the 80s), and receptors, molecular engines and enzymes (since the 90s). The inherent nature of these small systems is that the standard deviation of the measurement is comparable to the mean - the definition of a small system [1]. Individual probes are detected, measured, and the trajectories are then analyzed to extract the mean properties of the system. The review [2] provides links to many examples of single molecule studies, mostly those using optical probes.

  13. Separation and determination of citrinin in corn using HPLC fluorescence detection assisted by molecularly imprinted solid phase extraction clean-up

    Science.gov (United States)

    A liquid chromatography based method to detect citrinin in corn was developed using molecularly imprinted solid phase extraction (MISPE) sample clean-up. Molecularly imprinted polymers were synthesized using 1,4-dihydroxy-2-naphthoic acid as the template and an amine functional monomer. Density func...

  14. PCR/LDR/capillary electrophoresis for detection of single-nucleotide differences between fetal and maternal DNA in maternal plasma.

    Science.gov (United States)

    Yi, Ping; Chen, Zhuqin; Zhao, Yan; Guo, Jianxin; Fu, Huabin; Zhou, Yuanguo; Yu, Lili; Li, Li

    2009-03-01

    The discovery of fetal DNA in maternal plasma has opened up an approach for noninvasive diagnosis. We have now assessed the possibility of detecting single-nucleotide differences between fetal and maternal DNA in maternal plasma by polymerase chain reaction (PCR)/ligase detection reaction((LDR)/capillary electrophoresis. PCR/LDR/capillary electrophoresis was applied to detect the genotype of c.454-397T>gene (ESR1) from experimental DNA models of maternal plasma at different sensitivity levels and 13 maternal plasma samples.alphaC in estrogen receptor. (1) Our results demonstrated that the technique could discriminate low abundance single-nucleotide mutation with a mutant/normal allele ratio up to 1:10 000. (2) Examination of ESR1 c.454-397T>C genotypes by using the method of restriction fragment length analysis was performed in 25 pregnant women, of whom 13 pregnant women had homozygous genotypes. The c.454-397T>C genotypes of paternally inherited fetal DNA in maternal plasma of these 13 women were detected by PCR/LDR/capillary electrophoresis, which were accordant with the results of umbilical cord blood. PCR/LDR/capillary electrophoresis has very high sensitivity to distinguish low abundance single nucleotide differences and can discriminate point mutations and single-nucleotide polymorphisms(SNPs) of paternally inherited fetal DNA in maternal plasma.

  15. Effect of Co-60 single escape peak on detection of Cs-137 in analysis of radionuclide from research reactor

    International Nuclear Information System (INIS)

    Kim, M. S.; Park, S. J.

    2006-01-01

    The effect of the single escape peak of 1173 keV gamma-rays from Co-60 on the detection of Cs-137 activity is analyzed. The single escape peak of 1173 keV gamma-rays from Co-60 is located at the 662 keV, which is very close to the energy of gamma-rays from Cs-137. This single escape peak may be mistaken for the gamma-ray peak from Cs-137 activity in the case of large area of 1173 keV peak. The detection of Cs-137 is very important to the judgment of the contamination or the leakage of the material containing the fission product like reactor pool water and in the several experiments for reactor physics such as burn-up estimation. In this work, the areas of the single escape peak of the 1173 keV gamma-rays from Co-60 are measured with several full energy peak areas by using the HPGe detector. The critical limit by which we can decide whether the net count of 662 keV peak due to Co-60 would be significant or not is deduced. For this detection system, when the area of full energy peak is larger than 4.5 million, the single escape peak of 1173 keV gamma-rays from Co-60 can be regarded as the single significant peak. Therefore, it is confirmed that the detection of the Cs-137 activity is affected by the Co-60 in this case. Conservatively, for this detection system, it is recommended that the area of 1173 keV peak of Co-60 would be less than 2 million for neglecting the effect of Co-60. (authors)

  16. GAGG:ce single crystalline films: New perspective scintillators for electron detection in SEM.

    Science.gov (United States)

    Bok, Jan; Lalinský, Ondřej; Hanuš, Martin; Onderišinová, Zuzana; Kelar, Jakub; Kučera, Miroslav

    2016-04-01

    Single crystal scintillators are frequently used for electron detection in scanning electron microscopy (SEM). We report gadolinium aluminum gallium garnet (GAGG:Ce) single crystalline films as a new perspective scintillators for the SEM. For the first time, the epitaxial garnet films were used in a practical application: the GAGG:Ce scintillator was incorporated into a SEM scintillation electron detector and it showed improved image quality. In order to prove the GAGG:Ce quality accurately, the scintillation properties were examined using electron beam excitation and compared with frequently used scintillators in the SEM. The results demonstrate excellent emission efficiency of the GAGG:Ce single crystalline films together with their very fast scintillation decay useful for demanding SEM applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Nanomechanical DNA origami 'single-molecule beacons' directly imaged by atomic force microscopy

    Science.gov (United States)

    Kuzuya, Akinori; Sakai, Yusuke; Yamazaki, Takahiro; Xu, Yan; Komiyama, Makoto

    2011-01-01

    DNA origami involves the folding of long single-stranded DNA into designed structures with the aid of short staple strands; such structures may enable the development of useful nanomechanical DNA devices. Here we develop versatile sensing systems for a variety of chemical and biological targets at molecular resolution. We have designed functional nanomechanical DNA origami devices that can be used as 'single-molecule beacons', and function as pinching devices. Using 'DNA origami pliers' and 'DNA origami forceps', which consist of two levers ~170 nm long connected at a fulcrum, various single-molecule inorganic and organic targets ranging from metal ions to proteins can be visually detected using atomic force microscopy by a shape transition of the origami devices. Any detection mechanism suitable for the target of interest, pinching, zipping or unzipping, can be chosen and used orthogonally with differently shaped origami devices in the same mixture using a single platform. PMID:21863016

  18. Single photon emission tomography

    International Nuclear Information System (INIS)

    Buvat, Irene

    2011-09-01

    The objective of this lecture is to present the single photon emission computed tomography (SPECT) imaging technique. Content: 1 - Introduction: anatomic, functional and molecular imaging; Principle and role of functional or molecular imaging; 2 - Radiotracers: chemical and physical constraints, main emitters, radioisotopes production, emitters type and imaging techniques; 3 - Single photon emission computed tomography: gamma cameras and their components, gamma camera specifications, planar single photon imaging characteristics, gamma camera and tomography; 4 - Quantification in single photon emission tomography: attenuation, scattering, un-stationary spatial resolution, partial volume effect, movements, others; 5 - Synthesis and conclusion

  19. Strip biosensor for amplified detection of nerve growth factor-beta based on a molecular translator and catalytic DNA circuit.

    Science.gov (United States)

    Liu, Jun; Lai, Ting; Mu, Kejie; Zhou, Zheng

    2014-10-07

    We have demonstrated a new visual detection approach based on a molecular translator and a catalytic DNA circuit for the detection of nerve growth factor-beta (NGF-β). In this assay, a molecular translator based on the binding-induced DNA strand-displacement reaction was employed to convert the input protein to an output DNA signal. The molecular translator is composed of a target recognition element and a signal output element. Target recognition is achieved by the binding of the anti-NGF-β antibody to the target protein. Polyclonal anti-NGF-β antibody is conjugated to DNA1 and DNA2. The antibody conjugated DNA1 is initially hybridized to DNA3 to form a stable DNA1/DNA3 duplex. In the presence of NGF-β, the binding of the same target protein brings DNA1 and DNA2 into close proximity, resulting in an increase in their local effective concentration. This process triggers the strand-displacement reaction between DNA2 and DNA3 and releases the output DNA3. The released DNA3 is further amplified by a catalytic DNA circuit. The product of the catalytic DNA circuit is detected by a strip biosensor. This proposed assay has high sensitivity and selectivity with a dynamic response ranging from 10 fM to 10 pM, and its detection limit is 10 fM of NGF-β. This work provides a sensitive, enzyme-free, and universal strategy for the detection of other proteins.

