WorldWideScience

Sample records for single mode transmission

  1. Optical transmission through a polarization preserving single mode optical fiber at two Ar(+) laser wavelengths

    Science.gov (United States)

    Tedjojuwono, Ken K.; Hunter, William W., Jr.

    1989-01-01

    The transmission characteristics of two Ar(+) laser wavelengths through a twenty meter Panda type Polarization Preserving Single Mode Optical Fiber (PPSMOF) were measured. The measurements were done with both single and multi-longitudinal mode radiation. In the single longitudinal mode case, a degrading Stimulated Brillouin Scattering (SBS) is observed as a backward scattering loss. By choosing an optimum coupling system and manipulating the input polarization, the threshold of the SBS onset can be raised and the transmission efficiency can be increased.

  2. Comparison of single-/few-/multi-mode 850 nm VCSELs for optical OFDM transmission.

    Science.gov (United States)

    Kao, Hsuan-Yun; Tsai, Cheng-Ting; Leong, Shan-Fong; Peng, Chun-Yen; Chi, Yu-Chieh; Huang, Jian Jang; Kuo, Hao-Chung; Shih, Tien-Tsorng; Jou, Jau-Ji; Cheng, Wood-Hi; Wu, Chao-Hsin; Lin, Gong-Ru

    2017-07-10

    For high-speed optical OFDM transmission applications, a comprehensive comparison of the homemade multi-/few-/single-transverse mode (MM/FM/SM) vertical cavity surface emitting laser (VCSEL) chips is performed. With microwave probe, the direct encoding of pre-leveled 16-QAM OFDM data and transmission over 100-m-long OM4 multi-mode-fiber (MMF) are demonstrated for intra-datacenter applications. The MM VCSEL chip with the largest emission aperture of 11 μm reveals the highest differential quantum efficiency which provides the highest optical power of 8.67 mW but exhibits the lowest encodable bandwidth of 21 GHz. In contrast, the SM VCSEL chip fabricated with the smallest emission aperture of only 3 μm provides the highest 3-dB encoding bandwidth up to 23 GHz at a cost of slight heat accumulation. After optimization, with the trade-off set between the receiving signal-to-noise ratio (SNR) and bandwidth, the FM VCSEL chip guarantees the highest optical OFDM transmission bit rate of 96 Gbit/s under back-to-back case with its strongest throughput. Among three VCSEL chips, the SM VCSEL chip with nearly modal-dispersion free feature is treated as the best candidate for carrying the pre-leveled 16-QAM OFDM data over 100-m OM4-MMF with same material structure but exhibits different oxide-layer confined gain cross-sections with one another at 80-Gbit/s with the smallest receiving power penalty of 1.77 dB.

  3. 32-core Dense SDM Unidirectional Transmission of PDM-16QAM Signals Over 1600 km Using Crosstalk-managed Single-mode Heterogeneous Multicore Transmission Line

    DEFF Research Database (Denmark)

    Mizuno, Takayuki; Shibahara, K.; Ono, Hirotaka

    2016-01-01

    We demonstrate 32-core dense space-division multiplexed (DSDM) unidirectional transmission of PDM-16QAM 20-WDM signals over 1644.8 km employing a low-crosstalk single-mode heterogeneous 32-core fiber in a partial recirculating-loop system.......We demonstrate 32-core dense space-division multiplexed (DSDM) unidirectional transmission of PDM-16QAM 20-WDM signals over 1644.8 km employing a low-crosstalk single-mode heterogeneous 32-core fiber in a partial recirculating-loop system....

  4. Optical frequency comb generation for DWDM transmission over 25- to 50-km standard single-mode fiber

    Science.gov (United States)

    Ullah, Rahat; Bo, Liu; Yaya, Mao; Ullah, Sibghat; Khan, Muhammad Saad; Tian, Feng; Ali, Amjad; Ahmad, Ibrar; Xiangjun, Xin

    2018-01-01

    Dense wavelength division multiplexed (DWDM) transmission equal to 1.2 Tbps over 25 to 50 km across standard single-mode fiber (SSMF) in the C band is performed based on an optical frequency comb generator. Sixty-one flattened optical frequency tones were realized with 30-GHz frequency spacing, high side-mode suppression ratio over 35 dB, and minimum amplitude difference was realized using amplitude modulator for first time in cascade mode with two Mach-Zehnder modulators (MZMs) where all the modulators were tailored by RF signals. 20×61 Gbps DWDM-based differential quadrature phase shift keying modulated signals were successfully transmitted over SSMF and analyze its transmission capability for range of 25 to 50 km with acceptable power penalties and bit error rates.

  5. Inter-data center 28 Gbaud 4-PAM transmission over 240 km standard single mode fiber

    DEFF Research Database (Denmark)

    Madsen, Peter; Suhr, Lau Frejstrup; Tafur Monroy, Idelfonso

    2018-01-01

    We report on achieving 28 Gbaud 4-PAM transmission with post-equalization over a 240 km SSMF link without re-engineering the transmission link design. The results demonstrate the prospect of re-using conventional links for inter data center connections.......We report on achieving 28 Gbaud 4-PAM transmission with post-equalization over a 240 km SSMF link without re-engineering the transmission link design. The results demonstrate the prospect of re-using conventional links for inter data center connections....

  6. The steady SRS analysis theory of DWDM transmission system in single-mode silica fiber

    Science.gov (United States)

    Gong, Jia-Min; Zuo, Xu; Zhao, Yun

    2015-09-01

    The formal solution for the couple equations of the stimulated Raman scattering (SRS) with different loss coefficients in the DWDM transmission system was discussed. The variation of each signal photon flux along the transmission distance is shown clearly by the formal solution. Then, the analytical solution is obtained from the formal solution when the loss coefficient is the same. Simultaneously, the analytical solution of the small-signal model is derived, too. We also proposed a novel algorithm according to the formal solution, and verified its correctness by showing that the curves for them are basically in coincidence. The result has a certain significance for study on DWDM transmission system and Raman fiber amplifier.

  7. Transmission of 2.5 Gbit/s Spectrum-sliced WDM System for 50 km Single-mode Fiber

    Science.gov (United States)

    Ahmed, Nasim; Aljunid, Sayed Alwee; Ahmad, R. Badlisha; Fadil, Hilal Adnan; Rashid, Mohd Abdur

    2011-06-01

    The transmission of a spectrum-sliced WDM channel at 2.5 Gbit/s for 50 km of single mode fiber using an system channel spacing only 0.4 nm is reported. We have investigated the system performance using NRZ modulation format. The proposed system is compared with conventional system. The system performance is characterized as the bit-error-rate (BER) received against the system bit rates. Simulation results show that the NRZ modulation format performs well for 2.5 Gbit/s system bit rates. Using this narrow channel spectrum-sliced technique, the total number of multiplexed channels can be increased greatly in WDM system. Therefore, 0.4 nm channel spacing spectrum-sliced WDM system is highly recommended for the long distance optical access networks, like the Metro Area Network (MAN), Fiber-to-the-Building (FTTB) and Fiber-to-the-Home (FTTH).

  8. The evolution of transmission mode

    Science.gov (United States)

    Forbes, Mark R.; Hauffe, Heidi C.; Kallio, Eva R.; Okamura, Beth; Sait, Steven M.

    2017-01-01

    This article reviews research on the evolutionary mechanisms leading to different transmission modes. Such modes are often under genetic control of the host or the pathogen, and often in conflict with each other via trade-offs. Transmission modes may vary among pathogen strains and among host populations. Evolutionary changes in transmission mode have been inferred through experimental and phylogenetic studies, including changes in transmission associated with host shifts and with evolution of the unusually complex life cycles of many parasites. Understanding the forces that determine the evolution of particular transmission modes presents a fascinating medley of problems for which there is a lack of good data and often a lack of conceptual understanding or appropriate methodologies. Our best information comes from studies that have been focused on the vertical versus horizontal transmission dichotomy. With other kinds of transitions, theoretical approaches combining epidemiology and population genetics are providing guidelines for determining when and how rapidly new transmission modes may evolve, but these are still in need of empirical investigation and application to particular cases. Obtaining such knowledge is a matter of urgency in relation to extant disease threats. This article is part of the themed issue ‘Opening the black box: re-examining the ecology and evolution of parasite transmission’. PMID:28289251

  9. Single-mode optical fibres

    CERN Document Server

    Cancellieri, G

    1991-01-01

    This book describes signal propagation in single-mode optical fibres for telecommunication applications. Such description is based on the analysis of field propagation, considering waveguide properties and also some of the particular characteristics of the material fibre. The book covers such recent advances as, coherent transmissions; optical amplification; MIR fibres; polarization maintaining; polarization diversity and photon counting.

  10. Single-Mode VCSELs

    Science.gov (United States)

    Larsson, Anders; Gustavsson, Johan S.

    The only active transverse mode in a truly single-mode VCSEL is the fundamental mode with a near Gaussian field distribution. A single-mode VCSEL produces a light beam of higher spectral purity, higher degree of coherence and lower divergence than a multimode VCSEL and the beam can be more precisely shaped and focused to a smaller spot. Such beam properties are required in many applications. In this chapter, after discussing applications of single-mode VCSELs, we introduce the basics of fields and modes in VCSELs and review designs implemented for single-mode emission from VCSELs in different materials and at different wavelengths. This includes VCSELs that are inherently single-mode as well as inherently multimode VCSELs where higher-order modes are suppressed by mode selective gain or loss. In each case we present the current state-of-the-art and discuss pros and cons. At the end, a specific example with experimental results is provided and, as a summary, the most promising designs based on current technologies are identified.

  11. Single-Wire Electric-Field Coupling Power Transmission Using Nonlinear Parity-Time-Symmetric Model with Coupled-Mode Theory

    Directory of Open Access Journals (Sweden)

    Xujian Shu

    2018-03-01

    Full Text Available The output power and transmission efficiency of the traditional single-wire electric-field coupling power transmission (ECPT system will drop sharply with the increase of the distance between transmitter and receiver, thus, in order to solve the above problem, in this paper, a new nonlinear parity-time (PT-symmetric model for single-wire ECPT system based on coupled-mode theory (CMT is proposed. The proposed model for single-wire ECPT system not only achieves constant output power but also obtains a high constant transmission efficiency against variable distance, and the steady-state characteristics of the single-wire ECPT system are analyzed. Based on the theoretical analysis and circuit simulation, it shows that the transmission efficiency with constant output power remains 60% over a transmission distance of approximately 34 m without the need for any tuning. Furthermore, the application of a nonlinear PT-symmetric circuit based on CMT enables robust electric power transfer to moving devices or vehicles.

  12. VCSEL Transmission at 10 Gb/s for 20 km Single Mode Fiber WDM-PON without Dispersion Compensation or Injection Locking

    DEFF Research Database (Denmark)

    Gibbon, Timothy Braidwood; Prince, Kamau; Pham, Tien Thang

    2011-01-01

    how off-center wavelength filtering of the VCSEL spectrum at an array waveguide grating can be used to mitigate the effect of chirp and the dispersion penalty. Transmission at 10Gb/s VCSEL over 23.6 km of single mode fiber is experimentally demonstrated, with a dispersion penalty of only 2.9 d......B. Simulated results are also presented which show that off-center wavelength filtering can extend the 10 Gb/s network reach from 11.7 km to 25.8 km for a 4 dB dispersion penalty. This allows for cheap and simple dispersion mitigation in next generation VCSEL based optical access networks....

  13. 12 Mode, MIMO-Free OAM Transmission

    DEFF Research Database (Denmark)

    Ingerslev, Kasper; Gregg, Patrick; Galili, Michael

    2017-01-01

    Simultaneous MIMO-free transmission of a record number (12) of orbital angular momentum modes over 1.2 km is demonstrated. WDM compatibility of the system is shown by using 60 WDM channels with 25 GHz spacing and 10 GBaud QPSK.......Simultaneous MIMO-free transmission of a record number (12) of orbital angular momentum modes over 1.2 km is demonstrated. WDM compatibility of the system is shown by using 60 WDM channels with 25 GHz spacing and 10 GBaud QPSK....

  14. Single transverse mode protein laser

    Science.gov (United States)

    Dogru, Itir Bakis; Min, Kyungtaek; Umar, Muhammad; Bahmani Jalali, Houman; Begar, Efe; Conkar, Deniz; Firat Karalar, Elif Nur; Kim, Sunghwan; Nizamoglu, Sedat

    2017-12-01

    Here, we report a single transverse mode distributed feedback (DFB) protein laser. The gain medium that is composed of enhanced green fluorescent protein in a silk fibroin matrix yields a waveguiding gain layer on a DFB resonator. The thin TiO2 layer on the quartz grating improves optical feedback due to the increased effective refractive index. The protein laser shows a single transverse mode lasing at the wavelength of 520 nm with the threshold level of 92.1 μJ/ mm2.

  15. 1-Pb/s (32 SDM/46 WDM/768 Gb/s) C-band Dense SDM Transmission over 205.6-km of Single-mode Heterogeneous Multi-core Fiber using 96-Gbaud PDM-16QAM Channels

    DEFF Research Database (Denmark)

    Kobayashi, Takayuki; Nakamura, M.; Hamaoka, F.

    2017-01-01

    We demonstrate the first 1-Pb/s unidirectional inline-amplified transmission over 205.6-km of single-mode 32-core fiber within C-band only. 96-Gbaud LDPC-coded PDM-16QAM channels with FEC redundancy of 12.75% realize high-aggregate spectral efficiency of 217.6 b/s/Hz......We demonstrate the first 1-Pb/s unidirectional inline-amplified transmission over 205.6-km of single-mode 32-core fiber within C-band only. 96-Gbaud LDPC-coded PDM-16QAM channels with FEC redundancy of 12.75% realize high-aggregate spectral efficiency of 217.6 b/s/Hz...

  16. High-Power Microwave Transmission and Mode Conversion Program

    Energy Technology Data Exchange (ETDEWEB)

    Vernon, Ronald J. [Univ. of Wisconsin, Madison, WI (United States)

    2015-08-14

    This is a final technical report for a long term project to develop improved designs and design tools for the microwave hardware and components associated with the DOE Plasma Fusion Program. We have developed basic theory, software, fabrication techniques, and low-power measurement techniques for the design of microwave hardware associated gyrotrons, microwave mode converters and high-power microwave transmission lines. Specifically, in this report we discuss our work on designing quasi-optical mode converters for single and multiple frequencies, a new method for the analysis of perturbed-wall waveguide mode converters, perturbed-wall launcher design for TE0n mode gyrotrons, quasi-optical traveling-wave resonator design for high-power testing of microwave components, and possible improvements to the HSX microwave transmission line.

  17. Quasi-single-mode homogeneous 31-core fibre

    DEFF Research Database (Denmark)

    Sasaki, Y.; Saitoh, S.; Amma, Y.

    2015-01-01

    A homogeneous 31-core fibre with a cladding diameter of 230 μm for quasi-single-mode transmission is designed and fabricated. LP01-crosstalk of -38.4 dB/11 km at 1550 nm is achieved by using few-mode trench-assisted cores.......A homogeneous 31-core fibre with a cladding diameter of 230 μm for quasi-single-mode transmission is designed and fabricated. LP01-crosstalk of -38.4 dB/11 km at 1550 nm is achieved by using few-mode trench-assisted cores....

  18. Transmission Modes of Melioidosis in Taiwan

    Directory of Open Access Journals (Sweden)

    Pei-Tan Hsueh

    2018-02-01

    Full Text Available In Taiwan, melioidosis is an emerging disease that suddenly increased in the Er-Ren River Basin, beginning in 2005 and in the Zoynan region during 2008–2012, following a typhoon. Additionally, the disease sporadically increased in a geography-dependent manner in 2016. Subcutaneous inoculation, ingestion, and the inhalation of soil or water contaminated with Burkholderia pseudomallei are recognized as the transmission modes of melioidosis. The appearance of environmental B. pseudomallei positivity in northern, central and southern Taiwan is associated with disease prevalence (cases/population: 0.03/100,000 in the northern region, 0.29/100,000 in the central region and 1.98/100,000 in the southern region. However, melioidosis-clustered areas are confined to 5 to 7.5 km2 hot spots containing high-density populations, but B. pseudomallei-contaminated environments are located >5 km northwestern of the periphery of these hot spots. The observation that the concentration of B. pseudomallei-specific DNA in aerosols was positively correlated with the incidence of melioidosis and the appearance of a northwesterly wind in a hot spot indicated that airborne transmission had occurred in Taiwan. Moreover, the isolation rate in the superficial layers of a contaminated crop field in the northwest was correlated with PCR positivity in aerosols collected from the southeast over a two-year period. The genotype ST58 was identified by multilocus sequence typing in human and aerosol isolates. The genotype ST1001 has increased in prevalence but has been sporadically distributed elsewhere since 2016. These data indicate the transmission modes and environmental foci that support the dissemination of melioidosis are changing in Taiwan.

  19. PLC-based mode multi/demultiplexer for MDM transmission

    Science.gov (United States)

    Hanzawa, N.; Saitoh, K.; Sakamoto, T.; Matsui, T.; Tsujikawa, K.; Koshiba, M.; Yamamoto, F.

    2013-12-01

    We propose a PLC-based multi/demultiplexer (MUX/DEMUX) with a mode conversion function for mode division multiplexing (MDM) transmission applications. The PLC-based mode MUX/DEMUX can realize a low insertion loss and a wide working wavelength bandwidth. We designed and demonstrated a two-mode (LP01 and LP11 modes) and a three-mode (LP01, LP11, and LP21 modes) MUX/DEMUX for use in the C-band.

  20. 24-Dimensional Modulation Formats for 100 Gbit/s IM-DD Transmission Systems Using 850 nm Single-Mode VCSEL

    DEFF Research Database (Denmark)

    Lu, Xiaofeng; Lyubopytov, Vladimir; Tafur Monroy, Idelfonso

    2017-01-01

    Twenty-four dimensional modulation format with 2 bit/symbol spectrum efficiency is proposed and investigated in an up to 100 Gbit/s VCSEL-based IM-DD transmission system with respect to the channel bandwidth and the power budget....

  1. Single-mode 850-nm vertical-cavity surface-emitting lasers with Zn-diffusion and oxide-relief apertures for > 50 Gbit/sec OOK and 4-PAM transmission

    Science.gov (United States)

    Shi, Jin-Wei; Wei, Chia-Chien; Chen, Jyehong; Ledentsov, N. N.; Yang, Ying-Jay

    2017-02-01

    Vertical-cavity surface-emitting lasers (VCSELs) has become the most important light source in the booming market of short-reach (targeted at 56 Gbit/sec data rate per channel (CEI-56G) with the total data rate up to 400 Gbit/sec. However, the serious modal dispersion of multi-mode fiber (MMF), limited speed of VCSEL, and its high resistance (> 150 Ω) seriously limits the >50 Gbit/sec linking distance (50 Gbit/sec transmission due to that it can save one-half of the required bandwidth. Nevertheless, a 4.7 dB optical power penalty and the linearity of transmitter would become issues in the 4-PAM linking performance. Besides, in the modern OI system, the optics transreceiver module must be packaged as close as possible with the integrated circuits (ICs). The heat generated from ICs will become an issue in speed of VSCEL. Here, we review our recent work about 850 nm VCSEL, which has unique Zn-diffusion/oxide-relief apertures and special p- doping active layer with strong wavelength detuning to further enhance its modulation speed and high-temperature (85°C) performances. Single-mode (SM) devices with high-speed ( 26 GHz), reasonable resistance ( 70 Ω) and moderate output power ( 1.5 mW) can be achieved. Error-free 54 Gbit/sec OOK transmission through 1km MMF has been realized by using such SM device with signal processing techniques. Besides, the volterra nonlinear equalizer has been applied in our 4-PAM 64 Gbit/sec transmission through 2-km OM4 MMF, which significantly enhance the linearity of device and outperforms fed forward equalization (FFE) technique. Record high bit-rate distance product of 128.km is confirmed for optical-interconnect applications.

  2. Single-mode multicore fiber for dense space division multiplexing

    DEFF Research Database (Denmark)

    Sasaki, Yusuke; Amma, Yoshimichi; Takenaga, Katsuhiro

    2016-01-01

    Single-mode multicore fiber (SM-MCF) is attractive for high-capacity transmission. Our fabricated SM-MCFs achieve high core count and low crosstalk with a cladding diameter of 230 µm. Characteristics of fan-in/fan-out for the SM-MCFs are also investigated....

  3. Synchronization of uncertain chaotic systems using a single transmission channel

    International Nuclear Information System (INIS)

    Feng Yong; Yu Xinghuo; Sun Lixia

    2008-01-01

    This paper proposes a robust sliding mode observer for synchronization of uncertain chaotic systems with multi-nonlinearities. A new control strategy is proposed for the construction of the robust sliding mode observer, which can avoid the strict conditions in the design process of Walcott-Zak observer. A new method of multi-dimensional signal transmission via single transmission channel is proposed and applied to chaos synchronization of uncertain chaotic systems with multi-nonlinearities. The simulation results are presented to validate the method

  4. Analysis of Energy Transmission Modes of Flyback Converter

    Directory of Open Access Journals (Sweden)

    GONG Shu

    2014-08-01

    Full Text Available It is of significance to investigate energy transmission modes of a flyback converter for its optimum design. In this paper, the ETMs of a flyback converter are divided into three modes, which are continuous conduction mode-complete inductor supply mode, continuous conduction mode- incomplete inductor supply mode and discontinuous conduction mode-incomplete inductor supply mode, respectively. A deep analysis of the operation is made, a reduction of the boundary condition between the modes is conducted and a comparison of current stress, transformer AP and output ripple voltage between the modes is performed. A 30W prototype is developed and its experiment is done. The experiment results are in agreement with the theoretical analysis quite well.

  5. EMISAR single pass topographic SAR interferometer modes

    DEFF Research Database (Denmark)

    Madsen, Søren Nørvang; Skou, Niels; Woelders, Kim

    1996-01-01

    The Danish Center for Remote Sensing (DCRS) has augmented its dual-frequency polarimetric synthetic aperture radar system (EMISAR) with single pass across-track interferometric (XTI) modes. This paper describes the system configuration, specifications and the operating modes. Analysis of data acq...

  6. Single VDTA Based Dual Mode Single Input Multioutput Biquad Filter

    Directory of Open Access Journals (Sweden)

    Rajeshwari Pandey

    2016-01-01

    Full Text Available This paper presents a dual mode, single input multioutput (SIMO biquad filter configuration using single voltage differencing transconductance amplifier (VDTA, three capacitors, and a grounded resistor. The proposed topology can be used to synthesize low pass (LP, high pass (HP, and band pass (BP filter functions. It can be configured as voltage mode (VM or current mode (CM structure with appropriate input excitation choice. The angular frequency (ω0 of the proposed structure can be controlled independently of quality factor (Q0. Workability of the proposed biquad configuration is demonstrated through PSPICE simulations using 0.18 μm TSMC CMOS process parameters.

  7. Single-mode biological distributed feedback laser

    DEFF Research Database (Denmark)

    Vannahme, Christoph; Maier-Flaig, Florian; Lemmer, Uli

    2013-01-01

    Single-mode second order distributed feedback (DFB) lasers of riboflavin (vitamin B2) doped gelatine films on nanostructured low refractive index material are demonstrated. Manufacturing is based on a simple UV nanoimprint and spin-coating. Emission wavelengths of 543 nm and 562 nm for two...

  8. Modes of transmission of influenza B virus in households.

    Directory of Open Access Journals (Sweden)

    Benjamin J Cowling

    Full Text Available While influenza A and B viruses can be transmitted via respiratory droplets, the importance of small droplet nuclei "aerosols" in transmission is controversial.In Hong Kong and Bangkok, in 2008-11, subjects were recruited from outpatient clinics if they had recent onset of acute respiratory illness and none of their household contacts were ill. Following a positive rapid influenza diagnostic test result, subjects were randomly allocated to one of three household-based interventions: hand hygiene, hand hygiene plus face masks, and a control group. Index cases plus their household contacts were followed for 7-10 days to identify secondary infections by reverse transcription polymerase chain reaction (RT-PCR testing of respiratory specimens. Index cases with RT-PCR-confirmed influenza B were included in the present analyses. We used a mathematical model to make inferences on the modes of transmission, facilitated by apparent differences in clinical presentation of secondary infections resulting from aerosol transmission. We estimated that approximately 37% and 26% of influenza B virus transmission was via the aerosol mode in households in Hong Kong and Bangkok, respectively. In the fitted model, influenza B virus infections were associated with a 56%-72% risk of fever plus cough if infected via aerosol route, and a 23%-31% risk of fever plus cough if infected via the other two modes of transmission.Aerosol transmission may be an important mode of spread of influenza B virus. The point estimates of aerosol transmission were slightly lower for influenza B virus compared to previously published estimates for influenza A virus in both Hong Kong and Bangkok. Caution should be taken in interpreting these findings because of the multiple assumptions inherent in the model, including that there is limited biological evidence to date supporting a difference in the clinical features of influenza B virus infection by different modes.

  9. Oscillation modes and transmission into a Fibonacci slab

    Science.gov (United States)

    Castro-Arce, Lamberto; Molinar-Tabares, Martin; Campos-Garcia, Julio; Figueroa-Navarro, Carlos; Isasi-Siqueiros, Leonardo; Manzanares-Martinez, Betsabe

    In our contribution we developed a study on the behavior of the transmission modes and a Pt / Zn slab of a Fibonacci array of longitudinal and transverse acoustic waves. We have worked with arrangements from n = 1 to10 and has managed to find the energy bands and transmission, filling factor 0.4 observing the appearance of Pseudo-Gaps in the evolution of the study when the arrangement Fibonacci increases. We acknowledge the support of SNI CONACYT.

  10. Measuring ultraviolet-visible light transmission of intraocular lenses: double-beam mode versus integrating-sphere mode

    Science.gov (United States)

    Akinay, Ali; Ong, Marcia D.; Choi, Myoung; Karakelle, Mutlu

    2012-10-01

    This study compared integrating-sphere and double-beam methodologies for measuring the ultraviolet/visible transmission of intraocular lenses (IOLs). Transmission spectra of control IOLs and clinically explanted IOLs were measured with an optical spectrophotometer in two optical configurations: single-beam mode with integrating sphere detector and double-beam mode with photodiode detector. Effects of temperature and surface light scattering on transmittance were measured. Effects of lens power were measured and were modeled with ray-tracing software. Results indicated that transmission was consistent over a range of IOL powers when measured with the integrating-sphere configuration, but transmission gradually decreased with increasing IOL power (in a wavelength-dependent fashion) when measured with the double-beam configuration. Ray tracing indicated that the power-dependent loss in transmission was partially due to higher-powered IOLs spreading the light beam outside of the detector area. IOLs with surface light scattering had transmission spectra that differed between double-beam and integrating-sphere configurations in a power-dependent fashion. Temperature (ambient or physiological 35°C) did not affect transmission in the integrating-sphere configuration. Overall, results indicated that double-beam spectrophotometers may be useful for measuring transmittance of low-power IOLs, but an integrating-sphere configuration should be used to obtain accurate measurements of transmittance of higher-power IOLs.

  11. Mid-infrared performance of single mode chalcogenide fibers

    Science.gov (United States)

    Cook, Justin; Sincore, Alex; Tan, Felix; El Halawany, Ahmed; Riggins, Anthony; Shah, Lawrence; Abouraddy, Ayman F.; Richardson, Martin C.; Schepler, Kenneth L.

    2018-02-01

    Due to the intrinsic absorption edge in silica near 2.4 μm, more exotic materials are required to transmit laser power in the IR such as fluoride or chalcogenide glasses (ChGs). In particular, ChG fibers offer broad IR transmission with low losses fibers at four different infrared wavelengths: 2053 nm, 2520 nm and 4550 nm. Polymer clad ChG fibers were drawn with 12.3 μm and 25 μm core diameters. Testing at 2053 nm was accomplished using a > 15 W, CW Tm:fiber laser. Power handling up to 10.2 W with single mode beam quality has been demonstrated, limited only by the available Tm:fiber output power. Anti-reflective coatings were successfully deposited on the ChG fiber facets, allowing up to 90.6% transmission with 12.2 MW/cm2 intensity on the facet. Single mode guidance at 4550 nm was also demonstrated using a quantum cascade laser (QCL). A custom optical system was constructed to efficiently couple the 0.8 NA QCL radiation into the 0.2 NA ChG fiber, allowing for a maximum of 78% overlap between the QCL radiation and fundamental mode of the fiber. With an AR-coated, 25 μm core diameter fiber, >50 mW transmission was demonstrated with > 87% transmission. Finally, we present results on fiber coupling from a free space Cr:ZnSe resonator at 2520 nm.

  12. Research status of large mode area single polarization active fiber

    Science.gov (United States)

    Xiao, Chun; Zhang, Ge; Yang, Bin-hua; Cheng, Wei-feng; Gu, Shao-yi

    2018-03-01

    As high power fiber laser used more and more widely, to increase the output power of fiber laser and beam quality improvement have become an important goal for the development of high power fiber lasers. The use of large mode fiber is the most direct and effective way to solve the nonlinear effect and fiber damage in the fiber laser power lifting process. In order to reduce the effect of polarization of the fiber laser system, the study found that when introduces a birefringence in the single-mode fiber, the polarization state changes caused by the birefringence is far greater than the random polarization state changes, then the external disturbance is completely submerged, finally the polarization can be controlled and stabilized. Through the fine design of the fiber structure, if the birefringence is high enough to achieve the separation of the two polarization states, the fiber will have a different cut-off mechanism to eliminate polarization which is not need, which will realize single mode single polarization transmission in a band. In this paper, different types of single polarization fiber design are presented and the application of these fibers are also discussed.

  13. Modes of an endlessly single-mode photonic crystal fiber: a finite element investigation

    NARCIS (Netherlands)

    Uranus, H.P.; Hoekstra, Hugo; van Groesen, Embrecht W.C.

    2004-01-01

    Using a finite-element mode solver, the modes of a commercial endlessly single-mode photonic crystal fiber (ESM-PCF) were investigated. Based on the loss discrimination between the dominant and the nearest higher order mode, we set-up a criterion for the single-modeness. Using that measure, we

  14. Mode and climatic factors effect on energy losses in transient heat modes of transmission lines

    Science.gov (United States)

    Bigun, A. Ya; Sidorov, O. A.; Osipov, D. S.; Girshin, S. S.; Goryunov, V. N.; Petrova, E. V.

    2018-01-01

    Electrical energy losses increase in modern grids. The losses are connected with an increase in consumption. Existing models of electric power losses estimation considering climatic factors do not allow estimating the cable temperature in real time. Considering weather and mode factors in real time allows to meet effectively and safely the consumer’s needs to minimize energy losses during transmission, to use electric power equipment effectively. These factors increase an interest in the evaluation of the dynamic thermal mode of overhead transmission lines conductors. The article discusses an approximate analytic solution of the heat balance equation in the transient operation mode of overhead lines based on the least squares method. The accuracy of the results obtained is comparable with the results of solving the heat balance equation of transient thermal mode with the Runge-Kutt method. The analysis of mode and climatic factors effect on the cable temperature in a dynamic thermal mode is presented. The calculation of the maximum permissible current for variation of weather conditions is made. The average electric energy losses during the transient process are calculated with the change of wind, air temperature and solar radiation. The parameters having the greatest effect on the transmission capacity are identified.

  15. [Brief analysis on the transmission mode of traditional Chinese medicine (TCM) in ancient China].

    Science.gov (United States)

    Li, Yin; Liu, Yan-jiao

    2008-07-01

    The transmission route of TCM knowledge in ancient China primarily included doctor's transmission and non-doctor's transmission. The doctor's transmission mode included lineage-teaching system, elementary study system, transmission between schools and the clinical effects on the society etc. Non-doctor's transmission mode included literati's interests, literati's sickness, literati's health cultivation, the interests of top society, literati's recoding etc. Different transmission modes played an important role in the transmission and conservation of TCM knowledge as well as a reference to developing the transmission of present-day TCM knowledge.

  16. Capacity Enhancement of Few-Mode Fiber Transmission Systems Impaired by Mode-Dependent Loss

    Directory of Open Access Journals (Sweden)

    El-Mehdi Amhoud

    2018-02-01

    Full Text Available Space-division multiplexing over few-mode fibers is a promising solution to increase the capacity of the future generation of optical transmission systems. Mode-dependent loss (MDL is known to have a detrimental impact on the capacity of few-mode fiber systems. In the presence of MDL, spatial modes experience different attenuations which results in capacity reduction. In this work, we propose a digital signal processing solution and an optical solution to mitigate the impact of MDL and improve the channel capacity. First, we show that statistical channel state information can be used for a better power allocation for spatial modes instead of equal launch power to increase the system capacity. Afterwards, we propose a deterministic mode scrambling strategy to efficiently reduces the impact of MDL and improves few-mode fiber systems capacity. This scrambling strategy can be efficiently combined with the optimal power allocation to further enhance the capacity. Through numerical simulations of the average and outage capacities, we show that the proposed techniques bring significant capacity gains.

  17. Physics and technology of tunable pulsed single longitudinal mode ...

    Indian Academy of Sciences (India)

    The single longitudinal mode (SLM) dye laser generates single-mode laser beams of ∼ 400 MHz (GIG configuration) and ∼ 600 MHz (Littrow configuration) bandwidth. Detailed performance studies of the Littrow and GIG dye laser resonators showed that GIG dye laser results in narrower linewidth and broad mode hop free ...

  18. Selective mode coupling in microring resonators for single mode semiconductor lasers

    Science.gov (United States)

    Arbabi, Amir

    Single mode semiconductor laser diodes have many applications in optical communications, metrology and sensing. Edge-emitting single mode lasers commonly use distributed feedback structures, or narrowband reflectors such as distributed Bragg reflectors (DBRs) and sampled grating distributed Bragg reflectors (SGDBRs). Compact, narrowband reflectors with high reflectivities are of interest to replace the commonly used DBRs and SGDBRs. This thesis presents our work on the simulation, design, fabrication, and characterization of devices operating based on the coupling of degenerate modes of a microring resonator, and investigation of the possibility of using them for improving the performance of laser diodes. In particular, we demonstrate a new type of compact, narrowband, on-chip reflector realized by selectively coupling degenerate modes of a microring resonator. For the simulation and design of reflective microring resonators, a fast and accurate analysis method is required. Conventional numerical methods for solving Maxwell's equations such as the finite difference time domain and the finite element method (FEM) provide accurate results but are computationally intense and are not suitable for the design of large 3D structures. We formulated a set of coupled mode equations that, combined with 2D FEM simulations, can provide a fast and accurate tool for the modeling and design of reflective microrings. We developed fabrication processing recipes and fabricated passive reflective microrings on silicon substrates with a silicon nitride core and silicon dioxide cladding. Narrowband single wavelength reflectors were realized which are 70 times smaller than a conventional DBR with the same bandwidth. Compared to the conventional DBR, they have faster roll-off, and no side modes. The smaller footprint saves real estate, reduces tuning power and makes these devices attractive as in-line mirrors for low threshold narrow linewidth laser diodes. Self-heating caused by material

  19. Mode coupling in hybrid square-rectangular lasers for single mode operation

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xiu-Wen; Huang, Yong-Zhen, E-mail: yzhuang@semi.ac.cn; Yang, Yue-De; Xiao, Jin-Long; Weng, Hai-Zhong; Xiao, Zhi-Xiong [State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100083 (China)

    2016-08-15

    Mode coupling between a square microcavity and a Fabry-Pérot (FP) cavity is proposed and demonstrated for realizing single mode lasers. The modulations of the mode Q factor as simulation results are observed and single mode operation is obtained with a side mode suppression ratio of 46 dB and a single mode fiber coupling loss of 3.2 dB for an AlGaInAs/InP hybrid laser as a 300-μm-length and 1.5-μm-wide FP cavity connected to a vertex of a 10-μm-side square microcavity. Furthermore, tunable single mode operation is demonstrated with a continuous wavelength tuning range over 10 nm. The simple hybrid structure may shed light on practical applications of whispering-gallery mode microcavities in large-scale photonic integrated circuits and optical communication and interconnection.

  20. Crosstalk-Managed Heterogeneous Single-Mode 32-Core Fibre

    DEFF Research Database (Denmark)

    Sasaki, Y.; Fukumoto, Ryohei; Takenaga, Katsuhiro

    2016-01-01

    A heterogeneous single-mode 32-core fibre with a cladding diameter of 243 micrometer is designed and fabricated. The highest core count in single-mode multi-core fibres and low worst-case crosstalk of less than -24 dB/1000 km in C-band are achieved simultaneously.......A heterogeneous single-mode 32-core fibre with a cladding diameter of 243 micrometer is designed and fabricated. The highest core count in single-mode multi-core fibres and low worst-case crosstalk of less than -24 dB/1000 km in C-band are achieved simultaneously....

  1. Transmission Control of Transport and Technological Cars in Acceleration Mode

    Directory of Open Access Journals (Sweden)

    B. I. Plujnikov

    2015-01-01

    Full Text Available In most structures a transmission of the transport-technological machine (TTM is controlled by automatic systems. In their creating it is necessary to specify the appropriate parameters and algorithms. In the total balance of the machine run time the acceleration mode is the most important. Therefore, an algorithm of the transmission gear ratio change during acceleration largely provides desirable rating of machines.It is known that the process of acceleration is estimated by its dynamic quality and fuel economy. To reach the best rating of both simultaneously is impossible. Therefore, as the criteria of estimate, were chosen the time and fuel consumption during acceleration to a fixed speed value.From a mathematical point of view, these criteria represent the sum of integrals, each of which defines the time or the fuel consumption during acceleration with a certain transmission gear ratio. The problem is formulated as follows: to determine the speed values of the TTM at the moments when the transmission gear ratio is changed providing the minimum values during fixed fuel supply for the estimate criteria. The latter condition in a certain way limits the task, but in explicit form there is no this control action in the dependence data.Given the variety of possible design options for the TTM, the solution is given by a specific example that simplifies the mathematics and makes it easier to understand the results obtained. As a TTM, is considered a passenger car with petrol engine and automatic transmission, which includes a hydrodynamic transformer and three-speed gearbox.A chosen way of solving the problem involves using the theory of ordinary maxima and minima, which allows finding the unknown values of independent variables. The expressions of sub-integral functions are in explicit form obtained and studied for meeting the necessary and sufficient conditions for existence of the extreme point. The result was a proof that in the case of

  2. Excitation of terahertz modes localized on a layered superconductor: Anomalous dispersion and resonant transmission

    Science.gov (United States)

    Apostolov, S. S.; Makarov, N. M.; Yampol'skii, V. A.

    2018-01-01

    We study theoretically the optic transmission through a slab of layered superconductor separated from two dielectric leads by spatial gaps. Based on the transfer matrix formalism along with the Josephson plasma electrodynamic approach, we derive analytic expressions for the transmittance and identify the conditions for the perfect transmission. The special interest of the study is focused on the resonant transmission, which occurs when the wave does not propagate in the spatial gaps. Far from the resonance, the transmittance is exponentially small due to the total internal reflection from the lead-gap interface. However, the excitation of electromagnetic modes localized on the layered superconductor gives rise to a remarkable resonant enhancement of the transmission. Moreover, this phenomenon is significantly modified for the layered superconductors in comparison with usual dielectrics or conductors. The dispersion curves for the modes localized on the layered superconductor are proved to be nonmonotonic, thus resulting in the specific dependence of the transmittance T on the incidence angle θ . In particular, we predict the onset of two resonant peaks in the T (θ ) dependence and their subsequent merge into the broadened single peak with increasing of the wave frequency. Our analytical results are demonstrated by numerical data.

  3. Physics and technology of tunable pulsed single longitudinal mode ...

    Indian Academy of Sciences (India)

    Design and technology demonstration of compact, narrow bandwidth, high repetition rate, tunable SLM dye lasers in two different configurations, namely Littrow and grazing incidence grating (GIG), were carried out in our lab at BARC, India. The single longitudinal mode (SLM) dye laser generates single-mode laser beams ...

  4. Cross-correlated imaging of single-mode photonic crystal rod fiber with distributed mode filtering

    DEFF Research Database (Denmark)

    Laurila, Marko; Barankov, Roman; Jørgensen, Mette Marie

    2013-01-01

    Photonic crystal bandgap fibers employing distributed mode filtering design provide near diffraction-limited light outputs, a critical property of fiber-based high-power lasers. Microstructure of the fibers is tailored to achieve single-mode operation at specific wavelength by resonant mode...... identify regimes of resonant coupling between higher-order core modes and cladding band. We demonstrate a passive fiber design in which the higher-order modal content inside the single-mode guiding regime is suppressed by at least 20 dB even for significantly misaligned input-coupling configurations....

  5. Physics and technology of tunable pulsed single longitudinal mode ...

    Indian Academy of Sciences (India)

    Figure 8. Principle of two-mode operation. Figure 9. Amplifier efficiency vs. wavelength. Experimentally observed wavelength change is 2.5 pm/◦C = 2.39 GHz/◦C at. 560 nm. It was observed that if the dye temperature was stabilized there was no transition from single-mode to twin-mode over an hour operation. Change in ...

  6. LOPUT Laser: A novel concept to realize single longitudinal mode ...

    Indian Academy of Sciences (India)

    2014-02-05

    Feb 5, 2014 ... Contributed Papers Volume 82 Issue 2 February 2014 pp 185-190 ... Abstract. We propose a novel type of cavity design to generate single longitudinal mode laser known as LOPUT cavity. LOPUT cavity stands for linear orthogonally polarized modes resulting in unidirectional travelling wave cavity.

  7. Single-mode ytterbium-doped large-mode-area photonic bandgap rod fiber amplifier

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Scolari, Lara; Broeng, Jes

    2011-01-01

    Enabling Single-Mode (SM) operation in Large-Mode-Area (LMA) fiber amplifiers and lasers is critical, since a SM output ensures high beam quality and excellent pointing stability. In this paper, we demonstrate and test a new design approach for achieving SM LMA rod fibers by using a photonic...... bandgap structure. The structure allows resonant coupling of higher-order modes from the core and acts as a spatially Distributed Mode Filter (DMF). With this approach, we demonstrate passive SM performance in an only ~50cm long and straight ytterbium-doped rod fiber. The amplifier has a mode field...

  8. Differences in the Selection Bottleneck between Modes of Sexual Transmission Influence the Genetic Composition of the HIV-1 Founder Virus.

    Directory of Open Access Journals (Sweden)

    Damien C Tully

    2016-05-01

    Full Text Available Due to the stringent population bottleneck that occurs during sexual HIV-1 transmission, systemic infection is typically established by a limited number of founder viruses. Elucidation of the precise forces influencing the selection of founder viruses may reveal key vulnerabilities that could aid in the development of a vaccine or other clinical interventions. Here, we utilize deep sequencing data and apply a genetic distance-based method to investigate whether the mode of sexual transmission shapes the nascent founder viral genome. Analysis of 74 acute and early HIV-1 infected subjects revealed that 83% of men who have sex with men (MSM exhibit a single founder virus, levels similar to those previously observed in heterosexual (HSX transmission. In a metadata analysis of a total of 354 subjects, including HSX, MSM and injecting drug users (IDU, we also observed no significant differences in the frequency of single founder virus infections between HSX and MSM transmissions. However, comparison of HIV-1 envelope sequences revealed that HSX founder viruses exhibited a greater number of codon sites under positive selection, as well as stronger transmission indices possibly reflective of higher fitness variants. Moreover, specific genetic "signatures" within MSM and HSX founder viruses were identified, with single polymorphisms within gp41 enriched among HSX viruses while more complex patterns, including clustered polymorphisms surrounding the CD4 binding site, were enriched in MSM viruses. While our findings do not support an influence of the mode of sexual transmission on the number of founder viruses, they do demonstrate that there are marked differences in the selection bottleneck that can significantly shape their genetic composition. This study illustrates the complex dynamics of the transmission bottleneck and reveals that distinct genetic bottleneck processes exist dependent upon the mode of HIV-1 transmission.

  9. Differences in the Selection Bottleneck between Modes of Sexual Transmission Influence the Genetic Composition of the HIV-1 Founder Virus.

    Science.gov (United States)

    Tully, Damien C; Ogilvie, Colin B; Batorsky, Rebecca E; Bean, David J; Power, Karen A; Ghebremichael, Musie; Bedard, Hunter E; Gladden, Adrianne D; Seese, Aaron M; Amero, Molly A; Lane, Kimberly; McGrath, Graham; Bazner, Suzane B; Tinsley, Jake; Lennon, Niall J; Henn, Matthew R; Brumme, Zabrina L; Norris, Philip J; Rosenberg, Eric S; Mayer, Kenneth H; Jessen, Heiko; Kosakovsky Pond, Sergei L; Walker, Bruce D; Altfeld, Marcus; Carlson, Jonathan M; Allen, Todd M

    2016-05-01

    Due to the stringent population bottleneck that occurs during sexual HIV-1 transmission, systemic infection is typically established by a limited number of founder viruses. Elucidation of the precise forces influencing the selection of founder viruses may reveal key vulnerabilities that could aid in the development of a vaccine or other clinical interventions. Here, we utilize deep sequencing data and apply a genetic distance-based method to investigate whether the mode of sexual transmission shapes the nascent founder viral genome. Analysis of 74 acute and early HIV-1 infected subjects revealed that 83% of men who have sex with men (MSM) exhibit a single founder virus, levels similar to those previously observed in heterosexual (HSX) transmission. In a metadata analysis of a total of 354 subjects, including HSX, MSM and injecting drug users (IDU), we also observed no significant differences in the frequency of single founder virus infections between HSX and MSM transmissions. However, comparison of HIV-1 envelope sequences revealed that HSX founder viruses exhibited a greater number of codon sites under positive selection, as well as stronger transmission indices possibly reflective of higher fitness variants. Moreover, specific genetic "signatures" within MSM and HSX founder viruses were identified, with single polymorphisms within gp41 enriched among HSX viruses while more complex patterns, including clustered polymorphisms surrounding the CD4 binding site, were enriched in MSM viruses. While our findings do not support an influence of the mode of sexual transmission on the number of founder viruses, they do demonstrate that there are marked differences in the selection bottleneck that can significantly shape their genetic composition. This study illustrates the complex dynamics of the transmission bottleneck and reveals that distinct genetic bottleneck processes exist dependent upon the mode of HIV-1 transmission.

  10. Deriving Quantitative Crystallographic Information from the Wavelength-Resolved Neutron Transmission Analysis Performed in Imaging Mode

    Directory of Open Access Journals (Sweden)

    Hirotaka Sato

    2017-12-01

    Full Text Available Current status of Bragg-edge/dip neutron transmission analysis/imaging methods is presented. The method can visualize real-space distributions of bulk crystallographic information in a crystalline material over a large area (~10 cm with high spatial resolution (~100 μm. Furthermore, by using suitable spectrum analysis methods for wavelength-dependent neutron transmission data, quantitative visualization of the crystallographic information can be achieved. For example, crystallographic texture imaging, crystallite size imaging and crystalline phase imaging with texture/extinction corrections are carried out by the Rietveld-type (wide wavelength bandwidth profile fitting analysis code, RITS (Rietveld Imaging of Transmission Spectra. By using the single Bragg-edge analysis mode of RITS, evaluations of crystal lattice plane spacing (d-spacing relating to macro-strain and d-spacing distribution’s FWHM (full width at half maximum relating to micro-strain can be achieved. Macro-strain tomography is performed by a new conceptual CT (computed tomography image reconstruction algorithm, the tensor CT method. Crystalline grains and their orientations are visualized by a fast determination method of grain orientation for Bragg-dip neutron transmission spectrum. In this paper, these imaging examples with the spectrum analysis methods and the reliabilities evaluated by optical/electron microscope and X-ray/neutron diffraction, are presented. In addition, the status at compact accelerator driven pulsed neutron sources is also presented.

  11. Single-mode hole-assisted fiber as a bending-loss insensitive fiber

    Science.gov (United States)

    Nakajima, Kazuhide; Shimizu, Tomoya; Matsui, Takashi; Fukai, Chisato; Kurashima, Toshio

    2010-12-01

    We investigate the design and characteristics of a single-mode and low bending loss HAF both numerically and experimentally. An air filling fraction S is introduced to enable us to design a HAF with desired characteristics more easily. We show that we can expect to realize a single-mode and low bending loss HAF by considering the S dependence of the bending loss α b and cutoff wavelength λ c as well as their relative index difference Δ dependence. We also show that the mode-field diameter (MFD) and chromatic dispersion characteristics of the single-mode and low bending loss HAF can be tailored by optimizing the distance between the core and the air holes. We also investigate the usefulness of the fabricated HAFs taking the directly modulated transmission and multipath interference (MPI) characteristics into consideration. We show that the designed HAF has sufficient applicability to both analog and digital transmission systems. Our results reveal that the single-mode and low bending loss HAF is beneficial in terms of developing a future fiber to the home (FTTH) network as well as for realizing flexible optical wiring.

  12. Transmission (forward) mode, transcranial, noninvasive optoacoustic measurements for brain monitoring, imaging, and sensing

    Science.gov (United States)

    Petrov, Irene Y.; Petrov, Yuriy; Prough, Donald S.; Richardson, C. Joan; Fonseca, Rafael A.; Robertson, Claudia S.; Asokan, C. Vasantha; Agbor, Adaeze; Esenaliev, Rinat O.

    2016-03-01

    We proposed to use transmission (forward) mode for cerebral, noninvasive, transcranial optoacoustic monitoring, imaging, and sensing in humans. In the transmission mode, the irradiation of the tissue of interest and detection of optoacoustic signals are performed from opposite hemispheres, while in the reflection (backward) mode the irradiation of the tissue of interest and detection of optoacoustic signals are performed from the same hemisphere. Recently, we developed new, transmission-mode optoacoustic probes for patients with traumatic brain injury (TBI) and for neonatal patients. The transmission mode probes have two major parts: a fiber-optic delivery system and an acoustic transducer (sensor). To obtain optoacoustic signals in the transmission mode, in this study we placed the sensor on the forehead, while light was delivered to the opposite side of the head. Using a medical grade, multi-wavelength, OPObased optoacoustic system tunable in the near infrared spectral range (680-950 nm) and a novel, compact, fiber-coupled, multi-wavelength, pulsed laser diode-based system, we recorded optoacoustic signals generated in the posterior part of the head of adults with TBI and neonates. The optoacoustic signals had two distinct peaks: the first peak from the intracranial space and the second peak from the scalp. The first peak generated by cerebral blood was used to measure cerebral blood oxygenation. Moreover, the transmission mode measurements provided detection of intracranial hematomas in the TBI patients. The obtained results suggest that the transmission mode can be used for optoacoustic brain imaging, tomography, and mapping in humans.

  13. Single photon detection in the SQS mode

    International Nuclear Information System (INIS)

    Alves, M.A.; Fraga, M.M.; Lima, E.P. de; Marques, R.F.; Neves, F.; Policarpo, A.

    1997-01-01

    Results are presented concerning the detection of single UV photons in self quenching streamer detectors by photoionization of one of the gas mixture components, in this case TEA (tri ethyl-amine), whose molecules have low photoionization potential and large absorption cross section. As a UV light source, a gas scintillation counter filled with krypton was used, whose emission light spectrum, centered at approximately 150 nm, overlaps well the photoionization spectrum of TEA. The mixtures studied were argon/ethane/TEA, argon/isobutane/TEA, argon/ethane/methylal/TEA and argon/isobutane/methylal/ TEA. (author). 4 refs., 4 figs

  14. Choosing a Better Delay Line Medium between Single-Mode and Multi-Mode Optical Fibers: the Effect of Bending

    Directory of Open Access Journals (Sweden)

    Auwal Mustapha Imam

    2017-12-01

    Full Text Available Optical fiber cables are materials whose core is made of silica and other materials such as chalcogenide glasses; they transmit a digital signal via light pulses through an extremely thin strand of glass. The light propagates and is being guided by the core which is surrounded by the cladding. Light travels in the optical fiber in the form of total internal reflection in the core of the fibers. The flexibility, low tensile strength, low signal loss, high bandwidth and other characteristics of optical fibers favors it for use as a delay medium in many applications. Another favorable characteristic of optical fiber delay lines is are their relative insensitivities to environmental effects and electromagnetic interferences. The immunity of optical fibers to interferences and their less weight added advantages to it for use as delay medium. Single-mode and multi-mode are the two most popular types of optical fibers. Single-mode fibers have good propagation and delay properties with a minimal loss that allows the signal to propagate in a large distance with insignificant distortion or attenuation. The percentage of power transmission of single-mode fibers is found to be higher than that of the multi-mode fibers. It is, therefore, a preferred type for use as a delay line. In this paper, relative studies of the two optical fibers modes, and the results of power input/output measurement of the two modes are presented with a view to coming up with a better type for use as a delay medium.

  15. Efficient multi-mode to single-mode conversion in a 61 port photonic lantern

    DEFF Research Database (Denmark)

    Noordegraaf, Danny; Skovgaard, Peter M. W.; Dybendahl Maack, Martin

    2010-01-01

    We demonstrate the fabrication of a multi-mode (MM) to 61 port single-mode (SM) splitter or "Photonic Lantern". Low port count Photonic Lanterns were first described by Leon-Saval et al. (2005). These are based on a photonic crystal fiber type design, with air-holes defining the multi-mode fiber ...... of astrophotonics for coupling MM star-light to an ensemble of SM fibers in order to perform fiber Bragg grating based spectral filtering....

  16. Simple Correctors for Elimination of High-Order Modes in Corrugated Waveguide Transmission Lines.

    Science.gov (United States)

    Kowalski, Elizabeth J; Shapiro, Michael A; Temkin, Richard J

    2014-01-01

    When using overmoded corrugated waveguide transmission lines for high power applications, it is necessary to control the mode content of the system. Ideally, overmoded corrugated transmission lines operate in the fundamental HE 11 mode and provide low losses for long distances. Unwanted higher order modes (HOMs), particularly LP 11 and HE 12 , are often excited in the experimental systems due to practical misalignments in the transmission line system. This paper discusses how the unwanted modes propagate along with the fundamental mode in the transmission line system by formulating an equation that relates the center of power offset and angle of propagation of a beam (for the HE 11 and LP 11 modes) or the waist size and phase front radius of curvature of a beam (for the HE 11 and HE 12 modes). By introducing two miter bend correctors into the transmission system-miter bends that have slightly angled or ellipsoidal mirrors-the HOMs can be precisely manipulated in the system. This technique can be used to eliminate small quantities of unwanted modes, thereby creating a nearly pure fundamental mode beam with minimal losses. Examples of these applications are calculated and show the theoretical conversion of up to 10% HOM content into the fundamental HE 11 mode with minimal losses.

  17. Damping of unbound single-particle modes

    International Nuclear Information System (INIS)

    Fortier, S.; Beaumel, D.; Gales, S.; Guillot, J.; Langevin-Joliot, H.; Laurent, H.; Maison, J.M.; Bordewijk, J.; Brandenburg, S.; Krasznahorkay, A.; Crawley, G.M.; Massolo, C.P.; Renteria, M.; Khendriche, A.

    1995-01-01

    The (α, 3 He-n) reaction has been investigated at 120 MeV incident energy on 64 Ni, 90 Zr, and 120 Sn target nuclei. Neutrons in coincidence with 3 He particles emitted at 0 degree were detected using the multidetector array EDEN, in order to get information about the decay of single-particle states embedded in the (α, 3 He) continuum. Neutron angular correlations, multiplicity values, and branching ratios to low-lying states of the final nuclei have been compared with the predictions of the statistical decay model. Evidence for a significant nonstatistical decay branch has been observed in the three nuclei below about 15 MeV excitation energy. Direct branching ratios in 91 Zr deduced from this analysis are compared with the predictions of two nuclear structure models. At higher excitation energy, the decay characteristics of the (α, 3 He) continuum are shown to be mainly statistical

  18. Efficient multi-mode to single-mode coupling in a photonic lantern

    DEFF Research Database (Denmark)

    Noordegraaf, Danny; Skovgaard, Peter M.; Nielsen, Martin D.

    2009-01-01

    We demonstrate the fabrication of a high performance multi-mode (MM) to single-mode (SM) splitter or “photonic lantern”, first described by Leon-Saval et al. (2005). Our photonic lantern is a solid all-glass version, and we show experimentally that this device can be used to achieve efficient and...

  19. Linear optical quantum computing in a single spatial mode.

    Science.gov (United States)

    Humphreys, Peter C; Metcalf, Benjamin J; Spring, Justin B; Moore, Merritt; Jin, Xian-Min; Barbieri, Marco; Kolthammer, W Steven; Walmsley, Ian A

    2013-10-11

    We present a scheme for linear optical quantum computing using time-bin-encoded qubits in a single spatial mode. We show methods for single-qubit operations and heralded controlled-phase (cphase) gates, providing a sufficient set of operations for universal quantum computing with the Knill-Laflamme-Milburn [Nature (London) 409, 46 (2001)] scheme. Our protocol is suited to currently available photonic devices and ideally allows arbitrary numbers of qubits to be encoded in the same spatial mode, demonstrating the potential for time-frequency modes to dramatically increase the quantum information capacity of fixed spatial resources. As a test of our scheme, we demonstrate the first entirely single spatial mode implementation of a two-qubit quantum gate and show its operation with an average fidelity of 0.84±0.07.

  20. Damping of unbound single-particle modes

    Energy Technology Data Exchange (ETDEWEB)

    Fortier, S.; Beaumel, D.; Gales, S.; Guillot, J.; Langevin-Joliot, H.; Laurent, H.; Maison, J.M.; Bordewijk, J.; Brandenburg, S.; Krasznahorkay, A.; Crawley, G.M.; Massolo, C.P.; Renteria, M.; Khendriche, A. [Institut de Physique Nucleaire, IN2P3-CNRS, 91406 Orsay Cedex (France)]|[Kernfysisch Versneller Instituut, 9747 AA Groningen (Netherlands)]|[Nuclear Research Institute, Debrecen P.O. Box 51, H-4001 (Hungary)]|[NSCL, Michigan State University, East Lansing, Michigan 48824 (United States)]|[Dep. Fisica, Fac. Cs. Exactas, UNLP, CC Nio 67, 1900 La Plata (Argentina)]|[Institut de Sciences Exactes,Universite de Tizi-Ouzou, 15000 Tizi-Ouzou (Algeria)

    1995-11-01

    The ({alpha},{sup 3}He-{ital n}) reaction has been investigated at 120 MeV incident energy on {sup 64}Ni, {sup 90}Zr, and {sup 120}Sn target nuclei. Neutrons in coincidence with {sup 3}He particles emitted at 0{degree} were detected using the multidetector array EDEN, in order to get information about the decay of single-particle states embedded in the ({alpha},{sup 3}He) continuum. Neutron angular correlations, multiplicity values, and branching ratios to low-lying states of the final nuclei have been compared with the predictions of the statistical decay model. Evidence for a significant nonstatistical decay branch has been observed in the three nuclei below about 15 MeV excitation energy. Direct branching ratios in {sup 91}Zr deduced from this analysis are compared with the predictions of two nuclear structure models. At higher excitation energy, the decay characteristics of the ({alpha},{sup 3}He) continuum are shown to be mainly statistical.

  1. Comparison of Numerical Modelling of Degradation Mechanisms in Single Mode Optical Fibre Using MATLAB and VPIphotonics

    Directory of Open Access Journals (Sweden)

    Jana Sajgalikova

    2015-01-01

    Full Text Available Mathematical models for description of physical phenomena often use the statistical description of the individual phenomena and solve those using suitable methods. If we want to develop numerical model of optical communication system based on transmission through single mode optical fibres, we need to consider whole series of phenomena that affect various parts of the system. In the single-mode optical fibre we often encounter influence of chromatic dispersion and nonlinear Kerr effects. By observing various different degradation mechanisms, every numerical model should have its own limits, which fulfil more detailed specification. It is inevitable to consider them in evaluation. In this paper, we focus on numerical modelling of degradation mechanisms in single-mode optical fibre. Numerical solution of non-linear Schroedinger equation is performed by finite difference method applied in MATLAB environment and split-step Fourier method, which is implemented by VPIphotonics software.

  2. Possible non-sexual modes of transmission of human papilloma virus.

    Science.gov (United States)

    Sabeena, Sasidharanpillai; Bhat, Parvati; Kamath, Veena; Arunkumar, Govindakarnavar

    2017-03-01

    There is strong evidence to suggest vertical and horizontal modes of transmission of human papilloma virus (HPV), an established etiologic agent of cervical cancer. Infants, children, and adults can acquire both high-risk and low-risk infections by birth or by close contact even though HPV is mainly transmitted sexually. A thorough review of the literature was performed to assess the possible non-sexual modes of transmission of HPV. An electronic search of databases for review articles, cross-sectional studies, cohort studies, and case reports on non-sexual modes of transmission among sexually unexposed women and children was carried out using search terms such as "human papilloma virus, HPV, transmission, horizontal transmission, vertical transmission, and fomites". Articles published between 1983 and 2015 were retrieved. Epidemiological and clinical data support various non-sexual modes of transmission especially at the time of birth and by close contact. Even though the role of fomites in the transmission of HPV is not well established, HPV-DNA positivity has been reported in transvaginal ultrasound probes and colposcopes after routine disinfection. Awareness needs to be spread among the public about alternate modes of transmission. For a proper understanding of the exact natural history of HPV infection acquired via the non-sexual route, long-term prospective studies need to be undertaken. © 2017 Japan Society of Obstetrics and Gynecology.

