Sample records for single model adequately

  1. Making ecological models adequate (United States)

    Getz, Wayne M.; Marshall, Charles R.; Carlson, Colin J.; Giuggioli, Luca; Ryan, Sadie J.; Romañach, Stephanie; Boettiger, Carl; Chamberlain, Samuel D.; Larsen, Laurel; D'Odorico, Paolo; O'Sullivan, David


    Critical evaluation of the adequacy of ecological models is urgently needed to enhance their utility in developing theory and enabling environmental managers and policymakers to make informed decisions. Poorly supported management can have detrimental, costly or irreversible impacts on the environment and society. Here, we examine common issues in ecological modelling and suggest criteria for improving modelling frameworks. An appropriate level of process description is crucial to constructing the best possible model, given the available data and understanding of ecological structures. Model details unsupported by data typically lead to over parameterisation and poor model performance. Conversely, a lack of mechanistic details may limit a model's ability to predict ecological systems’ responses to management. Ecological studies that employ models should follow a set of model adequacy assessment protocols that include: asking a series of critical questions regarding state and control variable selection, the determinacy of data, and the sensitivity and validity of analyses. We also need to improve model elaboration, refinement and coarse graining procedures to better understand the relevancy and adequacy of our models and the role they play in advancing theory, improving hind and forecasting, and enabling problem solving and management.

  2. Meconium Ileus–Is a Single Surgical Procedure Adequate?

    Directory of Open Access Journals (Sweden)

    Hagith Nagar


    Full Text Available Meconium ileus is one of the gastrointestinal manifestations of cystic fibrosis (CF, and affects 15% of neonates. The condition results from the accumulation of sticky inspissated meconium. Both nonoperative and operative therapies may be effective in relieving obstruction. The treatment of choice for uncomplicated meconium ileus is the use of enteral N-acetylcysteine or Gastrografin enemata. Once such therapy fails, surgery is indicated. A number of operative procedures are in use, including Bishop-Koop enterostomy, T-tube irrigation, resection and primary anastomosis, and enterotomy with irrigation and primary closure. During the period 1991-2003, five newborns required surgical intervention for uncomplicated meconium ileus. None responded to conservative management. All were males, including one set of twins. All underwent laparotomy, enterotomy, appendectomy, irrigation and closure of enterotomy. None required a second surgical procedure. CF was confirmed in all, and in each case, both parents were found to be genetic carriers of a mutational form of CF. A single surgical intervention is preferable in these patients, in view of the high rate of pulmonary involvement in CF patients. Enterotomy, irrigation and primary closure are the treatment of choice for uncomplicated meconium ileus.

  3. Adequateness of applying the Zmijewski model on Serbian companies

    Directory of Open Access Journals (Sweden)

    Pavlović Vladan


    Full Text Available The aim of the paper is to determine the accuracy of the prediction of Zmijewski model in Serbia on the eligible sample. At the same time, the paper identifies model's strengths, weaknesses and limitations of its possible application. Bearing in mind that the economic environment in Serbia is not similar to the United States at the time the model was developed, Zmijewski model is surprisingly accurate in the case of Serbian companies. The accuracy was slightly weaker than the model results in the U.S. in its original form, but much better than the results model gave in the U.S. in the period 1988-1991, and 1992-1999. Model gave also better results in Serbia comparing those in Croatia, even in Croatia model was adjusted.

  4. Arabidopsis: an adequate model for dicot root systems (United States)

    In the search for answers to pressing root developmental genetic issues, plant science has turned to a small genome dicot plant (Arabidopsis) to be used as a model to study and use to develop hypotheses for testing other species. Through out the published research only three classes of root are des...

  5. Choosing an adequate FEM grid for global mantle convection modelling (United States)

    Thieulot, Cedric


    Global numerical models of mantle convection are typically run on a grid which represents a hollow sphere. In the context of using the Finite Element method, there are many ways to discretise a hollow sphere by means of cuboids in a regular fashion (adaptive mesh refinement is here not considered). I will here focus on the following two: the cubed sphere [1], which is a quasi-uniform mapping of a cube to a sphere (considering both equidistant and equiangular projections), and the 12-block grid used for instance in CITCOM [2]. By means of simple experiments, I will show that at comparable resolutions (and all other things being equal), the 12-block grid is surprisingly vastly superior to the cubed-sphere grid, when used in combination with trilinear velocity - constant pressure elements, while being more difficult to build/implement. [1] C. Ronchi, R. Iacono, and P. S. Paolucci, The "Cubed Sphere": A New Method for the Solution of Partial Differential Equations in Spherical Geometry, Journal of Computational Physics, 124, p93-114 (1996). [2] S. Zhong and M.T. Zuber and L.N. Moresi and M. Gurnis, Role of temperature-dependent viscosity and surface plates in spherical shell models of mantle convection, Journal of Geophysical Research, 105 (B5), p 11,063-11,082 (2000).

  6. Single-leg spica provides adequate stability after open reduction in developmental dysplasia of the hip. (United States)

    Alassaf, Nabil


    The late detection of developmental dysplasia of the hip (DDH) will remain a major concern in some parts of the world until effective screening programs become available. With late diagnosis comes the need for open surgical reduction. Surgery is invariably followed by a period of immobilisation in a spica cast to prevent postoperative displacement. The goal of this study is to evaluate the effect of double-leg spica as compared to single-leg spica, on the risk of displacement after unilateral open reduction of the hip. This was a retrospective review of DDH patients from 2012 to 2016 and younger than 4 years of age, who had unilateral anterior open reduction. Patients who had one of the following were excluded: neuromuscular diagnosis, the addition of K-wire, and simultaneous bilateral open reductions. Demographic data were collected along with related clinical and radiographic variables. A total of 128 patients (162 hips) met the inclusion criteria; 93 were in the double-leg spica group, and 69 were in the single-leg spica group. The mean age was 25.4 ± 8.1 months and the mean follow-up was 18.6 ± 11.6 months. Baseline characteristics were balanced between the two groups. There were three events of redislocation in the double-leg spica group as compared to one redislocation in the single-leg spica group. The difference did not reach statistical significance (p = 0.637, risk ratio 1.317, CI 0.736-2.356). The difference in subsequent disruption of Shenton's line and hip migration of more than 29% was (p = 0.395, risk ratio 1.411, CI 0.892-2.234) and (p = 0.087, risk ratio 0.67, CI 0.417-1.078), respectively. Three patients had a greenstick distal femur fracture after double-leg spica and one after single-leg spica. These data suggest that including the contralateral hip in the cast after open reduction is not essential as it does not seem to improve stability.

  7. Comparison of single questions and brief questionnaire with longer validated food frequency questionnaire to assess adequate fruit and vegetable intake. (United States)

    Cook, Amelia; Roberts, Kia; O'Leary, Fiona; Allman-Farinelli, Margaret Anne


    The aim of this study was to determine if a single question (SQ) for fruit and a SQ or five-item questionnaire for vegetable consumption (VFQ) could replace a longer food frequency questionnaire (FFQ) to screen for inadequate versus adequate intakes in populations. Participants (109) completed three test screeners: fruit SQ, vegetable SQ, and a five-item VFQ followed by the reference 74-item FFQ (version 2 of the Dietary Questionnaire for Epidemiological Studies [DQESv2]) including 13 fruit and 25 vegetable items. The five-item VFQ asked about intake of salad vegetables, cooked vegetables, white potatoes, legumes, and vegetable juice. The screeners were compared with the reference (DQESv2 FFQ) for sensitivity, specificity, and positive and negative predictive powers (PPV, NPV) to detect intakes of two or more servings of fruit and three or more servings of vegetables. Relative validity was examined using Bland-Altman statistics. The fruit SQ showed a PPV of 56% and an NPV of 83%. The PPV for the vegetable SQ was 30% and the NPV was 89%. For the five-item VFQ, the PPV was 39% and the NPV was 85%. Bland-Altman plots and linear regression equations showed that although the screener showed good agreement for fruit (unstandardized b1 coefficient = 0.04) for vegetable intake the difference between methods increased at higher intake levels (unstandardized b1 coefficients = -0.3 for the SQ, b1 = -0.6 for five-item VFQ). The fruit SQ and the five-item VFQ are suitable replacements for longer FFQs to detect inadequate intake and assess population mean but not individual intakes. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Prediction of Adequate Prenatal Care Utilization Based on the Extended Parallel Process Model. (United States)

    Hajian, Sepideh; Imani, Fatemeh; Riazi, Hedyeh; Salmani, Fatemeh


    Pregnancy complications are one of the major public health concerns. One of the main causes of preventable complications is the absence of or inadequate provision of prenatal care. The present study was conducted to investigate whether Extended Parallel Process Model's constructs can predict the utilization of prenatal care services. The present longitudinal prospective study was conducted on 192 pregnant women selected through the multi-stage sampling of health facilities in Qeshm, Hormozgan province, from April to June 2015. Participants were followed up from the first half of pregnancy until their childbirth to assess adequate or inadequate/non-utilization of prenatal care services. Data were collected using the structured Risk Behavior Diagnosis Scale. The analysis of the data was carried out in SPSS-22 using one-way ANOVA, linear regression and logistic regression analysis. The level of significance was set at 0.05. Totally, 178 pregnant women with a mean age of 25.31±5.42 completed the study. Perceived self-efficacy (OR=25.23; Pprenatal care. Husband's occupation in the labor market (OR=0.43; P=0.02), unwanted pregnancy (OR=0.352; Pcare for the minors or elderly at home (OR=0.35; P=0.045) were associated with lower odds of receiving prenatal care. The model showed that when perceived efficacy of the prenatal care services overcame the perceived threat, the likelihood of prenatal care usage will increase. This study identified some modifiable factors associated with prenatal care usage by women, providing key targets for appropriate clinical interventions.

  9. Prediction of radionuclide migration in the geosphere: is the porous-flow model adequate

    International Nuclear Information System (INIS)

    Neretnieks, I.


    Practically all models used today to describe radionuclide migration in geologic media are based on the concept of flow in porous media. Recently it has been questioned if Fickian dispersion is the most important dispersion mechanism. Field observations of dispersion indicate that the dispersion coefficient increases with observation distance. This should not be the case in a homogeneous porous medium. For a medium with essentially independent channels, on the other hand, such an effect can be predicted. In some calculated examples it is shown that the use of the Fickian dispersion mechanism will very seriously underestimate the radionuclide concentration at a point downstream if the spreading mechanism in reality is channelling. The consequences of the often-used assumption that the interaction between the radionuclides and the rock is instantaneous is also discussed. It has been shown that in sparsely fissured crystalline rock the whole rock mass will not be able to participate in the sorption reactions, because the radionuclides will not have time to penetrate all through the large blocks. On the other hand, the assumption that only the surface of the fissures interacts with the radionuclides is likely to be an extremely conservative assumption in view of some recent diffusion experiments in crystalline rocks performed in our laboratories and at the Canadian Geologic Survey. Some experimental results on radionuclide migration in a single natural fissure under well-controlled conditions in the laboratory are also presented and interpreted using a model which includes channelling, surface sorption, diffusion in the rock matrix and sorption in the rock matrix. Some implications of these mechanisms in predicting radionuclide migration in the geosphere are discussed and compared with what a porous-flow model would predict

  10. Counterinsurgency and Operational Art: Is the Joint Campaign Planning Model Adequate? (United States)


    has seen cyclic economic crises, brought on primarily by dependence on a single export crop ( cacao , then indigo, and then coffee), which have often...changes. The information revolution has led to a massive export of Western culture, which can give rise to a growing and serious unbalance in expectations...number of cash crops for export , primarily tobacco and sugar. Both of these crops encouraged large plantations with a landlord-tenant system that became

  11. Modelling energy demand of developing countries: Are the specific features adequately captured?

    International Nuclear Information System (INIS)

    Bhattacharyya, Subhes C.; Timilsina, Govinda R.


    This paper critically reviews existing energy demand forecasting methodologies highlighting the methodological diversities and developments over the past four decades in order to investigate whether the existing energy demand models are appropriate for capturing the specific features of developing countries. The study finds that two types of approaches, econometric and end-use accounting, are commonly used in the existing energy demand models. Although energy demand models have greatly evolved since the early seventies, key issues such as the poor-rich and urban-rural divides, traditional energy resources and differentiation between commercial and non-commercial energy commodities are often poorly reflected in these models. While the end-use energy accounting models with detailed sectoral representations produce more realistic projections as compared to the econometric models, they still suffer from huge data deficiencies especially in developing countries. Development and maintenance of more detailed energy databases, further development of models to better reflect developing country context and institutionalizing the modelling capacity in developing countries are the key requirements for energy demand modelling to deliver richer and more reliable input to policy formulation in developing countries.

  12. Acanthamoeba castellanii is not be an adequate model to study human adenovirus interactions with macrophagic cells. (United States)

    Maisonneuve, Elodie; Cateau, Estelle; Leveque, Nicolas; Kaaki, Sihem; Beby-Defaux, Agnès; Rodier, Marie-Hélène


    Free living amoebae (FLA) including Acanthamoeba castellanii, are protozoa that feed on different microorganisms including viruses. These microorganisms show remarkable similarities with macrophages in cellular structures, physiology or ability to phagocyte preys, and some authors have therefore wondered whether Acanthamoeba and macrophages are evolutionary related. It has been considered that this amoeba may be an in vitro model to investigate relationships between pathogens and macrophagic cells. So, we intended in this study to compare the interactions between a human adenovirus strain and A. castellanii or THP-1 macrophagic cells. The results of molecular and microscopy techniques following co-cultures experiments have shown that the presence of the adenovirus decreased the viability of macrophages, while it has no effect on amoebic viability. On another hand, the viral replication occurred only in macrophages. These results showed that this amoebal model is not relevant to explore the relationships between adenoviruses and macrophages in in vitro experiments.

  13. Acanthamoeba castellanii is not be an adequate model to study human adenovirus interactions with macrophagic cells.

    Directory of Open Access Journals (Sweden)

    Elodie Maisonneuve

    Full Text Available Free living amoebae (FLA including Acanthamoeba castellanii, are protozoa that feed on different microorganisms including viruses. These microorganisms show remarkable similarities with macrophages in cellular structures, physiology or ability to phagocyte preys, and some authors have therefore wondered whether Acanthamoeba and macrophages are evolutionary related. It has been considered that this amoeba may be an in vitro model to investigate relationships between pathogens and macrophagic cells. So, we intended in this study to compare the interactions between a human adenovirus strain and A. castellanii or THP-1 macrophagic cells. The results of molecular and microscopy techniques following co-cultures experiments have shown that the presence of the adenovirus decreased the viability of macrophages, while it has no effect on amoebic viability. On another hand, the viral replication occurred only in macrophages. These results showed that this amoebal model is not relevant to explore the relationships between adenoviruses and macrophages in in vitro experiments.

  14. A model for determining when an analysis contains sufficient detail to provide adequate NEPA coverage for a proposed action

    International Nuclear Information System (INIS)

    Eccleston, C.H.


    Neither the National Environmental Policy Act (NEPA) nor its subsequent regulations provide substantive guidance for determining the Level of detail, discussion, and analysis that is sufficient to adequately cover a proposed action. Yet, decisionmakers are routinely confronted with the problem of making such determinations. Experience has shown that no two decisionmakers are Likely to completely agree on the amount of discussion that is sufficient to adequately cover a proposed action. one decisionmaker may determine that a certain Level of analysis is adequate, while another may conclude the exact opposite. Achieving a consensus within the agency and among the public can be problematic. Lacking definitive guidance, decisionmakers and critics alike may point to a universe of potential factors as the basis for defending their claim that an action is or is not adequately covered. Experience indicates that assertions are often based on ambiguous opinions that can be neither proved nor disproved. Lack of definitive guidance slows the decisionmaking process and can result in project delays. Furthermore, it can also Lead to inconsistencies in decisionmaking, inappropriate Levels of NEPA documentation, and increased risk of a project being challenged for inadequate coverage. A more systematic and less subjective approach for making such determinations is obviously needed. A paradigm for reducing the degree of subjectivity inherent in such decisions is presented in the following paper. The model is specifically designed to expedite the decisionmaking process by providing a systematic approach for making these determination. In many cases, agencies may find that using this model can reduce the analysis and size of NEPA documents

  15. Cost Effectiveness of Screening Colonoscopy Depends on Adequate Bowel Preparation Rates - A Modeling Study.

    Directory of Open Access Journals (Sweden)

    James Kingsley

    Full Text Available Inadequate bowel preparation during screening colonoscopy necessitates repeating colonoscopy. Studies suggest inadequate bowel preparation rates of 20-60%. This increases the cost of colonoscopy for our society.The aim of this study is to determine the impact of inadequate bowel preparation rate on the cost effectiveness of colonoscopy compared to other screening strategies for colorectal cancer (CRC.A microsimulation model of CRC screening strategies for the general population at average risk for CRC. The strategies include fecal immunochemistry test (FIT every year, colonoscopy every ten years, sigmoidoscopy every five years, or stool DNA test every 3 years. The screening could be performed at private practice offices, outpatient hospitals, and ambulatory surgical centers.At the current assumed inadequate bowel preparation rate of 25%, the cost of colonoscopy as a screening strategy is above society's willingness to pay (<$50,000/QALY. Threshold analysis demonstrated that an inadequate bowel preparation rate of 13% or less is necessary before colonoscopy is considered more cost effective than FIT. At inadequate bowel preparation rates of 25%, colonoscopy is still more cost effective compared to sigmoidoscopy and stool DNA test. Sensitivity analysis of all inputs adjusted by ±10% showed incremental cost effectiveness ratio values were influenced most by the specificity, adherence, and sensitivity of FIT and colonoscopy.Screening colonoscopy is not a cost effective strategy when compared with fecal immunochemical test, as long as the inadequate bowel preparation rate is greater than 13%.

  16. Single Item Inventory Models

    NARCIS (Netherlands)

    E.M. Bazsa-Oldenkamp; P. den Iseger


    textabstractThis paper extends a fundamental result about single-item inventory systems. This approach allows more general performance measures, demand processes and order policies, and leads to easier analysis and implementation, than prior research. We obtain closed form expressions for the

  17. From Near-Neutral to Strongly Stratified : Adequately Modelling the Clear-Sky Nocturnal Boundary Layer at Cabauw

    NARCIS (Netherlands)

    Baas, P.; van de Wiel, B.J.H.; van der Linden, S.J.A.; Bosveld, F. C.


    The performance of an atmospheric single-column model (SCM) is studied systematically for stably-stratified conditions. To this end, 11 years (2005–2015) of daily SCM simulations were compared to observations from the Cabauw observatory, The Netherlands. Each individual clear-sky night was

  18. From Near-Neutral to Strongly Stratified: Adequately Modelling the Clear-Sky Nocturnal Boundary Layer at Cabauw (United States)

    Baas, P.; van de Wiel, B. J. H.; van der Linden, S. J. A.; Bosveld, F. C.


    The performance of an atmospheric single-column model (SCM) is studied systematically for stably-stratified conditions. To this end, 11 years (2005-2015) of daily SCM simulations were compared to observations from the Cabauw observatory, The Netherlands. Each individual clear-sky night was classified in terms of the ambient geostrophic wind speed with a 1 m s^{-1} bin-width. Nights with overcast conditions were filtered out by selecting only those nights with an average net radiation of less than - 30 W m^{-2}. A similar procedure was applied to the observational dataset. A comparison of observed and modelled ensemble-averaged profiles of wind speed and potential temperature and time series of turbulent fluxes showed that the model represents the dynamics of the nocturnal boundary layer (NBL) at Cabauw very well for a broad range of mechanical forcing conditions. No obvious difference in model performance was found between near-neutral and strongly-stratified conditions. Furthermore, observed NBL regime transitions are represented in a natural way. The reference model version performs much better than a model version that applies excessive vertical mixing as is done in several (global) operational models. Model sensitivity runs showed that for weak-wind conditions the inversion strength depends much more on details of the land-atmosphere coupling than on the turbulent mixing. The presented results indicate that in principle the physical parametrizations of large-scale atmospheric models are sufficiently equipped for modelling stably-stratified conditions for a wide range of forcing conditions.

  19. Sustaining the Higher Education Hub Model: The Challenge of Adequate Academic and Social Support Structures for International Students

    Directory of Open Access Journals (Sweden)

    Cameron Richards


    Full Text Available In recent years, the Education Hub (EH concept has perhaps become the single most important focus of higher education policy in most Asian countries. A particular Asian Education Hub model (e.g. Cheng, 2010 is now globally influential with its emphasis on how governments can harness direct as well as indirect economic benefits of a higher education system. Such a model aims to prepare students for employment in an emerging global economy and also to attract fee-paying international students in terms of education as not just a public good but a key and increasingly important area of national investment and economic development. In a related paper which focused on a comparison between distinct Malaysian and Singaporean versions of Asian EH l models developed over the last two decades (Richards, 2011c, we investigated the dangers as well as opportunities at stake. In this paper, we investigate the linked idea that sufficient academic and social support structures for supporting international as well as local students provide the crucial key to the factors of sustainability needed to support the various versions of the general strategy of Higher Education internationalisation.

  20. [Patient-centred prescription model to improve adequate prescription and therapeutic adherence in patients with multiple disorders]. (United States)

    Espaulella-Panicot, Joan; Molist-Brunet, Núria; Sevilla-Sánchez, Daniel; González-Bueno, Javier; Amblàs-Novellas, Jordi; Solà-Bonada, Núria; Codina-Jané, Carles

    Patients with multiple disorders and on multiple medication are often associated with clinical complexity, defined as a situation of uncertainty conditioned by difficulties in establishing a situational diagnosis and decision-making. The patient-centred care approach in this population group seems to be one of the best therapeutic options. In this context, the preparation of an individualised therapeutic plan is the most relevant practical element, where the pharmacological plan maintains an important role. There has recently been a significant increase in knowledge in the area of adequacy of prescription and adherence. In this context, we must find a model must be found that incorporates this knowledge into clinical practice by the professionals. Person-centred prescription is a medication review model that includes different strategies in a single intervention. It is performed by a multidisciplinary team, and allows them to adapt the pharmacological plan of patients with clinical complexity. Copyright © 2017 SEGG. Publicado por Elsevier España, S.L.U. All rights reserved.

  1. Parental role modeling of fruits and vegetables at meals and snacks is associated with children’s adequate consumption


    Draxten, Michelle; Fulkerson, Jayne A.; Friend, Sarah; Flattum, Colleen F.; Schow, Robin


    Parental role modeling of healthful eating behaviors has been shown to be positively correlated to children’s dietary intake and preference for fruits and vegetables. However, no study to date has utilized both parent and child report of parental role modeling and assessed role modeling at snacks and dinner. The purpose of this study is to 1) examine associations between parent and child report of parental role modeling of fruit and vegetable consumption at snacks and dinner and 2) determine ...

  2. A Comparison of Single Factor Markov-Functional and Multi Factor Market Models

    NARCIS (Netherlands)

    R. Pietersz (Raoul); A.A.J. Pelsser (Antoon)


    textabstractWe compare single factor Markov-functional and multi factor market models for hedging performance of Bermudan swaptions. We show that hedging performance of both models is comparable, thereby supporting the claim that Bermudan swaptions can be adequately riskmanaged with single factor

  3. Parental role modeling of fruits and vegetables at meals and snacks is associated with children's adequate consumption. (United States)

    Draxten, Michelle; Fulkerson, Jayne A; Friend, Sarah; Flattum, Colleen F; Schow, Robin


    Research has shown that parental role modeling of healthful eating behaviors is positively correlated to children's dietary intake and fruit and vegetable (F&V) preferences. The purpose of this study is to (1) examine associations between parent and child report of parental role modeling of F&V consumption at snacks and dinner and (2) determine whether parental role modeling is associated with children meeting daily F&V recommendations. Parent-child dyads (N = 160) participating in the HOME Plus study completed baseline surveys on parental role modeling of F&V at snacks and dinner. Children also completed 24-hour dietary recalls. Spearman correlations and chi-square/Fisher's exact tests were used to examine relationships between parent and child report of parental role modeling of F&V at snacks and dinner and whether children met daily recommendations. On average, children consumed less than three daily servings of F&V with only 23% consuming the recommended servings. Statistically significant correlations were seen between parent and child report of parental role modeling fruit at dinner and green salad at dinner. Children who reported parental role modeling of vegetables at snack and salad at dinner were significantly more likely, than those who did not, to meet daily F&V recommendations. Parents who reported role modeling fruit at snack were significantly more likely to have children who met daily F&V recommendations. Results indicate that children are aware of their parents' eating behaviors and on occasion report this behavior similarly to their parents. Parents should be encouraged to utilize the opportunity to role model healthful dietary intake, especially at snacks, where consumption of F&V appears low. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Anatomical features for an adequate choice of experimental animal model in biomedicine: II. Small laboratory rodents, rabbit, and pig. (United States)

    Lossi, Laura; D'Angelo, Livia; De Girolamo, Paolo; Merighi, Adalberto


    The anatomical features distinctive to each of the very large array of species used in today's biomedical research must be born in mind when considering the correct choice of animal model(s), particularly when translational research is concerned. In this paper we take into consideration and discuss the most important anatomical and histological features of the commonest species of laboratory rodents (rat, mouse, guinea pig, hamster, and gerbil), rabbit, and pig related to their importance for applied research. Copyright © 2015 Elsevier GmbH. All rights reserved.

  5. Adequate Security Protocols Adopt in a Conceptual Model in Identity Management for the Civil Registry of Ecuador (United States)

    Toapanta, Moisés; Mafla, Enrique; Orizaga, Antonio


    We analyzed the problems of security of the information of the civil registries and identification at world level that are considered strategic. The objective is to adopt the appropriate security protocols in a conceptual model in the identity management for the Civil Registry of Ecuador. In this phase, the appropriate security protocols were determined in a Conceptual Model in Identity Management with Authentication, Authorization and Auditing (AAA). We used the deductive method and exploratory research to define the appropriate security protocols to be adopted in the identity model: IPSec, DNSsec, Radius, SSL, TLS, IEEE 802.1X EAP, Set. It was a prototype of the location of the security protocols adopted in the logical design of the technological infrastructure considering the conceptual model for Identity, Authentication, Authorization, and Audit management. It was concluded that the adopted protocols are appropriate for a distributed database and should have a direct relationship with the algorithms, which allows vulnerability and risk mitigation taking into account confidentiality, integrity and availability (CIA).

  6. Hard- and software of real time simulation tools of Electric Power System for adequate modeling power semiconductors in voltage source convertor based HVDC and FACTS

    Directory of Open Access Journals (Sweden)

    Ufa Ruslan A.


    Full Text Available The motivation of the presented research is based on the needs for development of new methods and tools for adequate simulation of Flexible Alternating Current Transmission System (FACTS devices and High Voltage Direct Current Transmission (HVDC system as part of real electric power systems (EPS. For that, a hybrid approach for advanced simulation of the FACTS and HVDC based on Voltage Source is proposed. The presented simulation results of the developed hybrid model of VSC confirm the achievement of the desired properties of the model and the effectiveness of the proposed solutions.

  7. Adequate doctor - patient communication

    Directory of Open Access Journals (Sweden)

    Janković Slobodan


    Full Text Available Communication process gives to physician necessary information for establishing diagnosis and prescribing therapy, and helps to a patient to gain confidence in his doctor and the prescribed treatment. The communication between doctor and his patient is enhanced by the following: openness and conscientiousness of the physician, serious approach to the patient, participation of the patient in decision-making, advanced age and higher education of the patient. On the other hand, communication is less efficient if the doctor has longer employment status, if he/her avoids disclosure of all relevant information to the patient, if he/her is emotionally separated from the patient, if the time for an encounter is limited, if the patient is passive and with unrealistic expectations, and if the doctor is expressing himself/herself unclearly. In order to improve communication with patients, doctors should follow these recommendations: keeping eye contact with a patient, releasing tension from his/her body language, taking detailed patient history with active listening and without interrupting of a patient, speaking clearly and slowly, using language understandable to a patient, treating patients with equality, disclosing all relevant information to the patient and sharing decisionmaking with the patient. Adequate communication between doctor and patient always brings better treatment outcomes.

  8. Modelling of adequate and safe vitamin D intake in Danish women using different fortification and supplementation scenarios to inform fortification policies

    DEFF Research Database (Denmark)

    Grønborg, Ida Marie; Tetens, Inge; Ege, Majken


    Fortification of foods with vitamin D may be a population-based solution to low vitamin D intake. We performed modelling of vitamin D from diet, fortified foods and supplements in a population of Danish women 18-50 years, a risk group of vitamin D deficiency, to inform fortification policies...... from a habitual diet without fish to habitual diet including fish, fortified foods and supplements (40/80 µg). Four different foods were used as potential foods to fortify with vitamin D. The vitamin D intake was below the Average Requirement (AR) of 7.5 µg/day for 88% of the assessed women. Safe...... on safe and adequate levels. Based on individual habitual dietary vitamin D intake of female participants from the Danish National Survey of Dietary Habits and Physical Activity (DANSDA) (n = 855), we performed graded intake modelling to predict the intake in six scenarios increasing the vitamin D intake...

  9. Aiming towards improved flood forecasting: Identification of an adequate model structure for a semi-arid and data-scarce region (United States)

    Pilz, Tobias; Francke, Till; Bronstert, Axel


    A lot of effort has already been put into the development of forecasting systems to warn people of approaching flood events. Such systems, however, are influenced by various sources of uncertainty which constrain the skill of forecasts. The main goal of this study is the identification, quantification and reduction of uncertainties to provide improved early warnings with adequate lead times in a data-scarce region with strong seasonality of the hydrological regime. This includes the setup of hydrological models and post-processing of simulation results by mathematical means such as data assimilation. The focus area is the Jaguaribe watershed in northeastern Brazil. The region is characterized by a seasonal climate with strong inter-annual variation and recurrent droughts. To ensure a secure water supply also during the dry season several thousand small and some large reservoirs have been constructed. On the other hand, floods caused by heavy rain events are an issue as well. This topic, however, so far has hardly been considered by the scientific community and until today no flood forecasting system exists for that region. To identify the most appropriate model structure for the catchment the process-based hydrological model for semi-arid environments WASA was implemented into the eco-hydrological simulation environment ECHSE. The environment consists of a generic part providing data types and simulation methods, and a problem-specific part where the user can implement different model formulations. This provides the possibility to test various process realisations under consistent input and output data structures. The most appropriate model structure can then be determined by statistical means such as Bayesian model averaging. Subsequently, forecast results may be updated by post-processing and/or data assimilation. Furthermore, methods of data fusion can be used to combine measurements of different quality and resolution, such as in-situ and remotely sensed data

  10. Assessing Model Characterization of Single Source ... (United States)

    Aircraft measurements made downwind from specific coal fired power plants during the 2013 Southeast Nexus field campaign provide a unique opportunity to evaluate single source photochemical model predictions of both O3 and secondary PM2.5 species. The model did well at predicting downwind plume placement. The model shows similar patterns of an increasing fraction of PM2.5 sulfate ion to the sum of SO2 and PM2.5 sulfate ion by distance from the source compared with ambient based estimates. The model was less consistent in capturing downwind ambient based trends in conversion of NOX to NOY from these sources. Source sensitivity approaches capture near-source O3 titration by fresh NO emissions, in particular subgrid plume treatment. However, capturing this near-source chemical feature did not translate into better downwind peak estimates of single source O3 impacts. The model estimated O3 production from these sources but often was lower than ambient based source production. The downwind transect ambient measurements, in particular secondary PM2.5 and O3, have some level of contribution from other sources which makes direct comparison with model source contribution challenging. Model source attribution results suggest contribution to secondary pollutants from multiple sources even where primary pollutants indicate the presence of a single source. The National Exposure Research Laboratory (NERL) Computational Exposure Division (CED) develops and evaluates data, deci

  11. Graphical models for inferring single molecule dynamics

    Directory of Open Access Journals (Sweden)

    Gonzalez Ruben L


    Full Text Available Abstract Background The recent explosion of experimental techniques in single molecule biophysics has generated a variety of novel time series data requiring equally novel computational tools for analysis and inference. This article describes in general terms how graphical modeling may be used to learn from biophysical time series data using the variational Bayesian expectation maximization algorithm (VBEM. The discussion is illustrated by the example of single-molecule fluorescence resonance energy transfer (smFRET versus time data, where the smFRET time series is modeled as a hidden Markov model (HMM with Gaussian observables. A detailed description of smFRET is provided as well. Results The VBEM algorithm returns the model’s evidence and an approximating posterior parameter distribution given the data. The former provides a metric for model selection via maximum evidence (ME, and the latter a description of the model’s parameters learned from the data. ME/VBEM provide several advantages over the more commonly used approach of maximum likelihood (ML optimized by the expectation maximization (EM algorithm, the most important being a natural form of model selection and a well-posed (non-divergent optimization problem. Conclusions The results demonstrate the utility of graphical modeling for inference of dynamic processes in single molecule biophysics.

  12. Lands adequation in Antioquia Department

    International Nuclear Information System (INIS)

    Arango T, Julio Cesar; Bacanumenth


    The Colombian government programs concerning land management and adequation began since the fifties. When basic frameworks for irrigating, flood control and drainage were initially developed. Several entities have made huge investments in land adequation, that lead to the improvement of national agriculture in plain regions such as Tolima, Boyaca, Magdalena and Valle del Cauca. During the same period the region of Antioquia did not benefit from the projects, mainly due to the lack of government policies concerning land adequation. Finally, in 1983 the Himat launched the small irrigation national program, which gave solutions for water management in several countryside regions of Antioquia. Twenty-nine small water districts are now operating accounting for 3.759 ha which cover 1.510 households. Now days, thanks to the presence of more accurate policies, is the right time to improve irrigation, flood control and drainage towards to a substantial improvement in the Antioquia agricultural sector, that allows it to overcome the challenges of the next millennium. A project called Antioquia nos une 1998-2000 addresses the importance of promoting the right agricultural structure that ensures agricultural mechanization for sustainability and irrigation. On the other hand, it determines the main resources needed to promote the initiative and points out the importance of distributing them in the basis of the needs and problems of the communities

  13. Modeling the Activity of Single Genes (United States)

    Mjolsness, Eric; Gibson, Michael


    the key questions in gene regulation are: What genes are expressed in a certain cell at a certain time? How does gene expression differ from cell to cell in a multicellular organism? Which proteins act as transcription factors, i.e., are important in regulating gene expression? From questions like these, we hope to understand which genes are important for various macroscopic processes. Nearly all of the cells of a multicellular organism contain the same DNA. Yet this same genetic information yields a large number of different cell types. The fundamental difference between a neuron and a liver cell, for example, is which genes are expressed. Thus understanding gene regulation is an important step in understanding development. Furthermore, understanding the usual genes that are expressed in cells may give important clues about various diseases. Some diseases, such as sickle cell anemia and cystic fibrosis, are caused by defects in single, non-regulatory genes; others, such as certain cancers, are caused when the cellular control circuitry malfunctions - an understanding of these diseases will involve pathways of multiple interacting gene products. There are numerous challenges in the area of understanding and modeling gene regulation. First and foremost, biologists would like to develop a deeper understanding of the processes involved, including which genes and families of genes are important, how they interact, etc. From a computation point of view, there has been embarrassingly little work done. In this chapter there are many areas in which we can phrase meaningful, non-trivial computational questions, but questions that have not been addressed. Some of these are purely computational (what is a good algorithm for dealing with a model of type X) and others are more mathematical (given a system with certain characteristics, what sort of model can one use? How does one find biochemical parameters from system-level behavior using as few experiments as possible?). In

  14. Is it adequate to model the socio-cultural dimension of e-learners by informing a fixed set of personal criteria?

    DEFF Research Database (Denmark)

    Blanchard, Emmanuel G.


    Over the past few years, interest has increased in proposing efficient techniques to capture and model cognitive and affective characteristics of e-learners. More recently,research has started investigating the development of culturally-aware educational technology. Indeed, cultures are known...... to strongly impact how people interpret their surrounding environment, hence generating cognitive and affective biases that could impact computer-supported educational activities. Consequently, educational technologies trying to become culturally-aware need to develop a sociocultural model of their learner....... In this regard, many previous projects have used a fixed set of socio-cultural criteria. It is the purpose of this paper to show that this approach is not necessarily good since the acceptability and relevance of many criteria may vary from one cultural context to another...

  15. Spatial and frequency domain ring source models for the single muscle fiber action potential

    DEFF Research Database (Denmark)

    Henneberg, Kaj-åge; R., Plonsey


    In the paper, single-fibre models for the extracellular action potential are developed that will allow the potential to the evaluated at an arbitrary field point in the extracellular space. Fourier-domain models are restricted in that they evaluate potentials at equidistant points along a line...... parallel to the fibre axis. Consequently, they cannot easily evaluate the potential at the boundary nodes of a boundary-element electrode model. The Fourier-domain models employ axial-symmetric ring source models, and thereby provide higher accuracy that the line source model, where the source is lumped...... including anisotropy show that the spatial models require extreme care in the integration procedure owing to the singularity in the weighting functions. With adequate sampling, the spatial models can evaluate extracellular potentials with high accuracy....

  16. Do Physical Proximity and Availability of Adequate Infrastructure at Public Health Facility Increase Institutional Delivery? A Three Level Hierarchical Model Approach. (United States)

    Patel, Rachana; Ladusingh, Laishram


    This study aims to examine the inter-district and inter-village variation of utilization of health services for institutional births in EAG states in presence of rural health program and availability of infrastructures. District Level Household Survey-III (2007-08) data on delivery care and facility information was used for the purpose. Bivariate results examined the utilization pattern by states in presence of correlates of women related while a three-level hierarchical multilevel model illustrates the effect of accessibility, availability of health facility and community health program variables on the utilization of health services for institutional births. The study found a satisfactory improvement in state Rajasthan, Madhya Pradesh and Orissa, importantly, in Bihar and Uttaranchal. The study showed that increasing distance from health facility discouraged institutional births and there was a rapid decline of more than 50% for institutional delivery as the distance to public health facility exceeded 10 km. Additionally, skilled female health worker (ANM) and observed improved public health facility led to significantly increase the probability of utilization as compared to non-skilled ANM and not-improved health centers. Adequacy of essential equipment/laboratory services required for maternal care significantly encouraged deliveries at public health facility. District/village variables neighborhood poverty was negatively related to institutional delivery while higher education levels in the village and women's residing in more urbanized districts increased the utilization. "Inter-district" variation was 14 percent whereas "between-villages" variation for the utilization was 11 percent variation once controlled for all the three-level variables in the model. This study suggests that the mere availability of health facilities is necessary but not sufficient condition to promote utilization until the quality of service is inadequate and inaccessible considering

  17. Freeze-Dried Platelet-Rich Plasma Accelerates Bone Union with Adequate Rigidity in Posterolateral Lumbar Fusion Surgery Model in Rats (United States)

    Shiga, Yasuhiro; Orita, Sumihisa; Kubota, Go; Kamoda, Hiroto; Yamashita, Masaomi; Matsuura, Yusuke; Yamauchi, Kazuyo; Eguchi, Yawara; Suzuki, Miyako; Inage, Kazuhide; Sainoh, Takeshi; Sato, Jun; Fujimoto, Kazuki; Abe, Koki; Kanamoto, Hirohito; Inoue, Masahiro; Kinoshita, Hideyuki; Aoki, Yasuchika; Toyone, Tomoaki; Furuya, Takeo; Koda, Masao; Takahashi, Kazuhisa; Ohtori, Seiji


    Fresh platelet-rich plasma (PRP) accelerates bone union in rat model. However, fresh PRP has a short half-life. We suggested freeze-dried PRP (FD-PRP) prepared in advance and investigated its efficacy in vivo. Spinal posterolateral fusion was performed on 8-week-old male Sprague-Dawley rats divided into six groups based on the graft materials (n = 10 per group): sham control, artificial bone (A hydroxyapatite-collagen composite) -alone, autologous bone, artificial bone + fresh-PRP, artificial bone + FD-PRP preserved 8 weeks, and artificial bone + human recombinant bone morphogenetic protein 2 (BMP) as a positive control. At 4 and 8 weeks after the surgery, we investigated their bone union-related characteristics including amount of bone formation, histological characteristics of trabecular bone at remodeling site, and biomechanical strength on 3-point bending. Comparable radiological bone union was confirmed at 4 weeks after surgery in 80% of the FD-PRP groups, which was earlier than in other groups (p < 0.05). Histologically, the trabecular bone had thinner and more branches in the FD-PRP. Moreover, the biomechanical strength was comparable to that of autologous bone. FD-PRP accelerated bone union at a rate comparable to that of fresh PRP and BMP by remodeling the bone with thinner, more tangled, and rigid trabecular bone.

  18. Physics-Based Crystal Plasticity Modeling of Single Crystal Niobium (United States)

    Maiti, Tias

    Crystal plasticity models based on thermally activated dislocation kinetics has been successful in predicting the deformation behavior of crystalline materials, particularly in face-centered cubic (fcc) metals. In body-centered cubic (bcc) metals success has been limited owing to ill-defined slip planes. The flow stress of a bcc metal is strongly dependent on temperature and orientation due to the non-planar splitting of a/2 screw dislocations. As a consequence of this, bcc metals show two unique deformation characteristics: (a) thermally-activated glide of screw dislocations--the motion of screw components with their non-planar core structure at the atomistic level occurs even at low stress through the nucleation (assisted by thermal activation) and lateral propagation of dislocation kink pairs; (b) break-down of the Schmid Law, where dislocation slip is driven only by the resolved shear stress. Since the split dislocation core has to constrict for a kink pair formation (and propagation), the non-planarity of bcc screw dislocation cores entails an influence of (shear) stress components acting on planes other than the primary glide plane on their mobility. Another consequence of the asymmetric core splitting on the glide plane is a direction-sensitive slip resistance, which is termed twinning/atwinning sense of shear and should be taken into account when developing constitutive models. Modeling thermally-activated flow including the above-mentioned non-Schmid effects in bcc metals has been the subject of much work, starting in the 1980s and gaining increased interest in recent times. The majority of these works focus on single crystal deformation of commonly used metals such as Iron (Fe), Molybdenum (Mo), and Tungsten (W), while very few published studies address deformation behavior in Niobium (Nb). Most of the work on Nb revolves around fitting parameters of phenomenological descriptions, which do not capture adequately the macroscopic multi-stage hardening


    African Journals Online (AJOL)

    Preferred Customer

    SUBGRADE MODELING. Asrat Worku. Department of ... The models give consistently larger stiffness for the Winkler springs as compared to previously proposed similar continuum-based models that ignore the lateral stresses. ...... (ν = 0.25 and E = 40MPa); (b) a medium stiff clay (ν = 0.45 and E = 50MPa). In contrast to this, ...

  20. A stochastic model for magnetic dynamics in single-molecule magnets

    Energy Technology Data Exchange (ETDEWEB)

    López-Ruiz, R., E-mail: [Instituto de Física Gleb Wataghin - Universidade Estadual de Campinas, 13083-859 Campinas (SP) (Brazil); Almeida, P.T. [Instituto de Física Gleb Wataghin - Universidade Estadual de Campinas, 13083-859 Campinas (SP) (Brazil); Vaz, M.G.F. [Instituto de Química, Universidade Federal Fluminense, 24020-150 Niterói (RJ) (Brazil); Novak, M.A. [Instituto de Física - Universidade Federal do Rio de Janeiro, 21941-972 Rio de Janeiro (RJ) (Brazil); Béron, F.; Pirota, K.R. [Instituto de Física Gleb Wataghin - Universidade Estadual de Campinas, 13083-859 Campinas (SP) (Brazil)


    Hysteresis and magnetic relaxation curves were performed on double well potential systems with quantum tunneling possibility via stochastic simulations. Simulation results are compared with experimental ones using the Mn{sub 12} single-molecule magnet, allowing us to introduce time dependence in the model. Despite being a simple simulation model, it adequately reproduces the phenomenology of a thermally activated quantum tunneling and can be extended to other systems with different parameters. Assuming competition between the reversal modes, thermal (over) and tunneling (across) the anisotropy barrier, a separation of classical and quantum contributions to relaxation time can be obtained. - Highlights: • Single-molecule magnets are modeled using a simple stochastic approach. • Simulation reproduces thermally-activated tunnelling magnetization reversal features. • The time is introduced in hysteresis and relaxation simulations. • We can separate the quantum and classical contributions to decay time.

  1. Single-cluster dynamics for the random-cluster model

    NARCIS (Netherlands)

    Deng, Y.; Qian, X.; Blöte, H.W.J.


    We formulate a single-cluster Monte Carlo algorithm for the simulation of the random-cluster model. This algorithm is a generalization of the Wolff single-cluster method for the q-state Potts model to noninteger values q>1. Its results for static quantities are in a satisfactory agreement with those

  2. Single-layer model for surface roughness. (United States)

    Carniglia, C K; Jensen, D G


    Random roughness of an optical surface reduces its specular reflectance and transmittance by the scattering of light. The reduction in reflectance can be modeled by a homogeneous layer on the surface if the refractive index of the layer is intermediate to the indices of the media on either side of the surface. Such a layer predicts an increase in the transmittance of the surface and therefore does not provide a valid model for the effects of scatter on the transmittance. Adding a small amount of absorption to the layer provides a model that predicts a reduction in both reflectance and transmittance. The absorbing layer model agrees with the predictions of a scalar scattering theory for a layer with a thickness that is twice the rms roughness of the surface. The extinction coefficient k for the layer is proportional to the thickness of the layer.

  3. Defense of single-factor models of population regulation

    International Nuclear Information System (INIS)

    Tamarin, R.H.


    I reject a multifactorial approach to the study of the regulation of animal populations for two reasons. First, a mechanism suggested by Chitty, that has natural selection at its base, has not been adequately tested. Second, the multifactorial model suggested by Lidicker is untestable because of its vagueness. As a middle ground, I suggest a model that has natural selection as its mechanism, but is multifacturial because it allows many parameters to be the selective agents. I particularly emphasize prediction and selective dispersal. Methods to test this model are suggested

  4. General single phase wellbore flow model

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Liang-Biao; Arbabi, S.; Aziz, K.


    A general wellbore flow model, which incorporates not only frictional, accelerational and gravitational pressure drops, but also the pressure drop caused by inflow, is presented in this report. The new wellbore model is readily applicable to any wellbore perforation patterns and well completions, and can be easily incorporated in reservoir simulators or analytical reservoir inflow models. Three dimensionless numbers, the accelerational to frictional pressure gradient ratio R{sub af}, the gravitational to frictional pressure gradient ratio R{sub gf}, and the inflow-directional to accelerational pressure gradient ratio R{sub da}, have been introduced to quantitatively describe the relative importance of different pressure gradient components. For fluid flow in a production well, it is expected that there may exist up to three different regions of the wellbore: the laminar flow region, the partially-developed turbulent flow region, and the fully-developed turbulent flow region. The laminar flow region is located near the well toe, the partially-turbulent flow region lies in the middle of the wellbore, while the fully-developed turbulent flow region is at the downstream end or the heel of the wellbore. Length of each region depends on fluid properties, wellbore geometry and flow rate. As the distance from the well toe increases, flow rate in the wellbore increases and the ratios R{sub af} and R{sub da} decrease. Consequently accelerational and inflow-directional pressure drops have the greatest impact in the toe region of the wellbore. Near the well heel the local wellbore flow rate becomes large and close to the total well production rate, here R{sub af} and R{sub da} are small, therefore, both the accelerational and inflow-directional pressure drops can be neglected.

  5. Modelling a singly resonant, intracavity ring optical parametric oscillator

    DEFF Research Database (Denmark)

    Buchhave, Preben; Tidemand-Lichtenberg, Peter; Wei, Hou


    We study theoretically and experimentally the dynamics of a single-frequency, unidirectional ring laser with an intracavity nonlinear singly resonant OPO-crystal in a coupled resonator. We find for a range of operating conditions good agreement between model results and measurements of the laser...

  6. Homology modelling and bivalent single-chain Fv construction of ...

    Indian Academy of Sciences (India)

    Homology modelling and bivalent single-chain Fv construction of anti-HepG2 single-chain immunoglobulin Fv fragments from a phage display library ... Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of ...

  7. Single particle degrees of freedom in the interacting boson model

    NARCIS (Netherlands)

    Scholten, O.


    An overview is given of different aspects of the Interacting Boson Fermion Model, the extension of the interacting Boson Model to odd mass nuclei. The microscopic model for the coupling of single-particle degrees of freedom to the system of bosons is outlined and the interaction between the bosons

  8. Mixture of Regression Models with Single-Index


    Xiang, Sijia; Yao, Weixin


    In this article, we propose a class of semiparametric mixture regression models with single-index. We argue that many recently proposed semiparametric/nonparametric mixture regression models can be considered special cases of the proposed model. However, unlike existing semiparametric mixture regression models, the new pro- posed model can easily incorporate multivariate predictors into the nonparametric components. Backfitting estimates and the corresponding algorithms have been proposed for...

  9. Global Asymptotic Stability for Discrete Single Species Population Models

    Directory of Open Access Journals (Sweden)

    A. Bilgin


    Full Text Available We present some basic discrete models in populations dynamics of single species with several age classes. Starting with the basic Beverton-Holt model that describes the change of single species we discuss its basic properties such as a convergence of all solutions to the equilibrium, oscillation of solutions about the equilibrium solutions, Allee’s effect, and Jillson’s effect. We consider the effect of the constant and periodic immigration and emigration on the global properties of Beverton-Holt model. We also consider the effect of the periodic environment on the global properties of Beverton-Holt model.

  10. Variance Function Partially Linear Single-Index Models1. (United States)

    Lian, Heng; Liang, Hua; Carroll, Raymond J


    We consider heteroscedastic regression models where the mean function is a partially linear single index model and the variance function depends upon a generalized partially linear single index model. We do not insist that the variance function depend only upon the mean function, as happens in the classical generalized partially linear single index model. We develop efficient and practical estimation methods for the variance function and for the mean function. Asymptotic theory for the parametric and nonparametric parts of the model is developed. Simulations illustrate the results. An empirical example involving ozone levels is used to further illustrate the results, and is shown to be a case where the variance function does not depend upon the mean function.

  11. Planning Single-Event Nutrition Education: A New Model (United States)

    Brown, Lora Beth


    A theoretical model for planning single-event nutrition education contrasts a Practical, Foods, and Positive (PFP) emphasis to an Abstract, Nutrient, and Negative (ANN) focus on nutrition topics. Use of this model makes messages more appealing to consumers and may increase the likelihood that people will apply the nutrition information in their…

  12. Single crystal plasticity by modeling dislocation density rate behavior

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Benjamin L [Los Alamos National Laboratory; Bronkhorst, Curt [Los Alamos National Laboratory; Beyerlein, Irene [Los Alamos National Laboratory; Cerreta, E. K. [Los Alamos National Laboratory; Dennis-Koller, Darcie [Los Alamos National Laboratory


    The goal of this work is to formulate a constitutive model for the deformation of metals over a wide range of strain rates. Damage and failure of materials frequently occurs at a variety of deformation rates within the same sample. The present state of the art in single crystal constitutive models relies on thermally-activated models which are believed to become less reliable for problems exceeding strain rates of 10{sup 4} s{sup -1}. This talk presents work in which we extend the applicability of the single crystal model to the strain rate region where dislocation drag is believed to dominate. The elastic model includes effects from volumetric change and pressure sensitive moduli. The plastic model transitions from the low-rate thermally-activated regime to the high-rate drag dominated regime. The direct use of dislocation density as a state parameter gives a measurable physical mechanism to strain hardening. Dislocation densities are separated according to type and given a systematic set of interactions rates adaptable by type. The form of the constitutive model is motivated by previously published dislocation dynamics work which articulated important behaviors unique to high-rate response in fcc systems. The proposed material model incorporates thermal coupling. The hardening model tracks the varying dislocation population with respect to each slip plane and computes the slip resistance based on those values. Comparisons can be made between the responses of single crystals and polycrystals at a variety of strain rates. The material model is fit to copper.

  13. Modeling of calcination of single kaolinitic clay particle

    DEFF Research Database (Denmark)

    Gebremariam, Abraham Teklay; Yin, Chungen; Rosendahl, Lasse

    The present work aims at modeling of the calcination (dehydroxylation) process of clay particles, specifically kaolinite, and its thermal transformation. For such purpose, 1D single particle calcination model was developed based on the concept of shrinking core model to assess the dehydroxylation...... distribution within the clay particle and simultaneous density changes due to the reaction kinetics. Accordingly, a particular residence time was noticed as a point where kaolinitic clay particles attain optimum conversion to metakaolinite which is pozzolanic....

  14. Single supplier single retailer inventory model controlled by the reorder and shipping points with sharing information (United States)

    Ho, Wen-Tsung; Hsiao, Yu-Cheng


    This study investigated the integrated stochastic inventory problem for a two-stage supply chain consisting of a single retailer and a single supplier. By using batch shipment policy, the expected total cost can be significantly reduced. An equally sized batch shipment model, controlled by both the reorder and shipping points, with sharing information by enterprise resource planning and radio frequency identification is constructed. The problem is solved optimally by the proposed algorithm that determines the economic lot size, the optimal batch sizes and number of batches. A numerical example is included to illustrate the algorithmic procedures and to prove that the model controlled both by the reorder and shipping points is superior to the classic model controlled only by the reorder point.

  15. A bespoke single-band Hubbard model material (United States)

    Griffin, S. M.; Staar, P.; Schulthess, T. C.; Troyer, M.; Spaldin, N. A.


    The Hubbard model, which augments independent-electron band theory with a single parameter to describe electron-electron correlations, is widely regarded to be the "standard model" of condensed-matter physics. The model has been remarkably successful at addressing a range of correlation phenomena in solids, but it neglects many behaviors that occur in real materials, such as phonons, long-range interactions, and, in its simplest form, multiorbital effects. Here, we use ab initio electronic structure methods to design a material whose Hamiltonian matches as closely as possible that of the single-band Hubbard model. Our motivation is to compare the measured properties of our new material to those predicted by reliable theoretical solutions of the Hubbard model to determine the relevance of the model in the description of real materials. After identifying an appropriate crystal class and several appropriate chemistries, we use density-functional theory and dynamical mean-field theory to screen for the desired electronic band structure and metal-insulator transition. We then explore the most promising candidates for structural stability and suitability for doping, and we propose specific materials for subsequent synthesis. Finally, we identify a regime—that should manifest in our bespoke material—in which the single-band Hubbard model on a triangular lattice exhibits exotic d -wave superconductivity.

  16. Model tests on single piles in soft clay

    Energy Technology Data Exchange (ETDEWEB)

    Pan, J.L. [Durham Univ., Durham, (United Kingdom). School of Engineering; Goh, A.T.C.; Wong, K.S.; Teh, C.I. [Nanyang Technological Univ., (Singapore). Geotechnical Research Centre


    The behaviour of single stainless steel piles subjected to lateral soft clay soil movement was investigated in laboratory model tests in an effort to determine the ultimate soil pressure acting along the pile shaft. A custom designed apparatus was manufactured and calibrated for the test which measured the limiting soil pressures acting along the model pile shaft. The ultimate soil pressure was determined based on the maximum value of this measurement. The results show that the ultimate soil pressure for single passive piles was about 10 times the undrained shear strength, and the magnitude of the soil translation needed to fully mobilize the ultimate soil pressure on the single passive piles was about half the pile width. Further experimental study is needed to examine the effects of the pile end fixity, flexibility and shape and to confirm the effects of sample size and the disturbance due to soil sample preparation. 17 refs., 10 figs.

  17. On the Predictiveness of Single-Field Inflationary Models

    CERN Document Server

    Burgess, C.P.; Trott, Michael


    We re-examine the predictiveness of single-field inflationary models and discuss how an unknown UV completion can complicate determining inflationary model parameters from observations, even from precision measurements. Besides the usual naturalness issues associated with having a shallow inflationary potential, we describe another issue for inflation, namely, unknown UV physics modifies the running of Standard Model (SM) parameters and thereby introduces uncertainty into the potential inflationary predictions. We illustrate this point using the minimal Higgs Inflationary scenario, which is arguably the most predictive single-field model on the market, because its predictions for $A_s$, $r$ and $n_s$ are made using only one new free parameter beyond those measured in particle physics experiments, and run up to the inflationary regime. We find that this issue can already have observable effects. At the same time, this UV-parameter dependence in the Renormalization Group allows Higgs Inflation to occur (in prin...

  18. Single-particle spectral density of the Hubbard model

    NARCIS (Netherlands)

    Mehlig, B.; Eskes, H.; Hayn, R.; Meinders, M.B.J.


    We calculate the single-particle spectral function for the Hubbard model within the framework of a projection technique equivalent to the two-pole approximation. We show that the two-pole approximation can be well understood as an average characterization of the upper and the lower Hubbard bands,


    NARCIS (Netherlands)



    We calculate the single-particle spectral function for the Hubbard model within the framework of a projection technique equivalent to the two-pole approximation. We show that the two-pole approximation can be well understood as an average characterization of the upper and the lower Hubbard bands,

  20. A single product perishing inventory model with demand interaction ...

    African Journals Online (AJOL)

    The paper describes a single perishing product inventory model in which items deteriorate in two phases and then perish. An independent demand takes place at constant rates for items in both phases. A demand for an item in Phase I not satisfied may be satisfied by an item in Phase II, based on a probability measure.

  1. Effective single scattering albedo estimation using regional climate model

    CSIR Research Space (South Africa)

    Tesfaye, M


    Full Text Available In this study, by modifying the optical parameterization of Regional Climate model (RegCM), the authors have computed and compared the Effective Single-Scattering Albedo (ESSA) which is a representative of VIS spectral region. The arid, semi...

  2. Interpolation solution of the single-impurity Anderson model

    International Nuclear Information System (INIS)

    Kuzemsky, A.L.


    The dynamical properties of the single-impurity Anderson model (SIAM) is studied using a novel Irreducible Green's Function method (IGF). The new solution for one-particle GF interpolating between the strong and weak correlation limits is obtained. The unified concept of relevant mean-field renormalizations is indispensable for strong correlation limit. (author). 21 refs

  3. Modeling Rabbit Responses to Single and Multiple Aerosol ... (United States)

    Journal Article Survival models are developed here to predict response and time-to-response for mortality in rabbits following exposures to single or multiple aerosol doses of Bacillus anthracis spores. Hazard function models were developed for a multiple dose dataset to predict the probability of death through specifying dose-response functions and the time between exposure and the time-to-death (TTD). Among the models developed, the best-fitting survival model (baseline model) has an exponential dose-response model with a Weibull TTD distribution. Alternative models assessed employ different underlying dose-response functions and use the assumption that, in a multiple dose scenario, earlier doses affect the hazard functions of each subsequent dose. In addition, published mechanistic models are analyzed and compared with models developed in this paper. None of the alternative models that were assessed provided a statistically significant improvement in fit over the baseline model. The general approach utilizes simple empirical data analysis to develop parsimonious models with limited reliance on mechanistic assumptions. The baseline model predicts TTDs consistent with reported results from three independent high-dose rabbit datasets. More accurate survival models depend upon future development of dose-response datasets specifically designed to assess potential multiple dose effects on response and time-to-response. The process used in this paper to dev

  4. Parameter Estimation for Single Diode Models of Photovoltaic Modules

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Clifford [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Photovoltaic and Distributed Systems Integration Dept.


    Many popular models for photovoltaic system performance employ a single diode model to compute the I - V curve for a module or string of modules at given irradiance and temperature conditions. A single diode model requires a number of parameters to be estimated from measured I - V curves. Many available parameter estimation methods use only short circuit, o pen circuit and maximum power points for a single I - V curve at standard test conditions together with temperature coefficients determined separately for individual cells. In contrast, module testing frequently records I - V curves over a wide range of irradi ance and temperature conditions which, when available , should also be used to parameterize the performance model. We present a parameter estimation method that makes use of a fu ll range of available I - V curves. We verify the accuracy of the method by recov ering known parameter values from simulated I - V curves . We validate the method by estimating model parameters for a module using outdoor test data and predicting the outdoor performance of the module.

  5. Mechanistic modelling of the drying behaviour of single pharmaceutical granules

    DEFF Research Database (Denmark)

    Thérèse F.C. Mortier, Séverine; Beer, Thomas De; Gernaey, Krist


    The trend to move towards continuous production processes in pharmaceutical applications enhances the necessity to develop mechanistic models to understand and control these processes. This work focuses on the drying behaviour of a single wet granule before tabletting, using a six......-segmented fluidised bed drying system, which is part of a fully continuous from-powder-to-tablet manufacturing line. The drying model is based on a model described by Mezhericher et al. [1] and consists of two submodels. In the first drying phase (submodel 1), the surface water evaporates, while in the second drying...... phase (submodel 2), the water inside the granule evaporates. The second submodel contains an empirical power coefficient, b. A sensitivity analysis was performed to study the influence of parameters on the moisture content of single pharmaceutical granules, which clearly points towards the importance...

  6. Computational models of the single substitutional nitrogen atom in diamond

    CERN Document Server

    Lombardi, E B; Osuch, K; Reynhardt, E C


    The single substitutional nitrogen atom in diamond is apparently a very simple defect in a very simple elemental solid. It has been modelled by a range of computational models, few of which either agree with each other, or with the experimental data on the defect. If the computational models of less well understood defects in this and more complex materials are to be reliable, we should understand why the discrepancies arise and how they can be avoided in future modelling. This paper presents an all-electron, augmented plane-wave (APW) density functional theory (DFT) calculation using the modern APW with local orbitals full potential periodic approximation. This is compared to DFT, finite cluster pseudopotential calculations and a semi-empirical Hartree-Fock model. Comparisons between the results of these and previous models allow us to discuss the reliability of computational methods of this and similar defects.