  20. Mechanical transduction via a single soft polymer

    Science.gov (United States)

    Hou, Ruizheng; Wang, Nan; Bao, Weizhu; Wang, Zhisong

    2018-04-01

    Molecular machines from biology and nanotechnology often depend on soft structures to perform mechanical functions, but the underlying mechanisms and advantages or disadvantages over rigid structures are not fully understood. We report here a rigorous study of mechanical transduction along a single soft polymer based on exact solutions to the realistic three-dimensional wormlike-chain model and augmented with analytical relations derived from simpler polymer models. The results reveal surprisingly that a soft polymer with vanishingly small persistence length below a single chemical bond still transduces biased displacement and mechanical work up to practically significant amounts. This "soft" approach possesses unique advantages over the conventional wisdom of rigidity-based transduction, and potentially leads to a unified mechanism for effective allosterylike transduction and relay of mechanical actions, information, control, and molecules from one position to another in molecular devices and motors. This study also identifies an entropy limit unique to the soft transduction, and thereby suggests a possibility of detecting higher efficiency for kinesin motor and mutants in future experiments.

  1. Molecular imaging of oncolytic viral therapy

    Directory of Open Access Journals (Sweden)

    Dana Haddad

    2014-01-01

    Full Text Available Oncolytic viruses have made their mark on the cancer world as a potential therapeutic option, with the possible advantages of reduced side effects and strengthened treatment efficacy due to higher tumor selectivity. Results have been so promising, that oncolytic viral treatments have now been approved for clinical trials in several countries. However, clinical studies may benefit from the ability to noninvasively and serially identify sites of viral targeting via molecular imaging in order to provide safety, efficacy, and toxicity information. Furthermore, molecular imaging of oncolytic viral therapy may provide a more sensitive and specific diagnostic technique to detect tumor origin and, more importantly, presence of metastases. Several strategies have been investigated for molecular imaging of viral replication broadly categorized into optical and deep tissue imaging, utilizing several reporter genes encoding for fluorescence proteins, conditional enzymes, and membrane protein and transporters. Various imaging methods facilitate molecular imaging, including computer tomography, magnetic resonance imaging, positron emission tomography, single photon emission CT, gamma-scintigraphy, and photoacoustic imaging. In addition, several molecular probes are used for medical imaging, which act as targeting moieties or signaling agents. This review will explore the preclinical and clinical use of in vivo molecular imaging of replication-competent oncolytic viral therapy.

  2. Change detection in quad and dual pol, single- and bi-frequency SAR data

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg; Conradsen, Knut; Skriver, Henning

    2015-01-01

    -value are given. In a case study airborne EMISAR C- and L-band SAR images covering agricultural fields and wooded areas near Foulum, Denmark, are used in single- and bi-frequency, bi-temporal change detection with full and dual polarimetry data. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation...

  3. DETECTION OF A BIPOLAR MOLECULAR OUTFLOW DRIVEN BY A CANDIDATE FIRST HYDROSTATIC CORE

    International Nuclear Information System (INIS)

    Dunham, Michael M.; Chen Xuepeng; Arce, Héctor G.; Bourke, Tyler L.; Schnee, Scott; Enoch, Melissa L.

    2011-01-01

    We present new 230 GHz Submillimeter Array observations of the candidate first hydrostatic core Per-Bolo 58. We report the detection of a 1.3 mm continuum source and a bipolar molecular outflow, both centered on the position of the candidate first hydrostatic core. The continuum detection has a total flux density of 26.6 ± 4.0 mJy, from which we calculate a total (gas and dust) mass of 0.11 ± 0.05 M ☉ and a mean number density of 2.0 ± 1.6 × 10 7 cm –3 . There is some evidence for the existence of an unresolved component in the continuum detection, but longer-baseline observations are required in order to confirm the presence of this component and determine whether its origin lies in a circumstellar disk or in the dense inner envelope. The bipolar molecular outflow is observed along a nearly due east-west axis. The outflow is slow (characteristic velocity of 2.9 km s –1 ), shows a jet-like morphology (opening semi-angles ∼8° for both lobes), and extends to the edges of the primary beam. We calculate the kinematic and dynamic properties of the outflow in the standard manner and compare them to several other protostars and candidate first hydrostatic cores with similarly low luminosities. We discuss the evidence both in support of and against the possibility that Per-Bolo 58 is a first hydrostatic core, and we outline future work needed to further evaluate the evolutionary status of this object.

  4. Detectability of molecular gas signatures on Jupiter’s moon Europa from ground and space-based facilities

    Science.gov (United States)

    Paganini, Lucas; Villanueva, Geronimo Luis; Hurford, Terry; Mandell, Avi; Roth, Lorenz; Mumma, Michael J.

    2017-10-01

    Plumes and their effluent material could provide insights into Europa’s subsurface chemistry and relevant information about the prospect that life could exist, or now exists, within the ocean. In 2016, we initiated a strong observational campaign to characterize the chemical composition of Europa’s surface and exosphere using high-resolution infrared spectroscopy. While several studies have focused on the detection of water, or its dissociation products, there could be a myriad of complex molecules released by erupting plumes. Our IR survey has provided a serendipitous search for several key molecular species, allowing a chemical characterization that can aid the investigation of physical processes underlying its surface. Since our tentative water detection, presented at the 2016 DPS meeting, we have continued the observations of Europa during 2017 covering a significant extent of the moon’s terrain and orbital position (true anomaly), accounting for over 50 hr on source. Current analyses of these data are showing spectral features that grant further investigation. In addition to analysis algorithms tailored to the examination of Europan data, we have developed simulation tools to predict the possible detection of molecular species using ground-based facilities like the Keck Observatory, NASA’s Infrared Telescope and the Atacama Large Millimeter/submillimeter Array (ALMA). In this presentation we will discuss the detectability of key molecular species with these remote sensing facilities, as well as expected challenges and future strategies with upcoming spacecrafts such as the James Webb Space Telescope (JWST), the Large UV/Optical/Infrared Surveyor (LUVOIR), and a possible gas spectrometer onboard an orbiter.This work is supported by NASA’s Keck PI Data Award (PI L.P.) and Solar System Observation Program (PI L.P.), and by the NASA Astrobiology Institute through funding awarded to the Goddard Center for Astrobiology (PI M.J.M.).

