WorldWideScience

Sample records for single mode waveguides

  1. Coupled-Mode Theory derivation of the formal equivalence between a three-mode waveguide and a set of three mutually coupled single-mode waveguides

    Directory of Open Access Journals (Sweden)

    Boucher Yann G.

    2017-01-01

    Full Text Available The formal identification between a two-mode waveguide and a system of two mutually coupled single-mode waveguides stems from the symmetries of the evolution operator. When the gap tends to zero, the super-modes of the coupled system merge continuously into the modes of the multimode waveguide. For modelling purposes, it is very tempting to extend the analogy to three-mode waveguides (and beyond. But not without some precautions…

  2. Single-mode optical-waveguide fiber coupler.

    Science.gov (United States)

    Noda, J; Mikami, O; Minakata, M; Fukuma, M

    1978-07-01

    A single-mode fiber coupler to the Ti diffused LiNbO(3) strip waveguide has been devised. The influences of three axial displacements and two angular misalignments on the coupling efficiency have been investigated at 6328-A wavelength. The coupler has a special feature wherein coupling degradation caused by fiber displacement after connection can be recovered to the initial state. The total optical insertion loss is 3 dB after fixing the fiber to the LiNbO(3) strip waveguide, which is 4 microm wide and 8 mm long.

  3. Zero-mode waveguide nanophotonic structures for single molecule characterization

    Science.gov (United States)

    Crouch, Garrison M.; Han, Donghoon; Bohn, Paul W.

    2018-05-01

    Single-molecule characterization has become a crucial research tool in the chemical and life sciences, but limitations, such as limited concentration range, inability to control molecular distributions in space, and intrinsic phenomena, such as photobleaching, present significant challenges. Recent developments in non-classical optics and nanophotonics offer promising routes to mitigating these restrictions, such that even low affinity (K D ~ mM) biomolecular interactions can be studied. Here we introduce and review specific nanophotonic devices used to support single molecule studies. Optical nanostructures, such as zero-mode waveguides (ZMWs), are usually fabricated in thin gold or aluminum films and serve to confine the observation volume of optical microspectroscopy to attoliter to zeptoliter volumes. These simple nanostructures allow individual molecules to be isolated for optical and electrochemical analysis, even when the molecules of interest are present at high concentration (µM–mM) in bulk solution. Arrays of ZMWs may be combined with optical probes such as single molecule fluorescence, single molecule fluorescence resonance energy transfer, and fluorescence correlation spectroscopy for distributed analysis of large numbers of single-molecule reactions or binding events in parallel. Furthermore, ZMWs may be used as multifunctional devices, for example by combining optical and electrochemical functions in a single discrete architecture to achieve electrochemical ZMWs. In this review, we will describe the optical properties, fabrication, and applications of ZMWs for single-molecule studies, as well as the integration of ZMWs into systems for chemical and biochemical analysis.

  4. Attenuation Coefficient of Single-Mode Periodic Waveguides

    Science.gov (United States)

    Baron, A.; Mazoyer, S.; Smigaj, W.; Lalanne, P.

    2011-10-01

    It is widely accepted that, on ensemble average, the transmission T of guided modes decays exponentially with the waveguide length L due to small imperfections, leading to the important figure of merit defined as the attenuation-rate coefficient α=-⟨ln⁡(T)⟩/L. In this Letter, we evidence that the exponential-damping law is not valid in general for periodic monomode waveguides, especially as the group velocity decreases. This result, that contradicts common beliefs and experimental practices aiming at measuring α, is supported by a theoretical study of light transport in the limit of very small imperfections, and by numerical results obtained for two waveguide geometries that offer contrasted damping behaviors.

  5. Transverse single-mode edge-emitting lasers based on coupled waveguides.

    Science.gov (United States)

    Gordeev, Nikita Yu; Payusov, Alexey S; Shernyakov, Yuri M; Mintairov, Sergey A; Kalyuzhnyy, Nikolay A; Kulagina, Marina M; Maximov, Mikhail V

    2015-05-01

    We report on the transverse single-mode emission from InGaAs/GaAs quantum well edge-emitting lasers with broadened waveguide. The lasers are based on coupled large optical cavity (CLOC) structures where high-order vertical modes of the broad active waveguide are suppressed due to their resonant tunneling into a coupled single-mode passive waveguide. The CLOC lasers have shown stable Gaussian-shaped vertical far-field profiles with a reduced divergence of ∼22° FWHM (full width at half-maximum) in CW (continuous-wave) operation.

  6. Manipulating single second mode transparency in a corrugated waveguide via the thickness of sputtered gold

    International Nuclear Information System (INIS)

    Xu, Dan; Fan, Ya-Xian; Sang, Tang-Qing; Xu, Lan-Lan; Bibi, Aysha; Tao, Zhi-Yong

    2016-01-01

    We propose a classical analog of electromagnetically induced transparency in a cylindrical waveguide with undulated metallic walls. The transparency, induced by multi-mode interactions in waveguides, not only has a narrow line-width, but also consists of a single second-order transverse mode, which corresponds to the Bessel function distributions investigated extensively due to their unique characteristics. By increasing the thickness of sputtered gold layers of the waveguide, we demonstrate a frequency-agile single mode transparency phenomenon in a terahertz radiation. It is found that the center frequency of the transparency is linearly related to the gold thickness, indicating the achievement of a controllable single mode terahertz device. The field distributions at the cross-sections of outlets verify the single second mode transparency and indicate the mechanism of its frequency manipulation, which will significantly benefit the mode-control engineering in terahertz applications. - Highlights: • An analog of electromagnetically induced transparency in terahertz tubes is proposed. • A single second transverse mode of Bessel distributions is observed in the pass band. • The operating frequency can be linearly controlled by the sputtered gold thickness. • We can effectively manipulate the slow down factor of light by the gold thickness. • The transparency characteristics rely on the transition of multi-mode interactions.

  7. Manipulating single second mode transparency in a corrugated waveguide via the thickness of sputtered gold

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Dan [Key Lab of In-fiber Integrated Optics, Ministry of Education of China, Harbin Engineering University, Harbin 150001 (China); Photonics Research Center, College of Science, Harbin Engineering University, Harbin 150001 (China); Fan, Ya-Xian, E-mail: yxfan@hrbeu.edu.cn [Key Lab of In-fiber Integrated Optics, Ministry of Education of China, Harbin Engineering University, Harbin 150001 (China); Photonics Research Center, College of Science, Harbin Engineering University, Harbin 150001 (China); Sang, Tang-Qing; Xu, Lan-Lan; Bibi, Aysha [Key Lab of In-fiber Integrated Optics, Ministry of Education of China, Harbin Engineering University, Harbin 150001 (China); Photonics Research Center, College of Science, Harbin Engineering University, Harbin 150001 (China); Tao, Zhi-Yong, E-mail: zytao@hrbeu.edu.cn [Key Lab of In-fiber Integrated Optics, Ministry of Education of China, Harbin Engineering University, Harbin 150001 (China); Photonics Research Center, College of Science, Harbin Engineering University, Harbin 150001 (China)

    2016-03-11

    We propose a classical analog of electromagnetically induced transparency in a cylindrical waveguide with undulated metallic walls. The transparency, induced by multi-mode interactions in waveguides, not only has a narrow line-width, but also consists of a single second-order transverse mode, which corresponds to the Bessel function distributions investigated extensively due to their unique characteristics. By increasing the thickness of sputtered gold layers of the waveguide, we demonstrate a frequency-agile single mode transparency phenomenon in a terahertz radiation. It is found that the center frequency of the transparency is linearly related to the gold thickness, indicating the achievement of a controllable single mode terahertz device. The field distributions at the cross-sections of outlets verify the single second mode transparency and indicate the mechanism of its frequency manipulation, which will significantly benefit the mode-control engineering in terahertz applications. - Highlights: • An analog of electromagnetically induced transparency in terahertz tubes is proposed. • A single second transverse mode of Bessel distributions is observed in the pass band. • The operating frequency can be linearly controlled by the sputtered gold thickness. • We can effectively manipulate the slow down factor of light by the gold thickness. • The transparency characteristics rely on the transition of multi-mode interactions.

  8. Single-Mode to Multi-Mode Crossover in Thin-Load Polymethyl Methacrylate Plasmonic Waveguides

    DEFF Research Database (Denmark)

    Großmann, Malte; Thomaschewski, Martin; Klick, Alwin

    2018-01-01

    Mode character and mode dispersion of sub-60-nm-thick polymethyl methacrylate dielectric-loaded surface plasmon-polariton waveguides (DLSPPWs) are investigated using photoemission electron microscopy and finite element method simulations. Experiment and simulation show excellent agreement and all...

  9. Single-transverse-mode Ti:sapphire rib waveguide laser

    NARCIS (Netherlands)

    Grivas, C.; Shepherd, D.P.; May-Smith, T.C.; Eason, R.W.; Pollnau, Markus

    2005-01-01

    Laser operation of Ti:sapphire rib waveguides fabricated using photolithography and ion beam etching in pulsed laser deposited layers is reported. Polarized laser emission was observed at 792.5 nm with an absorbed pump power threshold of 265 mW, which is more than a factor of 2 lower in comparison

  10. Cantilever-based sensor with integrated optical read-out using single mode waveguides

    DEFF Research Database (Denmark)

    Nordström, Maria; Zauner, Dan; Calleja, Montserrat

    2007-01-01

    surface. Here, we present a novel integrated optical read-out scheme based on single-mode waveguides that enables the fabrication of a compact system. The complete system is fabricated in the polymer SU-8. This manuscript shows the principle of operation and the design well as the fabrication...

  11. Single-mode waveguides with SU-8 polymer core and cladding for MOEMS applications

    DEFF Research Database (Denmark)

    Nordström, Maria; Zauner, Dan; Boisen, Anja

    2007-01-01

    Fabrication and optical characterization of singlemode polymeric embedded waveguides are performed. A specific material combination (SU-8 2005 as core and the modified SU-8 mr-L 6050XP as cladding) is chosen in order to obtain a small refractive index difference for single-mode propagation combin...

  12. Enhancement of single mode operation in coaxial optical waveguide using DB boundary conditions

    Science.gov (United States)

    Lohia, Pooja; Prajapati, Y.; Saini, J. P.; Rai, B. S.

    2014-11-01

    In this study, a competent numerical strategy to compute the dispersion of optical waveguides is presented and propagation of electromagnetic waves in a coaxial optical waveguide with DB boundary conditions is instigated. For this intend, cylindrical coordinates are here being used to derive the DB boundary conditions and to obtain field components for the modes. The propagation constant for the waveguide to be studied is determined by solving the Bessel and the modified Bessel functions. The cutoff frequencies for various lower order modes have been calculated and their dispersion characteristics are plotted correspondingly. The behavior of the coaxial optical waveguide under DB boundary conditions is shown to be significantly different from that of coaxial optical waveguide and conventional optical waveguide under traditional or tangential boundary conditions. Finally, the effect of waveguide dimensions on the mode cutoff frequencies and fabrication issues are also addressed.

  13. Principal modes in multimode waveguides.

    Science.gov (United States)

    Fan, Shanhui; Kahn, Joseph M

    2005-01-15

    We generalize the concept of principal states of polarization and prove the existence of principal modes in multimode waveguides. Principal modes do not suffer from modal dispersion to first order of frequency variation and form orthogonal bases at both the input and the output ends of the waveguide. We show that principal modes are generally different from eigenmodes, even in uniform waveguides, unlike the special case of a single-mode fiber with uniform birefringence. The difference is most pronounced when different eigenmodes possess similar group velocities and when their field patterns vary as a function of frequency. This work may provide a new basis for analysis and control of dispersion in multimode fiber systems.

  14. Toward photostable multiplex analyte detection on a single mode planar optical waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Mukundan, Harshini [Los Alamos National Laboratory; Xei, Hongshi [Los Alamos National Laboratory; Anderson, Aaron S [Los Alamos National Laboratory; Grace, Wynne K [Los Alamos National Laboratory; Martinez, Jennifer S [NON LANL; Swanson, Basil [Los Alamos National Laboratory

    2009-01-01

    We have developed a waveguide-based optical biosensor for the sensitive and specific detection of biomarkers associated with disease. Our technology combines the superior optical properties of single-mode planar waveguides, the robust nature of functionalized self-assembled monolayer sensing films and the specificity of fluorescence sandwich immunoassays to detect biomarkers in complex biological samples such as serum, urine and sputum. We have previously reported the adaptation of our technology to the detection of biomarkers associated with breast cancer and anthrax. However, these approaches primarily used phospholipid bilayers as the functional film and organic dyes (ex: AlexaFluors) as the fluorescence reporter. Organic dyes are easily photodegraded and are not amenable to multiplexing because of their narrow Stokes' shift. Here we have developed strategies for conjugation of the detector antibodies with quantum dots for use in a multiplex detection platform. We have previously evaluated dihydroxylipoic acid quantum dots for the detection of a breast cancer biomarker. In this manuscript, we investigate the detection of the Bacillus anthracis protective antigen using antibodies conjugated with polymer-coated quantum dots. Kinetics of binding on the waveguide-based biosensor is reported. We compare the sensitivity of quantum dot labeled antibodies to those labeled with AlexaFluor and demonstrate the photostability of the former in our assay platform. In addition, we compare sulfydryl labeling of the antibody in the hinge region to that of nonspecific amine labeling. This is but the first step in developing a multiplex assay for such biomarkers on our waveguide platform.

  15. Investigation of the state of polarization of light in a single-mode fiber waveguide

    Science.gov (United States)

    Kozel, S. M.; Kreopalov, V. I.; Listvin, V. N.; Glavatskikh, N. A.

    1983-01-01

    An analysis is made of the polarization anisotropy of a single-mode fiber with a twisted elliptic core. The Jones matrix is obtained and the complex function of the state of polarization of light in a fiber is investigated. The results are reported of measurements of the linear and circular birefringence of a borosilicate single-mode glass fiber.

  16. Characteristics of the Single-Longitudinal-Mode Planar-Waveguide External Cavity Diode Laser at 1064 nm

    Science.gov (United States)

    Numata, Kenji; Alalusi, Mazin; Stolpner, Lew; Margaritis, Georgios; Camp, Jordan; Krainak, Michael

    2014-01-01

    We describe the characteristics of the planar-waveguide external cavity diode laser (PW-ECL). To the best of our knowledge, it is the first butterfly-packaged 1064 nm semiconductor laser that is stable enough to be locked to an external frequency reference. We evaluated its performance from the viewpoint of precision experiments. Using a hyperfine absorption line of iodine, we suppressed its frequency noise by a factor of up to 104 at 10 mHz. The PWECL's compactness and low cost make it a candidate to replace traditional Nd:YAG nonplanar ring oscillators and fiber lasers in applications that require a single longitudinal mode.

  17. Differential modal delay measurements in a graded-index multimode fibre waveguide, using a single-mode fibre pro mode selection

    International Nuclear Information System (INIS)

    Sunak, H.R.D.; Soares, S.M.

    1981-01-01

    Differential model delay (DMD) measurements in graded-index multimode optical fibre waveguides, which are very promising for many types of communication system were carried out. These DMD measurements give a direct indication of the deviation of the refractive index profile, from the optimum value, at a given wavelength. For the first time, by using a single-mode fibre, a few guided modes in the graded-index fibre were selected, in two different ways: launching a few modes at the input end or selecting a few modes at the output end. By doing so important features of propagation in the fibre were revealed, especially the intermodal coupling that may exist. The importance of this determination of intermodal coupling or mode mixing, particularly when many fibres are joined together in a link, and the merits of DMD measurements in general and their importance for the production of high bandwidth graded-index fibres are discussed. (Author) [pt

  18. Single-Mode Propagation in Optical Waveguides and Fibres: A Critical Review of its Treatment in Physics Textbooks

    Science.gov (United States)

    Ruddock, Ivan S.

    2009-01-01

    The derivation and description of the modes in optical waveguides and fibres are reviewed. The version frequently found in undergraduate textbooks is shown to be incorrect and misleading due to the assumption of an axial ray of light corresponding to the lowest order mode. It is pointed out that even the lowest order must still be represented in…

  19. Waveguides having patterned, flattened modes

    Science.gov (United States)

    Messerly, Michael J.; Pax, Paul H.; Dawson, Jay W.

    2015-10-27

    Field-flattening strands may be added to and arbitrarily positioned within a field-flattening shell to create a waveguide that supports a patterned, flattened mode. Patterning does not alter the effective index or flattened nature of the mode, but does alter the characteristics of other modes. Compared to a telecom fiber, a hexagonal pattern of strands allows for a three-fold increase in the flattened mode's area without reducing the separation between its effective index and that of its bend-coupled mode. Hexagonal strand and shell elements prove to be a reasonable approximation, and, thus, to be of practical benefit vis-a-vis fabrication, to those of circular cross section. Patterned flattened modes offer a new and valuable path to power scaling.

  20. Performance of Ar+-milled Ti:Sapphire rib waveguides as single transverse-mode broadband fluorescence sources

    NARCIS (Netherlands)

    Grivas, C.; Shepherd, D.P.; May-Smith, T.C.; Eason, R.W.; Pollnau, Markus; Crunteanu, A.; Jelinek, M.

    2003-01-01

    Rib waveguides have been fabricated in pulsed-laser-deposited Ti:sapphire layers using photolithographic patterning and subsequent Ar+-beam milling. Fluorescence output powers up to 300 W have been observed from the ribs following excitation by a 3-W multiline argon laser. Mode intensity profiles

  1. Mode control and mode conversion in nonlinear aluminum nitride waveguides.

    Science.gov (United States)

    Stegmaier, Matthias; Pernice, Wolfram H P

    2013-11-04

    While single-mode waveguides are commonly used in integrated photonic circuits, emerging applications in nonlinear and quantum optics rely fundamentally on interactions between modes of different order. Here we propose several methods to evaluate the modal composition of both externally and device-internally excited guided waves and discuss a technique for efficient excitation of arbitrary modes. The applicability of these methods is verified in photonic circuits based on aluminum nitride. We control modal excitation through suitably engineered grating couplers and are able to perform a detailed study of waveguide-internal second harmonic generation. Efficient and broadband power conversion between orthogonal polarizations is realized within an asymmetric directional coupler to demonstrate selective excitation of arbitrary higher-order modes. Our approach holds promise for applications in nonlinear optics and frequency up/down-mixing in a chipscale framework.

  2. Numerical analysis of mode conversion in coaxial waveguide components

    International Nuclear Information System (INIS)

    Hoechtl, O.

    1994-02-01

    An existing scattering matrix code for circular waveguides has been modified to include coaxial geometries. Starting with the analytical description by means of eigenwaves the mode coupling at a single waveguide step has been determined. The coupling between circular-circular, coaxial-coaxial and circular-coaxial waveguides is investigated. By using the scattering matrix formulation it is possible to combine several waveguide discontinuities which allows the approximation of a continuous radius variation. The work concludes with the application to some problems. In particular the mode purity of coaxial waveguide tapers, planned to be installed in gyrotrons with coaxial resonators, has been studied. In addition a converter between the TEM- and the TM 0,1 -mode has been optimized and the results have been compared to measurement. (orig./HP) [de

  3. Controlling guided modes in plasmonic metal/dielectric multilayer waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Wickremasinghe, N.; Wang, X.; Wagner, H. P. [Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221 (United States); Thompson, J. [Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221 (United States); Department of Physics, Xavier University, Cincinnati, Ohio 45207 (United States); Schmitzer, H. [Department of Physics, Xavier University, Cincinnati, Ohio 45207 (United States)

    2015-06-07

    We investigate the mode properties of planar dielectric aluminum-quinoline (Alq{sub 3}) multilayer waveguides comprising one single or three equally spaced embedded nanometer-thin (∼10 nm thick) Alq{sub 3}-Mg{sub 0.9}:Ag{sub 0.1} composite metal-island layers. The plasmonic waveguides were fabricated by organic molecular beam deposition. Transverse magnetic (TM) and transverse electric (TE) modes were selectively excited using the m-line method. The symmetric plasmonic TM{sub 0} mode was launched in all waveguides and—in addition—two higher order plasmonic TM{sub 1} and TM{sub 2} modes were generated in waveguides comprising three metal layers. Other TM modes have hybrid dielectric-plasmonic characters, showing an increased effective refractive index when one electric field antinode is close to a metallic layer. TM modes which have all their antinode(s) in the dielectric layers propagate essentially like dielectric modes. TE modes with antinode(s) at the position of the metal layer(s) are strongly damped while the losses are low for TE modes comprising a node at the position of the composite metal film(s). The possibility to control the effective refractive index and the losses for individual hybrid plasmonic-dielectric TM and dielectric TE modes opens new design opportunities for mode selective waveguides and TM-TE mode couplers.

  4. Elastic Modes of an Anisotropic Ridge Waveguide

    Directory of Open Access Journals (Sweden)

    Ameya Galinde

    2012-01-01

    Full Text Available A semi-analytical method for finding the elastic modes propagating along the edge of an anisotropic semi-infinite plate is presented. Solutions are constructed as linear combinations of a finite number of the corresponding infinite plate modes with the constraint that they decay in the direction perpendicular to the edge and collectively satisfy the free boundary condition over the edge surface. Such modes that are confined to the edge can be used to approximate solutions of acoustic ridge waveguides whose supporting structures are sufficiently far away from the free edge. The semi-infinite plate or ridge is allowed to be oriented arbitrarily in the anisotropic crystal. Modifications to the theory to find symmetric and antisymmetric solutions for special crystal orientations are also presented. Accuracy of the solutions can be improved by including more plate modes in the series. Numerical techniques to find modal dispersion relations and orientation dependent modal behavior, are discussed. Results for ridges etched in single crystal Silicon are found to be in good agreement with Finite Element simulations. It is found that variations in modal phase velocity with respect to crystal orientation are not significant, suggesting that anisotropy may not be a critical issue while designing ridge waveguides in Silicon.

  5. Diverse and controllable excitations of coupled modes of unidirectional air waveguides

    Science.gov (United States)

    Kong, Xiang-kun; Fang, Yun-tuan

    2016-09-01

    In order to obtain the waveguide of multiple functionalities, we design a coupled system of two unidirectional air waveguides and find it is a system of multiple modes through band calculations. Through numerical simulations, we also find that the mode excitation is dependent on the position of the source. With the same frequency the line source can excite either the even mode or the odd modes in one single waveguide or two waveguide just by changing the positions of the source. Such a system provides us the way to control the excitation of mode and obtain the waveguide modes with special applications.

  6. Guided modes in silicene-based waveguides

    Science.gov (United States)

    Yu, Mengzhuo; He, Ying; Yang, Yanfang; Zhang, Huifang

    2018-02-01

    Silicene is a new Dirac-type electron system similar to graphene. A monolayer silicene sheet forms a quantum well induced by an electrostatic potential, which acts as an electron waveguide. The guided modes in the silicene waveguide have been investigated. Electron waves can propagate in the silicene-based waveguide in the cases of Klein tunneling and classical motion. The behavior of the wave function depends on the spin and valley indices. The amplitude of the electron wave function in the silicene waveguide can be controlled by the external electric field. These phenomena may be helpful for the potential applications of silicene-based electronic devices.

  7. BRIEF COMMUNICATIONS: Investigation of the state of polarization of light in a single-mode fiber waveguide

    Science.gov (United States)

    Kozel, S. M.; Kreopalov, V. I.; Listvin, V. N.; Glavatskikh, N. A.

    1983-01-01

    An analysis is made of the polarization anisotropy of a single-mode fiber with a twisted elliptic core. The Jones matrix is obtained and the complex function of the state of polarization of light in a fiber is investigated. The results are reported of measurements of the linear and circular birefringence of a borosilicate single-mode glass fiber.

  8. Sub-wavelength grating mode transformers in silicon slab waveguides.

    Science.gov (United States)

    Bock, Przemek J; Cheben, Pavel; Schmid, Jens H; Delâge, André; Xu, Dan-Xia; Janz, Siegfried; Hall, Trevor J

    2009-10-12

    We report on several new types of sub-wavelength grating (SWG) gradient index structures for efficient mode coupling in high index contrast slab waveguides. Using a SWG, an adiabatic transition is achieved at the interface between silicon-on-insulator waveguides of different geometries. The SWG transition region minimizes both fundamental mode mismatch loss and coupling to higher order modes. By creating the gradient effective index region in the direction of propagation, we demonstrate that efficient vertical mode transformation can be achieved between slab waveguides of different core thickness. The structures which we propose can be fabricated by a single etch step. Using 3D finite-difference time-domain simulations we study the loss, polarization dependence and the higher order mode excitation for two types (triangular and triangular-transverse) of SWG transition regions between silicon-on-insulator slab waveguides of different core thicknesses. We demonstrate two solutions to reduce the polarization dependent loss of these structures. Finally, we propose an implementation of SWG structures to reduce loss and higher order mode excitation between a slab waveguide and a phase array of an array waveguide grating (AWG). Compared to a conventional AWG, the loss is reduced from -1.4 dB to < -0.2 dB at the slab-array interface.

  9. Guided modes of elliptical metamaterial waveguides

    International Nuclear Information System (INIS)

    Halterman, Klaus; Feng, Simin; Overfelt, P. L.

    2007-01-01

    The propagation of guided electromagnetic waves in open elliptical metamaterial waveguide structures is investigated. The waveguide contains a negative-index media core, where the permittivity ε and permeability μ are negative over a given bandwidth. The allowed mode spectrum for these structures is numerically calculated by solving a dispersion relation that is expressed in terms of Mathieu functions. By probing certain regions of parameter space, we find the possibility exists to have extremely localized waves that transmit along the surface of the waveguide

  10. Circular waveguide bifurcation for asymmetric modes

    Science.gov (United States)

    Schilling, H. W.; Collin, R. E.

    1984-12-01

    An analytical solution for a circular waveguide bifurcation with incident TE(11)- and TM(11)-modes is presented using the residue calculus method. It is shown how the coupling between the TE(1n)- and TM(1n)-modes can be taken into account by expressing the coupling factor as a contour integral, which is the key step enabling the residue calculus method to be applied. Graphical results for the scattering matrix parameters of the junction are given for a range of waveguide radii of interest in the design of dual-mode coaxial prime focus feeds for paraboloidal antennas.

  11. Broadband single-transverse-mode fluorescence sources based on ribs fabricated in pulsed laser deposited Ti: sapphire waveguides

    NARCIS (Netherlands)

    Grivas, C.; May-Smith, T.C.; Shepherd, D.P.; Eason, R.W.; Pollnau, Markus; Jelinek, M.

    2004-01-01

    Active rib waveguides with depths and widths varying from 3 to 5 μm and from 9 to 24 μm, respectively, have been structured by $Ar^{+}$-beam etching in pulsed laser deposited Ti:sapphire layers. Losses in the channel structures were essentially at the same levels as the unstructured planar waveguide

  12. Performance of Ar.sup.+./sup.-milled Ti:sapphire rib waveguides as single transverse-mode broadband fluorescence sources

    Czech Academy of Sciences Publication Activity Database

    Grivas, Ch.; Shepherd, D. P.; May-Smith, T. C.; Eason, R. W.; Pollnau, M.; Crunteanu, A.; Jelínek, Miroslav

    2003-01-01

    Roč. 39, č. 3 (2003), s. 501-507 ISSN 0018-9197 Institutional research plan: CEZ:AV0Z1010921 Keywords : laser deposition * waveguides * thin films * Ti:sapphire * waveguide laser Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.716, year: 2003

  13. Damage, refractive index and near-field intensity profiles in a single-mode waveguide of LiNbO3 by 400 keV He ion implantation

    Science.gov (United States)

    Zhang, S. M.; Liu, X. H.; Qin, X. F.; Wang, K. M.; Liu, X.

    2010-11-01

    We report on a single-mode waveguide in lithium niobate produced by 400 keV He ion implantation with a dose of 3 × 1016 ions cm-2 at liquid nitrogen temperature. Rutherford backscattering/channelling spectra have been measured in the waveguide before and after annealing and the damage profile has been extracted. The shape of the measured damage profile is similar to that of the ordinary refractive index by the intensity calculation method. The near-field intensity profile in a ridge waveguide is given and the propagation loss for the extraordinary index is estimated to be 1.9 dB cm-1.

  14. The LHC Beam Pipe Waveguide Mode Reflectometer

    CERN Document Server

    Kroyer, T; Caspers, Friedhelm; Sulek, Z; Williams, L R

    2007-01-01

    The waveguide-mode reflectometer for obstacle detection in the LHC beam pipe has been intensively used for more than 18 months. The â€ワAssembly” version is based on the synthetic pulse method using a modern vector network analyzer. It has mode selective excitation couplers for the first TE and TM mode and uses a specially developed waveguide mode dispersion compensation algorithm with external software. In addition there is a similar â€ワIn Situ” version of the reflectometer which uses permanently installed microwave couplers at the end of each of the nearly 3 km long LHC arcs. During installation a considerable number of unexpected objects have been found in the beam pipes and subsequently removed. Operational statistics and lessons learned are presented and the overall performance is discussed.

  15. Forerunning mode transition in a continuous waveguide

    OpenAIRE

    Slepyan, Leonid; Ayzenberg-Stepanenko, Mark; Mishuris, Gennady

    2014-01-01

    We have discovered a new, forerunning mode transition as the periodic transition wave propagating in a uniform continuous waveguide. The latter is represented by an elastic beam separating from the elastic foundation under the action of sinusoidal waves. The critical displacement is the separation criterion. We show that the steady-state separation mode, where the separation front speed is independent of the wave amplitude, exists only in a bounded speed-dependent range of the wave amplitude....

  16. Implementation of single-photon quantum routing and decoupling using a nitrogen-vacancy center and a whispering-gallery-mode resonator-waveguide system.

    Science.gov (United States)

    Cao, Cong; Duan, Yu-Wen; Chen, Xi; Zhang, Ru; Wang, Tie-Jun; Wang, Chuan

    2017-07-24

    Quantum router is a key element needed for the construction of future complex quantum networks. However, quantum routing with photons, and its inverse, quantum decoupling, are difficult to implement as photons do not interact, or interact very weakly in nonlinear media. In this paper, we investigate the possibility of implementing photonic quantum routing based on effects in cavity quantum electrodynamics, and present a scheme for single-photon quantum routing controlled by the other photon using a hybrid system consisting of a single nitrogen-vacancy (NV) center coupled with a whispering-gallery-mode resonator-waveguide structure. Different from the cases in which classical information is used to control the path of quantum signals, both the control and signal photons are quantum in our implementation. Compared with the probabilistic quantum routing protocols based on linear optics, our scheme is deterministic and also scalable to multiple photons. We also present a scheme for single-photon quantum decoupling from an initial state with polarization and spatial-mode encoding, which can implement an inverse operation to the quantum routing. We discuss the feasibility of our schemes by considering current or near-future techniques, and show that both the schemes can operate effectively in the bad-cavity regime. We believe that the schemes could be key building blocks for future complex quantum networks and large-scale quantum information processing.

  17. Broadband single-transverse-mode fluorescence sources based on ribs fabricated in pulsed laser deposited T:sapphire waveguides

    Czech Academy of Sciences Publication Activity Database

    Grivas, Ch.; May-Smith, T. C.; Shepherd, D. P.; Pollnau, M.; Jelínek, Miroslav

    2004-01-01

    Roč. 79, - (2004), s. 1195-1198 ISSN 0947-8396 Institutional research plan: CEZ:AV0Z1010914 Keywords : Ti:sapphire * waveguides * fluorescence * PLD Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.452, year: 2004

  18. Performance of Ar + - milled Ti:sapphire rib waveguides as single transverse-mode broadband fluorescence sources

    Czech Academy of Sciences Publication Activity Database

    Grivas, Ch.; Shepherd, D. P.; May-Smith, T.; Eason, R. W.; Pollnau, M.; Crunteanu, A.; Jelínek, Miroslav

    2003-01-01

    Roč. 39, č. 3 (2003), s. 501-507 ISSN 0018-9197 Grant - others:EPSRC(GB) GR/R74154 Institutional research plan: CEZ:AV0Z1010914 Keywords : ion beam applications * laser ablation -lithogrphy * loss measurement * optical tomography * rib waveguides Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.716, year: 2003

  19. Coaxial waveguide mode reconstruction and analysis with THz digital holography.

    Science.gov (United States)

    Wang, Xinke; Xiong, Wei; Sun, Wenfeng; Zhang, Yan

    2012-03-26

    Terahertz (THz) digital holography is employed to investigate the properties of waveguides. By using a THz digital holographic imaging system, the propagation modes of a metallic coaxial waveguide are measured and the mode patterns are restored with the inverse Fresnel diffraction algorithm. The experimental results show that the THz propagation mode inside the waveguide is a combination of four modes TE₁₁, TE₁₂, TM₁₁, and TM₁₂, which are in good agreement with the simulation results. In this work, THz digital holography presents its strong potential as a platform for waveguide mode charactering. The experimental findings provide a valuable reference for the design of THz waveguides.

  20. Fabrication of sucrose biosensor based on single mode planar optical waveguide using co-immobilized plant invertase and GOD.

    Science.gov (United States)

    Bagal, Dipali S; Vijayan, Anu; Aiyer, R C; Karekar, R N; Karve, M S

    2007-06-15

    In present studies, the new optical sensing platform based on optical planar waveguide (OPWG) for sucrose estimation was reported. An evanescent-wave biosensor was designed by using novel agarose-guar gum (AG) biopolymer composite sol-gel with entrapped enzymes (acid invertase (INV) and glucose oxidase (GOD)). Partially purified watermelon invertase isolated from Citrullus vulgaris fruit (specific activity 832 units mg(-1)) in combination with GOD was physically entrapped in AG sol-gel and cladded on the surface of optical planar waveguide. Na(+)-K(+) ion-exchanged glass optical waveguides were prepared and employed for the fabrication of sucrose biosensor. By addressing the enzyme modified waveguide structure with, the optogeometric properties of adsorbed enzyme layer (12 microm) at the sensor solid-liquid interface were studied. The OPWG sensor with short response time (110 s) was characterized using the 0.2M acetate buffer, pH 5.5. The fabricated sucrose sensor showed concentration dependent linear response in the range 1 x 10(-10) to 1 x 10(-6)M of sucrose. Lower limit of detection of this novel AG-INV-GOD cladded OPWG sensor was found to be 2.5 x 10(-11)M sucrose, which indicates that the developed biosensor has higher sensitivity towards sucrose as compared to earlier reported sensors using various transducer systems. Biochips when stored at room temperature, showed high stability for 81 days with 80% retention of original sensitivity. These sucrose sensing biochips showed good operational efficiency for 10 cycles. The proper confinement of acid invertase and glucose oxidase in hydrogel composite was confirmed by scanning electron microscopy (SEM) images. The constructed OPWG sensor is versatile, easy to fabricate and can be used for sucrose measurements with very high sensitivity.

  1. Single-mode optical fibres

    CERN Document Server

    Cancellieri, G

    1991-01-01

    This book describes signal propagation in single-mode optical fibres for telecommunication applications. Such description is based on the analysis of field propagation, considering waveguide properties and also some of the particular characteristics of the material fibre. The book covers such recent advances as, coherent transmissions; optical amplification; MIR fibres; polarization maintaining; polarization diversity and photon counting.

  2. Optical Splitters Based on Self-Imaging Effect in Multi-Mode Waveguide Made by Ion Exchange in Glass

    OpenAIRE

    Barkman, O.; Jerabek, V.; Prajzler, V.

    2013-01-01

    Design and modeling of single mode optical multi-mode interference structures with graded refractive index is reported. Several samples of planar optical channel waveguides were obtained by Ag+Na+ and K+Na+ one step thermal ion exchange process in molten salt on GIL49 glass substrate and new special optical glass for ion exchange technology. Waveguide properties were measured by optical mode spectroscopy. Obtained data were used for further design and modeling of single mode channel waveguide...

  3. Narrow ridge waveguide high power single mode 1.3-μm InAs/InGaAs ten-layer quantum dot lasers

    Directory of Open Access Journals (Sweden)

    Cao Q

    2007-01-01

    Full Text Available AbstractTen-layer InAs/In0.15Ga0.85As quantum dot (QD laser structures have been grown using molecular beam epitaxy (MBE on GaAs (001 substrate. Using the pulsed anodic oxidation technique, narrow (2 μm ridge waveguide (RWG InAs QD lasers have been fabricated. Under continuous wave operation, the InAs QD laser (2 × 2,000 μm2 delivered total output power of up to 272.6 mW at 10 °C at 1.3 μm. Under pulsed operation, where the device heating is greatly minimized, the InAs QD laser (2 × 2,000 μm2 delivered extremely high output power (both facets of up to 1.22 W at 20 °C, at high external differential quantum efficiency of 96%. Far field pattern measurement of the 2-μm RWG InAs QD lasers showed single lateral mode operation.

  4. Optical vortex propagation in few-mode rectangular polymer waveguides

    DEFF Research Database (Denmark)

    Lyubopytov, Vladimir S.; Chipouline, Arkadi; Zywietz, Urs

    2017-01-01

    We demonstrate that rectangular few-mode dielectric waveguides, fabricated with standard lithographic technique, can support on-chip propagation of optical vortices. We show that specific superpositions of waveguide eigenmodes form quasi-degenerate modes carrying light with high purity states of ...... of orbital angular momentum....

  5. Optical waveguide mode control by nanoslit-enhanced terahertz field

    DEFF Research Database (Denmark)

    Novitsky, Andrey; Zalkovskij, Maksim; Malureanu, Radu

    2012-01-01

    In this Letter we propose a scheme providing control over an optical waveguide mode by a terahertz (THz) wave. The scheme is based on an optimization of the overlap between the optical waveguide mode and the THz field, with the THz field strength enhanced by the presence of a metallic nanoslit...

  6. Active composite waveguides with a suppressed competition of optical modes

    International Nuclear Information System (INIS)

    Vysotskii, D V; Elkin, N N; Napartovich, A P

    2008-01-01

    The possibilities of separating the fundamental optical mode in composite waveguides by selecting the structure of amplifying regions are analysed. Conditions are presented under which the fundamental mode preserves the highest gain at any saturation. (letters)

  7. Single transverse mode protein laser

    Science.gov (United States)

    Dogru, Itir Bakis; Min, Kyungtaek; Umar, Muhammad; Bahmani Jalali, Houman; Begar, Efe; Conkar, Deniz; Firat Karalar, Elif Nur; Kim, Sunghwan; Nizamoglu, Sedat

    2017-12-01

    Here, we report a single transverse mode distributed feedback (DFB) protein laser. The gain medium that is composed of enhanced green fluorescent protein in a silk fibroin matrix yields a waveguiding gain layer on a DFB resonator. The thin TiO2 layer on the quartz grating improves optical feedback due to the increased effective refractive index. The protein laser shows a single transverse mode lasing at the wavelength of 520 nm with the threshold level of 92.1 μJ/ mm2.

  8. General coupled mode theory in non-Hermitian waveguides.

    Science.gov (United States)

    Xu, Jing; Chen, Yuntian

    2015-08-24

    In the presence of loss and gain, the coupled mode equation on describing the mode hybridization of various waveguides or cavities, or cavities coupled to waveguides becomes intrinsically non-Hermitian. In such non-Hermitian waveguides, the standard coupled mode theory fails. We generalize the coupled mode theory with a properly defined inner product based on reaction conservation. We apply our theory to the non-Hermitian parity-time symmetric waveguides, and obtain excellent agreement with results obtained by finite element fullwave simulations. The theory presented here is typically formulated in space to study coupling between waveguides, which can be transformed into time domain by proper reformulation to study coupling between non-Hermitian resonators. Our theory has the strength of studying non-Hermitian optical systems with inclusion of the full vector fields, thus is useful to study and design non-Hermitian devices that support asymmetric and even nonreciprocal light propagations.

  9. Optical Splitters Based on Self-Imaging Effect in Multi-Mode Waveguide Made by Ion Exchange in Glass

    Directory of Open Access Journals (Sweden)

    O. Barkman

    2013-04-01

    Full Text Available Design and modeling of single mode optical multi-mode interference structures with graded refractive index is reported. Several samples of planar optical channel waveguides were obtained by Ag+, Na+ and K+, Na+ one step thermal ion exchange process in molten salt on GIL49 glass substrate and new special optical glass for ion exchange technology. Waveguide properties were measured by optical mode spectroscopy. Obtained data were used for further design and modeling of single mode channel waveguide and subsequently for the design of 1 to 3 multimode interference power splitter in order to improve simulation accuracy. Designs were developed by utilizing finite difference beam propagation method.

  10. Corrugated Waveguide Mode Content Analysis Using Irradiance Moments.

    Science.gov (United States)

    Jawla, Sudheer K; Shapiro, Michael A; Idei, Hiroshi; Temkin, Richard J

    2014-10-21

    We present a novel, relatively simple method for determining the mode content of the linearly polarized modes of a corrugated waveguide using the moments of the intensity pattern of the field radiated from the end of the waveguide. This irradiance moment method is based on calculating the low-order irradiance moments, using measured intensity profiles only, of the radiated field from the waveguide aperture. Unlike the phase retrieval method, this method does not use or determine the phase distribution at the waveguide aperture. The new method was benchmarked numerically by comparison with sample mode mixtures. The results predict less than ±0.7% error bar in the retrieval of the mode content. The method was also tested using high-resolution experimental data from beams radiated from 63.5 mm and 19 mm corrugated waveguides at 170 and 250 GHz, respectively. The results showed a very good agreement of the mode content retrieved using the irradiance moment method versus the phase retrieval technique. The irradiance moment method is most suitable for cases where the modal power is primarily in the fundamental HE 11 mode, with <8% of the power in high-order modes.

  11. Unified Scattering Parameters formalism in terms of Coupled-Mode Theory for investigating hybrid single-mode/two-mode photonic interconnects

    Directory of Open Access Journals (Sweden)

    Boucher Yann G.

    2017-01-01

    Full Text Available In terms of Linear Algebra, a directional coupler between a single-mode waveguide and a two-mode waveguide can be thought of as formally equivalent to a set of three mutually coupled single-mode waveguides. Its responses, easily derived in the frame of ternary Coupled-Mode Theory, are used to establish analytically the scattering parameters of a hybrid ring-based modal multiplexer.

  12. All-solid-state cavity QED using Anderson-localized modes in disordered photonic crystal waveguides

    DEFF Research Database (Denmark)

    Lodahl, Peter; Sapienza, Luca; Nielsen, Henri Thyrrestrup

    2010-01-01

    We employ Anderson-localized modes in deliberately disordered photonic crystal waveguides to confine light and enhance the interaction with matter. A 15-fold enhancement of the decay rate of a single quantum dot is observed meaning that 94% of the emitted single photons are coupled to an Anderson...

  13. Mode composition of radiation from waveguide gas lasers

    Energy Technology Data Exchange (ETDEWEB)

    Il' in, A.V.; Kozel, S.M.

    1979-06-01

    Calculations are made of the mode composition of radiation emerging from a waveguide laser. Allowance is made for all types of resonator losses and also for a spatially inhomogeneous distribution of the population inversion. Using a two-mode model, it is shown that a transverse inhomogeneity of the inversion results in efficient filtering of higher-order modes even in the case of identical diffraction losses for the different modes.

  14. A microwave FEL [free electron laser] code using waveguide modes

    International Nuclear Information System (INIS)

    Byers, J.A.; Cohen, R.H.

    1987-08-01

    A free electron laser code, GFEL, is being developed for application to the LLNL tokamak current drive experiment, MTX. This single frequency code solves for the slowly varying complex field amplitude using the usual wiggler-averaged equations of existing codes, in particular FRED, except that it describes the fields by a 2D expansion in the rectangular waveguide modes, using coupling coefficients similar to those developed by Wurtele, which include effects of spatial variations in the fields seen by the wiggler motion of the particles. Our coefficients differ from those of Wurtele in two respects. First, we have found a missing √2γ/a/sub w/ factor in his C/sub z/; when corrected this increases the effect of the E/sub z/ field component and this in turn reduces the amplitude of the TM mode. Second, we have consistently retained all terms of second order in the wiggle amplitude. Both corrections are necessary for accurate computation. GFEL has the capability of following the TE/sub 0n/ and TE(M)/sub m1/ modes simultaneously. GFEL produces results nearly identical to those from FRED if the coupling coefficients are adjusted to equal those implied by the algorithm in FRED. Normally, the two codes produce results that are similar but different in detail due to the different treatment of modes higher than TE/sub 01/. 5 refs., 2 figs., 1 tab

  15. THz plasmonic modes in metal-clad planar multilayer waveguides

    Science.gov (United States)

    Ghamsari, Behnood G.; Majedi, A. Hamed

    2009-05-01

    This paper studies the role of plasmonic modes for guided-wave propagation of THz/far infrared in metalclad planar waveguides, including metal-dielectric interfaces, dielectric-loaded metal slabs and parallel plate waveguides. The dispersion of modal characteristics of the plasmonic guided waves, such as the effective index, attenuation constant and the field confinement, as a function of geometrical features for different consisting materials and wavelengths are examined. Moreover, comparison is made between the THz plasmonic modes to their optical counterparts at visible/near infrared within the similar physical structures. Peculiar features of each structure are highlighted and regimes of interest are distinguished.

  16. Mode conversion enables optical pulling force in photonic crystal waveguides

    DEFF Research Database (Denmark)

    Zhu, Tongtong; Novitsky, Andrey; Cao, Yongyin

    2017-01-01

    to the conservation of linear momentum. We present the quantitative agreement between the results derived from the mode conversion analysis and those from rigorous simulation using the finite-difference in the time-domain numerical method. Importantly, the optical pulling scheme presented here is robust and broadband...... with a larger forward momentum and the 1st order mode with a smaller forward momentum. When the 1st order mode is launched, the scattering by the object inside the waveguide results in the conversion from the 1st order mode to the 0th order mode, thus creating the optical pulling force according...

  17. Single-Mode VCSELs

    Science.gov (United States)

    Larsson, Anders; Gustavsson, Johan S.

    The only active transverse mode in a truly single-mode VCSEL is the fundamental mode with a near Gaussian field distribution. A single-mode VCSEL produces a light beam of higher spectral purity, higher degree of coherence and lower divergence than a multimode VCSEL and the beam can be more precisely shaped and focused to a smaller spot. Such beam properties are required in many applications. In this chapter, after discussing applications of single-mode VCSELs, we introduce the basics of fields and modes in VCSELs and review designs implemented for single-mode emission from VCSELs in different materials and at different wavelengths. This includes VCSELs that are inherently single-mode as well as inherently multimode VCSELs where higher-order modes are suppressed by mode selective gain or loss. In each case we present the current state-of-the-art and discuss pros and cons. At the end, a specific example with experimental results is provided and, as a summary, the most promising designs based on current technologies are identified.

  18. Diffraction of a Waveguide Mode in a Nanowire

    DEFF Research Database (Denmark)

    Bordo, Vladimir

    2009-01-01

    of the Fourier integral along the integration path in the complex plane of propagation constants. Deforming this path, one obtains either the field reflected from the nanowire end or the diffracted field in the outer space. The case when the incident wave is a TM or TE waveguide mode is analyzed in detail...

  19. Coupled mode theory for resonant excitation of waveguiding structures

    NARCIS (Netherlands)

    Hoekstra, Hugo

    2000-01-01

    Resonant coupling of light beams via high-index media or gratings to planar waveguiding structures are of interest for both applications and from a theoretical point of view. Coupled Mode theory (CMT) can give an accurate description of the coupling process in terms of relatively simple expressions

  20. Hybrid III-V/SOI single-mode vertical-cavity laser with in-plane emission into a silicon waveguide

    DEFF Research Database (Denmark)

    Park, Gyeong Cheol; Xue, Weiqi; Semenova, Elizaveta

    2015-01-01

    We report a III-V-on-SOI vertical-cavity laser emitting into an in-plane Si waveguide fabricated by using CMOS-compatible processes. The fabricated laser operates at 1.54 µm with a SMSR of 33 dB and a low threshold.......We report a III-V-on-SOI vertical-cavity laser emitting into an in-plane Si waveguide fabricated by using CMOS-compatible processes. The fabricated laser operates at 1.54 µm with a SMSR of 33 dB and a low threshold....

  1. Penetration of internal gravity waveguide modes into the upper atmosphere

    Directory of Open Access Journals (Sweden)

    Rudenko G.V.

    2016-03-01

    Full Text Available The paper describes internal gravity waveguide modes, using dissipative solutions above the source. We compare such a description with an accurate approach and a WKB approximation for dissipationless equations. For waveguide disturbances, dispersion relations calculated by any method are shown to be close to each other and to be in good agreement with observed characteristics of traveling ionospheric disturbances. Unlike other methods, dissipative solutions above the source allow us to adequately describe the spatial structure of disturbances in the upper atmosphere.

  2. Mathematical synthesis of the thickness profile of the waveguide Lüneburg lens using the adiabatic waveguide modes method

    Science.gov (United States)

    Ayryan, Edik; Dashitsyrenov, Genin; Laneev, Evgeniy; Lovetskiy, Konstantin; Sevastianov, Leonid; Sevastianov, Anton

    2017-04-01

    The paper describes the classical and generalized Luneburg lens in the 3D and planar waveguide implementation. We demonstrate the relation between the focusing inhomogeneity of the effective refractive index of waveguide Luneburg lens and the irregularity of the waveguide layer thickness generating this inhomogeneity. For the dispersion relation of the irregular thin-film waveguide in the model of adiabatic waveguide modes we solve the problem of mathematical synthesis and computer-aided design of the thickness profile of waveguide layer for the Luneburg thin-film generalized waveguide lens with a given focal length. The calculations are carried out in specially normalized coordinates convenient for computer calculations. The solution is compared with the one obtained using the cross-sections method.

  3. Transverse magnetic field impact on waveguide modes of photonic crystals.

    Science.gov (United States)

    Sylgacheva, Daria; Khokhlov, Nikolai; Kalish, Andrey; Dagesyan, Sarkis; Prokopov, Anatoly; Shaposhnikov, Alexandr; Berzhansky, Vladimir; Nur-E-Alam, Mohammad; Vasiliev, Mikhail; Alameh, Kamal; Belotelov, Vladimir

    2016-08-15

    This Letter presents a theoretical and experimental study of waveguide modes of one-dimensional magneto-photonic crystals magnetized in the in-plane direction. It is shown that the propagation constants of the TM waveguide modes are sensitive to the transverse magnetization and the spectrum of the transverse magneto-optical Kerr effect has resonant features at mode excitation frequencies. Two types of structures are considered: a non-magnetic photonic crystal with an additional magnetic layer on top and a magneto-photonic crystal with a magnetic layer within each period. We found that the magneto-optical non-reciprocity effect is greater in the first case: it has a magnitude of δ∼10-4, while the second structure type demonstrates δ∼10-5 only, due to the higher asymmetry of the claddings of the magnetic layer. Experimental observations show resonant features in the optical and magneto-optical Kerr effect spectra. The measured dispersion properties are in good agreement with the theoretical predictions. An amplitude of light intensity modulation of up to 2.5% was observed for waveguide mode excitation within the magnetic top layer of the non-magnetic photonic crystal structure. The presented theoretical approach may be utilized for the design of magneto-optical sensors and modulators requiring pre-determined spectral features.

  4. Photoswitchable Rabi Splitting in Hybrid Plasmon-Waveguide Modes.

    Science.gov (United States)

    Lin, Linhan; Wang, Mingsong; Wei, Xiaoling; Peng, Xiaolei; Xie, Chong; Zheng, Yuebing

    2016-12-14

    Rabi splitting that arises from strong plasmon-molecule coupling has attracted tremendous interests. However, it has remained elusive to integrate Rabi splitting into the hybrid plasmon-waveguide modes (HPWMs), which have advantages of both subwavelength light confinement of surface plasmons and long-range propagation of guided modes in dielectric waveguides. Herein, we explore a new type of HPWMs based on hybrid systems of Al nanodisk arrays covered by PMMA thin films that are doped with photochromic molecules and demonstrate the photoswitchable Rabi splitting with a maximum splitting energy of 572 meV in the HPWMs by controlling the photoisomerization of the molecules. Through our experimental measurements combined with finite-difference time-domain (FDTD) simulations, we reveal that the photoswitchable Rabi splitting arises from the switchable coupling between the HPWMs and molecular excitons. By harnessing the photoswitchable Rabi splitting, we develop all-optical light modulators and rewritable waveguides. The demonstration of Rabi splitting in the HPWMs will further advance scientific research and device applications of hybrid plasmon-molecule systems.

  5. Super- and Anti-Principal-Modes in Multimode Waveguides

    Science.gov (United States)

    Ambichl, Philipp; Xiong, Wen; Bromberg, Yaron; Redding, Brandon; Cao, Hui; Rotter, Stefan

    2017-10-01

    We introduce special states for light in multimode waveguides featuring strongly enhanced or reduced spectral correlations in the presence of strong mode coupling. Based on the experimentally measured multispectral transmission matrix of a multimode fiber, we generate a set of states that outperform the established "principal modes" in terms of the spectral stability of their output spatial field profiles. Inverting this concept also allows us to create states with a minimal spectral correlation width, whose output profiles are considerably more sensitive to a frequency change than typical input wave fronts. The resulting "super-principal-modes" and "anti-principal-modes" are made orthogonal to each other even in the presence of mode-dependent loss. By decomposing them in the principal-mode basis, we show that the super-principal-modes are formed via interference of principal modes with close delay times, whereas the anti-principal-modes are a superposition of principal modes with the most-different delay times available in the fiber. Such novel states are expected to have broad applications in fiber communication, imaging, and spectroscopy.

  6. Extraction of the beta-factor for single quantum dots coupled to a photonic crystal waveguide

    DEFF Research Database (Denmark)

    Nielsen, Henri Thyrrestrup; Sapienza, Luca; Lodahl, Peter

    2010-01-01

    We present measurements of the β-factor, describing the coupling efficiency of light emitted by single InAs/GaAs semiconductor quantum dots into a photonic crystal waveguide mode. The β-factor is evaluated by means of time resolved frequency-dependent photoluminescence spectroscopy. The emission...... wavelength of single quantum dots is temperature tuned across the band edge of a photonic crystal waveguide and the spontaneous emission rate is recorded. Decay rates up to 5.7 ns−1, corresponding to a Purcell factor of 5.2, are measured and β-factors up to 85% are extracted. These results prove...