  7. Computational Modeling of Photonic Crystal Microcavity Single-Photon Emitters (United States)

    Saulnier, Nicole A.

    Conventional cryptography is based on algorithms that are mathematically complex and difficult to solve, such as factoring large numbers. The advent of a quantum computer would render these schemes useless. As scientists work to develop a quantum computer, cryptographers are developing new schemes for unconditionally secure cryptography. Quantum key distribution has emerged as one of the potential replacements of classical cryptography. It relics on the fact that measurement of a quantum bit changes the state of the bit and undetected eavesdropping is impossible. Single polarized photons can be used as the quantum bits, such that a quantum system would in some ways mirror the classical communication scheme. The quantum key distribution system would include components that create, transmit and detect single polarized photons. The focus of this work is on the development of an efficient single-photon source. This source is comprised of a single quantum dot inside of a photonic crystal microcavity. To better understand the physics behind the device, a computational model is developed. The model uses Finite-Difference Time-Domain methods to analyze the electromagnetic field distribution in photonic crystal microcavities. It uses an 8-band k · p perturbation theory to compute the energy band structure of the epitaxially grown quantum dots. We discuss a method that combines the results of these two calculations for determining the spontaneous emission lifetime of a quantum dot in bulk material or in a microcavity. The computational models developed in this thesis are used to identify and characterize microcavities for potential use in a single-photon source. The computational tools developed are also used to investigate novel photonic crystal microcavities that incorporate 1D distributed Bragg reflectors for vertical confinement. It is found that the spontaneous emission enhancement in the quasi-3D cavities can be significantly greater than in traditional suspended slab

  8. Maternal titers after adequate syphilotherapy during pregnancy. (United States)

    Rac, Martha W F; Bryant, Stefanie N; Cantey, Joseph B; McIntire, Donald D; Wendel, George D; Sheffield, Jeanne S


    We aimed to construct a timeline for nontreponemal titer decline specific to pregnancy and evaluate factors associated with inadequate decline by delivery. This was a retrospective medical records review from September 1984 to June 2011 of women diagnosed with syphilis after 18 weeks of gestation. Women were treated according to stage of syphilis per Centers for Disease Control and Prevention guidelines. Patients with both pretreatment and delivery titers were included for data analysis. Demographics, stage of syphilis, maternal titers, delivery, and infant outcomes were recorded. Standard statistical analyses were performed for categorical and continuous data. The titer decline was analyzed using mixed-effects regression modeling. A total of 166 patients met inclusion criteria. Mean gestational age at treatment was 29.1 ± 5 weeks, and 93 (56%) women were diagnosed with early-stage syphilis. For all stages of syphilis, maternal titers declined after syphilotherapy. Pretreatment titers were higher and declined more rapidly in primary and secondary disease than in latent-stage disease and syphilis of unknown duration. Sixty-three (38%) patients achieved a 4-fold decline by delivery. Patients without a 4-fold decline by delivery were older (24.6 vs 21.5 years; P syphilis or syphilis of unknown duration, and had less time from treatment to delivery (7.8 vs 11.1 weeks; P < .001). Maternal serologic response during pregnancy after adequate syphilotherapy varied by stage of disease. Failure to achieve a 4-fold decline in titers by delivery is more a reflection of treatment timing than of treatment failure. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail:

  9. Single-Index Additive Vector Autoregressive Time Series Models

    KAUST Repository



    We study a new class of nonlinear autoregressive models for vector time series, where the current vector depends on single-indexes defined on the past lags and the effects of different lags have an additive form. A sufficient condition is provided for stationarity of such models. We also study estimation of the proposed model using P-splines, hypothesis testing, asymptotics, selection of the order of the autoregression and of the smoothing parameters and nonlinear forecasting. We perform simulation experiments to evaluate our model in various settings. We illustrate our methodology on a climate data set and show that our model provides more accurate yearly forecasts of the El Niño phenomenon, the unusual warming of water in the Pacific Ocean. © 2009 Board of the Foundation of the Scandinavian Journal of Statistics.

  10. Bayesian analysis of inflation: Parameter estimation for single field models

    International Nuclear Information System (INIS)

    Mortonson, Michael J.; Peiris, Hiranya V.; Easther, Richard


    Future astrophysical data sets promise to strengthen constraints on models of inflation, and extracting these constraints requires methods and tools commensurate with the quality of the data. In this paper we describe ModeCode, a new, publicly available code that computes the primordial scalar and tensor power spectra for single-field inflationary models. ModeCode solves the inflationary mode equations numerically, avoiding the slow roll approximation. It is interfaced with CAMB and CosmoMC to compute cosmic microwave background angular power spectra and perform likelihood analysis and parameter estimation. ModeCode is easily extendable to additional models of inflation, and future updates will include Bayesian model comparison. Errors from ModeCode contribute negligibly to the error budget for analyses of data from Planck or other next generation experiments. We constrain representative single-field models (φ n with n=2/3, 1, 2, and 4, natural inflation, and 'hilltop' inflation) using current data, and provide forecasts for Planck. From current data, we obtain weak but nontrivial limits on the post-inflationary physics, which is a significant source of uncertainty in the predictions of inflationary models, while we find that Planck will dramatically improve these constraints. In particular, Planck will link the inflationary dynamics with the post-inflationary growth of the horizon, and thus begin to probe the ''primordial dark ages'' between TeV and grand unified theory scale energies.

  11. A macroscopic model for magnetic shape-memory single crystals

    Czech Academy of Sciences Publication Activity Database

    Bessoud, A. L.; Kružík, Martin; Stefanelli, U.


    Roč. 64, č. 2 (2013), s. 343-359 ISSN 0044-2275 R&D Projects: GA AV ČR IAA100750802; GA ČR GAP201/10/0357 Institutional support: RVO:67985556 Keywords : magneto striction * evolution Subject RIV: BA - General Mathematics Impact factor: 1.214, year: 2013 macroscopic model for magnetic shape-memory single crystals.pdf

  12. Unified Model of Dynamic Forced Barrier Crossing in Single Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Friddle, R W


    Thermally activated barrier crossing in the presence of an increasing load can reveal kinetic rate constants and energy barrier parameters when repeated over a range of loading rates. Here we derive a model of the mean escape force for all relevant loading rates--the complete force spectrum. Two well-known approximations emerge as limiting cases; one of which confirms predictions that single-barrier spectra should converge to a phenomenological description in the slow loading limit.

  13. An atomic model for neutral and singly ionized uranium (United States)

    Maceda, E. L.; Miley, G. H.


    A model for the atomic levels above ground state in neutral, U(0), and singly ionized, U(+), uranium is described based on identified atomic transitions. Some 168 states in U(0) and 95 in U(+) are found. A total of 1581 atomic transitions are used to complete this process. Also discussed are the atomic inverse lifetimes and line widths for the radiative transitions as well as the electron collisional cross sections.

  14. Stochastic models for spike trains of single neurons

    CERN Document Server

    Sampath, G


    1 Some basic neurophysiology 4 The neuron 1. 1 4 1. 1. 1 The axon 7 1. 1. 2 The synapse 9 12 1. 1. 3 The soma 1. 1. 4 The dendrites 13 13 1. 2 Types of neurons 2 Signals in the nervous system 14 2. 1 Action potentials as point events - point processes in the nervous system 15 18 2. 2 Spontaneous activi~ in neurons 3 Stochastic modelling of single neuron spike trains 19 3. 1 Characteristics of a neuron spike train 19 3. 2 The mathematical neuron 23 4 Superposition models 26 4. 1 superposition of renewal processes 26 4. 2 Superposition of stationary point processe- limiting behaviour 34 4. 2. 1 Palm functions 35 4. 2. 2 Asymptotic behaviour of n stationary point processes superposed 36 4. 3 Superposition models of neuron spike trains 37 4. 3. 1 Model 4. 1 39 4. 3. 2 Model 4. 2 - A superposition model with 40 two input channels 40 4. 3. 3 Model 4. 3 4. 4 Discussion 41 43 5 Deletion models 5. 1 Deletion models with 1nd~endent interaction of excitatory and inhibitory sequences 44 VI 5. 1. 1 Model 5. 1 The basic de...

  15. Connecting single-stock assessment models through correlated survival

    DEFF Research Database (Denmark)

    Albertsen, Christoffer Moesgaard; Nielsen, Anders; Thygesen, Uffe Høgsbro


    the corresponding partial correlations. We consider six models where the partial correlation matrix between stocks follows a band structure ranging from independent assessments to complex correlation structures. Further, a simulation study illustrates the importance of handling correlated data sufficiently...... times. We propose a simple alternative. In three case studies each with two stocks, we improve the single-stock models, as measured by Akaike information criterion, by adding correlation in the cohort survival. To limit the number of parameters, the correlations are parameterized through...

  16. Dynamic Human Body Modeling Using a Single RGB Camera. (United States)

    Zhu, Haiyu; Yu, Yao; Zhou, Yu; Du, Sidan


    In this paper, we present a novel automatic pipeline to build personalized parametric models of dynamic people using a single RGB camera. Compared to previous approaches that use monocular RGB images, our system can model a 3D human body automatically and incrementally, taking advantage of human motion. Based on coarse 2D and 3D poses estimated from image sequences, we first perform a kinematic classification of human body parts to refine the poses and obtain reconstructed body parts. Next, a personalized parametric human model is generated by driving a general template to fit the body parts and calculating the non-rigid deformation. Experimental results show that our shape estimation method achieves comparable accuracy with reconstructed models using depth cameras, yet requires neither user interaction nor any dedicated devices, leading to the feasibility of using this method on widely available smart phones.

  17. Kinematic arguments against single relativistic shell models for GRBs (United States)

    Fenimore, Edward E.; Ramirez, E.; Sumner, M. C.


    Two main types of models have been suggested to explain the long durations and multiple peaks of Gamma Ray Bursts (GRBs). In one, there is a very quick release of energy at a central site resulting in a single relativistic shell that produces peaks in the time history through its interactions with the ambient material. In the other, the central site sporadically releases energy over hundreds of seconds forming a peak with each burst of energy. The authors show that the average envelope of emission and the presence of gaps in GRBs are inconsistent with a single relativistic shell. They estimate that the maximum fraction of a single shell that can produce gamma-rays in a GRB with multiple peaks is 10(exp (minus)3), implying that single relativistic shells require 10(exp 3) times more energy than previously thought. They conclude that either the central site of a GRB must produce (approx)10(exp 51) erg/s(exp (minus)1) for hundreds of seconds, or the relativistic shell must have structure on a scales the order of (radical)(epsilon)(Gamma)(exp (minus)1), where (Gamma) is the bulk Lorentz factor ((approximately)10(exp 2) to 10(exp 3)) and (epsilon) is the efficiency.

  18. Thermal asymmetry model of single slope single basin solar still with sponge liner

    Directory of Open Access Journals (Sweden)

    Shanmugan Sengottain


    Full Text Available An attempt has been made to propose a thermal asymmetry model for single slope basin type solar still with sponge liner of different thickness (3cm, 5cm, and 10cm in the basin. Two different color sponge liners have been used i.e., yellow and black. In the proposed design, a suitable dripping arrangement has been designed and used to pour water drop by drop over the sponge liner instead of sponge liner in stagnant saline water in the basin. The special arrangement overcomes the dryness of the sponge during peak sunny hours. The performance of the system with black color sponge of 3cm thickness shows better result with an output of 5.3 kg/m2 day and the proposed model have used to find the thermal asymmetries during the working hours of the still.

  19. Adequate Social Science, Curriculum Investigations, and Theory. (United States)

    Anyon, Jean


    Two studies of curriculum are used as examples of trends in social science research. Criteria are developed for the "ideal" social science and then applied to the two studies. Curriculum theorizing is discussed as related to social science theory. Suggestions are made for the content of an adequate curriculum theory. (JN)

  20. Adequate supervision for children and adolescents. (United States)

    Anderst, James; Moffatt, Mary


    Primary care providers (PCPs) have the opportunity to improve child health and well-being by addressing supervision issues before an injury or exposure has occurred and/or after an injury or exposure has occurred. Appropriate anticipatory guidance on supervision at well-child visits can improve supervision of children, and may prevent future harm. Adequate supervision varies based on the child's development and maturity, and the risks in the child's environment. Consideration should be given to issues as wide ranging as swimming pools, falls, dating violence, and social media. By considering the likelihood of harm and the severity of the potential harm, caregivers may provide adequate supervision by minimizing risks to the child while still allowing the child to take "small" risks as needed for healthy development. Caregivers should initially focus on direct (visual, auditory, and proximity) supervision of the young child. Gradually, supervision needs to be adjusted as the child develops, emphasizing a safe environment and safe social interactions, with graduated independence. PCPs may foster adequate supervision by providing concrete guidance to caregivers. In addition to preventing injury, supervision includes fostering a safe, stable, and nurturing relationship with every child. PCPs should be familiar with age/developmentally based supervision risks, adequate supervision based on those risks, characteristics of neglectful supervision based on age/development, and ways to encourage appropriate supervision throughout childhood. Copyright 2014, SLACK Incorporated.

  1. 29 CFR 452.110 - Adequate safeguards. (United States)


    ... required to be included in the union's constitution and bylaws, but they must be observed. A labor... 29 Labor 2 2010-07-01 2010-07-01 false Adequate safeguards. 452.110 Section 452.110 Labor Regulations Relating to Labor OFFICE OF LABOR-MANAGEMENT STANDARDS, DEPARTMENT OF LABOR LABOR-MANAGEMENT...

  2. Innovating for Sustainable, Reliable and Adequate Electricity ...

    African Journals Online (AJOL)

    This research sought to determine the most readily available modes of innovation in South Africa and Nigeria to exploit both conventional and renewable energy sources, in order to generate adequate and reliable electricity as part of meeting sustainable development objectives. The research analysed a variety of ...

  3. Spin models for the single molecular magnet Mn12-AC (United States)

    Al-Saqer, Mohamad A.


    The single molecular magnet (SMM) Mn12-AC attracted the attention of scientists since the discovery of its magnetic hystereses which are accompanied by sudden jumps in magnetic moments at low temperature. Unlike conventional bulk magnets, hysteresis in SMMs is of molecular origin. This qualifies them as candidates for next generation of high density storage media where a molecule which is at most few nanometers in size can be used to store a bit of information. However, the jumps in these hystereses, due to spin tunneling, can lead to undesired loss of information. Mn12-AC molecule contains twelve magnetic ions antiferromagnetically coupled by exchanges leading to S = 10 ground state manifold. The magnetic ions are surrounded by ligands which isolate them magnetically from neighboring molecules. The lowest state of S = 9 manifold is believed to lie at about 40 K above the ground state. Therefore, at low temperatures, the molecule is considered as a single uncoupled moment of spin S = 10. Such model has been used widely to understand phenomena exhibited by the molecule at low temperatures including the tunneling of its spin, while a little attention has been paid for the multi-spin nature of the molecule. Using the 8-spin model, we demonstrate that in order to understand the phenomena of tunneling, a full spin description of the molecule is required. We utilized a calculation scheme where a fraction of energy levels are used in the calculations and the influence of levels having higher energy is neglected. From the dependence of tunnel splittings on the number of states include, we conclude that models based on restricting the number of energy levels (single-spin and 8-spin models) lead to unreliable results of tunnel splitting calculations. To attack the full 12-spin model, we employed the Davidson algorithm to calculated lowest energy levels produced by exchange interactions and single ion anisotropies. The model reproduces the anisotropy properties at low

  4. Scaling properties in single collision model of light ion reflection

    International Nuclear Information System (INIS)

    Vukanic, J.; Simovic, R.


    Light ion reflection from solids in the keV energy region has been studied within the single collision model. Particle and energy reflection coefficients as functions of the scaled transport cross section have been calculated numerically by utilizing the exact scattering function for the Kr-C potential and analytically with an effective power approximation for the same potential. The obtained analytical formulae approximate very accurately to the numerical results. Comparison of the calculated reflection coefficients with the experimental data and computer simulations for different light ion-heavy target combinations shows that the scaled transport cross section remains a convenient scaling parameter in the single collision domain, as adopted previously in multiple collision theory

  5. Multiscale modeling and surgical planning for single ventricle heart patients (United States)

    Marsden, Alison


    Single ventricle heart patients are among the most challenging for pediatric cardiologists to treat, and typically undergo a palliative course of three open-heart surgeries starting immediately after birth. We will present recent tools for modeling blood flow in single ventricle heart patients using a multiscale approach that couples a 3D Navier-Stokes domain to a 0D closed loop lumped parameter network comprised of circuit elements. This coupling allows us to capture the effect of changes in local geometry, such as shunt sizes, on global circulatory dynamics, such as cardiac output. A semi-implicit numerical method is formulated to solve the coupled system in which flow and pressure information is passed between the two domains at the inlets and outlets of the model. A finite element method with outflow stabilization is applied in the 3D Navier-Stokes domain, and the LPN system of ordinary differential equations is solved numerically using a Runge-Kutta method. These tools are coupled via automated scripts to a derivative-free optimization method. Optimization is used to systematically explore surgical designs using clinically relevant cost functions for two stages of single ventricle repair. First, we will present results from optimization of the first stage Blalock Taussig Shunt. Second, we will present results from optimization of a new Y-graft design for the third stage of single ventricle repair called the Fontan surgery. The Y-graft is shown, in simulations, to successfully improve hepatic flow distribution, a known clinical problem. Preliminary clinical experience with the Y-graft will be discussed.

  6. A self-organising model of market with single commodity (United States)

    Chakraborti, Anirban; Pradhan, Srutarshi; Chakrabarti, Bikas K.


    We have studied here the self-organising features of the dynamics of a model market, where the agents ‘trade’ for a single commodity with their money. The model market consists of fixed numbers of economic agents, money supply and commodity. We demonstrate that the model, apart from showing a self-organising behaviour, indicates a crucial role for the money supply in the market and also its self-organising behaviour is seen to be significantly affected when the money supply becomes less than the optimum. We also observed that this optimal money supply level of the market depends on the amount of ‘frustration’ or scarcity in the commodity market.

  7. General model of phospholipid bilayers in fluid phase within the single chain mean field theory

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yachong; Baulin, Vladimir A. [Departament d’Enginyeria Química, Universitat Rovira i Virgili, Av. dels Paisos Catalans 26, 43007 Tarragona (Spain); Pogodin, Sergey [Institute of Chemical Research of Catalonia, ICIQ, Av. Paisos Catalans 16, 43007 Tarragona (Spain)


    Coarse-grained model for saturated phospholipids: 1,2-didecanoyl-sn-glycero-3-phosphocholine (DCPC), 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and unsaturated phospholipids: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1,2- dioleoyl-sn-glycero-3-phosphocholine (DOPC) is introduced within the single chain mean field theory. A single set of parameters adjusted for DMPC bilayers gives an adequate description of equilibrium and mechanical properties of a range of saturated lipid molecules that differ only in length of their hydrophobic tails and unsaturated (POPC, DOPC) phospholipids which have double bonds in the tails. A double bond is modeled with a fixed angle of 120°, while the rest of the parameters are kept the same as saturated lipids. The thickness of the bilayer and its hydrophobic core, the compressibility, and the equilibrium area per lipid correspond to experimentally measured values for each lipid, changing linearly with the length of the tail. The model for unsaturated phospholipids also fetches main thermodynamical properties of the bilayers. This model is used for an accurate estimation of the free energies of the compressed or stretched bilayers in stacks or multilayers and gives reasonable estimates for free energies. The proposed model may further be used for studies of mixtures of lipids, small molecule inclusions, interactions of bilayers with embedded proteins.

  8. On the single-mass model of the vocal folds

    International Nuclear Information System (INIS)

    Howe, M S; McGowan, R S


    An analysis is made of the fluid-structure interactions necessary to support self-sustained oscillations of a single-mass mechanical model of the vocal folds subject to a nominally steady subglottal overpressure. The single-mass model of Fant and Flanagan is re-examined and an analytical representation of vortex shedding during 'voiced speech' is proposed that promotes cooperative, periodic excitation of the folds by the glottal flow. Positive feedback that sustains glottal oscillations is shown to occur during glottal contraction, when the flow separates from the 'trailing edge' of the glottis producing a low-pressure 'suction' force that tends to pull the folds together. Details are worked out for flow that can be regarded as locally two-dimensional in the glottal region. Predictions of free-streamline theory are used to model the effects of quasi-static variations in the separation point on the glottal wall. Numerical predictions are presented to illustrate the waveform of the sound radiated towards the mouth from the glottis. The theory is easily modified to include feedback on the glottal flow of standing acoustic waves, both in the vocal tract beyond the glottis and in the subglottal region. (invited paper)

  9. Single-image-based Modelling Architecture from a Historical Photograph (United States)

    Dzwierzynska, Jolanta


    Historical photographs are proved to be very useful to provide a dimensional and geometrical analysis of buildings as well as to generate 3D reconstruction of the whole structure. The paper addresses the problem of single historical photograph analysis and modelling of an architectural object from it. Especially, it focuses on reconstruction of the original look of New-Town synagogue from the single historic photograph, when camera calibration is completely unknown. Due to the fact that the photograph faithfully followed the geometric rules of perspective, it was possible to develop and apply the method to obtain a correct 3D reconstruction of the building. The modelling process consisted of a series of familiar steps: feature extraction, determination of base elements of perspective, dimensional analyses and 3D reconstruction. Simple formulas were proposed in order to estimate location of characteristic points of the building in 3D Cartesian system of axes on the base of their location in 2D Cartesian system of axes. The reconstruction process proceeded well, although slight corrections were necessary. It was possible to reconstruct the shape of the building in general, and two of its facades in detail. The reconstruction of the other two facades requires some additional information or the additional picture. The success of the presented reconstruction method depends on the geometrical content of the photograph as well as quality of the picture, which ensures the legibility of building edges. The presented method of reconstruction is a combination of the descriptive method of reconstruction and computer aid; therefore, it seems to be universal. It can prove useful for single-image-based modelling architecture.

  10. Replica Analysis for Portfolio Optimization with Single-Factor Model (United States)

    Shinzato, Takashi


    In this paper, we use replica analysis to investigate the influence of correlation among the return rates of assets on the solution of the portfolio optimization problem. We consider the behavior of an optimal solution for the case where the return rate is described with a single-factor model and compare the findings obtained from our proposed methods with correlated return rates with those obtained with independent return rates. We then analytically assess the increase in the investment risk when correlation is included. Furthermore, we also compare our approach with analytical procedures for minimizing the investment risk from operations research.

  11. Gravity research on plants: use of single cell experimental models

    Directory of Open Access Journals (Sweden)

    Youssef eChebli


    Full Text Available Future space missions and implementation of permanent bases on Moon and Mars will greatly depend on the availability of ambient air and sustainable food supply. Therefore, understanding the effects of altered gravity conditions on plant metabolism and growth is vital for space missions and extra-terrestrial human existence. In this mini-review we summarize how plant cells are thought to perceive changes in magnitude and orientation of the gravity vector. The particular advantages of several single celled model systems for gravity research are explored and an overview over recent advancements and potential use of these systems is provided.

  12. Linear dynamic models for classification of single-trial EEG. (United States)

    Samdin, S Balqis; Ting, Chee-Ming; Salleh, Sh-Hussain; Ariff, A K; Mohd Noor, A B


    This paper investigates the use of linear dynamic models (LDMs) to improve classification of single-trial EEG signals. Existing dynamic classification of EEG uses discrete-state hidden Markov models (HMMs) based on piecewise-stationary assumption, which is inadequate for modeling the highly non-stationary dynamics underlying EEG. The continuous hidden states of LDMs could better describe this continuously changing characteristic of EEG, and thus improve the classification performance. We consider two examples of LDM: a simple local level model (LLM) and a time-varying autoregressive (TVAR) state-space model. AR parameters and band power are used as features. Parameter estimation of the LDMs is performed by using expectation-maximization (EM) algorithm. We also investigate different covariance modeling of Gaussian noises in LDMs for EEG classification. The experimental results on two-class motor-imagery classification show that both types of LDMs outperform the HMM baseline, with the best relative accuracy improvement of 14.8% by LLM with full covariance for Gaussian noises. It may due to that LDMs offer more flexibility in fitting the underlying dynamics of EEG.

  13. Modeling bacterial population growth from stochastic single-cell dynamics. (United States)

    Alonso, Antonio A; Molina, Ignacio; Theodoropoulos, Constantinos


    A few bacterial cells may be sufficient to produce a food-borne illness outbreak, provided that they are capable of adapting and proliferating on a food matrix. This is why any quantitative health risk assessment policy must incorporate methods to accurately predict the growth of bacterial populations from a small number of pathogens. In this aim, mathematical models have become a powerful tool. Unfortunately, at low cell concentrations, standard deterministic models fail to predict the fate of the population, essentially because the heterogeneity between individuals becomes relevant. In this work, a stochastic differential equation (SDE) model is proposed to describe variability within single-cell growth and division and to simulate population growth from a given initial number of individuals. We provide evidence of the model ability to explain the observed distributions of times to division, including the lag time produced by the adaptation to the environment, by comparing model predictions with experiments from the literature for Escherichia coli, Listeria innocua, and Salmonella enterica. The model is shown to accurately predict experimental growth population dynamics for both small and large microbial populations. The use of stochastic models for the estimation of parameters to successfully fit experimental data is a particularly challenging problem. For instance, if Monte Carlo methods are employed to model the required distributions of times to division, the parameter estimation problem can become numerically intractable. We overcame this limitation by converting the stochastic description to a partial differential equation (backward Kolmogorov) instead, which relates to the distribution of division times. Contrary to previous stochastic formulations based on random parameters, the present model is capable of explaining the variability observed in populations that result from the growth of a small number of initial cells as well as the lack of it compared to

  14. A Predictive Model for Guillain-Barré Syndrome Based on Single Learning Algorithms

    Directory of Open Access Journals (Sweden)

    Juana Canul-Reich


    Full Text Available Background. Guillain-Barré Syndrome (GBS is a potentially fatal autoimmune neurological disorder. The severity varies among the four main subtypes, named as Acute Inflammatory Demyelinating Polyneuropathy (AIDP, Acute Motor Axonal Neuropathy (AMAN, Acute Motor Sensory Axonal Neuropathy (AMSAN, and Miller-Fisher Syndrome (MF. A proper subtype identification may help to promptly carry out adequate treatment in patients. Method. We perform experiments with 15 single classifiers in two scenarios: four subtypes’ classification and One versus All (OvA classification. We used a dataset with the 16 relevant features identified in a previous phase. Performance evaluation is made by 10-fold cross validation (10-FCV. Typical classification performance measures are used. A statistical test is conducted in order to identify the top five classifiers for each case. Results. In four GBS subtypes’ classification, half of the classifiers investigated in this study obtained an average accuracy above 0.90. In OvA classification, the two subtypes with the largest number of instances resulted in the best classification results. Conclusions. This study represents a comprehensive effort on creating a predictive model for Guillain-Barré Syndrome subtypes. Also, the analysis performed in this work provides insight about the best single classifiers for each classification case.

  15. Modeling of a single-phase photovoltaic inverter

    Energy Technology Data Exchange (ETDEWEB)

    Maris, T.I. [Department of Electrical Engineering, Technological Educational Institute of Chalkida, 334 40 Psachna Evias (Greece); Kourtesi, St. [Hellenic Public Power Corporation S.A., 22 Chalcocondyli Str., 104 32 Athens (Greece); Ekonomou, L. [Hellenic American University, 12 Kaplanon Str., 106 80 Athens (Greece); Fotis, G.P. [National Technical University of Athens, School of Electrical and Computer Engineering, High Voltage Laboratory, 9 Iroon Politechniou St., Zografou, 157 80 Athens (Greece)


    The paper presents the design of a single-phase photovoltaic inverter model and the simulation of its performance. Furthermore, the concept of moving real and reactive power after coupling this inverter model with an a.c. source representing the main power distribution grid was studied. Brief technical information is given on the inverter design, with emphasis on the operation of the circuit used. In the technical information section, a description of real and reactive power components is given with special reference to the control of these power components by controlling the power angle or the difference in voltage magnitudes between two voltage sources. This a.c. converted voltage has practical interest, since it is useful for feeding small house appliances. (author)

  16. On the predictiveness of single-field inflationary models (United States)

    Burgess, C. P.; Patil, Subodh P.; Trott, Michael


    We re-examine the predictiveness of single-field inflationary models and discuss how an unknown UV completion can complicate determining inflationary model parameters from observations, even from precision measurements. Besides the usual naturalness issues associated with having a shallow inflationary potential, we describe another issue for inflation, namely, unknown UV physics modifies the running of Standard Model (SM) parameters and thereby introduces uncertainty into the potential inflationary predictions. We illustrate this point using the minimal Higgs Inflationary scenario, which is arguably the most predictive single-field model on the market, because its predictions for A S , r and n s are made using only one new free parameter beyond those measured in particle physics experiments, and run up to the inflationary regime. We find that this issue can already have observable effects. At the same time, this UV-parameter dependence in the Renormalization Group allows Higgs Inflation to occur (in principle) for a slightly larger range of Higgs masses. We comment on the origin of the various UV scales that arise at large field values for the SM Higgs, clarifying cut off scale arguments by further developing the formalism of a non-linear realization of SU L (2) × U(1) in curved space. We discuss the interesting fact that, outside of Higgs Inflation, the effect of a non-minimal coupling to gravity, even in the SM, results in a non-linear EFT for the Higgs sector. Finally, we briefly comment on post BICEP2 attempts to modify the Higgs Inflation scenario.

  17. A spectral geometric model for Compton single scatter in PET based on the single scatter simulation approximation (United States)

    Kazantsev, I. G.; Olsen, U. L.; Poulsen, H. F.; Hansen, P. C.


    We investigate the idealized mathematical model of single scatter in PET for a detector system possessing excellent energy resolution. The model has the form of integral transforms estimating the distribution of photons undergoing a single Compton scattering with a certain angle. The total single scatter is interpreted as the volume integral over scatter points that constitute a rotation body with a football shape, while single scattering with a certain angle is evaluated as the surface integral over the boundary of the rotation body. The equations for total and sample single scatter calculations are derived using a single scatter simulation approximation. We show that the three-dimensional slice-by-slice filtered backprojection algorithm is applicable for scatter data inversion provided that the attenuation map is assumed to be constant. The results of the numerical experiments are presented.

  18. Population Pharmacokinetic Modelling of FE 999049, a Recombinant Human Follicle-Stimulating Hormone, in Healthy Women After Single Ascending Doses

    DEFF Research Database (Denmark)

    Rose, Trine Høyer; Röshammar, Daniel; Erichsen, Lars


    Objective: The purpose of this analysis was to develop a population pharmacokinetic model for a novel recombinant human follicle-stimulating hormone (FSH) (FE 999049) expressed from a human cell line of foetal retinal origin (PER.C6) developed for controlled ovarian stimulation prior to assisted...... effects population pharmacokinetic modelling in NONMEM 7.2.0. Results: A one-compartment model with first-order absorption and elimination rates was found to best describe the data. A transit model was introduced to describe a delay in the absorption process. The apparent clearance (CL/F) and apparent...... volume of distribution (V/F) estimates were found to increase with body weight. Body weight was included as an allometrically scaled covariate with a power exponent of 0.75 for CL/F and 1 for V/F. Conclusions: The single-dose pharmacokinetics of FE 999049 were adequately described by a population...

  19. Perception of Mothers on Adequate Nutrition

    Directory of Open Access Journals (Sweden)

    Darshini Valoo


    Full Text Available Background: Malnutrition in children less than 5 years old persists around the world. In West Java and one of the districts of West Java (Sumedang, the prevalence of malnutrition is about 18.5% and 15.8% respectively. Numerous factors can lead to child malnutrition. Difficulties in availability, accessibility, acceptability and quality of food can be contributing factors. A good perception of mother on adequate nutrition can improve children’s nutritional status. This study was conducted to study the perception of mothers with children 2 to 5 years old on adequate nutrition. Methods: Most of the respondents had good perception on the aspect of adequate nutrition. Results showed perception on availability was 83.8%, physical accessibility was 97.1%, economical accessibility was 98.6%, information accessibility was 84.8% and acceptability was 81.0%. However, perception of respondents on good quality nutrition for the main meal and additional food was still poor. Moreover, there are taboos for eating shrimp and watermelon. Additionally, children were given snacks in large amount. Results: There was a strong correlation between mid-upper arm muscle area/size and muscular strength (correlation cooefficient 0.746. Moreover, the higher the Body Mass Index, the stronger the muscle strength was to some point. If the BMI was more than 25 kg/m2, this findings did not occurred. Conclusions: This study reveals that the perception of mothers on good quality food is poor regardless the good results on availibility, accesibility and acceptability.

  20. Monte Carlo simulations of lattice models for single polymer systems

    International Nuclear Information System (INIS)

    Hsu, Hsiao-Ping


    Single linear polymer chains in dilute solutions under good solvent conditions are studied by Monte Carlo simulations with the pruned-enriched Rosenbluth method up to the chain length N∼O(10 4 ). Based on the standard simple cubic lattice model (SCLM) with fixed bond length and the bond fluctuation model (BFM) with bond lengths in a range between 2 and √(10), we investigate the conformations of polymer chains described by self-avoiding walks on the simple cubic lattice, and by random walks and non-reversible random walks in the absence of excluded volume interactions. In addition to flexible chains, we also extend our study to semiflexible chains for different stiffness controlled by a bending potential. The persistence lengths of chains extracted from the orientational correlations are estimated for all cases. We show that chains based on the BFM are more flexible than those based on the SCLM for a fixed bending energy. The microscopic differences between these two lattice models are discussed and the theoretical predictions of scaling laws given in the literature are checked and verified. Our simulations clarify that a different mapping ratio between the coarse-grained models and the atomistically realistic description of polymers is required in a coarse-graining approach due to the different crossovers to the asymptotic behavior


    Directory of Open Access Journals (Sweden)


    Full Text Available It is known that on the territory of the Russian Federation the construction of several large wind farms is planned. The tasks connected with design and efficiency evaluation of wind farm work are in demand today. One of the possible directions in design is connected with mathematical modeling. The method of large eddy simulation developed within the direction of computational hydrodynamics allows to reproduce unsteady structure of the flow in details and to determine various integrated values. The calculation of work for single wind turbine installation by means of large eddy simulation and Actuator Line Method along the turbine blade is given in this work. For problem definition the numerical method in the form of a box was considered and the adapted unstructured grid was used.The mathematical model included the main equations of continuity and momentum equations for incompressible fluid. The large-scale vortex structures were calculated by means of integration of the filtered equations. The calculation was carried out with Smagorinsky model for determination of subgrid scale turbulent viscosity. The geometrical parametersof wind turbine were set proceeding from open sources in the Internet.All physical values were defined at center of computational cell. The approximation of items in equations was ex- ecuted with the second order of accuracy for time and space. The equations for coupling velocity and pressure were solved by means of iterative algorithm PIMPLE. The total quantity of the calculated physical values on each time step was equal to 18. So, the resources of a high performance cluster were required.As a result of flow calculation in wake for the three-bladed turbine average and instantaneous values of velocity, pressure, subgrid kinetic energy and turbulent viscosity, components of subgrid stress tensor were worked out. The re- ceived results matched the known results of experiments and numerical simulation, testify the opportunity

  2. Iron absorption from adequate Filipino meals

    International Nuclear Information System (INIS)

    Trinidad, T.P.; Madriaga, J.R.; Valdez, D.H.; Cruz, E.M.; Mallillin, A.C.; Sison, C.C.; Kuizon, M.D.


    Iron absorption from adequate Filipino meals representing the three major island groups of the Philippines (Luzon, Visayas and Mindanao) was studied using double isotope extrinsic tag method. Mean iron absorption of the one-day meal for Metro Manila was 6.6 ± 1.26%, Central Visayas, 6.3 ± 1.15% and Southern Mindanao, 6.4 ± 1.19%. Comparison between meals (breakfast, lunch, dinner) for each region as well as one-day meal for the three regions showed no significant differences (P > .01). Correlation tests done between iron absorption and the following iron enhancers: ascorbic acid, amount of fish, meat or poultry and inhibitors: phytic acid and tannic acid did not give significant results. The overall bar x of 6.4 ± 1.20% may be used as the non-heme iron absorption level from an adequate Filipino meal. This value can be considered as one of the bases for arriving at recommended dietary allowances for iron among Filipinos instead of the 10% iron absorption assumed in 1976

  3. Iron absorption from adequate Filipinos meals

    International Nuclear Information System (INIS)

    Trinidad, T.P.; Madriaga, J.R.; Valdez, D.H.; Cruz, E.M.; Mallillin, A.C.; Sison, C.C.; Kuizon, M.D.


    Iron absorption from adequate Filipino meals representing the three major island groups of the Philippines (Luzon, Visayas, and Mindanao) was studied using double isotope extrinsic tag method. Mean iron absorption of the one-day meal for Metro Manila was 6.6 +- 1.26%. Central Visayas, 6.3 +- 1.15% and Southern Mindanao, 6.4 +- 1.19%. Comparison between meals (breakfast, lunch, dinner) for each region as well as one-day meal for the three regions showed no significant differences (P>0.01). Correlation tests done between iron absorption and the following iron enhancers: ascorbic acid, amount of fish, meat or poultry; and inhibitors: phytic acid and tannic acid, did not give significant results. The overall average of 6.4 +- 1.20% may be used as the iron absorption level from an adequate Filipino meal. This value can be considered as one of the bases for arriving at recommended dietary allowances for iron among Filipinos instead of the 10% iron absorption assumed in 1976. (Auth.). 21 refs.; 3 tabs.; 3 annexes

  4. Modeling bidirectionally coupled single-mode semiconductor lasers

    International Nuclear Information System (INIS)

    Mulet, Josep; Masoller, Cristina; Mirasso, Claudio R.


    We develop a dynamical model suitable for the description of two mutually coupled semiconductor lasers in a face-to-face configuration. Our study considers the propagation of the electric field along the compound system as well as the evolution of the carrier densities within each semiconductor laser. Mutual injection, passive optical feedback, and multiple reflections are accounted for in this framework, although under weak to moderate coupling conditions. We systematically describe the effect of the coupling strength on the spectrum of monochromatic solutions and on the respective dynamical behavior. By assuming single-longitudinal-mode operation, weak mutual coupling and slowly varying approximation, the dynamical model can be reduced to rate equations describing the mutual injection from one laser to its counterpart and vice versa. A good agreement between the complete and simplified models is found for small coupling. For larger coupling, higher-order terms lead to a smaller threshold reduction, reflected itself in the spectrum of the monochromatic solutions and in the dynamics of the optical power

  5. Model Based Control of Single-Phase Marine Cooling Systems

    DEFF Research Database (Denmark)

    Hansen, Michael


    these systems. Traditionally, control for this type of cooling system has been limited to open-loop control of pumps combined with a couple of local PID controllers for bypass valves to keep critical temperatures within design limits. This research considers improvements in a retrofit framework to the control...... linearization, an H∞-control design is applied to the resulting linear system. Disturbance rejection capabilities and robustness of performance for this control design methodology is compared to a baseline design derived from classical control theory. This shows promising results for the nonlinear robust design......This thesis is concerned with the problem of designing model-based control for a class of single-phase marine cooling systems. While this type of cooling system has been in existence for several decades, it is only recently that energy efficiency has become a focus point in the design and operation...

  6. A phenomenological model for particle retention in single, saturated fractures. (United States)

    Rodrigues, Sandrina; Dickson, Sarah


    Fractured aquifers are some of the most poorly characterized subsurface environments despite posing one of the highest risks to the protection of potable groundwater. This research was designed to improve the understanding of the factors affecting particle transport through fractures by developing a phenomenological model based on laboratory-scale transport data. The model presented in this research employed data from over 70 particle tracer tests conducted in single, saturated, variable-aperture fractures that were obtained from the natural environment and fractured in the laboratory or cast from epoxy in the laboratory. The particles employed were Escherichia coli RS2-GFP and microspheres. The tracer experiments were conducted in natural (dolomitic limestone and granite) as well as epoxy replicas of the natural fractures. The multiple linear regression analysis revealed that the most important factors influencing particle retention in fractures are the ratio of the ionic strength of solution to collector charge, the ratio of particle to collector charge, and the ratio of advective to diffusive forces as described by the Peclet number. The model was able to reasonably (R(2)  = 0.64) predict the fraction of particles retained; however, it is evident that some factors not accounted for in the model also contributed to retention. This research presents a novel approach to understanding particle transport in fractures, and illustrates the relative importance of various factors affecting the transport mechanisms. The utility of this model lies in the increased understanding of particle transport in fractures, which is extremely useful for directing future research. © 2013, National Ground Water Association.

  7. Single-incision laparoscopic surgery in a survival animal model using a transabdominal magnetic anchoring system. (United States)

    Cho, Yong Beom; Park, Chan Ho; Kim, Hee Cheol; Yun, Seong Hyeon; Lee, Woo Yong; Chun, Ho-Kyung


    Though single-incision laparoscopic surgery (SILS) can reduce operative scarring and facilitates postoperative recovery, it does have some limitations, such as reduction in instrument working, difficulty in triangulation, and collision of instruments. To overcome these limitations, development of new instruments is needed. The aim of this study is to evaluate the feasibility and safety of a magnetic anchoring system in performing SILS ileocecectomy. Experiments were performed in a living dog model. Five dogs (26.3-29.2 kg) underwent ileocecectomy using a multichannel single port (OCTO port; Darim, Seoul, Korea). The port was inserted at the umbilicus and maintained a CO(2) pneumoperitoneum. Two magnet-fixated vascular clips were attached to the colon using an endoclip applicator, and it was held together across the abdominal wall by using an external handheld magnet. The cecum was then retracted in an upward direction by moving the external handheld magnet, and the mesocolon was dissected with Ultracision(®). Extracorporeal functional end-to-end anastomosis was done using a linear stapler. All animals survived during the observational period of 2 weeks, and then re-exploration was performed under general anesthesia for evaluation of intra-abdominal healing and complications. Mean operation time was 70 min (range 55-100 min), with each subsequent case taking less time. The magnetic anchoring system was effective in achieving adequate exposure in all cases. All animals survived and convalesced normally without evidence of clinical complication during the observation period. At re-exploration, all anastomoses were completely healed and there were no complications such as abscess, bleeding or organ injury. SILS ileocecectomy using a magnetic anchoring system was safe and effective in a dog model. The development of magnetic anchoring systems may be beneficial for overcoming the limitations of SILS.

  8. Primordial black holes from single field models of inflation

    CERN Document Server

    Garcia-Bellido, Juan

    Primordial black holes (PBH) have been shown to arise from high peaks in the matter power spectra of multi-field models of inflation. Here we show, with a simple toy model, that it is also possible to generate a peak in the curvature power spectrum of single-field inflation. We assume that the effective dynamics of the inflaton field presents a near-inflection point which slows down the field right before the end of inflation and gives rise to a prominent spike in the fluctuation power spectrum at scales much smaller than those probed by Cosmic Microwave Background (CMB) and Large Scale Structure (LSS) observations. This peak will give rise, upon reentry during the radiation era, to PBH via gravitational collapse. The mass and abundance of these PBH is such that they could constitute the totality of the Dark Matter today. We satisfy all CMB and LSS constraints and predict a very broad range of PBH masses. Some of these PBH are light enough that they will evaporate before structure formation, leaving behind a ...

  9. Generalized Functional Linear Models With Semiparametric Single-Index Interactions

    KAUST Repository

    Li, Yehua


    We introduce a new class of functional generalized linear models, where the response is a scalar and some of the covariates are functional. We assume that the response depends on multiple covariates, a finite number of latent features in the functional predictor, and interaction between the two. To achieve parsimony, the interaction between the multiple covariates and the functional predictor is modeled semiparametrically with a single-index structure. We propose a two step estimation procedure based on local estimating equations, and investigate two situations: (a) when the basis functions are pre-determined, e.g., Fourier or wavelet basis functions and the functional features of interest are known; and (b) when the basis functions are data driven, such as with functional principal components. Asymptotic properties are developed. Notably, we show that when the functional features are data driven, the parameter estimates have an increased asymptotic variance, due to the estimation error of the basis functions. Our methods are illustrated with a simulation study and applied to an empirical data set, where a previously unknown interaction is detected. Technical proofs of our theoretical results are provided in the online supplemental materials.

  10. Modelling Single Tree Structure with Terrestrial Laser Scanner (United States)

    Yurtseven, H.; Akgül, M.; Gülci, S.


    Recent technological developments, which has reliable accuracy and quality for all engineering works, such as remote sensing tools have wide range use in forestry applications. Last decade, sustainable use and management opportunities of forest resources are favorite topics. Thus, precision of obtained data plays an important role in evaluation of current status of forests' value. The use of aerial and terrestrial laser technology has more reliable and effective models to advance the appropriate natural resource management. This study investigates the use of terrestrial laser scanner (TLS) technology in forestry, and also the methodological data processing stages for tree volume extraction is explained. Z+F Imager 5010C TLS system was used for measure single tree information such as tree height, diameter of breast height, branch volume and canopy closure. In this context more detailed and accurate data can be obtained than conventional inventory sampling in forestry by using TLS systems. However the accuracy of obtained data is up to the experiences of TLS operator in the field. Number of scan stations and its positions are other important factors to reduce noise effect and accurate 3D modelling. The results indicated that the use of point cloud data to extract tree information for forestry applications are promising methodology for precision forestry.

  11. Descriptive models for single-jet sluicing of sludge waste

    International Nuclear Information System (INIS)

    Erian, F.F.; Mahoney, L.A.; Terrones, G.


    Mobilization of sludge waste stored in underground storage tanks can be achieved safely and reliably by sluicing. In the project discussed in this report, the waste in Hanford single-shell Tank 241-C-106 will be mobilized by sluicing, retrieved by a slurry retrieval pump, and transferred via an 1800-ft slurry pipeline to Tank 241-AY-102. A sluicing strategy must be developed that ensures efficient use of the deployed configuration of the sluicing system: the nozzle(s) and the retrieval pump(s). Given a sluicing system configuration in a particular tank, it is desirable to prescribe the sequential locations at which the sludge will be mobilized and retrieved and the rate at which these mobilization and retrieval processes take place. In addition, it is necessary to know whether the retrieved waste slurry meets the requirements for cross-site slurry transport. Some of the physical phenomena that take place during mobilization and retrieval and certain aspects of the sluicing process are described in this report. First, a mathematical model gives (1) an idealized geometrical representation of where, within the confines of a storage tank containing a certain amount of settled waste, sludge can be removed and mobilized; and (2) a quantitative measure of the amount of sludge that can be removed during a sluicing campaign. A model describing an idealized water jet issuing from a circular nozzle located at a given height above a flat surface is also presented in this report. This dynamic water-jet model provides the basis for improving the geometrical sluicing model presented next. In this model the authors assume that the water jet follows a straight trajectory toward a target point on a flat surface. However, the water jet does not follow a straight line in the actual tank, and using the true trajectory will allow a more accurate estimate of the amount of disturbed material. Also, the authors hope that developing accurate force and pressure fields will lead to a better

  12. Equivalence of two models in single-phase multicomponent flow simulations

    KAUST Repository

    Wu, Yuanqing


    In this work, two models to simulate the single-phase multicomponent flow in reservoirs are introduced: single-phase multicomponent flow model and two-phase compositional flow model. Because the single-phase multicomponent flow is a special case of the two-phase compositional flow, the two-phase compositional flow model can also simulate the case. We compare and analyze the two models when simulating the single-phase multicomponent flow, and then demonstrate the equivalence of the two models mathematically. An experiment is also carried out to verify the equivalence of the two models.

  13. Single bumps in a 2-population homogenized neuronal network model (United States)

    Kolodina, Karina; Oleynik, Anna; Wyller, John


    We investigate existence and stability of single bumps in a homogenized 2-population neural field model, when the firing rate functions are given by the Heaviside function. The model is derived by means of the two-scale convergence technique of Nguetseng in the case of periodic microvariation in the connectivity functions. The connectivity functions are periodically modulated in both the synaptic footprint and in the spatial scale. The bump solutions are constructed by using a pinning function technique for the case where the solutions are independent of the local variable. In the weakly modulated case the generic picture consists of two bumps (one narrow and one broad bump) for each admissible set of threshold values for firing. In addition, a new threshold value regime for existence of bumps is detected. Beyond the weakly modulated regime the number of bumps depends sensitively on the degree of heterogeneity. For the latter case we present a configuration consisting of three coexisting bumps. The linear stability of the bumps is studied by means of the spectral properties of a Fredholm integral operator, block diagonalization of this operator and the Fourier decomposition method. In the weakly modulated regime, one of the bumps is unstable for all relative inhibition times, while the other one is stable for small and moderate values of this parameter. The latter bump becomes unstable as the relative inhibition time exceeds a certain threshold. In the case of the three coexisting bumps detected in the regime of finite degree of heterogeneity, we have at least one stable bump (and maximum two stable bumps) for small and moderate values of the relative inhibition time.

  14. A discrete dislocation dynamics model of creeping single crystals (United States)

    Rajaguru, M.; Keralavarma, S. M.


    Failure by creep is a design limiting issue for metallic materials used in several high temperature applications. Current theoretical models of creep are phenomenological with little connection to the underlying microscopic mechanisms. In this paper, a bottom-up simulation framework based on the discrete dislocation dynamics method is presented for dislocation creep aided by the diffusion of vacancies, known to be the rate controlling mechanism at high temperature and stress levels. The time evolution of the creep strain and the dislocation microstructure in a periodic unit cell of a nominally infinite single crystal is simulated using the kinetic Monte Carlo method, together with approximate constitutive laws formulated for the rates of thermal activation of dislocations over local pinning obstacles. The deformation of the crystal due to dislocation glide between individual thermal activation events is simulated using a standard dislocation dynamics algorithm, extended to account for constant stress periodic boundary conditions. Steady state creep conditions are obtained in the simulations with the predicted creep rates as a function of stress and temperature in good agreement with experimentally reported values. Arrhenius scaling of the creep rates as a function of temperature and power-law scaling with the applied stress are also reproduced, with the values of the power-law exponents in the high stress regime in good agreement with experiments.

  15. Flagellates as model system for gravity detection of single cells (United States)

    Lebert, Michael; Richter, Peter; Daiker, Viktor; Schuster, Martin; Tebart, Jenny; Strauch, Sebastian M.; Donat-Peter, H.

    Euglena gracilis is a unicellular, photosynthetic organism which uses light and gravity as en-vironmental hints to reach and stay in horizons of the water column which are optimal for growth and reproduction. The orientation in respect to light (so called positive and nega-tive phototaxis, i.e. movement toward or away of a light source) was well known and fairly good understood. In contrast, knowledge about the movement away from the centre of gravity (negative gravitaxis) was rather scarce. Over a century it was unclear whether orientation in respect to the gravity vector is based on a physical or a physiological mechanism. Recent results clearly favour the latter. Knock-down mutants (RNAi) were characterized which define certain key components of the gravitactic signal transduction chain. These key components include a TRP-like channel, a gravitaxis-specific calmodulin and a protein kinase A. The molecular characterization of these components is currently performed and will be presented. Euglena is not only a model system for the close understanding of gravity detection in single cells, but can also be used as photosynthetic component, i.e. oxygen source and carbon dioxide as well as nitrogenic components sink in Closed Environmental Systems (CES). Due CES are systems of choice in times of scarce flight opportunities. They allow a massive sample sharing and combine possibilities to do microgravity research for biologists but also for engineers, physicists and material scientists. Recent attempts include Aquacells and Omegahab. In the near future miniaturized systems (Chinese ShenZhou) as well as advanced CES will be flown or tested, respectively. Current attempts and plans will be presented.

  16. OPE3 : A model system for single-molecule transport

    NARCIS (Netherlands)

    Frisenda, R.


    In this dissertation, charge-transport through individual organic molecules is investigated. The single molecules are contacted with two-terminal mechanically controllable break junction gold electrodes and their electrical and mechanical behavior studied at room and low temperature.

  17. Modeling and Development of Superconducting Nanowire Single Photon Detectors (United States)

    National Aeronautics and Space Administration — This proposal outlines a research project as the central component of a Ph.D. program focused on the device physics of superconducting nanowire single photon...

  18. Leisure Service Delivery Systems: Are They Adequate (United States)

    Rene Fukuhara Dahl


    This presentation explores a model of service delivery ranging from direct service provision to advocacy and reports findings on the delivery mode most prevalent in park and recreation departments that serve Asian groups in their community. The implications of the role of the professional, the range of service delivery, and the manner in which ethnic groups are...

  19. The BDS Triple Frequency Pseudo-range Correlated Stochastic Model of Single Station Modeling Method

    Directory of Open Access Journals (Sweden)

    HUANG Lingyong


    Full Text Available In order to provide a reliable pseudo-range stochastic model, a method is studied to estimate the BDS triple-frequency pseudo-range related stochastic model based on three BDS triple-frequency pseudo-range minus carrier (GIF combinations using the data of a single station. In this algorithm, the low order polynomial fitting method is used to fit the GIF combination in order to eliminate the error and other constants except non pseudo noise at first. And then, multiple linear regression analysis method is used to model the stochastic function of three linearly independent GIF combinations. Finally the related stochastic model of the original BDS triple-frequency pseudo-range observations is obtained by linear transformation. The BDS triple-frequency data verification results show that this algorithm can get a single station related stochastic model of BDS triple-frequency pseudo-range observation, and it is advantageous to provide accurate stochastic model for navigation and positioning and integrity monitoring.

  20. Magnetic field modeling and optimal operational control of a single-side axial-flux permanent magnet motor with center poles

    International Nuclear Information System (INIS)

    Liu, C.-T.; Lee, S.-C.


    A detailed approach for analyzing magnetic field distributions of a single-sided axial-flux permanent magnet motor with center poles will be provided. Based on the devised flux model, the related position-dependent torque and axial force of the motor can be systematically developed. By incorporating adequate control designs, the optimal operational performance of the motor system can be conveniently achieved. Results showed that not only the motor structure is suitable for related military and transportation applications, but also the magnetic field model can provide appropriate mathematical basis for relative operational realizations

  1. Single item inventory models : A time- and event- averages approach

    NARCIS (Netherlands)

    E.M. Bazsa-Oldenkamp; P. den Iseger


    textabstractThis paper extends a fundamental result about single-item inventory systems. This approach allows more general performance measures, demand processes and order policies, and leads to easier analysis and implementation, than prior research. We obtain closed form expressions for the

  2. Calculation of single chain cellulose elasticity using fully atomistic modeling (United States)

    Xiawa Wu; Robert J. Moon; Ashlie Martini


    Cellulose nanocrystals, a potential base material for green nanocomposites, are ordered bundles of cellulose chains. The properties of these chains have been studied for many years using atomic-scale modeling. However, model predictions are difficult to interpret because of the significant dependence of predicted properties on model details. The goal of this study is...

  3. The ARM-GCSS Intercomparison Study of Single-Column Models and Cloud System Models

    International Nuclear Information System (INIS)

    Cederwall, R.T.; Rodriques, D.J.; Krueger, S.K.; Randall, D.A.


    The Single-Column Model (SCM) Working Group (WC) and the Cloud Working Group (CWG) in the Atmospheric Radiation Measurement (ARM) Program have begun a collaboration with the GEWEX Cloud System Study (GCSS) WGs. The forcing data sets derived from the special ARM radiosonde measurements made during the SCM Intensive Observation Periods (IOPs), the wealth of cloud and related data sets collected by the ARM Program, and the ARM infrastructure support of the SCM WG are of great value to GCSS. In return, GCSS brings the efforts of an international group of cloud system modelers to bear on ARM data sets and ARM-related scientific questions. The first major activity of the ARM-GCSS collaboration is a model intercomparison study involving SCMs and cloud system models (CSMs), also known as cloud-resolving or cloud-ensemble models. The SCM methodologies developed in the ARM Program have matured to the point where an intercomparison will help identify the strengths and weaknesses of various approaches. CSM simulations will bring much additional information about clouds to evaluate cloud parameterizations used in the SCMs. CSMs and SCMs have been compared successfully in previous GCSS intercomparison studies for tropical conditions. The ARM Southern Great Plains (SGP) site offers an opportunity for GCSS to test their models in continental, mid-latitude conditions. The Summer 1997 SCM IOP has been chosen since it provides a wide range of summertime weather events that will be a challenging test of these models

  4. A structurally based analytic model of growth and biomass dynamics in single species stands of conifers (United States)

    Robin J. Tausch


    A theoretically based analytic model of plant growth in single species conifer communities based on the species fully occupying a site and fully using the site resources is introduced. Model derivations result in a single equation simultaneously describes changes over both, different site conditions (or resources available), and over time for each variable for each...

  5. Single-Phase Bundle Flows Including Macroscopic Turbulence Model

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Jun; Yoon, Han Young [KAERI, Daejeon (Korea, Republic of); Yoon, Seok Jong; Cho, Hyoung Kyu [Seoul National University, Seoul (Korea, Republic of)


    To deal with various thermal hydraulic phenomena due to rapid change of fluid properties when an accident happens, securing mechanistic approaches as much as possible may reduce the uncertainty arising from improper applications of the experimental models. In this study, the turbulence mixing model, which is well defined in the subchannel analysis code such as VIPRE, COBRA, and MATRA by experiments, is replaced by a macroscopic k-e turbulence model, which represents the aspect of mathematical derivation. The performance of CUPID with macroscopic turbulence model is validated against several bundle experiments: CNEN 4x4 and PNL 7x7 rod bundle tests. In this study, the macroscopic k-e model has been validated for the application to subchannel analysis. It has been implemented in the CUPID code and validated against CNEN 4x4 and PNL 7x7 rod bundle tests. The results showed that the macroscopic k-e turbulence model can estimate the experiments properly.

  6. Single-port, single-operator-light endoscopic robot-assisted laparoscopic urology: pilot study in a pig model. (United States)

    Crouzet, Sebastien; Haber, Georges-Pascal; White, Wesley M; Kamoi, Kazumi; Goel, Raj K; Kaouk, Jihad H


    To present our initial operative experience in which single-port-light endoscopic robot-assisted reconstructive and extirpative urological surgery was performed by one surgeon, using a pig model. This pilot study was conducted in male farm pigs to determine the feasibility and safety of single-port, single-surgeon urological surgery. All pigs had a general anaesthetic and were placed in the flank position. A 2-cm umbilical incision was made, through which a single port was placed and pneumoperitoneum obtained. An operative laparoscope was introduced and securely held using a novel low-profile robot under foot and/or voice control. Using articulating instruments, each pig had bilateral reconstructive and extirpative renal surgery. Salient intraoperative and postmortem data were recorded. Results were analysed statistically to determine if outcomes improved with surgeon experience. Five male farm pigs underwent bilateral partial nephrectomy and bilateral pyeloplasty before a completion bilateral radical nephrectomy. There were no intraoperative complications and there was no need for additional ports to be placed. The mean (range) operative duration for partial nephrectomy, pyeloplasty, and nephrectomy were 120 (100-150), 110 (95-130) and 20 (15-30) min, respectively. The mean (range) estimated blood loss for all procedures was 240 (200-280) mL. The preparation time decreased with increasing number of cases (P = 0.002). The combination of a single-port, a robotic endoscope holder and articulated instruments operated by one surgeon is feasible. With a single-port access, the robot allows more room to the surgeon than an assistant.


    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Haihua; Zhang, Hongbin; Zou, Ling; O' Brien, James


    All BWR RCIC (Reactor Core Isolation Cooling) systems and PWR AFW (Auxiliary Feed Water) systems use Terry turbine, which is composed of the wheel with turbine buckets and several groups of fixed nozzles and reversing chambers inside the turbine casing. The inlet steam is accelerated through the turbine nozzle and impacts on the wheel buckets, generating work to drive the RCIC pump. As part of the efforts to understand the unexpected “self-regulating” mode of the RCIC systems in Fukushima accidents and extend BWR RCIC and PWR AFW operational range and flexibility, mechanistic models for the Terry turbine, based on Sandia National Laboratories’ original work, has been developed and implemented in the RELAP-7 code to simulate the RCIC system. RELAP-7 is a new reactor system code currently under development with the funding support from U.S. Department of Energy. The RELAP-7 code is a fully implicit code and the preconditioned Jacobian-free Newton-Krylov (JFNK) method is used to solve the discretized nonlinear system. This paper presents a set of analytical models for simulating the flow through the Terry turbine nozzles when inlet fluid is pure steam. The implementation of the models into RELAP-7 will be briefly discussed. In the Sandia model, the turbine bucket inlet velocity is provided according to a reduced-order model, which was obtained from a large number of CFD simulations. In this work, we propose an alternative method, using an under-expanded jet model to obtain the velocity and thermodynamic conditions for the turbine bucket inlet. The models include both adiabatic expansion process inside the nozzle and free expansion process out of the nozzle to reach the ambient pressure. The combined models are able to predict the steam mass flow rate and supersonic velocity to the Terry turbine bucket entrance, which are the necessary input conditions for the Terry Turbine rotor model. The nozzle analytical models were validated with experimental data and

  8. Ciliary heterogeneity within a single cell: the Paramecium model. (United States)

    Aubusson-Fleury, Anne; Cohen, Jean; Lemullois, Michel


    Paramecium is a single cell able to divide in its morphologically differentiated stage that has many cilia anchored at its cell surface. Many thousands of cilia are thus assembled in a short period of time during division to duplicate the cell pattern while the cell continues swimming. Most, but not all, of these sensory cilia are motile and involved in two main functions: prey capture and cell locomotion. These cilia display heterogeneity, both in their length and their biochemical properties. Thanks to these properties, as well as to the availability of many postgenomic tools and the possibility to follow the regrowth of cilia after deciliation, Paramecium offers a nice opportunity to study the assembly of the cilia, as well as the genesis of their diversity within a single cell. In this paper, after a brief survey of Paramecium morphology and cilia properties, we describe the tools and the protocols currently used for immunofluorescence, transmission electron microscopy, and ultrastructural immunocytochemistry to analyze cilia, with special recommendations to overcome the problem raised by cilium diversity. Copyright © 2015. Published by Elsevier Inc.