  5. New potentiometric sensor based on molecularly imprinted nanoparticles for cocaine detection.

    Science.gov (United States)

    Smolinska-Kempisty, K; Ahmad, O Sheej; Guerreiro, A; Karim, K; Piletska, E; Piletsky, S

    2017-10-15

    Here we present a potentiometric sensor for cocaine detection based on molecularly imprinted polymer nanoparticles (nanoMIPs) produced by the solid-phase imprinting method. The composition of polymers with high affinity for cocaine was optimised using molecular modelling. Four compositions were selected and polymers prepared using two protocols: chemical polymerisation in water and UV-initiated polymerisation in organic solvent. All synthesised nanoparticles had very good affinity to cocaine with dissociation constants between 0.6nM and 5.3nM. Imprinted polymers produced in organic solvent using acrylamide as a functional monomer demonstrated the highest yield and affinity, and so were selected for further sensor development. For this, nanoparticles were incorporated within a PVC matrix which was then used to prepare an ion-selective membrane integrated with a potentiometric transducer. It was demonstrated that the sensor was able to quantify cocaine in blood serum samples in the range of concentrations between 1nM and 1mM. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Reliable Grid Condition Detection and Control of Single-Phase Distributed Power Generation Systems

    DEFF Research Database (Denmark)

    Ciobotaru, Mihai

    standards addressed to the grid-connected systems will harmonize the combination of the DPGS and the classical power plants. Consequently, the major tasks of this thesis were to develop new grid condition detection techniques and intelligent control in order to allow the DPGS not only to deliver power...... to the utility grid but also to sustain it. This thesis was divided into two main parts, namely "Grid Condition Detection" and "Control of Single-Phase DPGS". In the first part, the main focus was on reliable Phase Locked Loop (PLL) techniques for monitoring the grid voltage and on grid impedance estimation...... techniques. Additionally, a new technique for detecting the islanding mode has been developed and successfully tested. In the second part, the main reported research was concentrated around adaptive current controllers based on the information provided by the grid condition detection techniques. To guarantee...

  7. Detection of dopamine neurotransmission in 'real time'

    Directory of Open Access Journals (Sweden)

    Rajendra D Badgaiyan

    2013-07-01

    Full Text Available Current imaging techniques have limited ability to detect neurotransmitters released during brain processing. It is a critical limitation because neurotransmitters have significant control over the brain activity. In this context, recent development of single-scan dynamic molecular imaging technique is important because it allows detection, mapping, and measurement of dopamine released in the brain during task performance. The technique exploits the competition between endogenously released dopamine and its receptor ligand for occupancy of receptor sites. Dopamine released during task performance is detected by dynamically measuring concentration of intravenously injected radiolabeled ligand using a positron emission tomography camera. Based on the ligand concentration, values of receptor kinetic parameters are estimated. These estimates allow detection of dopamine released in the human brain during task performance.

  8. Detecting β-thalassaemia mutations from a single cell by PEP and RDB

    Institute of Scientific and Technical Information of China (English)

    YI Ping; LI Li; YAO Hong; ZHOU Yuan-guo; DENG Bing; CHEN Zhu-qin

    2006-01-01

    Objective:To evaluate the possibility of the technology involving PEP and RDB for detecting β-thalassaemia multipoint mutations from a single cell simultaneously. Methods: A set of allele specific oligonucleotide (ASO) probes used for detecting 8 familiar β-thalassaemia mutations (CD41-42, IVS- Ⅱ -654, CD17, TATA box nt-28, CD71-72, TATA box nt-29, CD26, IVS- Ⅰ -5) were immobilized on a strip of nylon membrane. The genome of a individual cell was amplified by primer extension preamplification (PEP) with the mixture of15-base random oligonucleotides. The aliquots from PEP were used to amplify the objective gene fractions of β-thalassaemia gene by nested or semi-nested PCR. The membrane was hybridized with the final amplified products and then treated with Streptavidin-HRP and color development.Results :Totally 30 lymphocytes were picked up from blood samples of 1 healthy female and 4 patients with known β-thalassaemia mutations respectively. Each single lymphocyte was lysed in the proteinase K buffer. The amplification efficacy was 94.0% and alle drop-out(ADO) rate was 8.0%. Revert dot blot (RDB) was applied to the final amplified products from the 5 participants. The results of diagnosis were the same to the expected, and their genotypes were N/N, CD17 (A→T)/N, IVS- Ⅱ -654(C→T)/CD17(A → T), CD41-42 (-CTTT)/N and TATA box nt-28 (A→G)/N, respectively. Conclusion: The technology involving PEP and RDB could detectmultiple β-thalassaemia mutations from a single cell simultaneously,and the research provides experimental evidences for the feasibility of applying PEP and DNA array technology to screening multiple genetic mutations from a single cell, and will be applied to preimplantation genetic diagnosis and non-invasive prenatal diagnosis for β-thalassaemia.

  9. A superconducting microcalorimeter for low-flux detection of near-infrared single photons

    International Nuclear Information System (INIS)

    Dreyling-Eschweiler, Jan

    2014-07-01

    This thesis covers the development and the characterization of a single photon detector based on a superconducting microcalorimeter. The detector development is motivated by the Any Light Particle Search II (ALPS II) experiment at DESY in Hamburg, which searches for weakly interacting sub-eV particles (WISPs). Therefore, a detection of low-fluxes of 1064 nm light is required. The work is divided in three analyses: the characterization of a milli-kelvin (mK) cryostat, the characterization of superconducting sensors for single photon detection, and the determination of dark count rates concerning 1064 nm signals. Firstly, an adiabatic demagnetization refrigerator (ADR) is characterized, which allows to reach mK-temperatures. During commissioning, the ADR cryostat is optimized and prepared to stably cool superconducting sensors at 80 mK±25 μK. It is found that sensors can be continuously operated for ∝20 h before recharging the system in -4 s -1 . By operating a fiber-coupled TES, it is found that the dark count rate for 1064 nm signals is dominated by pile-up events of near-infrared thermal photons coming through the fiber from the warm environment. Considering a detection efficiency of ∝18 %, a dark count rate of 8.6 . 10 -3 s -1 is determined for 1064 nm ALPS photons.Concerning ALPS II, this results in a sensitivity gain compared to the ALPS I detector. Furthermore, this thesis is the starting point of TES detector development in Hamburg, Germany.

  10. Detection of a noble gas molecular ion, 36ArH+, in the Crab Nebula.

    Science.gov (United States)

    Barlow, M J; Swinyard, B M; Owen, P J; Cernicharo, J; Gomez, H L; Ivison, R J; Krause, O; Lim, T L; Matsuura, M; Miller, S; Olofsson, G; Polehampton, E T

    2013-12-13

    Noble gas molecules have not hitherto been detected in space. From spectra obtained with the Herschel Space Observatory, we report the detection of emission in the 617.5- and 1234.6-gigahertz J = 1-0 and 2-1 rotational lines of (36)ArH(+) at several positions in the Crab Nebula, a supernova remnant known to contain both molecular hydrogen and regions of enhanced ionized argon emission. Argon-36 is believed to have originated from explosive nucleosynthesis in massive stars during core-collapse supernova events. Its detection in the Crab Nebula, the product of such a supernova event, confirms this expectation. The likely excitation mechanism for the observed (36)ArH(+) emission lines is electron collisions in partially ionized regions with electron densities of a few hundred per centimeter cubed.

  11. An approach to spin-resolved molecular gas microscopy

    Science.gov (United States)

    Covey, Jacob P.; De Marco, Luigi; Acevedo, Óscar L.; Rey, Ana Maria; Ye, Jun

    2018-04-01

    Ultracold polar molecules are an ideal platform for studying many-body physics with long-range dipolar interactions. Experiments in this field have progressed enormously, and several groups are pursuing advanced apparatus for manipulation of molecules with electric fields as well as single-atom-resolved in situ detection. Such detection has become ubiquitous for atoms in optical lattices and tweezer arrays, but has yet to be demonstrated for ultracold polar molecules. Here we present a proposal for the implementation of site-resolved microscopy for polar molecules, and specifically discuss a technique for spin-resolved molecular detection. We use numerical simulation of spin dynamics of lattice-confined polar molecules to show how such a scheme would be of utility in a spin-diffusion experiment.