  3. Volume production of polarization controlled single-mode VCSELs

    Science.gov (United States)

    Grabherr, Martin; King, Roger; Jäger, Roland; Wiedenmann, Dieter; Gerlach, Philipp; Duckeck, Denise; Wimmer, Christian

    2008-02-01

    Over the past 3 years laser based tracking systems for optical PC mice have outnumbered the traditional VCSEL market datacom by far. Whereas VCSEL for datacom in the 850 nm regime emit in multipe transverse modes, all laser based tracking systems demand for single-mode operation which require advanced manufacturing technology. Next generation tracking systems even require single-polarization characteristics in order to avoid unwanted movement of the pointer due to polarization flips. High volume manufacturing and optimized production methods are crucial for achieving the addressed technical and commercial targets of this consumer market. The resulting ideal laser source which emits single-mode and single-polarization at low cost is also a promising platform for further applications like tuneable diode laser absorption spectroscopy (TDLAS) or miniature atomic clocks when adapted to the according wavelengths.

  4. Single-mode annular chirally-coupled core fibers for fiber lasers

    Science.gov (United States)

    Zhang, Haitao; Hao, He; He, Linlu; Gong, Mali

    2018-03-01

    Chirally-coupled core (CCC) fiber can transmit single fundamental mode and effectively suppresses higher-order mode (HOM) propagation, thus improve the beam quality. However, the manufacture of CCC fiber is complicated due to its small side core. To decrease the manufacture difficulty in China, a novel fiber structure is presented, defined as annular chirally-coupled core (ACCC) fiber, replacing the small side core by a larger side annulus. In this paper, we designed the fiber parameters of this new structure, and demonstrated that the new structure has a similar property of single mode with traditional CCC fiber. Helical coordinate system was introduced into the finite element method (FEM) to analyze the mode field in the fiber, and the beam propagation method (BPM) was employed to analyze the influence of the fiber parameters on the mode loss. Based on the result above, the fiber structure was optimized for efficient single-mode transmission, in which the core diameter is 35 μm with beam quality M2 value of 1.04 and an optical to optical conversion efficiency of 84%. In this fiber, fundamental mode propagates in an acceptable loss, while the HOMs decay rapidly.

  5. MIMO signal progressing with RLSCMA algorithm for multi-mode multi-core optical transmission system

    Science.gov (United States)

    Bi, Yuan; Liu, Bo; Zhang, Li-jia; Xin, Xiang-jun; Zhang, Qi; Wang, Yong-jun; Tian, Qing-hua; Tian, Feng; Mao, Ya-ya

    2018-01-01

    In the process of transmitting signals of multi-mode multi-core fiber, there will be mode coupling between modes. The mode dispersion will also occur because each mode has different transmission speed in the link. Mode coupling and mode dispersion will cause damage to the useful signal in the transmission link, so the receiver needs to deal received signal with digital signal processing, and compensate the damage in the link. We first analyzes the influence of mode coupling and mode dispersion in the process of transmitting signals of multi-mode multi-core fiber, then presents the relationship between the coupling coefficient and dispersion coefficient. Then we carry out adaptive signal processing with MIMO equalizers based on recursive least squares constant modulus algorithm (RLSCMA). The MIMO equalization algorithm offers adaptive equalization taps according to the degree of crosstalk in cores or modes, which eliminates the interference among different modes and cores in space division multiplexing(SDM) transmission system. The simulation results show that the distorted signals are restored efficiently with fast convergence speed.

  6. Tunable single-longitudinal-mode fiber optical parametric oscillator.

    Science.gov (United States)

    Yang, Sigang; Cheung, Kim K Y; Zhou, Yue; Wong, Kenneth K Y

    2010-02-15

    A tunable single-longitudinal-mode (SLM) fiber optical parametric oscillator (FOPO) is proposed and demonstrated experimentally. A sub-ring cavity with a short cavity length is used to suppress the longitudinal modes and broaden the longitudinal mode spacing. A fiber loop mirror, consisted of an unpumped erbium-doped fiber, acts as an autotracking filter for providing fine mode restriction and ensuring the single-frequency operation. The measurement based on a homodyne method shows that the FOPO provides the SLM output. Furthermore the SLM FOPO can be tunable over 14 nm for each of the signal and the idler, which is limited only by the gain bandwidth of the fiber optical parametric amplifier.

  7. Diode-end-pumped single-longitudinal-mode passively Q-switched Nd:GGG laser

    Science.gov (United States)

    Xue, Feng; Zhang, Sasa; Cong, Zhenhua; Huang, Qingjie; Guan, Chen; Wu, Qianwen; Chen, Hui; Bai, Fen; Liu, Zhaojun

    2018-03-01

    Diode-end-pumped passively Q-switched Nd:GGG laser in a ring cavity at 1062 nm was demonstrated. Single-longitudinal-mode laser linewidth less than 0.5 pm was accomplished by unidirectional operation. The maximum output pulse energy was 437 µJ and the pulse width was 43 ns when Cr4+:YAG with an initial transmission of 61% was used.

  8. All-fiber orbital angular momentum mode generation and transmission system

    Science.gov (United States)

    Heng, Xiaobo; Gan, Jiulin; Zhang, Zhishen; Qian, Qi; Xu, Shanhui; Yang, Zhongmin

    2017-11-01

    We proposed and demonstrated an all-fiber system for generating and transmitting orbital angular momentum (OAM) mode light. A specially designed multi-core fiber (MCF) was used to endow with guide modes different phase change and two tapered transition regions were used for providing low-loss interfaces between different fiber structures. By arranging the refractive index distribution among the multi-cores and controlling the length of MCF, which essentially change the phase difference between the neighboring cores, OAM modes with different topological charge l can be generated selectively. Through two tapered transition regions, the non-OAM mode light can be effectively injected into the MCF and the generated OAM mode light can be easily launched into OAM mode supporting fiber for long distance and high purity transmission. Such an all-fiber OAM mode generation and transmission system owns the merits of flexibility, compactness, portability, and would have practical application value in OAM optical fiber communication systems.

  9. Single-Mode WGM Resonators Fabricated by Diamond Turning

    Science.gov (United States)

    Grudinin, Ivan; Maleki, Lute; Savchenkov, Anatoliy; Matsko, Andrewy; Strekalov, Dmitry; Iltchenko, Vladimir

    2008-01-01

    A diamond turning process has made possible a significant advance in the art of whispering-gallery-mode (WGM) optical resonators. By use of this process, it is possible to fashion crystalline materials into WGM resonators that have ultrahigh resonance quality factors (high Q values), are compact (ranging in size from millimeters down to tens of microns), and support single electromagnetic modes. This development combines and extends the developments reported in "Few- Mode Whispering-Gallery-Mode Resonators" (NPO-41256), NASA Tech Briefs, Vol. 30, No. 1 (January 2006), page 16a and "Fabrication of Submillimeter Axisymmetric Optical Components" (NPO-42056), NASA Tech Briefs, Vol. 31, No. 5 (May 2007), page 10a. To recapitulate from the first cited prior article: A WGM resonator of this special type consists of a rod, made of a suitable transparent material, from which protrudes a thin circumferential belt of the same material. The belt is integral with the rest of the rod and acts as a circumferential waveguide. If the depth and width of the belt are made appropriately small, then the belt acts as though it were the core of a single-mode optical fiber: the belt and the rod material adjacent to it support a single, circumferentially propagating mode or family of modes. To recapitulate from the second cited prior article: A major step in the fabrication of a WGM resonator of this special type is diamond turning or computer numerically controlled machining of a rod of a suitable transparent crystalline material on an ultrahigh-precision lathe. During the rotation of a spindle in which the rod is mounted, a diamond tool is used to cut the rod. A computer program is used to control stepping motors that move the diamond tool, thereby controlling the shape cut by the tool. Because the shape can be controlled via software, it is possible to choose a shape designed to optimize a resonator spectrum, including, if desired, to limit the resonator to supporting a single mode

  10. Multiresolution transmission of the correlation modes between bivariate time series based on complex network theory

    Science.gov (United States)

    Huang, Xuan; An, Haizhong; Gao, Xiangyun; Hao, Xiaoqing; Liu, Pengpeng

    2015-06-01

    This study introduces an approach to study the multiscale transmission characteristics of the correlation modes between bivariate time series. The correlation between the bivariate time series fluctuates over time. The transmission among the correlation modes exhibits a multiscale phenomenon, which provides richer information. To investigate the multiscale transmission of the correlation modes, this paper describes a hybrid model integrating wavelet analysis and complex network theory to decompose and reconstruct the original bivariate time series into sequences in a joint time-frequency domain and defined the correlation modes at each time-frequency domain. We chose the crude oil spot and futures prices as the sample data. The empirical results indicate that the main duration of volatility (32-64 days) for the strongly positive correlation between the crude oil spot price and the futures price provides more useful information for investors. Moreover, the weighted degree, weighted indegree and weighted outdegree of the correlation modes follow power-law distributions. The correlation fluctuation strengthens the extent of persistence over the long term, whereas persistence weakens over the short and medium term. The primary correlation modes dominating the transmission process and the major intermediary modes in the transmission process are clustered both in the short and long term.

  11. Radio-over-Fiber Transmission Using Vortex Modes

    DEFF Research Database (Denmark)

    Tatarczak, Anna; Lu, Xiaofeng; Rommel, Simon

    2015-01-01

    This paper demonstrates experimentally the distribution of radio-over-fiber (RoF) signals using orbital angular momentum (OAM) of light over standard OM4 multimode fiber (MMF) at 850 nm wavelength. Five independent OAM modes are used to convey RoF signals in the microwave regime showing robust pe...

  12. Characteristics of SBS dynamics in single-mode optical fibres

    Science.gov (United States)

    Gordeev, A. A.; Efimkov, V. F.; Zubarev, I. G.; Mikhailov, S. I.; Sobolev, V. B.

    2016-03-01

    The characteristics of the gain of Stokes pulses in single-mode optical fibres by stimulated Brillouin scattering (SBS) of monochromatic and nonmonochromatic pump signals have been investigated by numerical simulation using a spectral approach. Conditions under which 'slow light' (caused by a group delay) can be implemented are found (it is reasonable to apply this term to a process in which a pulse is delayed with conservation of its shape). The plane-wave interaction model is shown to describe adequately the dynamics of this process in single-mode fibres. A number of gain modes are investigated for Stokes pulses with different time structures upon monochromatic and nonmonochromatic excitation. A new data transfer technique is proposed, which is based on the conversion of stepwise phase modulation of the input Stokes signal into amplitude modulation of the output signal.

  13. Characteristics of SBS dynamics in single-mode optical fibres

    Energy Technology Data Exchange (ETDEWEB)

    Gordeev, A A; Efimkov, V F; Zubarev, I G; Mikhailov, S I; Sobolev, V B [P N Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2016-03-31

    The characteristics of the gain of Stokes pulses in single-mode optical fibres by stimulated Brillouin scattering (SBS) of monochromatic and nonmonochromatic pump signals have been investigated by numerical simulation using a spectral approach. Conditions under which 'slow light' (caused by a group delay) can be implemented are found (it is reasonable to apply this term to a process in which a pulse is delayed with conservation of its shape). The plane-wave interaction model is shown to describe adequately the dynamics of this process in single-mode fibres. A number of gain modes are investigated for Stokes pulses with different time structures upon monochromatic and nonmonochromatic excitation. A new data transfer technique is proposed, which is based on the conversion of stepwise phase modulation of the input Stokes signal into amplitude modulation of the output signal. (nonlinear optical phenomena)

  14. Measurement of flow fluctuations in single longitudinal mode pulsed ...

    Indian Academy of Sciences (India)

    2014-02-12

    Feb 12, 2014 ... A simple technique had been demonstrated for measuring flow-induced fluctuations in the single longitudinal mode (SLM) pulsed dye laser. Two prominent frequency components of 10.74 Hz and 48.83 Hz were present in the output of the Nd:YAG-pumped SLM dye laser. The flow-induced frequency ...

  15. Single-mode fibre coupler as refractometer sensor

    Indian Academy of Sciences (India)

    We report a simple, non-intrusive fibre-optic refractometer sensor for measuring the refractive index of liquid and optically transparent solid medium. Sensing principle of the proposed sensor is based on monitoring the back-reflected light signal through the second input port of a 2 × 1 single-mode fibre coupler when light ...

  16. Measurement of flow fluctuations in single longitudinal mode pulsed ...

    Indian Academy of Sciences (India)

    2014-02-12

    Feb 12, 2014 ... The single mode dye laser is a very useful tool for high-resolution spectroscopy, resonance ionization spec- troscopy (RIS), coherent control etc. For many spectroscopic applications it is however necessary to have a control over the emission linewidth of the dye laser. The frequency- stabilized tunable laser ...

  17. A finite element characterization of a commercial endlessly single-mode photonic crystal fiber: is it really single mode?

    NARCIS (Netherlands)

    Uranus, H.P.; Hoekstra, Hugo; van Groesen, Embrecht W.C.

    2007-01-01

    One of interesting properties of photonic crystal fibers (PCFs) is their possibility to be single-moded over a wide wavelength range, down to UV, while still having a reasonably large modal profile. Such properties are attractive for applications like optical sensing, interferometry, and transport

  18. Demonstration of orbital angular momentum (OAM) modes emission from a silicon photonic integrated device for 20 Gbit/s QPSK carrying data transmission in few-mode fiber

    DEFF Research Database (Denmark)

    Liu, Jun; Li, Shimao; Ding, Yunhong

    2016-01-01

    We experimentally demonstrate orbital angular momentum (OAM) mode emission from a high emission efficiency OAM emitter for 20 Gbit/s QPSK carrying data transmission in few-mode fiber (FMF). Two modes propagate through a 3.6km three-mode FMF with measured OSNR penalties less than 4 dB at a BER of ...

  19. Vibration modes of a single plate with general boundary conditions

    Directory of Open Access Journals (Sweden)

    Phamová L.

    2016-06-01

    Full Text Available This paper deals with free flexural vibration modes and natural frequencies of a thin plate with general boundary conditions — a simply supported plate connected to its surroundings with torsional springs. Vibration modes were derived on the basis of the Rajalingham, Bhat and Xistris approach. This approach was originally used for a clamped thin plate, so its adaptation was needed. The plate vibration function was usually expressed as a single partial differential equation. This partial differential equation was transformed into two ordinary differential equations that can be solved in the simpler way. Theoretical background of the computations is briefly described. Vibration modes of the supported plate with torsional springs are presented graphically and numerically for three different values of stiffness of torsional springs.

  20. Multi-mode to single-mode conversion in a 61 port photonic lantern

    DEFF Research Database (Denmark)

    Noordegraaf, Danny; Skovgaard, Peter M.W.; Maack, Martin D.

    2010-01-01

    Efficient multi-mode (MM) to single-mode (SM) conversion in a 61 port splitter or “Photonic Lantern” is demonstrated. The coupling loss from a 100 µm core diameter MM section to an ensemble of 61 SM fibers and back to another 100 µm core MM section is measured to be as low as 0.76 dB. This demons......B. This demonstration shows the feasibility of using the Photonic Lanterns within the field of astrophotonics for coupling MM star-light to an ensemble of SM fibers in order to perform fiber Bragg grating based spectral filtering."...

  1. Single mode operation of a TEA CO2 laser

    International Nuclear Information System (INIS)

    Wada, Kazuhiro; Tunawaki, Yoshiaki; Yamanaka, Masanobu.

    1993-01-01

    Single mode operation of a TEA CO 2 laser was performed by using an optical system of Fox-Smith type. Laser beam was taken out from the cavity by using a beam splitter, and was reflected by a mirror back to the cavity. By inserting a Fabry-Perot etalon between the splitter and the mirror, beat of laser pulses can be removed completly. (author)

  2. Single mode dye-doped polymer photonic crystal lasers

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Buss, Thomas; Smith, Cameron

    2010-01-01

    Dye-doped polymer photonic crystal (PhC) lasers fabricated by combined nanoimprint and photolithography are studied for their reproducibility and stability characteristics. We introduce a phase shift in the PhC lattice that substantially improves the yield of single wavelength emission. Single mode...... emission and reproducibility of laser characteristics are important if the lasers are to be mass produced in, e. g., optofluidic sensor chips. The fabrication yield is above 85% with highly reproducible wavelengths (within 0.5%), and the temperature dependence on the wavelength is found to be -0.045 or -0...

  3. Microstructure of atmospheric particles revealed by TXM and a new mode of influenza virus transmission

    Energy Technology Data Exchange (ETDEWEB)

    Bao, L.M., E-mail: baoliangman@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Zhang, G.L., E-mail: zhangguilin@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Lei, Q.T.; Li, Y.; Li, X.L. [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Hwu, Y.K. [Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Yi, J.M. [Advanced Photon Source, Argonne National Laboratory, Argonne 60439 (United States)

    2015-09-15

    For control of influenza, firstly it is important to find the real virus transmission media. Atmospheric aerosol particles are presumably one of the media. In this study, three typical atmospheric inhaled particles in Shanghai were studied by the synchrotron based transmission X-ray microscopes (TXM). Three dimensional microstructure of the particles reveals that there are many pores contained in, particularly the coal combustion fly particles which may be possible virus carrier. The particles can transport over long distance and cause long-range infections due to its light weight. We suggest a mode which is droplet combining with aerosol mode. By this mode the transmission of global and pandemic influenzas and infection between inland avian far from population and poultry or human living in cities along coast may be explained.

  4. Microstructure of atmospheric particles revealed by TXM and a new mode of influenza virus transmission

    International Nuclear Information System (INIS)

    Bao, L.M.; Zhang, G.L.; Lei, Q.T.; Li, Y.; Li, X.L.; Hwu, Y.K.; Yi, J.M.

    2015-01-01

    For control of influenza, firstly it is important to find the real virus transmission media. Atmospheric aerosol particles are presumably one of the media. In this study, three typical atmospheric inhaled particles in Shanghai were studied by the synchrotron based transmission X-ray microscopes (TXM). Three dimensional microstructure of the particles reveals that there are many pores contained in, particularly the coal combustion fly particles which may be possible virus carrier. The particles can transport over long distance and cause long-range infections due to its light weight. We suggest a mode which is droplet combining with aerosol mode. By this mode the transmission of global and pandemic influenzas and infection between inland avian far from population and poultry or human living in cities along coast may be explained

  5. An analysis on mode selection by V-I transmission matrix in DBR laser with asymmetric fiber gratings

    Science.gov (United States)

    Li, Zhuoxuan; Pei, Li; Li, Qi; Ning, Tigang; Liu, Chao; Gao, Song

    2013-02-01

    The V-I Transmission Matrix Method (VITMM) which is well known in the microwave engineering field was firstly applied to analyze the output spectra of the Distributed Bragg Reflector (DBR) laser, formed by asymmetric fiber gratings as resonator mirrors. One mirror is the uniform Bragg grating and the other is chirped grating. A theoretical model of grating was established, and then a numerical simulation of the mode selection in DBR laser with asymmetric fiber gratings was presented. Simulation results show that VITMM, with calculation error less than 0.1%, could save the calculation time compared to the Rouard method. In the experiment, the setup design of the single-longitudinal-mode laser output at 1544.7 nm was carried out, and the result, which lasted about 10 min, observed on an optical spectrum analyzer, demonstrates the feasibility of VITMM to address the mode output issues of DBR fiber laser.

  6. Current-Mode Universal Filters Employing Single FDCCII

    Directory of Open Access Journals (Sweden)

    F. Kacar

    2012-12-01

    Full Text Available In this study, to realize current-mode multifunction filters, three new circuit configurations are presented. The circuits include fully differential current conveyor (FDCCII and four passive components. First proposed circuit is a universal filter with single-input and three-outputs, which can simultaneously realize current mode low-pass, band-pass and high-pass filter responses employing all grounded passive components. The last two proposed are universal filters with three-inputs single-output, which can realize current mode low-pass, band-pass, high-pass, band-stop and all-pass filter responses employing single FDCCII. Furthermore, each of the proposed circuits still enjoys realization using a minimum number of active and passive components. First and last of the proposed circuits have no requirement with the component choice conditions to realize specific filtering functions. No parameter matching condition is required. Active and passive sensitivities of filters are investigated and calculated 5 percentage hangings. Simulation results are found in close agreement with the theoretical results.

  7. Coherence properties of a single-mode polariton laser

    Science.gov (United States)

    Kim, Seonghoon; Zhang, Bo; Wang, Zhaorong; Deng, Hui; Fischer, Julian; Brodbeck, Sebastian; Kamp, Martin; Schneider, Christian; Hofling, Sven; Univ of Michigan-Ann Arbor Collaboration; Univ of Wuerzberg Collaboration

    2016-05-01

    Exciton-polariton condensation is a promising low threshold coherent light source, namely a polariton laser. However, first- and second-order coherences of a polariton laser has been poor and not well understood in two dimensional microcavity systems. Here, we show experimentally that full second-order coherence is established in a single-mode polariton laser and maintained far above the lasing threshold. The coherence time of first-order coherence functions increases initially and then reduces as the number of polaritons in a ground state increases due to the polariton-polariton interaction. Moreover, a transition in spectral lineshape from Lorentzian to Gaussian was observed as the occupation number increases as a result of the large interaction energy. These results are in very good agreement with a single-mode atom laser theory. The single-mode polariton laser was realized by designing a subwavelength grating (SWG) mirror which provides strong lateral confinement for discrete polariton states and polarization-selective reflectance for lifted spin-degeneracy. The results would be important for making fully coherent polariton lasers, as well as nonlinear polariton devices.

  8. Resonant transmission and mode modulation of acoustic waves in H-shaped metallic gratings

    International Nuclear Information System (INIS)

    Deng, Yu-Qiang; Fan, Ren-Hao; Zhang, Kun; Peng, Ru-Wen; Qi, Dong-Xiang

    2015-01-01

    In this work, we demonstrate that resonant full transmission of acoustic waves exists in subwavelength H-shaped metallic gratings, and transmission peaks can be efficiently tuned by adjusting the grating geometry. We investigate this phenomenon through both numerical simulations and theoretical calculations based on rigorous-coupled wave analysis. The transmission peaks are originated from Fabry-Perot resonances together with the couplings between the diffractive wave on the surface and the multiple guided modes in the slits. Moreover, the transmission modes can be efficiently tuned by adjusting the cavity geometry, without changing the grating thickness. The mechanism is analyzed based on an equivalent circuit model and verified by both the theoretical calculations and the numerical simulations. This research has potential application in acoustic-device miniaturization over a wide range of wavelengths

  9. Polarization mode dispersion in optical fiber transmission systems

    Science.gov (United States)

    Cameron, John Charles

    The birefringence of optical fibers causes pulse broadening in fiber-optic communication systems. This phenomenon is known as polarization mode dispersion (PMD). PMD is one of the most important limiting factors for high capacity fiber-optic systems. A number of aspects of PMD are examined in this thesis. In Chapter 2 an expression is derived for the probability density function of the pulse broadening due to first-order PMD. This result is used to obtain an expression for the system limitation due to PMD. The birefringence of optical fibers is commonly simulated with the waveplate model. In Chapter 3 two standard versions of the waveplate model are introduced. In addition, a novel waveplate model is proposed. The characteristics of the three versions of the waveplate model are examined to confirm their suitability for use in subsequent chapters of the thesis. Simulations with the waveplate model are performed in Chapter 4 for three purposes: (1) to determine the impact of chromatic dispersion on the system limitation due to PMD, (2) to examine the effectiveness of three different PMD compensation techniques in the presence of chromatic dispersion, and (3) to examine the interaction of second-order chromatic dispersion with PMD. The simulations in Chapter 4 reveal that it is possible with one compensation technique to have output pulses that are narrower than the input pulses. In Chapter 5, this anomalous pulse narrowing is demonstrated analytically for a simple model of PMD and through experiment. It is also shown that this pulse narrowing can be explained as an interference phenomenon. Chapter 6 presents measurements of PMD and state of polarization on installed optical fibers. The PMD coefficients of 122 fibers are presented and the results are analyzed in terms of the age of the fibers and the type of cabling. Measurements of the time evolution of PMD and state of polarization are presented for fibers installed in both buried and aerial cables. The uncertainty

  10. Quality assessment of terahertz time-domain spectroscopy transmission and reflection modes for graphene conductivity mapping

    DEFF Research Database (Denmark)

    Mackenzie, David M.A.; Whelan, Patrick Rebsdorf; Bøggild, Peter

    2018-01-01

    We present a comparative study of electrical measurements of graphene using terahertz time-domain spectroscopy in transmission and reflection mode, and compare the measured sheet conductivity values to electrical van der Pauw measurements made independently in three different laboratories. Overall......, while offering the additional advantages associated with contactless mapping, such as high throughput, no lithography requirement, and with the spatial mapping directly revealing the presence of any inhomogeneities or isolating defects. The confirmation of the accuracy of reflection-mode removes...

  11. Zero-mode waveguide nanophotonic structures for single molecule characterization

    Science.gov (United States)

    Crouch, Garrison M.; Han, Donghoon; Bohn, Paul W.

    2018-05-01

    Single-molecule characterization has become a crucial research tool in the chemical and life sciences, but limitations, such as limited concentration range, inability to control molecular distributions in space, and intrinsic phenomena, such as photobleaching, present significant challenges. Recent developments in non-classical optics and nanophotonics offer promising routes to mitigating these restrictions, such that even low affinity (K D ~ mM) biomolecular interactions can be studied. Here we introduce and review specific nanophotonic devices used to support single molecule studies. Optical nanostructures, such as zero-mode waveguides (ZMWs), are usually fabricated in thin gold or aluminum films and serve to confine the observation volume of optical microspectroscopy to attoliter to zeptoliter volumes. These simple nanostructures allow individual molecules to be isolated for optical and electrochemical analysis, even when the molecules of interest are present at high concentration (µM–mM) in bulk solution. Arrays of ZMWs may be combined with optical probes such as single molecule fluorescence, single molecule fluorescence resonance energy transfer, and fluorescence correlation spectroscopy for distributed analysis of large numbers of single-molecule reactions or binding events in parallel. Furthermore, ZMWs may be used as multifunctional devices, for example by combining optical and electrochemical functions in a single discrete architecture to achieve electrochemical ZMWs. In this review, we will describe the optical properties, fabrication, and applications of ZMWs for single-molecule studies, as well as the integration of ZMWs into systems for chemical and biochemical analysis.

  12. Piezoelectric transducer parameter selection for exciting a single mode from multiple modes of Lamb waves

    International Nuclear Information System (INIS)

    Zhang Hai-Yan; Yu Jian-Bo

    2011-01-01

    Excitation and propagation of Lamb waves by using rectangular and circular piezoelectric transducers surface-bonded to an isotropic plate are investigated in this work. Analytical stain wave solutions are derived for the two transducer shapes, giving the responses of these transducers in Lamb wave fields. The analytical study is supported by a numerical simulation using the finite element method. Symmetric and antisymmetric components in the wave propagation responses are inspected in detail with respect to test parameters such as the transducer geometry, the length and the excitation frequency. By placing only one piezoelectric transducer on the top or the bottom surface of the plate and weakening the strength of one mode while enhancing the strength of the other modes to find the centre frequency, with which the peak wave amplitude ratio between the S0 and A0 modes is maximum, a single mode excitation from the multiple modes of the Lamb waves can be achieved approximately. Experimental data are presented to show the validity of the analyses. The results are used to optimize the Lamb wave detection system. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  13. Attenuation Coefficient of Single-Mode Periodic Waveguides

    Science.gov (United States)

    Baron, A.; Mazoyer, S.; Smigaj, W.; Lalanne, P.

    2011-10-01

    It is widely accepted that, on ensemble average, the transmission T of guided modes decays exponentially with the waveguide length L due to small imperfections, leading to the important figure of merit defined as the attenuation-rate coefficient α=-⟨ln⁡(T)⟩/L. In this Letter, we evidence that the exponential-damping law is not valid in general for periodic monomode waveguides, especially as the group velocity decreases. This result, that contradicts common beliefs and experimental practices aiming at measuring α, is supported by a theoretical study of light transport in the limit of very small imperfections, and by numerical results obtained for two waveguide geometries that offer contrasted damping behaviors.

  14. Walking Posture Control of Transmission Line Single Arm Inspection Robot

    Science.gov (United States)

    Yan, Yu; Liu, Xiaqing; Li, Jinliang; Ou, Yuexiong

    2017-07-01

    To control the walking posture according to transmission line single arm inspection robot, the robot is divided into normal walking and climbing walking two state, and gives the definition, then based on the state space method of state variable feedback and PD control method is used to control the two states, two kinds of control method of simulation by using Matlab, in the end, the two control methods proposed is validated in the actual circuit structures. The results show that, the proposed control method is rapid and effective, and can meet the needs of practical application.

  15. Channel estimation in few mode fiber mode division multiplexing transmission system

    Science.gov (United States)

    Hei, Yongqiang; Li, Li; Li, Wentao; Li, Xiaohui; Shi, Guangming

    2018-03-01

    It is abundantly clear that obtaining the channel state information (CSI) is of great importance for the equalization and detection in coherence receivers. However, to the best of the authors' knowledge, in most of the existing literatures, CSI is assumed to be perfectly known at the receiver. So far, few literature discusses the effects of imperfect CSI on MDM system performance caused by channel estimation. Motivated by that, in this paper, the channel estimation in few mode fiber (FMF) mode division multiplexing (MDM) system is investigated, in which two classical channel estimation methods, i.e., least square (LS) method and minimum mean square error (MMSE) method, are discussed with the assumption of the spatially white noise lumped at the receiver side of MDM system. Both the capacity and BER performance of MDM system affected by mode-dependent gain or loss (MDL) with different channel estimation errors have been studied. Simulation results show that the capacity and BER performance can be further deteriorated in MDM system by the channel estimation, and an 1e-3 variance of channel estimation error is acceptable in MDM system with 0-6 dB MDL values.

  16. Combined single-mode/multimode fiber link supporting simplified in-building 60-GHz gigabit wireless access

    DEFF Research Database (Denmark)

    Pham, Tien Thang; Lebedev, Alexander; Beltrán, Marta

    2012-01-01

    In this paper, we propose and experimentally demonstrate a simple, cost-effective hybrid gigabit fiber-wireless system for in-building wireless access. Simplicity and cost-effectiveness are achieved in all parts of the system by utilizing direct laser modulation, optical frequency up-conversion, ......In this paper, we propose and experimentally demonstrate a simple, cost-effective hybrid gigabit fiber-wireless system for in-building wireless access. Simplicity and cost-effectiveness are achieved in all parts of the system by utilizing direct laser modulation, optical frequency up......-conversion, combined single mode/multimode fiber transmission and envelope detection. Error-free transmission of 2-Gbps data in 60-GHz band over a composite channel including 10-km standard single-mode fiber (SSMF)/1-km multimode fiber (MMF) and 6.5-m air transmission was successfully achieved....

  17. Analysis of the Single Toggle Jaw Crusher Force Transmission Characteristics

    Directory of Open Access Journals (Sweden)

    Moses Frank Oduori

    2016-01-01

    Full Text Available This paper sets out to perform a static force analysis of the single toggle jaw crusher mechanism and to obtain the force transmission characteristics of the mechanism. In order to obtain force transmission metrics that are characteristic of the structure of the mechanism, such influences as friction, dead weight, and inertia are considered to be extraneous and neglected. Equations are obtained by considering the balance of forces at the moving joints and appropriately relating these to the input torque and the output torque. A mechanical advantage, the corresponding transmitted torque, and the variations thereof, during the cycle of motion of the mechanism, are obtained. The mechanical advantage that characterizes the mechanism is calculated as the mean value over the active crushing stroke of the mechanism. The force transmission characteristics can be used as criteria for the comparison of different jaw crusher mechanism designs in order to select the most suitable design for a given application. The equations obtained can also be used in estimating the forces sustained by the components of the mechanism.

  18. Single-mode theory of diffusive layers in thermohaline convection

    Science.gov (United States)

    Gough, D. O.; Toomre, J.

    1982-01-01

    A two-layer configuration of thermohaline convection is studied, with the principal aim of explaining the observed independence of the buoyancy-flux ratio on the stability parameter when the latter is large. Temperature is destabilizing and salinity is stabilizing, so diffusive interfaces separate the convecting layers. The convection is treated in the single-mode approximation, with a prescribed horizontal planform and wavenumber. Surveys of numerical solutions are presented for a selection of Rayleigh numbers R, stability parameters lambda and horizontal wavenumbers. The solutions yield a buoyancy flux ratio chi that is insensitive to lambda, in accord with laboratory experiments. However chi increases with increasing R, in contradiction to laboratory observations.

  19. Single-mode optical-waveguide fiber coupler.

    Science.gov (United States)

    Noda, J; Mikami, O; Minakata, M; Fukuma, M

    1978-07-01

    A single-mode fiber coupler to the Ti diffused LiNbO(3) strip waveguide has been devised. The influences of three axial displacements and two angular misalignments on the coupling efficiency have been investigated at 6328-A wavelength. The coupler has a special feature wherein coupling degradation caused by fiber displacement after connection can be recovered to the initial state. The total optical insertion loss is 3 dB after fixing the fiber to the LiNbO(3) strip waveguide, which is 4 microm wide and 8 mm long.

  20. Mid-Infrared Continuously Tunable Single Mode VECSEL

    Science.gov (United States)

    Khiar, A.; Rahim, M.; Felder, F.; Fill, M.; Zogg, H.

    2011-12-01

    Tunable mid-infrared vertical external cavity surface emitting lasers were developed for the wavelength range around 3.8-3.9 μm and 3.2-3.3 μm, respectively. The devices are based on lead salt materials epitaxially grown by MBE on a Si substrate. The active part consists of PbSe QW in a PbSrSe host layer. Both devices are operated around -20 °C and have output power of several 10 mW. By changing the cavity length, a single mode hop free tuning range up to 80 cm-1 is achieved.

  1. Transmission electron microscopy of Tuberculina species (Helicobasidiales) reveals an unique mode of conidiogenesis within Basidiomycota.

    Science.gov (United States)

    Aghayeva, Dilzara N; Lutz, Matthias; Piątek, Marcin

    2016-08-01

    Tuberculina species represent the asexual life stage of the plant-parasitic sexual genus Helicobasidium. Tuberculina species are distributed all over the world, living in antagonistic symbiosis with over 150 rust species from at least 15 genera. Within the Basidiomycota, besides the spermogonia of rust fungi, only Tuberculina species develop distinct fructifications in the haplophase. However, the knowledge of conidiogenesis in Tuberculina is meagre. Therefore, conidial development in Tuberculina maxima, Tuberculina persicina, and Tuberculina sbrozzii was studied using transmission electron microscopy, and compared to each other as well as to spermatia formation in rust fungi. Significant ultrastructural characteristics such as the movement of nuclei in the process of conidium formation, and formation of the initial and late stages of conidiogenesis are documented. The mode of conidiogenesis of Tuberculina species is unique within the Basidiomycota in that (1) it is realized by haploid fructifications, (2) it is holoblastic, without annellidic proliferation, (3) the nucleus of the conidiogenous cell moves towards the forming conidium, divides, and no daughter nucleus remains inside the conidiogenous cell, and (4) the conidiogenous cell retains only cytoplasmic residues after the development of a single conidium, and a successive conidium is not produced. Copyright © 2016 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  2. Unified Scattering Parameters formalism in terms of Coupled-Mode Theory for investigating hybrid single-mode/two-mode photonic interconnects

    Directory of Open Access Journals (Sweden)

    Boucher Yann G.

    2017-01-01

    Full Text Available In terms of Linear Algebra, a directional coupler between a single-mode waveguide and a two-mode waveguide can be thought of as formally equivalent to a set of three mutually coupled single-mode waveguides. Its responses, easily derived in the frame of ternary Coupled-Mode Theory, are used to establish analytically the scattering parameters of a hybrid ring-based modal multiplexer.

  3. Multiplexing 200 spatial modes with a single hologram

    Science.gov (United States)

    Rosales-Guzmán, Carmelo; Bhebhe, Nkosiphile; Mahonisi, Nyiku; Forbes, Andrew

    2017-11-01

    The on-demand tailoring of light's spatial shape is of great relevance in a wide variety of research areas. Computer-controlled devices, such as spatial light modulators (SLMs) or digital micromirror devices, offer a very accurate, flexible and fast holographic means to this end. Remarkably, digital holography affords the simultaneous generation of multiple beams (multiplexing), a tool with numerous applications in many fields. Here, we provide a self-contained tutorial on light beam multiplexing. Through the use of several examples, the readers will be guided step by step in the process of light beam shaping and multiplexing. Additionally, we provide a quantitative analysis on the multiplexing capabilities of SLMs to assess the maximum number of beams that can be multiplexed on a single SLM, showing approximately 200 modes on a single hologram.

  4. Coupled-Mode Theory derivation of the formal equivalence between a three-mode waveguide and a set of three mutually coupled single-mode waveguides

    Directory of Open Access Journals (Sweden)

    Boucher Yann G.

    2017-01-01

    Full Text Available The formal identification between a two-mode waveguide and a system of two mutually coupled single-mode waveguides stems from the symmetries of the evolution operator. When the gap tends to zero, the super-modes of the coupled system merge continuously into the modes of the multimode waveguide. For modelling purposes, it is very tempting to extend the analogy to three-mode waveguides (and beyond. But not without some precautions…

  5. Single CFTA Based Current-Mode Universal Biquad Filter

    Directory of Open Access Journals (Sweden)

    S.V. Singh

    2016-12-01

    Full Text Available This paper introduces a new current-mode (CM universal biquad filter structure with optimum number of active and passive elements. In the design, the proposed circuit uses a single active element namely, current follower trans-conductance amplifier (CFTA and two grounded capacitors as passive elements. The main feature of the proposed circuit is that it can realize all five standard filtering functions such as low pass (LP, band pass (BP, high pass (HP, band stop (BS and all pass (AP responses across an explicit high impedance output terminal through the appropriate selection of three inputs. In addition, the same circuit is also capable to simultaneously realize three filtering functions (LP, BP and HP by the use of single current input signal. Moreover, the proposed structure is suited for low voltage, low power operations and offers the feature of electronic tunability of pole-frequency and quality factor. Further to extend the utility of the proposed circuit block higher order current-mode filters are also realized through direct cascading. A detailed non-ideal and parasitic study is also included. The performance of the circuits has been examined using standard 0.25 μ m CMOS parameters from TSMC.

  6. The optimal thickness of a transmission-mode GaN photocathode

    Science.gov (United States)

    Wang, Xiao-Hui; Shi, Feng; Guo, Hui; Hu, Cang-Lu; Cheng, Hong-Chang; Chang, Ben-Kang; Ren, Ling; Du, Yu-Jie; Zhang, Jun-Ju

    2012-08-01

    A 150-nm-thick GaN photocathode with a Mg doping concentration of 1.6 × 1017 cm-3 is activated by Cs/O in an ultrahigh vacuum chamber, and a quantum efficiency (QE) curve of the negative electron affinity transmission-mode (t-mode) of the GaN photocathode is obtained. The maximum QE reaches 13.0% at 290 nm. According to the t-mode QE equation solved from the diffusion equation, the QE curve is fitted. From the fitting results, the electron escape probability is 0.32, the back-interface recombination velocity is 5 × 104 cm·s-1, and the electron diffusion length is 116 nm. Based on these parameters, the influence of GaN thickness on t-mode QE is simulated. The simulation shows that the optimal thickness of GaN is 90 nm, which is better than the 150-nm GaN.

  7. GaSb-based single-mode distributed feedback lasers for sensing (Conference Presentation)

    Science.gov (United States)

    Gupta, James A.; Bezinger, Andrew; Lapointe, Jean; Poitras, Daniel; Aers, Geof C.

    2017-02-01

    GaSb-based tunable single-mode diode lasers can enable rapid, highly-selective and highly-sensitive absorption spectroscopy systems for gas sensing. In this work, single-mode distributed feedback (DFB) laser diodes were developed for the detection of various trace gases in the 2-3.3um range, including CO2, CO, HF, H2S, H2O and CH4. The lasers were fabricated using an index-coupled grating process without epitaxial regrowth, making the process significantly less expensive than conventional DFB fabrication. The devices are based on InGaAsSb/AlGaAsSb separate confinement heterostructures grown on GaSb by molecular beam epitaxy. DFB lasers were produced using a two step etch process. Narrow ridge waveguides were first defined by optical lithography and etched into the semiconductor. Lateral gratings were then defined on both sides of the ridge using electron-beam lithography and etched to produce the index-grating. Effective index modeling was used to optimize the ridge width, etch depths and the grating pitch to ensure single-lateral-mode operation and adequate coupling strength. The effective index method was further used to simulate the DFB laser emission spectrum, based on a transfer matrix model for light transmission through the periodic structure. The fabricated lasers exhibit single-mode operation which is tunable through the absorption features of the various target gases by adjustment of the drive current. In addition to the established open-path sensing applications, these devices have great potential for optoelectronic integrated gas sensors, making use of integrated photodetectors and possibly on-chip Si photonics waveguide structures.

  8. Comparative research on the transmission-mode GaAs photocathodes of exponential-doping structures

    International Nuclear Information System (INIS)

    Chen Liang; Qian Yun-Sheng; Zhang Yi-Jun; Chang Ben-Kang

    2012-01-01

    Early research has shown that the varied doping structures of the active layer of GaAs photocathodes have been proven to have a higher quantum efficiency than uniform doping structures. On the basis of our early research on the surface photovoltage of GaAs photocathodes, and comparative research before and after activation of reflection-mode GaAs photocathodes, we further the comparative research on transmission-mode GaAs photocathodes. An exponential doping structure is the typical varied doping structure that can form a uniform electric field in the active layer. By solving the one-dimensional diffusion equation for no equilibrium minority carriers of transmission-mode GaAs photocathodes of the exponential doping structure, we can obtain the equations for the surface photovoltage (SPV) curve before activation and the spectral response curve (SRC) after activation. Through experiments and fitting calculations for the designed material, the body-material parameters can be well fitted by the SPV before activation, and proven by the fitting calculation for SRC after activation. Through the comparative research before and after activation, the average surface escape probability (SEP) can also be well fitted. This comparative research method can measure the body parameters and the value of SEP for the transmission-mode GaAs photocathode more exactly than the early method, which only measures the body parameters by SRC after activation. It can also help us to deeply study and exactly measure the parameters of the varied doping structures for transmission-mode GaAs photocathodes, and optimize the Cs-O activation technique in the future. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  9. Impact of attenuation on guided mode wavenumber measurement in axial transmission on bone mimicking plates.

    Science.gov (United States)

    Minonzio, Jean-Gabriel; Foiret, Josquin; Talmant, Maryline; Laugier, Pascal

    2011-12-01

    Robust signal processing methods adapted to clinical measurements of guided modes are required to assess bone properties such as cortical thickness and porosity. Recently, an approach based on the singular value decomposition (SVD) of multidimensional signals recorded with an axial transmission array of emitters and receivers has been proposed for materials with negligible absorption, see Minonzio et al. [J. Acoust. Soc. Am. 127, 2913-2919 (2010)]. In presence of absorption, the ability to extract guided mode degrades. The objective of the present study is to extend the method to the case of absorbing media, considering attenuated plane waves (complex wavenumber). The guided mode wavenumber extraction is enhanced and the order of magnitude of the attenuation of the guided mode is estimated. Experiments have been carried out on 2 mm thick plates in the 0.2-2 MHz bandwidth. Two materials are inspected: polymethylacrylate (PMMA) (isotropic with absorption) and artificial composite bones (Sawbones, Pacific Research Laboratory Inc, Vashon, WA) which is a transverse isotropic absorbing medium. Bulk wave velocities and bulk attenuation have been evaluated from transmission measurements. These values were used to compute theoretical Lamb mode wavenumbers which are consistent with the experimental ones obtained with the SVD-based approach. © 2011 Acoustical Society of America

  10. On-chip Mode Multiplexer Based on a Single Grating Coupler

    DEFF Research Database (Denmark)

    Ding, Yunhong; Ou, Haiyan; Xu, Jing

    2012-01-01

    A two-mode multiplexer based on a single grating coupler is proposed and demonstrated on a silicon chip. The LP01 and LP11 modes of a few-mode fiber are excited from TE0 and TE1 silicon waveguide modes.......A two-mode multiplexer based on a single grating coupler is proposed and demonstrated on a silicon chip. The LP01 and LP11 modes of a few-mode fiber are excited from TE0 and TE1 silicon waveguide modes....

  11. Optical single sideband millimeter-wave signal generation and transmission using 120° hybrid coupler

    Science.gov (United States)

    Zheng, Zhiwei; Peng, Miao; Zhou, Hui; Chen, Ming; Jiang, Leyong; Tan, Li; Dai, Xiaoyu; Xiang, Yuanjiang

    2018-03-01

    We propose a novel 60 GHz optical single sideband (OSSB) millimeter-wave (mm-wave) signal generation scheme using 120° hybrid coupler based on external integrated Mach-Zehnder modulator (MZM). The proposed scheme shows that the bit error ratio (BER) performance is improved by suppressing the +2nd-order sideband. Meanwhile, the transmission distance is extended as only the optical +1st-order sideband is modulated by using 5 Gbit/s baseband signal while the carrier is blank, owing to the elimination of walk-off effect suffered from fiber dispersion. The simulation results demonstrated that the eye diagrams of the generated 60 GHz OSSB signal keep open and clear after 100 km standard single-mode fiber (SSMF). In addition, the proposed scheme can achieve 2 dB receiver sensitivity improvements than the conventional 90° hybrid coupler when transmitted over 100 km SSMF at a BER of 10-9.

  12. Mode Selection for a Single-Frequency Fiber Laser

    Science.gov (United States)

    Liu, Jian

    2010-01-01

    A superstructured fiber-grating-based mode selection filter for a single-frequency fiber laser eliminates all free-space components, and makes the laser truly all-fiber. A ring cavity provides for stable operations in both frequency and power. There is no alignment or realignment required. After the fibers and components are spliced together and packaged, there is no need for specially trained technicians for operation or maintenance. It can be integrated with other modules, such as telescope systems, without extra optical alignment due to the flexibility of the optical fiber. The filter features a narrow line width of 1 kHz and side mode suppression ratio of 65 dB. It provides a high-quality laser for lidar in terms of coherence length and signal-to-noise ratio, which is 20 dB higher than solid-state or microchip lasers. This concept is useful in material processing, medical equipment, biomedical instrumentation, and optical communications. The pulse-shaping fiber laser can be directly used in space, airborne, and satellite applications including lidar, remote sensing, illuminators, and phase-array antenna systems.

  13. Ultrasonic Motor Using Bending Modes with Single Foot

    Directory of Open Access Journals (Sweden)

    Xiaohui Yang

    2013-01-01

    Full Text Available A new ultrasonic motor using bending modes with single foot is proposed in this study. Two groups of PZT elements are clamped between two horns and two ending caps, respectively, by bolts. Two horns are connected by the driving foot in the middle of the motor. Two orthogonal 3rd bending vibrations of the motor are superimposed and generate elliptical movement at the driving foot. The structure and working principle of the proposed motor are introduced. The structure parameters of the motor are obtained via the ANSYS software. A prototype is fabricated and tested using an impedance analyzer and a scanning laser Doppler vibrometer. The maximum mechanical output force and power of the prototype are measured to be 23 N and 2.9 W, respectively.

  14. Single-Mode, Distributed Feedback Interband Cascade Lasers

    Science.gov (United States)

    Frez, Clifford F. (Inventor); Borgentun, Carl E. (Inventor); Briggs, Ryan M. (Inventor); Bagheri, Mahmood (Inventor); Forouhar, Siamak (Inventor)

    2016-01-01

    Single-mode, distributed feedback interband cascade lasers (ICLs) using distributed-feedback gratings (e.g., lateral Bragg gratings) and methods of fabricating such ICLs are provided. The ICLs incorporate distributed-feedback gratings that are formed above the laser active region and adjacent the ridge waveguide (RWG) of the ICL. The ICLs may incorporate a double-ridge system comprising an optical confinement structure (e.g., a RWG) disposed above the laser active region that comprises the first ridge of the double ridge system, a DFB grating (e.g., lateral Bragg grating) disposed above the laser active region and adjacent the optical confinement structure, and an electric confinement structure that passes at least partially through the laser active region and that defines the boundary of the second ridge comprises and the termination of the DFB grating.

  15. Picosecond chirped pulse compression in single-mode fibers

    International Nuclear Information System (INIS)

    Wenhua Cao; Youwei Zhang

    1995-01-01

    In this paper, the nonlinear propagation of picosecond chirped pulses in single mode fibers has been investigated both analytically and numerically. Results show that downchirped pulses can be compressed owing to normal group-velocity dispersion. The compression ratio depends both on the initial peak power and on the initial frequency chirp of the input pulse. While the compression ratio depends both on the initial peak power and on the initial frequency chirp of the input pulse. While the compression ratio increases with the negative frequency chirp, it decreases with the initial peak power of the input pulse. This means that the self-phase modulation induced nonlinear frequency chirp which is linear and positive (up-chirp) over a large central region of the pulse and tends to cancel the initial negative chirp of the pulse. It is also shown that, as the negative chirped pulse compresses temporally, it synchronously experiences a spectral narrowing

  16. Research on hybrid transmission mode for HVDC with optimal thermal power and renewable energy combination

    Science.gov (United States)

    Zhang, Jinfang; Yan, Xiaoqing; Wang, Hongfu

    2018-02-01

    With the rapid development of renewable energy in Northwest China, curtailment phenomena is becoming more and more serve owing to lack of adjustment ability and enough transmission capacity. Based on the existing HVDC projects, exploring the hybrid transmission mode associated with thermal power and renewable power will be necessary and important. This paper has proposed a method on optimal thermal power and renewable energy combination for HVDC lines, based on multi-scheme comparison. Having established the mathematic model for electric power balance in time series mode, ten different schemes have been picked for figuring out the suitable one by test simulation. By the proposed related discriminated principle, including generation device utilization hours, renewable energy electricity proportion and curtailment level, the recommendation scheme has been found. The result has also validated the efficiency of the method.

  17. Preserving traditional medical knowledge through modes of transmission: A post-positivist enquiry

    Directory of Open Access Journals (Sweden)

    Janet Adekannbi

    2014-11-01

    Objectives: This study investigated the role which the mode of transmission plays in the preservation of traditional medical knowledge. Method: A post-positivist methodology was adopted. A purposive sampling technique was used to select three communities from each of the six states in South-Western Nigeria. The snowball technique was used in selecting 228 traditional medical practitioners, whilst convenience sampling was adopted in selecting 529 apprentices and 120 children who were not learning the profession. A questionnaire with a five-point Likert scale, key-informant interviews and focus-group discussions were used to collect data. The quantitative data was analysed using descriptive statistics whilst qualitative data was analysed thematically. Results: The dominant mode of knowledge transmission was found to be oblique (66.5% whilst vertical transmission (29.3% and horizontal transmission (4.2% occurred much less. Conclusion: Traditional medical knowledge is at risk of being lost in the study area because most of the apprentices were children from other parents, whereas most traditional medical practitioners preferred to transmit knowledge only to their children.

  18. Enhancement mode single electron transistor in pure silicon

    Science.gov (United States)

    Hu, Binhui; Yang, C. H.; Jones, G. M.; Yang, M. J.

    2007-03-01

    Solid state implementations of lateral qubits offer the advantage of being scalable and can be easily integrated by existing main stream IC technologies. In addition, the two Zeeman states of an electron spin in a quantum dot (QD) provide a promising candidate for a qubit. Spins in lateral QDs in the GaAs/AlGaAs single electron transistors (SETs) have been intensively investigated. In contrast, Si provides a number of advantages, including long spin coherence time, large g-factor, and small spin-orbit coupling effect. We have demonstrated Si SET in the few electron regime.* In this talk, we will report the isolation of a single electron in a Si QD using a fabrication technique that incorporates the standard Al/SiO2/Si system with an enhancement mode SET structure. Our SET is built in highly resistive Si substrates with bilayer gates. The high purity Si minimizes the potential disorder from impurities. The top gate induces 2D electrons, and several side gates help define the tunneling barriers, fine tune the shape of the QD, and control the number of electrons in it. We will discuss the operating principle, computer simulation, and low temperature transport data. *APPLIED PHYSICS LETTERS 89, 073106 (2006)

  19. Mode Shift Control for a Hybrid Heavy-Duty Vehicle with Power-Split Transmission

    Directory of Open Access Journals (Sweden)

    Kun Huang

    2017-02-01

    Full Text Available Given that power-split transmission (PST is considered to be a major powertrain technology for hybrid heavy-duty vehicles (HDVs, the development and application of PST in the HDVs make mode shift control an essential aspect of powertrain system design. This paper presents a shift schedule design and torque control strategy for a hybrid HDV with PST during mode shift, intended to reduce the output torque variation and improve the shift quality (SQ. Firstly, detailed dynamic models of the hybrid HDV are developed to analyze the mode shift characteristics. Then, a gear shift schedule calculation method including a dynamic shift schedule and an economic shift schedule is provided. Based on the dynamic models and the designed shift schedule, a mode shift performance simulator is built using MATLAB/Simulink, and simulations are carried out. Through analysis of the dynamic equations, it is seen that the inertia torques of the motor–generator lead to the occurrence of transition torque. To avoid the unwanted transition torque, we use a mode shift control strategy that coordinates the motor–generator torque to compensate for the transition torque. The simulation and experimental results demonstrate that the output torque variation during mode shift is effectively reduced by the proposed control strategy, thereby improving the SQ.

  20. 4 Gbps Impulse Radio (IR) Ultra-Wideband (UWB) Transmission over 100 Meters Multi Mode Fiber with 4 Meters Wireless Transmission

    DEFF Research Database (Denmark)

    Jensen, Jesper Bevensee; Rodes Lopez, Roberto; Caballero Jambrina, Antonio

    2009-01-01

    We present experimental demonstrations of in-building impulse radio (IR) ultra-wideband (UWB) link consisting of 100 m multi mode fiber (MMF) and 4 m wireless transmission at a record 4 Gbps, and a record 8 m wireless transmission at 2.5 Gbps. A directly modulated vertical cavity surface emitting...

  1. Strain sensor based on gourd-shaped single-mode-multimode-single-mode hybrid optical fibre structure.

    Science.gov (United States)

    Tian, Ke; Farrell, Gerald; Wang, Xianfan; Yang, Wenlei; Xin, Yifan; Liang, Haidong; Lewis, Elfed; Wang, Pengfei

    2017-08-07

    A fibre-optic strain sensor based on a gourd-shaped joint multimode fibre (MMF) sandwiched between two single-mode fibres (SMFs) is described both theoretically and experimentally. The cladding layers of the two MMFs are reshaped to form a hemisphere using an electrical arc method and spliced together, yielding the required gourd shape. The gourd-shaped section forms a Fabry-Perot cavity between the ends of two adjacent but non-contacting multimode fibres' core. The effectiveness of the multimode interference based on the Fabry-Perot interferometer (FPI) formed within the multimode inter-fibre section is greatly improved resulting in an experimentally determined strain sensitivity of -2.60 pm/με over the range 0-1000 με. The sensing characteristics for temperature and humidity of this optical fibre strain sensor are also investigated.

  2. Cladding mode coupling in highly localized fiber Bragg gratings: modal properties and transmission spectra.

    Science.gov (United States)

    Thomas, Jens; Jovanovic, Nemanja; Becker, Ria G; Marshall, Graham D; Withford, Michael J; Tünnermann, Andreas; Nolte, Stefan; Steel, M J

    2011-01-03

    The spectral characteristics of a fiber Bragg grating (FBG) with a transversely inhomogeneous refractive index profile, differs considerably from that of a transversely uniform one. Transmission spectra of inhomogeneous and asymmetric FBGs that have been inscribed with focused ultrashort pulses with the so-called point-by-point technique are investigated. The cladding mode resonances of such FBGs can span a full octave in the spectrum and are very pronounced (deeper than 20dB). Using a coupled-mode approach, we compute the strength of resonant coupling and find that coupling into cladding modes of higher azimuthal order is very sensitive to the position of the modification in the core. Exploiting these properties allows precise control of such reflections and may lead to many new sensing applications.

  3. Force Transmission Modes of Non-Cohesive and Cohesive Materials at the Critical State.

    Science.gov (United States)

    Wang, Ji-Peng

    2017-08-31

    This paper investigates the force transmission modes, mainly described by probability density distributions, in non-cohesive dry and cohesive wet granular materials by discrete element modeling. The critical state force transmission patterns are focused on with the contact model effect being analyzed. By shearing relatively dense and loose dry specimens to the critical state in the conventional triaxial loading path, it is observed that there is a unique critical state force transmission mode. There is a universe critical state force distribution pattern for both the normal contact forces and tangential contact forces. Furthermore, it is found that using either the linear Hooke or the non-linear Hertz model does not affect the universe force transmission mode, and it is only related to the grain size distribution. Wet granular materials are also simulated by incorporating a water bridge model. Dense and loose wet granular materials are tested, and the critical state behavior for the wet material is also observed. The critical state strength and void ratio of wet granular materials are higher than those of a non-cohesive material. The critical state inter-particle distribution is altered from that of a non-cohesive material with higher probability in relatively weak forces. Grains in non-cohesive materials are under compressive stresses, and their principal directions are mainly in the axial loading direction. However, for cohesive wet granular materials, some particles are in tension, and the tensile stresses are in the horizontal direction on which the confinement is applied. The additional confinement by the tensile stress explains the macro strength and dilatancy increase in wet samples.

  4. New perspectives on the gastrointestinal mode of transmission in invasive Listeria monocytogenes infection

    Energy Technology Data Exchange (ETDEWEB)

    Schlech, W.F. III

    1984-01-01

    The route or mechanism of transmission of Listeria monocytogenes from its rural veterinary reservoir to newborn and older human populations has been obscure. Anecdotal reports of milk-borne infection from cows with Listeria mastitis have been published, but intensive investigations of small outbreaks of L. monocytogenes infections in humans have not supported a gastrointestinal mode of infection. Several recent studies, however, strongly suggest this possibility, and case-control studies of epidemic listeriosis in the Canadian Maritime provinces in 1981 documented an association between ingestion of uncooked vegetables and the development of illness (p = 0.02). In that study, coleslaw from a regional producer which was distributed throughout the Maritimes was considered to be the vehicle of transmission. Cabbage, the raw product in the production of coleslaw, was contaminated at a farm prior to arrival at the plant. Contamination occurred through fertilization with raw manure from a flock of sheep known to harbor L. monocytogenes. Therefore, an indirect link was established between Listeria monocytogenes infection of sheep on a cabbage farm and subsequent development of invasive listeriosis in humans. This study supports findings from other epidemiologic studies of human listeriosis and is consistent with results of investigations into the mode of transmission of natural and laboratory-acquired listeriosis in animals. 34 references.

  5. Modeling bidirectionally coupled single-mode semiconductor lasers

    International Nuclear Information System (INIS)

    Mulet, Josep; Masoller, Cristina; Mirasso, Claudio R.

    2002-01-01

    We develop a dynamical model suitable for the description of two mutually coupled semiconductor lasers in a face-to-face configuration. Our study considers the propagation of the electric field along the compound system as well as the evolution of the carrier densities within each semiconductor laser. Mutual injection, passive optical feedback, and multiple reflections are accounted for in this framework, although under weak to moderate coupling conditions. We systematically describe the effect of the coupling strength on the spectrum of monochromatic solutions and on the respective dynamical behavior. By assuming single-longitudinal-mode operation, weak mutual coupling and slowly varying approximation, the dynamical model can be reduced to rate equations describing the mutual injection from one laser to its counterpart and vice versa. A good agreement between the complete and simplified models is found for small coupling. For larger coupling, higher-order terms lead to a smaller threshold reduction, reflected itself in the spectrum of the monochromatic solutions and in the dynamics of the optical power

  6. Dual-mode optical microscope based on single-pixel imaging

    Science.gov (United States)

    Rodríguez, A. D.; Clemente, P.; Tajahuerce, E.; Lancis, J.

    2016-07-01

    We demonstrate an inverted microscope that can image specimens in both reflection and transmission modes simultaneously with a single light source. The microscope utilizes a digital micromirror device (DMD) for patterned illumination altogether with two single-pixel photosensors for efficient light detection. The system, a scan-less device with no moving parts, works by sequential projection of a set of binary intensity patterns onto the sample that are codified onto a modified commercial DMD. Data to be displayed are geometrically transformed before written into a memory cell to cancel optical artifacts coming from the diamond-like shaped structure of the micromirror array. The 24-bit color depth of the display is fully exploited to increase the frame rate by a factor of 24, which makes the technique practicable for real samples. Our commercial DMD-based LED-illumination is cost effective and can be easily coupled as an add-on module for already existing inverted microscopes. The reflection and transmission information provided by our dual microscope complement each other and can be useful for imaging non-uniform samples and to prevent self-shadowing effects.