  9. Mathematical modelling of the combustion of a single wood particle

    Energy Technology Data Exchange (ETDEWEB)

    Porteiro, J.; Miguez, J.L.; Granada, E.; Moran, J.C. [Departamento de Ingenieria Mecanica, Maquinas y Motores Termicos y Fluidos. Universidad de Vigo, Lagoas Marcosende 9 36200 Vigo (Spain)


    A mathematical model describing the thermal degradation of densified biomass particles is presented here. The model uses a novel discretisation scheme and combines intra-particle combustion processes with extra-particle transport processes, thereby including thermal and diffusional control mechanisms. The influence of structural changes on the physical-thermal properties of wood in its different stages is studied together with shrinkage of the particle during its degradation. The model is used to compare the predicted data with data on the mass loss dynamics and internal temperature of several particles from previous works and relevant literature, with good agreement. (author)

  10. Single-arm phase II trial design under parametric cure models. (United States)

    Wu, Jianrong


    The current practice of designing single-arm phase II survival trials is limited under the exponential model. Trial design under the exponential model may not be appropriate when a portion of patients are cured. There is no literature available for designing single-arm phase II trials under the parametric cure model. In this paper, a test statistic is proposed, and a sample size formula is derived for designing single-arm phase II trials under a class of parametric cure models. Extensive simulations showed that the proposed test and sample size formula perform very well under different scenarios. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Modelling of flow and contaminant migration in single rock fractures

    International Nuclear Information System (INIS)

    Dahlblom, P.; Joensson, L.


    The report deals with flow and hydrodynamic dispersion of a nonreactive contaminant in a single, irregularly shaped fracture. The main purpose of the report is to describe the basis and development of a computational 'tool' for simulating the aperture geometry of a single fracture and the detailed flow in it. On the basis of this flow information further properties of the fracture can be studied. Some initial application to dispersion of a nonreactive contaminant are thus discussed. The spatial pattern of variation of the fracture aperture is considered as a two-dimensional stochastic process. A method for simulation of such a process is described. The stochastic properties can be chosen arbitrarily. It is assumed that the fracture aperture belongs to a log-normal distribution. For calculation of the flow pattern, the Navier-Stokes equations are simplified to describe low velocity and steady-state flow. These equations, and the continuity equation are integrated in the direction across the fracture plane. A stream function, which describes the integrated flow in the fracture, is defined. A second order partial differential equation, with respect to the stream function, is established and solved by the finite difference method. Isolines for the stream function define boundaries between channels with equal flow rates. The travel time for each channel can be calculated to achieve a measure of the dispersion. The impact of the aperture distribution on the ratio between the mass balance fracture aperture and the cubic law fracture aperture is shown by simple examples. (28 figs., 1 tab., 22 refs.)

  12. Multi-objective vs. single-objective calibration of a hydrologic model using single- and multi-objective screening (United States)

    Mai, Juliane; Cuntz, Matthias; Shafii, Mahyar; Zink, Matthias; Schäfer, David; Thober, Stephan; Samaniego, Luis; Tolson, Bryan


    Hydrologic models are traditionally calibrated against observed streamflow. Recent studies have shown however, that only a few global model parameters are constrained using this kind of integral signal. They can be identified using prior screening techniques. Since different objectives might constrain different parameters, it is advisable to use multiple information to calibrate those models. One common approach is to combine these multiple objectives (MO) into one single objective (SO) function and allow the use of a SO optimization algorithm. Another strategy is to consider the different objectives separately and apply a MO Pareto optimization algorithm. In this study, two major research questions will be addressed: 1) How do multi-objective calibrations compare with corresponding single-objective calibrations? 2) How much do calibration results deteriorate when the number of calibrated parameters is reduced by a prior screening technique? The hydrologic model employed in this study is a distributed hydrologic model (mHM) with 52 model parameters, i.e. transfer coefficients. The model uses grid cells as a primary hydrologic unit, and accounts for processes like snow accumulation and melting, soil moisture dynamics, infiltration, surface runoff, evapotranspiration, subsurface storage and discharge generation. The model is applied in three distinct catchments over Europe. The SO calibrations are performed using the Dynamically Dimensioned Search (DDS) algorithm with a fixed budget while the MO calibrations are achieved using the Pareto Dynamically Dimensioned Search (PA-DDS) algorithm allowing for the same budget. The two objectives used here are the Nash Sutcliffe Efficiency (NSE) of the simulated streamflow and the NSE of the logarithmic transformation. It is shown that the SO DDS results are located close to the edges of the Pareto fronts of the PA-DDS. The MO calibrations are hence preferable due to their supply of multiple equivalent solutions from which the

  13. Single Canonical Model of Reflexive Memory and Spatial Attention. (United States)

    Patel, Saumil S; Red, Stuart; Lin, Eric; Sereno, Anne B


    Many neurons in the dorsal and ventral visual stream have the property that after a brief visual stimulus presentation in their receptive field, the spiking activity in these neurons persists above their baseline levels for several seconds. This maintained activity is not always correlated with the monkey's task and its origin is unknown. We have previously proposed a simple neural network model, based on shape selective neurons in monkey lateral intraparietal cortex, which predicts the valence and time course of reflexive (bottom-up) spatial attention. In the same simple model, we demonstrate here that passive maintained activity or short-term memory of specific visual events can result without need for an external or top-down modulatory signal. Mutual inhibition and neuronal adaptation play distinct roles in reflexive attention and memory. This modest 4-cell model provides the first simple and unified physiologically plausible mechanism of reflexive spatial attention and passive short-term memory processes.

  14. Gulf War Illnesses: DOD's Conclusions about U.S. Troops' Exposure Cannot Be Adequately Supported

    National Research Council Canada - National Science Library

    Rhodes, Keith


    ... (MOD) conclusions about troops' exposure. The GAO found that DoD's and MOD's conclusions about troops' exposure to CW agents, based on DoD and CIA plume modeling, cannot be adequately supported...

  15. Mathematical Modeling in Population Dynamics: The Case of Single ...

    African Journals Online (AJOL)


    formulated by the logistic growth function, where ε is the intrinsic rate of increase and )0(. ≥. µ represents the effect of intraspecific competition on the reproduction rate. Fisher (1937) first proposed this equation as a model in population genetics to describe the process of spatial spread when mutant individuals with higher ...

  16. Winkler's single-parameter subgrade model from the perspective of ...

    African Journals Online (AJOL)

    ... tensor are taken into consideration, whereas the shear stresses are intentionally dropped with the purpose of providing a useful perspective, with which Winkler's model and its associated coefficient of subgrade reaction can be viewed. The formulation takes into account the variation of the elasticity modulus with depth.

  17. Mathematical modeling in population dynamics: the case of single ...

    African Journals Online (AJOL)

    ... equations are tailored to describing the essential features of a continuous process. The trust of this paper is the application of mathematical models in helping to unravel the underlying mechanisms involved in biological and ecological processes. African Journal of Educational Studies in Mathematics and Sciences Vol.

  18. on the apllication of single specie dynamic population model 306

    African Journals Online (AJOL)


    used to compare the predicted values and observed values in order to find out whether there is significant difference between the observed and predicted values using these two models. Keywords: Birth rate, sustainable population, overcrowding, harvesting, independent t-test and ..... 95% confidence interval of the.

  19. On the apllication of single specie dynamic population model | Iguda ...

    African Journals Online (AJOL)

    The Method of mathematical models of Malthus and Verhults were applied on ten years data collected from Magaram Poultry Farm to determine the nature of population growth, population decay or constant ... Keywords: Birth rate, sustainable population, overcrowding, harvesting, independent t-test and one way Anova.

  20. A single model procedure for estimating tank calibration equations

    International Nuclear Information System (INIS)

    Liebetrau, A.M.


    A fundamental component of any accountability system for nuclear materials is a tank calibration equation that relates the height of liquid in a tank to its volume. Tank volume calibration equations are typically determined from pairs of height and volume measurements taken in a series of calibration runs. After raw calibration data are standardized to a fixed set of reference conditions, the calibration equation is typically fit by dividing the data into several segments--corresponding to regions in the tank--and independently fitting the data for each segment. The estimates obtained for individual segments must then be combined to obtain an estimate of the entire calibration function. This process is tedious and time-consuming. Moreover, uncertainty estimates may be misleading because it is difficult to properly model run-to-run variability and between-segment correlation. In this paper, the authors describe a model whose parameters can be estimated simultaneously for all segments of the calibration data, thereby eliminating the need for segment-by-segment estimation. The essence of the proposed model is to define a suitable polynomial to fit to each segment and then extend its definition to the domain of the entire calibration function, so that it (the entire calibration function) can be expressed as the sum of these extended polynomials. The model provides defensible estimates of between-run variability and yields a proper treatment of between-segment correlations. A portable software package, called TANCS, has been developed to facilitate the acquisition, standardization, and analysis of tank calibration data. The TANCS package was used for the calculations in an example presented to illustrate the unified modeling approach described in this paper. With TANCS, a trial calibration function can be estimated and evaluated in a matter of minutes

  1. Semiparametric Mixtures of Regressions with Single-index for Model Based Clustering


    Xiang, Sijia; Yao, Weixin


    In this article, we propose two classes of semiparametric mixture regression models with single-index for model based clustering. Unlike many semiparametric/nonparametric mixture regression models that can only be applied to low dimensional predictors, the new semiparametric models can easily incorporate high dimensional predictors into the nonparametric components. The proposed models are very general, and many of the recently proposed semiparametric/nonparametric mixture regression models a...

  2. Modeling refractive metasurfaces in series as a single metasurface (United States)

    Toor, Fatima; Guneratne, Ananda C.


    Metasurfaces are boundaries between two media that are engineered to induce an abrupt phase shift in propagating light over a distance comparable to the wavelength of the light. Metasurface applications exploit this rapid phase shift to allow for precise control of wavefronts. The phase gradient is used to compute the angle at which light is refracted using the generalized Snell's Law. [1] In practice, refractive metasurfaces are designed using a relatively small number of phaseshifting elements such that the phase gradient is discrete rather than continuous. Designing such a metasurface requires finding phase-shifting elements that cover a full range of phases (a phase range) from 0 to 360 degrees. We demonstrate an analytical technique to calculate the refraction angle due to multiple metasurfaces arranged in series without needing to account for the effect of each individual metasurface. The phase gradients of refractive metasurfaces in series may be summed to obtain the phase gradient of a single equivalent refractive metasurface. This result is relevant to any application that requires a system with multiple metasurfaces, such as biomedical imaging [2], wavefront correctors [3], and beam shaping [4].

  3. Deferasirox pharmacokinetics in patients with adequate versus inadequate response (United States)

    Chirnomas, Deborah; Smith, Amber Lynn; Braunstein, Jennifer; Finkelstein, Yaron; Pereira, Luis; Bergmann, Anke K.; Grant, Frederick D.; Paley, Carole; Shannon, Michael


    Tens of thousands of transfusion-dependent (eg, thalassemia) patients worldwide suffer from chronic iron overload and its potentially fatal complications. The oral iron chelator deferasirox has become commercially available in many countries since 2006. Although this alternative to parenteral deferoxamine has been a major advance for patients with transfusional hemosiderosis, a proportion of patients have suboptimal response to the maximum approved doses (30 mg/kg per day), and do not achieve negative iron balance. We performed a prospective study of oral deferasirox pharmacokinetics (PK), comparing 10 transfused patients with inadequate deferasirox response (rising ferritin trend or rising liver iron on deferasirox doses > 30 mg/kg per day) with control transfusion-dependent patients (n = 5) with adequate response. Subjects were admitted for 4 assessments: deferoxamine infusion and urinary iron measurement to assess readily chelatable iron; quantitative hepatobiliary scintigraphy to assess hepatic uptake and excretion of chelate; a 24-hour deferasirox PK study following a single 35-mg/kg dose of oral deferasirox; and pharmacogenomic analysis. Patients with inadequate response to deferasirox had significantly lower systemic drug exposure compared with control patients (P deferasirox must be determined. This trial has been registered at under identifier NCT00749515. PMID:19724055

  4. A Single Model Explains both Visual and Auditory Precortical Coding


    Shan, Honghao; Tong, Matthew H.; Cottrell, Garrison W.


    Precortical neural systems encode information collected by the senses, but the driving principles of the encoding used have remained a subject of debate. We present a model of retinal coding that is based on three constraints: information preservation, minimization of the neural wiring, and response equalization. The resulting novel version of sparse principal components analysis successfully captures a number of known characteristics of the retinal coding system, such as center-surround rece...

  5. Single High Fidelity Geometric Data Sets for LCM - Model Requirements (United States)


    triangles (.raw) to the native triangular facet file (.facet). The software vendors recommend the use of McNeil and Associates’ Rhinoceros 3D for all...surface modeling and export. Rhinoceros has the capability and precision to create highly detailed 3D surface geometry suitable for radar cross section... white before ending up at blue as the temperature increases [27]. IR radiation was discovered in 1800 but its application is still limited in

  6. Are Vancomycin Trough Concentrations Adequate for Optimal Dosing? (United States)

    Youn, Gilmer; Jones, Brenda; Jelliffe, Roger W.; Drusano, George L.; Rodvold, Keith A.; Lodise, Thomas P.


    The current vancomycin therapeutic guidelines recommend the use of only trough concentrations to manage the dosing of adults with Staphylococcus aureus infections. Both vancomycin efficacy and toxicity are likely to be related to the area under the plasma concentration-time curve (AUC). We assembled richly sampled vancomycin pharmacokinetic data from three studies comprising 47 adults with various levels of renal function. With Pmetrics, the nonparametric population modeling package for R, we compared AUCs estimated from models derived from trough-only and peak-trough depleted versions of the full data set and characterized the relationship between the vancomycin trough concentration and AUC. The trough-only and peak-trough depleted data sets underestimated the true AUCs compared to the full model by a mean (95% confidence interval) of 23% (11 to 33%; P = 0.0001) and 14% (7 to 19%; P vancomycin MIC is 1 mg/liter, approximately 60% are expected to have a trough concentration below the suggested minimum target of 15 mg/liter for serious infections, which could result in needlessly increased doses and a risk of toxicity. Our data indicate that adjustment of vancomycin doses on the basis of trough concentrations without a Bayesian tool results in poor achievement of maximally safe and effective drug exposures in plasma and that many adults can have an adequate vancomycin AUC with a trough concentration of <15 mg/liter. PMID:24165176

  7. Modeling resonant cavities for single-photon waveguide sources

    International Nuclear Information System (INIS)

    Evans, Philip G.; Bennink, Ryan S.; Grice, Warren P.


    Spectral correlations between photon pairs generated by spontaneous parametric down conversion (SPDC) in bulk non-linear optical crystals remain a hindrance to the implementation of efficient quantum communication architectures. It has been demonstrated that SPDC within a distributed micro-cavity can result in little or no correlation between photon pairs. We present results on modeling three different cavity configurations based on integrated Bragg gratings. Output from the SPDC process can be tailored by altering the periodicity and geometry of such nanostructures. We will discuss the merits of each cavity configuration from the standpoint of degenerate Type-II SPDC

  8. The application of single particle hydrodynamics in continuum models of multiphase flow (United States)

    Decker, Rand


    A review of the application of single particle hydrodynamics in models for the exchange of interphase momentum in continuum models of multiphase flow is presented. Considered are the equations of motion for a laminar, mechanical two phase flow. Inherent to this theory is a model for the interphase exchange of momentum due to drag between the dispersed particulate and continuous fluid phases. In addition, applications of two phase flow theory to de-mixing flows require the modeling of interphase momentum exchange due to lift forces. The applications of single particle analysis in deriving models for drag and lift are examined.

  9. Modeling of 1-D nitrate transport in single layer soils | Dike | Journal ...

    African Journals Online (AJOL)

    The transport of nitrate in laboratory single soil columns of sand, laterite and clay were investigated after 21 days. The 1-D contaminant transport model by Notodarmojo et al (1991) for single layer soils were calibrated and verified using field data collected from a refuse dump site at avu, owerri, Imo state. The experimental ...

  10. Corpuscular Model of Two-Beam Interference and Double-Slit Experiments with Single Photons

    NARCIS (Netherlands)

    Jin, Fengping; Yuan, Shengjun; De Raedt, Hans; Michielsen, Kristel; Miyashita, Seiji

    We introduce an event-based corpuscular simulation model that reproduces the wave mechanical results of single-photon double-slit and two-beam interference experiments and (of a one-to-one copy of an experimental realization) of a single-photon interference experiment with a Fresnel biprism. The

  11. Single-layer skull approximations perform well in transcranial direct current stimulation modeling

    NARCIS (Netherlands)

    Rampersad, S.M.; Stegeman, D.F.; Oostendorp, T.F.


    In modeling the effect of transcranial direct current stimulation, the representation of the skull is an important factor. In a spherical model, we compared a realistic skull modeling approach, in which the skull consisted of three isotropic layers, to anisotropic and isotropic single-layer

  12. Modeling and Control of a Single-Phase Marine Cooling System

    DEFF Research Database (Denmark)

    Hansen, Michael; Stoustrup, Jakob; Bendtsen, Jan Dimon


    This paper presents two model-based control design approaches for a single-phase marine cooling system. Models are derived from first principles and aim at describing significant system dynamics including nonlinearities and transport delays, while keeping the model complexity low. The two...

  13. Modeling and optimization of the single-leg multi-fare class ...

    African Journals Online (AJOL)

    This paper presents a static overbooking model for a single-leg multi-fare class flight. A realistic distribution of no-show data in modeling the cost function was considered using data collected from the Ethiopian airlines. The overbooking model developed considers the interaction (i.e. the transfer of an extra passenger in a ...

  14. Modeling methane fluxes in wetlands with gas-transporting plants. 1. Single-root scale

    NARCIS (Netherlands)

    Segers, R.; Leffelaar, P.A.


    Methane dynamics in a water-saturated soil layer with gas-transporting roots is modeled with a weighed set of single-root model systems. Each model system consists of a soil cylinder with a gas-transporting root along its axis or a soil sphere with a gas-transporting root at its center. The weights

  15. A Model for Improving the Health and Quality of Life of Single ...

    African Journals Online (AJOL)

    A Model for Improving the Health and Quality of Life of Single Mothers in the Developing World. Rajshri Mainthia, Laura Reppart, Jim Reppart, Elizabeth C Pearce, Jordan J Cohen, James L Netterville ...

  16. Comparison of Model Reliabilities from Single-Step and Bivariate Blending Methods

    DEFF Research Database (Denmark)

    Taskinen, Matti; Mäntysaari, Esa; Lidauer, Martin


    the production trait evaluation of Nordic Red dairy cattle. Genotyped bulls with daughters are used as training animals, and genotyped bulls and producing cows as candidate animals. For simplicity, size of the data is chosen so that the full inverses of the mixed model equation coefficient matrices can......Model based reliabilities in genetic evaluation are compared between three methods: animal model BLUP, single-step BLUP, and bivariate blending after genomic BLUP. The original bivariate blending is revised in this work to better account animal models. The study data is extracted from...... be calculated. Model reliabilities by the single-step and the bivariate blending methods were higher than by animal model due to genomic information. Compared to the single-step method, the bivariate blending method reliability estimates were, in general, lower. Computationally bivariate blending method was...

  17. 9 CFR 305.3 - Sanitation and adequate facilities. (United States)


    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Sanitation and adequate facilities. 305.3 Section 305.3 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... OF VIOLATION § 305.3 Sanitation and adequate facilities. Inspection shall not be inaugurated if an...

  18. "Something Adequate"? In Memoriam Seamus Heaney, Sister Quinlan, Nirbhaya (United States)

    Parker, Jan


    Seamus Heaney talked of poetry's responsibility to represent the "bloody miracle", the "terrible beauty" of atrocity; to create "something adequate". This article asks, what is adequate to the burning and eating of a nun and the murderous gang rape and evisceration of a medical student? It considers Njabulo Ndebele's…

  19. 40 CFR 716.25 - Adequate file search. (United States)


    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Adequate file search. 716.25 Section... ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.25 Adequate file search. The scope of a person's responsibility to search records is limited to records in the location(s) where the required...

  20. An introduction to modeling longitudinal data with generalized additive models: applications to single-case designs. (United States)

    Sullivan, Kristynn J; Shadish, William R; Steiner, Peter M


    Single-case designs (SCDs) are short time series that assess intervention effects by measuring units repeatedly over time in both the presence and absence of treatment. This article introduces a statistical technique for analyzing SCD data that has not been much used in psychological and educational research: generalized additive models (GAMs). In parametric regression, the researcher must choose a functional form to impose on the data, for example, that trend over time is linear. GAMs reverse this process by letting the data inform the choice of functional form. In this article we review the problem that trend poses in SCDs, discuss how current SCD analytic methods approach trend, describe GAMs as a possible solution, suggest a GAM model testing procedure for examining the presence of trend in SCDs, present a small simulation to show the statistical properties of GAMs, and illustrate the procedure on 3 examples of different lengths. Results suggest that GAMs may be very useful both as a form of sensitivity analysis for checking the plausibility of assumptions about trend and as a primary data analysis strategy for testing treatment effects. We conclude with a discussion of some problems with GAMs and some future directions for research on the application of GAMs to SCDs. (c) 2015 APA, all rights reserved).

  1. Model based analysis of the drying of a single solution droplet in an ultrasonic levitator

    DEFF Research Database (Denmark)

    Sloth, Jakob; Kiil, Søren; Jensen, Anker


    A model for the drying of a single solution droplet into a solid, dense particle is presented and simulations are made to achieve a more fundamental understanding of the single droplet drying process relevant in connection with spray drying processes. Model predictions of drying behaviour...... are compared to data for the drying of aqueous solutions of maltodextrin DE 15 and trehalose from experiments conducted using an ultrasonic levitator. Model predictions are in good agreement with the experimental data, indicating that the model describes the most important physical phenomena of the process....

  2. Application of a single-objective, hybrid genetic algorithm approach to pharmacokinetic model building. (United States)

    Sherer, Eric A; Sale, Mark E; Pollock, Bruce G; Belani, Chandra P; Egorin, Merrill J; Ivy, Percy S; Lieberman, Jeffrey A; Manuck, Stephen B; Marder, Stephen R; Muldoon, Matthew F; Scher, Howard I; Solit, David B; Bies, Robert R


    A limitation in traditional stepwise population pharmacokinetic model building is the difficulty in handling interactions between model components. To address this issue, a method was previously introduced which couples NONMEM parameter estimation and model fitness evaluation to a single-objective, hybrid genetic algorithm for global optimization of the model structure. In this study, the generalizability of this approach for pharmacokinetic model building is evaluated by comparing (1) correct and spurious covariate relationships in a simulated dataset resulting from automated stepwise covariate modeling, Lasso methods, and single-objective hybrid genetic algorithm approaches to covariate identification and (2) information criteria values, model structures, convergence, and model parameter values resulting from manual stepwise versus single-objective, hybrid genetic algorithm approaches to model building for seven compounds. Both manual stepwise and single-objective, hybrid genetic algorithm approaches to model building were applied, blinded to the results of the other approach, for selection of the compartment structure as well as inclusion and model form of inter-individual and inter-occasion variability, residual error, and covariates from a common set of model options. For the simulated dataset, stepwise covariate modeling identified three of four true covariates and two spurious covariates; Lasso identified two of four true and 0 spurious covariates; and the single-objective, hybrid genetic algorithm identified three of four true covariates and one spurious covariate. For the clinical datasets, the Akaike information criterion was a median of 22.3 points lower (range of 470.5 point decrease to 0.1 point decrease) for the best single-objective hybrid genetic-algorithm candidate model versus the final manual stepwise model: the Akaike information criterion was lower by greater than 10 points for four compounds and differed by less than 10 points for three

  3. Thermal-Hydraulics analysis of pressurized water reactor core by using single heated channel model

    Directory of Open Access Journals (Sweden)

    Reza Akbari


    Full Text Available Thermal hydraulics of nuclear reactor as a basis of reactor safety has a very important role in reactor design and control. The thermal-hydraulic analysis provides input data to the reactor-physics analysis, whereas the latter gives information about the distribution of heat sources, which is needed to perform the thermal-hydraulic analysis. In this study single heated channel model as a very fast model for predicting thermal hydraulics behavior of pressurized water reactor core has been developed. For verifying the results of this model, we used RELAP5 code as US nuclear regulatory approved thermal hydraulics code. The results of developed single heated channel model have been checked with RELAP5 results for WWER-1000. This comparison shows the capability of single heated channel model for predicting thermal hydraulics behavior of reactor core.

  4. Optimization Methods to Minimize Emergence Time While Maintaining Adequate Post-Operative Analgesia


    Tams, Carl; Syroid, Noah; Johnson, Ken B.; Egan, Talmage D.; Westenskow, Dwayne


    A rapid emergence from anesthesia combined with an extended duration of adequate analgesia is desired. Difficulties arise when trying to achieve a rapid emergence and provide adequate analgesia for procedures associated with moderate post operative pain. We propose to use pharmacokinetic (PK) and pharmacodynamic (PD) models with optimization techniques to determine anesthetic drugs ratios to improve post-anesthetic outcomes of emergence and analgesia. We hypothesize that optimized propofol, r...

  5. The implementation of biofiltration systems, rainwater tanks and urban irrigation in a single-layer urban canopy model (United States)

    Demuzere, Matthias; Coutts, Andrew; Goehler, Maren; Broadbent, Ashley; Wouters, Hendrik; van Lipzig, Nicole; Gebert, Luke


    Urban vegetation is generally considered as a key tool to modify the urban energy balance through enhanced evapotranspiration (ET). Given that vegetation is most effective when it is healthy, stormwater harvesting and retention strategies (such as water sensitive urban design) could be used to support vegetation and promote ET. This study presents the implementation of a vegetated lined bio-filtration system (BFS) combined with a rainwater tank (RWT) and urban irrigation system in the single-layer urban canopy model Community Land Model-Urban. Runoff from roof and impervious road surface fractions is harvested and used to support an adequate soil moisture level for vegetation in the BFS. In a first stage, modelled soil moisture dynamics are evaluated and found reliable compared to observed soil moisture levels from biofiltration pits in Smith Street, Melbourne (Australia). Secondly, the impact of BFS, RWT and urban irrigation on ET is illustrated for a two-month period in 2012 using varying characteristics for all components. Results indicate that (i) a large amount of stormwater is potentially available for indoor and outdoor water demands, including irrigation of urban vegetation, (ii) ET from the BFS is an order of magnitude larger compared to the contributions from the impervious surfaces, even though the former only covers 10% of the surface fraction and (iii) attention should be paid to the cover fraction and soil texture of the BFS, size of the RWT and the surface fractions contributing to the collection of water in the RWT. Overall, this study reveals that this model development can effectuate future research with state-of-the-art urban climate models to further explore the benefits of vegetated biofiltration systems as a water sensitive urban design tool optimised with an urban irrigation system to maintain healthy vegetation.

  6. Continuum dislocation-density based models for the dynamic shock response of single-crystal and polycrystalline materials (United States)

    Luscher, Darby


    The dynamic thermomechanical responses of polycrystalline materials under shock loading are often dominated by the interaction of defects and interfaces. For example, polymer-bonded explosives (PBX) can initiate under weak shock impacts whose energy, if distributed homogeneously throughout the material, translates to temperature increases that are insufficient to drive the rapid chemistry observed. In such cases, heterogeneous thermomechanical interactions at the mesoscale (i.e. between single-crystal and macroscale) lead to the formation of localized hot spots. Within metals, a prescribed deformation associated with a shock wave may be accommodated by crystallographic slip, provided a sufficient population of mobile dislocations is available. However, if the deformation rate is large enough, there may be an insufficient number of freely mobile dislocations. In these cases, additional dislocations may be nucleated, or alternate mechanisms (e.g. twinning, damage) activated in order to accommodate the deformation. Direct numerical simulation at the mesoscale offers insight into these physical processes that can be invaluable to the development of macroscale constitutive theories, if the mesoscale models adequately represent the anisotropic nonlinear thermomechanical response of individual crystals and their interfaces. This talk will briefly outline a continuum mesoscale modeling framework founded upon local and nonlocal variations of dislocation-density based crystal plasticity theory. The nonlocal theory couples continuum dislocation transport with the local theory. In the latter, dislocation transport is modeled by enforcing dislocation conservation at a slip-system level through the solution of advection-diffusion equations. The configuration of geometrically necessary dislocation density gives rise to a back-stress that inhibits or accentuates the flow of dislocations. Development of the local theory and application to modeling the explosive molecular crystal

  7. A single-system model predicts recognition memory and repetition priming in amnesia. (United States)

    Berry, Christopher J; Kessels, Roy P C; Wester, Arie J; Shanks, David R


    We challenge the claim that there are distinct neural systems for explicit and implicit memory by demonstrating that a formal single-system model predicts the pattern of recognition memory (explicit) and repetition priming (implicit) in amnesia. In the current investigation, human participants with amnesia categorized pictures of objects at study and then, at test, identified fragmented versions of studied (old) and nonstudied (new) objects (providing a measure of priming), and made a recognition memory judgment (old vs new) for each object. Numerous results in the amnesic patients were predicted in advance by the single-system model, as follows: (1) deficits in recognition memory and priming were evident relative to a control group; (2) items judged as old were identified at greater levels of fragmentation than items judged new, regardless of whether the items were actually old or new; and (3) the magnitude of the priming effect (the identification advantage for old vs new items) overall was greater than that of items judged new. Model evidence measures also favored the single-system model over two formal multiple-systems models. The findings support the single-system model, which explains the pattern of recognition and priming in amnesia primarily as a reduction in the strength of a single dimension of memory strength, rather than a selective explicit memory system deficit. Copyright © 2014 the authors 0270-6474/14/3410963-12$15.00/0.

  8. Modeling and simulation of the zinc-nickel single flow batteries based on MATLAB/Simulink

    Directory of Open Access Journals (Sweden)

    Shouguang Yao


    Full Text Available Based on the working principle of the zinc-nickel single flow batteries (ZNBs, this paper builds the electrochemical model and mechanical model, analyzes the effect of electrolyte flux on the battery performance and obtains a single cell with a 216 Ah charge-discharge capacity as an example, and thereafter conducts a simulation to obtain several results under the condition of constant current charge and discharge. The simulation results are well matched in comparison with the experimental results. An optimal flux exists during the charge and discharge, which indicates that the model can well simulate the charge and discharge characteristics of the ZNBs under the condition of constant current.

  9. Overview of software tools for modeling single event upsets in microelectronic devices

    Directory of Open Access Journals (Sweden)

    Anatoly Alexandrovich Smolin


    Full Text Available The paper presents the results of the analysis of existing simulation tools for evaluation of single event upset susceptibility of microelectronic devices with deep sub-micron feature sizes. This simulation tools are meant to replace obsolete approach to single event rate estimation based on integral rectangular parallelepiped model. Three main approaches implemented in simulation tools are considered: combined use of particle transport codes and rectangular parallelepiped model, combined use of particle transport codes and analytical models of charge collection and circuit simulators, and combined use of particle transport codes and TCAD simulators.

  10. Block Empirical Likelihood for Longitudinal Single-Index Varying-Coefficient Model

    Directory of Open Access Journals (Sweden)

    Yunquan Song


    Full Text Available In this paper, we consider a single-index varying-coefficient model with application to longitudinal data. In order to accommodate the within-group correlation, we apply the block empirical likelihood procedure to longitudinal single-index varying-coefficient model, and prove a nonparametric version of Wilks’ theorem which can be used to construct the block empirical likelihood confidence region with asymptotically correct coverage probability for the parametric component. In comparison with normal approximations, the proposed method does not require a consistent estimator for the asymptotic covariance matrix, making it easier to conduct inference for the model's parametric component. Simulations demonstrate how the proposed method works.

  11. Comparison of the accuracy of the calibration model on the double and single integrating sphere systems

    CSIR Research Space (South Africa)



    Full Text Available The accuracy of the calibration model for the single and double integrating sphere systems are compared for a white light system. A calibration model is created from a matrix of samples with known absorption and reduced scattering coefficients...

  12. Effect of the Sport Education Tactical Model on Coeducational and Single Gender Game Performance (United States)

    Pritchard, Tony; McCollum, Starla; Sundal, Jacqueline; Colquit, Gavin


    Physical education teachers are faced with a decision when teaching physical activities in schools. What type of instructional model should be used, and should classes be coeducational or single gender? The current study had two purposes. The first purpose investigated the effectiveness of the sport education tactical model (SETM) during game play…

  13. Numerical models of single- and double-negative metamaterials including viscous and thermal losses

    DEFF Research Database (Denmark)

    Cutanda Henriquez, Vicente; Sánchez-Dehesa, José


    detailed understanding on how viscous and thermal losses affect the setups at different frequencies. The modeling of a simpler single-negative metamaterial also broadens this overview. Both setups have been modeled with quadratic BEM meshes. Each sample, scaled at two different sizes, has been represented...

  14. Modelling of Vortex-Induced Loading on a Single-Blade Installation Setup

    DEFF Research Database (Denmark)

    Skrzypinski, Witold Robert; Gaunaa, Mac; Heinz, Joachim Christian


    Vortex-induced integral loading fluctuations on a single suspended blade at various inflow angles were modeled in the presents work by means of stochastic modelling methods. The reference time series were obtained by 3D DES CFD computations carried out on the DTU 10MW reference wind turbine blade...

  15. The reverse effects of random perturbation on discrete systems for single and multiple population models

    International Nuclear Information System (INIS)

    Kang, Li; Tang, Sanyi


    Highlights: • The discrete single species and multiple species models with random perturbation are proposed. • The complex dynamics and interesting bifurcation behavior have been investigated. • The reverse effects of random perturbation on discrete systems have been discussed and revealed. • The main results can be applied for pest control and resources management. - Abstract: The natural species are likely to present several interesting and complex phenomena under random perturbations, which have been confirmed by simple mathematical models. The important questions are: how the random perturbations influence the dynamics of the discrete population models with multiple steady states or multiple species interactions? and is there any different effects for single species and multiple species models with random perturbation? To address those interesting questions, we have proposed the discrete single species model with two stable equilibria and the host-parasitoid model with Holling type functional response functions to address how the random perturbation affects the dynamics. The main results indicate that the random perturbation does not change the number of blurred orbits of the single species model with two stable steady states compared with results for the classical Ricker model with same random perturbation, but it can strength the stability. However, extensive numerical investigations depict that the random perturbation does not influence the complexities of the host-parasitoid models compared with the results for the models without perturbation, while it does increase the period of periodic orbits doubly. All those confirm that the random perturbation has a reverse effect on the dynamics of the discrete single and multiple population models, which could be applied in reality including pest control and resources management.

  16. Comparison of Numerical Modelling of Degradation Mechanisms in Single Mode Optical Fibre Using MATLAB and VPIphotonics

    Directory of Open Access Journals (Sweden)

    Jana Sajgalikova


    Full Text Available Mathematical models for description of physical phenomena often use the statistical description of the individual phenomena and solve those using suitable methods. If we want to develop numerical model of optical communication system based on transmission through single mode optical fibres, we need to consider whole series of phenomena that affect various parts of the system. In the single-mode optical fibre we often encounter influence of chromatic dispersion and nonlinear Kerr effects. By observing various different degradation mechanisms, every numerical model should have its own limits, which fulfil more detailed specification. It is inevitable to consider them in evaluation. In this paper, we focus on numerical modelling of degradation mechanisms in single-mode optical fibre. Numerical solution of non-linear Schroedinger equation is performed by finite difference method applied in MATLAB environment and split-step Fourier method, which is implemented by VPIphotonics software.

  17. A single-photon ecat reconstruction procedure based on a PSF model

    International Nuclear Information System (INIS)

    Ying-Lie, O.


    Emission Computed Axial Tomography (ECAT) has been applied in nuclear medicine for the past few years. Owing to attenuation and scatter along the ray path, adequate correction methods are required. In this thesis, a correction method for attenuation, detector response and Compton scatter has been proposed. The method developed is based on a PSF model. The parameters of the models were derived by fitting experimental and simulation data. Because of its flexibility, a Monte Carlo simulation method has been employed. Using the PSF models, it was found that the ECAT problem can be described by the added modified equation. Application of the reconstruction procedure on simulation data yield satisfactory results. The algorithm tends to amplify noise and distortion in the data, however. Therefore, the applicability of the method on patient studies remain to be seen. (Auth.)

  18. Army General Fund Adjustments Not Adequately Documented or Supported (United States)


    audit of the FY 1991 Army financial statements.6 The Army indicated in its FY 2008 Statement of Assurance on Internal Controls7 that this material...Accounting Service Indianapolis (DFAS Indianapolis) did not adequately support $2.8 trillion in third quarter journal voucher (JV) adjustments and...statements were unreliable and lacked an adequate audit trail. Furthermore, DoD and Army managers could not rely on the data in their accounting

  19. QAcon: single model quality assessment using protein structural and contact information with machine learning techniques. (United States)

    Cao, Renzhi; Adhikari, Badri; Bhattacharya, Debswapna; Sun, Miao; Hou, Jie; Cheng, Jianlin


    Protein model quality assessment (QA) plays a very important role in protein structure prediction. It can be divided into two groups of methods: single model and consensus QA method. The consensus QA methods may fail when there is a large portion of low quality models in the model pool. In this paper, we develop a novel single-model quality assessment method QAcon utilizing structural features, physicochemical properties, and residue contact predictions. We apply residue-residue contact information predicted by two protein contact prediction methods PSICOV and DNcon to generate a new score as feature for quality assessment. This novel feature and other 11 features are used as input to train a two-layer neural network on CASP9 datasets to predict the quality of a single protein model. We blindly benchmarked our method QAcon on CASP11 dataset as the MULTICOM-CLUSTER server. Based on the evaluation, our method is ranked as one of the top single model QA methods. The good performance of the features based on contact prediction illustrates the value of using contact information in protein quality assessment. The web server and the source code of QAcon are freely available at: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail:

  20. Parameter Optimization of Single-Diode Model of Photovoltaic Cell Using Memetic Algorithm

    Directory of Open Access Journals (Sweden)

    Yourim Yoon


    Full Text Available This study proposes a memetic approach for optimally determining the parameter values of single-diode-equivalent solar cell model. The memetic algorithm, which combines metaheuristic and gradient-based techniques, has the merit of good performance in both global and local searches. First, 10 single algorithms were considered including genetic algorithm, simulated annealing, particle swarm optimization, harmony search, differential evolution, cuckoo search, least squares method, and pattern search; then their final solutions were used as initial vectors for generalized reduced gradient technique. From this memetic approach, we could further improve the accuracy of the estimated solar cell parameters when compared with single algorithm approaches.

  1. Ignition and growth modeling of detonation reaction zone experiments on single crystals of PETN and HMX (United States)

    White, Bradley W.; Tarver, Craig M.


    It has long been known that detonating single crystals of solid explosives have much larger failure diameters than those of heterogeneous charges of the same explosive pressed or cast to 98 - 99% theoretical maximum density (TMD). In 1957, Holland et al. demonstrated that PETN single crystals have failure diameters of about 8 mm, whereas heterogeneous PETN charges have failure diameters of less than 0.5 mm. Recently, Fedorov et al. quantitatively determined nanosecond time resolved detonation reaction zone profiles of single crystals of PETN and HMX by measuring the interface particle velocity histories of the detonating crystals and LiF windows using a PDV system. The measured reaction zone time durations for PETN and HMX single crystal detonations were approximately 100 and 260 nanoseconds, respectively. These experiments provided the necessary data to develop Ignition and Growth (I&G) reactive flow model parameters for the single crystal detonation reaction zones. Using these parameters, the calculated unconfined failure diameter of a PETN single crystal was 7.5 +/- 0.5 mm, close to the 8 mm experimental value. The calculated failure diameter of an unconfined HMX single crystal was 15 +/- 1 mm. The unconfined failure diameter of an HMX single crystal has not yet been determined precisely, but Fedorov et al. detonated 14 mm diameter crystals confined by detonating a HMX-based plastic bonded explosive (PBX) without initially overdriving the HMX crystals.

  2. Single, Integrated, Service-Centric Model of Military Health System Governance (United States)

    that keeps pace with the operational agility and organizational flexibility requirements to support globally integrated operations is clear. This...of the research is to establish what the model of governance of the Military Health System should be. That, with other recommendations, should be for the impending transformation. The research found that the model of governance should be a single service model with regional health

  3. A generalized Jaynes-Cummings model: The relativistic parametric amplifier and a single trapped ion

    Energy Technology Data Exchange (ETDEWEB)

    Ojeda-Guillén, D., E-mail: [Escuela Superior de Cómputo, Instituto Politécnico Nacional, Av. Juan de Dios Bátiz esq. Av. Miguel Othón de Mendizábal, Col. Lindavista, Delegación Gustavo A. Madero, C.P. 07738 Ciudad de México (Mexico); Mota, R. D. [Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Culhuacán, Instituto Politécnico Nacional, Av. Santa Ana No. 1000, Col. San Francisco Culhuacán, Delegación Coyoacán, C.P. 04430 Ciudad de México (Mexico); Granados, V. D. [Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Ed. 9, Unidad Profesional Adolfo López Mateos, Delegación Gustavo A. Madero, C.P. 07738 Ciudad de México (Mexico)


    We introduce a generalization of the Jaynes-Cummings model and study some of its properties. We obtain the energy spectrum and eigenfunctions of this model by using the tilting transformation and the squeezed number states of the one-dimensional harmonic oscillator. As physical applications, we connect this new model to two important and novelty problems: the relativistic parametric amplifier and the quantum simulation of a single trapped ion.

  4. Modal analysis based equivalent circuit model and its verification for a single cMUT cell

    International Nuclear Information System (INIS)

    Mao, S P; Rottenberg, X; Rochus, V; Czarnecki, P; Helin, P; Severi, S; Tilmans, H A C; Nauwelaers, B


    This paper presents the lumped equivalent circuit model and its verification of both transmission and reception properties of a single cell capacitive micromachined ultrasonic transducer (cMUT), which is operating in a non-collapse small signal region. The derivation of this equivalent circuit model is based on the modal analysis techniques, harmonic modes are included by using the mode superposition method; and thus a wide frequency range response of the cMUT cell can be simulated by our equivalent circuit model. The importance of the cross modal coupling between different eigenmodes of a cMUT cell is discussed by us for the first time. In this paper the development of this model is only illustrated by a single circular cMUT cell under a uniform excitation. Extension of this model and corresponding results under a more generalized excitation will be presented in our upcoming publication (Mao et al 2016 Proc. IEEE Int. Ultrasonics Symp .). This model is verified by both finite element method (FEM) simulation and experimental characterizations. Results predicted by our model are in a good agreement with the FEM simulation results, and this works for a single cMUT cell operated in either transmission or reception. Results obtained from the model also rather match the experimental results of the cMUT cell. This equivalent circuit model provides an easy and precise way to rapidly predict the behaviors of cMUT cells. (paper)

  5. Modal analysis based equivalent circuit model and its verification for a single cMUT cell (United States)

    Mao, S. P.; Rottenberg, X.; Rochus, V.; Czarnecki, P.; Helin, P.; Severi, S.; Nauwelaers, B.; Tilmans, H. A. C.


    This paper presents the lumped equivalent circuit model and its verification of both transmission and reception properties of a single cell capacitive micromachined ultrasonic transducer (cMUT), which is operating in a non-collapse small signal region. The derivation of this equivalent circuit model is based on the modal analysis techniques, harmonic modes are included by using the mode superposition method; and thus a wide frequency range response of the cMUT cell can be simulated by our equivalent circuit model. The importance of the cross modal coupling between different eigenmodes of a cMUT cell is discussed by us for the first time. In this paper the development of this model is only illustrated by a single circular cMUT cell under a uniform excitation. Extension of this model and corresponding results under a more generalized excitation will be presented in our upcoming publication (Mao et al 2016 Proc. IEEE Int. Ultrasonics Symp.). This model is verified by both finite element method (FEM) simulation and experimental characterizations. Results predicted by our model are in a good agreement with the FEM simulation results, and this works for a single cMUT cell operated in either transmission or reception. Results obtained from the model also rather match the experimental results of the cMUT cell. This equivalent circuit model provides an easy and precise way to rapidly predict the behaviors of cMUT cells.

  6. An update on single field models of inflation in light of WMAP7

    International Nuclear Information System (INIS)

    Alabidi, Laila; Huston, Ian


    In this paper we summarise the status of single field models of inflation in light of the WMAP 7 data release. We find little has changed since the 5 year release, and results are consistent with previous findings. The increase in the upper bound on the running of the spectral index impacts on the status of the production of Primordial Black Holes from single field models. The lower bound on f equi NL is reduced and thus the bounds on the theoretical parameters of (UV) DBI single brane models are weakened. In the case of multiple coincident branes the bounds are also weakened and the two, three or four brane cases will produce a tensor-signal that could possibly be observed in the future

  7. Extension of an anisotropic creep model to general high temperature deformation of a single crystal superalloy

    International Nuclear Information System (INIS)

    Pan, L.M.; Ghosh, R.N.; McLean, M.


    A physics based model has been developed that accounts for the principal features of anisotropic creep deformation of single crystal superalloys. The present paper extends this model to simulate other types of high temperature deformation under strain controlled test conditions, such as stress relaxation and tension tests at constant strain rate in single crystals subject to axial loading along an arbitrary crystal direction. The approach is applied to the SRR99 single crystal superalloy where a model parameter database is available, determined via analysis of a database of constant stress creep curves. A software package has been generated to simulate the deformation behaviour under complex stress-strain conditions taking into account anisotropic elasticity. (orig.)

  8. Should researchers use single indicators, best indicators, or multiple indicators in structural equation models?

    Directory of Open Access Journals (Sweden)

    Hayduk Leslie A


    Full Text Available Abstract Background Structural equation modeling developed as a statistical melding of path analysis and factor analysis that obscured a fundamental tension between a factor preference for multiple indicators and path modeling’s openness to fewer indicators. Discussion Multiple indicators hamper theory by unnecessarily restricting the number of modeled latents. Using the few best indicators – possibly even the single best indicator of each latent – encourages development of theoretically sophisticated models. Additional latent variables permit stronger statistical control of potential confounders, and encourage detailed investigation of mediating causal mechanisms. Summary We recommend the use of the few best indicators. One or two indicators are often sufficient, but three indicators may occasionally be helpful. More than three indicators are rarely warranted because additional redundant indicators provide less research benefit than single indicators of additional latent variables. Scales created from multiple indicators can introduce additional problems, and are prone to being less desirable than either single or multiple indicators.

  9. SVMQA: support-vector-machine-based protein single-model quality assessment. (United States)

    Manavalan, Balachandran; Lee, Jooyoung


    The accurate ranking of predicted structural models and selecting the best model from a given candidate pool remain as open problems in the field of structural bioinformatics. The quality assessment (QA) methods used to address these problems can be grouped into two categories: consensus methods and single-model methods. Consensus methods in general perform better and attain higher correlation between predicted and true quality measures. However, these methods frequently fail to generate proper quality scores for native-like structures which are distinct from the rest of the pool. Conversely, single-model methods do not suffer from this drawback and are better suited for real-life applications where many models from various sources may not be readily available. In this study, we developed a support-vector-machine-based single-model global quality assessment (SVMQA) method. For a given protein model, the SVMQA method predicts TM-score and GDT_TS score based on a feature vector containing statistical potential energy terms and consistency-based terms between the actual structural features (extracted from the three-dimensional coordinates) and predicted values (from primary sequence). We trained SVMQA using CASP8, CASP9 and CASP10 targets and determined the machine parameters by 10-fold cross-validation. We evaluated the performance of our SVMQA method on various benchmarking datasets. Results show that SVMQA outperformed the existing best single-model QA methods both in ranking provided protein models and in selecting the best model from the pool. According to the CASP12 assessment, SVMQA was the best method in selecting good-quality models from decoys in terms of GDTloss. SVMQA method can be freely downloaded from Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email:

  10. [Compared Markov with fractal models by using single-channel experimental and simulation data]. (United States)

    Lan, Tonghan; Wu, Hongxiu; Lin, Jiarui


    The gating mechanical kinetical of ion channels has been modeled as a Markov process. In these models it is assumed that the channel protein has a small number of discrete conformational states and kinetic rate constants connecting these states are constant, the transition rate constants among the states is independent both of time and of the previous channel activity. It is assumed in Liebovitch's fractal model that the channel exists in an infinite number of energy states, consequently, transitions from one conductance state to another would be governed by a continuum of rate constants. In this paper, a statistical comparison is presented of Markov and fractal models of ion channel gating, the analysis is based on single-channel data from ion channel voltage-dependence K+ single channel of neuron cell and simulation data from three-states Markov model.

  11. Modelling a short-wake meteor as a single or fragmenting body (United States)

    Campbell-Brown, M.


    An attempt is made to model a meteor observed with the Canadian Automated Meteor Observatory tracking system using a single body model. This meteor showed only very faint wake, implying that fragmentation was not important. Previous attempts to model the meteor with models of fragmenting meteors had overpredicted the amount of wake seen. A single-body, non-homogeneous ablation code was developed, but proved unsuccessful at matching the observed light curve of the meteor, even after a thorough search of parameter space. A model of a meteoroid fragmenting in many small bursts of small fragments was developed in an attempt to match both the light curve and the observed wake, and it succeeded in producing a qualitative fit to the light curve and to the high-resolution wake.

  12. [Three dimensional finite element model of a modified posterior cervical single open-door laminoplasty]. (United States)

    Wang, Q; Yang, Y; Fei, Q; Li, D; Li, J J; Meng, H; Su, N; Fan, Z H; Wang, B Q


    Objective: To build a three-dimensional finite element models of a modified posterior cervical single open-door laminoplasty with short-segmental lateral mass screws fusion. Methods: The C(2)-C(7) segmental data were obtained from computed tomography (CT) scans of a male patient with cervical spondylotic myelopathy and spinal stenosis.Three-dimensional finite element models of a modified cervical single open-door laminoplasty (before and after surgery) were constructed by the combination of software package MIMICS, Geomagic and ABAQUS.The models were composed of bony vertebrae, articulating facets, intervertebral disc and associated ligaments.The loads of moments 1.5Nm at different directions (flexion, extension, lateral bending and axial rotation)were applied at preoperative model to calculate intersegmental ranges of motion.The results were compared with the previous studies to verify the validation of the models. Results: Three-dimensional finite element models of the modified cervical single open- door laminoplasty had 102258 elements (preoperative model) and 161 892 elements (postoperative model) respectively, including C(2-7) six bony vertebraes, C(2-3)-C(6-7) five intervertebral disc, main ligaments and lateral mass screws.The intersegmental responses at the preoperative model under the loads of moments 1.5 Nm at different directions were similar to the previous published data. Conclusion: Three-dimensional finite element models of the modified cervical single open- door laminoplasty were successfully established and had a good biological fidelity, which can be used for further study.

  13. CFD Modelling and Validation of Mixing in a Model Single-Use-Technology Bioreactor


    Maltby, Richard; Chew, Yong-Min


    Single-use-technologies (SUT) are a category of disposable bioprocessing components which have increased in popularity in the biopharmaceutical industry in recent years [1]. Stirred single use bioreactors use a polymeric bag supported by a rigid metal frame. The bag is disposed of and replaced after use, removing the need for energy-intensive and time consuming cleaning and sterilisation in place, as well as improving the flexibility of the production facility [2]. They are currently applied ...

  14. Finite state projection based bounds to compare chemical master equation models using single-cell data

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Zachary [School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523 (United States); Neuert, Gregor [Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 (United States); Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232 (United States); Department of Biomedical Engineering, Vanderbilt University School of Engineering, Nashville, Tennessee 37232 (United States); Munsky, Brian [School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523 (United States); Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523 (United States)


    Emerging techniques now allow for precise quantification of distributions of biological molecules in single cells. These rapidly advancing experimental methods have created a need for more rigorous and efficient modeling tools. Here, we derive new bounds on the likelihood that observations of single-cell, single-molecule responses come from a discrete stochastic model, posed in the form of the chemical master equation. These strict upper and lower bounds are based on a finite state projection approach, and they converge monotonically to the exact likelihood value. These bounds allow one to discriminate rigorously between models and with a minimum level of computational effort. In practice, these bounds can be incorporated into stochastic model identification and parameter inference routines, which improve the accuracy and efficiency of endeavors to analyze and predict single-cell behavior. We demonstrate the applicability of our approach using simulated data for three example models as well as for experimental measurements of a time-varying stochastic transcriptional response in yeast.

  15. Spatial distribution of mineral dust single scattering albedo based on DREAM model (United States)

    Kuzmanoski, Maja; Ničković, Slobodan; Ilić, Luka


    Mineral dust comprises a significant part of global aerosol burden. There is a large uncertainty in estimating role of dust in Earth's climate system, partly due to poor characterization of its optical properties. Single scattering albedo is one of key optical properties determining radiative effects of dust particles. While it depends on dust particle sizes, it is also strongly influenced by dust mineral composition, particularly the content of light-absorbing iron oxides and the mixing state (external or internal). However, an assumption of uniform dust composition is typically used in models. To better represent single scattering albedo in dust atmospheric models, required to increase accuracy of dust radiative effect estimates, it is necessary to include information on particle mineral content. In this study, we present the spatial distribution of dust single scattering albedo based on the Dust Regional Atmospheric Model (DREAM) with incorporated particle mineral composition. The domain of the model covers Northern Africa, Middle East and the European continent, with horizontal resolution set to 1/5°. It uses eight particle size bins within the 0.1-10 μm radius range. Focusing on dust episode of June 2010, we analyze dust single scattering albedo spatial distribution over the model domain, based on particle sizes and mineral composition from model output; we discuss changes in this optical property after long-range transport. Furthermore, we examine how the AERONET-derived aerosol properties respond to dust mineralogy. Finally we use AERONET data to evaluate model-based single scattering albedo. Acknowledgement We would like to thank the AERONET network and the principal investigators, as well as their staff, for establishing and maintaining the AERONET sites used in this work.

  16. A Novel Model Predictive Control for Single-Phase Grid-Connected Photovoltaic Inverters

    DEFF Research Database (Denmark)

    Zangeneh Bighash, Esmaeil; Sadeghzadeh, Seyed Mohammad; Ebrahimzadeh, Esmaeil


    Single-phase grid-connected inverters with LCL filter are widely used to connect photovoltaic systems to the utility grid. Among the existing control schemes, predictive control methods are faster and more accurate but also more complicated to implement. Recently, the Model Predictive Control (MPC......) algorithm for single-phase inverter has been presented, where the algorithm implementation is straightforward. In the MPC approach, all switching states are considered in each switching period to achieve the control objectives. However, since the number of switching states in single-phase inverters is small...... vectors. Simulation results show that the proposed approach lead to a lower THD in the injected current combined with fast dynamics. The proposed predictive control has been simulated and implemented on a 1 kW single-phase HERIC (highly efficient and reliable inverter concept) inverter with an LCL filter...

  17. Efficient use of single molecule time traces to resolve kinetic rates, models and uncertainties (United States)

    Schmid, Sonja; Hugel, Thorsten


    Single molecule time traces reveal the time evolution of unsynchronized kinetic systems. Especially single molecule Förster resonance energy transfer (smFRET) provides access to enzymatically important time scales, combined with molecular distance resolution and minimal interference with the sample. Yet the kinetic analysis of smFRET time traces is complicated by experimental shortcomings—such as photo-bleaching and noise. Here we recapitulate the fundamental limits of single molecule fluorescence that render the classic, dwell-time based kinetic analysis unsuitable. In contrast, our Single Molecule Analysis of Complex Kinetic Sequences (SMACKS) considers every data point and combines the information of many short traces in one global kinetic rate model. We demonstrate the potential of SMACKS by resolving the small kinetic effects caused by different ionic strengths in the chaperone protein Hsp90. These results show an unexpected interrelation between conformational dynamics and ATPase activity in Hsp90.

  18. Technical innovation: Intragastric Single Port Sleeve Gastrectomy (IGSG). A feasibility survival study on porcine model. (United States)

    Estupinam, Oscar; Oliveira, André Lacerda de Abreu; Antunes, Fernanda; Galvão, Manoel; Phillips, Henrique; Scheffer, Jussara Peters; Rios, Marcelo; Zorron, Ricardo


    To perform technically the laparoscopic sleeve gastrectomy (LSG) using a unique Intragastric Single Port (IGSG) in animal swine model, evidencing an effective and safe procedure, optimizing the conventional technique. IGSG was performed in 4 minipigs, using a percutaneous intragastric single port located in the pre-pyloric region. The gastric stapling of the greater curvature started from the pre-pyloric region towards the angle of His by Endo GIA™ system and the specimen was removed through the single port. In the postoperative day 30, the animals were sacrificed and submitted to autopsy. All procedures were performed without conversion, and all survived 30 days. The mean operative time was 42 min. During the perioperative period no complications were observed during invagination and stapling. No postoperative complications occurred. Post-mortem examination showed no leaks or infectious complications. Intragastric Single Port is a feasible procedure that may be a suitable alternative technique of sleeve gastrectomy for the treatment of morbid obesity.

  19. Substructure based modeling of nickel single crystals cycled at low plastic strain amplitudes (United States)

    Zhou, Dong

    In this dissertation a meso-scale, substructure-based, composite single crystal model is fully developed from the simple uniaxial model to the 3-D finite element method (FEM) model with explicit substructures and further with substructure evolution parameters, to simulate the completely reversed, strain controlled, low plastic strain amplitude cyclic deformation of nickel single crystals. Rate-dependent viscoplasticity and Armstrong-Frederick type kinematic hardening rules are applied to substructures on slip systems in the model to describe the kinematic hardening behavior of crystals. Three explicit substructure components are assumed in the composite single crystal model, namely "loop patches" and "channels" which are aligned in parallel in a "vein matrix," and persistent slip bands (PSBs) connected in series with the vein matrix. A magnetic domain rotation model is presented to describe the reverse magnetostriction of single crystal nickel. Kinematic hardening parameters are obtained by fitting responses to experimental data in the uniaxial model, and the validity of uniaxial assumption is verified in the 3-D FEM model with explicit substructures. With information gathered from experiments, all control parameters in the model including hardening parameters, volume fraction of loop patches and PSBs, and variation of Young's modulus etc. are correlated to cumulative plastic strain and/or plastic strain amplitude; and the whole cyclic deformation history of single crystal nickel at low plastic strain amplitudes is simulated in the uniaxial model. Then these parameters are implanted in the 3-D FEM model to simulate the formation of PSB bands. A resolved shear stress criterion is set to trigger the formation of PSBs, and stress perturbation in the specimen is obtained by several elements assigned with PSB material properties a priori. Displacement increment, plastic strain amplitude control and overall stress-strain monitor and output are carried out in the user


    Directory of Open Access Journals (Sweden)

    S. Himavathi


    Full Text Available Neural Networks (NN have proved its efficacy for nonlinear system modeling. NN based controllers and estimators for nonlinear systems provide promising alternatives to the conventional counterpart. However, NN models have to meet the stringent requirements on execution time for its effective use in real time applications. This requires the NN model to be structurally compact and computationally less complex. In this paper a parametric method of analysis is adopted to determine the compact and faster NN model among various neural network architectures. This work proves through analysis and examples that the Single Neuron Cascaded (SNC architecture is distinct in providing compact and simpler models requiring lower execution time. The unique structural growth of SNC architecture enables automation in design. The SNC Network is shown to combine the advantages of both single and multilayer neural network architectures. Extensive analysis on selected architectures and their models for four benchmark nonlinear theoretical plants and a practical application are tested. A performance comparison of the NN models is presented to demonstrate the superiority of the single neuron cascaded architecture for online real time applications.

  1. Numerical model of spray combustion in a single cylinder diesel engine (United States)

    Acampora, Luigi; Sequino, Luigi; Nigro, Giancarlo; Continillo, Gaetano; Vaglieco, Bianca Maria


    A numerical model is developed for predicting the pressure cycle from Intake Valve Closing (IVC) to the Exhaust Valve Opening (EVO) events. The model is based on a modified one-dimensional (1D) Musculus and Kattke spray model, coupled with a zero-dimensional (0D) non-adiabatic transient Fed-Batch reactor model. The 1D spray model provides an estimate of the fuel evaporation rate during the injection phenomenon, as a function of time. The 0D Fed-Batch reactor model describes combustion. The main goal of adopting a 0D (perfectly stirred) model is to use highly detailed reaction mechanisms for Diesel fuel combustion in air, while keeping the computational cost as low as possible. The proposed model is validated by comparing its predictions with experimental data of pressure obtained from an optical single cylinder Diesel engine.