  12. Evaluation of a single-item screening question to detect limited health literacy in peritoneal dialysis patients.

    Science.gov (United States)

    Jain, Deepika; Sheth, Heena; Bender, Filitsa H; Weisbord, Steven D; Green, Jamie A

    2014-01-01

    Studies have shown that a single-item question might be useful in identifying patients with limited health literacy. However, the utility of the approach has not been studied in patients receiving maintenance peritoneal dialysis (PD). We assessed health literacy in a cohort of 31 PD patients by administering the Rapid Estimate of Adult Literacy in Medicine (REALM) and a single-item health literacy (SHL) screening question "How confident are you filling out medical forms by yourself?" (Extremely, Quite a bit, Somewhat, A little bit, or Not at all). To determine the accuracy of the single-item question for detecting limited health literacy, we performed sensitivity and specificity analyses of the SHL and plotted the area under the receiver operating characteristic (AUROC) curve using the REALM as a reference standard. Using a cut-off of "Somewhat" or less confident, the sensitivity of the SHL for detecting limited health literacy was 80%, and the specificity was 88%. The positive likelihood ratio was 6.9. The SHL had an AUROC of 0.79 (95% confidence interval: 0.52 to 1.00). Our results show that the SHL could be effective in detecting limited health literacy in PD patients.

  13. Spectrally-efficient 168 Gb/s/λ WDM 64-QAM single-sideband Nyquist-subcarrier modulation with Kramers-Kronig direct-detection receivers \\ud

    OpenAIRE

    Liu, Zhe; Erkılınç , M. Sezer; Shi, Kai; Sillekens, Eric; Galdino, Lidia; Xu, Tianhua; Thomsen, Benn C.; Byvel, Polina; Killey, Robert I.

    2018-01-01

    Due to their simple and cost-effective transceiver architecture, single-polarization and single-photodiode based direct-detection (DD) systems offer advantages for metropolitan area network and data-center interconnect applications. Single-sideband subcarrier modulation (SSB SCM) signaling with direct detection has the potential to achieve high information spectral density (ISD) but its performance can be significantly degraded by signal-signal beat interference (SSBI). The recently proposed ...

  14. An Undergraduate Laboratory Experiment for Upper-Level Forensic Science, Biochemistry, or Molecular Biology Courses: Human DNA Amplification Using STR Single Locus Primers by Real-Time PCR with SYBR Green Detection

    Science.gov (United States)

    Elkins, Kelly M.; Kadunc, Raelynn E.

    2012-01-01

    In this laboratory experiment, real-time polymerase chain reaction (real-time PCR) was conducted using published human TPOX single-locus DNA primers for validation and various student-designed short tandem repeat (STR) primers for Combined DNA Index System (CODIS) loci. SYBR Green was used to detect the amplification of the expected amplicons. The…

  15. [Pharmacogenetics II. Research molecular methods, bioinformatics and ethical concerns].

    Science.gov (United States)

    Daudén, E

    2007-01-01

    Pharmacogenetics refers to the study of the individual pharmacological response based on the genotype. Its objective is to optimize treatment in an individual basis, thereby creating a more efficient and safe personalized therapy. In the second part of this review, the molecular methods of study in pharmacogenetics, including microarray technology or DNA chips, are discussed. Among them we highlight the microarrays used to determine the gene expression that detect specific RNA sequences, and the microarrays employed to determine the genotype that detect specific DNA sequences, including polymorphisms, particularly single nucleotide polymorphisms (SNPs). The relationship between pharmacogenetics, bioinformatics and ethical concerns is reviewed.

  16. Detection of caffeine in tea, instant coffee, green tea beverage, and soft drink by direct analysis in real time (DART) source coupled to single-quadrupole mass spectrometry.

    Science.gov (United States)

    Wang, Lei; Zhao, Pengyue; Zhang, Fengzu; Bai, Aijuan; Pan, Canping

    2013-01-01

    Ambient ionization direct analysis in real time (DART) coupled to single-quadrupole MS (DART-MS) was evaluated for rapid detection of caffeine in commercial samples without chromatographic separation or sample preparation. Four commercial samples were examined: tea, instant coffee, green tea beverage, and soft drink. The response-related parameters were optimized for the DART temperature and MS fragmentor. Under optimal conditions, the molecular ion (M+H)+ was the major ion for identification of caffeine. The results showed that DART-MS is a promising tool for the quick analysis of important marker molecules in commercial samples. Furthermore, this system has demonstrated significant potential for high sample throughput and real-time analysis.

  17. A simple, high-throughput method to detect Plasmodium falciparum single nucleotide polymorphisms in the dihydrofolate reductase, dihydropteroate synthase, and P. falciparum chloroquine resistance transporter genes using polymerase chain reaction- and enzyme-linked immunosorbent

    DEFF Research Database (Denmark)

    Alifrangis, Michael; Enosse, Sonia; Pearce, Richard

    2005-01-01

    Single nucleotide polymorphisms (SNPs) in the Plasmodium falciparum dihydrofolate reductase (dhfr), and dihydropteroate synthetase (dhps), and chloroquine resistance transporter (Pfcrt) genes are used as molecular markers of P. falciparum resistance to sulfadoxine/pyrimethamine and chloroquine....... However, to be a practical tool in the surveillance of drug resistance, simpler methods for high-throughput haplotyping are warranted. Here we describe a quick and simple technique that detects dhfr, dhps, and Pfcrt SNPs using polymerase chain reaction (PCR)- and enzyme-linked immunosorbent assay (ELISA...

  18. Molecular techniques for detection and identification of pathogens in food: advantages and limitations

    OpenAIRE

    Palomino-Camargo, Carolina; Instituto de Ciencia y Tecnología de Alimentos, Facultad de Ciencias, Universidad Central de Venezuela. Caracas, Venezuela. Magíster en Ciencia y Tecnología de los Alimentos licenciada en Biología; González-Muñoz, Yuniesky; Instituto de Ciencia y Tecnología de Alimentos, Facultad de Ciencias, Universidad Central de Venezuela. Caracas, Venezuela. Ministerio del Poder Popular para la Alimentación. Caracas, Venezuela. licenciado en Ciencias de los Alimentos.

    2014-01-01

    Foodborne diseases, caused by pathogenic microorganisms, are a major public health problem worldwide. Microbiological methods commonly used in the detection of these foodborne pathogens are laborious and time consuming. This situation, coupled with the demand for immediate results and with technological advances, has led to the development of a wide range of rapid methods in recent decades. On this basis, this review describes the advantages and limitations of the main molecular methods used ...

  19. Development of a novel single tube nested PCR for enhanced detection of cytomegalovirus DNA from dried blood spots.

    Science.gov (United States)

    Atkinson, C; Emery, V C; Griffiths, P D

    2014-02-01

    Newborn screening for congenital cytomegalovirus (CCMV) using dried blood spots (DBS) has been proposed because many developed countries have DBS screening programmes in place for other diseases. The aim of this study was to develop a rapid, single tube nested polymerase chain reaction (PCR) method for enhanced detection of CMV from DBS compared to existing (single target) real time PCRs. The new method was compared with existing real time PCRs for sensitivity and specificity. Overall sensitivity of the single target PCR assays in both asymptomatic and symptomatic infants with laboratory confirmed congenital CMV was 69% (CMV PCR or culture positive before day 21 of life). In contrast, the single tube nested assay had an increased sensitivity of 81% with100% specificity. Overall the assay detected CMV from a DBS equivalent to an original blood sample which contained 500IU/ml. In conclusion this single tube nested methodology allows simultaneous amplification and detection of CMV DNA in 1.5h removing the associated contamination risk of a two step nested PCR. Owing to its increased sensitivity, it has the potential to be used as a screening assay and ultimately allow early identification and intervention for children with congenital CMV. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. A geometric approach for fault detection and isolation of stator short circuit failure in a single asynchronous machine

    KAUST Repository

    Khelouat, Samir

    2012-06-01

    This paper deals with the problem of detection and isolation of stator short-circuit failure in a single asynchronous machine using a geometric approach. After recalling the basis of the geometric approach for fault detection and isolation in nonlinear systems, we will study some structural properties which are fault detectability and isolation fault filter existence. We will then design filters for residual generation. We will consider two approaches: a two-filters structure and a single filter structure, both aiming at generating residuals which are sensitive to one fault and insensitive to the other faults. Some numerical tests will be presented to illustrate the efficiency of the method.