  7. Nonlinear digital out-of-plane waveguide coupler based on nonlinear scattering of a single graphene layer

    Science.gov (United States)

    Asadi, Reza; Ouyang, Zhengbiao

    2018-03-01

    A new mechanism for out-of-plane coupling into a waveguide is presented and numerically studied based on nonlinear scattering of a single nano-scale Graphene layer inside the waveguide. In this mechanism, the refractive index nonlinearity of Graphene and nonhomogeneous light intensity distribution occurred due to the interference between the out-of-plane incident pump light and the waveguide mode provide a virtual grating inside the waveguide, coupling the out-of-plane pump light into the waveguide. It has been shown that the coupling efficiency has two distinct values with high contrast around a threshold pump intensity, providing suitable condition for digital optical applications. The structure operates at a resonance mode due to band edge effect, which enhances the nonlinearity and decreases the required threshold intensity.

  8. Optical propagation of the HE11 mode and Gaussian beams in hollow circular waveguides

    International Nuclear Information System (INIS)

    Crenn, J.P.

    1993-05-01

    The propagation of the HE 11 mode and Gaussian beams in hollow oversized circular waveguides is analyzed using optical theories. Different types of waveguides are considered: hollow dielectric or conducting waveguides, dielectric-lined waveguides, corrugated waveguides. General formulas are derived which give the power transmission through these different guides. The best wall materials and structures are determined from a comparison of the waveguide transmissions, at the infrared and millimeter wavelengths. The question of the coupling between the HE 11 mode and Gaussian beams is discussed and from a review of coupling coefficients derived before, an optimum value is pointed out. The problem of matching a Gaussian beam into circular waveguides in order to achieve the maximum power transmission is analyzed

  9. Longitudinal Modes along Thin Piezoelectric Waveguides for Liquid Sensing Applications

    Directory of Open Access Journals (Sweden)

    Cinzia Caliendo

    2015-06-01

    Full Text Available The propagation of longitudinally polarized acoustic modes along thin piezoelectric plates (BN, ZnO, InN, AlN and GaN is theoretically studied, aiming at the design of high frequency electroacoustic devices suitable for work in liquid environments. The investigation of the acoustic field profile across the plate revealed the presence of longitudinally polarized Lamb modes, travelling at velocities close to that of the longitudinal bulk acoustic wave propagating in the same direction. Such waves are suitable for the implementation of high-frequency, low-loss electroacoustic devices operating in liquid environments. The time-averaged power flow density, the phase velocity and the electroacoustic coupling coefficient K2 dispersion curves were studied, for the first (S0 and four higher order (S1, S2, S3, S4 symmetrical modes for different electrical boundary conditions. Two electroacoustic coupling configurations were investigated, based on interdigitated transducers, with or without a metal floating electrode at the opposite plate surface. Enhanced performances, such as a K2 as high as 8.5% and a phase velocity as high as 16,700 m/s, were demostrated for the ZnO- and BN-based waveguides, as an example. The relative velocity changes, and the inertial and viscous sensitivities of the first symmetric and anti-symmetric mode, S0 and A0, propagating along thin plates bordered by a viscous liquid were derived using the perturbation approach. The present study highlights the feasibility of the piezoelectric waveguides to the development of high-frequency, integrated-circuits compatible electroacoustic devices suitable for working in liquid environment.

  10. On-chip Mode Multiplexer Based on a Single Grating Coupler

    DEFF Research Database (Denmark)

    Ding, Yunhong; Ou, Haiyan; Xu, Jing

    2012-01-01

    A two-mode multiplexer based on a single grating coupler is proposed and demonstrated on a silicon chip. The LP01 and LP11 modes of a few-mode fiber are excited from TE0 and TE1 silicon waveguide modes.......A two-mode multiplexer based on a single grating coupler is proposed and demonstrated on a silicon chip. The LP01 and LP11 modes of a few-mode fiber are excited from TE0 and TE1 silicon waveguide modes....

  11. A magnetically tunable non-Bragg defect mode in a corrugated waveguide filled with liquid crystals

    Science.gov (United States)

    Zhang, Lu; Fan, Ya-Xian; Liu, Huan; Han, Xu; Lu, Wen-Qiang; Tao, Zhi-Yong

    2018-04-01

    A magnetically tunable, non-Bragg defect mode (NBDM) was created in the terahertz frequency range by inserting a defect in the middle of a periodically corrugated waveguide filled with liquid crystals (LCs). In the periodic waveguide, non-Bragg gaps beyond the Bragg ones, which appear in the transmission spectra, are created by different transverse mode resonances. The transmission spectra of the waveguide containing a defect showed that a defect mode was present inside the non-Bragg gap. The NBDM has quite different features compared to the Bragg defect mode, which includes more complex, high-order guided wave modes. In our study, we filled the corrugated waveguide with LCs to realize the tunability of the NBDM. The simulated results showed that the NBDM in a corrugated waveguide filled with LCs can be used in filters, sensors, switches, and other terahertz integrated devices.

  12. Gyrotron whispering gallery mode coupler with a mode conversion reflector for exciting a circular symmetric uniform phase RF beam in a corrugated waveguide

    Science.gov (United States)

    Neilson, Jeffrey M.

    2017-07-25

    A cylindrical waveguide with a mode converter transforms a whispering gallery mode from a gyrotron cylindrical waveguide with a helical cut launch edge to a quasi-Gaussian beam suitable for conveyance through a corrugated waveguide. This quasi-Gaussian beam is radiated away from the waveguide using a spiral cut launch edge, which is in close proximity to a first mode converting reflector. The first mode converting reflector is coupled to a second mode converting reflector which provides an output free-space HE11 mode wave suitable for direct coupling into a corrugated waveguide. The radiated beam produced at the output of the second mode converting reflector is substantially circular.

  13. Efficient and spurious-free integral-equation-based optical waveguide mode solver.

    Science.gov (United States)

    Hochman, Amit; Leviatan, Yehuda

    2007-10-29

    Modal analysis of waveguides and resonators by integra-lequation formulations can be hindered by the existence of spurious solutions. In this paper, spurious solutions are shown to be eliminated by introduction of a Rayleigh-quotient based matrix singularity measure. Once the spurious solutions are eliminated, the true modes may be determined efficiently and reliably, even in the presence of degeneracy, by an adaptive search algorithm. Analysis examples that demonstrate the efficacy of the method include an elliptical dielectric waveguide, two unequal touching dielectric cylinders, a plasmonic waveguide, and a realistic micro-structured optical fiber. A freely downloadable version of an optical waveguide mode solver based on this article is available.

  14. Dielectric waveguide with transverse index variation that support a zero group velocity mode at a non-zero longitudinal wavevector

    Science.gov (United States)

    Ibanescu, Mihai; Joannopoious, John D.; Fink, Yoel; Johnson, Steven G.; Fan, Shanhui

    2005-06-21

    Optical components including a laser based on a dielectric waveguide extending along a waveguide axis and having a refractive index cross-section perpendicular to the waveguide axis, the refractive index cross-section supporting an electromagnetic mode having a zero group velocity for a non-zero wavevector along the waveguide axis.

  15. Analysis of the Symmetric and Anti-Symmetric Modes in Spoof-Insulator-Spoof Waveguides

    Science.gov (United States)

    Yang, Jie; Zhao, Maoxiong; Liu, Liang; Xiang, Hong; Han, Dezhuan

    2017-06-01

    Spoof-insulator-spoof (SIS) waveguides can support propagating modes of spoof surface plasmon polaritons (SPPs). Here, the symmetry properties and dependence of dimensionality of the spoof SPPs in SIS waveguides are studied both numerically and experimentally. The dispersions of spoof SPPs in two-dimensional (2D) waveguides are distinct from those in 3D waveguides. A cut-off frequency appears at k = 0 for the symmetric mode in the 2D structure. It is found that, from the 2D to 3D case, the dimensional dependence of the spoof SPPs in SIS waveguides is similar to the "real" SPPs in metal-insulator-metal (MIM) structures. However, their asymptotic behaviors for large k are quite different since the coupling in the direction of thickness are different for the spoof SPPs and "real" SPPs. Our results can be useful in both the physics and applications of the surface modes in the microwave regime.

  16. Adiabaticity criterion and the shortest adiabatic mode transformer in a coupled-waveguide system.

    Science.gov (United States)

    Sun, Xiankai; Liu, Hsi-Chun; Yariv, Amnon

    2009-02-01

    By analyzing the propagating behavior of the supermodes in a coupled-waveguide system, we have derived a universal criterion for designing adiabatic mode transformers. The criterion relates epsilon, the fraction of power scattered into the unwanted mode, to waveguide design parameters and gives the shortest possible length of an adiabatic mode transformer, which is approximately 2/piepsilon1/2 times the distance of maximal power transfer between the waveguides. The results from numerical calculations based on a transfer-matrix formalism support this theory very well.

  17. Coherent single-photon absorption by single emitters coupled to 1D nanophotonic waveguides

    DEFF Research Database (Denmark)

    Chen, Yuntian; Wubs, Martijn; Mørk, Jesper

    2012-01-01

    We have derived an efficient model that allows calculating the dynamical single-photon absorption of an emitter coupled to a waveguide. We suggest a novel and simple structure that leads to strong single-photon absorption.......We have derived an efficient model that allows calculating the dynamical single-photon absorption of an emitter coupled to a waveguide. We suggest a novel and simple structure that leads to strong single-photon absorption....

  18. Waveguide-Coupled Superconducting Nanowire Single-Photon Detectors

    Science.gov (United States)

    Beyer, Andrew D.; Briggs, Ryan M.; Marsili, Francesco; Cohen, Justin D.; Meenehan, Sean M.; Painter, Oskar J.; Shaw, Matthew D.

    2015-01-01

    We have demonstrated WSi-based superconducting nanowire single-photon detectors coupled to SiNx waveguides with integrated ring resonators. This photonics platform enables the implementation of robust and efficient photon-counting detectors with fine spectral resolution near 1550 nm.

  19. Mode-selective wavelength conversion based on four-wave mixing in a multimode silicon waveguide

    DEFF Research Database (Denmark)

    Ding, Yunhong; Xu, Jing; Ou, Haiyan

    2014-01-01

    We propose and demonstrate all-optical mode-selective wavelength conversion in a silicon waveguide. The mode-selective wavelength conversion relies on strong four-wave mixing when pump and signal light are on the same spatial mode, while weak four-wave mixing is obtained between different modes due...

  20. Mode conversion in metal–insulator–metal waveguide with a shifted cavity

    Science.gov (United States)

    Wang, Yueke; Yan, Xin

    2018-01-01

    We propose a method, which is utilized to achieve the plasmonic mode conversion in metal–insulator–metal (MIM) waveguide, theoretically. Our proposed structure is composed of bus waveguides and a shifted cavity. The shifted cavity can choose out a plasmonic mode (a- or s-mode) when it is in Fabry–Perot (FP) resonance. The length of the shifted cavity L is carefully chosen, and our structure can achieve the mode conversion between a- and s-mode in the communication region. Besides, our proposed structure can also achieve plasmonic mode-division multiplexing. All the numerical simulations are carried on by the finite element method to verify our design.

  1. Index matching of TE and TM modes in organic multilayer waveguides

    Science.gov (United States)

    Thompson, Jonathan; Schmitzer, Heidrun; Wagner, Hans Peter

    We investigate transverse electric (TE) and magnetic (TM) mode propagation in organic multilayers consisting of aluminum quinoline (Alq3) and perylenetetracarboxylic dianhydride (PTCDA). In particular, we analyze two multilayer waveguides, Alq3-PTCDA-Alq3 and PTCDA-Alq3-PTCDA, engineered to give index matching according to modeling. The waveguides were grown on a glass substrate via organic molecular beam deposition. Fabry-Perot oscillations observed from reflection measurements were used to confirm the individual layer thicknesses. We were able to observe refractive index matching between TE0 and TE1, as well as TE2 and TE3 modes for the PTCDA-Alq3-PTCDA waveguide due to the light propagation through the top and bottom PTCDA layers, respectively. In addition, we were able to match TE1 and TM1, as well as TE3 and TM3 modes in the Alq3-PTCDA-Alq3 multilayer due to the birefringence of the PTCDA layer. Furthermore, we are able to create mode matching for a range of wavelengths due to the similar effective refractive index dispersion of different waveguide modes. The ability to phase match different waveguide modes opens a wide range of potential applications including polarization-insensitive propagation and mode switching by adding a thin magnetic metal film within the waveguide and applying an external magnetic field.

  2. Coherent single-photon absorption by single emitters coupled to one-dimensional nanophotonic waveguides

    DEFF Research Database (Denmark)

    Chen, Yuntian; Wubs, Martijn; Mørk, Jesper

    2011-01-01

    solutions for the dynamics of absorption, with maximum atomic excitation . We furthermore propose a terminated waveguide to aid the single-photon absorption. We found that for an emitter placed at an optimal distance from the termination, the maximum atomic excitation due to an incident single......We study the dynamics of single-photon absorption by a single emitter coupled to a one-dimensional waveguide that simultaneously provides channels for spontaneous emission (SE) decay and a channel for the input photon. We have developed a time-dependent theory that allows us to specify any input......-photon wavepacket can exceed 70%. This high value is a direct consequence of the high SE β-factor for emission into the waveguide. Finally, we have also explored whether waveguide dispersion could aid single-photon absorption by pulse shaping. For a Gaussian input wavepacket, we found that the absorption efficiency...

  3. Scalar diffraction theory approach to estimating multimode-waveguide field-amplitude mode distributions.

    Science.gov (United States)

    Kemme, S A; Kostuk, R K

    1998-07-10

    We introduce a method to estimate the coupling coefficients of the guided field amplitude and the corresponding angular bandwidth in a multimode slab waveguide. This scalar diffraction theory approach is simpler than the more rigorous electromagnetic treatment and is directly applicable to communications systems that use large (dimensions or numerical aperture) waveguides, as in substrate-mode interconnects. Moreover, this method provides conceptual insight as to a parameter's effect on the field-amplitude mode distribution and angular bandwidth.

  4. On the Theory of Coupled Modes in Optical Cavity-Waveguide Structures

    DEFF Research Database (Denmark)

    Kristensen, Philip Trøst; de Lasson, Jakob Rosenkrantz; Heuck, Mikkel

    2017-01-01

    Light propagation in systems of optical cavities coupled to waveguides can be conveniently described by a general rate equation model known as (temporal) coupled mode theory (CMT). We present an alternative derivation of the CMT for optical cavitywaveguide structures, which explicitly relies...... on the treatment of the cavity modes as quasi-normal modes with properties that are distinctly different from those of the modes in the waveguides. The two families of modes are coupled via the field equivalence principle to provide a physically appealing yet surprisingly accurate description of light propagation...... in the coupled systems. Practical application of the theory is illustrated using example calculations in one and two dimensions....

  5. Topology optimized mode conversion in a photonic crystal waveguide fabricated in siliconon-insulator material

    DEFF Research Database (Denmark)

    Frandsen, Lars Hagedorn; Elesin, Yuriy; Frellsen, Louise Floor

    2014-01-01

    We have designed and for the first time experimentally verified a topology optimized mode converter with a footprint of ∼6.3 μm × ∼3.6 μm which converts the fundamental even mode to the higher order odd mode of a dispersion engineered photonic crystal waveguide. 2D and 3D topology optimization...

  6. Analytical relation between effective mode field area and waveguide dispersion in microstructure fibers.

    Science.gov (United States)

    Moenster, Mathias; Steinmeyer, Günter; Iliew, Rumen; Lederer, Falk; Petermann, Klaus

    2006-11-15

    For optical fibers exhibiting a radially symmetric refractive index profile, there exists an analytical relation that connects waveguide dispersion and the Petermann-II mode field radius. We extend the usefulness of this relation to the nonradially symmetric case of microstructure fibers in the anomalous dispersion regime, yielding a simple relation between dispersion and effective mode field area. Assuming a Gaussian mode distribution, we derive a fundamental upper limit for the effective mode field area that is required to obtain a certain amount of anomalous waveguide dispersion. This relation is demonstrated to show excellent agreement for fiber designs suited for supercontinuum generation and soliton lasers in the near infrared.

  7. Selection of transverse modes in laser cavities containing waveguides and open parts

    International Nuclear Information System (INIS)

    Gurin, O V; Degtyarev, A V; Maslov, Vyacheslav A; Svich, V A; Tkachenko, V M; Topkov, A N

    2001-01-01

    The transverse modes of a submillimetre laser cavity that contains waveguides and open parts were studied theoretically and experimentally with the purpose of finding methods for mode selection. Two methods based on the filtering of the Fourier spectra of the waveguide modes and the use of their interference were substantiated numerically and realised in experiment. Special attention was paid to the mode selection in tunable lasers. Scaling laws allowing one to use the obtained results in a wide range of the cavity parameters and wavelengths are presented. (laser applications and other topics in quantum electronics)

  8. On-Chip Waveguide Coupling of a Layered Semiconductor Single-Photon Source.

    Science.gov (United States)

    Tonndorf, Philipp; Del Pozo-Zamudio, Osvaldo; Gruhler, Nico; Kern, Johannes; Schmidt, Robert; Dmitriev, Alexander I; Bakhtinov, Anatoly P; Tartakovskii, Alexander I; Pernice, Wolfram; Michaelis de Vasconcellos, Steffen; Bratschitsch, Rudolf

    2017-09-13

    Fully integrated quantum technology based on photons is in the focus of current research, because of its immense potential concerning performance and scalability. Ideally, the single-photon sources, the processing units, and the photon detectors are all combined on a single chip. Impressive progress has been made for on-chip quantum circuits and on-chip single-photon detection. In contrast, nonclassical light is commonly coupled onto the photonic chip from the outside, because presently only few integrated single-photon sources exist. Here, we present waveguide-coupled single-photon emitters in the layered semiconductor gallium selenide as promising on-chip sources. GaSe crystals with a thickness below 100 nm are placed on Si 3 N 4 rib or slot waveguides, resulting in a modified mode structure efficient for light coupling. Using optical excitation from within the Si 3 N 4 waveguide, we find nonclassicality of generated photons routed on the photonic chip. Thus, our work provides an easy-to-implement and robust light source for integrated quantum technology.

  9. Waveguide modes of 1D photonic crystals in a transverse magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Sylgacheva, D. A., E-mail: sylgacheva.darjja@physics.msu.ru; Khokhlov, N. E.; Kalish, A. N.; Belotelov, V. I. [Moscow State University, Physics Department (Russian Federation)

    2016-11-15

    We analyze waveguide modes in 1D photonic crystals containing layers magnetized in the plane. It is shown that the magnetooptical nonreciprocity effect emerges in such structures during the propagation of waveguide modes along the layers and perpendicularly to the magnetization. This effect involves a change in the phase velocity of the mode upon reversal of the direction of magnetization. Comparison of the effects in a nonmagnetic photonic crystal with an additional magnetic layer and in a photonic crystal with magnetic layers shows that the magnitude of this effect is several times larger in the former case in spite of the fact that the electromagnetic field of the modes in the latter case is localized in magnetic regions more strongly. This is associated with asymmetry of the dielectric layers contacting with the magnetic layer in the former case. This effect is important for controlling waveguide structure modes with the help of an external magnetic field.

  10. Mode Content Determination of Terahertz Corrugated Waveguides Using Experimentally Measured Radiated Field Patterns.

    Science.gov (United States)

    Jawla, Sudheer K; Nanni, Emilio A; Shapiro, Michael A; Woskov, Paul P; Temkin, Richard J

    2012-06-01

    This work focuses on the accuracy of the mode content measurements in an overmoded corrugated waveguide using measured radiated field patterns. Experimental results were obtained at 250 GHz using a vector network analyzer with over 70 dB of dynamic range. The intensity and phase profiles of the fields radiated from the end of the 19 mm diameter helically tapped brass waveguide were measured on planes at 7, 10, and 13 cm from the waveguide end. The measured fields were back propagated to the waveguide aperture to provide three independent estimates of the field at the waveguide exit aperture. Projecting that field onto the modes of the guide determined the waveguide mode content. The three independent mode content estimates were found to agree with one another to an accuracy of better than ±0.3%. These direct determinations of the mode content were compared with indirect measurements using the experimentally measured amplitude in three planes, with the phase determined by a phase retrieval algorithm. The phase retrieval technique using the planes at 7, 10, and 13 cm yielded a mode content estimate in excellent agreement, within 0.3%, of the direct measurements. Phase retrieval results using planes at 10, 20, and 30 cm were less accurate due to truncation of the measurement in the transverse plane. The reported measurements benefited greatly from a precise mechanical alignment of the scanner with respect to the waveguide axis. These results will help to understand the accuracy of mode content measurements made directly in cold test and indirectly in hot test using the phase retrieval technique.

  11. Engineering optical gradient force from coupled surface plasmon polariton modes in nanoscale plasmonic waveguides

    Science.gov (United States)

    Lu, Jiahui; Wang, Guanghui

    2016-11-01

    We explore the dispersion properties and optical gradient forces from mutual coupling of surface plasmon polariton (SPP) modes at two interfaces of nanoscale plasmonic waveguides with hyperbolic metamaterial cladding. With Maxwell’s equations and Maxwell stress tensor, we calculate and compare the dispersion relation and optical gradient force for symmetric and antisymmetric SPP modes in two kinds of nanoscale plasmonic waveguides. The numerical results show that the optical gradient force between two coupled hyperbolic metamaterial waveguides can be engineered flexibly by adjusting the waveguide structure parameters. Importantly, an alternative way to boost the optical gradient force is provided through engineering the hyperbolic metamaterial cladding of suitable orientation. These special optical properties will open the door for potential optomechanical applications, such as optical tweezers and actuators. Project supported by the National Natural Science Foundation of China (Grant No. 11474106) and the Natural Science Foundation of Guangdong Province, China (Grant No. 2016A030313439).

  12. GRIN planar waveguide concentrator used with a single axis tracker.

    Science.gov (United States)

    Bouchard, Sébastien; Thibault, Simon

    2014-03-10

    It is generally accepted that small to medium level concentrators could be used as cost-competitive replacements for tracked solar panels. The objective is to design a system that can reach a good level of sun concentration with only one sun-tracking axis and is cheap to fabricate. As the most critical parameter for all concentrator designs, optical efficiency needed improvement to reduce the cost of power produced by our system. By using a graded-index planar waveguide with an index profile similar to SELFOC fiber, the ray's path can be controlled. Also, the concentrator can be fabricated in a single block, which reduces Fresnel reflections. Overall, the optical efficiency can be improved by as much as 33% compared to the same system made with a homogeneous waveguide. Furthermore, the ability to cost-effectively fabricate the concentrator by molding can be preserved, making it possible to reduce the cost of the solar power produced.

  13. A novel hybrid III–V/silicon deformed micro-disk single-mode laser

    International Nuclear Information System (INIS)

    Feng Peng; Zhang Yejin; Liu Lei; Zhang Siriguleng; Wang Hailing; Zheng Wanhua; Wang Yufei

    2015-01-01

    A novel hybrid III–V/silicon deformed micro-disk single-mode laser connecting to a Si output waveguide is designed, and fabricated through BCB bonding technology and standard i-line photolithography. Compared to a traditional circular micro-disk in multi-longitudinal-mode operation, unidirectional emission and single longitudinal-mode output from a Si waveguide are realized. In the experiments, an output power of 0.31 mW and a side-mode suppression ratio of 27 dB in the continuous-wave regime are obtained. (semiconductor devices)

  14. Mode and gain analysis for symmetric and staggered grating-waveguide free-electron laser

    OpenAIRE

    Yuan-Yao Lin; Yen-Chieh Huang

    2007-01-01

    A grating-waveguide free-electron laser is driven by an axial electron beam that propagates between two planar gratings. This investigation addresses the mode analysis, gain calculation, and frequency tuning for such a device with arbitrary longitudinal and transverse displacements between the two gratings. It demonstrates that a grating waveguide free-electron laser is a promising coherent THz emitter when it is adopted as a backward-wave oscillator or a distributed-feedback oscillator.

  15. Mode and gain analysis for symmetric and staggered grating-waveguide free-electron laser

    Directory of Open Access Journals (Sweden)

    Yuan-Yao Lin

    2007-03-01

    Full Text Available A grating-waveguide free-electron laser is driven by an axial electron beam that propagates between two planar gratings. This investigation addresses the mode analysis, gain calculation, and frequency tuning for such a device with arbitrary longitudinal and transverse displacements between the two gratings. It demonstrates that a grating waveguide free-electron laser is a promising coherent THz emitter when it is adopted as a backward-wave oscillator or a distributed-feedback oscillator.

  16. Reducing disorder-induced losses for slow light photonic crystal waveguides through Bloch mode engineering

    DEFF Research Database (Denmark)

    Mann, Nishan; Combrié, Sylvian; Colman, Pierre

    2013-01-01

    We present theory and measurements ofdisorder-induced losses for low loss 1.5 mmlong slow light photonic crystal waveguides. A recent class of dispersion engineered waveguides increases the bandwidth of slow light and shows lower propagation losses for the same group index. Our theory and experim...... and experiments explain how Bloch mode engineering can substantially reduce scattering losses for the same slow light group velocity regime....

  17. Observaton of tunneling of slow and fast electromagnetic modes in coupled periodic waveguides

    DEFF Research Database (Denmark)

    Ha, Sangwoo; Sukhorukov, Andrey A.; Lavrinenko, Andrei

    2011-01-01

    We report the experimental observation of tunneling of slow and fast electromagnetic modes in coupled periodic waveguides shifted longitudinally by half of modulation period. According to the symmetry analysis, such a coupler supports two electromagnetic modes with exactly matched slow or fast gr...

  18. TE01 mode converter for highly overmoded circular waveguide at 188 GHz

    DEFF Research Database (Denmark)

    Rybalko, Oleksandr; Zhurbenko, Vitaliy; Ardenkjær-Larsen, Jan Henrik

    2016-01-01

    A design of a G-band TE01 mode converter is presented in this work. It consists of a TE01 mode launcher followed by a tapered waveguide section. Full-wave simulated reflection coefficient of stainless steel converter is better than −15 dB and transmission coefficient is better than −1.5 d...

  19. Calculation, normalization and perturbation of quasinormal modes in coupled cavity-waveguide systems

    DEFF Research Database (Denmark)

    Kristensen, Philip Trøst; de Lasson, Jakob Rosenkrantz; Gregersen, Niels

    2014-01-01

    We show how one can use a non-local boundary condition, which is compatible with standard frequency domain methods, for numerical calculation of quasinormal modes in optical cavities coupled to waveguides. In addition, we extend the definition of the quasinormal mode norm by use of the theory...

  20. Modeling of mode-locked coupled-resonator optical waveguide lasers

    DEFF Research Database (Denmark)

    Agger, Christian; Skovgård, Troels Suhr; Gregersen, Niels

    2010-01-01

    Coupled-resonator optical waveguides made from coupled high-Q photonic crystal nanocavities are investigated for use as cavities in mode-locked lasers. Such devices show great potential in slowing down light and can serve to reduce the cavity length of a mode-locked laser. An explicit expression...

  1. Measurement of guided light-mode intensity: An alternative waveguide sensing principle

    DEFF Research Database (Denmark)

    Horvath, R.; Skivesen, N.; Pedersen, H.C.

    2004-01-01

    An alternative transduction mechanism for planar optical waveguide sensors is reported. Based on a simple measurement of the mode intensity, the presented transduction is an interesting alternative to the conventional mode-angle transduction, because the expensive, high-precision angular rotation...

  2. Investigation of mode interaction on planar dielectric waveguides with loss and gain

    Science.gov (United States)

    Hanson, George W.; Yakovlev, Alexander B.

    1999-11-01

    On lossless isotropic planar waveguides the discrete proper modes of propagation form independent transverse electric and transverse magnetic sets such that there is no mode coupling or interaction between modes. In the event of material loss or gain, mode interactions are possible, leading to a complicated spectrum and apparent nonuniqueness of the modes. In this paper we analyze for the first time the cause of these modal interactions by studying the simplest canonical planar waveguide which exhibits these effects, the symmetric-slab waveguide. We show that mode interactions are due to the migration of complex-frequency-plane branch points associated with specific wave phenomena, with varying loss or gain. As these singularities move near the real-frequency axis they influence the modal behavior for time-harmonic (real-valued) frequencies, crossing the real axis at some critical value of loss or gain. It is shown that as time-harmonic frequency varies, passing above, below, or through these branch points results in different modal behavior. Passing above or below, and near to, the branch point yields mode coupling behavior, while passing through the branch point results in modal degeneracy. The result of this branch point migration is that the association of a particular mode with a certain branch of the dispersion function depends not only on the value of material loss or gain, but also on the order in which physical parameters of the problem are varied. Three different branch point types are identified and discussed, which leads to an understanding of the relevant wave phenomena and to a method for organizing the mode spectrum in a consistent and unique manner. While many of the observations described here are based on careful numerical analysis of the transverse magnetic modes existing on a certain symmetric-slab waveguide, the described phenomena are reasonably expected to be generally found in other open dielectric waveguiding structures.

  3. Optical planar waveguides in photo-thermal-refractive glasses fabricated by single- or double-energy carbon ion implantation

    Science.gov (United States)

    Wang, Yue; Shen, Xiao-Liang; Zheng, Rui-Lin; Guo, Hai-Tao; Lv, Peng; Liu, Chun-Xiao

    2018-01-01

    Ion implantation has demonstrated to be an efficient and reliable technique for the fabrication of optical waveguides in a diversity of transparent materials. Photo-thermal-refractive glass (PTR) is considered to be durable and stable holographic recording medium. Optical planar waveguide structures in the PTR glasses were formed, for the first time to our knowledge, by the C3+-ion implantation with single-energy (6.0 MeV) and double-energy (5.5+6.0 MeV), respectively. The process of the carbon ion implantation was simulated by the stopping and range of ions in matter code. The morphologies of the waveguides were recorded by a microscope operating in transmission mode. The guided beam distributions of the waveguides were measured by the end-face coupling technique. Comparing with the single-energy implantation, the double-energy implantation improves the light confinement for the dark-mode spectrum. The guiding properties suggest that the carbon-implanted PTR glass waveguides have potential for the manufacture of photonic devices.

  4. Hybrid spherical cap plasmonic waveguide for tight mode confinement and long propagation length

    Science.gov (United States)

    Li, Kai; Yun, Maojin; Ge, Xiaohui; Kong, Weijin

    2015-08-01

    The special abilities of plasmonic waveguide including tight field confinement and beyond diffraction limit within nano-scale structure have been exploited in many different fields. In order to overcome the trade-off between tight mode confinement and long propagation length, many kinds of nano-scale structures have been proposed in recent years. In this paper, a novel hybrid plasmonic waveguide consisting of the layer of metal Ag, a spherical cap with low-index dielectric layer placed above the metal Ag and a high-index dielectric layer placed above the spherical cap is proposed and analyzed theoretically. The relations between the characteristics of the bound modes, such as mode confinement, propagation lengths, and parameters of the spherical cap, the curvature and width, are numerically investigated in detail. The simulation results show that the nano-scale confinement can be realized. The simulation result shows that the performance of the proposed spherical cap hybrid plasmonic waveguide is better than the rectangle or cylindrical hybrid plasmonic waveguide. Such hybrid plasmonic waveguide has a tight mode confinement and long propagation length. This novel structure provides a promising application for high-integration density photonic components.

  5. Laser mode complexity analysis in infrared waveguide free-electron lasers

    Directory of Open Access Journals (Sweden)

    Rui Prazeres

    2016-06-01

    Full Text Available We analyze an optical phenomenon taking place in waveguide free-electron lasers, which disturbs, or forbids, operation in far infrared range. Waveguides in the optical cavity are used in far-infrared and THz ranges in order to avoid diffraction optical losses, and a hole coupling on output mirror is used for laser extraction. We show that, when the length of the waveguide exceeds a given limit, a phenomenon of “mode disorder” appears in the cavity, which makes the laser difficult, or impossible, to work properly. This phenomenon is even more important when the waveguide covers the whole length of the cavity. A numerical simulation describes this effect, which creates discontinuities of the laser power in the spectral domain. We show an example with an existing infrared Free-Electron Laser, which exhibits such discontinuities of the power, and where no convincing explanation was proposed until now.

  6. Deterministic fabrication of dielectric loaded waveguides coupled to single nitrogen vacancy centers in nanodiamonds

    DEFF Research Database (Denmark)

    Siampour, Hamidreza; Kumar, Shailesh; Bozhevolnyi, Sergey I.

    We report on the fabrication of dielectric-loaded-waveguides which are excited by single-nitrogen-vacancy (NV) centers in nanodiamonds. The waveguides are deterministically written onto the pre-characterized nanodiamonds by using electron beam lithography of hydrogen silsesquioxane (HSQ) resist...... on silver-coated silicon substrate. Change in lifetime for NV-centers is observed after fabrication of waveguides and an antibunching in correlation measurement confirms that nanodiamonds contain single NV-centers....

  7. Low loss depressed cladding waveguide inscribed in YAG:Nd single crystal by femtosecond laser pulses.

    Science.gov (United States)

    Okhrimchuk, Andrey; Mezentsev, Vladimir; Shestakov, Alexander; Bennion, Ian

    2012-02-13

    A depressed cladding waveguide with record low loss of 0.12 dB/cm is inscribed in YAG:Nd(0.3at.%) crystal by femtosecond laser pulses with an elliptical beam waist. The waveguide is formed by a set of parallel tracks which constitute the depressed cladding. It is a key element for compact and efficient CW waveguide laser operating at 1064 nm and pumped by a multimode laser diode. Special attention is paid to mechanical stress resulting from the inscription process. Numerical calculation of mode distribution and propagation loss with the elasto-optical effect taken into account leads to the conclusion that the depressed cladding is a dominating factor in waveguide mode formation, while the mechanical stress only slightly distorts waveguide modes.

  8. Two-dimensional Kagome photonic bandgap waveguide

    DEFF Research Database (Denmark)

    Nielsen, Jens Bo; Søndergaard, Thomas; Libori, Stig E. Barkou

    2000-01-01

    The transverse-magnetic photonic-bandgap-guidance properties are investigated for a planar two-dimensional (2-D) Kagome waveguide configuration using a full-vectorial plane-wave-expansion method. Single-moded well-localized low-index guided modes are found. The localization of the optical modes...... is investigated with respect to the width of the 2-D Kagome waveguide, and the number of modes existing for specific frequencies and waveguide widths is mapped out....

  9. Paired modes of heterostructure cavities in photonic crystal waveguides with split band edges

    DEFF Research Database (Denmark)

    Mahmoodian, Sahand; Sukhorukov, Andrey A.; Ha, Sangwoo

    2010-01-01

    We investigate the modes of double heterostructure cavities where the underlying photonic crystal waveguide has been dispersion engineered to have two band-edges inside the Brillouin zone. By deriving and using a perturbative method, we show that these structures possess two modes. For unapodized...... cavities, the relative detuning of the two modes can be controlled by changing the cavity length, and for particular lengths, a resonant-like effect makes the modes degenerate. For apodized cavities no such resonances exist and the modes are always non-degenerate....

  10. Towards single photon generation using NV centers in diamond coupled to thin layer optical waveguides

    International Nuclear Information System (INIS)

    Toshiyuki Tashima

    2014-01-01

    Single photon emitters like the nitrogen-vacancy (NV) center in diamond are important for quantum communication such as quantum cryptography and quantum metrology. In this context, e.g. tapered optical nano-fibers are a promising approach as they allow efficient coupling of single photons into a single spatial mode. Yet, integration of such fibers in a compact integrated quantum circuit is demanding. Here we propose a NV defect center in diamond as a single photon emitter coupled to a thin layer photonic waveguide. The benefit is to allow smaller size devices while having a similar strong evanescent field like tapered nano-optical fibers. We present numerical simulations and fabrication steps of such structures. (author)

  11. Application of Waveguide Mode Diagnostics for Remote Sensing in Accelerator Beam Pipes

    CERN Document Server

    Kroyer, T; Caspers, Friedhelm

    2005-01-01

    In this work, two remote sensing systems using waveguide modes in beam pipes of CERN accelerators are studied. The first is an application of time domain reflectometry in waveguides. Since the emergence of unexpected obstacles in the Large Hadron Collider (LHC) beam screen may lead to major disturbances, it is highly desirable to have a tool for detection and localization of such a fault. Waveguide mode time domain reflectometry using the synthetic pulse technique has been selected for this purpose. The system is based on a vector network analyzer using the fundamental TE and TM mode on the LHC beam-screen. Numerical signal processing is used to remove waveguide dispersion. Two modes of operation for the Reflectometer are proposed, the Assembly Version for inspection during the installation of LHC and the In Situ Version for measurements with the machine under vacuum. Coupling structures for both versions were designed and simulated, and tests on lines of up to 400 m length were performed. The second remote s...

  12. Hemagglutination detection for blood typing based on waveguide-mode sensors

    Directory of Open Access Journals (Sweden)

    Hiroki Ashiba

    2015-03-01

    Full Text Available ABO and Rh(D blood typing is one of the most important tests performed prior to blood transfusion. Although on-site blood testing is desirable for expedient blood transfusion procedure, most conventional methods and instruments lack the required usability or portability. Here, we describe a novel method, based on the detection of hemagglutination using an optical waveguide-mode sensor, for on-site use. The reflectance spectrum of blood alone and that of blood mixed with antibody reagents was measured using the waveguide-mode sensor. Differences in reflectance by agglutinated and non-agglutinated blood samples were observed at the bottom of the spectral dips; due to differences in the manner in which red blood cells interacted with the surface of the sensor chip. Following the addition of the antibody, blood types A, B, O, and AB were clearly distinguishable and Rh(D typing was also possible using the waveguide-mode sensor. Furthermore, the waveguide-mode-based measurement exhibited the potential to detect weak agglutination, which is difficult for human eyes to distinguish. Thus, this method holds great promise for application in novel on-site test instruments.

  13. High-power millimeter-wave mode converters in overmoded circular waveguides using periodic wall perturbations

    International Nuclear Information System (INIS)

    Thumm, M.

    1984-07-01

    This work reports on measurements and calculations (coupled mode equations) on the conversion of circular elecric TEsub(0n) gyrotron mode compositions (TE 01 to TE 04 ) at 28 and 70 GHz to the linearly polarized TE 11 mode by means of a mode converter system using periodic waveguide wall perturbations. Mode transducers with axisymmetric radius perturbations transform the TEsub(0n) gyrotron mode mixture to the more convenient TE 01 mode for long-distance transmission through overmoded waveguides. Proper matching of the phase differences between the TEsub(0n) modes and of lengths and perturbation amplitudes of the several converter sections is required. A mode converter with constant diameter and periodically perturbed curvature transfers the unpolarized TE 01 mode into the TE 11 mode which produces an almost linearly polarized millimeter-wave beam needed for efficient electron cyclotron heating (ECRH) of plasmas in thermonuclear fusion devices. The experimentally determined TEsub(0n)-to-TE 01 conversion efficiency is (98+-1)% at 28 and 70 GHz (99% predicted) while the TE 01 -to-TE 11 converter has a (96+-2)% conversion efficiency at 28 GHz (95% predicted) and (94+-2)% at 70 GHz (93% predicted); ohmic losses are included. (orig./AH)

  14. Generalized Plane Waves and Waveguide Modes in a Moving Isotropic Medium

    DEFF Research Database (Denmark)

    Aalund, Mogens; Johannsen, Günther

    1971-01-01

    The Lorentz transformation of plane-wave-like solutions and general waveguide modes is analyzed. A propagation and attenuation tensor is introduced. General Doppler equations and invariant phase quantities are shown to be simple consequences of the formalism. The concept of dispersion is discussed...... and a covariant condition connected with this concept is given. Covariant wave equations and dispersion relations are derived in a simple manner. The dispersion relations are used to analyze some special waveguide solutions including cutoff phenomena. ©1971 The American Institute of Physics...

  15. Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide

    DEFF Research Database (Denmark)

    Lund-Hansen, Toke; Stobbe, Søren; Julsgaard, Brian

    2008-01-01

    We present time-resolved spontaneous emission measurements of single quantum dots embedded in photonic crystal waveguides. Quantum dots that couple to a photonic crystal waveguide are found to decay up to 27 times faster than uncoupled quantum dots. From these measurements -factors of up to 0.89 ...... taking into account that the light-matter coupling is strongly enhanced due to the significant slow-down of light in the photonic crystal waveguides....

  16. Cutoff wavenumbers and modes for annular-cross-section waveguide with eccentric inner conductor of small radius

    Science.gov (United States)

    Davidovitz, Marat; Lo, Yuen T.

    1987-01-01

    Analytical expressions are derived for the cutoff wavenumbers and the corresponding modes in annular-cross-section waveguides having inner conductors of small radius. Waveguides with circular and rectangular outer boundary are considered. In the case of the circular eccentric annular waveguide, comparison is made between the values of cutoff wavenumbers computed from the expressions derived in this paper and data obtained by a more rigorous numerical technique.

  17. Dispersion and optical gradient force from high-order mode coupling between two hyperbolic metamaterial waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guanghui, E-mail: gsnuwgh@163.com; Zhang, Weifeng; Lu, Jiahui; Zhao, Huijun

    2016-08-12

    We analytically study dispersion properties and optical gradient forces of different-order transverse magnetic (TM) modes in two coupled hyperbolic metamaterial waveguides (HMMWs). According to Maxwell's equations, we obtain the dispersion relation of symmetric and antisymmetric modes, and calculate optical gradient forces of different-order modes by using Maxwell stress tensor. Numerical results show that the dispersion properties are dependent on the filling ratio, and the optical gradient forces of high-order TM modes are larger than the fundamental mode when the gap between two HMMWs is very narrow, but they weaken much faster than the case of low-order TM modes with the gap width increasing. In addition, the effects of the dielectric surrounding of waveguides on the coupling effect and optical gradient force are clarified. These properties offer an avenue for various optomechanical applications in optical sensors and actuators. - Highlights: • The dependence of dispersion properties in hyperbolic metamaterials on the filling ratio is analyzed. • It is possible that the optical gradient forces of high-order modes are larger than the fundamental mode. • Optical gradient forces of high-order modes weaken much faster than the case of low-order modes. • The influence of the dielectric surrounding on the coupling effect and optical gradient force are clarified.

  18. Squeezed mode conversion in hybrid plasmon polariton waveguide using spin-coated silver film.

    Science.gov (United States)

    Ha, Thi-Vu-Anh; Park, Hae-Ryeong; Son, Jung-Han; Lee, Myung-Hyun

    2012-07-01

    We designed, fabricated, and characterized a hybrid surface plasmon polariton waveguide (SPP_wg) for mode conversion. The 20-nm-thick silver SPP_wg was fabricated via spin-coating with an aqueous silver ionic complex solution. The structure of the SPP_wg consists of a straight Insulator-Metal-Insulator waveguide (IMl_wg), a lateral tapered Insulator-Metal-Insulator-Metal-Insulator waveguide (tapered_IMIMI_wg), and a straight IMIMI waveguide (IMIMI_wg). An s0 mode size of 12.90 microm x 8.08 microm at a 6-microm-wide IMI_wg was excited by a butt-coupling method at a wavelength of 1550 nm. The s0 mode was converted into an Ss0 mode size of 8.08 microm x 5.65 microm at a 3-microm-wide IMIMI_wg. The mode size was squeezed by approximately 2/3 via a 15-microm-long lateral tapered_IMIMI_wg with a 500-nm-thick central insulator. The coupling loss for mode conversion between the straight IMI_wg and the straight IMIMI_wg was 5.49 dB. The hybrid SPP_wg for mode conversion has the potential to bridge the gap between micron and sub-micron scales in nano plasmonic integrated circuits. In addition, the use of the spin coating method is very cost-effective because films are formed at a low temperature in a short period of time without the need for a vacuum system.

  19. Torsional mode ultrasonic helical waveguide sensor for re-configurable temperature measurement

    Directory of Open Access Journals (Sweden)

    Suresh Periyannan

    2016-06-01

    Full Text Available This paper introduces an ultrasonic torsional mode based technique, configured in the form of a helical “spring-like” waveguide, for multi-level temperature measurement. The multiple sensing levels can be repositioned by stretching or collapsing the spring to provide simultaneous measurements at different desired spacing in a given area/volume. The transduction is performed using piezo-electric crystals that generate and receive T(0,1 mode in a pulse echo mode. The gage lengths and positions of measurements are based on machining multiple reflector notches in the waveguide at required positions. The time of fight (TOF measurements between the reflected signals from the notches provide local temperatures that compare well with co-located thermocouples.

  20. Geometric variations in high index-contrast waveguides, coupled mode theory in curvilinear coordinates.

    Science.gov (United States)

    Skorobogatiy, Maksim; Jacobs, Steven; Johnson, Steven; Fink, Yoel

    2002-10-21

    Perturbation theory formulation of Maxwell's equations gives a theoretically elegant and computationally efficient way of describing small imperfections and weak interactions in electro-magnetic systems. It is generally appreciated that due to the discontinuous field boundary conditions in the systems employing high dielectric contrast profiles standard perturbation formulations fail when applied to the problem of shifted material boundaries. In this paper we developed a novel coupled mode and perturbation theory formulations for treating generic non-uniform (varying along the direction of propagation) perturbations of a waveguide cross-section based on Hamiltonian formulation of Maxwell equations in curvilinear coordinates. We show that our formulation is accurate and rapidly converges to an exact result when used in a coupled mode theory framework even for the high index-contrast discontinuous dielectric profiles. Among others, our formulation allows for an efficient numerical evaluation of induced PMD due to a generic distortion of a waveguide profile, analysis of mode filters, mode converters and other optical elements such as strong Bragg gratings, tapers, bends etc., and arbitrary combinations of thereof. To our knowledge, this is the first time perturbation and coupled mode theories are developed to deal with arbitrary non-uniform profile variations in high index-contrast waveguides.

  1. Modelling of microstructured waveguides using a finite-element-based vectorial mode solver with transparent boundary condition

    NARCIS (Netherlands)

    Uranus, H.P.; Hoekstra, Hugo; van Groesen, Embrecht W.C.; Bienstman, P.; Vanholme, L.

    2004-01-01

    Finite element vectorial optical mode solver is used to analyze microstructured waveguides in a relatively small computational domain. The presentation will consider the computational method, as well as the applications of it on a number of waveguides with 2-D cross section where microstructures are

  2. Direct observation of surface mode excitation and slow light coupling in photonic crystal waveguides

    DEFF Research Database (Denmark)

    Volkov, V.S.; Bozhevolnyi, Sergey I.; Frandsen, Lars Hagedorn

    2007-01-01

    A scanning near-field optical microscope (SNOM) is used to systematically study the properties of guided modes in linear and slow-light regimes of silicon-on-insulator (SOI)-based photonic crystal waveguides (PhCWs) with different terminations of the photonic lattice. High quality SNOM images...... are obtained for light at telecom wavelengths propagating in the PhCW, demonstrating directly, for the first time to our knowledge, drastic widening of the PhCW guided mode in the slow-light regime and excitation of surface waves at the PhCW interface along with their feeding into the guided mode...

  3. Investigations of the optical properties of thin, highly absorbing films under attenuated total reflection conditions: Leaky waveguide mode distortions.

    Science.gov (United States)

    Piruska, Aigars; Zudans, Imants; Heineman, William R; Seliskar, Carl J

    2005-03-15

    Spectra of thin highly absorbing Nafion films doped with Ru(bpy)(3)(2+) on SF11 glass substrates were studied by internal reflection spectroscopy using a single reflection configuration. For the system under study, two modes of light interaction with the film are available: attenuation due to evanescent wave penetration and light propagation within the absorbing film. Unlike evanescent wave spectroscopy, light propagation within the film causes distortions in the measured spectra due to leaky waveguide propagation modes. Upon light propagation in a film doped with Ru(bpy)(3)(2+) spectral shifts up to 50nm to longer wavelengths can occur and additional absorbance peaks can appear in the spectra. These film-based distortions depend on the complex refractive index, the thickness of the film and the angle of incidence. These effects become significant for an extinction coefficient above 0.01 and a film thickness above 200nm. It is shown that spectral distortions can lead to quite complex dynamics in the internal reflection spectra upon analyte preconcentration in the film. Ru(bpy)(3)(2+) partitioning into the Nafion film causes significant refractive index changes that in turn alter leaky waveguide mode conditions in the film and, can even lead to a reduction of measured absorbance despite the increase in the extinction coefficient of the film.

  4. Operational experience with the LHC waveguide mode reflectometer

    CERN Document Server

    Borowiec, P; Kroyer, T; Sulek, Z; Williams, L

    2006-01-01

    The LHC microwave mode reflectometer (assembly version) reached operational status by the autumn of 2005. It is now routinely used in the LHC tunnel and on the surface to take data on the beam screens of the individual LHC magnets and also groups of magnets with lengths up to 100 meters. The reflectometer operates in the frequency range from about 4 GHz to 10 GHz and employs mode selective launchers. This paper discusses the operational aspects of the system as well as methods for clutter (fake reflection) elimination and procedures for cross-checks in case of a suspected obstacle or other fault

  5. Highly efficient high power single-mode fiber amplifier utilizing the distributed mode filtering bandgap rod fiber

    DEFF Research Database (Denmark)

    Laurila, Marko; Alkeskjold, Thomas T.; Jørgensen, Mette Marie

    2012-01-01

    We report on an ytterbium doped single mode distributed mode filtering rod fiber in an amplifier configuration delivering high average output power, up to 292 watts, using a mode-locked 30ps source at 1032nm with good power conversion efficiency. We study the modal stability of the output beam...... at high average output power levels and demonstrate a 44% power improvement before the threshold-like onset of mode instabilities by operating the rod fiber in a leaky waveguide regime. We investigate the guiding dynamics of the rod fiber and explain the improved performance by thermally induced...

  6. Interference of guided modes in a two-port ring waveguide composed of dielectric nanoparticles.

    Science.gov (United States)

    Polishchuk, I Ya; Gozman, M I; Blaustein, Gail S; Burin, A L

    2010-02-01

    The interference is considered of guided polariton modes in a two-port ring waveguide composed of dielectric nanospheres. The dependence of the guided polariton intensity on the relative orientation of the input and output channels is investigated. It is shown that, if the frequency of the external light source corresponds to one of the resonant modes of the waveguide ring segment, the guided polariton may be treated as two optical beams running along the ring segment in the opposite directions and interfering with each other. The multisphere Mie scattering formalism is used. The dipole approximation is shown to grasp the essence of physics. Our simple interpretation of the results is obtained in terms of scalar waves. The applications of the interference revealed in the manuscript are discussed as well.

  7. Coupling power into accelerating mode of a three-dimensional silicon woodpile photonic band-gap waveguide

    OpenAIRE

    Ziran Wu; Robert Joel England; Cho-Kuen Ng; Benjamin Cowan; Christopher McGuinness; Chunghun Lee; Minghao Qi; Sami Tantawi

    2014-01-01

    Silicon woodpile photonic crystals provide a base structure with which to build a three-dimensional dielectric waveguide system for high-gradient laser-driven acceleration. To realize an on-chip woodpile laser accelerator, a key component is the power coupler to deliver laser power to the fundamental accelerating mode. The woodpile waveguide is periodically loaded in the longitudinal direction; therefore simple cross-sectional mode profile matching is not sufficient to launch the accelerating...

  8. Thermal considerations in the cryogenic regime for the BNL double ridge higher order mode waveguide

    Directory of Open Access Journals (Sweden)

    Dhananjay K. Ravikumar

    2017-09-01

    Full Text Available Brookhaven National Laboratory (BNL has proposed to build an electron ion collider (EIC as an upgrade to the existing Relativistic Heavy Ion Collider (RHIC. A part of the new design is to use superconducting radio frequency (SRF cavities for acceleration, which sit in a bath of superfluid helium at a temperature of 2 K. SRF cavities designed for the BNL EIC create a standing electromagnetic wave, oscillating at a fundamental frequency of 647 MHz. Interaction of the charged particle beam with the EM field in the cavity creates higher order modes (HOM of oscillation which have adverse effects on the beam when allowed to propagate down the beam tube. HOM waveguides are thus designed to remove this excess energy which is then damped at room temperature. As a result, these waveguides provide a direct thermal link between room temperature and the superconducting cavities adding a static thermal load. The EM wave propagating through the warmer sections of the waveguide creates an additional dynamic thermal load. This study calculates these thermal loads, concluding that the dynamic load is small in comparison to the static load. Temperature distributions are mapped on the waveguide and the number of heat intercepts required to efficiently manage thermal loads have been determined. In addition, a thermal radiation study has been performed and it is found that this contribution is around three orders of magnitude smaller than the static conduction and dynamic loads.

  9. Simple Correctors for Elimination of High-Order Modes in Corrugated Waveguide Transmission Lines.

    Science.gov (United States)

    Kowalski, Elizabeth J; Shapiro, Michael A; Temkin, Richard J

    2014-01-01

    When using overmoded corrugated waveguide transmission lines for high power applications, it is necessary to control the mode content of the system. Ideally, overmoded corrugated transmission lines operate in the fundamental HE 11 mode and provide low losses for long distances. Unwanted higher order modes (HOMs), particularly LP 11 and HE 12 , are often excited in the experimental systems due to practical misalignments in the transmission line system. This paper discusses how the unwanted modes propagate along with the fundamental mode in the transmission line system by formulating an equation that relates the center of power offset and angle of propagation of a beam (for the HE 11 and LP 11 modes) or the waist size and phase front radius of curvature of a beam (for the HE 11 and HE 12 modes). By introducing two miter bend correctors into the transmission system-miter bends that have slightly angled or ellipsoidal mirrors-the HOMs can be precisely manipulated in the system. This technique can be used to eliminate small quantities of unwanted modes, thereby creating a nearly pure fundamental mode beam with minimal losses. Examples of these applications are calculated and show the theoretical conversion of up to 10% HOM content into the fundamental HE 11 mode with minimal losses.

  10. Computation of coupling elements between waveguides and modes for large launching structures

    International Nuclear Information System (INIS)

    Hurtak, O.; Preinhaelter, J.