  2. Structural modeling of dahlia-type single-walled carbon nanohorn aggregates by molecular dynamics. (United States)

    Hawelek, L; Brodka, A; Dore, John C; Hannon, Alex C; Iijima, S; Yudasaka, M; Ohba, T; Kaneko, K; Burian, A


    The structure of dahlia-type single-walled carbon nanohorn aggregates has been modeled by classical molecular dynamics simulations, and the validity of the model has been verified by neutron diffraction. Computer-generated models consisted of an outer part formed from single-walled carbon nanohorns with diameters of 20-50 Å and a length of 400 Å and an inner turbostratic graphite-like core with a diameter of 130 Å. The diffracted intensity and the pair correlation function computed for such a constructed model are in good agreement with the neutron diffraction experimental data. The proposed turbostratic inner core explains the occurrence of the additional (002) and (004) graphitic peaks in the diffraction pattern of the studied sample and provides information about the interior structure of the dahlia-type aggregates.

  3. Firefly Optimization and Mathematical Modeling of a Vehicle Crash Test Based on Single-Mass

    Directory of Open Access Journals (Sweden)

    Andreas Klausen


    Full Text Available In this paper mathematical modeling of a vehicle crash test based on a single-mass is studied. The model under consideration consists of a single-mass coupled with a spring and/or a damper. The parameters for the spring and damper are obtained by analyzing the measured acceleration in the center of gravity of the vehicle during a crash. A model with a nonlinear spring and damper is also proposed and the parameters will be optimized with different damper and spring characteristics and optimization algorithms. The optimization algorithms used are interior-point and firefly algorithm. The objective of this paper is to compare different methods used to establish a simple model of a car crash and validate the results against real crash data.

  4. DQ reference frame modeling and control of single-phase active power decoupling circuits

    DEFF Research Database (Denmark)

    Tang, Yi; Qin, Zian; Blaabjerg, Frede


    Power decoupling circuits can compensate the inherent double line frequency ripple power in single-phase systems and greatly facilitate their dc-link capacitor design. Example applications of power decoupling circuit include photovoltaic, light-emitting diode, fuel cell, and motor drive systems....... This paper presents the dq synchronous reference frame modeling of single-phase power decoupling circuits and a complete model describing the dynamics of dc-link ripple voltage is presented. The proposed model is universal and valid for both inductive and capacitive decoupling circuits, and the input...... of decoupling circuits can be either dependent or independent of its front-end converters. Based on this model, a dq synchronous reference frame controller is designed which allows the decoupling circuit to operate in two different modes because of the circuit symmetry. Simulation and experimental results...

  5. Single Channel Quantum Color Image Encryption Algorithm Based on HSI Model and Quantum Fourier Transform (United States)

    Gong, Li-Hua; He, Xiang-Tao; Tan, Ru-Chao; Zhou, Zhi-Hong


    In order to obtain high-quality color images, it is important to keep the hue component unchanged while emphasize the intensity or saturation component. As a public color model, Hue-Saturation Intensity (HSI) model is commonly used in image processing. A new single channel quantum color image encryption algorithm based on HSI model and quantum Fourier transform (QFT) is investigated, where the color components of the original color image are converted to HSI and the logistic map is employed to diffuse the relationship of pixels in color components. Subsequently, quantum Fourier transform is exploited to fulfill the encryption. The cipher-text is a combination of a gray image and a phase matrix. Simulations and theoretical analyses demonstrate that the proposed single channel quantum color image encryption scheme based on the HSI model and quantum Fourier transform is secure and effective.

  6. Stress relaxation analysis of single chondrocytes using porohyperelastic model based on AFM experiments

    Directory of Open Access Journals (Sweden)

    Trung Dung Nguyen


    Full Text Available Based on atomic force microscopytechnique, we found that the chondrocytes exhibits stress relaxation behavior. We explored the mechanism of this stress relaxation behavior and concluded that the intracellular fluid exuding out from the cells during deformation plays the most important role in the stress relaxation. We applied the inverse finite element analysis technique to determine necessary material parameters for porohyperelastic (PHE model to simulate stress relaxation behavior as this model is proven capable of capturing the non-linear behavior and the fluid-solid interaction during the stress relaxation of the single chondrocytes. It is observed that PHE model can precisely capture the stress relaxation behavior of single chondrocytes and would be a suitable model for cell biomechanics.

  7. Testing of plain and fibrous concrete single cavity prestressed concrete reactor vessel models

    International Nuclear Information System (INIS)

    Oland, C.B.


    Two single-cavity prestressed concrete reactor vessel (PCRV) models were fabricated and tested to failure to demonstrate the structural response and ultimate pressure capacity of models cast from high-strength concretes. Concretes with design compressive strengths in excess of 70 MPa (10,000 psi) were developed for this investigation. One model was cast from plain concrete and failed in shear at the head region. The second model was cast from fiber reinforced concrete and failed by rupturing the circumferential prestressing at the sidewall of the structure. The tests also demonstrated the capabilities of the liner system to maintain a leak-tight pressure boundary. 3 refs., 4 figs

  8. A one-item question with a Likert or Visual Analog Scale adequately measured current anxiety. (United States)

    Davey, Heather M; Barratt, Alexandra L; Butow, Phyllis N; Deeks, Jonathan J


    To determine whether a single question with a Likert Scale or a Visual Analog Scale (VAS) response adequately measures current anxiety. Consecutive English-speaking adult women attending a dedicated breast clinic in a major Australian city were invited to complete a demographic questionnaire, the State Trait Anxiety Inventory (STAI), and a single question with a five-point Likert Scale response and a VAS in random order. Only women who completed the STAI were included in analyses. Four hundred of 497 (80%) eligible women agreed to participate. Both measures were adequate predictors of the STAI score; correlation with STAI was 0.78 (95% confidence interval [CI] 0.73-0.82) for the VAS and 0.75 (95% CI 0.70-0.79) for the Likert Scale. However, 11% of women incorrectly completed the VAS limiting its usefulness. A single question with either a Likert Scale or VAS response may be an adequate replacement for the STAI. Both measures quickly and easily assess anxiety and may be useful for research purposes when researchers have very limited time or questionnaire space or need to reduce the burden on participants of completing many measures.

  9. Model for a collimated spin wave beam generated by a single layer, spin torque nanocontact


    Hoefer, M. A.; Silva, T. J.; Stiles, M. D.


    A model of spin torque induced magnetization dynamics based upon semi-classical spin diffusion theory for a single layer nanocontact is presented. The model incorporates effects due to the current induced Oersted field and predicts the generation of a variety of spatially dependent, coherent, precessional magnetic wave structures. Directionally controllable collimated spin wave beams, vortex spiral waves, and localized standing waves are found to be excited by the interplay of the Oersted fie...

  10. Identification and estimation of nonseparable single-index models in panel data with correlated random effects

    NARCIS (Netherlands)

    Cizek, Pavel; Lei, Jinghua

    The identification in a nonseparable single-index models with correlated random effects is considered in panel data with a fixed number of time periods. The identification assumption is based on the correlated random effects structure. Under this assumption, the parameters of interest are identified

  11. Identification and Estimation of Nonseparable Single-Index Models in Panel Data with Correlated Random Effects

    NARCIS (Netherlands)

    Cizek, P.; Lei, J.


    Abstract: The identification of parameters in a nonseparable single-index models with correlated random effects is considered in the context of panel data with a fixed number of time periods. The identification assumption is based on the correlated random-effect structure: the distribution of

  12. Evaluating Change in Behavioral Preferences: Multidimensional Scaling Single-Ideal Point Model (United States)

    Ding, Cody


    The purpose of the article is to propose a multidimensional scaling single-ideal point model as a method to evaluate changes in individuals' preferences under the explicit methodological framework of behavioral preference assessment. One example is used to illustrate the approach for a clear idea of what this approach can accomplish.

  13. Asymptotic normality of conditional distribution estimation in the single index model

    Directory of Open Access Journals (Sweden)

    Hamdaoui Diaa Eddine


    Full Text Available This paper deals with the estimation of conditional distribution function based on the single-index model. The asymptotic normality of the conditional distribution estimator is established. Moreover, as an application, the asymptotic (1 − γ confidence interval of the conditional distribution function is given for 0 < γ < 1.

  14. Asymptotic normality of conditional distribution estimation in the single index model


    Hamdaoui Diaa Eddine; Bouchentouf Amina Angelika; Rabhi Abbes; Guendouzi Toufik


    This paper deals with the estimation of conditional distribution function based on the single-index model. The asymptotic normality of the conditional distribution estimator is established. Moreover, as an application, the asymptotic (1 − γ) confidence interval of the conditional distribution function is given for 0 < γ < 1.

  15. 76 FR 31453 - Special Conditions: Gulfstream Model GVI Airplane; Single-Occupant Side-Facing Seats (United States)


    ... apply to that model as well. Conclusion This action affects only certain novel or unusual design... single-occupant side-facing seats: A. The Injury Criteria 1. Existing Criteria: All injury protection criteria of Sec. 25.562(c)(1) through (c)(6) apply to the occupant of a side-facing seat. Head injury...

  16. A Model-Free Diagnostic for Single-Peakedness of Item Responses Using Ordered Conditional Means (United States)

    Polak, Marike; De Rooij, Mark; Heiser, Willem J.


    In this article we propose a model-free diagnostic for single-peakedness (unimodality) of item responses. Presuming a unidimensional unfolding scale and a given item ordering, we approximate item response functions of all items based on ordered conditional means (OCM). The proposed OCM methodology is based on Thurstone & Chave's (1929) "criterion…

  17. A single-system model predicts recognition memory and repetition priming in amnesia

    NARCIS (Netherlands)

    Berry, C.J.; Kessels, R.P.C.; Wester, A.J.; Shanks, D.R.


    We challenge the claim that there are distinct neural systems for explicit and implicit memory by demonstrating that a formal single-system model predicts the pattern of recognition memory (explicit) and repetition priming (implicit) in amnesia. In the current investigation, human participants with

  18. Equivalent circuit modeling and simulation of the zinc nickel single flow battery

    Directory of Open Access Journals (Sweden)

    Shouguang Yao


    Full Text Available This paper builds the equivalent circuit model for a single cell of zinc nickel single flow battery (ZNB with 300 Ah. According to the experimental data of the single cell under 100 A pulse discharge conditions, the model parameters can be obtained by parameter identification, and the analytical expressions for each model parameter can be obtained by using the method of high degree polynomial fitting and exponential function fitting, then the mathematical model of the stack voltage can be built. The relative error of the simulation results for stack voltage is controlled within 3.2% by experimental comparison, which verifies the accuracy of the model and model parameters. The parameter formulas obtained by fitting method can effectively solve calculation problem of the battery parameters. And under 100 A constant-current discharge condition, the stack voltage of the battery is dropping relatively flat over about 110 minutes after loading current, and dropping dramatically within about 50 minutes at the end of discharge due to the increasing polarization.

  19. A High-Rate, Single-Crystal Model including Phase Transformations, Plastic Slip, and Twinning

    Energy Technology Data Exchange (ETDEWEB)

    Addessio, Francis L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Bronkhorst, Curt Allan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Bolme, Cynthia Anne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Explosive Science and Shock Physics Division; Brown, Donald William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Cerreta, Ellen Kathleen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Lebensohn, Ricardo A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Lookman, Turab [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Luscher, Darby Jon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Mayeur, Jason Rhea [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Morrow, Benjamin M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Rigg, Paulo A. [Washington State Univ., Pullman, WA (United States). Dept. of Physics. Inst. for Shock Physics


    An anisotropic, rate-­dependent, single-­crystal approach for modeling materials under the conditions of high strain rates and pressures is provided. The model includes the effects of large deformations, nonlinear elasticity, phase transformations, and plastic slip and twinning. It is envisioned that the model may be used to examine these coupled effects on the local deformation of materials that are subjected to ballistic impact or explosive loading. The model is formulated using a multiplicative decomposition of the deformation gradient. A plate impact experiment on a multi-­crystal sample of titanium was conducted. The particle velocities at the back surface of three crystal orientations relative to the direction of impact were measured. Molecular dynamics simulations were conducted to investigate the details of the high-­rate deformation and pursue issues related to the phase transformation for titanium. Simulations using the single crystal model were conducted and compared to the high-­rate experimental data for the impact loaded single crystals. The model was found to capture the features of the experiments.

  20. 13 CFR 108.200 - Adequate capital for NMVC Companies. (United States)


    ... Companies. 108.200 Section 108.200 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION NEW MARKETS VENTURE CAPITAL (âNMVCâ) PROGRAM Qualifications for the NMVC Program Capitalizing A Nmvc Company § 108.200 Adequate capital for NMVC Companies. You must meet the requirements of §§ 108.200-108.230 in order to...

  1. need for adequate funding in the administration of secondary ...

    African Journals Online (AJOL)


    Funding is considered all over the world as the life wire that propels the educational sector towards achieving her objectives. The paper focuses on the need for adequate funding of secondary education in Nigeria. Emphases were laid on the alternative sources of funding for secondary schools as well as the consequences ...

  2. Provision of Adequate Water Supply in Benin Province: Local ...

    African Journals Online (AJOL)

    This work examines the performance of the local governments in the provision of adequate sources of potable water in their different areas of jurisdiction in the Benin Province. The work covers the four Native Administration areas of Benin, Esan, Afemai and Asaba Divisions, which made up the Benin Province during ...

  3. Region 8: Colorado Springs Adequate Letter (8/17/2011) (United States)

    This March 3, 2011 letter from EPA to Chistopher E. Urbina M.D., MPH, Colorado Department of Public Health and Environment states that EPA has found that the Colorado Springs, CO second 10 year Limited Maintenance Plan (LMP) adequate for transportation

  4. Is the Department of State Accountability Review Board Process adequate (United States)


    Is the Department of State Accountability Review Board Process Adequate? A Monograph by Kenneth W. Davis Department of State School of...REPORT TYPE SAMS Monograph 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Is the Department of State Accountability Review Board Process...

  5. 116 Appraisal as a Determinant for Adequate Compensation in ...

    African Journals Online (AJOL)



    Jan 24, 2012 ... Abstract. In this paper, efforts were made to critically investigate and analyze appraisal as a determinant for adequate compensation in private sector organizations in Nigeria. Thus, the paper sets out by reviewing a body of existing literature on concept of management theories and how the subject of.

  6. Constraints to adequate provision of physical resources for the ...

    African Journals Online (AJOL)

    Constraints to adequate provision of physical resources for the universal basic education programme in delta state, Nigeria. ... The researcher used a questionnaire to collect primary data from a sample of 376 primary schools and 141 junior secondary schools head teachers across the state. Data collected were analyzed ...

  7. The Effectiveness of Clinician Education on the Adequate ...

    African Journals Online (AJOL)

    to insufficient, and/or illegible clinical information provided on laboratory request forms which may result in comments. The Effectiveness of Clinician Education on the. Adequate Completion of Laboratory Test Request. Forms at a Tertiary Hospital. Osegbe ID, Afolabi O1, Onyenekwu CP1. Department of Chemical Pathology, ...

  8. Need for Adequate Funding in the Administration of Secondary ...

    African Journals Online (AJOL)

    Funding is considered all over the world as the life wire that propels the educational sector towards achieving her objectives. The paper focuses on the need for adequate funding of secondary education in Nigeria. Emphases were laid on the alternative sources of funding for secondary schools as well as the consequences ...

  9. Synthesis and ultrastructure of plate-like apatite single crystals as a model for tooth enamel

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Zhi, E-mail: [Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571 (Japan); Yoshimura, Hideyuki, E-mail: [Department of Physics, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571 (Japan); Aizawa, Mamoru, E-mail: [Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571 (Japan)


    Hydroxyapatite (HAp) is an inorganic constituent compound of human bones and teeth, with superior biocompatibility and bioactivity characteristics. Its crystal structure is hexagonal, characterized by a(b)- and c-planes. In vertebrate long bones, HAp crystals have a c-axis orientation, while in tooth enamel, they have an a(b)-axis orientation. Many methods can be used to synthesize c-axis oriented HAp single crystals; however, to the best of our knowledge, there have been no reports on a synthesis method for a(b)-axis oriented HAp single crystals. In this study, we successfully synthesized plate-like HAp crystals at the air–liquid interface of a starting solution via an enzyme reaction of urea with urease. Crystal phase analysis and ultrastructure observations were carried out, and the results indicated that the particles were single crystals, with almost the same a(b)-axis orientation as tooth enamel. It is hoped that by utilizing their unique surface charge and atomic arrangement, the resulting particles can be used as a high-performance biomaterial, capable of adsorbing bio-related substances and a model for tooth enamel. - Highlights: ► Synthesis of plate-like hydroxyapatite crystals at air–liquid interface ► Ultrastructural analysis of plate-like hydroxyapatite crystals ► Plate-like hydroxyapatite single crystals with a high a(b)-axis orientation ► Plate-like hydroxyapatite single crystals as a model for tooth enamel.

  10. Using single cell sequencing data to model the evolutionary history of a tumor. (United States)

    Kim, Kyung In; Simon, Richard


    The introduction of next-generation sequencing (NGS) technology has made it possible to detect genomic alterations within tumor cells on a large scale. However, most applications of NGS show the genetic content of mixtures of cells. Recently developed single cell sequencing technology can identify variation within a single cell. Characterization of multiple samples from a tumor using single cell sequencing can potentially provide information on the evolutionary history of that tumor. This may facilitate understanding how key mutations accumulate and evolve in lineages to form a heterogeneous tumor. We provide a computational method to infer an evolutionary mutation tree based on single cell sequencing data. Our approach differs from traditional phylogenetic tree approaches in that our mutation tree directly describes temporal order relationships among mutation sites. Our method also accommodates sequencing errors. Furthermore, we provide a method for estimating the proportion of time from the earliest mutation event of the sample to the most recent common ancestor of the sample of cells. Finally, we discuss current limitations on modeling with single cell sequencing data and possible improvements under those limitations. Inferring the temporal ordering of mutational sites using current single cell sequencing data is a challenge. Our proposed method may help elucidate relationships among key mutations and their role in tumor progression.

  11. A spectral geometric model for Compton single scatter in PET based on the single scatter simulation approximation

    DEFF Research Database (Denmark)

    Kazantsev, I.G.; Olsen, Ulrik Lund; Poulsen, Henning Friis


    scatter is interpreted as the volume integral over scatter points that constitute a rotation body with a football shape, while single scattering with a certain angle is evaluated as the surface integral over the boundary of the rotation body. The equations for total and sample single scatter calculations...... are derived using a single scatter simulation approximation. We show that the three-dimensional slice-by-slice filtered backprojection algorithm is applicable for scatter data inversion provided that the attenuation map is assumed to be constant. The results of the numerical experiments are presented....

  12. Improved single particle potential for transport model simulations of nuclear reactions induced by rare isotope beams

    International Nuclear Information System (INIS)

    Xu Chang; Li Baoan


    Taking into account more accurately the isospin dependence of nucleon-nucleon interactions in the in-medium many-body force term of the Gogny effective interaction, new expressions for the single-nucleon potential and the symmetry energy are derived. Effects of both the spin (isospin) and the density dependence of nuclear effective interactions on the symmetry potential and the symmetry energy are examined. It is shown that they both play a crucial role in determining the symmetry potential and the symmetry energy at suprasaturation densities. The improved single-nucleon potential will be useful for more accurate simulation of nuclear reactions induced by rare-isotope beams within transport models.

  13. Detection Procedure for a Single Additive Outlier and Innovational Outlier in a Bilinear Model

    Directory of Open Access Journals (Sweden)

    Azami Zaharim


    Full Text Available A single outlier detection procedure for data generated from BL(1,1,1,1 models is developed. It is carried out in three stages. Firstly, the measure of impact of an IO and AO denoted by IO ω , AO ω , respectively are derived based on least squares method. Secondly, test statistics and test criteria are defined for classifying an observation as an outlier of its respective type. Finally, a general single outlier detection procedure is presented to distinguish a particular type of outlier at a time point t.

  14. Weibull aging models for the single protective channel unavailability analysis by the device of stages

    International Nuclear Information System (INIS)

    Nunes, M.E.C.; Noriega, H.C.; Melo, P.F.F.


    Among the features to take into account in the unavailability analysis of protective channels, there is one that plays a dominant role - that of considering the equipment aging. In this sense, the exponential failure model is not adequate, since some transition rates are no more constant. As a consequence, Markovian models cannot be used anymore. As an alternative, one may use the device of stages that allows for transforming a Non Markovian model into an equivalent Markovian one by insertion of a fictitious states set, called stages. For a given time-dependent transition rate, its failure density is analysed as to the best combination of exponential distributions and then the moments of the original distribution and those of the combination are matched to estimate the necessary parameters. In this paper, the aging of the protective channel is supposed to follow Weibull distributions. Typical means and variances for the times to failure are considered and combinations of stages are checked. Initial conditions features are discussed in connection with states that are fictitious and to check the validity of the developed models. Alternative solutions by the discretization of the failure rates are generated. The results obtained agree quite well. (author). 7 refs., 6 figs

  15. Monte Carlo Modelling of Single-Crystal Diffuse Scattering from Intermetallics

    Directory of Open Access Journals (Sweden)

    Darren J. Goossens


    Full Text Available Single-crystal diffuse scattering (SCDS reveals detailed structural insights into materials. In particular, it is sensitive to two-body correlations, whereas traditional Bragg peak-based methods are sensitive to single-body correlations. This means that diffuse scattering is sensitive to ordering that persists for just a few unit cells: nanoscale order, sometimes referred to as “local structure”, which is often crucial for understanding a material and its function. Metals and alloys were early candidates for SCDS studies because of the availability of large single crystals. While great progress has been made in areas like ab initio modelling and molecular dynamics, a place remains for Monte Carlo modelling of model crystals because of its ability to model very large systems; important when correlations are relatively long (though still finite in range. This paper briefly outlines, and gives examples of, some Monte Carlo methods appropriate for the modelling of SCDS from metallic compounds, and considers data collection as well as analysis. Even if the interest in the material is driven primarily by magnetism or transport behaviour, an understanding of the local structure can underpin such studies and give an indication of nanoscale inhomogeneity.

  16. A Control Volume Model of Solute Transport in a Single Fracture (United States)

    Kennedy, Christopher A.; Lennox, William C.


    A control volume model of solute transport through a single fracture in a porous matrix is developed. Application to problems of contaminant transport through fractured clay demonstrates several strong features of the method. The control volume approach inherently conserves mass and treats dispersivity at interfaces in a physically correct manner. By employing an upstream weighting scheme, based on the exact solution to the one-dimensional steady state advection-dispersion equation, the model proves to be more efficient than previous single-fracture models. The significance of matrix diffusion in the direction parallel to the fracture axis is investigated. For the transport of a nonreactive tracer through a 20-micrometer-wide fracture in clay material, analytical solutions based on one-dimensional matrix diffusion are erroneous for flow velocities of less than 1 m/day. The influence of boundary conditions on two-dimensional matrix diffusion is considered, and the clean-up of a contaminated fracture is simulated.

  17. Application of Computer Program Carsim for Modelling Single and Double Lane Change Manoeuvres

    Directory of Open Access Journals (Sweden)

    Artūras Žukas


    Full Text Available The paper analyzes the possibilities of using computer aided modelling programs for developing new cars to achieve better dynamical properties of control over vehicles. The article shortly reviews the behaviour of young and experienced drivers and models describing it. The paper covers the process of turning car steering wheel, considers acceptable values of lateral acceleration comfortable for a car driver and all car passengers and presents computer aided modelling program CarSim used for displaying single and double lane change manoeuvres at various speeds on dry asphalt. The given charts, including data about steering wheel angle and lateral acceleration values indicate single and double lane change manoeuvres performed by a car. Also, the values of longitudinal and lateral forces of each wheel during the double lane change manoeuvre are provided.

  18. Formal Uncertainty and Dispersion of Single and Double Difference Models for GNSS-Based Attitude Determination. (United States)

    Chen, Wen; Yu, Chao; Dong, Danan; Cai, Miaomiao; Zhou, Feng; Wang, Zhiren; Zhang, Lei; Zheng, Zhengqi


    With multi-antenna synchronized global navigation satellite system (GNSS) receivers, the single difference (SD) between two antennas is able to eliminate both satellite and receiver clock error, thus it becomes necessary to reconsider the equivalency problem between the SD and double difference (DD) models. In this paper, we quantitatively compared the formal uncertainties and dispersions between multiple SD models and the DD model, and also carried out static and kinematic short baseline experiments. The theoretical and experimental results show that under a non-common clock scheme the SD and DD model are equivalent. Under a common clock scheme, if we estimate stochastic uncalibrated phase delay (UPD) parameters every epoch, this SD model is still equivalent to the DD model, but if we estimate only one UPD parameter for all epochs or take it as a known constant, the SD (here called SD2) and DD models are no longer equivalent. For the vertical component of baseline solutions, the formal uncertainties of the SD2 model are two times smaller than those of the DD model, and the dispersions of the SD2 model are even more than twice smaller than those of the DD model. In addition, to obtain baseline solutions, the SD2 model requires a minimum of three satellites, while the DD model requires a minimum of four satellites, which makes the SD2 more advantageous in attitude determination under sheltered environments.

  19. Predictive Models for the Free Energy of Hydrogen Bonded Complexes with Single and Cooperative Hydrogen Bonds. (United States)

    Glavatskikh, Marta; Madzhidov, Timur; Solov'ev, Vitaly; Marcou, Gilles; Horvath, Dragos; Varnek, Alexandre


    In this work, we report QSPR modeling of the free energy ΔG of 1 : 1 hydrogen bond complexes of different H-bond acceptors and donors. The modeling was performed on a large and structurally diverse set of 3373 complexes featuring a single hydrogen bond, for which ΔG was measured at 298 K in CCl 4 . The models were prepared using Support Vector Machine and Multiple Linear Regression, with ISIDA fragment descriptors. The marked atoms strategy was applied at fragmentation stage, in order to capture the location of H-bond donor and acceptor centers. Different strategies of model validation have been suggested, including the targeted omission of individual H-bond acceptors and donors from the training set, in order to check whether the predictive ability of the model is not limited to the interpolation of H-bond strength between two already encountered partners. Successfully cross-validating individual models were combined into a consensus model, and challenged to predict external test sets of 629 and 12 complexes, in which donor and acceptor formed single and cooperative H-bonds, respectively. In all cases, SVM models outperform MLR. The SVM consensus model performs well both in 3-fold cross-validation (RMSE=1.50 kJ/mol), and on the external test sets containing complexes with single (RMSE=3.20 kJ/mol) and cooperative H-bonds (RMSE=1.63 kJ/mol). © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Protein secondary structure prediction for a single-sequence using hidden semi-Markov models

    Directory of Open Access Journals (Sweden)

    Borodovsky Mark


    Full Text Available Abstract Background The accuracy of protein secondary structure prediction has been improving steadily towards the 88% estimated theoretical limit. There are two types of prediction algorithms: Single-sequence prediction algorithms imply that information about other (homologous proteins is not available, while algorithms of the second type imply that information about homologous proteins is available, and use it intensively. The single-sequence algorithms could make an important contribution to studies of proteins with no detected homologs, however the accuracy of protein secondary structure prediction from a single-sequence is not as high as when the additional evolutionary information is present. Results In this paper, we further refine and extend the hidden semi-Markov model (HSMM initially considered in the BSPSS algorithm. We introduce an improved residue dependency model by considering the patterns of statistically significant amino acid correlation at structural segment borders. We also derive models that specialize on different sections of the dependency structure and incorporate them into HSMM. In addition, we implement an iterative training method to refine estimates of HSMM parameters. The three-state-per-residue accuracy and other accuracy measures of the new method, IPSSP, are shown to be comparable or better than ones for BSPSS as well as for PSIPRED, tested under the single-sequence condition. Conclusions We have shown that new dependency models and training methods bring further improvements to single-sequence protein secondary structure prediction. The results are obtained under cross-validation conditions using a dataset with no pair of sequences having significant sequence similarity. As new sequences are added to the database it is possible to augment the dependency structure and obtain even higher accuracy. Current and future advances should contribute to the improvement of function prediction for orphan proteins inscrutable

  1. Modeling of the I V characteristics of single and double barrier tunneling diodes using A k · p band model (United States)

    Mui, D.; Patil, M.; Chen, J.; Agarwala, S.; Kumar, N. S.; Morkoc, H.


    We model the I-V characteristics of single and double barrier tunneling diodes using the complex band structure of the tunneling barrier obtained from a k · p band model. Band-bending is calculated by solving two coupled 1-D Poisson's equations with a classical potential in the accumulation region. The transfer matrix method is used for the calculation of the transmission probability of the tunneling electron whose complex k-vector is obtained from the band structure. An energy dependent density of states effective mass which is also calculated from the band structure is used. I-V characteristics for In 0.53Ga 0.47As/In 0.52Al 0.48As/In 0.53Ga 0.47As single and double barrier tunneling diodes obtained from this model agree quantitatively with experiment.

  2. Addressing challenges in single species assessments via a simple state-space assessment model

    DEFF Research Database (Denmark)

    Nielsen, Anders

    Single-species and age-structured fish stock assessments still remains the main tool for managing fish stocks. A simple state-space assessment model is presented as an alternative to (semi) deterministic procedures and the full parametric statistical catch at age models. It offers a solution...... to some of the key challenges of these models. Compared to the deterministic procedures it solves a list of problems originating from falsely assuming that age classified catches are known without errors and allows quantification of uncertainties of estimated quantities of interest. Compared to full...

  3. CT-QMC-simulations on the single impurity Anderson model with a superconducting bath

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Florian; Pruschke, Thomas [Institut fuer theoretische Physik, Universitaet Goettingen, Friedrich-Hund-Platz 1, 37077 Goettingen (Germany)


    Coupling a heavy fermion impurity to a superconducting lead induces a competition between the Kondo effect and superconductivity in the low temperature regime. This situation has been modeled with a single impurity Anderson model, where the normal state bath is replaced by a BCS-type superconducting bath in mean field approximation. We study this model using a continuous-time quantum Monte Carlo hybridization expansion algorithm. Results include the impurity Green's functions as well as the corresponding spectral functions obtained from analytic continuation. Two side bands are observed which we discuss in the light of Yu-Shiba-Rusinov states.

  4. On Thermodynamics Problems in the Single-Phase-Lagging Heat Conduction Model

    Directory of Open Access Journals (Sweden)

    Shu-Nan Li


    Full Text Available Thermodynamics problems for the single-phase-lagging (SPL model have not been much studied. In this paper, the violation of the second law of thermodynamics by the SPL model is studied from two perspectives, which are the negative entropy production rate and breaking equilibrium spontaneously. The methods for the SPL model to avoid the negative entropy production rate are proposed, which are extended irreversible thermodynamics and the thermal relaxation time. Modifying the entropy production rate positive or zero is not enough to avoid the violation of the second law of thermodynamics for the SPL model, because the SPL model could cause breaking equilibrium spontaneously in some special circumstances. As comparison, it is shown that Fourier’s law and the CV model cannot break equilibrium spontaneously by analyzing mathematical energy integral.

  5. Simulating the 2012 High Plains Drought Using Three Single Column Models (SCM) (United States)

    Medina, I. D.; Baker, I. T.; Denning, S.; Dazlich, D. A.


    The impact of changes in the frequency and severity of drought on fresh water sustainability is a great concern for many regions of the world. One such location is the High Plains, where the local economy is primarily driven by fresh water withdrawals from the Ogallala Aquifer, which accounts for approximately 30% of total irrigation withdrawals from all U.S. aquifers combined. Modeling studies that focus on the feedback mechanisms that control the climate and eco-hydrology during times of drought are limited, and have used conventional General Circulation Models (GCMs) with grid length scales ranging from one hundred to several hundred kilometers. Additionally, these models utilize crude statistical parameterizations of cloud processes for estimating sub-grid fluxes of heat and moisture and have a poor representation of land surface heterogeneity. For this research, we focus on the 2012 High Plains drought and perform numerical simulations using three single column model (SCM) versions of BUGS5 (Colorado State University (CSU) GCM coupled to the Simple Biosphere Model (SiB3)). In the first version of BUGS5, the model is used in its standard bulk setting (single atmospheric column coupled to a single instance of SiB3), secondly, the Super-Parameterized Community Atmospheric Model (SP-CAM), a cloud resolving model (CRM) (CRM consists of 32 atmospheric columns), replaces the single CSU GCM atmospheric parameterization and is coupled to a single instance of SiB3, and for the third version of BUGS5, an instance of SiB3 is coupled to each CRM column of the SP-CAM (32 CRM columns coupled to 32 instances of SiB3). To assess the physical realism of the land-atmosphere feedbacks simulated by all three versions of BUGS5, differences in simulated energy and moisture fluxes are computed between the 2011 and 2012 period and are compared to those calculated using observational data from the AmeriFlux Tower Network for the same period at the ARM Site in Lamont, OK. This research

  6. Electromagnetically induced transparency and reduced speeds for single photons in a fully quantized model

    International Nuclear Information System (INIS)

    Purdy, Thomas; Ligare, Martin


    We introduce a simple model for electromagnetically induced transparency in which all fields are treated quantum mechanically. We study a system of three separated atoms at fixed positions in a one-dimensional multimode optical cavity. The first atom serves as the source for a single spontaneously emitted photon; the photon scatters from a three-level 'Λ'-configuration atom which interacts with an additional single-mode field coupling two of the atomic levels; the third atom serves as a detector of the total transmitted field. We find an analytical solution for the quantum dynamics. From the quantum amplitude describing the excitation of the detector atom we extract information that provides exact single-photon analogues to wave delays predicted by semi-classical theories. We also find complementary information in the expectation value of the electric field intensity operator

  7. Characterization of biomass combustion at high temperatures based on an upgraded single particle model

    International Nuclear Information System (INIS)

    Li, Jun; Paul, Manosh C.; Younger, Paul L.; Watson, Ian; Hossain, Mamdud; Welch, Stephen


    Highlights: • High temperature rapid biomass combustion is studied based on single particle model. • Particle size changes in devolatilization and char oxidation models are addressed. • Time scales of various thermal sub-processes are compared and discussed. • Potential solutions are suggested to achieve better biomass co-firing performances. - Abstract: Biomass co-firing is becoming a promising solution to reduce CO 2 emissions, due to its renewability and carbon neutrality. Biomass normally has high moisture and volatile contents, complicating its combustion behavior, which is significantly different from that of coal. A computational fluid dynamics (CFD) combustion model of a single biomass particle is employed to study high-temperature rapid biomass combustion. The two-competing-rate model and kinetics/diffusion model are used to model biomass devolatilization reaction and char burnout process, respectively, in which the apparent kinetics used for those two models were from high temperatures and high heating rates tests. The particle size changes during the devolatilization and char burnout are also considered. The mass loss properties and temperature profile during the biomass devolatilization and combustion processes are predicted; and the timescales of particle heating up, drying, devolatilization, and char burnout are compared and discussed. Finally, the results shed light on the effects of particle size on the combustion behavior of biomass particle

  8. A single-equation study of US petroleum consumption: The role of model specificiation

    International Nuclear Information System (INIS)

    Jones, C.T.


    The price responsiveness of US petroleum consumption began to attract a great deal of attention following the unexpected and substantial oil price increases of 1973-74. There have been a number of large, multi-equation econometric studies of US energy demand since then which have focused primarily on estimating short run and long run price and income elasticities of individual energy resources (coal, oil, natural gas ampersand electricity) for various consumer sectors (residential, industrial, commercial). Following these early multi-equation studies there have been several single-equation studies of aggregate US petroleum consumption. When choosing an economic model specification for a single-equation study of aggregate US petroleum consumption, an easily estimated model that will provide unbiased price and income elasticity estimates and yield accurate forecasts is needed. Using Hendry's general-to-simple specification search technique and annual data to obtain a restricted, data-acceptable simplification of a general ADL model yielded GNP and short run price elasticities near the consensus estimates, but a long run price elasticity substantially smaller than existing estimates. Comparisons with three other seemingly acceptable simple-to-general models showed that popular model specifications often involve untested, unacceptable parameter restrictions. These models may also demonstrate poorer forecasting performance. Based on results, the general-to-simple approach appears to offer a more accurate methodology for generating superior forecast models of petroleum consumption and other energy use patterns

  9. Rainfall effect on single-vehicle crash severities using polychotomous response models. (United States)

    Jung, Soyoung; Qin, Xiao; Noyce, David A


    As part of the Wisconsin road weather safety initiative, the objective of this study is to assess the effects of rainfall on the severity of single-vehicle crashes on Wisconsin interstate highways utilizing polychotomous response models. Weather-related factors considered in this study include estimated rainfall intensity for 15 min prior to a crash occurrence, water film depth, temperature, wind speed/direction, stopping sight distance and deficiency of car-following distance at the crash moment. For locations with unknown weather information, data were interpolated using the inverse squared distance method. Non-weather factors such as road geometrics, traffic conditions, collision types, vehicle types, and driver and temporal attributes were also considered. Two types of polychotomous response models were compared: ordinal logistic and sequential logistic regressions. The sequential logistic regression was tested with forward and backward formats. Comparative models were also developed for single vehicle crash severity during clear weather. In conclusion, the backward sequential logistic regression model produced the best results for predicting crash severities in rainy weather where rainfall intensity, wind speed, roadway terrain, driver's gender, and safety belt were found to be statistically significant. Our study also found that the seasonal factor was significant in clear weather. The seasonal factor is a predictor suggesting that inclement weather may affect crash severity. These findings can be used to determine the probabilities of single vehicle crash severity in rainy weather and provide quantitative support on improving road weather safety via weather warning systems, highway facility improvements, and speed limit management.

  10. Protein structural model selection by combining consensus and single scoring methods.

    Directory of Open Access Journals (Sweden)

    Zhiquan He

    Full Text Available Quality assessment (QA for predicted protein structural models is an important and challenging research problem in protein structure prediction. Consensus Global Distance Test (CGDT methods assess each decoy (predicted structural model based on its structural similarity to all others in a decoy set and has been proved to work well when good decoys are in a majority cluster. Scoring functions evaluate each single decoy based on its structural properties. Both methods have their merits and limitations. In this paper, we present a novel method called PWCom, which consists of two neural networks sequentially to combine CGDT and single model scoring methods such as RW, DDFire and OPUS-Ca. Specifically, for every pair of decoys, the difference of the corresponding feature vectors is input to the first neural network which enables one to predict whether the decoy-pair are significantly different in terms of their GDT scores to the native. If yes, the second neural network is used to decide which one of the two is closer to the native structure. The quality score for each decoy in the pool is based on the number of winning times during the pairwise comparisons. Test results on three benchmark datasets from different model generation methods showed that PWCom significantly improves over consensus GDT and single scoring methods. The QA server (MUFOLD-Server applying this method in CASP 10 QA category was ranked the second place in terms of Pearson and Spearman correlation performance.

  11. Do Online Bicycle Routing Portals Adequately Address Prevalent Safety Concerns?

    Directory of Open Access Journals (Sweden)

    Martin Loidl


    Full Text Available Safety concerns are among the most prevalent deterrents for bicycling. The provision of adequate bicycling infrastructure is considered as one of the most efficient means to increase cycling safety. However, limited public funding does not always allow agencies to implement cycling infrastructure improvements at the desirable level. Thus, bicycle trip planners can at least partly alleviate the lack of adequate infrastructure by recommending optimal routes in terms of safety. The presented study provides a systematic review of 35 bicycle routing applications and analyses to which degree they promote safe bicycling. The results show that most trip planners lack corresponding routing options and therefore do not sufficiently address safety concerns of bicyclists. Based on these findings, we developed recommendations on how to better address bicycling safety in routing portals. We suggest employing current communication technology and analysis to consider safety concerns more explicitly.

  12. Detection of single and clustered microcalcifications in mammograms using fractals models and neural networks. (United States)

    Bocchi, L; Coppini, G; Nori, J; Valli, G


    Microcalcifications (microCas) are often early signs of breast cancer. However, detecting them is a difficult visual task and recognizing malignant lesions is a complex diagnostic problem. In recent years, several research groups have been working to develop computer-aided diagnosis (CAD) systems for X-ray mammography. In this paper, we propose a method to detect and classify microcalcifications. In order to discover the presence of microCas clusters, particular attention is paid to the analysis of the spatial arrangement of detected lesions. A fractal model has been used to describe the mammographic image, thus, allowing the use of a matched filtering stage to enhance microcalcifications against the background. A region growing algorithm, coupled with a neural classifier, detects existing lesions. Subsequently, a second fractal model is used to analyze their spatial arrangement so that the presence of microcalcification clusters can be detected and classified. Reported results indicate that fractal models provide an adequate framework for medical image processing; consequently high correct classification rates are achieved.

  13. Physiological aspect walking and Nordic walking as adequate kinetic activities.


    BENEŠ, Václav


    This bachelor thesis on the topic of The Physiological Aspect of Walking and Nordic Walking as an adequate physical activity focuses on chosen physiological changes of an organism during a five-month training cycle. In the theoretical part I describe the physiological changes of organism during a regularly repeated strain, and also the technique of walking, Nordic walking and health benefits of these activities are defined here. The research part of the thesis describes the measurement method...

  14. Substitutional impurity in single-layer graphene: The Koster–Slater and Anderson models

    Energy Technology Data Exchange (ETDEWEB)

    Davydov, S. Yu., E-mail: [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation)


    The Koster–Slater and Anderson models are used to consider substitutional impurities in free-standing single-layer graphene. The density of states of graphene is described using a model (the M model). For the nitrogen and boron impurities, the occupation numbers and the parameter η which defines the fraction of delocalized electrons of the impurity are determined. In this case, experimental data are used for both determination of the model parameters and comparison with the results of theoretical estimations. The general features of the Koster–Slater and Anderson models and the differences between the two models are discussed. Specifically, it is shown that the band contributions to the occupation numbers of a nitrogen atom in both models are comparable, whereas the local contributions are substantially different: the local contributions are decisive in the Koster–Slater model and negligible in the Anderson model. The asymptotic behavior of the wave functions of a defect is considered in the Koster–Slater model, and the electron states of impurity dimers are considered in the Anderson model.

  15. Deconstructing stem cell population heterogeneity: Single-cell analysis and modeling approaches (United States)

    Wu, Jincheng; Tzanakakis, Emmanuel S.


    Isogenic stem cell populations display cell-to-cell variations in a multitude of attributes including gene or protein expression, epigenetic state, morphology, proliferation and proclivity for differentiation. The origins of the observed heterogeneity and its roles in the maintenance of pluripotency and the lineage specification of stem cells remain unclear. Addressing pertinent questions will require the employment of single-cell analysis methods as traditional cell biochemical and biomolecular assays yield mostly population-average data. In addition to time-lapse microscopy and flow cytometry, recent advances in single-cell genomic, transcriptomic and proteomic profiling are reviewed. The application of multiple displacement amplification, next generation sequencing, mass cytometry and spectrometry to stem cell systems is expected to provide a wealth of information affording unprecedented levels of multiparametric characterization of cell ensembles under defined conditions promoting pluripotency or commitment. Establishing connections between single-cell analysis information and the observed phenotypes will also require suitable mathematical models. Stem cell self-renewal and differentiation are orchestrated by the coordinated regulation of subcellular, intercellular and niche-wide processes spanning multiple time scales. Here, we discuss different modeling approaches and challenges arising from their application to stem cell populations. Integrating single-cell analysis with computational methods will fill gaps in our knowledge about the functions of heterogeneity in stem cell physiology. This combination will also aid the rational design of efficient differentiation and reprogramming strategies as well as bioprocesses for the production of clinically valuable stem cell derivatives. PMID:24035899

  16. Collective noise model for focal plane modulated single-pixel imaging (United States)

    Sun, Ming-Jie; Xu, Zi-Hao; Wu, Ling-An


    Single-pixel imaging, also known as computational ghost imaging, provides an alternative method to perform imaging in various applications which are difficult for conventional cameras with pixelated detectors, such as multi-wavelength imaging, three-dimensional imaging, and imaging through turbulence. In recent years, many improvements have successfully increased the signal-to-noise ratio of single-pixel imaging systems, showing promise for the engineering feasibility of this technique. However, many of these improvements are based on empirical findings. In this work we perform an investigation of the noise from each system component that affects the quality of the reconstructed image in a single-pixel imaging system based on focal plane modulation. A collective noise model is built to describe the resultant influence of these different noise sources, and numerical simulations are performed to quantify the effect. Experiments have been conducted to verify the model, and the results agree well with the simulations. This work provides a simple yet accurate method for evaluating the performance of a single-pixel imaging system, without having to carry out actual experimental tests.

  17. Single-phase sodium pump model for LMFBR thermal-hydraulic analysis

    International Nuclear Information System (INIS)

    Madni, I.K.; Cazzoli, E.G.; Agrawal, A.K.


    A single-phase, homologous pump model has been developed for simulation of safety-related transients in LMFBR systems. Pump characteristics are modeled by homologous head and torque relations encompassing all regimes of operation. These relations were derived from independent model test results with a centrifugal pump of specific speed equal to 35 (SI units) or 1800 (gpm units), and are used to analyze the steady-state and transient behavior of sodium pumps in a number of LMFBR plants. Characteristic coefficients for the polynomials in all operational regimes are provided in a tabular form. The speed and flow dependence of head is included through solutions of the impeller and coolant dynamic equations. Results show the model to yield excellent agreement with experimental data in sodium for the FFTF prototype pump, and with vendor calculations for the CRBR pump. A sample pipe rupture calculation is also performed to demonstrate the necessity for modeling the complete pump characteristics

  18. Synthesis of 3D Model of a Magnetic Field-Influenced Body from a Single Image (United States)

    Wang, Cuilan; Newman, Timothy; Gallagher, Dennis


    A method for recovery of a 3D model of a cloud-like structure that is in motion and deforming but approximately governed by magnetic field properties is described. The method allows recovery of the model from a single intensity image in which the structure's silhouette can be observed. The method exploits envelope theory and a magnetic field model. Given one intensity image and the segmented silhouette in the image, the method proceeds without human intervention to produce the 3D model. In addition to allowing 3D model synthesis, the method's capability to yield a very compact description offers further utility. Application of the method to several real-world images is demonstrated.

  19. POD-Galerkin Model for Incompressible Single-Phase Flow in Porous Media

    KAUST Repository

    Wang, Yi


    Fast prediction modeling via proper orthogonal decomposition method combined with Galerkin projection is applied to incompressible single-phase fluid flow in porous media. Cases for different configurations of porous media, boundary conditions and problem scales are designed to examine the fidelity and robustness of the model. High precision (relative deviation 1.0 x 10(-4)% similar to 2.3 x 10(-1)%) and large acceleration (speed-up 880 similar to 98454 times) of POD model are found in these cases. Moreover, the computational time of POD model is quite insensitive to the complexity of problems. These results indicate POD model is especially suitable for large-scale complex problems in engineering.

  20. A compact model for single material double work function gate MOSFET (United States)

    Changyong, Zheng; Wei, Zhang; Tailong, Xu; Yuehua, Dai; Junning, Chen


    An analytical surface potential model for the single material double work function gate (SMDWG) MOSFET is developed based on the exact resultant solution of the two-dimensional Poisson equation. The model includes the effects of drain biases, gate oxide thickness, different combinations of S-gate and D-gate length and values of substrate doping concentration. More attention has been paid to seeking to explain the attributes of the SMDWG MOSFET, such as suppressing drain-induced barrier lowering (DIBL), accelerating carrier drift velocity and device speed. The model is verified by comparison to the simulated results using the device simulator MEDICI. The accuracy of the results obtained using our analytical model is verified using numerical simulations. The model not only offers the physical insight into device physics but also provides the basic designing guideline for the device.

  1. Thermal vibration of rectangular single-layered black phosphorus predicted by orthotropic plate model (United States)

    Zhang, Yiqing; Wang, Lifeng; Jiang, Jingnong


    Vibrational behavior is very important for nanostructure-based resonators. In this work, an orthotropic plate model together with a molecular dynamics (MD) simulation is used to investigate the thermal vibration of rectangular single-layered black phosphorus (SLBP). Two bending stiffness, two Poisson's ratios, and one shear modulus of SLBP are calculated using the MD simulation. The natural frequency of the SLBP predicted by the orthotropic plate model agrees with the one obtained from the MD simulation very well. The root of mean squared (RMS) amplitude of the SLBP is obtained by MD simulation and the orthotropic plate model considering the law of energy equipartition. The RMS amplitude of the thermal vibration of the SLBP is predicted well by the orthotropic plate model compared to the MD results. Furthermore, the thermal vibration of the SLBP with an initial stress is also well-described by the orthotropic plate model.

  2. A mathematical model for order splitting in a multiple supplier single-item inventory system

    DEFF Research Database (Denmark)

    Abginehchi, Soheil; Farahani, Reza Zanjirani; Rezapour, Shabnam


    The policy of simultaneously splitting replenishment orders among several suppliers has received considerable attention in the last few years and continues to attract the attention of researchers. In this paper, we develop a mathematical model which considers multiple-supplier single-item inventory...... systems. The item acquisition lead times of suppliers are random variables. Backorder is allowed and shortage cost is charged based on not only per unit in shortage but also per time unit. Continuous review (s,Q) policy has been assumed. When the inventory level depletes to a reorder level, the total......, procurement cost, inventory holding cost, and shortage cost, is minimized. We also conduct extensive numerical experiments to show the advantages of our model compared with the models in the literature. According to our extensive experiments, the model developed in this paper is the best model...

  3. A Single Column Model Ensemble Approach Applied to the TWP-ICE Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Davies, Laura; Jakob, Christian; Cheung, K.; Del Genio, Anthony D.; Hill, Adrian; Hume, Timothy; Keane, R. J.; Komori, T.; Larson, Vincent E.; Lin, Yanluan; Liu, Xiaohong; Nielsen, Brandon J.; Petch, Jon C.; Plant, R. S.; Singh, M. S.; Shi, Xiangjun; Song, X.; Wang, Weiguo; Whitall, M. A.; Wolf, A.; Xie, Shaocheng; Zhang, Guang J.


    Single column models (SCM) are useful testbeds for investigating the parameterisation schemes of numerical weather prediction and climate models. The usefulness of SCM simulations are limited, however, by the accuracy of the best-estimate large-scale data prescribed. One method to address this uncertainty is to perform ensemble simulations of the SCM. This study first derives an ensemble of large-scale data for the Tropical Warm Pool International Cloud Experiment (TWP-ICE) based on an estimate of a possible source of error in the best-estimate product. This data is then used to carry out simulations with 11 SCM and 2 cloud-resolving models (CRM). Best-estimate simulations are also performed. All models show that moisture related variables are close to observations and there are limited differences between the best-estimate and ensemble mean values. The models, however, show different sensitivities to changes in the forcing particularly when weakly forced. The ensemble simulations highlight important differences in the moisture budget between the SCM and CRM. Systematic differences are also apparent in the ensemble mean vertical structure of cloud variables. The ensemble is further used to investigate relations between cloud variables and precipitation identifying large differences between CRM and SCM. This study highlights that additional information can be gained by performing ensemble simulations enhancing the information derived from models using the more traditional single best-estimate simulation.

  4. Numerical models of single- and double-negative metamaterials including viscous and thermal losses

    DEFF Research Database (Denmark)

    Cutanda Henriquez, Vicente; Sánchez-Dehesa, José


    Negative index acoustic metamaterials are artificial structures made of subwavelength units arranged in a lattice, whose effective acoustic parameters, bulk modulus and mass density, can be negative. In these materials, sound waves propagate inside the periodic structure, assumed rigid, showing...... extraordinary properties. We are interested in two particular cases: a double-negative metamaterial, where both parameters are negative at some frequencies, and a single-negative metamaterial with negative bulk modulus within a broader frequency band. In previous research involving the double-negative...... detailed understanding on how viscous and thermal losses affect the setups at different frequencies. The modeling of a simpler single-negative metamaterial also broadens this overview. Both setups have been modeled with quadratic BEM meshes. Each sample, scaled at two different sizes, has been represented...

  5. A statistical prediction model based on sparse representations for single image super-resolution. (United States)

    Peleg, Tomer; Elad, Michael


    We address single image super-resolution using a statistical prediction model based on sparse representations of low- and high-resolution image patches. The suggested model allows us to avoid any invariance assumption, which is a common practice in sparsity-based approaches treating this task. Prediction of high resolution patches is obtained via MMSE estimation and the resulting scheme has the useful interpretation of a feedforward neural network. To further enhance performance, we suggest data clustering and cascading several levels of the basic algorithm. We suggest a training scheme for the resulting network and demonstrate the capabilities of our algorithm, showing its advantages over existing methods based on a low- and high-resolution dictionary pair, in terms of computational complexity, numerical criteria, and visual appearance. The suggested approach offers a desirable compromise between low computational complexity and reconstruction quality, when comparing it with state-of-the-art methods for single image super-resolution.

  6. Single-particle model of a strongly driven, dense, nanoscale quantum ensemble (United States)

    DiLoreto, C. S.; Rangan, C.


    We study the effects of interatomic interactions on the quantum dynamics of a dense, nanoscale, atomic ensemble driven by a strong electromagnetic field. We use a self-consistent, mean-field technique based on the pseudospectral time-domain method and a full, three-directional basis to solve the coupled Maxwell-Liouville equations. We find that interatomic interactions generate a decoherence in the state of an ensemble on a much faster time scale than the excited-state lifetime of individual atoms. We present a single-particle model of the driven, dense ensemble by incorporating interactions into a dephasing rate. This single-particle model reproduces the essential physics of the full simulation and is an efficient way of rapidly estimating the collective dynamics of a dense ensemble.

  7. A Single-column Model Ensemble Approach Applied to the TWP-ICE Experiment (United States)

    Davies, L.; Jakob, C.; Cheung, K.; DelGenio, A.; Hill, A.; Hume, T.; Keane, R. J.; Komori, T.; Larson, V. E.; Lin, Y.; hide


    Single-column models (SCM) are useful test beds for investigating the parameterization schemes of numerical weather prediction and climate models. The usefulness of SCM simulations are limited, however, by the accuracy of the best estimate large-scale observations prescribed. Errors estimating the observations will result in uncertainty in modeled simulations. One method to address the modeled uncertainty is to simulate an ensemble where the ensemble members span observational uncertainty. This study first derives an ensemble of large-scale data for the Tropical Warm Pool International Cloud Experiment (TWP-ICE) based on an estimate of a possible source of error in the best estimate product. These data are then used to carry out simulations with 11 SCM and two cloud-resolving models (CRM). Best estimate simulations are also performed. All models show that moisture-related variables are close to observations and there are limited differences between the best estimate and ensemble mean values. The models, however, show different sensitivities to changes in the forcing particularly when weakly forced. The ensemble simulations highlight important differences in the surface evaporation term of the moisture budget between the SCM and CRM. Differences are also apparent between the models in the ensemble mean vertical structure of cloud variables, while for each model, cloud properties are relatively insensitive to forcing. The ensemble is further used to investigate cloud variables and precipitation and identifies differences between CRM and SCM particularly for relationships involving ice. This study highlights the additional analysis that can be performed using ensemble simulations and hence enables a more complete model investigation compared to using the more traditional single best estimate simulation only.

  8. Incorporating single-side sparing in models for predicting parotid dose sparing in head and neck IMRT

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Lulin, E-mail:; Wu, Q. Jackie; Yin, Fang-Fang; Yoo, David [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States); Jiang, Yuliang [Department of Radiation Oncology, Peking University Third Hospital, Beijing, China, 100191 (China); Ge, Yaorong [Department of Software and Information Systems, University of North Carolina at Charlotte, Charlotte, North Carolina 28223 (United States)


    Purpose: Sparing of single-side parotid gland is a common practice in head-and-neck (HN) intensity modulated radiation therapy (IMRT) planning. It is a special case of dose sparing tradeoff between different organs-at-risk. The authors describe an improved mathematical model for predicting achievable dose sparing in parotid glands in HN IMRT planning that incorporates single-side sparing considerations based on patient anatomy and learning from prior plan data. Methods: Among 68 HN cases analyzed retrospectively, 35 cases had physician prescribed single-side parotid sparing preferences. The single-side sparing model was trained with cases which had single-side sparing preferences, while the standard model was trained with the remainder of cases. A receiver operating characteristics (ROC) analysis was performed to determine the best criterion that separates the two case groups using the physician's single-side sparing prescription as ground truth. The final predictive model (combined model) takes into account the single-side sparing by switching between the standard and single-side sparing models according to the single-side sparing criterion. The models were tested with 20 additional cases. The significance of the improvement of prediction accuracy by the combined model over the standard model was evaluated using the Wilcoxon rank-sum test. Results: Using the ROC analysis, the best single-side sparing criterion is (1) the predicted median dose of one parotid is higher than 24 Gy; and (2) that of the other is higher than 7 Gy. This criterion gives a true positive rate of 0.82 and a false positive rate of 0.19, respectively. For the bilateral sparing cases, the combined and the standard models performed equally well, with the median of the prediction errors for parotid median dose being 0.34 Gy by both models (p = 0.81). For the single-side sparing cases, the standard model overestimates the median dose by 7.8 Gy on average, while the predictions by the combined

  9. A finite-strain homogenization model for viscoplastic porous single crystals: II - Applications (United States)

    Song, Dawei; Ponte Castañeda, P.


    In part I of this work (Song and Ponte Castañeda, 2017a), a new homogenization-based constitutive model was developed for the finite-strain, macroscopic response of porous viscoplastic single crystals. In this second part, the new model is first used to investigate the instantaneous response and the evolution of the microstructure for porous FCC single crystals for a wide range of loading conditions. The loading orientation, Lode angle and stress triaxiality are found to have significant effects on the evolution of porosity and average void shape, which play crucial roles in determining the overall hardening/softening behavior of porous single crystals. The predictions of the model are found to be in fairly good agreement with numerical simulations available from the literature for all loadings considered, especially for low triaxiality conditions. The model is then used to investigate the strong effect of crystal anisotropy on the instantaneous response and the evolution of the microstructure for porous HCP single crystals. For uniaxial tension and compression, the overall hardening/softening behavior of porous HCP crystals is found to be controlled mostly by the evolution of void shape, and not so much by the evolution of porosity. In particular, porous HCP crystals exhibit overall hardening behavior with increasing porosity, while they exhibit overall softening behavior with decreasing porosity. This interesting behavior is consistent with corresponding results for porous FCC crystals, but is found to be more significant for porous HCP crystals with large anisotropy, such as porous ice, where the non-basal slip systems are much harder than the basal systems.


    Directory of Open Access Journals (Sweden)



    Full Text Available In this study, modelling and simulation results of a single-zone heating and ventilation system of a large office room are introduced. Heating system is controlled by an on-off controller. By considering the sinusoidal outdoor air tempareture variation and various outdoor/return air ratios as input parameters, dynamic behaviour of room air tempereture are investigated. For this purpose, MATLAB/Simulink code is used.

  11. An Analytical Model for Predicting the Stress Distributions within Single-Lap Adhesively Bonded Beams

    Directory of Open Access Journals (Sweden)

    Xiaocong He


    Full Text Available An analytical model for predicting the stress distributions within single-lap adhesively bonded beams under tension is presented in this paper. By combining the governing equations of each adherend with the joint kinematics, the overall system of governing equations can be obtained. Both the adherends and the adhesive are assumed to be under plane strain condition. With suitable boundary conditions, the stress distribution of the adhesive in the longitudinal direction is determined.

  12. Modeling the radiation transfer of discontinuous canopies: results for gap probability and single-scattering contribution (United States)

    Zhao, Feng; Zou, Kai; Shang, Hong; Ji, Zheng; Zhao, Huijie; Huang, Wenjiang; Li, Cunjun


    In this paper we present an analytical model for the computation of radiation transfer of discontinuous vegetation canopies. Some initial results of gap probability and bidirectional gap probability of discontinuous vegetation canopies, which are important parameters determining the radiative environment of the canopies, are given and compared with a 3- D computer simulation model. In the model, negative exponential attenuation of light within individual plant canopies is assumed. Then the computation of gap probability is resolved by determining the entry points and exiting points of the ray with the individual plants via their equations in space. For the bidirectional gap probability, which determines the single-scattering contribution of the canopy, a gap statistical analysis based model was adopted to correct the dependence of gap probabilities for both solar and viewing directions. The model incorporates the structural characteristics, such as plant sizes, leaf size, row spacing, foliage density, planting density, leaf inclination distribution. Available experimental data are inadequate for a complete validation of the model. So it was evaluated with a three dimensional computer simulation model for 3D vegetative scenes, which shows good agreement between these two models' results. This model should be useful to the quantification of light interception and the modeling of bidirectional reflectance distributions of discontinuous canopies.

  13. Combustion Model and Control Parameter Optimization Methods for Single Cylinder Diesel Engine

    Directory of Open Access Journals (Sweden)

    Bambang Wahono


    Full Text Available This research presents a method to construct a combustion model and a method to optimize some control parameters of diesel engine in order to develop a model-based control system. The construction purpose of the model is to appropriately manage some control parameters to obtain the values of fuel consumption and emission as the engine output objectives. Stepwise method considering multicollinearity was applied to construct combustion model with the polynomial model. Using the experimental data of a single cylinder diesel engine, the model of power, BSFC, NOx, and soot on multiple injection diesel engines was built. The proposed method succesfully developed the model that describes control parameters in relation to the engine outputs. Although many control devices can be mounted to diesel engine, optimization technique is required to utilize this method in finding optimal engine operating conditions efficiently beside the existing development of individual emission control methods. Particle swarm optimization (PSO was used to calculate control parameters to optimize fuel consumption and emission based on the model. The proposed method is able to calculate control parameters efficiently to optimize evaluation item based on the model. Finally, the model which added PSO then was compiled in a microcontroller.