  1. Neisseria gonorrhoeae and extended-spectrum cephalosporins in California: surveillance and molecular detection of mosaic penA.

    Science.gov (United States)

    Gose, Severin; Nguyen, Duylinh; Lowenberg, Daniella; Samuel, Michael; Bauer, Heidi; Pandori, Mark

    2013-12-04

    The spread of Neisseria gonorrhoeae strains with mosaic penA alleles and reduced susceptibility to extended-spectrum cephalosporins is a major public health problem. While much work has been performed internationally, little is known about the genetics or molecular epidemiology of N. gonorrhoeae isolates with reduced susceptibility to extended-spectrum cephalosporins in the United States. The majority of N. gonorrhoeae infections are diagnosed without a live culture. Molecular tools capable of detecting markers of extended-spectrum cephalosporin resistance are needed. Urethral N. gonorrhoeae isolates were collected from 684 men at public health clinics in California in 2011. Minimum inhibitory concentrations (MICs) to ceftriaxone, cefixime, cefpodoxime and azithromycin were determined by Etest and categorized according to the U.S. Centers for Disease Control 2010 alert value breakpoints. 684 isolates were screened for mosaic penA alleles using real-time PCR (RTPCR) and 59 reactive isolates were subjected to DNA sequencing of their penA alleles and Neisseria gonorrhoeae multi-antigen sequence typing (NG-MAST). To increase the specificity of the screening RTPCR in detecting isolates with alert value extended-spectrum cephalosporin MICs, the primers were modified to selectively amplify the mosaic XXXIV penA allele. Three mosaic penA alleles were detected including two previously described alleles (XXXIV, XXXVIII) and one novel allele (LA-A). Of the 29 isolates with an alert value extended-spectrum cephalosporin MIC, all possessed the mosaic XXXIV penA allele and 18 were sequence type 1407, an internationally successful strain associated with multi-drug resistance. The modified RTPCR detected the mosaic XXXIV penA allele in urethral isolates and urine specimens and displayed no amplification of the other penA alleles detected in this study. N. gonorrhoeae isolates with mosaic penA alleles and reduced susceptibility to extended-spectrum cephalosporins are currently

  2. Measurement issues associated with quantitative molecular biology analysis of complex food matrices for the detection of food fraud.

    Science.gov (United States)

    Burns, Malcolm; Wiseman, Gordon; Knight, Angus; Bramley, Peter; Foster, Lucy; Rollinson, Sophie; Damant, Andrew; Primrose, Sandy

    2016-01-07

    Following a report on a significant amount of horse DNA being detected in a beef burger product on sale to the public at a UK supermarket in early 2013, the Elliott report was published in 2014 and contained a list of recommendations for helping ensure food integrity. One of the recommendations included improving laboratory testing capacity and capability to ensure a harmonised approach for testing for food authenticity. Molecular biologists have developed exquisitely sensitive methods based on the polymerase chain reaction (PCR) or mass spectrometry for detecting the presence of particular nucleic acid or peptide/protein sequences. These methods have been shown to be specific and sensitive in terms of lower limits of applicability, but they are largely qualitative in nature. Historically, the conversion of these qualitative techniques into reliable quantitative methods has been beset with problems even when used on relatively simple sample matrices. When the methods are applied to complex sample matrices, as found in many foods, the problems are magnified resulting in a high measurement uncertainty associated with the result which may mean that the assay is not fit for purpose. However, recent advances in the technology and the understanding of molecular biology approaches have further given rise to the re-assessment of these methods for their quantitative potential. This review focuses on important issues for consideration when validating a molecular biology assay and the various factors that can impact on the measurement uncertainty of a result associated with molecular biology approaches used in detection of food fraud, with a particular focus on quantitative PCR-based and proteomics assays.

  3. GAGG:ce single crystalline films: New perspective scintillators for electron detection in SEM

    International Nuclear Information System (INIS)

    Bok, Jan; Lalinský, Ondřej; Hanuš, Martin; Onderišinová, Zuzana; Kelar, Jakub; Kučera, Miroslav

    2016-01-01

    Single crystal scintillators are frequently used for electron detection in scanning electron microscopy (SEM). We report gadolinium aluminum gallium garnet (GAGG:Ce) single crystalline films as a new perspective scintillators for the SEM. For the first time, the epitaxial garnet films were used in a practical application: the GAGG:Ce scintillator was incorporated into a SEM scintillation electron detector and it showed improved image quality. In order to prove the GAGG:Ce quality accurately, the scintillation properties were examined using electron beam excitation and compared with frequently used scintillators in the SEM. The results demonstrate excellent emission efficiency of the GAGG:Ce single crystalline films together with their very fast scintillation decay useful for demanding SEM applications. - Highlights: • First practical application of epitaxial garnet films demonstrated in SEM. • Improved image quality of SEM equipped with GAGG:Ce single crystalline thin film scintillator. • Scintillation properties of GAGG:Ce films compared with standard bulk crystal scintillators.

  4. Detecting the Presence of Nora Virus in "Drosophila" Utilizing Single Fly RT-PCR

    Science.gov (United States)

    Munn, Bethany; Ericson, Brad; Carlson, Darby J.; Carlson, Kimberly A.

    2015-01-01

    A single fly RT-PCR protocol has recently been developed to detect the presence of the persistent, horizontally transmitted Nora virus in "Drosophila." Wild-caught flies from Ohio were tested for the presence of the virus, with nearly one-fifth testing positive. The investigation presented can serve as an ideal project for biology…

  5. A novel method for detection of phosphorylation in single cells by surface enhanced Raman scattering (SERS using composite organic-inorganic nanoparticles (COINs.

    Directory of Open Access Journals (Sweden)

    Catherine M Shachaf

    Full Text Available Detection of single cell epitopes has been a mainstay of immunophenotyping for over three decades, primarily using fluorescence techniques for quantitation. Fluorescence has broad overlapping spectra, limiting multiplexing abilities.To expand upon current detection systems, we developed a novel method for multi-color immuno-detection in single cells using "Composite Organic-Inorganic Nanoparticles" (COINs Raman nanoparticles. COINs are Surface-Enhanced Raman Scattering (SERS nanoparticles, with unique Raman spectra. To measure Raman spectra in single cells, we constructed an automated, compact, low noise and sensitive Raman microscopy device (Integrated Raman BioAnalyzer. Using this technology, we detected proteins expressed on the surface in single cells that distinguish T-cells among human blood cells. Finally, we measured intracellular phosphorylation of Stat1 (Y701 and Stat6 (Y641, with results comparable to flow cytometry.Thus, we have demonstrated the practicality of applying COIN nanoparticles for measuring intracellular phosphorylation, offering new possibilities to expand on the current fluorescent technology used for immunoassays in single cells.

  6. A novel method for detection of phosphorylation in single cells by surface enhanced Raman scattering (SERS) using composite organic-inorganic nanoparticles (COINs).