    1989-05-01

    Optimization of large launching structures - grills and multijunction grills which are intended for lower hybrid current drive in big tokamaks - calls for quick and sufficiently precise computation of the coupling elements between waveguides and modes. The original method of computation is described which is efficient for small structures only and is based on integration along the real axis. For computation of coupling elements between more distant waveguides another method of integration is developed which uses a shift of the integration path. For this purpose, the analytical continuation of the plasma surface impedance into the complex N z -plane is calculated and a new numerical code developed. Some numerical results are given to compare both methods. A combination of both methods speeds up the computation needed for the grill design. (author). 2 figs., 2 tabs., 2 refs

  11. Mini-stop bands in single heterojunction photonic crystal waveguides

    KAUST Repository

    Shahid, N.

    2013-01-01

    Spectral characteristics of mini-stop bands (MSB) in line-defect photonic crystal (PhC) waveguides and in heterostructure PhC waveguides having one abrupt interface are investigated. Tunability of the MSB position by air-fill factor heterostructure PhC waveguides is utilized to demonstrate different filter functions, at optical communication wavelengths, ranging from resonance-like to wide band pass filters with high transmission. The narrowest filter realized has a resonance-like transmission peak with a full width at half maximum of 3.4 nm. These devices could be attractive for coarse wavelength selection (pass and drop) and for sensing applications. 2013 Copyright 2013 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License.

  12. Full-vectorial propagation model and modified effective mode area of four-wave mixing in straight waveguides.

    Science.gov (United States)

    Guo, Kai; Friis, Søren M M; Christensen, Jesper B; Christensen, Erik N; Shi, Xiaodong; Ding, Yunhong; Ou, Haiyan; Rottwitt, Karsten

    2017-09-15

    We derive from Maxwell's equations full-vectorial nonlinear propagation equations of four-wave mixing valid in straight semiconductor-on-insulator waveguides. Special attention is given to the resulting effective mode area, which takes a convenient form known from studies in photonic crystal fibers, but has not been introduced in the context of integrated waveguides. We show that the difference between our full-vectorial effective mode area and the scalar equivalent often referred to in the literature may lead to mistakes when evaluating the nonlinear refractive index and optimizing designs of new waveguides. We verify the results of our derivation by comparing it to experimental measurements in a silicon-on-insulator waveguide, taking tolerances on fabrication parameters into account.

  13. Reconfigurable Coplanar Waveguide (CPW and Half-Mode Substrate Integrated Waveguide (HMSIW Band-Stop Filters Using a Varactor-Loaded Metamaterial-Inspired Open Resonator

    Directory of Open Access Journals (Sweden)

    Juan Hinojosa

    2017-12-01

    Full Text Available An open ring resonator (ORR loaded with a varactor diode is designed and implemented in order to achieve high-performance tunable band-stop filters in planar technology with a compact size. This varactor-loaded ORR (VLORR is versatile. It allows a shunt connection with different planar waveguide sections. In this paper, it has been connected to a coplanar waveguide (CPW and a half-mode substrate integrated waveguide (HMSIW. As a reverse bias voltage is applied to the VLORR, a continuous tuning over the resulting stop-band can be achieved. To illustrate the possibilities of the VLORR, three prototypes have been designed, fabricated, and characterized. The three prototypes show an outstanding performance, with a rejection level at the resonant frequency and a tuning range greater than 12 dB and 85%, respectively. This VLORR has high potential value in microwave communication systems to eliminate unwanted signals.

  14. Reconfigurable Coplanar Waveguide (CPW) and Half-Mode Substrate Integrated Waveguide (HMSIW) Band-Stop Filters Using a Varactor-Loaded Metamaterial-Inspired Open Resonator.

    Science.gov (United States)

    Hinojosa, Juan; Saura-Ródenas, Adrián; Alvarez-Melcon, Alejandro; Martínez-Viviente, Félix L

    2017-12-28

    An open ring resonator (ORR) loaded with a varactor diode is designed and implemented in order to achieve high-performance tunable band-stop filters in planar technology with a compact size. This varactor-loaded ORR (VLORR) is versatile. It allows a shunt connection with different planar waveguide sections. In this paper, it has been connected to a coplanar waveguide (CPW) and a half-mode substrate integrated waveguide (HMSIW). As a reverse bias voltage is applied to the VLORR, a continuous tuning over the resulting stop-band can be achieved. To illustrate the possibilities of the VLORR, three prototypes have been designed, fabricated, and characterized. The three prototypes show an outstanding performance, with a rejection level at the resonant frequency and a tuning range greater than 12 dB and 85%, respectively. This VLORR has high potential value in microwave communication systems to eliminate unwanted signals.

  15. Tuning the dispersion and single/multi-modeness of a hole-assisted fiber by the hole's geometrical parameters

    NARCIS (Netherlands)

    Uranus, H.P.; Hoekstra, Hugo; van Groesen, Embrecht W.C.

    2008-01-01

    Using a vectorial finite element mode solver developed earlier, we studied a hole-assisted multi-ring fiber. We report the role of the hole’s geometrical parameters in tuning the waveguide dispersion and the single/multi-modeness of the particular fiber. By correctly selecting the hole’s size and

  16. Transverse-electric and transverse-magnetic mode slow light propagation in a two-dimensional photonic crystal waveguide.

    Science.gov (United States)

    Wang, Donglin; Yu, Zhongyuan; Liu, Yumin; Guo, Xiaotao; Shu, Changgan; Zhou, Shuai

    2013-09-10

    A two-dimensional photonic crystal waveguide structure is designed for both TE- and TM-mode slow light propagation. The minimum group index of the waveguide for TE and TM modes can reach to 137.8 and 126.4, and the two polarizations have the same slow light frequency region. The designed structure can provide a large bandwidth range with very low group velocity dispersion for both TE and TM modes. The transmission property investigation for a suspended two-dimensional slab photonic crystal waveguide (PCW) indicates that such slow light character may be retained when perfect reflectors can be fixed on the horizontal surfaces of the slab. Such high group index for both TE and TM modes in two-dimensional PCWs is, to the best of our knowledge, first reported here, and may provide some useful guides for slow light research in theory.

  17. Photon control by multi-periodic binary grating waveguides: A coupled-mode theory approach

    DEFF Research Database (Denmark)

    Adam, Jost; Lüder, Hannes; Gerken, Martina

    - taneous control over multiple spectral resonance positions and relative intensities. The experimental findings were theoretically backed up by a rigorous coupled-wave analysis (RCWA) approach, yielding the leaky modes’ complex propagation constants and diffraction efficiencies. This approach, however, can...... only lead to quantitative results outside the device’s band gaps, since only radiative propagation loss is calculated.n order to provide more physical and quantitative insight to grating-induced waveguide losses, we implemented a coupled-mode theory (CMT) approach for the semi-analytical treatment...

  18. Analysis of a TM sub 01 Circular to TE sub 10 Rectangular Waveguide Mode Converter

    Science.gov (United States)

    1989-08-01

    twi FILE COpy SYRU/DECE/TR-89/3 ANALYSIS OF A TMo1 CIRCULAR TO TEjo RECTANGULAR (0O WAVEGUIDE MODE CONVERTER Lfl By Joseph R. Mautz < Roger F...transverse part of the electric field (3.34) is 4T. When x = -L 1 , the ratio of the TEjo voltage associated with (3.32) to the TEIo current associated...electric field (3.38) is eIOE, and the electric field (3.40) is gE. When X = L 2, the ratio of the TErn voltage associated with (3.38) to the TEjo current

  19. Tunable ultra-wide band-stop filter based on single-stub plasmonic-waveguide system

    Science.gov (United States)

    Chen, Zhiquan; Li, Hongjian; Li, Boxun; He, Zhihui; Xu, Hui; Zheng, Mingfei; Zhao, Mingzhuo

    2016-10-01

    A nanoscale plasmonic filter based on a single-stub coupled metal-dielectric-metal waveguide system is investigated theoretically and numerically. A tunable wide band-stop can be achieved by loading a metal bar into the stub. The band-stop originates from the direct coupling between the resonance modes. The bandwidth and the center wavelength of the band-stop can be tuned by changing the parameters of the metal bar. Compared with previously reported filters, the plasmonic system has the advantages of easy fabrication and compactness. Our results indicate that the proposed system has potential to be utilized in integrated optical circuits and tunable filters.

  20. TE modes of UV-laser generated waveguides in a planar polymer chip of parabolic refractive index profile

    Science.gov (United States)

    Shams El-Din, M. A.

    2018-04-01

    The UV-laser lithographic method is used for the preparation of Polymeric integrated-optical waveguides in a planar polymer chip. The waveguide samples are irradiated by an excimer laser of wavelength 248 nm with different doses and with the same fluencies. The refractive index depth profile for the waveguides, in the first zone is found to have a parabolic shape and Gaussian shape in the second one that can be determined by Mach-Zehnder interferometer. Both the mode field distribution and the effective mode indices for the first zone only are determined by making use of the theoretical mode and the experimental data. It is found that the model field distribution is strongly dependent on the refractive indices for each zone.

  1. Single-Mode WGM Resonators Fabricated by Diamond Turning

    Science.gov (United States)

    Grudinin, Ivan; Maleki, Lute; Savchenkov, Anatoliy; Matsko, Andrewy; Strekalov, Dmitry; Iltchenko, Vladimir

    2008-01-01

    A diamond turning process has made possible a significant advance in the art of whispering-gallery-mode (WGM) optical resonators. By use of this process, it is possible to fashion crystalline materials into WGM resonators that have ultrahigh resonance quality factors (high Q values), are compact (ranging in size from millimeters down to tens of microns), and support single electromagnetic modes. This development combines and extends the developments reported in "Few- Mode Whispering-Gallery-Mode Resonators" (NPO-41256), NASA Tech Briefs, Vol. 30, No. 1 (January 2006), page 16a and "Fabrication of Submillimeter Axisymmetric Optical Components" (NPO-42056), NASA Tech Briefs, Vol. 31, No. 5 (May 2007), page 10a. To recapitulate from the first cited prior article: A WGM resonator of this special type consists of a rod, made of a suitable transparent material, from which protrudes a thin circumferential belt of the same material. The belt is integral with the rest of the rod and acts as a circumferential waveguide. If the depth and width of the belt are made appropriately small, then the belt acts as though it were the core of a single-mode optical fiber: the belt and the rod material adjacent to it support a single, circumferentially propagating mode or family of modes. To recapitulate from the second cited prior article: A major step in the fabrication of a WGM resonator of this special type is diamond turning or computer numerically controlled machining of a rod of a suitable transparent crystalline material on an ultrahigh-precision lathe. During the rotation of a spindle in which the rod is mounted, a diamond tool is used to cut the rod. A computer program is used to control stepping motors that move the diamond tool, thereby controlling the shape cut by the tool. Because the shape can be controlled via software, it is possible to choose a shape designed to optimize a resonator spectrum, including, if desired, to limit the resonator to supporting a single mode

  2. Additional modes in a waveguide system of zero-index-metamaterials with defects.

    Science.gov (United States)

    Fu, Yangyang; Xu, Yadong; Chen, Huanyang

    2014-09-19

    Zero-index-metamaterials (ZIM) have drawn much attention due to their intriguing properties and novel applications. Particularly, in a parallel plated ZIM waveguide system with defects, total reflection or transmission of wave can be achieved by adjusting the properties of defects. This effect has been explored extensively in different types of ZIM (e.g., epsilon-near-zero metamaterials, matched impedance ZIM, or anisotropic ZIM). Almost all previous literatures showed that only monopole modes are excited inside the defects if they are in circular cylinder shapes. However, the underlying physics for excited modes inside defects is wrongly ignored. In this work, we uncover that additional modes could be excited by theoretical analysis, which is important as it will correct the current common perception. For the case of matched impedance zero-index metamaterials (MIZIM), the additional dipole modes can be excited inside the defects when total transmission occurs. Moreover, we also observe the same results in Dirac-cone-like photonic crystals which have been demonstrated theoretically and experimentally to function as MIZIM. For another case of epsilon-near-zero metamaterials (ENZ), we find that additional higher order modes (e.g., tri-pole) can be excited inside the defects when total transmission happens. Numerical simulations are performed to verify our finding regarding the additional modes.

  3. High-performance 16-way Ku-band radial power combiner based on the TE01-circular waveguide mode

    Science.gov (United States)

    Montejo-Garai, José R.; Saracho-Pantoja, Irene O.; Ruiz-Cruz, Jorge A.; Rebollar, Jesús M.

    2018-03-01

    This work presents a 16-way Ku-band radial power combiner for high power and high frequency applications, using the very low loss TE01 circular waveguide mode. The accomplished design shows an excellent performance: the experimental prototype has a return loss better than 30 dB, with a balance for the amplitudes of (±0.15 dB) and (±2.5°) for the phases, in a 16.7% fractional bandwidth (2 GHz centered at 12 GHz). For obtaining these outstanding specifications, required, for instance, in high-frequency amplification or on plasma systems, a rigorous step-by-step procedure is presented. First, a high-purity mode transducer has been designed, from the TE10 mode in the rectangular waveguide to the TE01 mode in the circular waveguide, with very high attenuation (>50 dB) for the other propagating and evanescent modes in the circular waveguide. This transducer has been manufactured and measured in a back-to-back configuration, validating the design process. Second, an E-plane 16-way radial power divider has been designed, where the power is coupled from the 16 non-reduced-height radial standard waveguides into the TE01 circular waveguide mode, improving the insertion loss response and removing the usual tapered transformers of previous designs limiting the power handling. Finally, both the transducer and the divider have been assembled to make the final radial combiner. The prototype has been carefully manufactured, showing very good agreement between the measurements and the full-wave simulations.

  4. Robust Seismic Normal Modes Computation in Radial Earth Models and A Novel Classification Based on Intersection Points of Waveguides

    Science.gov (United States)

    Ye, J.; Shi, J.; De Hoop, M. V.

    2017-12-01

    We develop a robust algorithm to compute seismic normal modes in a spherically symmetric, non-rotating Earth. A well-known problem is the cross-contamination of modes near "intersections" of dispersion curves for separate waveguides. Our novel computational approach completely avoids artificial degeneracies by guaranteeing orthonormality among the eigenfunctions. We extend Wiggins' and Buland's work, and reformulate the Sturm-Liouville problem as a generalized eigenvalue problem with the Rayleigh-Ritz Galerkin method. A special projection operator incorporating the gravity terms proposed by de Hoop and a displacement/pressure formulation are utilized in the fluid outer core to project out the essential spectrum. Moreover, the weak variational form enables us to achieve high accuracy across the solid-fluid boundary, especially for Stoneley modes, which have exponentially decaying behavior. We also employ the mixed finite element technique to avoid spurious pressure modes arising from discretization schemes and a numerical inf-sup test is performed following Bathe's work. In addition, the self-gravitation terms are reformulated to avoid computations outside the Earth, thanks to the domain decomposition technique. Our package enables us to study the physical properties of intersection points of waveguides. According to Okal's classification theory, the group velocities should be continuous within a branch of the same mode family. However, we have found that there will be a small "bump" near intersection points, which is consistent with Miropol'sky's observation. In fact, we can loosely regard Earth's surface and the CMB as independent waveguides. For those modes that are far from the intersection points, their eigenfunctions are localized in the corresponding waveguides. However, those that are close to intersection points will have physical features of both waveguides, which means they cannot be classified in either family. Our results improve on Okal

  5. Coupling power into accelerating mode of a three-dimensional silicon woodpile photonic band-gap waveguide

    Directory of Open Access Journals (Sweden)

    Ziran Wu

    2014-08-01

    Full Text Available Silicon woodpile photonic crystals provide a base structure with which to build a three-dimensional dielectric waveguide system for high-gradient laser-driven acceleration. To realize an on-chip woodpile laser accelerator, a key component is the power coupler to deliver laser power to the fundamental accelerating mode. The woodpile waveguide is periodically loaded in the longitudinal direction; therefore simple cross-sectional mode profile matching is not sufficient to launch the accelerating mode appropriately and will result in significant scattering loss. Several traveling-wave coupler design schemes developed for multicell radio frequency cavity accelerators can be adapted to the woodpile accelerator coupler design. This paper presents design procedures and results using these methods. We present simulations indicating near 100% power transmission between the transverse electric mode of a silicon-guide side coupler and the transverse–magnetic-like accelerating mode of a woodpile waveguide. The coupler launches a full traveling-wave propagation of the accelerating mode, which maintains its propagation quality over long waveguide structures, and provides better tolerance on the structure fabrication uncertainty and material breakdown than standing-wave coupling.

  6. Full-vectorial propagation model and modified effective mode area of four-wave mixing in straight waveguides

    DEFF Research Database (Denmark)

    Guo, Kai; Friis, Søren Michael Mørk; Christensen, Jesper Bjerge

    2017-01-01

    We derive from Maxwell's equations full-vectorial nonlinear propagation equations of four-wave mixing valid in straight semiconductor-on-insulator waveguides. Special attention is given to the resulting effective mode area, which takes a convenient form known from studies in photonic crystal fibers......, but has not been introduced in the context of integrated waveguides. We show that the difference between our full-vectorial effective mode area and the scalar equivalent often referred to in the literature may lead to mistakes when evaluating the nonlinear refractive index and optimizing designs of new...

  7. Single-Mode, Distributed Feedback Interband Cascade Lasers

    Science.gov (United States)

    Frez, Clifford F. (Inventor); Borgentun, Carl E. (Inventor); Briggs, Ryan M. (Inventor); Bagheri, Mahmood (Inventor); Forouhar, Siamak (Inventor)

    2016-01-01

    Single-mode, distributed feedback interband cascade lasers (ICLs) using distributed-feedback gratings (e.g., lateral Bragg gratings) and methods of fabricating such ICLs are provided. The ICLs incorporate distributed-feedback gratings that are formed above the laser active region and adjacent the ridge waveguide (RWG) of the ICL. The ICLs may incorporate a double-ridge system comprising an optical confinement structure (e.g., a RWG) disposed above the laser active region that comprises the first ridge of the double ridge system, a DFB grating (e.g., lateral Bragg grating) disposed above the laser active region and adjacent the optical confinement structure, and an electric confinement structure that passes at least partially through the laser active region and that defines the boundary of the second ridge comprises and the termination of the DFB grating.

  8. Interfacing Superconducting Qubits and Single Optical Photons Using Molecules in Waveguides

    Science.gov (United States)

    Das, Sumanta; Elfving, Vincent E.; Faez, Sanli; Sørensen, Anders S.

    2017-04-01

    We propose an efficient light-matter interface at optical frequencies between a single photon and a superconducting qubit. The desired interface is based on a hybrid architecture composed of an organic molecule embedded inside an optical waveguide and electrically coupled to a superconducting qubit placed near the outside surface of the waveguide. We show that high fidelity, photon-mediated, entanglement between distant superconducting qubits can be achieved with incident pulses at the single photon level. Such a low light level is highly desirable for achieving a coherent optical interface with superconducting qubit, since it minimizes decoherence arising from the absorption of light.

  9. The Main Principles of Formation of the Transverse Modes in the Multilayered Waveguides of Surface Acoustic Waves

    Science.gov (United States)

    Sveshnikov, B. V.; Bagdasaryan, A. S.

    2016-07-01

    We develop a self-consistent model allowing one to analyze the properties of the interdigital transducer of the surface acoustic waves as a symmetric five-layered waveguide on a piezoelectric substrate with three possible values of the phase velocity of the acoustic-wave propagation along the longitudinal axis of the system. The transcendental dispersion relation for describing the waves in such a system is derived and the method for its instructive graphic analysis is proposed. The condition under which only the fundamental transverse mode is excited in the waveguide is formulated. The method for calculating the normalized power and the transverse distribution of the field of the continuous-spectrum waves radiated from the considered waveguide is described. It is shown that the characteristic spatial scale of the longitudinal damping of the amplitude of this field at the waveguide center can be a qualitative estimate of the transverse-mode formation length. The efficiency of a new method for suppressing the higher-order transverse waveguide modes is demonstrated.

  10. EMISAR single pass topographic SAR interferometer modes

    DEFF Research Database (Denmark)

    Madsen, Søren Nørvang; Skou, Niels; Woelders, Kim

    1996-01-01

    The Danish Center for Remote Sensing (DCRS) has augmented its dual-frequency polarimetric synthetic aperture radar system (EMISAR) with single pass across-track interferometric (XTI) modes. This paper describes the system configuration, specifications and the operating modes. Analysis of data acq...

  11. An experimental analysis of the waveguide modes in a high-gain free-electron laser amplifier

    International Nuclear Information System (INIS)

    Anderson, B.R.

    1989-01-01

    The presence, growth, and interaction of transverse waveguide modes in high-gain free-electron laser (FEL) amplifiers has been observed and studied. Using the Electron Laser Facility at Lawrence Livermore National Laboratory, a 3 MeV, 800 A electron beam generated by the Experimental Test Accelerator was injected into a planar wiggler. Power was then extracted and measured in the fundamental (TE 01 ) an higher-order modes (Te 21 and TM 21 ) under various sets of operating conditions. Horizontal focusing through the wiggler was provided by external quadrupole magnets. There was no axial guide field. The input microwave signal for amplification was generated by a 100 kW magnetron operating at 34.6 Ghz. Power measurements were taken for both flat and tapered wigglers, for two sizes of waveguide, and for both flat and tapered wigglers, for two sizes of waveguide, and for both fundamental and higher mode injection. Mode content was determined by sampling the radiated signal at specific points in the radiation patter. For the flat wiggler and with the large waveguide (2.9 cm x 9.8 cm) the power in the higher modes was comparable to power in the fundamental. both exhibited gains greater than 30 dB/m prior to saturation and both reached powers in excess of 80 MW. Choice of injection mode had little effect on the operation of the system. Operation with the smaller guide (WR-229) provided much better mode selectivity. The fundamental mode continued to show optimum gain in excess of 30 dB/m while the higher-mode gain was of order 20 dB/m. As expected, power output increased significantly with the tapered wigglers. The relative mode content depended on the specific taper used

  12. Analytical expression of giant Goos-Hänchen shift in terms of proper and improper modes in waveguide structures with arbitrary refractive index profile.

    Science.gov (United States)

    Alishahi, Fatemeh; Mehrany, Khashayar

    2010-06-01

    We analytically relate the giant Goos-Hänchen shift, observed at the interface of a high refractive index prism and a waveguide structure with an arbitrary refractive index profile, to the spatial resonance phenomenon. The proximity effect of the high refractive index prism on modal properties of the waveguide is discussed, and the observed shift is expressed in terms of proper and improper electromagnetic modes supported by the waveguide with no prism. The transversely increasing improper modes are shown playing an increasingly important role as the high refractive index prism comes closer to the waveguide.

  13. Formation of discrete solitons as a function of waveguide array geometry under the well-confined mode condition

    International Nuclear Information System (INIS)

    Vergara-Betancourt, A; Martí-Panameño, E; Luis-Ramos, A; Parada-Alfonso, R

    2013-01-01

    Based on numerical techniques, in this paper, we study light propagation in two types of waveguide arrays. One array contains hexagonal cells, and the second contains honeycomb cells. The waveguides demonstrate the well-confined mode condition and possess Kerr nonlinearity. The mathematical model is based on the modified discrete nonlinear Schrödinger equation, which allows us to evaluate the influence of the array geometry on nonlinear light propagation, primarily the process of discrete soliton formation. The main conclusion involves the role of the coupling length; the greater the coupling length, the lower the power threshold required for discrete soliton formation. (paper)

  14. On-chip beamsplitter operation on single photons from quasi-resonantly excited quantum dots embedded in GaAs rib waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Rengstl, U.; Schwartz, M.; Herzog, T.; Hargart, F.; Paul, M.; Portalupi, S. L.; Jetter, M.; Michler, P., E-mail: p.michler@ihfg.uni-stuttgart.de [Institut für Halbleiteroptik und Funktionelle Grenzflächen and Research Center SCoPE, University of Stuttgart, Allmandring 3, 70569 Stuttgart (Germany)

    2015-07-13

    We present an on-chip beamsplitter operating on a single-photon level by means of a quasi-resonantly driven InGaAs/GaAs quantum dot. The single photons are guided by rib waveguides and split into two arms by an evanescent field coupler. Although the waveguides themselves support the fundamental TE and TM modes, the measured degree of polarization (∼90%) reveals the main excitation and propagation of the TE mode. We observe the preserved single-photon nature of a quasi-resonantly excited quantum dot by performing a cross-correlation measurement on the two output arms of the beamsplitter. Additionally, the same quantum dot is investigated under resonant excitation, where the same splitting ratio is observed. An autocorrelation measurement with an off-chip beamsplitter on a single output arm reveal the single-photon nature after evanescent coupling inside the on-chip splitter. Due to their robustness, adjustable splitting ratio, and their easy implementation, rib waveguide beamsplitters with embedded quantum dots provide a promising step towards fully integrated quantum circuits.

  15. Cutoff-mesa isolated rib optical waveguide for III-V heterostructure photonic integrated circuits

    Science.gov (United States)

    Vawter, G.A.; Smith, R.E.

    1998-04-28

    A cutoff mesa rib waveguide provides single-mode performance regardless of any deep etches that might be used for electrical isolation between integrated electrooptic devices. Utilizing a principle of a cutoff slab waveguide with an asymmetrical refractive index profile, single mode operation is achievable with a wide range of rib widths and does not require demanding etch depth tolerances. This new waveguide design eliminates reflection effects, or self-interference, commonly seen when conventional rib waveguides are combined with deep isolation etches and thereby reduces high order mode propagation and crosstalk compared to the conventional rib waveguides. 7 figs.

  16. Single VDTA Based Dual Mode Single Input Multioutput Biquad Filter

    Directory of Open Access Journals (Sweden)

    Rajeshwari Pandey

    2016-01-01

    Full Text Available This paper presents a dual mode, single input multioutput (SIMO biquad filter configuration using single voltage differencing transconductance amplifier (VDTA, three capacitors, and a grounded resistor. The proposed topology can be used to synthesize low pass (LP, high pass (HP, and band pass (BP filter functions. It can be configured as voltage mode (VM or current mode (CM structure with appropriate input excitation choice. The angular frequency (ω0 of the proposed structure can be controlled independently of quality factor (Q0. Workability of the proposed biquad configuration is demonstrated through PSPICE simulations using 0.18 μm TSMC CMOS process parameters.

  17. Analysis of Waveguide Devices Involving Lateral and Transverse Perfect Magnetic Wall Boundary Conditions by the Mode-Matching Method

    Science.gov (United States)

    Polo-López, Lucas; Ruiz-Cruz, Jorge A.; Montejo-Garai, José R.; Rebollar, Jesús M.

    2017-09-01

    This contribution presents the analysis of waveguide problems involving general boundary conditions of perfect magnetic wall. This type of boundary condition is used in electromagnetic solvers very commonly when the device under analysis has physical symmetry, in order to speed up the computation time. This paper is focused on extending its use in problems having this type of boundary condition in the lateral and transverse walls of the waveguides involved in the problem. The presented formulation, based on the mode-matching method, will be applied to classical waveguide devices, but also to address radiating problems with a novel formulation. Different applications will be targeted, and the simulation results will be compared with those obtained by other numerical techniques (based on different solvers), validating the presented approach as another suitable tool for computer-aided design.

  18. Periodically modulated single-photon transport in one-dimensional waveguide

    Science.gov (United States)

    Li, Xingmin; Wei, L. F.

    2018-03-01

    Single-photon transport along a one-dimension waveguide interacting with a quantum system (e.g., two-level atom) is a very useful and meaningful simplified model of the waveguide-based optical quantum devices. Thus, how to modulate the transport of the photons in the waveguide structures by adjusting certain external parameters should be particularly important. In this paper, we discuss how such a modulation could be implemented by periodically driving the energy splitting of the interacting atom and the atom-photon coupling strength. By generalizing the well developed time-independent full quantum mechanical theory in real space to the time-dependent one, we show that various sideband-transmission phenomena could be observed. This means that, with these modulations the photon has certain probabilities to transmit through the scattering atom in the other energy sidebands. Inversely, by controlling the sideband transmission the periodic modulations of the single photon waveguide devices could be designed for the future optical quantum information processing applications.

  19. Interactions between the first mode and the second Bragg gap in a cylindrical waveguide with undulated walls

    Science.gov (United States)

    Xue, Jiu-Ling; Liu, Huan; Liu, Ting; Zheng, Fu-Hou; Fan, Ya-Xian; Tao, Zhi-Yong

    2017-10-01

    Bragg resonances caused by the same transverse modes can always play a major role in periodic waveguides when the period is larger than the average radius. Because of higher-order mode cutoffs, the related Bragg gaps can be identified as interactions between different spatial harmonics of the fundamental mode, and the first Bragg gaps are more intensive than the higher ones. When we alter the parameters of the periodic waveguide, especially, decrease the period, the first transverse mode can be involved in Bragg gaps. Here, we demonstrate a direct mode-stopband interaction between the first mode and the second Bragg gap, that an extraordinary passband arises in the original second Bragg gap and splits the bandgap into two. Furthermore, the extraordinary passband is mainly composed of a pure first mode, which effectively suppresses the transmission of the fundamental one. We have also investigated the influence of wall profiles on the transmission and mode purity, and have found that the defined shape factor of wall profiles is proportionally related to the width of both pass and stop bands. The results could benefit not only the understanding of wave phenomena but also the applications in mode generators, filters, and so on.

  20. Single-mode biological distributed feedback laser

    DEFF Research Database (Denmark)

    Vannahme, Christoph; Maier-Flaig, Florian; Lemmer, Uli

    2013-01-01

    Single-mode second order distributed feedback (DFB) lasers of riboflavin (vitamin B2) doped gelatine films on nanostructured low refractive index material are demonstrated. Manufacturing is based on a simple UV nanoimprint and spin-coating. Emission wavelengths of 543 nm and 562 nm for two...

  1. Trapped modes under interaction of elastic and electric fields in a piezoelectric waveguide

    Science.gov (United States)

    Nazarov, S. A.; Ruotsalainen, K. M.; Silvol, M.

    2015-10-01

    A sufficient condition for the existence of a trapped wave in a piezoelectric waveguide with a cavity is obtained by reducing the boundary-value problem to the self-adjoint operator in a specially constructed Hilbert space. It differs substantially from a similar condition for a pure elastic waveguide with a defect and, in particular, does not guarantee trapping of a wave by a crack. The examples of the damaged piezoelectric waveguides supporting trapped waves are given.

  2. Single-photon switch: Controllable scattering of photons inside a one-dimensional resonator waveguide

    Science.gov (United States)

    Zhou, L.; Gong, Z. R.; Liu, Y. X.; Sun, C. P.; Nori, F.

    2010-03-01

    We analyze the coherent transport of a single photon, which propagates in a one-dimensional coupled-resonator waveguide and is scattered by a controllable two-level system located inside one of the resonators of this waveguide. Our approach, which uses discrete coordinates, unifies low and high energy effective theories for single-photon scattering. We show that the controllable two-level system can behave as a quantum switch for the coherent transport of a single photon. This study may inspire new electro-optical single-photon quantum devices. We also suggest an experimental setup based on superconducting transmission line resonators and qubits. References: L. Zhou, Z.R. Gong, Y.X. Liu, C.P. Sun, F. Nori, Controllable scattering of photons inside a one-dimensional resonator waveguide, Phys. Rev. Lett. 101, 100501 (2008). L. Zhou, H. Dong, Y.X. Liu, C.P. Sun, F. Nori, Quantum super-cavity with atomic mirrors, Phys. Rev. A 78, 063827 (2008).

  3. Length-independent DNA packing into nanopore zero-mode waveguides for low-input DNA sequencing

    Science.gov (United States)

    Larkin, Joseph; Henley, Robert Y.; Jadhav, Vivek; Korlach, Jonas; Wanunu, Meni

    2017-12-01

    Compared with conventional methods, single-molecule real-time (SMRT) DNA sequencing exhibits longer read lengths than conventional methods, less GC bias, and the ability to read DNA base modifications. However, reading DNA sequence from sub-nanogram quantities is impractical owing to inefficient delivery of DNA molecules into the confines of zero-mode waveguides—zeptolitre optical cavities in which DNA sequencing proceeds. Here, we show that the efficiency of voltage-induced DNA loading into waveguides equipped with nanopores at their floors is five orders of magnitude greater than existing methods. In addition, we find that DNA loading is nearly length-independent, unlike diffusive loading, which is biased towards shorter fragments. We demonstrate here loading and proof-of-principle four-colour sequence readout of a polymerase-bound 20,000-base-pair-long DNA template within seconds from a sub-nanogram input quantity, a step towards low-input DNA sequencing and mammalian epigenomic mapping of native DNA samples.

  4. Scattering of the transverse magnetic modes from an abruptly ended strongly asymmetrical slab waveguide by an accelerated integral equation technique.

    Science.gov (United States)

    Manenkov, A B; Latsas, G P; Tigelis, L G

    2001-12-01

    We study the problem of the scattering of the first TM guided mode from an abruptly ended strongly asymmetrical slab waveguide by an improved iteration technique, which is based on the integral equation method with "accelerating" parameters. We demonstrate that the values of these parameters are related to the variational principle, and we save approximately 1-2 iterations compared with the case in which these parameters are not employed. The tangential electric-field distribution on the terminal plane, the reflection coefficient of the first TM guided mode, and the far-field radiation pattern are computed. Furthermore, a simple technique based on the Aitken extrapolation procedure is employed for faster computation of the higher-order solutions of the reflection coefficient. Numerical results are presented for several cases of abruptly ended waveguides, including systems with variational profile, while special attention is given to the far-field radiation pattern rotation and its explanation.

  5. Electro-optic single-crystalline organic waveguides and nanowires grown from the melt.

    Science.gov (United States)

    Figi, Harry; Jazbinsek, Mojca; Hunziker, Christoph; Koechlin, Manuel; Günter, Peter

    2008-07-21

    Organic nonlinear optical materials have proven to possess high and extremely fast nonlinearities compared to conventional inorganic crystals, allowing for sub-1-V driving voltages and modulation bandwidths of over 100 GHz. Compared to more widely studied poled electro-optic polymers, organic electro-optic crystals exhibit orders of magnitude better thermal and photochemical stability. The lack of available structuring techniques for organic crystals has been the major drawback for exploring their potential for photonic structures. Here we present a new approach to fabricate high-quality electro-optic single crystal waveguides and nanowires of configurationally locked polyene DAT2 (2-(3-(2-(4-dimethylaminophenyl)vinyl)-5,5-dimethylcyclohex-2-enylidene)malononitrile). The high-index-contrast waveguides (delta(n) = 0.54 +/- 0.04) are grown from the melt between two anodically bonded borosilicate glass wafers, which are structured and equipped with electrodes prior to bonding. Electro-optic phase modulation is demonstrated for the first time in the non-centrosymmetric DAT2 single crystalline channel waveguides at a wavelength of 1.55 microm. We also show that this technique in combination with DAT2 material allows for the fabrication of single-crystalline nanostructures inside large-area devices with crystal thicknesses below 30 nm and lengths of above 7 mm.

  6. Observations of immuno-gold conjugates on influenza viruses using waveguide-mode sensors.

    Directory of Open Access Journals (Sweden)

    Subash C B Gopinath

    Full Text Available Gold nanoparticles were conjugated to an antibody (immuno-AuNP against A/Udorn/307/1972 (H3N2 influenza virus to detect viruses on a sensing plate designed for an evanescent field-coupled waveguide-mode sensor. Experiments were conducted using human influenza A/H3N2 strains, and immuno-AuNP could detect 8×10(5 PFU/ml (40 pg/µl intact A/Udorn/307/1972 and 120 pg/µl A/Brisbane/10/2007. Furthermore, increased signal magnitude was achieved in the presence of non-ionic detergent, as the virtual detection level was increased to 8×10(4 PFU/ml A/Udorn/307/1972. Immuno-AuNPs were then complexed with viruses to permit direct observation, and they formed a ring of confined nanodots on the membrane of both intact and detergent-treated viruses as directly visualized by scanning electron microscopy. With this complex the detection limit was improved further to 8×10(3 PFU/ml on anti-rabbit IgG immobilized sensing plate. These strategies introduce methods for observing trapped intact viruses on the sensing plates generated for optical systems.

  7. Silicon microphotonic waveguides

    International Nuclear Information System (INIS)

    Ta'eed, V.; Steel, M.J.; Grillet, C.; Eggleton, B.; Du, J.; Glasscock, J.; Savvides, N.

    2004-01-01

    Full text: Silicon microphotonic devices have been drawing increasing attention in the past few years. The high index-difference between silicon and its oxide (Δn = 2) suggests a potential for high-density integration of optical functions on to a photonic chip. Additionally, it has been shown that silicon exhibits strong Raman nonlinearity, a necessary property as light interaction can occur only by means of nonlinearities in the propagation medium. The small dimensions of silicon waveguides require the design of efficient tapers to couple light to them. We have used the beam propagation method (RSoft BeamPROP) to understand the principles and design of an inverse-taper mode-converter as implemented in several recent papers. We report on progress in the design and fabrication of silicon-based waveguides. Preliminary work has been conducted by patterning silicon-on-insulator (SOI) wafers using optical lithography and reactive ion etching. Thus far, only rib waveguides have been designed, as single-mode ridge-waveguides are beyond the capabilities of conventional optical lithography. We have recently moved to electron beam lithography as the higher resolutions permitted will provide the flexibility to begin fabricating sub-micron waveguides

  8. Selective mode coupling in microring resonators for single mode semiconductor lasers

    Science.gov (United States)

    Arbabi, Amir

    Single mode semiconductor laser diodes have many applications in optical communications, metrology and sensing. Edge-emitting single mode lasers commonly use distributed feedback structures, or narrowband reflectors such as distributed Bragg reflectors (DBRs) and sampled grating distributed Bragg reflectors (SGDBRs). Compact, narrowband reflectors with high reflectivities are of interest to replace the commonly used DBRs and SGDBRs. This thesis presents our work on the simulation, design, fabrication, and characterization of devices operating based on the coupling of degenerate modes of a microring resonator, and investigation of the possibility of using them for improving the performance of laser diodes. In particular, we demonstrate a new type of compact, narrowband, on-chip reflector realized by selectively coupling degenerate modes of a microring resonator. For the simulation and design of reflective microring resonators, a fast and accurate analysis method is required. Conventional numerical methods for solving Maxwell's equations such as the finite difference time domain and the finite element method (FEM) provide accurate results but are computationally intense and are not suitable for the design of large 3D structures. We formulated a set of coupled mode equations that, combined with 2D FEM simulations, can provide a fast and accurate tool for the modeling and design of reflective microrings. We developed fabrication processing recipes and fabricated passive reflective microrings on silicon substrates with a silicon nitride core and silicon dioxide cladding. Narrowband single wavelength reflectors were realized which are 70 times smaller than a conventional DBR with the same bandwidth. Compared to the conventional DBR, they have faster roll-off, and no side modes. The smaller footprint saves real estate, reduces tuning power and makes these devices attractive as in-line mirrors for low threshold narrow linewidth laser diodes. Self-heating caused by material

  9. Non-Markovian dynamics of a qubit due to single-photon scattering in a waveguide

    Science.gov (United States)

    Fang, Yao-Lung L.; Ciccarello, Francesco; Baranger, Harold U.

    2018-04-01

    We investigate the open dynamics of a qubit due to scattering of a single photon in an infinite or semi-infinite waveguide. Through an exact solution of the time-dependent multi-photon scattering problem, we find the qubit's dynamical map. Tools of open quantum systems theory allow us then to show the general features of this map, find the corresponding non-Linbladian master equation, and assess in a rigorous way its non-Markovian nature. The qubit dynamics has distinctive features that, in particular, do not occur in emission processes. Two fundamental sources of non-Markovianity are present: the finite width of the photon wavepacket and the time delay for propagation between the qubit and the end of the semi-infinite waveguide.

  10. Tunable single-longitudinal-mode operation of an injection-locked TEA CO2 laser. [ozone absorption spectroscopy

    Science.gov (United States)

    Megie, G.; Menzies, R. T.

    1979-01-01

    The tunable single-longitudinal-mode operation of a TEA CO2 laser by an injection technique using a CW waveguide laser as the master oscillator is reported. With the experimental arrangement described, in which the waveguide laser frequency is tuned to correspond to one of the oscillating longitudinal modes of the TEA laser, single-longitudinal-mode operation was achieved with no apparent reduction in the TEA output energy, on various CO2 lines with frequency offsets from the line center as large as 300 MHz. The capability of this technique for high-resolution spectroscopy or atmospheric lidar studies is demonstrated by the recording of the absorption spectrum of a strong ozone line.

  11. Fabrication and phase modulation in organic single-crystalline configurationally locked, phenolic polyene OH1 waveguides.

    Science.gov (United States)

    Hunziker, Christoph; Kwon, Seong-Ji; Figi, Harry; Jazbinsek, Mojca; Günter, Peter

    2008-09-29

    A novel and promising technique for the fabrication of electro-optically active single crystalline organic waveguides from 2-{3-(4-hydroxystyryl)-5,5-dimethylcyclohex-2-enylidene}malononitrile (OH1) is presented. OH1 is an interesting material for photonic applications due to the large electro-optic coefficients (r333 = 109+/-4 pm/V at 632.8 nm) combined with a relatively high crystal symmetry (orthorhombic with point group mm2). Due to the very favorable growth characteristics, large-area (> 150 mm(2)) single crystalline thin films with very good optical quality and thickness between 0.05-10 microm have been grown on amorphous glass substrates. We have developed and optimized optical lithography and reactive ion etching processes for the fabrication of wire optical waveguides with dimensions of w x h = 3.4 x 3.5 microm(2) and above. The technique is capable of producing low loss integrated optical waveguides having propagation losses of 2 dB/cm with a high refractive index contrast between core-cladding and core-substrate of delta n = 1.23 and 0.72, respectively at 980 nm. Electro-optic phase modulation in these waveguides has been demonstrated at 632.8 nm and 852 nm. Calculations show that with an optimized electrode configuration the half-wave voltage x length product V(pi) x L can be reduced from 8.4 Vcm, as obtained in our device, to 0.3 Vcm in the optimized case. This allows for the fabrication of sub-1 V half-wave voltage, organic electro-optic modulators with highly stable chromophore orientation.

  12. Mid-infrared subwavelength modulator based on grating-assisted coupling of a hybrid plasmonic waveguide mode to a graphene plasmon.

    Science.gov (United States)

    Kim, Yonghan; Kwon, Min-Suk

    2017-11-16

    This work reports a mid-infrared modulator based on a hybrid plasmonic waveguide with graphene on a grating in its slot region. The modulator utilizes a graphene plasmon for electro-optic tuning in a more practical and effective way than graphene-plasmon-based waveguide devices studied up to now. The hybrid plasmonic waveguide can be easily and efficiently integrated with input and output photonic waveguides. It supports a hybrid plasmonic waveguide mode and a graphene-plasmon-based waveguide mode. Grating-assisted coupling of the former to the latter in it is demonstrated to work successfully even though the two modes have significantly different propagation constants and losses. Theoretical investigation of the modulator shows that the coupling via the grating of length 5.92 μm generates a deep rejection band at a wavelength of 8.014 μm in the transmission spectrum of the output photonic waveguide of the modulator. With the graphene chemical potential tuned between 0.6 eV and 0.65 eV, the transmission at the wavelength is modulated between -27 dB and -1.8 dB. The subwavelength modulator, which may have a large bandwidth and small energy consumption, is expected to play a key role in free-space communications and sensing requiring mid-infrared integrated photonics.

  13. Evaluation of the TE_{12} mode in circular waveguide for low-loss, high-power rf transmission

    Directory of Open Access Journals (Sweden)

    Sami G. Tantawi

    2000-08-01

    Full Text Available The use of TE_{12} in circular waveguide with smooth walls was suggested for low-loss transport of rf signals in multimoded systems [S. G. Tantawi et al., in Advanced Accelerator Concepts: Eighth Workshop, edited by Wes Lawson, AIP Conf. Proc. No. 472 (AIP, New York, 1999, pp. 967–974]. Such systems use the same waveguide to transport different signals over different modes. In this report we detail a series of experiments designed to measure the characteristics of this mode. We also describe the different techniques used to generate it and receive it. The experiments were done at X band around a frequency of 11.424 GHz, the frequency of choice for future linear colliders at X band [The NLC Design Group, Report No. LBNL-PUB-5424, SLAC Report No. 474, Report No. UCRL-ID 124161, 1996; The JLC Design Group, KEK-REPORT-97-1, 1997]. The transportation medium is 55 m of highly overmoded circular waveguide. The design of the joining flanges is also presented.

  14. Disorder-induced resonance shifts and mode edge broadening in photonic crystal waveguides

    DEFF Research Database (Denmark)

    Mann, N.; Javadi, Alisa; Garcia-Fernandez, Pedro David

    2014-01-01

    We present theory and measurements for systematically disordered slow-light photonic crystal waveguides and find a pronounced disorder-induced blueshift and broadening of the photon density of states....

  15. Modes of an endlessly single-mode photonic crystal fiber: a finite element investigation

    NARCIS (Netherlands)

    Uranus, H.P.; Hoekstra, Hugo; van Groesen, Embrecht W.C.

    2004-01-01

    Using a finite-element mode solver, the modes of a commercial endlessly single-mode photonic crystal fiber (ESM-PCF) were investigated. Based on the loss discrimination between the dominant and the nearest higher order mode, we set-up a criterion for the single-modeness. Using that measure, we

  16. Sensitive typing of reverse ABO blood groups with a waveguide-mode sensor.

    Science.gov (United States)

    Uno, Shigeyuki; Tanaka, Torahiko; Ashiba, Hiroki; Fujimaki, Makoto; Tanaka, Mutsuo; Hatta, Yoshihiro; Takei, Masami; Awazu, Koichi; Makishima, Makoto

    2018-02-27

    Portable, on-site blood typing methods will help provide life-saving blood transfusions to patients during an emergency or natural calamity, such as significant earthquakes. We have previously developed waveguide-mode (WM) sensors for forward ABO and Rh(D) blood typing and detection of antibodies against hepatitis B virus and hepatitis C virus. In this study, we evaluated a WM-sensor for reverse ABO blood typing. Since reverse ABO blood typing is a method for detection of antibodies against type A and type B oligosaccharide antigens on the surface of red blood cells (RBCs), we fixed a synthetic type A or type B trisaccharide antigen on the sensor chip of the WM sensor. We obtained significant changes in the reflectance spectra from a WM sensor on type A antigen with type B plasma and type O plasma and on type B antigen with type A plasma and type O plasma, and no spectrum changes on type A antigen or type B antigen with type AB plasma. Signal enhancement with the addition of a peroxidase reaction failed to increase the sensitivity for detection on oligosaccharide chips. By utilizing hemagglutination detection using regent type A and type B RBCs, we successfully determined reverse ABO blood groups with higher sensitivity compared to a method using oligosaccharide antigens. Thus, functionality of a portable device utilizing a WM sensor can be expanded to include reverse ABO blood typing and, in combination with forward ABO typing and antivirus antibody detection, may be useful for on-site blood testing in emergency settings. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. Indistinguishable and efficient single photons from a quantum dot in a planar nanobeam waveguide

    DEFF Research Database (Denmark)

    Kirsanské, Gabija; Nielsen, Henri Thyrrestrup; Daveau, Raphaël Sura

    2017-01-01

    We demonstrate a high-purity source of indistinguishable single photons using a quantum dot embedded in a nanophotonic waveguide. The source features a near-unity internal coupling efficiency and the collected photons are efficiently coupled off chip by implementing a taper that adiabatically...... allows pinpointing the residual decoherence processes, notably the effect of phonon broadening. Strict resonant excitation is implemented as well as another means of suppressing photon jitter, and the additional complexity of suppressing the excitation laser source is addressed. The paper opens a clear...

  18. Optical Nano-antennae as Compact and Efficient Couplers from Free-space to Waveguide Modes

    DEFF Research Database (Denmark)

    Zenin, Vladimir A.; Malureanu, Radu; Volkov, Valentyn

    2015-01-01

    Optical nano-antennae are one of the possible solutions for coupling free-space radiation into subwavelength waveguides. Our efforts were concentrated on coupling between an optical fibre and a plasmonic slot waveguide. Such coupling is still an issue to be solved in order to advance the use...... of plasmonic waveguides for optical interconnects. During the talk, we will present our modelling optimisation, fabrication and measurement of the nano-antennae functionality. For the modelling part, we used CST Microwave studio for optimising the antenna geometry. Various antennae were modelled and fabricated....... The fabrication was based on electron beam lithography and lift-off processes. The measurements were performed with scattering scanning near-field microscope and allowed the retrieval of both amplitude and phase of the propagating plasmon. The obtained values agree very well with the theoretically predicted ones...

  19. Quantum Dots in Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Sollner, Immo Nathanael

    This Thesis is focused on the study of quantum electrodynamics in photonic crystal waveguides. We investigate the interplay between a single quantum dot and the fundamental mode of the photonic crystal waveguide. We demonstrate experimental coupling eciencies for the spontaneous emission into the...... quantum-dot-waveguide coupling. Such a structure is ideally suited for a number of applications in quantum information processing and among others we propose an on-chip spin-photon interface, a single photon transistor, and a deterministic cNOT gate.......This Thesis is focused on the study of quantum electrodynamics in photonic crystal waveguides. We investigate the interplay between a single quantum dot and the fundamental mode of the photonic crystal waveguide. We demonstrate experimental coupling eciencies for the spontaneous emission...... into the mode exceeding 98% for emitters spectrally close to the band-edge of the waveguide mode. In addition we illustrate the broadband nature of the underlying eects, by obtaining coupling eciencies above 90% for quantum dots detuned from the band edge by as far as 20nm. These values are in good agreement...

  20. Guided Modes in Uniaxial Chiral Waveguide of Circular Cross-Section under PEC Boundary

    International Nuclear Information System (INIS)

    Baqir, M A; Choudhury, P K

    2013-01-01

    Propagation of electromagnetic waves through a circular waveguide of uniaxial anisotropic chiral medium is studied with the emphasis on the energy flux patterns. The outer surface of the guide is assumed to be bounded by a perfect electric conductor (PEC) medium. The dispersion relation of guide is derived by applying suitable boundary conditions, and the allowed values of propagation constants are computed. Energy flux patterns corresponding to three different types of uniaxial anisotropic chiral metamaterials are taken into account. The propagation of negative energy flux is observed, and attributed to the presence of backward waves in the waveguide structure.

  1. Band gaps and cavity modes in dual phononic and photonic strip waveguides

    Directory of Open Access Journals (Sweden)

    Y. Pennec

    2011-12-01

    Full Text Available We discuss theoretically the simultaneous existence of phoxonic, i.e., dual phononic and photonic, band gaps in a periodic silicon strip waveguide. The unit-cell of this one-dimensional waveguide contains a hole in the middle and two symmetric stubs on the sides. Indeed, stubs and holes are respectively favorable for creating a phononic and a photonic band gap. Appropriate geometrical parameters allow us to obtain a complete phononic gap together with a photonic gap of a given polarization and symmetry. The insertion of a cavity inside the perfect structure provides simultaneous confinement of acoustic and optical waves suitable to enhance the phonon-photon interaction.

  2. A Broadband Terahertz Waveguide T-Junction Variable Power Splitter

    Science.gov (United States)

    Reichel, Kimberly S.; Mendis, Rajind; Mittleman, Daniel M.

    2016-06-01

    In order for the promise of terahertz (THz) wireless communications to become a reality, many new devices need to be developed, such as those for routing THz waves. We demonstrate a power splitting router based on a parallel-plate waveguide (PPWG) T-junction excited by the TE1 waveguide mode. By integrating a small triangular septum into the waveguide plate, we are able to direct the THz light down either one of the two output channels with precise control over the ratio between waveguide outputs. We find good agreement between experiment and simulation in both amplitude and phase. We show that the ratio between waveguide outputs varies exponentially with septum translation offset and that nearly 100% transmission can be achieved. The splitter operates over almost the entire range in which the waveguide is single mode, providing a sensitive and broadband method for THz power splitting.

  3. Dramatic enhancement of XUV laser output using a multi-mode, gas-filled capillary waveguide

    Czech Academy of Sciences Publication Activity Database

    Mocek, Tomáš; McKenna, C.M.; Cros, B.; Sebban, S.; Spence, D.J.; Maynard, G.; Bettaibi, I.; Vorontsov, V.; Gonsavles, A.J.; Hooker, S.M.

    2005-01-01

    Roč. 71, 01 (2005), 013804/1-013804/5 ISSN 1050-2947 Grant - others:EU(XE) HPRI-1999-CT-00086; EU(XE) HPMF-CT-2002-01554 Institutional research plan: CEZ:AV0Z10100523 Keywords : waveguiding * x-ray laser Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.997, year: 2005

  4. Optical nano-antennae as compact and efficient couplers from free-space to waveguide modes

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Zenin, Volodymyr; Malureanu, Radu

    2015-01-01

    Optical nano-antennae are one of the possible solutions for coupling free-space radiation into subwavelength waveguides. Other possibilities include, among others, grating couplers and end-fire end couplers. Our efforts were concentrated on nano-antennae used for coupling IR light in the telecom...

  5. GaSb-based single-mode distributed feedback lasers for sensing (Conference Presentation)

    Science.gov (United States)

    Gupta, James A.; Bezinger, Andrew; Lapointe, Jean; Poitras, Daniel; Aers, Geof C.

    2017-02-01

    GaSb-based tunable single-mode diode lasers can enable rapid, highly-selective and highly-sensitive absorption spectroscopy systems for gas sensing. In this work, single-mode distributed feedback (DFB) laser diodes were developed for the detection of various trace gases in the 2-3.3um range, including CO2, CO, HF, H2S, H2O and CH4. The lasers were fabricated using an index-coupled grating process without epitaxial regrowth, making the process significantly less expensive than conventional DFB fabrication. The devices are based on InGaAsSb/AlGaAsSb separate confinement heterostructures grown on GaSb by molecular beam epitaxy. DFB lasers were produced using a two step etch process. Narrow ridge waveguides were first defined by optical lithography and etched into the semiconductor. Lateral gratings were then defined on both sides of the ridge using electron-beam lithography and etched to produce the index-grating. Effective index modeling was used to optimize the ridge width, etch depths and the grating pitch to ensure single-lateral-mode operation and adequate coupling strength. The effective index method was further used to simulate the DFB laser emission spectrum, based on a transfer matrix model for light transmission through the periodic structure. The fabricated lasers exhibit single-mode operation which is tunable through the absorption features of the various target gases by adjustment of the drive current. In addition to the established open-path sensing applications, these devices have great potential for optoelectronic integrated gas sensors, making use of integrated photodetectors and possibly on-chip Si photonics waveguide structures.