  14. Modeling decision-making in single- and multi-modal medical images (United States)

    Canosa, R. L.; Baum, K. G.


    This research introduces a mode-specific model of visual saliency that can be used to highlight likely lesion locations and potential errors (false positives and false negatives) in single-mode PET and MRI images and multi-modal fused PET/MRI images. Fused-modality digital images are a relatively recent technological improvement in medical imaging; therefore, a novel component of this research is to characterize the perceptual response to these fused images. Three different fusion techniques were compared to single-mode displays in terms of observer error rates using synthetic human brain images generated from an anthropomorphic phantom. An eye-tracking experiment was performed with naÃve (non-radiologist) observers who viewed the single- and multi-modal images. The eye-tracking data allowed the errors to be classified into four categories: false positives, search errors (false negatives never fixated), recognition errors (false negatives fixated less than 350 milliseconds), and decision errors (false negatives fixated greater than 350 milliseconds). A saliency model consisting of a set of differentially weighted low-level feature maps is derived from the known error and ground truth locations extracted from a subset of the test images for each modality. The saliency model shows that lesion and error locations attract visual attention according to low-level image features such as color, luminance, and texture.

  15. Modeling and analysis of variable speed single phase induction motors with iron loss

    International Nuclear Information System (INIS)

    Vaez-Zadeh, S.; Zahedi, B.


    Despite their usual low power ratings of single phase induction motors, they consume a considerable part of total motors energy consumption due to their large and ever-increasing quantity. The recent rising of oil prices and environmental crises has fortified the idea of energy saving practices in all applications; particularly in single phase induction motors due to their typical low efficiency. An essential requirement for this practice is the modeling and analysis of machine electrical losses under variable frequency operation. In this paper an improved steady state model of single phase induction motors is derived to investigate major motor characteristics like torque-speed, input power, output power, etc. A special emphasis is placed on accurately representing core losses at variable frequency. The winding currents phase difference is reintroduced as a fundamental motor variable to determine motor performances including losses and efficiency. An advanced computerized motor test setup is designed and built for on-line measurement of motor characteristics at different supply and operating conditions. The extensive experimental results, in good agreement with the simulation results based on the mentioned analysis, confirm the validity of the proposed model.

  16. Reliable Dual Tensor Model Estimation in Single and Crossing Fibers Based on Jeffreys Prior (United States)

    Yang, Jianfei; Poot, Dirk H. J.; Caan, Matthan W. A.; Su, Tanja; Majoie, Charles B. L. M.; van Vliet, Lucas J.; Vos, Frans M.


    Purpose This paper presents and studies a framework for reliable modeling of diffusion MRI using a data-acquisition adaptive prior. Methods Automated relevance determination estimates the mean of the posterior distribution of a rank-2 dual tensor model exploiting Jeffreys prior (JARD). This data-acquisition prior is based on the Fisher information matrix and enables the assessment whether two tensors are mandatory to describe the data. The method is compared to Maximum Likelihood Estimation (MLE) of the dual tensor model and to FSL’s ball-and-stick approach. Results Monte Carlo experiments demonstrated that JARD’s volume fractions correlated well with the ground truth for single and crossing fiber configurations. In single fiber configurations JARD automatically reduced the volume fraction of one compartment to (almost) zero. The variance in fractional anisotropy (FA) of the main tensor component was thereby reduced compared to MLE. JARD and MLE gave a comparable outcome in data simulating crossing fibers. On brain data, JARD yielded a smaller spread in FA along the corpus callosum compared to MLE. Tract-based spatial statistics demonstrated a higher sensitivity in detecting age-related white matter atrophy using JARD compared to both MLE and the ball-and-stick approach. Conclusions The proposed framework offers accurate and precise estimation of diffusion properties in single and dual fiber regions. PMID:27760166

  17. Data driven modeling of the low-Atwood single-mode Rayleigh-Taylor instability (United States)

    Hutchinson, Maxwell

    The Rayleigh-Taylor instability is one of the most common and well studied phenomena in fluid dynamics. Despite research dating to the late 19th century, the non-linear dynamics of the interfacial instability are still not fully understood, particularly in the case when the two fluids have nearly the same density. It was recently demonstrated in this, the low-Atwood regime, that the idealized single-mode problem departs from established potential flow models in the form of a re-acceleration beyond the predicted terminal interface velocity. This thesis is an attempt to model that re-acceleration and, more broadly, the late time dynamics of the single-mode low-Atwood Rayleigh-Taylor instability. The approach taken here is based on buoyancy-drag models, which express a force balance between buoyancy and parasitic drag. The dynamical buoyancy-drag model is supplemented with a mixing model that dilutes the buoyant force over time. These models are written deliberately generally, with 8 unique coefficients. Three of these coefficients are solved for by equating the early time behavior with that of well established linear theories. The remaining 5 coefficients are estimated by relating them to drag coefficients, friction factors, and geometric ratios in the interface shape. To evaluate the model and compute the 5 unknown coefficients more precisely, a set of direct numerical simulations are performed over the relevant parameter space. These simulations are first validated against experimental data. Then they are shown to converge and their resolutions are chosen such as to minimize computational cost given the accuracy scale of the model. The 5 coefficients are fit to the resulting data set, and the model achieves better than 2% error in the bubble height and 4% error in the volume of mixed fluid. Three coefficients are nominally independent of the parameterization of the problem, while two are shown to vary with the Rayleigh number and the diffusivity.

  18. Simulation model of a single-stage lithium bromide-water absorption cooling unit (United States)

    Miao, D.


    A computer model of a LiBr-H2O single-stage absorption machine was developed. The model, utilizing a given set of design data such as water-flow rates and inlet or outlet temperatures of these flow rates but without knowing the interior characteristics of the machine (heat transfer rates and surface areas), can be used to predict or simulate off-design performance. Results from 130 off-design cases for a given commercial machine agree with the published data within 2 percent.

  19. Single species victory in a two-site, two-species model of population dispersion (United States)

    Waddell, Jack; Sander, Len; Kessler, David


    We study the behavior of two species, differentiated only by their dispersal rates in an environment providing heterogeneous growth rates. Previous deterministic studies have shown that the slower-dispersal species always drives the faster species to extinction, while stochastic studies show that the opposite case can occur given small enough population and spatial heterogeneity. Other models of similar systems demonstrate the existence of an optimum dispersal rate, suggesting that distinguishing the species as faster or slower is insufficient. We here study the interface of these models for a small spatial system and determine the conditions of stability for a single species outcome.

  20. Application of the Single Hardening Model in the Finite Element Program ABAQUS

    DEFF Research Database (Denmark)

    Jakobsen, Kim Parsberg

    or in combined deformation and flow problems. Today, many of these problems are solved using various finite element computer softwares, capable of handling both geometric and material non-linearities. The latter is especially important in soil mechanics and soil-structure interaction problems. Despite the feat...... model, developed by Lade and Kim (Kim & Lade 1988, Lade & Kim 1988a, Lade & Kim 1988b) is implemented as a user defined material module, UMAT, in the commercial finite element program, ABAQUS. The advantages of the Single Hardening Model Iie in its ability to predict elastic and plastic displacements...

  1. High Quality Model Predictive Control for Single Phase Grid Connected Photovoltaic Inverters

    DEFF Research Database (Denmark)

    Zangeneh Bighash, Esmaeil; Sadeghzadeh, Seyed Mohammad; Ebrahimzadeh, Esmaeil


    Single phase grid-connected inverters with LCL filter are widely used to connect the photovoltaic systems to the utility grid. Among the presented control schemes, predictive control methods are faster and more accurate but are more complex to implement. Recently, the model-predictive control...... is low, the inverter output current has a high total harmonic distortions. In order to reduce the total harmonic distortions of the injected current, this paper presents a high-quality model-predictive control for one of the newest structure of the grid connected photovoltaic inverter, i.e., HERIC...

  2. Is the mental wellbeing of young Australians best represented by a single, multidimensional or bifactor model? (United States)

    Hides, Leanne; Quinn, Catherine; Stoyanov, Stoyan; Cockshaw, Wendell; Mitchell, Tegan; Kavanagh, David J


    Internationally there is a growing interest in the mental wellbeing of young people. However, it is unclear whether mental wellbeing is best conceptualized as a general wellbeing factor or a multidimensional construct. This paper investigated whether mental wellbeing, measured by the Mental Health Continuum-Short Form (MHC-SF), is best represented by: (1) a single-factor general model; (2) a three-factor multidimensional model or (3) a combination of both (bifactor model). 2220 young Australians aged between 16 and 25 years completed an online survey including the MHC-SF and a range of other wellbeing and mental ill-health measures. Exploratory factor analysis supported a bifactor solution, comprised of a general wellbeing factor, and specific group factors of psychological, social and emotional wellbeing. Confirmatory factor analysis indicated that the bifactor model had a better fit than competing single and three-factor models. The MHC-SF total score was more strongly associated with other wellbeing and mental ill-health measures than the social, emotional or psychological subscale scores. Findings indicate that the mental wellbeing of young people is best conceptualized as an overarching latent construct (general wellbeing) to which emotional, social and psychological domains contribute. The MHC-SF total score is a valid and reliable measure of this general wellbeing factor. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Single-phase pump model for analysis of LMFBR heat transport systems

    International Nuclear Information System (INIS)

    Madni, I.K.; Cazzoli, E.


    A single-phase pump model for transient and steady-state analysis of LMFBR heat transport systems is presented. Fundamental equations of the model are angular momentum balance to determine transient impeller speed and mass balance (including thermal expansion effects) to determine the level of sodium in the pump tank. Pump characteristics are modeled by homologous head and torque relations. All regions of pump operation are represented with reverse rotation allowed. The model also includes option for enthalpy rise calculations and pony motor operation. During steady state, the pump operating speed is determined by matching required head with total load in the circuit. Calculated transient results are presented for pump coastdown and double-ended pipe break accidents. The report examines the influence of frictional torque and specific speed on predicted response for the pump coastdown to natural circulation transient. The results for a double-ended pipe break accident indicate the necessity of including all regions of operation for pump characteristics

  4. Comparative study of afterpulsing behavior and models in single photon counting avalanche photo diode detectors. (United States)

    Ziarkash, Abdul Waris; Joshi, Siddarth Koduru; Stipčević, Mario; Ursin, Rupert


    Single-photon avalanche diode (SPAD) detectors, have a great importance in fields like quantum key distribution, laser ranging, florescence microscopy, etc. Afterpulsing is a non-ideal behavior of SPADs that adversely affects any application that measures the number or timing of detection events. Several studies based on a few individual detectors, derived distinct mathematical models from semiconductor physics perspectives. With a consistent testing procedure and statistically large data sets, we show that different individual detectors - even if identical in type, make, brand, etc. - behave according to fundamentally different mathematical models. Thus, every detector must be characterized individually and it is wrong to draw universal conclusions about the physical meaning behind these models. We also report the presence of high-order afterpulses that are not accounted for in any of the standard models.

  5. 3D Finite Element Modeling of Single Bolt Connections under Static and Dynamic Tension Loading

    Directory of Open Access Journals (Sweden)

    Emily Guzas


    Full Text Available The Naval Undersea Warfare Center has funded research to examine a range of finite element approaches used for modeling bolted connections subjected to various loading conditions. Research focused on developing finite element bolt representations that were accurate and computationally efficient. A variety of finite element modeling approaches, from detailed models to simplified ones, were used to represent the behavior of single solid bolts under static and dynamic tension loading. Test cases utilized models of bolted connection test arrangements (static tension and dynamic tension developed for previous research and validated against test data for hollow bore bolts (Behan et al., 2013. Simulation results for solid bolts are validated against experimental data from physical testing of bolts in these load configurations.

  6. Interaction of a single mode field cavity with the 1D XY model: Energy spectrum

    International Nuclear Information System (INIS)

    Tonchev, H; Donkov, A A; Chamati, H


    In this work we use the fundamental in quantum optics Jaynes-Cummings model to study the response of spin 1/2chain to a single mode of a laser light falling on one of the spins, a focused interaction model between the light and the spin chain. For the spin-spin interaction along the chain we use the XY model. We report here the exact analytical results, obtained with the help of a computer algebra system, for the energy spectrum in this model for chains of up to 4 spins with nearest neighbors interactions, either for open or cyclic chain configurations. Varying the sign and magnitude of the spin exchange coupling relative to the light-spin interaction we have investigated both cases of ferromagnetic or antiferromagnetic spin chains. (paper)

  7. A 2.5D Single Passage CFD Model for Centrifugal Pumps (United States)

    Nakamura S.; Ding, W.; Yano, K.


    This paper describes the single passage model based on CFD to analyze the flow in blade passages of a centrifugal pump. The model consists of the flow passage between two impeller blades and the spaces in the inlet eye as well as in the volute. The incompressible Navier-Stokes equations in the conservation form are solved by a finite difference method. The code is designed to investigate the velocity and pressure distributions and intended to investigate how the pump design affects fluid flow through the rotor as well as the pump performance. An early part of the paper investigates the behavior of the model as well as validity of the assumptions made in the model. Then, applications to a rotodynamic heart pump are presented.

  8. An Efficient Channel Model for OFDM and Time Domain Single Carrier Transmission Using Impulse Responses

    Directory of Open Access Journals (Sweden)

    Tariq Jamil Saifullah Khanzada


    Full Text Available The OFDM (Orthogonal Frequency Division Multiplexing is well-known, most utilized wideband communication technique of the current era. SCT (Single Carrier Transmission provides equivalent performance in time domain while decision equalizer is implemented in frequency domain. SCT annihilates the ICT (Inter Carrier Interference and the PAPR (Peak to Average Power Ratio which is inherent to OFDM and degrades its performance in time varying channels. An efficient channel model is presented in this contribution, to implement OFDM and SCT in time domain using impulse responses. Both OFDM and SCT models are derived dialectically to model the channel impulse responses. Our model enhances the performance of time domain SCT compared with OFDM and subsides the PAPR and ICI problems of OFDM. SCT is implemented at symbol level contained in blocks. Simulation results implementing Digital Radio Monadiale (DRM assert the performance gain of SCT over OFDM.

  9. Assessment of Grade-Level Differences in Coping Behavior among Adolescents Using Multidimensional Scaling Single-Ideal-Point Model (United States)

    Ding, Cody; Yang, Dong


    The purpose of the study was to examine grade-level differences in coping behaviors among adolescents using a probabilistic multidimensional scaling (MDS) single-ideal-point model. Using data from students in middle school and at college, this article illustrated the MDS single-ideal-point model as an alternative to examine students' typical…

  10. A single-force model for the 1975 Kalapana, Hawaii, Earthquake (United States)

    Eissler, Holly K.; Kanamori, Hiroo


    A single force mechanism is investigated as the source of long-period seismic radiation from the 1975 Kalapana, Hawaii, earthquake (MS = 7.1). The observed Love wave radiation pattern determined from the spectra of World-Wide Standard Seismograph Network and High Gain Long Period records at 100 s is two-lobed with azimuth, consistent with a near-horizontal single force acting opposite (strike ˜330°) to the observed displacement direction of the earthquake; this pattern is inconsistent with the expected double-couple pattern. Assuming a form of the force time history of a one-cycle sinusoid, the total duration of the event estimated from Rayleigh waves at two International Deployment of Accelerometers stations is approximately 180 s. The peak amplitude fo of the time function is 1 × 1015 N from amplitudes of Love and Rayleigh waves. The interpretation is that the bulk of the seismic radiation was produced by large-scale slumping of a large area of the south flank of Kilauea volcano. The single force is a crude representation of the effect on the earth of the motion of a partially decoupled large slide mass. Using the mass estimated from the tsunami generation area (˜ 1015-1016 kg), the peak acceleration of the slide block (0.1-1 m s-2) inferred from the seismic force is comparable with the acceleration due to gravity on a gently inclined plane. The slump model for the Kalapana earthquake is also more qualitatively consistent with the large horizontal deformation (8 m on land) and tsunami associated with the earthquake, which are difficult to explain with the conventional double-couple source model. The single-force source has been used previously to model the long-period seismic waves from the landslide accompanying the eruption of Mount St. Helens volcano, and may explain other anomalous seismic events as being due to massive slumping of sediments or unconsolidated material and not to elastic dislocation.

  11. A student's perspective: are medical students adequately trained in BLS?

    Directory of Open Access Journals (Sweden)

    Oyewole T


    Full Text Available Tobi Oyewole,1 Folashade Oyewole2 1University of Liverpool – The School of Medicine, Liverpool, 2Imperial College London, London, UK We read with great interest the article by Lami et al regarding improving basic life support (BLS training for medical students.1 We agree that BLS skills are vital for junior doctors. The days of trial by fire have long gone away, and junior doctors and medical students need to feel that they are adequately trained to handle emergency situations they may face in hospital.  Read the original article

  12. Modeling a Single SEP Event from Multiple Vantage Points Using the iPATH Model (United States)

    Hu, Junxiang; Li, Gang; Fu, Shuai; Zank, Gary; Ao, Xianzhi


    Using the recently extended 2D improved Particle Acceleration and Transport in the Heliosphere (iPATH) model, we model an example gradual solar energetic particle event as observed at multiple locations. Protons and ions that are energized via the diffusive shock acceleration mechanism are followed at a 2D coronal mass ejection-driven shock where the shock geometry varies across the shock front. The subsequent transport of energetic particles, including cross-field diffusion, is modeled by a Monte Carlo code that is based on a stochastic differential equation method. Time intensity profiles and particle spectra at multiple locations and different radial distances, separated in longitudes, are presented. The results shown here are relevant to the upcoming Parker Solar Probe mission.

  13. Optimization and Modeling of Quadrupole Orbitrap Parameters for Sensitive Analysis toward Single-Cell Proteomics. (United States)

    Sun, Bingyun; Kovatch, Jessica Rae; Badiong, Albert; Merbouh, Nabyl


    Single-cell proteomics represents a field of extremely sensitive proteomic analysis, owing to the minute amount of yet complex proteins in a single cell. Without amplification potential as of nucleic acids, single-cell mass spectrometry (MS) analysis demands special instrumentation running with optimized parameters to maximize the sensitivity and throughput for comprehensive proteomic discovery. To facilitate such analysis, we here investigated two factors critical to peptide sequencing and protein detection in shotgun proteomics, i.e. precursor ion isolation window (IW) and maximum precursor ion injection time (ITmax), on an ultrahigh-field quadrupole Orbitrap (Q-Exactive HF). Counterintuitive to the frequently used proteomic parameters for bulk samples (>100 ng), our experimental data and subsequent modeling suggested a universally optimal IW of 4.0 Th for sample quantity ranging from 100 ng to 1 ng, and a sample-quantity dependent ITmax of more than 250 ms for 1-ng samples. Compared with the benchmark condition of IW = 2.0 Th and ITmax = 50 ms, our optimization generated up to 300% increase to the detected protein groups for 1-ng samples. The additionally identified proteins allowed deeper penetration of proteome for better revealing crucial cellular functions such as signaling and cell adhesion. We hope this effort can prompt single-cell and trace proteomic analysis and enable a rational selection of MS parameters.

  14. Monte Carlo Error Analysis Applied to Core Formation: The Single-stage Model Revived (United States)

    Cottrell, E.; Walter, M. J.


    The last decade has witnessed an explosion of studies that scrutinize whether or not the siderophile element budget of the modern mantle can plausibly be explained by metal-silicate equilibration in a deep magma ocean during core formation. The single-stage equilibrium scenario is seductive because experiments that equilibrate metal and silicate can then serve as a proxy for the early earth, and the physical and chemical conditions of core formation can be identified. Recently, models have become more complex as they try to accommodate the proliferation of element partitioning data sets, each of which sets its own limits on the pressure, temperature, and chemistry of equilibration. The ability of single stage models to explain mantle chemistry has subsequently been challenged, resulting in the development of complex multi-stage core formation models. Here we show that the extent to which extant partitioning data are consistent with single-stage core formation depends heavily upon (1) the assumptions made when regressing experimental partitioning data (2) the certainty with which regression coefficients are known and (3) the certainty with which the core/mantle concentration ratios of the siderophile elements are known. We introduce a Monte Carlo algorithm coded in MATLAB that samples parameter space in pressure and oxygen fugacity for a given mantle composition (nbo/t) and liquidus, and returns the number of equilibrium single-stage liquidus “solutions” that are permissible, taking into account the uncertainty in regression parameters and range of acceptable core/mantle ratios. Here we explore the consequences of regression parameter uncertainty and the impact of regression construction on model outcomes. We find that the form of the partition coefficient (Kd with enforced valence state, or D) and the handling of the temperature effect (based on 1-atm free energy data or high P-T experimental observations) critically affects model outcomes. We consider the most

  15. An accurate behavioral model for single-photon avalanche diode statistical performance simulation (United States)

    Xu, Yue; Zhao, Tingchen; Li, Ding


    An accurate behavioral model is presented to simulate important statistical performance of single-photon avalanche diodes (SPADs), such as dark count and after-pulsing noise. The derived simulation model takes into account all important generation mechanisms of the two kinds of noise. For the first time, thermal agitation, trap-assisted tunneling and band-to-band tunneling mechanisms are simultaneously incorporated in the simulation model to evaluate dark count behavior of SPADs fabricated in deep sub-micron CMOS technology. Meanwhile, a complete carrier trapping and de-trapping process is considered in afterpulsing model and a simple analytical expression is derived to estimate after-pulsing probability. In particular, the key model parameters of avalanche triggering probability and electric field dependence of excess bias voltage are extracted from Geiger-mode TCAD simulation and this behavioral simulation model doesn't include any empirical parameters. The developed SPAD model is implemented in Verilog-A behavioral hardware description language and successfully operated on commercial Cadence Spectre simulator, showing good universality and compatibility. The model simulation results are in a good accordance with the test data, validating high simulation accuracy.

  16. Species distribution modelling for plant communities: Stacked single species or multivariate modelling approaches? (United States)

    Emilie B. Henderson; Janet L. Ohmann; Matthew J. Gregory; Heather M. Roberts; Harold S.J. Zald


    Landscape management and conservation planning require maps of vegetation composition and structure over large regions. Species distribution models (SDMs) are often used for individual species, but projects mapping multiple species are rarer. We compare maps of plant community composition assembled by stacking results from many SDMs with multivariate maps constructed...

  17. Patient-Specific Modeling of Interventricular Hemodynamics in Single Ventricle Physiology (United States)

    Vedula, Vijay; Feinstein, Jeffrey; Marsden, Alison


    Single ventricle (SV) congenital heart defects, in which babies are born with only functional ventricle, lead to significant morbidity and mortality with over 30% of patients developing heart failure prior to adulthood. Newborns with SV physiology typically undergo three palliative surgeries, in which the SV becomes the systemic pumping chamber. Depending on which ventricle performs the systemic function, patients are classified as having either a single left ventricle (SLV) or a single right ventricle (SRV), with SRV patients at higher risk of failure. As the native right ventricles are not designed to meet systemic demands, they undergo remodeling leading to abnormal hemodynamics. The hemodynamic characteristics of SLVs compared with SRVs is not well established. We present a validated computational framework for performing patient-specific modeling of ventricular flows, and apply it across 6 SV patients (3SLV + 3SRV), comparing hemodynamic conditions between the two subgroups. Simulations are performed with a stabilized finite element method coupled with an immersed boundary method for modeling heart valves. We discuss identification of hemodynamic biomarkers of ventricular remodeling for early risk assessment of failure. This research is supported in part by the Stanford Child Health Research Institute and the Stanford NIH-NCATS-CTSA through Grant UL1 TR001085 and due to U.S. National Institute of Health through NIH NHLBI R01 Grants 5R01HL129727-02 and 5R01HL121754-03.

  18. A numerical model for the dynamic simulation of a recirculation single-effect absorption chiller

    International Nuclear Information System (INIS)

    Zinet, Matthieu; Rulliere, Romuald; Haberschill, Philippe


    Highlights: ► Dynamic simulation of a new recirculation single-effect H 2 O/LiBr absorption chiller is developed. ► The chiller is driven by two heat sources and exclusively cooled by the ambient air. ► Heat and mass transfer in the absorber and the desorber are described according to a detailed physical model. ► Analyse of the dynamic behaviour of the chiller after sudden changes in operation. - Abstract: A dynamic model for the simulation of a new single-effect water/lithium bromide absorption chiller is developed. The chiller is driven by two distinct heat sources, includes a custom integrated falling film evaporator–absorber, uses mixed recirculation and is exclusively cooled by the ambient air. Heat and mass transfer in the evaporator–absorber and in the desorber are described according to a physical model for vapour absorption based on Nusselt’s film theory. The other heat exchangers are handled using a simplified approach based on the NTU-effectiveness method. The model is then used to analyze the chiller response to a step drop of the heat recovery circuit flow rate, and to a sudden reduction of the cooling need in the conditioned space. In the latter case, a basic temperature regulation system is simulated. In both simulations, the performance of the chiller is well represented and consistent with expectations.

  19. Present State of the Single and Twin Aperture Short Dipole Model Program for the LHC

    CERN Document Server

    Andreyev, N I; Kurtyka, T; Leroy, D; Oberli, L R; Perini, D; Russenschuck, Stephan; Siegel, N; Siemko, A; Tommasini, D; Vanenkov, I; Walckiers, L; Weterings, W


    The LHC model program for main dipoles is based on the design, fabrication and testing at CERN of a number of single and twin aperture 1m long magnets. So far, a number of single aperture models, each with specific characteristics, were tested at 2 K at a rate of about one per month. These magnets are the main tool used to check coil performance as a function of design and assembly options in view of optimizing and finalizing choices of components and procedures. Initial quenching field levels of 8.8 T were obtained and the short sample limit of the cable at 1.9 K was reached corresponding to a central bore field of 10 T. A few twin aperture dipole models were also built and tested, using the same structural components as for the long magnets which are now being built in industry. The paper discusses the main characteristics of the models built so far, the instrumentation developed to date and the experience obtained. Finally it describes the plans aimed at continuing a vigorous program to provide input to th...

  20. Distensibility and pressure-flow relationship of the pulmonary circulation. I. Single-vessel model. (United States)

    Bshouty, Z; Younes, M


    To ascertain the relative contributions of vascular distensibility and nonhomogeneous behavior within the pulmonary circulation to the distinctive nonlinear relationship between inflow pressure (Pin) and flow [pressure-flow (P-F) relationship] and between Pin and outflow pressure (Pout) at constant flow (Pin-Pout relationship), we developed a multibranched model in which the elastic behavior of, and forces acting on, individual branches can be varied independently. The response of the multibranched model is described in the companion article (J. Appl. Physiol. 68: 1514-1527, 1990). Here we describe the methods used and the responses of single components of the larger model. Perivascular pressure is modeled as a function of intravascular and transpulmonary pressures (Pv and Ptp, respectively) and vessel length as a function of lung volume. These and the relationship between vascular area (A) and transmural pressure (Ptm) were modeled primarily from the dog data of Smith and Mitzner (J. Appl. Physiol. 48: 450-467, 1980). Vasomotor tone is modeled as a radial collapsing pressure (Pt) in the same plane as Ptm. In view of lack of information about the relationship between Pt and A for a given active state, different patterns were assumed that span a wide range of possible relationships. The P-F and Pin-Pout relationships of single vessels were very similar to those reported for the entire intact circulation. Of note, the slope of the Pin-Pout relationship in the low Pout range (0-5 Torr) was very low (less than 0.25) and increased gradually with Pout toward unity. Vasomotor tone caused an apparent parallel shift in the P-F relationship in the physiological flow range of the dog (2-8 l/min) regardless of the pattern used to model the Pt vs. A relationship; different patterns affected the P-F relationship only over the low flow range before the parallel shift was established.

  1. Barriers to adequate prenatal care utilization in American Samoa (United States)

    Hawley, Nicola L; Brown, Carolyn; Nu’usolia, Ofeira; Ah-Ching, John; Muasau-Howard, Bethel; McGarvey, Stephen T


    Objective To describe the utilization of prenatal care in American Samoan women and to identify socio-demographic predictors of inadequate prenatal care utilization. Methods Using data from prenatal clinic records, women (n=692) were categorized according to the Adequacy of Prenatal Care Utilization Index as having received adequate plus, adequate, intermediate or inadequate prenatal care during their pregnancy. Categorical socio-demographic predictors of the timing of initiation of prenatal care (week of gestation) and the adequacy of received services were identified using one way Analysis of Variance (ANOVA) and independent samples t-tests. Results Between 2001 and 2008 85.4% of women received inadequate prenatal care. Parity (P=0.02), maternal unemployment (P=0.03), and both parents being unemployed (P=0.03) were negatively associated with the timing of prenatal care initation. Giving birth in 2007–2008, after a prenatal care incentive scheme had been introduced in the major hospital, was associated with earlier initiation of prenatal care (20.75 versus 25.12 weeks; Pprenatal care utilization in American Samoa is a major concern. Improving healthcare accessibility will be key in encouraging women to attend prenatal care. The significant improvements in the adequacy of prenatal care seen in 2007–2008 suggest that the prenatal care incentive program implemented in 2006 may be a very positive step toward addressing issues of prenatal care utilization in this population. PMID:24045912

  2. Quantifying dose to the reconstructed breast: Can we adequately treat?

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Eugene; Marsh, Robin B.; Griffith, Kent A.; Moran, Jean M. [Department of Radiation Oncology, University of Michigan, Ann Arbor, MI (United States); Pierce, Lori J., E-mail: [Department of Radiation Oncology, University of Michigan, Ann Arbor, MI (United States)


    To evaluate how immediate reconstruction (IR) impacts postmastectomy radiotherapy (PMRT) dose distributions to the reconstructed breast (RB), internal mammary nodes (IMN), heart, and lungs using quantifiable dosimetric end points. 3D conformal plans were developed for 20 IR patients, 10 autologous reconstruction (AR), and 10 expander-implant (EI) reconstruction. For each reconstruction type, 5 right- and 5 left-sided reconstructions were selected. Two plans were created for each patient, 1 with RB coverage alone and 1 with RB + IMN coverage. Left-sided EI plans without IMN coverage had higher heart Dmean than left-sided AR plans (2.97 and 0.84 Gy, p = 0.03). Otherwise, results did not vary by reconstruction type and all remaining metrics were evaluated using a combined AR and EI dataset. RB coverage was adequate regardless of laterality or IMN coverage (Dmean 50.61 Gy, D95 45.76 Gy). When included, IMN Dmean and D95 were 49.57 and 40.96 Gy, respectively. Mean heart doses increased with left-sided treatment plans and IMN inclusion. Right-sided treatment plans and IMN inclusion increased mean lung V{sub 20}. Using standard field arrangements and 3D planning, we observed excellent coverage of the RB and IMN, regardless of laterality or reconstruction type. Our results demonstrate that adequate doses can be delivered to the RB with or without IMN coverage.

  3. [The human right to adequate food: an urban vision]. (United States)

    Casemiro, Juliana Pereira; Valla, Victor Vincent; Guimarães, Maria Beatriz Lisboa


    The human right to adequate food is comprehended in two dimensions: being free of hunger and denutrition and having access to an adequate food. The urban context, in which the possession of food is done primarily through merchandising because of its strong consuming appealing, became a big challenge to debate this topic in poor districts today. Here we combine considerations of a qualitative study carried out in São João de Meriti, Rio de Janeiro State, joining leaders from Pastoral da Criança in focal group sessions. The unemployment, the sub-employment and the difficulty in reaching the public health system, the social assistance and basic sanitation were presented as the major obstacles to bring into effect the human right to food. It was possible to determine that, among the strategies to fight the poverty and hunger, a big highlight is the establishment of mutual help mechanisms. The social support, generosity and religiousness were presented as the most important categories among the thoughts of the leaders. Facing a reality in which poverty and hunger appear as something inherent or become a mechanism of change during elections, the issue of the clienteles appears as a huge concern and challenge for those leaders.

  4. Quantifying dose to the reconstructed breast: Can we adequately treat?

    International Nuclear Information System (INIS)

    Chung, Eugene; Marsh, Robin B.; Griffith, Kent A.; Moran, Jean M.; Pierce, Lori J.


    To evaluate how immediate reconstruction (IR) impacts postmastectomy radiotherapy (PMRT) dose distributions to the reconstructed breast (RB), internal mammary nodes (IMN), heart, and lungs using quantifiable dosimetric end points. 3D conformal plans were developed for 20 IR patients, 10 autologous reconstruction (AR), and 10 expander-implant (EI) reconstruction. For each reconstruction type, 5 right- and 5 left-sided reconstructions were selected. Two plans were created for each patient, 1 with RB coverage alone and 1 with RB + IMN coverage. Left-sided EI plans without IMN coverage had higher heart Dmean than left-sided AR plans (2.97 and 0.84 Gy, p = 0.03). Otherwise, results did not vary by reconstruction type and all remaining metrics were evaluated using a combined AR and EI dataset. RB coverage was adequate regardless of laterality or IMN coverage (Dmean 50.61 Gy, D95 45.76 Gy). When included, IMN Dmean and D95 were 49.57 and 40.96 Gy, respectively. Mean heart doses increased with left-sided treatment plans and IMN inclusion. Right-sided treatment plans and IMN inclusion increased mean lung V 20 . Using standard field arrangements and 3D planning, we observed excellent coverage of the RB and IMN, regardless of laterality or reconstruction type. Our results demonstrate that adequate doses can be delivered to the RB with or without IMN coverage

  5. Is prophetic discourse adequate to address global economic justice?

    Directory of Open Access Journals (Sweden)

    Piet J. Naudé


    Full Text Available This article outlined key features of prophetic discourse and investigated whether this form of moral discourse adequately addresses issues of economic injustice. It is shown that the strength of prophetic discourse is its ability to denounce instances of injustice whilst at the same time announcing a God-willed alternative future. The ‘preferential option for the poor’ in Latin American liberation theologies is treated as a case study of the influence of prophetic discourse in contexts of perceived economic injustice. Also the core weaknesses of prophetic discourse are investigated, specifically its incomplete moral argument, weak moral analyses, silence on transition measures, and its inability to take a positive stance on reforms in the system from which itself benefits. In the final section it is concluded that prophetic discourse plays an indispensable role in addressing issues of global economic justice, but – taken by itself – it is not an adequate form of moral discourse to address concrete matters of justice.

  6. Adequate sizing and motor exploitation: Motor energy management

    Directory of Open Access Journals (Sweden)

    Kostić Miloje M.


    Full Text Available Motor energy management includes adequate sizing, control and improvement of electric energy quality, i.e. voltage quality (reducing voltage unbalance and harmonics distortion, and the proper maintenance. The specific motor price per kW is approximately constant for motors rated from 5 kW to 20 kW. By adequate sizing, or by proper replacement of the old motor with the new one, with rated output power reduced by 20% to 50% the smaller motor will be also cheaper by 20% to 50%. When the 22 kW motor is replaced with the new 15 kW that costs 64% of the price of a new 22 kW motor, the efficiency is increased by 3.6% (Example in paper. On the basis of our investigation results, it is confirmed that there are significant possibilities for energy savings by setting voltage values within the ±5% voltage band (Un±5%, since more than 80% induction motors are under loaded (£70%, especially small and medium rated power (1-30 kW motors.

  7. Building the Nanoplasmonics Toolbox Through Shape Modeling and Single Particle Optical Studies (United States)

    Ringe, Emilie

    Interest in nanotechnology is driven by unprecedented properties tailorability, achievable by controlling particle structure and composition. Unlike bulk components, minute changes in size and shape affect the optical and electronic properties of nanoparticles. Characterization of such structure-function relationships and better understanding of structure control mechanisms is crucial to the development of applications such as plasmonic sensors and devices. The objective of the current research is thus twofold: to theoretically predict and understand how shape is controlled by synthesis conditions, and to experimentally unravel, through single particle studies, how shape, composition, size, and surrounding environment affect plasmonic properties in noble metal particles. Quantitative, predictive rules and fundamental knowledge obtained from this research contributes to the "nanoplasmonics toolbox", a library designed to provide scientists and engineers the tools to create and optimize novel nanotechnology applications. In this dissertation, single particle approaches are developed and used to unravel the effects of size, shape, substrate, aggregation state and surrounding environment on the optical response of metallic nanoparticles. Ag and Au nanocubes on different substrates are first presented, followed by the discussion of the concept of plasmon length, a universal parameter to describe plasmon energy for a variety of particle shapes and plasmon modes. Plasmonic sensing (both refractive index sensing and surface-enhanced Raman spectroscopy) and polarization effects are then studied at the single particle level. In the last two Chapters, analytical shape models based on the Wulff construction provide unique modeling tools for alloy and kinetically grown nanoparticles. The former reveals a size-dependence of the shape of small alloy particles (such as those used in catalysis) because of surface segregation, while the latter uniquely models the shape of many

  8. Highly optimized tunable Er3+-doped single longitudinal mode fiber ring laser, experiment and model

    DEFF Research Database (Denmark)

    Poulsen, Christian; Sejka, Milan


    A continuous wave (CW) tunable diode-pumped Er3+-doped fiber ring laser, pumped by diode laser at wavelengths around 1480 nm, is discussed. Wavelength tuning range of 42 nm, maximum slope efficiency of 48% and output power of 14.4 mW have been achieved. Single longitudinal mode lasing with a line...... with a linewidth of 6 kHz has been measured. A fast model of erbium-doped fiber laser was developed and used to optimize output parameters of the laser......A continuous wave (CW) tunable diode-pumped Er3+-doped fiber ring laser, pumped by diode laser at wavelengths around 1480 nm, is discussed. Wavelength tuning range of 42 nm, maximum slope efficiency of 48% and output power of 14.4 mW have been achieved. Single longitudinal mode lasing...

  9. Towards {sup 31}Mg-β-NMR resonance linewidths adequate for applications in magnesium chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Stachura, M., E-mail: [TRIUMF (Canada); McFadden, R. M. L. [University of British Columbia, Chemistry Department (Canada); Chatzichristos, A.; Dehn, M. H. [University of British Columbia, Department of Physics and Astronomy (Canada); Gottberg, A. [TRIUMF (Canada); Hemmingsen, L. [Københavns Universitet Universitetsparken 5, Kemisk Institut (Denmark); Jancso, A. [University of Szeged, Department of Inorganic and Analytical Chemistry (Hungary); Karner, V. L. [University of British Columbia, Chemistry Department (Canada); Kiefl, R. F. [University of British Columbia, Department of Physics and Astronomy (Canada); Larsen, F. H. [Københavns Universitet Rolighedsvej 26, Institut for Fødevarevidenskab (Denmark); Lassen, J.; Levy, C. D. P.; Li, R. [TRIUMF (Canada); MacFarlane, W. A. [University of British Columbia, Chemistry Department (Canada); Morris, G. D. [TRIUMF (Canada); Pallada, S. [CERN (Switzerland); Pearson, M. R. [TRIUMF (Canada); Szunyogh, D.; Thulstrup, P. W. [Københavns Universitet Universitetsparken 5, Kemisk Institut (Denmark); Voss, A. [University of Jyväskylä, Department of Physics (Finland)


    The span of most chemical shifts recorded in conventional {sup 25}Mg-NMR spectroscopy is ~ 100 ppm. Accordingly, linewidths of ~ 10 ppm or better are desirable to achieve adequate resolution for applications in chemistry. Here we present first high-field {sup 31}Mg- β-NMR measurements of {sup 31}Mg{sup +} ions implanted into a MgO single crystal carried out at the ISAC facility at TRIUMF. The resonances recorded at 2.5 T and 3.5 T show strong linewidth dependency on the applied RF power, ranging from ~ 419 ppm for the highest RF power down to ~ 48 ppm for the lowest one.

  10. Modeling and optimization of surface roughness in single point incremental forming process

    Directory of Open Access Journals (Sweden)

    Suresh Kurra


    Full Text Available Single point incremental forming (SPIF is a novel and potential process for sheet metal prototyping and low volume production applications. This article is focuses on the development of predictive models for surface roughness estimation in SPIF process. Surface roughness in SPIF has been modeled using three different techniques namely, Artificial Neural Networks (ANN, Support Vector Regression (SVR and Genetic Programming (GP. In the development of these predictive models, tool diameter, step depth, wall angle, feed rate and lubricant type have been considered as model variables. Arithmetic mean surface roughness (Ra and maximum peak to valley height (Rz are used as response variables to assess the surface roughness of incrementally formed parts. The data required to generate, compare and evaluate the proposed models have been obtained from SPIF experiments performed on Computer Numerical Control (CNC milling machine using Box–Behnken design. The developed models are having satisfactory goodness of fit in predicting the surface roughness. Further, the GP model has been used for optimization of Ra and Rz using genetic algorithm. The optimum process parameters for minimum surface roughness in SPIF have been obtained and validated with the experiments and found highly satisfactory results within 10% error.

  11. A mathematical model of T lymphocyte calcium dynamics derived from single transmembrane protein properties

    Directory of Open Access Journals (Sweden)

    Christine Dorothee Schmeitz


    Full Text Available Fate decision processes of T lymphocytes are crucial for health and disease. Whether a T lymphocyte is activated, divides, gets anergic or initiates apoptosis depends on extracellular triggers and intracellular signalling. Free cytosolic calcium dynamics plays an important role in this context. The relative contributions of store-derived calcium entry and calcium entry from extracellular space to T lymphocyte activation are still a matter of debate. Here we develop a quantitative mathematical model of T lymphocyte calcium dynamics in order to establish a tool which allows to disentangle cause-effect relationships between ion fluxes and observed calcium time courses. The model is based on single transmembrane protein characteristics which have been determined in independent experiments. This reduces the number of unknown parameters in the model to a minimum and ensures the predictive power of the model. Simulation results are subsequently used for an analysis of whole cell calcium dynamics measured under various experimental conditions. The model accounts for a variety of these conditions, which supports the suitability of the modelling approach. The simulation results suggest a model in which calcium dynamics dominantly relies on the opening of channels in calcium stores while calcium entry through calcium-release activated channels (CRAC is more associated with the maintenance of the T lymphocyte calcium levels and prevents the cell from calcium depletion. Our findings indicate that CRAC guarantees a long-term stable calcium level which is required for cell survival and sustained calcium enhancement.

  12. Comparison of analytical models and experimental results for single-event upset in CMOS SRAMs

    International Nuclear Information System (INIS)

    Mnich, T.M.; Diehl, S.E.; Shafer, B.D.


    In an effort to design fully radiation-hardened memories for satellite and deep-space applications, a 16K and a 2K CMOS static RAM were modeled for single-particle upset during the design stage. The modeling resulted in the addition of a hardening feedback resistor in the 16K remained tentatively unaltered. Subsequent experiments, using the Lawrence Berkeley Laboratories' 88-inch cyclotron to accelerate krypton and oxygen ions, established an upset threshold for the 2K and the 16K without resistance added, as well as a hardening threshold for the 16K with feedback resistance added. Results for the 16K showed it to be hardenable to the higher level than previously published data for other unhardened 16K RAMs. The data agreed fairly well with the modeling results; however, a close look suggests that modification of the simulation methodology is required to accurately predict the resistance necessary to harden the RAM cell

  13. A Complex Overview of Modeling and Control of the Rotary Single Inverted Pendulum System

    Directory of Open Access Journals (Sweden)

    Slavka Jadlovska


    Full Text Available The purpose of this paper is to present an in-depth survey of the rotary single inverted pendulum system from a control engineer's point of view. The scope of the survey includes modeling and open-loop analysis of the system as well as design and verification of balancing and swing up controllers which ensure successful stabilization of the pendulum in the unstable upright equilibrium. All relevant tasks and simulation experiments are conducted using the appropriate function blocks, GUI applications and demonstration schemes from a Simulink block library developed by the authors of the paper. The library is called Inverted Pendula Modeling and Control (IPMaC and offers comprehensive program support for modeling, simulation and control of classical (linear and rotary inverted pendulum systems.

  14. Bayesian unknown change-point models to investigate immediacy in single case designs. (United States)

    Natesan, Prathiba; Hedges, Larry V


    Although immediacy is one of the necessary criteria to show strong evidence of a causal relation in single case designs (SCDs), no inferential statistical tool is currently used to demonstrate it. We propose a Bayesian unknown change-point model to investigate and quantify immediacy in SCD analysis. Unlike visual analysis that considers only 3-5 observations in consecutive phases to investigate immediacy, this model considers all data points. Immediacy is indicated when the posterior distribution of the unknown change-point is narrow around the true value of the change-point. This model can accommodate delayed effects. Monte Carlo simulation for a 2-phase design shows that the posterior standard deviations of the change-points decrease with increase in standardized mean difference between phases and decrease in test length. This method is illustrated with real data. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  15. Single breath study for lung scan with krypton-81m: proposition of a mathematical model

    International Nuclear Information System (INIS)

    Pommet, R.; Mathieu, E.


    A single breath study with sup(81m)Kr was proceeded in patients, and we studied a theorical model. Based on experimental datas, the model was extrapolated by simple compartimental hypothesis, permitting a study per area of the instant alveolar lung flow by a deconvolution operation. An other approach to present the local ventilation is proposed too. Based on the average flow of ventilation index, calculation is obtained easier than by deconvolution method, and this method fully agree with the proposed model. This index allows the realisation of functionnal views of the local ventilation flow, made possible by the use of a computer for the study of each elementary area of the lung and the realisation of the activity curve recorded during the sup(81m)Kr first breath [fr

  16. Mathematical Model for Thermal Processes of Single-Core Power Cable

    Directory of Open Access Journals (Sweden)

    D. I. Zalizny


    Full Text Available The paper proposes a mathematical model for thermal processes that permits to calculate non-stationary thermal processes of core insulation and surface of a single-core power cable in real-time mode. The model presents the cable as four thermal homogeneous bodies: core, basic insulation, protective sheath and internal environment. Thermal processes between homogeneous bodies are described by a system of four differential equations. The paper contains a proposal to solve this system of equations with the help of a thermal equivalent circuit and the Laplace transform. All design ratios for thermal parameters and algorithm for calculating temperature of core insulation and temperature of power cable surface. These algorithms can be added in the software of microprocessor devices. The paper contains results of experimental investigations and reveals that an absolute error of the mathematical model does not exceed 3ºС.

  17. Electropolishing on single-cell: (TESLA, Reentrant and Low Loss shapes) Comsol modelling

    Energy Technology Data Exchange (ETDEWEB)

    Bruchon, M


    In the framework of improvement of cavity electropolishing, modelling permits to evaluate some parameters not easily accessible by experiments and can also help us to guide them. Different laboratories (DESY, Fermilab) work on electro or chemical polishing modelling with different approaches and softwares. At CEA Saclay, COMSOL software is used to model horizontal electropolishing of cavity in two dimensions. The goal of this study has been motivated by improvement of our electropolishing setup by modifying the arrival of the acid. The influence of a protuberant cathode has been evaluated and compared for different shapes of single cell cavities: TESLA, ILC Low Loss (LL{sub ILC}), and ILC Reentrant (RE{sub ILC}). (author)

  18. Generalized partially linear single-index model for zero-inflated count data. (United States)

    Wang, Xiaoguang; Zhang, Jun; Yu, Liang; Yin, Guosheng


    Count data often arise in biomedical studies, while there could be a special feature with excessive zeros in the observed counts. The zero-inflated Poisson model provides a natural approach to accounting for the excessive zero counts. In the semiparametric framework, we propose a generalized partially linear single-index model for the mean of the Poisson component, the probability of zero, or both. We develop the estimation and inference procedure via a profile maximum likelihood method. Under some mild conditions, we establish the asymptotic properties of the profile likelihood estimators. The finite sample performance of the proposed method is demonstrated by simulation studies, and the new model is illustrated with a medical care dataset. Copyright © 2014 John Wiley & Sons, Ltd.

  19. Modeling single molecule junction mechanics as a probe of interface bonding (United States)

    Hybertsen, Mark S.


    Using the atomic force microscope based break junction approach, applicable to metal point contacts and single molecule junctions, measurements can be repeated thousands of times resulting in rich data sets characterizing the properties of an ensemble of nanoscale junction structures. This paper focuses on the relationship between the measured force extension characteristics including bond rupture and the properties of the interface bonds in the junction. A set of exemplary model junction structures has been analyzed using density functional theory based calculations to simulate the adiabatic potential surface that governs the junction elongation. The junction structures include representative molecules that bond to the electrodes through amine, methylsulfide, and pyridine links. The force extension characteristics are shown to be most effectively analyzed in a scaled form with maximum sustainable force and the distance between the force zero and force maximum as scale factors. Widely used, two parameter models for chemical bond potential energy versus bond length are found to be nearly identical in scaled form. Furthermore, they fit well to the present calculations of N-Au and S-Au donor-acceptor bonds, provided no other degrees of freedom are allowed to relax. Examination of the reduced problem of a single interface, but including relaxation of atoms proximal to the interface bond, shows that a single-bond potential form renormalized by an effective harmonic potential in series fits well to the calculated results. This allows relatively accurate extraction of the interface bond energy. Analysis of full junction models shows cooperative effects that go beyond the mechanical series inclusion of the second bond in the junction, the spectator bond that does not rupture. Calculations for a series of diaminoalkanes as a function of molecule length indicate that the most important cooperative effect is due to the interactions between the dipoles induced by the donor

  20. Penn model and Wemple-DiDomenico single oscillator analysis of cobalt sulfide nanoparticles (United States)

    Joshi, J. H.; Khunti, D. D.; Joshi, M. J.; Parikh, K. D.


    Cobalt sulfide (CoS) is a semiconductor material from group II-IV. It is widely used for different applications, viz., as supercapacitors, as counter electrode in dye sensitized solar cells, etc. The CoS nanoparticles were synthesized by using microwave assisted route. The synthesized nanoparticles possessed major phase of Co3S4 (face centered cubic) and minor phase of CoS (primitive hexagonal). The Penn model was used for Co3S4 phase and Plasma energy, Penn gap, Fermi energy and electronic polarizibilities were obtained. The electronic polarizibility was found to be 6.36 × 10-23cm3 using Penn model and the same was found to be 6.38 × 10-23cm3 and 4.48 × 10-23 cm3 using Clausius-Mossotti equation and energy band-gap equation, respectively. The optical study was carried out using UV-Visible spectroscopy. The absorption spectrum exhibited peaks in near IR regions. The energy band gap was found to be 1.69eV indicating the semiconducting nature of nanoparticles. The refractive index was found to be 2.88. The wavelength dependence refractive index was fitted to Wemple-DiDomenico single oscillator model and the parameters like single oscillator energy, dispersion energy, average oscillator wavelength and oscillator length strength were also determined. The results are discussed.

  1. Single-Image Shadow Removal Using 3D Intensity Surface Modeling. (United States)

    He, Kai; Zhen, Rui; Yan, Jiaxing; Ge, Yunfeng


    Shadow removal from a single image is a challenging problem, whose solution is proposed in this study using 3D intensity surface modeling. Due to the high-order textural content in the original images, a direct modeling of the intensity surface of shadow image is difficult. In this study, image decomposition technology is used as an edge-preserving filter to remove the textural detail while keeping the local-smoothness pattern of image intensity surface. Using 3D modeling, a proper intensity surface of illumination in shadow region can be obtained based on that corresponding to the same texture in the non-shadow one. Thus, the intensity surface of shadow region can be compensated with a respective shadow-removal. Experimental results demonstrate the effectiveness of the proposed approach in the aspect of single-image shadow removal. In contrast to the alternative methods, it is not limited by additional assumptions or conditions; moreover, it can deal with the non-uniform and curved surface shadows, and is applicable to the shadow regions consisting of different types of textures.

  2. Modeling Laterally Loaded Single Piles Accounting for Nonlinear Soil-Pile Interactions

    Directory of Open Access Journals (Sweden)

    Maryam Mardfekri


    Full Text Available The nonlinear behavior of a laterally loaded monopile foundation is studied using the finite element method (FEM to account for soil-pile interactions. Three-dimensional (3D finite element modeling is a convenient and reliable approach to account for the continuity of the soil mass and the nonlinearity of the soil-pile interactions. Existing simple methods for predicting the deflection of laterally loaded single piles in sand and clay (e.g., beam on elastic foundation, p-y method, and SALLOP are assessed using linear and nonlinear finite element analyses. The results indicate that for the specific case considered here the p-y method provides a reasonable accuracy, in spite of its simplicity, in predicting the lateral deflection of single piles. A simplified linear finite element (FE analysis of piles, often used in the literature, is also investigated and the influence of accounting for the pile diameter in the simplified linear FE model is evaluated. It is shown that modeling the pile as a line with beam-column elements results in a reduced contribution of the surrounding soil to the lateral stiffness of the pile and an increase of up to 200% in the predicted maximum lateral displacement of the pile head.

  3. Can single classifiers be as useful as model ensembles to produce benthic seabed substratum maps? (United States)

    Turner, Joseph A.; Babcock, Russell C.; Hovey, Renae; Kendrick, Gary A.


    Numerous machine-learning classifiers are available for benthic habitat map production, which can lead to different results. This study highlights the performance of the Random Forest (RF) classifier, which was significantly better than Classification Trees (CT), Naïve Bayes (NB), and a multi-model ensemble in terms of overall accuracy, Balanced Error Rate (BER), Kappa, and area under the curve (AUC) values. RF accuracy was often higher than 90% for each substratum class, even at the most detailed level of the substratum classification and AUC values also indicated excellent performance (0.8-1). Total agreement between classifiers was high at the broadest level of classification (75-80%) when differentiating between hard and soft substratum. However, this sharply declined as the number of substratum categories increased (19-45%) including a mix of rock, gravel, pebbles, and sand. The model ensemble, produced from the results of all three classifiers by majority voting, did not show any increase in predictive performance when compared to the single RF classifier. This study shows how a single classifier may be sufficient to produce benthic seabed maps and model ensembles of multiple classifiers.

  4. Modeling of the interplay between single-file diffusion and conversion reaction in mesoporous systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing [Iowa State Univ., Ames, IA (United States)


    We analyze the spatiotemporal behavior of species concentrations in a diffusion-mediated conversion reaction which occurs at catalytic sites within linear pores of nanometer diameter. A strict single-file (no passing) constraint occurs in the diffusion within such narrow pores. Both transient and steady-state behavior is precisely characterized by kinetic Monte Carlo simulations of a spatially discrete lattice–gas model for this reaction–diffusion process considering various distributions of catalytic sites. Exact hierarchical master equations can also be developed for this model. Their analysis, after application of mean-field type truncation approximations, produces discrete reaction–diffusion type equations (mf-RDE). For slowly varying concentrations, we further develop coarse-grained continuum hydrodynamic reaction–diffusion equations (h-RDE) incorporating a precise treatment of single-file diffusion (SFD) in this multispecies system. Noting the shortcomings of mf-RDE and h-RDE, we then develop a generalized hydrodynamic (GH) formulation of appropriate gh-RDE which incorporates an unconventional description of chemical diffusion in mixed-component quasi-single-file systems based on a refined picture of tracer diffusion for finite-length pores. The gh-RDE elucidate the non-exponential decay of the steady-state reactant concentration into the pore and the non-mean-field scaling of the reactant penetration depth. Then an extended model of a catalytic conversion reaction within a functionalized nanoporous material is developed to assess the effect of varying the reaction product – pore interior interaction from attractive to repulsive. The analysis is performed utilizing the generalized hydrodynamic formulation of the reaction-diffusion equations which can reliably capture the complex interplay between reaction and restricted transport for both irreversible and reversible reactions.

  5. Geometric Context and Orientation Map Combination for Indoor Corridor Modeling Using a Single Image (United States)

    Baligh Jahromi, Ali; Sohn, Gunho


    Since people spend most of their time indoors, their indoor activities and related issues in health, security and energy consumption have to be understood. Hence, gathering and representing spatial information of indoor spaces in form of 3D models become very important. Considering the available data gathering techniques with respect to the sensors cost and data processing time, single images proved to be one of the reliable sources. Many of the current single image based indoor space modeling methods are defining the scene as a single box primitive. This domain-specific knowledge is usually not applicable in various cases where multiple corridors are joined at one scene. Here, we addressed this issue by hypothesizing-verifying multiple box primitives which represents the indoor corridor layout. Middle-level perceptual organization is the foundation of the proposed method, which relies on finding corridor layout boundaries using both detected line segments and virtual rays created by orthogonal vanishing points. Due to the presence of objects, shadows and occlusions, a comprehensive interpretation of the edge relations is often concealed. This necessitates the utilization of virtual rays to create a physically valid layout hypothesis. Many of the former methods used Orientation Map or Geometric Context to evaluate their proposed layout hypotheses. Orientation map is a map that reveals the local belief of region orientations computed from line segments, and in a segmented image geometric context uses color, texture, edge, and vanishing point cues to estimate the likelihood of each possible label for all super-pixels. Here, the created layout hypotheses are evaluated by an objective function which considers the fusion of orientation map and geometric context with respect to the horizontal viewing angle at each image pixel. Finally, the best indoor corridor layout hypothesis which gets the highest score from the scoring function will be selected and converted to a 3D

  6. Standards for securing adequate indoor air quality across Europe

    DEFF Research Database (Denmark)

    Wargocki, Pawel; Carrer, P.; de Oliveira Fernandes, E.


    effects of IAQ into different components: exposures to indoor and outdoor air pollutants, association with different morbidities and the way ventilation based approaches could minimise their impact. Disability adjusted life years (DALYs), a common metric to allow comparability of impacts on various types...... and is determined mainly considering the metabolic CO2 production. It is only applicable if all other pollutants meet WHO guidelines for ambient and indoor air quality. If they do not meet these guidelines after applying source control and when air used for ventilation is clean health-based ventilation rate should...... be a multiple of the minimum rate. Conclusions: Optimal strategy for ensuring adequate IAQ to ensure health conditions must include cleaning of ambient air (if necessary) and source control; only then health-based ventilation rate can be defined. Such approach is expected to half the BOD caused by indoor...

  7. Nuclear waste disposal: achieving adequate financing - special study

    International Nuclear Information System (INIS)

    Quasebarth, M.V.


    An analysis by the Congressional Budget Office (CBO) evaluates whether the current one mill fee now charged to nuclear-electricity consumers will adequately finance the waste disposal program. The CBO found that, if the fee is adjusted annually for inflation, it should provide enough revenues to cover all program costs under all nuclear growth forecasts. If the fee is unchanged, however, the fees will be inadequate if inflation exceeds 3% annually. The report suggests two alternatives for fee revision, but makes no recommendations. The alternatives are to increase the fee only at specific intervals or to automatically adjust the fee through indexation. The report examines the effect of delaying the program, cost overruns, and alternative inflation rate and interest rate assumptions. 3 figures, 12 tables

  8. Deuteron nuclear interaction potential with heavy nuclei in single folding model

    Directory of Open Access Journals (Sweden)

    O. V. Babak


    Full Text Available Deuteron interaction potential with heavy nuclei at sub-barrier energies has been constructed in the frame-work of single folding model using the complex dynamic polarization potential. It is shown that the account of finite deuteron size leads to significant increasing of nuclear potential in outer region of interaction. Cross sec-tions of deuteron elastic scattering on 208Pb at energy 7, 7.3 and 8 MeV were calculated and compared with ex-periment data. Calculations were performed without any variations of parameters.

  9. Rational Design of Lanthanoid Single-Ion Magnets: Predictive Power of the Theoretical Models. (United States)

    Baldoví, José J; Duan, Yan; Morales, Roser; Gaita-Ariño, Alejandro; Ruiz, Eliseo; Coronado, Eugenio


    We report two new single-ion magnets (SIMs) of a family of oxydiacetate lanthanide complexes with D3 symmetry to test the predictive capabilities of complete active space ab initio methods (CASSCF and CASPT2) and the semiempirical radial effective charge (REC) model. Comparison of the theoretical predictions of the energy levels, wave functions and magnetic properties with detailed spectroscopic and magnetic characterisation is used to critically discuss the limitations of these theoretical approaches. The need for spectroscopic information for a reliable description of the properties of lanthanide SIMs is emphasised. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Reliability modelling for wear out failure period of a single unit system


    Arekar, Kirti; Ailawadi, Satish; Jain, Rinku


    The present paper deals with two time-shifted density models for wear out failure period of a single unit system. The study, considered the time-shifted Gamma and Normal distributions. Wear out failures occur as a result of deterioration processes or mechanical wear and its probability of occurrence increases with time. A failure rate as a function of time deceases in an early failure period and it increases in wear out period. Failure rates for time shifted distributions and expression for m...

  11. Effective permittivity of single-walled carbon nanotube composites: Two-fluid model

    Energy Technology Data Exchange (ETDEWEB)

    Moradi, Afshin, E-mail: [Department of Engineering Physics, Kermanshah University of Technology, Kermanshah (Iran, Islamic Republic of); Department of Nano Sciences, Institute for Studies in Theoretical Physics and Mathematics (IPM), Tehran (Iran, Islamic Republic of); Zangeneh, Hamid Reza; Moghadam, Firoozeh Karimi [Department of Photonics, Faculty of Physics, University of Kashan, Kashan (Iran, Islamic Republic of)


    We develop an effective medium theory to obtain effective permittivity of a composite of two-dimensional (2D) aligned single-walled carbon nanotubes. Electronic excitations on each nanotube surface are modeled by an infinitesimally thin layer of a 2D electron gas represented by two interacting fluids, which takes into account different nature of the σ and π electrons. Calculations of both real and imaginary parts of the effective dielectric function of the system are presented, for different values of the filling factor and radius of carbon nanotubes.