  7. Tunable single-polarization single-longitudinal-mode erbium-doped fiber ring laser employing a CMFBG filter and saturable absorber

    Science.gov (United States)

    Feng, Suchun; Lu, Shaohua; Peng, Wanjing; Li, Qi; Feng, Ting; Jian, Shuisheng

    2013-04-01

    A tunable single-polarization single-longitudinal-mode (SLM) erbium-doped fiber ring laser is proposed and demonstrated. For the first time as we know, a chirped moiré fiber Bragg grating (CMFBG) filter with ultra-narrow transmission band and a uniform fiber Bragg grating (UFBG) are used to select the laser longitudinal mode. The stable SLM operation of the fiber laser is guaranteed by the combination of the CMFBG filter and 3 m unpumped erbium-doped fiber acting as a saturable absorber. The single polarization operation of the fiber laser is obtained by using an inline broadband polarizer. A tuning range of about 0.7 nm with about 0.1 nm step is achieved by stretching the uniform FBG.

  8. Development of a high-sensitivity UV photocathode using GaN film that works in transmission mode

    Science.gov (United States)

    Ishigami, Yoshihiro; Akiyama, Keisuke; Nagata, Takaaki; Kato, Kazumasa; Ihara, Tsuneo; Nakamura, Kimitsugu; Mizuno, Itaru; Matsuo, Tetsuji; Chino, Emiko; Kyushima, Hiroyuki

    2012-06-01

    We developed a high-sensitivity GaN photocathode that works in transmission mode. It has 40.9 % quantum efficiency at 310 nm wavelength. Conventional GaN photocathodes, both transmission mode and reflection mode, are made on a sapphire substrate using metal-organic vapor phase epitaxy (MOVPE). In reflection mode, a GaN photocathode has very high quantum efficiency (QE) of over 50 %. However, in transmission mode, the quantum efficiency of a GaN photocathode was about 25 % at 240 nm with this technique. Therefore, we developed a new GaN photocathode using a glass-bonding technique, where a GaN thin film was bonded to a glass face plate. We found out that constituting an Al- GaN layer on the light incidence side of the photocathode surface provided higher QE than a sole GaN layer type for transmission mode. We focused on the band bending of the photocathode, and analyzed QE for both transmission mode and reflection mode. We then verified the effectiveness of the AlGaN layer using the results from the analysis. The high-sensitivity UV photocathode will be used for flame detection, corona discharge observation, and other UV imaging.

  9. Comparison of high power large mode area and single mode 1908nm Tm-doped fiber lasers

    Science.gov (United States)

    Johnson, Benjamin R.; Creeden, Daniel; Limongelli, Julia; Pretorius, Herman; Blanchard, Jon; Setzler, Scott D.

    2016-03-01

    We compare large mode area (LMA) and single-mode (SM) double-clad fiber geometries for use in high power 1908nm fiber lasers. With a simple end-pumped architecture, we have generated 100W of 1908nm power with LMA fiber at 40% optical efficiency and 117W at 52.2% optical efficiency with single-mode fiber. We show the LMA fiber is capable of generating >200W and the SM fiber is capable of >300W at 1908nm. In all cases, the fiber lasers are monolithic power-oscillators with no free-space coupling.

  10. Highly efficient high power single-mode fiber amplifier utilizing the distributed mode filtering bandgap rod fiber

    DEFF Research Database (Denmark)

    Laurila, Marko; Alkeskjold, Thomas T.; Jørgensen, Mette Marie

    2012-01-01

    We report on an ytterbium doped single mode distributed mode filtering rod fiber in an amplifier configuration delivering high average output power, up to 292 watts, using a mode-locked 30ps source at 1032nm with good power conversion efficiency. We study the modal stability of the output beam...... at high average output power levels and demonstrate a 44% power improvement before the threshold-like onset of mode instabilities by operating the rod fiber in a leaky waveguide regime. We investigate the guiding dynamics of the rod fiber and explain the improved performance by thermally induced...

  11. Optical access network using centralized light source, single-mode fiber + broad wavelength window multimode fiber

    Science.gov (United States)

    Yam, Scott S.-H.; Kim, Jaedon; Gutierrez, David; Achten, Frank

    2006-08-01

    Access networks based on a single-mode fiber (SMF) using a centralized light source (CLS) have attracted much attention recently due to their wavelength management flexibility and potential for cost reduction at customers' premises. Future networks, in addition, are likely to contain segments of multimode fiber (MMF), whose core dimension is relatively large in comparison with its single-mode counterpart, substantially reducing fiber alignment constraints and the subsequent network construction and installation cost. In this study, a CLS-based passive optical network (PON) is proposed, which will use a new generation of high-performance MMF optimized for a broad wavelength transmission window spanning from 1300to1550 nm, with a bandwidth distance product (BDP) of 40 Gbit/s-km. The proposed architecture is implemented in a test bed, and its performance is verified by bit error ratio (BER) measurement. Results show that we can implement high-performance CLS-based PONs containing both an SMF and an MMF infrastructure, simultaneously.

  12. Investigation of single-mode and multi-mode hydromagnetic Rayleigh-Taylor instability in planar geometry

    International Nuclear Information System (INIS)

    Roderick, N.F.; Cochrane, K.; Douglas, M.R.

    1998-01-01

    Previous investigations carried out to study various methods of seeding the hydromagnetic Rayleigh-Taylor instability in magnetohydrodynamic simulations showed features similar to those seen in hydrodynamic calculations. For periodic single-mode initiations the results showed the appearance of harmonics as the single modes became nonlinear. For periodic multi-mode initiations new modes developed that indicated the presence of mode coupling. The MHD simulations used parameters of the high velocity large radius z-pinch experiments performed in the Z-accelerator at Sandia National Laboratories. The cylindrical convergent geometry and variable acceleration of these configurations made comparison with analytic, developed for planar geometry with constant acceleration, difficult. A set of calculations in planar geometry using constant current to produce acceleration and parameters characteristic of the cylindrical implosions has been performed to allow a better comparison. Results of these calculations, comparison with analytic theory, and comparison with the cylindrical configuration calculations will be discussed

  13. Single-mode quantum cascade lasers employing a candy-cane shaped monolithic coupled cavity

    Science.gov (United States)

    Liu, Peter Q.; Sladek, Kamil; Wang, Xiaojun; Fan, Jen-Yu; Gmachl, Claire F.

    2011-12-01

    We demonstrate single-mode quantum cascade lasers emitting at ˜4.5 μm by employing a monolithic "candy-cane" shaped coupled-cavity consisting of a straight section connecting at one end to a spiral section. The fabrication process is identical to those for simple Fabry-Perot-type ridge lasers. Continuously tunable single-mode emission across ˜8 cm-1 with side mode suppression ratio up to ˜25 dB and a single-mode operating current range of more than 70% above the threshold current is achieved when the lasers are operated in pulsed-mode from 80 K to 155 K.

  14. Tripartite entanglement of bosonic systems in a noninertial frame beyond the single- mode approximation

    Directory of Open Access Journals (Sweden)

    M Soltani

    2015-12-01

    Full Text Available In this work, we generalize the entanglement of three-qbit Bosonic systems beyond the single-mode approximation when one of the observers is accelerated. For this purpose, we review the effects of acceleration on field modes and quantum states. The single-mode approximation and beyond the single-mode approximation methods are introduced. After this brief introduction, the main problem of this paper, tripartite entanglement of bosonic systems in a noninertial frame beyond the single- mode approximation is investigated. The tripartite entangled states have different classes with GHZ and W states being most important. Here, we choose &pi-tangle as a measure of tripartite entanglement. If the three parties share GHZ state, the corresponding &pi-tangle will increase by increasing acceleration for some Unruh modes. This phenomenon, increasing entanglement, has never been observed in the single-mode approximation for bosonic case. Moreover, the &pi-tangle dose not exhibit a monotonic behavior with increasing acceleration. In the infinite acceleration limit, the &pi-tangle goes to different nonzero values for distinct Unruh modes. Unlike GHZ state, the entanglement of the W state shows only monotonically increasing and decreasing behaviors with increasing acceleration. Also, the entanglement for all possible choices of Unruh modes approaches only 0.176 in the high acceleration limit. Therefore, according to the quantum entanglement, there is no distinction between the single-mode approximation and beyond the single-mode approximation methods in this limit.

  15. Resonance Frequency and Bandwidth of the Negative/Positive n Mode of a Composite Right-/Left-Handed Transmission Line

    Directory of Open Access Journals (Sweden)

    Seong-Jung Kim

    2018-01-01

    Full Text Available In this study, the analytic expression for the positive/negative nth-mode resonance frequency of an N unit cell composite right-/left-handed (CRLH transmission line is derived. To explain the resonance mechanism of the nth mode, especially for the negative mode, the current distribution of the N unit cell CRLH transmission line is investigated with a circuit simulation. Results show that both positive and negative nth resonance modes have n times current variations, but their phase difference is 180° as expected. Moreover, the positive nth resonance occurs at a high frequency, whereas the negative nth resonance transpires at a low frequency, thus indicating that the negative resonance mode can be utilized for a small resonator. The correlation between the slope of the dispersion curve and the bandwidth is also observed. In sum, the balanced condition of the CRLH transmission line provides a broader bandwidth than the unbalanced condition.

  16. Detecting mode hopping in single-longitudinal-mode fiber ring lasers based on an unbalanced fiber Michelson interferometer.

    Science.gov (United States)

    Ma, Mingxiang; Hu, Zhengliang; Xu, Pan; Wang, Wei; Hu, Yongming

    2012-10-20

    A method of detecting mode hopping for single-longitudinal-mode (SLM) fiber ring lasers has been proposed and experimentally demonstrated. The method that is based on an unbalanced Michelson interferometer (MI) utilizing phase generated carrier modulation instantly transforms mode-hopping dynamics into steep phase changes of the interferometer. Multiform mode hops in an SLM erbium-doped fiber ring laser with an 18.6 MHz mode spacing have been detected exactly in real-time domain and discussed in detail. Numerical results show that the MI-based method has a high testing sensitivity for identifying mode hopping, which will play a significant role in evaluating the output stability of SLM fiber lasers.

  17. Field analysis of TE and TM modes in photonic crystal Bragg fibers by transmission matrix method

    Directory of Open Access Journals (Sweden)

    M Hosseini Farzad

    2010-03-01

    Full Text Available In this article, we considered the field analysis in photonic crystal Bragg fibers. We apply the method of transmission matrix to calculater the dispersion curves, the longitudinal wave number over wave number versus incident wavelength, and the field distributions of TE and TM modes in the Bragg fiber. Our analysis shows that the field of guided modes is confined in the core and can exist only in particular wavelength bands corresponding to the band-gap of the periodic structure of the clad. From another point of view, light confinement is due to Bragg reflection from high-and low-refractive index layers of the clad. Also, the diagram of average angular frequency with respect to average longitudinal wave number is plotted so that the band gap regions of the clad are clearly observed.

  18. The Fresnel mode of Lorentz microscopy using a scanning transmission electron microscope

    International Nuclear Information System (INIS)

    Chapman, J.N.; Waddell, E.M.; Batson, P.E.; Ferrier, R.P.

    1979-01-01

    The most widely used method of investigating ferromagnetic films in the transmission electron microscope is the Fresnel or defocus mode of Lorentz microscopy. This may be implemented either in a fixed beam or a scanning instrument. Despite a rather inefficient utilization of electrons, several advantages accrue if the latter is used, and provided it is equipped with a field emission gun, low noise images may be obtained in acceptable recording times. To extract quantitative estimates of domain wall widths from such images it is necessary to measure accurately both instrumental and specimen parameters. Methods for this are discussed and an example of an analysis using a polycrystalline permalloy film is given. (Auth.)

  19. The optimal thickness of a transmission-mode GaN photocathode

    International Nuclear Information System (INIS)

    Wang Xiao-Hui; Shi Feng; Guo Hui; Hu Cang-Lu; Cheng Hong-Chang; Chang Ben-Kang; Ren Ling; Du Yu-Jie; Zhang Jun-Ju

    2012-01-01

    A 150-nm-thick GaN photocathode with a Mg doping concentration of 1.6 × 10 17 cm −3 is activated by Cs/O in an ultrahigh vacuum chamber, and a quantum efficiency (QE) curve of the negative electron affinity transmission-mode (t-mode) of the GaN photocathode is obtained. The maximum QE reaches 13.0% at 290 nm. According to the t-mode QE equation solved from the diffusion equation, the QE curve is fitted. From the fitting results, the electron escape probability is 0.32, the back-interface recombination velocity is 5 × 10 4 cm·s −1 , and the electron diffusion length is 116 nm. Based on these parameters, the influence of GaN thickness on t-mode QE is simulated. The simulation shows that the optimal thickness of GaN is 90 nm, which is better than the 150-nm GaN. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  20. Measurement of guided mode wavenumbers in soft tissue-bone mimicking phantoms using ultrasonic axial transmission.

    Science.gov (United States)

    Chen, Jiangang; Foiret, Josquin; Minonzio, Jean-Gabriel; Talmant, Maryline; Su, Zhongqing; Cheng, Li; Laugier, Pascal

    2012-05-21

    Human soft tissue is an important factor that influences the assessment of human long bones using quantitative ultrasound techniques. To investigate such influence, a series of soft tissue-bone phantoms (a bone-mimicking plate coated with a layer of water, glycerol or silicon rubber) were ultrasonically investigated using a probe with multi-emitter and multi-receiver arrays in an axial transmission configuration. A singular value decomposition signal processing technique was applied to extract the frequency-dependent wavenumbers of several guided modes. The results indicate that the presence of a soft tissue-mimicking layer introduces additional guided modes predicted by a fluid waveguide model. The modes propagating in the bone-mimicking plate covered by the soft-tissue phantom are only slightly modified compared to their counterparts in the free bone-mimicking plate, and they are still predicted by an elastic transverse isotropic two-dimensional waveguide. Altogether these observations suggest that the soft tissue-bone phantoms can be modeled as two independent waveguides. Even in the presence of the overlying soft tissue-mimicking layer, the modes propagating in the bone-mimicking plate can still be extracted and identified. These results suggest that our approach can be applied for the purpose of the characterization of the material and structural properties of cortical bone.

  1. Toward single-mode UV to near-IR guidance using hollow-core anti-resonant silica fiber

    DEFF Research Database (Denmark)

    Habib, Md Selim; Antonio-Lopez, Jose Enrique; Van Newkirk, Amy

    2017-01-01

    Hollow-core anti-resonant (HC-AR) fibers with a “negative-curvature” of the core-cladding boundary have been extensively studied over the past few years owing to their low loss and wide transmission bandwidths. The key unique feature of the HC-AR fiber is that the coupling between the core and cl...... a silica HC-AR fiber having a single ring of 7 non-touching capillaries, designed to have effectively single-mode operation and low loss from UV to near-IR....

  2. Low-bending loss and single-mode operation in few-mode optical fiber

    Science.gov (United States)

    Yin, Ping; Wang, Hua; Chen, Ming-Yang; Wei, Jin; Cai, Zhi-Min; Li, Lu-Ming; Yang, Ji-Hai; Zhu, Yuan-Feng

    2016-10-01

    The technique of eliminating the higher-order modes in a few-mode optical fiber is proposed. The fiber is designed with a group of defect modes in the cladding. The higher-order modes in the fiber can be eliminated by bending the fiber to induce strong coupling between the defect modes and the higher-order modes. Numerical simulation shows the bending losses of the LP01 mode are lower than 1.5×10-4 dB/turn for the wavelength shorter than 1.625 μm. The proposed fiber can be bent multiple turns at small bending radius which are preferable for FTTH related applications.

  3. High core count single-mode multicore fiber for dense space division multiplexing

    DEFF Research Database (Denmark)

    Aikawa, K.; Sasaki, Y.; Amma, Y.

    2016-01-01

    Multicore fibers and few-mode fibers have the potential to realize dense-space-division multiplexing systems. Several dense-space-division multiplexing system transmission experiments over multicore fibers and few-mode fibers have been demonstrated so far. Multicore fibers, including recent resul...

  4. Pump combiner for air-clad fiber with PM single-mode signal feed-through

    DEFF Research Database (Denmark)

    Noordegraaf, Danny; Nielsen, Martin D.; Skovgaard, Peter M.W.

    2009-01-01

    A pump combiner with single-mode PM signal feed-through designed for an air-clad photonic crystal fiber is demonstrated. Signal coupling is realized by a novel taper element allowing single-mode guidance at a taper ratio of 3.7.......A pump combiner with single-mode PM signal feed-through designed for an air-clad photonic crystal fiber is demonstrated. Signal coupling is realized by a novel taper element allowing single-mode guidance at a taper ratio of 3.7....

  5. 1540-nm single frequency single-mode pulsed all fiber laser for coherent Doppler lidar

    Science.gov (United States)

    Zhang, Xin; Diao, Weifeng; Liu, Yuan; Liu, Jiqiao; Hou, Xia; Chen, Weibiao

    2015-02-01

    A single-mode single frequency eye-safe pulsed all fiber laser based on master oscillator power amplification structure is presented. This laser is composed of a narrow linewidth distributed laser diode seed laser and two-stage cascade amplifiers. 0.8 m longitudinally gradient strained erbium/ytterbium co-doped polarization-maintaining fiber with a core diameter of 10 μm is used as the gain fiber and two acoustic-optics modulators are adopted to enhance pulse extinction ratio. A peak power of 160 W and a pulse width of 200 ns at 10 kHz repetition rate are achieved with transform-limited linewidth and diffraction-limited beam quality. This laser will be employed in a compact short range coherent Doppler wind lidar.

  6. Feasibility study to damp power system multi-mode oscillations by using a single FACTS device

    Energy Technology Data Exchange (ETDEWEB)

    Du, W.; Wu, X. [School of Electrical Engineering, Southeast University, Nanjing (China); Wang, H.F. [School of Electronics, Electrical Engineering and Computer Science, The Queen' s University of Belfast, Belfast BT7 1NN (United Kingdom); Dunn, R. [University of Bath, Bath (United Kingdom)

    2010-07-15

    To damp power system multi-mode oscillations, the commonly-used method is to arrange multiple decentralized stabilizers, such as PSS (Power System Stabilizer) and FACTS (Flexible AC Transmission Systems) stabilizers. In order to overcome the problem of interactions between stabilizers, coordinated design of multiple decentralized stabilizers has been proposed to simultaneously set parameters of all stabilizers. However, in practice it could be very difficult to implement the coordinated design of multiple stabilizers. This is because those stabilizers are often at different geographical locations in a power system and cross-location simultaneous field tuning of stabilizers' parameters is a tremendous task due to their interactions. Hence this paper proposes a novel scheme of damping power system multi-mode oscillations by using a single FACTS device and presents the results of feasibility study of the proposed scheme. It is demonstrated that multiple stabilizers can be arranged in a single FACTS device to effectively damp power system multi-mode oscillations. Under this scheme, multiple stabilizers are at a same geographical location in the power system and hence their parameters can be tuned simultaneously in coordination in the field. In the paper, three examples of multi-machine power systems installed with a UPFC (Unified Power Flow Controller), a STATCOM (Static Synchronous Compensator)/BESS (Battery Energy Storage System) and a MUPFC (Multiple-terminal UPFC) respectively are presented. Parameters of multiple stabilizers are designed in coordination by using a newly appeared method of optimisation-artificial fish swarm algorithm. Simulation results in the paper are compared with those obtained from applying the conventional scheme of decentralized control involving multiple PSSs. They demonstrate and confirm the feasibility of proposed scheme in the paper. (author)

  7. Joint impact of quantization and clipping on single- and multi-carrier block transmission systems

    NARCIS (Netherlands)

    Yang, H.; Schenk, T.C.W.; Smulders, P.F.M.; Fledderus, E.R.

    2008-01-01

    This work investigates the joint impact of quantization and clipping, caused by analog-to-digital converters (ADCs) with low bit resolutions, on single- and multi-carrier block transmission systems in wireless multipath environments. We consider single carrier block transmission with frequency

  8. Knowledge of specific HIV transmission modes in relation to HIV infection in Mozambique

    Directory of Open Access Journals (Sweden)

    Devon D Brewer

    2012-07-01

    Full Text Available Background: In prior research, Africans who knew about blood-borne risks were modestly less likely to be HIV-infected than those who were not aware of such risks. Objectives/Methods: I examined the association between knowledge of specific HIV transmission modes and prevalent HIV infection with data from the 2009 Mozambique AIDS Indicator Survey. Results: Respondents displayed high awareness of blood exposures and vaginal sex as modes of HIV transmission. However, only about half of respondents were aware of anal sex as a way HIV can be transmitted. After adjustments for demographics and sexual behaviors, respondents who knew that HIV could spread by contact with infected blood or by sharing injection needles or razor blades were less likely to be infected than those who did not know about these risks. Respondents who knew about sexual risks were as, or more, likely to be HIV infected as those who did not know about sexual risks. Also, children of HIV-uninfected mothers were less likely to be infected if their mothers were aware of blood-borne HIV risks than if their mothers were unaware. Conclusion: HIV education campaigns in Mozambique and elsewhere in sub-Saharan Africa should include a focus on risks from blood exposures and anal sex.

  9. Transmission mode predicts specificity and interaction patterns in coral-Symbiodinium networks.

    Science.gov (United States)

    Fabina, Nicholas S; Putnam, Hollie M; Franklin, Erik C; Stat, Michael; Gates, Ruth D

    2012-01-01

    Most reef-building corals in the order Scleractinia depend on endosymbiotic algae in the genus Symbiodinium for energy and survival. Significant levels of taxonomic diversity in both partners result in numerous possible combinations of coral-Symbiodinium associations with unique functional characteristics. We created and analyzed the first coral-Symbiodinium networks utilizing a global dataset of interaction records from coral reefs in the tropical Indo-Pacific and Atlantic Oceans for 1991 to 2010. Our meta-analysis reveals that the majority of coral species and Symbiodinium types are specialists, but failed to detect any one-to-one obligate relationships. Symbiont specificity is correlated with a host's transmission mode, with horizontally transmitting corals being more likely to interact with generalist symbionts. Globally, Symbiodinium types tend to interact with only vertically or horizontally transmitting corals, and only a few generalist types are found with both. Our results demonstrate a strong correlation between symbiont specificity, symbiont transmission mode, and community partitioning. The structure and dynamics of these network interactions underlie the fundamental biological partnership that determines the condition and resilience of coral reef ecosystems.

  10. Transmission mode predicts specificity and interaction patterns in coral-Symbiodinium networks.

    Directory of Open Access Journals (Sweden)

    Nicholas S Fabina

    Full Text Available Most reef-building corals in the order Scleractinia depend on endosymbiotic algae in the genus Symbiodinium for energy and survival. Significant levels of taxonomic diversity in both partners result in numerous possible combinations of coral-Symbiodinium associations with unique functional characteristics. We created and analyzed the first coral-Symbiodinium networks utilizing a global dataset of interaction records from coral reefs in the tropical Indo-Pacific and Atlantic Oceans for 1991 to 2010. Our meta-analysis reveals that the majority of coral species and Symbiodinium types are specialists, but failed to detect any one-to-one obligate relationships. Symbiont specificity is correlated with a host's transmission mode, with horizontally transmitting corals being more likely to interact with generalist symbionts. Globally, Symbiodinium types tend to interact with only vertically or horizontally transmitting corals, and only a few generalist types are found with both. Our results demonstrate a strong correlation between symbiont specificity, symbiont transmission mode, and community partitioning. The structure and dynamics of these network interactions underlie the fundamental biological partnership that determines the condition and resilience of coral reef ecosystems.

  11. Slanted annular aperture arrays as enhanced-transmission metamaterials: Excitation of the plasmonic transverse electromagnetic guided mode

    Energy Technology Data Exchange (ETDEWEB)

    Ndao, Abdoulaye; Salut, Roland; Baida, Fadi I., E-mail: fbaida@univ-fcomte.fr [Département d' Optique P.M. Duffieux, Institut FEMTO-ST, UMR 6174 CNRS, Université de Franche–Comté, 25030 Besançon Cedex (France); Belkhir, Abderrahmane [Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri, Tizi-Ouzou (Algeria)

    2013-11-18

    We present here the fabrication and the optical characterization of slanted annular aperture arrays engraved into silver film. An experimental enhanced transmission based on the excitation of the cutoff-less plasmonic guided mode of the nano-waveguides (the transmission electron microscopy mode) is demonstrated and agrees well with the theoretical predicted results. By the way, even if it is less efficient (70% → 20%), an enhanced transmission can occur at larger wavelength value (720 nm–930 nm) compared to conventional annular aperture arrays structure by correctly setting the metal thickness.

  12. Effect of mode of delivery on vertical human papillomavirus transmission - A meta-analysis.

    Science.gov (United States)

    Chatzistamatiou, K; Sotiriadis, A; Agorastos, T

    2016-01-01

    A systematic review of the literature has been conducted (last update March 2014) for clinical studies reporting the prevalence of human papillomavirus (HPV) in the offspring of HPV-infected women in association to their mode of delivery. A meta-analysis was carried out according to the identification of concordant neonatal to maternal HPV types. Overall eight studies were included in the meta-analysis. Our pooled results, showed that caesarean section is associated with significantly lower rates of HPV transmission than vaginal birth (14.9% vs. 28.2%, risk ratio or RR: 0.515, 95% confidence interval or CI: 0.34-0.78). The number of caesarean sections needed to prevent one case of perinatal infection (number needed to treat or NNT) would be 7.5. As a conclusion it should be noted that caesarean section decreases the risk for perinatal HPV transmission by approximately 46%. Perinatal transmission still occurs in approximately 15% of the children born by caesarean section.

  13. Single-Mode to Multi-Mode Crossover in Thin-Load Polymethyl Methacrylate Plasmonic Waveguides

    DEFF Research Database (Denmark)

    Großmann, Malte; Thomaschewski, Martin; Klick, Alwin

    2018-01-01

    Mode character and mode dispersion of sub-60-nm-thick polymethyl methacrylate dielectric-loaded surface plasmon-polariton waveguides (DLSPPWs) are investigated using photoemission electron microscopy and finite element method simulations. Experiment and simulation show excellent agreement and all...

  14. Linearly Polarized, Single-Mode Spontaneous Emission in a Photonic Nanowire

    DEFF Research Database (Denmark)

    Munsch, Mathieu; Claudon, Julien; Bleuse, Joël

    2012-01-01

    We introduce dielectric elliptical photonic nanowires to funnel efficiently the spontaneous emission of an embedded emitter into a single optical mode. Inside a wire with a moderate lateral aspect ratio, the electromagnetic environment is largely dominated by a single guided mode, with a linear...

  15. Investigation of the state of polarization of light in a single-mode fiber waveguide

    Science.gov (United States)

    Kozel, S. M.; Kreopalov, V. I.; Listvin, V. N.; Glavatskikh, N. A.

    1983-01-01

    An analysis is made of the polarization anisotropy of a single-mode fiber with a twisted elliptic core. The Jones matrix is obtained and the complex function of the state of polarization of light in a fiber is investigated. The results are reported of measurements of the linear and circular birefringence of a borosilicate single-mode glass fiber.

  16. CORONA EFFECTS NUMERICAL SIMULATION IN SINGLE PHASE TRANSMISSION LINES

    OpenAIRE

    MARCOS ANDRE DA FROTA MATTOS

    1985-01-01

    Uma análise teórica, comparativa e de sensibilidade é feita com quatro modelos básicos para o efeito corona em linhas de transmissão monofásicas. A análise de ocorrência de choque em linhas de transmissão é também considerada na análise os modelos. Um algoritmo computacional é desenvolvido para estudo de transitórios eletromagnéticos em linhas de transmissão monofásicas. Por fim são analisados casos interessantes do ponto de vista da Engenharia Elétrica. The corona effect on monophasic tra...

  17. Effects of the gamma-ray irradiation on the optical absorption of pure silica core single-mode fibres in the visible and NIR range

    International Nuclear Information System (INIS)

    Calderon, A.; Calvo, E.; Figueroa, C.F.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Sobron, M.; Vila, I.; Virto, A.L.; Arce, P.; Barcala, J.M.; Ferrando, A.; Josa, M.I.; Luque, J.M.; Molinero, A.; Navarrete, J.; Oller, J.C.; Yuste, C.

    2005-01-01

    Optical absorption induced by photon radiation was evaluated for several commercial pure silica core, single mode, optical fibres. The study was performed for three different wavelengths: 630, 670 and 785 nm. We have identified a fibre whose induced transmission loss stays below 1 dB/m after 300 kGy gamma-ray irradiation

  18. Stokes-space analysis of modal dispersion in fibers with multiple mode transmission.

    Science.gov (United States)

    Antonelli, Cristian; Mecozzi, Antonio; Shtaif, Mark; Winzer, Peter J

    2012-05-21

    Modal dispersion (MD) in a multimode fiber may be considered as a generalized form of polarization mode dispersion (PMD) in single mode fibers. Using this analogy, we extend the formalism developed for PMD to characterize MD in fibers with multiple spatial modes. We introduce a MD vector defined in a D-dimensional extended Stokes space whose square length is the sum of the square group delays of the generalized principal states. For strong mode coupling, the MD vector undertakes a D-dimensional isotropic random walk, so that the distribution of its length is a chi distribution with D degrees of freedom. We also characterize the largest differential group delay, that is the difference between the delays of the fastest and the slowest principal states, and show that it too is very well approximated by a chi distribution, although in general with a smaller number of degrees of freedom. Finally, we study the spectral properties of MD in terms of the frequency autocorrelation functions of the MD vector, of the square modulus of the MD vector, and of the largest differential group delay. The analytical results are supported by extensive numerical simulations.

  19. Measurement of flow fluctuations in single longitudinal mode pulsed ...

    Indian Academy of Sciences (India)

    2014-02-12

    Feb 12, 2014 ... The plano-convex lens was mounted on a translation stage for precise position- ing of the focal spot on the dye cell. By using longitudinal pumping, shorter gain region was achieved, resulting in shorter cavity length (∼50 mm) for the SLM dye laser. The shorter cavity length provided larger axial mode ...

  20. LOPUT Laser: A novel concept to realize single longitudinal mode ...

    Indian Academy of Sciences (India)

    2014-02-05

    Feb 5, 2014 ... Solid State Laser Division, Raja Ramanna Centre for Advanced Technology, Indore 452 013, India. ∗ ... terpropagating waves inside the gain medium to suppress the effect of SHB in the laser cavity [4–6]. ... propagating linearly polarized modes add up to result in a travelling wave along the gain medium ...

  1. Planar quadrature RF transceiver design using common-mode differential-mode (CMDM transmission line method for 7T MR imaging.

    Directory of Open Access Journals (Sweden)

    Ye Li

    Full Text Available The use of quadrature RF magnetic fields has been demonstrated to be an efficient method to reduce transmit power and to increase the signal-to-noise (SNR in magnetic resonance (MR imaging. The goal of this project was to develop a new method using the common-mode and differential-mode (CMDM technique for compact, planar, distributed-element quadrature transmit/receive resonators for MR signal excitation and detection and to investigate its performance for MR imaging, particularly, at ultrahigh magnetic fields. A prototype resonator based on CMDM method implemented by using microstrip transmission line was designed and fabricated for 7T imaging. Both the common mode (CM and the differential mode (DM of the resonator were tuned and matched at 298MHz independently. Numerical electromagnetic simulation was performed to verify the orthogonal B1 field direction of the two modes of the CMDM resonator. Both workbench tests and MR imaging experiments were carried out to evaluate the performance. The intrinsic decoupling between the two modes of the CMDM resonator was demonstrated by the bench test, showing a better than -36 dB transmission coefficient between the two modes at resonance frequency. The MR images acquired by using each mode and the images combined in quadrature showed that the CM and DM of the proposed resonator provided similar B1 coverage and achieved SNR improvement in the entire region of interest. The simulation and experimental results demonstrate that the proposed CMDM method with distributed-element transmission line technique is a feasible and efficient technique for planar quadrature RF coil design at ultrahigh fields, providing intrinsic decoupling between two quadrature channels and high frequency capability. Due to its simple and compact geometry and easy implementation of decoupling methods, the CMDM quadrature resonator can possibly be a good candidate for design blocks in multichannel RF coil arrays.

  2. Interferometric measurement of refractive index modification in a single mode microfiber

    Science.gov (United States)

    Ahmed, Farid; Ahsani, Vahid; Jun, Martin B. G.

    2017-02-01

    Efficient and cost effective measurement of the refractive index profile in an optical fiber is a significant technical job to design and manufacture in-fiber photonic devices and communication systems. For instance, to design fiber gratings, it is required to estimate the refractive index modulation to be inscribed by the fabrication apparatus such as ultraviolet or infrared lasers. Mach-Zehnder interferometer (MZI) based quantification of refractive index change written in single mode microfiber by femtosecond laser radiation is presented in this study. The MZI is constructed by splicing a microfiber (core diameter: 3.75 μm, cladding diameter: 40 μm) between standard single mode fibers. To measure the RI inscribed by infrared femtosecond laser, 200 μm length of the core within the MZI was scanned with laser radiation. As the higher index was written within 200 μm length of the core, the transmission spectrum of the interferometer displayed a corresponding red shift. The observed spectral shift was used to calculate the amount of refractive index change inscribed by the femtosecond irradiation. For the MZI length of 3.25 mm, and spectral shift of 0.8 nm, the calculated refractive index was found to be 0.00022. The reported results display excellent agreement between theory and experimental findings. Demonstrated method provides simple yet very effective on-site measurement of index change in optical fibers. Since the MZI can be constructed in diverse fiber types, this technique offers flexibility to quantify index change in various optical fibers.

  3. Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber.

    Science.gov (United States)

    Tian, Zhaobing; Yam, Scott S-H; Loock, Hans-Peter

    2008-05-15

    A simple refractive index sensor based on a Michelson interferometer in a single-mode fiber is constructed and demonstrated. The sensor consists of a single symmetrically abrupt taper region in a short piece of single-mode fiber that is terminated by approximately 500 nm thick gold coating. The sensitivity of the new sensor is similar to that of a long-period-grating-type sensor, and its ease of fabrication offers a low-cost alternative to current sensing applications.

  4. Interaction of solitary pulses in single mode optical fibres | Usman ...

    African Journals Online (AJOL)

    Two solitary waves launched, by way of incidence, into an optical fibre from a single pulse if the pulses are in-phase as understood from results of inverse scattering transform method applied to the cubic nonlinear Schrödinger equations, (CNLSE\\'s). The single CNLSE is then understood to describe evolution of coupled ...

  5. A novel hybrid III–V/silicon deformed micro-disk single-mode laser

    International Nuclear Information System (INIS)

    Feng Peng; Zhang Yejin; Liu Lei; Zhang Siriguleng; Wang Hailing; Zheng Wanhua; Wang Yufei

    2015-01-01

    A novel hybrid III–V/silicon deformed micro-disk single-mode laser connecting to a Si output waveguide is designed, and fabricated through BCB bonding technology and standard i-line photolithography. Compared to a traditional circular micro-disk in multi-longitudinal-mode operation, unidirectional emission and single longitudinal-mode output from a Si waveguide are realized. In the experiments, an output power of 0.31 mW and a side-mode suppression ratio of 27 dB in the continuous-wave regime are obtained. (semiconductor devices)

  6. Sensors Based on Thin-Film Coated Cladding Removed Multimode Optical Fiber and Single-Mode Multimode Single-Mode Fiber: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Ignacio Del Villar

    2015-01-01

    Full Text Available Two simple optical fibre structures that do not require the inscription of a grating, a cladding removed multimode optical fibre (CRMOF and a single-mode multimode single-mode structure (SMS, are compared in terms of their adequateness for sensing once they are coated with thin-films. The thin-film deposited (TiO2/PSS permits increasing the sensitivity to surrounding medium refractive index. The results obtained can be extrapolated to other fields such as biological or chemical sensing just by replacing the thin-film by a specific material.

  7. Transmission of Single-Channel 16-QAM Data Signals at Terabaud Symbol Rates

    DEFF Research Database (Denmark)

    Richter, Thomas; Palushani, Evarist; Schmidt-Langhorst, Carsten

    2012-01-01

    We present latest results for OTDM transmission systems in combination with digital coherent detection achieving record-high serial data rates in a single-wavelength channel. We show serial data transmission of 5.1 Tb/s (640 GBd) over 80-km and 10.2 Tb/s (1.28 TBd) over 29-km dispersion managed f...

  8. Manipulating single second mode transparency in a corrugated waveguide via the thickness of sputtered gold

    International Nuclear Information System (INIS)

    Xu, Dan; Fan, Ya-Xian; Sang, Tang-Qing; Xu, Lan-Lan; Bibi, Aysha; Tao, Zhi-Yong

    2016-01-01

    We propose a classical analog of electromagnetically induced transparency in a cylindrical waveguide with undulated metallic walls. The transparency, induced by multi-mode interactions in waveguides, not only has a narrow line-width, but also consists of a single second-order transverse mode, which corresponds to the Bessel function distributions investigated extensively due to their unique characteristics. By increasing the thickness of sputtered gold layers of the waveguide, we demonstrate a frequency-agile single mode transparency phenomenon in a terahertz radiation. It is found that the center frequency of the transparency is linearly related to the gold thickness, indicating the achievement of a controllable single mode terahertz device. The field distributions at the cross-sections of outlets verify the single second mode transparency and indicate the mechanism of its frequency manipulation, which will significantly benefit the mode-control engineering in terahertz applications. - Highlights: • An analog of electromagnetically induced transparency in terahertz tubes is proposed. • A single second transverse mode of Bessel distributions is observed in the pass band. • The operating frequency can be linearly controlled by the sputtered gold thickness. • We can effectively manipulate the slow down factor of light by the gold thickness. • The transparency characteristics rely on the transition of multi-mode interactions.

  9. Manipulating single second mode transparency in a corrugated waveguide via the thickness of sputtered gold

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Dan [Key Lab of In-fiber Integrated Optics, Ministry of Education of China, Harbin Engineering University, Harbin 150001 (China); Photonics Research Center, College of Science, Harbin Engineering University, Harbin 150001 (China); Fan, Ya-Xian, E-mail: yxfan@hrbeu.edu.cn [Key Lab of In-fiber Integrated Optics, Ministry of Education of China, Harbin Engineering University, Harbin 150001 (China); Photonics Research Center, College of Science, Harbin Engineering University, Harbin 150001 (China); Sang, Tang-Qing; Xu, Lan-Lan; Bibi, Aysha [Key Lab of In-fiber Integrated Optics, Ministry of Education of China, Harbin Engineering University, Harbin 150001 (China); Photonics Research Center, College of Science, Harbin Engineering University, Harbin 150001 (China); Tao, Zhi-Yong, E-mail: zytao@hrbeu.edu.cn [Key Lab of In-fiber Integrated Optics, Ministry of Education of China, Harbin Engineering University, Harbin 150001 (China); Photonics Research Center, College of Science, Harbin Engineering University, Harbin 150001 (China)

    2016-03-11

    We propose a classical analog of electromagnetically induced transparency in a cylindrical waveguide with undulated metallic walls. The transparency, induced by multi-mode interactions in waveguides, not only has a narrow line-width, but also consists of a single second-order transverse mode, which corresponds to the Bessel function distributions investigated extensively due to their unique characteristics. By increasing the thickness of sputtered gold layers of the waveguide, we demonstrate a frequency-agile single mode transparency phenomenon in a terahertz radiation. It is found that the center frequency of the transparency is linearly related to the gold thickness, indicating the achievement of a controllable single mode terahertz device. The field distributions at the cross-sections of outlets verify the single second mode transparency and indicate the mechanism of its frequency manipulation, which will significantly benefit the mode-control engineering in terahertz applications. - Highlights: • An analog of electromagnetically induced transparency in terahertz tubes is proposed. • A single second transverse mode of Bessel distributions is observed in the pass band. • The operating frequency can be linearly controlled by the sputtered gold thickness. • We can effectively manipulate the slow down factor of light by the gold thickness. • The transparency characteristics rely on the transition of multi-mode interactions.

  10. Vertical transmission of HIV from mother to child in sub-Saharan Africa: modes of transmission and methods for prevention.

    Science.gov (United States)

    Santmyire, B R

    2001-05-01

    The impact of the human immunodeficiency virus (HIV) epidemic in sub-Saharan Africa on future mortality rates of infants, children, and mothers, life expectancy, and economic growth is profound. Vertical transmission of HIV, transmission from mother to child, is a major factor in the increasing rates of HIV infection in sub-Saharan Africa. Vertical transmission of HIV occurs in utero, intrapartum during labor and delivery, and postpartum during breast-feeding. Because of the large numbers of HIV-infected mothers in developing countries, the majority trials regarding prevention of vertical transmission of HIV have been conducted in sub-Saharan Africa. Thus, sub-Saharan Africa has become a human laboratory, which demonstrates both the successes and failures of preventative methods to reduce vertical transmission of HIV. This review summarizes the body of research dedicated to understanding the pathophysiology of vertical transmission of HIV and pharmacology of inhibition of vertical transmission of HIV. While many debate the ethics of conducting trials in developing countries where effective prevention modalities have been slow to be implemented for economic, social and political reasons, studies continue and researchers continue to discover therapies and preventative methods, which may reduce the future devastation of HIV both in sub-Saharan Africa and throughout the world.

  11. Separate Turbo Code and Single Turbo Code Adaptive OFDM Transmissions

    Directory of Open Access Journals (Sweden)

    Burr Alister

    2009-01-01

    Full Text Available Abstract This paper discusses the application of adaptive modulation and adaptive rate turbo coding to orthogonal frequency-division multiplexing (OFDM, to increase throughput on the time and frequency selective channel. The adaptive turbo code scheme is based on a subband adaptive method, and compares two adaptive systems: a conventional approach where a separate turbo code is used for each subband, and a single turbo code adaptive system which uses a single turbo code over all subbands. Five modulation schemes (BPSK, QPSK, 8AMPM, 16QAM, and 64QAM are employed and turbo code rates considered are and . The performances of both systems with high ( and low ( BER targets are compared. Simulation results for throughput and BER show that the single turbo code adaptive system provides a significant improvement.

  12. Separate Turbo Code and Single Turbo Code Adaptive OFDM Transmissions

    Directory of Open Access Journals (Sweden)

    Lei Ye

    2009-01-01

    Full Text Available This paper discusses the application of adaptive modulation and adaptive rate turbo coding to orthogonal frequency-division multiplexing (OFDM, to increase throughput on the time and frequency selective channel. The adaptive turbo code scheme is based on a subband adaptive method, and compares two adaptive systems: a conventional approach where a separate turbo code is used for each subband, and a single turbo code adaptive system which uses a single turbo code over all subbands. Five modulation schemes (BPSK, QPSK, 8AMPM, 16QAM, and 64QAM are employed and turbo code rates considered are 1/2 and 1/3. The performances of both systems with high (10−2 and low (10−4 BER targets are compared. Simulation results for throughput and BER show that the single turbo code adaptive system provides a significant improvement.

  13. Raman-active modes in homogeneous and inhomogeneous bundles of single-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Sbai, K; Rahmani, A; Chadli, H [Laboratoire de Physique des materiaux et Modelisation des Systemes, Universite Moulay Ismail, Faculte des Sciences, BP 11201, Zitoune, 50000 Meknes (Morocco); Sauvajol, J-L [Laboratoire des Colloides, Verres et Nanomateriaux (UMR CNRS 5587), Universite Montpellier II, F-34095 Montpellier Cedex 5 (France)], E-mail: rahmani@fs-umi.ac.ma

    2009-01-28

    In the present work, the non-resonant Raman-active modes are calculated for several diameters, chiralities and sizes for homogeneous and inhomogeneous bundles of single-walled carbon nanotubes (BWCNTs), using the spectral moment's method (SMM). Additional intense Raman-active modes are present in the breathing-like modes (BLM) spectra of these systems in comparison with a single fully symmetric A{sub 1g} mode characteristic of isolated nanotubes (SWCNTs). The dependence of the wavenumber of these modes in terms of diameters, lengths and number of tubes was investigated. We found that, for a finite (in)homogeneous bundle, additional breathing-like modes appear as a specific signature.

  14. Decay properties of high-lying single-particles modes

    NARCIS (Netherlands)

    Beaumel, D; Fortier, S; Gales, S; Guillot, J; LangevinJoliot, H; Laurent, H; Maison, JM; Vernotte, J; Bordewijck, J; Brandenburg, S; Krasznahorkay, A; Crawley, GM; Massolo, CP; Renteria, M; Khendriche, A

    1996-01-01

    The neutron decay of high-lying single-particle states in Ni-64, Zr-90, Sn-120 and (208)pb excited by means of the (alpha,He-3) reaction has been investigated at 120 MeV incident energy using the multidetector EDEN. The characteristics of this reaction are studied using inclusive spectra and angular

  15. Center deviation of localized modes in a one-dimension anharmonic single impurity chain

    Science.gov (United States)

    Chen, Xuan-Lin; Zhu, Gang-Bei; Jiang, Ze-Hui; Yang, Yan-Qiang

    2018-04-01

    A 1D anharmonic chain with a single impurity particle is used to study the center deviation and stability of the localized modes. The displacement patterns of the localized modes for a variable impurity mass and anharmonic parameter are studied. The pattern center is shifted away from the impurity with decreasing anharmonic parameter for both symmetric and asymmetric anharmonic impurity modes. In the limit of a heavy-mass impurity, the energy localization is constrained to the three particles nearest to the impurity.

  16. Amplitude Noise Suppression and Orthogonal Multiplexing Using Injection-Locked Single-Mode VCSEL

    DEFF Research Database (Denmark)

    Lyubopytov, Vladimir; von Lerber, Tuomo; Lassas, Matti

    2017-01-01

    We experimentally demonstrate BER reduction and orthogonal modulation using an injection locked single-mode VCSEL. It allows us suppressing an amplitude noise of optical signal and/or double the capacity of an information channel....

  17. Label free imaging system for measuring blood flow speeds using a single multi-mode optical fiber (Conference Presentation)

    Science.gov (United States)

    Sigal, Iliya; Caravaca Aguirre, Antonio M.; Gad, Raanan; Piestun, Rafael; Levi, Ofer

    2016-03-01

    We demonstrate a single multi-mode fiber-based micro-endoscope for measuring blood flow speeds. We use the transmission-matrix wavefront shaping approach to calibrate the multi-mode fiber and raster-scan a focal spot across the distal fiber facet, imaging the cross-polarized back-reflected light at the proximal facet using a camera. This setup allows assessment of the backscattered photon statistics: by computing the mean speckle contrast values across the proximal fiber facet we show that spatially-resolved flow speed maps can be inferred by selecting an appropriate camera integration time. The proposed system is promising for minimally-invasive studies of neurovascular coupling in deep brain structures.

  18. Singles transmission scans performed post-injection for quantitative whole body FDG-PET

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.J.; Benard, F.; Karp, J.S. [Univ. of Pennsylvania, Philadelphia, PA (United States)] [and others

    1996-12-31

    Post-injection singles transmission scanning has been implemented in the septumless PENN PET 240H scanner (prototype of the GE QUEST). The method uses a 6 mCi point transmission source of {sup 137}Cs at the axial center and 37 cm of transaxial center of the camera field of view. Singles transmission scans of 1.8 minutes per bed axial position provide similar scan count densities to 15 minute coincidence transmission scans with 0.5 mCi {sup 68}Ge rod transmission source. Scatter and emission contamination suppression are achieved by applying a narrow 662 keV transmission photopeak energy window. The residual 511 keV emission contamination constitutes a background of uniform spatial distribution. Accurate and low noise attenuation correction is achieved by segmenting the singles transmission images into lung and soft tissue volumes. Established 511 keV gamma ray attenuation coefficients are then applied and these images are forward projected for attenuation correction. Expectation maximisation or OS-EM reconstruction of the transmission and emission images is used to improve image quality. Both the segmentation and OS-EM reconstruction maintain quantitative accuracy in the fully corrected emission images compared to measured coincidence transmission correction. Thus, a clinical protocol involving 40 minutes of emission scans followed by 20 minutes of singles transmission scans allow the 60 cm of the human torso to be fully scanned within 60 minutes. These quantitative whole body FDG PET images may then be used for tumor grading and assessment of tumor response to treatment.

  19. Influence of photo- and thermal bleaching on pre-irradiation low water peak single mode fibers

    Science.gov (United States)

    Yin, Jianchong; Wen, Jianxiang; Luo, Wenyun; Xiao, Zhongyin; Chen, Zhenyi; Wang, Tingyun

    2011-12-01

    Reducing the radiation-induced transmission loss in low water peak single mode fiber (LWP SMF) has been investigated by using photo-bleaching method with 980nm pump light source and using thermal-bleaching method with temperature control system. The results show that the radiation-induced loss of pre-irradiation optical fiber can be reduced effectively with the help of photo-bleaching or thermal-bleaching. Although the effort of photo-bleaching is not as significant as thermal-bleaching, by using photo-bleaching method, the loss of fiber caused by radiation-induced defects can be reduced best up to 49% at 1310nm and 28% at 1550nm in low pre-irradiation condition, the coating of the fiber are not destroyed, and the rehabilitating time is just several hours, while self-annealing usually costs months' time. What's more, the typical high power LASER for photo-bleaching can be 980nm pump Laser Diode, which is very accessible.

  20. Celiac disease biodetection using lossy-mode resonances generated in tapered single-mode optical fibers

    Science.gov (United States)

    Socorro, A. B.; Corres, J. M.; Del Villar, I.; Matias, I. R.; Arregui, F. J.

    2014-05-01

    This work presents the development and test of an anti-gliadin antibodies biosensor based on lossy mode resonances (LMRs) to detect celiac disease. Several polyelectrolites were used to perform layer-by-layer assembly processes in order to generate the LMR and to fabricate a gliadin-embedded thin-film. The LMR shifted 20 nm when immersed in a 5 ppm anti-gliadin antibodies-PBS solution, what makes this bioprobe suitable for detecting celiac disease. This is the first time, to our knowledge, that LMRs are used to detect celiac disease and these results suppose promising prospects on the use of such phenomena as biological detectors.

  1. Decay properties of high-lying single-particles modes

    Science.gov (United States)

    Beaumel, D.; Fortier, S.; Galès, S.; Guillot, J.; Langevin-Joliot, H.; Laurent, H.; Maison, J. M.; Vernotte, J.; Bordewijck, J.; Brandenburg, S.; Krasznahorkay, A.; Crawley, G. M.; Massolo, C. P.; Renteria, M.; Khendriche, A.

    1996-02-01

    The neutron decay of high-lying single-particle states in 64Ni, 90Zr, 120Sn and 208Pb excited by means of the (α, 3He) reaction has been investigated at 120 MeV incident energy using the multidetector EDEN. The characteristics of this reaction are studied using inclusive spectra and angular correlation analysis. The structure located between 11 and 15 MeV in 91Zr, and between 8 and 12 MeV excitation energy in 209Pb display large departures from a pure statistical decay. The corresponding non-statistical branching ratios are compared with the results of two theoretical calculations.

  2. Transverse single-mode edge-emitting lasers based on coupled waveguides.

    Science.gov (United States)

    Gordeev, Nikita Yu; Payusov, Alexey S; Shernyakov, Yuri M; Mintairov, Sergey A; Kalyuzhnyy, Nikolay A; Kulagina, Marina M; Maximov, Mikhail V

    2015-05-01

    We report on the transverse single-mode emission from InGaAs/GaAs quantum well edge-emitting lasers with broadened waveguide. The lasers are based on coupled large optical cavity (CLOC) structures where high-order vertical modes of the broad active waveguide are suppressed due to their resonant tunneling into a coupled single-mode passive waveguide. The CLOC lasers have shown stable Gaussian-shaped vertical far-field profiles with a reduced divergence of ∼22° FWHM (full width at half-maximum) in CW (continuous-wave) operation.

  3. Spectral response characteristics of the transmission-mode aluminum gallium nitride photocathode with varying aluminum composition.

    Science.gov (United States)

    Hao, Guanghui; Liu, Junle; Ke, Senlin

    2017-12-10

    In order to research spectral response characteristics of transmission-mode nanostructure aluminum gallium nitride (AlGaN) photocathodes, the AlGaN photocathodes materials with varied aluminum (Al) composition were grown by metalorganic chemical vapor deposition (MOCVD) and its optical properties were measured. The Al compositions of each AlGaN film of the photocathodes were analyzed from their adsorption properties curves; their thickness was also calculated by the matrix formula of thin-film optics. The nanostructure AlGaN photocathodes were activated with the Caesium-Oxygen (Cs-O) alternation, and after the photocathode was packaged in vacuum, their spectrum responses were measured. The experimental results showed that the trend of spectrum response curves first increased and then decreased along with the increasing of the incident light wavelength. The peak spectrum response value was 17.5 mA/W at 255 nm, and its quantum efficiency was 8.5%. The lattice defects near the interface of the AlGaN heterostructure could impede the electron motion crossing this region and moving toward the photocathode surface; this was a factor that reduces the electron emission performance of the photocathodes. Also, the experimental result showed that the thickness of each AlGaN layer affected the electron diffusion characteristics; this was a key factor that influenced the spectrum response performance.

  4. Transmission with a first-stage hydrostatic mode and two hydromechanical stages

    Science.gov (United States)

    Orshansky, Jr., deceased, Elias; Weseloh, William E.

    1979-01-01

    A power transmission having two planetary assemblies, each having at least one carrier with planet gears, at least one sun gear, and at least one ring gear. A speed-varying module is connected in driving relation to the input shaft and in driving relationship to the sun gear or gears of the first planetary assembly. The speed-varying means may comprise a pair of hydraulic units hydraulically interconnected so that one serves as a pump while the other serves as a motor and vice versa, one of the units having a variable stroke and being connected in driving relation to the input shaft, the other unit, which may have a fixed stroke, being connected in driving relation to the sun gear. The input shaft is also connectable by a first clutch to a carrier of the first planetary assembly and by a second clutch to a sun gear of the second planetary assembly. A brake grounds the first carrier in the first range and in reverse and causes drive to be delivered to the output through a ring gear of the first planetary assembly in a hydrostatic mode. The carrier of the second planetary assembly being connected in driving relationship to that ring gear, and in all ranges these two elements transmit the drive to the output shaft.

  5. Low-NA single-mode LMA photonic crystal fiber amplifier

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Laurila, Marko; Scolari, Lara

    2011-01-01

    Enabling Single-Mode (SM) operation in Large-Mode-Area (LMA) fiber amplifiers and lasers is critical, since a SM output ensures high beam quality and excellent pointing stability. In this paper, we demonstrate and test a new design approach for achieving ultra-low NA SM rod fibers by using...... a spatially Distributed Mode Filter (DMF). This approach achieves SM performance in a short and straight rod fiber and allows preform tolerances to be compensated during draw. A low-NA SM rod fiber amplifier having a mode field diameter of ~60μm at 1064nm and a pump absorption of 27dB/m at 976nm...

  6. Nonlinear growth of a single neoclassical MHD tearing mode in a tokamak

    International Nuclear Information System (INIS)

    Qu, W.X.; Callen, J.D.

    1985-10-01

    The nonlinear evolution equation for the growth of a single neoclassical MHD tearing mode is derived from the usual resistive MHD equations with neoclassical effects included. For the case Δ' > 0 where the usual resistive MHD modes are unstable, in nonlinear neoclassical MHD there is an intermediate time regime in which the island width w grows only as t/sup 1/2/. However, eventually the neoclassical MHD tearing modes are found to enter the usual resistive MHD Rutherford regime where w infinity t. Physically, the neoclassical MHD bootstrap current effects modify the linear and early nonlinear growth of tearing modes. However, eventually the magnetic islands flatten the pressure gradient within the island to remove these effects and return, at long times, to the usual quasilinear picture for the nonlinear evolution of a single resistive MHD tearing mode

  7. Decay properties of high-lying single-particles modes

    Energy Technology Data Exchange (ETDEWEB)

    Beaumel, D. [Institut de Physique Nucleaire, 91 - Orsay (France); Fortier, S. [Institut de Physique Nucleaire, 91 - Orsay (France); Gales, S. [Institut de Physique Nucleaire, 91 - Orsay (France); Guillot, J. [Institut de Physique Nucleaire, 91 - Orsay (France); Langevin-Joliot, H. [Institut de Physique Nucleaire, 91 - Orsay (France); Laurent, H. [Institut de Physique Nucleaire, 91 -Orsay (France); Maison, J.M. [Institut de Physique Nucleaire, 91 - Orsay (France); Vernotte, J. [Institut de Physique Nucleaire, 91 - Orsay (France); Bordewijck, J. [Kernfysisch Versneller Instituut, 9747 Groningen (Netherlands); Brandenburg, S. [Kernfysisch Versneller Instituut, 9747 Groningen (Netherlands); Krasznahorkay, A. [Kernfysisch Versneller Instituut, 9747 Groningen (Netherlands); Crawley, G.M. [NSCL, Michigan State University, East Lansing, MI 48824 (United States); Massolo, C.P. [Universitad Nacional de La Plata, 1900 La Plata (Argentina); Renteria, M. [Universitad Nacional de La Plata, 1900 La Plata (Argentina); Khendriche, A. [University of Tizi-Ouzou, Tizi-Ouzou (Algeria)

    1996-03-18

    The neutron decay of high-lying single-particle states in {sup 64}Ni, {sup 90}Zr, {sup 120}Sn and {sup 208}Pb excited by means of the ({alpha},{sup 3}He) reaction has been investigated at 120 MeV incident energy using the multidetector EDEN. The characteristics of this reaction are studied using inclusive spectra and angular correlation analysis. The structure located between 11 and 15 MeV in {sup 91}Zr, and between 8 and 12 MeV excitation energy in {sup 209}Pb display large departures from a pure statistical decay. The corresponding non-statistical branching ratios are compared with the results of two theoretical calculations. (orig.).

  8. Integrated Transmission Electron and Single-Molecule Fluorescence Microscopy Correlates Reactivity with Ultrastructure in a Single Catalyst Particle

    OpenAIRE

    Hendriks, Frank C.; Mohammadian, Sajjad; Ristanovic, Zoran; Kalirai, Samanbir; Meirer, Florian; Vogt, Eelco T. C.; Bruijnincx, Pieter C. A.; Gerritsen, Hans; Weckhuysen, Bert M.

    2018-01-01

    Establishing structure–activity relationships in complex, hierarchically structured nanomaterials, such as fluid catalytic cracking (FCC) catalysts, requires characterization with complementary, correlated analysis techniques. An integrated setup has been developed to perform transmission electron microscopy (TEM) and single-molecule fluorescence (SMF) microscopy on such nanostructured samples. Correlated structure–reactivity information was obtained for 100 nm thin, microtomed sections of a ...

  9. Precision measurement of single atoms strongly coupled to the higher-order transverse modes of a high-finesse optical cavity

    Energy Technology Data Exchange (ETDEWEB)

    Du, Jinjin; Li, Wenfang; Wen, Ruijuan; Li, Gang; Zhang, Pengfei; Zhang, Tiancai [State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006 (China)

    2013-08-19

    We have experimentally demonstrated the strong coupling between single atoms and the higher-order Hermite-Gaussian transverse modes in a high-finesse optical microcavity. Compared to the usual low-order symmetric transverse modes, multiple lobes and the asymmetric spatial pattern of the titled modes provide more information about the motion of single atoms in the cavity. The motional information can be extracted from the measured transmission spectra, which includes the velocities and the positions of the atoms in vertical and off-axis directions. The scheme has great potential in time-resolved atom-cavity microscopy and in tracking the three-dimensional single atom trajectory in real time.

  10. Transmission of Fast Highly Charged Ions through a Single Glass Macrocapillary and Polycarbonate Nanocapillary Foils

    Science.gov (United States)

    Ayyad, A. M.; Dassanayake, B. S.; Keerthisinghe, D.; DeSilva, G. G.; Elkafrawy, T.; Kayani, N.; Tanis, J. A.

    2012-11-01

    Transmission of 3 MeV protons and 16 MeV O5+ ions through a single glass macrocapillary and a polycarbonate nanocapillary foil has been investigated. Results show that 3 MeV protons transmit through the capillary and the foils with little or no energy loss, while 16 MeV O5+ ions show transmission through the capillary and the foil with energy losses that vary with the tilt angle, and there are also changes in the charge state.

  11. Single channel and WDM transmission of 28 Gbaud zero-guard-interval CO-OFDM.

    Science.gov (United States)

    Zhuge, Qunbi; Morsy-Osman, Mohamed; Mousa-Pasandi, Mohammad E; Xu, Xian; Chagnon, Mathieu; El-Sahn, Ziad A; Chen, Chen; Plant, David V

    2012-12-10

    We report on the experimental demonstration of single channel 28 Gbaud QPSK and 16-QAM zero-guard-interval (ZGI) CO-OFDM transmission with only 1.34% overhead for OFDM processing. The achieved transmission distance is 5120 km for QPSK assuming a 7% forward error correction (FEC) overhead, and 1280 km for 16-QAM assuming a 20% FEC overhead. We also demonstrate the improved tolerance of ZGI CO-OFDM to residual inter-symbol interference compared to reduced-guard-interval (RGI) CO-OFDM. In addition, we report an 8-channel wavelength-division multiplexing (WDM) transmission of 28 Gbaud QPSK ZGI CO-OFDM signals over 4160 km.

  12. Processing of complex shapes with single-mode resonant frequency microwave applicators

    International Nuclear Information System (INIS)

    Fellows, L.A.; Delgado, R.; Hawley, M.C.