    Science.gov (United States)

    Shachaf, Catherine M; Elchuri, Sailaja V; Koh, Ai Leen; Zhu, Jing; Nguyen, Lienchi N; Mitchell, Dennis J; Zhang, Jingwu; Swartz, Kenneth B; Sun, Lei; Chan, Selena; Sinclair, Robert; Nolan, Garry P

    2009-01-01

    Detection of single cell epitopes has been a mainstay of immunophenotyping for over three decades, primarily using fluorescence techniques for quantitation. Fluorescence has broad overlapping spectra, limiting multiplexing abilities. To expand upon current detection systems, we developed a novel method for multi-color immuno-detection in single cells using "Composite Organic-Inorganic Nanoparticles" (COINs) Raman nanoparticles. COINs are Surface-Enhanced Raman Scattering (SERS) nanoparticles, with unique Raman spectra. To measure Raman spectra in single cells, we constructed an automated, compact, low noise and sensitive Raman microscopy device (Integrated Raman BioAnalyzer). Using this technology, we detected proteins expressed on the surface in single cells that distinguish T-cells among human blood cells. Finally, we measured intracellular phosphorylation of Stat1 (Y701) and Stat6 (Y641), with results comparable to flow cytometry. Thus, we have demonstrated the practicality of applying COIN nanoparticles for measuring intracellular phosphorylation, offering new possibilities to expand on the current fluorescent technology used for immunoassays in single cells.

  7. Plasmonic detection and visualization of directed adsorption of charged single nanoparticles to patterned surfaces

    International Nuclear Information System (INIS)

    Scherbahn, Vitali; Nizamov, Shavkat; Mirsky, Vladimir M.

    2016-01-01

    It has recently been shown that surface plasmon microscopy (SPM) allows single nanoparticles (NPs) on sensor surfaces to be detected and analyzed. The authors have applied this technique to study the adsorption of single metallic and plastic NPs. Binding of gold NPs (40, 60 and 100 nm in size) and of 100 nm polystyrene NPs to gold surfaces modified by differently ω-functionalized alkyl thiols was studied first. Self-assembled monolayers (SAM) with varying terminal functions including amino, carboxy, oligo(ethylene glycol), methyl, or trimethylammonium groups were deposited on gold films to form surfaces possessing different charge and hydrophobicity. The affinity of NPs to these surfaces depends strongly on the type of coating. SAMs terminated with trimethylammonium groups and carboxy group display highly different affinity and therefore were preferred when creating patterned charged surfaces. Citrate-stabilized gold NPs and sulfate-terminated polystyrene NPs were used as negatively charged NPs, while branched polyethylenimine-coated silver NPs were used as positively charged NPs. It is shown that the charged patterned areas on the gold films are capable of selectively adsorbing oppositely charged NPs that can be detected and analyzed with an ∼1 ng⋅mL −1 detection limit. (author)

  8. Single assay for simultaneous detection and differential identification of human and avian influenza virus types, subtypes, and emergent variants.

    Directory of Open Access Journals (Sweden)

    David Metzgar

    Full Text Available For more than four decades the cause of most type A influenza virus infections of humans has been attributed to only two viral subtypes, A/H1N1 or A/H3N2. In contrast, avian and other vertebrate species are a reservoir of type A influenza virus genome diversity, hosting strains representing at least 120 of 144 combinations of 16 viral hemagglutinin and 9 viral neuraminidase subtypes. Viral genome segment reassortments and mutations emerging within this reservoir may spawn new influenza virus strains as imminent epidemic or pandemic threats to human health and poultry production. Traditional methods to detect and differentiate influenza virus subtypes are either time-consuming and labor-intensive (culture-based or remarkably insensitive (antibody-based. Molecular diagnostic assays based upon reverse transcriptase-polymerase chain reaction (RT-PCR have short assay cycle time, and high analytical sensitivity and specificity. However, none of these diagnostic tests determine viral gene nucleotide sequences to distinguish strains and variants of a detected pathogen from one specimen to the next. Decision-quality, strain- and variant-specific pathogen gene sequence information may be critical for public health, infection control, surveillance, epidemiology, or medical/veterinary treatment planning. The Resequencing Pathogen Microarray (RPM-Flu is a robust, highly multiplexed and target gene sequencing-based alternative to both traditional culture- or biomarker-based diagnostic tests. RPM-Flu is a single, simultaneous differential diagnostic assay for all subtype combinations of type A influenza viruses and for 30 other viral and bacterial pathogens that may cause influenza-like illness. These other pathogen targets of RPM-Flu may co-infect and compound the morbidity and/or mortality of patients with influenza. The informative specificity of a single RPM-Flu test represents specimen-specific viral gene sequences as determinants of virus type, A

  9. Single assay for simultaneous detection and differential identification of human and avian influenza virus types, subtypes, and emergent variants.

    Science.gov (United States)

    Metzgar, David; Myers, Christopher A; Russell, Kevin L; Faix, Dennis; Blair, Patrick J; Brown, Jason; Vo, Scott; Swayne, David E; Thomas, Colleen; Stenger, David A; Lin, Baochuan; Malanoski, Anthony P; Wang, Zheng; Blaney, Kate M; Long, Nina C; Schnur, Joel M; Saad, Magdi D; Borsuk, Lisa A; Lichanska, Agnieszka M; Lorence, Matthew C; Weslowski, Brian; Schafer, Klaus O; Tibbetts, Clark

    2010-02-03

    For more than four decades the cause of most type A influenza virus infections of humans has been attributed to only two viral subtypes, A/H1N1 or A/H3N2. In contrast, avian and other vertebrate species are a reservoir of type A influenza virus genome diversity, hosting strains representing at least 120 of 144 combinations of 16 viral hemagglutinin and 9 viral neuraminidase subtypes. Viral genome segment reassortments and mutations emerging within this reservoir may spawn new influenza virus strains as imminent epidemic or pandemic threats to human health and poultry production. Traditional methods to detect and differentiate influenza virus subtypes are either time-consuming and labor-intensive (culture-based) or remarkably insensitive (antibody-based). Molecular diagnostic assays based upon reverse transcriptase-polymerase chain reaction (RT-PCR) have short assay cycle time, and high analytical sensitivity and specificity. However, none of these diagnostic tests determine viral gene nucleotide sequences to distinguish strains and variants of a detected pathogen from one specimen to the next. Decision-quality, strain- and variant-specific pathogen gene sequence information may be critical for public health, infection control, surveillance, epidemiology, or medical/veterinary treatment planning. The Resequencing Pathogen Microarray (RPM-Flu) is a robust, highly multiplexed and target gene sequencing-based alternative to both traditional culture- or biomarker-based diagnostic tests. RPM-Flu is a single, simultaneous differential diagnostic assay for all subtype combinations of type A influenza viruses and for 30 other viral and bacterial pathogens that may cause influenza-like illness. These other pathogen targets of RPM-Flu may co-infect and compound the morbidity and/or mortality of patients with influenza. The informative specificity of a single RPM-Flu test represents specimen-specific viral gene sequences as determinants of virus type, A/HN subtype, virulence

  10. Evaluation of molecular markers for Phytophthora ramorum detection and identification: Testing for specificity using a standardized library of isolates

    Science.gov (United States)

    F.N. Martin; M.D. Coffey; K. Zeller; R.C. Hamelin; P. Tooley; M. Garbelotto; K.J.D. Hughes; T. Kubisiak; G.J. Bilodeau; L. Levy; C. Blomquist; P.H. Berger

    2009-01-01

    Given the importance of Phytophthora ramorum from a regulatory standpoint, it is imperative that molecular markers for pathogen detection are fully tested to evaluate their specificity in detection of the pathogen. In an effort to evaluate 11 reported diagnostic techniques, we assembled a standardized DNA library using accessions from the World...