    Directory of Open Access Journals (Sweden)



    Full Text Available Generalized differential transform method (GDTM is a powerful method to solve the fractional differential equations. In this paper, a new fractional model for systems with single degree of freedom (SDOF is presented, by using the GDTM. The advantage of this method compared with some other numerical methods has been shown. The analysis of new approximations, damping and acceleration of systems are also described. Finally, by reducing damping and analysis of the errors, in one of the fractional cases, we have shown that in addition to having a suitable solution for the displacement close to the exact one, the system enjoys acceleration once crossing the equilibrium point.

  13. Anomalous resonance of the symmetric single-impurity Anderson model in the presence of pairing fluctuations

    International Nuclear Information System (INIS)

    Guang-Ming Zhang; Lu Yu


    We consider the symmetric single-impurity Anderson model in the presence of pairing fluctuations. In the isotropic limit, the degrees of freedom of the local impurity are separated into hybridizing and non-hybridizing modes. The self-energy for the hybridizing modes can be obtained exactly, leading to two subbands centered at ±U/2. For the non-hybridizing modes, the second order perturbation yields a singular resonance of the marginal Fermi liquid form. By multiplicative renormalization, the self-energy is derived exactly, showing the resonance is pinned at the Fermi level, while its strength is weakened by renormalization. (author)

  14. Modeling Dynamics and Exploring Control of a Single-Wheeled Dynamically Stable Mobile Robot with Arms (United States)


    Takahashi, T., and Kawamura, A. "A Study on the Zero Moment Point Measurement for Biped Walking Robots ", Proc. of the 7th International Workshop on...STABLE MOBILE ROBOT WITH ARMS" 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER CAPT SCHEARER ERIC M 5e. TASK NUMBER 5f. WORK...Std. Z39.18 Modeling Dynamics and Exploring Control of a Single-Wheeled Dynamically Stable Mobile Robot with Arms Eric M. Schearer CMU-RI-TR-06-37

  15. Single-particle spectral function of a generalized Hubbard model: Metal-insulator transition (United States)

    Gagliano, E. R.; Aligia, A. A.; Arrachea, Liliana; Avignon, Michel


    A generalized Hubbard model with correlated hoppings is studied at half filling using exact diagonalization methods. For certain values of the hopping parameters our results for several static properties, the Drude weight and the single-particle spectra function, suggest the occurrence of a metal-insulator transition (MIT) at a finite value of the local Coulomb interaction Uc. We identify the regions of the hopping parameters where the MIT is of the Mott type. In these regions, for large U

  16. The MCRA model for probabilistic single-compound and cumulative risk assessment of pesticides. (United States)

    van der Voet, Hilko; de Boer, Waldo J; Kruisselbrink, Johannes W; Goedhart, Paul W; van der Heijden, Gerie W A M; Kennedy, Marc C; Boon, Polly E; van Klaveren, Jacob D


    Pesticide risk assessment is hampered by worst-case assumptions leading to overly pessimistic assessments. On the other hand, cumulative health effects of similar pesticides are often not taken into account. This paper describes models and a web-based software system developed in the European research project ACROPOLIS. The models are appropriate for both acute and chronic exposure assessments of single compounds and of multiple compounds in cumulative assessment groups. The software system MCRA (Monte Carlo Risk Assessment) is available for stakeholders in pesticide risk assessment at We describe the MCRA implementation of the methods as advised in the 2012 EFSA Guidance on probabilistic modelling, as well as more refined methods developed in the ACROPOLIS project. The emphasis is on cumulative assessments. Two approaches, sample-based and compound-based, are contrasted. It is shown that additional data on agricultural use of pesticides may give more realistic risk assessments. Examples are given of model and software validation of acute and chronic assessments, using both simulated data and comparisons against the previous release of MCRA and against the standard software DEEM-FCID used by the Environmental Protection Agency in the USA. It is shown that the EFSA Guidance pessimistic model may not always give an appropriate modelling of exposure. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  17. Structure Based Thermostability Prediction Models for Protein Single Point Mutations with Machine Learning Tools.

    Directory of Open Access Journals (Sweden)

    Lei Jia

    Full Text Available Thermostability issue of protein point mutations is a common occurrence in protein engineering. An application which predicts the thermostability of mutants can be helpful for guiding decision making process in protein design via mutagenesis. An in silico point mutation scanning method is frequently used to find "hot spots" in proteins for focused mutagenesis. ProTherm ( is a public database that consists of thousands of protein mutants' experimentally measured thermostability. Two data sets based on two differently measured thermostability properties of protein single point mutations, namely the unfolding free energy change (ddG and melting temperature change (dTm were obtained from this database. Folding free energy change calculation from Rosetta, structural information of the point mutations as well as amino acid physical properties were obtained for building thermostability prediction models with informatics modeling tools. Five supervised machine learning methods (support vector machine, random forests, artificial neural network, naïve Bayes classifier, K nearest neighbor and partial least squares regression are used for building the prediction models. Binary and ternary classifications as well as regression models were built and evaluated. Data set redundancy and balancing, the reverse mutations technique, feature selection, and comparison to other published methods were discussed. Rosetta calculated folding free energy change ranked as the most influential features in all prediction models. Other descriptors also made significant contributions to increasing the accuracy of the prediction models.

  18. Multi-scale Modeling of Compressible Single-phase Flow in Porous Media using Molecular Simulation

    KAUST Repository

    Saad, Ahmed Mohamed


    In this study, an efficient coupling between Monte Carlo (MC) molecular simulation and Darcy-scale flow in porous media is presented. The cell-centered finite difference method with a non-uniform rectangular mesh were used to discretize the simulation domain and solve the governing equations. To speed up the MC simulations, we implemented a recently developed scheme that quickly generates MC Markov chains out of pre-computed ones, based on the reweighting and reconstruction algorithm. This method astonishingly reduces the required computational time by MC simulations from hours to seconds. In addition, the reweighting and reconstruction scheme, which was originally designed to work with the LJ potential model, is extended to work with a potential model that accounts for the molecular quadrupole moment of fluids with non-spherical molecules such as CO2. The potential model was used to simulate the thermodynamic equilibrium properties for single-phase and two-phase systems using the canonical ensemble and the Gibbs ensemble, respectively. Comparing the simulation results with the experimental data showed that the implemented model has an excellent fit outperforming the standard LJ model. To demonstrate the strength of the proposed coupling in terms of computational time efficiency and numerical accuracy in fluid properties, various numerical experiments covering different compressible single-phase flow scenarios were conducted. The novelty in the introduced scheme is in allowing an efficient coupling of the molecular scale and Darcy scale in reservoir simulators. This leads to an accurate description of the thermodynamic behavior of the simulated reservoir fluids; consequently enhancing the confidence in the flow predictions in porous media.

  19. Inverse modeling of multicomponent reactive transport through single and dual porosity media (United States)

    Samper, Javier; Zheng, Liange; Fernández, Ana María; Montenegro, Luis


    Compacted bentonite is foreseen as buffer material for high-level radioactive waste in deep geological repositories because it provides hydraulic isolation, chemical stability, and radionuclide sorption. A wide range of laboratory tests were performed within the framework of FEBEX ( Full-scale Engineered Barrier EXperiment) project to characterize buffer properties and develop numerical models for FEBEX bentonite. Here we present inverse single and dual-continuum multicomponent reactive transport models of a long-term permeation test performed on a 2.5 cm long sample of FEBEX bentonite. Initial saline bentonite porewater was flushed with 5.5 pore volumes of fresh granitic water. Water flux and chemical composition of effluent waters were monitored during almost 4 years. The model accounts for solute advection and diffusion and geochemical reactions such as aqueous complexation, acid-base, cation exchange, protonation/deprotonation by surface complexation and dissolution/precipitation of calcite, chalcedony and gypsum. All of these processes are assumed at local equilibrium. Similar to previous studies of bentonite porewater chemistry on batch systems which attest the relevance of protonation/deprotonation on buffering pH, our results confirm that protonation/deprotonation is a key process in maintaining a stable pH under dynamic transport conditions. Breakthrough curves of reactive species are more sensitive to initial porewater concentration than to effective diffusion coefficient. Optimum estimates of initial porewater chemistry of saturated compacted FEBEX bentonite are obtained by solving the inverse problem of multicomponent reactive transport. While the single-continuum model reproduces the trends of measured data for most chemical species, it fails to match properly the long tails of most breakthrough curves. Such limitation is overcome by resorting to a dual-continuum reactive transport model.

  20. Model independent approach to the single photoelectron calibration of photomultiplier tubes

    Energy Technology Data Exchange (ETDEWEB)

    Saldanha, R.; Grandi, L.; Guardincerri, Y.; Wester, T.


    The accurate calibration of photomultiplier tubes is critical in a wide variety of applications in which it is necessary to know the absolute number of detected photons or precisely determine the resolution of the signal. Conventional calibration methods rely on fitting the photomultiplier response to a low intensity light source with analytical approximations to the single photoelectron distribution, often leading to biased estimates due to the inability to accurately model the full distribution, especially at low charge values. In this paper we present a simple statistical method to extract the relevant single photoelectron calibration parameters without making any assumptions about the underlying single photoelectron distribution. We illustrate the use of this method through the calibration of a Hamamatsu R11410 photomultiplier tube and study the accuracy and precision of the method using Monte Carlo simulations. The method is found to have significantly reduced bias compared to conventional methods and works under a wide range of light intensities, making it suitable for simultaneously calibrating large arrays of photomultiplier tubes.

  1. Evaluations of Three-Dimensional Building Model Reconstruction from LiDAR Point Clouds and Single-View Perspective Imagery

    Directory of Open Access Journals (Sweden)

    F. Tsai


    Full Text Available This paper briefly presents two approaches for effective three-dimensional (3D building model reconstruction from terrestrial laser scanning (TLS data and single perspective view imagery and assesses their applicability to the reconstruction of 3D models of landmark or historical buildings. The collected LiDAR point clouds are registered based on conjugate points identified using a seven-parameter transformation system. Three dimensional models are generated using plan and surface fitting algorithms. The proposed single-view reconstruction (SVR method is based on vanishing points and single-view metrology. More detailed models can also be generated according to semantic analysis of the façade images. Experimental results presented in this paper demonstrate that both TLS and SVR approaches can successfully produce accurate and detailed 3D building models from LiDAR point clouds or different types of single-view perspective images.

  2. Photon-by-Photon Hidden Markov Model Analysis for Microsecond Single-Molecule FRET Kinetics. (United States)

    Pirchi, Menahem; Tsukanov, Roman; Khamis, Rashid; Tomov, Toma E; Berger, Yaron; Khara, Dinesh C; Volkov, Hadas; Haran, Gilad; Nir, Eyal


    The function of biological macromolecules involves large-scale conformational dynamics spanning multiple time scales, from microseconds to seconds. Such conformational motions, which may involve whole domains or subunits of a protein, play a key role in allosteric regulation. There is an urgent need for experimental methods to probe the fastest of these motions. Single-molecule fluorescence experiments can in principle be used for observing such dynamics, but there is a lack of analysis methods that can extract the maximum amount of information from the data, down to the microsecond time scale. To address this issue, we introduce H 2 MM, a maximum likelihood estimation algorithm for photon-by-photon analysis of single-molecule fluorescence resonance energy transfer (FRET) experiments. H 2 MM is based on analytical estimators for model parameters, derived using the Baum-Welch algorithm. An efficient and effective method for the calculation of these estimators is introduced. H 2 MM is shown to accurately retrieve the reaction times from ∼1 s to ∼10 μs and even faster when applied to simulations of freely diffusing molecules. We further apply this algorithm to single-molecule FRET data collected from Holliday junction molecules and show that at low magnesium concentrations their kinetics are as fast as ∼10 4 s -1 . The new algorithm is particularly suitable for experiments on freely diffusing individual molecules and is readily incorporated into existing analysis packages. It paves the way for the broad application of single-molecule fluorescence to study ultrafast functional dynamics of biomolecules.

  3. Modeling Snow Aggregates and their Single Scattering Properties: Implications to Snowfall Remote Sensing (United States)

    Nowell, H.; Liu, G.


    With the advent of satellites, we can now observe areas of the globe that have sparse to no ground data coverage. Both active and passive satellite sensors aboard satellites including CloudSat's Cloud Profiling Radar (CPR), Aqua's Advanced Microwave Scanning Radiometer (AMSR-E) and the upcoming Global Precipitation Measurement's (GPM) Dual-Frequency Precipitation Radar (DPR) and GPM Microwave Imager (GMI) study ice and snow particles. A good retrieval algorithm for these satellite sensors can only be developed when the single scattering properties of the snowflakes are accurately calculated in radiative transfer models. This becomes crucial at frequencies at and above the W-band when aggregate ice crystals become detectable by satellite radiometers. Snowflakes are often modeled as spheres or oblate spheroids to ease the complexity of calculations, despite the fact that they are typically aggregates of crystals. For improved accuracy in satellite remote sensing, it is important to model snowflakes as close to nature as possible. Several recent studies model flakes as pristine crystal types [Liu, 2008], generate aggregate flakes as fractals [Ishimoto, 2008] or via the Monte Carlo method [Maruyama and Fujioshi, 2005]. Modeling snowflakes as pristine crystals, however, has the drawback of not accurately reflecting snowflakes as most tend to be aggregates of different crystal types. Other studies where aggregates are generated tend to overlook size-density relationships of aggregate flakes or other studied statistical parameters such as aspect ratio. In an effort to improve available single-scattering properties of aggregate flakes, we developed a new method of generating flakes. Starting out with a six-bullet rosette crystal of accurate size and density, aggregate flakes are generated with two different bullet rosette crystal sizes of 200 and/or 400 microns in maximum dimension. The flakes similarly follow size-density relationships of aggregate as determined from

  4. Analytical Modeling Of The Steinmetz Coefficient For Single-Phase Transformer Eddy Current Loss Prediction

    Directory of Open Access Journals (Sweden)

    T. Aly Saandy


    Full Text Available Abstract This article presents to an analytical calculation methodology of the Steinmetz coefficient applied to the prediction of Eddy current loss in a single-phase transformer. Based on the electrical circuit theory the active power consumed by the core is expressed analytically in function of the electrical parameters as resistivity and the geometrical dimensions of the core. The proposed modeling approach is established with the duality parallel series. The required coefficient is identified from the empirical Steinmetz data based on the experimented active power expression. To verify the relevance of the model validations both by simulations with two in two different frequencies and measurements were carried out. The obtained results are in good agreement with the theoretical approach and the practical results.

  5. Single molecule studies of surface-induced secondary structure in a model peptide (United States)

    English, Douglas S.; Cunningham, Joy A.; Wehri, Sarah C.; Petrik, Amy F.; Okamoto, Kenji


    We have proposed using single molecule fluorescence resonant energy transfer (SM-FRET) to investigate the induction of secondary structure in model, surface-active peptides upon binding at an interface. The ability for SM-FRET to distinguish structural heterogeneity will offer a distinct advantage over traditional biophysical methods in these types of studies. Ensemble methods mask heterogeneity and only provide an average measure of secondary structural features. Because secondary structure contributes greatly to the energetics of dehydrating the amide backbone, detailed information of conformational distributions is crucial to the understanding of the thermodynamic cycle involved. Here we present results from our first efforts at using SM-FRET to study an amphipathic α-helix forming peptide immobilized at the solid-liquid interface between an aqueous solution and an octadecylsilane modified glass surface. This system serves as a model for future studies of peptide partitioning to lipid bilayers and other relevant interfaces.

  6. Extinction properties of single-walled carbon nanotubes: Two-fluid model

    Energy Technology Data Exchange (ETDEWEB)

    Moradi, Afshin, E-mail: [Department of Basic Sciences, Kermanshah University of Technology, Kermanshah, Iran and Department of Nano Science, Institute for Studies in Theoretical Physics and Mathematics (IPM), Tehran (Iran, Islamic Republic of)


    The extinction spectra of a single-walled carbon nanotube are investigated, within the framework of the vector wave function method in conjunction with the hydrodynamic model. Both polarizations of the incident plane wave (TE and TM with respect to the x-z plane) are treated. Electronic excitations on the nanotube surface are modeled by an infinitesimally thin layer of a two-dimensional electron gas represented by two interacting fluids, which takes into account the different nature of the σ and π electrons. Numerical results show that strong interaction between the fluids gives rise to the splitting of the extinction spectra into two peaks in quantitative agreement with the π and σ + π plasmon energies.

  7. Fuzzy Decision-Making Approach in Geometric Programming for a Single Item EOQ Model

    Directory of Open Access Journals (Sweden)

    Monalisha Pattnaik


    Full Text Available Background and methods: Fuzzy decision-making approach is allowed in geometric programming for a single item EOQ model with dynamic ordering cost and demand-dependent unit cost. The setup cost varies with the quantity produced/purchased and the modification of objective function with storage area in the presence of imprecisely estimated parameters are investigated.  It incorporates all concepts of a fuzzy arithmetic approach, the quantity ordered, and demand per unit compares both fuzzy geometric programming technique and other models for linear membership functions.  Results and conclusions: Investigation of the properties of an optimal solution allows developing an algorithm whose validity is illustrated through an example problem and the results discu ssed. Sensitivity analysis of the optimal solution is also studied with respect to changes in different parameter values.  

  8. Modelling and verification of single slope solar still using ANSYS-CFX

    Energy Technology Data Exchange (ETDEWEB)

    Panchal, Hitesh N. [Research Scholar, Kadi Sarvavishwavidyalaya University, Gandhinagar (India); Shah, P.K. [Principal, Silver Oak College of Engineering and Technology, Ahmedabad (India)


    Solar distillation method is an easy, small scale and cost effective technique for providing safe water. It requires an energy input as heat and the solar radiation can be source of energy. Solar still is a device which uses process of solar distillation. Here, a two phase, three dimensional model was made for evaporation as well as condensation process in solar still by using ANSYS CFX method to simulate the present model. Simulation results of solar still compared with actual experiment data of single basin solar still at climate conditions of Mehsana (23{sup o}12' N, 72{sup o}30'). There is a good agreement with experimental results and simulation results of distillate output, water temperature and heat transfer coefficients. Overall study shows the ANSYS CFX is a powerful tool for diagnostic as well as analysis of solar still.

  9. Non-degenerate single-particle energies in the Ginocchio model

    International Nuclear Information System (INIS)

    Leviatan, A.; Kirson, M.W.


    A one-body operator expressing the breaking of the degeneracy of the single-nucleon energies is added to the pairing interaction of the Ginocchio model. This operator couples states inside the model's SD space to states outside it. The influence of this coupling on the effective interaction in the SD space and the possibility of expressing the results in terms of renormalization of parameters in the fermion hamiltonian or the IBM are investigated. The effective interaction is found to be almost diagonal in seniority, while splitting the previously-degenerate seniority multiplets. Appropriately renormalized Ginocchio and IBM hamiltonians can approximately reproduce the results, but fermion-number dependence of the hamiltonian parameters and explicit three-body interactions are needed to reproduce the computed effects exactly. (orig.)

  10. Three mechanisms model of shale gas in real state transport through a single nanopore (United States)

    Li, Dongdong; Zhang, Yanyu; Sun, Xiaofei; Li, Peng; Zhao, Fengkai


    At present, the apparent permeability models of shale gas consider only the viscous flow and Knudsen diffusion of free gas, but do not take into account the influence of surface diffusion. Moreover, it is assumed that shale gas is in ideal state. In this paper, shale gas is assumed in real state, a new apparent permeability model for shale gas transport through a single nanopore is developed that captures many important migration mechanisms, such as viscous flow and Knudsen diffusion of free gas, surface diffusion of adsorbed gas. According to experimental data, the accuracy of apparent permeability model was verified. What’s more, the effects of pressure and pore radius on apparent permeability, and the effects on the permeability fraction of viscous flow, Knudsen diffusion and surface diffusion were analysed, separately. Finally, the results indicate that the error of the developed model in this paper was 3.02%, which is less than the existing models. Pressure and pore radius seriously affect the apparent permeability of shale gas. When the pore radius is small or pressure is low, the surface diffusion cannot be ignored. When the pressure and the pore radius is big, the viscous flow occupies the main position.

  11. The Combined Effects of Measurement Error and Omitting Confounders in the Single-Mediator Model. (United States)

    Fritz, Matthew S; Kenny, David A; MacKinnon, David P


    Mediation analysis requires a number of strong assumptions be met in order to make valid causal inferences. Failing to account for violations of these assumptions, such as not modeling measurement error or omitting a common cause of the effects in the model, can bias the parameter estimates of the mediated effect. When the independent variable is perfectly reliable, for example when participants are randomly assigned to levels of treatment, measurement error in the mediator tends to underestimate the mediated effect, while the omission of a confounding variable of the mediator-to-outcome relation tends to overestimate the mediated effect. Violations of these two assumptions often co-occur, however, in which case the mediated effect could be overestimated, underestimated, or even, in very rare circumstances, unbiased. To explore the combined effect of measurement error and omitted confounders in the same model, the effect of each violation on the single-mediator model is first examined individually. Then the combined effect of having measurement error and omitted confounders in the same model is discussed. Throughout, an empirical example is provided to illustrate the effect of violating these assumptions on the mediated effect.

  12. A single-phase model for liquid-feed DMFCs with non-Tafel kinetics (United States)

    Vera, Marcos

    An isothermal single-phase 3D/1D model for liquid-feed direct methanol fuel cells (DMFC) is presented. Three-dimensional (3D) mass, momentum and species transport in the anode channels and gas diffusion layer is modeled using a commercial, finite-volume based, computational fluid dynamics (CFD) software complemented with user supplied subroutines. The 3D model is locally coupled to a one-dimensional (1D) model accounting for the electrochemical reactions in both the anode and the cathode, which provides a physically sound boundary condition for the velocity and methanol concentration fields at the anode gas diffusion layer/catalyst interface. The 1D model - comprising the membrane-electrode assembly, cathode gas diffusion layer, and cathode channel - assumes non-Tafel kinetics to describe the complex kinetics of the multi-step methanol oxidation reaction at the anode, and accounts for the mixed potential associated with methanol crossover, induced both by diffusion and electro-osmotic drag. Polarization curves computed for various methanol feed concentrations, temperatures, and methanol feed velocities show good agreement with recent experimental results. The spatial distribution of methanol in the anode channels, together with the distributions of current density, methanol crossover and fuel utilization at the anode catalyst layer, are also presented for different opperating conditions.

  13. The Combined Effects of Measurement Error and Omitting Confounders in the Single-Mediator Model (United States)

    Fritz, Matthew S.; Kenny, David A.; MacKinnon, David P.


    Mediation analysis requires a number of strong assumptions be met in order to make valid causal inferences. Failing to account for violations of these assumptions, such as not modeling measurement error or omitting a common cause of the effects in the model, can bias the parameter estimates of the mediated effect. When the independent variable is perfectly reliable, for example when participants are randomly assigned to levels of treatment, measurement error in the mediator tends to underestimate the mediated effect, while the omission of a confounding variable of the mediator to outcome relation tends to overestimate the mediated effect. Violations of these two assumptions often co-occur, however, in which case the mediated effect could be overestimated, underestimated, or even, in very rare circumstances, unbiased. In order to explore the combined effect of measurement error and omitted confounders in the same model, the impact of each violation on the single-mediator model is first examined individually. Then the combined effect of having measurement error and omitted confounders in the same model is discussed. Throughout, an empirical example is provided to illustrate the effect of violating these assumptions on the mediated effect. PMID:27739903

  14. Multiscale modelling and simulation of single crystal superalloy turbine blade casting during directional solidification process

    Directory of Open Access Journals (Sweden)

    Xu Qingyan


    Full Text Available As the key parts of an aero-engine, single crystal (SX superalloy turbine blades have been the focus of much attention. However, casting defects often occur during the manufacturing process of the SX turbine blades. Modeling and simulation technology can help to optimize the manufacturing process of SX blades. Multiscale coupled models were proposed and used to simulate the physical phenomena occurring during the directional solidification (DS process. Coupled with heat transfer (macroscale and grain growth (meso-scale, 3D dendritic grain growth was calculated to show the competitive grain growth at micro-scale. SX grain selection behavior was studied by the simulation and experiments. The results show that the geometrical structure and technical parameters had strong influences on the grain selection effectiveness. Based on the coupled models, heat transfer, grain growth and microstructure evolution of a complex hollow SX blade were simulated. Both the simulated and experimental results show that the stray grain occurred at the platform of the SX blade when a constant withdrawal rate was used in manufacturing process. In order to avoid the formation of the stray crystal, the multi-scale coupled models and the withdrawal rate optimized technique were applied to the same SX turbine blade. The modeling results indicated that the optimized variable withdrawal rate can achieve SX blade castings with no stray grains, which was also proved by the experiments.

  15. Assessment of continuum mechanics models in predicting buckling strains of single-walled carbon nanotubes. (United States)

    Zhang, Y Y; Wang, C M; Duan, W H; Xiang, Y; Zong, Z


    This paper presents an assessment of continuum mechanics (beam and cylindrical shell) models in the prediction of critical buckling strains of axially loaded single-walled carbon nanotubes (SWCNTs). Molecular dynamics (MD) simulation results for SWCNTs with various aspect (length-to-diameter) ratios and diameters will be used as the reference solutions for this assessment exercise. From MD simulations, two distinct buckling modes are observed, i.e. the shell-type buckling mode, when the aspect ratios are small, and the beam-type mode, when the aspect ratios are large. For moderate aspect ratios, the SWCNTs buckle in a mixed beam-shell mode. Therefore one chooses either the beam or the shell model depending on the aspect ratio of the carbon nanotubes (CNTs). It will be shown herein that for SWCNTs with long aspect ratios, the local Euler beam results are comparable to MD simulation results carried out at room temperature. However, when the SWCNTs have moderate aspect ratios, it is necessary to use the more refined nonlocal beam theory or the Timoshenko beam model for a better prediction of the critical strain. For short SWCNTs with large diameters, the nonlocal shell model with the appropriate small length scale parameter can provide critical strains that are in good agreement with MD results. However, for short SWCNTs with small diameters, more work has to be done to refine the nonlocal cylindrical shell model for better prediction of critical strains.

  16. Using the Single Prolonged Stress Model to Examine the Pathophysiology of PTSD

    Directory of Open Access Journals (Sweden)

    Rimenez R. Souza


    Full Text Available The endurance of memories of emotionally arousing events serves the adaptive role of minimizing future exposure to danger and reinforcing rewarding behaviors. However, following a traumatic event, a subset of individuals suffers from persistent pathological symptoms such as those seen in posttraumatic stress disorder (PTSD. Despite the availability of pharmacological treatments and evidence-based cognitive behavioral therapy, a considerable number of PTSD patients do not respond to the treatment, or show partial remission and relapse of the symptoms. In controlled laboratory studies, PTSD patients show deficient ability to extinguish conditioned fear. Failure to extinguish learned fear could be responsible for the persistence of PTSD symptoms such as elevated anxiety, arousal, and avoidance. It may also explain the high non-response and dropout rates seen during treatment. Animal models are useful for understanding the pathophysiology of the disorder and the development of new treatments. This review examines studies in a rodent model of PTSD with the goal of identifying behavioral and physiological factors that predispose individuals to PTSD symptoms. Single prolonged stress (SPS is a frequently used rat model of PTSD that involves exposure to several successive stressors. SPS rats show PTSD-like symptoms, including impaired extinction of conditioned fear. Since its development by the Liberzon lab in 1997, the SPS model has been referred to by more than 200 published papers. Here we consider the findings of these studies and unresolved questions that may be investigated using the model.

  17. Predictive Modelling of Concentration of Dispersed Natural Gas in a Single Room

    Directory of Open Access Journals (Sweden)

    Abdulfatai JIMOH


    Full Text Available This paper aimed at developing a mathematical model equation to predict the concentration of natural gas in a single room. The model equation was developed by using theoretical method of predictive modelling. The model equation developed is as given in equation 28. The validity of the developed expression was tested through the simulation of experimental results using computer software called MathCAD Professional. Both experimental and simulated results were found to be in close agreement. The statistical analysis carried out through the correlation coefficients for the results of experiment 1, 2, 3 and 4 were found to be 0.9986, 1.0000, 0.9981 and 0.9999 respectively, which imply reasonable close fittings between the experimental and simulated concentrations of dispersed natural gas within the room. Thus, the model equation developed can be considered a good representation of the phenomena that occurred when there is a leakage or accidental release of such gas within the room.

  18. A single-phase model for liquid-feed DMFCs with non-Tafel kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Vera, Marcos [Area de Mecanica de Fluidos, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganes (Spain)


    An isothermal single-phase 3D/1D model for liquid-feed direct methanol fuel cells (DMFC) is presented. Three-dimensional (3D) mass, momentum and species transport in the anode channels and gas diffusion layer is modeled using a commercial, finite-volume based, computational fluid dynamics (CFD) software complemented with user supplied subroutines. The 3D model is locally coupled to a one-dimensional (1D) model accounting for the electrochemical reactions in both the anode and the cathode, which provides a physically sound boundary condition for the velocity and methanol concentration fields at the anode gas diffusion layer/catalyst interface. The 1D model - comprising the membrane-electrode assembly, cathode gas diffusion layer, and cathode channel - assumes non-Tafel kinetics to describe the complex kinetics of the multi-step methanol oxidation reaction at the anode, and accounts for the mixed potential associated with methanol crossover, induced both by diffusion and electro-osmotic drag. Polarization curves computed for various methanol feed concentrations, temperatures, and methanol feed velocities show good agreement with recent experimental results. The spatial distribution of methanol in the anode channels, together with the distributions of current density, methanol crossover and fuel utilization at the anode catalyst layer, are also presented for different opperating conditions. (author)

  19. Transient computation fluid dynamics modeling of a single proton exchange membrane fuel cell with serpentine channel (United States)

    Hu, Guilin; Fan, Jianren

    The proton exchange membrane fuel cell (PEMFC) has become a promising candidate for the power source of electrical vehicles because of its low pollution, low noise and especially fast startup and transient responses at low temperatures. A transient, three-dimensional, non-isothermal and single-phase mathematical model based on computation fluid dynamics has been developed to describe the transient process and the dynamic characteristics of a PEMFC with a serpentine fluid channel. The effects of water phase change and heat transfer, as well as electrochemical kinetics and multicomponent transport on the cell performance are taken into account simultaneously in this comprehensive model. The developed model was employed to simulate a single laboratory-scale PEMFC with an electrode area about 20 cm 2. The dynamic behavior of the characteristic parameters such as reactant concentration, pressure loss, temperature on the membrane surface of cathode side and current density during start-up process were computed and are discussed in detail. Furthermore, transient responses of the fuel cell characteristics during step changes and sinusoidal changes in the stoichiometric flow ratio of the cathode inlet stream, cathode inlet stream humidity and cell voltage are also studied and analyzed and interesting undershoot/overshoot behavior of some variables was found. It was also found that the startup and transient response time of a PEM fuel cell is of the order of a second, which is similar to the simulation results predicted by most models. The result is an important guide for the optimization of PEMFC designs and dynamic operation.

  20. Analyses of the energy-dependent single separable potential models for the NN scattering

    International Nuclear Information System (INIS)

    Ahmad, S.S.; Beghi, L.


    Starting from a systematic study of the salient features regarding the quantum-mechanical two-particle scattering off an energy-dependent (ED) single separable potential and its connection with the rank-2 energy-independent (EI) separable potential in the T-(K-) amplitude formulation, the present status of the ED single separable potential models due to Tabakin (M1), Garcilazo (M2) and Ahmad (M3) has been discussed. It turned out that the incorporation of a self-consistent optimization procedure improves considerably the results of the 1 S 0 and 3 S 1 scattering phase shifts for the models (M2) and (M3) up to the CM wave number q=2.5 fm -1 , although the extrapolation of the results up to q=10 fm -1 reveals that the two models follow the typical behaviour of the well-known super-soft core potentials. It has been found that a variant of (M3) - i.e. (M4) involving one more parameter - gives the phase shifts results which are generally in excellent agreement with the data up to q=2.5 fm -1 and the extrapolation of the results for the 1 S 0 case in the higher wave number range not only follows the corresponding data qualitatively but also reflects a behaviour similar to the Reid soft core and Hamada-Johnston potentials together with a good agreement with the recent [4/3] Pade fits. A brief discussion regarding the features resulting from the variations in the ED parts of all the four models under consideration and their correlations with the inverse scattering theory methodology concludes the paper. (author)

  1. A discrete Single Delay Model for the Intra-Venous Glucose Tolerance Test

    Directory of Open Access Journals (Sweden)

    Panunzi Simona


    Full Text Available Abstract Background Due to the increasing importance of identifying insulin resistance, a need exists to have a reliable mathematical model representing the glucose/insulin control system. Such a model should be simple enough to allow precise estimation of insulin sensitivity on a single patient, yet exhibit stable dynamics and reproduce accepted physiological behavior. Results A new, discrete Single Delay Model (SDM of the glucose/insulin system is proposed, applicable to Intra-Venous Glucose Tolerance Tests (IVGTTs as well as to multiple injection and infusion schemes, which is fitted to both glucose and insulin observations simultaneously. The SDM is stable around baseline equilibrium values and has positive bounded solutions at all times. Applying a similar definition as for the Minimal Model (MM SI index, insulin sensitivity is directly represented by the free parameter KxgI of the SDM. In order to assess the reliability of Insulin Sensitivity determinations, both SDM and MM have been fitted to 40 IVGTTs from healthy volunteers. Precision of all parameter estimates is better with the SDM: 40 out of 40 subjects showed identifiable (CV xgI from the SDM, 20 out of 40 having identifiable SI from the MM. KxgI correlates well with the inverse of the HOMA-IR index, while SI correlates only when excluding five subjects with extreme SI values. With the exception of these five subjects, the SDM and MM derived indices correlate very well (r = 0.93. Conclusion The SDM is theoretically sound and practically robust, and can routinely be considered for the determination of insulin sensitivity from the IVGTT. Free software for estimating the SDM parameters is available.

  2. Single-site Lennard-Jones models via polynomial chaos surrogates of Monte Carlo molecular simulation

    KAUST Repository

    Kadoura, Ahmad Salim


    In this work, two Polynomial Chaos (PC) surrogates were generated to reproduce Monte Carlo (MC) molecular simulation results of the canonical (single-phase) and the NVT-Gibbs (two-phase) ensembles for a system of normalized structureless Lennard-Jones (LJ) particles. The main advantage of such surrogates, once generated, is the capability of accurately computing the needed thermodynamic quantities in a few seconds, thus efficiently replacing the computationally expensive MC molecular simulations. Benefiting from the tremendous computational time reduction, the PC surrogates were used to conduct large-scale optimization in order to propose single-site LJ models for several simple molecules. Experimental data, a set of supercritical isotherms, and part of the two-phase envelope, of several pure components were used for tuning the LJ parameters (ε, σ). Based on the conducted optimization, excellent fit was obtained for different noble gases (Ar, Kr, and Xe) and other small molecules (CH4, N2, and CO). On the other hand, due to the simplicity of the LJ model used, dramatic deviations between simulation and experimental data were observed, especially in the two-phase region, for more complex molecules such as CO2 and C2 H6.

  3. Thermal radiation analysis for small satellites with single-node model using techniques of equivalent linearization

    International Nuclear Information System (INIS)

    Anh, N.D.; Hieu, N.N.; Chung, P.N.; Anh, N.T.


    Highlights: • Linearization criteria are presented for a single-node model of satellite thermal. • A nonlinear algebraic system for linearization coefficients is obtained. • The temperature evolutions obtained from different methods are explored. • The temperature mean and amplitudes versus the heat capacity are discussed. • The dual criterion approach yields smaller errors than other approximate methods. - Abstract: In this paper, the method of equivalent linearization is extended to the thermal analysis of satellite using both conventional and dual criteria of linearization. These criteria are applied to a differential nonlinear equation of single-node model of the heat transfer of a small satellite in the Low Earth Orbit. A system of nonlinear algebraic equations for linearization coefficients is obtained in the closed form and then solved by the iteration method. The temperature evolution, average values and amplitudes versus the heat capacity obtained by various approaches including Runge–Kutta algorithm, conventional and dual criteria of equivalent linearization, and Grande's approach are compared together. Numerical results reveal that temperature responses obtained from the method of linearization and Grande's approach are quite close to those obtained from the Runge–Kutta method. The dual criterion yields smaller errors than those of the remaining methods when the nonlinearity of the system increases, namely, when the heat capacity varies in the range [1.0, 3.0] × 10 4  J K −1 .

  4. Modelling of single walled carbon nanotube cylindrical structures with finite element method simulations

    Energy Technology Data Exchange (ETDEWEB)

    Günay, E. [Gazi University, Mechanical Engineering Department, 06570, Ankara (Turkey)


    In this study, the modulus of elasticity and shear modulus values of single-walled carbon nanotubes SWCNTs were modelled by using both finite element method and the Matlab code. Initially, cylindrical armchair and zigzag single walled 3D space frames were demonstrated as carbon nanostructures. Thereafter, macro programs were written by the Matlab code producing the space truss for zigzag and armchair models. 3D space frames were introduced to the ANSYS software and then tension, compression and additionally torsion tests were performed on zigzag and armchair carbon nanotubes with BEAM4 element in obtaining the exact values of elastic and shear modulus values. In this study, two different boundary conditions were tested and especially used in torsion loading. The equivalent shear modulus data was found by averaging the corresponding values obtained from ten different nodal points on the nanotube path. Finally, in this study it was determined that the elastic constant values showed proportional changes by increasing the carbon nanotube diameters up to a certain level but beyond this level these values remained stable.

  5. Modelling of single walled carbon nanotube cylindrical structures with finite element method simulations (United States)

    Günay, E.


    In this study, the modulus of elasticity and shear modulus values of single-walled carbon nanotubes SWCNTs were modelled by using both finite element method and the Matlab code. Initially, cylindrical armchair and zigzag single walled 3D space frames were demonstrated as carbon nanostructures. Thereafter, macro programs were written by the Matlab code producing the space truss for zigzag and armchair models. 3D space frames were introduced to the ANSYS software and then tension, compression and additionally torsion tests were performed on zigzag and armchair carbon nanotubes with BEAM4 element in obtaining the exact values of elastic and shear modulus values. In this study, two different boundary conditions were tested and especially used in torsion loading. The equivalent shear modulus data was found by averaging the corresponding values obtained from ten different nodal points on the nanotube path. Finally, in this study it was determined that the elastic constant values showed proportional changes by increasing the carbon nanotube diameters up to a certain level but beyond this level these values remained stable.

  6. Modelling of single walled carbon nanotube cylindrical structures with finite element method simulations

    International Nuclear Information System (INIS)

    Günay, E.


    In this study, the modulus of elasticity and shear modulus values of single-walled carbon nanotubes SWCNTs were modelled by using both finite element method and the Matlab code. Initially, cylindrical armchair and zigzag single walled 3D space frames were demonstrated as carbon nanostructures. Thereafter, macro programs were written by the Matlab code producing the space truss for zigzag and armchair models. 3D space frames were introduced to the ANSYS software and then tension, compression and additionally torsion tests were performed on zigzag and armchair carbon nanotubes with BEAM4 element in obtaining the exact values of elastic and shear modulus values. In this study, two different boundary conditions were tested and especially used in torsion loading. The equivalent shear modulus data was found by averaging the corresponding values obtained from ten different nodal points on the nanotube path. Finally, in this study it was determined that the elastic constant values showed proportional changes by increasing the carbon nanotube diameters up to a certain level but beyond this level these values remained stable.

  7. Single actuator wave-like robot (SAW): design, modeling, and experiments. (United States)

    Zarrouk, David; Mann, Moshe; Degani, Nir; Yehuda, Tal; Jarbi, Nissan; Hess, Amotz


    In this paper, we present a single actuator wave-like robot, a novel bioinspired robot which can move forward or backward by producing a continuously advancing wave. The robot has a unique minimalistic mechanical design and produces an advancing sine wave, with a large amplitude, using only a single motor but with no internal straight spine. Over horizontal surfaces, the robot does not slide relative to the surface and its direction of locomotion is determined by the direction of rotation of the motor. We developed a kinematic model of the robot that accounts for the two-dimensional mechanics of motion and yields the speed of the links relative to the motor. Based on the optimization of the kinematic model, and accounting for the mechanical constraints, we have designed and built multiple versions of the robot with different sizes and experimentally tested them (see movie). The experimental results were within a few percentages of the expectations. The larger version attained a top speed of 57 cm s(-1) over a horizontal surface and is capable of climbing vertically when placed between two walls. By optimizing the parameters, we succeeded in making the robot travel by 13% faster than its own wave speed.

  8. The role of hysteresis in modeling root water uptake, both for single root and root system models. (United States)

    de Willigen, P.; Heinen, M.


    The water retention curve obtained by progressive extraction of water from an initially saturated soil (desorption) differs from that obtained by gradual addition of water to air-dry soil (absorption). This phenomenon is called hysteresis (Koorevaar et al., 1983). Common as its occurrence is, it is often neglected in the modeling of root water uptake. We will present here a model for the transport of water to a single root. The model solves Richard's equation in cylindrical coordinates where the water uptake rate is a function of the root water potential. The occurrence of hysteresis is accounted for by application of the modified dependent domain model developed by Mualem (1984) and used by Kool and Parker (1987). We will discuss the differences in results due to the inclusion of the hysteresis subroutine, when alternate wetting and drying cycles occur. The influence of soil type and transpiration reduction function will be discussed. The findings obtained for the single root model were used to upscale root water uptake to a root system. This is a part of the FUSSIM2 model of Heinen and de Willigen (1998) and Heinen (2001), where water transport in a soil profile is calculated. We will use an example for a soil profile where the root length density decreases exponentially with depth, and where again wetting and drying cycles alternate. References Heinen M., 2001. FUSSIM2: brief description of the simulation model and application to fertigation scenarios. Agronomie 21: 285-296. Heinen, M., and P. de Willigen, 1998. FUSSIM2 A two-dimensional simulation model for water flow, solute transport and root uptake of water and nutrients in partly unsaturated porous media, QASA No. 20, AB-DLO, Wageningen, The Netherlands, 140 p. Kool J.B. and J.C. Parker, 1987. Development and evaluation of closed form expressions for hysteretic soil hydraulic properties. Water Resour. Res. 23: 105 114. Koorevaar P., G. Menelik and C. Dirksen, 1983. Elements of soil physics. Elsevier

  9. Multi-view 3D human pose estimation combining single-frame recovery, temporal integration and model adaptation

    NARCIS (Netherlands)

    Hofmann, K.M.; Gavrila, D.M.


    We present a system for the estimation of unconstrained 3D human upper body movement from multiple cameras. Its main novelty lies in the integration of three components: single-frame pose recovery, temporal integration and model adaptation. Single-frame pose recovery consists of a hypothesis

  10. Multi-view 3D human pose estimation combining single-frame recovery, temporal integration and model adaptation

    NARCIS (Netherlands)

    Hofmann, K.M.; Gavrilla, D.M.


    We present a system for the estimation of unconstrained 3D human upper body movement from multiple cameras. Its main novelty lies in the integration of three components: single frame pose recovery, temporal integration and model adaptation. Single frame pose recovery consists of a hypothesis

  11. Single and 30 fraction tumor control doses correlate in xenografted tumor models: implications for predictive assays

    International Nuclear Information System (INIS)

    Gerweck, Leo E.; Dubois, Willum; Baumann, Michael; Suit, Herman D.


    , the rank-order correlation coefficient between the single dose hypoxic versus fractionated dose TCD50s under hypoxic or aerobic conditions was 1.0. For all 5 tumors examined, a trend for rank correlation was observed between the single dose and the fractionated dose TCD50s performed under normal or clamp hypoxic conditions (r=0.7, p=0.16 in both cases). The linear correlation coefficients were 0.83, p=0.08 and 0.72, p=0.17, respectively. Failure to attain a rank correlation of 1.0 was due to one tumor exhibiting an insignificant fractionation effect. The rank correlation between the TCD50s for fractionated treatments under normal versus the extrapolated TCD50s under clamp hypoxic conditions was 1.00; the linear correlation coefficient was 0.97 (p=0.01). Conclusions: In the tumor models examined, factors controlling the single fraction tumor control dose, also impact the response to fractionated treatments. These results suggest that laboratory estimates of intrinsic radiosensitivity and tumor clonogen number at the onset of treatment, will be of use in predicting radiocurability for fractionated treatments, as has been observed for single dose treatments

  12. Phase-coexistence simulations of fluid mixtures by the Markov Chain Monte Carlo method using single-particle models

    KAUST Repository

    Li, Jun


    We present a single-particle Lennard-Jones (L-J) model for CO2 and N2. Simplified L-J models for other small polyatomic molecules can be obtained following the methodology described herein. The phase-coexistence diagrams of single-component systems computed using the proposed single-particle models for CO2 and N2 agree well with experimental data over a wide range of temperatures. These diagrams are computed using the Markov Chain Monte Carlo method based on the Gibbs-NVT ensemble. This good agreement validates the proposed simplified models. That is, with properly selected parameters, the single-particle models have similar accuracy in predicting gas-phase properties as more complex, state-of-the-art molecular models. To further test these single-particle models, three binary mixtures of CH4, CO2 and N2 are studied using a Gibbs-NPT ensemble. These results are compared against experimental data over a wide range of pressures. The single-particle model has similar accuracy in the gas phase as traditional models although its deviation in the liquid phase is greater. Since the single-particle model reduces the particle number and avoids the time-consuming Ewald summation used to evaluate Coulomb interactions, the proposed model improves the computational efficiency significantly, particularly in the case of high liquid density where the acceptance rate of the particle-swap trial move increases. We compare, at constant temperature and pressure, the Gibbs-NPT and Gibbs-NVT ensembles to analyze their performance differences and results consistency. As theoretically predicted, the agreement between the simulations implies that Gibbs-NVT can be used to validate Gibbs-NPT predictions when experimental data is not available. © 2013 Elsevier Inc.


    Energy Technology Data Exchange (ETDEWEB)

    Coutts, D


    Demonstration projects using hydrogen as a fuel are becoming very common. Often these projects rely on project-specific risk evaluations to support project safety decisions. This is necessary because regulations, codes, and standards (hereafter referred to as standards) are just being developed. This paper will review some of the approaches being used in these evolving standards, and techniques which demonstration projects can implement to bridge the gap between current requirements and stakeholder desires. Many of the evolving standards for hydrogen-fuel use performance-based language, which establishes minimum performance and safety objectives, as compared with prescriptive-based language that prescribes specific design solutions. This is being done for several reasons including: (1) concern that establishing specific design solutions too early will stifle invention, (2) sparse performance data necessary to support selection of design approaches, and (3) a risk-adverse public which is unwilling to accept losses that were incurred in developing previous prescriptive design standards. The evolving standards often contain words such as: ''The manufacturer shall implement the measures and provide the information necessary to minimize the risk of endangering a person's safety or health''. This typically implies that the manufacturer or project manager must produce and document an acceptable level of risk. If accomplished using comprehensive and systematic process the demonstration project risk assessment can ease the transition to widespread commercialization. An approach to adequately evaluate and document the safety risk will be presented.

  14. Assessing vitamin D nutritional status: Is capillary blood adequate? (United States)

    Jensen, M E; Ducharme, F M; Théorêt, Y; Bélanger, A-S; Delvin, E


    Venous blood is the usual sample for measuring various biomarkers, including 25-hydroxyvitamin D (25OHD). However, it can prove challenging in infants and young children. Hence the finger-prick capillary collection is an alternative, being a relatively simple procedure perceived to be less invasive. We elected to validate the use of capillary blood sampling for 25OHD quantification by liquid chromatography tandem-mass spectrometry (LC/MS-MS). Venous and capillary blood samples were simultaneously collected from 15 preschool-aged children with asthma 10days after receiving 100,000IU of vitamin-D3 or placebo and 20 apparently healthy adult volunteers. 25OHD was measured by an in-house LC/MS-MS method. The venous 25OHD values varied between 23 and 255nmol/l. The venous and capillary blood total 25OHD concentrations highly correlated (r(2)=0.9963). The mean difference (bias) of capillary blood 25OHD compared to venous blood was 2.0 (95% CI: -7.5, 11.5) nmol/l. Our study demonstrates excellent agreement with no evidence of a clinically important bias between venous and capillary serum 25OHD concentrations measured by LC/MS-MS over a wide range of values. Under those conditions, capillary blood is therefore adequate for the measurement of 25OHD. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Characterization of System Level Single Event Upset (SEU) Responses using SEU Data, Classical Reliability Models, and Space Environment Data (United States)

    Berg, Melanie; Label, Kenneth; Campola, Michael; Xapsos, Michael


    We propose a method for the application of single event upset (SEU) data towards the analysis of complex systems using transformed reliability models (from the time domain to the particle fluence domain) and space environment data.

  16. Parameter estimation in neuronal stochastic differential equation models from intracellular recordings of membrane potentials in single neurons

    DEFF Research Database (Denmark)

    Ditlevsen, Susanne; Samson, Adeline


    Dynamics of the membrane potential in a single neuron can be studied by estimating biophysical parameters from intracellular recordings. Diffusion processes, given as continuous solutions to stochastic differential equations, are widely applied as models for the neuronal membrane potential evolut...

  17. Single-Column Modeling, GCM Parameterizations and Atmospheric Radiation Measurement Data

    International Nuclear Information System (INIS)

    Somerville, R.C.J.; Iacobellis, S.F.


    Our overall goal is identical to that of the Atmospheric Radiation Measurement (ARM) Program: the development of new and improved parameterizations of cloud-radiation effects and related processes, using ARM data at all three ARM sites, and the implementation and testing of these parameterizations in global and regional models. To test recently developed prognostic parameterizations based on detailed cloud microphysics, we have first compared single-column model (SCM) output with ARM observations at the Southern Great Plains (SGP), North Slope of Alaska (NSA) and Topical Western Pacific (TWP) sites. We focus on the predicted cloud amounts and on a suite of radiative quantities strongly dependent on clouds, such as downwelling surface shortwave radiation. Our results demonstrate the superiority of parameterizations based on comprehensive treatments of cloud microphysics and cloud-radiative interactions. At the SGP and NSA sites, the SCM results simulate the ARM measurements well and are demonstrably more realistic than typical parameterizations found in conventional operational forecasting models. At the TWP site, the model performance depends strongly on details of the scheme, and the results of our diagnostic tests suggest ways to develop improved parameterizations better suited to simulating cloud-radiation interactions in the tropics generally. These advances have made it possible to take the next step and build on this progress, by incorporating our parameterization schemes in state-of-the-art 3D atmospheric models, and diagnosing and evaluating the results using independent data. Because the improved cloud-radiation results have been obtained largely via implementing detailed and physically comprehensive cloud microphysics, we anticipate that improved predictions of hydrologic cycle components, and hence of precipitation, may also be achievable. We are currently testing the performance of our ARM-based parameterizations in state-of-the--art global and regional

  18. Single frequency correction based on three-element model for thin dielectric MOS capacitor (United States)

    Zhang, Xizhen; Zhu, Huichao; Cheng, Chuanhui; Yu, Tao; Zhang, Daming; Zhong, Hua; Li, Xiangping; Cheng, Yi; Xu, Xuesong; Cheng, Lihong; Sun, Jiashi; Chen, Baojiu


    For super thin dielectric MOS capacitor, capacitance extraction by using two-element model is erroneous. Three-element model, considering parasitic parameters of parallel resistance Rp and series resistance Rs, is necessary. In this paper, we develop a single frequency correction method by combining capacitance-voltage (C-V) and current-voltage (I-V) data. By equating impedances of three-element model with that of two-element model, we obtain two characteristic equations. By using a differential resistance dV/dI, we obtain the third equation. Consequently, three real parameters for the capacitance C, the Rp and the Rs are solved. As an application example of Al/HfO2/n-Si MOS, we demonstrate physically reasonable values for all three real parameters. Furthermore, dielectric loss tangent tan δ is calculated as 0.005-0.022 at 1.5 V. A simplified expression of measured capacitance Cm about the C, the Rp, the Rs and angular frequency ω has been deduced. A constraint condition for large ratio Cm/C suggests the reduction of the ratio Rs/Rp and Rs. Considering suitable values for tan δ and ratio of Cm/C, applicable frequency range is from 15 kHz to 1.1-2.1 MHz.

  19. Modeling environmental contamination in hospital single- and four-bed rooms. (United States)

    King, M-F; Noakes, C J; Sleigh, P A


    Aerial dispersion of pathogens is recognized as a potential transmission route for hospital acquired infections; however, little is known about the link between healthcare worker (HCW) contacts' with contaminated surfaces, the transmission of infections and hospital room design. We combine computational fluid dynamics (CFD) simulations of bioaerosol deposition with a validated probabilistic HCW-surface contact model to estimate the relative quantity of pathogens accrued on hands during six types of care procedures in two room types. Results demonstrate that care type is most influential (P model predicting the surface contacts by HCW and the subsequent accretion of pathogenic material as they perform standard patient care. This model indicates that single rooms may significantly reduce the risk of cross-contamination due to indirect infection transmission. Not all care types pose the same risks to patients, and housekeeping performed by HCWs may be an important contribution in the transmission of pathogens between patients. Ventilation rates and positioning of infectious patients within four-bed rooms can mitigate the accretion of pathogens, whereby reducing the risk of missed hand hygiene opportunities. The model provides a tool to quantitatively evaluate the influence of hospital room design on infection risk. © 2015 The Authors. Indoor Air Published by John Wiley & Sons Ltd.

  20. Toward an Improved Single-Particle Model for Large Irregular Grains (United States)

    Grundy, W. M.; Schmitt, B.; Doute, S.


    To interpret remote spectral observations, scattering and absorption in a particulate surface are simulated via radiative transfer models. The standard model for this purpose among the planetary science community is the Hapke model. This model (like many others) uses two parameters to characterize the optical behavior of individual grains in a particulate surface, the single-scattering albedo omega and phase function p(g). These terms describe, respectively, the quantity and the angular distribution of light scattered by an individual grain. Unfortunately, these parameters are strictly optical. They can be rather difficult to interpret in terms of more interesting particle properties such as grain sizes, shapes, and compositions, that a remote sensing experiment might seek to discover. An equivalent slab approximation is typically used to relate omega to the grain size and optical constants of the material. This approach can mimic the wavelength-dependent absorption behavior of irregular grains, as long as the imaginary index kappa is much less than 1, the shape is equant, and the grain size D is much larger than the wavelength lambda. Unfortunately, the equivalent slab approach provides no information about p(g), which also has a strong dependence on optical constants and particle form.

  1. A nonlocal and periodic reaction-diffusion-advection model of a single phytoplankton species. (United States)

    Peng, Rui; Zhao, Xiao-Qiang


    In this article, we are concerned with a nonlocal reaction-diffusion-advection model which describes the evolution of a single phytoplankton species in a eutrophic vertical water column where the species relies solely on light for its metabolism. The new feature of our modeling equation lies in that the incident light intensity and the death rate are assumed to be time periodic with a common period. We first establish a threshold type result on the global dynamics of this model in terms of the basic reproduction number R0. Then we derive various characterizations of R0 with respect to the vertical turbulent diffusion rate, the sinking or buoyant rate and the water column depth, respectively, which in turn give rather precise conditions to determine whether the phytoplankton persist or become extinct. Our theoretical results not only extend the existing ones for the time-independent case, but also reveal new interesting effects of the modeling parameters and the time-periodic heterogeneous environment on persistence and extinction of the phytoplankton species, and thereby suggest important implications for phytoplankton growth control.

  2. Two-Branch Break-up Systems by a Single Mantle Plume: Insights from Numerical Modeling (United States)

    Beniest, A.; Koptev, A.; Leroy, S.; Sassi, W.; Guichet, X.


    Thermomechanical modeling of plume-induced continental break-up reveals that the initial location of a mantle anomaly relative to a lithosphere inhomogeneity has a major impact on the geometry and timing of a rift-to-spreading system. Models with a warmer Moho temperature are more likely to result in "plume-centered" mode, where the rift and subsequent spreading axis grow directly above the plume. Models with weak far-field forcing are inclined to develop a "structural-inherited" mode, with lithosphere deformation localized at the lateral lithospheric boundary. Models of a third group cultivate two break-up branches (both "plume-centered" and "structural inherited") that form consecutively with a few million years delay. With our experimental setup, this break-up mode is sensitive to relatively small lateral variations of the initial anomaly position. We argue that one single mantle anomaly can be responsible for nonsimultaneous initiation and development of two rift-to-spreading systems in a lithosphere with a lateral strength contrast.

  3. Models of synchronized hippocampal bursts in the presence of inhibition. I. Single population events. (United States)

    Traub, R D; Miles, R; Wong, R K


    1. We constructed model networks with 520 or 1,020 cells intended to represent the CA3 region of the hippocampus. Model neurons were simulated in enough detail to reproduce intrinsic bursting and the electrotonic flow of currents along dendritic cables. Neurons exerted either excitatory or inhibitory postsynaptic actions on other cells. The network models were simulated with different levels of excitatory and inhibitory synaptic strengths in order to study epileptic and other interesting collective behaviors in the system. 2. Excitatory synapses between neurons in the network were powerful enough so that burst firing in a presynaptic neuron would evoke bursting in its connected cells. Since orthodromic or antidromic stimulation evokes both a fast and a slow phase of inhibition, two types of inhibitory cells were simulated. The properties of these inhibitory cells were modeled to resemble those of two types of inhibitory cells characterized by dual intracellular recordings in the slice preparation. 3. With fast inhibition totally blocked, a stimulus to a single cell lead to a synchronized population burst. Thus the principles of our epileptic synchronization model, developed earlier, apply even when slow inhibitory postsynaptic potentials (IPSPs) are present, as apparently occurs in the epileptic hippocampal slice. The model performs in this way because bursting can propagate through several generations in the network before slow inhibition builds up enough to block burst propagation. This can occur, however, only if connectivity is sufficiently large. With very low connection densities, slow IPSPs will prevent the development of full synchronization. 4. We performed multiple simulations in which the fast inhibitory conductance strength was kept fixed at various levels while the strength of the excitatory synapses was varied. In each simulation, we stimulated either one or four cells. For each level of inhibition, the peak number of cells bursting depended

  4. Single-Column Model Simulations of Subtropical Marine Boundary-Layer Cloud Transitions Under Weakening Inversions (United States)

    Neggers, R. A. J.; Ackerman, A. S.; Angevine, W. M.; Bazile, E.; Beau, I.; Blossey, P. N.; Boutle, I. A.; de Bruijn, C.; Cheng, A.; van der Dussen, J.; Fletcher, J.; Dal Gesso, S.; Jam, A.; Kawai, H.; Cheedela, S. K.; Larson, V. E.; Lefebvre, M.-P.; Lock, A. P.; Meyer, N. R.; de Roode, S. R.; de Rooy, W.; Sandu, I.; Xiao, H.; Xu, K.-M.


    Results are presented of the GASS/EUCLIPSE single-column model intercomparison study on the subtropical marine low-level cloud transition. A central goal is to establish the performance of state-of-the-art boundary-layer schemes for weather and climate models for this cloud regime, using large-eddy simulations of the same scenes as a reference. A novelty is that the comparison covers four different cases instead of one, in order to broaden the covered parameter space. Three cases are situated in the North-Eastern Pacific, while one reflects conditions in the North-Eastern Atlantic. A set of variables is considered that reflects key aspects of the transition process, making use of simple metrics to establish the model performance. Using this method, some longstanding problems in low-level cloud representation are identified. Considerable spread exists among models concerning the cloud amount, its vertical structure, and the associated impact on radiative transfer. The sign and amplitude of these biases differ somewhat per case, depending on how far the transition has progressed. After cloud breakup the ensemble median exhibits the well-known "too few too bright" problem. The boundary-layer deepening rate and its state of decoupling are both underestimated, while the representation of the thin capping cloud layer appears complicated by a lack of vertical resolution. Encouragingly, some models are successful in representing the full set of variables, in particular, the vertical structure and diurnal cycle of the cloud layer in transition. An intriguing result is that the median of the model ensemble performs best, inspiring a new approach in subgrid parameterization.

  5. Are we telling the diabetic patients adequately about foot care

    International Nuclear Information System (INIS)

    Ali, R.; Din, M.J.U.; Jadoon, R.J.; Farooq, U.; Alam, M.A.; Qureshi, A.; Shah, S.U.