  6. Physics and technology of tunable pulsed single longitudinal mode ...

    Indian Academy of Sciences (India)

    The single longitudinal mode (SLM) dye laser generates single-mode laser beams of ∼ 400 MHz (GIG configuration) and ∼ 600 MHz (Littrow configuration) bandwidth. Detailed performance studies of the Littrow and GIG dye laser resonators showed that GIG dye laser results in narrower linewidth and broad mode hop free ...

  7. Heralded quantum repeater based on the scattering of photons off single emitters in one-dimensional waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Song, Guo-Zhu; Zhang, Mei; Ai, Qing; Yang, Guo-Jian [Department of Physics, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875 (China); Alsaedi, Ahmed; Hobiny, Aatef [NAAM-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Deng, Fu-Guo, E-mail: fgdeng@bnu.edu.cn [Department of Physics, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875 (China); NAAM-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia)

    2017-03-15

    We propose a heralded quantum repeater based on the scattering of photons off single emitters in one-dimensional waveguides. We show the details by implementing nonlocal entanglement generation, entanglement swapping, and entanglement purification modules with atoms in waveguides, and discuss the feasibility of the repeater with currently achievable technology. In our scheme, the faulty events can be discarded by detecting the polarization of the photons. That is, our protocols are accomplished with a fidelity of 100% in principle, which is advantageous for implementing realistic long-distance quantum communication. Moreover, additional atomic qubits are not required, but only a single-photon medium. Our scheme is scalable and attractive since it can be realized in solid-state quantum systems. With the great progress on controlling atom-waveguide systems, the repeater may be very useful in quantum information processing in the future.

  8. Planar waveguide nanolaser configured by dye-doped hybrid nanofilm on substrate

    Science.gov (United States)

    Tikhonov, E. A.; Yashchuk, V. P.; Telbiz, G. M.

    2018-04-01

    Dye-doped hybrid silicate/titanium nanofilms on the glass substrate structures of asymmetrical waveguides were studied by way of laser systems. The threshold, spatial and spectral features of the laser oscillation of genuine and hollow waveguides were determined. The pattern of stimulated radiation included two concurrent processes: single-mode waveguide lasing and lateral small divergence emission. Comparison of the open angle of the lateral beams and grazing angles of the waveguide lasing mode provides an insight into the effect of leaky mode emission followed by Lummer-Gehrcke interference.

  9. Analytical extraction of leaky modes in circular slab waveguides with arbitrary refractive index profile.

    Science.gov (United States)

    Sarrafi, P; Zareian, N; Mehrany, K

    2007-12-20

    Circular slab waveguides are conformally transformed into straight inhomogeneous waveguides, whereupon electromagnetic fields in the core are expanded in terms of Legendre polynomial basis functions. Thereafter, different analytical expression of electromagnetic fields in the cladding region, viz. Wentzel-Kramers-Brillouin solution, modified Airy function expansion, and the exact field solution for circular waveguides, i.e., Hankel function of complex order, are each matched to the polynomial expansion of the transverse electric field within the guide. This field matching process renders different boundary conditions to be satisfied by the set of orthogonal Legendre polynomial basis functions. In this fashion, the governing wave equation is converted into an algebraic and easy to solve eigenvalue problem, which is associated with a matrix whose elements are analytically given. Various numerical examples are presented and the accuracy of each of the abovementioned different boundary conditions is assessed. Furthermore, the computational efficiency and the convergence rate of the proposed method with increasing number of basis functions are briefly discussed.

  10. Waveguide-based single and multiple nozzle plasma torches: the TIAGO concept

    Science.gov (United States)

    Moisan, M.; Zakrzewski, Z.; Rostaing, J. C.

    2001-08-01

    Various microwave-sustained, atmospheric-pressure plasma torches have been developed, investigated and applied over the last few decades. To avoid some of their shortcomings, we have designed a novel torch termed TIAGO (Torche à Injection Axiale sur Guide d'Ondes, in French). Its main advantages are simplicity, smooth impedance matching (low sensitivity to changes in operating conditions) and a short gas channel to prevent vapour condensation. Furthermore, it is possible to arrange TIAGOs in arrays to form a compact torch system which can be supplied, with equal distribution of power between plasma flames, from a single waveguide. This unique feature makes the new device particularly suitable when high gas throughputs or sequential processing are required. We describe the design, electrodynamic characteristics and experimental investigation of various torch arrangements based on the TIAGO principle, operated at 2.45 GHz with powers of a few hundred watts up to 2-3 kW per nozzle.

  11. Control of single-photon routing in a T-shaped waveguide by another atom

    Science.gov (United States)

    Huang, Jin-Song; Wang, Jing-Wen; Wang, Yan; Li, Yan-Ling; Huang, You-Wen

    2018-04-01

    Quantum routers with a high routing rate of much more than 0.5 are of great importance for quantum networks. We provide a scheme to perform bidirectional high routing-rate transfer in a T-shaped coupled-resonator waveguide (CRW), which extends a recent unidirectional scheme proposed by Lu et al. (Opt Express 23:22955, 2015). By locating an extra two-level atom in the infinite CRW channel of the T-shaped CRW with a three-level system, an effective potential is generated. Our numerical results show that high routing capability from the infinite CRW channel to the semi-infinite channel can be achieved, and routing capability from the semi-infinite CRW channel to the infinite channel can also be significantly enhanced, with the help of the effective potential. Therefore, the proposed double-atom configuration could be utilized as a bidirectional quantum routing controller to implement high transfer rate routing of single photons.

  12. Report on first masing and single mode locking in a prebunched beam FEM oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, M.; Eichenbaum, A.; Kleinman, H. [Tel-Aviv Univ., Ramat-Aviv (Israel)] [and others

    1995-12-31

    Radiation characteristics of a table-top free electron maser (FEM) are described in this paper. The FEM employs a prebunched electron beam and is operated as an oscillator in the low-gain collective (Raman) regime. Using electron beam prebunching single mode locking at any one of the possible oscillation modes was obtained. The electron beam is prebunched by a microwave tube section before it is injected into the wiggler. By tuning the electron beam bunching frequency, the FEM oscillation frequency can be locked to any eigen frequency of the resonant waveguide cavity which is within the frequency band of net gain of the FEM. The oscillation build up process is sped up, when the FEM operates with a prebunched electron beam, and the build-up time of radiation is shortened significantly. First measurements of masing with and without prebunching and characterization of the emitted radiation are reported.

  13. Mode coupling in hybrid square-rectangular lasers for single mode operation

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xiu-Wen; Huang, Yong-Zhen, E-mail: yzhuang@semi.ac.cn; Yang, Yue-De; Xiao, Jin-Long; Weng, Hai-Zhong; Xiao, Zhi-Xiong [State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100083 (China)

    2016-08-15

    Mode coupling between a square microcavity and a Fabry-Pérot (FP) cavity is proposed and demonstrated for realizing single mode lasers. The modulations of the mode Q factor as simulation results are observed and single mode operation is obtained with a side mode suppression ratio of 46 dB and a single mode fiber coupling loss of 3.2 dB for an AlGaInAs/InP hybrid laser as a 300-μm-length and 1.5-μm-wide FP cavity connected to a vertex of a 10-μm-side square microcavity. Furthermore, tunable single mode operation is demonstrated with a continuous wavelength tuning range over 10 nm. The simple hybrid structure may shed light on practical applications of whispering-gallery mode microcavities in large-scale photonic integrated circuits and optical communication and interconnection.

  14. Crosstalk-Managed Heterogeneous Single-Mode 32-Core Fibre

    DEFF Research Database (Denmark)

    Sasaki, Y.; Fukumoto, Ryohei; Takenaga, Katsuhiro

    2016-01-01

    A heterogeneous single-mode 32-core fibre with a cladding diameter of 243 micrometer is designed and fabricated. The highest core count in single-mode multi-core fibres and low worst-case crosstalk of less than -24 dB/1000 km in C-band are achieved simultaneously.......A heterogeneous single-mode 32-core fibre with a cladding diameter of 243 micrometer is designed and fabricated. The highest core count in single-mode multi-core fibres and low worst-case crosstalk of less than -24 dB/1000 km in C-band are achieved simultaneously....

  15. Analysis of Waveguides on Lithium Niobate Thin Films

    Directory of Open Access Journals (Sweden)

    Yiwen Wang

    2018-04-01

    Full Text Available Waveguides formed by etching, proton-exchange (PE, and strip-loaded on single-crystal lithium niobate (LN thin film were designed and simulated by a full-vectorial finite difference method. The single-mode condition, optical power distribution, and bending loss of these kinds of waveguides were studied and compared systematically. For the PE waveguide, the optical power distributed in LN layer had negligible change with the increase of PE thickness. For the strip-loaded waveguide, the relationships between optical power distribution in LN layer and waveguide thickness were different for quasi-TE (q-TE and quasi-TM (q-TM modes. The bending loss would decrease with the increase of bending radius. There was a bending loss caused by the electromagnetic field leakage when the neff of q-TM waveguide was smaller than that of nearby TE planar waveguide. LN ridge waveguides possessed a low bending loss even at a relatively small bending radius. This study is helpful for the understanding of waveguide structures as well as for the optimization and the fabrication of high-density integrated optical components.

  16. Single- and double energy N{sup +} ion irradiated planar optical waveguides in Er: Tungsten–tellurite oxide glass and sillenite type Bismuth Germanate crystals working up to telecommunications wavelengths

    Energy Technology Data Exchange (ETDEWEB)

    Bányász, I., E-mail: banyasz@sunserv.kfki.hu [Department of Crystal Physics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Zolnai, Z.; Fried, M.; Lohner, T. [Research Institute for Technical Physics and Materials Science, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Berneschi, S.; Righini, G.C. [MDF-Lab, “Nello Carrara” Institute of Applied Physics, IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); “Enrico Fermi” Center for Study and Research, Piazza del Viminale 2, 00184 Roma (Italy); Pelli, S.; Nunzi-Conti, G. [MDF-Lab, “Nello Carrara” Institute of Applied Physics, IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy)

    2013-07-15

    Ion implantation proved to be a universal technique for producing waveguides in most optical materials. Tellurite glasses are good hosts of rare-earth elements for the development of fibre and integrated optical amplifiers and lasers covering all the main telecommunication bands. Er{sup 3+}-doped tellurite glasses are good candidates for the fabrication of broadband amplifiers in wavelength division multiplexing around 1.55 μm, as they exhibit large stimulated cross sections and broad emission bandwidth. Fabrication of channel waveguides in such a material via N{sup +} ion implantation was reported recently. Sillenite type Bismuth Germanate (BGO) crystals are good nonlinear optical materials. Parameters of waveguide fabrication in both materials via implantation of MeV-energy N{sup +} ions were optimized. First single-energy implantations at 3.5 MeV at various fluences were applied. Waveguide operation up to 1.5 μm was observed in both materials. Then double-energy implantations at a fixed upper energy of 3.5 MeV and lower energies between 2.5 and 3.1 MeV were performed to suppress leaky modes by increasing barrier width. Improvement of waveguide characteristics was found by m-line spectroscopy and spectroscopic ellipsometry.

  17. Simple High-order Galerkin Finite Element Scheme for the Investigation of Both Guided and Leaky Modes in Anisotropic Planar Waveguides

    NARCIS (Netherlands)

    Uranus, H.P.; Hoekstra, Hugo; van Groesen, Embrecht W.C.

    A simple high-order Galerkin finite element scheme is formulated to compute both the guided and leaky modes of anisotropic planar waveguides with a diagonal permitivity tensor. Transparent boundary conditions derived from the Sommerfeld radiation conditions are used to model the fields at the

  18. Integrated source of tunable nonmaximally mode-entangled photons in a domain-engineered lithium niobate waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Ming, Yang; Wu, Zi-jian; Xu, Fei, E-mail: feixu@nju.edu.cn; Lu, Yan-qing, E-mail: yqlu@nju.edu.cn [National Laboratory of Solid State Microstructures and College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093 (China); Cui, Guo-xin [National Laboratory of Solid State Microstructures and College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093 (China); Key Laboratory of Nanodevices and Nanoapplications, Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, Suzhou 215000 (China); Tan, Ai-hong [Laboratory for Quantum Information, China Jiliang University, Hangzhou 310018 (China)

    2014-04-28

    The nonmaximally entangled state is a special kind of entangled state, which has important applications in quantum information processing. It has been generated in quantum circuits based on bulk optical elements. However, corresponding schemes in integrated quantum circuits have been rarely considered. In this Letter, we propose an effective solution for this problem. An electro-optically tunable nonmaximally mode-entangled photon state is generated in an on-chip domain-engineered lithium niobate (LN) waveguide. Spontaneous parametric down-conversion and electro-optic interaction are effectively combined through suitable domain design to transform the entangled state into our desired formation. Moreover, this is a flexible approach to entanglement architectures. Other kinds of reconfigurable entanglements are also achievable through this method. LN provides a very promising platform for future quantum circuit integration.

  19. Integrated source of tunable nonmaximally mode-entangled photons in a domain-engineered lithium niobate waveguide

    International Nuclear Information System (INIS)

    Ming, Yang; Wu, Zi-jian; Xu, Fei; Lu, Yan-qing; Cui, Guo-xin; Tan, Ai-hong

    2014-01-01

    The nonmaximally entangled state is a special kind of entangled state, which has important applications in quantum information processing. It has been generated in quantum circuits based on bulk optical elements. However, corresponding schemes in integrated quantum circuits have been rarely considered. In this Letter, we propose an effective solution for this problem. An electro-optically tunable nonmaximally mode-entangled photon state is generated in an on-chip domain-engineered lithium niobate (LN) waveguide. Spontaneous parametric down-conversion and electro-optic interaction are effectively combined through suitable domain design to transform the entangled state into our desired formation. Moreover, this is a flexible approach to entanglement architectures. Other kinds of reconfigurable entanglements are also achievable through this method. LN provides a very promising platform for future quantum circuit integration

  20. A Bloch modal approach for engineering waveguide and cavity modes in two-dimensional photonic crystals

    DEFF Research Database (Denmark)

    de Lasson, Jakob Rosenkrantz; Kristensen, Philip Trøst; Mørk, Jesper

    2014-01-01

    uses no external excitation and determines the quasi-normal modes as unity eigenvalues of the cavity roundtrip matrix. We demonstrate the method and the quasi-normal modes for two types of two-dimensional photonic crystal structures, and discuss the quasi-normal mode eld distributions and Q...

  1. Gap Surface Plasmon Waveguide Analysis

    DEFF Research Database (Denmark)

    Nielsen, Michael Grøndahl; Bozhevolnyi, Sergey I.

    2014-01-01

    Plasmonic waveguides supporting gap surface plasmons (GSPs) localized in a dielectric spacer between metal films are investigated numerically and the waveguiding properties at telecommunication wavelengths are presented. Especially, we emphasize that the mode confinement can advantageously be con...

  2. Planar and ridge waveguides formed in LiNbO3 by proton exchange combined with oxygen ion implantation.

    Science.gov (United States)

    Zhang, Shao-Mei; Wang, Ke-Ming; Liu, Xiangzhi; Bi, Zhuanfang; Liu, Xiu-Hong

    2010-07-19

    We report on the fabrication of planar and ridge waveguides in lithium niobate by proton exchange combined with oxygen ion implantation. The implanted energy ranges from 600 to 1400 keV with a dose of 1 x 10(15) ions/cm(2). The modes in proton exchanged waveguide can be modulated by O ion implantation. There are different damage profiles in proton-exchanged and ion-implanted waveguides in Rutherford backscattering/channeling spectra. The refractive index profile in single-mode waveguide in lithium niobate has been obtained based on Intensity Calculation Method. Also ridge waveguide was fabricated on the basis of planar waveguide by Ar ion beam etching. The measured near-field intensity distributions of the ridge waveguide modes show a reasonable agreement with the simulated ones. The estimated propagation loss was approximately 2.2 dB/cm.

  3. Physics and technology of tunable pulsed single longitudinal mode ...

    Indian Academy of Sciences (India)

    Design and technology demonstration of compact, narrow bandwidth, high repetition rate, tunable SLM dye lasers in two different configurations, namely Littrow and grazing incidence grating (GIG), were carried out in our lab at BARC, India. The single longitudinal mode (SLM) dye laser generates single-mode laser beams ...

  4. Mesoscale cavities in hollow-core waveguides for quantum optics with atomic ensembles

    Directory of Open Access Journals (Sweden)

    Haapamaki C.M.

    2016-08-01

    Full Text Available Single-mode hollow-core waveguides loaded with atomic ensembles offer an excellent platform for light–matter interactions and nonlinear optics at low photon levels. We review and discuss possible approaches for incorporating mirrors, cavities, and Bragg gratings into these waveguides without obstructing their hollow cores. With these additional features controlling the light propagation in the hollow-core waveguides, one could potentially achieve optical nonlinearities controllable by single photons in systems with small footprints that can be integrated on a chip. We propose possible applications such as single-photon transistors and superradiant lasers that could be implemented in these enhanced hollow-core waveguides.

  5. A Bloch modal approach for engineering waveguide and cavity modes in two-dimensional photonic crystals

    Science.gov (United States)

    de Lasson, Jakob R.; Kristensen, Philip Trøst; Mørk, Jesper; Gregersen, Niels

    2013-05-01

    In open nanophotonic structures, the natural modes are so-called quasi-normal modes satisfying an outgoing wave boundary condition. We present a new scheme based on a modal expansion technique, a scattering matrix approach and Bloch modes of periodic structures for determining these quasi-normal modes. As opposed to spatial discretization methods like the finite-difference time-domain method and the finite element method, the present approach satisfies automatically the outgoing wave boundary condition in the propagation direction which represents a significant advantage of our new method. The scheme uses no external excitation and determines the quasi-normal modes as unity eigenvalues of the cavity roundtrip matrix. We demonstrate the method and the quasi-normal modes for two types of two-dimensional photonic crystal structures, and discuss the quasi-normal mode field distributions and Q-factors in relation to the transmission spectra of these structures.

  6. Nanoporous polymer liquid core waveguides

    DEFF Research Database (Denmark)

    Gopalakrishnan, Nimi; Christiansen, Mads Brøkner; Ndoni, Sokol

    2010-01-01

    We demonstrate liquid core waveguides defined by UV to enable selective water infiltration in nanoporous polymers, creating an effective refractive index shift Δn=0.13. The mode confinement and propagation loss in these waveguides are presented.......We demonstrate liquid core waveguides defined by UV to enable selective water infiltration in nanoporous polymers, creating an effective refractive index shift Δn=0.13. The mode confinement and propagation loss in these waveguides are presented....

  7. BEND-INDUCED LOSSES IN A SINGLE-MODE MICROSTRUCTURED FIBER WITH A LARGE CORE

    Directory of Open Access Journals (Sweden)

    Y. A. Gatchin

    2015-03-01

    Full Text Available A study of bend-induced losses in a silica-based single-mode microstructured fiber with a core diameter ranging from 20 to 35 microns and increased relative air content in the holey cladding has been conducted. With the use of the equivalent step-index profile method in approximation of waveguide parameters of microstructured fiber (normalized frequency and normalized transverse attenuation constant the effect of bending on the spectral position of the fundamentalmode short-wavelength leakage boundary has been analyzed. Upon measurement of spectral characteristics of attenuation in the considered fibers good accordance of numerical and experimental data has been found out. It is shown that increase of the air content in the holey cladding leads to expansion of the mentioned boundary to lower wavelengths for the value from 150 to 800 nm depending on the core size and bending conditions. A single-transverse-mode propagation is achieved on fiber length of 5-10 meters due to a substantial difference in losses of fundamental and higher-order guided modes attained by bending. Optical losses in all studied samples are less than 10 dB/km at the wavelength λ = 1550 nm. The results of the study can be applied in the design of high-power laser systems having such basic requirements as a relatively large mode spot and high beam quality.

  8. Cross-correlated imaging of single-mode photonic crystal rod fiber with distributed mode filtering

    DEFF Research Database (Denmark)

    Laurila, Marko; Barankov, Roman; Jørgensen, Mette Marie

    2013-01-01

    Photonic crystal bandgap fibers employing distributed mode filtering design provide near diffraction-limited light outputs, a critical property of fiber-based high-power lasers. Microstructure of the fibers is tailored to achieve single-mode operation at specific wavelength by resonant mode...... identify regimes of resonant coupling between higher-order core modes and cladding band. We demonstrate a passive fiber design in which the higher-order modal content inside the single-mode guiding regime is suppressed by at least 20 dB even for significantly misaligned input-coupling configurations....

  9. Terahertz light-emitting graphene-channel transistor toward single-mode lasing

    Directory of Open Access Journals (Sweden)

    Yadav Deepika

    2018-03-01

    Full Text Available A distributed feedback dual-gate graphene-channel field-effect transistor (DFB-DG-GFET was fabricated as a current-injection terahertz (THz light-emitting laser transistor. We observed a broadband emission in a 1–7.6-THz range with a maximum radiation power of ~10 μW as well as a single-mode emission at 5.2 THz with a radiation power of ~0.1 μW both at 100 K when the carrier injection stays between the lower cutoff and upper cutoff threshold levels. The device also exhibited peculiar nonlinear threshold-like behavior with respect to the current-injection level. The LED-like broadband emission is interpreted as an amplified spontaneous THz emission being transcended to a single-mode lasing. Design constraints on waveguide structures for better THz photon field confinement with higher gain overlapping as well as DFB cavity structures with higher Q factors are also addressed towards intense, single-mode continuous wave THz lasing at room temperature.

  10. High-current electron beam coupling to hybrid waveguide and plasma modes in a dielectric Cherenkov maser with a plasma layer

    International Nuclear Information System (INIS)

    Shlapakovski, Anatoli S.

    2002-01-01

    The linear theory of a dielectric Cherenkov maser with a plasma layer has been developed. The dispersion relation has been derived for the model of infinitely thin, fully magnetized, monoenergetic hollow electron beam, in the axisymmetric case. The results of the numerical solution of the dispersion relation and the analysis of the beam coupling to hybrid waves, both hybrid waveguide and hybrid plasma modes, are presented. For the hybrid waveguide mode, spatial growth rate dependences on frequency at different plasma densities demonstrate improvement in gain for moderate densities, but strong shifting the amplification band and narrowing the bandwidth. For the hybrid plasma mode, the case of mildly relativistic, 200-250 keV beams is of interest, so that the wave phase velocity is just slightly greater than the speed of light in a dielectric medium. It has been shown that depending on beam and plasma parameters, the hybrid plasma mode can be separated from the hybrid waveguide mode, or be coupled to it through the beam resulting in strong gain increase, or exhibit a flat gain vs frequency dependence over a very broad band. The parameters, at which the -3 dB bandwidth calculated for 30 dB peak gain exceeds an octave, have been found

  11. Quasi-single-mode homogeneous 31-core fibre

    DEFF Research Database (Denmark)

    Sasaki, Y.; Saitoh, S.; Amma, Y.

    2015-01-01

    A homogeneous 31-core fibre with a cladding diameter of 230 μm for quasi-single-mode transmission is designed and fabricated. LP01-crosstalk of -38.4 dB/11 km at 1550 nm is achieved by using few-mode trench-assisted cores.......A homogeneous 31-core fibre with a cladding diameter of 230 μm for quasi-single-mode transmission is designed and fabricated. LP01-crosstalk of -38.4 dB/11 km at 1550 nm is achieved by using few-mode trench-assisted cores....

  12. Effect of acoustic waveguide properties on the Brillouin gain spectrum in multi-mode fibers

    Science.gov (United States)

    Ke, Wei-Wei; Wang, Xiao-Jun; Tang, Xuan

    2015-02-01

    With a recent developed mode-coupling model, the Brillouin gain spectra (BGS) of multi-mode fibers (MMF) are investigated and compared with the corresponding experiment. It is found that the calculation results are coincident well with the experiment data. Furthermore, the BGS are found to be very sensitive to the index fluctuation. Such phenomenon is demonstrated by introducing a small index hump or dip in the center of the fiber core. And it can be explained by that the index fluctuation may influence the acoustic mode greatly.

  13. Topology optimized mode multiplexing in silicon-on-insulator photonic wire waveguides

    DEFF Research Database (Denmark)

    Frellsen, Louise Floor; Ding, Yunhong; Sigmund, Ole

    2016-01-01

    We design and experimentally verify a topology optimized low-loss and broadband two-mode (de-)multiplexer, which is (de-)multiplexing the fundamental and the first-order transverse-electric modes in a silicon photonic wire. The device has a footprint of 2.6 μm x 4.22 μm and exhibits a loss 14 d...

  14. Leaky mode suppression in planar optical waveguides written in Er:TeO{sub 2}–WO{sub 3} glass and CaF{sub 2} crystal via double energy implantation with MeV N{sup +} ions

    Energy Technology Data Exchange (ETDEWEB)

    Bányász, I., E-mail: banyasz@sunserv.kfki.hu [Department of Crystal Physics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O.B. 49, H-1525 Budapest (Hungary); Zolnai, Z.; Fried, M. [Research Institute for Technical Physics and Materials Science, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P.O.B. 49, Budapest H-1525 (Hungary); Berneschi, S. [MDF-Lab, “Nello Carrara” Institute of Applied Physics, IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); “Enrico Fermi” Center for Study and Research, Piazza del Viminale 2, 00184 Roma (Italy); Pelli, S.; Nunzi-Conti, G. [MDF-Lab, “Nello Carrara” Institute of Applied Physics, IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy)

    2014-05-01

    Ion implantation proved to be an universal technique for producing waveguides in most optical materials. Tellurite glasses are good hosts of rare-earth elements for the development of fibre and integrated optical amplifiers and lasers covering all the main telecommunication bands. Er{sup 3+}-doped tellurite glasses are good candidates for the fabrication of broadband amplifiers in wavelength division multiplexing around 1.55 μm, as they exhibit large stimulated cross sections and broad emission bandwidth. Calcium fluoride is an excellent optical material, due to its perfect optical characteristics from UV wavelengths up to near IR. It has become a promising laser host material (doped with rare earth elements). Ion implantation was also applied to optical waveguide fabrication in CaF{sub 2} and other halide crystals. In the present work first single-energy implantations at 3.5 MeV at various fluences were applied. Waveguide operation up to 1.5 μm was observed in Er:Te glass, and up to 980 nm in CaF{sub 2}. Then double-energy implantations at a fixed upper energy of 3.5 MeV and lower energies between 2.5 and 3.2 MeV were performed to suppress leaky modes by increasing barrier width.

  15. Physics and technology of tunable pulsed single longitudinal mode ...

    Indian Academy of Sciences (India)

    Figure 8. Principle of two-mode operation. Figure 9. Amplifier efficiency vs. wavelength. Experimentally observed wavelength change is 2.5 pm/◦C = 2.39 GHz/◦C at. 560 nm. It was observed that if the dye temperature was stabilized there was no transition from single-mode to twin-mode over an hour operation. Change in ...

  16. LOPUT Laser: A novel concept to realize single longitudinal mode ...

    Indian Academy of Sciences (India)

    2014-02-05

    Feb 5, 2014 ... Contributed Papers Volume 82 Issue 2 February 2014 pp 185-190 ... Abstract. We propose a novel type of cavity design to generate single longitudinal mode laser known as LOPUT cavity. LOPUT cavity stands for linear orthogonally polarized modes resulting in unidirectional travelling wave cavity.

  17. Single-mode ytterbium-doped large-mode-area photonic bandgap rod fiber amplifier

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Scolari, Lara; Broeng, Jes

    2011-01-01

    Enabling Single-Mode (SM) operation in Large-Mode-Area (LMA) fiber amplifiers and lasers is critical, since a SM output ensures high beam quality and excellent pointing stability. In this paper, we demonstrate and test a new design approach for achieving SM LMA rod fibers by using a photonic...... bandgap structure. The structure allows resonant coupling of higher-order modes from the core and acts as a spatially Distributed Mode Filter (DMF). With this approach, we demonstrate passive SM performance in an only ~50cm long and straight ytterbium-doped rod fiber. The amplifier has a mode field...

  18. Topology-optimized mode converter in a silicon-on-insulator photonic wire waveguide

    DEFF Research Database (Denmark)

    Frellsen, Louise Floor; Ding, Yunhong; Sigmund, Ole

    2016-01-01

    A 1.4 μm × 3.4 μm fundamental to first order mode converter for the transverse electric polarization was designed using topology optimization. Insertion loss <2 dB (100 nm bandwidth) and extinction ratio >9.5 dB.......A 1.4 μm × 3.4 μm fundamental to first order mode converter for the transverse electric polarization was designed using topology optimization. Insertion loss 9.5 dB....

  19. Single photon detection in the SQS mode

    International Nuclear Information System (INIS)

    Alves, M.A.; Fraga, M.M.; Lima, E.P. de; Marques, R.F.; Neves, F.; Policarpo, A.

    1997-01-01

    Results are presented concerning the detection of single UV photons in self quenching streamer detectors by photoionization of one of the gas mixture components, in this case TEA (tri ethyl-amine), whose molecules have low photoionization potential and large absorption cross section. As a UV light source, a gas scintillation counter filled with krypton was used, whose emission light spectrum, centered at approximately 150 nm, overlaps well the photoionization spectrum of TEA. The mixtures studied were argon/ethane/TEA, argon/isobutane/TEA, argon/ethane/methylal/TEA and argon/isobutane/methylal/ TEA. (author). 4 refs., 4 figs

  20. Analytical modelling of waveguide mode launchers for matched feed reflector systems

    DEFF Research Database (Denmark)

    Palvig, Michael Forum; Breinbjerg, Olav; Meincke, Peter

    2016-01-01

    Matched feed horns aim to cancel cross polarization generated in offset reflector systems. An analytical method for predicting the mode spectrum generated by inclusions in such horns, e.g. stubs and pins, is presented. The theory is based on the reciprocity theorem with the inclusions represented...

  1. Focussed MeV ion beam implanted waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Von Bibra, M.L.; Roberts, A.; Nugent, K.; Jamieson, D.N. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    Single mode buried optical waveguides have been fabricated in fused silica by MeV proton implantation using a focussed hydrogen ion beam. The technique has the potential to direct write waveguide devices and produce multi-layered structures, without the need for intermediate steps such as mask fabrication or layered depositions. A micron resolution Confocal Raman Spectrometer has been used to map the distribution of atomic vacancies that forms the waveguiding region. The results are compared with theoretical calculations. Losses of 3 dB cm{sup -1} have been measured in unannealed samples, which decreases to less than 0.5 dB cm{sup -1} after annealing at 500 degrees Celsius. We describe methods for determining the refractive index distribution of single mode buried waveguides from their output intensity distributions via an inversion of the scalar wave equation. (authors). 5 figs.

  2. Efficient multi-mode to single-mode conversion in a 61 port photonic lantern

    DEFF Research Database (Denmark)

    Noordegraaf, Danny; Skovgaard, Peter M. W.; Dybendahl Maack, Martin

    2010-01-01

    We demonstrate the fabrication of a multi-mode (MM) to 61 port single-mode (SM) splitter or "Photonic Lantern". Low port count Photonic Lanterns were first described by Leon-Saval et al. (2005). These are based on a photonic crystal fiber type design, with air-holes defining the multi-mode fiber ...... of astrophotonics for coupling MM star-light to an ensemble of SM fibers in order to perform fiber Bragg grating based spectral filtering....

  3. Computer Program for Numerical Evaluation of the Performance of an Overmoded TM01 Circular to TE10 Rectangular Waveguide Mode Converter

    Science.gov (United States)

    1993-12-01

    aperture A&. The voltage to current ratio of the TEjo mode at z = L2 in region 2 is taken to be Z2. Here, L2 is taken to be so large that any evanescent...transmitted power, and the time-average reflected power. The electric field of the TEjo waves in the left-hand rectangular waveguide in Fig. 2 is [A’(s1

  4. Damping of unbound single-particle modes

    International Nuclear Information System (INIS)

    Fortier, S.; Beaumel, D.; Gales, S.; Guillot, J.; Langevin-Joliot, H.; Laurent, H.; Maison, J.M.; Bordewijk, J.; Brandenburg, S.; Krasznahorkay, A.; Crawley, G.M.; Massolo, C.P.; Renteria, M.; Khendriche, A.

    1995-01-01

    The (α, 3 He-n) reaction has been investigated at 120 MeV incident energy on 64 Ni, 90 Zr, and 120 Sn target nuclei. Neutrons in coincidence with 3 He particles emitted at 0 degree were detected using the multidetector array EDEN, in order to get information about the decay of single-particle states embedded in the (α, 3 He) continuum. Neutron angular correlations, multiplicity values, and branching ratios to low-lying states of the final nuclei have been compared with the predictions of the statistical decay model. Evidence for a significant nonstatistical decay branch has been observed in the three nuclei below about 15 MeV excitation energy. Direct branching ratios in 91 Zr deduced from this analysis are compared with the predictions of two nuclear structure models. At higher excitation energy, the decay characteristics of the (α, 3 He) continuum are shown to be mainly statistical

  5. Efficient multi-mode to single-mode coupling in a photonic lantern

    DEFF Research Database (Denmark)

    Noordegraaf, Danny; Skovgaard, Peter M.; Nielsen, Martin D.

    2009-01-01

    We demonstrate the fabrication of a high performance multi-mode (MM) to single-mode (SM) splitter or “photonic lantern”, first described by Leon-Saval et al. (2005). Our photonic lantern is a solid all-glass version, and we show experimentally that this device can be used to achieve efficient and...

  6. Determination of refractive index, extinction coefficient and thickness of thin films by the method of waveguide mode excitation

    Energy Technology Data Exchange (ETDEWEB)

    Sokolov, V I; Marusin, N V; Panchenko, V Ya; Savelyev, A G; Seminogov, V N; Khaydukov, E V [Institute on Laser and Information Technologies, Russian Academy of Sciences, Shatura, Moscow Region (Russian Federation)

    2013-12-31

    We propose a method for measuring simultaneously the refractive index n{sub f}, extinction coefficient m{sub f} and thickness H{sub f} of thin films. The method is based on the resonant excitation of waveguide modes in the film by a TE- or a TM-polarised laser beam in the geometry of frustrated total internal reflection. The values of n{sub f}, m{sub f} and H{sub f} are found by minimising the functional φ = [N{sup -1}Σ{sup N}{sub i=1}(R{sub exp}(θ{sub i}) – R{sub thr}(θ{sub i})){sup 2}]{sup 1/2}, where R{sub exp}(θ{sub i}) and R{sub thr}(θ{sub i}) are the experimental and theoretical coefficients of reflection of the light beam from the interface between the measuring prism and the film at an angle of incidence θ{sub i}. The errors in determining n{sub f}, m{sub f} and H{sub f} by this method are ±2 × 10{sup -4}, ±1 × 10{sup -3} and ±0.5%, respectively. (fiber and integrated optics)

  7. Linear optical quantum computing in a single spatial mode.

    Science.gov (United States)

    Humphreys, Peter C; Metcalf, Benjamin J; Spring, Justin B; Moore, Merritt; Jin, Xian-Min; Barbieri, Marco; Kolthammer, W Steven; Walmsley, Ian A

    2013-10-11

    We present a scheme for linear optical quantum computing using time-bin-encoded qubits in a single spatial mode. We show methods for single-qubit operations and heralded controlled-phase (cphase) gates, providing a sufficient set of operations for universal quantum computing with the Knill-Laflamme-Milburn [Nature (London) 409, 46 (2001)] scheme. Our protocol is suited to currently available photonic devices and ideally allows arbitrary numbers of qubits to be encoded in the same spatial mode, demonstrating the potential for time-frequency modes to dramatically increase the quantum information capacity of fixed spatial resources. As a test of our scheme, we demonstrate the first entirely single spatial mode implementation of a two-qubit quantum gate and show its operation with an average fidelity of 0.84±0.07.

  8. Design and testing of multi-standard waveguide couplers.

    Science.gov (United States)

    Beeson, S; Neuber, A

    2012-03-01

    Most applications that use waveguides are designed for a single frequency or single band of frequency, and thus the waveguide dimensions are chosen for single mode operation. In special cases where multiple frequencies across multiple bands are needed (i.e., probing the temporal response of decaying plasma using a cw source that is generated by a pulsed source), special techniques must be used in order to implement both sources into a single waveguide structure. This paper presents two types of couplers designed to implement x-band frequencies into an s-band system with a large coupling coefficient ( -10 dB) at the design frequency of 11 GHz. Along with a discussion on the design procedure, a detailed description on the parameter optimization and initial values estimation is presented. The custom waveguide structures were tested utilizing an Agilent E8364B PNA network analyzer, and showed reasonable agreement with the simulated performance over the frequency range of interest.

  9. High-Q energy trapping of temperature-stable shear waves with Lamé cross-sectional polarization in a single crystal silicon waveguide

    Science.gov (United States)

    Tabrizian, R.; Daruwalla, A.; Ayazi, F.

    2016-03-01

    A multi-port electrostatically driven silicon acoustic cavity is implemented that efficiently traps the energy of a temperature-stable eigen-mode with Lamé cross-sectional polarization. Dispersive behavior of propagating and evanescent guided waves in a ⟨100⟩-aligned single crystal silicon waveguide is used to engineer the acoustic energy distribution of a specific shear eigen-mode that is well known for its low temperature sensitivity when implemented in doped single crystal silicon. Such an acoustic energy trapping in the central region of the acoustic cavity geometry and far from substrate obviates the need for narrow tethers that are conventionally used for non-destructive and high quality factor (Q) energy suspension in MEMS resonators; therefore, the acoustically engineered waveguide can simultaneously serve as in-situ self-oven by passing large uniformly distributed DC currents through its body and without any concern about perturbing the mode shape or deforming narrow supports. Such a stable thermo-structural performance besides large turnover temperatures than can be realized in Lamé eigen-modes make this device suitable for implementation of ultra-stable oven-controlled oscillators. 78 MHz prototypes implemented in arsenic-doped single crystal silicon substrates with different resistivity are transduced by in- and out-of-plane narrow-gap capacitive ports, showing high Q of ˜43k. The low resistivity device shows an overall temperature-induced frequency drift of 200 ppm over the range of -20 °C to 80 °C, which is ˜15× smaller compared to overall frequency drift measured for the similar yet high resistivity device in the same temperature range. Furthermore, a frequency tuning of ˜2100 ppm is achieved in high resistivity device by passing 45 mA DC current through its body. Continuous operation of the device under such a self-ovenizing current over 10 days did not induce frequency instability or degradation in Q.

  10. Efficient fiber-coupled single-photon source based on quantum dots in a photonic-crystal waveguide

    DEFF Research Database (Denmark)

    Daveau, Raphaël S.; Balram, Krishna C.; Pregnolato, Tommaso

    2017-01-01

    Many photonic quantum information processing applications would benefit from a high brightness, fiber-coupled source of triggered single photons. Here, we present a fiber-coupled photonic-crystal waveguide (PCWG) singlephoton source relying on evanescent coupling of the light field from a tapered...... transfer it to the fiber. The applied outcoupling method is robust, stable over time, and broadband over several tens of nanometers, which makes it a highly promising pathway to increase the efficiency and reliability of planar chip-based single-photon sources....

  11. Graphene antidot lattice waveguides

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Gunst, Tue; Markussen, Troels

    2012-01-01

    We introduce graphene antidot lattice waveguides: nanostructured graphene where a region of pristine graphene is sandwiched between regions of graphene antidot lattices. The band gaps in the surrounding antidot lattices enable localized states to emerge in the central waveguide region. We model...... the waveguides via a position-dependent mass term in the Dirac approximation of graphene and arrive at analytical results for the dispersion relation and spinor eigenstates of the localized waveguide modes. To include atomistic details we also use a tight-binding model, which is in excellent agreement...... with the analytical results. The waveguides resemble graphene nanoribbons, but without the particular properties of ribbons that emerge due to the details of the edge. We show that electrons can be guided through kinks without additional resistance and that transport through the waveguides is robust against...

  12. Damping of unbound single-particle modes

    Energy Technology Data Exchange (ETDEWEB)

    Fortier, S.; Beaumel, D.; Gales, S.; Guillot, J.; Langevin-Joliot, H.; Laurent, H.; Maison, J.M.; Bordewijk, J.; Brandenburg, S.; Krasznahorkay, A.; Crawley, G.M.; Massolo, C.P.; Renteria, M.; Khendriche, A. [Institut de Physique Nucleaire, IN2P3-CNRS, 91406 Orsay Cedex (France)]|[Kernfysisch Versneller Instituut, 9747 AA Groningen (Netherlands)]|[Nuclear Research Institute, Debrecen P.O. Box 51, H-4001 (Hungary)]|[NSCL, Michigan State University, East Lansing, Michigan 48824 (United States)]|[Dep. Fisica, Fac. Cs. Exactas, UNLP, CC Nio 67, 1900 La Plata (Argentina)]|[Institut de Sciences Exactes,Universite de Tizi-Ouzou, 15000 Tizi-Ouzou (Algeria)

    1995-11-01

    The ({alpha},{sup 3}He-{ital n}) reaction has been investigated at 120 MeV incident energy on {sup 64}Ni, {sup 90}Zr, and {sup 120}Sn target nuclei. Neutrons in coincidence with {sup 3}He particles emitted at 0{degree} were detected using the multidetector array EDEN, in order to get information about the decay of single-particle states embedded in the ({alpha},{sup 3}He) continuum. Neutron angular correlations, multiplicity values, and branching ratios to low-lying states of the final nuclei have been compared with the predictions of the statistical decay model. Evidence for a significant nonstatistical decay branch has been observed in the three nuclei below about 15 MeV excitation energy. Direct branching ratios in {sup 91}Zr deduced from this analysis are compared with the predictions of two nuclear structure models. At higher excitation energy, the decay characteristics of the ({alpha},{sup 3}He) continuum are shown to be mainly statistical.

  13. Real time hybridization studies by resonant waveguide gratings using nanopattern imaging for Single Nucleotide Polymorphism detection

    KAUST Repository

    Bougot-Robin, Kristelle

    2013-12-20

    2D imaging of biochips is particularly interesting for multiplex biosensing. Resonant properties allow label-free detection using the change of refractive index at the chip surface. We demonstrate a new principle of Scanning Of Resonance on Chip by Imaging (SORCI) based on spatial profiles of nanopatterns of resonant waveguide gratings (RWGs) and its embodiment in a fluidic chip for real-time biological studies. This scheme allows multiplexing of the resonance itself by providing nanopattern sensing areas in a bioarray format. Through several chip designs we discuss resonance spatial profiles, dispersion and electric field distribution for optimal light-matter interaction with biological species of different sizes. Fluidic integration is carried out with a black anodized aluminum chamber, advantageous in term of mechanical stability, multiple uses of the chip, temperature control and low optical background. Real-time hybridization experiments are illustrated by SNP (Single Nucleotide Polymorphism) detection in gyrase A of E. coli K12, observed in evolution studies of resistance to the antibiotic ciprofloxacin. We choose a 100 base pairs (bp) DNA target (∼30 kDa) including the codon of interest and demonstrate the high specificity of our technique for probes and targets with close affinity constants. This work validates the safe applicability of our unique combination of RWGs and simple instrumentation for real-time biosensing with sensitivity in buffer solution of ∼10 pg/mm2. Paralleling the success of RWGs sensing for cells sensing, our work opens new avenues for a large number of biological studies. © 2013 Springer Science+Business Media.

  14. Engineering spin-wave channels in submicrometer magnonic waveguides

    Directory of Open Access Journals (Sweden)

    XiangJun Xing

    2013-03-01

    Full Text Available Based on micromagnetic simulations and model calculations, we demonstrate that degenerate well and barrier magnon modes can exist concurrently in a single magnetic waveguide magnetized perpendicularly to the long axis in a broad frequency band, corresponding to copropagating edge and centre spin waves, respectively. The dispersion relations of these magnon modes clearly show that the edge and centre modes possess much different wave characteristics. By tailoring the antenna size, the edge mode can be selectively activated. If the antenna is sufficiently narrow, both the edge and centre modes are excited with considerable efficiency and propagate along the waveguide. By roughening the lateral boundary of the waveguide, the characteristics of the relevant channel can be easily engineered. Moreover, the coupling of the edge and centre modes can be conveniently controlled by scaling the width of the waveguide. For a wide waveguide with a narrow antenna, the edge and centre modes travel relatively independently in spatially-separate channels, whereas for a narrow strip, these modes strongly superpose in space. These discoveries might find potential applications in emerging magnonic devices.

  15. Volume production of polarization controlled single-mode VCSELs

    Science.gov (United States)

    Grabherr, Martin; King, Roger; Jäger, Roland; Wiedenmann, Dieter; Gerlach, Philipp; Duckeck, Denise; Wimmer, Christian

    2008-02-01

    Over the past 3 years laser based tracking systems for optical PC mice have outnumbered the traditional VCSEL market datacom by far. Whereas VCSEL for datacom in the 850 nm regime emit in multipe transverse modes, all laser based tracking systems demand for single-mode operation which require advanced manufacturing technology. Next generation tracking systems even require single-polarization characteristics in order to avoid unwanted movement of the pointer due to polarization flips. High volume manufacturing and optimized production methods are crucial for achieving the addressed technical and commercial targets of this consumer market. The resulting ideal laser source which emits single-mode and single-polarization at low cost is also a promising platform for further applications like tuneable diode laser absorption spectroscopy (TDLAS) or miniature atomic clocks when adapted to the according wavelengths.

  16. Dry-film polymer waveguide for silicon photonics chip packaging.

    Science.gov (United States)

    Hsu, Hsiang-Han; Nakagawa, Shigeru

    2014-09-22

    Polymer waveguide made by dry film process is demonstrated for silicon photonics chip packaging. With 8 μm × 11.5 μm core waveguide, little penalty is observed up to 25 Gbps before or after the light propagate through a 10-km long single-mode fiber (SMF). Coupling loss to SMF is 0.24 dB and 1.31 dB at the polymer waveguide input and output ends, respectively. Alignment tolerance for 0.5 dB loss increase is +/- 1.0 μm along both vertical and horizontal directions for the coupling from the polymer waveguide to SMF. The dry-film polymer waveguide demonstrates promising performance for silicon photonics chip packaging used in next generation optical multi-chip module.

  17. Single-bunch beam breakup in a dielectric-lined waveguide

    International Nuclear Information System (INIS)

    Ng, King-Yuen.

    1992-08-01

    We examine beam breakup of a 100 nC I mm-long (rms) source bunch inside a cylindrical dielectric waveguide, with dielectric ε = 2.65 filling the radius between 7.5 and 9.0 mm. Only ∼ 78% of the bunch with an initial offset of 0.3 mm survives the passage of the 3.75 m waveguide. The loss is mainly due to the large deflections of some particles that are slowed down to nearly zero velocity. As a result, quadrupole focussing of any sort will not help. However, if the waveguide is shortened to 3.3 m, the loss reduces to only 5.5%

  18. Tunable single-longitudinal-mode fiber optical parametric oscillator.

    Science.gov (United States)

    Yang, Sigang; Cheung, Kim K Y; Zhou, Yue; Wong, Kenneth K Y

    2010-02-15

    A tunable single-longitudinal-mode (SLM) fiber optical parametric oscillator (FOPO) is proposed and demonstrated experimentally. A sub-ring cavity with a short cavity length is used to suppress the longitudinal modes and broaden the longitudinal mode spacing. A fiber loop mirror, consisted of an unpumped erbium-doped fiber, acts as an autotracking filter for providing fine mode restriction and ensuring the single-frequency operation. The measurement based on a homodyne method shows that the FOPO provides the SLM output. Furthermore the SLM FOPO can be tunable over 14 nm for each of the signal and the idler, which is limited only by the gain bandwidth of the fiber optical parametric amplifier.

  19. Tuning ZOR in ENZ waveguide using a single longitudinal slot and equivalent circuit parameter extraction

    DEFF Research Database (Denmark)

    Vojnovic, Nebojsa; Jokanovic, Branka; Mitrovic, Miranda

    2014-01-01

    In this paper, the effects of placing a longitudinal slot in the channel region of a rectangular waveguide ENZ structure, are analyzed. A following investigation showed that changing the length of this slot can be employed to achieve tuning of only the tunneling frequency. Maximum resonant freque...

  20. Single-Photon Nonlinear Optics in Integrated Hollow-Core Waveguides

    Science.gov (United States)

    2010-10-13

    spectroscopy on a chip because these samples are more complex to fabricated and the pedestals showed large and varying nonidealities. The Attach...atomic density variation with three cycles of heating and cooling.) ................................. 204 xvi xvii Figure B.3 AL5 – Chromium (No... Raman and Brillouin fiber optical 14 15 amplifiers, photonic crystal waveguides, and microresonators. A number of interesting linear and

  1. CW frequency doubling of 1029 nm radiation using single pass bulk and waveguide PPLN crystals

    Czech Academy of Sciences Publication Activity Database

    Chiodo, N.; Du Burck, F.; Hrabina, Jan; Candela, Y.; Wallerand, J. P.; Acef, O.

    2013-01-01

    Roč. 311, 15 January (2013), s. 239-244 ISSN 0030-4018 R&D Projects: GA ČR GPP102/11/P820 Institutional support: RVO:68081731 Keywords : IR laser * second harmonic generation * waveguide and bulk crystals * periodically poled lithium niobate * 1029 nm wavelength Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.542, year: 2013

  2. Temporal mode selectivity by frequency conversion in second-order nonlinear optical waveguides

    DEFF Research Database (Denmark)

    Reddy, D. V.; Raymer, M. G.; McKinstrie, C. J.

    2013-01-01

    We explore theoretically the feasibility of using frequency conversion by sum- or difference-frequency generation, enabled by three-wave-mixing, for selectively multiplexing orthogonal input waveforms that overlap in time and frequency. Such a process would enable a drop device for use in a trans......We explore theoretically the feasibility of using frequency conversion by sum- or difference-frequency generation, enabled by three-wave-mixing, for selectively multiplexing orthogonal input waveforms that overlap in time and frequency. Such a process would enable a drop device for use...... in a transparent optical network using temporally orthogonal waveforms to encode different channels. We model the process using coupled-mode equations appropriate for wave mixing in a uniform second-order nonlinear optical medium pumped by a strong laser pulse. We find Green functions describing the process......, and employ Schmidt (singular-value) decompositions thereof to quantify its viability in functioning as a coherent waveform discriminator. We define a selectivity figure of merit in terms of the Schmidt coefficients, and use it to compare and contrast various parameter regimes via extensive numerical...

  3. Silicon nitride waveguide platform for fluorescence microscopy of living cells.

    Science.gov (United States)

    Tinguely, Jean-Claude; Helle, Øystein Ivar; Ahluwalia, Balpreet Singh

    2017-10-30

    Waveguide chip-based microscopy reduces the complexity of total internal reflection fluorescence (TIRF) microscopy, and adds features like large field of view illumination, decoupling of illumination and collection path and easy multimodal imaging. However, for the technique to become widespread there is a need of low-loss and affordable waveguides made of high-refractive index material. Here, we develop and report a low-loss silicon nitride (Si 3 N 4 ) waveguide platform for multi-color TIRF microscopy. Single mode conditions at visible wavelengths (488-660 nm) were achieved using shallow rib geometry. To generate uniform excitation over appropriate dimensions waveguide bends were used to filter-out higher modes followed by adiabatic tapering. Si 3 N 4 material is finally shown to be biocompatible for growing and imaging living cells.

  4. Characteristics of SBS dynamics in single-mode optical fibres

    Science.gov (United States)

    Gordeev, A. A.; Efimkov, V. F.; Zubarev, I. G.; Mikhailov, S. I.; Sobolev, V. B.

    2016-03-01

    The characteristics of the gain of Stokes pulses in single-mode optical fibres by stimulated Brillouin scattering (SBS) of monochromatic and nonmonochromatic pump signals have been investigated by numerical simulation using a spectral approach. Conditions under which 'slow light' (caused by a group delay) can be implemented are found (it is reasonable to apply this term to a process in which a pulse is delayed with conservation of its shape). The plane-wave interaction model is shown to describe adequately the dynamics of this process in single-mode fibres. A number of gain modes are investigated for Stokes pulses with different time structures upon monochromatic and nonmonochromatic excitation. A new data transfer technique is proposed, which is based on the conversion of stepwise phase modulation of the input Stokes signal into amplitude modulation of the output signal.

  5. Characteristics of SBS dynamics in single-mode optical fibres

    Energy Technology Data Exchange (ETDEWEB)

    Gordeev, A A; Efimkov, V F; Zubarev, I G; Mikhailov, S I; Sobolev, V B [P N Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2016-03-31

    The characteristics of the gain of Stokes pulses in single-mode optical fibres by stimulated Brillouin scattering (SBS) of monochromatic and nonmonochromatic pump signals have been investigated by numerical simulation using a spectral approach. Conditions under which 'slow light' (caused by a group delay) can be implemented are found (it is reasonable to apply this term to a process in which a pulse is delayed with conservation of its shape). The plane-wave interaction model is shown to describe adequately the dynamics of this process in single-mode fibres. A number of gain modes are investigated for Stokes pulses with different time structures upon monochromatic and nonmonochromatic excitation. A new data transfer technique is proposed, which is based on the conversion of stepwise phase modulation of the input Stokes signal into amplitude modulation of the output signal. (nonlinear optical phenomena)

  6. Measurement of flow fluctuations in single longitudinal mode pulsed ...

    Indian Academy of Sciences (India)

    2014-02-12

    Feb 12, 2014 ... A simple technique had been demonstrated for measuring flow-induced fluctuations in the single longitudinal mode (SLM) pulsed dye laser. Two prominent frequency components of 10.74 Hz and 48.83 Hz were present in the output of the Nd:YAG-pumped SLM dye laser. The flow-induced frequency ...