  11. The rational development of molecularly imprinted polymer-based sensors for protein detection.

    Science.gov (United States)

    Whitcombe, Michael J; Chianella, Iva; Larcombe, Lee; Piletsky, Sergey A; Noble, James; Porter, Robert; Horgan, Adrian

    2011-03-01

    The detection of specific proteins as biomarkers of disease, health status, environmental monitoring, food quality, control of fermenters and civil defence purposes means that biosensors for these targets will become increasingly more important. Among the technologies used for building specific recognition properties, molecularly imprinted polymers (MIPs) are attracting much attention. In this critical review we describe many methods used for imprinting recognition for protein targets in polymers and their incorporation with a number of transducer platforms with the aim of identifying the most promising approaches for the preparation of MIP-based protein sensors (277 references).

  12. Photon-counting single-molecule spectroscopy for studying conformational dynamics and macromolecular interactions

    Energy Technology Data Exchange (ETDEWEB)

    Laurence, Ted Alfred [Univ. of California, Berkeley, CA (United States)

    2002-01-01

    Single-molecule methods have the potential to provide information about conformational dynamics and molecular interactions that cannot be obtained by other methods. Removal of ensemble averaging provides several benefits, including the ability to detect heterogeneous populations and the ability to observe asynchronous reactions. Single-molecule diffusion methodologies using fluorescence resonance energy transfer (FRET) are developed to monitor conformational dynamics while minimizing perturbations introduced by interactions between molecules and surfaces. These methods are used to perform studies of the folding of Chymotrypsin Inhibitor 2, a small, single-domain protein, and of single-stranded DNA (ssDNA) homopolymers. Confocal microscopy is used in combination with sensitive detectors to detect bursts of photons from fluorescently labeled biomolecules as they diffuse through the focal volume. These bursts are analyzed to extract fluorescence resonance energy transfer (FRET) efficiency. Advances in data acquisition and analysis techniques that are providing a more complete picture of the accessible molecular information are discussed. Photon Arrival-time Interval Distribution (PAID) analysis is a new method for monitoring macromolecular interactions by fluorescence detection with simultaneous determination of coincidence, brightness, diffusion time, and occupancy (proportional to concentration) of fluorescently-labeled molecules undergoing diffusion in a confocal detection volume. This method is based on recording the time of arrival of all detected photons, and then plotting the two-dimensional histogram of photon pairs, where one axis is the time interval between each pair of photons 1 and 2, and the second axis is the number of other photons detected in the time interval between photons 1 and 2. PAID is related to Fluorescence Correlation Spectroscopy (FCS) by a collapse of this histogram onto the time interval axis. PAID extends auto- and cross-correlation FCS

  13. Photon-counting single-molecule spectroscopy for studying conformational dynamics and macromolecular interactions

    International Nuclear Information System (INIS)

    Laurence, Ted Alfred

    2002-01-01

    Single-molecule methods have the potential to provide information about conformational dynamics and molecular interactions that cannot be obtained by other methods. Removal of ensemble averaging provides several benefits, including the ability to detect heterogeneous populations and the ability to observe asynchronous reactions. Single-molecule diffusion methodologies using fluorescence resonance energy transfer (FRET) are developed to monitor conformational dynamics while minimizing perturbations introduced by interactions between molecules and surfaces. These methods are used to perform studies of the folding of Chymotrypsin Inhibitor 2, a small, single-domain protein, and of single-stranded DNA (ssDNA) homopolymers. Confocal microscopy is used in combination with sensitive detectors to detect bursts of photons from fluorescently labeled biomolecules as they diffuse through the focal volume. These bursts are analyzed to extract fluorescence resonance energy transfer (FRET) efficiency. Advances in data acquisition and analysis techniques that are providing a more complete picture of the accessible molecular information are discussed. Photon Arrival-time Interval Distribution (PAID) analysis is a new method for monitoring macromolecular interactions by fluorescence detection with simultaneous determination of coincidence, brightness, diffusion time, and occupancy (proportional to concentration) of fluorescently-labeled molecules undergoing diffusion in a confocal detection volume. This method is based on recording the time of arrival of all detected photons, and then plotting the two-dimensional histogram of photon pairs, where one axis is the time interval between each pair of photons 1 and 2, and the second axis is the number of other photons detected in the time interval between photons 1 and 2. PAID is related to Fluorescence Correlation Spectroscopy (FCS) by a collapse of this histogram onto the time interval axis. PAID extends auto- and cross-correlation FCS

  14. Sputum-Based Molecular Biomarkers for the Early Detection of Lung Cancer: Limitations and Promise

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Connie E. [Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine. 462 First Avenue, NBV 7N24, New York, NY 10016 (United States); Tchou-Wong, Kam-Meng; Rom, William N., E-mail: william.rom@nyumc.org [Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine. 462 First Avenue, NBV 7N24, New York, NY 10016 (United States); Department of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987 (United States)

    2011-07-19

    Lung cancer is the leading cause of cancer deaths, with an overall survival of 15% at five years. Biomarkers that can sensitively and specifically detect lung cancer at early stage are crucial for improving this poor survival rate. Sputum has been the target for the discovery of non-invasive biomarkers for lung cancer because it contains airway epithelial cells, and molecular alterations identified in sputum are most likely to reflect tumor-associated changes or field cancerization caused by smoking in the lung. Sputum-based molecular biomarkers include morphology, allelic imbalance, promoter hypermethylation, gene mutations and, recently, differential miRNA expression. To improve the sensitivity and reproducibility of sputum-based biomarkers, we recommend standardization of processing protocols, bronchial epithelial cell enrichment, and identification of field cancerization biomarkers.

  15. The agony of choice in dermatophyte diagnostics-performance of different molecular tests and culture in the detection of Trichophyton rubrum and Trichophyton interdigitale.

    Science.gov (United States)

    Kupsch, C; Ohst, T; Pankewitz, F; Nenoff, P; Uhrlaß, S; Winter, I; Gräser, Y

    2016-08-01

    Dermatophytosis caused by dermatophytes of the genera Trichophyton and Microsporum belong to the most frequent mycoses worldwide. Molecular detection methods proved to be highly sensitive and enable rapid and accurate detection of dermatophyte species from clinical specimens. For the first time, we compare the performance of different molecular methods with each other and with conventional diagnostics in the detection of dermatophytoses caused by Trichophyton rubrum and Trichophyton interdigitale in clinical specimens (nail, skin and hair). The compared molecular methods comprise two already published PCR-ELISAs, a published quantitative RT-PCR as well as a newly developed PCR-ELISA targeting the internal transcribed spacer region. We investigated the sensitivity of the assays by analysing 375 clinical samples. In 148 specimens (39.5%) a positive result was gained in at least one of the four molecular tests or by culture, but the number of detected agents differed significantly between some of the assays. The most sensitive assay, a PCR-ELISA targeting a microsatellite region, detected 81 T. rubrum infections followed by an internal transcribed spacer PCR-ELISA (60), quantitative RT-PCR (52) and a topoisomerase II PCR-ELISA (51), whereas cultivation resulted in T. rubrum identification in 37 samples. The pros and cons of all four tests in routine diagnostics are discussed. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  16. Molecular engineering and fluorescence for the detection of toxic cations

    International Nuclear Information System (INIS)

    Souchon, V.