    1994-01-01

    Microwave processing is an alternative to conventional composite processing techniques. Single-mode microwave applicators efficiently couple microwave energy into the composite. The application of the microwave energy is greatly affected by the geometry of the composite. In the single mode microwave applicator, two types of modes are available. These modes are best suited to processing flat planar samples or cylindrical samples with geometries that align with the electric fields. Mode-switching is alternating between different electromagnetic modes with the intelligent selection of the modes to alleviate undesirable temperature profiles. This method has improved the microwave heating profiles of materials with complex shapes that do not align with either type of electric field. Parts with two different complex geometries were fabricated from a vinyl toluene/vinyl ester resin with a continuous glass fiber reinforcement by autoclaving and by microwave techniques. The flexural properties of the microwave processed samples were compared to the flexural properties of autoclaved samples. The trends of the mechanical properties for the complex shapes were consistent with the results of experiments with flat panels. This demonstrated that mode-switching techniques are as applicable for the complex shapes as they are for the simpler flat panel geometry

  13. Single-molecule electronics: Cooling individual vibrational modes by the tunneling current.

    Science.gov (United States)

    Lykkebo, Jacob; Romano, Giuseppe; Gagliardi, Alessio; Pecchia, Alessandro; Solomon, Gemma C

    2016-03-21

    Electronic devices composed of single molecules constitute the ultimate limit in the continued downscaling of electronic components. A key challenge for single-molecule electronics is to control the temperature of these junctions. Controlling heating and cooling effects in individual vibrational modes can, in principle, be utilized to increase stability of single-molecule junctions under bias, to pump energy into particular vibrational modes to perform current-induced reactions, or to increase the resolution in inelastic electron tunneling spectroscopy by controlling the life-times of phonons in a molecule by suppressing absorption and external dissipation processes. Under bias the current and the molecule exchange energy, which typically results in heating of the molecule. However, the opposite process is also possible, where energy is extracted from the molecule by the tunneling current. Designing a molecular "heat sink" where a particular vibrational mode funnels heat out of the molecule and into the leads would be very desirable. It is even possible to imagine how the vibrational energy of the other vibrational modes could be funneled into the "cooling mode," given the right molecular design. Previous efforts to understand heating and cooling mechanisms in single molecule junctions have primarily been concerned with small models, where it is unclear which molecular systems they correspond to. In this paper, our focus is on suppressing heating and obtaining current-induced cooling in certain vibrational modes. Strategies for cooling vibrational modes in single-molecule junctions are presented, together with atomistic calculations based on those strategies. Cooling and reduced heating are observed for two different cooling schemes in calculations of atomistic single-molecule junctions.

  14. Comparison of lumped-element and transmission-line models for thickness-shear-mode quartz resonator sensors

    Energy Technology Data Exchange (ETDEWEB)

    Cernosek, R.W.; Martin, S.J. [Sandia National Laboratories, Albuquerque, NM (United States); Hillman, A.R. [Univ. of Leicester (United Kingdom). Dept. of Chemistry] [and others

    1997-08-01

    Both a transmission-line model and its simpler variant, a lumped-element model, can be used to predict the responses of a thickness-shear-mode quartz resonator sensor. Relative deviations in the parameters computed by the two models (shifts in resonant frequency and motional resistance) do not exceed 3% for most practical sensor configurations operating at the fundamental resonance. If the ratio of the load surface mechanical impedance to the quartz shear characteristic impedance does not exceed 0.1, the lumped-element model always predicts responses within 1% of those for the transmission-line model.

  15. Biased transmission of sex chromosomes in the aphid Myzus persicae is not associated with reproductive mode.

    Science.gov (United States)

    Wilson, Alex C C; Delgado, Ryan N; Vorburger, Christoph

    2014-01-01

    Commonly, a single aphid species exhibits a wide range of reproductive strategies including cyclical parthenogenesis and obligate parthenogenesis. Sex determination in aphids is chromosomal; females have two X chromosomes, while males have one. X chromosome elimination at male production is generally random, resulting in equal representation of both X chromosomes in sons. However, two studies have demonstrated deviations from randomness in some lineages. One hypothesis to account for such deviations is that recessive deleterious mutations accumulate during bouts of asexual reproduction and affect male viability, resulting in overrepresentation of males with the least deleterious of the two maternal X chromosomes. This hypothesis results in a testable prediction: X chromosome transmission bias will increase with time spent in the asexual phase and should therefore be most extreme in the least sexual aphid life cycle class. Here we test this prediction in Myzus persicae. We used multiple heterozygous X-linked microsatellite markers to screen 1085 males from 95 lines of known life cycle. We found significant deviations from equal representation of X chromosomes in 15 lines; however, these lines included representatives of all life cycles. Our results are inconsistent with the hypothesis that deviations from randomness are attributable to mutation accumulation.

  16. Experimental Performance of a Single-Mode Ytterbium-doped Fiber Ring Laser with Intracavity Modulator

    Science.gov (United States)

    Numata, Kenji; Camp, Jordan

    2012-01-01

    We have developed a linearly polarized Ytterbium-doped fiber ring laser with a single longitudinal mode output at 1064 run. A fiber-coupled intracavity phase modulator ensured mode-hop free operation and allowed fast frequency tuning. The fiber laser was locked with high stability to an iodine-stabilized laser, showing a frequency noise suppression of a factor approx 10 (exp 5) at 1 mHz

  17. Wavelength-selectable and steady single-mode erbium-doped fiber multiple ring laser

    Science.gov (United States)

    Yeh, Chien-Hung; Yang, Zi-Qing; Huang, Tzu-Jung; Chow, Chi-Wai; Chen, Jing-Heng; Chen, Kun-Huang

    2017-11-01

    To achieve a stable and selectable C-band erbium-doped fiber (EDF) laser with single-longitudinal-mode output, a multiple ring architecture is proposed and demonstrated experimentally. In this work, we design a passively quadruple-ring structure in the cavity of an EDF laser to produce a Vernier effect with a mode filter for suppressing the multimode spikes significantly. In addition, the output performance and stability of the proposed EDF ring laser are discussed.

  18. In-Line Fiber Optic Interferometric Sensors in Single-Mode Fibers

    OpenAIRE

    De-Wen Duan; Min Liu; Di Wu; Tao Zhu

    2012-01-01

    In-line fiber optic interferometers have attracted intensive attention for their potential sensing applications in refractive index, temperature, pressure and strain measurement, etc. Typical in-line fiber-optic interferometers are of two types: Fabry-Perot interferometers and core-cladding-mode interferometers. It’s known that the in-line fiber optic interferometers based on single-mode fibers can exhibit compact structures, easy fabrication and low cost. In this paper, ...

  19. A single mode method for the analysis and identification of nonlinear MDOF systems

    Science.gov (United States)

    Huang, Liping; Iwan, W. D.

    In order to apply mode approach to describe a nonlinear system, the concept of modal response of nonlinear systems is examined, and an amplitude-dependent modal model is presented based on an analysis of a single mode of response. The effectiveness of this model is examined under different types and various levels of excitation. A corresponding identification procedure for cubic systems is proposed and applied to the analysis of a 3DOF soltening nonlinear system.

  20. 70 GeV proton volume capture into channeling mode with a bent Si single crystal

    International Nuclear Information System (INIS)

    Chesnokov, Yu.A.; Galyaev, N.A.; Kotov, V.I.; Tsarik, S.V.; Zapol'skij, V.N.

    1990-01-01

    The existence of the volume capture of 70 GeV protons with a Si bent single crystal of (111) orientation into the channeling mode gas experimentally been proved. The data on the probability of capturing protons into the channeling mode versus the bending radius of the crystal have been obtained together with the information on the dynamics of volume captured particle dechanneling. 10 refs

  1. Development of a 10-decade single-mode reactor flux monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Valentine, K.H.; Shepard, R.L.; Falter, K.G.; Reese, W.B.

    1988-03-31

    Conventional wide-range neutron channels employ three optional modes to monitor the required flux range from source levels to full power (typically 10 or more decades). Difficult calibrations are necessary to provide a continuous output signal when such a system switches from counting mode in the source range to mean-square voltage mode in the midrange to dc current mode in the power range. In an ORNL proof-of-principle test, a method of extended range counting was implemented with a fission counter and conventional wide-band pulse processing electronics to provide a single-mode, monotonically increasing signal that spanned /approximately 10/ decades of neutron flux. Ongoing work includes design, fabrication, and testing of a comlpete neutron flux monitoring system suitable for advanced liquid metal reactor designs. 6 refs., 4 figs.

  2. Development of a 10-decade single-mode reactor flux monitoring system

    International Nuclear Information System (INIS)

    Valentine, K.H.; Shepard, R.L.; Falter, K.G.; Reese, W.B.

    1988-01-01

    Conventional wide-range neutron channels employ three optional modes to monitor the required flux range from source levels to full power (typically 10 or more decades). Difficult calibrations are necessary to provide a continuous output signal when such a system switches from counting mode in the source range to mean-square voltage mode in the midrange to dc current mode in the power range. In an ORNL proof-of-principle test, a method of extended range counting was implemented with a fission counter and conventional wide-band pulse processing electronics to provide a single-mode, monotonically increasing signal that spanned /approximately 10/ decades of neutron flux. Ongoing work includes design, fabrication, and testing of a comlpete neutron flux monitoring system suitable for advanced liquid metal reactor designs. 6 refs., 4 figs

  3. Technology and engineering aspects of high power pulsed single longitudinal mode dye lasers

    Science.gov (United States)

    Rawat, V. S.; Mukherjee, Jaya; Gantayet, L. M.

    2015-09-01

    Tunable single mode pulsed dye lasers are capable of generating optical radiations in the visible range having very small bandwidths (transform limited), high average power (a few kW) at a high pulse repetition rate (a few tens of kHz), small beam divergence and relatively higher efficiencies. These dye lasers are generally utilized laser dyes dissolved in solvents such as water, heavy water, ethanol, methanol, etc. to provide a rapidly flowing gain medium. The dye laser is a versatile tool, which can lase either in the continuous wave (CW) or in the pulsed mode with pulse duration as small as a few tens of femtoseconds. In this review, we have examined the several cavity designs, various types of gain mediums and numerous types of dye cell geometries for obtaining the single longitudinal mode pulsed dye laser. Different types of cavity configuration, such as very short cavity, short cavity with frequency selective element and relatively longer cavity with multiple frequency selective elements were reviewed. These single mode lasers have been pumped by all kinds of pumping sources such as flash lamps, Excimer, Nitrogen, Ruby, Nd:YAG, Copper Bromide and Copper Vapor Lasers. The single mode dye lasers are either pumped transversely or longitudinally to the resonator axis. The pulse repletion rate of these pump lasers were ranging from a few Hz to a few tens of kHz. Physics technology and engineering aspects of tuning mechanism, mode hop free scanning and dye cell designs are also presented in this review. Tuning of a single mode dye laser with a resolution of a few MHz per step is a technologically challenging task, which is discussed here.

  4. Dense SDM (12-core × 3-mode) transmission over 527 km with 33.2-ns mode-dispersion employing low-complexity parallel MIMO frequency-domain equalization

    DEFF Research Database (Denmark)

    Shibahara, K.; Mizuno, T.; Takara, H.

    We demonstrate 12-core × 3-mode dense SDM transmission over 527 km graded-index multi-core few-mode fiber without mode-dispersion management. Employing low baud rate multi-carrier signal and frequency-domain equalization enables 33.2-ns DMD compensation with low computational complexity. © 2015 OSA...

  5. Utilizing wheel-ring architecture for stable and selectable single-longitudinal-mode erbium fiber laser

    Science.gov (United States)

    Yeh, Chien-Hung; Yang, Zi-Qing; Huang, Tzu-Jung; Chow, Chi-Wai

    2018-03-01

    To achieve a steady single-longitudinal-mode (SLM) erbium-doped fiber (EDF) laser, the wheel-ring architecture is proposed in the laser cavity. According to Vernier effect, the proposed wheel-ring can produce three different free spectrum ranges (FSRs) to serve as the mode-filter for suppressing the densely multi-longitudinal-mode (MLM). Here, to complete wavelength-tunable EDF laser, an optical tunable bandpass filter (OTBF) is utilized inside the cavity for tuning arbitrarily. In addition, the entire output performances of the proposed EDF wheel-ring laser are also discussed and analyzed experimentally.

  6. Lateral emission highly polarized single-mode nanobelt laser (Conference Presentation)

    Science.gov (United States)

    Xu, Pengfei; Liu, Shikai; Li, Ming; Zhou, Zheng; Ren, Zhaohui; Yang, Qing

    2017-02-01

    Nanoscale lasers are the key component in the integrated photonics chips and have attracted much interests. Nanoblets and nanowires lasers, as one of the candidates for the nanoscale lasers, have been developed for one more decades. Many kinds of nanowire lasers with different functionalities, such as wavelength tunable, single mode, polarized emission and so on, have been demonstrated. However, the reported single mode nanowire lasers are mostly realized through microfabrication process, careful manipulation and complicated structures. Here, we present a new type of lateral emission single mode nanobelt lasers with high polarization ratio which are fabricated by the one step traditional VLS (Vapor Liquid Solid) growth. Different from the traditional nanobelt lasers which are based on the FP cavity formed in the longitudinal direction, the emission of this novel nanoblet laser is lateral which is contribute to the special wire-like structures grown on the nanobelt. It shows band edge emission and the wavelength is centered at 712.6 nm with linewidth about 0.18 nm. The threshold reach as low as 15 uJ/cm2 benefit from the unique morphology which provides enhanced confinement factor for optical modes. Meanwhile the laser emission is highly polarized with polarization ration as high as 0.91. This lateral emission single mode nanobelt laser with high polarization ratio, low threshold and simple fabrication technique offers an economic and effective choice to the future optical applications.

  7. Q-switching and efficient harmonic generation from a single-mode LMA photonic bandgap rod fiber laser

    DEFF Research Database (Denmark)

    Laurila, Marko; Saby, Julien; Alkeskjold, Thomas T.

    2011-01-01

    We demonstrate a Single-Mode (SM) Large-Mode-Area (LMA) ytterbium-doped PCF rod fiber laser with stable and close to diffraction limited beam quality with 110W output power. Distributed-Mode-Filtering (DMF) elements integrated in the cladding of the rod fiber provide a robust spatial mode with a ...

  8. Modal analysis and dispersion curves of an elliptical W-type single mode fiber

    Science.gov (United States)

    Prajapati, Y.; Maurya, Jitendra Bahadur; Singh, Vivek; Saini, J. P.

    2015-05-01

    In this paper, the propagation of electromagnetic waves in W-type elliptical dielectric optical fiber having various cladding layers is presented. The presented fiber has concentric core and cladding which have elliptical cross section and the refractive index of one of the inner cladding (the cladding between first clad and last clad) maximum. Using elliptic cylindrical coordinates, boundary conditions are derived and longitudinal field components for the even and odd modes are obtained. The characteristic equation for the fiber to be studied is determined by solving the Mathieu ( q > 0) and the modified Mathieu functions ( q < 0). In order to study the fundamental mode, the modal index m is put as m = 1. Finally, the cutoff frequencies for several lower order modes have been calculated and their dispersion characteristics are plotted. The effects of elliptical eccentricity e on the mode cutoff frequencies and mode transmissions are also addressed. The analysis shows that one can control the propagation property of optical fiber by increasing the number of inner claddings. These claddings provide additional degree of freedom to control the modes.

  9. Single-mode 37-core fiber with a cladding diameter of 248 μm

    DEFF Research Database (Denmark)

    Sasaki, Y.; Takenaga, K.; Aikawa, K.

    2017-01-01

    A heterogeneous single-mode 37-core fiber with a cladding diameter of 248 μm is designed and fabricated. The fiber provides the highest core count and low total-crosstalk less than −20 dB/1000 km in C+L band.......A heterogeneous single-mode 37-core fiber with a cladding diameter of 248 μm is designed and fabricated. The fiber provides the highest core count and low total-crosstalk less than −20 dB/1000 km in C+L band....

  10. Transmission of single and multiple viral variants in primary HIV-1 subtype C infection.

    Directory of Open Access Journals (Sweden)

    Vladimir Novitsky

    2011-02-01

    Full Text Available To address whether sequences of viral gag and env quasispecies collected during the early post-acute period can be utilized to determine multiplicity of transmitted HIV's, recently developed approaches for analysis of viral evolution in acute HIV-1 infection [1,2] were applied. Specifically, phylogenetic reconstruction, inter- and intra-patient distribution of maximum and mean genetic distances, analysis of Poisson fitness, shape of highlighter plots, recombination analysis, and estimation of time to the most recent common ancestor (tMRCA were utilized for resolving multiplicity of HIV-1 transmission in a set of viral quasispecies collected within 50 days post-seroconversion (p/s in 25 HIV-infected individuals with estimated time of seroconversion. The decision on multiplicity of HIV infection was made based on the model's fit with, or failure to explain, the observed extent of viral sequence heterogeneity. The initial analysis was based on phylogeny, inter-patient distribution of maximum and mean distances, and Poisson fitness, and was able to resolve multiplicity of HIV transmission in 20 of 25 (80% cases. Additional analysis involved distribution of individual viral distances, highlighter plots, recombination analysis, and estimation of tMRCA, and resolved 4 of the 5 remaining cases. Overall, transmission of a single viral variant was identified in 16 of 25 (64% cases, and transmission of multiple variants was evident in 8 of 25 (32% cases. In one case multiplicity of HIV-1 transmission could not be determined. In primary HIV-1 subtype C infection, samples collected within 50 days p/s and analyzed by a single-genome amplification/sequencing technique can provide reliable identification of transmission multiplicity in 24 of 25 (96% cases. Observed transmission frequency of a single viral variant and multiple viral variants were within the ranges of 64% to 68%, and 32% to 36%, respectively.

  11. A single well pumping and recovery test to measure in situ acrotelm transmissivity in raised bogs

    NARCIS (Netherlands)

    Schaaf, van der S.

    2004-01-01

    A quasi-steady-state single pit pumping and recovery test to measure in situ the transmissivity of the highly permeable upper layer of raised bogs, the acrotelm, is described and discussed. The basic concept is the expanding depression cone during both pumping and recovery. It is shown that applying

  12. Computational investigation of single mode vs multimode Rayleigh endash Taylor seeding in Z-pinch implosions

    International Nuclear Information System (INIS)

    Douglas, M.R.; Deeney, C.; Roderick, N.F.

    1998-01-01

    A series of two-dimensional magnetohydrodynamic calculations have been carried out to investigate single and multimode growth and mode coupling for magnetically-driven Rayleigh endash Taylor instabilities in Z pinches. Wavelengths ranging from 5.0 mm down to 1.25 mm were considered. Such wavelengths are comparable to those observed at stagnation using a random density open-quotes seedingclose quotes method. The calculations show that wavelengths resolved by less than 10 cells exhibit an artificial decrease in initial Fourier spectrum amplitudes and a reduction in the corresponding amplitude growth. Single mode evolution exhibits linear exponential growth and the development of higher harmonics as the mode transitions into the nonlinear phase. The mode growth continues to exponentiate but at a slower rate than determined by linear hydrodynamic theory. In the two and three mode case, there is clear evidence of mode coupling and inverse cascade. In addition, distinct modal patterns are observed late in the implosion, resulting from finite shell thickness and magnetic field effects. copyright 1998 American Institute of Physics. thinsp

  13. Single mode fiber array for planet detection using a visible nulling interferometer

    Science.gov (United States)

    Liu, Duncan; Levine, B. Martin; Shao, Michael; Aguayo, Franciso

    2005-01-01

    We report the design, fabrication, and testing of a coherent large mode field diameter fiber array to be used as a spatial filter in a planet finding visible nulling interferometer. The array is a key component of a space instrument for visible-light detection and spectroscopy of Earth like extrasolar planets. In this concept, a nulling interferometer is synthesized from a pupil image of a single aperture which is then spatially filtered by a coherent array of single mode fibers to suppress the residual scattered star light. The use of the fiber array preserves spatial information between the star and planet. The fiber array uses a custom commercial large mode field or low NA step-index single mode fiber to relax alignment tolerances. A matching custom micro lens array is used to couple light into the fibers, and to recollimate the light out of the fiber array. The use of large mode field diameter fiber makes the fabrication of a large spatial filter array with 300 to 1000 elements feasible.

  14. Single Mode ZnO Whispering-Gallery Submicron Cavity and Graphene Improved Lasing Performance.

    Science.gov (United States)

    Li, Jitao; Lin, Yi; Lu, Junfeng; Xu, Chunxiang; Wang, Yueyue; Shi, Zengliang; Dai, Jun

    2015-07-28

    Single-mode ultraviolet (UV) laser of ZnO is still in challenge so far, although it has been paid great attention along the past decades. In this work, single-mode lasing resonance was realized in a submicron-sized ZnO rod based on serially varying the dimension of the whispering-gallery mode (WGM) cavities. The lasing performance, such as the lasing quality factor (Q) and the lasing intensity, was remarkably improved by facilely covering monolayer graphene on the ZnO submicron-rod. The mode structure evolution from multimodes to single-mode was investigated systematically based on the total internal-wall reflection of the ZnO microcavities. Graphene-induced optical field confinement and lasing emission enhancement were revealed, indicating an energy coupling between graphene SP and ZnO exciton emission. This result demonstrated the response of graphene in the UV wavelength region and extended its potential applications besides many previous reports on the multifunctional graphene/semiconductor hybrid materials and devices in advanced electronics and optoelectronics areas.

  15. Statistical properties of single-mode fiber coupling of satellite-to-ground laser links partially corrected by adaptive optics.

    Science.gov (United States)

    Canuet, Lucien; Védrenne, Nicolas; Conan, Jean-Marc; Petit, Cyril; Artaud, Geraldine; Rissons, Angelique; Lacan, Jerome

    2018-01-01

    In the framework of satellite-to-ground laser downlinks, an analytical model describing the variations of the instantaneous coupled flux into a single-mode fiber after correction of the incoming wavefront by partial adaptive optics (AO) is presented. Expressions for the probability density function and the cumulative distribution function as well as for the average fading duration and fading duration distribution of the corrected coupled flux are given. These results are of prime interest for the computation of metrics related to coded transmissions over correlated channels, and they are confronted by end-to-end wave-optics simulations in the case of a geosynchronous satellite (GEO)-to-ground and a low earth orbit satellite (LEO)-to-ground scenario. Eventually, the impact of different AO performances on the aforementioned fading duration distribution is analytically investigated for both scenarios.

  16. Single-Phase Microgrid with Seamless Transition Capabilities between Modes of Operation

    DEFF Research Database (Denmark)

    Micallef, Alexander; Apap, Maurice; Spiteri-Staines, Cyril

    2015-01-01

    Microgrids are an effective way to increase the penetration of DG into the grid. They are capable of operating either in grid-connected or in islanded mode thereby increasing the supply reliability for the end user. This paper focuses on achieving seamless transitions from islanded to grid......-connected and vice versa for a single phase microgrid made up from voltage controlled voltage source inverters (VC-VSIs) and current controlled voltage source inverters (CC-VSIs) working together in both modes of operation. The primary control structures for the VC-VSIs and CC-VSIs is considered together...... with the secondary control loops that are used to synchronize the microgrid as a single unit to the grid. Simulation results are given that show the seamless transitions between the two modes without any disconnection times for the CC-VSIs and VC-VSIs connected to the microgrid....

  17. Thermal Effects on the Single-Mode Regime of Distributed Modal Filtering Rod Fiber

    DEFF Research Database (Denmark)

    Coscelli, Enrico; Poli, Federica; Alkeskjold, Thomas Tanggaard

    2012-01-01

    Power scaling of fiber laser systems requires the development of innovative active fibers, capable of providing high pump absorption, ultralarge effective area, high-order mode suppression, and resilience to thermal effects. Thermally induced refractive index change has been recently appointed...... rod-type photonic crystal fiber, which exploits resonant coupling with high-index elements to suppress high-order modes, are thoroughly investigated. A computationally efficient model has been developed to calculate the refractive index change due to the thermo-optical effect, and it has been...... integrated into a full-vector modal solver based on the finite-element method to obtain the guided modes, considering different heating conditions. Results have shown that the single-mode regime of the distributed modal filtering fiber is less sensitive to thermal effects with respect to index-guiding fibers...

  18. Practical Considerations Concerning the Interleaved Transition Mode Single-stage Ballast

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Kjær, Søren Bækhøj; Munk-Nielsen, Stig

    2002-01-01

    The aim of this paper is to present a novel single-stage interleaved ballast focusing on practical design aspects like: key current expression, overall losses, harmonic analysis of the differential-mode EMI current and preheating ballast function. A new preheating method is also presented. A PSPI...

  19. Single mode chalcogenide glass fiber as wavefront filter for the DARWIN planet finding misson

    NARCIS (Netherlands)

    Faber, A.J.; Cheng, L.K.; Gielesen, W.L.M.; Boussard-Plédel, C.; Houizot, P.; Danto, S.; Lucas, J.; Pereira Do Carmo, J.

    2017-01-01

    The development of single mode chalcogenide glass fibers as wavefront filter for the DARWIN mission is reported. Melting procedures and different preform techniques for manufacturing core-cladding chalcogenide fibers are described. Bulk glass samples on the basis of Te-As-Se- and high

  20. Experimental detection of nonclassicality of single-mode fields via intensity moments

    Czech Academy of Sciences Publication Activity Database

    Arkhipov, Ie.I.; Peřina, Jan; Haderka, O.; Michálek, Václav

    2016-01-01

    Roč. 24, č. 26 (2016), s. 29496-29505 ISSN 1094-4087 R&D Projects: GA ČR GAP205/12/0382 Institutional support: RVO:68378271 Keywords : experimental detection of nonclassicality * single-mode fields * intensity moments Subject RIV: BH - Optics , Masers, Lasers Impact factor: 3.307, year: 2016

  1. Cantilever-based sensor with integrated optical read-out using single mode waveguides

    DEFF Research Database (Denmark)

    Nordström, Maria; Zauner, Dan; Calleja, Montserrat

    2007-01-01

    surface. Here, we present a novel integrated optical read-out scheme based on single-mode waveguides that enables the fabrication of a compact system. The complete system is fabricated in the polymer SU-8. This manuscript shows the principle of operation and the design well as the fabrication...

  2. Single-mode waveguides with SU-8 polymer core and cladding for MOEMS applications

    DEFF Research Database (Denmark)

    Nordström, Maria; Zauner, Dan; Boisen, Anja

    2007-01-01

    Fabrication and optical characterization of singlemode polymeric embedded waveguides are performed. A specific material combination (SU-8 2005 as core and the modified SU-8 mr-L 6050XP as cladding) is chosen in order to obtain a small refractive index difference for single-mode propagation combin...

  3. 870nm Bragg grating in single mode TOPAS microstructured polymer optical fibre

    DEFF Research Database (Denmark)

    Yuan, Wu; Webb, David J.; Kalli, Kyriacos

    2011-01-01

    We report the fabrication and characterization of a fiber Bragg grating (FBG) with 870 nm resonance wavelength in a single-mode TOPAS microstructured polymer optical fiber (mPOF). The grating has been UV-written with the phase-mask technique using a 325 nm HeCd laser. The static tensile strain...

  4. Analytical Expression for the Electric Field of the Single Mode Laser ...

    African Journals Online (AJOL)

    The simplest model of the laser is that of a single mode system homogenously broadened. The dynamical behavior of this laser is described by three differential equations, called Haken-Lorenz equations[1], similar to the Lorenz model [1] already known to predict deterministic chaos. In previous recent work [5-7] we have ...

  5. Current Mode Full-Wave Rectifier Based on a Single MZC-CDTA

    Directory of Open Access Journals (Sweden)

    Neeta Pandey

    2013-01-01

    Full Text Available This paper presents a current mode full-wave rectifier based on single modified Z copy current difference transconductance amplifier (MZC-CDTA and two switches. The circuit is simple and is suitable for IC implementation. The functionality of the circuit is verified with SPICE simulation using 0.35 μm TSMC CMOS technology parameters.

  6. Intrinsic pressure response of a single mode cyclo olefin polymer fiber bragg grating

    DEFF Research Database (Denmark)

    Pedersen, Jens Kristian Mølgaard; Woyessa, Getinet; Nielsen, Kristian

    2016-01-01

    The intrinsic pressure response of a Fibre Bragg Grating (FBG) inscribed in a single-mode cyclo olefin polymer (COP) microstructured polymer optical fibre (mPOF) in the range 0-200 bar is investigated for the first time. In order to efficiently suppress the effects from changes in temperature...

  7. Investigation of bending loss in a single-mode optical fibre

    Indian Academy of Sciences (India)

    Abstract. Loss of optical power in a single-mode optical fibre due to bending has been investigated for a wavelength of 1550 nm. In this experiment, the effects of bending radius (4–15 mm, with steps of 1 mm), and wrapping turns (up to 40 turns) on loss have been studied. Twisting the optical fibre and its influence on power ...

  8. Efficient coupling of a single diamond color center to propagating plasmonic gap modes

    DEFF Research Database (Denmark)

    Kumar, Shailesh; Huck, Alexander; Andersen, Ulrik L

    2013-01-01

    We report on coupling of a single nitrogen-vacancy (NV) center in a nanodiamond to the propagating gap mode of two parallel placed chemically grown silver nanowires. The coupled NV-center nanowire system is made by manipulating nanodiamonds and nanowires with the tip of an atomic force microscope...

  9. 100-Gb/s 80-km transmission of PIM-SSB-OFDM at C-band using a single-end photodetector

    Science.gov (United States)

    Huo, Jiahao; Zhou, Xian; Zhong, Kangping; Gui, Tao; Tan, Fengze; Tu, Jiajing; Yuan, Jinhui; Zhang, Hongyu; Long, Keping; Yu, Changyuan; Lau, Alan Pak Tao; Lu, Chao

    2017-10-01

    Polarization-interleave-multiplexed (PIM) with single-sideband orthogonal frequency-division multiplexing (SSB-OFDM) based on direct detection is proposed for short-reach applications transmitted up to 80 km in which the guard band can be shared for the two SSB signals with interleave electrical center frequencies. Based on two dual-drive Mach-Zehnder modulators with one single-end photodetector (PD), 100-Gb/s PIM-SSB-OFDM transmission over a 80-km standard single-mode fiber is successfully demonstrated. After 80-km transmission, the optical signal-to-noise ratio requirement is 29.1 dB with respect to the bit error rate threshold of 7% hard decision-forward error correction overhead.

  10. Estimating transmissivity from single-well pumping tests in heterogeneous aquifers

    Science.gov (United States)

    Pechstein, Armin; Attinger, Sabine; Krieg, Ronald; Copty, Nadim K.

    2016-01-01

    Although aquifers are naturally heterogeneous, the interpretation of pumping tests is commonly performed under the assumption of aquifer homogeneity. This yields interpreted hydraulic parameters averaged over a domain of uncertain extent which disguises their relation to the underlying heterogeneity. In this study, we numerically investigate the sensitivity of the transient drawdown at the pumping well, to nonuniform distributions of transmissivity in confined aquifers. Frechet kernels and their time derivative are used to estimate two spatially averaged transmissivities, denoted the equivalent and interpreted transmissivity, Teq and Tin, respectively, for the case of single-well pumping tests. Interrelating Teq and Tin is achieved by modeling Tin in terms of a distance dependent, radially heterogeneous field. In weakly heterogeneous aquifers, Teq approximates TPW, the local transmissivity at the pumped well. With increasing degree of heterogeneity, Teq deviates from TPW as pumping propagates. Tin starts at TPW, approaching the spatial geometric mean of transmissivity during late pumping times. Limits of the proposed spatial weighting functions are investigated by treating the interpreted storativity, Sest, as an indicator for flow connectivity. It is shown numerically that the spatial weights for Teq and Tin agree well to the underlying heterogeneity if . Finally, implications for applying the concepts of Teq and Tin to heterogeneous domains, and, for real world applications are discussed. It is found that time-dependent spatial averages of Tin agree well with estimates of the interpreted transmissivity from the Continuous-Derivation method.

  11. Reach Extension and Capacity Enhancement of VCSEL-Based Transmission Over Single-Lane MMF Links

    DEFF Research Database (Denmark)

    Tatarczak, Anna; Motaghiannezam, S. M. Reza; Kocot, Chris

    2017-01-01

    This paper reviews and examines several techniques for expanding the carrying capacity of multimode fiber (MMF) using vertical cavity surface emitting lasers (VCSELs). The first approach utilizes short wavelength division multiplexing in combination with MMF optimized for operation between 850 an...... effectiveness of VCSEL-based MMF links in current and future data center environments....... and 950 nm. Both nonreturn to zero (NRZ) and four-level pulse amplitude modulation (PAM4) signaling are measured and demonstrate up to 170-Gb/s postforward error correction transmission over 300 m. For single wavelength transmission, the use of selective modal launch to increase the optical bandwidth...

  12. Optimal control of mode transition for four-wheel-drive hybrid electric vehicle with dry dual-clutch transmission

    Science.gov (United States)

    Zhao, Zhiguo; Lei, Dan; Chen, Jiayi; Li, Hangyu

    2018-05-01

    When the four-wheel-drive hybrid electric vehicle (HEV) equipped with a dry dual clutch transmission (DCT) is in the mode transition process from pure electrical rear wheel drive to front wheel drive with engine or hybrid drive, the problem of vehicle longitudinal jerk is prominent. A mode transition robust control algorithm which resists external disturbance and model parameter fluctuation has been developed, by taking full advantage of fast and accurate torque (or speed) response of three electrical power sources and getting the clutch of DCT fully involved in the mode transition process. Firstly, models of key components of driveline system have been established, and the model of five-degrees-of-freedom vehicle longitudinal dynamics has been built by using a Uni-Tire model. Next, a multistage optimal control method has been produced to realize the decision of engine torque and clutch-transmitted torque. The sliding-mode control strategy for measurable disturbance has been proposed at the stage of engine speed dragged up. Meanwhile, the double tracking control architecture that integrates the model calculating feedforward control with H∞ robust feedback control has been presented at the stage of speed synchronization. Finally, the results from Matlab/Simulink software and hardware-in-the-loop test both demonstrate that the proposed control strategy for mode transition can not only coordinate the torque among different power sources and clutch while minimizing vehicle longitudinal jerk, but also provide strong robustness to model uncertainties and external disturbance.

  13. Optical measuring system with an interrogator and a polymer-based single-mode fibre optic sensor system

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates to an optical measuring system comprising a polymer-based single-mode fibre-optic sensor system (102), an optical interrogator (101), and an optical arrangement (103) interconnecting the optical interrogator (101) and the polymer-based single-mode fibre-optic sensor...... system (102). The invention further relates to an optical interrogator adapted to be connected to a polymer-based single-mode fibre-optic sensor system via an optical arrangement. The interrogator comprises a broadband light source arrangement (104) and a spectrum analysing arrangement which receives...... and analyses light reflected from the polymer-based single- mode fibre-optic sensor system....

  14. Mode division multiplexing technology for single-fiber optical trapping axial-position adjustment.

    Science.gov (United States)

    Liu, Zhihai; Wang, Lei; Liang, Peibo; Zhang, Yu; Yang, Jun; Yuan, Libo

    2013-07-15

    We demonstrate trapped yeast cell axial-position adjustment without moving the optical fiber in a single-fiber optical trapping system. The dynamic axial-position adjustment is realized by controlling the power ratio of the fundamental mode beam (LP01) and the low-order mode beam (LP11) generated in a normal single-core fiber. In order to separate the trapping positions produced by the two mode beams, we fabricate a special fiber tapered tip with a selective two-step method. A yeast cell of 6 μm diameter is moved along the optical axis direction for a distance of ~3 μm. To the best of our knowledge, this is the first demonstration of the trapping position adjustment without moving the fiber for single-fiber optical tweezers. The excitation and utilization of multimode beams in a single fiber constitutes a new development for single-fiber optical trapping and makes possible more practical applications in biomedical research fields.

  15. Large Mode Area Single Trench Fiber for 2 mu m Operation

    DEFF Research Database (Denmark)

    Jain, Deepak; Sahu, Jayanta K.

    2016-01-01

    to 25 cm bend radius, respectively, by exploiting high delocalization of the higher order modes. Achievement of a large effective-area can be very useful to address nonlinear effects. Moreover, single trench fiber offers certain advantages such as low-cost fabrication and easy postprocessing (such......Performance of single trench fibers has been investigated using finite-element method at 2 mu m wavelength. Numerical investigations show that an effective single mode operation for large effective area between 3000-4000 mu m(2) and 2000-3000 mu m(2) can be achieved at similar to 40 and similar...... as cleaving and splicing) thanks to the all-solid fiber design....

  16. Benchmarking of grid fault modes in single-phase grid-connected photovoltaic systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede; Zou, Zhixiang

    2012-01-01

    Pushed by the booming installations of single-phase photovoltaic (PV) systems, the grid demands regarding the integration of PV systems are expected to be modified. Hence, the future PV systems should become more active with functionalities of low voltage ride-through (LVRT) and the grid support...... capability. The control methods, together with grid synchronization techniques, are responsible for the generation of appropriate reference signals in order to handle ride-through grid faults. Thus, it is necessary to evaluate the behaviors of grid synchronization methods and control possibilities in single...... phase systems under grid faults. The intent of this paper is to present a benchmarking of grid fault modes that might come in future single-phase PV systems. In order to map future challenges, the relevant detection and control strategies are discussed. Some faulty modes are studied experimentally...

  17. Focusing the HIV response through estimating the major modes of HIV transmission: a multi-country analysis

    Science.gov (United States)

    Gouws, Eleanor; Cuchi, Paloma

    2012-01-01

    Objective An increasing number of countries have been estimating the distribution of new adult HIV infections by modes of transmission (MOT) to help prioritise prevention efforts. We compare results from studies conducted between 2008 and 2012 and discuss their use for planning and responding to the HIV epidemic. Methods The UNAIDS recommended MOT model helps countries to estimate the proportion of new HIV infections that occur through key transmission modes including sex work, injecting drug use (IDU), men having sex with men (MSM), multiple sexual partnerships, stable relationships and medical interventions. The model typically forms part of a country-led process that includes a comprehensive review of epidemiological data. Recent revisions to the model are described. Results Modelling results from 25 countries show large variation between and within regions. In sub-Saharan Africa, new infections occur largely in the general heterosexual population because of multiple partnerships or in stable discordant relationships, while sex work contributes significantly to new infections in West Africa. IDU and sex work are the main contributors to new infections in the Middle East and North Africa, with MSM the main contributor in Latin America. Patterns vary substantially between countries in Eastern Europe and Asia in terms of the relative contribution of sex work, MSM, IDU and spousal transmission. Conclusions The MOT modelling results, comprehensive review and critical assessment of data in a country can contribute to a more strategically focused HIV response. To strengthen this type of research, improved epidemiological and behavioural data by risk population are needed. PMID:23172348

  18. A Hybrid Single-Carrier/Multicarrier Transmission Scheme with Power Allocation

    Directory of Open Access Journals (Sweden)

    Féty Luc

    2008-01-01

    Full Text Available Abstract We propose a flexible transmission scheme which easily allows to switch between cyclic-prefixed single-carrier (CP-SC and cyclic-prefixed multicarrier (CP-MC transmissions. This scheme takes advantage of the best characteristic of each scheme, namely, the low peak-to-average power ratio (PAPR of the CP-SC scheme and the robustness to channel selectivity of the CP-MC scheme. Moreover, we derive the optimum power allocation for the CP-SC transmission considering a zero-forcing (ZF and a minimum mean-square error (MMSE receiver. By taking the PAPR into account, we are able to make a better analysis of the overall system and the results show the advantage of the CP-SC-MMSE scheme for flat and mild selective channels due to their low PAPR and that the CP-MC scheme is more advantageous for a narrow range of channels with severe selectivity.

  19. A Hybrid Single-Carrier/Multicarrier Transmission Scheme with Power Allocation

    Directory of Open Access Journals (Sweden)

    Luc Féty

    2007-11-01

    Full Text Available We propose a flexible transmission scheme which easily allows to switch between cyclic-prefixed single-carrier (CP-SC and cyclic-prefixed multicarrier (CP-MC transmissions. This scheme takes advantage of the best characteristic of each scheme, namely, the low peak-to-average power ratio (PAPR of the CP-SC scheme and the robustness to channel selectivity of the CP-MC scheme. Moreover, we derive the optimum power allocation for the CP-SC transmission considering a zero-forcing (ZF and a minimum mean-square error (MMSE receiver. By taking the PAPR into account, we are able to make a better analysis of the overall system and the results show the advantage of the CP-SC-MMSE scheme for flat and mild selective channels due to their low PAPR and that the CP-MC scheme is more advantageous for a narrow range of channels with severe selectivity.

  20. Optimization of Single-Sensor Two-State Hot-Wire Anemometer Transmission Bandwidth.

    Science.gov (United States)

    Ligęza, Paweł

    2008-10-28

    Hot-wire anemometric measurements of non-isothermal flows require the use of thermal compensation or correction circuitry. One possible solution is a two-state hot-wire anemometer that uses the cyclically changing heating level of a single sensor. The area in which flow velocity and fluid temperature can be measured is limited by the dimensions of the sensor's active element. The system is designed to measure flows characterized by high velocity and temperature gradients, although its transmission bandwidth is very limited. In this study, we propose a method to optimize the two-state hot-wire anemometer transmission bandwidth. The method is based on the use of a specialized constanttemperature system together with variable dynamic parameters. It is also based on a suitable measurement cycle paradigm. Analysis of the method was undertaken using model testing. Our results reveal a possible significant broadening of the two-state hot-wire anemometer's transmission bandwidth.

  1. Transmission gaps, trapped modes and Fano resonances in Aharonov-Bohm connected mesoscopic loops

    Science.gov (United States)

    Mrabti, T.; Labdouti, Z.; El Abouti, O.; El Boudouti, E. H.; Fethi, F.; Djafari-Rouhani, B.

    2018-03-01

    A simple mesoscopic structure consisting of a double symmetric loops coupled by a segment of length d0 in the presence of an Aharonov-Bohm flux is designed to obtain transmission band gaps and Fano resonances. A general analytical expression for the transmission coefficient and the density of states (DOS) are obtained for various systems of this kind within the framework of the Green's function method in the presence of the magnetic flux. In this work, the amplitude of the transmission and DOS are discussed as a function of the wave vector. We show that the transmission spectrum of the whole structure may exhibit a band gap and a resonance of Fano type without introducing any impurity in one arm of the loop. In particular, we show that for specific values of the magnetic flux and the lengths of the arms constituting the loops, the Fano resonance collapses giving rise to the so-called trapped states or bound in continuum (BIC) states. These states appear when the width of the Fano resonance vanishes in the transmission coefficient as well as in the density of states. Also, we show that the shape of the Fano resonances and the width of the band gaps are very sensitive to the value of the magnetic flux and the geometry of the structure. These results may have important applications for electronic transport in mesoscopic systems.

  2. Effects of underwater turbulence on laser beam propagation and coupling into single-mode optical fiber.

    Science.gov (United States)

    Hanson, Frank; Lasher, Mark

    2010-06-01

    We characterize and compare the effects of turbulence on underwater laser propagation with theory. Measurements of the coupling efficiency of the focused beam into a single-mode fiber are reported. A simple tip-tilt control system, based on the position of the image centroid in the focal plane, was shown to maintain good coupling efficiency for a beam radius equal to the transverse coherence length, r(0). These results are relevant to high bandwidth communication technology that requires good spatial mode quality.

  3. Addition of single-dose tenofovir and emtricitabine to intrapartum nevirapine to reduce perinatal HIV transmission.

    Science.gov (United States)

    Chi, Benjamin H; Chintu, Namwinga; Cantrell, Ronald A; Kankasa, Chipepo; Kruse, Gina; Mbewe, Felistas; Sinkala, Moses; Smith, Peter J; Stringer, Elizabeth M; Stringer, Jeffrey S A

    2008-06-01

    To determine the impact of adjuvant single-dose peripartum tenofovir/emtricitabine (TDF/FTC) on intrapartum/early postpartum HIV transmission. In the setting of routine short-course zidovudine (ZDV) and peripartum nevirapine (NVP) for perinatal HIV prevention, participants were randomized to single-dose TDF (300 mg)/FTC (200 mg) or to no intervention in labor. Six-week infant HIV infection was compared according to actual-use drug regimens. Of 397 women randomized, 355 (89%) had infants who were alive and active at 6 weeks postpartum. Of these, 18 (5.1%) were infected in utero and 6 (1.8%) were infected intrapartum/early postpartum. Among the 243 who used ZDV and NVP, intrapartum/early postpartum transmission was not reduced among infants whose mothers received TDF/FTC compared with those who did not (2 of 123 [1.6%] vs. 3 of 109 [2.8%]; P = 0.67). Among the 49 infants whose mothers did not receive antenatal ZDV but who had confirmed NVP ingestion, transmission similarly did not differ (0 of 19 [0%] vs. 1 of 26 [3.4%]). TDF/FTC was not significantly associated with reduced overall transmission (odds ratio [OR] = 0.7, 95% confidence interval [CI]: 0.3 to 1.6), even when other antiretroviral drugs were considered (adjusted OR = 0.8, 95% CI: 0.3 to 1.8). Adjuvant peripartum single-dose TDF/FTC did not reduce perinatal transmission. Whether a higher dose might be effective remains unknown but should be studied in settings in which NVP is used without antenatal ZDV.

  4. Pair distribution functions of amorphous organic thin films from synchrotron X-ray scattering in transmission mode

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Chenyang; Teerakapibal, Rattavut; Yu, Lian; Zhang, Geoff G. Z.

    2017-07-10

    Using high-brilliance high-energy synchrotron X-ray radiation, for the first time the total scattering of a thin organic glass film deposited on a strongly scattering inorganic substrate has been measured in transmission mode. The organic thin film was composed of the weakly scattering pharmaceutical substance indomethacin in the amorphous state. The film was 130 µm thick atop a borosilicate glass substrate of equal thickness. The atomic pair distribution function derived from the thin-film measurement is in excellent agreement with that from bulk measurements. This ability to measure the total scattering of amorphous organic thin films in transmission will enable accuratein situstructural studies for a wide range of materials.

  5. Pair distribution functions of amorphous organic thin films from synchrotron X-ray scattering in transmission mode

    Directory of Open Access Journals (Sweden)

    Chenyang Shi

    2017-09-01

    Full Text Available Using high-brilliance high-energy synchrotron X-ray radiation, for the first time the total scattering of a thin organic glass film deposited on a strongly scattering inorganic substrate has been measured in transmission mode. The organic thin film was composed of the weakly scattering pharmaceutical substance indomethacin in the amorphous state. The film was 130 µm thick atop a borosilicate glass substrate of equal thickness. The atomic pair distribution function derived from the thin-film measurement is in excellent agreement with that from bulk measurements. This ability to measure the total scattering of amorphous organic thin films in transmission will enable accurate in situ structural studies for a wide range of materials.

  6. Compressive sensing imaging through a drywall barrier at sub-THz and THz frequencies in transmission and reflection modes

    Science.gov (United States)

    Takan, Taylan; Özkan, Vedat A.; Idikut, Fırat; Yildirim, Ihsan Ozan; Şahin, Asaf B.; Altan, Hakan

    2014-10-01

    In this work sub-terahertz imaging using Compressive Sensing (CS) techniques for targets placed behind a visibly opaque barrier is demonstrated both experimentally and theoretically. Using a multiplied Schottky diode based millimeter wave source working at 118 GHz, metal cutout targets were illuminated in both reflection and transmission configurations with and without barriers which were made out of drywall. In both modes the image is spatially discretized using laser machined, 10 × 10 pixel metal apertures to demonstrate the technique of compressive sensing. The images were collected by modulating the source and measuring the transmitted flux through the apertures using a Golay cell. Experimental results were compared to simulations of the expected transmission through the metal apertures. Image quality decreases as expected when going from the non-obscured transmission case to the obscured transmission case and finally to the obscured reflection case. However, in all instances the image appears below the Nyquist rate which demonstrates that this technique is a viable option for Through the Wall Reflection Imaging (TWRI) applications.

  7. Solar radiation transmissivity of a single-span greenhouse through measurements on scale models

    International Nuclear Information System (INIS)

    Papadakis, G.; Manolakos, D.; Kyritsis, S.

    1998-01-01

    The solar transmissivity of a single-span greenhouse has been investigated experimentally using a scale model, of dimensions 40 cm width and 80 cm length. The solar transmissivity was measured at 48 positions on the “ground” surface of the scale model using 48 small silicon solar cells. The greenhouse model was positioned horizontally on a specially made goniometric mechanism. In this way, the greenhouse azimuth could be changed so that typical days of the year could be simulated using different combinations of greenhouse azimuth and the position of the sun in the sky. The measured solar transmissivity distribution at the “ground” surface and the average greenhouse solar transmissivity are presented and analysed, for characteristic days of the year, for winter and summer for a latitude of 37°58′ (Athens, Greece). It is shown that for the latitude of 37°58′ N during winter, the E–W orientation is preferable to the N–S one. The side walls, and especially the East and West ones for the E–W orientation, reduce considerably the greenhouse transmissivity at areas close to the walls for long periods of the day when the angle of incidence of the solar rays to these walls is large. (author)

  8. Dense SDM (12-Core × 3-Mode) Transmission Over 527 km With 33.2-ns Mode-Dispersion Employing Low-Complexity Parallel MIMO Frequency-Domain Equalization

    DEFF Research Database (Denmark)

    Shibahara, Kohki; Lee, Doohwan; Kobayashi, Takayuki

    2016-01-01

    We propose long-haul space-division-multiplexing (SDM) transmission systems employing parallel multiple-input multiple-output (MIMO) frequency-domain equalization (FDE) and transmission fiber with low differential mode delay (DMD). We first discuss the advantages of parallel MIMO FDE technique in...

  9. Transmission and radiation of an accelerating mode in a photonic band-gap fiber

    Directory of Open Access Journals (Sweden)

    C.-K. Ng

    2010-12-01

    Full Text Available A hollow-core photonic band-gap (PBG lattice in a dielectric fiber has been proposed as a high-gradient low-cost particle accelerator operating in the optical regime where the accelerating mode confined to a defect in the PBG fiber can be excited by high-power lasers [X. Lin, Phys. Rev. ST Accel. Beams 4, 051301 (2001PRABFM1098-440210.1103/PhysRevSTAB.4.051301]. Developing efficient methods of coupling laser power into these structures requires a thorough examination of the propagating mode and its near and far-field radiation. In this paper, we develop a simulation method using the parallel finite-element electromagnetic suite ACE3P to calculate the radiation of the propagating accelerator mode into free space at the end of the fiber. The far-field radiation will be calculated and the mechanism of coupling power from an experimental laser setup will be discussed.

  10. Mode of transmission, host switching, and escape from the Red Queen by viviparous gyrodactylids (Monogenoidea).

    Science.gov (United States)

    Boeger, Walter A; Kritsky, Delane C; Pie, Marcio R; Engers, Kerlen B

    2005-10-01

    Compared to other monogenoidean groups, viviparous gyrodactylids exhibit extraordinary species diversity and broad host range. It has been suggested that this evolutionary success is associated with a suite of morphological and life-history traits that include, in part, continuous transmission (i.e., ability to infect new hosts throughout the gyrodactylid life cycle). Experiments were conducted to explore the putative adaptive advantage of continuous transmission within viviparous gyrodactylids during colonization of new host resources. Differences in infrapopulation growth, such as abundance, prevalence, and duration of the infection, of Gyrodactylus anisopharynx on 3 species of fish--Corydoras paleatus and Corydoras ehrhardti (both natural hosts) as well as Corydoras schwartzi (a host not known to harbor G. anisopharynx)--held under isolated and grouped conditions were determined. Results showed that infrapopulations of G. anisopharynx on C. paleatus and C. schwartzi had higher growth when the parasite had the opportunity for host transfer (grouped hosts). Infrapopulations of G. anisopharynx on isolated and grouped C. ehrhardti showed an opposite trend, although differences in mean duration and maximum abundance were not statistically different. Results obtained from experiments with C. paleatus and C. schwartzi support the hypothesis that continuous transmission in viviparous gyrodactylids enhances colonization success, probably by allowing initial avoidance of Red Queen dynamics. The absence of statistical differences between infrapopulations on isolated and grouped C. ehrhardti suggests that parasite dynamics may be influenced by factors other than continuous transmission in this host.

  11. Three-dimensional single-mode nonlinear ablative Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Yan, R.; Aluie, H.; Betti, R.; Sanz, J.; Liu, B.; Frank, A.

    2016-01-01

    The nonlinear evolution of the single-mode ablative Rayleigh-Taylor instability is studied in three dimensions. As the mode wavelength approaches the cutoff of the linear spectrum (short-wavelength modes), it is found that the three-dimensional (3D) terminal bubble velocity greatly exceeds both the two-dimensional (2D) value and the classical 3D bubble velocity. Unlike in 2D, the 3D short-wavelength bubble velocity does not saturate. The growing 3D bubble acceleration is driven by the unbounded accumulation of vorticity inside the bubble. The vorticity is transferred by mass ablation from the Rayleigh-Taylor spikes to the ablated plasma filling the bubble volume

  12. Optimizing single mode robustness of the distributed modal filtering rod fiber amplifier

    DEFF Research Database (Denmark)

    Jørgensen, Mette Marie; Petersen, Sidsel Rübner; Laurila, Marko

    2012-01-01

    High-power fiber amplifiers for pulsed applications require large mode area (LMA) fibers having high pump absorption and near diffraction limited output. Photonic crystal fibers allow realization of short LMA fiber amplifiers having high pump absorption through a pump cladding that is decoupled...... from the outer fiber diameter. However, achieving ultra low NA for single mode (SM) guidance is challenging, thus different design strategies must be applied. The distributed modal filtering (DMF) design enables SM guidance in ultra low NA fibers with very large cores, where large preform tolerances...... can be compensated during the fiber draw. Design optimization of the SM bandwidth of the DMF rod fiber is presented. Analysis of band gap properties results in a fourfold increase of the SM bandwidth compared to previous results, achieved by utilizing the first band of cladding modes, which can cover...

  13. Kerr-lens mode-locked Ti:Sapphire laser pumped by a single laser diode

    Science.gov (United States)

    Kopylov, D. A.; Esaulkov, M. N.; Kuritsyn, I. I.; Mavritskiy, A. O.; Perminov, B. E.; Konyashchenko, A. V.; Murzina, T. V.; Maydykovskiy, A. I.

    2018-04-01

    The performance of a Ti:sapphire laser pumped by a single 461 nm laser diode is presented for both the continuous-wave and the mode-locked regimes of operation. We introduce a simple astigmatism correction scheme for the laser diode beam consisting of two cylindrical lenses affecting the pump beam along the fast axis of the laser diode, which provides the mode-matching between the nearly square-shaped pump beam and the cavity mode. The resulting efficiency of the suggested Ti:Sapphire oscillator pumped by such a laser diode is analyzed for the Ti:sapphire crystals of 3 mm, 5 mm and 10 mm in length. We demonstrate that such a system provides the generation of ultrashort pulses up to 15 fs in duration with the repetition rate of 87 MHz, the average power being 170 mW.

  14. Stable Single-Mode Operation of Distributed Feedback Quantum Cascade Laser by Optimized Reflectivity Facet Coatings.

    Science.gov (United States)

    Wang, Dong-Bo; Zhang, Jin-Chuan; Cheng, Feng-Min; Zhao, Yue; Zhuo, Ning; Zhai, Shen-Qiang; Wang, Li-Jun; Liu, Jun-Qi; Liu, Shu-Man; Liu, Feng-Qi; Wang, Zhan-Guo

    2018-02-02

    In this work, quantum cascade lasers (QCLs) based on strain compensation combined with two-phonon resonance design are presented. Distributed feedback (DFB) laser emitting at ~ 4.76 μm was fabricated through a standard buried first-order grating and buried heterostructure (BH) processing. Stable single-mode emission is achieved under all injection currents and temperature conditions without any mode hop by the optimized antireflection (AR) coating on the front facet. The AR coating consists of a double layer dielectric of Al 2 O 3 and Ge. For a 2-mm laser cavity, the maximum output power of the AR-coated DFB-QCL was more than 170 mW at 20 °C with a high wall-plug efficiency (WPE) of 4.7% in a continuous-wave (CW) mode.

  15. Single nucleotide polymorphism typing of Mycobacterium ulcerans reveals focal transmission of buruli ulcer in a highly endemic region of Ghana.

    Directory of Open Access Journals (Sweden)

    Katharina Röltgen

    Full Text Available Buruli ulcer (BU is an emerging necrotizing disease of the skin and subcutaneous tissue caused by Mycobacterium ulcerans. While proximity to stagnant or slow flowing water bodies is a risk factor for acquiring BU, the epidemiology and mode of M. ulcerans transmission is poorly understood. Here we have used high-throughput DNA sequencing and comparisons of the genomes of seven M. ulcerans isolates that appeared monomorphic by existing typing methods. We identified a limited number of single nucleotide polymorphisms (SNPs and developed a real-time PCR SNP typing method based on these differences. We then investigated clinical isolates of M. ulcerans on which we had detailed information concerning patient location and time of diagnosis. Within the Densu river basin of Ghana we observed dominance of one clonal complex and local clustering of some of the variants belonging to this complex. These results reveal focal transmission and demonstrate, that micro-epidemiological analyses by SNP typing has great potential to help us understand how M. ulcerans is transmitted.

  16. Single mode operation of a tea CO2 laser by a CW CO2 laser radiation injection

    International Nuclear Information System (INIS)

    Silakhori, K.; Soltanmoradi, F.; Behjat, A.; Montazerghaem, M.; Sadr, R.

    2005-01-01

    In this research work, single mode operation based on injection of a CW laser beam into TEA CO 2 laser cavity has been demonstrated. The technique has vast applications in research programs for laser spectroscopy and optical pumping. The observed smooth pulse shapes indicated that the system is operating in a single mode of operation, where no additional PZT mounted elements or other cavity stabilizing devices have been used. In addition, it have been observed that the output energy has not been reduced when the laser was operating in a single mode of operation, compared with the case when the laser is operating in the multi-mode regime

  17. Bend-insensitive single-mode photonic crystal fiber with ultralarge effective area for dual applications

    Science.gov (United States)

    Islam, Md. Asiful; Alam, M. Shah

    2013-05-01

    A novel photonic crystal fiber (PCF) having circular arrangement of cladding air holes has been designed and numerically optimized to obtain a bend insensitive single mode fiber with large mode area for both wavelength division multiplexing (WDM) communication and fiber-to-the-home (FTTH) application. The bending loss of the proposed bent PCF lies in the range of 10-3 to 10-4 dB/turn or lower over 1300 to 1700 nm, and 2 × 10-4 dB/turn at the wavelength of 1550 nm for a 30-mm bend radius with a higher order mode (HOM) cut-off frequency below 1200 nm for WDM application. When the whole structure of the PCF is scaled down, a bending loss of 6.78×10-4 dB/turn at 1550 nm for a 4-mm bend radius is obtained, and the loss remains in the order of 10-4 dB/turn over the same range of wavelength with an HOM cut-off frequency below 700 nm, and makes the fiber useful for FTTH applications. Furthermore, this structure is also optimized to show a splice loss near zero for fusion-splicing to a conventional single-mode fiber (SMF).

  18. BEND-INDUCED LOSSES IN A SINGLE-MODE MICROSTRUCTURED FIBER WITH A LARGE CORE

    Directory of Open Access Journals (Sweden)

    Y. A. Gatchin

    2015-03-01

    Full Text Available A study of bend-induced losses in a silica-based single-mode microstructured fiber with a core diameter ranging from 20 to 35 microns and increased relative air content in the holey cladding has been conducted. With the use of the equivalent step-index profile method in approximation of waveguide parameters of microstructured fiber (normalized frequency and normalized transverse attenuation constant the effect of bending on the spectral position of the fundamentalmode short-wavelength leakage boundary has been analyzed. Upon measurement of spectral characteristics of attenuation in the considered fibers good accordance of numerical and experimental data has been found out. It is shown that increase of the air content in the holey cladding leads to expansion of the mentioned boundary to lower wavelengths for the value from 150 to 800 nm depending on the core size and bending conditions. A single-transverse-mode propagation is achieved on fiber length of 5-10 meters due to a substantial difference in losses of fundamental and higher-order guided modes attained by bending. Optical losses in all studied samples are less than 10 dB/km at the wavelength λ = 1550 nm. The results of the study can be applied in the design of high-power laser systems having such basic requirements as a relatively large mode spot and high beam quality.

  19. Extremely low-loss single-mode photonic crystal fiber in the terahertz regime

    DEFF Research Database (Denmark)

    Islam, Raonaqul; Hasanuzzaman, G. K M; Sadath, Md Anwar

    2015-01-01

    This paper presents an updated design and numerical characterization of a rotated porous-core hexagonal photonic crystal fiber (PCF) for single-mode terahertz (THz) wave guidance. The simulation results are found using an efficient finite element method (FEM) which show a better and ultra......-low effective absorption loss of 0.045 cm-1 at 1 THz and a more flattened dispersion of 0.74±0.07ps/THz/cm in a wider bandwidth (0.54-1.36 THz) than the previously reported results. Besides, the single-mode region has been extended up to 1.74 THz (previously up to 1.3 THz) which is advantageous for wideband THz...