  7. Single-mode fibre coupler as refractometer sensor

    Indian Academy of Sciences (India)

    We report a simple, non-intrusive fibre-optic refractometer sensor for measuring the refractive index of liquid and optically transparent solid medium. Sensing principle of the proposed sensor is based on monitoring the back-reflected light signal through the second input port of a 2 × 1 single-mode fibre coupler when light ...

  8. Measurement of flow fluctuations in single longitudinal mode pulsed ...

    Indian Academy of Sciences (India)

    2014-02-12

    Feb 12, 2014 ... The single mode dye laser is a very useful tool for high-resolution spectroscopy, resonance ionization spec- troscopy (RIS), coherent control etc. For many spectroscopic applications it is however necessary to have a control over the emission linewidth of the dye laser. The frequency- stabilized tunable laser ...

  9. Single-mode multicore fiber for dense space division multiplexing

    DEFF Research Database (Denmark)

    Sasaki, Yusuke; Amma, Yoshimichi; Takenaga, Katsuhiro

    2016-01-01

    Single-mode multicore fiber (SM-MCF) is attractive for high-capacity transmission. Our fabricated SM-MCFs achieve high core count and low crosstalk with a cladding diameter of 230 µm. Characteristics of fan-in/fan-out for the SM-MCFs are also investigated....

  10. Ultra-low loss nano-taper coupler for Silicon-on-Insulator ridge waveguide

    DEFF Research Database (Denmark)

    Pu, Minhao; Liu, Liu; Ou, Haiyan

    2010-01-01

    A nano-taper coupler is optimized specially for the transverse-magnetic mode for interfacing light between a silicon-on-insulator ridge waveguide and a single-mode fiber. An ultra-low coupling loss of ~0.36dB is achieved for the nano-taper coupler.......A nano-taper coupler is optimized specially for the transverse-magnetic mode for interfacing light between a silicon-on-insulator ridge waveguide and a single-mode fiber. An ultra-low coupling loss of ~0.36dB is achieved for the nano-taper coupler....

  11. Single-mode distributed feedback laser operation with no dependence on the morphology of the gain medium

    Energy Technology Data Exchange (ETDEWEB)

    Umar, Muhammad [Department of Energy Systems Research, Ajou University, Suwon (Korea, Republic of); Min, Kyungtaek [Department of Energy Systems Research, Ajou University, Suwon (Korea, Republic of); Inter-university Semiconductor Research Center, Seoul National University (Korea, Republic of); Jeon, Heonsu [Department of Physics and Astronomy, Seoul National University (Korea, Republic of); Kim, Sunghwan [Department of Energy Systems Research, Ajou University, Suwon (Korea, Republic of); Department of Physics, Ajou University, Suwon (Korea, Republic of)

    2017-06-15

    Organic distributed feedback (DFB) lasers can be useful photonic tools for biological applications where the roles of organic materials are important, because highly coherent single mode emission with broad tuning range can be obtained. However, the formulaic structures of organic lasers, and the uses of gain media as resonators themselves, are not suitable for inducing laser emission from irregular shaped gain media, such as dye-staining cells and tissues. Here, we report a reusable photonic template comprising an exceedingly thin and discrete titanium dioxide (TiO{sub 2}) layer on a one-dimensional (1D) quartz grating to induce single mode DFB lasing from a variety of states of optical gain media. Using the same template, the external gain media of optically thick and thin casted film, liquid, and a free-standing thick film reveal single mode lasing with reliable performance. Numerical simulations demonstrate that the 25-nm thick TiO{sub 2} disconnected grating lines support a spatially confined DFB mode in the vertical direction, even under no index difference between superstrate and substrate. Additionally, not using the typical waveguide gain layer promises high sensitivity and detection limit in refractometric sensing. These results suggest that the photonic structure may serve as a versatile sensing platform for bioapplications. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. A finite element characterization of a commercial endlessly single-mode photonic crystal fiber: is it really single mode?

    NARCIS (Netherlands)

    Uranus, H.P.; Hoekstra, Hugo; van Groesen, Embrecht W.C.

    2007-01-01

    One of interesting properties of photonic crystal fibers (PCFs) is their possibility to be single-moded over a wide wavelength range, down to UV, while still having a reasonably large modal profile. Such properties are attractive for applications like optical sensing, interferometry, and transport

  13. Semi-analytical quasi-normal mode theory for the local density of states in coupled photonic crystal cavity-waveguide structures

    DEFF Research Database (Denmark)

    de Lasson, Jakob Rosenkrantz; Kristensen, Philip Trøst; Mørk, Jesper

    2015-01-01

    We present and validate a semi-analytical quasi-normal mode (QNM) theory for the local density of states (LDOS) in coupled photonic crystal (PhC) cavity-waveguide structures. By means of an expansion of the Green's function on one or a few QNMs, a closed-form expression for the LDOS is obtained......-trivial spectrum with a peak and a dip is found, which is reproduced only when including both the two relevant QNMs in the theory. In both cases, we find relative errors below 1% in the bandwidth of interest....

  14. Šolc-Type Wavelength Filters Based on TE↔TM Mode Conversion Utilizing Periodically Poled Ti-Diffused Lithium Niobate Channel Waveguides

    Directory of Open Access Journals (Sweden)

    Hongsik Jung

    2010-01-01

    Full Text Available We have demonstrated the Šolc-type wavelength filters in a 52 mm long periodically poled Ti-diffused lithium niobate channel waveguide which has a domain period of 16.6 μm. At room temperature, the center wavelength and the full-width at half maximum of the filter were about 1272.49 nm and 0.23 nm, respectively. The nearest side-lobe is about 7 dB. New structure of optical add/drop multiplexer (OADM utilizing Šolc-type TE↔TM mode converters was proposed for the first time.

  15. Research status of large mode area single polarization active fiber

    Science.gov (United States)

    Xiao, Chun; Zhang, Ge; Yang, Bin-hua; Cheng, Wei-feng; Gu, Shao-yi

    2018-03-01

    As high power fiber laser used more and more widely, to increase the output power of fiber laser and beam quality improvement have become an important goal for the development of high power fiber lasers. The use of large mode fiber is the most direct and effective way to solve the nonlinear effect and fiber damage in the fiber laser power lifting process. In order to reduce the effect of polarization of the fiber laser system, the study found that when introduces a birefringence in the single-mode fiber, the polarization state changes caused by the birefringence is far greater than the random polarization state changes, then the external disturbance is completely submerged, finally the polarization can be controlled and stabilized. Through the fine design of the fiber structure, if the birefringence is high enough to achieve the separation of the two polarization states, the fiber will have a different cut-off mechanism to eliminate polarization which is not need, which will realize single mode single polarization transmission in a band. In this paper, different types of single polarization fiber design are presented and the application of these fibers are also discussed.

  16. Integration of a terahertz quantum cascade laser with a hollow waveguide

    Science.gov (United States)

    Wanke, Michael C [Albuquerque, NM; Nordquist, Christopher D [Albuquerque, NM

    2012-07-03

    The present invention is directed to the integration of a quantum cascade laser with a hollow waveguide on a chip to improve both the beam pattern and manufacturability. By coupling the QCL output into a single-mode rectangular waveguide the radiation mode structure can be known and the propagation, manipulation, and broadcast of the QCL radiation can then be entirely controlled by well-established rectangular waveguide techniques. By controlling the impedance of the interface, enhanced functions, such as creating amplifiers, efficient coupling to external cavities, and increasing power output from metal-metal THz QCLs, are also enabled.

  17. Large-bandwidth planar photonic crystal waveguides

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Lavrinenko, Andrei

    2002-01-01

    A general design principle is presented for making finite-height photonic crystal waveguides that support leakage-free guidance of light over large frequency intervals. The large bandwidth waveguides are designed by introducing line defects in photonic crystal slabs, where the material in the line...... defect has appropriate dispersion properties relative to the photonic crystal slab material surrounding the line defect. A three-dimensional theoretical analysis is given for large-bandwidth waveguide designs based on a silicon-air photonic crystal slab suspended in air. In one example, the leakage......-free single-mode guidance is found for a large frequency interval covering 60% of the photonic band-gap....

  18. Vibration modes of a single plate with general boundary conditions

    Directory of Open Access Journals (Sweden)

    Phamová L.

    2016-06-01

    Full Text Available This paper deals with free flexural vibration modes and natural frequencies of a thin plate with general boundary conditions — a simply supported plate connected to its surroundings with torsional springs. Vibration modes were derived on the basis of the Rajalingham, Bhat and Xistris approach. This approach was originally used for a clamped thin plate, so its adaptation was needed. The plate vibration function was usually expressed as a single partial differential equation. This partial differential equation was transformed into two ordinary differential equations that can be solved in the simpler way. Theoretical background of the computations is briefly described. Vibration modes of the supported plate with torsional springs are presented graphically and numerically for three different values of stiffness of torsional springs.

  19. Multi-mode to single-mode conversion in a 61 port photonic lantern

    DEFF Research Database (Denmark)

    Noordegraaf, Danny; Skovgaard, Peter M.W.; Maack, Martin D.

    2010-01-01

    Efficient multi-mode (MM) to single-mode (SM) conversion in a 61 port splitter or “Photonic Lantern” is demonstrated. The coupling loss from a 100 µm core diameter MM section to an ensemble of 61 SM fibers and back to another 100 µm core MM section is measured to be as low as 0.76 dB. This demons......B. This demonstration shows the feasibility of using the Photonic Lanterns within the field of astrophotonics for coupling MM star-light to an ensemble of SM fibers in order to perform fiber Bragg grating based spectral filtering."...

  20. Single mode operation of a TEA CO2 laser

    International Nuclear Information System (INIS)

    Wada, Kazuhiro; Tunawaki, Yoshiaki; Yamanaka, Masanobu.

    1993-01-01

    Single mode operation of a TEA CO 2 laser was performed by using an optical system of Fox-Smith type. Laser beam was taken out from the cavity by using a beam splitter, and was reflected by a mirror back to the cavity. By inserting a Fabry-Perot etalon between the splitter and the mirror, beat of laser pulses can be removed completly. (author)

  1. Single mode dye-doped polymer photonic crystal lasers

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Buss, Thomas; Smith, Cameron

    2010-01-01

    Dye-doped polymer photonic crystal (PhC) lasers fabricated by combined nanoimprint and photolithography are studied for their reproducibility and stability characteristics. We introduce a phase shift in the PhC lattice that substantially improves the yield of single wavelength emission. Single mode...... emission and reproducibility of laser characteristics are important if the lasers are to be mass produced in, e. g., optofluidic sensor chips. The fabrication yield is above 85% with highly reproducible wavelengths (within 0.5%), and the temperature dependence on the wavelength is found to be -0.045 or -0...

  2. Analytical solutions of coupled-mode equations for microring ...

    Indian Academy of Sciences (India)

    equivalent to waveguide and single microring coupled system. The 3 × 3 coupled system is equivalent to waveguide and double microring coupled system. In this paper, we adopt a novel approach for obtaining coupled-mode equations for linearly distributed and circularly distributed multiwaveguide systems with different ...

  3. Current-Mode Universal Filters Employing Single FDCCII

    Directory of Open Access Journals (Sweden)

    F. Kacar

    2012-12-01

    Full Text Available In this study, to realize current-mode multifunction filters, three new circuit configurations are presented. The circuits include fully differential current conveyor (FDCCII and four passive components. First proposed circuit is a universal filter with single-input and three-outputs, which can simultaneously realize current mode low-pass, band-pass and high-pass filter responses employing all grounded passive components. The last two proposed are universal filters with three-inputs single-output, which can realize current mode low-pass, band-pass, high-pass, band-stop and all-pass filter responses employing single FDCCII. Furthermore, each of the proposed circuits still enjoys realization using a minimum number of active and passive components. First and last of the proposed circuits have no requirement with the component choice conditions to realize specific filtering functions. No parameter matching condition is required. Active and passive sensitivities of filters are investigated and calculated 5 percentage hangings. Simulation results are found in close agreement with the theoretical results.

  4. Coherence properties of a single-mode polariton laser

    Science.gov (United States)

    Kim, Seonghoon; Zhang, Bo; Wang, Zhaorong; Deng, Hui; Fischer, Julian; Brodbeck, Sebastian; Kamp, Martin; Schneider, Christian; Hofling, Sven; Univ of Michigan-Ann Arbor Collaboration; Univ of Wuerzberg Collaboration

    2016-05-01

    Exciton-polariton condensation is a promising low threshold coherent light source, namely a polariton laser. However, first- and second-order coherences of a polariton laser has been poor and not well understood in two dimensional microcavity systems. Here, we show experimentally that full second-order coherence is established in a single-mode polariton laser and maintained far above the lasing threshold. The coherence time of first-order coherence functions increases initially and then reduces as the number of polaritons in a ground state increases due to the polariton-polariton interaction. Moreover, a transition in spectral lineshape from Lorentzian to Gaussian was observed as the occupation number increases as a result of the large interaction energy. These results are in very good agreement with a single-mode atom laser theory. The single-mode polariton laser was realized by designing a subwavelength grating (SWG) mirror which provides strong lateral confinement for discrete polariton states and polarization-selective reflectance for lifted spin-degeneracy. The results would be important for making fully coherent polariton lasers, as well as nonlinear polariton devices.

  5. Phase Radiation Characteristics of an Open-Ended Circular Waveguide

    DEFF Research Database (Denmark)

    Shishkova, A.V.; Pivnenko, Sergiy; Kim, O.S.

    2002-01-01

    Analytic expressions for phase radiation characteristics of a semi-infinite open-ended circular waveguide regardless of its aperture size and operating frequency have been obtained making use of the rigorous Weinstein's theory. The analysis of phase radiation patterns has been carried out...... for the dominant mode (TE11) as well as for the high order modes TM01 and TE01, both for a single and multimode propagation. The measurement of radiation characteristics of an open-ended circular waveguide has been carried out at the DTU-ESA Spherical Near-Field Antenna Test Facility. It is shown...

  6. Topology-optimized silicon photonic wire mode (de)multiplexer

    DEFF Research Database (Denmark)

    Frellsen, Louise Floor; Frandsen, Lars Hagedorn; Ding, Yunhong

    2015-01-01

    We have designed and for the first time experimentally verified a topology optimized mode (de)multiplexer, which demultiplexes the fundamental and the first order mode of a double mode photonic wire to two separate single mode waveguides (and multiplexes vice versa). The device has a footprint...

  7. Integrated optic waveguide devices

    Science.gov (United States)

    Ramer, O. G.

    1980-01-01

    Integrated optic waveguide circuits with a phase bias and modulator on the same chip were designed, fabricated, and tested for use in a fiber-optic rotation sensor (gyro) under development. Single mode fiber-optic pigtails were permanently coupled to the four ports of the chip. The switch format was based on coherent coupling between waveguides formed in Z-cut LiNbO3. The control of the coupling was achieved by electro-optically varying the phase propagation constants of each guide. Fiber-to-chip interfacing required the development of appropriate fixturing and manipulation techniques to achieve the close tolerance needed for high coupling efficiency between a fiber with an approximately 5 micron m core and a channel guide with a roughly 2 micron m by 5 micron m cross section. Switch and chip performance at 0.85 micron m is discussed as well as potential improvements related to insertion loss reduction, switching voltages, and suppression of Li2O out-diffusion.

  8. Compact cladding-pumped planar waveguide amplifier and fabrication method

    Science.gov (United States)

    Bayramian, Andy J.; Beach, Raymond J.; Honea, Eric; Murray, James E.; Payne, Stephen A.

    2003-10-28

    A low-cost, high performance cladding-pumped planar waveguide amplifier and fabrication method, for deployment in metro and access networks. The waveguide amplifier has a compact monolithic slab architecture preferably formed by first sandwich bonding an erbium-doped core glass slab between two cladding glass slabs to form a multi-layer planar construction, and then slicing the construction into multiple unit constructions. Using lithographic techniques, a silver stripe is deposited and formed at a top or bottom surface of each unit construction and over a cross section of the bonds. By heating the unit construction in an oven and applying an electric field, the silver stripe is then ion diffused to increase the refractive indices of the core and cladding regions, with the diffusion region of the core forming a single mode waveguide, and the silver diffusion cladding region forming a second larger waveguide amenable to cladding pumping with broad area diodes.

  9. Large-Area High Aspect Ratio Plasmonic Interference Lithography Utilizing a Single High-k Mode.

    Science.gov (United States)

    Chen, Xi; Yang, Fan; Zhang, Cheng; Zhou, Jing; Guo, L Jay

    2016-04-26

    Plasmonic lithography, which utilizes subwavelength confinement of surface plasmon polartion (SPP) waves, has the capability of breaking the diffraction limit and delivering high resolution. However, all previously reported results suffer from critical issues, such as shallow pattern depth and pattern nonuniformity even over small exposure areas, which limit the application of the technology. In this work, periodic patterns with high aspect ratios and a half-pitch of about 1/6 of the wavelength were achieved with pattern uniformity in square centimeter areas. This was accomplished by designing a special mask and photoresist (PR) system to select a single high spatial frequency mode and incorporating the PR into a waveguide configuration to ensure uniform light exposure over the entire depth of the photoresist layer. In addition to the experimental progress toward large-scale applications of plasmonic interference lithography, the general criteria of designing such an exposure system is also discussed, which can be used for nanoscale fabrication in this fashion for various applications with different requirements for wavelength, pitch, aspect ratio, and structure.

  10. Piezoelectric transducer parameter selection for exciting a single mode from multiple modes of Lamb waves

    International Nuclear Information System (INIS)

    Zhang Hai-Yan; Yu Jian-Bo

    2011-01-01

    Excitation and propagation of Lamb waves by using rectangular and circular piezoelectric transducers surface-bonded to an isotropic plate are investigated in this work. Analytical stain wave solutions are derived for the two transducer shapes, giving the responses of these transducers in Lamb wave fields. The analytical study is supported by a numerical simulation using the finite element method. Symmetric and antisymmetric components in the wave propagation responses are inspected in detail with respect to test parameters such as the transducer geometry, the length and the excitation frequency. By placing only one piezoelectric transducer on the top or the bottom surface of the plate and weakening the strength of one mode while enhancing the strength of the other modes to find the centre frequency, with which the peak wave amplitude ratio between the S0 and A0 modes is maximum, a single mode excitation from the multiple modes of the Lamb waves can be achieved approximately. Experimental data are presented to show the validity of the analyses. The results are used to optimize the Lamb wave detection system. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  11. Graphene Q-switched Yb:KYW planar waveguide laser

    NARCIS (Netherlands)

    Kim, Jun Wan; Choi, Sun Young; Aravazhi, S.; Pollnau, Markus; Griebner, Uwe; Petrov, Valentin; Bae, Sukang; Ahn, Kwang Jun; Yeom, Dong-Il; Rotermund, Fabian

    A diode-pumped Yb:KYW planar waveguide laser, single-mode Q-switched by evanescent-field interaction with graphene, is demonstrated for the first time. Few-layer graphene grown by chemical vapor deposition is transferred onto the top of a guiding layer, which initiates stable Q-switched operation in

  12. ARTICLES: Polarization effects in birefringent fiber waveguides with an elliptic borosilicate cladding

    Science.gov (United States)

    Grigor'yants, V. V.; Zalogin, A. N.; Ivanov, G. A.; Isaev, Victor A.; Kozel, S. M.; Listvin, V. N.; Chamorovskiĭ, Yu K.

    1986-10-01

    Single-mode fiber waveguides with an elliptic borosilicate cladding were developed and their polarization characteristics were studied. It was found that the mode birefringence was independent of the radiation frequency and varied linearly with the fiber waveguide temperature. The length of the beats was ~10 mm at λ = 0.85μ, whereas the dispersion of the polarization modes was 300 psec/km. The losses were 5-10 dB/km at λ = 0.85μ and the mode coupling parameter was h = 2×10-4m-1. A study was made of the possibility of using single-mode fiber waveguides for the depolarization of nonmonochromatic radiation and also as tunable delay lines.

  13. Single-step synthesis of monolithic comb-like CdS nanostructures with tunable waveguide properties.

    Science.gov (United States)

    Liu, Ruibin; Li, Zi-An; Zhang, Chunhua; Wang, Xiaoxu; Kamran, Muhammad A; Farle, Michael; Zou, Bingsuo

    2013-06-12

    Using a simple in situ seeding chemical vapor deposition (CVD) process, comb-like (branched) monolithic CdS micro/nanostructures were grown. Efficient optical coupling between the backbone and the teeth of the branched architecture is demonstrated by distributing light from an UV-laser-excited spot at one end of the backbone to all branch tips. By varying the deposition conditions, the orientation of the branches with respect to the backbone, their size and density can be tuned as well as the size of the backbone. This in situ seeding CVD method has the potential for a low-cost single-step fabrication of high-quality, micro/nanointegrated photonic devices, with tunable complex waveguiding possibilities.

  14. Integrated phononic crystal resonators based on adiabatically-terminated phononic crystal waveguides

    Directory of Open Access Journals (Sweden)

    Razi Dehghannasiri

    2016-12-01

    Full Text Available In this letter, we demonstrate a new design for integrated phononic crystal (PnC resonators based on confining acoustic waves in a heterogeneous waveguide-based PnC structure. In this architecture, a PnC waveguide that supports a single mode at the desired resonance frequencies is terminated by two waveguide sections with no propagating mode at those frequencies (i.e., have mode gap. The proposed PnC resonators are designed through combining the spatial-domain and the spatial-frequency domain (i.e., the k-domain analysis to achieve a smooth mode envelope. This design approach can benefit both membrane-based and surface-acoustic-wave-based architectures by confining the mode spreading in k-domain that leads to improved electromechanical excitation/detection coupling and reduced loss through propagating bulk modes.

  15. Devices Based on Parallel-Plate Waveguides for Terahertz Applications

    Science.gov (United States)

    Reichel, Kimberly S.

    a PPWG. EOT is an effect where at a particular frequency 100% of the light is transmitted through an array of holes with diameters much smaller than the wavelength. We demonstrate that the output resonant frequency depends strongly on the input mode of the waveguide, where excitation with the TEM waveguide mode mimics EOT in a 2D array in free space, while the TE1 waveguide mode is vastly different. Through this disparity of outcomes between the two different waveguide excitation modes, we can better understand the resonant transmission process. We show that the surface plasmon theoretical description is invalid for the TE1 resonance, and instead use impedance matching to properly predict the resonances in both TE1 and TEM. Additionally, we show that the device can be used as a tunable filter fat THz frequencies by simply changing the separation between the two waveguide plates. Third, we demonstrate a THz variable power splitter based on a PPWG T-junction excited by the TE1 waveguide mode. By integrating a small triangular septum into the waveguide plate, we are able to direct the THz light down to either one of the two output channels with precise control over the coupling ratio between the waveguide outputs. We find good agreement between experiment and simulation in both amplitude and phase. We show that the coupling ratio varies exponentially with the septum translation offset and that nearly 100% transmission can be achieved. The splitter operates over almost the entire range in which the waveguide is single mode, providing a sensitive and broadband method for power splitting. By incorporating our innovations along the already propagating path of THz waves inside a waveguide, we establish multiple functional capabilities into one universal platform. The hope of this work is that these devices will ultimately serve as fundamental building blocks to make everyday THz applications a reality.

  16. Single-mode theory of diffusive layers in thermohaline convection

    Science.gov (United States)

    Gough, D. O.; Toomre, J.

    1982-01-01

    A two-layer configuration of thermohaline convection is studied, with the principal aim of explaining the observed independence of the buoyancy-flux ratio on the stability parameter when the latter is large. Temperature is destabilizing and salinity is stabilizing, so diffusive interfaces separate the convecting layers. The convection is treated in the single-mode approximation, with a prescribed horizontal planform and wavenumber. Surveys of numerical solutions are presented for a selection of Rayleigh numbers R, stability parameters lambda and horizontal wavenumbers. The solutions yield a buoyancy flux ratio chi that is insensitive to lambda, in accord with laboratory experiments. However chi increases with increasing R, in contradiction to laboratory observations.

  17. Mid-Infrared Continuously Tunable Single Mode VECSEL

    Science.gov (United States)

    Khiar, A.; Rahim, M.; Felder, F.; Fill, M.; Zogg, H.

    2011-12-01

    Tunable mid-infrared vertical external cavity surface emitting lasers were developed for the wavelength range around 3.8-3.9 μm and 3.2-3.3 μm, respectively. The devices are based on lead salt materials epitaxially grown by MBE on a Si substrate. The active part consists of PbSe QW in a PbSrSe host layer. Both devices are operated around -20 °C and have output power of several 10 mW. By changing the cavity length, a single mode hop free tuning range up to 80 cm-1 is achieved.

  18. Improved light emitting UV curable PbS quantum dots-polymer composite optical waveguides

    Science.gov (United States)

    Shen, Kai; Baig, Sarfaraz; Jiang, Guomin; Paik, Young-hun; Kim, Sung Jin; Wang, Michael R.

    2017-11-01

    We present for the first-time light emitting ultraviolet (UV) curable active PbS quantum dots-polymer composite optical waveguides fabricated by vacuum assisted microfluidic (VAM) soft lithography technique. PbS quantum dots were synthesized by colloidal chemistry methods with tunable sizes resulting in light emissions in near infrared wavelengths. UV curable polymer of selective refractive index were synthesized facilitating waveguide mode confinement and good PbS quantum dots solubility. Photoluminescence of the composite exhibited ∼ 30 times better brightness than PbS-SU-8 composites. Light emitting multi-mode waveguides of about 50 × 42 μm cross-sectional dimension were successful demonstrated. Light emitting single-mode waveguides were fabricated by VAM technique with sectional flow tapers.

  19. Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide

    DEFF Research Database (Denmark)

    Pu, Minhao; Liu, Liu; Ou, Haiyan

    2010-01-01

    An ultra-low-loss coupler for interfacing a silicon-on-insulator ridge waveguide and a single-mode fiber in both polarizations is presented. The inverted taper coupler, embedded in a polymer waveguide, is optimized for both the transverse-magnetic and transverse-electric modes through tapering...... the width of the silicon-on-insulator waveguide from 450 nm down to less than 15 nm applying a thermal oxidation process. Two inverted taper couplers are integrated with a 3-mm long silicon-on-insulator ridge waveguide in the fabricated sample. The measured coupling losses of the inverted taper coupler...... for transverse-magnetic and transverse-electric modes are ~0.36 dB and ~0.66 dB per connection, respectively....

  20. Fabrication of optical waveguides by imprinting: usage of positive tone resist as a mould for UV-curable polymer.

    Science.gov (United States)

    Hiltunen, Jussi; Hiltunen, Marianne; Puustinen, Jarkko; Lappalainen, Jyrki; Karioja, Pentti

    2009-12-07

    Optical ridge type waveguides based on UV-curable polymer were fabricated by imprinting method. Positive tone resist patterned on a silicon wafer was used as a mould. The characterization of waveguides was carried out by coupling TE-polarized light from a tapered fiber into a waveguide with 30 mm length and mapping the intensity distribution with another tapered fiber at the output facet of a waveguide. Proper single- or multimode operation was observed depending on the waveguide width being either 2 microm or 6 microm. Experimental observations on the mode profiles were also supported by the simulation results. Average power transmissions of 32% at 1530 nm wavelength and 45% at 1310 nm wavelength were characterized. The results suggest that the simple mould fabrication process might be a useful technique for device prototyping and that the performance of replicated waveguides can meet the requirements for certain applications.

  1. Multiplexing 200 spatial modes with a single hologram

    Science.gov (United States)

    Rosales-Guzmán, Carmelo; Bhebhe, Nkosiphile; Mahonisi, Nyiku; Forbes, Andrew

    2017-11-01

    The on-demand tailoring of light's spatial shape is of great relevance in a wide variety of research areas. Computer-controlled devices, such as spatial light modulators (SLMs) or digital micromirror devices, offer a very accurate, flexible and fast holographic means to this end. Remarkably, digital holography affords the simultaneous generation of multiple beams (multiplexing), a tool with numerous applications in many fields. Here, we provide a self-contained tutorial on light beam multiplexing. Through the use of several examples, the readers will be guided step by step in the process of light beam shaping and multiplexing. Additionally, we provide a quantitative analysis on the multiplexing capabilities of SLMs to assess the maximum number of beams that can be multiplexed on a single SLM, showing approximately 200 modes on a single hologram.

  2. Single Spatial-Mode Room-Temperature-Operated 3.0 to 3.4 micrometer Diode Lasers

    Science.gov (United States)

    Frez, Clifford F.; Soibel, Alexander; Belenky, Gregory; Shterengas, Leon; Kipshidze, Gela

    2010-01-01

    Compact, highly efficient, 3.0 to 3.4 m light emitters are in demand for spectroscopic analysis and identification of chemical substances (including methane and formaldehyde), infrared countermeasures technologies, and development of advanced infrared scene projectors. The need for these light emitters can be currently addressed either by bulky solid-state light emitters with limited power conversion efficiency, or cooled Interband Cascade (IC) semiconductor lasers. Researchers here have developed a breakthrough approach to fabrication of diode mid-IR lasers that have several advantages over IC lasers used for the Mars 2009 mission. This breakthrough is due to a novel design utilizing the strain-engineered quantum-well (QW) active region and quinternary barriers, and due to optimization of device material composition and growth conditions (growth temperatures and rates). However, in their present form, these GaSb-based laser diodes cannot be directly used as a part of sensor systems. The device spectrum is too broad to perform spectroscopic analysis of gas species, and operating currents and voltages are too high. In the current work, the emitters were fabricated as narrow-ridge waveguide index-guided lasers rather than broad stripe-gain guided multimode Fabry-Perot (FP) lasers as was done previously. These narrow-ridge waveguide mid-IR lasers exhibit much lower power consumptions, and can operate in a single spatial mode that is necessary for demonstration of single-mode distributed feedback (DBF) devices for spectroscopic applications. These lasers will enable a new generation of compact, tunable diode laser spectrometers with lower power consumption, reduced complexity, and significantly reduced development costs. These lasers can be used for the detection of HCN, C2H2, methane, and ethane.

  3. Nonlinear coupled mode approach for modeling counterpropagating solitons in the presence of disorder-induced multiple scattering in photonic crystal waveguides

    Science.gov (United States)

    Mann, Nishan; Hughes, Stephen

    2018-02-01

    We present the analytical and numerical details behind our recently published article [Phys. Rev. Lett. 118, 253901 (2017), 10.1103/PhysRevLett.118.253901], describing the impact of disorder-induced multiple scattering on counterpropagating solitons in photonic crystal waveguides. Unlike current nonlinear approaches using the coupled mode formalism, we account for the effects of intraunit cell multiple scattering. To solve the resulting system of coupled semilinear partial differential equations, we introduce a modified Crank-Nicolson-type norm-preserving implicit finite difference scheme inspired by the transfer matrix method. We provide estimates of the numerical dispersion characteristics of our scheme so that optimal step sizes can be chosen to either minimize numerical dispersion or to mimic the exact dispersion. We then show numerical results of a fundamental soliton propagating in the presence of multiple scattering to demonstrate that choosing a subunit cell spatial step size is critical in accurately capturing the effects of multiple scattering, and illustrate the stochastic nature of disorder by simulating soliton propagation in various instances of disordered photonic crystal waveguides. Our approach is easily extended to include a wide range of optical nonlinearities and is applicable to various photonic nanostructures where power propagation is bidirectional, either by choice, or as a result of multiple scattering.

  4. A novel fabrication technique for free-hanging homogeneous polymeric cantilever waveguides

    DEFF Research Database (Denmark)

    Nordström, M.; Calleja, M.; Hübner, Jörg

    2008-01-01

    We present a novel bonding technique developed for the fabrication of a cantilever-based biosensing system with integrated optical read-out. The read-out mechanism is based on single-mode waveguides fabricated monolithically in SU-8. For optimal operation of the read-out mode, the cantilever wave...

  5. Single CFTA Based Current-Mode Universal Biquad Filter

    Directory of Open Access Journals (Sweden)

    S.V. Singh

    2016-12-01

    Full Text Available This paper introduces a new current-mode (CM universal biquad filter structure with optimum number of active and passive elements. In the design, the proposed circuit uses a single active element namely, current follower trans-conductance amplifier (CFTA and two grounded capacitors as passive elements. The main feature of the proposed circuit is that it can realize all five standard filtering functions such as low pass (LP, band pass (BP, high pass (HP, band stop (BS and all pass (AP responses across an explicit high impedance output terminal through the appropriate selection of three inputs. In addition, the same circuit is also capable to simultaneously realize three filtering functions (LP, BP and HP by the use of single current input signal. Moreover, the proposed structure is suited for low voltage, low power operations and offers the feature of electronic tunability of pole-frequency and quality factor. Further to extend the utility of the proposed circuit block higher order current-mode filters are also realized through direct cascading. A detailed non-ideal and parasitic study is also included. The performance of the circuits has been examined using standard 0.25 μ m CMOS parameters from TSMC.

  6. Elastic Self-Doping Organic Single Crystals Exhibiting Flexible Optical Waveguide and Amplified Spontaneous Emission.

    Science.gov (United States)

    Huang, Rui; Wang, Chenguang; Wang, Yue; Zhang, Hongyu

    2018-04-06

    Organic crystals are generally brittle and tend to crack under applied stress. Doped organic crystals are even more brittle because of lattice defects. Herein, the first doped organic crystals 1d@2d, which display elastic bending ability under applied stress, are reported. Moreover, the potential applications of elastic-doped crystals 1d@2d in flexible optoelectronics are impressively demonstrated. The elastic crystals 1d@2d with high quality and large size are crystalized by a simple and unique "self-doping" process, which is a regular solution evaporation of crude product 1d (2,5-dihydro-3,6-bis(octylamino)terephthalate) containing a minute amount of 2d (3,6-bis(octylamino)terephthalate) as the oxidized byproduct. The host 1d is easily crystallized to form elastic crystals but is nonfluorescent, while the guest 2d has poor crystallinity and is highly emissive. The doping approach integrates the advantages of both 1d and 2d, and thus endows doped crystals 1d@2d with good elasticity as well as intense orange fluorescence. Taking these advantages, the application potentials of these doped crystals 1d@2d are evaluated by measuring optical waveguide and amplified spontaneous emission in both the straight and bent states. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Mid-infrared performance of single mode chalcogenide fibers

    Science.gov (United States)

    Cook, Justin; Sincore, Alex; Tan, Felix; El Halawany, Ahmed; Riggins, Anthony; Shah, Lawrence; Abouraddy, Ayman F.; Richardson, Martin C.; Schepler, Kenneth L.

    2018-02-01

    Due to the intrinsic absorption edge in silica near 2.4 μm, more exotic materials are required to transmit laser power in the IR such as fluoride or chalcogenide glasses (ChGs). In particular, ChG fibers offer broad IR transmission with low losses fibers at four different infrared wavelengths: 2053 nm, 2520 nm and 4550 nm. Polymer clad ChG fibers were drawn with 12.3 μm and 25 μm core diameters. Testing at 2053 nm was accomplished using a > 15 W, CW Tm:fiber laser. Power handling up to 10.2 W with single mode beam quality has been demonstrated, limited only by the available Tm:fiber output power. Anti-reflective coatings were successfully deposited on the ChG fiber facets, allowing up to 90.6% transmission with 12.2 MW/cm2 intensity on the facet. Single mode guidance at 4550 nm was also demonstrated using a quantum cascade laser (QCL). A custom optical system was constructed to efficiently couple the 0.8 NA QCL radiation into the 0.2 NA ChG fiber, allowing for a maximum of 78% overlap between the QCL radiation and fundamental mode of the fiber. With an AR-coated, 25 μm core diameter fiber, >50 mW transmission was demonstrated with > 87% transmission. Finally, we present results on fiber coupling from a free space Cr:ZnSe resonator at 2520 nm.

  8. Bending loss of terahertz pipe waveguides.

    Science.gov (United States)

    Lu, Jen-Tang; Hsueh, Yu-Chun; Huang, Yu-Ru; Hwang, Yuh-Jing; Sun, Chi-Kuang

    2010-12-06

    We present an experimental study on the bending loss of terahertz (THz) pipe waveguide. Bending loss of pipe waveguides is investigated for various frequencies, polarizations, core diameters, cladding thicknesses, and cladding materials. Our results indicate that the pipe waveguides with lower guiding loss suffer lower bending loss due to stronger mode confinement. The unexpected low bending loss in the investigated simple leaky waveguide structure promises variety of flexible applications.

  9. The waveguide laser - A review

    Science.gov (United States)

    Degnan, J. J.

    1976-01-01

    The present article reviews the fundamental physical principles essential to an understanding of waveguide gas and liquid lasers, and the current technological state of these devices. At the present time, waveguide laser transitions span the visible through submillimeter regions of the wavelength spectrum. The introduction discusses the many applications of waveguide lasers and the wide variety of laser configurations that are possible. Section 1 summarizes the properties of modes in hollow dielectric waveguides of circular, rectangular, and planar cross section. Section 2 considers various approaches to optical feedback including internal and external mirror Fabry-Perot type resonators, hollow waveguide distributed feedback structures, and ring-resonant configurations. Section 3 discusses those aspects of molecular kinetic and laser theory pertinent to the design and optimization of waveguide gas lasers.

  10. Broadband high reflectivity in subwavelength-grating slab waveguides.

    Science.gov (United States)

    Tian, Hao; Cui, Xuan; Du, Yan; Tan, Peng; Shi, Guang; Zhou, Zhongxiang

    2015-10-19

    We computationally study a subwavelength dielectric grating structure, show that slab waveguide modes can be used to obtain broadband high reflectivity, and analyze how slab waveguide modes influence reflection. A structure showing interference between Fabry-Perot modes, slab waveguide modes, and waveguide array modes is designed with ultra-broadband high reflectivity. Owing to the coupling of guided modes, the region with reflectivity R > 0.99 has an ultra-high bandwidth (Δf / ̅f > 30%). The incident-angle region with R > 0.99 extends over a range greater than 40°. Moreover, an asymmetric waveguide structure with a semiconductor substrate is studied.

  11. Single-pass waveguide amplifiers in Er-Yb doped zinc polyphosphate glass fabricated with femtosecond laser pulses

    NARCIS (Netherlands)

    Fletcher, L.B.; Witcher, J.J.; Troy, N.; Brow, R.K.; Krol, D.M.

    2012-01-01

    We have investigated the direct fabrication of subsurface waveguide amplifiers in Er-Yb zinc polyphosphate glass by utilizing the relationship between the initial glass composition and the resulting changes to the network structure after modification by fs laser pulses. Waveguides, exhibiting

  12. Dynamics of single photon transport in a one-dimensional waveguide two-point coupled with a Jaynes-Cummings system

    KAUST Repository

    Wang, Yuwen

    2016-09-22

    We study the dynamics of an ultrafast single photon pulse in a one-dimensional waveguide two-point coupled with a Jaynes-Cummings system. We find that for any single photon input the transmissivity depends periodically on the separation between the two coupling points. For a pulse containing many plane wave components it is almost impossible to suppress transmission, especially when the width of the pulse is less than 20 times the period. In contrast to plane wave input, the waveform of the pulse can be modified by controlling the coupling between the waveguide and Jaynes-Cummings system. Tailoring of the waveform is important for single photon manipulation in quantum informatics. © The Author(s) 2016.

  13. Directly UV written silica-on-silicon planar waveguides with low insertion loss

    DEFF Research Database (Denmark)

    Zauner, Dan; Svalgaard, Mikael; Kristensen, Martin

    1998-01-01

    in waveguide geometry, and excellent control of the refractive index step. Direct UV writing of waveguides became a realistic alternative to other fabrication methods when propagation losses below 0.2 dB/cm were reported in single-mode waveguides. However, the coupling loss to optical fibers remained high......, typically 1.8 dB/facet, which is significantly more than that obtained with other techniques. In this paper we present results in which the coupling loss to optical fibers has been lowered substantially. In addition, the glass photosensitivity has been increased, thus permitting shorter fabrication times...

  14. Mode Selection for a Single-Frequency Fiber Laser

    Science.gov (United States)

    Liu, Jian

    2010-01-01

    A superstructured fiber-grating-based mode selection filter for a single-frequency fiber laser eliminates all free-space components, and makes the laser truly all-fiber. A ring cavity provides for stable operations in both frequency and power. There is no alignment or realignment required. After the fibers and components are spliced together and packaged, there is no need for specially trained technicians for operation or maintenance. It can be integrated with other modules, such as telescope systems, without extra optical alignment due to the flexibility of the optical fiber. The filter features a narrow line width of 1 kHz and side mode suppression ratio of 65 dB. It provides a high-quality laser for lidar in terms of coherence length and signal-to-noise ratio, which is 20 dB higher than solid-state or microchip lasers. This concept is useful in material processing, medical equipment, biomedical instrumentation, and optical communications. The pulse-shaping fiber laser can be directly used in space, airborne, and satellite applications including lidar, remote sensing, illuminators, and phase-array antenna systems.

  15. Ultrasonic Motor Using Bending Modes with Single Foot

    Directory of Open Access Journals (Sweden)

    Xiaohui Yang

    2013-01-01

    Full Text Available A new ultrasonic motor using bending modes with single foot is proposed in this study. Two groups of PZT elements are clamped between two horns and two ending caps, respectively, by bolts. Two horns are connected by the driving foot in the middle of the motor. Two orthogonal 3rd bending vibrations of the motor are superimposed and generate elliptical movement at the driving foot. The structure and working principle of the proposed motor are introduced. The structure parameters of the motor are obtained via the ANSYS software. A prototype is fabricated and tested using an impedance analyzer and a scanning laser Doppler vibrometer. The maximum mechanical output force and power of the prototype are measured to be 23 N and 2.9 W, respectively.

  16. Picosecond chirped pulse compression in single-mode fibers

    International Nuclear Information System (INIS)

    Wenhua Cao; Youwei Zhang

    1995-01-01

    In this paper, the nonlinear propagation of picosecond chirped pulses in single mode fibers has been investigated both analytically and numerically. Results show that downchirped pulses can be compressed owing to normal group-velocity dispersion. The compression ratio depends both on the initial peak power and on the initial frequency chirp of the input pulse. While the compression ratio depends both on the initial peak power and on the initial frequency chirp of the input pulse. While the compression ratio increases with the negative frequency chirp, it decreases with the initial peak power of the input pulse. This means that the self-phase modulation induced nonlinear frequency chirp which is linear and positive (up-chirp) over a large central region of the pulse and tends to cancel the initial negative chirp of the pulse. It is also shown that, as the negative chirped pulse compresses temporally, it synchronously experiences a spectral narrowing

  17. Optical strip waveguide: an analysis.

    Science.gov (United States)

    Ogusu, K; Kawakami, S; Nishida, S

    1979-03-15

    An analysis of the strip waveguide is presented with special emphasis on reflection and transmission of a wave obliquely incident on the side of a strip. Mode conversion and the contribution of radiation modes are taken into account in the formulation. The numerical results of the mode conversion and attenuation constant of the fundamental leaky mode are presented and compared with the results of other authors. The numerical accuracy of our analysis is also checked by two different procedures. It is found that the radiation modes have considerable effects on the waveguide characteristics.

  18. Analysis of hybrid dielectric-plasmonic slot waveguide structures with 3D Fourier Modal Methods

    Science.gov (United States)

    Ctyroky, J.; Kwiecien, P.; Richter, I.

    2013-03-01

    Recently, plasmonic waveguides have been intensively studied as promising basic building blocks for the construction of extremely compact photonic devices with subwavelength characteristic dimensions. A number of different types of plasmonic waveguide structures have been recently proposed, theoretically analyzed, and their properties experimentally verified. The fundamental trade-off in the design of plasmonic waveguides for potential application in information technologies lies in the contradiction between their mode field confinement and propagation loss: the higher confinement, the higher loss, and vice versa. Various definitions of figures of merit of plasmonic waveguides have been also introduced for the characterization of their properties with a single quantity. In this contribution, we theoretically analyze one specific type of a plasmonic waveguide - the hybrid dielectric-loaded plasmonic waveguide, or - as we call it in this paper - the hybrid dielectric-plasmonic slot waveguide, which exhibits very strong field confinement combined with acceptable losses allowing their application in some integrated plasmonic devices. In contrast to the structures analyzed previously, our structure makes use of a single low-index dielectric only. We first define the effective area of this waveguide type, and using waveguide parameters close to the optimum we analyze several waveguide devices as directional couplers, multimode interference couplers (MMI), and the Mach-Zehnder interferometer based on the MMI couplers. For the full-vector 3D analysis of these structures, we use modelling tools developed in-house on the basis of the Fourier Modal Method (FMM). Our results thus serve to a dual purpose: they confirm that (i) these structures represent promising building blocks of plasmonic devices, and (ii) our FMM codes are capable of efficient 3D vector modelling of plasmonic waveguide devices.

  19. Interaction between negative and positive index medium waveguides

    OpenAIRE

    Yan, Wei; Shen, Linfang; Yuan, Yu; Yang, Tzong Jer

    2008-01-01

    The coupling between negative and positive index medium waveguides is investigated theoretically in this paper. A coupled mode theory is developed for such a waveguide system and its validity is verified. Interesting phenomena in the coupled waveguides are demonstrated, which occur in the case when the negative index medium waveguide in isolation guides its mode backward. A new type of coupled mode solution that varies exponentially with the coupling length is found in the special case when t...

  20. Ultra-compact broadband higher order-mode pass filter fabricated in a silicon waveguide for multimode photonics

    DEFF Research Database (Denmark)

    Guan, Xiaowei; Ding, Yunhong; Frandsen, Lars Hagedorn

    2015-01-01

    . Consequently, light on the lower order mode is prohibited to pass through the filter, while light on a higher order mode can be converted to a Bloch mode in the photonic crystal and pass through the filter with low insertion loss. As an example, we fabricate a similar to 15-mu m-long first-order-mode pass...... wavelength range from 1480 to 1580 nm. Additionally, calculations predict the extinction ratio to be larger than 50 dB in a 170 nm broad bandwidth. (C) 2015 Optical Society of America...

  1. Enhancement mode single electron transistor in pure silicon

    Science.gov (United States)

    Hu, Binhui; Yang, C. H.; Jones, G. M.; Yang, M. J.

    2007-03-01

    Solid state implementations of lateral qubits offer the advantage of being scalable and can be easily integrated by existing main stream IC technologies. In addition, the two Zeeman states of an electron spin in a quantum dot (QD) provide a promising candidate for a qubit. Spins in lateral QDs in the GaAs/AlGaAs single electron transistors (SETs) have been intensively investigated. In contrast, Si provides a number of advantages, including long spin coherence time, large g-factor, and small spin-orbit coupling effect. We have demonstrated Si SET in the few electron regime.* In this talk, we will report the isolation of a single electron in a Si QD using a fabrication technique that incorporates the standard Al/SiO2/Si system with an enhancement mode SET structure. Our SET is built in highly resistive Si substrates with bilayer gates. The high purity Si minimizes the potential disorder from impurities. The top gate induces 2D electrons, and several side gates help define the tunneling barriers, fine tune the shape of the QD, and control the number of electrons in it. We will discuss the operating principle, computer simulation, and low temperature transport data. *APPLIED PHYSICS LETTERS 89, 073106 (2006)

  2. High energy single frequency Yb:YAG crystalline fiber waveguide master oscillator power amplifier, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall objective is to demonstrate the concept of Yb:YAG crystalline fiber MOPA laser and investigation the technical feasibility toward 50 mJ single frequency...

  3. Direct mapping of light propagation in photonic crystal waveguides

    DEFF Research Database (Denmark)

    Bozhevolnyi, S.I.; Volkov, V.S.; Arentoft, J.

    2002-01-01

    Using near-field optical microscopy, we directly map the propagation of light in the wavelength range of 1510-1560 nm along bent photonic crystal waveguides formed by removing a single row of holes in the triangular 400-nm-period lattice and connected to access ridge waveguides, the structure being...... fabricated on silicon-on-insulator wafers. Based on the near-field optical images measured, we determine the bend loss to be below 2 dB in the range of 1510-1530 nm, identify the associated loss channels, and obtain an upper limit of 930 nm for the guided mode width intensity distribution at 1510 nm....

  4. Waveguide Cavity Resonator as a Source of Optical Squeezing

    Science.gov (United States)

    Stefszky, M.; Ricken, R.; Eigner, C.; Quiring, V.; Herrmann, H.; Silberhorn, C.

    2017-04-01

    We present the generation of continuous-wave optical squeezing from a titanium-in-diffused lithium niobate waveguide resonator. We directly measure 2.9 ±0.1 dB of single-mode squeezing, which equates to a produced level of 4.9 ±0.1 dB after accounting for detection losses. This device showcases the current capabilities of this waveguide architecture and precipitates more complicated integrated continuous-wave quantum devices in the continuous-variable regime.

  5. Fiber-Drawn Metamaterial for THz Waveguiding and Imaging

    DEFF Research Database (Denmark)

    Atakaramians, Shaghik; Stefani, Alessio; Li, Haisu

    2017-01-01

    and sub-diffraction imaging. We show the experimental demonstration of THz radiation guidance through hollow core waveguides with metamaterial cladding, where substantial improvements were realized compared to conventional hollow core waveguides, such as reduction of size, greater flexibility, increased...... single-mode operating regime, and guiding due to magnetic and electric resonances. We also report recent and new experimental work on near- and far-field THz imaging using wire array metamaterials that are capable of resolving features as small as λ/28....

  6. Strain sensor based on gourd-shaped single-mode-multimode-single-mode hybrid optical fibre structure.

    Science.gov (United States)

    Tian, Ke; Farrell, Gerald; Wang, Xianfan; Yang, Wenlei; Xin, Yifan; Liang, Haidong; Lewis, Elfed; Wang, Pengfei

    2017-08-07

    A fibre-optic strain sensor based on a gourd-shaped joint multimode fibre (MMF) sandwiched between two single-mode fibres (SMFs) is described both theoretically and experimentally. The cladding layers of the two MMFs are reshaped to form a hemisphere using an electrical arc method and spliced together, yielding the required gourd shape. The gourd-shaped section forms a Fabry-Perot cavity between the ends of two adjacent but non-contacting multimode fibres' core. The effectiveness of the multimode interference based on the Fabry-Perot interferometer (FPI) formed within the multimode inter-fibre section is greatly improved resulting in an experimentally determined strain sensitivity of -2.60 pm/με over the range 0-1000 με. The sensing characteristics for temperature and humidity of this optical fibre strain sensor are also investigated.

  7. Metal-clad waveguide sensors

    DEFF Research Database (Denmark)

    Skivesen, Nina

    by Qi et al [Zm Qi et al, Sens. Actuators B 81, 2002] before, however the sensing principle we present results in a broad detection range from gasses to solid materials and is different from the principle suggested by Qi et al with a highlylimited detection range. Metal-clad waveguide sensors......, where single cell detection isshown by use of the metal-clad waveguide sensors.......This work concerns planar optical waveguide sensors for biosensing applications, with the focus on deep-probe sensing for micron-scale biological objects like bacteria and whole cells. In the last two decades planar metal-clad waveguides have been brieflyintroduced in the literature applied...

  8. Tunable waveguide and cavity in a phononic crystal plate by controlling whispering-gallery modes in hollow pillars

    DEFF Research Database (Denmark)

    Jin, Yabin; Fernez, Nicolas; Pennec, Yan

    2016-01-01

    We investigate the properties of a phononic crystal plate with hollow pillars and introduce the existence of whispering-gallery modes (WGMs). We show that by tuning the inner radius of the hollow pillar, these modes can merge inside both Bragg and low frequency band gaps, deserving phononic crystal...

  9. Adjustable subwavelength localization in a hybrid plasmonic waveguide.

    Science.gov (United States)

    Belan, S; Vergeles, S; Vorobev, P

    2013-03-25

    The hybrid plasmonic waveguide consists of a high-permittivity dielectric nanofiber embedded in a low-permittivity dielectric near a metal surface. This architecture is considered as one of the most perspective candidates for long-range subwavelength guiding. We present qualitative analysis and numerical results which reveal advantages of the special waveguide design when dielectric constant of the cylinder is greater than the absolute value of the dielectric constant of the metal. In this case the arbitrary subwavelength mode size can be achieved by controlling the gap width. Our qualitative analysis is based on consideration of sandwich-like conductor-gap-dielectric system. The numerical solution is obtained by expansion of the hybrid plasmonic mode over single cylinder modes and the surface plasmon-polariton modes of the metal screen and matching the boundary conditions.

  10. Quantum Electrodynamics in Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Nielsen, Henri Thyrrestrup

    is shown to increase from 3 − 7 um for no intentional disorder to 25 um for 6% disorder. A distribution of losses is seen to be necessary to explain the measured Q-factor distributions. Finally we have performed a cavity QED experiment between single quantum dots and an Anderson localized mode, where a β-factor......, a simultaneous increase in the average Q-factor and decrease in mode volume is observed, which leads to a large probability of observing strong coupling in disorder PhC waveguides. The effect of losses is shown to reduce the largest Q-factors in the distribution and drastically lower the strong coupling...... in the local density of states (LDOS) in PhC waveguides. From decay rate measurements on quantum dot lines temperature tuned in the vicinity of the waveguide band edge, a β-factor for a single quantum dot of more then 85% has been extracted. Finite difference time domain simulations (FDTD) for disordered Ph...

  11. 1.9 W continuous-wave single transverse mode emission from 1060 nm edge-emitting lasers with vertically extended lasing area

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. J., E-mail: jarez.miah@tu-berlin.de; Posilovic, K.; Kalosha, V. P.; Rosales, R.; Bimberg, D. [Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin (Germany); Kettler, T. [Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin (Germany); PBC Lasers GmbH, Hardenbergstr. 36, 10623 Berlin (Germany); Skoczowsky, D. [PBC Lasers GmbH, Hardenbergstr. 36, 10623 Berlin (Germany); Pohl, J.; Weyers, M. [Ferdinand-Braun-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin (Germany)

    2014-10-13

    High-brightness edge-emitting semiconductor lasers having a vertically extended waveguide structure emitting in the 1060 nm range are investigated. Ridge waveguide (RW) lasers with 9 μm stripe width and 2.64 mm cavity length yield highest to date single transverse mode output power for RW lasers in the 1060 nm range. The lasers provide 1.9 W single transverse mode optical power under continuous-wave (cw) operation with narrow beam divergences of 9° in lateral and 14° (full width at half maximum) in vertical direction. The beam quality factor M{sup 2} is less than 1.9 up to 1.9 W optical power. A maximum brightness of 72 MWcm{sup −2}sr{sup −1} is obtained. 100 μm wide and 3 mm long unpassivated broad area lasers provide more than 9 W optical power in cw operation.