    2007-11-01

    This work is a part of the 'Toxicologie Nucleaire Environnementale' program which aims at studying the effects on the living of heavy metals or radionuclides involved in nuclear industry. Most particularly, it deals with the design of new fluorescent sensors for the selective detection of Pb 2+ , Cd 2+ and Cs + in biological media. Several fluorescent calixarenes possessing nitrogen atoms were synthesized and their properties as potential lead sensors were investigated. One of them could be used in experimental conditions close to biological media and new target compounds with amide functional groups were proposed. Many approaches were considered for the design of selective fluorescent sensors for cadmium. On the basis of literature results, many chelating compounds incorporating sulfur atoms were synthesized but showed no significant affinity towards cadmium. On the opposite, compounds functionalized with several pyridine-2'-yl-1,2,3-triazol fluorescent moieties linked to a β-cyclodextrin or a calix[4]arene showed good affinity for cadmium in methanol, but the selectivity was found to be insufficient. In contrast, very satisfying results in terms of both selectivity and sensitivity could be obtained with the commercial calcium sensor Rhod-5N in an aqueous medium at neutral pH. Lastly, micromolar detection limits for the selective detection of caesium were reached in an aqueous medium at neutral pH thanks to a new sulfonated fluorescent calixarene with two appended crown-ethers. An original complexation mechanism was proposed and validated by molecular modelling (DFT). (author)

  17. Molecular Detection of Schistosome Infections with a Disposable Microfluidic Cassette.

    Directory of Open Access Journals (Sweden)

    Jinzhao Song

    2015-12-01

    Full Text Available Parasitic helminths such as schistosomes, as well as filarial and soil-transmitted nematodes, are estimated to infect at least a billion people worldwide, with devastating impacts on human health and economic development. Diagnosis and monitoring of infection dynamics and efficacy of treatment depend almost entirely on methods that are inaccurate, labor-intensive, and unreliable. These shortcomings are amplified and take on added significance in mass drug administration programs, where measures of effectiveness depend on accurate monitoring of treatment success (or failure, changes in disease transmission rates, and emergence of possible drug resistance. Here, we adapt isothermal molecular assays such as loop-mediated isothermal amplification (LAMP to a simple, hand-held, custom-made field-ready microfluidic device that allows sensitive and specific detection of schistosome cell-free nucleic acids in serum and plasma (separated with a point-of-care plasma separator from Schistosoma mansoni-infected mice. Cell-free S. mansoni DNA was detected with our device without prior extraction from blood. Our chip exhibits high sensitivity (~2 x 10(-17 g/μL, with a positive signal for S. mansoni DNA detectable as early as one week post infection, several weeks before parasite egg production commences. These results indicate that incorporation of isothermal amplification strategies with our chips could represent a strategy for rapid, simple, low-cost diagnosis of both pre-patent and chronic schistosome infections as well as potential monitoring of treatment efficacy.

  18. DNA: Polymer and molecular code

    Science.gov (United States)

    Shivashankar, G. V.

    1999-10-01

    The thesis work focusses upon two aspects of DNA, the polymer and the molecular code. Our approach was to bring single molecule micromanipulation methods to the study of DNA. It included a home built optical microscope combined with an atomic force microscope and an optical tweezer. This combined approach led to a novel method to graft a single DNA molecule onto a force cantilever using the optical tweezer and local heating. With this method, a force versus extension assay of double stranded DNA was realized. The resolution was about 10 picoN. To improve on this force measurement resolution, a simple light backscattering technique was developed and used to probe the DNA polymer flexibility and its fluctuations. It combined the optical tweezer to trap a DNA tethered bead and the laser backscattering to detect the beads Brownian fluctuations. With this technique the resolution was about 0.1 picoN with a millisecond access time, and the whole entropic part of the DNA force-extension was measured. With this experimental strategy, we measured the polymerization of the protein RecA on an isolated double stranded DNA. We observed the progressive decoration of RecA on the l DNA molecule, which results in the extension of l , due to unwinding of the double helix. The dynamics of polymerization, the resulting change in the DNA entropic elasticity and the role of ATP hydrolysis were the main parts of the study. A simple model for RecA assembly on DNA was proposed. This work presents a first step in the study of genetic recombination. Recently we have started a study of equilibrium binding which utilizes fluorescence polarization methods to probe the polymerization of RecA on single stranded DNA. In addition to the study of material properties of DNA and DNA-RecA, we have developed experiments for which the code of the DNA is central. We studied one aspect of DNA as a molecular code, using different techniques. In particular the programmatic use of template specificity makes

  19. Detecting and locating light atoms from high-resolution STEM images: The quest for a single optimal design

    Energy Technology Data Exchange (ETDEWEB)

    Gonnissen, J.; De Backer, A. [Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Dekker, A.J. den [iMinds-Vision Lab, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk (Belgium); Delft Center for Systems and Control (DCSC), Delft University of Technology, Mekelweg 2, 2628 CD Delft (Netherlands); Sijbers, J. [iMinds-Vision Lab, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk (Belgium); Van Aert, S., E-mail: sandra.vanaert@uantwerpen.be [Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium)

    2016-11-15

    In the present paper, the optimal detector design is investigated for both detecting and locating light atoms from high resolution scanning transmission electron microscopy (HR STEM) images. The principles of detection theory are used to quantify the probability of error for the detection of light atoms from HR STEM images. To determine the optimal experiment design for locating light atoms, use is made of the so-called Cramér–Rao Lower Bound (CRLB). It is investigated if a single optimal design can be found for both the detection and location problem of light atoms. Furthermore, the incoming electron dose is optimised for both research goals and it is shown that picometre range precision is feasible for the estimation of the atom positions when using an appropriate incoming electron dose under the optimal detector settings to detect light atoms. - Highlights: • The optimal detector design to detect and locate light atoms in HR STEM is derived. • The probability of error is quantified and used to detect light atoms. • The Cramér–Rao lower bound is calculated to determine the atomic column precision. • Both measures are evaluated and result in the single optimal LAADF detector regime. • The incoming electron dose is optimised for both research goals.

  20. Molecular Modeling and Simulation Tools in the Development of Peptide-Based Biosensors for Mycotoxin Detection: Example of Ochratoxin

    Directory of Open Access Journals (Sweden)

    Aby A. Thyparambil

    2017-12-01

    Full Text Available Mycotoxin contamination of food and feed is now ubiquitous. Exposures to mycotoxin via contact or ingestion can potentially induce adverse health outcomes. Affordable mycotoxin-monitoring systems are highly desired but are limited by (a the reliance on technically challenging and costly molecular recognition by immuno-capture technologies; and (b the lack of predictive tools for directing the optimization of alternative molecular recognition modalities. Our group has been exploring the development of ochratoxin detection and monitoring systems using the peptide NFO4 as the molecular recognition receptor in fluorescence, electrochemical and multimodal biosensors. Using ochratoxin as the model mycotoxin, we share our perspective on addressing the technical challenges involved in biosensor fabrication, namely: (a peptide receptor design; and (b performance evaluation. Subsequently, the scope and utility of molecular modeling and simulation (MMS approaches to address the above challenges are described. Informed and enabled by phage display, the subsequent application of MMS approaches can rationally guide subsequent biomolecular engineering of peptide receptors, including bioconjugation and bioimmobilization approaches to be used in the fabrication of peptide biosensors. MMS approaches thus have the potential to reduce biosensor development cost, extend product life cycle, and facilitate multi-analyte detection of mycotoxins, each of which positively contributes to the overall affordability of mycotoxin biosensor monitoring systems.