  20. Highly optimized tunable Er3+-doped single longitudinal mode fiber ring laser, experiment and model

    DEFF Research Database (Denmark)

    Poulsen, Christian; Sejka, Milan

    1993-01-01

    A continuous wave (CW) tunable diode-pumped Er3+-doped fiber ring laser, pumped by diode laser at wavelengths around 1480 nm, is discussed. Wavelength tuning range of 42 nm, maximum slope efficiency of 48% and output power of 14.4 mW have been achieved. Single longitudinal mode lasing with a line...... with a linewidth of 6 kHz has been measured. A fast model of erbium-doped fiber laser was developed and used to optimize output parameters of the laser......A continuous wave (CW) tunable diode-pumped Er3+-doped fiber ring laser, pumped by diode laser at wavelengths around 1480 nm, is discussed. Wavelength tuning range of 42 nm, maximum slope efficiency of 48% and output power of 14.4 mW have been achieved. Single longitudinal mode lasing...

  1. Stability of the single-mode output of a laser diode array with phase conjugate feedback

    DEFF Research Database (Denmark)

    Juul Jensen, S.; Løbel, M.; Petersen, P.M.

    2000-01-01

    . The output power and the center wavelength are found to be extremely stable in a 100 h stability measurement. External feedback of the output beam into the laser is seen to decrease both the spatial and the temporal coherence of the output significantly. We outline an approach to obtain a stable single......The stability of the output of a single-mode laser diode array with frequency selective phase conjugate feedback has been investigated experimentally. Both the long-term stability of the laser output and the sensitivity to feedback generated by external reflection of the output beam are examined......-mode output when external feedback is present using spatial filtering in the path of the output beam. (C) 2000 American Institute of Physics....

  2. Whispering-gallery-mode microlaser based on self-assembled organic single-crystalline hexagonal microdisks.

    Science.gov (United States)

    Wang, Xuedong; Liao, Qing; Kong, Qinghua; Zhang, Yi; Xu, Zhenzhen; Lu, Xiaomei; Fu, Hongbing

    2014-06-02

    Whispering-gallery-mode (WGM) resonators of semiconductor microdisks have been applied for achieving low-threshold and narrow-linewidth microlasers, but require sophisticated top-down processing technology. Organic single-crystalline hexagonal microdisks (HMDs) of p-distyrylbenzene (DSB) self-assembled from solution can function as WGM microresonators with a cavity quality factor (Q) of 210. Both multiple- and single-mode lasing had been achieved using DSB HMDs with an edge length of 4.3 and 1.2 μm, respectively. These organic microdisks fabricated by bottom-up self-assembly approach may offer potential applications as low-threshold microlaser sources for photonic circuit integration. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Benchmarking of Grid Fault Modes in Single-Phase Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede; Zou, Zhixiang

    2013-01-01

    Pushed by the booming installations of singlephase photovoltaic (PV) systems, the grid demands regarding the integration of PV systems are expected to be modified. Hence, the future PV systems should become more active with functionalities of Low Voltage Ride-Through (LVRT) and grid support...... capability. The control methods, together with grid synchronization techniques, are responsible for the generation of appropriate reference signals in order to handle ride-through grid faults. Thus, it is necessary to evaluate the behaviors of grid synchronization methods and control possibilities in single...... phase systems under grid faults. The intent of this paper is to present a benchmarking of grid fault modes that might come in future single-phase PV systems. In order to map future challenges, the relevant synchronization and control strategies are discussed. Some faulty modes are studied experimentally...

  4. Quantum discord dynamics of two qubits in single-mode cavities

    International Nuclear Information System (INIS)

    Wang Chen; Chen Qing-Hu

    2013-01-01

    The dynamics of quantum discord for two identical qubits in two independent single-mode cavities and a common single-mode cavity are discussed. For the initial Bell state with correlated spins, while the entanglement sudden death can occur, the quantum discord vanishes only at discrete moments in the independent cavities and never vanishes in the common cavity. Interestingly, quantum discord and entanglement show opposite behavior in the common cavity, unlike in the independent cavities. For the initial Bell state with anti-correlated spins, quantum discord and entanglement behave in the same way for both independent cavities and a common cavity. It is found that the detunings always stabilize the quantum discord. (general)

  5. BRIEF COMMUNICATIONS: Investigation of the state of polarization of light in a single-mode fiber waveguide

    Science.gov (United States)

    Kozel, S. M.; Kreopalov, V. I.; Listvin, V. N.; Glavatskikh, N. A.

    1983-01-01

    An analysis is made of the polarization anisotropy of a single-mode fiber with a twisted elliptic core. The Jones matrix is obtained and the complex function of the state of polarization of light in a fiber is investigated. The results are reported of measurements of the linear and circular birefringence of a borosilicate single-mode glass fiber.

  6. Conformational analysis of single perfluoroalkyl chains by single-molecule real-time transmission electron microscopic imaging.

    Science.gov (United States)

    Harano, Koji; Takenaga, Shinya; Okada, Satoshi; Niimi, Yoshiko; Yoshikai, Naohiko; Isobe, Hiroyuki; Suenaga, Kazu; Kataura, Hiromichi; Koshino, Masanori; Nakamura, Eiichi

    2014-01-08

    Whereas a statistical average of molecular ensembles has been the conventional source of information on molecular structures, atomic resolution movies of single organic molecules obtained by single-molecule real-time transmission electron microscopy have recently emerged as a new tool to study the time evolution of the structures of individual molecules. The present work describes a proof-of-principle study of the determination of the conformation of each C-C bond in single perfluoroalkyl fullerene molecules encapsulated in a single-walled carbon nanotube (CNT) as well as those attached to the outer surface of a carbon nanohorn (CNH). Analysis of 82 individual molecules in CNTs under a 120 kV electron beam indicated that 6% of the CF2-CF2 bonds and about 20% of the CH2-CH2 bonds in the corresponding hydrocarbon analogue are in the gauche conformation. This comparison qualitatively matches the known conformational data based on time- and molecular-average as determined for ensembles. The transmission electron microscopy images also showed that the molecules entered the CNTs predominantly in one orientation. The molecules attached on a CNH surface moved more freely and exhibited more diverse conformation than those in a CNT, suggesting the potential applicability of this method for the determination of the dynamic shape of flexible molecules and of detailed conformations. We observed little sign of any decomposition of the specimen molecules, at least up to 10(7) e·nm(-2) (electrons/nm(2)) at 120 kV acceleration voltage. Decomposition of CNHs under irradiation with a 300 kV electron beam was suppressed by cooling to 77 K, suggesting that the decomposition is a chemical process. Several lines of evidence suggest that the graphitic substrate and the attached molecules are very cold.

  7. Investigation of bending loss in a single-mode optical fibre

    Indian Academy of Sciences (India)

    (glass) used for making optical fibres is about 26.211 Pa. Since radii of the core and cladding in the single-mode fibre used were 4.5 and 62.5 µm respectively, by changing θ/l, loss due to torsion stress on the core and the clad was investigated. Variation of loss against torsion stress is given in figures 10 and 11 for the core ...

  8. Combined effect of viscosity and vorticity on single mode Rayleigh-Taylor instability bubble growth

    International Nuclear Information System (INIS)

    Banerjee, Rahul; Mandal, Labakanta; Roy, S.; Khan, M.; Gupta, M. R.

    2011-01-01

    The combined effect of viscosity and vorticity on the growth rate of the bubble associated with single mode Rayleigh-Taylor instability is investigated. It is shown that the effect of viscosity on the motion of the lighter fluid associated with vorticity accumulated inside the bubble due to mass ablation may be such as to reduce the net viscous drag on the bubble exerted by the upper heavier fluid as the former rises through it.

  9. Single Longitudinal Mode, High Repetition Rate, Q-switched Ho:YLF Laser for Remote Sensing

    Science.gov (United States)

    Bai, Yingxin; Yu, Jirong; Petzar, Paul; Petros, M.; Chen, Songsheng; Trieu, Bo; Lee, Nyung; Singh, U.

    2009-01-01

    Ho:YLF/LuLiF lasers have specific applications for remote sensing such as wind-speed measurement and carbon dioxide (CO2) concentration measurement in the atmosphere because the operating wavelength (around 2 m) is located in the eye-safe range and can be tuned to the characteristic lines of CO2 absorption and there is strong backward scattering signal from aerosol (Mie scattering). Experimentally, a diode pumped Ho:Tm:YLF laser has been successfully used as the transmitter of coherent differential absorption lidar for the measurement of with a repetition rate of 5 Hz and pulse energy of 75 mJ [1]. For highly precise CO2 measurements with coherent detection technique, a laser with high repetition rate is required to averaging out the speckle effect [2]. In addition, laser efficiency is critically important for the air/space borne lidar applications, because of the limited power supply. A diode pumped Ho:Tm:YLF laser is difficult to efficiently operate in high repetition rate due to the large heat loading and up-conversion. However, a Tm:fiber laser pumped Ho:YLF laser with low heat loading can be operated at high repetition rates efficiently [3]. No matter whether wind-speed or carbon dioxide (CO2) concentration measurement is the goal, a Ho:YLF/LuLiF laser as the transmitter should operate in a single longitudinal mode. Injection seeding is a valid technique for a Q-switched laser to obtain single longitudinal mode operation. In this paper, we will report the new results for a single longitudinal mode, high repetition rate, Q-switched Ho:YLF laser. In order to avoid spectral hole burning and make injection seeding easier, a four mirror ring cavity is designed for single longitudinal mode, high repetition rate Q-switched Ho:YLF laser. The ramp-fire technique is chosen for injection seeding.

  10. Rate of vertical transmission of human papillomavirus from mothers to infants: Relationship between infection rate and mode of delivery

    Directory of Open Access Journals (Sweden)

    Park Hyun

    2012-04-01

    Full Text Available Abstract Background In contrast to consistent epidemiologic evidence of the role of sexual transmission of human papillomavirus (HPV in adults, various routes may be related to HPV infection in infants. We have assessed the extent of HPV infection during the perinatal period, and the relationship between mode of delivery and vertical transmission. Results A total of 291 pregnant women over 36 weeks of gestation were enrolled with informed consent. Exfoliative cells were collected from maternal cervix and neonatal buccal mucosa. HPV infection and genotypes were determined with an HPV DNA chip, which can recognise 24 types. The HPV-positive neonates were re-evaluated 6 months after birth to identify the presence of persistent infection. HPV DNA was detected in 18.9 % (55/291 of pregnant women and 3.4 % (10/291 of neonates. Maternal infection was associated with abnormal cytology (p = 0.007 and primiparity (p = 0.015. The infected neonates were all born to HPV-positive mothers. The rate of vertical transmission was estimated at 18.2 % (10/55 which was positively correlated with maternal multiple HPV infection (p = 0.003 and vaginal delivery (p = 0.050, but not with labour duration and premature rupture of membranes. The rate of concordance of genotype was 100 % in mother-neonate pairs with vertical transmission. The neonatal HPV DNAs found at birth were all cleared at 6 months after delivery. Conclusions Vertical transmission of HPV DNA from HPV infected mother to the neonate increased when the infant was delivered through an infected cervix. However, the absence of persistent infection in infants at 6 months after delivery may suggest temporary inoculation rather than true vertical infection.

  11. Terahertz light-emitting graphene-channel transistor toward single-mode lasing

    Directory of Open Access Journals (Sweden)

    Yadav Deepika

    2018-03-01

    Full Text Available A distributed feedback dual-gate graphene-channel field-effect transistor (DFB-DG-GFET was fabricated as a current-injection terahertz (THz light-emitting laser transistor. We observed a broadband emission in a 1–7.6-THz range with a maximum radiation power of ~10 μW as well as a single-mode emission at 5.2 THz with a radiation power of ~0.1 μW both at 100 K when the carrier injection stays between the lower cutoff and upper cutoff threshold levels. The device also exhibited peculiar nonlinear threshold-like behavior with respect to the current-injection level. The LED-like broadband emission is interpreted as an amplified spontaneous THz emission being transcended to a single-mode lasing. Design constraints on waveguide structures for better THz photon field confinement with higher gain overlapping as well as DFB cavity structures with higher Q factors are also addressed towards intense, single-mode continuous wave THz lasing at room temperature.

  12. A Mathematic Model That Describes Modes of MdSGHV Transmission within House Fly Populations

    Directory of Open Access Journals (Sweden)

    Celeste R. Vallejo

    2013-11-01

    Full Text Available In this paper it is proposed that one potential component by which the Musca domestica salivary gland hypertrophy virus (MdSGHV infects individual flies is through cuticular damage. Breaks in the cuticle allow entry of the virus into the hemocoel causing the infection. Male flies typically have a higher rate of infection and a higher rate of cuticular damage than females. A model for the transmission of MdSGHV was formulated assuming several potential and recognized means of transmission. The model yields results that are in agreement with field data that measured the infection rate in house flies on dairy farms in Florida. The results from this model indicate that MdSGHV will be maintained at a stable rate within house fly populations and support the future use of MdSGHV as a birth control agent in house fly management.

  13. Three-Input Single-Output Voltage-Mode Multifunction Filter with Electronic Controllability Based on Single Commercially Available IC

    Directory of Open Access Journals (Sweden)

    Supachai Klungtong

    2017-01-01

    Full Text Available This paper presents a second-order voltage-mode filter with three inputs and single-output voltage using single commercially available IC, one resistor, and two capacitors. The used commercially available IC, called LT1228, is manufactured by Linear Technology Corporation. The proposed filter is based on parallel RLC circuit. The filter provides five output filter responses, namely, band-pass (BP, band-reject (BR, low-pass (LP, high-pass (HP, and all-pass (AP functions. The selection of each filter response can be done without the requirement of active and passive component matching condition. Furthermore, the natural frequency and quality factor are electronically controlled. Besides, the nonideal case is also investigated. The output voltage node exhibits low impedance. The experimental results can validate the theoretical analyses.

  14. The method and equipment for the investigation of ions orienting transmission through thin single crystals

    CERN Document Server

    Soroka, V Y; Maznij, Y O

    2003-01-01

    A new approach is proposed to solve the task of angular distribution measurement of intensity strongly differentiated ions fluxes. Channeling effect makes this problem a regular feature of experimental study of ions orientating transmission through thin single crystals. The approach is based on the use of ions additional scattering by an amorphous (polycrystalline) target after passing through single crystal. The additional target manipulator is joined with the principal target chamber equipment with three-axis goniometer. The manipulator allows to move an additional target in the vicinity of the accelerator beam within the limits of +- 3 sup 0 in all directions and allows to measure the angular distribution of scattered ions with the accuracy of 1 min. The method and equipment were tested at the single ended electrostatic accelerator (EG-5) using a proton beam. At present the measurements have been resumed at the tandem accelerator (EG-10) of the Institute for Nuclear Research of the Academy of Sciences of U...

  15. A novel L-shaped linear ultrasonic motor operating in a single resonance mode

    Science.gov (United States)

    Zhang, Bailiang; Yao, Zhiyuan; Liu, Zhen; Li, Xiaoniu

    2018-01-01

    In this study, a large thrust linear ultrasonic motor using an L-shaped stator is described. The stator is constructed by two mutually perpendicular rectangular plate vibrators, one of which is mounted in parallel with the slider to make the motor structure to be more compact. The symmetric and antisymmetric modes of the stator based on the first order bending vibration of two vibrators are adopted, in which each resonance mode is assigned to drive the slider in one direction. The placement of piezoelectric ceramics in a stator could be determined by finite element analysis, and the influence of slots in the head block on the vibration amplitudes of driving foot was studied as well. Three types of prototypes (non-slotted, dual-slot, and single-slot) were fabricated and experimentally investigated. Experimental results demonstrated that the prototype with one slot exhibited the best mechanical output performance. The maximum loads under the excitation of symmetric mode and antisymmetric mode were 65 and 90 N, respectively.

  16. Impact of quantum–classical correspondence on entanglement enhancement by single-mode squeezing

    International Nuclear Information System (INIS)

    Joseph, Sijo K.; Chew, Lock Yue; Sanjuán, Miguel A.F.

    2014-01-01

    Quantum entanglement between two field modes can be achieved through the collective squeezing of the two respective modes. If single-mode squeezing is performed prior to such a two-mode squeezing, an enhancement of entanglement production can happen. Interestingly, the occurrence of this enhancement can be implicitly linked to the local classical dynamical behavior via the paradigm of quantum–classical correspondence. In particular, the entanglement generated through quantum chaos is found to be hardly enhanced by prior squeezing, since it is bounded by the saturation value of the maximally entangled Schmidt state with fixed energy. These results illustrate that entanglement enhancement via initial squeezing can serve as a useful indicator of quantum chaotic behaviour. - Highlights: • Continuous-variable entanglement is explored in the Pullen–Edmonds Hamiltonian. • The local phase-space structure and the entanglement enhancement are related. • Entanglement enhancement via squeezing is smaller for the chaotic orbit. • Entanglement enhancement via squeezing is higher for the regular orbit. • The magnitude of the entanglement enhancement serves as a quantum-chaos indicator

  17. Estimating accidental coincidences for pixelated PET detectors and singles list-mode acquisition

    International Nuclear Information System (INIS)

    Rafecas, M.; Torres, I.; Spanoudaki, V.; McElroy, D.P.; Ziegler, S.I.

    2007-01-01

    We have studied the validity of random estimation techniques for various low energy thresholds (LETs) and single list-mode data sets in small animal PET. While a LET below 255 keV helps to increase the sensitivity, it also results in an increase of random coincidences and inter-crystal scatter (ICS). The study is carried out for MADPET-II, a dual-layer positron emission tomography (PET) scanner prototype consisting of LSO crystals read out individually by APDs. The data are acquired in singles list-mode format, and coincidences are computed post-acquisition. To estimate randoms, we have used the delayed coincidence window method (DW), and the singles rate model (SR). Various phantoms were simulated using GATE. For LETs under 255 keV, the number of random events R, estimated using the SR and the DW methods, is larger than the number of randoms which was directly computed from GATE simulations, and R(SR)>R(DW)>R(GATE). The higher the LET, the smaller the overestimation. For LETs >255 keV, R(DW)/R(GATE) ∼1. If scattered singles were excluded from the file, this discrepancy between R(DW or SR) and R(GATE) significantly diminished. This fact points out to ICS as the effect responsible for the mismatch, since for LETs lower than 255 keV, all singles related to an ICS event can be detected independently, thus altering the singles rate. Therefore, if low LETs are used, random estimation techniques should account for ICS

  18. Single mode operation in a pulsed Ti:sapphire laser oscillator with a grazing-incidence four-mirror cavity

    CERN Document Server

    Ko, D K; Binks, D J; Gloster, L A W; King, T A

    1998-01-01

    We demonstrate stable single mode operation in a pulsed Ti:sapphire laser oscillator with a novel grazing-incidence four-mirror coupled cavity. This cavity consists of a grating, a gain medium, and four mirrors and, therefore, has a four-arm interferometer configuration. Through the interferometric effect, we could suppress the adjacent modes and obtain stable single mode operation with a bandwidth of < 200 MHz. We also have developed a general analysis of the laser modes and the threshold conditions for configuration and the experimental results agree well with the theoretical predictions.

  19. Isotope effects in liquid water probed by transmission mode x-ray absorption spectroscopy at the oxygen K-edge.

    Science.gov (United States)

    Schreck, Simon; Wernet, Philippe

    2016-09-14

    The effects of isotope substitution in liquid water are probed by x-ray absorption spectroscopy at the O K-edge as measured in transmission mode. Confirming earlier x-ray Raman scattering experiments, the D2O spectrum is found to be blue shifted with respect to H2O, and the D2O spectrum to be less broadened. Following the earlier interpretations of UV and x-ray Raman spectra, the shift is related to the difference in ground-state zero-point energies between D2O and H2O, while the difference in broadening is related to the difference in ground-state vibrational zero-point distributions. We demonstrate that the transmission-mode measurements allow for determining the spectral shapes with unprecedented accuracy. Owing in addition to the increased spectral resolution and signal to noise ratio compared to the earlier measurements, the new data enable the stringent determination of blue shift and broadening in the O K-edge x-ray absorption spectrum of liquid water upon isotope substitution. The results are compared to UV absorption data, and it is discussed to which extent they reflect the differences in zero-point energies and vibrational zero-point distributions in the ground-states of the liquids. The influence of the shape of the final-state potential, inclusion of the Franck-Condon structure, and differences between liquid H2O and D2O resulting from different hydrogen-bond environments in the liquids are addressed. The differences between the O K-edge absorption spectra of water from our transmission-mode measurements and from the state-of-the-art x-ray Raman scattering experiments are discussed in addition. The experimentally extracted values of blue shift and broadening are proposed to serve as a test for calculations of ground-state zero-point energies and vibrational zero-point distributions in liquid H2O and D2O. This clearly motivates the need for new calculations of the O K-edge x-ray absorption spectrum of liquid water.

  20. Microwave measurements of energy lost to longitudinal modes by single electron bunches traversing periodic structures

    International Nuclear Information System (INIS)

    Wang, J.W.; Loew, G.A.; Weaver, J.N.; Wilson, P.B.

    1981-10-01

    In the design of future linear colliders, it will be important to minimize the loss of beam energy due to the excitation of higher-order modes in the accelerator structure by single bunches of electrons or positrons. This loss is not only detrimental in itself but also gives rise to energy spectrum widening and transverse emittance growth. Microwave measurements made on disk-loaded and alternating-spoke structures to determine the loss to the longitudinal modes are described. In these measurements the Gaussian bunch is simulated by a current pulse of the same shape transmitted through the structure on an axial center conductor. Results to date are presented for the total longitudinal loss parameter per period K in volts per picocoulomb

  1. Electrically tunable Brillouin fiber laser based on a metal-coated single-mode optical fiber

    Directory of Open Access Journals (Sweden)

    S.M. Popov

    Full Text Available We explore tunability of the Brillouin fiber laser employing Joule heating. For this purpose, 10-m-length of a metal-coated single-mode optical cavity fiber has been directly included into an electrical circuit, like a conductor wire. With the current up to ∼3.5 A the laser tuning is demonstrated over a spectrum range of ∼400 MHz. The observed laser line broadening up to ∼2 MHz is explained by frequency drift and mode-hoping in the laser caused by thermal noise. Keywords: Brillouin fiber laser, Metal-coated optical fiber, Laser tuning, Fiber sensors

  2. Evaluation of single photon and Geiger mode Lidar for the 3D Elevation Program

    Science.gov (United States)

    Stoker, Jason M.; Abdullah, Qassim; Nayegandhi, Amar; Winehouse, Jayna

    2016-01-01

    Data acquired by Harris Corporation’s (Melbourne, FL, USA) Geiger-mode IntelliEarth™ sensor and Sigma Space Corporation’s (Lanham-Seabrook, MD, USA) Single Photon HRQLS sensor were evaluated and compared to accepted 3D Elevation Program (3DEP) data and survey ground control to assess the suitability of these new technologies for the 3DEP. While not able to collect data currently to meet USGS lidar base specification, this is partially due to the fact that the specification was written for linear-mode systems specifically. With little effort on part of the manufacturers of the new lidar systems and the USGS Lidar specifications team, data from these systems could soon serve the 3DEP program and its users. Many of the shortcomings noted in this study have been reported to have been corrected or improved upon in the next generation sensors.

  3. Report on first masing and single mode locking in a prebunched beam FEM oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, M.; Eichenbaum, A.; Kleinman, H. [Tel-Aviv Univ., Ramat-Aviv (Israel)] [and others

    1995-12-31

    Radiation characteristics of a table-top free electron maser (FEM) are described in this paper. The FEM employs a prebunched electron beam and is operated as an oscillator in the low-gain collective (Raman) regime. Using electron beam prebunching single mode locking at any one of the possible oscillation modes was obtained. The electron beam is prebunched by a microwave tube section before it is injected into the wiggler. By tuning the electron beam bunching frequency, the FEM oscillation frequency can be locked to any eigen frequency of the resonant waveguide cavity which is within the frequency band of net gain of the FEM. The oscillation build up process is sped up, when the FEM operates with a prebunched electron beam, and the build-up time of radiation is shortened significantly. First measurements of masing with and without prebunching and characterization of the emitted radiation are reported.

  4. Harmonics Suppression for Single-Phase Grid-Connected Photovoltaic Systems in Different Operation Modes

    DEFF Research Database (Denmark)

    Yang, Yongheng; Zhou, Keliang; Blaabjerg, Frede

    2013-01-01

    -connected PV inverters may be severely affected in different operation modes. In this paper, a detailed analysis is conducted to reveal the relationship between the harmonics level with the power factor and the current level in the PV systems. A current control solution which employs an Internal Model...... Principle (IMP) is proposed to suppress the harmonic currents injected into the grid. Experiments are carried out to verify the analysis and the performance of the proposed control method. It is demonstrated that the proposed method presents an effective solution to harmonics suppression for single......-phase grid-connected PV systems in different operation modes. Especially, it can remove higher order harmonics effectively leading to a better power quality compared to the Proportional plus Multi-Resonant Controller, and it has less computational burden....

  5. 3-4.5 μm continuously tunable single mode VECSEL

    Science.gov (United States)

    Fill, M.; Felder, F.; Rahim, M.; Khiar, A.; Zogg, H.

    2012-11-01

    We present continuously tunable Vertical External Cavity Surface Emitting Lasers (VECSEL) in the mid-infrared. The structure based on IV-VI semiconductors is epitaxially grown on a Si-substrates. The VECSEL emit one single mode, which is mode hop-free tunable over 50-100 nm around the center wavelength. In this work, two different devices are presented, emitting at 3.4 μm and 3.9 μm, respectively. The lasers operate near room temperature with thermoelectric stabilization. They are optically pumped, yielding an output power >10 mWp. The axial symmetric emission beam has a half divergence angle of <3.3∘.

  6. Guided Wave Propagation and Diffraction in Plates with Obstacles: Resonance Transmission and Trapping Mode Effects

    Science.gov (United States)

    Glushkov, E. V.; Glushkova, N. V.; Eremin, A. A.; Lammering, R.

    The paper is based on the authors' report at ICU-2015 giving the idea of the semi-analytical integral equation approach to a physically clear simulation of wave phenomena in composite plate-like structures with local inhomogeneities. On this basis, a set of low-cost computer models for a reliable near- and far-field analysis had been developed and experimentally validated. Their abilities have been illustrated with examples of structural frequency response and radiation pattern diagrams for guided waves (GW) generated by piezoelectric wafer active sensors (PWAS); the reconstruction of effective elastic moduli of fiber-reinforced composites; the PWAS frequency tuning with accounting for the radiation directivity induced by anisotropy; and the effects of wave energy resonance transmission and trapping. Some of these examples have been already discussed in journal articles. Therefore, the present paper concentrates on the recent results of resonance GW interaction with deep surface notches and buried cavities.

  7. A novel Alamouti transmission technique via a single RF source and a miniaturized antenna system

    DEFF Research Database (Denmark)

    Alrabadi, Osama; Papadias, Constantinos B.

    2010-01-01

    A novel space-time transmission technique that emulates Alamouti code with a single RF source is proposed in this paper. An orthogonal block of two BPSK signals is transmitted over a duration of two symbol periods by exciting one RF port of a two-element antenna system every symbol period while...... terminating the other port with its matching impedance. Besides the orthogonality of the signals, the array far-field is a linear mixture of two orthonormal basis functions onto which the BPSK signals are mapped, hence independent fading among the signals is almost always guaranteed....

  8. Charge transport across a single-Cooper-pair transistor coupled to a resonant transmission line

    Energy Technology Data Exchange (ETDEWEB)

    Leppaekangas, Juha [Institut fuer Theoretische Festkoerperphysik, Karlsruhe Institute of Technology, D-76128 Karlsruhe (Germany); Department of Physical Sciences, University of Oulu, FI-90014 Oulu (Finland); Pashkin, Yuri [NEC Nano Electronics Research Laboratories, RIKEN Advanced Science Institute, Tsukuba, Ibaraki 305-8501 (Japan); Thuneberg, Erkki [Department of Physical Sciences, University of Oulu, FI-90014 Oulu (Finland)

    2010-07-01

    We have investigated charge transport in ultrasmall superconducting single and double Josephson junctions coupled to a transmission-line resonator. The microstrip resonator is naturally formed by the on-chip leads and the sample holder. We observe equidistant peaks in the transport characteristics of both types of devices and attribute them to the process involving simultaneous tunneling of Cooper pairs and photon emission into the resonator. The experimental data is well reproduced with the orthodox model of Cooper pair tunneling that accounts for the microwave photon emission into the resonator.

  9. Differential modal delay measurements in a graded-index multimode fibre waveguide, using a single-mode fibre pro mode selection

    International Nuclear Information System (INIS)

    Sunak, H.R.D.; Soares, S.M.

    1981-01-01

    Differential model delay (DMD) measurements in graded-index multimode optical fibre waveguides, which are very promising for many types of communication system were carried out. These DMD measurements give a direct indication of the deviation of the refractive index profile, from the optimum value, at a given wavelength. For the first time, by using a single-mode fibre, a few guided modes in the graded-index fibre were selected, in two different ways: launching a few modes at the input end or selecting a few modes at the output end. By doing so important features of propagation in the fibre were revealed, especially the intermodal coupling that may exist. The importance of this determination of intermodal coupling or mode mixing, particularly when many fibres are joined together in a link, and the merits of DMD measurements in general and their importance for the production of high bandwidth graded-index fibres are discussed. (Author) [pt

  10. Dynamics of Nonlinear Excitation of the High-Order Mode in a Single-Mode Step-Index Optical Fiber

    Science.gov (United States)

    Burdin, V.; Bourdine, A.

    2018-04-01

    This work is concerned with approximate model of higher-order mode nonlinear excitation in a singlemode silica optical fiber. We present some results of simulation for step-index optical fiber under femtosecond optical pulse launching, which confirm ability of relatively stable higher-order mode excitation in such singlemode optical fiber over sufficiently narrow range of launched optical power variation.

  11. Frequency-domain-independent vector analysis for mode-division multiplexed transmission

    Science.gov (United States)

    Liu, Yunhe; Hu, Guijun; Li, Jiao

    2018-04-01

    In this paper, we propose a demultiplexing method based on frequency-domain independent vector analysis (FD-IVA) algorithm for mode-division multiplexing (MDM) system. FD-IVA extends frequency-domain independent component analysis (FD-ICA) from unitary variable to multivariate variables, and provides an efficient method to eliminate the permutation ambiguity. In order to verify the performance of FD-IVA algorithm, a 6 ×6 MDM system is simulated. The simulation results show that the FD-IVA algorithm has basically the same bit-error-rate(BER) performance with the FD-ICA algorithm and frequency-domain least mean squares (FD-LMS) algorithm. Meanwhile, the convergence speed of FD-IVA algorithm is the same as that of FD-ICA. However, compared with the FD-ICA and the FD-LMS, the FD-IVA has an obviously lower computational complexity.

  12. Tunable single photonic defect-mode in cholesteric liquid crystals with laser-induced local modifications of helix

    International Nuclear Information System (INIS)

    Yoshida, Hiroyuki; Lee, Chee Heng; Fujii, Akihiko; Ozaki, Masanori

    2006-01-01

    The authors demonstrate a tunable single photonic defect-mode in a single cholesteric liquid crystal material based on a structural defect introduced by local modification of the helix. An unpolymerized region of cholesteric liquid crystal acting as the defect was left between two polymerized regions via a two-photon excitation laser-lithography process. Upon polymerization, the cholesteric liquid crystal helix elongated and became thermally stable, and a single photonic defect mode was exhibited due to the contrast in the helix pitch at the defect. The defect mode showed tunability upon heating, and a 36 nm redshift was seen over a temperature range of 30 deg. C

  13. Time-resolved soft X-ray absorption spectroscopy in transmission mode on liquids at MHz repetition rates

    Directory of Open Access Journals (Sweden)

    Mattis Fondell

    2017-09-01

    Full Text Available We present a setup combining a liquid flatjet sample delivery and a MHz laser system for time-resolved soft X-ray absorption measurements of liquid samples at the high brilliance undulator beamline UE52-SGM at Bessy II yielding unprecedented statistics in this spectral range. We demonstrate that the efficient detection of transient absorption changes in transmission mode enables the identification of photoexcited species in dilute samples. With iron(II-trisbipyridine in aqueous solution as a benchmark system, we present absorption measurements at various edges in the soft X-ray regime. In combination with the wavelength tunability of the laser system, the set-up opens up opportunities to study the photochemistry of many systems at low concentrations, relevant to materials sciences, chemistry, and biology.

  14. Single atom image observation by means of scanning transmission electron microscope

    International Nuclear Information System (INIS)

    Komoda, Tsutomu; Todokoro, Hideo; Nomura, Setsuo

    1977-01-01

    In a scanning transmission electron microscope, electrons emitted from the ion source are finely focused to a spot on a specimen, and scanned with the deflection coil. The electrons transmitted through the specimen are detected by the scintillate, and converted to image signals with the photomultiplier, and the image is obtained on the cathode ray tube. The Hitachi scanning transmission electron microscope employs a field emission type electron gun, thus it can focus the electron beam to 0.3 nm diameter. In the microscope, elastically scattered electrons are captured by a doughnut shaped detector, while the electrons transmitted through the specimen without colliding with atoms and the non-elastically scattered electrons which has lost a part of their energy due to the ionization or excitation of atoms are detected by the energy analyzer installed at the bottom of the microscope. Though single atom image observation requires the fixation of the atoms to be marked on a support, the problem is how to discriminate the aimed atoms from the atoms of the support. The most sensitive method is the dark-field method which uses the difference of elastically scattered electron intensity as the signal. Thorium and iodine atom images have been successfully observed as the trials to prove the feasibility of observation of heavy atoms with the scanning transmission electron microscope. (Wakatsuki, Y.)

  15. Finite element analysis of mechanics of lateral transmission of force in single muscle fiber.

    Science.gov (United States)

    Zhang, Chi; Gao, Yingxin

    2012-07-26

    Most of the myofibers in long muscles of vertebrates terminate within fascicles without reaching either end of the tendon, thus force generated in myofibers has to be transmitted laterally through the extracellular matrix (ECM) to adjacent fibers; which is defined as the lateral transmission of force in skeletal muscles. The goal of this study was to determine the mechanisms of lateral transmission of force between the myofiber and ECM. In this study, a 2D finite element model of single muscle fiber was developed to study the effects of mechanical properties of the endomysium and the tapered ends of myofiber on lateral transmission of force. Results showed that most of the force generated is transmitted near the end of the myofiber through shear to the endomysium, and the force transmitted to the end of the model increases with increased stiffness of ECM. This study also demonstrated that the tapered angle of the myofiber ends can reduce the stress concentration near the myofiber end while laterally transmitting force efficiently. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Evaluation of scatter correction using a single isotope for simultaneous emission and transmission data

    International Nuclear Information System (INIS)

    Yang, J.; Kuikka, J.T.; Vanninen, E.; Laensimies, E.; Kauppinen, T.; Patomaeki, L.

    1999-01-01

    Photon scatter is one of the most important factors degrading the quantitative accuracy of SPECT images. Many scatter correction methods have been proposed. The single isotope method was proposed by us. Aim: We evaluate the scatter correction method of improving the quality of images by acquiring emission and transmission data simultaneously with single isotope scan. Method: To evaluate the proposed scatter correction method, a contrast and linearity phantom was studied. Four female patients with fibromyalgia (FM) syndrome and four with chronic back pain (BP) were imaged. Grey-to-cerebellum (G/C) and grey-to-white matter (G/W) ratios were determined by one skilled operator for 12 regions of interest (ROIs) in each subject. Results: The linearity of activity response was improved after the scatter correction (r=0.999). The y-intercept value of the regression line was 0.036 (p [de

  17. Single-Wall Carbon Nanotube-Coated Cotton Yarn for Electrocardiography Transmission

    Directory of Open Access Journals (Sweden)

    Yuliang Zhao

    2018-03-01

    Full Text Available We fabricated a type of conductive fabric, specifically single-wall carbon nanotube-coated cotton yarns (SWNT-CYs, for electrocardiography (ECG signal transmission utilizing a “dipping and drying” method. The conductive cotton yarns were prepared by dipping cotton yarns in SWNTs (single-wall carbon nanotubes solutions and then drying them at room temperature—a simple process that shows consistency in successfully coating cotton yarns with conductive carbon nanotubes (CNTs. The influence of fabrication conditions on the conductivity properties of SWNT-CYs was investigated. The results demonstrate that our conductive yarns can transmit weak bio-electrical (i.e., ECG signals without significant attenuation and distortion. Our conductive cotton yarns, which combine the flexibility of conventional fabrics and the good conductivity of SWNTs, are promising materials for wearable electronics and sensor applications in the future.

  18. High energy nanosecond laser pulses delivered single-mode through hollow-core PBG fibers.

    Science.gov (United States)

    Shephard, Jonathan; Jones, J; Hand, D; Bouwmans, G; Knight, J; Russell, P; Mangan, B

    2004-02-23

    We report on the development of hollow-core photonic bandgap fibers for the delivery of high energy pulses for precision micromachining applications. Short pulses of (65ns pulse width) and energies of the order of 0.37mJ have been delivered in a single spatial mode through hollow-core photonic bandgap fibers at 1064nm using a high repetition rate (15kHz) Nd:YAG laser. The ultimate laser-induced damage threshold and practical limitations of current hollow-core fibers for the delivery of short optical pulses are discussed.

  19. Plasma-implantation-based surface modification of metals with single-implantation mode

    Science.gov (United States)

    Tian, X. B.; Cui, J. T.; Yang, S. Q.; Fu, Ricky K. Y.; Chu, Paul K.

    2004-12-01

    Plasma ion implantation has proven to be an effective surface modification technique. Its biggest advantage is the capability to treat the objects with irregular shapes without complex manipulation of target holder. Many metal materials such as aluminum, stainless steel, tool steel, titanium, magnesium etc, has been treated using this technique to improve their wear-resistance, corrosion-resistance, fatigue-resistance, oxidation-resistance, bio-compatiblity etc. However in order to achieve thicker modified layers, hybrid processes combining plasma ion implantation with other techniques have been frequently employed. In this paper plasma implantation based surface modification of metals using single-implantation mode is reviewed.

  20. Single-longitudinal-mode BEFL incorporating a Bragg grating written in EDF

    Science.gov (United States)

    Gao, Ya; Sun, Junqiang; Chen, Guodong; Xie, Heng

    2015-06-01

    A stable and tunable single-longitudinal-mode (SLM) Brillouin/Erbium fiber laser (BEFL) with narrow linewidth is proposed and experimentally demonstrated. A uniform Bragg grating written in a segment of unpumped Erbium-doped fiber (EDF) is incorporated as an auto-tracking filter to achieve SLM operation. A length of 5 m pumped EDF is used to provide both Brillouin and linear gain in the cavity. The linewidth is measured to be 18 kHz and the lasing peak power fluctuation and wavelength shift are monitored less than 0.027 dB and 2 pm respectively.

  1. Highly damped quasinormal modes of generic single-horizon black holes

    Energy Technology Data Exchange (ETDEWEB)

    Daghigh, Ramin G [Physics Department, University of Winnipeg, Winnipeg, Manitoba R3B 2E9 (Canada); Kunstatter, Gabor [Winnipeg Institute for Theoretical Physics, Winnipeg, Manitoba (Canada)

    2005-10-07

    We calculate analytically the highly damped quasinormal mode spectra of generic single-horizon black holes using the rigorous WKB techniques of Andersson and Howls (2004 Class. Quantum Grav. 21 1623). We thereby provide a firm foundation for previous analysis, and point out some of their possible limitations. The numerical coefficient in the real part of the highly damped frequency is generically determined by the behaviour of coupling of the perturbation to the gravitational field near the origin, as expressed in tortoise coordinates. This fact makes it difficult to understand how the famous ln(3) could be related to the quantum gravitational microstates near the horizon.

  2. Phylogenetic analysis consistent with a clinical history of sexual transmission of HIV-1 from a single donor reveals transmission of highly distinct variants

    Directory of Open Access Journals (Sweden)

    McClure Myra

    2011-07-01

    Full Text Available Abstract Background To combat the pandemic of human immunodeficiency virus 1 (HIV-1, a successful vaccine will need to cope with the variability of transmissible viruses. Human hosts infected with HIV-1 potentially harbour many viral variants but very little is known about viruses that are likely to be transmitted, or even if there are viral characteristics that predict enhanced transmission in vivo. We show for the first time that genetic divergence consistent with a single transmission event in vivo can represent several years of pre-transmission evolution. Results We describe a highly unusual case consistent with a single donor transmitting highly related but distinct HIV-1 variants to two individuals on the same evening. We confirm that the clustering of viral genetic sequences, present within each recipient, is consistent with the history of a single donor across the viral env, gag and pol genes by maximum likelihood and Bayesian Markov Chain Monte Carlo based phylogenetic analyses. Based on an uncorrelated, lognormal relaxed clock of env gene evolution calibrated with other datasets, the time since the most recent common ancestor is estimated as 2.86 years prior to transmission (95% confidence interval 1.28 to 4.54 years. Conclusion Our results show that an effective design for a preventative vaccine will need to anticipate extensive HIV-1 diversity within an individual donor as well as diversity at the population level.

  3. Chromatic fiber dispersion in single-mode coherence multiplex systems and its impact on digital transmission

    NARCIS (Netherlands)

    Meijerink, Arjan; Niëns, Niek; Heideman, G.H.L.M.; van Etten, Wim

    2003-01-01

    Abstract¿Coherence multiplexing (CM) is a relatively unknown form of optical CDMA, which is particularly suitable in medium bit rate, small-scale optical networks like access networks, LANs or optical interconnects. Despite the small bit rates and small distances, this technique is rather sensitive

  4. Investigation of the glide modes of single crystals of beryllium; Etude des modes de glissement de monocristaux de beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Regnier, P. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-05-01

    The flow characteristics of single crystals of beryllium specially oriented for slip along a single plane and a single direction have been thoroughly investigated. The elastic limit and the strain hardening in basal glide have been investigated in the temperature range (-195 deg. C, 400 deg. C) in tension as well as in compression. Observation of the slip lines and of the dislocation configurations have also been made in addition to the mechanical tests. The prismatic slip has been studied in greater detail: tensile tests have been performed on specimens carefully oriented at different temperatures, strain rates and with varying orientations of the basal and of the prism planes. Tests have also been made in the micro-strain range; the slip lines and the dislocation arrangements were observed in detail. The very unusual variation of the elastic limit with temperature is not due to impurities but to a cross slip mechanism. A model of dislocation locking is proposed to account for the experimental results. This mechanism assumes that the a-bar dislocations may also dissociate on the prism planes [101-bar 0]. Various possible dissociations are suggested, the most probable of which corresponds to the phase transformation: Hexagonal close packed to body centered cubic. This proposal can be extended to account for the relative ease of glide on the different systems in the hexagonal close packed metals. (author) [French] L' ecoulement de monocristaux de berylliurn deformes en glissement basal et en glissement prismatique a ete etudie sur des echantillons orientes de maniere a favoriser au maximum la deformation suivant une seule direction d'un seul systeme de glissement. L'influence de la temperature sur la limite elastique et la consolidation en glissement basal a ete etudie depuis -195 deg. C jusqu' 400 deg. C sur des echantillons deformes en tension et sur d'autres deformes en compression. Ces essais mecaniques ont ete completes par l

  5. The effect of scattering on single photon transmission of optical angular momentum

    International Nuclear Information System (INIS)

    Andrews, D L

    2011-01-01

    Schemes for the communication and registration of optical angular momentum depend on the fidelity of transmission between optical system components. It is known that electron spin can be faithfully relayed between exciton states in quantum dots; it has also been shown by several theoretical and experimental studies that the use of beams conveying orbital angular momentum can significantly extend the density and efficiency of such information transfer. However, it remains unclear to what extent the operation of such a concept at the single photon level is practicable—especially where this involves optical propagation through a material system, in which forward scattering events can intervene. The possibility of transmitting and decoding angular momentum over nanoscale distances itself raises other important issues associated with near-field interrogation. This paper provides a framework to address these and related issues. A quantum electrodynamical representation is constructed and used to pursue the consequences of individual photons, from a Laguerre–Gaussian beam, undergoing single and multiple scattering events in the course of propagation. In this context, issues concerning orbital angular momentum conservation, and its possible compromise, are tackled by identifying the relevant components of the electromagnetic scattering and coupling tensors, using an irreducible Cartesian basis. The physical interpretation broadly supports the fidelity of quantum information transmission, but it also identifies potential limitations of principle

  6. The effect of scattering on single photon transmission of optical angular momentum

    Science.gov (United States)

    Andrews, D. L.

    2011-06-01

    Schemes for the communication and registration of optical angular momentum depend on the fidelity of transmission between optical system components. It is known that electron spin can be faithfully relayed between exciton states in quantum dots; it has also been shown by several theoretical and experimental studies that the use of beams conveying orbital angular momentum can significantly extend the density and efficiency of such information transfer. However, it remains unclear to what extent the operation of such a concept at the single photon level is practicable—especially where this involves optical propagation through a material system, in which forward scattering events can intervene. The possibility of transmitting and decoding angular momentum over nanoscale distances itself raises other important issues associated with near-field interrogation. This paper provides a framework to address these and related issues. A quantum electrodynamical representation is constructed and used to pursue the consequences of individual photons, from a Laguerre-Gaussian beam, undergoing single and multiple scattering events in the course of propagation. In this context, issues concerning orbital angular momentum conservation, and its possible compromise, are tackled by identifying the relevant components of the electromagnetic scattering and coupling tensors, using an irreducible Cartesian basis. The physical interpretation broadly supports the fidelity of quantum information transmission, but it also identifies potential limitations of principle.

  7. DBD plasma source operated in single-filamentary mode for therapeutic use in dermatology

    Energy Technology Data Exchange (ETDEWEB)

    Rajasekaran, Priyadarshini; Mertmann, Philipp; Bibinov, Nikita; Awakowicz, Peter [Institute for Electrical Engineering and Plasma Technology, Ruhr-Universitaet Bochum, Universitaetsstr. 150, 44801 Bochum (Germany); Wandke, Dirk [CINOGY GmbH, Max-Naeder-Str. 15, 37114 Duderstadt (Germany); Vioel, Wolfgang, E-mail: rajasekaran@aept.rub.d, E-mail: mertmann@aept.rub.d, E-mail: Nikita.Bibinov@rub.d, E-mail: dirk.wandke@cinogy.co, E-mail: vioel@hawk-hhg.d, E-mail: awakowicz@aept.rub.d [University of Applied Sciences and Arts, Faculty of Natural Sciences and Technology, Von-Ossietzky-Str. 99, 37085 Goettingen (Germany)

    2009-11-21

    Our dielectric barrier discharge (DBD) plasma source for bio-medical application comprises a copper electrode covered with ceramic. Objects of high capacitance such as the human body can be used as the opposite electrode. In this study, the DBD source is operated in single-filamentary mode using an aluminium spike as the opposite electrode, to imitate the conditions when the discharge is ignited on a raised point, such as hair, during therapeutic use on the human body. The single-filamentary discharge thus obtained is characterized using optical emission spectroscopy, numerical simulation, voltage-current measurements and microphotography. For characterization of the discharge, averaged plasma parameters such as electron distribution function and electron density are determined. Fluxes of nitric oxide (NO), ozone (O{sub 3}) and photons reaching the treated surface are simulated. The calculated fluxes are finally compared with corresponding fluxes used in different bio-medical applications.

  8. Single top quarks at the Tevatron and observation of the s-channel production mode

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    The presentation gives an overview of single-top-quark production at the Tevatron proton-antiproton collider. The talk covers measurements of the total s+t channel production cross section and the extraction of the CKM matrix element |V_tb|. Furthermore, separate analyses of the s-channel and t-channel production modes are discussed. The data correspond to total integrated luminosities of up to 9.7 fb-1 per experiment and represent in most cases the full Run-II dataset. Through a combination of the CDF and D0 measurements the first observation of single-top-quark production in the s-channel is claimed. This is particularly highlighted in the seminar.

  9. Switching sliding mode force tracking control of piezoelectric-hydraulic pump-based friction element actuation systems for automotive transmissions

    Science.gov (United States)

    Kim, Gi-Woo; Wang, K. W.

    2009-08-01

    In this study, a nonlinear sliding-mode controller is designed for force tracking of a piezoelectric-hydraulic pump (PHP)-based actuation system, which is developed to replace the current electro-hydraulic actuation systems for automatic transmission (AT) friction elements, such as band brakes or clutches. By utilizing the PHP, one can eliminate the various hydraulic components (oil pump, regulating valve and control valve) in current ATs and achieve a simpler configuration with more efficient operation. With the derived governing equation of motion of the PHP-based actuation system integrated with the friction element (band brake), a switching control law is synthesized based on the sliding-mode theory. To evaluate the effectiveness of the proposed control law, its force tracking performance for the engagement of a friction element during an AT 1\\to 2 up-shift is examined experimentally. It is shown that one can successfully track the desired force trajectory for AT shift control with small tracking error. This study demonstrates the potential of the PHP as a new controllable actuation system for AT friction elements.

  10. Ultra-High-Speed Travelling Wave Protection of Transmission Line Using Polarity Comparison Principle Based on Empirical Mode Decomposition

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2015-01-01

    Full Text Available The traditional polarity comparison based travelling wave protection, using the initial wave information, is affected by initial fault angle, bus structure, and external fault. And the relationship between the magnitude and polarity of travelling wave is ignored. Because of the protection tripping and malfunction, the further application of this protection principle is affected. Therefore, this paper presents an ultra-high-speed travelling wave protection using integral based polarity comparison principle. After empirical mode decomposition of the original travelling wave, the first-order intrinsic mode function is used as protection object. Based on the relationship between the magnitude and polarity of travelling wave, this paper demonstrates the feasibility of using travelling wave magnitude which contains polar information as direction criterion. And the paper integrates the direction criterion in a period after fault to avoid wave head detection failure. Through PSCAD simulation with the typical 500 kV transmission system, the reliability and sensitivity of travelling wave protection were verified under different factors’ affection.

  11. HIV Mother-to-Child Transmission, Mode of Delivery, and Duration of Rupture of Membranes: Experience in the Current Era

    Directory of Open Access Journals (Sweden)

    Siobhan Mark

    2012-01-01

    Full Text Available Objective. To evaluate whether the length of time of rupture of membranes (ROM in optimally managed HIV-positive women on highly active antiretroviral therapy (HAART with low viral loads (VL is predictive of the risk of mother to child transmission (MTCT of the human immunodeficiency virus (HIV. Study Methods. A retrospective case series of all HIV-positive women who delivered at two academic tertiary centers in Toronto, Canada from January 2000 to November 2010 was completed. Results. Two hundred and ten HIV-positive women with viral loads <1,000 copies/ml delivered during the study period. VL was undetectable (<50 copies/mL for the majority of the women (167, 80%, and <1,000 copies/mL for all women. Mode of delivery was vaginal in 107 (51% and cesarean in 103 (49%. The median length of time of ROM was 0.63 hours (range 0 to 77.87 hours for the entire group and 2.56 hours (range 0 to 53.90 hours for those who had a vaginal birth. Among women with undetectable VL, 90 (54% had a vaginal birth and 77 (46% had a cesarean birth. Among the women in this cohort there were no cases of MTCT of HIV. Conclusions. There was no association between duration of ROM or mode of delivery and MTCT in this cohort of 210 virally suppressed HIV-positive pregnant women.

  12. Single-Mode Deceleration Stage Rayleigh-Taylor Instability Growth in Cylindrical Implosions

    Science.gov (United States)

    Sauppe, J. P.; Palaniyappan, S.; Bradley, P. A.; Batha, S. H.; Loomis, E. N.; Kline, J. L.; Srinivasan, B.; Bose, A.; Malka, E.; Shvarts, D.

    2017-10-01

    We present design calculations demonstrating the feasibility of measuring single-mode deceleration stage Rayleigh-Taylor instability (RTI) growth at a factor of four convergence. RTI growth rates are modified as a result of convergence [Bell LA-1321, 1951], and cylindrical targets are considered here, as they allow direct diagnostic access along the interface. The 2D computations, performed with the radiation-hydrodynamics code xRAGE [Gittings et al., CSD 2008] utilizing a new laser ray-tracing package, predict growth factors of 6 to 10 for mode 10 and 4 to 6 for mode 4, both of high interest in evaluating inertial confinement fusion capsule degradation mechanisms [Bose et al., this conference]. These results compare favorably to a linear theory [Epstein, PoP 2004] and to a buoyancy-drag model [Srebro et al., LPB 2003], which accounts for the linear and non-linear stages. Synthetic radiographs, produced by combining 2D computations of axial and transverse cross-sections, indicate this growth will be observable, and these will be compared to experimental data obtained at the OMEGA laser facility. Work performed by Los Alamos National Laboratory under contract DE-AC52-06NA25396 for the National Nuclear Security Administration of the U.S. Department of Energy. (LA-UR-17-25608).

  13. Tuning the dispersion and single/multi-modeness of a hole-assisted fiber by the hole's geometrical parameters

    NARCIS (Netherlands)

    Uranus, H.P.; Hoekstra, Hugo; van Groesen, Embrecht W.C.

    2008-01-01

    Using a vectorial finite element mode solver developed earlier, we studied a hole-assisted multi-ring fiber. We report the role of the hole’s geometrical parameters in tuning the waveguide dispersion and the single/multi-modeness of the particular fiber. By correctly selecting the hole’s size and

  14. Simple immunoglobulin G sensor based on thin core single-mode fiber

    Science.gov (United States)

    Zheng, Yingfang; Lang, Tingting; Shen, Tingting; Shen, Changyu

    2018-03-01

    In this paper, a simple fiber biosensor (FOB) for immunoglobulin G (IgG) detection is designed and experimentally verified. The FOB is constructed by a 20 mm long thin core single-mode fiber (TCSMF) sandwiched between two single-mode optical fibers (SMFs). First, the refractive index (RI) sensitivity of the fiber structures is calculated by the beam propagation method. The refractive index sensing experiment is performed using different concentrations of glycerol solutions, and the experimental results are mostly consistent with the simulation predictions. The experimental RI sensitivity increases with the surrounding RI and reaches 82.7 nm/RIU. Then the surface of the FOB is functionalized by APTES for covalent bonding. The human IgG and goat anti-human IgG are chosen as a bioconjugated pair to examine the bio-sensing effectiveness of this FOB. The sensitivity of IgG detection is determined to be 10.4 nm/(mg/ml). And the serum IgG concentration in normal adults lies within the range of 6-16 mg/ml (Worsfold et al., 1985), so the sensor is applicable to human IgG monitoring. The specificity of the FOB is also verified by a contrast experiment conducted using rabbit immunoglobulin G. The proposed FOB is simple, low loss, cost-effective, and can be used for various biological and chemical applications.

  15. Spontaneous emission of two quantum dots in a single-mode cavity

    International Nuclear Information System (INIS)

    Qiu Liu; Zhang Ke; Li Zhi-Yuan

    2013-01-01

    The spontaneous emission spectrum from two quantum dots (QDs) that are strongly coupled with a single-mode nanocavity is investigated using rigorous numerical calculations and simple analytical solutions of quantum dynamics. The emission spectra both from the side and along the axis of the cavity are considered. Modification of two parameters, the coupling strength and the detuning between the transition frequencies of the two quantum dots, allows us to efficiently control the shape of the spontaneous emission spectrum. Different profiles and their physical origins can be well understood in the dressed-state picture for the light—QD interaction in the on-resonance and off-resonance situations. In the on-resonance situation, the emission spectra exhibit symmetric features, and they are not altered by the asymmetry in the coupling parameters. The axis spectra show two emission peaks while the side spectra have three emission peaks. In the off-resonance situation, the emission spectra always show an asymmetrical three-peak feature. When the two QDs have different decay parameters, singular features (a peak or a dip) can take place at the frequency of the cavity mode, and this is attributed to the unbalanced process of the emission and absorption of a single photon. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  16. Optically pumped semiconductor lasers: Conception and characterization of a single mode source for Cesium atoms manipulation

    International Nuclear Information System (INIS)

    Cocquelin, B.

    2009-02-01

    Lasers currently used in atomic clocks or inertial sensors are suffering from a lack of power, narrow linewidth or compactness for future spatial missions. Optically pumped semiconductor lasers, which combine the approach of classical solid state lasers and the engineering of semiconductor laser, are considered here as a candidate to a metrological laser source dedicated to the manipulation of Cesium atoms in these instruments. These lasers have demonstrated high power laser emission in a circular single transverse mode, as well as single longitudinal mode emission, favoured by the semiconductor structure and the external cavity design. We study the definition and the characterization of a proper semiconductor structure for the cooling and the detection of Cesium atoms at 852 nm. A compact and robust prototype tunable on the Cesium D2 hyperfine structure is built. The laser frequency is locked to an atomic transition thanks to a saturated absorption setup. The emission spectral properties are investigated, with a particular attention to the laser frequency noise and the laser linewidth. Finally, we describe and model the thermal properties of the semiconductor structure, which enables the simulation of the laser power characteristic. The experimental parameters are optimised to obtain the maximum output power with our structure. Thanks to our analysis, we propose several ways to overcome these limitations, by reducing the structure heating. (authors)

  17. Time-of-Flight Three Dimensional Neutron Diffraction in Transmission Mode for Mapping Crystal Grain Structures

    DEFF Research Database (Denmark)

    Cereser, Alberto; Strobl, Markus; Hall, Stephen A.

    2017-01-01

    constituting the material. This article presents a new non-destructive 3D technique to study centimeter-sized bulk samples with a spatial resolution of hundred micrometers: time-of-flight three-dimensional neutron diffraction (ToF 3DND). Compared to existing analogous X-ray diffraction techniques, ToF 3DND......-of-flight neutron beamline. The technique was developed and tested with data collected at the Materials and Life Science Experimental Facility of the Japan Proton Accelerator Complex (J-PARC) for an iron sample. We successfully reconstructed the shape of 108 grains and developed an indexing procedure....... The reconstruction algorithms have been validated by reconstructing two stacked Co-Ni-Ga single crystals, and by comparison with a grain map obtained by post-mortem electron backscatter diffraction (EBSD)....

  18. 12-core x 3-mode Dense Space Division Multiplexed Transmission over 40 km Employing Multi-carrier Signals with Parallel MIMO Equalization

    DEFF Research Database (Denmark)

    Mizuno, T.; Kobayashi, T.; Takara, H.

    2014-01-01

    We demonstrate dense SDM transmission of 20-WDM multi-carrier PDM-32QAM signals over a 40-km 12-core x 3-mode fiber with 247.9-b/s/Hz spectral efficiency. Parallel MIMO equalization enables 21-ns DMD compensation with 61 TDE taps per subcarrier.......We demonstrate dense SDM transmission of 20-WDM multi-carrier PDM-32QAM signals over a 40-km 12-core x 3-mode fiber with 247.9-b/s/Hz spectral efficiency. Parallel MIMO equalization enables 21-ns DMD compensation with 61 TDE taps per subcarrier....

  19. Time-of-Flight Three Dimensional Neutron Diffraction in Transmission Mode for Mapping Crystal Grain Structures.

    Science.gov (United States)

    Cereser, Alberto; Strobl, Markus; Hall, Stephen A; Steuwer, Axel; Kiyanagi, Ryoji; Tremsin, Anton S; Knudsen, Erik B; Shinohara, Takenao; Willendrup, Peter K; da Silva Fanta, Alice Bastos; Iyengar, Srinivasan; Larsen, Peter M; Hanashima, Takayasu; Moyoshi, Taketo; Kadletz, Peter M; Krooß, Philipp; Niendorf, Thomas; Sales, Morten; Schmahl, Wolfgang W; Schmidt, Søren

    2017-08-25

    The physical properties of polycrystalline materials depend on their microstructure, which is the nano- to centimeter scale arrangement of phases and defects in their interior. Such microstructure depends on the shape, crystallographic phase and orientation, and interfacing of the grains constituting the material. This article presents a new non-destructive 3D technique to study centimeter-sized bulk samples with a spatial resolution of hundred micrometers: time-of-flight three-dimensional neutron diffraction (ToF 3DND). Compared to existing analogous X-ray diffraction techniques, ToF 3DND enables studies of samples that can be both larger in size and made of heavier elements. Moreover, ToF 3DND facilitates the use of complicated sample environments. The basic ToF 3DND setup, utilizing an imaging detector with high spatial and temporal resolution, can easily be implemented at a time-of-flight neutron beamline. The technique was developed and tested with data collected at the Materials and Life Science Experimental Facility of the Japan Proton Accelerator Complex (J-PARC) for an iron sample. We successfully reconstructed the shape of 108 grains and developed an indexing procedure. The reconstruction algorithms have been validated by reconstructing two stacked Co-Ni-Ga single crystals, and by comparison with a grain map obtained by post-mortem electron backscatter diffraction (EBSD).

  20. Single-Phase Full-Wave Rectifier as an Effective Example to Teach Normalization, Conduction Modes, and Circuit Analysis Methods

    Directory of Open Access Journals (Sweden)

    Predrag Pejovic

    2013-12-01

    Full Text Available Application of a single phase rectifier as an example in teaching circuit modeling, normalization, operating modes of nonlinear circuits, and circuit analysis methods is proposed.The rectifier supplied from a voltage source by an inductive impedance is analyzed in the discontinuous as well as in the continuous conduction mode. Completely analytical solution for the continuous conduction mode is derived. Appropriate numerical methods are proposed to obtain the circuit waveforms in both of the operating modes, and to compute the performance parameters. Source code of the program that performs such computation is provided.