  12. Lippmann waveguide spectrometer with enhanced throughput and bandwidth for space and commercial applications.

    Science.gov (United States)

    Madi, Mohammad; Ceyssens, Frederik; Shorubalko, Ivan; Herzig, Hans Peter; Guldimann, Benedikt; Giaccari, Philippe

    2018-02-05

    This article presents an innovative high spectral resolution waveguide spectrometer, from the concept to the prototype demonstration and the test results. The main goal is to build the smallest possible Fourier transform spectrometer (FTS) with state of the art technology. This waveguide FTS takes advantage of a customized pattern of nano-samplers fabricated on the surface of a planar waveguide that allows the increase of the measurement points necessary for increasing the spectral bandwidth of the FTS in a fully static way. The use of a planar waveguide on the other hand allows enhancing the throughput in a waveguide spectrometer compared to the conventional devices made of single-mode waveguides. A prototype is made in silicon oxynitride/silicon dioxide technology and characterized in the visible range. This waveguide spectrometer shows a nominal bandwidth of 256~nm at a central wavelength of 633~nm thanks to a custom pattern of nanodisks providing a μm sampling interval. The implementation of this innovative waveguide FTS for a real-case scenario is explored and further development of such device for the imaging FTS application is discussed.

  13. Modeling bidirectionally coupled single-mode semiconductor lasers

    International Nuclear Information System (INIS)

    Mulet, Josep; Masoller, Cristina; Mirasso, Claudio R.

    2002-01-01

    We develop a dynamical model suitable for the description of two mutually coupled semiconductor lasers in a face-to-face configuration. Our study considers the propagation of the electric field along the compound system as well as the evolution of the carrier densities within each semiconductor laser. Mutual injection, passive optical feedback, and multiple reflections are accounted for in this framework, although under weak to moderate coupling conditions. We systematically describe the effect of the coupling strength on the spectrum of monochromatic solutions and on the respective dynamical behavior. By assuming single-longitudinal-mode operation, weak mutual coupling and slowly varying approximation, the dynamical model can be reduced to rate equations describing the mutual injection from one laser to its counterpart and vice versa. A good agreement between the complete and simplified models is found for small coupling. For larger coupling, higher-order terms lead to a smaller threshold reduction, reflected itself in the spectrum of the monochromatic solutions and in the dynamics of the optical power

  14. Comparison of high power large mode area and single mode 1908nm Tm-doped fiber lasers

    Science.gov (United States)

    Johnson, Benjamin R.; Creeden, Daniel; Limongelli, Julia; Pretorius, Herman; Blanchard, Jon; Setzler, Scott D.

    2016-03-01

    We compare large mode area (LMA) and single-mode (SM) double-clad fiber geometries for use in high power 1908nm fiber lasers. With a simple end-pumped architecture, we have generated 100W of 1908nm power with LMA fiber at 40% optical efficiency and 117W at 52.2% optical efficiency with single-mode fiber. We show the LMA fiber is capable of generating >200W and the SM fiber is capable of >300W at 1908nm. In all cases, the fiber lasers are monolithic power-oscillators with no free-space coupling.

  15. Spatiotemporal light localization in infiltrated waveguide arrays

    DEFF Research Database (Denmark)

    Rasmussen, Per Dalgaard; Neshev, D.N-; Sukhorukov, A.A.

    2008-01-01

    We study light propagation in hexagonal waveguide arrays and show that simultaneous spatiotemporal localisation is possible by combination of engineered anomalous dispersion through selective excitation of Bloch-modes and spatial confinement in a nonlinear defect mode....

  16. Ultra-high speed all-optical signal processing using silicon waveguides and a carbon nanotubes based mode-locked laser

    DEFF Research Database (Denmark)

    Ji, Hua

    for demultiplexing of 1.28 Tbit/s optical time division multiplexing data signal is investigated. A sampling system for ultra-high speed signal waveforms based on nano-engineered silicon waveguide is explored. To set up a sampling source, using carbon nanotubes for generating ultra-short pulses is pursued. A silicon......This thesis concerns the use of nano-engineered silicon waveguides for ultra-high speed optical serial data signal processing. The fundamental nonlinear properties of nano-engineered silicon waveguides are characterized. Utilizing the nonlinear effect in nano-engineered silicon waveguides...

  17. Investigation of single-mode and multi-mode hydromagnetic Rayleigh-Taylor instability in planar geometry

    International Nuclear Information System (INIS)

    Roderick, N.F.; Cochrane, K.; Douglas, M.R.

    1998-01-01

    Previous investigations carried out to study various methods of seeding the hydromagnetic Rayleigh-Taylor instability in magnetohydrodynamic simulations showed features similar to those seen in hydrodynamic calculations. For periodic single-mode initiations the results showed the appearance of harmonics as the single modes became nonlinear. For periodic multi-mode initiations new modes developed that indicated the presence of mode coupling. The MHD simulations used parameters of the high velocity large radius z-pinch experiments performed in the Z-accelerator at Sandia National Laboratories. The cylindrical convergent geometry and variable acceleration of these configurations made comparison with analytic, developed for planar geometry with constant acceleration, difficult. A set of calculations in planar geometry using constant current to produce acceleration and parameters characteristic of the cylindrical implosions has been performed to allow a better comparison. Results of these calculations, comparison with analytic theory, and comparison with the cylindrical configuration calculations will be discussed

  18. Evaluation of Multilayered Waveguide Holographic Memory Media

    Science.gov (United States)

    Ishihara, Kei; Fujiwara, Tsuyoshi; Esaki, Akira

    2004-07-01

    A multilayered waveguide holographic memory media consists of a stack of single-mode slab waveguides. An UV embossing process has been developed for fabricating this structure. This process is suitable for mass production at low cost, but it is has a disadvantage of poor precision in the control of layer thickness and data position. The distribution of the core inclination and the error in data position alignment were checked, and the results showed that this process is sufficiently accurate for fabricating the above media. Also, the durability of the media fabricated by the UV embossing process was tested. The media was preserved under high-temperature and high-humidity conditions (80°C and 85%RH respectively). The results showed that this media has sufficient durability for practical use.

  19. Planar Silicon Optical Waveguide Light Modulators

    DEFF Research Database (Denmark)

    Leistiko, Otto; Bak, H.

    1994-01-01

    that values in the nanosecond region should be possible, however, the measured values are high, 20 microseconds, due to the large area of the injector junctions, 1× 10¿2 cm2, and the limitations imposed by the detection circuit. The modulating properties of these devices are impressive, measurements......The results of an experimental investigation of a new type of optical waveguide based on planar technology in which the liglht guiding and modulation are achieved by exploiting free carrier effects in silicon are presented. Light is guided between the n+ substrate and two p+ regions, which also...... serve as carrier injectors for controling absorption. Light confinement of single mode devices is good, giving spot sizes of 9 ¿m FWHM. Insertion loss measurements indicate that the absorption losses for these waveguides are extremely low, less 1 dB/cm. Estimates of the switching speed indicate...

  20. Single-mode quantum cascade lasers employing a candy-cane shaped monolithic coupled cavity

    Science.gov (United States)

    Liu, Peter Q.; Sladek, Kamil; Wang, Xiaojun; Fan, Jen-Yu; Gmachl, Claire F.

    2011-12-01

    We demonstrate single-mode quantum cascade lasers emitting at ˜4.5 μm by employing a monolithic "candy-cane" shaped coupled-cavity consisting of a straight section connecting at one end to a spiral section. The fabrication process is identical to those for simple Fabry-Perot-type ridge lasers. Continuously tunable single-mode emission across ˜8 cm-1 with side mode suppression ratio up to ˜25 dB and a single-mode operating current range of more than 70% above the threshold current is achieved when the lasers are operated in pulsed-mode from 80 K to 155 K.

  1. Tripartite entanglement of bosonic systems in a noninertial frame beyond the single- mode approximation

    Directory of Open Access Journals (Sweden)

    M Soltani

    2015-12-01

    Full Text Available In this work, we generalize the entanglement of three-qbit Bosonic systems beyond the single-mode approximation when one of the observers is accelerated. For this purpose, we review the effects of acceleration on field modes and quantum states. The single-mode approximation and beyond the single-mode approximation methods are introduced. After this brief introduction, the main problem of this paper, tripartite entanglement of bosonic systems in a noninertial frame beyond the single- mode approximation is investigated. The tripartite entangled states have different classes with GHZ and W states being most important. Here, we choose &pi-tangle as a measure of tripartite entanglement. If the three parties share GHZ state, the corresponding &pi-tangle will increase by increasing acceleration for some Unruh modes. This phenomenon, increasing entanglement, has never been observed in the single-mode approximation for bosonic case. Moreover, the &pi-tangle dose not exhibit a monotonic behavior with increasing acceleration. In the infinite acceleration limit, the &pi-tangle goes to different nonzero values for distinct Unruh modes. Unlike GHZ state, the entanglement of the W state shows only monotonically increasing and decreasing behaviors with increasing acceleration. Also, the entanglement for all possible choices of Unruh modes approaches only 0.176 in the high acceleration limit. Therefore, according to the quantum entanglement, there is no distinction between the single-mode approximation and beyond the single-mode approximation methods in this limit.

  2. Ultrafast Laser Fabrication of Bragg Waveguides in GLS Chalcogenide Glass

    Directory of Open Access Journals (Sweden)

    McMillen Ben

    2013-11-01

    Full Text Available We present work on the fabrication of Bragg waveguides in gallium-lanthanum-sulfide chalcogenide glass using an ultrafast laser. Waveguides were written with a single pass while modulating the writing beam. The spatial and temporal profile of the writing beam was ontrolled during waveguide fabrication in order to control the shape and size of the waveguide cross-section.

  3. Detecting mode hopping in single-longitudinal-mode fiber ring lasers based on an unbalanced fiber Michelson interferometer.

    Science.gov (United States)

    Ma, Mingxiang; Hu, Zhengliang; Xu, Pan; Wang, Wei; Hu, Yongming

    2012-10-20

    A method of detecting mode hopping for single-longitudinal-mode (SLM) fiber ring lasers has been proposed and experimentally demonstrated. The method that is based on an unbalanced Michelson interferometer (MI) utilizing phase generated carrier modulation instantly transforms mode-hopping dynamics into steep phase changes of the interferometer. Multiform mode hops in an SLM erbium-doped fiber ring laser with an 18.6 MHz mode spacing have been detected exactly in real-time domain and discussed in detail. Numerical results show that the MI-based method has a high testing sensitivity for identifying mode hopping, which will play a significant role in evaluating the output stability of SLM fiber lasers.

  4. Optical transmission through a polarization preserving single mode optical fiber at two Ar(+) laser wavelengths

    Science.gov (United States)

    Tedjojuwono, Ken K.; Hunter, William W., Jr.

    1989-01-01

    The transmission characteristics of two Ar(+) laser wavelengths through a twenty meter Panda type Polarization Preserving Single Mode Optical Fiber (PPSMOF) were measured. The measurements were done with both single and multi-longitudinal mode radiation. In the single longitudinal mode case, a degrading Stimulated Brillouin Scattering (SBS) is observed as a backward scattering loss. By choosing an optimum coupling system and manipulating the input polarization, the threshold of the SBS onset can be raised and the transmission efficiency can be increased.

  5. Low-bending loss and single-mode operation in few-mode optical fiber

    Science.gov (United States)

    Yin, Ping; Wang, Hua; Chen, Ming-Yang; Wei, Jin; Cai, Zhi-Min; Li, Lu-Ming; Yang, Ji-Hai; Zhu, Yuan-Feng

    2016-10-01

    The technique of eliminating the higher-order modes in a few-mode optical fiber is proposed. The fiber is designed with a group of defect modes in the cladding. The higher-order modes in the fiber can be eliminated by bending the fiber to induce strong coupling between the defect modes and the higher-order modes. Numerical simulation shows the bending losses of the LP01 mode are lower than 1.5×10-4 dB/turn for the wavelength shorter than 1.625 μm. The proposed fiber can be bent multiple turns at small bending radius which are preferable for FTTH related applications.

  6. Pump combiner for air-clad fiber with PM single-mode signal feed-through

    DEFF Research Database (Denmark)

    Noordegraaf, Danny; Nielsen, Martin D.; Skovgaard, Peter M.W.

    2009-01-01

    A pump combiner with single-mode PM signal feed-through designed for an air-clad photonic crystal fiber is demonstrated. Signal coupling is realized by a novel taper element allowing single-mode guidance at a taper ratio of 3.7.......A pump combiner with single-mode PM signal feed-through designed for an air-clad photonic crystal fiber is demonstrated. Signal coupling is realized by a novel taper element allowing single-mode guidance at a taper ratio of 3.7....

  7. Near-field characterization of plasmonic waveguides

    DEFF Research Database (Denmark)

    Zenin, Volodymyr

    2014-01-01

    ) it is believed to bridge naturally optical and electronic circuits; 2) it looks natural and most efficient for active applications due to the presence of the metal inside the core of the plasmonic mode; 3) the mode size and correspondent field confinement of plasmonic waveguides can be tuned in a vast range...... and their imaging techniques is included additionally to the main research of plasmonic waveguides (channel plasmon polariton, long-range dielectric-loaded surface plasmon polariton, and plasmonic slot waveguides) and waveguide components (antennas, S-bends, and directional couplers) included as a reprint of papers....

  8. 1540-nm single frequency single-mode pulsed all fiber laser for coherent Doppler lidar

    Science.gov (United States)

    Zhang, Xin; Diao, Weifeng; Liu, Yuan; Liu, Jiqiao; Hou, Xia; Chen, Weibiao

    2015-02-01

    A single-mode single frequency eye-safe pulsed all fiber laser based on master oscillator power amplification structure is presented. This laser is composed of a narrow linewidth distributed laser diode seed laser and two-stage cascade amplifiers. 0.8 m longitudinally gradient strained erbium/ytterbium co-doped polarization-maintaining fiber with a core diameter of 10 μm is used as the gain fiber and two acoustic-optics modulators are adopted to enhance pulse extinction ratio. A peak power of 160 W and a pulse width of 200 ns at 10 kHz repetition rate are achieved with transform-limited linewidth and diffraction-limited beam quality. This laser will be employed in a compact short range coherent Doppler wind lidar.

  9. Single-pass waveguide amplifiers in Er-Yb doped zinc polyphosphate glass fabricated with femtosecond laser pulses.

    Science.gov (United States)

    Fletcher, Luke B; Witcher, Jon J; Troy, Neil; Brow, Richard K; Krol, Denise M

    2012-04-01

    We have investigated the direct fabrication of subsurface waveguide amplifiers in Er-Yb zinc polyphosphate glass by utilizing the relationship between the initial glass composition and the resulting changes to the network structure after modification by fs laser pulses. Waveguides, exhibiting internal gain of 1 dB/cm at 1.53 μm when pumped with 500 mW at 976 nm, were directly fabricated using a regenerative amplified Ti:sapphire 1 kHz, 180 fs laser system. Optical properties as well as insertion losses and internal gain are reported.

  10. Fundamental Transverse Mode Selection (TMS#0 of Broad Area Semiconductor Lasers with Integrated Twice-Retracted 4f Set-Up and Film-Waveguide Lens

    Directory of Open Access Journals (Sweden)

    Henning Fouckhardt

    2017-01-01

    Full Text Available Previously we focused on fundamental transverse mode selection (TMS#0 of broad area semiconductor lasers (BALs with two-arm folded integrated resonators for Fourier-optical spatial frequency filtering. The resonator had a round-trip length of 4f, where f is the focal length of the Fourier-transform element (FTE, that is, a cylindrical mirror in-between the orthogonal resonator branches. This 4f set-up can be called “retracted once” due to the reflective filter after 2f; that is, the 2f path was used forwards and backwards. Now the branches are retracted once more resulting in a compact 1f long linear resonator (called “retracted twice” with a round-trip length of 2f. One facet accommodates the filter, while the other houses the FTE, now incorporating a film-waveguide lens. The BAL facet with the filter represents both the Fourier-transform plane (after 2f, i.e., one round-trip as well as the image plane (after 4f, two round-trips. Thus filtering is performed even after 4f, not just after 2f. Experimental results reveal good fundamental TMS for pump currents up to 20% above threshold and a one-dimensional beam quality parameter M1D2 = 1.47. The BALs are made from AlGaInAsSb, but the concept can equally well be employed for BALs of any material system.

  11. MHD waveguides in space plasma

    International Nuclear Information System (INIS)

    Mazur, N. G.; Fedorov, E. N.; Pilipenko, V. A.

    2010-01-01

    The waveguide properties of two characteristic formations in the Earth's magnetotail-the plasma sheet and the current (neutral) sheet-are considered. The question of how the domains of existence of different types of MHD waveguide modes (fast and slow, body and surface) in the (k, ω) plane and their dispersion properties depend on the waveguide parameters is studied. Investigation of the dispersion relation in a number of particular (limiting) cases makes it possible to obtain a fairly complete qualitative pattern of all the branches of the dispersion curve. Accounting for the finite size of perturbations across the wave propagation direction reveals new additional effects such as a change in the critical waveguide frequencies, the excitation of longitudinal current at the boundaries of the sheets, and a change in the symmetry of the fundamental mode. Knowledge of the waveguide properties of the plasma and current sheets can explain the occurrence of preferred frequencies in the low-frequency fluctuation spectra in the magnetotail. In satellite observations, the type of waveguide mode can be determined from the spectral properties, as well as from the phase relationships between plasma oscillations and magnetic field oscillations that are presented in this paper.

  12. Active Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Ek, Sara

    This thesis deals with the fabrication and characterization of active photonic crystal waveguides, realized in III-V semiconductor material with embedded active layers. The platform offering active photonic crystal waveguides has many potential applications. One of these is a compact photonic...... crystal semiconductor optical amplier. As a step towards such a component, photonic crystal waveguides with a single quantum well, 10 quantum wells and three layers of quantum dots are fabricated and characterized. An experimental study of the amplied spontaneous emission and a implied transmission...... are presented in this thesis. A variation of photonic crystal design parameters are used leading to a spectral shift of the dispersion, it is veried that the observed effects shift accordingly. An enhancement of the amplified spontaneous emission was observed close to the band edge, where light is slowed down...

  13. Linearly Polarized, Single-Mode Spontaneous Emission in a Photonic Nanowire

    DEFF Research Database (Denmark)

    Munsch, Mathieu; Claudon, Julien; Bleuse, Joël

    2012-01-01

    We introduce dielectric elliptical photonic nanowires to funnel efficiently the spontaneous emission of an embedded emitter into a single optical mode. Inside a wire with a moderate lateral aspect ratio, the electromagnetic environment is largely dominated by a single guided mode, with a linear...

  14. Optical waveguide switch through magnetic reflectance wall

    Science.gov (United States)

    Fang, Yuntuan; Ni, Zhiyao; Yang, Lixia

    2016-04-01

    We propose a new design to achieve optical waveguide switch. We construct a photonic crystal waveguide with one yttrium iron garnet (YIG) rod array on the two sides of the waveguide. Through the mode analysis, we find in special frequency range a few YIG rods under magnetic field can form the magnetic reflectance wall that blocks the light flow. Removing the magnetic field will delete the reflection wall and let the blocked light to be switched on.

  15. CLIC Waveguide Damped Accelerating Structure Studies

    CERN Document Server

    Dehler, M; Wuensch, Walter

    1996-01-01

    Studies of waveguide damped 30 GHz accelerating structures for multibunching in CLIC are described. Frequency discriminated damping using waveguides with a lowest cutoff frequency above the fundamental but below the higher order modes was considered. The wakefield behavior was investigated using time domain MAFIA computations over up to 20 cells and for frequencies up to 150 GHz. A configuration consisting of four T-cross-sectioned waveguides per cell reduces the transverse wake below 1% at typical CLIC bunch spacings.

  16. Broadband photonic crystal waveguide 60° bend obtained utilizing topology optimization

    DEFF Research Database (Denmark)

    Frandsen, Lars Hagedorn; Harpøth, Anders; Borel, Peter Ingo

    2004-01-01

    Topology optimization has been used to design a 60° bend in a single-mode planar photonic crystal waveguide. The design has been realized in a silicon-on-insulator material and we demonstrate a record-breaking 200-nm transmission bandwidth with an average bend loss of 0.43±0.27 dB for the TE...

  17. OPTICAL PHENOMENA IN FIBER WAVEGUIDES: Determination of the optical characteristics of infrared fiber-optic waveguides

    Science.gov (United States)

    Vasil'ev, A. V.; Plotnichenko, V. G.

    1987-04-01

    A description is given of the features distinguishing determination of the optical characteristics of fiber-optic waveguides in the middle infrared region. The spectral dependences are given of the overall optical losses for single-crystal two-layer fiber-optic waveguides utilizing cesium bromide and single-layer waveguides made of a chalcogenide glass of the Ge-As-Se system in an F-42 fluoroplastic polymer cladding. In the case of the latter waveguides, a study was made of the angular dependences of the radiation power distribution inside the waveguide when CO laser radiation was coupled in at different angles.

  18. Measurement of flow fluctuations in single longitudinal mode pulsed ...

    Indian Academy of Sciences (India)

    2014-02-12

    Feb 12, 2014 ... The plano-convex lens was mounted on a translation stage for precise position- ing of the focal spot on the dye cell. By using longitudinal pumping, shorter gain region was achieved, resulting in shorter cavity length (∼50 mm) for the SLM dye laser. The shorter cavity length provided larger axial mode ...

  19. LOPUT Laser: A novel concept to realize single longitudinal mode ...

    Indian Academy of Sciences (India)

    2014-02-05

    Feb 5, 2014 ... Solid State Laser Division, Raja Ramanna Centre for Advanced Technology, Indore 452 013, India. ∗ ... terpropagating waves inside the gain medium to suppress the effect of SHB in the laser cavity [4–6]. ... propagating linearly polarized modes add up to result in a travelling wave along the gain medium ...

  20. Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber.

    Science.gov (United States)

    Tian, Zhaobing; Yam, Scott S-H; Loock, Hans-Peter

    2008-05-15

    A simple refractive index sensor based on a Michelson interferometer in a single-mode fiber is constructed and demonstrated. The sensor consists of a single symmetrically abrupt taper region in a short piece of single-mode fiber that is terminated by approximately 500 nm thick gold coating. The sensitivity of the new sensor is similar to that of a long-period-grating-type sensor, and its ease of fabrication offers a low-cost alternative to current sensing applications.

  1. Interaction of solitary pulses in single mode optical fibres | Usman ...

    African Journals Online (AJOL)

    Two solitary waves launched, by way of incidence, into an optical fibre from a single pulse if the pulses are in-phase as understood from results of inverse scattering transform method applied to the cubic nonlinear Schrödinger equations, (CNLSE\\'s). The single CNLSE is then understood to describe evolution of coupled ...

  2. Choosing a Better Delay Line Medium between Single-Mode and Multi-Mode Optical Fibers: the Effect of Bending

    Directory of Open Access Journals (Sweden)

    Auwal Mustapha Imam

    2017-12-01

    Full Text Available Optical fiber cables are materials whose core is made of silica and other materials such as chalcogenide glasses; they transmit a digital signal via light pulses through an extremely thin strand of glass. The light propagates and is being guided by the core which is surrounded by the cladding. Light travels in the optical fiber in the form of total internal reflection in the core of the fibers. The flexibility, low tensile strength, low signal loss, high bandwidth and other characteristics of optical fibers favors it for use as a delay medium in many applications. Another favorable characteristic of optical fiber delay lines is are their relative insensitivities to environmental effects and electromagnetic interferences. The immunity of optical fibers to interferences and their less weight added advantages to it for use as delay medium. Single-mode and multi-mode are the two most popular types of optical fibers. Single-mode fibers have good propagation and delay properties with a minimal loss that allows the signal to propagate in a large distance with insignificant distortion or attenuation. The percentage of power transmission of single-mode fibers is found to be higher than that of the multi-mode fibers. It is, therefore, a preferred type for use as a delay line. In this paper, relative studies of the two optical fibers modes, and the results of power input/output measurement of the two modes are presented with a view to coming up with a better type for use as a delay medium.

  3. Open waveguide cavity using a negative index medium.

    Science.gov (United States)

    Yan, Wei; Shen, Linfang

    2008-12-01

    An open waveguide cavity formed by a pair of planar waveguides, in which one guiding layer is a negative index medium and the other is a positive index medium, is theoretically demonstrated. For such a waveguide cavity the resonant frequency is independent of the total length of the waveguide system. With the coupled mode theory it is shown that energy flow circulation can be established through the special coupling between the waveguides at the resonant frequency, and thus the wave fields are localized. This phenomenon is further verified numerically with the finite-difference time-domain method. The quality factor of the open waveguide cavity is also discussed.

  4. Hyperentangled photon sources in semiconductor waveguides

    DEFF Research Database (Denmark)

    Kang, Dongpeng; Helt, L. G.; Zhukovsky, Sergei

    2014-01-01

    We propose and analyze the performance of a technique to generate mode and polarization hyperentangled photons in monolithic semiconductor waveguides using two concurrent type-II spontaneous parametric down-conversion (SPDC) processes. These two SPDC processes are achieved by waveguide engineering...

  5. Sensors Based on Thin-Film Coated Cladding Removed Multimode Optical Fiber and Single-Mode Multimode Single-Mode Fiber: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Ignacio Del Villar

    2015-01-01

    Full Text Available Two simple optical fibre structures that do not require the inscription of a grating, a cladding removed multimode optical fibre (CRMOF and a single-mode multimode single-mode structure (SMS, are compared in terms of their adequateness for sensing once they are coated with thin-films. The thin-film deposited (TiO2/PSS permits increasing the sensitivity to surrounding medium refractive index. The results obtained can be extrapolated to other fields such as biological or chemical sensing just by replacing the thin-film by a specific material.

  6. Modeling of single mode optical fiber having a complicated refractive index profile by using modified scalar finite element method

    OpenAIRE

    Raghuwanshi, S.K.; Rahman, B. M.

    2016-01-01

    A numerical method based on modified scalar finite element method (SC-FEM) is presented and programmed on MATLAB platform for optical fiber modeling purpose. We have estimated the dispersion graph, mode cut off condition, and group delay and waveguide dispersion for highly complicated chirped type refractive index profile fiber. The convergence study of our FEM formulation is carried out with respect to the number of division in core. It has been found that the numerical error becomes less th...

  7. Polarization effects in silicon-clad optical waveguides

    Science.gov (United States)

    Carson, R. F.; Batchman, T. E.

    1984-01-01

    By changing the thickness of a semiconductor cladding layer deposited on a planar dielectric waveguide, the TE or TM propagating modes may be selectively attenuated. This polarization effect is due to the periodic coupling between the lossless propagating modes of the dielectric slab waveguide and the lossy modes of the cladding layer. Experimental tests involving silicon claddings show high selectivity for either polarization.

  8. VCSEL Transmission at 10 Gb/s for 20 km Single Mode Fiber WDM-PON without Dispersion Compensation or Injection Locking

    DEFF Research Database (Denmark)

    Gibbon, Timothy Braidwood; Prince, Kamau; Pham, Tien Thang

    2011-01-01

    how off-center wavelength filtering of the VCSEL spectrum at an array waveguide grating can be used to mitigate the effect of chirp and the dispersion penalty. Transmission at 10Gb/s VCSEL over 23.6 km of single mode fiber is experimentally demonstrated, with a dispersion penalty of only 2.9 d......B. Simulated results are also presented which show that off-center wavelength filtering can extend the 10 Gb/s network reach from 11.7 km to 25.8 km for a 4 dB dispersion penalty. This allows for cheap and simple dispersion mitigation in next generation VCSEL based optical access networks....

  9. Raman-active modes in homogeneous and inhomogeneous bundles of single-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Sbai, K; Rahmani, A; Chadli, H [Laboratoire de Physique des materiaux et Modelisation des Systemes, Universite Moulay Ismail, Faculte des Sciences, BP 11201, Zitoune, 50000 Meknes (Morocco); Sauvajol, J-L [Laboratoire des Colloides, Verres et Nanomateriaux (UMR CNRS 5587), Universite Montpellier II, F-34095 Montpellier Cedex 5 (France)], E-mail: rahmani@fs-umi.ac.ma

    2009-01-28

    In the present work, the non-resonant Raman-active modes are calculated for several diameters, chiralities and sizes for homogeneous and inhomogeneous bundles of single-walled carbon nanotubes (BWCNTs), using the spectral moment's method (SMM). Additional intense Raman-active modes are present in the breathing-like modes (BLM) spectra of these systems in comparison with a single fully symmetric A{sub 1g} mode characteristic of isolated nanotubes (SWCNTs). The dependence of the wavenumber of these modes in terms of diameters, lengths and number of tubes was investigated. We found that, for a finite (in)homogeneous bundle, additional breathing-like modes appear as a specific signature.

  10. 2-μm single longitudinal mode GaSb-based laterally coupled distributed feedback laser with regrowth-free shallow-etched gratings by interference lithography

    Science.gov (United States)

    Cheng-Ao, Yang; Yu, Zhang; Yong-Ping, Liao; Jun-Liang, Xing; Si-Hang, Wei; Li-Chun, Zhang; Ying-Qiang, Xu; Hai-Qiao, Ni; Zhi-Chuan, Niu

    2016-02-01

    We report a type-I GaSb-based laterally coupled distributed-feedback (LC-DFB) laser with shallow-etched gratings operating a continuous wave at room temperature without re-growth process. Second-order Bragg gratings are fabricated alongside the ridge waveguide by interference lithography. Index-coupled LC-DFB laser with a cavity of 1500 μm achieves single longitudinal mode continuous-wave operation at 20 °C with side mode suppression ratio (SMSR) as high as 24 dB. The maximum single mode continuous-wave output power is about 10 mW at room temperature (uncoated facet). A low threshold current density of 230 A/cm2 is achieved with differential quantum efficiency estimated to be 93 mW/A. The laser shows a good wavelength stability against drive current and working temperature. Project supported by the National Key Basic Research Program of China (Grant Nos. 2014CB643903 and 2013CB932904), the National Special Funds for the Development of Major Research Equipment and Instruments, China (Grant No. 2012YQ140005), the National Natural Science Foundation of China (Grant Nos. 61435012, 61274013, 61306088, and 61290303), and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB01010200).

  11. High temperature, single mode, long infrared (λ = 17.8 μm) InAs-based quantum cascade lasers

    Energy Technology Data Exchange (ETDEWEB)

    Chastanet, D.; Bousseksou, A., E-mail: adel.bousseksou@u-psud.fr; Julien, F. H.; Colombelli, R., E-mail: raffaele.colombelli@u-psud.fr [Institut d' Electronique Fondamentale, Univ. Paris Sud, UMR 8622 CNRS, 91405 Orsay (France); Lollia, G.; Bahriz, M.; Baranov, A. N.; Teissier, R., E-mail: roland.teissier@ies.univ-montp2.fr [Institut d' Electronique du Sud, Univ. Montpellier 2, UMR 5214 CNRS, 34095 Montpellier (France)

    2014-09-15

    We demonstrate quantum cascade lasers in the InAs/AlSb material system which operate up to 333 K (in pulsed regime) at λ = 17.8 μm. They employ metal-metal optical waveguides and the threshold current density is 1.6 kA/cm{sup 2} at 78 K. We also report distributed-feedback devices obtained using the same laser material via a 1{sup st}-order Bragg grating inscribed in the sole top metallic contact. Spectral single mode operation with more than 20 dB side mode suppression ratio is achieved at a temperature of 300 K. Large wavelength tuning rates, of the order of 1.5 nm/K, are demonstrated. A wavelength coverage of 0.38 μm is achieved in single-mode regime over a temperature range of 255 K.

  12. Decay properties of high-lying single-particles modes

    NARCIS (Netherlands)

    Beaumel, D; Fortier, S; Gales, S; Guillot, J; LangevinJoliot, H; Laurent, H; Maison, JM; Vernotte, J; Bordewijck, J; Brandenburg, S; Krasznahorkay, A; Crawley, GM; Massolo, CP; Renteria, M; Khendriche, A

    1996-01-01

    The neutron decay of high-lying single-particle states in Ni-64, Zr-90, Sn-120 and (208)pb excited by means of the (alpha,He-3) reaction has been investigated at 120 MeV incident energy using the multidetector EDEN. The characteristics of this reaction are studied using inclusive spectra and angular

  13. Center deviation of localized modes in a one-dimension anharmonic single impurity chain

    Science.gov (United States)

    Chen, Xuan-Lin; Zhu, Gang-Bei; Jiang, Ze-Hui; Yang, Yan-Qiang

    2018-04-01

    A 1D anharmonic chain with a single impurity particle is used to study the center deviation and stability of the localized modes. The displacement patterns of the localized modes for a variable impurity mass and anharmonic parameter are studied. The pattern center is shifted away from the impurity with decreasing anharmonic parameter for both symmetric and asymmetric anharmonic impurity modes. In the limit of a heavy-mass impurity, the energy localization is constrained to the three particles nearest to the impurity.

  14. Investigation of lasers based on coupled waveguides by near-field scanning optical microscopy

    Science.gov (United States)

    Polubavkina, Yu S.; Gordeev, N. Yu; Payusov, A. S.; Kryzhanovskaya, N. V.; Moiseev, E. I.; Zubov, F. I.; Mintairov, S. A.; Kalyuzhnyy, N. A.; Kulagina, M. M.; Shernyakov, Yu M.; Maximov, M. V.; Zhukov, A. E.

    2017-11-01

    We have investigated near field intensity distributions of InGaAs/GaAs/AlGaAs lasers possessing broadened waveguides based on coupled large optical cavity structures (CLOC) by scanning near-field optical microscopy (SNOM). The concept allows effective suppressing of the transverse high-order mode lasing. The obtained results can be considered to be the direct proof of pure transverse single-mode emission of the CLOC lasers.

  15. Amplitude Noise Suppression and Orthogonal Multiplexing Using Injection-Locked Single-Mode VCSEL

    DEFF Research Database (Denmark)

    Lyubopytov, Vladimir; von Lerber, Tuomo; Lassas, Matti

    2017-01-01

    We experimentally demonstrate BER reduction and orthogonal modulation using an injection locked single-mode VCSEL. It allows us suppressing an amplitude noise of optical signal and/or double the capacity of an information channel....

  16. Numerical studies of (partial-) waveguide FELs

    CERN Document Server

    Tecimer, M

    2002-01-01

    We investigate two different approaches to analyze the excitation of 3D-time dependent fields by short electron bunches in parallel-plate waveguide FELs. In the first approach the Lienard-Wiechert solution of the four vector electromagnetic wave equation is adopted to the waveguide-FEL problem by means of image currents method. The second approach is based on the commonly used method of solving paraxial wave equation for the amplitudes of the excited waveguide modes in time and axial dimension. The loss mechanism in a partially waveguided cavity with toroidal mirrors is incorporated into the latter formalism accounting for the outcoupling of the radiation fields through a hole, mode conversion and clipping-off due to the waveguide apertures.

  17. Waveguide based external cavity semiconductor lasers

    NARCIS (Netherlands)

    Oldenbeuving, Ruud; Klein, E.J.; Offerhaus, Herman L.; Lee, Christopher James; Verhaegen, M.; Boller, Klaus J.

    2012-01-01

    We report on progress of the project waveguide based external cavity semiconductor laser (WECSL) arrays. Here we present the latest results on our efforts to mode lock an array of tunable, external cavity semiconductor lasers.

  18. Celiac disease biodetection using lossy-mode resonances generated in tapered single-mode optical fibers

    Science.gov (United States)

    Socorro, A. B.; Corres, J. M.; Del Villar, I.; Matias, I. R.; Arregui, F. J.

    2014-05-01

    This work presents the development and test of an anti-gliadin antibodies biosensor based on lossy mode resonances (LMRs) to detect celiac disease. Several polyelectrolites were used to perform layer-by-layer assembly processes in order to generate the LMR and to fabricate a gliadin-embedded thin-film. The LMR shifted 20 nm when immersed in a 5 ppm anti-gliadin antibodies-PBS solution, what makes this bioprobe suitable for detecting celiac disease. This is the first time, to our knowledge, that LMRs are used to detect celiac disease and these results suppose promising prospects on the use of such phenomena as biological detectors.

  19. The ideal imaging AR waveguide

    Science.gov (United States)

    Grey, David J.

    2017-06-01

    Imaging waveguides are a key development that are helping to create the Augmented Reality revolution. They have the ability to use a small projector as an input and produce a wide field of view, large eyebox, full colour, see-through image with good contrast and resolution. WaveOptics is at the forefront of this AR technology and has developed and demonstrated an approach which is readily scalable. This paper presents our view of the ideal near-to-eye imaging AR waveguide. This will be a single-layer waveguide which can be manufactured in high volume and low cost, and is suitable for small form factor applications and all-day wear. We discuss the requirements of the waveguide for an excellent user experience. When enhanced (AR) viewing is not required, the waveguide should have at least 90% transmission, no distracting artifacts and should accommodate the user's ophthalmic prescription. When enhanced viewing is required, additionally, the waveguide requires excellent imaging performance, this includes resolution to the limit of human acuity, wide field of view, full colour, high luminance uniformity and contrast. Imaging waveguides are afocal designs and hence cannot provide ophthalmic correction. If the user requires this correction then they must wear either contact lenses, prescription spectacles or inserts. The ideal imaging waveguide would need to cope with all of these situations so we believe it must be capable of providing an eyebox at an eye relief suitable for spectacle wear which covers a significant range of population inter-pupillary distances. We describe the current status of our technology and review existing imaging waveguide technologies against the ideal component.

  20. Decay properties of high-lying single-particles modes

    Science.gov (United States)

    Beaumel, D.; Fortier, S.; Galès, S.; Guillot, J.; Langevin-Joliot, H.; Laurent, H.; Maison, J. M.; Vernotte, J.; Bordewijck, J.; Brandenburg, S.; Krasznahorkay, A.; Crawley, G. M.; Massolo, C. P.; Renteria, M.; Khendriche, A.

    1996-02-01

    The neutron decay of high-lying single-particle states in 64Ni, 90Zr, 120Sn and 208Pb excited by means of the (α, 3He) reaction has been investigated at 120 MeV incident energy using the multidetector EDEN. The characteristics of this reaction are studied using inclusive spectra and angular correlation analysis. The structure located between 11 and 15 MeV in 91Zr, and between 8 and 12 MeV excitation energy in 209Pb display large departures from a pure statistical decay. The corresponding non-statistical branching ratios are compared with the results of two theoretical calculations.

  1. Tuning the dispersion and single/multimodeness in a hole-assisted fiber: a finite-element study

    NARCIS (Netherlands)

    Uranus, H.P.; Hoekstra, Hugo; van Groesen, Embrecht W.C.

    Using a vectorial finite element mode solver developed earlier, we studied a hole-assisted multi-ring fiber. We report the role of the holes in tuning the waveguide dispersion and the single/multi-modeness of the particular fiber. By correctly selecting the hole’s size and position, a single-mode

  2. Low-NA single-mode LMA photonic crystal fiber amplifier

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Laurila, Marko; Scolari, Lara

    2011-01-01

    Enabling Single-Mode (SM) operation in Large-Mode-Area (LMA) fiber amplifiers and lasers is critical, since a SM output ensures high beam quality and excellent pointing stability. In this paper, we demonstrate and test a new design approach for achieving ultra-low NA SM rod fibers by using...... a spatially Distributed Mode Filter (DMF). This approach achieves SM performance in a short and straight rod fiber and allows preform tolerances to be compensated during draw. A low-NA SM rod fiber amplifier having a mode field diameter of ~60μm at 1064nm and a pump absorption of 27dB/m at 976nm...

  3. Nonlinear growth of a single neoclassical MHD tearing mode in a tokamak

    International Nuclear Information System (INIS)

    Qu, W.X.; Callen, J.D.

    1985-10-01

    The nonlinear evolution equation for the growth of a single neoclassical MHD tearing mode is derived from the usual resistive MHD equations with neoclassical effects included. For the case Δ' > 0 where the usual resistive MHD modes are unstable, in nonlinear neoclassical MHD there is an intermediate time regime in which the island width w grows only as t/sup 1/2/. However, eventually the neoclassical MHD tearing modes are found to enter the usual resistive MHD Rutherford regime where w infinity t. Physically, the neoclassical MHD bootstrap current effects modify the linear and early nonlinear growth of tearing modes. However, eventually the magnetic islands flatten the pressure gradient within the island to remove these effects and return, at long times, to the usual quasilinear picture for the nonlinear evolution of a single resistive MHD tearing mode

  4. Decay properties of high-lying single-particles modes

    Energy Technology Data Exchange (ETDEWEB)

    Beaumel, D. [Institut de Physique Nucleaire, 91 - Orsay (France); Fortier, S. [Institut de Physique Nucleaire, 91 - Orsay (France); Gales, S. [Institut de Physique Nucleaire, 91 - Orsay (France); Guillot, J. [Institut de Physique Nucleaire, 91 - Orsay (France); Langevin-Joliot, H. [Institut de Physique Nucleaire, 91 - Orsay (France); Laurent, H. [Institut de Physique Nucleaire, 91 -Orsay (France); Maison, J.M. [Institut de Physique Nucleaire, 91 - Orsay (France); Vernotte, J. [Institut de Physique Nucleaire, 91 - Orsay (France); Bordewijck, J. [Kernfysisch Versneller Instituut, 9747 Groningen (Netherlands); Brandenburg, S. [Kernfysisch Versneller Instituut, 9747 Groningen (Netherlands); Krasznahorkay, A. [Kernfysisch Versneller Instituut, 9747 Groningen (Netherlands); Crawley, G.M. [NSCL, Michigan State University, East Lansing, MI 48824 (United States); Massolo, C.P. [Universitad Nacional de La Plata, 1900 La Plata (Argentina); Renteria, M. [Universitad Nacional de La Plata, 1900 La Plata (Argentina); Khendriche, A. [University of Tizi-Ouzou, Tizi-Ouzou (Algeria)

    1996-03-18

    The neutron decay of high-lying single-particle states in {sup 64}Ni, {sup 90}Zr, {sup 120}Sn and {sup 208}Pb excited by means of the ({alpha},{sup 3}He) reaction has been investigated at 120 MeV incident energy using the multidetector EDEN. The characteristics of this reaction are studied using inclusive spectra and angular correlation analysis. The structure located between 11 and 15 MeV in {sup 91}Zr, and between 8 and 12 MeV excitation energy in {sup 209}Pb display large departures from a pure statistical decay. The corresponding non-statistical branching ratios are compared with the results of two theoretical calculations. (orig.).

  5. Waveguide gas laser

    Science.gov (United States)

    Zedong, C.

    1982-05-01

    Waveguide gas lasers are described. Transmission loss of hollow tube light waveguides, coupling loss, the calculation of output power, and the width of the oscillation belt are discussed. The structure of a waveguide CO2 laser is described.

  6. Single tunable laser interrogation of slab-coupled optical sensors through resonance tuning.

    Science.gov (United States)

    Chadderdon, Spencer; Woodard, Leeland; Perry, Daniel; Selfridge, Richard H; Schultz, Stephen M

    2013-04-20

    This paper describes a method for tuning the resonant wavelengths of slab-coupled optical fiber sensors (SCOSs). This method allows multiple sensors to be interrogated simultaneously with a single tunable laser. The resonances are tuned by rotating a biaxial slab waveguide relative to an optical D-fiber. As the slab waveguide rotates, its effective index of refraction changes causing the coupling wavelengths of the slab waveguide and D-fiber to shift. A SCOS fabricated with potassium titanyl phosphate crystal as the slab waveguide is shown to have resonance tuning ranges of 6.67 and 22.24 nm, respectively, for TM and TE polarized modes.

  7. Nature of subpicosecond terahertz pulse propagation in practical dielectric-filled parallel-plate waveguides.

    Science.gov (United States)

    Mendis, Rajind

    2006-09-01

    It is analytically shown that the presence of submicrometer-sized air gaps between the dielectric and metal contact surfaces in a dielectric-filled metallic parallel-plate waveguide can have a dramatic effect on the guided-wave propagation of subpicosecond terahertz pulses. Through the use of metal-evaporated dielectric surfaces to overcome the imperfect contact problem, and a special air-dielectric-air cascaded waveguide geometry to avoid multimode excitation, undistorted subpicosecond terahertz pulse propagation via the single-TEM mode is demonstrated, for what is believed to be the first time, in a silicon-filled PPWG.

  8. Ar+ beam etched Ti:sapphire rib waveguides: a route for the development of broadband fluorescence and channel laser sources

    NARCIS (Netherlands)

    Grivas, C.; Shepherd, D.P.; May-Smith, T.C.; Eason, R.W.; Pollnau, Markus

    Ar+-beam-milled rib waveguides were fabricated in pulsed-laser-deposited Ti:sapphire films and overgrown by a 5 μm thick sapphire layer to further reduce losses. They show broadband single transverse mode fluorescence emission and the potential for the development of laser sources.

  9. Numerical characterization of nanopillar photonic crystal waveguides and directional couplers

    DEFF Research Database (Denmark)

    Chigrin, Dmitry N.; Lavrinenko, Andrei; Sotomayor Torres, Clivia M.

    2005-01-01

    We numerically characterize a novel type of a photonic crystal waveguide, which consists of several rows of periodically arranged dielectric cylinders. In such a nanopillar photonic crystal waveguide, light confinement is due to the total internal reflection. A nanopillar waveguide is a multimode...... waveguide, where the number of modes is equal to the number of rows building the waveguide. The strong coupling between individual waveguides leads to the proposal of an ultrashort directional coupler based on nanopillar waveguides. We present a systematic analysis of the dispersion and transmission...... efficiency of nanopillar photonic crystal waveguides and directional couplers. Plane wave expansion and finite difference time domain methods were used to characterize numerically nanopillar photonic crystal structures both in two- and three-dimensional spaces....

  10. Integrating cell on chip—Novel waveguide platform employing ultra-long optical paths

    Science.gov (United States)

    Fohrmann, Lena Simone; Sommer, Gerrit; Pitruzzello, Giampaolo; Krauss, Thomas F.; Petrov, Alexander Yu.; Eich, Manfred

    2017-09-01

    Optical waveguides are the most fundamental building blocks of integrated optical circuits. They are extremely well understood, yet there is still room for surprises. Here, we introduce a novel 2D waveguide platform which affords a strong interaction of the evanescent tail of a guided optical wave with an external medium while only employing a very small geometrical footprint. The key feature of the platform is its ability to integrate the ultra-long path lengths by combining low propagation losses in a silicon slab with multiple reflections of the guided wave from photonic crystal (PhC) mirrors. With a reflectivity of 99.1% of our tailored PhC-mirrors, we achieve interaction paths of 25 cm within an area of less than 10 mm2. This corresponds to 0.17 dB/cm effective propagation which is much lower than the state-of-the-art loss of approximately 1 dB/cm of single mode silicon channel waveguides. In contrast to conventional waveguides, our 2D-approach leads to a decay of the guided wave power only inversely proportional to the optical path length. This entirely different characteristic is the major advantage of the 2D integrating cell waveguide platform over the conventional channel waveguide concepts that obey the Beer-Lambert law.

  11. Integrating cell on chip—Novel waveguide platform employing ultra-long optical paths

    Directory of Open Access Journals (Sweden)

    Lena Simone Fohrmann

    2017-09-01

    Full Text Available Optical waveguides are the most fundamental building blocks of integrated optical circuits. They are extremely well understood, yet there is still room for surprises. Here, we introduce a novel 2D waveguide platform which affords a strong interaction of the evanescent tail of a guided optical wave with an external medium while only employing a very small geometrical footprint. The key feature of the platform is its ability to integrate the ultra-long path lengths by combining low propagation losses in a silicon slab with multiple reflections of the guided wave from photonic crystal (PhC mirrors. With a reflectivity of 99.1% of our tailored PhC-mirrors, we achieve interaction paths of 25 cm within an area of less than 10 mm2. This corresponds to 0.17 dB/cm effective propagation which is much lower than the state-of-the-art loss of approximately 1 dB/cm of single mode silicon channel waveguides. In contrast to conventional waveguides, our 2D-approach leads to a decay of the guided wave power only inversely proportional to the optical path length. This entirely different characteristic is the major advantage of the 2D integrating cell waveguide platform over the conventional channel waveguide concepts that obey the Beer-Lambert law.

  12. Compact surface plasmon amplifier in nonlinear hybrid waveguide

    Science.gov (United States)

    Shu-shu, Wang; Dan-qing, Wang; Xiao-peng, Hu; Tao, Li; Shi-ning, Zhu

    2016-07-01

    Surface plasmon polariton (SPP), a sub-wavelength surface wave promising for photonic integration, always suffers from the large metallic loss that seriously restricts its practical application. Here, we propose a compact SPP amplifier based on a nonlinear hybrid waveguide (a combination of silver, LiNbO3, and SiO2), where a couple of Bragg gratings are introduced in the waveguide to construct a cavity. This special waveguide is demonstrated to support a highly localized SPP-like hybrid mode and a low loss waveguide-like hybrid mode. To provide a large nonlinear gain, a pumping wave input from the LiNbO3 waveguide is designed to resonate inside the cavity and satisfy the cavity phase matching to fulfill the optical parametric amplification (OPA) of the SPP signal. Proper periods of gratings and the cavity length are chosen to satisfy the impedance matching condition to ensure the high input efficiency of the pump wave from the outside into the cavity. In theoretical calculations, this device demonstrates a high performance in a very compact scheme (∼ 3.32 μm) and a much lower pumping power for OPA compared with single-pass pumping. To obtain a comprehensive insight into this cavity OPA, the influences of the pumping power, cavity length, and the initial phase are discussed in detail. Project supported by the National Basic Research Program of China (Grant No. 2012CB921501), the National Natural Science Foundation of China (Grant Nos. 11322439, 11274165, 11321063, and 91321312), the Dengfeng Project B of Nanjing University, China, and the PAPD of Jiangsu Higher Education Institutions, China.

  13. Single-mode annular chirally-coupled core fibers for fiber lasers

    Science.gov (United States)

    Zhang, Haitao; Hao, He; He, Linlu; Gong, Mali

    2018-03-01

    Chirally-coupled core (CCC) fiber can transmit single fundamental mode and effectively suppresses higher-order mode (HOM) propagation, thus improve the beam quality. However, the manufacture of CCC fiber is complicated due to its small side core. To decrease the manufacture difficulty in China, a novel fiber structure is presented, defined as annular chirally-coupled core (ACCC) fiber, replacing the small side core by a larger side annulus. In this paper, we designed the fiber parameters of this new structure, and demonstrated that the new structure has a similar property of single mode with traditional CCC fiber. Helical coordinate system was introduced into the finite element method (FEM) to analyze the mode field in the fiber, and the beam propagation method (BPM) was employed to analyze the influence of the fiber parameters on the mode loss. Based on the result above, the fiber structure was optimized for efficient single-mode transmission, in which the core diameter is 35 μm with beam quality M2 value of 1.04 and an optical to optical conversion efficiency of 84%. In this fiber, fundamental mode propagates in an acceptable loss, while the HOMs decay rapidly.

  14. Processing of complex shapes with single-mode resonant frequency microwave applicators

    International Nuclear Information System (INIS)

    Fellows, L.A.; Delgado, R.; Hawley, M.C.

    1994-01-01

    Microwave processing is an alternative to conventional composite processing techniques. Single-mode microwave applicators efficiently couple microwave energy into the composite. The application of the microwave energy is greatly affected by the geometry of the composite. In the single mode microwave applicator, two types of modes are available. These modes are best suited to processing flat planar samples or cylindrical samples with geometries that align with the electric fields. Mode-switching is alternating between different electromagnetic modes with the intelligent selection of the modes to alleviate undesirable temperature profiles. This method has improved the microwave heating profiles of materials with complex shapes that do not align with either type of electric field. Parts with two different complex geometries were fabricated from a vinyl toluene/vinyl ester resin with a continuous glass fiber reinforcement by autoclaving and by microwave techniques. The flexural properties of the microwave processed samples were compared to the flexural properties of autoclaved samples. The trends of the mechanical properties for the complex shapes were consistent with the results of experiments with flat panels. This demonstrated that mode-switching techniques are as applicable for the complex shapes as they are for the simpler flat panel geometry

  15. Practical microstructured and plasmonic terahertz waveguides

    Science.gov (United States)

    Markov, Andrey

    The terahertz frequency range, with frequencies lying between 100 GHz and 10 THz, has strong potential for various technological and scientific applications such as sensing, imaging, communications, and spectroscopy. Most terahertz (THz) sources are immobile and THz systems use free-space propagation in dry air where losses are minimal. Designing efficient THz waveguides for flexible delivery of broadband THz radiation is an important step towards practical applications of terahertz techniques. THz waveguides can be very useful on the system integration level when used for connection of the diverse THz point devices, such as sources, filters, sensor cells, detectors, etc. The most straightforward application of waveguides is to deliver electromagnetic waves from the source to the point of detection. Cumbersome free-space optics can be replaced by waveguides operating in the THz range, which could lead to the development of compact THz time domain spectroscopy systems. Other promising applications of THz waveguides are in sensing and imaging. THz waveguides have also been shown to operate in subwavelength regimes, offering mode confinement in waveguide structures with a size smaller than the diffraction limit, and thus, surpassing the resolution of free-space THz imaging systems. In order to design efficient terahertz waveguides, the frequency dependent loss and dispersion of the waveguide must be minimized. A possible solution would be to increase the fraction of mode power propagating through air. In this thesis, the usage of planar porous air/dielectric waveguides and metal wire/dielectric hybrid terahertz fibers will be discussed. First, I present a novel design of a planar porous low-loss waveguide, describe its fabrication, and characterize it in view of its potential applications as a low-loss waveguide and sensor in the THz spectral range. The waveguide structure features a periodic sequence of layers of thin (25-50 mum) polyethylene film that are separated

  16. A General Waveguide Circuit Theory.

    Science.gov (United States)

    Marks, Roger B; Williams, Dylan F

    1992-01-01

    This work generalizes and extends the classical circuit theory of electromagnetic waveguides. Unlike the conventional theory, the present formulation applies to all waveguides composed of linear, isotropic material, even those involving lossy conductors and hybrid mode fields, in a fully rigorous way. Special attention is given to distinguishing the traveling waves, constructed with respect to a well-defined characteristic impedance, from a set of pseudo-waves, defined with respect to an arbitrary reference impedance. Matrices characterizing a linear circuit are defined, and relationships among them, some newly discovered, are derived. New ramifications of reciprocity are developed. Measurement of various network parameters is given extensive treatment.