    Background: Diabetes mellitus affects more than 285 million people worldwide. The prevalence is expected to rise to 439 million by the year 2030. Diabetic foot ulcers precede 84 percentage of non-traumatic amputations in diabetics. One lower limb is lost every 30 seconds around the world because of diabetic foot ulceration. Apart from being lengthy, the treatment of diabetic foot is also very expensive. There is very limited emphasis on foot care in diabetic patients. Even in developed countries patients feel that they do not have adequate knowledge about foot care. This study was conducted to find out how much information is imparted by doctors to diabetic patients about foot care. Methods: This cross-sectional study was conducted in admitted patients of the Department of Medicine, DHQ Hospital, Abbottabad from May 2014 to June 2015. 139 diabetic patients more than 25 years of age were included by non-probability consecutive sampling. Results: The mean age was 57.17 ( percentage 11.1) years. 35.3 percentage of patients were male and 64.7 percentage were female. The mean duration of diabetes in patients was 8.3 (±6) years. Only 36.7 percentage of patients said that their doctor told them about foot care. Less than 40 percentage of patients knew that they should daily inspect their feet, wash them with gentle warm water, and dry them afterwards. Only 25.2 percentage of the participants knew how to manage corns or calluses on feet. 66.5 percentage of patients knew that they should not walk bare foot. Overall, 63 percentage of our patients had less than 50 percentage knowledge of the 11 points regarding foot care that the investigators asked them. Conclusion: Diabetic foot problems are the one of the costliest, most disabling and disheartening complication of diabetes mellitus. Doctors are not properly telling diabetic patients about foot care. There is a deficiency of knowledge among the diabetic patients regarding foot care. (author)

  6. Improving access to adequate pain management in Taiwan. (United States)

    Scholten, Willem


    There is a global crisis in access to pain management in the world. WHO estimates that 4.65 billion people live in countries where medical opioid consumption is near to zero. For 2010, WHO considered a per capita consumption of 216.7 mg morphine equivalents adequate, while Taiwan had a per capita consumption of 0.05 mg morphine equivalents in 2007. In Asia, the use of opioids is sensitive because of the Opium Wars in the 19th century and for this reason, the focus of controlled substances policies has been on the prevention of diversion and dependence. However, an optimal public health outcome requires that also the beneficial aspects of these substances are acknowledged. Therefore, WHO recommends a policy based on the Principle of Balance: ensuring access for medical and scientific purposes while preventing diversion, harmful use and dependence. Furthermore, international law requires that countries ensure access to opioid analgesics for medical and scientific purposes. There is evidence that opioid analgesics for chronic pain are not associated with a major risk for developing dependence. Barriers for access can be classified in the categories of overly restrictive laws and regulations; insufficient medical training on pain management and problems related to assessment of medical needs; attitudes like an excessive fear for dependence or diversion; and economic and logistical problems. The GOPI project found many examples of such barriers in Asia. Access to opioid medicines in Taiwan can be improved by analysing the national situation and drafting a plan. The WHO policy guidelines Ensuring Balance in National Policies on Controlled Substances can be helpful for achieving this purpose, as well as international guidelines for pain treatment. Copyright © 2015. Published by Elsevier B.V.

  7. Are minidisc recorders adequate for the study of respiratory sounds? (United States)

    Kraman, Steve S; Wodicka, George R; Kiyokawa, Hiroshi; Pasterkamp, Hans


    Digital audio tape (DAT) recorders have become the de facto gold standard recording devices for lung sounds. Sound recorded on DAT is compact-disk (CD) quality with adequate sensitivity from below 20 Hz to above 20 KHz. However, DAT recorders have drawbacks. Although small, they are relatively heavy, the recording mechanism is complex and delicate, and finding one desired track out of many is inconvenient. A more recent development in portable recording devices is the minidisc (MD) recorder. These recorders are widely available, inexpensive, small and light, rugged, mechanically simple, and record digital data in tracks that may be named and accessed directly. Minidiscs hold as much recorded sound as a compact disk but in about 1/5 of the recordable area. The data compression is achieved by use of a technique known as adaptive transform acoustic coding for minidisc (ATRAC). This coding technique makes decisions about what components of the sound would not be heard by a human listener and discards the digital information that represents these sounds. Most of this compression takes place on sounds above 5.5 KHz. As the intended use of these recorders is the storage and reproduction of music, it is unknown whether ATRAC will discard or distort significant portions of typical lung sound signals. We determined the suitability of MD recorders for respiratory sound research by comparing a variety of normal and pathologic lung sounds that were digitized directly into a computer and also after recording by a DAT recorder and 2 different MD recorders (Sharp and Sony). We found that the frequency spectra and waveforms of respiratory sounds were not distorted in any important way by recording on the two MD recorders tested.

  8. Adequately Addressing Pediatric Obesity: Challenges Faced by Primary Care Providers. (United States)

    Shreve, Marilou; Scott, Allison; Vowell Johnson, Kelly


    To assess the challenges primary care providers encounter when providing counseling for pediatric patients identified as obese. A survey assessed the current challenges and barriers to the screening and treatment of pediatric obesity for providers in northwest Arkansas who provide care to families. The survey consisted of 15 Likert scale questions and 4 open-ended questions. Time, resources, comfort, and cultural issues were reported by providers as the biggest barriers in screening and the treatment of pediatric obesity. All providers reported lack of time as a barrier to providing the care needed for obese children. Cultural barriers of both the provider and client were identified as factors, which negatively affect the care and treatment of obese children. Primary care providers continue to experience challenges when addressing pediatric obesity. In this study, a lack of adequate time to address obesity was identified as the most significant current barrier and may likely be tied to physician resources. Although reimbursement for obesity is increasing, the level of reimbursement does not support the time or the resources needed to treat patients. Many providers reported their patients' cultural view of obesity influenced how they counsel their patients. Increasing providers' knowledge concerning differences in how weight is viewed or valued may assist them in the assessment and care of obese pediatric patients. The challenges identified in previous research continue to limit providers when addressing obesity. Although progress has been made regarding knowledge of guidelines, continuing effort is needed to tackle the remaining challenges. This will allow for earlier identification and intervention, resulting in improved outcomes in pediatric obesity.

  9. Symmetry breaking and physical properties of the bosonic single-impurity Anderson model (United States)

    Warnes, J. H.; Miranda, E.


    We show how exact diagonalization of small clusters can be used as a fast and reliable impurity solver by determining the phase diagram and physical properties of the bosonic single-impurity Anderson model. This is specially important for applications which require the solution of a large number of different single-impurity problems, such as the bosonic dynamical mean field theory of disordered systems. In particular, we investigate the connection between spontaneous global gauge symmetry breaking and the occurrence of Bose-Einstein condensation (BEC). We show how BEC is accurately signaled by the appearance of broken symmetry, even when a fairly modest number of states is retained. The occurrence of symmetry breaking can be detected both by adding a small conjugate field or, as in generic quantum critical points, by the divergence of the associated phase susceptibility. Our results show excellent agreement with the considerably more demanding numerical renormalization group (NRG) method. We also investigate the mean impurity occupancy and its fluctuations, identifying an asymmetry in their critical behavior across the quantum phase transitions between BEC and `Mott' phases.

  10. Robust model-based analysis of single-particle tracking experiments with Spot-On. (United States)

    Hansen, Anders S; Woringer, Maxime; Grimm, Jonathan B; Lavis, Luke D; Tjian, Robert; Darzacq, Xavier


    Single-particle tracking (SPT) has become an important method to bridge biochemistry and cell biology since it allows direct observation of protein binding and diffusion dynamics in live cells. However, accurately inferring information from SPT studies is challenging due to biases in both data analysis and experimental design. To address analysis bias, we introduce 'Spot-On', an intuitive web-interface. Spot-On implements a kinetic modeling framework that accounts for known biases, including molecules moving out-of-focus, and robustly infers diffusion constants and subpopulations from pooled single-molecule trajectories. To minimize inherent experimental biases, we implement and validate stroboscopic photo-activation SPT (spaSPT), which minimizes motion-blur bias and tracking errors. We validate Spot-On using experimentally realistic simulations and show that Spot-On outperforms other methods. We then apply Spot-On to spaSPT data from live mammalian cells spanning a wide range of nuclear dynamics and demonstrate that Spot-On consistently and robustly infers subpopulation fractions and diffusion constants. © 2018, Hansen et al.

  11. Performance analysis of high frequency single-site-location antenna arrays using numerical electromagnetic modeling (United States)

    Schiantarelli, Harry T.


    Electronic support measures (ESM) systems play an increasingly important role in modern warfare and can influence the outcome of a military engagement. The application of ESM can be extended to anti-guerrilla and anti-drug operations where law enforcement agencies can exploit the fact that their presence is inducing the outlaw to depend more on radio communications to coordinate their activities. When a propagation path of no more than one reflection at the ionosphere (1-hop) can be assumed, position of an HF emitter can be determined by a single observing site using vertical triangulation, provided that the height of the ionosphere at the point where the radio wave is reflected, can be determined. This technique is known as high frequency direction finding single-site-location (HFDF SSL). This thesis analyzes the HFDF SSL error in measuring the direction of arrival of the signal, how this error is generated by the antenna array and its effect on emitter location. The characteristics of the two antenna arrays used by a specific HFDF SSL system that implements the phase-interferometer techniques were studied using electromagnetic modeling.

  12. Carotid sacrifice with a single Penumbra occlusion device: a feasibility study in a swine model. (United States)

    Spiotta, Alejandro M; Turner, Raymond D; Chaudry, M Imran; Turk, Aquilla S; Hui, Ferdinand K; Schonholz, Claudio


    Carotid sacrifice is a valuable tool in the treatment of select vascular lesions. Traditional coil embolization as the primary means of carotid sacrifice can be expensive, with high radiation exposure. We investigated the feasibility of a novel hybrid coil, the Penumbra occlusion device (POD), for carotid sacrifice in a swine model. A total of eight common carotid artery sacrifices were performed in fully heparinized pigs under fluoroscopic guidance. A single POD device was deployed within each vessel, and intermittent follow-up angiography was performed to assess flow. Complete carotid occlusion was achieved in all cases with a single POD (time range 2-15 min) without any coil migration or intraprocedural complications. Once the anchor zone was stable, no distal migrations were observed during either proximal soft coil packing or during hand injected angiography. Complete occlusion was verified between 2 and 15 min following POD deployment. Carotid artery sacrifice using a novel POD device is safe and effective, allowing for reduced radiation and material costs compared with any other described endovascular technique. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to

  13. Coupled atmosphere and land-surface assimilation of surface observations with a single column model and ensemble data assimilation (United States)

    Rostkier-Edelstein, Dorita; Hacker, Joshua P.; Snyder, Chris


    Numerical weather prediction and data assimilation models are composed of coupled atmosphere and land-surface (LS) components. If possible, the assimilation procedure should be coupled so that observed information in one module is used to correct fields in the coupled module. There have been some attempts in this direction using optimal interpolation, nudging and 2/3DVAR data assimilation techniques. Aside from satellite remote sensed observations, reference height in-situ observations of temperature and moisture have been used in these studies. Among other problems, difficulties in coupled atmosphere and LS assimilation arise as a result of the different time scales characteristic of each component and the unsteady correlation between these components under varying flow conditions. Ensemble data-assimilation techniques rely on flow dependent observations-model covariances. Provided that correlations and covariances between land and atmosphere can be adequately simulated and sampled, ensemble data assimilation should enable appropriate assimilation of observations simultaneously into the atmospheric and LS states. Our aim is to explore assimilation of reference height in-situ temperature and moisture observations into the coupled atmosphere-LS modules(simultaneously) in NCAR's WRF-ARW model using the NCAR's DART ensemble data-assimilation system. Observing system simulation experiments (OSSEs) are performed using the single column model (SCM) version of WRF. Numerical experiments during a warm season are centered on an atmospheric and soil column in the South Great Plains. Synthetic observations are derived from "truth" WRF-SCM runs for a given date,initialized and forced using North American Regional Reanalyses (NARR). WRF-SCM atmospheric and LS ensembles are created by mixing the atmospheric and soil NARR profile centered on a given date with that from another day (randomly chosen from the same season) with weights drawn from a logit-normal distribution. Three

  14. A two-phase inspection model for a single component system with three-stage degradation

    International Nuclear Information System (INIS)

    Wang, Huiying; Wang, Wenbin; Peng, Rui


    This paper presents a two-phase inspection schedule and an age-based replacement policy for a single plant item contingent on a three-stage degradation process. The two phase inspection schedule can be observed in practice. The three stages are defined as the normal working stage, low-grade defective stage and critical defective stage. When an inspection detects that an item is in the low-grade defective stage, we may delay the preventive replacement action if the time to the age-based replacement is less than or equal to a threshold level. However, if it is above this threshold level, the item will be replaced immediately. If the item is found in the critical defective stage, it is replaced immediately. A hybrid bee colony algorithm is developed to find the optimal solution for the proposed model which has multiple decision variables. A numerical example is conducted to show the efficiency of this algorithm, and simulations are conducted to verify the correctness of the model. - Highlights: • A two-phase inspection model is studied. • The failure process has three stages. • The delayed replacement is considered.


    Directory of Open Access Journals (Sweden)

    Ahmad Mulyana


    Full Text Available Sebagai salah satu perusahaan pembuat panel telekomunikasi dan panel elektrik, PT. Cometal dihadapkan pada tantangan waktu delivery yang kompetitif.  Permasalahannya perusahaan masih mengalami keterlambatan pengiriman produk ke konsumen akibat lamanya waktu changeover model yang menyebabkan downtime mesin punching pada proses produksi panel telekomunikasi. Untuk mengurangi lead time maka perlu diupayakan minimasi waste pada changeover model di mesin punching.  Tujuan penelitian ini adalah mengidentifikasi faktor penyebab tingginya waktu changeover model pada mesin punching dan melakukan improvement dengan metode SMED (single minute exchange of dies.  Penerapan metode SMED dilakukan dengan mengotimalkan aktifitas eksternal pada produksi panel telekomunikasi melalui koordinasi kegiatan Pengamatan dilakukan selama 30 hari menggunakan studi waktu sebelum dan sesudah implementasi SMED.  Penerapan konsep SMED dilakukan dengan  mengubah 15 aktifitas internal menjadi 5 aktifitas internal dan merekayasa alat bantu gauge tool untuk mengurangi downtime mesin.  Improvement yang diperoleh adalah berkurangnya waktu downtime mesin punching dari 44,90 jam menjadi 10,96 jam atau terjadi penurunan waktu setup sebesar 75, 59 persen.

  16. Interaction of anticancer Ru(III) complexes with single stranded and duplex DNA model systems. (United States)

    Musumeci, Domenica; Rozza, Lucia; Merlino, Antonello; Paduano, Luigi; Marzo, Tiziano; Massai, Lara; Messori, Luigi; Montesarchio, Daniela


    The interaction of the anticancer Ru(iii) complex AziRu - in comparison with its analogue NAMI-A, currently in advanced clinical trials as an antimetastatic agent - with DNA model systems, both single stranded and duplex oligonucleotides, was investigated using a combined approach, including absorption UV-vis spectroscopy, circular dichroism (CD) and electrospray mass spectrometry (ESI-MS) techniques. UV-vis absorption spectra of the Ru complexes were recorded at different times in a pseudo-physiological solution, to monitor the ligand exchange processes in the absence and in the presence of the examined oligonucleotides. CD experiments provided information on the overall conformational changes of the DNA model systems induced by these metal complexes. UV- and CD-monitored thermal denaturation studies were performed to analyse the effects of AziRu and NAMI-A on the stability of the duplex structures. ESI-MS experiments, carried out on the oligonucleotide/metal complex mixtures under investigation, allowed us to detect the formation of stable adducts between the guanine-containing oligomers and the ruthenium complexes. These data unambiguously demonstrate that both AziRu and NAMI-A can interact with the DNA model systems. Although very similar in their structures, the two metal compounds manifest a markedly different reactivity with the examined sequences, respectively, with either a naked Ru(3+) ion or a Ru(Im)(3+) (Im = imidazole) fragment being incorporated into the oligonucleotide structure via stable linkages.

  17. Solar radiation transmissivity of a single-span greenhouse through measurements on scale models

    International Nuclear Information System (INIS)

    Papadakis, G.; Manolakos, D.; Kyritsis, S.


    The solar transmissivity of a single-span greenhouse has been investigated experimentally using a scale model, of dimensions 40 cm width and 80 cm length. The solar transmissivity was measured at 48 positions on the “ground” surface of the scale model using 48 small silicon solar cells. The greenhouse model was positioned horizontally on a specially made goniometric mechanism. In this way, the greenhouse azimuth could be changed so that typical days of the year could be simulated using different combinations of greenhouse azimuth and the position of the sun in the sky. The measured solar transmissivity distribution at the “ground” surface and the average greenhouse solar transmissivity are presented and analysed, for characteristic days of the year, for winter and summer for a latitude of 37°58′ (Athens, Greece). It is shown that for the latitude of 37°58′ N during winter, the E–W orientation is preferable to the N–S one. The side walls, and especially the East and West ones for the E–W orientation, reduce considerably the greenhouse transmissivity at areas close to the walls for long periods of the day when the angle of incidence of the solar rays to these walls is large. (author)

  18. Analytic observations for the d=1+ 1 bridge site (or single-step) deposition model

    International Nuclear Information System (INIS)

    Evans, J.W.; Kang, H.C.


    Some exact results for a reversible version of the d=1+1 bridge site (or single-step) deposition model are presented. Exact steady-state properties are determined directly for finite systems with various mean slopes. These show explicitly how the asymptotic growth velocity and fluctuations are quenched as the slope approaches its maximum allowed value. Next, exact hierarchial equations for the dynamics are presented. For the special case of ''equilibrium growth,'' these are analyzed exactly at the pair-correlation level directly for an infinite system. This provided further insight into asymptotic scaling behavior. Finally, the above hierarchy is compared with one generated from a discrete form of the Kardar--Parisi--Zhang equations. Some differences are described

  19. Current Analysis and Modeling of Fullerene Single-Electron Transistor at Room Temperature (United States)

    Khadem Hosseini, Vahideh; Ahmadi, Mohammad Taghi; Afrang, Saeid; Ismail, Razali


    Single-electron transistors (SETs) are interesting electronic devices that have become key elements in modern nanoelectronic systems. SETs operate quickly because they use individual electrons, with the number transferred playing a key role in their switching behavior. However, rapid transmission of electrons can cause their accumulation at the island, affecting the I- V characteristic. Selection of fullerene as a nanoscale zero-dimensional material with high stability, and controllable size in the fabrication process, can overcome this charge accumulation issue and improve the reliability of SETs. Herein, the current in a fullerene SET is modeled and compared with experimental data for a silicon SET. Furthermore, a weaker Coulomb staircase and improved reliability are reported. Moreover, the applied gate voltage and fullerene diameter are found to be directly associated with the I- V curve, enabling the desired current to be achieved by controlling the fullerene diameter.

  20. FCNC Bs and Λb transitions: Standard model versus a single universal extra dimension scenario

    International Nuclear Information System (INIS)

    Colangelo, P.; De Fazio, F.; Ferrandes, R.; Pham, T. N.


    We study the flavor changing neutral current B s →φγ, φνν and Λ b →Λγ, Λνν transitions in the standard model and in a scenario with a single universal extra dimension. In particular, we focus on the present knowledge of the hadronic uncertainties and on possible improvements. We discuss how the measurements of these modes can be used to constrain the new parameter involved in the extra-dimensional scenario, the radius R of the extra dimension, completing the information available from B-factories. The rates of these b→s induced decays are within the reach of new experiments, such as LHCb.

  1. An experimental model of the evaporative cooling system of a single powerful LED

    Directory of Open Access Journals (Sweden)

    Shatskiy Evgeny


    Full Text Available An experimental model of the evaporative cooling system of a single powerful LED with a natural circulation of the coolant capable of removing a heat flux density of more than 1 kW / cm2 is created. It is shown that on the finned surfaces the overheating relative to the saturation temperature in comparison with a smooth surface decreases up to three times for the heater with a diameter of 5 mm. There is up to two times increase in heat transfer coefficient on finned surfaces as compared to the smooth ones. For finned surfaces on the heater with a diameter of 1 mm the surface overheating relative to the saturation temperature decreases in four times. More than three times increase is observed for the heat transfer coefficient on finned surfaces as compared to the smooth ones.

  2. Series solution for continuous population models for single and interacting species by the homotopy analysis method

    Directory of Open Access Journals (Sweden)

    Magdy A. El-Tawil


    Full Text Available The homotopy analysis method (HAM is used to find approximate analytical solutions of continuous population models for single and interacting species. The homotopy analysis method contains the auxiliary parameter $hbar,$ which provides us with a simple way to adjust and control the convergence region of series solution. the solutions are compared with the numerical results obtained using NDSolve, an ordinary differential equation solver found in the Mathematica package and a good agreement is found. Also the solutions are compared with the available analytic results obtained by other methods and more accurate and convergent series solution found. The convergence region is also computed which shows the validity of the HAM solution. This method is reliable and manageable.

  3. Modelling of the modified-LLCL-filter-based single-phase grid-tied Aalborg inverter

    DEFF Research Database (Denmark)

    Liu, Zifa; Wu, Huiyun; Liu, Yuan


    Owing to less conduction and switching power losses, the recently proposed Aalborg inverter has high efficiency within a wide range of input DC voltage for single-phase DC/AC power conversion. In theory, the conduction power losses can be further decreased, if an LLCL-filter is adopted instead....... In this study, the small signal analysis for the modified-LLCL-filter-based Aalborg inverter is addressed. Through the modelling, it can be proven that compared with the LCL-filter, the modified-LLCL-filter causes no extra control challenge for the Aalborg inverter, and therefore more inductance in the power...... of an LCL-filter for a voltage source inverter, mainly due to the reduced inductance. The Aalborg inverter shows the characteristic of a current source inverter, when working in the `boost' state. Whether the LLCL-filter can meet the control requirement of this type inverter needs to be further explored...

  4. Hydrogen Evolution Reaction in Alkaline Solution: From Theory, Single Crystal Models, to Practical Electrocatalysts. (United States)

    Zheng, Yao; Jiao, Yan; Qiao, Shizhang; Vasileff, Anthony


    The hydrogen evolution reaction (HER) is a fundamental process in electrocatalysis and plays an important role in energy conversion for the development of hydrogen-based energy sources. However, the considerably slow rate of the HER in alkaline conditions has hindered advances in water splitting techniques for high-purity hydrogen production. Differing from well documented acidic HER, the mechanistic aspects of alkaline HER are yet to be settled. Herein, we present a critical appraisal of alkaline HER electrocatalysis, with a special emphasis on the connection between fundamental surface electrochemistry on single crystal models and the derived molecular design principle for real-world electrocatalysts. By presenting some typical examples across theoretical calculations, surface characterization, and electrochemical experiments, we try to address some key ongoing debates to deliver a better understanding of alkaline HER at the atomic level. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. An experimental model of the evaporative cooling system of a single powerful LED (United States)

    Shatskiy, Evgeny


    An experimental model of the evaporative cooling system of a single powerful LED with a natural circulation of the coolant capable of removing a heat flux density of more than 1 kW / cm2 is created. It is shown that on the finned surfaces the overheating relative to the saturation temperature in comparison with a smooth surface decreases up to three times for the heater with a diameter of 5 mm. There is up to two times increase in heat transfer coefficient on finned surfaces as compared to the smooth ones. For finned surfaces on the heater with a diameter of 1 mm the surface overheating relative to the saturation temperature decreases in four times. More than three times increase is observed for the heat transfer coefficient on finned surfaces as compared to the smooth ones.

  6. Composite Estimation for Single-Index Models with Responses Subject to Detection Limits

    KAUST Repository

    Tang, Yanlin


    We propose a semiparametric estimator for single-index models with censored responses due to detection limits. In the presence of left censoring, the mean function cannot be identified without any parametric distributional assumptions, but the quantile function is still identifiable at upper quantile levels. To avoid parametric distributional assumption, we propose to fit censored quantile regression and combine information across quantile levels to estimate the unknown smooth link function and the index parameter. Under some regularity conditions, we show that the estimated link function achieves the non-parametric optimal convergence rate, and the estimated index parameter is asymptotically normal. The simulation study shows that the proposed estimator is competitive with the omniscient least squares estimator based on the latent uncensored responses for data with normal errors but much more efficient for heavy-tailed data under light and moderate censoring. The practical value of the proposed method is demonstrated through the analysis of a human immunodeficiency virus antibody data set.

  7. Single walled carbon nanotubes: a model system for excitons in one dimension (United States)

    Lefebvre, J.; Finnie, P.


    The semiconducting single walled carbon nanotube (s-SWNTs) with its direct bandgap and its strong 1D character absorbs and emits light efficiently. In contrast with other nanomaterials, the structure of an SWNT is uniquely defined and is set by a discrete number of carbon rings along its tubular section. Experimentally, optical spectroscopy has recently revealed this remarkable quantization. In our group, we focus primarily on the luminescence properties of individual s-SWNTs. Using imaging techniques, we reveal unambiguously that each s-SWNT with its quantized structure is characterized by a specific manifold of excitonic states. With the large diameter tunability achieved in SWNTs, we show that the material represents a model system for 1D photophysics. This proceeding is meant to be a review of past work and includes complementary data that have been presented at conferences but otherwise have never been published. Some emphasis is given on experimental details for luminescence imaging and spectroscopy.

  8. Model of a single mode energy harvester and properties for optimal power generation

    International Nuclear Information System (INIS)

    Liao Yabin; Sodano, Henry A


    The process of acquiring the energy surrounding a system and converting it into usable electrical energy is termed power harvesting. In the last few years, the field of power harvesting has experienced significant growth due to the ever increasing desire to produce portable and wireless electronics with extended life. Current portable and wireless devices must be designed to include electrochemical batteries as the power source. The use of batteries can be troublesome due to their finite energy supply, which necessitates their periodic replacement. In the case of wireless sensors that are to be placed in remote locations, the sensor must be easily accessible or of disposable nature to allow the device to function over extended periods of time. Energy scavenging devices are designed to capture the ambient energy surrounding the electronics and covert it into usable electrical energy. The concept of power harvesting works towards developing self-powered devices that do not require replaceable power supplies. The development of energy harvesting systems is greatly facilitated by an accurate model to assist in the design of the system. This paper will describe a theoretical model of a piezoelectric based energy harvesting system that is simple to apply yet provides an accurate prediction of the power generated around a single mode of vibration. Furthermore, this model will allow optimization of system parameters to be studied such that maximal performance can be achieved. Using this model an expression for the optimal resistance and a parameter describing the energy harvesting efficiency will be presented and evaluated through numerical simulations. The second part of this paper will present an experimental validation of the model and optimal parameters

  9. Nuclear fusion as new energy option in a global single-regional energy system model

    International Nuclear Information System (INIS)

    Eherer, C.; Baumann, M.; Dueweke, J.; Hamacher, T.


    Is there a window of opportunity for fusion on the electricity market under 'business as usual' conditions, and if not, how do the boundary conditions have to look like to open such a window? This question is addressed within a subtask of the Socio-Economic Research on Fusion (SERF) programme of the European Commission. The most advanced energy-modelling framework, the TIMES model generator developed by the Energy Technology System Analysis Project group of the IEA (ETSAP) has been used to implement a global single-regional partial equilibrium energy model. Within the current activities the potential role of fusion power in various future energy scenarios is studied. The final energy demand projections of the baseline of the investigations are based on IIASA-WEC Scenario B. Under the quite conservative baseline assumptions fusion only enters the model solution with 35 GW in 2100 and it can be observed that coal technologies dominate electricity production in 2100. Scenario variations show that the role of fusion power is strongly affected by the availability of GEN IV fission breeding technologies as energy option and by CO 2 emission caps. The former appear to be a major competitor of fusion power while the latter open a window of opportunity for fusion power on the electricity market. An interesting outcome is furthermore that the possible share of fusion electricity is more sensitive to the potential of primary resources like coal, gas and uranium, than to the share of solar and wind power in the system. This indicates that both kinds of technologies, renewables and fusion power, can coexist in future energy systems in case of CO 2 emission policies and/or resource scarcity scenarios. It is shown that Endogenous Technological Learning (ETL), a more consistent description of technological progress than mere time series, has an impact on the model results. (author)

  10. A Single, Continuously Applied Control Policy for Modeling Reaching Movements with and without Perturbation. (United States)

    Li, Zhe; Mazzoni, Pietro; Song, Sen; Qian, Ning


    It has been debated whether kinematic features, such as the number of peaks or decomposed submovements in a velocity profile, indicate the number of discrete motor impulses or result from a continuous control process. The debate is particularly relevant for tasks involving target perturbation, which can alter movement kinematics. To simulate such tasks, finite-horizon models require two preset movement durations to compute two control policies before and after the perturbation. Another model employs infinite- and finite-horizon formulations to determine, respectively, movement durations and control policies, which are updated every time step. We adopted an infinite-horizon optimal feedback control model that, unlike previous approaches, does not preset movement durations or use multiple control policies. It contains both control-dependent and independent noises in system dynamics, state-dependent and independent noises in sensory feedbacks, and different delays and noise levels for visual and proprioceptive feedbacks. We analytically derived an optimal solution that can be applied continuously to move an effector toward a target regardless of whether, when, or where the target jumps. This single policy produces different numbers of peaks and "submovements" in velocity profiles for different conditions and trials. Movements that are slower or perturbed later appear to have more submovements. The model is also consistent with the observation that subjects can perform the perturbation task even without detecting the target jump or seeing their hands during reaching. Finally, because the model incorporates Weber's law via a state representation relative to the target, it explains why initial and terminal visual feedback are, respectively, less and more effective in improving end-point accuracy. Our work suggests that the number of peaks or submovements in a velocity profile does not necessarily reflect the number of motor impulses and that the difference between

  11. Optical, magnetic, and single-particle excitations in the multiband Hubbard model for cuprate superconductors (United States)

    Wagner, J.; Hanke, W.; Scalapino, D. J.


    On the basis of exact diagonalizations, a comparative study of two-particle optical and magnetic, as well as single-particle, excitations is presented for a two-dimensional (2D) multiorbital Hubbard model. For reasonable parameter sets appropriate for the cuprate superconductors, the single-particle excitations display strongly correlated states related to the Zhang-Rice Cu-O singlet construction. These states define the gap (to the upper Hubbard band) at half-filling and become partially occupied by doping holes in our 2×2 unit-cell system. The optical results, which are the first quantitative calculations performed for realistic parameters of the three-band Hubbard model, clearly show three allowed optical transitions: (i) itinerant motion of the Cu-O singlets, having (for doping concentrations x≠0) a spectral Drude distribution around ω=0 with spectral weight proportional to x; (ii) unbinding of the O hole from the Cu spin in the singlet. This gives, in particular, a strong absorption peak due to singlet-->nonbonding oxygen transitions, again with relative weight ~x. It is roughly centered at ω~JKondoUpd. They show a pronounced excitonic effect due to the p-d interaction Upd and have a reduced spectral weight shifted to higher energies for increased dopings. Findings (i)-(iii) are in general accordance with recent experimental data. Our study of the low-energy absorption is complemented with a numerical scaling analysis of the Drude weight in 1D, where, in particular, we find an interesting violation of Lenz's law for 4n-site Hubbard rings. Finally, the magnetic structure factor is calculated for the 2D case. For finite doping it contains a peak at 2JKondo, which should be detectable in experiment.

  12. Implementation of the GFS physical package in the GRAPES regional model: single column experiment (United States)

    Chen, Baode; Huang, Wei; Bao, Jian-wen


    There is a growing concern about coupling among physical components in NWP models. The Physics package of the NCEP Global Forecast System (GFS) has been considerably turned and connection among various components is well considered. Thus, the full GFS physical package was implemented into the GRAPES-MESO and its single column version as well. Using the data collected at ARM Southern Great Plain site during the summer 1997 Intensive Observing Period, several experiments of single-column model (SCM) were conducted to test performance of a set of original physical processes of GRAPES(CTL experiment) and the GFS physics package implemented(GFS experiment). Temperature, moisture, radiation, surface heat flux, surface air temperature and precipitation are evaluated. It is found that potential temperature and vapor mixing ratio simulated by GFS experiment is more accurate than that of CTL experiment. Errors of surface downward solar and long-wave radiation simulated by GFS experiment are less than that of CTL experiment and upward latent and sensible heat flux are also better agreeing with observation. The maximum and minimum 2-m air temperatures of the GFS experiment are close to observation compared with that of CTL experiment. Analysis of precipitation simulated shows that both sets of physical processes well reproduce heavy rainfall events. Failure and delay of moderate rainfall events and over predictions of drizzle events are commonly found for two sets of experiments. For the case of three rainfall events, the errors of potential temperature and vapor mixing ratio simulated by GFS experiment were smaller than that of CTL experiment. It is shown that the late occurrences of rainfall are resulted from a more stable temperature profile and lower moisture simulated in boundary layer than those from the observation prior to rainfall. When the simulated rainfall occurs, the simulated temperature and moisture become more favorable to the precipitation than observation.

  13. Identification of children with reading difficulties: Cheap can be adequate

    DEFF Research Database (Denmark)

    Poulsen, Mads; Nielsen, Anne-Mette Veber

    Classification of reading difficulties: Cheap screening can be accurate Purpose: Three factors are important for identification of students in need of remedial instruction: accuracy, timeliness, and cost. The identification has to be accurate to be of any use, the identification has to be timely......, inexpensive testing. The present study investigated the classification accuracy of three screening models varying in timeliness and cost. Method: We compared the ROC statistics of three logistic models for predicting end of Grade 2 reading difficulties in a sample of 164 students: 1) an early, comprehensive...... model using a battery of Grade 0 tests, including phoneme awareness, rapid naming, and paired associate learning, 2) a late, comprehensive model adding reading measures from January of Grade 1, and 3) a late, inexpensive model using only group-administered reading measures from January of Grade 1...

  14. Biomechanical properties of single chondrocytes and chondrons determined by micromanipulation and finite-element modelling (United States)

    Nguyen, Bac V.; Wang, Qi Guang; Kuiper, Nicola J.; El Haj, Alicia J.; Thomas, Colin R.; Zhang, Zhibing


    A chondrocyte and its surrounding pericellular matrix (PCM) are defined as a chondron. Single chondrocytes and chondrons isolated from bovine articular cartilage were compressed by micromanipulation between two parallel surfaces in order to investigate their biomechanical properties and to discover the mechanical significance of the PCM. The force imposed on the cells was measured directly during compression to various deformations and then holding. When the nominal strain at the end of compression was 50 per cent, force relaxation showed that the cells were viscoelastic, but this viscoelasticity was generally insignificant when the nominal strain was 30 per cent or lower. The viscoelastic behaviour might be due to the mechanical response of the cell cytoskeleton and/or nucleus at higher deformations. A finite-element analysis was applied to simulate the experimental force-displacement/time data and to obtain mechanical property parameters of the chondrocytes and chondrons. Because of the large strains in the cells, a nonlinear elastic model was used for simulations of compression to 30 per cent nominal strain and a nonlinear viscoelastic model for 50 per cent. The elastic model yielded a Young's modulus of 14 ± 1 kPa (mean ± s.e.) for chondrocytes and 19 ± 2 kPa for chondrons, respectively. The viscoelastic model generated an instantaneous elastic modulus of 21 ± 3 and 27 ± 4 kPa, a long-term modulus of 9.3 ± 0.8 and 12 ± 1 kPa and an apparent viscosity of 2.8 ± 0.5 and 3.4 ± 0.6 kPa s for chondrocytes and chondrons, respectively. It was concluded that chondrons were generally stiffer and showed less viscoelastic behaviour than chondrocytes, and that the PCM significantly influenced the mechanical properties of the cells. PMID:20519215

  15. Theoretical modelling and experimental investigation of single-phase and two-phase flow division at a tee-junction

    International Nuclear Information System (INIS)

    Lemonnier, H.; Hervieu, E.


    Phase separation in a tee-junction is modelled in the particular case of bubbly-flow. The model is based on a two-dimensional approach and hence, uses local equations. The first step consists in modelling the single-phase flow in the tee-junction. The free streamline theory is used to predict the flow of the continuous phase. The two recirculation zones which are presented in this case are predicted by the model. The second step consists in predicting the gas bubble paths as a result of the actions of the single-phase flow. Finally, the trajectories of gas bubbles are used to predict the separation characteristics of the tee-junction. Each step of the modelling procedure has been carefully tested by an in-depth experimental investigation. Excellent quantitative agreement is obtained between experimental results and model predictions. Moreover, the phase separation phenomenon is found to be clearly described by the model. (orig.)

  16. Frequency of Adequate Endometrial Biopsy in Evaluation of Postmenopausal Women With Benign Endometrial Cells on Pap Test. (United States)

    Hastings, Jeffrey W; Alston, Meredith J; Mazzoni, Sara E; Stickrath, Elaine


    The aim of the study was to determine the frequency that endometrial biopsies (EMBs) performed on postmenopausal (PMP) women with benign endometrial cells (BECs) on Pap test are adequate for assessing malignancy or hyperplasia. This is a case series including all PMP women older than 55 years at a single academic institution between January 2008 and September 2015 with a Pap test result including BEC. Patients were identified via an internal cytology database. Patient data, the ability to obtain an EMB, and the result of the EMB were collected. An adequate EMB was defined as the presence of glands and stroma sufficient to assess for endometrial hyperplasia and/or malignancy. Descriptive statistics were performed, and then univariable and logistic regression analyses were used to evaluate associations of patient factors and adequacy of EMB. One hundred sixteen women met inclusion criteria. One hundred seven had an EMB scheduled (92%) and of those 91 EMBs were obtained (85%). Of the obtained biopsies, 63 were inadequate to rule out the diagnosis of hyperplasia and/or malignancy (69%). Of these, 19 patients underwent pelvic ultrasound (30%), 12 followed up with repeat Pap test (19%), and 4 underwent dilation and curettage (6%). Of the adequate biopsies, 5 had a diagnosis of hyperplasia (18%) and 5 with malignancy (18%). In PMP women with BEC on Pap test, adequate EMB was only obtained in 31% of patients. Most patients without an adequate biopsy had no further workup of their abnormal Pap test.

  17. A Single Neonatal Exposure to BMAA in a Rat Model Produces Neuropathology Consistent with Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Laura Louise Scott


    Full Text Available Although cyanobacterial β-N-methylamino-l-alanine (BMAA has been implicated in the development of Alzheimer’s Disease (AD, Parkinson’s Disease (PD and Amyotrophic Lateral Sclerosis (ALS, no BMAA animal model has reproduced all the neuropathology typically associated with these neurodegenerative diseases. We present here a neonatal BMAA model that causes β-amyloid deposition, neurofibrillary tangles of hyper-phosphorylated tau, TDP-43 inclusions, Lewy bodies, microbleeds and microgliosis as well as severe neuronal loss in the hippocampus, striatum, substantia nigra pars compacta, and ventral horn of the spinal cord in rats following a single BMAA exposure. We also report here that BMAA exposure on particularly PND3, but also PND4 and 5, the critical period of neurogenesis in the rodent brain, is substantially more toxic than exposure to BMAA on G14, PND6, 7 and 10 which suggests that BMAA could potentially interfere with neonatal neurogenesis in rats. The observed selective toxicity of BMAA during neurogenesis and, in particular, the observed pattern of neuronal loss observed in BMAA-exposed rats suggest that BMAA elicits its effect by altering dopamine and/or serotonin signaling in rats.

  18. Geometry modeling of single track cladding deposited by high power diode laser with rectangular beam spot (United States)

    Liu, Huaming; Qin, Xunpeng; Huang, Song; Hu, Zeqi; Ni, Mao


    This paper presents an investigation on the relationship between the process parameters and geometrical characteristics of the sectional profile for the single track cladding (STC) deposited by High Power Diode Laser (HPDL) with rectangle beam spot (RBS). To obtain the geometry parameters, namely cladding width Wc and height Hc of the sectional profile, a full factorial design (FFD) of experiment was used to conduct the experiments with a total of 27. The pre-placed powder technique has been employed during laser cladding. The influence of the process parameters including laser power, powder thickness and scanning speed on the Wc and Hc was analyzed in detail. A nonlinear fitting model was used to fit the relationship between the process parameters and geometry parameters. And a circular arc was adopted to describe the geometry profile of the cross-section of STC. The above models were confirmed by all the experiments. The results indicated that the geometrical characteristics of the sectional profile of STC can be described as the circular arc, and the other geometry parameters of the sectional profile can be calculated only using Wc and Hc. Meanwhile, the Wc and Hc can be predicted through the process parameters.

  19. Simplified paraboloid phase model-based phase tracker for demodulation of a single complex fringe. (United States)

    He, A; Deepan, B; Quan, C


    A regularized phase tracker (RPT) is an effective method for demodulation of single closed-fringe patterns. However, lengthy calculation time, specially designed scanning strategy, and sign-ambiguity problems caused by noise and saddle points reduce its effectiveness, especially for demodulating large and complex fringe patterns. In this paper, a simplified paraboloid phase model-based regularized phase tracker (SPRPT) is proposed. In SPRPT, first and second phase derivatives are pre-determined by the density-direction-combined method and discrete higher-order demodulation algorithm, respectively. Hence, cost function is effectively simplified to reduce the computation time significantly. Moreover, pre-determined phase derivatives improve the robustness of the demodulation of closed, complex fringe patterns. Thus, no specifically designed scanning strategy is needed; nevertheless, it is robust against the sign-ambiguity problem. The paraboloid phase model also assures better accuracy and robustness against noise. Both the simulated and experimental fringe patterns (obtained using electronic speckle pattern interferometry) are used to validate the proposed method, and a comparison of the proposed method with existing RPT methods is carried out. The simulation results show that the proposed method has achieved the highest accuracy with less computational time. The experimental result proves the robustness and the accuracy of the proposed method for demodulation of noisy fringe patterns and its feasibility for static and dynamic applications.

  20. Modelling and numerical simulation of vortex induced vibrations of single cylinder or cylinder arrays

    International Nuclear Information System (INIS)

    Jus, Y.


    This research thesis fits into the frame of researches achieved in the nuclear field in order to optimize the predictive abilities of sizing models of nuclear plant components. It more precisely addresses the modelling of the action exerted by the flowing fluid and the induced feedback by the structure dynamics. The objective is herein to investigate the interaction between the turbulence at the wall vicinity and the effects of non-conservative and potentially destabilizing unsteady coupling. The peculiar case of a single cylinder in infinite environment, and submitted to a transverse flow, is studied statically and then dynamically. The influence of flow regimes on dynamic response is characterized, and the quantification of fluid-structure interaction energy is assessed. The author then addresses the case of an array of cylinders, and highlights the contribution of three-dimensional macro-simulations for the analysis of flow-induced structure vibrations in subcritical regime within a High Performance Calculation (HPC) framework, and the interest of a CFD/CSM (computational fluid dynamics/computational structure mechanics) coupling in the case of turbulent flows in an industrial environment

  1. Diagnostic accuracy: theoretical models for preimplantation genetic testing of a single nucleus using the fluorescence in situ hybridization technique

    NARCIS (Netherlands)

    Scriven, P. N.; Bossuyt, P. M. M.


    The aim of this study was to develop and use theoretical models to investigate the accuracy of the fluorescence in situ hybridization (FISH) technique in testing a single nucleus from a preimplantation embryo without the complicating effect of mosaicism. Mathematical models were constructed for

  2. Modeling of Single Event Transients With Dual Double-Exponential Current Sources: Implications for Logic Cell Characterization (United States)

    Black, Dolores A.; Robinson, William H.; Wilcox, Ian Z.; Limbrick, Daniel B.; Black, Jeffrey D.


    Single event effects (SEE) are a reliability concern for modern microelectronics. Bit corruptions can be caused by single event upsets (SEUs) in the storage cells or by sampling single event transients (SETs) from a logic path. An accurate prediction of soft error susceptibility from SETs requires good models to convert collected charge into compact descriptions of the current injection process. This paper describes a simple, yet effective, method to model the current waveform resulting from a charge collection event for SET circuit simulations. The model uses two double-exponential current sources in parallel, and the results illustrate why a conventional model based on one double-exponential source can be incomplete. A small set of logic cells with varying input conditions, drive strength, and output loading are simulated to extract the parameters for the dual double-exponential current sources. The parameters are based upon both the node capacitance and the restoring current (i.e., drive strength) of the logic cell.

  3. Ex-vivo training model for laparoendoscopic single-site surgery

    Directory of Open Access Journals (Sweden)

    Kommu Sashi


    Full Text Available Background: Laparoendoscopic single-site surgery (LESS has recently been applied successfully in the performance of a host of surgical procedures. Preliminary consensus from the experts is that this mode of surgery is technically challenging and requires expertise. The transition from trainee to practicing surgeon, especially in complex procedures with challenging learning curves, takes time and mentor-guided nurturing. However, the trainee needs to use platforms of training to gain the skills that are deemed necessary for undertaking the live human case. Objective: This article aims to demonstrate a step-by-step means of how to acquire the necessary instrumentation and build a training model for practicing steeplechase exercises in LESS for urological surgeons and trainees. The tool built as a result of this could set the platform for performance of basic and advanced skills uptake using conventional, bent and articulated instruments. A preliminary construct validity of the platform was conducted. Materials and Methods: A box model was fitted with an R-Port™ and camera. Articulated and conventional instruments were used to demonstrate basic exercises (e.g. glove pattern cutting, loop stacking and suturing and advanced exercises (e.g. pyeloplasty. The validation included medical students (M, final year laparoscopic fellows (F and experienced consultant laparoscopic surgeons (C with at least 50 LESS cases experience in total, were tested on eight basic skill tasks (S including manipulation of the flexible cystoscope (S1, hand eye coordination (S2, cutting with flexible scissors (S3, grasping with flexible needle holders (S4, two-handed maneuvers (S5, object translocation (S6, cross hand suturing with flexible instruments (S7 and conduction of an ex-vivo pyeloplasty. Results: The successful application of the box model was demonstrated by trainee based exercises. The cost of the kit with circulated materials was less than £150 (Pounds Sterling

  4. Variation in Primary Cesarean Delivery Rates by Individual Physician within a Single Hospital Laborist Model (United States)

    METZ, Torri D.; ALLSHOUSE, Amanda A.; GILBERT, Sara A Babcock; DOYLE, Reina; TONG, Angie; CAREY, J. Christopher


    Background Laborist practice models are associated with lower cesarean delivery rates than individual private practice models in several studies; however, this effect is not uniform. Further exploration of laborist models may help us better understand the observed reduction in cesarean delivery rates in some hospitals with implementation of a laborist model. Objective Our objective was to evaluate the degree of variation in primary cesarean delivery rates by individual laborists within a single institution employing a laborist model. In addition, we sought to evaluate whether differences in cesarean delivery rates resulted in different maternal or short-term neonatal outcomes. Study Design At this teaching institution, one laborist (either a generalist or maternal-fetal medicine attending physician) is directly responsible for labor and delivery management during each shift. No patients are followed in a private practice model nor are physicians incentivized to perform deliveries. We retrospectively identified all laborists who delivered nulliparous, term women with cephalic singletons at this institution from 2007-14. Overall and individual primary cesarean delivery rates were reported as percentages with exact Pearson 95% CI. Laborists were grouped by tertile as having low, medium or high cesarean delivery rates. Characteristics of the women delivered, indications for cesarean delivery, and short-term neonatal outcomes were compared between these groups. A binomial regression model of cesarean delivery was estimated, where the relative rates of each laborist compared to the lowest-unadjusted laborist rate were calculated; a second model was estimated to adjust for patient-level maternal characteristics. Results Twenty laborists delivered 2,224 nulliparous, term women with cephalic singletons. The overall cesarean delivery rate was 24.1% (95% CI 21.4-26.8). In an unadjusted binomial model, the overall effect of individual laborist was significant (pcesarean

  5. Design and optimization for the occupant restraint system of vehicle based on a single freedom model (United States)

    Zhang, Junyuan; Ma, Yue; Chen, Chao; Zhang, Yan


    Throughout the vehicle crash event, the interactions between vehicle, occupant, restraint system (VOR) are complicated and highly non-linear. CAE and physical tests are the most widely used in vehicle passive safety development, but they can only be done with the detailed 3D model or physical samples. Often some design errors and imperfections are difficult to correct at that time, and a large amount of time will be needed. A restraint system concept design approach which based on single-degree-of-freedom occupant-vehicle model (SDOF) is proposed in this paper. The interactions between the restraint system parameters and the occupant responses in a crash are studied from the view of mechanics and energy. The discrete input and the iterative algorithm method are applied to the SDOF model to get the occupant responses quickly for arbitrary excitations (impact pulse) by MATLAB. By studying the relationships between the ridedown efficiency, the restraint stiffness, and the occupant response, the design principle of the restraint stiffness aiming to reduce occupant injury level during conceptual design is represented. Higher ridedown efficiency means more occupant energy absorbed by the vehicle, but the research result shows that higher ridedown efficiency does not mean lower occupant injury level. A proper restraint system design principle depends on two aspects. On one hand, the restraint system should lead to as high ridedown efficiency as possible, and at the same time, the restraint system should maximize use of the survival space to reduce the occupant deceleration level. As an example, an optimization of a passenger vehicle restraint system is designed by the concept design method above, and the final results are validated by MADYMO, which is the most widely used software in restraint system design, and the sled test. Consequently, a guideline and method for the occupant restraint system concept design is established in this paper.

  6. Coupled THMC modelling of single fractures in novaculite and granite for DECOVALEX-2015 (United States)

    Bond, A.; Chittenden, N.; Fedors, R. W.; Lang, P. S.; McDermott, C.; Neretnieks, I. E.; Pan, P.; Šembara, J.; Brusky, I.; Watanabe, N.; Lu, R.; Yasuhara, H.


    The host rock immediately surrounding a nuclear waste repository has the potential to undergo a complex set of physical and chemical processes starting from construction of the facility until many years after completion. Understanding the relevant processes of fracture evolution may be key to supporting the attendant safety arguments for such a facility. In the present phase of the international research project DECOVALEX, the experimental work of Yasuhara et al [1,2] has been examined, wherein artificial fractures in novaculite and granite are subject to a mechanical confining pressure, variable fluid flows and different applied temperatures. Differential pressures across the samples were measured to determine permeability and hence hydraulic aperture evolution, while at the same time the chemical composition of the outflows were continually sampled. For the novaculite experiments, the fracture surfaces' topography were characterised using a high-resolution laser profilometer (see Figure 1), and post-experimental characterisation of the aperture was performed using a Wood's metal fracture cast. This paper presents a synthesis of the ongoing work of six separate research teams. A range of approaches are presented including 2D and 3D high resolution coupled THMC models. Homogenised 'single compartment' models of the fracture have also been adopted, attempting to upscale the processes so that they could be used in larger network or effective continuum models. Particular attention is given to the competing roles of aqueous geochemistry, pressure solution, stress corrosion and pure mechanics in order to reproduce the experimental observations. The results of the work show that while good, physically plausible representations of the experiment can be obtained, there is considerable uncertainty in the relative importance of the various processes and that the parameterisation of these processes can be closely linked to the physical interpretation of the fracture surface

  7. Neural Plasticity: Single Neuron Models for Discrimination and Generalization and AN Experimental Ensemble Approach. (United States)

    Munro, Paul Wesley

    A special form for modification of neuronal response properties is described in which the change in the synaptic state vector is parallel to the vector of afferent activity. This process is termed "parallel modification" and its theoretical and experimental implications are examined. A theoretical framework has been devised to describe the complementary functions of generalization and discrimination by single neurons. This constitutes a basis for three models each describing processes for the development of maximum selectivity (discrimination) and minimum selectivity (generalization) by neurons. Strengthening and weakening of synapses is expressed as a product of the presynaptic activity and a nonlinear modulatory function of two postsynaptic variables--namely a measure of the spatially integrated activity of the cell and a temporal integration (time-average) of that activity. Some theorems are given for low-dimensional systems and computer simulation results from more complex systems are discussed. Model neurons that achieve high selectivity mimic the development of cat visual cortex neurons in a wide variety of rearing conditions. A role for low-selectivity neurons is proposed in which they provide inhibitory input to neurons of the opposite type, thereby suppressing the common component of a pattern class and enhancing their selective properties. Such contrast-enhancing circuits are analyzed and supported by computer simulation. To enable maximum selectivity, the net inhibition to a cell must become strong enough to offset whatever excitation is produced by the non-preferred patterns. Ramifications of parallel models for certain experimental paradigms are analyzed. A methodology is outlined for testing synaptic modification hypotheses in the laboratory. A plastic projection from one neuronal population to another will attain stable equilibrium under periodic electrical stimulation of constant intensity. The perturbative effect of shifting this intensity level

  8. Multiple single nucleotide polymorphism analysis using penalized regression in nonlinear mixed-effect pharmacokinetic models. (United States)

    Bertrand, Julie; Balding, David J


    Studies on the influence of single nucleotide polymorphisms (SNPs) on drug pharmacokinetics (PK) have usually been limited to the analysis of observed drug concentration or area under the concentration versus time curve. Nonlinear mixed effects models enable analysis of the entire curve, even for sparse data, but until recently, there has been no systematic method to examine the effects of multiple SNPs on the model parameters. The aim of this study was to assess different penalized regression methods for including SNPs in PK analyses. A total of 200 data sets were simulated under both the null and an alternative hypothesis. In each data set for each of the 300 participants, a PK profile at six sampling times was simulated and 1227 genotypes were generated through haplotypes. After modelling the PK profiles using an expectation maximization algorithm, genetic association with individual parameters was investigated using the following approaches: (i) a classical stepwise approach, (ii) ridge regression modified to include a test, (iii) Lasso and (iv) a generalization of Lasso, the HyperLasso. Penalized regression approaches are often much faster than the stepwise approach. There are significantly fewer true positives for ridge regression than for the stepwise procedure and HyperLasso. The higher number of true positives in the stepwise procedure was accompanied by a higher count of false positives (not significant). We find that all approaches except ridge regression show similar power, but penalized regression can be much less computationally demanding. We conclude that penalized regression should be preferred over stepwise procedures for PK analyses with a large panel of genetic covariates.

  9. The Alchemy of "Costing Out" an Adequate Education (United States)

    Hanushek, Eric A.


    In response to the rapid rise in court cases related to the adequacy of school funding, a variety of alternative methods have been developed to provide an analytical base about the necessary expenditure on schools. These approaches have been titled to give an aura of a thoughtful and solid scientific basis: the professional judgment model, the…

  10. The study on the nanomachining property and cutting model of single-crystal sapphire by atomic force microscopy. (United States)

    Huang, Jen-Ching; Weng, Yung-Jin


    This study focused on the nanomachining property and cutting model of single-crystal sapphire during nanomachining. The coated diamond probe is used to as a tool, and the atomic force microscopy (AFM) is as an experimental platform for nanomachining. To understand the effect of normal force on single-crystal sapphire machining, this study tested nano-line machining and nano-rectangular pattern machining at different normal force. In nano-line machining test, the experimental results showed that the normal force increased, the groove depth from nano-line machining also increased. And the trend is logarithmic type. In nano-rectangular pattern machining test, it is found when the normal force increases, the groove depth also increased, but rather the accumulation of small chips. This paper combined the blew by air blower, the cleaning by ultrasonic cleaning machine and using contact mode probe to scan the surface topology after nanomaching, and proposed the "criterion of nanomachining cutting model," in order to determine the cutting model of single-crystal sapphire in the nanomachining is ductile regime cutting model or brittle regime cutting model. After analysis, the single-crystal sapphire substrate is processed in small normal force during nano-linear machining; its cutting modes are ductile regime cutting model. In the nano-rectangular pattern machining, due to the impact of machined zones overlap, the cutting mode is converted into a brittle regime cutting model. © 2014 Wiley Periodicals, Inc.

  11. A probabilistic cell model in background corrected image sequences for single cell analysis

    Directory of Open Access Journals (Sweden)

    Fieguth Paul


    Full Text Available Abstract Background Methods of manual cell localization and outlining are so onerous that automated tracking methods would seem mandatory for handling huge image sequences, nevertheless manual tracking is, astonishingly, still widely practiced in areas such as cell biology which are outside the influence of most image processing research. The goal of our research is to address this gap by developing automated methods of cell tracking, localization, and segmentation. Since even an optimal frame-to-frame association method cannot compensate and recover from poor detection, it is clear that the quality of cell tracking depends on the quality of cell detection within each frame. Methods Cell detection performs poorly where the background is not uniform and includes temporal illumination variations, spatial non-uniformities, and stationary objects such as well boundaries (which confine the cells under study. To improve cell detection, the signal to noise ratio of the input image can be increased via accurate background estimation. In this paper we investigate background estimation, for the purpose of cell detection. We propose a cell model and a method for background estimation, driven by the proposed cell model, such that well structure can be identified, and explicitly rejected, when estimating the background. Results The resulting background-removed images have fewer artifacts and allow cells to be localized and detected more reliably. The experimental results generated by applying the proposed method to different Hematopoietic Stem Cell (HSC image sequences are quite promising. Conclusion The understanding of cell behavior relies on precise information about the temporal dynamics and spatial distribution of cells. Such information may play a key role in disease research and regenerative medicine, so automated methods for observation and measurement of cells from microscopic images are in high demand. The proposed method in this paper is capable

  12. Identification of children with reading difficulties: Cheap can be adequate

    DEFF Research Database (Denmark)

    Poulsen, Mads; Nielsen, Anne-Mette Veber

    Classification of reading difficulties: Cheap screening can be accurate Purpose: Three factors are important for identification of students in need of remedial instruction: accuracy, timeliness, and cost. The identification has to be accurate to be of any use, the identification has to be timely......, inexpensive testing. The present study investigated the classification accuracy of three screening models varying in timeliness and cost. Method: We compared the ROC statistics of three logistic models for predicting end of Grade 2 reading difficulties in a sample of 164 students: 1) an early, comprehensive...... to allow for optimal remediation, and the procedure should preferably be inexpensive to allow wide-spread adoption. These criteria are, however, often in conflict: Early screening may be less accurate than late screening, and comprehensive and expensive testing is possibly more accurate than simple...

  13. Reduction of a single granule drying model: An essential step in preparation of a population balance model with a continuous growth term

    DEFF Research Database (Denmark)

    Mortier, Séverine Thérèse F.C.; Daele, Timothy, Van; Gernaey, Krist V.


    for a single granule needs reduction in complexity. The starting point is a detailed model that describes the drying behavior of single pharmaceutical granules. A Global Sensitivity Analysis (GSA) was performed to detect the most sensitive degrees of freedom in the model as these need to be retained...... in the reduced model. Simulations of the complex drying model were, in a next phase, used to develop the reduced model, which describes the decrease of the moisture content in function of the gas temperature. The developed reduced model was then included in a Population Balance Equation (PBE) to describe......The development of a Population Balance Model (PBM) for a pharmaceutical granule drying process requires a continuous growth term; the latter actually represents the drying process as the moisture content is the internal coordinate of the PBM. To establish such a PBM, a complex drying model...

  14. A study on the single continuum modeling of radionuclide migration in fractured porous media

    International Nuclear Information System (INIS)

    Jeong, Jong Tae


    Solute transport in fractured porous media is described by the single continuum model, i.e., equivalent porous medium(EPM) model. For this purpose, one-dimensional solute transport in the fracture and two-dimensional solute transport in the porous rock matrix is considered. The network of fractures embedded in the porous rock matrix is idealized as two orthogonally intersecting families of equally spaced, parallel fractures directed at 45 .deg. to the regional groundwater flow direction. Physical processes considered are advection, hydrodynamic dispersion, molecular diffusion, sorption onto the fracture surfaces, sorption in the rock matrix, and radioactive decay. Governing equations are solved by the finite element method, and upstream weighting technique is used in order to prevent the oscillation of solution in case of highly advection dominated transport. The domain is discretized into a network of triangular and quadrilateral elements by intersecting a number of mesh lines between each pair of fractures. The one-dimensional fracture elements are superimposed onto the boundaries of the porous rock matrix, and equal concentrations are applied as a boundary condition between fractures and porous rock matrix. Validity of the numerical scheme is established by comparison with an analytic solution for the three cases independently, i.e., one- and two-dimensional problems in the porous rock matrix and one-dimensional transport problem in the fracture. An overall numerical scheme is verified by comparison with the analytic solution of one-dimensional solute transport in ordinary porous media. In all cases the numerical scheme is found to be capable of producing reliable results, and more accurate solutions can be obtained by reducing both the mesh size and time step in the case of highly obtained by reducing both the mesh size and time step in the case of highly advection dominated problems. The breakthrough curves are obtained as a function of time according to

  15. Comparative study between single core model and detail core model of CFD modelling on reactor core cooling behaviour (United States)

    Darmawan, R.


    Nuclear power industry is facing uncertainties since the occurrence of the unfortunate accident at Fukushima Daiichi Nuclear Power Plant. The issue of nuclear power plant safety becomes the major hindrance in the planning of nuclear power program for new build countries. Thus, the understanding of the behaviour of reactor system is very important to ensure the continuous development and improvement on reactor safety. Throughout the development of nuclear reactor technology, investigation and analysis on reactor safety have gone through several phases. In the early days, analytical and experimental methods were employed. For the last four decades 1D system level codes were widely used. The continuous development of nuclear reactor technology has brought about more complex system and processes of nuclear reactor operation. More detailed dimensional simulation codes are needed to assess these new reactors. Recently, 2D and 3D system level codes such as CFD are being explored. This paper discusses a comparative study on two different approaches of CFD modelling on reactor core cooling behaviour.

  16. Sivers effect in single spin asymmetry based on the covariant parton model (United States)

    Saffar, H. Mahdizadeh; Mirjalili, A.; Tehrani, S. Atashbar; Yazdanpanah, M. M.


    Sivers effect is describing the correlation between the transverse polarization of nucleon and the transverse momentum, k⊥, of its unpolarized constituent partons. This effect is an outstanding subject and in this regard, a great deal in recent years has been considered from experimental and phenomenological points of view. It also plays an essential role to extend our understanding from nucleon structure. Semi-inclusive DIS (SIDIS) process provides us an opportunity to access to Sivers function which is dependent on transverse momentum of partons. In this paper, for the first time the covariant parton model is used to deliver us the k⊥ and x dependence part of Sivers function. Based on this model, this combinatory dependence is arising out from the HERAPDF parametrization group. In this paper the other required parametrized functions in Sivers function is also changed with respect to Ref. 1. The unknown parameters which exist in Sivers function can be extracted, doing a global fit over the recent available experimental data, including HERMES, COMPASS and JLAB collaborations for the single spin asymmetry (SSA) in π‑ and π+ meson production as well as kaon production to constrain the evolved strange quark. This is done, considering advanced mathematical manipulations to overcome the difficulties which exist to compute the required multiple integrals and finally employing the CERN MINIUTE program to do a global fit. Our results for SSA are in good agreement with the available experimental data. For more confirmation a comparison between our results and the ones from Ref. 2 is also done.