  1. Polarization-mode dispersion: worst-case modeling and impact on high-data-rate transmission in the optical network of Deutsche Telekom

    Science.gov (United States)

    Hanik, Norbert; Breuer, Dirk; Betker, Andreas; Tessmann, Hans-Juergen

    2004-05-01

    The regenerator-free transmission distance of ultra-long-haul, dispersion-managed, optical WDM-transmission-links is ultimately determined by accumulating ASE-Noise of optical amplifiers and Polarisation-Mode-Dispersion (PMD) of the fiber-material. Therefore the applicability of the fiber-infrastructure of Deutsche Telekom to transport optical channels at 10 Gbit/s and 40 Gbit/s over sufficiently long distances is assessed both generally, applying PMD limit-values of ITU-T, and for a selected transmission link, evaluating numerical simulations using a worst-case simulation model.

  2. Chebyshev approximations for the transmission integral for one single line in Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Flores-Lamas, H.

    1994-01-01

    An analytic expansion, to arbitrary accuracy, of the transmission integral (TI) for a single Moessbauer line is presented. This serves for calculating the effective thickness (T a ) of an absorber in Moessbauer spectroscopy even for T a >10. The new analytic expansion arises from substituting in the TI expression the exponential function by a Chebyshev polynomials series. A very fast converging series for TI is obtained and used as a test function in a least squares fit to a simulated spectrum. The test yields satisfactory results. The area and height parameters calculated were found to be in good agreement with earlier results. The present analytic method assumes that the source and absorber widths are different. ((orig.))

  3. Frequency-domain terahertz transmission spectra of Mn3 and Mn12 single-molecule magnets

    Science.gov (United States)

    Liu, RuiYuan; Zuo, JunWei; Li, YanRong; Zhou, YuRong; Wang, YunPing

    2012-07-01

    Frequency-domain terahertz transmission spectra of Mn3 and Mn12 single molecule magnets (SMMs) have been measured at different temperatures, and hence the anisotropic parameters D 2 and D 4 of the spin Hamiltonian hat H = D_2 hat S_z^2 + D_4 hat S_z^4 have been calculated. For Mn12 SMM, D 2=-10.9 GHz and D 4=-2.59×10-2 GHz, while for Mn3 SMM, D 2=-22.0 GHz and D 4 can be considered negligible. This suggests Mn3 SMM can be considered as a simpler and more suitable candidate for magnetic quantum tunneling research.

  4. Sub-Shot-Noise Transmission Measurement Enabled by Active Feed-Forward of Heralded Single Photons

    Science.gov (United States)

    Sabines-Chesterking, J.; Whittaker, R.; Joshi, S. K.; Birchall, P. M.; Moreau, P. A.; McMillan, A.; Cable, H. V.; O'Brien, J. L.; Rarity, J. G.; Matthews, J. C. F.

    2017-07-01

    Harnessing the unique properties of quantum mechanics offers the possibility of delivering alternative technologies that can fundamentally outperform their classical counterparts. These technologies deliver advantages only when components operate with performance beyond specific thresholds. For optical quantum metrology, the biggest challenge that impacts on performance thresholds is optical loss. Here, we demonstrate how including an optical delay and an optical switch in a feed-forward configuration with a stable and efficient correlated photon-pair source reduces the detector efficiency required to enable quantum-enhanced sensing down to the detection level of single photons and without postselection. When the switch is active, we observe a factor of improvement in precision of 1.27 for transmission measurement on a per-input-photon basis compared to the performance of a laser emitting an ideal coherent state and measured with the same detection efficiency as our setup. When the switch is inoperative, we observe no quantum advantage.

  5. An Efficient Channel Model for OFDM and Time Domain Single Carrier Transmission Using Impulse Responses

    Directory of Open Access Journals (Sweden)

    Tariq Jamil Saifullah Khanzada

    2012-01-01

    Full Text Available The OFDM (Orthogonal Frequency Division Multiplexing is well-known, most utilized wideband communication technique of the current era. SCT (Single Carrier Transmission provides equivalent performance in time domain while decision equalizer is implemented in frequency domain. SCT annihilates the ICT (Inter Carrier Interference and the PAPR (Peak to Average Power Ratio which is inherent to OFDM and degrades its performance in time varying channels. An efficient channel model is presented in this contribution, to implement OFDM and SCT in time domain using impulse responses. Both OFDM and SCT models are derived dialectically to model the channel impulse responses. Our model enhances the performance of time domain SCT compared with OFDM and subsides the PAPR and ICI problems of OFDM. SCT is implemented at symbol level contained in blocks. Simulation results implementing Digital Radio Monadiale (DRM assert the performance gain of SCT over OFDM.

  6. Capillariaisis (Trichurida, Trichinellidae, Capillaria hepatica in the Brazilian Amazon: low pathogenicity, low infectivity and a novel mode of transmission

    Directory of Open Access Journals (Sweden)

    Vera Luana

    2010-02-01

    Full Text Available Abstract Background Human capillariasis caused by Capillaria hepatica (syn. Calodium hepaticum is a rare disease with no more than 40 cases registered around the world. Classically, the disease has severe symptoms that mimic acute hepatitis. Natural reservoirs of C. hepatica are urban rodents (Mus musculus and Rattus novergicus that harbor their eggs in the liver. After examining the feces of 6 riverine inhabitants (Rio Preto area, 8° 03'S and 62° 53' W to 8° 14'S and 62° 52'W of the State of Rondonia, Brazil, and identifying C. hepatica eggs in their feces, the authors decided to investigate the real dimension of these findings by looking for two positive signals. Methods Between June 1st and 15th, 2008, 246 out of 304 individuals were clinically examined. Blood samples were collected, kept under -20°C, and test by the indirect immunofluorescence technique. Results The first positive signal was the presence of specific antibodies at 1:150 dilution, which indicates that the person is likely to have been exposed to eggs, most likely non-infective eggs, passing through the food chain or via contaminated food (total prevalence of 34.1%. A second more specific signal was the presence of antibodies at higher titers, thus indicating true infection. Conclusions The authors concluded that only two subjects were really infected (prevalence of 0.81%; the rest was false-positives that were sensitized after consuming non-embryonated eggs. The present study is the first one carried out in a native Amazonian population and indicates the presence of antibodies against C. hepatica in this population. The results further suggest that the transmission of the parasite occurs by the ingestion of embryonated eggs from human feces and/or carcasses of wild animals. The authors propose a novel mode of transmission, describing the disease as a low pathogenic one, and showing low infectivity.

  7. Automated transmission-mode scanning electron microscopy (tSEM for large volume analysis at nanoscale resolution.

    Directory of Open Access Journals (Sweden)

    Masaaki Kuwajima

    Full Text Available Transmission-mode scanning electron microscopy (tSEM on a field emission SEM platform was developed for efficient and cost-effective imaging of circuit-scale volumes from brain at nanoscale resolution. Image area was maximized while optimizing the resolution and dynamic range necessary for discriminating key subcellular structures, such as small axonal, dendritic and glial processes, synapses, smooth endoplasmic reticulum, vesicles, microtubules, polyribosomes, and endosomes which are critical for neuronal function. Individual image fields from the tSEM system were up to 4,295 µm(2 (65.54 µm per side at 2 nm pixel size, contrasting with image fields from a modern transmission electron microscope (TEM system, which were only 66.59 µm(2 (8.160 µm per side at the same pixel size. The tSEM produced outstanding images and had reduced distortion and drift relative to TEM. Automated stage and scan control in tSEM easily provided unattended serial section imaging and montaging. Lens and scan properties on both TEM and SEM platforms revealed no significant nonlinear distortions within a central field of ∼100 µm(2 and produced near-perfect image registration across serial sections using the computational elastic alignment tool in Fiji/TrakEM2 software, and reliable geometric measurements from RECONSTRUCT™ or Fiji/TrakEM2 software. Axial resolution limits the analysis of small structures contained within a section (∼45 nm. Since this new tSEM is non-destructive, objects within a section can be explored at finer axial resolution in TEM tomography with current methods. Future development of tSEM tomography promises thinner axial resolution producing nearly isotropic voxels and should provide within-section analyses of structures without changing platforms. Brain was the test system given our interest in synaptic connectivity and plasticity; however, the new tSEM system is readily applicable to other biological systems.

  8. Trapped-ion anomalous diffusion coefficient on the basis of single mode saturation

    International Nuclear Information System (INIS)

    Koshi, Yuji; Hatayama, Akiyoshi; Ogasawara, Masatada.

    1982-03-01

    Expressions of the anomalous diffusion coefficient due to the dissipative trapped ion instability (DTII) are derived for the case with and without the effect of magnetic shear. Derivation is made by taking into account of the single mode saturation of the DTII previously obtained numerically. In the absence of the shear effect, the diffusion coefficient is proportional to #betta#sub(i)a 2 (#betta#sub(i) is the effective collision frequency of the trapped ions and a is the minor radius of a torus) and is much larger than the neoclassical ion heat conductivity. In the presence of the shear effect, the diffusion coefficient is much smaller than the Kadomtsev and Pogutse's value and is the same order of magnitude as the neoclassical ion heat conductivity. Dependences of the diffusion coefficient on the temperature and on the total particle number density are rather complicated due to the additional spectral cut-off, which is introduced to regularize the short wavelength modes in the numerical analysis. (author)

  9. High energy, single frequency, tunable laser source operating in burst mode for space based lidar applications

    Science.gov (United States)

    Cosentino, Alberto; Mondello, Alessia; Sapia, Adalberto; D'Ottavi, Alessandro; Brotini, Mauro; Gironi, Gianna; Suetta, Enrico

    2017-11-01

    This paper describes energetic, spatial, temporal and spectral characterization measurements of the Engineering Qualification Model (EQM) of the Laser Transmitter Assembly (TXA) used in the ALADIN instrument currently under development for the ESA ADM-AEOLUS mission (EADS Astrium as prime contractor for the satellite and the instrument). The EQM is equivalent to the Flight Model, with the exception of some engineering grade components. The Laser Transmitter Assembly, based on a diode pumped tripled Nd:YAG laser, is used to generate laser pulses at a nominal wavelength of 355 nm. This laser is operated in burst mode, with a pulse repetition cycle of 100 Hz during bursts. It is capable to operate in Single Longitudinal Mode and to be tuned over 25 GHz range. An internal "network" of sensors has been implemented inside the laser architecture to allow "in flight" monitoring of transmitter. Energy in excess of 100 mJ, with a spatial beam quality factor (M2) lower than 3, a spectral linewidth less than 50 MHz with a frequency stability better than 4 MHz on short term period have been measured on the EQM. Most of the obtained results are well within the expected values and match the Instrument requirements. They constitute an important achievement, showing the absence of major critical areas in terms of performance and the capability to obtain them in a rugged and compact structure suitable for space applications. The EQM will be submitted in the near future to an Environmental test campaign.

  10. Geometric characterization of separability and entanglement in pure Gaussian states by single-mode unitary operations

    International Nuclear Information System (INIS)

    Adesso, Gerardo; Giampaolo, Salvatore M.; Illuminati, Fabrizio

    2007-01-01

    We present a geometric approach to the characterization of separability and entanglement in pure Gaussian states of an arbitrary number of modes. The analysis is performed adapting to continuous variables a formalism based on single subsystem unitary transformations that has been recently introduced to characterize separability and entanglement in pure states of qubits and qutrits [S. M. Giampaolo and F. Illuminati, Phys. Rev. A 76, 042301 (2007)]. In analogy with the finite-dimensional case, we demonstrate that the 1xM bipartite entanglement of a multimode pure Gaussian state can be quantified by the minimum squared Euclidean distance between the state itself and the set of states obtained by transforming it via suitable local symplectic (unitary) operations. This minimum distance, corresponding to a, uniquely determined, extremal local operation, defines an entanglement monotone equivalent to the entropy of entanglement, and amenable to direct experimental measurement with linear optical schemes

  11. Fibre-Bragg-grating writing in single-mode optical fibres by UV femtosecond pulses

    International Nuclear Information System (INIS)

    Zagorul'ko, K A; Kryukov, P G; Dianov, Evgenii M; Dragomir, A; Nikogosyan, D N

    2003-01-01

    Fibre-Bragg-grating writing in single-mode optical fibres by the phase-mask method using 220-fs, 264-nm UV pulses of intensity 31 - 77 GW cm -2 is reported for the first time. The achieved degree of modulation of the photoinduced refractive index was 1.9 x 10 -3 in an H 2 -loaded SMF-28 telecommunication fibre and 1.1 x 10 -3 in a H 2 -free Nufern GF1 fibre. The dependence of the induced refractive index on the intensity for the same irradiation fluences in the case of the H 2 -loaded SMF-28 fibre shows that the refractive index is induced due to nonlinear absorption. (letters)

  12. Semiconductor laser engineering, reliability and diagnostics a practical approach to high power and single mode devices

    CERN Document Server

    Epperlein, Peter W

    2013-01-01

    This reference book provides a fully integrated novel approach to the development of high-power, single-transverse mode, edge-emitting diode lasers by addressing the complementary topics of device engineering, reliability engineering and device diagnostics in the same book, and thus closes the gap in the current book literature. Diode laser fundamentals are discussed, followed by an elaborate discussion of problem-oriented design guidelines and techniques, and by a systematic treatment of the origins of laser degradation and a thorough exploration of the engineering means to enhance the optical strength of the laser. Stability criteria of critical laser characteristics and key laser robustness factors are discussed along with clear design considerations in the context of reliability engineering approaches and models, and typical programs for reliability tests and laser product qualifications. Novel, advanced diagnostic methods are reviewed to discuss, for the first time in detail in book literature, performa...

  13. Remarks on the stabilization of the systems a single unstable leading mode

    International Nuclear Information System (INIS)

    Cotsaftis, M.

    1978-07-01

    Different types of stabilization were proposed for cancelling the plasma motion due to instabilities. The problem of the conventional feedback systems of 'passive' type currently used is rediscussed. The analysis is dealing with the simple case of a plasma with a single leading unstable mode. It is shown that whereas the usual passive feedback cannot achieve a compplete stability on the full interval some other type of more convenient control loops can be used in such a way that the plasma comes back to its original state after a given time, with a power consumption much weaker than in the first case. These properties are also shown to be saved under rather large assumptions in more general situations including the adjunction of delay terms, nonlinear or decoupling terms in the evolution equations of the plasma system [fr

  14. 2-kW single-mode fiber laser employing bidirectional-pump scheme

    Science.gov (United States)

    Zhang, Fan; Zheng, Wenyou; Shi, Pengyang; Zhang, Xinhai

    2018-01-01

    2kW single-mode fiber laser with two cascade home-made cladding light strippers (CLSs) by employing bidirectionalpump scheme has been demonstrated. 2.009 kW signal power is obtained when pump power is 2.63 kW and the slope efficiency is 76.6%. Raman Stokes light is less than -47 dB at 2.009 kW even with a 10-m delivery fiber with core/inner cladding diameter of 20/400um. The beam quality M2stability of +/-0.14% is achieved by special thermal management for a more uniform temperature distribution on the Yb-doped gain fiber.

  15. A long-baseline interferometer employing single-mode fiber optics

    Science.gov (United States)

    Shaklan, Stuart

    The idea of the Fiber-Linked Optical Array Telescope proposed by Connes (1987) is to mount several small optical telescopes around the perimeter of a radio dish or other large steerable structure, couple the light into single-mode (SM) fibers, and use the fibers to coherently combine the beams at the output. This paper examines the important properties of SM fibers and then discusses the whole system in general terms, starting with the telescopes and following the light through to the detectors, along with the results of laboratory experiments evaluating the performance of SM fibers. The imaging capabilities of the array were simulated, and it was found that, using 10 telescopes on a 440-m dish, the array obtains images with resolution of the order of 2 milliarc seconds in the visible range.

  16. Interaction of a single mode field cavity with the 1D XY model: Energy spectrum

    International Nuclear Information System (INIS)

    Tonchev, H; Donkov, A A; Chamati, H

    2016-01-01

    In this work we use the fundamental in quantum optics Jaynes-Cummings model to study the response of spin 1/2chain to a single mode of a laser light falling on one of the spins, a focused interaction model between the light and the spin chain. For the spin-spin interaction along the chain we use the XY model. We report here the exact analytical results, obtained with the help of a computer algebra system, for the energy spectrum in this model for chains of up to 4 spins with nearest neighbors interactions, either for open or cyclic chain configurations. Varying the sign and magnitude of the spin exchange coupling relative to the light-spin interaction we have investigated both cases of ferromagnetic or antiferromagnetic spin chains. (paper)

  17. Laser direct micro-machining with top-hat-converted single mode lasers

    Science.gov (United States)

    Homburg, O.; Toennissen, F.; Mitra, T.; Lissotschenko, V.

    2008-02-01

    Laser direct micro-machining processes are used in a variety of industries like inkjet printing, semiconductor processing, solar technology, flat-panel display production and medicine. Various kinds of materials, e.g. ceramics, metals, isolators, oxides, organics and semiconductors are being structured. In most cases pulsed single mode solid state lasers with an inhomogeneous Gaussian beam profile are employed, like YAG lasers and their harmonics. However, the quality and functionality of the generated structures and micro-systems as well as the speed of the process can be improved by the utilization of homogeneous top hat profiles. The beam shaping principle of refractive Gaussian-to-top-hat converters is shown. Compact beam shaper modules based on this principle have been developed - supporting most direct laser micro-machining applications. The resulting process advantages are demonstrated by selected application results, namely the drilling of holes and patterning of trenches for different kinds of materials.

  18. A single-spatial-mode semiconductor laser based on InAs/InGaAs quantum dots with a diffraction filter of optical modes

    International Nuclear Information System (INIS)

    Gordeev, N. Yu.; Novikov, I. I.; Kuznetsov, A. M.; Shernyakov, Yu. M.; Maximov, M. V.; Zhukov, A. E.; Chunareva, A. V.; Payusov, A. S.; Livshits, D. A.; Kovsh, A. R.

    2010-01-01

    The concept of a diffraction optical filter is used for prevention of high-order mode oscillation in a design of stripe laser diodes with an active region based on InAs/InGaAs quantum dots emitting in the 1.3-μm wavelength range grown on GaAs substrates. Incorporation of such a filter made it possible to increase the width of the stripe and obtain an output power as high as 700 mW with retention of a single-spatial-mode character of lasing.

  19. Interpreting Adaptation to Concurrent Compared with Single-Mode Exercise Training: Some Methodological Considerations.

    Science.gov (United States)

    Fyfe, Jackson J; Loenneke, Jeremy P

    2018-02-01

    Incorporating both endurance and resistance training into an exercise regime is termed concurrent training. While there is evidence that concurrent training can attenuate resistance training-induced improvements in maximal strength and muscle hypertrophy, research findings are often equivocal, with some suggesting short-term concurrent training may instead further enhance muscle hypertrophy versus resistance training alone. These observations have questioned the validity of the purported 'interference effect' on muscle hypertrophy with concurrent versus single-mode resistance training. This article aims to highlight some methodological considerations when interpreting the concurrent training literature, and, in particular, the degree of changes in strength and muscle hypertrophy observed with concurrent versus single-mode resistance training. Individual training status clearly influences the relative magnitude and specificity of both training adaptation and post-exercise molecular responses in skeletal muscle. The training status of participants is therefore likely a key modulator of the degree of adaptation and interference seen with concurrent training interventions. The divergent magnitudes of strength gain versus muscle hypertrophy induced by resistance training also suggests most concurrent training studies are likely to observe more substantial changes in (and in turn, any potential interference to) strength compared with muscle hypertrophy. Both the specificity and sensitivity of measures used to assess training-induced changes in strength and muscle hypertrophy also likely influence the interpretation of concurrent training outcomes. Finally, the relative importance of any modulation of hypertrophic versus strength adaptation with concurrent training should be considered in context with the relevance of training-induced changes in these variables for enhancing athletic performance and/or functional capacity. Taken together, these observations suggest that

  20. Data driven modeling of the low-Atwood single-mode Rayleigh-Taylor instability

    Science.gov (United States)

    Hutchinson, Maxwell

    The Rayleigh-Taylor instability is one of the most common and well studied phenomena in fluid dynamics. Despite research dating to the late 19th century, the non-linear dynamics of the interfacial instability are still not fully understood, particularly in the case when the two fluids have nearly the same density. It was recently demonstrated in this, the low-Atwood regime, that the idealized single-mode problem departs from established potential flow models in the form of a re-acceleration beyond the predicted terminal interface velocity. This thesis is an attempt to model that re-acceleration and, more broadly, the late time dynamics of the single-mode low-Atwood Rayleigh-Taylor instability. The approach taken here is based on buoyancy-drag models, which express a force balance between buoyancy and parasitic drag. The dynamical buoyancy-drag model is supplemented with a mixing model that dilutes the buoyant force over time. These models are written deliberately generally, with 8 unique coefficients. Three of these coefficients are solved for by equating the early time behavior with that of well established linear theories. The remaining 5 coefficients are estimated by relating them to drag coefficients, friction factors, and geometric ratios in the interface shape. To evaluate the model and compute the 5 unknown coefficients more precisely, a set of direct numerical simulations are performed over the relevant parameter space. These simulations are first validated against experimental data. Then they are shown to converge and their resolutions are chosen such as to minimize computational cost given the accuracy scale of the model. The 5 coefficients are fit to the resulting data set, and the model achieves better than 2% error in the bubble height and 4% error in the volume of mixed fluid. Three coefficients are nominally independent of the parameterization of the problem, while two are shown to vary with the Rayleigh number and the diffusivity.

  1. Coupling single NV-centres to high-Q whispering gallery modes of a preselected frequency-matched microresonator

    International Nuclear Information System (INIS)

    Schietinger, Stefan; Benson, Oliver

    2009-01-01

    In this paper, we report the controlled coupling of fluorescence from a single NV-centre in a single nanodiamond to the high-Q modes of a preselected microsphere. Microspheres from an ensemble with a finite size distribution can be characterized precisely via white light Mie-scattering. The mode spectrum of individual spheres can be determined with high precision. A sphere with an appropriate spectrum can be selected, and a nanodiamond containing a single NV-centre can be coupled to it. The spectral position of the calculated lowest order whispering gallery modes are found to be in very good agreement with the experimentally observed resonances of the coupled fluorescence from the single NV-re.

  2. Risk factors for vertical transmission of hepatitis C virus: a single center experience with 710 HCV-infected mothers.

    Science.gov (United States)

    Garcia-Tejedor, Amparo; Maiques-Montesinos, Vicente; Diago-Almela, Vicente José; Pereda-Perez, Antonio; Alberola-Cuñat, Vicente; López-Hontangas, José Luís; Perales-Puchalt, Alfredo; Perales, Alfredo

    2015-11-01

    The aim of this study was to analyze the risk factors on the perinatal transmission of hepatitis C virus (HCV). A retrospective cohort study with 711 infants born to 710 HCV-infected mothers was conducted at the Hospital La Fe, in Valencia, Spain, from 1986 to 2011. As potential risk factors for transmission we analyzed: maternal age, mode of acquisition of HCV infection, HIV co-infection, antiretroviral treatment against HIV, CD4 cell count, HIV and HCV viral load, liver enzyme levels during pregnancy, smoking habit, gestational age, intrapartum invasive procedures, length of rupture of membranes, length of labor, mode of delivery, episiotomy, birth weight, newborn gender and type of feeding. Overall perinatal HCV transmission rate was 2.4%. The significant risk factors related with HCV transmission were maternal virus load >615copies/mL (OR 9.3 [95% CI 1.11-78.72]), intrapartum invasive procedures (OR 10.1 [95% CI 2.6-39.02]) and episiotomy (OR 4.2 [95% CI 1.2-14.16]). HIV co-infection and newborn female were near significance (p=0.081 and 0.075, respectively). Invasive procedures as fetal scalp blood sampling or internal electrode and episiotomy increase vertical transmission of HCV, especially in patients with positive HCV RNA virus load at delivery. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. A tuneable, power efficient and narrow single longitudinal mode fibre ring laser using an inline dual-taper fibre Mach–Zehnder filter

    International Nuclear Information System (INIS)

    Ahmad, H; Dernaika, M; Alimadad, M; Ibrahim, M F; Lim, K S; Harun, S W; Kharraz, O M

    2014-01-01

    A tuneable single longitudinal mode fibre ring laser with dual-taper fibre filter is proposed and experimentally demonstrated in this paper. The single longitudinal mode operation, and power limitations for a Mach–Zehnder interferometer filter generated from a single mode fibre, are verified for the first time. Incorporating an in-line taper fibre Mach–Zehnder interferometer filter inside the laser ring cavity causes a spatial mode beating interference, resulting in a passive narrow band filter with the ability to generate stable single longitudinal modes. The single longitudinal mode achieves a side mode suppression ratio of more than 60 dB using low pump power. The tuneability of the fibre laser ranges from 1525 to 1562 nm using a passive band pass filter. A study of the stability and limitation of the single longitudinal mode in the Mach–Zehnder tapered fibre is also presented. (paper)

  4. High resolution transmission electron microscopic study of nanoporous carbon consisting of curved single graphite sheets

    International Nuclear Information System (INIS)

    Bourgeois, L.N.; Bursill, L.A.

    1997-01-01

    A high resolution transmission electron microscopic study of a nanoporous carbon rich in curved graphite monolayers is presented. Observations of very thin regions. including the effect of tilting the specimen with respect to the electron beam, are reported. The initiation of single sheet material on an oriented graphite substrate is also observed. When combined with image simulations and independent measurements of the density (1.37g cm -3 ) and sp 3 /sp 2 +sp 2 bonding fraction (0.16), these observations suggest that this material is a two phase mixture containing a relatively low density aggregation of essentially capped single shells like squat nanotubes and polyhedra, plus a relatively dense 'amorphous' carbon structure which may be described using a random-Schwarzite model. Some negatively-curved sheets were also identified in the low density phase. Finally, some discussion is offered regarding the growth mechanisms responsible for this nanoporous carbon and its relationship with the structures of amorphous carbons across a broad range of densities, porosities and sp 3 /sp 2 +sp 3 bonding fractions

  5. High resolution transmission electron microscopic study of nanoporous carbon consisting of curved single graphite sheets

    Energy Technology Data Exchange (ETDEWEB)

    Bourgeois, L.N.; Bursill, L.A.

    1997-12-31

    A high resolution transmission electron microscopic study of a nanoporous carbon rich in curved graphite monolayers is presented. Observations of very thin regions. including the effect of tilting the specimen with respect to the electron beam, are reported. The initiation of single sheet material on an oriented graphite substrate is also observed. When combined with image simulations and independent measurements of the density (1.37g cm {sup -3}) and sp{sup 3}/sp{sup 2}+sp{sup 2} bonding fraction (0.16), these observations suggest that this material is a two phase mixture containing a relatively low density aggregation of essentially capped single shells like squat nanotubes and polyhedra, plus a relatively dense `amorphous` carbon structure which may be described using a random-Schwarzite model. Some negatively-curved sheets were also identified in the low density phase. Finally, some discussion is offered regarding the growth mechanisms responsible for this nanoporous carbon and its relationship with the structures of amorphous carbons across a broad range of densities, porosities and sp{sup 3}/sp{sup 2}+sp{sup 3} bonding fractions. 29 refs., 8 figs., 2 tabs.

  6. Investigation on the Mechanism and Failure Mode of Laser Transmission Spot Welding Using PMMA Material for the Automotive Industry

    Science.gov (United States)

    Wang, Xiao; Liu, Baoguang; Liu, Wei; Zhong, Xuejiao; Jiang, Yingjie; Liu, Huixia

    2017-01-01

    To satisfy the need of polymer connection in lightweight automobiles, a study on laser transmission spot welding using polymethyl methacrylate (PMMA) is conducted by using an Nd:YAG pulse laser. The influence of three variables, namely peak voltages, defocusing distances and the welding type (type I (pulse frequency and the duration is 25 Hz, 0.6 s) and type II (pulse frequency and the duration is 5 Hz, 3 s)) to the welding quality was investigated. The result showed that, in the case of the same peak voltages and defocusing distances, the number of bubbles for type I was obviously more than type II. The failure mode of type I was the base plate fracture along the solder joint, and the connection strength of type I was greater than type II. The weld pool diameter:depth ratio for type I was significantly greater than type II. It could be seen that there was a certain relationship between the weld pool diameter:depth ratio and the welding strength. By the finite element simulation, the weld pool for type I was more slender than type II, which was approximately the same as the experimental results. PMID:28772383

  7. Investigation on the Mechanism and Failure Mode of Laser Transmission Spot Welding Using PMMA Material for the Automotive Industry.

    Science.gov (United States)

    Wang, Xiao; Liu, Baoguang; Liu, Wei; Zhong, Xuejiao; Jiang, Yingjie; Liu, Huixia

    2017-01-01

    To satisfy the need of polymer connection in lightweight automobiles, a study on laser transmission spot welding using polymethyl methacrylate (PMMA) is conducted by using an Nd:YAG pulse laser. The influence of three variables, namely peak voltages, defocusing distances and the welding type (type I (pulse frequency and the duration is 25 Hz, 0.6 s) and type II (pulse frequency and the duration is 5 Hz, 3 s)) to the welding quality was investigated. The result showed that, in the case of the same peak voltages and defocusing distances, the number of bubbles for type I was obviously more than type II. The failure mode of type I was the base plate fracture along the solder joint, and the connection strength of type I was greater than type II. The weld pool diameter:depth ratio for type I was significantly greater than type II. It could be seen that there was a certain relationship between the weld pool diameter:depth ratio and the welding strength. By the finite element simulation, the weld pool for type I was more slender than type II, which was approximately the same as the experimental results.

  8. Living in "survival mode:" Intergenerational transmission of trauma from the Holodomor genocide of 1932-1933 in Ukraine.

    Science.gov (United States)

    Bezo, Brent; Maggi, Stefania

    2015-06-01

    Qualitative methodology was used to investigate the intergenerational impact of the 1932-1933 Holodomor genocide on three generations in 15 Ukrainian families. Each family, residing in Ukraine, consisted of a first generation survivor, a second generation adult child and a third generation adult grandchild of the same line. The findings show that the Holodomor, a genocide that claimed millions of lives by forced starvation, still exerts substantial effects on generations born decades later. Specifically, thematic analysis of the 45 semi-structured, in-depth interviews, done between July and November 2010, revealed that a constellation of emotions, inner states and trauma-based coping strategies emerged in the survivors during the genocide period and were subsequently transmitted into the second and third generations. This constellation, summarized by participants as living in "survival mode," included horror, fear, mistrust, sadness, shame, anger, stress and anxiety, decreased self-worth, stockpiling of food, reverence for food, overemphasis on food and overeating, inability to discard unneeded items, an indifference toward others, social hostility and risky health behaviours. Since both the family and community-society were found to be involved in trauma transmission, the findings highlight the importance of multi-framework approaches for studying and healing collective trauma. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Single-input Multiple-output Tunable Log-domain Current-mode Universal Filter

    Directory of Open Access Journals (Sweden)

    P. Prommee

    2013-06-01

    Full Text Available This paper describes the design of a current-mode single-input multiple-output (SIMO universal filter based on the log-domain filtering concept. The circuit is a direct realization of a first-order differential equation for obtaining the lossy integrator circuit. Lossless integrators are realized by log-domain lossy integrators. The proposed filter comprises only two grounded capacitors and twenty-four transistors. This filter suits to operate in very high frequency (VHF applications. The pole-frequency of the proposed filter can be controlled over five decade frequency range through bias currents. The pole-Q can be independently controlled with the pole-frequency. Non-ideal effects on the filter are studied in detail. A validated BJT model is used in the simulations operated by a single power supply, as low as 2.5 V. The simulation results using PSpice are included to confirm the good performances and are in agreement with the theory.

  10. Performance of Single Electrode-Supported Cells Operating in the Electrolysis Mode

    Energy Technology Data Exchange (ETDEWEB)

    J. E. O' Brien; G. K. Housley; D. G. Milobar

    2009-11-01

    An experimental study is under way to assess the performance of electrode-supported solid-oxide cells operating in the steam electrolysis mode for hydrogen production over a temperature range of 800 to 900ºC. Results presented in this paper were obtained from single cells, with an active area of 16 cm2 per cell. The electrolysis cells are electrode-supported, with yttria-stabilized zirconia (YSZ) electrolytes (~10 µm thick), nickel-YSZ steam/hydrogen electrodes (~1400 µm thick), and manganite (LSM) air-side electrodes. The experiments were performed over a range of steam inlet mole fractions (0.1 – 0.6), gas flow rates, and current densities (0 to 0.6 A/cm2). Steam consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation. On a molar basis, the steam consumption rate is equal to the hydrogen production rate. Cell performance was evaluated by performing DC potential sweeps at 800, 850, and 900°C. The voltage-current characteristics are presented, along with values of area-specific resistance as a function of current density. Long-term cell performance is also assessed to evaluate cell degradation. Details of the custom single-cell test apparatus developed for these experiments are also presented.

  11. Design and Characterization of 64K Pixels Chips Working in Single Photon Processing Mode

    CERN Document Server

    Llopart Cudie, Xavier; Campbell, M

    2007-01-01

    Progress in CMOS technology and in fine pitch bump bonding has made possible the development of high granularity single photon counting detectors for X-ray imaging. This thesis studies the design and characterization of three pulse processing chips with 65536 square pixels of 55 µm x 55 µm designed in a commercial 0.25 µm 6-metal CMOS technology. The 3 chips share the same architecture and dimensions and are named Medipix2, Mpix2MXR20 and Timepix. The Medipix2 chip is a pixel detector readout chip consisting of 256 x 256 identical elements, each working in single photon counting mode for positive or negative input charge signals. The preamplifier feedback provides compensation for detector leakage current on a pixel by pixel basis. Two identical pulse height discriminators are used to define an energy window. Every event falling inside the energy window is counted with a 13 bit pseudo-random counter. The counter logic, based in a shift register, also behaves as the input/output register for the pixel. Each...

  12. The combination of directional outputs and single-mode operation in circular microdisk with broken PT symmetry.

    Science.gov (United States)

    Song, Qinghai; Li, Jiankai; Sun, Wenzhao; Zhang, Nan; Liu, Shuai; Li, Meng; Xiao, Shumin

    2015-09-21

    Monochromaticity and directionality are two key characteristics of lasers. However, the combination of directional emission and single-mode operation is quite challenging, especially for the on-chip devices. Here we propose a microdisk laser with single-mode operation and directional emissions by exploiting the recent developments associated with parity-time (PT) symmetry. This is accomplished by introducing one-dimensional periodic gain and loss into a circular microdisk, which induces a coupling between whispering gallery modes with different radial numbers. The lowest threshold mode is selected at the positions with least initial wavelength difference. And the directional emissions are formed by the introduction of additional grating vectors by the periodic distribution of gain and loss regions. We believe this research will impact the practical applications of on-chip microdisk lasers.

  13. Geiger-mode APD camera system for single-photon 3D LADAR imaging

    Science.gov (United States)

    Entwistle, Mark; Itzler, Mark A.; Chen, Jim; Owens, Mark; Patel, Ketan; Jiang, Xudong; Slomkowski, Krystyna; Rangwala, Sabbir

    2012-06-01

    The unparalleled sensitivity of 3D LADAR imaging sensors based on single photon detection provides substantial benefits for imaging at long stand-off distances and minimizing laser pulse energy requirements. To obtain 3D LADAR images with single photon sensitivity, we have demonstrated focal plane arrays (FPAs) based on InGaAsP Geiger-mode avalanche photodiodes (GmAPDs) optimized for use at either 1.06 μm or 1.55 μm. These state-of-the-art FPAs exhibit excellent pixel-level performance and the capability for 100% pixel yield on a 32 x 32 format. To realize the full potential of these FPAs, we have recently developed an integrated camera system providing turnkey operation based on FPGA control. This system implementation enables the extremely high frame-rate capability of the GmAPD FPA, and frame rates in excess of 250 kHz (for 0.4 μs range gates) can be accommodated using an industry-standard CameraLink interface in full configuration. Real-time data streaming for continuous acquisition of 2 μs range gate point cloud data with 13-bit time-stamp resolution at 186 kHz frame rates has been established using multiple solid-state storage drives. Range gate durations spanning 4 ns to 10 μs provide broad operational flexibility. The camera also provides real-time signal processing in the form of multi-frame gray-scale contrast images and single-frame time-stamp histograms, and automated bias control has been implemented to maintain a constant photon detection efficiency in the presence of ambient temperature changes. A comprehensive graphical user interface has been developed to provide complete camera control using a simple serial command set, and this command set supports highly flexible end-user customization.

  14. Evaluation of scatter correction using a single isotope for simultaneous emission and transmission data

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J.; Kuikka, J.T.; Vanninen, E.; Laensimies, E. [Kuopio Univ. Hospital (Finland). Dept. of Clinical Physiology and Nuclear Medicine; Kauppinen, T.; Patomaeki, L. [Kuopio Univ. (Finland). Dept. of Applied Physics

    1999-05-01

    Photon scatter is one of the most important factors degrading the quantitative accuracy of SPECT images. Many scatter correction methods have been proposed. The single isotope method was proposed by us. Aim: We evaluate the scatter correction method of improving the quality of images by acquiring emission and transmission data simultaneously with single isotope scan. Method: To evaluate the proposed scatter correction method, a contrast and linearity phantom was studied. Four female patients with fibromyalgia (FM) syndrome and four with chronic back pain (BP) were imaged. Grey-to-cerebellum (G/C) and grey-to-white matter (G/W) ratios were determined by one skilled operator for 12 regions of interest (ROIs) in each subject. Results: The linearity of activity response was improved after the scatter correction (r=0.999). The y-intercept value of the regression line was 0.036 (p<0.0001) after scatter correction and the slope was 0.954. Pairwise correlation indicated the agreement between nonscatter corrected and scatter corrected images. Reconstructed slices before and after scatter correction demonstrate a good correlation in the quantitative accuracy of radionuclide concentration. G/C values have significant correlation coefficients between original and corrected data. Conclusion: The transaxial images of human brain studies show that the scatter correction using single isotope in simultaneous transmission and emission tomography provides a good scatter compensation. The contrasts were increased on all 12 ROIs. The scatter compensation enhanced details of physiological lesions. (orig.) [Deutsch] Die Photonenstreuung gehoert zu den wichtigsten Faktoren, die die quantitative Genauigkeit von SPECT-Bildern vermindern. Es wurde eine ganze Reihe von Methoden zur Streuungskorrektur vorgeschlagen. Von uns wurde die Einzelisotopen-Methode empfohlen. Ziel: Wir untersuchten die Streuungskorrektur-Methode zur Verbesserung der Bildqualitaet durch simultane Gewinnung von Emissions

  15. Single mode wavelength control of modulated AlGaAs lasers with external and internal etalon feedback

    Science.gov (United States)

    Maynard, William L.

    1989-01-01

    Single mode lasing without mode hops has been obtained for VSIS and CSP laser diodes with an external etalon attached to the laser's front facet for up to an 8 C range CW and a 4 C range pulsed, with .07 nm/C tuning. Tests of thin tapered-thickness (TTT) laser diodes show CW and pulsed single mode lasing over 10 C and 2 C ranges, respectively, with .08 nm/C tuning. An analysis of the TTT structure reveals the equivalent of an internal etalon. The time-resolved pulsed behavior for both types of lasers show single mode lasing within the proper temperature ranges with minor modes present only early in the optical pulse, if at all. The external etalon produces noticeable interference fringes in the farfield pattern, while those of the TTT lasers are smooth. Ongoing CW lifetest results indicate stability to within one longitudinal mode after a few hundred hours of operation, along with at least several thousand hours lifetime.

  16. 26 nJ picosecond solitons from thulium-doped single-mode master oscillator power fiber amplifier.

    Science.gov (United States)

    Renard, William; Canat, Guillaume; Bourdon, Pierre

    2012-02-01

    We report on an all single-mode master oscillator power fiber amplifier delivering high energy picosecond solitons at 1960 nm. The Bragg stabilized and self-starting oscillator delivers 62 pJ transform-limited pulses at 11.2 MHz pulse repetition frequency. Solitons are amplified in a core-pumped single-mode heavily thulium-doped fiber up to 26 nJ. The average and peak power are 291 mW and 7.4 kW, respectively. Pulses remain transform limited without significant self-phase-modulation distortion. We discuss the limitations of picosecond pulse amplification in a core-pumped single-mode fiber amplifier.

  17. Toward single-mode random lasing within a submicrometre-sized spherical ZnO particle film

    International Nuclear Information System (INIS)

    Niyuki, Ryo; Fujiwara, Hideki; Sasaki, Keiji; Ishikawa, Yoshie; Koshizaki, Naoto; Tsuji, Takeshi

    2016-01-01

    We had recently reported unique random laser action such as quasi-single-mode and low-threshold lasing from a submicrometre-sized spherical ZnO nanoparticle film with polymer particles as defects. The present study demonstrates a novel approach to realize single-mode random lasing by adjusting the sizes of the defect particles. From the dependence of random lasing properties on defect size, we find that the average number of lasing peaks can be modified by the defect size, while other lasing properties such as lasing wavelengths and thresholds remain unchanged. These results suggest that lasing wavelengths and thresholds are determined by the resonant properties of the surrounding scatterers, while the defect size stochastically determines the number of lasing peaks. Therefore, if we optimize the sizes of the defects and scatterers, we can intentionally induce single-mode lasing even in a random structure (Fujiwara et al 2013 Appl. Phys. Lett. 102 061110). (paper)

  18. A Comparison between Boundary and Continuous Conduction Modes in Single Phase PFC Using 600V Range Devices

    DEFF Research Database (Denmark)

    Hernandez Botella, Juan Carlos; Petersen, Lars Press; Andersen, Michael A. E.

    2015-01-01

    This paper presents an analysis and comparison of boundary conduction mode (BCM) and continuous conduction mode (CCM) in single phase power factor correction (PFC) applications. The comparison is based on double pulse tester (DPT) characterization results of state-of-the-art superjunction devices...... in the 600V range. The measured switching energy is used to evaluate the devices performance in a conventional PFC. This data is used together with a mathematical model for prediction of the conducted electromagnetic interference (EMI). This allows comparing the different devices in BCM and CCM operation...... modes and evaluating the performance as a function of the PFC power density and efficiency....

  19. Load bearing capacity, fracture mode, and wear performance of digitally veneered full-ceramic single crowns.

    Science.gov (United States)

    Schubert, Oliver; Nold, Ephraim; Obermeier, Matthias; Erdelt, Kurt; Stimmelmayr, Michael; Beuer, Florian

    Computer-aided technologies can help to minimize clinical complications of zirconia-based restorations such as veneering porcelain fractures. The aim of this study was to evaluate different veneering approaches for zirconia single crowns regarding contact wear, fracture strength, and failure mode. Six different types of computer-aided design (CAD) crowns were manufactured and conventionally cemented on 10 metal dies each: three groups with a zirconia framework and a CAD/CAM-fabricated veneering cap ("digital veneering system": DVS, CAD-on, Infix CAD), zirconia-based crowns with pressed veneering caps (Infix Press), zirconia framework containing the dentin layer with only the incisal enamel material added (dentin-core), and conventional substructure with powder buildup veneering porcelain (layering technique). All specimens were submitted to artificial aging (120,000 mechanical cycles, 50 N load, 0.7-mm sliding movement, 320 thermocycles). After contact wear was measured with a laser scanning system, fracture resistance and failure mode were examined using a universal testing machine and a scanning electron microscope. Statistical analysis was performed at a significance level of 5%. No statistical difference was revealed regarding the contact wear of the restorations (P = 0.171; ANOVA). No significant difference was found regarding the fracture resistance of the crowns (P = 0.112; ANOVA). Failure analysis revealed three different failure patterns: cohesive veneering fracture, adhesive delamination, and total fracture, with a characteristic distribution between the groups. All tested specimens survived artificial aging and exhibited clinically acceptable wear resistance and fracture resistance. Digital veneering techniques offer a promising, time- and cost-effective manufacturing process for all-ceramic restorations and may usefully complement the digital workflow.

  20. Electro-opto-mechanical radio-frequency oscillator driven by guided acoustic waves in standard single-mode fiber

    Directory of Open Access Journals (Sweden)

    Yosef London

    2017-04-01

    Full Text Available An opto-electronic radio-frequency oscillator that is based on forward scattering by the guided acoustic modes of a standard single-mode optical fiber is proposed and demonstrated. An optical pump wave is used to stimulate narrowband, resonant guided acoustic modes, which introduce phase modulation to a co-propagating optical probe wave. The phase modulation is converted to an intensity signal at the output of a Sagnac interferometer loop. The intensity waveform is detected, amplified, and driven back to modulate the optical pump. Oscillations are achieved at a frequency of 319 MHz, which matches the resonance of the acoustic mode that provides the largest phase modulation of the probe wave. Oscillations at the frequencies of competing acoustic modes are suppressed by at least 40 dB. The linewidth of the acoustic resonance is sufficiently narrow to provide oscillations at a single longitudinal mode of the hybrid cavity. Competing longitudinal modes are suppressed by at least 38 dB as well. Unlike other opto-electronic oscillators, no radio-frequency filtering is required within the hybrid cavity. The frequency of oscillations is entirely determined by the fiber opto-mechanics.

  1. Mode conversion in hybrid optical fiber coupler

    Science.gov (United States)

    Stasiewicz, Karol A.; Marc, P.; Jaroszewicz, Leszek R.

    2012-04-01

    Designing of all in-line fiber optic systems with a supercontinuum light source gives some issues. The use of a standard single mode fiber (SMF) as an input do not secure single mode transmission in full wavelength range. In the paper, the experimental results of the tested hybrid fiber optic coupler were presented. It was manufactured by fusing a standard single mode fiber (SMF28) and a photonic crystal fiber (PCF). The fabrication process is based on the standard fused biconical taper technique. Two types of large mode area fibers (LMA8 and LAM10 NKT Photonics) with different air holes arrangements were used as the photonic crystal fiber. Spectral characteristics within the range of 800 nm - 1700 nm were presented. All process was optimized to obtain a mode conversion between SMF and PCF and to reach a single mode transmission in the PCF output of the coupler.

  2. Integrated Transmission Electron and Single-Molecule Fluorescence Microscopy Correlates Reactivity with Ultrastructure in a Single Catalyst Particle

    NARCIS (Netherlands)

    Hendriks, Frank C.|info:eu-repo/dai/nl/412642697; Mohammadian, Sajjad|info:eu-repo/dai/nl/374721327; Ristanovic, Zoran|info:eu-repo/dai/nl/328233005; Kalirai, Samanbir; Meirer, Florian; Vogt, Eelco T. C.|info:eu-repo/dai/nl/073717398; Bruijnincx, Pieter C. A.|info:eu-repo/dai/nl/33799529X; Gerritsen, Hans|info:eu-repo/dai/nl/071548777; Weckhuysen, Bert M.|info:eu-repo/dai/nl/285484397

    2018-01-01

    Establishing structure–activity relationships in complex, hierarchically structured nanomaterials, such as fluid catalytic cracking (FCC) catalysts, requires characterization with complementary, correlated analysis techniques. An integrated setup has been developed to perform transmission electron

  3. Application of Single-Mode Fiber-Coupled Receivers in Optical Satellite to High-Altitude Platform Communications

    Directory of Open Access Journals (Sweden)

    Fidler Franz

    2008-01-01

    Full Text Available Abstract In a free-space optical communication system employing fiber-optic components, the phasefront distortions induced by atmospheric turbulence limit the efficiency with which the laser beam is coupled into a single-mode fiber. We analyze different link scenarios including a geostationary (GEO satellite, a high-altitude platform (HAP, and an optical ground station (OGS. Single-mode coupled optically preamplified receivers allow for efficient suppression of background noise and highly sensitive detection. While GEO-to-OGS communication suffers from atmospheric turbulence, we demonstrate that GEO-to-HAP communication allows for close to diffraction-limited performance when applying tip-tilt correction.

  4. Application of Single-Mode Fiber-Coupled Receivers in Optical Satellite to High-Altitude Platform Communications

    Directory of Open Access Journals (Sweden)

    Oswald Wallner

    2008-05-01

    Full Text Available In a free-space optical communication system employing fiber-optic components, the phasefront distortions induced by atmospheric turbulence limit the efficiency with which the laser beam is coupled into a single-mode fiber. We analyze different link scenarios including a geostationary (GEO satellite, a high-altitude platform (HAP, and an optical ground station (OGS. Single-mode coupled optically preamplified receivers allow for efficient suppression of background noise and highly sensitive detection. While GEO-to-OGS communication suffers from atmospheric turbulence, we demonstrate that GEO-to-HAP communication allows for close to diffraction-limited performance when applying tip-tilt correction.

  5. Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors

    OpenAIRE

    Woyessa, Getinet; Fasano, Andrea; Stefani, Alessio; Markos, Christos; Nielsen, Kristian; Rasmussen, Henrik K.; Bang, Ole

    2016-01-01

    We have fabricated the first single-mode step-index and humidity insensitive polymer optical fiber operating in the 850 nm wavelength ranges. The step-index preform is fabricated using injection molding, which is an efficient method for cost effective, flexible and fast preparation of the fiber preform. The fabricated single-mode step-index (SI) polymer optical fiber (POF) has a 4.8µm core made from TOPAS grade 5013S-04 with a glass transition temperature of 134°C and a 150 µm cladding made f...

  6. Single x-ray transmission system for bone mineral density determination

    International Nuclear Information System (INIS)

    Jimenez-Mendoza, Daniel; Vargas-Vazquez, Damian; Espinosa-Arbelaez, Diego G.; Giraldo-Betancur, Astrid L.; Hernandez-Urbiola, Margarita I.; Rodriguez-Garcia, Mario E.

    2011-01-01

    Bones are the support of the body. They are composed of many inorganic compounds and other organic materials that all together can be used to determine the mineral density of the bones. The bone mineral density is a measure index that is widely used as an indicator of the health of the bone. A typical manner to evaluate the quality of the bone is a densitometry study; a dual x-ray absorptiometry system based study that has been widely used to assess the mineral density of some animals' bones. However, despite the success stories of utilizing these systems in many different applications, it is a very expensive method that requires frequent calibration processes to work properly. Moreover, its usage in small species applications (e.g., rodents) has not been quite demonstrated yet. Following this argument, it is suggested that there is a need for an instrument that would perform such a task in a more reliable and economical manner. Therefore, in this paper we explore the possibility to develop a new, affordable, and reliable single x-ray absorptiometry system. The method consists of utilizing a single x-ray source, an x-ray image sensor, and a computer platform that all together, as a whole, will allow us to calculate the mineral density of the bone. Utilizing an x-ray transmission theory modified through a version of the Lambert-Beer law equation, a law that expresses the relationship among the energy absorbed, the thickness, and the absorption coefficient of the sample at the x-rays wavelength to calculate the mineral density of the bone can be advantageous. Having determined the parameter equation that defines the ratio of the pixels in radiographies and the bone mineral density [measured in mass per unit of area (g/cm 2 )], we demonstrated the utility of our novel methodology by calculating the mineral density of Wistar rats' femur bones.

  7. Single-phased Fault Location on Transmission Lines Using Unsynchronized Voltages

    Directory of Open Access Journals (Sweden)

    ISTRATE, M.

    2009-10-01

    Full Text Available The increased accuracy into the fault's detection and location makes it easier for maintenance, this being the reason to develop new possibilities for a precise estimation of the fault location. In the field literature, many methods for fault location using voltages and currents measurements at one or both terminals of power grids' lines are presented. The double-end synchronized data algorithms are very precise, but the current transformers can limit the accuracy of these estimations. The paper presents an algorithm to estimate the location of the single-phased faults which uses only voltage measurements at both terminals of the transmission lines by eliminating the error due to current transformers and without introducing the restriction of perfect data synchronization. In such conditions, the algorithm can be used with the actual equipment of the most power grids, the installation of phasor measurement units with GPS system synchronized timer not being compulsory. Only the positive sequence of line parameters and sources are used, thus, eliminating the incertitude in zero sequence parameter estimation. The algorithm is tested using the results of EMTP-ATP simulations, after the validation of the ATP models on the basis of registered results in a real power grid.

  8. Compact Single-Layer Traveling-Wave Antenna DesignUsing Metamaterial Transmission Lines

    Science.gov (United States)

    Alibakhshikenari, Mohammad; Virdee, Bal Singh; Limiti, Ernesto

    2017-12-01

    This paper presents a single-layer traveling-wave antenna (TWA) that is based on composite right/left-handed (CRLH)-metamaterial (MTM) transmission line (TL) structure, which is implemented by using a combination of interdigital capacitors and dual-spiral inductive slots. By embedding dual-spiral inductive slots inside the CRLH MTM-TL results in a compact TWA. Dimensions of the proposed CRLH MTM-TL TWA is 21.5 × 30.0 mm2 or 0.372λ0 × 0.520λ0 at 5.2 GHz (center frequency). The fabricated TWA operates over 1.8-8.6 GHz with a fractional bandwidth greater than 120%, and it exhibits a peak gain and radiation efficiency of 4.2 dBi and 81%, respectively, at 5 GHz. By avoiding the use of lumped components, via-holes or defected ground structures, the proposed TWA design is economic for mass production as well as easy to integrate with wireless communication systems.

  9. Demonstration of Cascaded In-Line Single-Pump Fiber Optical Parametric Amplifiers in Recirculating Loop Transmission

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh; Ozolins, Oskars; An, Yi

    2012-01-01

    The performance of cascaded single-pump fiber optical parametric amplifiers (FOPAs) is experimentally studied for the first time using recirculating loop transmission with 80-km dispersion managed spans. Error-free performance has been achieved over 320 km for 40-Gbit/s CSRZ-OOK and CSRZ...

  10. Single-photon-sensitive linear-mode APD ladar receiver developments

    Science.gov (United States)

    Williams, George M.; Compton, Madison A.; Huntington, Andrew S.

    2008-04-01

    New measurements are presented for multi-stage InGaAs avalanche photodiodes (APDs) which have the potential to perform GHz-rate single photon counting in linear mode. No increase in dark current was measured for an 11-device sample of 5-stage APDs following 717 hours of accelerated aging under bias at 50°C, during an initial lifetime study. Impulse response times of 0.45 ns, 0.9 ns, and 1.1 ns were measured directly for 6-, 8-, and 10-stage APDs, respectively, operated at a nominal gain of M=10. To assess the suitability of the technology for a NASA optical communications application, separate samples of 5-stage APDs were irradiated by 1- and 2-MeV protons at the University of Washington's Center for Experimental Nuclear Physics and Astrophysics (UW CENPA) and by 63.5-MeV protons at the University of California Davis, Crocker Nuclear Laboratory (UCD CNL). Good agreement between calculated non-ionizing energy loss (NIEL) and observed damage was found for the low-energy protons at fluences of 10 10 and 10 11 cm -2. A NIEL calculation successfully predicted the damage observed following a 5×10 10 cm -2 dose of 63.5-MeV protons by extrapolating from 2 MeV data, which suggests that displacement damage is the dominant mechanism.

  11. Artificially controlled backscattering in single mode fibers based on femtosecond laser fabricated reflectors

    Science.gov (United States)

    Wang, Xiaoliang; Chen, Daru; Li, Haitao; Wu, Qiong

    2018-04-01

    A novel method to artificially control the backscattering of the single-mode fiber (SMF) is proposed and investigated for the first time. This method can help to fabricate a high backscattering fiber (HBSF), such as by fabricating reflectors in every one meter interval of an SMF based on the exposure of the femtosecond laser beam. The artificially controlled backscattering (ACBS) can be much higher than the natural Rayleigh backscattering (RB) of the SMF. The RB power and ACBS power in the unit length fiber are derived according to the theory of the RBS. The total relative power and the relative back power reflected in the unit length of the HBSF have been simulated and presented. The simulated results show that the HBSF has the characteristics of both low optical attenuation and high backscattering. The relative back power reflected in the unit length of the HBSF is 25dB larger than the RB power of the SMF when the refractive index modulation quantity of the reflectors is 0.009. Some preliminary experiments also indicate that the method fabricating reflectors to increase the backscattering power of the SMF is practical and promising.

  12. Large-Area High Aspect Ratio Plasmonic Interference Lithography Utilizing a Single High-k Mode.

    Science.gov (United States)

    Chen, Xi; Yang, Fan; Zhang, Cheng; Zhou, Jing; Guo, L Jay

    2016-04-26

    Plasmonic lithography, which utilizes subwavelength confinement of surface plasmon polartion (SPP) waves, has the capability of breaking the diffraction limit and delivering high resolution. However, all previously reported results suffer from critical issues, such as shallow pattern depth and pattern nonuniformity even over small exposure areas, which limit the application of the technology. In this work, periodic patterns with high aspect ratios and a half-pitch of about 1/6 of the wavelength were achieved with pattern uniformity in square centimeter areas. This was accomplished by designing a special mask and photoresist (PR) system to select a single high spatial frequency mode and incorporating the PR into a waveguide configuration to ensure uniform light exposure over the entire depth of the photoresist layer. In addition to the experimental progress toward large-scale applications of plasmonic interference lithography, the general criteria of designing such an exposure system is also discussed, which can be used for nanoscale fabrication in this fashion for various applications with different requirements for wavelength, pitch, aspect ratio, and structure.

  13. Single-mode Rayleigh-Taylor growth-rate measurements with the OMEGA laser system

    International Nuclear Information System (INIS)

    Knauer, J.P.; Verdon, C.P.; Meyerhofer, D.D.; Boehly, T.R.; Bradley, D.K.; Smalyuk, V.A.; Ofer, D.; McKenty, P.W.; Glendinning, S.G.; Kalantar, D.H.; Watt, R.G.; Gobby, P.L.; Willi, O.; Taylor, R.J.

    1997-01-01

    The results from a series of single-mode Rayleigh-Taylor (RT) instability growth experiments performed on the OMEGA laser system using planar targets are reported. Planar targets with imposed mass perturbations were accelerated using five to six 351-nm laser beams overlapped with total intensities up to 2.5x10 14 W/cm 2 . Experiments were performed with both 3-ns ramp and 3-ns flat-topped temporal pulse shapes. The use of distributed phase plates and smoothing by spectral dispersion resulted in a laser-irradiation nonuniformity of 4%endash 7% over a 600-μm-diam region defined by the 90% intensity contour. The temporal growth of the modulation in optical depth was measured using through-foil radiography and was detected with an x-ray framing camera for CH targets with and without a foam buffer. The growth of both 31-μm and 60-μm wavelength perturbations was found to be in good agreement with ORCHID simulations when the experimental details, including noise, were included. The addition of a 30-mg/cc, 100-μm-thick polystyrene foam buffer layer resulted in reduced growth of the 31-μm perturbation and essentially unchanged growth for the 60-μm case when compared to targets without foam. copyright 1997 American Institute of Physics

  14. All-fiber single-mode high modulation rate pseudorandom-coded laser

    Science.gov (United States)

    Zhang, Xin; Yang, Fang; Liu, Yuan; He, Yan; Hou, Xia; Chen, Weibiao

    2013-12-01

    An all-fiber high modulation speed pseudorandom-coded laser based on master oscillator power amplifier configuration is proposed. We use a high modulation rate distributed feedback laser diode as the seed laser to generate the original pseudorandom pulse train. The modulation rate is 1 Gb/s, which corresponds to a minimum pulse interval of 1 ns. A 1 kHz repetition frequency of 10-order M-sequence pseudorandom pulse train is chosen to balance on-line data processing speed and laser ranging resolution. Then, the pseudorandom pulse train is amplified by two-stage amplifiers to boost the output power. All components used in the amplifiers are built in single mode (SM) fiber, so the final output laser is SM with excellent beam quality. Finally, the peak power of pseudorandom code laser is amplified to 23.6 W from 1.5 mW without wave distortion, corresponding to a gain of 42 dB. The ranging experiment of using the optical fiber delay method indoors shows the transmitter of combining modulated laser diode and multistage fiber amplifiers as a promising solution for developing laser for pseudorandom-coded laser ranging.

  15. Role of third-order dispersion in chirped Airy pulse propagation in single-mode fibers

    Science.gov (United States)

    Cai, Wangyang; Wang, Lei; Wen, Shuangchun

    2018-04-01

    The dynamic propagation of the initial chirped Airy pulse in single-mode fibers is studied numerically, special attention being paid to the role of the third-order dispersion (TOD). It is shown that for the positive TOD, the Airy pulse experiences inversion irrespective of the sign of initial chirp. The role of TOD in the dynamic propagation of the initial chirped Airy pulse depends on the combined sign of the group-velocity dispersion (GVD) and the initial chirp. If the GVD and chirp have the opposite signs, the chirped Airy pulse compresses first and passes through a breakdown area, then reconstructs a new Airy pattern with opposite acceleration, with the breakdown area becoming small and the main peak of the new Airy pattern becoming asymmetric with an oscillatory structure due to the positive TOD. If the GVD and chirp have the same signs, the finite-energy Airy pulse compresses to a focal point and then inverses its acceleration, in the case of positive TOD, the distance to the focal point becoming smaller. At zero-dispersion point, the finite-energy Airy pulse inverses to the opposite acceleration at a focal point, with the tight-focusing effect being reduced by initial chirp. Under the effect of negative TOD, the initial chirped Airy pulse disperses and the lobes split. In addition, in the anomalous dispersion region, for strong nonlinearity, the initial chirped Airy pulse splits and enters a soliton shedding regime.