  17. Single-molecule electronics: Cooling individual vibrational modes by the tunneling current.

    Science.gov (United States)

    Lykkebo, Jacob; Romano, Giuseppe; Gagliardi, Alessio; Pecchia, Alessandro; Solomon, Gemma C

    2016-03-21

    Electronic devices composed of single molecules constitute the ultimate limit in the continued downscaling of electronic components. A key challenge for single-molecule electronics is to control the temperature of these junctions. Controlling heating and cooling effects in individual vibrational modes can, in principle, be utilized to increase stability of single-molecule junctions under bias, to pump energy into particular vibrational modes to perform current-induced reactions, or to increase the resolution in inelastic electron tunneling spectroscopy by controlling the life-times of phonons in a molecule by suppressing absorption and external dissipation processes. Under bias the current and the molecule exchange energy, which typically results in heating of the molecule. However, the opposite process is also possible, where energy is extracted from the molecule by the tunneling current. Designing a molecular "heat sink" where a particular vibrational mode funnels heat out of the molecule and into the leads would be very desirable. It is even possible to imagine how the vibrational energy of the other vibrational modes could be funneled into the "cooling mode," given the right molecular design. Previous efforts to understand heating and cooling mechanisms in single molecule junctions have primarily been concerned with small models, where it is unclear which molecular systems they correspond to. In this paper, our focus is on suppressing heating and obtaining current-induced cooling in certain vibrational modes. Strategies for cooling vibrational modes in single-molecule junctions are presented, together with atomistic calculations based on those strategies. Cooling and reduced heating are observed for two different cooling schemes in calculations of atomistic single-molecule junctions.

  18. Multi Reflection of Lamb Wave Emission in an Acoustic Waveguide Sensor

    Directory of Open Access Journals (Sweden)

    Leonhard Michael Reindl

    2013-02-01

    Full Text Available Recently, an acoustic waveguide sensor based on multiple mode conversion of surface acoustic waves at the solid—liquid interfaces has been introduced for the concentration measurement of binary and ternary mixtures, liquid level sensing, investigation of spatial inhomogenities or bubble detection. In this contribution the sound wave propagation within this acoustic waveguide sensor is visualized by Schlieren imaging for continuous and burst operation the first time. In the acoustic waveguide the antisymmetrical zero order Lamb wave mode is excited by a single phase transducer of 1 MHz on thin glass plates of 1 mm thickness. By contact to the investigated liquid Lamb waves propagating on the first plate emit pressure waves into the adjacent liquid, which excites Lamb waves on the second plate, what again causes pressure waves traveling inside the liquid back to the first plate and so on. The Schlieren images prove this multi reflection within the acoustic waveguide, which confirms former considerations and calculations based on the receiver signal. With this knowledge the sensor concepts with the acoustic waveguide sensor can be interpreted in a better manner.

  19. Determination of electromagnetic modes in oversized corrugated waveguides on the electron cyclotron resonance heating installation at the tokamak Tore Supra; Determination de modes electromagnetiques de guides d'ondes corrugues surdimensionnes sur l'installation de chauffage des electrons de tokamak Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Courtois, L

    2001-03-09

    Electron cyclotron resonance heating (ECRH) in the Tore Supra tokamak constitutes an important step in the research aimed at obtaining thermonuclear fusion reactions. Electron heating is achieved by transmitting an electromagnetic wave from the oscillators (gyrotrons) to the plasma via the fundamental mode, propagating in oversized corrugated waveguides. Maximizing the proportion of the gyrotron power coupled to the fundamental waveguide mode is essential for the good functioning of the transmission line and for maximizing the effect on the plasma. This thesis gives all necessary tools for finding the proportion of the fundamental mode and all other modes present in passive components and at the output of the gyrotron as installed in the Tore Supra ECRH plant. This characterisation is based on obtaining amplitude and phase diagrams of the electric field on a plane transverse to the propagation axis. The most difficult part of obtaining these diagrams is measuring the phase which, despite the very short wavelength, is measured directly at low power levels. At high power levels the phase is numerically reconstructed from amplitude measurements for gyrotron characterisation. A complete theoretical study of the phase reconstruction code is given including its validation with theoretical diagrams. This study allows the realisation of a modal characterisation unit electromagnetic for measurement of radiated beams and usable in each part of the ECRH installation. At the end, the complete modal characterisation is given at low level for a mode converter and also at high level for the first series gyrotron installed at TORE SUPRA. (author)

  20. Finite-width plasmonic waveguides with hyperbolic multilayer cladding.

    Science.gov (United States)

    Babicheva, Viktoriia E; Shalaginov, Mikhail Y; Ishii, Satoshi; Boltasseva, Alexandra; Kildishev, Alexander V

    2015-04-20

    Engineering plasmonic metamaterials with anisotropic optical dispersion enables us to tailor the properties of metamaterial-based waveguides. We investigate plasmonic waveguides with dielectric cores and multilayer metal-dielectric claddings with hyperbolic dispersion. Without using any homogenization, we calculate the resonant eigenmodes of the finite-width cladding layers, and find agreement with the resonant features in the dispersion of the cladded waveguides. We show that at the resonant widths, the propagating modes of the waveguides are coupled to the cladding eigenmodes and hence, are strongly absorbed. By avoiding the resonant widths in the design of the actual waveguides, the strong absorption can be eliminated.

  1. Experimental Performance of a Single-Mode Ytterbium-doped Fiber Ring Laser with Intracavity Modulator

    Science.gov (United States)

    Numata, Kenji; Camp, Jordan

    2012-01-01

    We have developed a linearly polarized Ytterbium-doped fiber ring laser with a single longitudinal mode output at 1064 run. A fiber-coupled intracavity phase modulator ensured mode-hop free operation and allowed fast frequency tuning. The fiber laser was locked with high stability to an iodine-stabilized laser, showing a frequency noise suppression of a factor approx 10 (exp 5) at 1 mHz

  2. Wavelength-selectable and steady single-mode erbium-doped fiber multiple ring laser

    Science.gov (United States)

    Yeh, Chien-Hung; Yang, Zi-Qing; Huang, Tzu-Jung; Chow, Chi-Wai; Chen, Jing-Heng; Chen, Kun-Huang

    2017-11-01

    To achieve a stable and selectable C-band erbium-doped fiber (EDF) laser with single-longitudinal-mode output, a multiple ring architecture is proposed and demonstrated experimentally. In this work, we design a passively quadruple-ring structure in the cavity of an EDF laser to produce a Vernier effect with a mode filter for suppressing the multimode spikes significantly. In addition, the output performance and stability of the proposed EDF ring laser are discussed.

  3. In-Line Fiber Optic Interferometric Sensors in Single-Mode Fibers

    OpenAIRE

    De-Wen Duan; Min Liu; Di Wu; Tao Zhu

    2012-01-01

    In-line fiber optic interferometers have attracted intensive attention for their potential sensing applications in refractive index, temperature, pressure and strain measurement, etc. Typical in-line fiber-optic interferometers are of two types: Fabry-Perot interferometers and core-cladding-mode interferometers. It’s known that the in-line fiber optic interferometers based on single-mode fibers can exhibit compact structures, easy fabrication and low cost. In this paper, ...

  4. A single mode method for the analysis and identification of nonlinear MDOF systems

    Science.gov (United States)

    Huang, Liping; Iwan, W. D.

    In order to apply mode approach to describe a nonlinear system, the concept of modal response of nonlinear systems is examined, and an amplitude-dependent modal model is presented based on an analysis of a single mode of response. The effectiveness of this model is examined under different types and various levels of excitation. A corresponding identification procedure for cubic systems is proposed and applied to the analysis of a 3DOF soltening nonlinear system.

  5. 70 GeV proton volume capture into channeling mode with a bent Si single crystal

    International Nuclear Information System (INIS)

    Chesnokov, Yu.A.; Galyaev, N.A.; Kotov, V.I.; Tsarik, S.V.; Zapol'skij, V.N.

    1990-01-01

    The existence of the volume capture of 70 GeV protons with a Si bent single crystal of (111) orientation into the channeling mode gas experimentally been proved. The data on the probability of capturing protons into the channeling mode versus the bending radius of the crystal have been obtained together with the information on the dynamics of volume captured particle dechanneling. 10 refs

  6. Development of a 10-decade single-mode reactor flux monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Valentine, K.H.; Shepard, R.L.; Falter, K.G.; Reese, W.B.

    1988-03-31

    Conventional wide-range neutron channels employ three optional modes to monitor the required flux range from source levels to full power (typically 10 or more decades). Difficult calibrations are necessary to provide a continuous output signal when such a system switches from counting mode in the source range to mean-square voltage mode in the midrange to dc current mode in the power range. In an ORNL proof-of-principle test, a method of extended range counting was implemented with a fission counter and conventional wide-band pulse processing electronics to provide a single-mode, monotonically increasing signal that spanned /approximately 10/ decades of neutron flux. Ongoing work includes design, fabrication, and testing of a comlpete neutron flux monitoring system suitable for advanced liquid metal reactor designs. 6 refs., 4 figs.

  7. Development of a 10-decade single-mode reactor flux monitoring system

    International Nuclear Information System (INIS)

    Valentine, K.H.; Shepard, R.L.; Falter, K.G.; Reese, W.B.

    1988-01-01

    Conventional wide-range neutron channels employ three optional modes to monitor the required flux range from source levels to full power (typically 10 or more decades). Difficult calibrations are necessary to provide a continuous output signal when such a system switches from counting mode in the source range to mean-square voltage mode in the midrange to dc current mode in the power range. In an ORNL proof-of-principle test, a method of extended range counting was implemented with a fission counter and conventional wide-band pulse processing electronics to provide a single-mode, monotonically increasing signal that spanned /approximately 10/ decades of neutron flux. Ongoing work includes design, fabrication, and testing of a comlpete neutron flux monitoring system suitable for advanced liquid metal reactor designs. 6 refs., 4 figs

  8. Technology and engineering aspects of high power pulsed single longitudinal mode dye lasers

    Science.gov (United States)

    Rawat, V. S.; Mukherjee, Jaya; Gantayet, L. M.

    2015-09-01

    Tunable single mode pulsed dye lasers are capable of generating optical radiations in the visible range having very small bandwidths (transform limited), high average power (a few kW) at a high pulse repetition rate (a few tens of kHz), small beam divergence and relatively higher efficiencies. These dye lasers are generally utilized laser dyes dissolved in solvents such as water, heavy water, ethanol, methanol, etc. to provide a rapidly flowing gain medium. The dye laser is a versatile tool, which can lase either in the continuous wave (CW) or in the pulsed mode with pulse duration as small as a few tens of femtoseconds. In this review, we have examined the several cavity designs, various types of gain mediums and numerous types of dye cell geometries for obtaining the single longitudinal mode pulsed dye laser. Different types of cavity configuration, such as very short cavity, short cavity with frequency selective element and relatively longer cavity with multiple frequency selective elements were reviewed. These single mode lasers have been pumped by all kinds of pumping sources such as flash lamps, Excimer, Nitrogen, Ruby, Nd:YAG, Copper Bromide and Copper Vapor Lasers. The single mode dye lasers are either pumped transversely or longitudinally to the resonator axis. The pulse repletion rate of these pump lasers were ranging from a few Hz to a few tens of kHz. Physics technology and engineering aspects of tuning mechanism, mode hop free scanning and dye cell designs are also presented in this review. Tuning of a single mode dye laser with a resolution of a few MHz per step is a technologically challenging task, which is discussed here.

  9. Comparison of Numerical Modelling of Degradation Mechanisms in Single Mode Optical Fibre Using MATLAB and VPIphotonics

    Directory of Open Access Journals (Sweden)

    Jana Sajgalikova

    2015-01-01

    Full Text Available Mathematical models for description of physical phenomena often use the statistical description of the individual phenomena and solve those using suitable methods. If we want to develop numerical model of optical communication system based on transmission through single mode optical fibres, we need to consider whole series of phenomena that affect various parts of the system. In the single-mode optical fibre we often encounter influence of chromatic dispersion and nonlinear Kerr effects. By observing various different degradation mechanisms, every numerical model should have its own limits, which fulfil more detailed specification. It is inevitable to consider them in evaluation. In this paper, we focus on numerical modelling of degradation mechanisms in single-mode optical fibre. Numerical solution of non-linear Schroedinger equation is performed by finite difference method applied in MATLAB environment and split-step Fourier method, which is implemented by VPIphotonics software.

  10. Utilizing wheel-ring architecture for stable and selectable single-longitudinal-mode erbium fiber laser

    Science.gov (United States)

    Yeh, Chien-Hung; Yang, Zi-Qing; Huang, Tzu-Jung; Chow, Chi-Wai

    2018-03-01

    To achieve a steady single-longitudinal-mode (SLM) erbium-doped fiber (EDF) laser, the wheel-ring architecture is proposed in the laser cavity. According to Vernier effect, the proposed wheel-ring can produce three different free spectrum ranges (FSRs) to serve as the mode-filter for suppressing the densely multi-longitudinal-mode (MLM). Here, to complete wavelength-tunable EDF laser, an optical tunable bandpass filter (OTBF) is utilized inside the cavity for tuning arbitrarily. In addition, the entire output performances of the proposed EDF wheel-ring laser are also discussed and analyzed experimentally.

  11. Optical waveguide tamper sensor technology

    Energy Technology Data Exchange (ETDEWEB)

    Carson, R.F.; Butler, M.A.; Sinclair, M.B. [and others

    1997-03-01

    Dielectric optical waveguides exhibit properties that are well suited to sensor applications. They have low refractive index and are transparent to a wide range of wavelengths. They can react with the surrounding environment in a variety of controllable ways. In certain sensor applications, it is advantageous to integrate the dielectric waveguide on a semiconductor substrate with active devices. In this work, we demonstrate a tamper sensor based on dielectric waveguides that connect epitaxial GaAs-GaAlAs sources and detectors. The tamper sensing function is realized by attaching particles of absorbing material with high refractive index to the surface of the waveguides. These absorbers are then attached to a lid or cover, as in an integrated circuit package or multi-chip module. The absorbers attenuate the light in the waveguides as a function of absorber interaction. In the tamper indicating mode, the absorbers are placed randomly on the waveguides, to form a unique attenuation pattern that is registered by the relative signal levels on the photodetectors. When the lid is moved, the pattern of absorbers changes, altering the photodetector signals. This dielectric waveguide arrangement is applicable to a variety of sensor functions, and specifically can be fabricated as a chemical sensor by the application of cladding layers that change their refractive index and/or optical absorption properties upon exposure to selected chemical species. An example is found in palladium claddings that are sensitive to hydrogen. A description of designs and a basic demonstration of the tamper sensing and chemical sensing functions is described herein.

  12. Propagation length enhancement of surface plasmon polaritons in gold nano-/micro-waveguides by the interference with photonic modes in the surrounding active dielectrics

    Directory of Open Access Journals (Sweden)

    Suárez Isaac

    2017-02-01

    Full Text Available In this work, the unique optical properties of surface plasmon polaritons (SPPs, i.e. subwavelength confinement or strong electric field concentration, are exploited to demonstrate the propagation of light signal at 600 nm along distances in the range from 17 to 150 μm for Au nanostripes 500 nm down to 100 nm wide (30 nm of height, respectively, both theoretically and experimentally. A low power laser is coupled into an optical fiber tip that is used to locally excite the photoluminescence of colloidal quantum dots (QDs dispersed in their surroundings. Emitted light from these QDs is generating the SPPs that propagate along the metal waveguides. Then, the above-referred propagation lengths were directly extracted from this novel experimental technique by studying the intensity of light decoupled at the output edge of the waveguide. Furthermore, an enhancement of the propagation length up to 0.4 mm is measured for the 500-nm-wide metal nanostripe, for which this effect is maximum. For this purpose, a simultaneous excitation of the same QDs dispersed in poly(methyl methacrylate waveguides integrated with the metal nanostructures is performed by end-fire coupling an excitation laser energy as low as 1 KW/cm2. The proposed mechanism to explain such enhancement is a non-linear interference effect between dielectric and plasmonic (supermodes propagating in the metal-dielectric structure, which can be apparently seen as an effective amplification or compensation effect of the gain material (QDs over the SPPs, as previously reported in literature. The proposed system and the method to create propagating SPPs in metal waveguides can be of interest for the application field of sensors and optical communications at visible wavelengths, among other applications, using plasmonic interconnects to reduce the dimensions of photonic chips.

  13. Single-mode hole-assisted fiber as a bending-loss insensitive fiber

    Science.gov (United States)

    Nakajima, Kazuhide; Shimizu, Tomoya; Matsui, Takashi; Fukai, Chisato; Kurashima, Toshio

    2010-12-01

    We investigate the design and characteristics of a single-mode and low bending loss HAF both numerically and experimentally. An air filling fraction S is introduced to enable us to design a HAF with desired characteristics more easily. We show that we can expect to realize a single-mode and low bending loss HAF by considering the S dependence of the bending loss α b and cutoff wavelength λ c as well as their relative index difference Δ dependence. We also show that the mode-field diameter (MFD) and chromatic dispersion characteristics of the single-mode and low bending loss HAF can be tailored by optimizing the distance between the core and the air holes. We also investigate the usefulness of the fabricated HAFs taking the directly modulated transmission and multipath interference (MPI) characteristics into consideration. We show that the designed HAF has sufficient applicability to both analog and digital transmission systems. Our results reveal that the single-mode and low bending loss HAF is beneficial in terms of developing a future fiber to the home (FTTH) network as well as for realizing flexible optical wiring.

  14. Lateral emission highly polarized single-mode nanobelt laser (Conference Presentation)

    Science.gov (United States)

    Xu, Pengfei; Liu, Shikai; Li, Ming; Zhou, Zheng; Ren, Zhaohui; Yang, Qing

    2017-02-01

    Nanoscale lasers are the key component in the integrated photonics chips and have attracted much interests. Nanoblets and nanowires lasers, as one of the candidates for the nanoscale lasers, have been developed for one more decades. Many kinds of nanowire lasers with different functionalities, such as wavelength tunable, single mode, polarized emission and so on, have been demonstrated. However, the reported single mode nanowire lasers are mostly realized through microfabrication process, careful manipulation and complicated structures. Here, we present a new type of lateral emission single mode nanobelt lasers with high polarization ratio which are fabricated by the one step traditional VLS (Vapor Liquid Solid) growth. Different from the traditional nanobelt lasers which are based on the FP cavity formed in the longitudinal direction, the emission of this novel nanoblet laser is lateral which is contribute to the special wire-like structures grown on the nanobelt. It shows band edge emission and the wavelength is centered at 712.6 nm with linewidth about 0.18 nm. The threshold reach as low as 15 uJ/cm2 benefit from the unique morphology which provides enhanced confinement factor for optical modes. Meanwhile the laser emission is highly polarized with polarization ration as high as 0.91. This lateral emission single mode nanobelt laser with high polarization ratio, low threshold and simple fabrication technique offers an economic and effective choice to the future optical applications.

  15. Q-switching and efficient harmonic generation from a single-mode LMA photonic bandgap rod fiber laser

    DEFF Research Database (Denmark)

    Laurila, Marko; Saby, Julien; Alkeskjold, Thomas T.

    2011-01-01

    We demonstrate a Single-Mode (SM) Large-Mode-Area (LMA) ytterbium-doped PCF rod fiber laser with stable and close to diffraction limited beam quality with 110W output power. Distributed-Mode-Filtering (DMF) elements integrated in the cladding of the rod fiber provide a robust spatial mode with a ...

  16. Investigation into the phase effects in nonlinear hollow waveguides

    CSIR Research Space (South Africa)

    Litvin, IA

    2006-07-01

    Full Text Available Numerical calculations of the phase velocities of collective modes of a hollow waveguide at the Stokes frequency is carried out. The self- imaging of transverse structure of modes superposition (Talbot effect) is investigated. It is shown...

  17. Single-mode 37-core fiber with a cladding diameter of 248 μm

    DEFF Research Database (Denmark)

    Sasaki, Y.; Takenaga, K.; Aikawa, K.

    2017-01-01

    A heterogeneous single-mode 37-core fiber with a cladding diameter of 248 μm is designed and fabricated. The fiber provides the highest core count and low total-crosstalk less than −20 dB/1000 km in C+L band.......A heterogeneous single-mode 37-core fiber with a cladding diameter of 248 μm is designed and fabricated. The fiber provides the highest core count and low total-crosstalk less than −20 dB/1000 km in C+L band....

  18. Photonic Crystal Fibres: A New Calss of Optical Waveguides

    DEFF Research Database (Denmark)

    Broeng, Jes; Mogilevstev, D.; Barkou, Stig Eigil

    1999-01-01

    . With an emphasis on the applicational aspects of the fibers, we study their single-mode operation, bending losses, and dispersion properties. While exhibiting certain unique properties, the high-index core photonic crystal fibres share many common features with conventional optical fibers, attributed...... to an operation based on the well-known mechanism of total internal reflection. Fundamentally different from all high-index core fibers, in this work we demostrate a novel type of optical waveguide, operating truly by the photonic bandgap effect. The novel fiber has an improved photonic crystal cladding...... are fundamental in the field of photonic bandgap guidance, and this new class of optical waveguides is, therefore, expected to be of future interest to a large variety of research areas....

  19. Coupled seismic modes and earthquake hazard in Mexico City

    Science.gov (United States)

    Lomnitz, C.

    2007-05-01

    Wave-to-wave coupling can arise when an acoustic pulse selects a Rayleigh mode of the same speed and both travel together swapping energy across an interface. A similar effect may cause severe damage at distances of several hundred kilometers when an Lg wavetrain incides upon a soft remote sedimentary waveguide, as in Mexico City. Energy at a single dominant frequency is then trapped in the waveguide. When the input power exceeds the damping losses, the trapped mode reverberates in the layer for up to five minutes, causing severe resonant damage to structures.

  20. Rectangular waveguide-to-coplanar waveguide transitions at U-band using e-plane probe and wire bonding

    DEFF Research Database (Denmark)

    Dong, Yunfeng; Johansen, Tom Keinicke; Zhurbenko, Vitaliy

    2016-01-01

    This paper presents rectangular waveguide-to-coplanar waveguide (CPW) transitions at U-band (40–60 GHz) using E-plane probe and wire bonding. The designs of CPWs based on quartz substrate with and without aluminum cover are explained. The single and double layer rectangular waveguide......-to-CPW transitions using E-plane probe and wire bonding are designed. The proposed rectangular waveguide-to-CPW transition using wire bonding can provide 10 GHz bandwidth at U-band and does not require extra CPWs or connections between CPWs and chips. A single layer rectangular waveguide-to-CPW transition using E...

  1. Design of a Label-Free, Distributed Bragg Grating Resonator Based Dielectric Waveguide Biosensor

    Directory of Open Access Journals (Sweden)

    Florian Kehl

    2015-01-01

    Full Text Available In this work, we present a resonant, dielectric waveguide device based on distributed Bragg gratings for label-free biosensing applications. The refractive index sensitive optical transducer aims at improving the performance of planar waveguide grating sensor systems with limited Q-factor and dynamic range by combing the advantages of resonant cavities, such as a multitude of resonance peaks with high finesse, with the manageable complexity of waveguide grating couplers. The general sensor concept is introduced and supported by theoretical considerations as well as numerical simulations based on Coupled Mode Theory. In contrast to a single Bragg grating reflector, the presented Fabry-Pérot type distributed Bragg resonator exhibits an extended measurement range as well as relaxed fabrication tolerances. The resulting, relatively simple sensor structure can be fabricated with standard lithographic means and is independent of expensive light-sources and/or detectors, making an affordable but sensitive device, potentially suitable for point-of-care applications.

  2. Computational investigation of single mode vs multimode Rayleigh endash Taylor seeding in Z-pinch implosions

    International Nuclear Information System (INIS)

    Douglas, M.R.; Deeney, C.; Roderick, N.F.

    1998-01-01

    A series of two-dimensional magnetohydrodynamic calculations have been carried out to investigate single and multimode growth and mode coupling for magnetically-driven Rayleigh endash Taylor instabilities in Z pinches. Wavelengths ranging from 5.0 mm down to 1.25 mm were considered. Such wavelengths are comparable to those observed at stagnation using a random density open-quotes seedingclose quotes method. The calculations show that wavelengths resolved by less than 10 cells exhibit an artificial decrease in initial Fourier spectrum amplitudes and a reduction in the corresponding amplitude growth. Single mode evolution exhibits linear exponential growth and the development of higher harmonics as the mode transitions into the nonlinear phase. The mode growth continues to exponentiate but at a slower rate than determined by linear hydrodynamic theory. In the two and three mode case, there is clear evidence of mode coupling and inverse cascade. In addition, distinct modal patterns are observed late in the implosion, resulting from finite shell thickness and magnetic field effects. copyright 1998 American Institute of Physics. thinsp

  3. Single mode fiber array for planet detection using a visible nulling interferometer

    Science.gov (United States)

    Liu, Duncan; Levine, B. Martin; Shao, Michael; Aguayo, Franciso

    2005-01-01

    We report the design, fabrication, and testing of a coherent large mode field diameter fiber array to be used as a spatial filter in a planet finding visible nulling interferometer. The array is a key component of a space instrument for visible-light detection and spectroscopy of Earth like extrasolar planets. In this concept, a nulling interferometer is synthesized from a pupil image of a single aperture which is then spatially filtered by a coherent array of single mode fibers to suppress the residual scattered star light. The use of the fiber array preserves spatial information between the star and planet. The fiber array uses a custom commercial large mode field or low NA step-index single mode fiber to relax alignment tolerances. A matching custom micro lens array is used to couple light into the fibers, and to recollimate the light out of the fiber array. The use of large mode field diameter fiber makes the fabrication of a large spatial filter array with 300 to 1000 elements feasible.

  4. Single Mode ZnO Whispering-Gallery Submicron Cavity and Graphene Improved Lasing Performance.

    Science.gov (United States)

    Li, Jitao; Lin, Yi; Lu, Junfeng; Xu, Chunxiang; Wang, Yueyue; Shi, Zengliang; Dai, Jun

    2015-07-28

    Single-mode ultraviolet (UV) laser of ZnO is still in challenge so far, although it has been paid great attention along the past decades. In this work, single-mode lasing resonance was realized in a submicron-sized ZnO rod based on serially varying the dimension of the whispering-gallery mode (WGM) cavities. The lasing performance, such as the lasing quality factor (Q) and the lasing intensity, was remarkably improved by facilely covering monolayer graphene on the ZnO submicron-rod. The mode structure evolution from multimodes to single-mode was investigated systematically based on the total internal-wall reflection of the ZnO microcavities. Graphene-induced optical field confinement and lasing emission enhancement were revealed, indicating an energy coupling between graphene SP and ZnO exciton emission. This result demonstrated the response of graphene in the UV wavelength region and extended its potential applications besides many previous reports on the multifunctional graphene/semiconductor hybrid materials and devices in advanced electronics and optoelectronics areas.

  5. Single-Phase Microgrid with Seamless Transition Capabilities between Modes of Operation

    DEFF Research Database (Denmark)

    Micallef, Alexander; Apap, Maurice; Spiteri-Staines, Cyril

    2015-01-01

    Microgrids are an effective way to increase the penetration of DG into the grid. They are capable of operating either in grid-connected or in islanded mode thereby increasing the supply reliability for the end user. This paper focuses on achieving seamless transitions from islanded to grid......-connected and vice versa for a single phase microgrid made up from voltage controlled voltage source inverters (VC-VSIs) and current controlled voltage source inverters (CC-VSIs) working together in both modes of operation. The primary control structures for the VC-VSIs and CC-VSIs is considered together...... with the secondary control loops that are used to synchronize the microgrid as a single unit to the grid. Simulation results are given that show the seamless transitions between the two modes without any disconnection times for the CC-VSIs and VC-VSIs connected to the microgrid....

  6. Thermal Effects on the Single-Mode Regime of Distributed Modal Filtering Rod Fiber

    DEFF Research Database (Denmark)

    Coscelli, Enrico; Poli, Federica; Alkeskjold, Thomas Tanggaard

    2012-01-01

    Power scaling of fiber laser systems requires the development of innovative active fibers, capable of providing high pump absorption, ultralarge effective area, high-order mode suppression, and resilience to thermal effects. Thermally induced refractive index change has been recently appointed...... rod-type photonic crystal fiber, which exploits resonant coupling with high-index elements to suppress high-order modes, are thoroughly investigated. A computationally efficient model has been developed to calculate the refractive index change due to the thermo-optical effect, and it has been...... integrated into a full-vector modal solver based on the finite-element method to obtain the guided modes, considering different heating conditions. Results have shown that the single-mode regime of the distributed modal filtering fiber is less sensitive to thermal effects with respect to index-guiding fibers...

  7. Practical Considerations Concerning the Interleaved Transition Mode Single-stage Ballast

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Kjær, Søren Bækhøj; Munk-Nielsen, Stig

    2002-01-01

    The aim of this paper is to present a novel single-stage interleaved ballast focusing on practical design aspects like: key current expression, overall losses, harmonic analysis of the differential-mode EMI current and preheating ballast function. A new preheating method is also presented. A PSPI...

  8. Single mode chalcogenide glass fiber as wavefront filter for the DARWIN planet finding misson

    NARCIS (Netherlands)

    Faber, A.J.; Cheng, L.K.; Gielesen, W.L.M.; Boussard-Plédel, C.; Houizot, P.; Danto, S.; Lucas, J.; Pereira Do Carmo, J.

    2017-01-01

    The development of single mode chalcogenide glass fibers as wavefront filter for the DARWIN mission is reported. Melting procedures and different preform techniques for manufacturing core-cladding chalcogenide fibers are described. Bulk glass samples on the basis of Te-As-Se- and high

  9. Experimental detection of nonclassicality of single-mode fields via intensity moments

    Czech Academy of Sciences Publication Activity Database

    Arkhipov, Ie.I.; Peřina, Jan; Haderka, O.; Michálek, Václav

    2016-01-01

    Roč. 24, č. 26 (2016), s. 29496-29505 ISSN 1094-4087 R&D Projects: GA ČR GAP205/12/0382 Institutional support: RVO:68378271 Keywords : experimental detection of nonclassicality * single-mode fields * intensity moments Subject RIV: BH - Optics , Masers, Lasers Impact factor: 3.307, year: 2016

  10. 870nm Bragg grating in single mode TOPAS microstructured polymer optical fibre

    DEFF Research Database (Denmark)

    Yuan, Wu; Webb, David J.; Kalli, Kyriacos

    2011-01-01

    We report the fabrication and characterization of a fiber Bragg grating (FBG) with 870 nm resonance wavelength in a single-mode TOPAS microstructured polymer optical fiber (mPOF). The grating has been UV-written with the phase-mask technique using a 325 nm HeCd laser. The static tensile strain...

  11. Analytical Expression for the Electric Field of the Single Mode Laser ...

    African Journals Online (AJOL)

    The simplest model of the laser is that of a single mode system homogenously broadened. The dynamical behavior of this laser is described by three differential equations, called Haken-Lorenz equations[1], similar to the Lorenz model [1] already known to predict deterministic chaos. In previous recent work [5-7] we have ...

  12. Current Mode Full-Wave Rectifier Based on a Single MZC-CDTA

    Directory of Open Access Journals (Sweden)

    Neeta Pandey

    2013-01-01

    Full Text Available This paper presents a current mode full-wave rectifier based on single modified Z copy current difference transconductance amplifier (MZC-CDTA and two switches. The circuit is simple and is suitable for IC implementation. The functionality of the circuit is verified with SPICE simulation using 0.35 μm TSMC CMOS technology parameters.

  13. Intrinsic pressure response of a single mode cyclo olefin polymer fiber bragg grating

    DEFF Research Database (Denmark)

    Pedersen, Jens Kristian Mølgaard; Woyessa, Getinet; Nielsen, Kristian

    2016-01-01

    The intrinsic pressure response of a Fibre Bragg Grating (FBG) inscribed in a single-mode cyclo olefin polymer (COP) microstructured polymer optical fibre (mPOF) in the range 0-200 bar is investigated for the first time. In order to efficiently suppress the effects from changes in temperature...

  14. Investigation of bending loss in a single-mode optical fibre

    Indian Academy of Sciences (India)

    Abstract. Loss of optical power in a single-mode optical fibre due to bending has been investigated for a wavelength of 1550 nm. In this experiment, the effects of bending radius (4–15 mm, with steps of 1 mm), and wrapping turns (up to 40 turns) on loss have been studied. Twisting the optical fibre and its influence on power ...

  15. Efficient coupling of a single diamond color center to propagating plasmonic gap modes

    DEFF Research Database (Denmark)

    Kumar, Shailesh; Huck, Alexander; Andersen, Ulrik L

    2013-01-01

    We report on coupling of a single nitrogen-vacancy (NV) center in a nanodiamond to the propagating gap mode of two parallel placed chemically grown silver nanowires. The coupled NV-center nanowire system is made by manipulating nanodiamonds and nanowires with the tip of an atomic force microscope...

  16. Compact silicon multimode waveguide spectrometer with enhanced bandwidth

    DEFF Research Database (Denmark)

    Piels, Molly; Zibar, Darko

    2017-01-01

    Compact, broadband, and high-resolution spectrometers are appealing for sensing applications, but difficult to fabricate. Here we show using calibration data a spectrometer based on a multimode waveguide with 2 GHz resolution, 250 GHz bandwidth, and a 1.6 mm × 2.1 mm footprint. Typically......, such spectrometers have a bandwidth limited by the number of modes supported by the waveguide. In this case, an on-chip mode-exciting element is used to repeatably excite distinct collections of waveguide modes. This increases the number of independent spectral channels from the number of modes to this number...

  17. Quantum waveguides

    CERN Document Server

    Exner, Pavel

    2015-01-01

    This monograph explains the theory of quantum waveguides, that is, dynamics of quantum particles confined to regions in the form of tubes, layers, networks, etc. The focus is on relations between the confinement geometry on the one hand and the spectral and scattering properties of the corresponding quantum Hamiltonians on the other. Perturbations of such operators, in particular, by external fields are also considered. The volume provides a unique summary of twenty five years of research activity in this area and indicates ways in which the theory can develop further. The book is fairly self-contained. While it requires some broader mathematical physics background, all the basic concepts are properly explained and proofs of most theorems are given in detail, so there is no need for additional sources. Without a parallel in the literature, the monograph by Exner and Kovarik guides the reader through this new and exciting field.

  18. Plasmonic wave propagation in silver nanowires: guiding modes or not?

    Science.gov (United States)

    Li, Qiang; Qiu, Min

    2013-04-08

    Propagation modes and single-guiding-mode conditions of one-dimensional silver nanowires based surface plasmon polariton (SPP) waveguides versus the operating wavelength (500-2000 nm) are investigated. For silver nanowires immersed in a SiO(2) matrix, both short-range SPP (SRSPP)-like modes and long-range SPP (LRSPP)-like modes can be guided. However, only the LRSPP-like modes have cutoff radii. For silver nanowires on a SiO(2) substrate, the LRSPP-like modes cannot be supported due to asymmetry. While for the SRSPP-like guiding mode, it has a cutoff radius for wavelength longer than 615 nm. For wavelength shorter than 615 nm, there is no cutoff radius for the guiding modes due to the appearance of the interface modes and thus the single-guiding-mode operation is always satisfied.

  19. Towards a three-dimensional network of direct laser written waveguides on a chip for quantum optical experiments (Conference Presentation)

    Science.gov (United States)

    Landowski, Alexander; Schmidt, Michael; Renner, Michael; von Freymann, Georg; Widera, Artur

    2016-09-01

    Waveguide networks are essential to gain control over photons on a chip-scale level, for applications in, e.g., optical communication, light routing, and even quantum simulation. Quantum simulators on a chip use highly controllable pairs of single photons to shed light onto the role of entanglement in interacting many-body systems. We build three-dimensional waveguide networks on a chip using a commercial system for direct laser writing in a low fluorescent photoresist on a silica substrate and air cladding. Due to our capability to fabricate three-dimensional structures, we use special coupling structures, that enable addressing all input and output ports of our waveguide network through the substrate via one microscope objective simultaneously. Since the photoresist shows low fluorescence for excitation at 532 nm, we will be able to integrate single quantum emitters, such as color centers in diamond, into the waveguide, acting as integrated single quantum system. Here we present our current arc shaped coupling structure, discuss the limits of the single mode-operation of the waveguides and show first beamsplitting devices. We analyze the contributions to the damping in our network, including the bend loss for bend radii smaller than 10 µm.

  20. Optical measuring system with an interrogator and a polymer-based single-mode fibre optic sensor system

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates to an optical measuring system comprising a polymer-based single-mode fibre-optic sensor system (102), an optical interrogator (101), and an optical arrangement (103) interconnecting the optical interrogator (101) and the polymer-based single-mode fibre-optic sensor...... system (102). The invention further relates to an optical interrogator adapted to be connected to a polymer-based single-mode fibre-optic sensor system via an optical arrangement. The interrogator comprises a broadband light source arrangement (104) and a spectrum analysing arrangement which receives...... and analyses light reflected from the polymer-based single- mode fibre-optic sensor system....

  1. Mode division multiplexing technology for single-fiber optical trapping axial-position adjustment.

    Science.gov (United States)

    Liu, Zhihai; Wang, Lei; Liang, Peibo; Zhang, Yu; Yang, Jun; Yuan, Libo

    2013-07-15

    We demonstrate trapped yeast cell axial-position adjustment without moving the optical fiber in a single-fiber optical trapping system. The dynamic axial-position adjustment is realized by controlling the power ratio of the fundamental mode beam (LP01) and the low-order mode beam (LP11) generated in a normal single-core fiber. In order to separate the trapping positions produced by the two mode beams, we fabricate a special fiber tapered tip with a selective two-step method. A yeast cell of 6 μm diameter is moved along the optical axis direction for a distance of ~3 μm. To the best of our knowledge, this is the first demonstration of the trapping position adjustment without moving the fiber for single-fiber optical tweezers. The excitation and utilization of multimode beams in a single fiber constitutes a new development for single-fiber optical trapping and makes possible more practical applications in biomedical research fields.

  2. Schroedinger covariance states in anisotropic waveguides

    International Nuclear Information System (INIS)

    Angelow, A.; Trifonov, D.

    1995-03-01

    In this paper Squeezed and Covariance States based on Schroedinger inequality and their connection with other nonclassical states are considered for particular case of anisotropic waveguide in LiNiO 3 . Here, the problem of photon creation and generation of squeezed and Schroedinger covariance states in optical waveguides is solved in two steps: 1. Quantization of electromagnetic field is provided in the presence of dielectric waveguide using normal-mode expansion. The photon creation and annihilation operators are introduced, expanding the solution A-vector(r-vector,t) in a series in terms of the Sturm - Liouville mode-functions. 2. In terms of these operators the Hamiltonian of the field in a nonlinear waveguide is derived. For such Hamiltonian we construct the covariance states as stable (with nonzero covariance), which minimize the Schroedinger uncertainty relation. The evolutions of the three second momenta of q-circumflex j and p-circumflex j are calculated. For this Hamiltonian all three momenta are expressed in terms of one real parameters s only. It is found out how covariance, via this parameter s, depends on the waveguide profile n(x,y), on the mode-distributions u-vector j (x,y), and on the waveguide phase mismatching Δβ. (author). 37 refs

  3. Large Mode Area Single Trench Fiber for 2 mu m Operation

    DEFF Research Database (Denmark)

    Jain, Deepak; Sahu, Jayanta K.

    2016-01-01

    to 25 cm bend radius, respectively, by exploiting high delocalization of the higher order modes. Achievement of a large effective-area can be very useful to address nonlinear effects. Moreover, single trench fiber offers certain advantages such as low-cost fabrication and easy postprocessing (such......Performance of single trench fibers has been investigated using finite-element method at 2 mu m wavelength. Numerical investigations show that an effective single mode operation for large effective area between 3000-4000 mu m(2) and 2000-3000 mu m(2) can be achieved at similar to 40 and similar...... as cleaving and splicing) thanks to the all-solid fiber design....

  4. Benchmarking of grid fault modes in single-phase grid-connected photovoltaic systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede; Zou, Zhixiang

    2012-01-01

    Pushed by the booming installations of single-phase photovoltaic (PV) systems, the grid demands regarding the integration of PV systems are expected to be modified. Hence, the future PV systems should become more active with functionalities of low voltage ride-through (LVRT) and the grid support...... capability. The control methods, together with grid synchronization techniques, are responsible for the generation of appropriate reference signals in order to handle ride-through grid faults. Thus, it is necessary to evaluate the behaviors of grid synchronization methods and control possibilities in single...... phase systems under grid faults. The intent of this paper is to present a benchmarking of grid fault modes that might come in future single-phase PV systems. In order to map future challenges, the relevant detection and control strategies are discussed. Some faulty modes are studied experimentally...

  5. Simultaneous moduli measurement of elastic materials at elevated temperatures using an ultrasonic waveguide method

    Science.gov (United States)

    Periyannan, Suresh; Balasubramaniam, Krishnan

    2015-11-01

    A novel technique for simultaneously measuring the moduli of elastic isotropic material, as a function of temperature, using two ultrasonic guided wave modes that are co-generated using a single probe is presented here. This technique can be used for simultaneously measuring Young's modulus (E) and shear modulus (G) of different materials over a wide range of temperatures (35 °C-1200 °C). The specimens used in the experiments have special embodiments (for instance, a bend) at one end of the waveguide and an ultrasonic guided wave generator/detector (transducer) at the other end for obtaining reflected signals in a pulse-echo mode. The orientation of the transducer can be used for simultaneously generating/receiving the L(0,1) and/or T(0,1) using a single transducer in a waveguide on one end. The far end of the waveguides with the embodiment is kept inside a heating device such as a temperature-controlled furnace. The time of flight difference, as a function of uniform temperature distribution region (horizontal portion) of bend waveguides was measured and used to determine the material properties. Several materials were tested and the comparison between values reported in the literature and measured values were found to be in agreement, for both elastic moduli (E and G) measurements, as a function of temperature. This technique provides significant reduction in time and effort over conventional means of measurement of temperature dependence of elastic moduli.

  6. Multichannel waveguides for the simultaneous detection of disease biomarkers

    Energy Technology Data Exchange (ETDEWEB)

    Mukundan, Harshini [Los Alamos National Laboratory; Price, Dominique Z [Los Alamos National Laboratory; Grace, Wynne K [Los Alamos National Laboratory; Swanson, Basil I [Los Alamos National Laboratory

    2009-01-01

    The sensor team at the Los Alamos National Laboratory has developed a waveguide-based optical biosensor that has previously been used for the detection of biomarkers associated with diseases such as tuberculosis, breast cancer, anthrax and influenza in complex biological samples (e.g., serum and urine). However, no single biomarker can accurately predict disease. To address this issue, we developed a multiplex assay for the detection of components of the Bacillus anthracis lethal toxin on single mode planar optical waveguides with tunable quantum dots as the fluorescence reporter. This limited ability to multiplex is still insufficient for accurate detection of disease or for monitoring prognosis. In this manuscript, we demonstrate for the first time, the design, fabrication and successful evaluation of a multichannel planar optical waveguide for the simultaneous detection of at least three unknown samples in quadruplicate. We demonstrate the simultaneous, rapid (30 min), quantitative (with internal standard) and sensitive (limit of detection of 1 pM) detection of protective antigen and lethal factor of Bacillus anthracis in complex biological samples (serum) using specific monoclonal antibodies labeled with quantum dots as the fluorescence reporter.

  7. Tuner-adjustable waveguide Coupler (TaCo)

    CERN Document Server

    Wegner, R; Giguet, J M; Ugena Tirado, P

    2011-01-01

    TaCo, the Tuner-adjustable waveguide Coupler, is a handy modification of the T-type waveguide coupler: A single slug tuner is integrated directly into the coupler to vary the cavity-to-waveguide coupling. The novel coupler design is analysed in detail and optimised for a WR2300 waveguide and 352 MHz cavities, offering significant advantages for production and RF tuning. Different simulation methods have been employed, among them a simple waveguide model suited for quick optimisation runs. A test coupler has been designed, measured and high power tested.

  8. Effects of underwater turbulence on laser beam propagation and coupling into single-mode optical fiber.

    Science.gov (United States)

    Hanson, Frank; Lasher, Mark

    2010-06-01

    We characterize and compare the effects of turbulence on underwater laser propagation with theory. Measurements of the coupling efficiency of the focused beam into a single-mode fiber are reported. A simple tip-tilt control system, based on the position of the image centroid in the focal plane, was shown to maintain good coupling efficiency for a beam radius equal to the transverse coherence length, r(0). These results are relevant to high bandwidth communication technology that requires good spatial mode quality.

  9. Terahertz cross-phase modulation of an optical mode

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Novitsky, Andrey; Zalkovskij, Maksim

    2013-01-01

    We discuss an optical scheme which facilitates modulation of an optical waveguide mode by metallic-nanoslit-enhanced THz radiation. The waveguide mode acquires an additional phase shift due to THz nonlinearity with fields reachable in experiments.......We discuss an optical scheme which facilitates modulation of an optical waveguide mode by metallic-nanoslit-enhanced THz radiation. The waveguide mode acquires an additional phase shift due to THz nonlinearity with fields reachable in experiments....

  10. Direct generation of graphene plasmonic polaritons at THz frequencies via four wave mixing in the hybrid graphene sheets waveguides.

    Science.gov (United States)

    Sun, Yu; Qiao, Guofu; Sun, Guodong

    2014-11-17

    A compact waveguide incorporating a high-index nano-ridge sandwiched between graphene sheets is proposed for the direct generation of graphene plasmonic polaritons (GSPs) via four wave mixing (FWM). The proposed waveguide supports GSP modes at the THz frequencies and photonic modes at the infrared wavelengths. Due to the strong confinement of coupled graphene sheets, the GSP modes concentrate in the high-index nano-ridge far below the diffraction limit, which improves integral overlap with the photonic modes and greatly facilitates the FWM process. To cope with the ultra-high effective refractive of the GSP modes, an alternative energy conservation diagram is selected for the degenerated FWM, which corresponds to one pump photon transfers its energy to two signal photons and one GSP photon. The single mode condition of the generated symmetric GSP modes is analyzed by the effective index method to suppress the undesired conversion. Due to the unique tunability of GSPs, the phase matching condition can be satisfied by tuning the chemical potential of the graphene sheets employing external gates. The FWM pumped at 1,550 nm with a peak power of 1 kW is theoretically investigated by solving the modified coupled mode equations. The generated GSP power reaches its maximum up to 67 W at a propagation distance of only 43.7 μm. The proposed waveguide have a great potential for integrated chip-scale GSP source.

  11. Nonstationary behavior in a delayed feedback traveling wave tube folded waveguide oscillator

    International Nuclear Information System (INIS)

    Ryskin, N.M.; Titov, V.N.; Han, S.T.; So, J.K.; Jang, K.H.; Kang, Y.B.; Park, G.S.

    2004-01-01

    Folded waveguide traveling-wave tubes (FW TWT) are among the most promising candidates for powerful compact amplifiers and oscillators in millimeter and submillimeter wave bands. In this paper, the nonstationary behavior of a FW TWT oscillator with delayed feedback is investigated. Starting conditions of the oscillations are derived analytically. Results of numerical simulation of single-frequency, self-modulation (multifrequency) and chaotic generation regimes are presented. Mode competition phenomena, multistability and hysteresis are discussed

  12. A compact, all-optical, THz wave generator based on self-modulation in a slab photonic crystal waveguide with a single sub-nanometer graphene layer.

    Science.gov (United States)

    Asadi, R; Ouyang, Z; Mohammd, M M

    2015-07-14

    We design a compact, all-optical THz wave generator based on self-modulation in a 1-D slab photonic crystal (PhC) waveguide with a single sub-nanometer graphene layer by using enhanced nonlinearity of graphene. It has been shown that at the bandgap edge of higher bands of a 1-D slab PhC, through only one sub-nanometer graphene layer we can obtain a compact, high modulation factor (about 0.98 percent), self-intensity modulator at a high frequency (about 0.6 THz) and low threshold intensity (about 15 MW per square centimeter), and further a compact, all-optical THz wave generator by integrating the self-modulator with a THz photodiode or photonic mixer. Such a THz source is expected to have a relatively high efficiency compared with conventional sources based on optical methods. The proposed THz source can find wide applications in THz science and technology, e.g., in THz imaging, THz sensors and detectors, THz communication systems, and THz optical integrated logic circuits.

  13. Designing large-bandwidth planar photonic crystal waveguides

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Søndergaard, Thomas

    2002-01-01

    Our waveguide design is characterized by first of all a large bandwidth, and secondly it is characterized by a relatively high group velocity giving a better modal dispersion match with the modes of standard waveguides used for coupling light into the planar crystal waveguide (PCW). We consider t...... the dispersion properties for a PCW based on introducing a line defect in a photonic crystal with air-holes arranged periodically on a triangular lattice in silicon....

  14. Power monitoring in dielectric-loaded surface plasmon-polariton waveguides.

    Science.gov (United States)

    Kumar, Ashwani; Gosciniak, Jacek; Andersen, Thomas B; Markey, Laurent; Dereux, Alain; Bozhevolnyi, Sergey I

    2011-02-14

    We report on propagating mode power monitoring in dielectric-loaded surface plasmon-polariton waveguides (DLSPPWs) by measuring the resistance of gold stripes supporting the DLSPPW mode propagation. Inevitable absorption of the DLSPPW mode in metal causes an increase in the stripe temperature and, thereby, in its resistance whose variations are monitored with an external Wheatstone bridge being accurately balanced in the absence of radiation in a waveguide. The investigated waveguide configuration consists of a 1-µm-thick and 10-µm-wide polymer ridges tapered laterally to a 1-µm-wide ridge placed on a 50-nm-thin and 4-µm-wide gold stripe, all supported by a magnesium fluoride substrate. Using single-mode polarization-maintaining fiber for in- and out-coupling of radiation, DLSPPW mode power monitoring at telecom wavelengths is realized with the responsivities of up to ~1.8 µV/µW (showing weak wavelength dependence) being evaluated for a bias voltage of 1 V.

  15. Synthesis of the Thickness Profile of the Waveguide Layer of the Thin Film Generalized Waveguide Luneburg Lens

    Directory of Open Access Journals (Sweden)

    Ayryan E.A.

    2016-01-01

    Full Text Available A local variation in the thickness of the waveguide layer of integrated optics waveguide causes a local decrease of phase velocity, and hence bending of rays and of the wave front. The relationship of the waveguide layer thickness profile h (y, z with the distribution of the effective refractive index of the waveguide β (y, z is described in terms of a particular model of waveguide solutions of the Maxwell equations. In the model of comparison waveguides the support of the thickness irregularity of the waveguide layer Δh coincides with the support of inhomogeneity of the effective refractive index Δβ. A more adequate but more cumbersome model of the adiabatic waveguide modes allows them to mismatch supp Δh ⊃ supp Δβ. In this paper, we solve the problem of the Δh reconstruction on the base of given Δβ of the thin film generalized waveguide Luneburg lens in a model of adiabatic waveguide modes. The solution is found in the form of a linear combination of Gaussian exponential functions and in the form of a cubic spline for the cylindrically symmetric Δh (r and in the form of a cubic spline for Δβ (r.

  16. Three-dimensional single-mode nonlinear ablative Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Yan, R.; Aluie, H.; Betti, R.; Sanz, J.; Liu, B.; Frank, A.

    2016-01-01

    The nonlinear evolution of the single-mode ablative Rayleigh-Taylor instability is studied in three dimensions. As the mode wavelength approaches the cutoff of the linear spectrum (short-wavelength modes), it is found that the three-dimensional (3D) terminal bubble velocity greatly exceeds both the two-dimensional (2D) value and the classical 3D bubble velocity. Unlike in 2D, the 3D short-wavelength bubble velocity does not saturate. The growing 3D bubble acceleration is driven by the unbounded accumulation of vorticity inside the bubble. The vorticity is transferred by mass ablation from the Rayleigh-Taylor spikes to the ablated plasma filling the bubble volume

  17. Optimizing single mode robustness of the distributed modal filtering rod fiber amplifier

    DEFF Research Database (Denmark)

    Jørgensen, Mette Marie; Petersen, Sidsel Rübner; Laurila, Marko

    2012-01-01

    High-power fiber amplifiers for pulsed applications require large mode area (LMA) fibers having high pump absorption and near diffraction limited output. Photonic crystal fibers allow realization of short LMA fiber amplifiers having high pump absorption through a pump cladding that is decoupled...... from the outer fiber diameter. However, achieving ultra low NA for single mode (SM) guidance is challenging, thus different design strategies must be applied. The distributed modal filtering (DMF) design enables SM guidance in ultra low NA fibers with very large cores, where large preform tolerances...... can be compensated during the fiber draw. Design optimization of the SM bandwidth of the DMF rod fiber is presented. Analysis of band gap properties results in a fourfold increase of the SM bandwidth compared to previous results, achieved by utilizing the first band of cladding modes, which can cover...

  18. Kerr-lens mode-locked Ti:Sapphire laser pumped by a single laser diode

    Science.gov (United States)

    Kopylov, D. A.; Esaulkov, M. N.; Kuritsyn, I. I.; Mavritskiy, A. O.; Perminov, B. E.; Konyashchenko, A. V.; Murzina, T. V.; Maydykovskiy, A. I.