  17. Ground state properties of a spin chain within Heisenberg model with a single lacking spin site

    International Nuclear Information System (INIS)

    Mebrouki, M.


    The ground state and first excited state energies of an antiferromagnetic spin-1/2 chain with and without a single lacking spin site are computed using exact diagonalization method, within the Heisenberg model. In order to keep both parts of a spin chain with a lacking site connected, next nearest neighbors interactions are then introduced. Also, the Density Matrix Renormalization Group (DMRG) method is used, to investigate ground state energies of large system sizes; which permits us to inquire about the effect of large system sizes on energies. Other quantum quantities such as fidelity and correlation functions are also studied and compared in both cases. - Research highlights: → In this paper we compute ground state and first excited state energies of a spin chain with and without a lacking spin site. The next nearest neighbors are introduced with the antiferromagnetic Heisenberg spin-half. → Exact diagonalization is used for small systems, where DMRG method is used to compute energies for large systems. Other quantities like quantum fidelity and correlation are also computed. → Results are presented in figures with comments. → E 0 /N is computed in a function of N for several values of J 2 and for both systems. First excited energies are also investigated.

  18. Modeling of the effect of intentionally introduced traps on hole transport in single-crystal rubrene

    KAUST Repository

    Dacuña, Javier


    Defects have been intentionally introduced in a rubrene single crystal by means of two different mechanisms: ultraviolet ozone (UVO) exposure and x-ray irradiation. A complete drift-diffusion model based on the mobility edge (ME) concept, which takes into account asymmetries and nonuniformities in the semiconductor, is used to estimate the energetic and spatial distribution of trap states. The trap distribution for pristine devices can be decomposed into two well defined regions: a shallow region ascribed to structural disorder and a deeper region ascribed to defects. UVO and x ray increase the hole trap concentration in the semiconductor with different energetic and spatial signatures. The former creates traps near the top surface in the 0.3-0.4 eV region, while the latter induces a wider distribution of traps extending from the band edge with a spatial distribution that peaks near the top and bottom interfaces. In addition to inducing hole trap states in the transport gap, both processes are shown to reduce the mobility with respect to a pristine crystal. © 2014 American Physical Society.

  19. Estimating Young’s Modulus of Single-Walled Zirconia Nanotubes Using Nonlinear Finite Element Modeling

    Directory of Open Access Journals (Sweden)

    Ibrahim Dauda Muhammad


    Full Text Available The single-walled zirconia nanotube is structurally modeled and its Young’s modulus is valued by using the finite element approach. The nanotube was assumed to be a frame-like structure with bonds between atoms regarded as beam elements. The properties of the beam required for input into the finite element analysis were computed by connecting energy equivalence between molecular and continuum mechanics. Simulation was conducted by applying axial tensile strain on one end of the nanotube while the other end was fixed and the corresponding reaction force recorded to compute Young’s modulus. It was found out that Young’s modulus of zirconia nanotubes is significantly affected by some geometrical parameters such as chirality, diameter, thickness, and length. The obtained values of Young’s modulus for a certain range of diameters are in agreement with what was obtained in the few experiments that have been conducted so far. This study was conducted on the cubic phase of zirconia having armchair and zigzag configuration. The optimal diameter and thickness were obtained, which will assist in designing and fabricating bulk nanostructured components containing zirconia nanotubes for various applications.

  20. Modelling and Characterization of Effective Thermal Conductivity of Single Hollow Glass Microsphere and Its Powder. (United States)

    Liu, Bing; Wang, Hui; Qin, Qing-Hua


    Tiny hollow glass microsphere (HGM) can be applied for designing new light-weighted and thermal-insulated composites as high strength core, owing to its hollow structure. However, little work has been found for studying its own overall thermal conductivity independent of any matrix, which generally cannot be measured or evaluated directly. In this study, the overall thermal conductivity of HGM is investigated experimentally and numerically. The experimental investigation of thermal conductivity of HGM powder is performed by the transient plane source (TPS) technique to provide a reference to numerical results, which are obtained by a developed three-dimensional two-step hierarchical computational method. In the present method, three heterogeneous HGM stacking elements representing different distributions of HGMs in the powder are assumed. Each stacking element and its equivalent homogeneous solid counterpart are, respectively, embedded into a fictitious matrix material as fillers to form two equivalent composite systems at different levels, and then the overall thermal conductivity of each stacking element can be numerically determined through the equivalence of the two systems. The comparison of experimental and computational results indicates the present computational modeling can be used for effectively predicting the overall thermal conductivity of single HGM and its powder in a flexible way. Besides, it is necessary to note that the influence of thermal interfacial resistance cannot be removed from the experimental results in the TPS measurement.

  1. Meloxicam pharmacokinetics using nonlinear mixed-effects modeling in ferrets after single subcutaneous administration. (United States)

    Chinnadurai, S K; Messenger, K M; Papich, M G; Harms, C A


    This study was designed to investigate the pharmacokinetics of meloxicam, an oxicam class, nonsteroidal anti-inflammatory drug (NSAID), in ferrets. We determined the pharmacokinetic properties of a single subcutaneous dose of meloxicam (0.2 mg/kg) in nine male and nine female ferrets. Blood samples were collected by venipuncture of the cranial vena cava into heparinized syringes. Plasma meloxicam concentrations were determined by high-pressure liquid chromatography (HPLC). Pharmacokinetic variables were calculated using nonlinear mixed-effects modeling to take advantage of the population-based sampling scheme and to minimize sample volume collected per animal. Maximum plasma concentration, volume of distribution per absorption, and elimination half-life were 0.663 μg/mL, 0.21 L, and 11.4 h, respectively, for females and 0.920 μg/mL, 0.35 L, and 17.8 h, respectively, for males. Significant differences were found in each of the above parameters between male and female ferrets. Systemic clearance per absorption was not affected by gender and was 13.4 mL/h. Analgesic efficacy was not evaluated, but plasma meloxicam concentrations achieved in these animals are considered effective in other species. Sex differences in the pharmacokinetic behavior of meloxicam should be taken into consideration when treating ferrets. © 2014 John Wiley & Sons Ltd.

  2. Multiphysics Modeling of a Single Channel in a Nuclear Thermal Propulsion Grooved Ring Fuel Element (United States)

    Kim, Tony; Emrich, William J., Jr.; Barkett, Laura A.; Mathias, Adam D.; Cassibry, Jason T.


    In the past, fuel rods have been used in nuclear propulsion applications. A new fuel element concept that reduces weight and increases efficiency uses a stack of grooved discs. Each fuel element is a flat disc with a hole on the interior and grooves across the top. Many grooved ring fuel elements for use in nuclear thermal propulsion systems have been modeled, and a single flow channel for each design has been analyzed. For increased efficiency, a fuel element with a higher surface-area-to-volume ratio is ideal. When grooves are shallower, i.e., they have a lower surface area, the results show that the exit temperature is higher. By coupling the physics of turbulence with those of heat transfer, the effects on the cooler gas flowing through the grooves of the thermally excited solid can be predicted. Parametric studies were done to show how a pressure drop across the axial length of the channels will affect the exit temperatures of the gas. Geometric optimization was done to show the behaviors that result from the manipulation of various parameters. Temperature profiles of the solid and gas showed that more structural optimization is needed to produce the desired results. Keywords: Nuclear Thermal Propulsion, Fuel Element, Heat Transfer, Computational Fluid Dynamics, Coupled Physics Computations, Finite Element Analysis

  3. Using single cell sequencing data to model the evolutionary history of a tumor


    Kim, Kyung In; Simon, Richard


    Background The introduction of next-generation sequencing (NGS) technology has made it possible to detect genomic alterations within tumor cells on a large scale. However, most applications of NGS show the genetic content of mixtures of cells. Recently developed single cell sequencing technology can identify variation within a single cell. Characterization of multiple samples from a tumor using single cell sequencing can potentially provide information on the evolutionary history of that tumo...

  4. Weakly coupled map lattice models for multicellular patterning and collective normalization of abnormal single-cell states (United States)

    García-Morales, Vladimir; Manzanares, José A.; Mafe, Salvador


    We present a weakly coupled map lattice model for patterning that explores the effects exerted by weakening the local dynamic rules on model biological and artificial networks composed of two-state building blocks (cells). To this end, we use two cellular automata models based on (i) a smooth majority rule (model I) and (ii) a set of rules similar to those of Conway's Game of Life (model II). The normal and abnormal cell states evolve according to local rules that are modulated by a parameter κ . This parameter quantifies the effective weakening of the prescribed rules due to the limited coupling of each cell to its neighborhood and can be experimentally controlled by appropriate external agents. The emergent spatiotemporal maps of single-cell states should be of significance for positional information processes as well as for intercellular communication in tumorigenesis, where the collective normalization of abnormal single-cell states by a predominantly normal neighborhood may be crucial.

  5. Single-nucleotide mutation matrix: a new model for predicting the NF-κB DNA binding sites. (United States)

    Du, Wenxin; Gao, Jing; Wang, Tingting; Wang, Jinke


    In this study, we established a single nucleotide mutation matrix (SNMM) model based on the relative binding affinities of NF-κB p50 homodimer to a wild-type binding site (GGGACTTTCC) and its all single-nucleotide mutants detected with the double-stranded DNA microarray. We evaluated this model by scoring different groups of 10-bp DNA sequences with this model and analyzing the correlations between the scores and the relative binding affinities detected with three wet experiments, including the electrophoresis mobility shift assay (EMSA), the protein-binding microarray (PBM) and the systematic evolution of ligands by exponential enrichment-sequencing (SELEX-Seq). The results revealed that the SNMM scores were strongly correlated with the detected binding affinities. We also scored the DNA sequences with other three models, including the principal coordinate (PC) model, the position weight matrix scoring algorithm (PWMSA) model and the Match model, and analyzed the correlations between the scores and the detected binding affinities. In comparison with these models, the SNMM model achieved reliable results. We finally determined 0.747 as the optimal threshold for predicting the NF-κB DNA-binding sites with the SNMM model. The SNMM model thus provides a new alternative model for scoring the relative binding affinities of NF-κB to the 10-bp DNA sequences and predicting the NF-κB DNA-binding sites.

  6. Plant water uptake at the single plant scale: experiment vs. model (United States)

    Deery, D. M.; Passioura, J. B.; Condon, J.; Katupitiya, A.


    This study tested the hypotheses that the soil is the main resistance to the extraction of water by the plant roots, owing to a combination of low root length density (unit length of root per unit volume of soil), low soil water diffusivity at low soil water content. To test this hypothesis wheat plants were grown in undisturbed and repacked clay-loam and repacked sand. The plants were kept in a controlled environment where they were challenged with a range of evaporative demands, first rising and then falling, and the transpiration rate, E, and the null measurement of the xylem water potential, B, were measured non-destructively and continuously. The experimental measurements were compared to the output of a mathematical model that solves the radial diffusion equation for the flow of water to a single plant root, assumed to represent all roots. For the repacked clay-loam and the repacked sand, the model could match the data during the rising phase of E, if it was assumed that only 10% of the roots were taking up water and that the soil water diffusivity was constant and low. However it could not match the data during the falling phase of E, unless it was assumed that there had been a significant rise in the hydraulic resistance of the plant, or perhaps more likely, that an additional, yet constant, interfacial resistance had developed when E was high and B was rapidly increasing. That the slope of B(E) during the falling phase of E, for the repacked clay-loam and the repacked sand, was essentially constant suggests that the radial flow of water through the soil generated only minor gradients in soil suction and therefore that neither low soil water diffusivity nor low root length density was inhibiting the extraction of water from the soil by the plant roots. For the undisturbed clay-loam soil, the radial-flow model did not agree with the experimental data even when various combinations of soil water diffusivity and root length density were tried. This

  7. Enhanced Single Seed Trait Predictions in Soybean (Glycine max) and Robust Calibration Model Transfer with Near-Infrared Reflectance Spectroscopy. (United States)

    Hacisalihoglu, Gokhan; Gustin, Jeffery L; Louisma, Jean; Armstrong, Paul; Peter, Gary F; Walker, Alejandro R; Settles, A Mark


    Single seed near-infrared reflectance (NIR) spectroscopy predicts soybean (Glycine max) seed quality traits of moisture, oil, and protein. We tested the accuracy of transferring calibrations between different single seed NIR analyzers of the same design by collecting NIR spectra and analytical trait data for globally diverse soybean germplasm. X-ray microcomputed tomography (μCT) was used to collect seed density and shape traits to enhance the number of soybean traits that can be predicted from single seed NIR. Partial least-squares (PLS) regression gave accurate predictive models for oil, weight, volume, protein, and maximal cross-sectional area of the seed. PLS models for width, length, and density were not predictive. Although principal component analysis (PCA) of the NIR spectra showed that black seed coat color had significant signal, excluding black seeds from the calibrations did not impact model accuracies. Calibrations for oil and protein developed in this study as well as earlier calibrations for a separate NIR analyzer of the same design were used to test the ability to transfer PLS regressions between platforms. PLS models built from data collected on one NIR analyzer had minimal differences in accuracy when applied to spectra collected from a sister device. Model transfer was more robust when spectra were trimmed from 910 to 1679 nm to 955-1635 nm due to divergence of edge wavelengths between the two devices. The ability to transfer calibrations between similar single seed NIR spectrometers facilitates broader adoption of this high-throughput, nondestructive, seed phenotyping technology.

  8. How attention influences perceptual decision making: Single-trial EEG correlates of drift-diffusion model parameters. (United States)

    Nunez, Michael D; Vandekerckhove, Joachim; Srinivasan, Ramesh


    Perceptual decision making can be accounted for by drift-diffusion models, a class of decision-making models that assume a stochastic accumulation of evidence on each trial. Fitting response time and accuracy to a drift-diffusion model produces evidence accumulation rate and non-decision time parameter estimates that reflect cognitive processes. Our goal is to elucidate the effect of attention on visual decision making. In this study, we show that measures of attention obtained from simultaneous EEG recordings can explain per-trial evidence accumulation rates and perceptual preprocessing times during a visual decision making task. Models assuming linear relationships between diffusion model parameters and EEG measures as external inputs were fit in a single step in a hierarchical Bayesian framework. The EEG measures were features of the evoked potential (EP) to the onset of a masking noise and the onset of a task-relevant signal stimulus. Single-trial evoked EEG responses, P200s to the onsets of visual noise and N200s to the onsets of visual signal, explain single-trial evidence accumulation and preprocessing times. Within-trial evidence accumulation variance was not found to be influenced by attention to the signal or noise. Single-trial measures of attention lead to better out-of-sample predictions of accuracy and correct reaction time distributions for individual subjects.

  9. Application of a single root-scale model to improve macroscopic modeling of root water uptake: focus on osmotic stress (United States)

    Jorda, Helena; Perelman, Adi; Lazarovitch, Naftali; Vanderborght, Jan


    Root water uptake is a fundamental process in the hydrological cycle and it largely regulates the water balance in the soil vadose zone. Macroscopic stress functions are currently used to estimate the effect of salinity on root water uptake. These functions commonly assume stress to be a function of bulk salinity and of the plant sensitivity to osmotic stress expressed as the salinity at which transpiration is reduced by half or so called tolerance value. However, they fail to integrate additional relevant factors such as atmospheric conditions or root architectural traits. We conducted a comprehensive simulation study on a single root using a 3-D physically-based model that resolves flow and transport to individual root segments and that couples flow in the soil and root system. The effect of salt concentrations on root water uptake was accounted for by including osmotic water potential gradients between the solution at the soil root interface and the root xylem sap in the hydraulic gradient between the soil and root. A large set of factors were studied, namely, potential transpiration rate and dynamics, root length density (RLD), irrigation water quality and irrigation frequency, and leaching fraction. Results were fitted to the macroscopic function developed by van Genuchten and Hoffman (1984) and the dependency of osmotic stress and the fitted macroscopic parameters on the studied factors was evaluated. Osmotic stress was found to be highly dependent on RLD. Low RLDs result in a larger stress to the plant due to high evaporative demand per root length unit. In addition, osmotic stress was positively correlated to potential transpiration rate, and sinusoidal potential transpiration lead to larger stress than when imposed as a constant boundary condition. Macroscopic parameters are usually computed as single values for each crop and used for the entire growing season. However, our study shows that both tolerance value and shape parameter p from the van Genuchten

  10. Probing the crossover in CO desorption from single crystal to nanoparticulate Ru model catalysts

    DEFF Research Database (Denmark)

    Murphy, Shane; Strebel, Christian Ejersbo; Vendelbo, Søren Bastholm


    Crossover in CO desorption behavior and nanoscale structure probed with STM from ruthenium single crystals to PVD and mass-selected nanoparticles.......Crossover in CO desorption behavior and nanoscale structure probed with STM from ruthenium single crystals to PVD and mass-selected nanoparticles....

  11. A Model for Improving the Health and Quality of Life of Single ...

    African Journals Online (AJOL)

    AJRH Managing Editor

    Among the impoverished population of coastal Kenya, there is a rapidly growing group of young single mothers who suffer from adverse health outcomes, incomplete schooling, social ostracism by their communities, and economic hardship. To address this problem, in 2008 the Single Mothers Program (SMP) selected a ...

  12. Odds of Getting Adequate Physical Activity by Dog Walking. (United States)

    Soares, Jesus; Epping, Jacqueline N; Owens, Chantelle J; Brown, David R; Lankford, Tina J; Simoes, Eduardo J; Caspersen, Carl J


    We aimed to determine the likelihood that adult dog owners who walk their dogs will achieve a healthy level of moderate-intensity (MI) physical activity (PA), defined as at least 150 mins/wk. We conducted a systematic search of 6 databases with data from 1990-2012 on dog owners' PA, to identify those who achieved MIPA. To compare dog-walkers' performance with non-dog walkers, we used a random effects model to estimate the unadjusted odds ratio (OR) and corresponding 95% confidence interval (CI). We retrieved 9 studies that met our inclusion criterion and allowed OR calculations. These yielded data on 6980 dog owners aged 18 to 81 years (41% men). Among them, 4463 (63.9%) walked their dogs. Based on total weekly PA, 2710 (60.7%) dog walkers, and 950 (37.7%) non-dog walkers achieved at least MIPA. The estimated OR was 2.74 (95% CI 2.09-3.60). Across 9 published studies, almost 2 in 3 dog owners reported walking their dogs, and the walkers are more than 2.5 times more likely to achieve at least MIPA. These findings suggest that dog walking may be a viable strategy for dog owners to help achieve levels of PA that may enhance their health.

  13. Integrated Planar Solid Oxide Fuel Cell: Steady-State Model of a Bundle and Validation through Single Tube Experimental Data

    Directory of Open Access Journals (Sweden)

    Paola Costamagna


    Full Text Available This work focuses on a steady-state model developed for an integrated planar solid oxide fuel cell (IP-SOFC bundle. In this geometry, several single IP-SOFCs are deposited on a tube and electrically connected in series through interconnections. Then, several tubes are coupled to one another to form a full-sized bundle. A previously-developed and validated electrochemical model is the basis for the development of the tube model, taking into account in detail the presence of active cells, interconnections and dead areas. Mass and energy balance equations are written for the IP-SOFC tube, in the classical form adopted for chemical reactors. Based on the single tube model, a bundle model is developed. Model validation is presented based on single tube current-voltage (I-V experimental data obtained in a wide range of experimental conditions, i.e., at different temperatures and for different H2/CO/CO2/CH4/H2O/N2 mixtures as the fuel feedstock. The error of the simulation results versus I-V experimental data is less than 1% in most cases, and it grows to a value of 8% only in one case, which is discussed in detail. Finally, we report model predictions of the current density distribution and temperature distribution in a bundle, the latter being a key aspect in view of the mechanical integrity of the IP-SOFC structure.

  14. Position control of a single pneumatic artificial muscle with hysteresis compensation based on modified Prandtl-Ishlinskii model. (United States)

    Zang, Xizhe; Liu, Yixiang; Heng, Shuai; Lin, Zhenkun; Zhao, Jie


    High-performance position control of pneumatic artificial muscles is limited by their inherent nonlinearity and hysteresis. This study aims to model the length/pressure hysteresis of a single pneumatic artificial muscle and to realize its accurate position tracking control with forward hysteresis compensation. The classical Prandtl-Ishlinskii model is widely used in hysteresis modelling and compensation. But it is only effective for symmetric hysteresis. Therefore, a modified Prandtl-Ishlinskii model is built to characterize the asymmetric length/pressure hysteresis of a single pneumatic artificial muscle, by replacing the classical play operators with two more flexible elementary operators to independently describe the ascending branch and descending branch of hysteresis loops. On the basis, a position tracking controller, which is composed of cascade forward hysteresis compensation and simple proportional pressure controller, is designed for the pneumatic artificial muscle. Experiment results show that the MPI model can reproduce the length/pressure hysteresis of the pneumatic artificial muscle, and the proposed controller for the pneumatic artificial muscle can track the reference position signals with high accuracy. By modelling the length/pressure hysteresis with the modified Prandtl-Ishlinskii model and using its inversion for compensation, precise position control of a single pneumatic artificial muscle is achieved.

  15. Comparing the photothermal effects of gold nanorods and single-walled carbon nanotubes in cancer models (United States)

    West, Connor L.; Hasanjee, Aamr M.; Young, Blake; Wolf, Roman; Silk, Kegan; Ingalls, Rianna; Zhou, Feifan; Chen, Wei R.


    Laser Immunotherapy (LIT) is an innovative cancer treatment modality that is specifically targeted towards treating late-stage, metastatic cancer. This treatment modality utilizes laser irradiation in combination with active immune system stimulation to induce a systemic anti-tumor immune response against metastatic cancer. Nanoparticles have recently been utilized to support and increase the photothermal effect of the laser irradiation by absorbing the light energy produced from the laser and converting that energy into thermal energy. In the past, single-walled carbon nanotubes (SWNTs) have been the main choice in nanotechnology, however, recent studies have shown that gold nanorods (AuNRs) are a prospective alternative that may produce photothermal effects similar to SWNTs. Due to the precedence of gold biomaterials currently having approval for use in various treatments for humans, AuNRs are regarded to be a safer option than SWNTs. The goal of this study is to precisely compare any differences in photothermal effects between AuNRs and SWNTs. Both types of nanoparticles were irradiated with the same wavelength of near-infrared light to ascertain the photothermal effects in gel phantom tumor models, aqueous solutions, and metastatic cancer cell cultures. We discerned from the results that the AuNRs could be equally or more effective than SWNTs in absorbing the light energy from the laser and converting it into thermal energy. In both solution and gel studies, AuNRs were shown to be more efficient than SWNTs in creating thermal energy, while in cell studies, no definitive differences between AuNRs and SWNTs were observed. The cytotoxicity of both nanoparticles needs further assessment in future studies. Given these results, AuNRs are comparable to SWNTs, even superior in certain aspects. This advances the opportunity to use AuNRs as replacements for SWNTs in LIT treatments. The results from this study will contribute to any subsequent studies in the development

  16. Interpretation of single and competitive adsorption of cadmium and zinc on activated carbon using monolayer and exclusive extended monolayer models. (United States)

    Sellaoui, Lotfi; Dotto, Guilherme L; Lamine, Abdelmottaleb Ben; Erto, Alessandro


    In this work, a modeling analysis based on experimental tests of cadmium/zinc adsorption, in both single-compound and binary systems, was carried out. All the experimental tests were conducted at constant pH (around neutrality) and temperature (20 °C). The experimental results showed that the zinc adsorption capacity was higher than that of cadmium and it does not depend on cadmium presence in binary system. Conversely, cadmium adsorption is affected by zinc presence. In order to provide good understanding of the adsorption process, two statistical physics models were proposed. A monolayer and exclusive extended monolayer models were applied to interpret the single-compound and binary adsorption isotherms of zinc and cadmium on activated carbon. Based on these models, the modeling analysis demonstrated that zinc is dominant in solution and more favorably adsorbed on activated carbon surface. For instance, in single-compound systems, the number of ions bound per each receptor site was n (Zn 2+ ) = 2.12 > n (Cd 2+ ) = 0.98. Thus, the receptor sites of activated carbon are more selective for Zn 2+ than for Cd 2+ . Moreover, the determination of adsorption energy through the adopted models confirmed that zinc is more favored for adsorption in single-compound system (adsorption energies equal to 12.12 and 7.12 kJ/mol for Zn and Cd, respectively) and its adsorption energy does not depend on the cadmium presence in binary system. Finally, the adsorption energy values suggested that single-compound and binary adsorption of zinc and cadmium is a physisorption.


    Directory of Open Access Journals (Sweden)



    Full Text Available This study aims examination of statistical properties of single index market model. Moreover, the fulfillment degree of basic assumptions related with the model is researched. Daily, weekly, and monthly logarithmic industry portfolio returns covering 2000-2012 period are used and ISE-100 index is chosen to represent the market portfolio. Main goals of this research are to investigate statistical significance of the sector betas, the accuracy of the model specification, ARCH effect, and autocorrelation and heteroscedasticity problems. It can be said that single index model based on daily return interval does not satisfy econometrical and statistical assumptions. Furthermore, it is observed that the fulfillment degree of basic assumptions increases as the return interval gets wider.

  18. 9 CFR 2.40 - Attending veterinarian and adequate veterinary care (dealers and exhibitors). (United States)


    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Attending veterinarian and adequate... HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE REGULATIONS Attending Veterinarian and Adequate Veterinary Care § 2.40 Attending veterinarian and adequate veterinary care (dealers and...

  19. A single sphere film boiling model for trigger ability and explosion potential

    International Nuclear Information System (INIS)

    Park, Ik Kyu; Kim, Jong Hwan; Hong, Seong Ho; Hong, Seong Wan


    using a single particle film boiling model, and this model was then adapted to various sized particles to evaluate the trigger ability and explosion potential more realistically

  20. Two Positive Periodic Solutions for a Neutral Delay Model of Single-Species Population Growth with Harvesting


    Fang, Hui


    By coincidence degree theory for k-set-contractive mapping, this paper establishes a new criterion for the existence of at least two positive periodic solutions for a neutral delay model of single-species population growth with harvesting. An example is given to illustrate the effectiveness of the result.

  1. Two Positive Periodic Solutions for a Neutral Delay Model of Single-Species Population Growth with Harvesting

    Directory of Open Access Journals (Sweden)

    Hui Fang


    Full Text Available By coincidence degree theory for k-set-contractive mapping, this paper establishes a new criterion for the existence of at least two positive periodic solutions for a neutral delay model of single-species population growth with harvesting. An example is given to illustrate the effectiveness of the result.

  2. Few-view single photon emission computed tomography (SPECT) reconstruction based on a blurred piecewise constant object model

    DEFF Research Database (Denmark)

    Wolf, Paul A.; Jørgensen, Jakob Sauer; Schmidt, Taly G.


    A sparsity-exploiting algorithm intended for few-view Single Photon Emission Computed Tomography (SPECT) reconstruction is proposed and characterized. The algorithm models the object as piecewise constant subject to a blurring operation. To validate that the algorithm closely approximates the true...

  3. Modelling single shot damage thresholds of multilayer optics for high-intensity short-wavelength radiation sources

    NARCIS (Netherlands)

    Loch, R.A.; Sobierajski, R.; Louis, Eric; Bosgra, J.; Bosgra, J.; Bijkerk, Frederik


    The single shot damage thresholds of multilayer optics for highintensity short-wavelength radiation sources are theoretically investigated, using a model developed on the basis of experimental data obtained at the FLASH and LCLS free electron lasers. We compare the radiation hardness of commonly

  4. Age-Related Parenting Education: Model Development and Application to an Emerging Family Constellation - Single-by-Choice Mothers. (United States)

    Holle, Kimberly Ann

    The purpose of this paper is twofold: (1) to describe an adaptation of the Schaefer Circumplex Model to age-related parenting theory and techniques, and (2) to illustrate its application in relation to the emerging numbers of single-by-choice mothers. The method described superimposes both a child's and a parent's cognitive and psychosocial…

  5. Low-Complexity Model Predictive Control of Single-Phase Three-Level Rectifiers with Unbalanced Load

    DEFF Research Database (Denmark)

    Ma, Junpeng; Song, Wensheng; Wang, Xiongfei


    The fluctuation of the neutral-point potential in single-phase three-level rectifiers leads to coupling between the line current regulation and dc-link voltage balancing, deteriorating the quality of line current. For addressing this issue, this paper proposes a low-complexity model predictive...

  6. Improving Genetic Evaluation of Litter Size Using a Single-step Model

    DEFF Research Database (Denmark)

    Guo, Xiangyu; Christensen, Ole Fredslund; Ostersen, Tage

    A recently developed single-step method allows genetic evaluation based on information from phenotypes, pedigree and markers simultaneously. This paper compared reliabilities of predicted breeding values obtained from single-step method and the traditional pedigree-based method for two litter size...... traits, total number of piglets born (TNB), and litter size at five days after birth (Ls 5) in Danish Landrace and Yorkshire pigs. The results showed that the single-step method combining phenotypic and genotypic information provided more accurate predictions than the pedigree-based method, not only...

  7. Excitons and trions in monolayer transition metal dichalcogenides: A comparative study between the multiband model and the quadratic single-band model (United States)

    Van der Donck, M.; Zarenia, M.; Peeters, F. M.


    The electronic and structural properties of excitons and trions in monolayer transition metal dichalcogenides are investigated using both a multiband and a single-band model. In the multiband model we construct the excitonic Hamiltonian in the product base of the single-particle states at the conduction and valence band edges. We decouple the corresponding energy eigenvalue equation and solve the resulting differential equation self-consistently, using the finite element method (FEM), to determine the energy eigenvalues and the wave functions. As a comparison, we also consider the simple single-band model which is often used in numerical studies. We solve the energy eigenvalue equation using the FEM as well as with the stochastic variational method (SVM) in which a variational wave function is expanded in a basis of a large number of correlated Gaussians. We find good agreement between the results of both methods, as well as with other theoretical works for excitons, and we also compare with available experimental data. For trions the agreement between both methods is not as good due to our neglect of angular correlations when using the FEM. Finally, when comparing the two models, we see that the presence of the valence bands in the mutiband model leads to differences with the single-band model when (interband) interactions are strong.

  8. Multilocus genetic models of handedness closely resemble single-locus models in explaining family data and are compatible with genome-wide association studies. (United States)

    McManus, I C; Davison, Angus; Armour, John A L


    Right- and left-handedness run in families, show greater concordance in monozygotic than dizygotic twins, and are well described by single-locus Mendelian models. Here we summarize a large genome-wide association study (GWAS) that finds no significant associations with handedness and is consistent with a meta-analysis of GWASs. The GWAS had 99% power to detect a single locus using the conventional criterion of P < 5 × 10(-8) for the single locus models of McManus and Annett. The strong conclusion is that handedness is not controlled by a single genetic locus. A consideration of the genetic architecture of height, primary ciliary dyskinesia, and intelligence suggests that handedness inheritance can be explained by a multilocus variant of the McManus DC model, classical effects on family and twins being barely distinguishable from the single locus model. Based on the ENGAGE meta-analysis of GWASs, we estimate at least 40 loci are involved in determining handedness. © 2013 New York Academy of Sciences.

  9. Modeling Single Occupant Vehicle Behavior in High-Occupancy Toll (HOT) Facilities (United States)


    High-occupancy toll (HOT) lanes are in operation, under construction, and planned for in several major metropolitan areas. The premise behind HOT lanes is to allow single occupant vehicles (SOVs) to access high occupancy vehicle (HOV) lanes (and theo...

  10. Model for Estimation of Thermal History Produced by a Single Pass Underwater Wet Weld

    National Research Council Canada - National Science Library

    Dill, Jay


    Thermal history calculations for single pass underwater wet weldments were made by solving the appropriate beat transfer equations using the three-dimensional Crank-Nicholson finite difference method...

  11. Background Error Covariance Estimation Using Information from a Single Model Trajectory with Application to Ocean Data Assimilation (United States)

    Keppenne, Christian L.; Rienecker, Michele; Kovach, Robin M.; Vernieres, Guillaume


    An attractive property of ensemble data assimilation methods is that they provide flow dependent background error covariance estimates which can be used to update fields of observed variables as well as fields of unobserved model variables. Two methods to estimate background error covariances are introduced which share the above property with ensemble data assimilation methods but do not involve the integration of multiple model trajectories. Instead, all the necessary covariance information is obtained from a single model integration. The Space Adaptive Forecast error Estimation (SAFE) algorithm estimates error covariances from the spatial distribution of model variables within a single state vector. The Flow Adaptive error Statistics from a Time series (FAST) method constructs an ensemble sampled from a moving window along a model trajectory.SAFE and FAST are applied to the assimilation of Argo temperature profiles into version 4.1 of the Modular Ocean Model (MOM4.1) coupled to the GEOS-5 atmospheric model and to the CICE sea ice model. The results are validated against unassimilated Argo salinity data. They show that SAFE and FAST are competitive with the ensemble optimal interpolation (EnOI) used by the Global Modeling and Assimilation Office (GMAO) to produce its ocean analysis. Because of their reduced cost, SAFE and FAST hold promise for high-resolution data assimilation applications.

  12. Marrow toxicity of fractionated vs. single dose total body irradiation is identical in a canine model

    International Nuclear Information System (INIS)

    Storb, R.; Raff, R.F.; Graham, T.; Appelbaum, F.R.; Deeg, H.J.; Schuening, F.G.; Shulman, H.; Pepe, M.


    The authors explored in dogs the marrow toxicity of single dose total body irradiation delivered from two opposing 60 Co sources at a rate of 10 cGy/min and compared results to those seen with total body irradiation administered in 100 cGy fractions with minimum interfraction intervals of 6 hr. Dogs were not given marrow transplants. They found that 200 cGy single dose total body irradiation was sublethal, with 12 of 13 dogs showing hematopoietic recovery and survival. Seven of 21 dogs given 300 cGy single dose total body irradiation survived compared to 6 of 10 dogs given 300 cGy fractionated total body irradiation. One of 28 dogs given 400 cGy single dose total body irradiation survived compared to none of six given fractionated radiation. With granulocyte colony stimulating factor (GCSF) administered from day 0-21 after 400 cGy total body irradiation, most dogs survived with hematological recovery. Because of the almost uniform success with GCSF after 400 cGy single dose total body irradiation, a study of GCSF after 400 cGy fractionated total body irradiation was deemed not to be informative and, thus, not carried out. Additional comparisons between single dose and fractionated total body irradiation were carried out with GCSF administered after 500 and 600 cGy of total body irradiation. As with lower doses of total body irradiation, no significant survival differences were seen between the two modes of total body irradiation, and only 3 of 26 dogs studied survived with complete hematological recovery. Overall, therefore, survival among dogs given single dose total body irradiation was not different from that of dogs given fractionated total body irradiation (p = .67). Similarly, the slopes of the postirradiation declines of granulocyte and platelet counts and the rates of their recovery in surviving dogs given equal total doses of single versus fractionated total body irradiation were indistinguishable. 24 refs., 3 figs., 2 tabs

  13. Mechanical behavior of ultra-fine grained and nanocrystalline metals and single crystals: Experiments, modeling and simulations (United States)

    Liu, Jian

    Ultra-fine grained (ufg, 100 nm viscoplastic phenomenological Khan--Liang--Farrokh (KLF) model is used to correlate the experimental results of the ufg/nc Ti. Crystal Plasticity Finite Element Method (CPFEM) with three different single crystal plasticity constitutive models is used for the purpose of incorporating strain rate and temperature effects into CPFEM. The classical and two newly developed single crystal plasticity models are used to simulate the deformation responses of single crystal aluminum. A constitutive model based on intragranular dislocation slip is shown to correlate closely to the stain rate effect and latent hardening behavior of single crystal Al. For ufg/nc face-centered cubic (FCC) material, we assume that dislocation slip is still the most important deformation mechanism while there is no interaction between dislocations within grains. We develop a constitutive model based on dislocation glide within ufg/nc grains and include all stages of dislocation activities especially their interactions with GB. An Arrhenius type rate is established based on the thermal activated depinning of dislocations from GB obstacles. The thermal strength is obtained as a function of the activation energy of the GB obstacles and the activation length. The athermal part includes the strength due to the grain size dependence and the strength due to the dislocation density. The model parameters for two ufg/nc materials are determined by comparing experimental results to the one dimensional (1D) flow stress model using a Taylor's factor. The new constitutive model is incorporated into three dimensional crystal plasticity and the crystal plasticity model is implemented into a UMAT subroutine of ABAQUS finite element program. The uniaxial deformation responses of two ufg/nc materials are simulated using the previously determined model parameters. CPFEM simulations give flow stress predictions that are very close to 1D model correlations/predictions. It is a clear

  14. Facilitating model reconstruction for single-particle scattering using small-angle X-ray scattering methods. (United States)

    Ma, Shufen; Liu, Haiguang


    X-ray free-electron lasers generate intense femtosecond X-ray pulses, so that high-resolution structure determination becomes feasible from noncrystalline samples, such as single particles or single molecules. At the moment, the orientation of sample particles cannot be precisely controlled, and consequently the unknown orientation needs to be recovered using computational algorithms. This delays the model reconstruction until all the scattering patterns have been re-oriented, which often entails a long elapse of time and until the completion of the experiment. The scattering patterns from single particles or multiple particles can be summed to form a virtual powder diffraction pattern, and the low-resolution region, corresponding to the small-angle X-ray scattering (SAXS) regime, can be analysed using existing SAXS methods. This work presents a pipeline that converts single-particle data sets into SAXS data, from which real-time model reconstruction is achieved using the model retrieval approach implemented in the software package SASTBX [Liu, Hexemer & Zwart (2012). J. Appl. Cryst. 45 , 587-593]. To illustrate the applications, two case studies are presented with real experimental data sets collected at the Linac Coherent Light Source.

  15. Analysis of free-surface flows through energy considerations: Single-phase versus two-phase modeling. (United States)

    Marrone, Salvatore; Colagrossi, Andrea; Di Mascio, Andrea; Le Touzé, David


    The study of energetic free-surface flows is challenging because of the large range of interface scales involved due to multiple fragmentations and reconnections of the air-water interface with the formation of drops and bubbles. Because of their complexity the investigation of such phenomena through numerical simulation largely increased during recent years. Actually, in the last decades different numerical models have been developed to study these flows, especially in the context of particle methods. In the latter a single-phase approximation is usually adopted to reduce the computational costs and the model complexity. While it is well known that the role of air largely affects the local flow evolution, it is still not clear whether this single-phase approximation is able to predict global flow features like the evolution of the global mechanical energy dissipation. The present work is dedicated to this topic through the study of a selected problem simulated with both single-phase and two-phase models. It is shown that, interestingly, even though flow evolutions are different, energy evolutions can be similar when including or not the presence of air. This is remarkable since, in the problem considered, with the two-phase model about half of the energy is lost in the air phase while in the one-phase model the energy is mainly dissipated by cavity collapses.

  16. Empirical modeling of single-wake advection and expansion using full-scale pulsed lidar-based measurements

    DEFF Research Database (Denmark)

    Machefaux, Ewan; Larsen, Gunner Chr.; Troldborg, Niels


    and to obtain an estimate of the wake expansion in a fixed frame of reference. A comparison shows good agreement between the measured average expansion and the Computational Fluid Dynamics (CFD) large eddy simulation–actuator line computations. Frandsen’s expansion model seems to predict the wake expansion......In the present paper, single-wake dynamics have been studied both experimentally and numerically. The use of pulsed lidar measurements allows for validation of basic dynamic wake meandering modeling assumptions. Wake center tracking is used to estimate the wake advection velocity experimentally...... fairly well in the far wake but lacks accuracy in the outer region of the near wake. An empirical relationship, relating maximum wake induction and wake advection velocity, is derived and linked to the characteristics of a spherical vortex structure. Furthermore, a new empirical model for single...


    Jiang, Fei; Ma, Yanyuan; Wang, Yuanjia

    We propose a generalized partially linear functional single index risk score model for repeatedly measured outcomes where the index itself is a function of time. We fuse the nonparametric kernel method and regression spline method, and modify the generalized estimating equation to facilitate estimation and inference. We use local smoothing kernel to estimate the unspecified coefficient functions of time, and use B-splines to estimate the unspecified function of the single index component. The covariance structure is taken into account via a working model, which provides valid estimation and inference procedure whether or not it captures the true covariance. The estimation method is applicable to both continuous and discrete outcomes. We derive large sample properties of the estimation procedure and show different convergence rate of each component of the model. The asymptotic properties when the kernel and regression spline methods are combined in a nested fashion has not been studied prior to this work even in the independent data case.

  18. A model for high temperature creep of single crystal superalloys based on nonlocal damage and viscoplastic material behavior (United States)

    Trinh, B. T.; Hackl, K.


    A model for high temperature creep of single crystal superalloys is developed, which includes constitutive laws for nonlocal damage and viscoplasticity. It is based on a variational formulation, employing potentials for free energy, and dissipation originating from plasticity and damage. Evolution equations for plastic strain and damage variables are derived from the well-established minimum principle for the dissipation potential. The model is capable of describing the different stages of creep in a unified way. Plastic deformation in superalloys incorporates the evolution of dislocation densities of the different phases present. It results in a time dependence of the creep rate in primary and secondary creep. Tertiary creep is taken into account by introducing local and nonlocal damage. Herein, the nonlocal one is included in order to model strain localization as well as to remove mesh dependence of finite element calculations. Numerical results and comparisons with experimental data of the single crystal superalloy LEK94 are shown.

  19. When ab ≠ c - c': published errors in the reports of single-mediator models. (United States)

    Petrocelli, John V; Clarkson, Joshua J; Whitmire, Melanie B; Moon, Paul E


    Accurate reports of mediation analyses are critical to the assessment of inferences related to causality, since these inferences are consequential for both the evaluation of previous research (e.g., meta-analyses) and the progression of future research. However, upon reexamination, approximately 15% of published articles in psychology contain at least one incorrect statistical conclusion (Bakker & Wicherts, Behavior research methods, 43, 666-678 2011), disparities that beget the question of inaccuracy in mediation reports. To quantify this question of inaccuracy, articles reporting standard use of single-mediator models in three high-impact journals in personality and social psychology during 2011 were examined. More than 24% of the 156 models coded failed an equivalence test (i.e., ab = c - c'), suggesting that one or more regression coefficients in mediation analyses are frequently misreported. The authors cite common sources of errors, provide recommendations for enhanced accuracy in reports of single-mediator models, and discuss implications for alternative methods.

  20. Stress Distribution in Single Dental Implant System: Three-Dimensional Finite Element Analysis Based on an In Vitro Experimental Model. (United States)

    Rezende, Carlos Eduardo Edwards; Chase-Diaz, Melody; Costa, Max Doria; Albarracin, Max Laurent; Paschoeto, Gabriela; Sousa, Edson Antonio Capello; Rubo, José Henrique; Borges, Ana Flávia Sanches


    This study aimed to analyze the stress distribution in single implant system and to evaluate the compatibility of an in vitro model with finite element (FE) model. The in vitro model consisted of Brånemark implant; multiunit set abutment of 5 mm height; metal-ceramic screw-retained crown, and polyurethane simulating the bone. Deformations were recorded in the peri-implant region in the mesial and distal aspects, after an axial 300 N load application at the center of the occlusal aspect of the crown, using strain gauges. This in vitro model was scanned with micro CT to design a three-dimensional FE model and the strains in the peri-implant bone region were registered to check the compatibility between both models. The FE model was used to evaluate stress distribution in different parts of the system. The values obtained from the in vitro model (20-587 με) and the finite element analysis (81-588 με) showed agreement among them. The highest stresses because of axial and oblique load, respectively were 5.83 and 40 MPa for the cortical bone, 55 and 1200 MPa for the implant, and 80 and 470 MPa for the abutment screw. The FE method proved to be effective for evaluating the deformation around single implant. Oblique loads lead to higher stress concentrations.

  1. Nonlocal superelastic model of size-dependent hardening and dissipation in single crystal Cu-Al-Ni shape memory alloys. (United States)

    Qiao, Lei; Rimoli, Julian J; Chen, Ying; Schuh, Christopher A; Radovitzky, Raul


    We propose a nonlocal continuum model to describe the size-dependent superelastic effect observed in recent experiments of single crystal Cu-Al-Ni shape memory alloys. The model introduces two length scales, one in the free energy and one in the dissipation, which account for the size-dependent hardening and dissipation in the loading and unloading response of micro- and nanopillars subject to compression tests. The information provided by the model suggests that the size dependence observed in the dissipation is likely to be associated with a nonuniform evolution of the distribution of the austenitic and martensitic phases during the loading cycle. © 2011 American Physical Society

  2. Analyzing System on A Chip Single Event Upset Responses using Single Event Upset Data, Classical Reliability Models, and Space Environment Data (United States)

    Berg, Melanie; LaBel, Kenneth; Campola, Michael; Xapsos, Michael


    We are investigating the application of classical reliability performance metrics combined with standard single event upset (SEU) analysis data. We expect to relate SEU behavior to system performance requirements. Our proposed methodology will provide better prediction of SEU responses in harsh radiation environments with confidence metrics. single event upset (SEU), single event effect (SEE), field programmable gate array devises (FPGAs)

  3. Kinetic Modeling of ABCG2 Transporter Heterogeneity: A Quantitative, Single-Cell Analysis of the Side Population Assay.

    Directory of Open Access Journals (Sweden)

    Adam F Prasanphanich


    Full Text Available The side population (SP assay, a technique used in cancer and stem cell research, assesses the activity of ABC transporters on Hoechst staining in the presence and absence of transporter inhibition, identifying SP and non-SP cell (NSP subpopulations by differential staining intensity. The interpretation of the assay is complicated because the transporter-mediated mechanisms fail to account for cell-to-cell variability within a population or adequately control the direct role of transporter activity on staining intensity. We hypothesized that differences in dye kinetics at the single-cell level, such as ABCG2 transporter-mediated efflux and DNA binding, are responsible for the differential cell staining that demarcates SP/NSP identity. We report changes in A549 phenotype during time in culture and with TGFβ treatment that correlate with SP size. Clonal expansion of individually sorted cells re-established both SP and NSPs, indicating that SP membership is dynamic. To assess the validity of a purely kinetics-based interpretation of SP/NSP identity, we developed a computational approach that simulated cell staining within a heterogeneous cell population; this exercise allowed for the direct inference of the role of transporter activity and inhibition on cell staining. Our simulated SP assay yielded appropriate SP responses for kinetic scenarios in which high transporter activity existed in a portion of the cells and little differential staining occurred in the majority of the population. With our approach for single-cell analysis, we observed SP and NSP cells at both ends of a transporter activity continuum, demonstrating that features of transporter activity as well as DNA content are determinants of SP/NSP identity.

  4. Kinetic Modeling of ABCG2 Transporter Heterogeneity: A Quantitative, Single-Cell Analysis of the Side Population Assay (United States)

    Prasanphanich, Adam F.; White, Douglas E.; Gran, Margaret A.


    The side population (SP) assay, a technique used in cancer and stem cell research, assesses the activity of ABC transporters on Hoechst staining in the presence and absence of transporter inhibition, identifying SP and non-SP cell (NSP) subpopulations by differential staining intensity. The interpretation of the assay is complicated because the transporter-mediated mechanisms fail to account for cell-to-cell variability within a population or adequately control the direct role of transporter activity on staining intensity. We hypothesized that differences in dye kinetics at the single-cell level, such as ABCG2 transporter-mediated efflux and DNA binding, are responsible for the differential cell staining that demarcates SP/NSP identity. We report changes in A549 phenotype during time in culture and with TGFβ treatment that correlate with SP size. Clonal expansion of individually sorted cells re-established both SP and NSPs, indicating that SP membership is dynamic. To assess the validity of a purely kinetics-based interpretation of SP/NSP identity, we developed a computational approach that simulated cell staining within a heterogeneous cell population; this exercise allowed for the direct inference of the role of transporter activity and inhibition on cell staining. Our simulated SP assay yielded appropriate SP responses for kinetic scenarios in which high transporter activity existed in a portion of the cells and little differential staining occurred in the majority of the population. With our approach for single-cell analysis, we observed SP and NSP cells at both ends of a transporter activity continuum, demonstrating that features of transporter activity as well as DNA content are determinants of SP/NSP identity. PMID:27851764

  5. Modeling multi-component transport and enhanced anaerobic dechlorination processes in a single fracture-clay matrix system

    DEFF Research Database (Denmark)

    Chambon, Julie Claire Claudia; Broholm, Mette Martina; Binning, Philip John


    Clayey tills contaminated with chlorinated solvents are a threat to groundwater and are difficult to remediate. A numerical model is developed for assessing leaching processes and for simulating the remediation via enhanced anaerobic dechlorination. The model simulates the transport...... of a contaminant in a single fracture-clay matrix system coupled with a reactive model for anaerobic dechlorination. The model takes into account microbially driven anaerobic dechlorination, where sequential Monod kinetics with competitive inhibition is used to model the reaction rates, and degradation...... to the physical processes, mainly diffusion in the matrix, than to the biogeochemical processes, when dechlorination is assumed to take place in a limited reaction zone only. The inclusion of sequential dechlorination in clay fracture transport models is crucial, as the contaminant flux to the aquifer...

  6. A review of single-sample-based models and other approaches for radiocarbon dating of dissolved inorganic carbon in groundwater (United States)

    Han, L. F; Plummer, Niel


    Numerous methods have been proposed to estimate the pre-nuclear-detonation 14C content of dissolved inorganic carbon (DIC) recharged to groundwater that has been corrected/adjusted for geochemical processes in the absence of radioactive decay (14C0) - a quantity that is essential for estimation of radiocarbon age of DIC in groundwater. The models/approaches most commonly used are grouped as follows: (1) single-sample-based models, (2) a statistical approach based on the observed (curved) relationship between 14C and δ13C data for the aquifer, and (3) the geochemical mass-balance approach that constructs adjustment models accounting for all the geochemical reactions known to occur along a groundwater flow path. This review discusses first the geochemical processes behind each of the single-sample-based models, followed by discussions of the statistical approach and the geochemical mass-balance approach. Finally, the applications, advantages and limitations of the three groups of models/approaches are discussed.The single-sample-based models constitute the prevailing use of 14C data in hydrogeology and hydrological studies. This is in part because the models are applied to an individual water sample to estimate the 14C age, therefore the measurement data are easily available. These models have been shown to provide realistic radiocarbon ages in many studies. However, they usually are limited to simple carbonate aquifers and selection of model may have significant effects on 14C0 often resulting in a wide range of estimates of 14C ages.Of the single-sample-based models, four are recommended for the estimation of 14C0 of DIC in groundwater: Pearson's model, (Ingerson and Pearson, 1964; Pearson and White, 1967), Han & Plummer's model (Han and Plummer, 2013), the IAEA model (Gonfiantini, 1972; Salem et al., 1980), and Oeschger's model (Geyh, 2000). These four models include all processes considered in single-sample-based models, and can be used in different ranges of

  7. Single-particle properties of N = 12 to N = 20 silicon isotopes within the dispersive optical model (United States)

    Bespalova, O. V.; Ermakova, T. A.; Klimochkina, A. A.; Spasskaya, T. I.


    Experimental neutron and proton single-particle energies in N = 12 to N = 20 silicon isotopes and data on neutron and proton scattering by nuclei of the isotope 28Si are analyzed on the basis of the dispersive optical model. Good agreement with available experimental data was attained. The occupation probabilities calculated for the single-particle states in question suggest a parallel-type filling of the 1 d and 2 s 1/2 neutron states in the isotopes 26,28,30,32,34Si. The single-particle spectra being considered are indicative of the closure of the Z = 14 proton subshell in the isotopes 30,32,34Si and the N = 20 neutron shell.

  8. Empirical model for matching spectrophotometric reflectance of yarn windings and multispectral imaging reflectance of single strands of yarns. (United States)

    Luo, Lin; Shen, Hui-Liang; Shao, Si-Jie; Xin, John


    The state-of-the-art multispectral imaging system can directly acquire the reflectance of a single strand of yarn that is impossible for traditional spectrophotometers. Instead, the spectrophotometric reflectance of a yarn winding, which is constituted by yarns wound on a background card, is regarded as the yarn reflectance in textile. While multispectral imaging systems and spectrophotometers can be separately used to acquire the reflectance of a single strand of yarn and corresponding yarn winding, the quantitative relationship between them is not yet known. In this paper, the relationship is established based on models that describe the spectral response of a spectrophotometer to a yarn winding and that of a multispectral imaging system to a single strand of yarn. The reflectance matching function from a single strand of yarn to corresponding yarn winding is derived to be a second degree polynomial function, which coefficients are the solutions of a constrained nonlinear optimization problem. Experiments on 100 pairs of samples show that the proposed approach can reduce the color difference between yarn windings and single strands of yarns from 2.449 to 1.082 CIEDE2000 units. The coefficients of the optimal reflection matching function imply that the reflectance of a yarn winding measured by a spectrophotometer consists of not only the intrinsic reflectance of yarn but also the nonignorable interreflection component between yarns.

  9. A Model for Improving the Health and Quality of Life of Single ...

    African Journals Online (AJOL)

    AJRH Managing Editor

    their contraceptive use, increased their degree of literacy, increased their individual incomes, and were more positively perceived by their communities. This study ... single mothers and their children in similar communities throughout the world. (Afr J Reprod Health 2013; 17[4]: .... Parents with drug addictions. 3rd priority to:.

  10. On modeling of geometrically necessary dislocation densities in plastically deformed single crystals

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Kysar, Jeffrey W.


    A computational method for strain gradient single crystal plasticity is presented. The method accounts for both recoverable and dissipative gradient effects. The mathematical solution procedure is predicated on two minimum principles along the lines of those devised by Fleck and Willis (2009) for...

  11. A two-step model for senescence triggered by a single critically short telomere

    DEFF Research Database (Denmark)

    Abdallah, Pauline; Luciano, Pierre; Runge, Kurt W


    Telomeres protect chromosome ends from fusion and degradation. In the absence of a specific telomere elongation mechanism, their DNA shortens progressively with every round of replication, leading to replicative senescence. Here, we show that telomerase-deficient cells bearing a single, very shor...

  12. Modeling single-file diffusion with step fractional Brownian motion and a generalized fractional Langevin equation

    International Nuclear Information System (INIS)

    Lim, S C; Teo, L P


    Single-file diffusion behaves as normal diffusion at small time and as subdiffusion at large time. These properties can be described in terms of fractional Brownian motion with variable Hurst exponent or multifractional Brownian motion. We introduce a new stochastic process called Riemann–Liouville step fractional Brownian motion which can be regarded as a special case of multifractional Brownian motion with a step function type of Hurst exponent tailored for single-file diffusion. Such a step fractional Brownian motion can be obtained as a solution of the fractional Langevin equation with zero damping. Various kinds of fractional Langevin equations and their generalizations are then considered in order to decide whether their solutions provide the correct description of the long and short time behaviors of single-file diffusion. The cases where the dissipative memory kernel is a Dirac delta function, a power-law function and a combination of these functions are studied in detail. In addition to the case where the short time behavior of single-file diffusion behaves as normal diffusion, we also consider the possibility of a process that begins as ballistic motion

  13. Modeling single-file diffusion with step fractional Brownian motion and a generalized fractional Langevin equation (United States)

    Lim, S. C.; Teo, L. P.


    Single-file diffusion behaves as normal diffusion at small time and as subdiffusion at large time. These properties can be described in terms of fractional Brownian motion with variable Hurst exponent or multifractional Brownian motion. We introduce a new stochastic process called Riemann-Liouville step fractional Brownian motion which can be regarded as a special case of multifractional Brownian motion with a step function type of Hurst exponent tailored for single-file diffusion. Such a step fractional Brownian motion can be obtained as a solution of the fractional Langevin equation with zero damping. Various kinds of fractional Langevin equations and their generalizations are then considered in order to decide whether their solutions provide the correct description of the long and short time behaviors of single-file diffusion. The cases where the dissipative memory kernel is a Dirac delta function, a power-law function and a combination of these functions are studied in detail. In addition to the case where the short time behavior of single-file diffusion behaves as normal diffusion, we also consider the possibility of a process that begins as ballistic motion.

  14. Deformed single-particle levels in the boson-fermion model

    International Nuclear Information System (INIS)

    Leviatan, A.; Shao, B.


    Deformed single-particle levels are derived from a boson-fermion Hamiltonian in which the odd fermion occupies several j orbits. The geometric-oriented approach applied to 169 Tm clarified the role of algebraic interactions and provides an intuitive interpretation and guidance to numerical calculations in deformed nuclei

  15. Deformed single-particle levels in the boson-fermion model

    Energy Technology Data Exchange (ETDEWEB)

    Leviatan, A.; Shao, B. (Center for Theoretical Physics, Sloane Laboratory, Yale University, New Haven, Connecticut 06511 (US) Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (US))


    Deformed single-particle levels are derived from a boson-fermion Hamiltonian in which the odd fermion occupies several {ital j} orbits. The geometric-oriented approach applied to {sup 169}Tm clarified the role of algebraic interactions and provides an intuitive interpretation and guidance to numerical calculations in deformed nuclei.

  16. Temporal aspects of user experience : Models and methods beyond a single use situation

    NARCIS (Netherlands)

    Kujala, S.; Minge, M.; Pohlmeyer, A.E.; Vogel, M.


    User Experience (UX) is an ongoing process and should not be limited to a single use situation. However, this is unfortunately often the case in HCI research. The goal of this workshop is to deepen and expand available knowledge with respect to temporal dynamics of UX. Relevant aspects will be the

  17. Assembling three-dimensional nanostructures on metal surfaces with a reversible vertical single-atom manipulation: A theoretical modeling

    International Nuclear Information System (INIS)

    Yang Tianxing; Ye Xiang; Huang Lei; Xie Yiqun; Ke Sanhuang


    Highlights: ► We simulate the reversible vertical single-atom manipulations on several metal surfaces. ► We propose a method to predict whether a reversible vertical single-atom manipulation can be successful on several metal surfaces. ► A 3-dimensional Ni nanocluster is assembled on the Ni(1 1 1) surface using a Ni trimer-apex tip. - Abstract: We propose a theoretical model to show that pulling up an adatom from an atomic step requires a weaker force than from the flat surfaces of Al(0 0 1), Ni(1 1 1), Pt(1 1 0) and Au(1 1 0). Single adatom in the atomic step can be extracted vertically by a trimer-apex tip while can be released to the flat surface. This reversible vertical manipulation can then be used to fabricate a supported three-dimensional (3D) nanostructure on the Ni(1 1 1) surface. The present modeling can be used to predict whether the reversible vertical single-atom manipulation and thus the assembling of 3D nanostructures can be achieved on a metal surface.

  18. A review of parameter estimation used in solar photovoltaic system for a single diode model (United States)

    Sabudin, Siti Nurashiken Md; Jamil, Norazaliza Mohd; Rosli, Norhayati


    With increased demand for theoretical solar energy, the mathematical modelling of the solar photovoltaic (PV) system has gained importance. Numerous mathematical models have been developed for different purposes. In this paper, we briefly review the progress made in the mathematical modelling of solar photovoltaic (PV) system over the last twenty years. First, a general classification of these models is made. Then, the basic characteristics of the models along with the objectives and different parameters considered in modelling are discussed. The assumptions and approximations made also parameter estimation method in solving the models are summarized. This may facilitate the mathematicians to adopt better understanding of the modelling strategies and further to develop suitable models in this direction relevant to the present scenario.

  19. A simple rainfall-runoff model for the single and long term hydrological performance of green roofs

    DEFF Research Database (Denmark)

    Locatelli, Luca; Mark, Ole; Mikkelsen, Peter Steen

    Green roofs are being widely implemented for storm water control and runoff reduction. There is need for incorporating green roofs into urban drainage models in order to evaluate their impact. These models must have low computational costs and fine time resolution. This paper aims to develop...... a model of green roof hydrological performance. A simple conceptual model for the long term and single event hydrological performance of green roofs, shows to be capable of reproducing observed runoff measurements. The model has surface and subsurface storage components representing the overall retention...... capacity of the green roof. The runoff from the system is described by the non-linear reservoir method and the storage capacity of the green roof is continuously re-established by evapotranspiration. Runoff data from a green roof in Denmark are collected and used for parameter calibration....

  20. Testing a Poisson counter model for visual identification of briefly presented, mutually confusable single stimuli in pure accuracy tasks. (United States)

    Kyllingsbæk, Søren; Markussen, Bo; Bundesen, Claus


    The authors propose and test a simple model of the time course of visual identification of briefly presented, mutually confusable single stimuli in pure accuracy tasks. The model implies that during stimulus analysis, tentative categorizations that stimulus i belongs to category j are made at a constant Poisson rate, v(i, j). The analysis is continued until the stimulus disappears, and the overt response is based on the categorization made the greatest number of times. The model was evaluated by Monte Carlo tests of goodness of fit against observed probability distributions of responses in two extensive experiments and also by quantifications of the information loss of the model compared with the observed data by use of information theoretic measures. The model provided a close fit to individual data on identification of digits and an apparently perfect fit to data on identification of Landolt rings.