  16. Experimental demonstration of single-mode fiber coupling over relatively strong turbulence with adaptive optics.

    Science.gov (United States)

    Chen, Mo; Liu, Chao; Xian, Hao

    2015-10-10

    High-speed free-space optical communication systems using fiber-optic components can greatly improve the stability of the system and simplify the structure. However, propagation through atmospheric turbulence degrades the spatial coherence of the signal beam and limits the single-mode fiber (SMF) coupling efficiency. In this paper, we analyze the influence of the atmospheric turbulence on the SMF coupling efficiency over various turbulences. The results show that the SMF coupling efficiency drops from 81% without phase distortion to 10% when phase root mean square value equals 0.3λ. The simulations of SMF coupling with adaptive optics (AO) indicate that it is inevitable to compensate the high-order aberrations for SMF coupling over relatively strong turbulence. The SMF coupling efficiency experiments, using an AO system with a 137-element deformable mirror and a Hartmann-Shack wavefront sensor, obtain average coupling efficiency increasing from 1.3% in open loop to 46.1% in closed loop under a relatively strong turbulence, D/r0=15.1.

  17. Capacitive deionization of arsenic-contaminated groundwater in a single-pass mode.

    Science.gov (United States)

    Fan, Chen-Shiuan; Liou, Sofia Ya Hsuan; Hou, Chia-Hung

    2017-10-01

    A single-pass-mode capacitive deionization (CDI) reactor was used to remove arsenic from groundwater in the presence of multiple ions. The CDI reactor involved an applied voltage of 1.2 V and six cell pairs of activated carbon electrodes, each of which was 20 × 30 cm 2 . The results indicate that this method achieved an effluent arsenic concentration of 0.03 mg L -1 , which is lower than the arsenic concentration standard for drinking water and irrigation sources in Taiwan, during the charging stage. Additionally, the ability of the CDI to remove other coexisting ions was studied. The presence of other ions has a significant influence on the removal of arsenic from groundwater. From the analysis of the electrosorption selectivity, the preference for anion removal could be ordered as follows: NO 3 -  > SO 4 2-  > F -  > Cl - >As. The electrosorption selectivity for cations could be ordered as follows: Ca 2+  > Mg 2+  > Na +  ∼ K + . Moreover, monovalent cations can be replaced by divalent cations at the electrode surface in the later period of the electrosorption stage. Consequently, activated carbon-based capacitive deionization is demonstrated to be a high-potential technology for remediation of arsenic-contaminated groundwater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Development of distributed temperature sensor based on single-mode fiber

    Science.gov (United States)

    Jiang, Mingshun; Wang, Jing; Feng, Dejun; Sui, Qingmei

    2008-12-01

    The distributed optical fiber temperature measurement system (DTS) is a kind of sensing system, which is applied to the real-time measurement of the temperature field in space. It is widely used in monitoring of production process: fire alarm of coal mine and fuel depots, heat detection and temperature monitor of underground cable, seepage and leakage of dam. Through analyzing temperature effect of optical fiber Raman backscattering theoretically, a distributed temperature sensor based on single-mode fiber was designed, which overcame the inadequacies of multimode fiber. The narrow pulse width laser, excellent InGaAS PIN, low noise precision difet operational amplifier and high speed data acquisition card in order to improve the stability of this system were selected. The demodulation method based on ratio of Anti-Stokes and Stokes Raman backscattering intensity was adopted. Both hardware composition and software implementation of the system were introduced in detail. It is proved that its distinguishing ability of temperature and space are 1 m and 2 m, respectively. The system response time is about 180 s, with a sensing range of 5 km and the temperature measurement range 0~100 °C.

  19. A Novel Technique for Sterilization Using a Power Self-Regulated Single-Mode Microwave Cavity

    Directory of Open Access Journals (Sweden)

    Juan D. Reverte-Ors

    2017-06-01

    Full Text Available In this paper, a novel technique to achieve precise temperatures in food sterilization has been proposed. An accurate temperature profile is needed in order to reach a commitment between the total removal of pathogens inside the product and the preservation of nutritional and organoleptic characteristics. The minimal variation of the target temperature in the sample by means of a monitoring and control software platform, allowing temperature stabilization over 100 °C, is the main goal of this work. A cylindrical microwave oven, under pressure conditions and continuous control of the microwave supply power as function of the final temperature inside the sample, has been designed and developed with conditions of single-mode resonance. The uniform heating in the product is achieved by means of sample movement and the self-regulated power control using the measured temperature. Finally, for testing the sterilization of food with this technology, specific biological validation based on Bacillus cereus as a biosensor of heat inactivation has been incorporated as a distribution along the sample in the experimental process to measure the colony-forming units (CFUs for different food samples (laboratory medium, soup, or fish-based animal by-products. The obtained results allow the validation of this new technology for food sterilization with precise control of the microwave system to ensure the uniform elimination of pathogens using high temperatures.

  20. Fingerprinting of traditional Chinese medicines on the C18-Diol mixed-mode column in online or offline two-dimensional liquid chromatography on the single column modes.

    Science.gov (United States)

    Wang, Qing; Tong, Ling; Yao, Lin; Zhang, Peng; Xu, Li

    2016-06-05

    In the present study, a mixed-mode stationary phase, C18-Diol, was applied for fingerprint analysis of traditional Chinese medicines. Hydrophobic, hydrogen bonding and electrostatic interactions were demonstrated to contribute the retention separately or jointly, which endowed the C18-Diol stationary phase with distinct selectivity compared to the bare C18 one. The separation of total alkaloids extracted from Fritillaria hupehensis was compared on the C18-Diol and conventional C18 column with the greater resolving power and better symmetry responses on the former one. Besides, a novel two-dimensional liquid chromatography on the single column (2D-LC-1C) was realized on C18-Diol with the offline mode for the alcohol extract of Fritillaria hupehensis and online mode for Ligusticum chuanxiong Hort. The early co-eluted extracted components with great polarity on the first dimension were reinjected on the same column and well separated on the second dimension. The results exhibited that the two complementary RPLC and HILIC modes on C18-Diol stationary phase enhanced the separation capacity and revealed more abundant chemical information of the sample, which was a powerful tool in analyzing complex herbal medicines. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Generation of Flattened Multicarrier Signals from a Single Laser Source for 330 Gbps WDM-PON Transmission over 25 km SSMF

    Science.gov (United States)

    Ullah, Sibghat; Liu, Bo; Ullah, Rahat; Ahmad, Muhammad; Wang, Fu; Zhang, Lijia; Xin, Xiangjun; Memon, Kamran Ali; Khalid, Hafiz Ahmad

    2017-12-01

    A novel technique is proposed for optical frequency comb generation with a budget friendly system. A Mach-Zehnder modulator is used in connectivity with continuous wave optical signal which is filtered by rectangle optical filter and the signal is then amplified by erbium-doped fiber amplifier. With a frequency spacing of 10 GHz 33 useable OFC lines were generated with good tone to noise ratio which is quite impressive for such a cost effective setup. Each generated carrier carries differential phase shift keying based data of 10 Gbps. A total of 330 Gbps multiplexed data is successfully transmitted through a standard single mode fiber length of 25-km. During the downlink transmission the power penalties are observed to be negligible. The resulted eye diagrams are wide and promises to be a good system for wavelength division multiplexed-passive optical network.

  2. Outbreaks of Acute Gastroenteritis Transmitted by Person-to-Person Contact, Environmental Contamination, and Unknown Modes of Transmission--United States, 2009-2013.

    Science.gov (United States)

    Wikswo, Mary E; Kambhampati, Anita; Shioda, Kayoko; Walsh, Kelly A; Bowen, Anna; Hall, Aron J

    2015-12-11

    Acute gastroenteritis (AGE) is a major cause of illness in the United States, with an estimated 179 million episodes annually. AGE outbreaks propagated through direct person-to-person contact, contaminated environmental surfaces, and unknown modes of transmission were not systematically captured at the national level before 2009 and thus were not well characterized. 2009-2013. The National Outbreak Reporting System (NORS) is a voluntary national reporting system that supports reporting of all waterborne and foodborne disease outbreaks and all AGE outbreaks resulting from transmission by contact with contaminated environmental sources, infected persons or animals, or unknown modes. Local, state, and territorial public health agencies within the 50 U.S. states, the District of Columbia (DC), five U.S. territories, and three Freely Associated States report outbreaks to CDC via NORS using a standard online data entry system. A total of 10,756 AGE outbreaks occurred during 2009-2013, for which the primary mode of transmission occurred through person-to-person contact, environmental contamination, and unknown modes of transmission. NORS received reports from public health agencies in 50 U.S. states, DC, and Puerto Rico. These outbreaks resulted in 356,532 reported illnesses, 5,394 hospitalizations, and 459 deaths. The median outbreak reporting rate for all sites in a given year increased from 2.7 outbreaks per million population in 2009 to 11.8 outbreaks in 2013. The etiology was unknown in 31% (N = 3,326) of outbreaks. Of the 7,430 outbreaks with a suspected or confirmed etiology reported, norovirus was the most common, reported in 6,223 (84%) of these outbreaks. Other reported suspected or confirmed etiologies included Shigella (n = 332) and Salmonella (n = 320). Outbreaks were more frequent during the winter, with 5,716 (53%) outbreaks occurring during December-February, and 70% of the 7,001 outbreaks with a reported setting of exposure occurred in long

  3. Tunable single-longitudinal-mode operation of an injection-locked TEA CO2 laser. [ozone absorption spectroscopy

    Science.gov (United States)

    Megie, G.; Menzies, R. T.

    1979-01-01

    The tunable single-longitudinal-mode operation of a TEA CO2 laser by an injection technique using a CW waveguide laser as the master oscillator is reported. With the experimental arrangement described, in which the waveguide laser frequency is tuned to correspond to one of the oscillating longitudinal modes of the TEA laser, single-longitudinal-mode operation was achieved with no apparent reduction in the TEA output energy, on various CO2 lines with frequency offsets from the line center as large as 300 MHz. The capability of this technique for high-resolution spectroscopy or atmospheric lidar studies is demonstrated by the recording of the absorption spectrum of a strong ozone line.

  4. Realization of Current Mode Universal Filter and a Dual-Mode Single Resistance Controlled Quadrature Oscillator Employing VDCC and Only Grounded Passive Elements

    Directory of Open Access Journals (Sweden)

    Manish Gupta

    2017-01-01

    Full Text Available The manuscript presents a circuit that can act as a universal filter as well as a single resistence controlled oscillator by unpretentiously changing the switch positions. The circuit employs only two active devices and all grounded passive elements. The utilization of only grounded passive components makes this circuit a better choice for integrated circuit implementation. The current mode biquadratic filter offers all the five basic responses along with independent tunability of its quality factor. The dual-mode quadrature sinusoidal oscillator offers explicit current outputs along with voltage outputs. The circuit also offers a simple and uncoupled condition of oscillation and frequency of oscillation. The typical analysis such as non-ideal, sensitivity and parasitic analysis along with the regular simulation results as well as experimental results are exposed here, to strengthen the design idea.

  5. Over 19 W Single-Mode 1545 nm Er,Yb Codoped All-Fiber Laser

    Directory of Open Access Journals (Sweden)

    Jiadong Wu

    2017-01-01

    Full Text Available We report a high-power cladding-pumped Er,Yb codoped all-fiber laser with truly single transverse mode output. The fiber laser is designed to operate at 1545 nm by the use of a pair of fiber Bragg gratings (FBGs to lock and narrow the output spectrum, which can be very useful in generating the eye-safe ~1650 nm laser emission through the Stimulated Raman Scattering (SRS in silica fibers that is of interest in many applications. Two pieces of standard single-mode fibers are inserted into the laser cavity and output port to guarantee the truly single-mode output as well as good compatibility with other standard fiber components. We have obtained a maximum output power of 19.2 W at 1544.68 nm with a FWHM spectral width of 0.08 nm, corresponding to an average overall slope efficiency of 31.9% with respect to the launched pump power. This is, to the best of our knowledge, the highest output power reported from simple all-fiber single-mode Er,Yb codoped laser oscillator architecture.

  6. Comparative investigation of methods to determine the group velocity dispersion of an endlessly single-mode photonic crystal fiber

    Science.gov (United States)

    Baselt, Tobias; Popp, Tobias; Nelsen, Bryan; Lasagni, Andrés. Fabián.; Hartmann, Peter

    2017-05-01

    Endlessly single-mode fibers, which enable single mode guidance over a wide spectral range, are indispensable in the field of fiber technology. A two-dimensional photonic crystal with a silica central core and a micrometer-spaced hexagonal array of air holes is an established method to achieve endless single-mode guidance. There are two possible ways to determine the dispersion: measurement and calculation. We calculate the group velocity dispersion GVD based on the measurement of the fiber structure parameters, the hole diameter and the pitch of a presumed homogeneous hexagonal array and compare the calculation with two methods to measure the wavelength-dependent time delay. We measure the time delay on a three hundred meter test fiber with a homemade supercontinuum light source, a set of bandpass filters and a fast detector and compare the results with a white light interferometric setup. To measure the dispersion of optical fibers with high accuracy, a time-frequency-domain setup based on a Mach-Zehnder interferometer is used. The experimental setup allows the determination of the wavelength dependent differential group delay of light travelling through a thirty centimeter piece of test fiber in the wavelength range from VIS to NIR. The determination of the GVD using different methods enables the evaluation of the individual methods for characterizing the endlessly single-mode fiber.

  7. Single-Mode, High Repetition Rate, Compact Ho:YLF Laser for Space-Borne Lidar Applications

    Science.gov (United States)

    Bai, Yingxin; Yu, Jirong; Wong, Teh-Hwa; Chen, Songsheng; Petros, Mulugeta; Singh, Upendra N.

    2014-01-01

    A single transverse/longitudinal mode, compact Q-switched Ho:YLF laser has been designed and demonstrated for space-borne lidar applications. The pulse energy is between 34-40 mJ for 100-200 Hz operation. The corresponding peak power is >1 MW.

  8. Open quantum systems and the two-level atom interacting with a single mode of the electromagnetic field

    International Nuclear Information System (INIS)

    Sandulescu, A.; Stefanescu, E.

    1987-07-01

    On the basis of Lindblad theory of open quantum systems we obtain new optical equations for the system of two-level atom interacting with a single mode of the electromagnetic field. The conventional Block equations in a generalized form with field phases are obtained in the hypothesis that all the terms are slowly varying in the rotating frame.(authors)

  9. A passive micromachined device for alignment of arrays of single-mode fibers for hermetic photonic packaging - the CLASP concept

    Energy Technology Data Exchange (ETDEWEB)

    Seigal, P.K.; Kravitz, S.H.; Word, J.C.; Bauer, T.M. [and others

    1997-02-01

    A micro-machined fiber alignment device, called CLASP (Capture and Locking Alignment Spring Positioner) has been fabricated. It uses a nickel leaf spring to passively capture vertical arrays of single-mode fibers with {approximately} 2 {mu}m accuracy.

  10. Tunable single and dual mode operation of an external cavity quantum-dot injection laser

    Energy Technology Data Exchange (ETDEWEB)

    Biebersdorf, A [Photonics and Optoelectronics Group, Physics Department and CeNS, Ludwig-Maximilians-Universitaet, Amalienstrasse 54, D-80799 Munich (Germany); Lingk, C [Photonics and Optoelectronics Group, Physics Department and CeNS, Ludwig-Maximilians-Universitaet, Amalienstrasse 54, D-80799 Munich (Germany); De Giorgi, M [Photonics and Optoelectronics Group, Physics Department and CeNS, Ludwig-Maximilians-Universitaet, Amalienstrasse 54, D-80799 Munich (Germany); Feldmann, J [Photonics and Optoelectronics Group, Physics Department and CeNS, Ludwig-Maximilians-Universitaet, Amalienstrasse 54, D-80799 Munich (Germany); Sacher, J [Sacher Lasertechnik GmbH, Hannah Arendt Strasse 3-7, D-35037 Marburg (Germany); Arzberger, M [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, D-85748 Garching (Germany); Ulbrich, C [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, D-85748 Garching (Germany); Boehm, G [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, D-85748 Garching (Germany); Amann, M-C [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, D-85748 Garching (Germany); Abstreiter, G [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, D-85748 Garching (Germany)

    2003-08-21

    We investigate quantum-dot (QD) lasers in an external cavity using Littrow and Littman configurations. Here, we report on a continuously tunable QD laser with a broad tuning range from 1047 to 1130 nm with high stability and efficient side mode suppression. The full-width at half-maximum of the laser line is 0.85 nm determined mainly by the quality of the external grating. This laser can be operated in a dual-mode modus, where the mode-spacing can be tuned continuously between 1.1 and 34 nm. Simultaneous emission of the two laser modes is shown by sum frequency generation experiments.

  11. Analysis and Simulation of the Transmission Distortions of the Mobile Digital Television DVB-SH Part 1: Terrestrial Mode DVB-SH-A with OFDM

    Directory of Open Access Journals (Sweden)

    L. Polak

    2011-12-01

    Full Text Available This paper deals with the latest digital TV standard DVB-SH (Digital Video Broadcasting - Satellite to Handhelds with focus on utilization of its advantages for the next generation of mobile TV broadcasting. The whole paper consists of two parts. In this first part, after the brief introduction to DVB-SH and related last works review, the simulation model of DVB-SH-A, which is using terrestrial configuration with OFDM transmission mode, is presented. The work is especially focused on the description of new type of forward error correction and system configuration of the DVB-SH-A mode. For the analysis and simulation of the transmission, the original scheme of turbo encoder was modified in this paper. Application for simulation of the transmission in mobile and portable fading transmission channels was developed in MATLAB. Dependences of BER on C/N ratio for all types of payload modulation are compared with focus on mobile TV services availability. Finally, the achieved results are evaluated and clearly discussed.

  12. Model of a single mode energy harvester and properties for optimal power generation

    International Nuclear Information System (INIS)

    Liao Yabin; Sodano, Henry A

    2008-01-01

    The process of acquiring the energy surrounding a system and converting it into usable electrical energy is termed power harvesting. In the last few years, the field of power harvesting has experienced significant growth due to the ever increasing desire to produce portable and wireless electronics with extended life. Current portable and wireless devices must be designed to include electrochemical batteries as the power source. The use of batteries can be troublesome due to their finite energy supply, which necessitates their periodic replacement. In the case of wireless sensors that are to be placed in remote locations, the sensor must be easily accessible or of disposable nature to allow the device to function over extended periods of time. Energy scavenging devices are designed to capture the ambient energy surrounding the electronics and covert it into usable electrical energy. The concept of power harvesting works towards developing self-powered devices that do not require replaceable power supplies. The development of energy harvesting systems is greatly facilitated by an accurate model to assist in the design of the system. This paper will describe a theoretical model of a piezoelectric based energy harvesting system that is simple to apply yet provides an accurate prediction of the power generated around a single mode of vibration. Furthermore, this model will allow optimization of system parameters to be studied such that maximal performance can be achieved. Using this model an expression for the optimal resistance and a parameter describing the energy harvesting efficiency will be presented and evaluated through numerical simulations. The second part of this paper will present an experimental validation of the model and optimal parameters

  13. Single-mode, Rayleigh-Taylor growth-rate measurements on the OMEGA laser system

    International Nuclear Information System (INIS)

    Knauer, J. P.; Betti, R.; Bradley, D. K.; Boehly, T. R.; Collins, T. J. B.; Goncharov, V. N.; McKenty, P. W.; Meyerhofer, D. D.; Smalyuk, V. A.; Verdon, C. P.

    2000-01-01

    The results from a series of single-mode, Rayleigh-Taylor (RT) instability growth experiments performed on the OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] using planar targets are reported. Planar targets with imposed mass perturbations were accelerated using five or six 351 nm laser beams overlapped with total intensities up to 2.5x10 14 W/cm 2 . Experiments were performed with both 3 ns ramp and 3 ns flat-topped temporal pulse shapes. The use of distributed phase plates and smoothing by spectral dispersion resulted in a laser-irradiation nonuniformity of 4%-7% over a 600 μm diam region defined by the 90% intensity contour. The temporal growth of the modulation in optical depth was measured using throughfoil radiography and was detected with an x-ray framing camera for CH targets. Two-dimensional (2-D) hydrodynamic simulations (ORCHID) [R. L. McCrory and C. P. Verdon, in Inertial Confinement Fusion (Editrice Compositori, Bologna, 1989), pp. 83-124] of the growth of 20, 31, and 60 μm wavelength perturbations were in good agreement with the experimental data when the experimental details, including noise, were included. The amplitude of the simulation optical depth is in good agreement with the experimental optical depth; therefore, great care must be taken when the growth rates are compared to dispersion formulas. Since the foil's initial condition just before it is accelerated is not that of a uniformly compressed foil, the optical density measurement does not accurately reflect the amplitude of the ablation surface but is affected by the initial nonuniform density profile. (c) 2000 American Institute of Physics

  14. ESTABLISHED MODES AND STATIC CHARACTERISTICS OF THREE-PHASE ASYNCHRONOUS MOTOR POWERED WITH SINGLE PHASE NETWORK

    Directory of Open Access Journals (Sweden)

    V. S. Malyar

    2016-01-01

    Full Text Available A mathematical model is developed to study the operation of three-phase asynchronous motor with squirrel-cage rotor when the stator winding is powered from a single phase network. To create a rotating magnetic field one of the phases is fed through the capacitor. Due to the asymmetry of power feed not only transients, but the steady-state regimes are dynamic, so they are described by differential equations in any coordinate system. Their study cannot be carried out with sufficient adequacy on the basis of known equivalent circuits and require the use of dynamic parameters. In the mathematical model the state equations of the circuits of the stator and rotor are composed in the stationary three phase coordinate system. Calculation of the established mode is performed by solving the boundary problem that makes it possible to obtain the coordinate dependences over the period, without calculation of the transient process. In order to perform it, the original nonlinear differential equations are algebraized by approximating the variables with the use of cubic splines. The resulting nonlinear system of algebraic equations is a discrete analogue of the initial system of differential equations. It is solved by parameter continuation method. To calculate the static characteristics as a function of a certain variable, the system is analytically differentiated, and then numerically integrated over this variable. In the process of integration, Newton's refinement is performed at each step or at every few steps, making it possible to implement the integration in just a few steps using Euler's method. Jacobi matrices in both cases are the same. To account for the current displacement in the rods of the squirrel-cage rotor, each of them, along with the squirrel-cage rings, is divided in height into several elements. This results in several squirrel-cage rotor windings which are represented by three-phase windings with magnetic coupling between them.

  15. A comparative study of the single-mode Richtmyer-Meshkov instability

    Science.gov (United States)

    Bai, X.; Deng, X.-L.; Jiang, L.

    2017-11-01

    In this work, the single-mode Richtmyer-Meshkov instability is studied numerically to find a reasonable nonlinear theoretical model which can be applied to predict the interface evolution from the linear stage to the early nonlinear stage. The cut-cell-based sharp-interface methods MuSiC+ (Chang et al. in J Comput Phys 242:946-990, 2013) and CCGF (Bai and Deng in Adv Appl Math Mech 9(5):1052-1075, 2017) are applied to generate numerical results for comparisons. Classical Air-SF6 and Air-Helium conditions are applied in this study, and initial amplitude and Atwood number are varied for comparison. Comparisons to the simulation results from the literature show the applicability of MuSiC+ and CCGF. Comparisons to the nonlinear theoretical models show that ZS (Zhang and Sohn in Phys Lett A 212:149-155, 1996; Phys Fluids 9:1106-1124, 1997), SEA (Sadot et al. in Phys Rev Lett 80:1654-1657, 1998), and DR (Dimonte and Ramaprabhu in Phys Fluids 22:014104, 2010) models are valid for both spike and bubble growth rates, and MIK (Mikaelian in Phys Rev E 67:026319, 2003) and ZG (Zhang and Guo in J Fluid Mech 786:47-61, 2016) models are valid for bubble growth rate, when the initial perturbation is small and the Atwood number is low, but only the DR model is applicable for both spike and bubble growth rates when the initial perturbation amplitude and the Atwood number are large. A new term of non-dimensional initial perturbation amplitude is presented and multiplied to the DR model to get a unified fitted DR model, which gives consistent results to the simulation ones for small and large initial amplitudes.

  16. Toward photostable multiplex analyte detection on a single mode planar optical waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Mukundan, Harshini [Los Alamos National Laboratory; Xei, Hongshi [Los Alamos National Laboratory; Anderson, Aaron S [Los Alamos National Laboratory; Grace, Wynne K [Los Alamos National Laboratory; Martinez, Jennifer S [NON LANL; Swanson, Basil [Los Alamos National Laboratory

    2009-01-01

    We have developed a waveguide-based optical biosensor for the sensitive and specific detection of biomarkers associated with disease. Our technology combines the superior optical properties of single-mode planar waveguides, the robust nature of functionalized self-assembled monolayer sensing films and the specificity of fluorescence sandwich immunoassays to detect biomarkers in complex biological samples such as serum, urine and sputum. We have previously reported the adaptation of our technology to the detection of biomarkers associated with breast cancer and anthrax. However, these approaches primarily used phospholipid bilayers as the functional film and organic dyes (ex: AlexaFluors) as the fluorescence reporter. Organic dyes are easily photodegraded and are not amenable to multiplexing because of their narrow Stokes' shift. Here we have developed strategies for conjugation of the detector antibodies with quantum dots for use in a multiplex detection platform. We have previously evaluated dihydroxylipoic acid quantum dots for the detection of a breast cancer biomarker. In this manuscript, we investigate the detection of the Bacillus anthracis protective antigen using antibodies conjugated with polymer-coated quantum dots. Kinetics of binding on the waveguide-based biosensor is reported. We compare the sensitivity of quantum dot labeled antibodies to those labeled with AlexaFluor and demonstrate the photostability of the former in our assay platform. In addition, we compare sulfydryl labeling of the antibody in the hinge region to that of nonspecific amine labeling. This is but the first step in developing a multiplex assay for such biomarkers on our waveguide platform.

  17. Side-mode transmission diagnosis of a multichannel selectable injection-locked Fabry-Perot Laser Diode with anti-reflection coated front facet.

    Science.gov (United States)

    Liao, Yu-Sheng; Kuo, Hao-Chung; Chen, Yung-Jui; Lin, Gong-Ru

    2009-03-16

    Theory and experiments on the side-mode-suppression-ratio (SMSR) enhancement and the linewidth reduction of a Fabry-Perot laser diode (FPLD) side-mode-injection-locked by using another FPLD are demonstrated to realize its potential application as a DWDM transmitter source. The SMSR, the spectral linewidth and the linewidth enhancement factor are simulated to realize the limitation of the FPLD-FPLD link under side-mode injection-locking condition. A degradation of the linewidth enhancement factor from 1.5 to 2.1 is observed due to the slave FPLD injection-locked at principle- and side-mode conditions. Up to 22-channel selectability of the 2.5 Gbit/s directly modulated FPLD based transmitter under side-mode injection-locking is demonstrated with a SMSR >35 dB, a Q-factor 6.8-9.2, a locking range of 24 nm, a power penalty of -0.7 dB, and a BER of 10(-10) at -17 dBm. The side-mode injection-locked FPLD shows high-quality transmission performance and meet the demand for cost-effective and high-capability 2.5 Gbit/s WDM systems. (c) 2008 Optical Society of America

  18. Single-mode cavities at frequencies of 172 and 178 MHz

    CERN Document Server

    Volkov, V N; Fomin, N G; Kurkin, G Ya; Tribendis, A G

    2001-01-01

    In the report presented here the projects of two accelerating cavities with strong damping of higher modes (HOM) with special vacuum loads are presented.The designs of the cavities and loads are described.The design parameters of cavities,their spectra of higher modes and calculation results of the beam phase motion stability are given for the VEPP-2000 and NANOHANA Projects.

  19. Single-mode distributed feedback laser operation with no dependence on the morphology of the gain medium

    Energy Technology Data Exchange (ETDEWEB)

    Umar, Muhammad [Department of Energy Systems Research, Ajou University, Suwon (Korea, Republic of); Min, Kyungtaek [Department of Energy Systems Research, Ajou University, Suwon (Korea, Republic of); Inter-university Semiconductor Research Center, Seoul National University (Korea, Republic of); Jeon, Heonsu [Department of Physics and Astronomy, Seoul National University (Korea, Republic of); Kim, Sunghwan [Department of Energy Systems Research, Ajou University, Suwon (Korea, Republic of); Department of Physics, Ajou University, Suwon (Korea, Republic of)

    2017-06-15

    Organic distributed feedback (DFB) lasers can be useful photonic tools for biological applications where the roles of organic materials are important, because highly coherent single mode emission with broad tuning range can be obtained. However, the formulaic structures of organic lasers, and the uses of gain media as resonators themselves, are not suitable for inducing laser emission from irregular shaped gain media, such as dye-staining cells and tissues. Here, we report a reusable photonic template comprising an exceedingly thin and discrete titanium dioxide (TiO{sub 2}) layer on a one-dimensional (1D) quartz grating to induce single mode DFB lasing from a variety of states of optical gain media. Using the same template, the external gain media of optically thick and thin casted film, liquid, and a free-standing thick film reveal single mode lasing with reliable performance. Numerical simulations demonstrate that the 25-nm thick TiO{sub 2} disconnected grating lines support a spatially confined DFB mode in the vertical direction, even under no index difference between superstrate and substrate. Additionally, not using the typical waveguide gain layer promises high sensitivity and detection limit in refractometric sensing. These results suggest that the photonic structure may serve as a versatile sensing platform for bioapplications. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Strong coupling between a single nitrogen-vacancy spin and the rotational mode of diamonds levitating in an ion trap

    Science.gov (United States)

    Delord, T.; Nicolas, L.; Chassagneux, Y.; Hétet, G.

    2017-12-01

    A scheme for strong coupling between a single atomic spin and the rotational mode of levitating nanoparticles is proposed. The idea is based on spin readout of nitrogen-vacancy centers embedded in aspherical nanodiamonds levitating in an ion trap. We show that the asymmetry of the diamond induces a rotational confinement in the ion trap. Using a weak homogeneous magnetic field and a strong microwave driving we then demonstrate that the spin of the nitrogen-vacancy center can be strongly coupled to the rotational mode of the diamond.

  1. High resolution transmission electron microscopy studies of {sigma} phase in Ni-based single crystal superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Sun Fei [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Zhang Jianxin, E-mail: jianxin@sdu.edu.cn [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Liu Pan [Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124 (China); Feng Qiang [National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083 (China); State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Han Xiaodong; Mao Shengcheng [Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124 (China)

    2012-09-25

    Graphical abstract: (a) TEM micrograph of {sigma} phase; (b) HRTEM image of {sigma}/{gamma} interface corresponding to the area of the white frame in (a); (c) an enlarged image of area from the white frame in (b). The combination of {sigma}/{gamma} interface appears very well, and a two-atomic-layer step is shown on the {sigma}/{gamma} interface. In addition, {sigma} phase has the orientation relationship of [0 0 1]{sub {gamma}}//[1 1 2{sup Macron }]{sub {sigma}}, (2{sup Macron} 2 0){sub {gamma}}//(1{sup Macron} 1 0){sub {sigma}}, (2{sup Macron }2{sup Macron} 0){sub {gamma}}//(1 1 1){sub {sigma}}; [0 1 1]{sub {gamma}}//[1 1 0]{sub {sigma}}, (1 1{sup Macron} 1){sub {gamma}}//(0 0 1{sup Macron }){sub {sigma}} with the {gamma} phase. Highlights: Black-Right-Pointing-Pointer Elemental characteristic of {sigma} phase is studied by HAADF techniques and EDS analysis. Black-Right-Pointing-Pointer Interfacial characteristics of {sigma}/{gamma} interface are revealed by HRTEM. Black-Right-Pointing-Pointer An atomic structural {sigma}/{gamma} interface with a two-atomic-layer step has been proposed. - Abstract: By means of high resolution transmission electron microscopy (HRTEM) and high-angle annular dark-field image technique (HAADF), morphological of plate-shaped {sigma} phase and interfacial characteristics between plate-shaped {sigma} phase and {gamma} phase in Ni-based single crystal superalloys have been studied. On the basis of HRTEM observations, an atomic structural interface between {sigma} phase and {gamma} phase with a step has been proposed. {sigma} Phase has the relationship of [0 0 1]{sub {gamma}}//[1 1 2{sup Macron }]{sub {sigma}}, (2{sup Macron} 2 0){sub {gamma}}//(1{sup Macron} 1 0){sub {sigma},} (2{sup Macron }2{sup Macron} 0){sub {gamma}}//(1 1 1){sub {sigma}}; [0 1 1]{sub {gamma}}//[1 1 0]{sub {sigma}}, (1 1{sup Macron} 1){sub {gamma}}//(0 0 1{sup Macron }){sub {sigma}} with the {gamma} phase. The compositional characteristics of the {sigma} phase which

  2. Direct quantitative screening of influenza A virus without DNA amplification by single-particle dual-mode total internal reflection scattering.

    Science.gov (United States)

    Lee, Seungah; Chakkarapani, Suresh Kumar; Yeung, Edward S; Kang, Seong Ho

    2017-01-15

    Quantitative screening of influenza A (H7N9) virus without DNA amplification was performed based on single-particle dual-mode total internal reflection scattering (SD-TIRS) with a transmission grating (TG). A gold nanopad was utilized as a substrate for the hybridization of probe DNA molecules with the TIRS nanotag (silver-nanoparticle). The TG effectively isolated the scattering signals in first-order spectral images (n=+1) of the nanotag from that of the substrate, providing excellent enhancement of signal-to-noise and selectivity. By using single-DNA molecule/TIRS nanotag hybridization, target DNA molecules of H7N9 were detected down to 74 zM, which is at least 100,000 times lower than the current detection limit of 9.4fM. By simply modifying the design of the probe DNA molecules, this technique can be used to directly screen other viral DNAs in various human biological samples at the single-molecule level without target amplification. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Design and prototyping of self-centering optical single-mode fiber alignment structures

    International Nuclear Information System (INIS)

    Ebraert, Evert; Gao, Fei; Thienpont, Hugo; Van Erps, Jürgen; Beri, Stefano; Watté, Jan

    2016-01-01

    The European Commission’s goal of providing each European household with at least a 30 Mb s −1 Internet connection by 2020 would be facilitated by a widespread deployment of fibre-to-the-home, which would in turn be sped up by the development of connector essential components, such as high-precision alignment features. Currently, the performance of state-of-the-art physical contact optical fiber connectors is limited by the tolerance on the cladding of standard telecom-grade single-mode fiber (SMF), which is typically smaller than  ±1 μ m. We propose to overcome this limit by developing micro-spring-based self-centering alignment structures (SCAS) for SMF-connectors. We design these alignment structures with robustness and low-cost replication in mind, allowing for large-scale deployment. Both theoretical and finite element analysis (FEA) models are used to determine the optimal dimensions of the beams of which the micro-springs of the SCAS are comprised. Two topologies of the SCAS, consisting of three and four micro-springs respectively, are investigated for two materials: polysulfone (PSU) and polyetherimide (PEI). These materials hold great potential for high-performance fiber connectors while being compatible with low-cost production and with the harsh environmental operation conditions of those connectors. The theory and FEA agree well (<3% difference) for a simple micro-spring. When including a pedestal on the micro-spring (to bring it further away from the fiber) and for shorter spring lengths the agreement worsens. This is due to spring compression effects not being taken into account in our theoretical model. Prototypes are successfully fabricated using deep proton writing and subsequently characterized. The controlled insertion of an SMF in the SCAS is investigated and we determine that a force of 0.11 N is required. The fiber insertion also causes an out-of-plane deformation of the micro-springs in the SCAS of about 7 μ m, which is no

  4. The entanglement of two moving atoms interacting with a single-mode field via a three-photon process

    International Nuclear Information System (INIS)

    Chao, Wu; Mao-Fa, Fang

    2010-01-01

    In this paper, the entanglement of two moving atoms induced by a single-mode field via a three-photon process is investigated. It is shown that the entanglement is dependent on the category of the field, the average photon number N, the number p of half-wave lengths of the field mode and the atomic initial state. Also, the sudden death and the sudden birth of the entanglement are detected in this model and the results show that the existence of the sudden death and the sudden birth depends on the parameter and the category of the mode field. In addition, the three-photon process is a higher order nonlinear process. (general)

  5. Polarization-resolved terahertz third-harmonic generation in a single-crystal superconductor NbN: Dominance of the Higgs mode beyond the BCS approximation

    Science.gov (United States)

    Matsunaga, Ryusuke; Tsuji, Naoto; Makise, Kazumasa; Terai, Hirotaka; Aoki, Hideo; Shimano, Ryo

    2017-07-01

    Recent advances in time-domain terahertz (THz) spectroscopy have unveiled that resonantly enhanced strong THz third-harmonic generation (THG) mediated by the collective Higgs amplitude mode occurs in s -wave superconductors, where charge-density fluctuations (CDFs) have been shown to also contribute to the nonlinear third-order susceptibility. It has been theoretically proposed that the nonlinear responses of Higgs and CDF exhibit essentially different polarization dependences. Here we experimentally discriminate the two contributions by polarization-resolved intense THz transmission spectroscopy for a single-crystal NbN film. The result shows that the resonant THG in the transmitted light always appears in the polarization parallel to that of the incident light with no appreciable polarization-angle dependence relative to the crystal axis. When we compare this with the theoretical calculation here with the BCS approximation and the dynamical mean-field theory for a model of NbN constructed from first principles, the experimental result strongly indicates that the Higgs mode rather than the CDF dominates the THG resonance in NbN. A possible mechanism for this is the retardation effect in the phonon-mediated pairing interaction beyond BCS.

  6. Bidirectional single-longitudinal mode SOA-fiber ring laser based on optical filter assisted gain starvation

    Science.gov (United States)

    Khalil, Kamal; Al-Arifi, Fares; Al-Otaibi, Mohammed; Sabry, Yasser M.; Khalil, Diaa

    2015-03-01

    Generation of a single-longitudinal mode (SLM) in bidirectional ring lasers has direct impact on the laser linewidth and dynamic range of operation, when used in rotation sensing applications. Besides, operating at a specific wavelength helps in optimizing the performance of the system components. In this work, we report a novel method for generating SLM in bidirectional SOA-fiber ring laser using mechanically tunable Fabry-Perot filter with 1-nm bandwidth. The method is based on gain starvation by tuning the central wavelength of the filter in the blue edge of the gain-wavelength response. By adjusting the SOA driving current, the oscillation condition is satisfied mainly for single mode and bidirectional operation can be achieved simultaneously. The SLM operation is verified by monitoring the beating signal between the modes on an RF spectrum analyzer. Using an SOA with a small-signal gain of 20 dB at 300 mA pumping current and a gain bandwidth of 100 nm centered around 1490 nm; the central wavelength of the ring laser could be tuned from 1440 nm to 1480 nm with a side-mode suppression ratio of 25 dB.

  7. Single and two-mode mechanical squeezing of an optically levitated nanodiamond via dressed-state coherence

    Science.gov (United States)

    Ge, Wenchao; Bhattacharya, M.

    2016-10-01

    Nonclassical states of macroscopic objects are promising for ultrasensitive metrology as well as testing quantum mechanics. In this work, we investigate dissipative mechanical quantum state engineering in an optically levitated nanodiamond. First, we study single-mode mechanical squeezed states by magnetically coupling the mechanical motion to a dressed three-level system provided by a nitrogen-vacancy center in the nanoparticle. Quantum coherence between the dressed levels is created via microwave fields to induce a two-phonon transition, which results in mechanical squeezing. Remarkably, we find that in ultrahigh vacuum quantum squeezing is achievable at room temperature with feedback cooling. For moderate vacuum, quantum squeezing is possible with cryogenic temperature. Second, we present a setup for two mechanical modes coupled to the dressed three levels, which results in two-mode squeezing analogous to the mechanism of the single-mode case. In contrast to previous works, our study provides a deterministic method for engineering macroscopic squeezed states without the requirement for a cavity.

  8. Single-longitudinal-mode Er:GGG microchip laser operating at 2.7  μm.

    Science.gov (United States)

    You, Zhenyu; Wang, Yan; Xu, Jinlong; Zhu, Zhaojie; Li, Jianfu; Wang, Hongyan; Tu, Chaoyang

    2015-08-15

    We reported on a diode-end-pumped single-longitudinal-mode microchip laser using a 600-μm-thick Er:GGG crystal at ∼2.7  μm, generating a maximum output power of 50.8 mW and the maximum pulsed energy of 0.306 mJ, with repetition rates of pumping light of 300, 200, and 100 Hz, respectively. The maximum slope efficiency of the laser was 20.1%. The laser was operated in a single-longitudinal mode centered at about 2704 nm with a FWHM of 0.42 nm. The laser had a fundamental beam profile and the beam quality parameter M(2) was measured as 1.46. These results indicate that the Er:GGG microchip laser is a potential compact mid-infrared laser source.

  9. Investigation of single-mode vertical-cavity surface-emitting lasers with graphene-bubble dielectric DBR

    Science.gov (United States)

    Guan, Baolu; Li, Pengtao; Arafin, Shamsul; Alaskar, Yazeed; Wang, Kang L.

    2018-02-01

    An inter-cavty contact single mode 850 nm VCSEL was fabricated with a graphene assisted self-assembly curved dielectric bubble Bragg mirror for the first time. Taking the advantage of graphene's uniform low surface energy, the low cost dielectric bubble DBR (Si3N4/SiO2) was deposited on top of the graphene/half-VCSEL structure via van der Waals Force (vdWF) without using any additional spacing elements and sacrificial layer release-etch process. The continuous-wave operating VCSELs with an aperture diameter of 7 μm exhibit single-mode output power of more than 1 mW with a slope efficiency of 0.2 W/A. The sidemode suppression ratios are >40 dB. This novel modification into the lasers can also be applied to a variety of other optoelectronic devices, such as resonance photodetecter and super narrow linewidth VCSEL.

  10. Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors

    DEFF Research Database (Denmark)

    Woyessa, Getinet; Fasano, Andrea; Stefani, Alessio

    2016-01-01

    We have fabricated the first single-mode step-index and humidity insensitive polymer optical fiber operating in the 850 nm wavelength ranges. The step-index preform is fabricated using injection molding, which is an efficient method for cost effective, flexible and fast preparation of the fiber...... preform. The fabricated single-mode step-index (SI) polymer optical fiber (POF) has a 4.8µm core made from TOPAS grade 5013S-04 with a glass transition temperature of 134°C and a 150 µm cladding made from ZEONEX grade 480R with a glass transition temperature of 138°C. The key advantages of the proposed...... SIPOF are low water absorption, high operating temperature and chemical inertness to acids and bases and many polar solvents as compared to the conventional poly-methyl-methacrylate (PMMA) and polystyrene based POFs. In addition, the fiber Bragg grating writing time is short compared to microstructured...

  11. The use of Lorentz group formalism in solving polarization effects of a birefringent single mode optical fiber

    International Nuclear Information System (INIS)

    Ishiekwene, G.C.; Brown, C.S.; Mensah, S.Y.; Bak, A.E.

    2000-07-01

    A theoretical analysis on the polarization effects of a light beam propagating in a birefringent single-mode fiber is presented. We derive a system of differential equations representing the evolution of Stokes parameters and illustrate their application to polarization effects in a straight birefringent single mode optical fiber. The solutions to the set of equations are obtained using specifically the methods of the unified formalism for polarization optics which adopt the use of the Stokes-Mueller equation and the Lorentz group to model polarization phenomena in media such as optical fibers. The analytical results presented using this approach are identical to results obtained from other conventional methods. We observe the characteristic exponential decrease in the total intensity of the input light due to attenuation by the fiber. (author)

  12. Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres

    Science.gov (United States)

    Gissibl, Timo; Thiele, Simon; Herkommer, Alois; Giessen, Harald

    2016-01-01

    Micro-optics are widely used in numerous applications, such as beam shaping, collimation, focusing and imaging. We use femtosecond 3D printing to manufacture free-form micro-optical elements. Our method gives sub-micrometre accuracy so that direct manufacturing even on single-mode fibres is possible. We demonstrate the potential of our method by writing different collimation optics, toric lenses, free-form surfaces with polynomials of up to 10th order for intensity beam shaping, as well as chiral photonic crystals for circular polarization filtering, all aligned onto the core of the single-mode fibres. We determine the accuracy of our optics by analysing the output patterns as well as interferometrically characterizing the surfaces. We find excellent agreement with numerical calculations. 3D printing of microoptics can achieve sufficient performance that will allow for rapid prototyping and production of beam-shaping and imaging devices. PMID:27339700

  13. Single-shot photonic time-stretch digitizer using a dissipative soliton-based passively mode-locked fiber laser.

    Science.gov (United States)

    Peng, Di; Zhang, Zhiyao; Zeng, Zhen; Zhang, Lingjie; Lyu, Yanjia; Liu, Yong; Xie, Kang

    2018-03-19

    We demonstrate a single-shot photonic time-stretch digitizer using a dissipative soliton-based passively mode-locked fiber laser. The theoretical analysis and simulation results indicate that the dissipative soliton-based optical source with a flat spectrum relieves the envelope-induced signal distortion, and its high energy spectral density helps to improve the signal-to-noise ratio, both of which are favorable for simplifying the optical front-end architecture of a photonic time-stretch digitizer. By employing a homemade dissipative soliton-based passively mode-locked erbium-doped fiber laser in a single-shot photonic time-stretch digitizer, an effective number of bits of 4.11 bits under an effective sampling rate of 100 GS/s is experimentally obtained without optical amplification in the link and pulse envelope removing process.

  14. Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors.

    Science.gov (United States)

    Woyessa, Getinet; Fasano, Andrea; Stefani, Alessio; Markos, Christos; Nielsen, Kristian; Rasmussen, Henrik K; Bang, Ole

    2016-01-25

    We have fabricated the first single-mode step-index and humidity insensitive polymer optical fiber operating in the 850 nm wavelength ranges. The step-index preform is fabricated using injection molding, which is an efficient method for cost effective, flexible and fast preparation of the fiber preform. The fabricated single-mode step-index (SI) polymer optical fiber (POF) has a 4.8µm core made from TOPAS grade 5013S-04 with a glass transition temperature of 134°C and a 150 µm cladding made from ZEONEX grade 480R with a glass transition temperature of 138°C. The key advantages of the proposed SIPOF are low water absorption, high operating temperature and chemical inertness to acids and bases and many polar solvents as compared to the conventional poly-methyl-methacrylate (PMMA) and polystyrene based POFs. In addition, the fiber Bragg grating writing time is short compared to microstructured POFs.

  15. A tunable and switchable single-longitudinal-mode dual-wavelength fiber laser with a simple linear cavity.

    Science.gov (United States)

    He, Xiaoying; Fang, Xia; Liao, Changrui; Wang, D N; Sun, Junqiang

    2009-11-23

    A simple linear cavity erbium-doped fiber laser based on a Fabry-Perot filter which consists of a pair of fiber Bragg gratings is proposed for tunable and switchable single-longitudinal-mode dual-wavelength operation. The single-longitudinal-mode is obtained by the saturable absorption of an unpumed erbium-doped fiber together with a narrow-band fiber Bragg grating. Under the high pump power (>166 mW) condition, the stable dual-wavelength oscillation with uniform amplitude can be realized by carefully adjusting the polarization controller in the cavity. Wavelength selection and switching are achieved by tuning the narrow-band fiber Bragg grating in the system. The spacing of the dual-wavelength can be selected at 0.20 nm (approximately 25.62 GHz), 0.22 nm (approximately 28.19 GHz) and 0.54 nm (approximately 69.19 GHz).

  16. Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres

    Science.gov (United States)

    Gissibl, Timo; Thiele, Simon; Herkommer, Alois; Giessen, Harald

    2016-06-01

    Micro-optics are widely used in numerous applications, such as beam shaping, collimation, focusing and imaging. We use femtosecond 3D printing to manufacture free-form micro-optical elements. Our method gives sub-micrometre accuracy so that direct manufacturing even on single-mode fibres is possible. We demonstrate the potential of our method by writing different collimation optics, toric lenses, free-form surfaces with polynomials of up to 10th order for intensity beam shaping, as well as chiral photonic crystals for circular polarization filtering, all aligned onto the core of the single-mode fibres. We determine the accuracy of our optics by analysing the output patterns as well as interferometrically characterizing the surfaces. We find excellent agreement with numerical calculations. 3D printing of microoptics can achieve sufficient performance that will allow for rapid prototyping and production of beam-shaping and imaging devices.

  17. Single Mode Theory for Impedance Eduction in Large-Scale Ducts with Grazing Flow

    Science.gov (United States)

    Watson, Willie R.; Gerhold, Carl H.; Jones, Michael G.; June, Jason C.

    2014-01-01

    An impedance eduction theory for a rigid wall duct containing an acoustic liner with an unknown impedance and uniform grazing flow is presented. The unique features of the theory are: 1) non-planar waves propagate in the hard wall sections of the duct, 2) input data consist solely of complex acoustic pressures acquired on a wall adjacent to the liner, and 3) multiple higher-order modes may exist in the direction perpendicular to the liner and the opposite rigid wall. The approach is to first measure the axial propagation constant of a dominant higher-order mode in the liner sample section. This axial propagation constant is then used in conjunction with a closed-form solution to a reduced form of the convected Helmholtz equation and the wall impedance boundary condition to educe the liner impedance. The theory is validated on a conventional liner whose impedance spectrum is educed in two flow ducts with different cross sections. For the frequencies and Mach numbers of interest, no higher-order modes propagate in the hard wall sections of the smaller duct. A benchmark method is used to educe the impedance spectrum in this duct. A dominant higher-order vertical mode propagates in the larger duct for similar test conditions, and the current theory is applied to educe the impedance spectrum. Results show that when the theory is applied to data acquired in the larger duct with a dominant higher-order vertical mode, the same impedance spectra is educed as that obtained in the small duct where only the plane wave mode is present and the benchmark method is used. This result holds for each higher-order vertical mode that is considered.

  18. Watt-level widely tunable single-mode emission by injection-locking of a multimode Fabry-Perot quantum cascade laser

    Science.gov (United States)

    Chevalier, Paul; Piccardo, Marco; Anand, Sajant; Mejia, Enrique A.; Wang, Yongrui; Mansuripur, Tobias S.; Xie, Feng; Lascola, Kevin; Belyanin, Alexey; Capasso, Federico

    2018-02-01

    Free-running Fabry-Perot lasers normally operate in a single-mode regime until the pumping current is increased beyond the single-mode instability threshold, above which they evolve into a multimode state. As a result of this instability, the single-mode operation of these lasers is typically constrained to few percents of their output power range, this being an undesired limitation in spectroscopy applications. In order to expand the span of single-mode operation, we use an optical injection seed generated by an external-cavity single-mode laser source to force the Fabry-Perot quantum cascade laser into a single-mode state in the high current range, where it would otherwise operate in a multimode regime. Utilizing this approach, we achieve single-mode emission at room temperature with a tuning range of 36 cm-1 and stable continuous-wave output power exceeding 1 W at 4.5 μm. Far-field measurements show that a single transverse mode is emitted up to the highest optical power, indicating that the beam properties of the seeded Fabry-Perot laser remain unchanged as compared to free-running operation.

  19. Effect of duration of the pause single-phase auto-reclosing on electro-power transmission capacitance

    Directory of Open Access Journals (Sweden)

    Krasil'nikova Tatyana

    2017-01-01

    Full Text Available This paper discusses the problem associated with accidents in the aerial line (AL ultra-high voltage (UHV due to its big length. In lines with a voltage of 500-1150 kV the overwhelming proportion of trips (98% is caused by single-phase short circuit (SPSC. A substantial portion (70% single-phase short circuits is erratic arc accidents which can be successfully eliminated in a high-speed auto-reclosing (HSAR or single-phase auto-reclosing (SPAR. Success single-phase auto-reclosing (SPAR at liquidation by single-phase short circuit (SPSC, on the one hand, is determined by the characteristics of the secondary arc current, and on the other hand the effectiveness of ways to reduce secondary arc current and recovery voltage development. The minimum dead time, at a HSAR it is usually taken as 0.5 s., at single-phase autoreclosing (SPAR it depends on the current value of the arc support is in the range of 0.5-3.0 s. The article shows high efficiency of use single-phase auto reclosing (SPAR at liquidation SPSC in a single-chain AL voltage of 500 kV, the dependence of the bandwidth of transmission in maintaining the dynamic stability from the length of the pause SPAR.

  20. Single-mode optical fiber design with wide-band ultra low bending-loss for FTTH application.

    Science.gov (United States)

    Watekar, Pramod R; Ju, Seongmin; Han, Won-Taek

    2008-01-21

    We propose a new design of a single-mode optical fiber (SMF) which exhibits ultra low bend sensitivity over a wide communication band (1.3 microm to 1.65 microm). A five-cladding fiber structure has been proposed to minimize the bending loss, estimated to be as low as 4.4x10(-10) dB/turn for the bend radius of 10 mm.

  1. Modulational instability and localized modes in Heisenberg ferromagnetic chains with single-ion easy-axis anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Bing, E-mail: bingtangphy@jsu.edu.cn; Li, Guang-Ling; Fu, Mei

    2017-03-15

    A semiclassical theoretical study on the property of the modulational instability of corresponding linear spin-waves and the presence of nonlinear localized excitations in a discrete quantum ferromagnetic spin chain with single-ion easy-axis anisotropy is reported. We consider the Glauber coherent-state representation combined with the Dyson-Maleev transformation for local spin operators as the basic representation of the system, and derive the equation of motion by means of the Ehrenfest theorem. Using a modulational instability analysis of plane waves, we predict the existence regions of bright envelope solitons and intrinsic localized spin-wave modes. Besides, with the help of a semidiscrete multi-scale method, we obtain analytical solutions for the bright envelope soliton and intrinsic localized spin-wave mode. Moreover, we analyze their existence conditions, which agree with the results of modulational instability analysis. - Highlights: • The anisotropy plays significant role in both the property of the modulational instability and the existence conditions for localized modes in ferromagnetic chains. • The analytical solutions of localized modes are obtained. • The appearance conditions for such localized modes agree with the modulational instability analysis.

  2. Thermal Optimized Operation of the Single-Phase Full-Bridge PV Inverter under Low Voltage Ride-Through Mode

    DEFF Research Database (Denmark)

    Wang, Huai; Yang, Yongheng; Blaabjerg, Frede

    2013-01-01

    . At the same time, the target of a long service time (25 years or more) imposes new challenges to grid-connected transformer-less PV systems. Achieving more reliable PV inverters is of intense interest in recent research. As one of the most critical stresses that induce failures, the thermal stresses...... on the power devices of a single-phase full-bridge PV inverter are analyzed in different operational modes in this paper. The low voltage grid condition is specially taken into account in this paper. The analysis is demonstrated by a 3 kW single-phase full-bridge grid-connected PV system by simulations...

  3. Enhancement of single mode operation in coaxial optical waveguide using DB boundary conditions

    Science.gov (United States)

    Lohia, Pooja; Prajapati, Y.; Saini, J. P.; Rai, B. S.

    2014-11-01

    In this study, a competent numerical strategy to compute the dispersion of optical waveguides is presented and propagation of electromagnetic waves in a coaxial optical waveguide with DB boundary conditions is instigated. For this intend, cylindrical coordinates are here being used to derive the DB boundary conditions and to obtain field components for the modes. The propagation constant for the waveguide to be studied is determined by solving the Bessel and the modified Bessel functions. The cutoff frequencies for various lower order modes have been calculated and their dispersion characteristics are plotted correspondingly. The behavior of the coaxial optical waveguide under DB boundary conditions is shown to be significantly different from that of coaxial optical waveguide and conventional optical waveguide under traditional or tangential boundary conditions. Finally, the effect of waveguide dimensions on the mode cutoff frequencies and fabrication issues are also addressed.

  4. Environmental Transmission Electron Microscopy (ETEM) Studies of Single Iron Nanoparticle Carburization in Synthesis Gas

    DEFF Research Database (Denmark)

    Liu, Xi; Zhang, Chenghua; Li, Yongwang

    2017-01-01

    Structuralevolution of iron nanoparticles involving the formationand growth of iron carbide nuclei in the iron nanoparticle was directlyvisualized at the atomic level, using environmental transmission electronmicroscopy (TEM) under reactive conditions mimicking Fischer–Tropschsynthesis. Formation...... and electronenergy-loss spectra provides a detailed picture from initial activationto final degradation of iron under synthesis gas....

  5. Fracture mode during cyclic loading of implant-supported single-tooth restorations

    DEFF Research Database (Denmark)

    Hosseini, Mandana; Kleven, Erik; Gotfredsen, Klaus

    2012-01-01

    restorations of zirconia abutment-retained crowns with zirconia copings veneered with glass-ceramics (n=8) and feldspathic ceramics (n=8). The control group was composed of 16 metal ceramic restorations of titanium abutment-retained crowns with gold alloy copings veneered with glass (n=8) and feldspathic......STATEMENT OF PROBLEM: Fracture of veneering ceramics in zirconia-based restorations has frequently been reported. Investigation of the fracture mode of implant-supported ceramic restorations by using clinically relevant laboratory protocols is needed. PURPOSE: This study compared the mode...... and resisted more cyclic loads than the ceramic restorations, particularly when the metal ceramic crowns were veneered with glass-ceramics....

  6. A single source microwave photonic filter using a novel single-mode fiber to multimode fiber coupling technique.

    Science.gov (United States)

    Chang, John; Fok, Mable P; Meister, James; Prucnal, Paul R

    2013-03-11

    In this paper we present a fully tunable and reconfigurable single-laser multi-tap microwave photonic FIR filter that utilizes a special SM-to-MM combiner to sum the taps. The filter requires only a single laser source for all the taps and a passive component, a SM-to-MM combiner, for incoherent summing of signal. The SM-to-MM combiner does not produce optical interference during signal merging and is phase-insensitive. We experimentally demonstrate an eight-tap filter with both positive and negative programmable coefficients with excellent correspondence between predicted and measured values. The magnitude response shows a clean and accurate function across the entire bandwidth, and proves successful operation of the FIR filter using a SM-to-MM combiner.

  7. Divertor power load studies for attached L-mode single-null plasmas in TCV

    NARCIS (Netherlands)

    Maurizio, R.; Elmore, S.; Fedorczak, N.; Gallo, A.; Reimerdes, H.; Labit, B.; Theiler, C.; Tsui, C. K.; Vijvers, W. A. J.; TCV team,; MST1 Team,

    2018-01-01

    This paper investigates the power loads at the inner and outer divertor targets of attached, Ohmic L-mode, deuterium plasmas in the TCV tokamak, in various experimental situations using an Infrared thermography system. The study comprises variations of the outer divertor leg length and target flux

  8. Self-Similar Nanocavity Design with Ultrasmall Mode Volume for Single-Photon Nonlinearities

    DEFF Research Database (Denmark)

    Choi, Hyeongrak; Heuck, Mikkel; Englund, Dirk R.

    2017-01-01

    illustrate the design concept with a silicon-air one-dimensional photon crystal cavity that reaches an ultrasmall mode volume of V-eff similar to 7.01 x 10(-5)lambda(3) at lambda similar to 1550 nm. We show that the extreme light concentration in our design can enable ultrastrong Kerr nonlinearities, even...

  9. Highly tunable large core single-mode liquid crystal photonic bandgap fiber

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Lægsgaard, Jesper; Bjarklev, Anders Overgaard

    2006-01-01

    We demonstrate a highly tunable photonic bandgap fiber, which has a large-core diameter of 25 mu m and an effective mode area of 440 mu m(2). The tunability is achieved by infiltrating the air holes of a photonic crystal fiber with an optimized liquid-crystal mixture having a large temperature...

  10. Design optimization of the distributed modal filtering rod fiber for increasing single mode bandwidth

    DEFF Research Database (Denmark)

    Jørgensen, Mette Marie; Petersen, Sidsel Rübner; Laurila, Marko

    2012-01-01

    High-power fiber amplifiers for pulsed applications require large mode area (LMA) fibers having high pump absorption and near diffraction limited output. This improves the limiting factor of nonlinear effects, while maintaining good beam quality. Photonic crystal fibers allow realization of short...

  11. The use of transmission line modelling to test the effectiveness of I-kaz as autonomous selection of intrinsic mode function

    Science.gov (United States)

    Yusop, Hanafi M.; Ghazali, M. F.; Yusof, M. F. M.; PiRemli, M. A.; Karollah, B.; Rusman

    2017-10-01

    Pressure transient signal occurred due to sudden changes in fluid propagation filled in pipelines system, which is caused by rapid pressure and flow fluctuation in a system, such as closing and opening valve rapidly. The application of Hilbert-Huang Transform (HHT) as the method to analyse the pressure transient signal utilised in this research. However, this method has the difficulty in selecting the suitable IMF for the further post-processing, which is Hilbert Transform (HT). This paper proposed the implementation of Integrated Kurtosis-based Algorithm for z-filter Technique (I-kaz) to kurtosis ratio (I-kaz-Kurtosis) for that allows automatic selection of intrinsic mode function (IMF) that’s should be used. This work demonstrated the synthetic pressure transient signal generates using transmission line modelling (TLM) in order to test the effectiveness of I-kaz as the autonomous selection of intrinsic mode function (IMF). A straight fluid network was designed using TLM fixing with higher resistance at some point act as a leak and connecting to the pipe feature (junction, pipefitting or blockage). The analysis results using I-kaz-kurtosis ratio revealed that the method can be utilised as an automatic selection of intrinsic mode function (IMF) although the noise level ratio of the signal is lower. I-kaz-kurtosis ratio is recommended and advised to be implemented as automatic selection of intrinsic mode function (IMF) through HHT analysis.