    2018-04-01

    The performance of a Ti:sapphire laser pumped by a single 461 nm laser diode is presented for both the continuous-wave and the mode-locked regimes of operation. We introduce a simple astigmatism correction scheme for the laser diode beam consisting of two cylindrical lenses affecting the pump beam along the fast axis of the laser diode, which provides the mode-matching between the nearly square-shaped pump beam and the cavity mode. The resulting efficiency of the suggested Ti:Sapphire oscillator pumped by such a laser diode is analyzed for the Ti:sapphire crystals of 3 mm, 5 mm and 10 mm in length. We demonstrate that such a system provides the generation of ultrashort pulses up to 15 fs in duration with the repetition rate of 87 MHz, the average power being 170 mW.

  19. Stable Single-Mode Operation of Distributed Feedback Quantum Cascade Laser by Optimized Reflectivity Facet Coatings.

    Science.gov (United States)

    Wang, Dong-Bo; Zhang, Jin-Chuan; Cheng, Feng-Min; Zhao, Yue; Zhuo, Ning; Zhai, Shen-Qiang; Wang, Li-Jun; Liu, Jun-Qi; Liu, Shu-Man; Liu, Feng-Qi; Wang, Zhan-Guo

    2018-02-02

    In this work, quantum cascade lasers (QCLs) based on strain compensation combined with two-phonon resonance design are presented. Distributed feedback (DFB) laser emitting at ~ 4.76 μm was fabricated through a standard buried first-order grating and buried heterostructure (BH) processing. Stable single-mode emission is achieved under all injection currents and temperature conditions without any mode hop by the optimized antireflection (AR) coating on the front facet. The AR coating consists of a double layer dielectric of Al 2 O 3 and Ge. For a 2-mm laser cavity, the maximum output power of the AR-coated DFB-QCL was more than 170 mW at 20 °C with a high wall-plug efficiency (WPE) of 4.7% in a continuous-wave (CW) mode.

  20. Hollow glass waveguides: New variations

    Science.gov (United States)

    Gibson, Daniel Joseph

    This study is an effort to develop new variations on the infrared silver-silver iodide hollow glass waveguide (HGW) with application specific properties. Four variations are presented: a HGW with a long, gradual taper, a HGW with a rectangular cross-section, curved HGW tips and a new all-dielectric hollow waveguide based on photonic bandgap guidance principles. A hollow glass waveguide tapered over its entire length offers ease of coupling at the proximal end and excellent flexibility at the distal end. Waveguides tapered from 1000 to 500 mum and 700 to 500 mum over 1.5 m were fabricated in this study. Compared to similarly sized non-tapered waveguides, laser losses for the tapered guides were high but decreased when bent. This behavior is contrary to that of non-tapered guides and an iterative ray tracing model was also developed to explain the observed loss characteristics of tapered hollow waveguides. Hollow glass waveguides with round profiles do not maintain the polarization state of the delivered radiation to any appreciable degree. HGWs with large- and small-aspect ratio rectangular cross sections were developed and shown to preserve polarization up to 96%, even when bent. The large aspect ratio guide was able to effectively rotate the transmitted polarization when twisted along its axis. Curved distal tips for medical and dental laser applications were developed by removing the low-OH silica fiber from commercially available stainless steel dental tips, and inserting HGWs of various sizes. The optical performances and heating profiles of the various configurations indicate the tips are suitable for certain medical applications, but the minimum bending radius is limited by the mechanical properties of the glass substrate. A small radii bending loss study confirms that propagating modes periodically couple as the radius of curvature is reduced. Through the application of the photonic bandgap (PBG) guidance, hollow waveguides can be made entirely from

  1. Second-harmonic scanning optical microscopy of poled silica waveguides

    DEFF Research Database (Denmark)

    Pedersen, Kjeld; Bozhevolnyi, Sergey I.; Arentoft, Jesper

    2000-01-01

    Second-harmonic scanning optical microscopy (SHSOM) is performed on electric-field poled silica-based waveguides. Two operation modes of SHSOM are considered. Oblique transmission reflection and normal reflection modes are used to image the spatial distribution of nonlinear susceptibilities...... and limitations of the two operation modes when used for SHSOM studies of poled silica-based waveguides are discussed. The influence of surface defects on the resulting second-harmonic images is also considered. ©2000 American Institute of Physics....

  2. Single mode operation of a tea CO2 laser by a CW CO2 laser radiation injection

    International Nuclear Information System (INIS)

    Silakhori, K.; Soltanmoradi, F.; Behjat, A.; Montazerghaem, M.; Sadr, R.

    2005-01-01

    In this research work, single mode operation based on injection of a CW laser beam into TEA CO 2 laser cavity has been demonstrated. The technique has vast applications in research programs for laser spectroscopy and optical pumping. The observed smooth pulse shapes indicated that the system is operating in a single mode of operation, where no additional PZT mounted elements or other cavity stabilizing devices have been used. In addition, it have been observed that the output energy has not been reduced when the laser was operating in a single mode of operation, compared with the case when the laser is operating in the multi-mode regime

  3. Ring resonator-based single-chip 1x8 optical beam forming network in LPCVD waveguide technology

    NARCIS (Netherlands)

    Zhuang, L.; Roeloffzen, C.G.H.; Heideman, Rene; Borreman, A.; Meijerink, Arjan; van Etten, Wim; Koonen, A.M.J.; Leijtens, X.J.M.; van den Boom, H.P.A.; Verdurmen, E.J.M.; Molina Vázquez, J.

    2006-01-01

    Optical ring resonators (ORRs) are good candidates to provide continuously tunable delay in beam forming networks (BFNs) for phased array antenna systems. Delay and splitting/combining elements can be integrated on a single optical chip to form an OBFN. A state-of-the-art 1×8 OBFN chip has been

  4. Single-chip ring resonator-based 1 x 8 optical beam forming network in CMOS-compatible waveguide technology

    NARCIS (Netherlands)

    Zhuang, L.; Roeloffzen, C.G.H.; Heideman, Rene; Borreman, A.; Meijerink, Arjan; van Etten, Wim

    2007-01-01

    Optical ring resonators (ORRs) are good candidates to provide continuously tunable delay in optical beam forming networks (OBFNs) for phased array antenna systems. Delay and splitting/combining elements can be integrated on a single optical chip to form an OBFN. A state-of-the-art ring resonator-

  5. Bend-insensitive single-mode photonic crystal fiber with ultralarge effective area for dual applications

    Science.gov (United States)

    Islam, Md. Asiful; Alam, M. Shah

    2013-05-01

    A novel photonic crystal fiber (PCF) having circular arrangement of cladding air holes has been designed and numerically optimized to obtain a bend insensitive single mode fiber with large mode area for both wavelength division multiplexing (WDM) communication and fiber-to-the-home (FTTH) application. The bending loss of the proposed bent PCF lies in the range of 10-3 to 10-4 dB/turn or lower over 1300 to 1700 nm, and 2 × 10-4 dB/turn at the wavelength of 1550 nm for a 30-mm bend radius with a higher order mode (HOM) cut-off frequency below 1200 nm for WDM application. When the whole structure of the PCF is scaled down, a bending loss of 6.78×10-4 dB/turn at 1550 nm for a 4-mm bend radius is obtained, and the loss remains in the order of 10-4 dB/turn over the same range of wavelength with an HOM cut-off frequency below 700 nm, and makes the fiber useful for FTTH applications. Furthermore, this structure is also optimized to show a splice loss near zero for fusion-splicing to a conventional single-mode fiber (SMF).

  6. Extremely low-loss single-mode photonic crystal fiber in the terahertz regime

    DEFF Research Database (Denmark)

    Islam, Raonaqul; Hasanuzzaman, G. K M; Sadath, Md Anwar

    2015-01-01

    This paper presents an updated design and numerical characterization of a rotated porous-core hexagonal photonic crystal fiber (PCF) for single-mode terahertz (THz) wave guidance. The simulation results are found using an efficient finite element method (FEM) which show a better and ultra......-low effective absorption loss of 0.045 cm-1 at 1 THz and a more flattened dispersion of 0.74±0.07ps/THz/cm in a wider bandwidth (0.54-1.36 THz) than the previously reported results. Besides, the single-mode region has been extended up to 1.74 THz (previously up to 1.3 THz) which is advantageous for wideband THz...

  7. Highly optimized tunable Er3+-doped single longitudinal mode fiber ring laser, experiment and model

    DEFF Research Database (Denmark)

    Poulsen, Christian; Sejka, Milan

    1993-01-01

    A continuous wave (CW) tunable diode-pumped Er3+-doped fiber ring laser, pumped by diode laser at wavelengths around 1480 nm, is discussed. Wavelength tuning range of 42 nm, maximum slope efficiency of 48% and output power of 14.4 mW have been achieved. Single longitudinal mode lasing with a line...... with a linewidth of 6 kHz has been measured. A fast model of erbium-doped fiber laser was developed and used to optimize output parameters of the laser......A continuous wave (CW) tunable diode-pumped Er3+-doped fiber ring laser, pumped by diode laser at wavelengths around 1480 nm, is discussed. Wavelength tuning range of 42 nm, maximum slope efficiency of 48% and output power of 14.4 mW have been achieved. Single longitudinal mode lasing...

  8. Stability of the single-mode output of a laser diode array with phase conjugate feedback

    DEFF Research Database (Denmark)

    Juul Jensen, S.; Løbel, M.; Petersen, P.M.

    2000-01-01

    . The output power and the center wavelength are found to be extremely stable in a 100 h stability measurement. External feedback of the output beam into the laser is seen to decrease both the spatial and the temporal coherence of the output significantly. We outline an approach to obtain a stable single......The stability of the output of a single-mode laser diode array with frequency selective phase conjugate feedback has been investigated experimentally. Both the long-term stability of the laser output and the sensitivity to feedback generated by external reflection of the output beam are examined......-mode output when external feedback is present using spatial filtering in the path of the output beam. (C) 2000 American Institute of Physics....

  9. Whispering-gallery-mode microlaser based on self-assembled organic single-crystalline hexagonal microdisks.

    Science.gov (United States)

    Wang, Xuedong; Liao, Qing; Kong, Qinghua; Zhang, Yi; Xu, Zhenzhen; Lu, Xiaomei; Fu, Hongbing

    2014-06-02

    Whispering-gallery-mode (WGM) resonators of semiconductor microdisks have been applied for achieving low-threshold and narrow-linewidth microlasers, but require sophisticated top-down processing technology. Organic single-crystalline hexagonal microdisks (HMDs) of p-distyrylbenzene (DSB) self-assembled from solution can function as WGM microresonators with a cavity quality factor (Q) of 210. Both multiple- and single-mode lasing had been achieved using DSB HMDs with an edge length of 4.3 and 1.2 μm, respectively. These organic microdisks fabricated by bottom-up self-assembly approach may offer potential applications as low-threshold microlaser sources for photonic circuit integration. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Benchmarking of Grid Fault Modes in Single-Phase Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede; Zou, Zhixiang

    2013-01-01

    Pushed by the booming installations of singlephase photovoltaic (PV) systems, the grid demands regarding the integration of PV systems are expected to be modified. Hence, the future PV systems should become more active with functionalities of Low Voltage Ride-Through (LVRT) and grid support...... capability. The control methods, together with grid synchronization techniques, are responsible for the generation of appropriate reference signals in order to handle ride-through grid faults. Thus, it is necessary to evaluate the behaviors of grid synchronization methods and control possibilities in single...... phase systems under grid faults. The intent of this paper is to present a benchmarking of grid fault modes that might come in future single-phase PV systems. In order to map future challenges, the relevant synchronization and control strategies are discussed. Some faulty modes are studied experimentally...

  11. Quantum discord dynamics of two qubits in single-mode cavities

    International Nuclear Information System (INIS)

    Wang Chen; Chen Qing-Hu

    2013-01-01

    The dynamics of quantum discord for two identical qubits in two independent single-mode cavities and a common single-mode cavity are discussed. For the initial Bell state with correlated spins, while the entanglement sudden death can occur, the quantum discord vanishes only at discrete moments in the independent cavities and never vanishes in the common cavity. Interestingly, quantum discord and entanglement show opposite behavior in the common cavity, unlike in the independent cavities. For the initial Bell state with anti-correlated spins, quantum discord and entanglement behave in the same way for both independent cavities and a common cavity. It is found that the detunings always stabilize the quantum discord. (general)

  12. Microfabricated Waveguide Atom Traps.

    Energy Technology Data Exchange (ETDEWEB)

    Jau, Yuan-Yu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    A nanoscale , microfabricated waveguide structure can in - principle be used to trap atoms in well - defined locations and enable strong photon-atom interactions . A neutral - atom platform based on this microfabrication technology will be prealigned , which is especially important for quantum - control applications. At present, there is still no reported demonstration of evanescent - field atom trapping using a microfabricated waveguide structure. We described the capabilities established by our team for future development of the waveguide atom - trapping technology at SNL and report our studies to overcome the technical challenges of loading cold atoms into the waveguide atom traps, efficient and broadband optical coupling to a waveguide, and the waveguide material for high - power optical transmission. From the atomic - physics and the waveguide modeling, w e have shown that a square nano-waveguide can be utilized t o achieve better atomic spin squeezing than using a nanofiber for first time.

  13. Diode-end-pumped single-longitudinal-mode passively Q-switched Nd:GGG laser

    Science.gov (United States)

    Xue, Feng; Zhang, Sasa; Cong, Zhenhua; Huang, Qingjie; Guan, Chen; Wu, Qianwen; Chen, Hui; Bai, Fen; Liu, Zhaojun

    2018-03-01

    Diode-end-pumped passively Q-switched Nd:GGG laser in a ring cavity at 1062 nm was demonstrated. Single-longitudinal-mode laser linewidth less than 0.5 pm was accomplished by unidirectional operation. The maximum output pulse energy was 437 µJ and the pulse width was 43 ns when Cr4+:YAG with an initial transmission of 61% was used.

  14. Investigation of bending loss in a single-mode optical fibre

    Indian Academy of Sciences (India)

    (glass) used for making optical fibres is about 26.211 Pa. Since radii of the core and cladding in the single-mode fibre used were 4.5 and 62.5 µm respectively, by changing θ/l, loss due to torsion stress on the core and the clad was investigated. Variation of loss against torsion stress is given in figures 10 and 11 for the core ...

  15. Combined effect of viscosity and vorticity on single mode Rayleigh-Taylor instability bubble growth

    International Nuclear Information System (INIS)

    Banerjee, Rahul; Mandal, Labakanta; Roy, S.; Khan, M.; Gupta, M. R.

    2011-01-01

    The combined effect of viscosity and vorticity on the growth rate of the bubble associated with single mode Rayleigh-Taylor instability is investigated. It is shown that the effect of viscosity on the motion of the lighter fluid associated with vorticity accumulated inside the bubble due to mass ablation may be such as to reduce the net viscous drag on the bubble exerted by the upper heavier fluid as the former rises through it.

  16. Single Longitudinal Mode, High Repetition Rate, Q-switched Ho:YLF Laser for Remote Sensing

    Science.gov (United States)

    Bai, Yingxin; Yu, Jirong; Petzar, Paul; Petros, M.; Chen, Songsheng; Trieu, Bo; Lee, Nyung; Singh, U.

    2009-01-01

    Ho:YLF/LuLiF lasers have specific applications for remote sensing such as wind-speed measurement and carbon dioxide (CO2) concentration measurement in the atmosphere because the operating wavelength (around 2 m) is located in the eye-safe range and can be tuned to the characteristic lines of CO2 absorption and there is strong backward scattering signal from aerosol (Mie scattering). Experimentally, a diode pumped Ho:Tm:YLF laser has been successfully used as the transmitter of coherent differential absorption lidar for the measurement of with a repetition rate of 5 Hz and pulse energy of 75 mJ [1]. For highly precise CO2 measurements with coherent detection technique, a laser with high repetition rate is required to averaging out the speckle effect [2]. In addition, laser efficiency is critically important for the air/space borne lidar applications, because of the limited power supply. A diode pumped Ho:Tm:YLF laser is difficult to efficiently operate in high repetition rate due to the large heat loading and up-conversion. However, a Tm:fiber laser pumped Ho:YLF laser with low heat loading can be operated at high repetition rates efficiently [3]. No matter whether wind-speed or carbon dioxide (CO2) concentration measurement is the goal, a Ho:YLF/LuLiF laser as the transmitter should operate in a single longitudinal mode. Injection seeding is a valid technique for a Q-switched laser to obtain single longitudinal mode operation. In this paper, we will report the new results for a single longitudinal mode, high repetition rate, Q-switched Ho:YLF laser. In order to avoid spectral hole burning and make injection seeding easier, a four mirror ring cavity is designed for single longitudinal mode, high repetition rate Q-switched Ho:YLF laser. The ramp-fire technique is chosen for injection seeding.

  17. Fundamentals of optical waveguides

    CERN Document Server

    Okamoto, Katsunari

    2006-01-01

    Fundamentals of Optical Waveguides is an essential resource for any researcher, professional or student involved in optics and communications engineering. Any reader interested in designing or actively working with optical devices must have a firm grasp of the principles of lightwave propagation. Katsunari Okamoto has presented this difficult technology clearly and concisely with several illustrations and equations. Optical theory encompassed in this reference includes coupled mode theory, nonlinear optical effects, finite element method, beam propagation method, staircase concatenation method, along with several central theorems and formulas. Since the publication of the well-received first edition of this book, planar lightwave circuits and photonic crystal fibers have fully matured. With this second edition the advances of these fibers along with other improvements on existing optical technologies are completely detailed. This comprehensive volume enables readers to fully analyze, design and simulate opti...

  18. Micro-concave waveguide antenna for high photon extraction from nitrogen vacancy centers in nanodiamond

    Science.gov (United States)

    Rajasekharan, Ranjith; Kewes, Günter; Djalalian-Assl, Amir; Ganesan, Kumaravelu; Tomljenovic-Hanic, Snjezana; McCallum, Jeffrey C.; Roberts, Ann; Benson, Oliver; Prawer, Steven

    2015-01-01

    The negatively charged nitrogen-vacancy colour center (NV− center) in nanodiamond is an excellent single photon source due to its stable photon generation in ambient conditions, optically addressable nuclear spin state, high quantum yield and its availability in nanometer sized crystals. In order to make practical devices using nanodiamond, highly efficient and directional emission of single photons in well-defined modes, either collimated into free space or waveguides are essential. This is a Herculean task as the photoluminescence of the NV centers is associated with two orthogonal dipoles arranged in a plane perpendicular to the NV defect symmetry axis. Here, we report on a micro-concave waveguide antenna design, which can effectively direct single photons from any emitter into either free space or into waveguides in a narrow cone angle with more than 80% collection efficiency irrespective of the dipole orientation. The device also enhances the spontaneous emission rate which further increases the number of photons available for collection. The waveguide antenna has potential applications in quantum cryptography, quantum computation, spectroscopy and metrology. PMID:26169682

  19. Three-Input Single-Output Voltage-Mode Multifunction Filter with Electronic Controllability Based on Single Commercially Available IC

    Directory of Open Access Journals (Sweden)

    Supachai Klungtong

    2017-01-01

    Full Text Available This paper presents a second-order voltage-mode filter with three inputs and single-output voltage using single commercially available IC, one resistor, and two capacitors. The used commercially available IC, called LT1228, is manufactured by Linear Technology Corporation. The proposed filter is based on parallel RLC circuit. The filter provides five output filter responses, namely, band-pass (BP, band-reject (BR, low-pass (LP, high-pass (HP, and all-pass (AP functions. The selection of each filter response can be done without the requirement of active and passive component matching condition. Furthermore, the natural frequency and quality factor are electronically controlled. Besides, the nonideal case is also investigated. The output voltage node exhibits low impedance. The experimental results can validate the theoretical analyses.

  20. Minimum wakefield achievable by waveguide damped cavity

    International Nuclear Information System (INIS)

    Lin, X.E.; Kroll, N.M.

    1995-01-01

    The authors use an equivalent circuit to model a waveguide damped cavity. Both exponentially damped and persistent (decay t -3/2 ) components of the wakefield are derived from this model. The result shows that for a cavity with resonant frequency a fixed interval above waveguide cutoff, the persistent wakefield amplitude is inversely proportional to the external Q value of the damped mode. The competition of the two terms results in an optimal Q value, which gives a minimum wakefield as a function of the distance behind the source particle. The minimum wakefield increases when the resonant frequency approaches the waveguide cutoff. The results agree very well with computer simulation on a real cavity-waveguide system

  1. Conical reflection of light during free-space coupling into a symmetrical metal-cladding waveguide.

    Science.gov (United States)

    Zheng, Yuanlin; Cao, Zhuangqi; Chen, Xianfeng

    2013-09-01

    Novel conical reflection of light by a thick three-layered metal-clad optical waveguide is observed. A symmetrical metal-cladding optical waveguide is used, which exhibits extraordinary conical reflection during free-space coupling of light to the waveguide. The phenomenon is attributed to the leakage of excited ultrahigh-order guided modes and their inter- and intramode coupling interaction.

  2. On linear waveguides of square and triangular lattice strips: an ...

    Indian Academy of Sciences (India)

    Basant Lal Sharma

    communication technology, are historically more numerous. [18, 19] (see also, for example, [20, 21], and [22, Chap- ter 10]). These analyses play a pivotal role in, the so called, mode-matching techniques for wave propagation in struc- tured waveguides such as bifurcated waveguides, waveg- uides with discontinuities, etc.

  3. Finite element and perturbative study of buffered leaky planar waveguides

    NARCIS (Netherlands)

    Uranus, H.P.; Hoekstra, Hugo; van Groesen, Embrecht W.C.

    2005-01-01

    The effects of the presence of a high-index medium in the proximity of planar waveguiding structures that makes up buffered leaky waveguides, were studied using a finite element method (FEM) leaky mode solver and a perturbation method. Various phenomena observed in the FEM results were interpreted

  4. Organic nanofiber-loaded surface plasmon-polariton waveguides

    DEFF Research Database (Denmark)

    Radko, Ilya; Fiutowski, Jacek; Tavares, Luciana

    2011-01-01

    We demonstrate the use of organic nanofibers, composed of self-assembled organic molecules, as a dielectric medium for dielectric-loaded surface plasmon polariton waveguides at near-infrared wavelengths. We successfully exploit a metallic grating coupler to excite the waveguiding mode and charact...

  5. Magnetosonic Waveguide Model of Solar Wind Flow Tubes A. K. ...

    Indian Academy of Sciences (India)

    of plasma velocity or due to sudden variation of Alfvén or sound speed. Surface mag- netosonic wave is evanescent both inside and outside of waveguide, while the body magnetosonic wave is oscillatory inside the waveguide and evanescent outside. Both the wave modes are localized and non-leaky. Nakariakov et al.

  6. Analytical analysis of sensitivity of optical waveguide sensor

    African Journals Online (AJOL)

    user

    In this article, we carried out analytical analysis of sensitivity and mode field of optical waveguide structure by use of effective index method. This structures as predicted have extended ..... analysis, Antennas, Optical & Photonic Waveguide. She has widely worked with Microcontrollers, uses artificial intelligence techniques .

  7. Coupled-resonator optical waveguides

    DEFF Research Database (Denmark)

    Raza, Søren; Grgic, Jure; Pedersen, Jesper Goor

    2010-01-01

    Coupled-resonator optical waveguides hold potential for slow-light propagation of optical pulses. The dispersion properties may adequately be analyzed within the framework of coupled-mode theory. We extend the standard coupled-mode theory for such structures to also include complex......-valued parameters which allows us to analyze the dispersion properties also in presence of finite Q factors for the coupled resonator states. Near the band-edge the group velocity saturates at a finite value vg/c µ p1/Q while in the band center, the group velocity is unaffected by a finite Q factor as compared...

  8. Slow waves in microchannel metal waveguides and application to particle acceleration

    OpenAIRE

    L. C. Steinhauer; W. D. Kimura

    2003-01-01

    Conventional metal-wall waveguides support waveguide modes with phase velocities exceeding the speed of light. However, for infrared frequencies and guide dimensions of a fraction of a millimeter, one of the waveguide modes can have a phase velocity equal to or less than the speed of light. Such a metal microchannel then acts as a slow-wave structure. Furthermore, if it is a transverse magnetic mode, the electric field has a component along the direction of propagation. Therefore, a strong ex...

  9. Cherenkov-transition radiation in a waveguide partly filled with a resonance dispersion medium

    Directory of Open Access Journals (Sweden)

    Tatiana Yu. Alekhina

    2015-09-01

    Full Text Available We analyze the electromagnetic field of a charged particle that uniformly moves in a circular waveguide and crosses a boundary between a dielectric medium, which possesses frequency dispersion of a resonant type, and a vacuum area. The investigation of the waveguide mode components is analytically and numerically performed. It is shown that Cherenkov radiation (CR can penetrate through the boundary, and Cherenkov-transition radiation (CTR can be excited in the vacuum region. The conditions for this effect are obtained. It is shown that the CTR can be composed of a single mode (compared with the CTR in a nondispersive dielectric, which is multimode. The amplitude of the CTR is comparable to the amplitude of CR in an extensive range of parameters. The considered effect can be used to generate intense quasimonochromatic radiation.

  10. Array of planar waveguide lasers with 50 GHz frequency spacing

    DEFF Research Database (Denmark)

    Guldberg-Kjær, Søren Andreas; Laurent-Lund, Christian; Sckerl, Mads W.

    1999-01-01

    Waveguide laser arrays are demonstrated using planar silica-on-silicon technology. Excellent control over frequency separation is obtained with a single phase mask.......Waveguide laser arrays are demonstrated using planar silica-on-silicon technology. Excellent control over frequency separation is obtained with a single phase mask....

  11. Transverse Writing of Multimode Interference Waveguides inside Silica Glass by Femtosecond Laser Pulses

    International Nuclear Information System (INIS)

    Da-Yong, Liu; Yan, Li; Yan-Ping, Dou; Heng-Chang, Guo; Hong, Yang; Qi-Huang, Gong

    2008-01-01

    Multi-mode interference waveguides are fabricated inside silica glass by transverse writing geometry with femtosecond laser pulses. The influences of several writing and reading factors on the output mode are systematically studied. The experimental results of straight waveguides are in good agreement with the simulations by the beam propagation method. By integrating a straight waveguide with a bent waveguide, a 1 × 2 multi-mode splitter is formed and 2 × 3 lobes are observed in the output mode. (fundamental areas of phenomenology (including applications))

  12. A novel L-shaped linear ultrasonic motor operating in a single resonance mode

    Science.gov (United States)

    Zhang, Bailiang; Yao, Zhiyuan; Liu, Zhen; Li, Xiaoniu

    2018-01-01

    In this study, a large thrust linear ultrasonic motor using an L-shaped stator is described. The stator is constructed by two mutually perpendicular rectangular plate vibrators, one of which is mounted in parallel with the slider to make the motor structure to be more compact. The symmetric and antisymmetric modes of the stator based on the first order bending vibration of two vibrators are adopted, in which each resonance mode is assigned to drive the slider in one direction. The placement of piezoelectric ceramics in a stator could be determined by finite element analysis, and the influence of slots in the head block on the vibration amplitudes of driving foot was studied as well. Three types of prototypes (non-slotted, dual-slot, and single-slot) were fabricated and experimentally investigated. Experimental results demonstrated that the prototype with one slot exhibited the best mechanical output performance. The maximum loads under the excitation of symmetric mode and antisymmetric mode were 65 and 90 N, respectively.

  13. Impact of quantum–classical correspondence on entanglement enhancement by single-mode squeezing

    International Nuclear Information System (INIS)

    Joseph, Sijo K.; Chew, Lock Yue; Sanjuán, Miguel A.F.

    2014-01-01

    Quantum entanglement between two field modes can be achieved through the collective squeezing of the two respective modes. If single-mode squeezing is performed prior to such a two-mode squeezing, an enhancement of entanglement production can happen. Interestingly, the occurrence of this enhancement can be implicitly linked to the local classical dynamical behavior via the paradigm of quantum–classical correspondence. In particular, the entanglement generated through quantum chaos is found to be hardly enhanced by prior squeezing, since it is bounded by the saturation value of the maximally entangled Schmidt state with fixed energy. These results illustrate that entanglement enhancement via initial squeezing can serve as a useful indicator of quantum chaotic behaviour. - Highlights: • Continuous-variable entanglement is explored in the Pullen–Edmonds Hamiltonian. • The local phase-space structure and the entanglement enhancement are related. • Entanglement enhancement via squeezing is smaller for the chaotic orbit. • Entanglement enhancement via squeezing is higher for the regular orbit. • The magnitude of the entanglement enhancement serves as a quantum-chaos indicator

  14. Estimating accidental coincidences for pixelated PET detectors and singles list-mode acquisition

    International Nuclear Information System (INIS)

    Rafecas, M.; Torres, I.; Spanoudaki, V.; McElroy, D.P.; Ziegler, S.I.

    2007-01-01

    We have studied the validity of random estimation techniques for various low energy thresholds (LETs) and single list-mode data sets in small animal PET. While a LET below 255 keV helps to increase the sensitivity, it also results in an increase of random coincidences and inter-crystal scatter (ICS). The study is carried out for MADPET-II, a dual-layer positron emission tomography (PET) scanner prototype consisting of LSO crystals read out individually by APDs. The data are acquired in singles list-mode format, and coincidences are computed post-acquisition. To estimate randoms, we have used the delayed coincidence window method (DW), and the singles rate model (SR). Various phantoms were simulated using GATE. For LETs under 255 keV, the number of random events R, estimated using the SR and the DW methods, is larger than the number of randoms which was directly computed from GATE simulations, and R(SR)>R(DW)>R(GATE). The higher the LET, the smaller the overestimation. For LETs >255 keV, R(DW)/R(GATE) ∼1. If scattered singles were excluded from the file, this discrepancy between R(DW or SR) and R(GATE) significantly diminished. This fact points out to ICS as the effect responsible for the mismatch, since for LETs lower than 255 keV, all singles related to an ICS event can be detected independently, thus altering the singles rate. Therefore, if low LETs are used, random estimation techniques should account for ICS

  15. Single mode operation in a pulsed Ti:sapphire laser oscillator with a grazing-incidence four-mirror cavity

    CERN Document Server

    Ko, D K; Binks, D J; Gloster, L A W; King, T A

    1998-01-01

    We demonstrate stable single mode operation in a pulsed Ti:sapphire laser oscillator with a novel grazing-incidence four-mirror coupled cavity. This cavity consists of a grating, a gain medium, and four mirrors and, therefore, has a four-arm interferometer configuration. Through the interferometric effect, we could suppress the adjacent modes and obtain stable single mode operation with a bandwidth of < 200 MHz. We also have developed a general analysis of the laser modes and the threshold conditions for configuration and the experimental results agree well with the theoretical predictions.

  16. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Determination of the sensitivity of an autodyne acoustooptic fiber-waveguide transducer

    Science.gov (United States)

    Kravtsov, Yu A.; Kolesnikov, N. I.; Levit, B. I.; Minchenko, A. I.; Tumanov, B. N.

    1988-03-01

    A study was made of the parameters governing the maximum sensitivity of an autodyne acoustooptic fiber-waveguide transducer. When the fiber length was 10 m, the wavelength was 0.63 μm and the threshold sensitivity of the transducer was 1.5 × 10-5 Pa · Hz-1/2 at the quantum limit. This autodyne sensor was used in calibration of a source of acoustic-frequency pressures. The threshold sensitivity was determined experimentally for a laser autodyne transducer utilizing a single-mode quartz waveguide with a lacquer coating: when the waveguide length was 2 m the sensitivity amounted to 5 × 10-4 Pa · Hz-1/2 if an LG-77 laser was used.

  17. Microwave measurements of energy lost to longitudinal modes by single electron bunches traversing periodic structures

    International Nuclear Information System (INIS)

    Wang, J.W.; Loew, G.A.; Weaver, J.N.; Wilson, P.B.

    1981-10-01

    In the design of future linear colliders, it will be important to minimize the loss of beam energy due to the excitation of higher-order modes in the accelerator structure by single bunches of electrons or positrons. This loss is not only detrimental in itself but also gives rise to energy spectrum widening and transverse emittance growth. Microwave measurements made on disk-loaded and alternating-spoke structures to determine the loss to the longitudinal modes are described. In these measurements the Gaussian bunch is simulated by a current pulse of the same shape transmitted through the structure on an axial center conductor. Results to date are presented for the total longitudinal loss parameter per period K in volts per picocoulomb

  18. Electrically tunable Brillouin fiber laser based on a metal-coated single-mode optical fiber

    Directory of Open Access Journals (Sweden)

    S.M. Popov

    Full Text Available We explore tunability of the Brillouin fiber laser employing Joule heating. For this purpose, 10-m-length of a metal-coated single-mode optical cavity fiber has been directly included into an electrical circuit, like a conductor wire. With the current up to ∼3.5 A the laser tuning is demonstrated over a spectrum range of ∼400 MHz. The observed laser line broadening up to ∼2 MHz is explained by frequency drift and mode-hoping in the laser caused by thermal noise. Keywords: Brillouin fiber laser, Metal-coated optical fiber, Laser tuning, Fiber sensors

  19. Evaluation of single photon and Geiger mode Lidar for the 3D Elevation Program

    Science.gov (United States)

    Stoker, Jason M.; Abdullah, Qassim; Nayegandhi, Amar; Winehouse, Jayna

    2016-01-01

    Data acquired by Harris Corporation’s (Melbourne, FL, USA) Geiger-mode IntelliEarth™ sensor and Sigma Space Corporation’s (Lanham-Seabrook, MD, USA) Single Photon HRQLS sensor were evaluated and compared to accepted 3D Elevation Program (3DEP) data and survey ground control to assess the suitability of these new technologies for the 3DEP. While not able to collect data currently to meet USGS lidar base specification, this is partially due to the fact that the specification was written for linear-mode systems specifically. With little effort on part of the manufacturers of the new lidar systems and the USGS Lidar specifications team, data from these systems could soon serve the 3DEP program and its users. Many of the shortcomings noted in this study have been reported to have been corrected or improved upon in the next generation sensors.

  20. Harmonics Suppression for Single-Phase Grid-Connected Photovoltaic Systems in Different Operation Modes

    DEFF Research Database (Denmark)

    Yang, Yongheng; Zhou, Keliang; Blaabjerg, Frede

    2013-01-01

    -connected PV inverters may be severely affected in different operation modes. In this paper, a detailed analysis is conducted to reveal the relationship between the harmonics level with the power factor and the current level in the PV systems. A current control solution which employs an Internal Model...... Principle (IMP) is proposed to suppress the harmonic currents injected into the grid. Experiments are carried out to verify the analysis and the performance of the proposed control method. It is demonstrated that the proposed method presents an effective solution to harmonics suppression for single......-phase grid-connected PV systems in different operation modes. Especially, it can remove higher order harmonics effectively leading to a better power quality compared to the Proportional plus Multi-Resonant Controller, and it has less computational burden....

  1. 3-4.5 μm continuously tunable single mode VECSEL

    Science.gov (United States)

    Fill, M.; Felder, F.; Rahim, M.; Khiar, A.; Zogg, H.

    2012-11-01

    We present continuously tunable Vertical External Cavity Surface Emitting Lasers (VECSEL) in the mid-infrared. The structure based on IV-VI semiconductors is epitaxially grown on a Si-substrates. The VECSEL emit one single mode, which is mode hop-free tunable over 50-100 nm around the center wavelength. In this work, two different devices are presented, emitting at 3.4 μm and 3.9 μm, respectively. The lasers operate near room temperature with thermoelectric stabilization. They are optically pumped, yielding an output power >10 mWp. The axial symmetric emission beam has a half divergence angle of <3.3∘.

  2. Dynamics of Nonlinear Excitation of the High-Order Mode in a Single-Mode Step-Index Optical Fiber

    Science.gov (United States)

    Burdin, V.; Bourdine, A.

    2018-04-01

    This work is concerned with approximate model of higher-order mode nonlinear excitation in a singlemode silica optical fiber. We present some results of simulation for step-index optical fiber under femtosecond optical pulse launching, which confirm ability of relatively stable higher-order mode excitation in such singlemode optical fiber over sufficiently narrow range of launched optical power variation.

  3. Tunable single photonic defect-mode in cholesteric liquid crystals with laser-induced local modifications of helix

    International Nuclear Information System (INIS)

    Yoshida, Hiroyuki; Lee, Chee Heng; Fujii, Akihiko; Ozaki, Masanori

    2006-01-01

    The authors demonstrate a tunable single photonic defect-mode in a single cholesteric liquid crystal material based on a structural defect introduced by local modification of the helix. An unpolymerized region of cholesteric liquid crystal acting as the defect was left between two polymerized regions via a two-photon excitation laser-lithography process. Upon polymerization, the cholesteric liquid crystal helix elongated and became thermally stable, and a single photonic defect mode was exhibited due to the contrast in the helix pitch at the defect. The defect mode showed tunability upon heating, and a 36 nm redshift was seen over a temperature range of 30 deg. C

  4. Modeling of Slot Waveguide Sensors Based on Polymeric Materials

    Science.gov (United States)

    Bettotti, Paolo; Pitanti, Alessandro; Rigo, Eveline; De Leonardis, Francesco; Passaro, Vittorio M. N.; Pavesi, Lorenzo

    2011-01-01

    Slot waveguides are very promising for optical sensing applications because of their peculiar spatial mode profile. In this paper we have carried out a detailed analysis of mode confinement properties in slot waveguides realized in very low refractive index materials. We show that the sensitivity of a slot waveguide is not directly related to the refractive index contrast of high and low materials forming the waveguide. Thus, a careful design of the structures allows the realization of high sensitivity devices even in very low refractive index materials (e.g., polymers) to be achieved. Advantages of low index dielectrics in terms of cost, functionalization and ease of fabrication are discussed while keeping both CMOS compatibility and integrable design schemes. Finally, applications of low index slot waveguides as substitute of bulky fiber capillary sensors or in ring resonator architectures are addressed. Theoretical results of this work are relevant to well established polymer technologies. PMID:22164020

  5. Systematic design of loss-engineered slow-light waveguides

    DEFF Research Database (Denmark)

    Wang, Fengwen; Jensen, Jakob Søndergaard; Mørk, Jesper

    2012-01-01

    This paper employs topology optimization to systematically design free-topology loss-engineered slow-light waveguides with enlarged group index bandwidth product (GBP). The propagation losses of guided modes are evaluated by the imaginary part of eigenvalues in complex band structure calculations......, where the scattering losses due to manufacturing imperfections are represented by an edge-related effective dissipation. The loss engineering of slow-light waveguides is realized by minimizing the propagation losses of design modes. Numerical examples illustrate that the propagation losses of free......-topology dispersion-engineered waveguides can be significantly suppressed by loss engineering. Comparisons between fixed- and free-topology loss-engineered waveguides demonstrate that the GBP can be enhanced significantly by the free-topology loss-engineered waveguides with a small increase of the propagation losses....

  6. High energy nanosecond laser pulses delivered single-mode through hollow-core PBG fibers.

    Science.gov (United States)

    Shephard, Jonathan; Jones, J; Hand, D; Bouwmans, G; Knight, J; Russell, P; Mangan, B

    2004-02-23

    We report on the development of hollow-core photonic bandgap fibers for the delivery of high energy pulses for precision micromachining applications. Short pulses of (65ns pulse width) and energies of the order of 0.37mJ have been delivered in a single spatial mode through hollow-core photonic bandgap fibers at 1064nm using a high repetition rate (15kHz) Nd:YAG laser. The ultimate laser-induced damage threshold and practical limitations of current hollow-core fibers for the delivery of short optical pulses are discussed.

  7. Plasma-implantation-based surface modification of metals with single-implantation mode

    Science.gov (United States)

    Tian, X. B.; Cui, J. T.; Yang, S. Q.; Fu, Ricky K. Y.; Chu, Paul K.

    2004-12-01

    Plasma ion implantation has proven to be an effective surface modification technique. Its biggest advantage is the capability to treat the objects with irregular shapes without complex manipulation of target holder. Many metal materials such as aluminum, stainless steel, tool steel, titanium, magnesium etc, has been treated using this technique to improve their wear-resistance, corrosion-resistance, fatigue-resistance, oxidation-resistance, bio-compatiblity etc. However in order to achieve thicker modified layers, hybrid processes combining plasma ion implantation with other techniques have been frequently employed. In this paper plasma implantation based surface modification of metals using single-implantation mode is reviewed.

  8. Single-longitudinal-mode BEFL incorporating a Bragg grating written in EDF

    Science.gov (United States)

    Gao, Ya; Sun, Junqiang; Chen, Guodong; Xie, Heng

    2015-06-01

    A stable and tunable single-longitudinal-mode (SLM) Brillouin/Erbium fiber laser (BEFL) with narrow linewidth is proposed and experimentally demonstrated. A uniform Bragg grating written in a segment of unpumped Erbium-doped fiber (EDF) is incorporated as an auto-tracking filter to achieve SLM operation. A length of 5 m pumped EDF is used to provide both Brillouin and linear gain in the cavity. The linewidth is measured to be 18 kHz and the lasing peak power fluctuation and wavelength shift are monitored less than 0.027 dB and 2 pm respectively.

  9. Highly damped quasinormal modes of generic single-horizon black holes

    Energy Technology Data Exchange (ETDEWEB)

    Daghigh, Ramin G [Physics Department, University of Winnipeg, Winnipeg, Manitoba R3B 2E9 (Canada); Kunstatter, Gabor [Winnipeg Institute for Theoretical Physics, Winnipeg, Manitoba (Canada)

    2005-10-07

    We calculate analytically the highly damped quasinormal mode spectra of generic single-horizon black holes using the rigorous WKB techniques of Andersson and Howls (2004 Class. Quantum Grav. 21 1623). We thereby provide a firm foundation for previous analysis, and point out some of their possible limitations. The numerical coefficient in the real part of the highly damped frequency is generically determined by the behaviour of coupling of the perturbation to the gravitational field near the origin, as expressed in tortoise coordinates. This fact makes it difficult to understand how the famous ln(3) could be related to the quantum gravitational microstates near the horizon.

  10. Investigation of the glide modes of single crystals of beryllium; Etude des modes de glissement de monocristaux de beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Regnier, P. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-05-01

    The flow characteristics of single crystals of beryllium specially oriented for slip along a single plane and a single direction have been thoroughly investigated. The elastic limit and the strain hardening in basal glide have been investigated in the temperature range (-195 deg. C, 400 deg. C) in tension as well as in compression. Observation of the slip lines and of the dislocation configurations have also been made in addition to the mechanical tests. The prismatic slip has been studied in greater detail: tensile tests have been performed on specimens carefully oriented at different temperatures, strain rates and with varying orientations of the basal and of the prism planes. Tests have also been made in the micro-strain range; the slip lines and the dislocation arrangements were observed in detail. The very unusual variation of the elastic limit with temperature is not due to impurities but to a cross slip mechanism. A model of dislocation locking is proposed to account for the experimental results. This mechanism assumes that the a-bar dislocations may also dissociate on the prism planes [101-bar 0]. Various possible dissociations are suggested, the most probable of which corresponds to the phase transformation: Hexagonal close packed to body centered cubic. This proposal can be extended to account for the relative ease of glide on the different systems in the hexagonal close packed metals. (author) [French] L' ecoulement de monocristaux de berylliurn deformes en glissement basal et en glissement prismatique a ete etudie sur des echantillons orientes de maniere a favoriser au maximum la deformation suivant une seule direction d'un seul systeme de glissement. L'influence de la temperature sur la limite elastique et la consolidation en glissement basal a ete etudie depuis -195 deg. C jusqu' 400 deg. C sur des echantillons deformes en tension et sur d'autres deformes en compression. Ces essais mecaniques ont ete completes par l

  11. Silicon coupled-resonator optical-waveguide-based biosensors using light-scattering pattern recognition with pixelized mode-field-intensity distributions.

    Science.gov (United States)

    Wang, Jiawei; Yao, Zhanshi; Lei, Ting; Poon, Andrew W

    2014-12-18

    Chip-scale, optical microcavity-based biosensors typically employ an ultra-high-quality microcavity and require a precision wavelength-tunable laser for exciting the cavity resonance. For point-of-care applications, however, such a system based on measurements in the spectral domain is prone to equipment noise and not portable. An alternative microcavity-based biosensor that enables a high sensitivity in an equipment-noise-tolerant and potentially portable system is desirable. Here, we demonstrate the proof-of-concept of such a biosensor using a coupled-resonator optical-waveguide (CROW) on a silicon-on-insulator chip. The sensing scheme is based on measurements in the spatial domain, and only requires exciting the CROW at a fixed wavelength and imaging the out-of-plane elastic light-scattering intensity patterns of the CROW. Based on correlating the light-scattering intensity pattern at a probe wavelength with the light-scattering intensity patterns at the CROW eigenstates, we devise a pattern-recognition algorithm that enables the extraction of a refractive index change, Δn, applied upon the CROW upper-cladding from a calibrated set of correlation coefficients. Our experiments using an 8-microring CROW covered by NaCl solutions of different concentrations reveal a Δn of ~1.5 × 10(-4) refractive index unit (RIU) and a sensitivity of ~752 RIU(-1), with a noise-equivalent detection limit of ~6 × 10(-6) RIU.

  12. Optical waveguide theory

    CERN Document Server

    Snyder, Allan W

    1983-01-01

    This text is intended to provide an in-depth, self-contained, treatment of optical waveguide theory. We have attempted to emphasize the underlying physical processes, stressing conceptual aspects, and have developed the mathematical analysis to parallel the physical intuition. We also provide comprehensive supplementary sections both to augment any deficiencies in mathematical background and to provide a self-consistent and rigorous mathematical approach. To assist in. understanding, each chapter con­ centrates principally on a single idea and is therefore comparatively short. Furthermore, over 150 problems with complete solutions are given to demonstrate applications of the theory. Accordingly, through simplicity of approach and numerous examples, this book is accessible to undergraduates. Many fundamental topics are presented here for the first time, but, more importantly, the material is brought together to give a unified treatment of basic ideas using the simplest approach possible. To achieve such a goa...

  13. Tunable All-Optical Wavelength Conversion Based on Cascaded SHG/DFG in a Ti:PPLN Waveguide Using a Single CW Control Laser

    DEFF Research Database (Denmark)

    Hu, Hao; Nouroozi, Rahman; Wang, Wenrui

    2012-01-01

    Tunable all-optical wavelength conversion (AOWC) of a 40-Gb/s RZ-OOK data signal based on cascaded second-harmonic generation (SHG) and difference-frequency generation (DFG) in a Ti:PPLN waveguide is demonstrated. Error-free performances with negligible power penalty are achieved for the wavelength...

  14. Coherent perfect absorption and reflection in slow-light waveguides.

    Science.gov (United States)

    Gutman, Nadav; Sukhorukov, Andrey A; Chong, Y D; de Sterke, C Martijn

    2013-12-01

    We identify a family of unusual slow-light modes occurring in lossy multimode grating waveguides, for which either the forward or backward mode components, or both, are degenerate. In the fully degenerate case, the response can be modulated between coherent perfect absorption (zero reflection) and perfect reflection by varying the wave amplitudes in a uniform input waveguide. The perfectly absorbed wave has anomalously short absorption length, scaling as the inverse one-third power of the absorptivity.

  15. Compact Spectrometer based on a silicon multimode waveguide

    DEFF Research Database (Denmark)

    Piels, Molly; Zibar, Darko

    2017-01-01

    A multimode waveguide spectrometer with 4 GHz resolution, 250 GHz usable range, and a 1.6 mm × 2.1 mm footprint is demonstrated. The operating range is greatly extended by including distinct mode-exciting elements on chip.......A multimode waveguide spectrometer with 4 GHz resolution, 250 GHz usable range, and a 1.6 mm × 2.1 mm footprint is demonstrated. The operating range is greatly extended by including distinct mode-exciting elements on chip....

  16. DBD plasma source operated in single-filamentary mode for therapeutic use in dermatology

    Energy Technology Data Exchange (ETDEWEB)

    Rajasekaran, Priyadarshini; Mertmann, Philipp; Bibinov, Nikita; Awakowicz, Peter [Institute for Electrical Engineering and Plasma Technology, Ruhr-Universitaet Bochum, Universitaetsstr. 150, 44801 Bochum (Germany); Wandke, Dirk [CINOGY GmbH, Max-Naeder-Str. 15, 37114 Duderstadt (Germany); Vioel, Wolfgang, E-mail: rajasekaran@aept.rub.d, E-mail: mertmann@aept.rub.d, E-mail: Nikita.Bibinov@rub.d, E-mail: dirk.wandke@cinogy.co, E-mail: vioel@hawk-hhg.d, E-mail: awakowicz@aept.rub.d [University of Applied Sciences and Arts, Faculty of Natural Sciences and Technology, Von-Ossietzky-Str. 99, 37085 Goettingen (Germany)

    2009-11-21

    Our dielectric barrier discharge (DBD) plasma source for bio-medical application comprises a copper electrode covered with ceramic. Objects of high capacitance such as the human body can be used as the opposite electrode. In this study, the DBD source is operated in single-filamentary mode using an aluminium spike as the opposite electrode, to imitate the conditions when the discharge is ignited on a raised point, such as hair, during therapeutic use on the human body. The single-filamentary discharge thus obtained is characterized using optical emission spectroscopy, numerical simulation, voltage-current measurements and microphotography. For characterization of the discharge, averaged plasma parameters such as electron distribution function and electron density are determined. Fluxes of nitric oxide (NO), ozone (O{sub 3}) and photons reaching the treated surface are simulated. The calculated fluxes are finally compared with corresponding fluxes used in different bio-medical applications.

  17. Single top quarks at the Tevatron and observation of the s-channel production mode

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    The presentation gives an overview of single-top-quark production at the Tevatron proton-antiproton collider. The talk covers measurements of the total s+t channel production cross section and the extraction of the CKM matrix element |V_tb|. Furthermore, separate analyses of the s-channel and t-channel production modes are discussed. The data correspond to total integrated luminosities of up to 9.7 fb-1 per experiment and represent in most cases the full Run-II dataset. Through a combination of the CDF and D0 measurements the first observation of single-top-quark production in the s-channel is claimed. This is particularly highlighted in the seminar.

  18. Planar optical waveguide based sandwich assay sensors and processes for the detection of biological targets including early detection of cancers

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Jennifer S [Santa Fe, NM; Swanson, Basil I [Los Alamos, NM; Shively, John E [Arcadia, CA; Li, Lin [Monrovia, CA

    2009-06-02

    An assay element is described including recognition ligands adapted for binding to carcinoembryonic antigen (CEA) bound to a film on a single mode planar optical waveguide, the film from the group of a membrane, a polymerized bilayer membrane, and a self-assembled monolayer containing polyethylene glycol or polypropylene glycol groups therein and an assay process for detecting the presence of CEA is described including injecting a possible CEA-containing sample into a sensor cell including the assay element, maintaining the sample within the sensor cell for time sufficient for binding to occur between CEA present within the sample and the recognition ligands, injecting a solution including a reporter ligand into the sensor cell; and, interrogating the sample within the sensor cell with excitation light from the waveguide, the excitation light provided by an evanescent field of the single mode penetrating into the biological target-containing sample to a distance of less than about 200 nanometers from the waveguide thereby exciting any bound reporter ligand within a distance of less than about 200 nanometers from the waveguide and resulting in a detectable signal.

  19. Single-Mode Deceleration Stage Rayleigh-Taylor Instability Growth in Cylindrical Implosions

    Science.gov (United States)

    Sauppe, J. P.; Palaniyappan, S.; Bradley, P. A.; Batha, S. H.; Loomis, E. N.; Kline, J. L.; Srinivasan, B.; Bose, A.; Malka, E.; Shvarts, D.

    2017-10-01

    We present design calculations demonstrating the feasibility of measuring single-mode deceleration stage Rayleigh-Taylor instability (RTI) growth at a factor of four convergence. RTI growth rates are modified as a result of convergence [Bell LA-1321, 1951], and cylindrical targets are considered here, as they allow direct diagnostic access along the interface. The 2D computations, performed with the radiation-hydrodynamics code xRAGE [Gittings et al., CSD 2008] utilizing a new laser ray-tracing package, predict growth factors of 6 to 10 for mode 10 and 4 to 6 for mode 4, both of high interest in evaluating inertial confinement fusion capsule degradation mechanisms [Bose et al., this conference]. These results compare favorably to a linear theory [Epstein, PoP 2004] and to a buoyancy-drag model [Srebro et al., LPB 2003], which accounts for the linear and non-linear stages. Synthetic radiographs, produced by combining 2D computations of axial and transverse cross-sections, indicate this growth will be observable, and these will be compared to experimental data obtained at the OMEGA laser facility. Work performed by Los Alamos National Laboratory under contract DE-AC52-06NA25396 for the National Nuclear Security Administration of the U.S. Department of Energy. (LA-UR-17-25608).

  20. Simple immunoglobulin G sensor based on thin core single-mode fiber

    Science.gov (United States)

    Zheng, Yingfang; Lang, Tingting; Shen, Tingting; Shen, Changyu

    2018-03-01

    In this paper, a simple fiber biosensor (FOB) for immunoglobulin G (IgG) detection is designed and experimentally verified. The FOB is constructed by a 20 mm long thin core single-mode fiber (TCSMF) sandwiched between two single-mode optical fibers (SMFs). First, the refractive index (RI) sensitivity of the fiber structures is calculated by the beam propagation method. The refractive index sensing experiment is performed using different concentrations of glycerol solutions, and the experimental results are mostly consistent with the simulation predictions. The experimental RI sensitivity increases with the surrounding RI and reaches 82.7 nm/RIU. Then the surface of the FOB is functionalized by APTES for covalent bonding. The human IgG and goat anti-human IgG are chosen as a bioconjugated pair to examine the bio-sensing effectiveness of this FOB. The sensitivity of IgG detection is determined to be 10.4 nm/(mg/ml). And the serum IgG concentration in normal adults lies within the range of 6-16 mg/ml (Worsfold et al., 1985), so the sensor is applicable to human IgG monitoring. The specificity of the FOB is also verified by a contrast experiment conducted using rabbit immunoglobulin G. The proposed FOB is simple, low loss, cost-effective, and can be used for various biological and chemical applications.