  12. Single-lane 180  Gbit/s PAM-4 signal transmission over 2  km SSMF for short-reach applications.

    Science.gov (United States)

    Zhang, Qiang; Stojanovic, Nebojsa; Prodaniuc, Cristian; Xie, Changsong; Koenigsmann, Michael; Laskowski, Piotr

    2016-10-01

    We experimentally demonstrate the generation and transmission of a single-lane 180  Gbit/s (90 GBaud) four-level pulse-amplitude modulation (PAM-4) signal in an intensity-modulation direct-detection system with a 7.5 GHz 3 dB bandwidth. The generated signal is transmitted over a 2 km standard single-mode fiber with, to the best of our knowledge, the highest reported net data rate in the C-band: 150  Gbit/s. A net data rate of 168  Gbit/s is also reachable with 1 km reach. The PAM-4 and duobinary (DB) PAM-4 modulation schemes are compared; the obtained results show that DB-PAM-4 significantly outperforms PAM-4 in the considered strong bandwidth-constrained system. Both a feed-forward equalizer and a maximum-likelihood sequence estimator are investigated for data recovery.

  13. Signal Processing using Nonlinear Optical Eects in Single- and Few-Mode Fibers

    DEFF Research Database (Denmark)

    Friis, Søren Michael Mørk

    The stagnating increase in data transmission capacity in optical communication systems combined with the ever growing demand of transmission bandwidth is leading to an impending capacity crunch, referring to the point in time after which the available bandwidth of the individual user starts...... accounts for multiple effects present in nonlinear fibers such as four-wave mixing, Raman scattering, distributed loss, and dispersion, and it is valid in the depleted pump regime. After validating the model against well-known results of quantum models, the model is used to predict the impacts of Raman...... noise, loss, and pump depletion on the noise properties of parametric frequency conversion and phase-insensitive and phase-sensitive parametric amplification. An important part of realizing space-division multiplexing is the ability of optical signal processing so the second part of this thesis...

  14. Electric vehicle drive train with direct coupling transmission

    Science.gov (United States)

    Tankersley, Jerome B.; Boothe, Richard W.; Konrad, Charles E.

    1995-01-01

    An electric vehicle drive train includes an electric motor and an associated speed sensor, a transmission operable in a speed reduction mode or a direct coupled mode, and a controller responsive to the speed sensor for operating the transmission in the speed reduction mode when the motor is below a predetermined value, and for operating the motor in the direct coupled mode when the motor speed is above a predetermined value. The controller reduces the speed of the motor, such as by regeneratively braking the motor, when changing from the speed reduction mode to the direct coupled mode. The motor speed may be increased when changing from the direct coupled mode to the speed reduction mode. The transmission is preferably a single stage planetary gearbox.

  15. Measurements of the evaporation and hygroscopic response of single fine-mode aerosol particles using a Bessel beam optical trap.

    Science.gov (United States)

    Cotterell, Michael I; Mason, Bernard J; Carruthers, Antonia E; Walker, Jim S; Orr-Ewing, Andrew J; Reid, Jonathan P

    2014-02-07

    A single horizontally-propagating zeroth order Bessel laser beam with a counter-propagating gas flow was used to confine single fine-mode aerosol particles over extended periods of time, during which process measurements were performed. Particle sizes were measured by the analysis of the angular variation of light scattered at 532 nm by a particle in the Bessel beam, using either a probe beam at 405 nm or 633 nm. The vapour pressures of glycerol and 1,2,6-hexanetriol particles were determined to be 7.5 ± 2.6 mPa and 0.20 ± 0.02 mPa respectively. The lower volatility of hexanetriol allowed better definition of the trapping environment relative humidity profile over the measurement time period, thus higher precision measurements were obtained compared to those for glycerol. The size evolution of a hexanetriol particle, as well as its refractive index at wavelengths 532 nm and 405 nm, were determined by modelling its position along the Bessel beam propagation length while collecting phase functions with the 405 nm probe beam. Measurements of the hygroscopic growth of sodium chloride and ammonium sulfate have been performed on particles as small as 350 nm in radius, with growth curves well described by widely used equilibrium state models. These are the smallest particles for which single-particle hygroscopicity has been measured and represent the first measurements of hygroscopicity on fine mode and near-accumulation mode aerosols, the size regimes bearing the most atmospheric relevance in terms of loading, light extinction and scattering. Finally, the technique is contrasted with other single particle and ensemble methods, and limitations are assessed.

  16. A safety equipment list for rotary mode core sampling systems operation in single shell flammable gas tanks

    International Nuclear Information System (INIS)

    SMALLEY, J.L.

    1999-01-01

    This document identifies all interim safety equipment to be used for rotary mode core sampling of single-shell flammable gas tanks utilizing Rotary Mode Core Sampling systems (RMCS). This document provides the safety equipment for RMCS trucks HO-68K-4600, HO-68K-4647, trucks three and four respectively, and associated equipment. It is not intended to replace or supersede WHC-SD-WM-SEL-023, (Kelly 1991), or WHC-SD-WM-SEL-032, (Corbett 1994), which classifies 80-68K-4344 and HO-68K-4345 respectively. The term ''safety equipment'' refers to safety class (SC) and safety significant (SS) equipment, where equipment refers to structures, systems and components (SSC's). The identification of safety equipment in this document is based on the credited design safety features and analysis contained in the Authorization Basis (AB) for rotary mode core sampling operations in single-shell flammable gas tanks. This is an interim safety classification since the AB is interim. This document will be updated to reflect the final RMCS equipment safety classification designations upon completion of a final AB which will be implemented with the release of the Final Safety Analysis Report (FSAR)

  17. Medipix3: A 64 k pixel detector readout chip working in single photon counting mode with improved spectrometric performance

    CERN Document Server

    Ballabriga, R; Wong, W; Heijne, E; Campbell, M; Llopart, X

    2011-01-01

    Medipix3 is a 256 x 256 channel hybrid pixel detector readout chip working in a single photon counting mode with a new inter-pixel architecture, which aims to improve the energy resolution in pixelated detectors by mitigating the effects of charge sharing between channels. Charges are summed in all 2 x 2 pixel clusters on the chip and a given hit is allocated locally to the pixel summing circuit with the biggest total charge on an event-by-event basis. Each pixel contains also two 12-bit binary counters with programmable depth and overflow control. The chip is configurable such that either the dimensions of each detector pixel match those of one readout pixel or detector pixels are four times greater in area than the readout pixels. In the latter case, event-by-event summing is still possible between the larger pixels. Each pixel has around 1600 transistors and the analog static power consumption is below 15 mu W in the charge summing mode and 9 mu W in the single pixel mode. The chip has been built in an 8-m...

  18. The Bacteriome of Bat Flies (Nycteribiidae) from the Malagasy Region: a Community Shaped by Host Ecology, Bacterial Transmission Mode, and Host-Vector Specificity.

    Science.gov (United States)

    Wilkinson, David A; Duron, Olivier; Cordonin, Colette; Gomard, Yann; Ramasindrazana, Beza; Mavingui, Patrick; Goodman, Steven M; Tortosa, Pablo

    2016-01-08

    The Nycteribiidae are obligate blood-sucking Diptera (Hippoboscoidea) flies that parasitize bats. Depending on species, these wingless flies exhibit either high specialism or generalism toward their hosts, which may in turn have important consequences in terms of their associated microbial community structure. Bats have been hypothesized to be reservoirs of numerous infectious agents, some of which have recently emerged in human populations. Thus, bat flies may be important in the epidemiology and transmission of some of these bat-borne infectious diseases, acting either directly as arthropod vectors or indirectly by shaping pathogen communities among bat populations. In addition, bat flies commonly have associations with heritable bacterial endosymbionts that inhabit insect cells and depend on maternal transmission through egg cytoplasm to ensure their transmission. Some of these heritable bacteria are likely obligate mutualists required to support bat fly development, but others are facultative symbionts with unknown effects. Here, we present bacterial community profiles that were obtained from seven bat fly species, representing five genera, parasitizing bats from the Malagasy region. The observed bacterial diversity includes Rickettsia, Wolbachia, and several Arsenophonus-like organisms, as well as other members of the Enterobacteriales and a widespread association of Bartonella bacteria from bat flies of all five genera. Using the well-described host specificity of these flies and data on community structure from selected bacterial taxa with either vertical or horizontal transmission, we show that host/vector specificity and transmission mode are important drivers of bacterial community structure. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  19. Single-carrier Transmission Frequency-domain Equalization Based on a Wiener Filter for Broadband Wireless Communications

    Science.gov (United States)

    Yamazaki, Satoshi; Asano, David K.

    Recently, frequency-domain equalization for single-carrier transmission (SC-FDE) has been given much attention. For example, the enhanced mobile phone system, a SC-FDMA (Single-carrier frequency division multiple access) method using SC-FDE and multiple access will be adopted. However in previous research, there are many papers describing the features and advantages of SC-FDE based on a comparison of SC-FDE and orthogonal frequency-division multiplexing (OFDM) systems. In this technical note, we discuss single-carrier transmission equalization in the time-domain (SC-TDE) and SC-FDE in a unified way centered on the Wiener filter based on the minimum mean square error (MMSE) criterion. The reason to take up a Wiener Filter is that it is a basic filter based on the MMSE criterion. Also, we explain the basic principle of the SC-FDE and SC-FDMA in an organized and systematic way. Moreover, we point out the physical meaning of the Wiener solution in SC-FDE and relationship between SC-TDE and SC-FDE Wiener solutions. As a result, we show useful information and pointers, especially for when we want to replace existing SC-TDE technology with SC-FDE technology.

  20. Excitation of surface plasmon polariton modes with multiple nitrogen vacancy centers in single nanodiamonds

    Science.gov (United States)

    Kumar, Shailesh; Lausen, Jens L.; Garcia-Ortiz, Cesar E.; Andersen, Sebastian K. H.; Roberts, Alexander S.; Radko, Ilya P.; Smith, Cameron L. C.; Kristensen, Anders; Bozhevolnyi, Sergey I.

    2016-02-01

    Nitrogen-vacancy (NV) centers in diamonds are interesting due to their remarkable characteristics that are well suited to applications in quantum-information processing and magnetic field sensing, as well as representing stable fluorescent sources. Multiple NV centers in nanodiamonds (NDs) are especially useful as biological fluorophores due to their chemical neutrality, brightness and room-temperature photostability. Furthermore, NDs containing multiple NV centers also have potential in high-precision magnetic field and temperature sensing. Coupling NV centers to propagating surface plasmon polariton (SPP) modes gives a base for lab-on-a-chip sensing devices, allows enhanced fluorescence emission and collection which can further enhance the precision of NV-based sensors. Here, we investigate coupling of multiple NV centers in individual NDs to the SPP modes supported by silver surfaces protected by thin dielectric layers and by gold V-grooves (VGs) produced via the self-terminated silicon etching. In the first case, we concentrate on monitoring differences in fluorescence spectra obtained from a source ND, which is illuminated by a pump laser, and from a scattering ND illuminated only by the fluorescence-excited SPP radiation. In the second case, we observe changes in the average NV lifetime when the same ND is characterized outside and inside a VG. Fluorescence emission from the VG terminations is also observed, which confirms the NV coupling to the VG-supported SPP modes.

  1. Fabry-Perot Microcavity Modes in Single GaP/GaNP Core/Shell Nanowires.

    Science.gov (United States)

    Dobrovolsky, Alexander; Stehr, Jan E; Sukrittanon, Supanee; Kuang, Yanjin; Tu, Charles W; Chen, Weimin M; Buyanova, Irina A

    2015-12-16

    Semiconductor nanowires (NWs) are attracting increasing interest as nanobuilding blocks for optoelectronics and photonics. A novel material system that is highly suitable for these applications are GaNP NWs. In this article, we show that individual GaP/GaNP core/shell nanowires (NWs) grown by molecular beam epitaxy on Si substrates can act as Fabry-Perot (FP) microcavities. This conclusion is based on results of microphotoluminescence (μ-PL) measurements performed on individual NWs, which reveal periodic undulations of the PL intensity that follow an expected pattern of FP cavity modes. The cavity is concluded to be formed along the NW axis with the end facets acting as reflecting mirrors. The formation of the FP modes is shown to be facilitated by an increasing index contrast with the surrounding media. Spectral dependence of the group refractive index is also determined for the studied NWs. The observation of the FP microcavity modes in the GaP/GaNP core/shell NWs can be considered as a first step toward achieving lasing in this quasidirect bandgap semiconductor in the NW geometry. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Interaction between single gold atom and the graphene edge: A study via aberration-corrected transmission electron microscopy

    KAUST Repository

    Wang, Hongtao

    2012-01-01

    Interaction between single noble metal atoms and graphene edges has been investigated via aberration-corrected and monochromated transmission electron microscopy. A collective motion of the Au atom and the nearby carbon atoms is observed in transition between energy-favorable configurations. Most trapping and detrapping processes are assisted by the dangling carbon atoms, which are more susceptible to knock-on displacements by electron irradiation. Thermal energy is lower than the activation barriers in transition among different energy-favorable configurations, which suggests electron-beam irradiation can be an efficient way of engineering the graphene edge with metal atoms. © 2012 The Royal Society of Chemistry.

  3. Near-field beam focusing by a single bare subwavelength metal slit with the high-index transmission space.

    Science.gov (United States)

    Guo, Yan; Zhao, Bo; Yang, Jianjun

    2013-06-17

    We theoretically demonstrate that a single bare subwavelength metal slit without any surrounding corrugations can have a capability to steer the incident light into focusing patterns by introducing a high index in the transmission half-space. The focusing properties are identified to depend on both the slit width and the output permittivity. The underlying physics lies in the interference of quasi-cylindrical waves scattered from the slit, and our proposed model agrees well with the simulation results. This finding is believed to inspire some novel ideas for the nano-optics design.

  4. Propagation of Single-Mode Fibre Laser Beams through an Optical ABCD System with Circular Aperture at the Fibre Output End

    International Nuclear Information System (INIS)

    Kai-Liang, Duan; Jian-Feng, Li; Wei, Zhao; Yi-Shan, Wang

    2008-01-01

    Based on the expansion expression of the fundamental mode of a single-mode fibre in terms of Laguerre–Gauss modes, the propagation of a beam of a weakly guiding fibre laser through an optical ABCD system with a circular aperture at the fibre end is studied. The results show that there is much difference between the propagation of the laser beam described by the expansion expression and by the Gaussian mode approximation. The depth of focus of the laser beam is longer than that of the Gaussian modes

  5. Multistabilities and symmetry-broken one-color and two-color states in closely coupled single-mode lasers

    Science.gov (United States)

    Clerkin, Eoin; O'Brien, Stephen; Amann, Andreas

    2014-03-01

    We theoretically investigate the dynamics of two mutually coupled, identical single-mode semi-conductor lasers. For small separation and large coupling between the lasers, symmetry-broken one-color states are shown to be stable. In this case the light outputs of the lasers have significantly different intensities while at the same time the lasers are locked to a single common frequency. For intermediate coupling we observe stable symmetry-broken two-color states, where both lasers lase simultaneously at two optical frequencies which are separated by up to 150 GHz. Using a five-dimensional model, we identify the bifurcation structure which is responsible for the appearance of symmetric and symmetry-broken one-color and two-color states. Several of these states give rise to multistabilities and therefore allow for the design of all-optical memory elements on the basis of two coupled single-mode lasers. The switching performance of selected designs of optical memory elements is studied numerically.

  6. The rigorous bound on the transmission probability for massless scalar field of non-negative-angular-momentum mode emitted from a Myers-Perry black hole

    International Nuclear Information System (INIS)

    Ngampitipan, Tritos; Boonserm, Petarpa; Chatrabhuti, Auttakit; Visser, Matt

    2016-01-01

    Hawking radiation is the evidence for the existence of black hole. What an observer can measure through Hawking radiation is the transmission probability. In the laboratory, miniature black holes can successfully be generated. The generated black holes are, most commonly, Myers-Perry black holes. In this paper, we will derive the rigorous bounds on the transmission probabilities for massless scalar fields of non-negative-angular-momentum modes emitted from a generated Myers-Perry black hole in six, seven, and eight dimensions. The results show that for low energy, the rigorous bounds increase with the increase in the energy of emitted particles. However, for high energy, the rigorous bounds decrease with the increase in the energy of emitted particles. When the black holes spin faster, the rigorous bounds decrease. For dimension dependence, the rigorous bounds also decrease with the increase in the number of extra dimensions. Furthermore, as comparison to the approximate transmission probability, the rigorous bound is proven to be useful.

  7. The rigorous bound on the transmission probability for massless scalar field of non-negative-angular-momentum mode emitted from a Myers-Perry black hole

    Energy Technology Data Exchange (ETDEWEB)

    Ngampitipan, Tritos, E-mail: tritos.ngampitipan@gmail.com [Faculty of Science, Chandrakasem Rajabhat University, Ratchadaphisek Road, Chatuchak, Bangkok 10900 (Thailand); Particle Physics Research Laboratory, Department of Physics, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330 (Thailand); Boonserm, Petarpa, E-mail: petarpa.boonserm@gmail.com [Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330 (Thailand); Chatrabhuti, Auttakit, E-mail: dma3ac2@gmail.com [Particle Physics Research Laboratory, Department of Physics, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330 (Thailand); Visser, Matt, E-mail: matt.visser@msor.vuw.ac.nz [School of Mathematics, Statistics, and Operations Research, Victoria University of Wellington, PO Box 600, Wellington 6140 (New Zealand)

    2016-06-02

    Hawking radiation is the evidence for the existence of black hole. What an observer can measure through Hawking radiation is the transmission probability. In the laboratory, miniature black holes can successfully be generated. The generated black holes are, most commonly, Myers-Perry black holes. In this paper, we will derive the rigorous bounds on the transmission probabilities for massless scalar fields of non-negative-angular-momentum modes emitted from a generated Myers-Perry black hole in six, seven, and eight dimensions. The results show that for low energy, the rigorous bounds increase with the increase in the energy of emitted particles. However, for high energy, the rigorous bounds decrease with the increase in the energy of emitted particles. When the black holes spin faster, the rigorous bounds decrease. For dimension dependence, the rigorous bounds also decrease with the increase in the number of extra dimensions. Furthermore, as comparison to the approximate transmission probability, the rigorous bound is proven to be useful.

  8. A comparative study and application of continuously variable transmission to a single main rotor heavy lift helicopter

    Science.gov (United States)

    Hameer, Sameer

    Rotorcraft transmission design is limited by empirical weight trends that are proportional to the power/torque raised to the two-thirds coupled with the relative inexperience industry has with the employment of variable speed transmission to heavy lift helicopters of the order of 100,000 lbs gross weight and 30,000 installed horsepower. The advanced rotorcraft transmission program objectives are to reduce transmission weight by at least 25%, reduce sound pressure levels by at least 10 dB, have a 5000 hr mean time between removal, and also incorporate the use of split torque technology in rotorcraft drivetrains of the future. The major obstacle that challenges rotorcraft drivetrain design is the selection, design, and optimization of a variable speed transmission in the goal of achieving a 50% reduction in rotor speed and its ability to handle high torque with light weight gears, as opposed to using a two-speed transmission which has inherent structural problems and is highly unreliable due to the embodiment of the traction type transmission, complex clutch and brake system. This thesis selects a nontraction pericyclic continuously variable transmission (P-CVT) as the best approach for a single main rotor heavy lift helicopter. The objective is to target and overcome the above mentioned obstacle for drivetrain design. Overcoming this obstacle provides advancement in the state of the art of drivetrain design over existing planetary and split torque transmissions currently used in helicopters. The goal of the optimization process was to decrease weight, decrease noise, increase efficiency, and increase safety and reliability. The objective function utilized the minimization of the weight and the major constraint is the tooth bending stress of the facegears. The most important parameters of the optimization process are weight, maintainability, and reliability which are cross-functionally related to each other, and these parameters are related to the torques and

  9. Efficient injection from large telescopes into single-mode fibres: Enabling the era of ultra-precision astronomy

    Science.gov (United States)

    Jovanovic, N.; Schwab, C.; Guyon, O.; Lozi, J.; Cvetojevic, N.; Martinache, F.; Leon-Saval, S.; Norris, B.; Gross, S.; Doughty, D.; Currie, T.; Takato, N.

    2017-08-01

    Photonic technologies offer numerous advantages for astronomical instruments such as spectrographs and interferometers owing to their small footprints and diverse range of functionalities. Operating at the diffraction-limit, it is notoriously difficult to efficiently couple such devices directly with large telescopes. We demonstrate that with careful control of both the non-ideal pupil geometry of a telescope and residual wavefront errors, efficient coupling with single-mode devices can indeed be realised. A fibre injection was built within the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument. Light was coupled into a single-mode fibre operating in the near-IR (J - H bands) which was downstream of the extreme adaptive optics system and the pupil apodising optics. A coupling efficiency of 86% of the theoretical maximum limit was achieved at 1550 nm for a diffraction-limited beam in the laboratory, and was linearly correlated with Strehl ratio. The coupling efficiency was constant to within 40% for 84% of the time and >50% for 41% of the time. The laboratory results allow us to forecast that extreme adaptive optics levels of correction (Strehl ratio >90% in H-band) would allow coupling of >67% (of the order of coupling to multimode fibres currently) while standard levels of wavefront correction (Strehl ratio >20% in H-band) would allow coupling of >18%. For Strehl ratios <20%, few-port photonic lanterns become a superior choice but the signal-to-noise, and pixel availability must be considered. These results illustrate a clear path to efficient on-sky coupling into a single-mode fibre, which could be used to realise modal-noise-free radial velocity machines, very-long-baseline optical/near-IR interferometers and/or simply exploit photonic technologies in future instrument design.

  10. Single-channel 40 Gbit/s digital coherent QAM quantum noise stream cipher transmission over 480 km.

    Science.gov (United States)

    Yoshida, Masato; Hirooka, Toshihiko; Kasai, Keisuke; Nakazawa, Masataka

    2016-01-11

    We demonstrate the first 40 Gbit/s single-channel polarization-multiplexed, 5 Gsymbol/s, 16 QAM quantum noise stream cipher (QNSC) transmission over 480 km by incorporating ASE quantum noise from EDFAs as well as the quantum shot noise of the coherent state with multiple photons for the random masking of data. By using a multi-bit encoded scheme and digital coherent transmission techniques, secure optical communication with a record data capacity and transmission distance has been successfully realized. In this system, the signal level received by Eve is hidden by both the amplitude and the phase noise. The highest number of masked signals, 7.5 x 10(4), was achieved by using a QAM scheme with FEC, which makes it possible to reduce the output power from the transmitter while maintaining an error free condition for Bob. We have newly measured the noise distribution around I and Q encrypted data and shown experimentally with a data size of as large as 2(25) that the noise has a Gaussian distribution with no correlations. This distribution is suitable for the random masking of data.

  11. DWDM Transmission with LEAF and RDF Structure in 40 Gb/s Single MZM with RZ-DPSK Modulation

    Science.gov (United States)

    Lin, Hsiu-Sheng; Lai, Po-Chou

    2017-06-01

    We propose the experiment transport of 48 Chs 40 Gb/s dense wavelength division multiplexing (DWDM) system that uses larger effective area fiber (LEAF) in combination with reverse dispersion fiber (RDF), which is a dispersion compensation device, in C band (1,530-1,560 nm) and L band (1,570-1,610 nm) wavelength range to solve the dispersion program. The single Mach-Zehnder modulation (MZM) format with erbium-doped fiber amplifier (EDFA) configuration to generate return-to-zero differential phase-shift keying (RZ-DPSK) modulation signal can compensate dispersion impairment in 48×40 Gb/s DWDM system. The proposed 48×40 Gb/s DWDM system successfully employs single MZM RZ-DPSK modulation format to reduce modulation complex configuration with EDFA to promote the power signal and using LEAF and RDF in 28 spans over 3,360 km ultra-long-haul fiber transmission successfully.

  12. Characteristics of the Single-Longitudinal-Mode Planar-Waveguide External Cavity Diode Laser at 1064 nm

    Science.gov (United States)

    Numata, Kenji; Alalusi, Mazin; Stolpner, Lew; Margaritis, Georgios; Camp, Jordan; Krainak, Michael

    2014-01-01

    We describe the characteristics of the planar-waveguide external cavity diode laser (PW-ECL). To the best of our knowledge, it is the first butterfly-packaged 1064 nm semiconductor laser that is stable enough to be locked to an external frequency reference. We evaluated its performance from the viewpoint of precision experiments. Using a hyperfine absorption line of iodine, we suppressed its frequency noise by a factor of up to 104 at 10 mHz. The PWECL's compactness and low cost make it a candidate to replace traditional Nd:YAG nonplanar ring oscillators and fiber lasers in applications that require a single longitudinal mode.

  13. Whistler mode resonance-cone transmissions at 100 kHz in the OEDIPUS-C experiment

    OpenAIRE

    Chugunov, Y. V.; Fiala, V. (Vladimír); Hayosh, M. (Mykhaylo); James, H. G.

    2012-01-01

    A radio transmitter was operated at one end of the tethered sounding rocket double payload OEDIPUS C, and a synchronized receiver at the other end. Both the transmitter and the receiver were connected to “double-V” dipoles. On the flight downleg after the tether had been cut, direct bistatic propagation experiments were carried out successfully with the transmitter-receiver pair. This paper addresses the transmission of 300-μs pulses at a carrier frequency of 100 kHz between the dipoles over ...

  14. Response of microchannel plates in ionization mode to single particles and electromagnetic showers

    Science.gov (United States)

    Barnyakov, A. Yu.; Barnyakov, M. Yu.; Brianza, L.; Cavallari, F.; Cipriani, M.; Ciriolo, V.; del Re, D.; Gelli, S.; Ghezzi, A.; Gotti, C.; Govoni, P.; Katcin, A. A.; Malberti, M.; Martelli, A.; Marzocchi, B.; Meridiani, P.; Organtini, G.; Paramatti, R.; Pigazzini, S.; Preiato, F.; Prisekin, V. G.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Tabarelli de Fatis, T.

    2018-01-01

    Hundreds of concurrent collisions per bunch crossing are expected at future hadron colliders. Precision timing calorimetry has been advocated as a way to mitigate the pileup effects and, thanks to their excellent time resolution, microchannel plates (MCPs) are good candidate detectors for this goal. We report on the response of MCPs, used as secondary emission detectors, to single relativistic particles and to electromagnetic showers. Several prototypes, with different geometries and characteristics, were exposed to particle beams at the INFN-LNF Beam Test Facility and at CERN. Their time resolution and efficiency are measured for single particles and as a function of the multiplicity of particles. Efficiencies between 50% and 90% to single relativistic particles are reached, and up to 100% in presence of a large number of particles. Time resolutions between 20 ps and 30 ps are obtained.

  15. Versatile Gap Mode Plasmon under ATR Geometry towards Single Molecule Raman, Laser Trapping and Photocatalytic Reactions.

    Science.gov (United States)

    Futamata, Masayuki; Akai, Keitaro; Iida, Chiaki; Akiba, Natsumi

    2017-01-01

    We have investigated various aspects of a gap mode plasmon to establish it as an analytical tool. First, markedly large (10 7 - 10 9 ) enhancement factors for the Raman scattering intensity from a thiophenol (TP) monolayer sandwiched by Ag films on a prism and silver nanoparticles (AgNPs) were obtained under attenuated total reflection (ATR) geometry. Second, AgNPs with a radius of ∼20 nm were optically trapped and immobilized on TP-covered Ag films under a gap mode resonance with extremely weak laser power density of ∼1 μW/μm 2 at 532 nm. The observed optical trapping and immobilization were theoretically rationalized using a dipole-dipole coupling and van der Waals interaction between AgNPs and Ag films. Third, p-alkyl TP molecules such as p-methyl TP, p-ethyl TP, p-isopropyl TP, and p-tertiary butyl TP were photocatalytically oxidized into p-carboxyl TP, whereas o- and m-methyl TP did not show such reactions.

  16. 1.28 Tbit/s/channel single-polarization DQPSK transmission over 525 km using ultrafast time-domain optical Fourier transformation

    DEFF Research Database (Denmark)

    Guan, P.; Mulvad, Hans Christian Hansen; Tomiyama, Y.

    2010-01-01

    A single-channel 1.28 Tbit/s transmission over 525 km is demonstrated for the first time with a single-polarization DQPSK signal. Ultrafast time-domain optical Fourier transformation is successfully applied to DQPSK signals and results in improved performance and increased system margin.......A single-channel 1.28 Tbit/s transmission over 525 km is demonstrated for the first time with a single-polarization DQPSK signal. Ultrafast time-domain optical Fourier transformation is successfully applied to DQPSK signals and results in improved performance and increased system margin....

  17. Effects of breathing and oblong mode phonons on transport properties in a single-electron transistor.

    Science.gov (United States)

    Nishiguchi, Norihiko; Wybourne, Martin N

    2010-02-17

    We investigate theoretically the transport characteristics of a single-electron transistor affected by the dynamic deformation of the device configuration due to phonons. By considering changes in capacitances and tunnel resistances caused by the breathing and oblong vibrations of the island that forms part of the transistor, we formulate the electron-phonon interaction peculiar to the device and derive its transport properties by means of the master equation. For a single electron transistor with a gold nanoparticle island of radius 1 nm, we demonstrate the contribution to the transport properties that originates from tunneling channels associated with THz phonon emission and absorption.

  18. A universal encoding scheme for MIMO transmission using a single active element for PSK modulation schemes

    DEFF Research Database (Denmark)

    Alrabadi, Osama; Papadias, C.B.; Kalis, A.

    2009-01-01

    A universal scheme for encoding multiple symbol streams using a single driven element (and consequently a single radio frequency (RF) frontend) surrounded by parasitic elements (PE) loaded with variable reactive loads, is proposed in this paper. The proposed scheme is based on creating a MIMO...... systems. The array can spatially multiplex the input streams by creating all the desired linear combinations (for a given modulation scheme) of the basis functions. The desired combinations are obtained by projecting the ratio of the symbols to be spatially multiplexed on the ratio of the basis functions...

  19. Bovine lymphocytic leukemia: studies of etiology, pathogenesis and mode of transmission. Progress report No. 18, June 1975--June 1978

    Energy Technology Data Exchange (ETDEWEB)

    Sorensen, D.K.

    1978-07-01

    The primary objective of this research is to elucidate the cause(s) and early pathogenesis of the adult form of lymphosarcoma in cattle. Consequently, a major portion of our research is centered around experimental transmission of this disease. Bovine leukemia is believed to be caused by an oncogenic RNA virus designated bovine leukemia virus (BLV). We have consistently demonstrated the presence of BLV particles in leukemic cattle and cattle with a persistent lymphocytosis, but never in normal cattle. These BLV particles have been partially purified and highly concentrated to provide a potent inoculum used to inoculate 12 late stage bovine fetuses (in utero) and two newborn calves. Our current study involves extensive monitoring of these inoculated animals to detect early precancerous changes and obtain a detailed description of the events occurring early in the pathogenesis of bovine lymphosarcoma. From our ongoing monitoring study we will be able to detail when, in what sequence, and to what extent each parameter changes in the course of lymphosarcoma development. In addition to our transmission and monitoring studies we are examining various lymphocyte subpopulations in an attempt to determine which cell type is responsible for BLV production and to determine if this same cell type carries the nuclear pocket abnormality associated with the adult form of bovine lymphosarcoma. (ERB)

  20. Improvement of brain single photon emission tomography (SPET) using transmission data acquisition in a four-head SPET scanner

    International Nuclear Information System (INIS)

    Murase, Kenya; Tanada, Shuji; Inoue, Takeshi; Sugawara, Yoshifumi; Hamamoto, Ken

    1993-01-01

    Attenuation coefficient maps (μ-maps) are a useful way to compensate for non-uniform attenuation when performing single photon emission tomography (SPET). A new method was developed to record single photon transmission data and a μ-map for the brain was produced using a four-head SPET scanner. Transmission data were acquired by a gamma camera of opposite to a flood radioactive source attached to one of four gamma cameras in the four-head SPET scanner. Attenuation correction was performed using the iterative expectation maximization algorithm and the μ-map. Phantom studies demonstrated that this method could reconstruct the distribution of radioactivity more accurately than conventional methods, even for a severely non-uniform μ-map, and could improve the quality of SPET images. Clinical application to technetium-99m hexamethyl-propylene amine oxime (HMPAO) brain SPET also demonstrated the usefulness of this method. Thus, this method appears to be promising for improvement in the image quality and quantitative accuracy of brain SPET. (orig.)

  1. Whistler mode resonance-cone transmissions at 100 kHz in the OEDIPUS-C experiment

    Czech Academy of Sciences Publication Activity Database

    Chugunov, Y. V.; Fiala, Vladimír; Hayosh, Mykhaylo; James, H. G.

    2012-01-01

    Roč. 47, č. 6 (2012), RS6002/1-RS6002/11 ISSN 0048-6604 Grant - others:Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR(CZ) M100420904 Program:M Institutional support: RVO:68378289 Keywords : OEDIPUS-C * dipole * pulse distortion * resonance cone * whistler mode Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.000, year: 2012 http://onlinelibrary.wiley.com/doi/10.1029/2012RS005054/abstract

  2. DECAY MODES OF HIGH-LYING SINGLE-PARTICLE STATES IN PB-209

    NARCIS (Netherlands)

    BEAUMEL, D; FORTIER, S; GALES, S; GUILLOT, J; LANGEVINJOLIOT, H; LAURENT, H; MAISON, JM; VERNOTTE, J; BORDEWIJK, JA; BRANDENBURG, S; KRASZNAHORKAY, A; CRAWLEY, GM; MASSOLO, CP; RENTERIA, M

    The neutron decay of high-lying single-particle states in Pb-209 excited by means of the (alpha, He-3) reaction has been investigated at 122 MeV incident energy using a multidetector array. The high-spin values of these states, inferred from previous inclusive experiments, are confirmed by the

  3. Approaches to building single-stage AC/AC conversion switch-mode audio power amplifiers

    DEFF Research Database (Denmark)

    Ljusev, Petar; Andersen, Michael Andreas E.

    2004-01-01

    This paper discusses the possible topologies and promising approaches towards direct single-phase AC-AC conversion of the mains voltage for audio applications. When compared to standard Class-D switching audio power amplifiers with a separate power supply, it is expected that direct conversion...

  4. Performance of a residential heat pump operating in the cooling mode with single faults imposed

    International Nuclear Information System (INIS)

    Kim, Minsung; Payne, W. Vance; Domanski, Piotr A.; Yoon, Seok Ho; Hermes, Christian J.L.

    2009-01-01

    The system behavior of a R410A residential unitary split heat pump operating in the cooling mode was investigated. Seven artificial faults were implemented: compressor/reversing valve leakage, improper outdoor air flow, improper indoor air flow, liquid line restriction, refrigerant undercharge, refrigerant overcharge, and presence of non-condensable gas in the refrigerant. This study monitored eight fault detection features and identified the most sensitive features for each fault. The effect of the various fault levels on energy efficiency ratio (EER) was also estimated. Since the studied system employed a thermostatic expansion valve (TXV) as an expansion device, it could adapt to some faults making the fault less detectable. The distinctiveness of the fault depended on the TXV status (fully open or not)

  5. Position Control of the Single Spherical Wheel Mobile Robot by Using the Fuzzy Sliding Mode Controller

    Directory of Open Access Journals (Sweden)

    Hamed Navabi

    2017-01-01

    Full Text Available A spherical wheel robot or Ballbot—a robot that balances on an actuated spherical ball—is a new and recent type of robot in the popular area of mobile robotics. This paper focuses on the modeling and control of such a robot. We apply the Lagrangian method to derive the governing dynamic equations of the system. We also describe a novel Fuzzy Sliding Mode Controller (FSMC implemented to control a spherical wheel mobile robot. The nonlinear nature of the equations makes the controller nontrivial. We compare the performance of four different fuzzy controllers: (a regulation with one signal, (b regulation and position control with one signal, (c regulation and position control with two signals, and (d FSMC for regulation and position control with two signals. The system is evaluated in a realistic simulation and the robot parameters are chosen based on a LEGO platform, so the designed controllers have the ability to be implemented on real hardware.

  6. Single nucleotide polymorphism-based molecular typing of M. leprae from multicase families of leprosy patients and their surroundings to understand the transmission of leprosy.

    Science.gov (United States)

    Turankar, R P; Lavania, M; Chaitanya, V S; Sengupta, U; Darlong, J; Darlong, F; Siva Sai, K S R; Jadhav, R S

    2014-03-01

    The exact mode of transmission of leprosy is not clearly understood; however, many studies have demonstrated active transmission of leprosy around a source case. Families of five active leprosy cases and their household contacts were chosen from a high endemic area in Purulia. Fifty-two soil samples were also collected from different areas of their houses. DNA was extracted from slit-skin smears (SSS) and soil samples and the Mycobacterium leprae-specific RLEP (129 bp) region was amplified using PCR. Molecular typing of M. leprae was performed for all RLEP PCR-positive samples by single nucleotide polymorphism (SNP) typing and confirmation by DNA sequencing. SSS of these five patients and six out of the total 28 contacts were PCR positive for RLEP whereas 17 soil samples out of 52 showed the presence of M. leprae DNA. SNP typing of M. leprae from all RLEP PCR-positive subjects (patients and smear-positive contacts) and 10 soil samples showed the SNP type 1 genotype. M. leprae DNA from the five leprosy patients and the six contacts was further subtyped and the D subtype was noted in all patients and contacts, except for one contact where the C subtype was identified. Typing followed by subtyping of M. leprae clearly revealed that either the contacts were infected by the patients or both patients and contacts had the same source of infection. It also revealed that the type of M. leprae in the soil in the inhabited areas where patients resided was also of the same type as that found in patients. © 2013 The Authors Clinical Microbiology and Infection © 2013 European Society of Clinical Microbiology and Infectious Diseases.

  7. Adaptable Optical Fiber Displacement-Curvature Sensor Based on a Modal Michelson Interferometer with a Tapered Single Mode Fiber.

    Science.gov (United States)

    Salceda-Delgado, G; Martinez-Rios, A; Selvas-Aguilar, R; Álvarez-Tamayo, R I; Castillo-Guzman, A; Ibarra-Escamilla, B; Durán-Ramírez, V M; Enriquez-Gomez, L F

    2017-06-02

    A compact, highly sensitive optical fiber displacement and curvature radius sensor is presented. The device consists of an adiabatic bi-conical fused fiber taper spliced to a single-mode fiber (SMF) segment with a flat face end. The bi-conical taper structure acts as a modal coupling device between core and cladding modes for the SMF segment. When the bi-conical taper is bent by an axial displacement, the symmetrical bi-conical shape of the tapered structure is stressed, causing a change in the refractive index profile which becomes asymmetric. As a result, the taper adiabaticity is lost, and interference between modes appears. As the bending increases, a small change in the fringe visibility and a wavelength shift on the periodical reflection spectrum of the in-fiber interferometer is produced. The displacement sensitivity and the spectral periodicity of the device can be adjusted by the proper selection of the SMF length. Sensitivities from around 1.93 to 3.4 nm/mm were obtained for SMF length between 7.5 and 12.5 cm. Both sensor interrogations, wavelength shift and visibility contrast, can be used to measure displacement and curvature radius magnitudes.

  8. Single-longitudinal mode distributed-feedback fiber laser with low-threshold and high-efficiency

    Science.gov (United States)

    Jiang, Man; Zhou, Pu; Gu, Xijia

    2018-01-01

    Single-frequency fiber laser has attracted a lot of interest in recent years due to its numerous application potentials in telecommunications, LIDAR, high resolution sensing, atom frequency standard, etc. Phosphate glass fiber is one of the candidates for building compact high gain fiber lasers because of its capability of high-concentration of rare-earth ions doping in fiber core. Nevertheless, it is challenging for the integration of UV-written intra-core fiber Bragg gratings into the fiber laser cavity due to the low photosensitivity of phosphate glass fiber. The research presented in this paper will focus on demonstration of UV-written Bragg gratings in phosphate glass fiber and its application in direct-written short monolithic single-frequency fiber lasers. Strong π-phase shift Bragg grating structure is direct-inscribed into the Er/Yb co-doped gain fiber using an excimer laser, and a 5-cm-long phase mask is used to inscribe a laser cavity into the Er/Yb co-doped phosphate glass fibers. The phase mask is a uniform mask with a 50 μm gap in the middle. The fiber laser device emits output power of 10.44 mW with a slope efficiency of 21.5% and the threshold power is about 42.8 mW. Single-longitudinal mode operation is validated by radio frequency spectrum measurement. Moreover, the output spectrum at the highest power shows an excellent optical signal to noise ratio of about 70 dB. These results, to the best of our knowledge, show the lowest power threshold and highest efficiency among the reports that using the same structure to achieve single-longitudinal mode laser output.

  9. Evaluation of the TE_{12} mode in circular waveguide for low-loss, high-power rf transmission

    Directory of Open Access Journals (Sweden)

    Sami G. Tantawi

    2000-08-01

    Full Text Available The use of TE_{12} in circular waveguide with smooth walls was suggested for low-loss transport of rf signals in multimoded systems [S. G. Tantawi et al., in Advanced Accelerator Concepts: Eighth Workshop, edited by Wes Lawson, AIP Conf. Proc. No. 472 (AIP, New York, 1999, pp. 967–974]. Such systems use the same waveguide to transport different signals over different modes. In this report we detail a series of experiments designed to measure the characteristics of this mode. We also describe the different techniques used to generate it and receive it. The experiments were done at X band around a frequency of 11.424 GHz, the frequency of choice for future linear colliders at X band [The NLC Design Group, Report No. LBNL-PUB-5424, SLAC Report No. 474, Report No. UCRL-ID 124161, 1996; The JLC Design Group, KEK-REPORT-97-1, 1997]. The transportation medium is 55 m of highly overmoded circular waveguide. The design of the joining flanges is also presented.

  10. 1.5 W high efficiency and tunable single-longitudinal-mode Ho:YLF ring laser based on Faraday effect.

    Science.gov (United States)

    Wu, Jing; Ju, Youlun; Dai, Tongyu; Yao, Baoquan; Wang, Yuezhu

    2017-10-30

    We demonstrated an efficient and tunable single-longitudinal-mode Ho:YLF ring laser based on Faraday effect for application to measure atmospheric carbon dioxide (CO 2 ). Single-longitudinal-mode power at 2051.65 nm achieved 528 mW with the slope efficiency of 39.5% and the M 2 factor of 1.07, and the tunable range of about 178 GHz was obtained by inserting a Fabry-Perot (F-P) etalon with the thickness of 0.5 mm. In addition, the maximum single-longitudinal-mode power reached 1.5 W with the injected power of 528 mW at 2051.65 nm by master oscillator power amplifier (MOPA) technique. High efficiency and tunable single-longitudinal-mode based on Faraday effect around 2 μm has not been reported yet to the best of our knowledge.

  11. Single-Trial Classification of Bistable Perception by Integrating Empirical Mode Decomposition, Clustering, and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Hualou Liang

    2008-04-01

    Full Text Available We propose an empirical mode decomposition (EMD- based method to extract features from the multichannel recordings of local field potential (LFP, collected from the middle temporal (MT visual cortex in a macaque monkey, for decoding its bistable structure-from-motion (SFM perception. The feature extraction approach consists of three stages. First, we employ EMD to decompose nonstationary single-trial time series into narrowband components called intrinsic mode functions (IMFs with time scales dependent on the data. Second, we adopt unsupervised K-means clustering to group the IMFs and residues into several clusters across all trials and channels. Third, we use the supervised common spatial patterns (CSP approach to design spatial filters for the clustered spatiotemporal signals. We exploit the support vector machine (SVM classifier on the extracted features to decode the reported perception on a single-trial basis. We demonstrate that the CSP feature of the cluster in the gamma frequency band outperforms the features in other frequency bands and leads to the best decoding performance. We also show that the EMD-based feature extraction can be useful for evoked potential estimation. Our proposed feature extraction approach may have potential for many applications involving nonstationary multivariable time series such as brain-computer interfaces (BCI.

  12. Observing Exoplanets with High-dispersion Coronagraphy. II. Demonstration of an Active Single-mode Fiber Injection Unit

    Energy Technology Data Exchange (ETDEWEB)

    Mawet, D.; Ruane, G.; Xuan, W.; Echeverri, D.; Klimovich, N.; Randolph, M.; Fucik, J.; Wang, J.; Dekany, R.; Delorme, J.-R. [Department of Astronomy, California Institute of Technology, 1200 East California Boulevard, MC 249-17, Pasadena, CA 91125 (United States); Wallace, J. K.; Vasisht, G.; Mennesson, B.; Choquet, E.; Serabyn, E., E-mail: dmawet@astro.caltech.edu [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)

    2017-04-01

    High-dispersion coronagraphy (HDC) optimally combines high-contrast imaging techniques such as adaptive optics/wavefront control plus coronagraphy to high spectral resolution spectroscopy. HDC is a critical pathway toward fully characterizing exoplanet atmospheres across a broad range of masses from giant gaseous planets down to Earth-like planets. In addition to determining the molecular composition of exoplanet atmospheres, HDC also enables Doppler mapping of atmosphere inhomogeneities (temperature, clouds, wind), as well as precise measurements of exoplanet rotational velocities. Here, we demonstrate an innovative concept for injecting the directly imaged planet light into a single-mode fiber, linking a high-contrast adaptively corrected coronagraph to a high-resolution spectrograph (diffraction-limited or not). Our laboratory demonstration includes three key milestones: close-to-theoretical injection efficiency, accurate pointing and tracking, and on-fiber coherent modulation and speckle nulling of spurious starlight signal coupling into the fiber. Using the extreme modal selectivity of single-mode fibers, we also demonstrated speckle suppression gains that outperform conventional image-based speckle nulling by at least two orders of magnitude.

  13. Approaches to building single-stage AC/AC conversion switch-mode audio power amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Ljusev, P.; Andersen, Michael A.E.

    2005-07-01

    This paper discusses the possible topologies and promising approaches towards direct single-phase AC-AC conversion of the mains voltage for audio applications. When compared to standard Class-D switching audio power amplifiers with a separate power supply, it is expected that direct conversion will provide better efficiency and higher level of integration, leading to lower component count, volume and cost, but at the expense of a minor performance deterioration. (au)

  14. The forced sound transmission of finite single leaf walls using a variational technique.

    Science.gov (United States)

    Brunskog, Jonas

    2012-09-01

    The single wall is the simplest element of concern in building acoustics, but there still remain some open questions regarding the sound insulation of this simple case. The two main reasons for this are the effects on the excitation and sound radiation of the wall when it has a finite size, and the fact that the wave field in the wall is consisting of two types of waves, namely forced waves due to the exciting acoustic field, and free bending waves due to reflections in the boundary. The aim of the present paper is to derive simple analytical formulas for the forced part of the airborne sound insulation of a single homogeneous wall of finite size, using a variational technique based on the integral-differential equation of the fluid loaded wall. The so derived formulas are valid in the entire audible frequency range. The results are compared with full numerical calculations, measurements and alternative theory, with reasonable agreement.

  15. The forced sound transmission of finite single leaf walls using a variational technique

    DEFF Research Database (Denmark)

    Brunskog, Jonas

    2012-01-01

    The single wall is the simplest element of concern in building acoustics, but there still remain some open questions regarding the sound insulation of this simple case. The two main reasons for this are the effects on the excitation and sound radiation of the wall when it has a finite size......, and the fact that the wave field in the wall is consisting of two types of waves, namely forced waves due to the exciting acoustic field, and free bending waves due to reflections in the boundary. The aim of the present paper is to derive simple analytical formulas for the forced part of the airborne sound...... insulation of a single homogeneous wall of finite size, using a variational technique based on the integral-differential equation of the fluid loaded wall. The so derived formulas are valid in the entire audible frequency range. The results are compared with full numerical calculations, measurements...

  16. Device for protecting the section of the airline electricity transmission with insulated neutral from incomplete phase modes

    Energy Technology Data Exchange (ETDEWEB)

    Sagutdinov, R.Sh.; Batoyev, D.

    1982-01-01

    The device for USSR certificate of authorship 792439 is improved in order to raise reliability of isolating the damage zone by including into operation an antenna filter for voltage of zero sequence (AFNIP) only during the operating time of the electrical unit in incomplete phase mode. The newly introduced circuit breaker contract of the inlet relay of the voltage filter for reverse sequence is connected between the outlet of the AFNIP and the ground. The device additionally has a time relay which is connected to the outlet of the voltage filter of reverse sequence. The circuit breaker contact of the inlet relay AFNIP is connected in series to the closure contact of the time relay and the winding of the second outlet relay of the actuating mechanism.

  17. A single-mode data acquisition architecture for PET/MRI

    International Nuclear Information System (INIS)

    Sportelli, Giancarlo; Belcari, Nicola; Bisogni, Maria Giuseppina; Camarlinghi, Niccolo; Zaccaro, Emanuele; Del Guerra, Alberto

    2015-01-01

    The development of MRI compatible detectors based on compact solid state photomultipliers has recently led to simultaneous fully integrated PET/MRI systems for human imaging. The PET acquisition design for MRI integration is known to have several additional constraints, including smaller space, electromagnetic compatibility issues and thermal management. The current work presents the PET acquisition architecture that has been developed for the TRIMAGE project, whose aim is to provide a cost effective, commercial grade trimodality PET/MRI/EEG scanner. The TRIMAGE PET component consists of 216 modules of 2.5 cm x 2.5 cm, arranged in 18 rectangular detectors of 5 cm x 15 cm, the latter in the axial direction, to form a full ring of 31 cm diameter. Each module consists of a staggered dual layer LYSO matrix read out by two arrays of 4 x 8 SiPMs and an ASIC. The detector board hosts a low-power low-end FPGA that performs pixel identification, energy calibration and handles the communication between the ASICs and the motherboard, which is located in proximity of the scanner. Data is streamed using high-density shielded cables and high-speed LVDS transmission to 9 low-end SoC FPGAs and from there to a central mainboard where coincidences and events statistics are processed. Coincidence data is finally transmitted to a host PC for image reconstruction. The proposed architecture and technological solutions will be presented and discussed.

  18. Protein and oil composition predictions of single soybeans by transmission Raman spectroscopy.

    Science.gov (United States)

    Schulmerich, Matthew V; Walsh, Michael J; Gelber, Matthew K; Kong, Rong; Kole, Matthew R; Harrison, Sandra K; McKinney, John; Thompson, Dennis; Kull, Linda S; Bhargava, Rohit

    2012-08-22

    The soybean industry requires rapid, accurate, and precise technologies for the analyses of seed/grain constituents. While the current gold standard for nondestructive quantification of economically and nutritionally important soybean components is near-infrared spectroscopy (NIRS), emerging technology may provide viable alternatives and lead to next generation instrumentation for grain compositional analysis. In principle, Raman spectroscopy provides the necessary chemical information to generate models for predicting the concentration of soybean constituents. In this communication, we explore the use of transmission Raman spectroscopy (TRS) for nondestructive soybean measurements. We show that TRS uses the light scattering properties of soybeans to effectively homogenize the heterogeneous bulk of a soybean for representative sampling. Working with over 1000 individual intact soybean seeds, we developed a simple partial least-squares model for predicting oil and protein content nondestructively. We find TRS to have a root-mean-standard error of prediction (RMSEP) of 0.89% for oil measurements and 0.92% for protein measurements. In both calibration and validation sets, the predicative capabilities of the model were similar to the error in the reference methods.

  19. Wavelength resolved neutron transmission analysis to identify single crystal particles in historical metallurgy

    Science.gov (United States)

    Barzagli, E.; Grazzi, F.; Salvemini, F.; Scherillo, A.; Sato, H.; Shinohara, T.; Kamiyama, T.; Kiyanagi, Y.; Tremsin, A.; Zoppi, Marco

    2014-07-01

    The phase composition and the microstructure of four ferrous Japanese arrows of the Edo period (17th-19th century) has been determined through two complementary neutron techniques: Position-sensitive wavelength-resolved neutron transmission analysis (PS-WRNTA) and time-of-flight neutron diffraction (ToF-ND). Standard ToF-ND technique has been applied by using the INES diffractometer at the ISIS pulsed neutron source in the UK, while the innovative PS-WRNTA one has been performed at the J-PARC neutron source on the BL-10 NOBORU beam line using the high spatial high time resolution neutron imaging detector. With ToF-ND we were able to reach information about the quantitative distribution of the metal and non-metal phases, the texture level, the strain level and the domain size of each of the samples, which are important parameters to gain knowledge about the technological level of the Japanese weapon. Starting from this base of data, the more complex PS-WRNTA has been applied to the same samples. This experimental technique exploits the presence of the so-called Bragg edges, in the time-of-flight spectrum of neutrons transmitted through crystalline materials, to map the microstructural properties of samples. The two techniques are non-invasive and can be easily applied to archaeometry for an accurate microstructure mapping of metal and ceramic artifacts.

  20. Single-mode interband cascade laser sources for mid-infrared spectroscopic applications

    Science.gov (United States)

    Scheuermann, J.; von Edlinger, M.; Weih, R.; Becker, S.; Nähle, L.; Fischer, M.; Koeth, J.; Kamp, M.; Höfling, S.

    2016-05-01

    Compared to the near infrared, many technologically and industrially relevant gas species have more than an order of magnitude higher absorption features in the mid-infrared (MIR) wavelength range. These species include for example important hydrocarbons (methane, acetylene), nitrogen oxides and sulfur oxides. Tunable laser absorption spectroscopy (TLAS) has proven to be a versatile tool for gas sensing applications with significant advantages compared to other techniques. These advantages include real time measurement, standoff detection and ruggedness of the sensor. We present interband cascade lasers (ICLs), which have evolved into important laser sources for the MIR spectral range from 3 to 7 μm. ICLs achieve high efficiency by cascading optically active zones whilst using interband transitions, so they combine common diode laser as well as quantum cascade laser based technologies. Our application grade singlemode distributed feedback devices operate continuous wave at room temperature and are offering several features especially useful for high performance TLAS applications like: side mode suppression ratio of > 30 dB, continuous tuning ranges up to 30 nm, low threshold power densities and low overall power consumption. The devices are typically integrated in a thermoelectrically cooled TO-style package, hermetically sealed using a cap with anti-reflection coated window. This low power consumption as well as the compact size and ruggedness of the fabricated laser sources makes them perfectly suited for battery powered portable solutions for in field spectroscopy applications.

  1. High energy, single frequency, tunable laser source operating in burst mode for space based lidar applications

    Science.gov (United States)

    Cosentino, Alberto; Mondello, Alessia; Sapia, Adalberto; D'Ottavi, Alessandro; Brotini, Mauro; Nava, Enzo; Stucchi, Emanuele; Trespidi, Franco; Mariottini, Cristina; Wazen, Paul; Falletto, Nicolas; Fruit, Michel

    2017-11-01

    This paper describes the laser transmitter assembly used in the ALADIN instrument currently in C/D development phase for the ESA ADM-AEOLUS mission (EADS Astrium as prime contractor for the satellite and the instrument). The Laser Transmitter Assembly (TXA), based on a diode pumped tripled Nd:YAG laser, is used to generate tunable laser pulses of 150 mJ at a nominal wavelength of 355 nm. This laser is operated in burst mode, with a pulse repetition cycle of 100 Hz. The TXA is composed of the following units: a diodepumped CW Nd:YAG Laser named Reference Laser Head (RLH), used to inject a diode-pumped, Q-switched, amplified and frequency tripled Nd:YAG Laser working in the third harmonic referred as Power Laser Head (PLH) and a Transmitter Laser Electronics (TLE) containing all the control and power electronics needed for PLH and RLH operation. The TXA is made by an European consortium under the leadership of Galileo Avionica (It), and including CESI (It), Quantel (Fr), TESAT (Ge) and Thales (Fr).

  2. Rapid fingerprinting of sterols and related compounds in vegetable and animal oils and phytosterol enriched- margarines by transmission mode direct analysis in real time mass spectrometry.

    Science.gov (United States)

    Alberici, Rosana M; Fernandes, Gabriel D; Porcari, Andréia M; Eberlin, Marcos N; Barrera-Arellano, Daniel; Fernández, Facundo M

    2016-11-15

    Plant-derived sterols, often referred to as phytosterols, are important constituents of plant membranes where they assist in maintaining phospholipid bilayer stability. Consumption of phytosterols has been suggested to positively affect human health by reducing cholesterol levels in blood via inhibition of its absorption in the small intestine, thus protecting against heart attack and stroke. Sterols are challenging analytes for mass spectrometry, since their low polarity makes them difficult to ionize by both electrospray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI), typically requiring derivatization steps to overcome their low ionization efficiencies. We present a fast and reliable method to characterize the composition of phytosterols in vegetable oils and enriched margarines. The method requires no derivatization steps or sample extraction procedures thanks to the use of transmission mode direct analysis in real time mass spectrometry (TM-DART-MS). Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Examples of deletion of single component failure mode on fuelling machine hoist system

    International Nuclear Information System (INIS)

    Arthurs, D.L.

    1986-01-01

    Strachan and Henshaw AGR Fuelling Machine designs have previously used two completely independent hoist chains for reactor component handling. For Heysham II/Torness the concept has been extended to include the headshaft which carries the chain sprockets. The design described in the paper now includes a duplicate load path through all components from the chain/grab attachment through to the emergency headshaft brakes. The machine grab comprises a single main forged body with a very high load factor of safety. Studies are being undertaken to provide a second load path through the grab. (author)

  4. Displacement-enhanced entanglement distillation of single-mode-squeezed entangled states

    DEFF Research Database (Denmark)

    Tipsmark, Anders; Neergaard-Nielsen, Jonas Schou; Andersen, Ulrik Lund

    2013-01-01

    It has been shown that entanglement distillation of Gaussian entangled states by means of local photon subtraction can be improved by local Gaussian transformations. Here we show that a similar effect can be expected for the distillation of an asymmetric Gaussian entangled state that is produced...... by a single squeezed beam. We show that for low initial entanglement, our largely simplified protocol generates more entanglement than previous proposed protocols. Furthermore, we show that the distillation scheme also works efficiently on decohered entangled states as well as with a practical photon...

  5. Span length and information rate optimisation in optical transmission systems using single-channel digital backpropagation.

    Science.gov (United States)

    Karanov, Boris; Xu, Tianhua; Shevchenko, Nikita A; Lavery, Domaniç; Killey, Robert I; Bayvel, Polina

    2017-10-16

    The optimisation of span length when designing optical communication systems is important from both performance and cost perspectives. In this paper, the optimisation of inter-amplifier spacing and the potential increase of span length at fixed information rates in optical communication systems with practically feasible nonlinearity compensation schemes have been investigated. It is found that in DP-16QAM, DP-64QAM and DP-256QAM systems with practical transceiver noise limitations, single-channel digital backpropagation can allow a 50% reduction in the number of amplifiers without sacrificing information rates compared to systems with optimal span lengths and linear compensation.

  6. A field test for companded single sideband modulation Implications for capacity enhancement and transmission planning

    Science.gov (United States)

    Wallace, E.; Adams, C.; Arnstein, D.

    A series of field tests of companded single sideband modulation (CSSB) technique for use in the Intelsat system is described. A 12-channel circuit group was tested between switches in Pittsburgh, and the Deutsche Bundespost (DBP) in Frankfurt via the Etam and Raisting satellite earth stations. A transponder bulk that included existing FDM-FM carriers was chosen to match the typical, Intelsat operating conditions, thus permitting the compatibility of FDM/FM and CSSB to be examined simultaneously. Results of objective performance tests are discussed, and a description of several subjective testing techniques is also given.

  7. On a two-dimensional mode-matching technique for sound generation and transmission in axial-flow outlet guide vanes

    Science.gov (United States)

    Bouley, Simon; François, Benjamin; Roger, Michel; Posson, Hélène; Moreau, Stéphane

    2017-09-01

    The present work deals with the analytical modeling of two aspects of outlet guide vane aeroacoustics in axial-flow fan and compressor rotor-stator stages. The first addressed mechanism is the downstream transmission of rotor noise through the outlet guide vanes, the second one is the sound generation by the impingement of the rotor wakes on the vanes. The elementary prescribed excitation of the stator is an acoustic wave in the first case and a hydrodynamic gust in the second case. The solution for the response of the stator is derived using the same unified approach in both cases, within the scope of a linearized and compressible inviscid theory. It is provided by a mode-matching technique: modal expressions are written in the various sub-domains upstream and downstream of the stator as well as inside the inter-vane channels, and matched according to the conservation laws of fluid dynamics. This quite simple approach is uniformly valid in the whole range of subsonic Mach numbers and frequencies. It is presented for a two-dimensional rectilinear-cascade of zero-staggered flat-plate vanes and completed by the implementation of a Kutta condition. It is then validated in sound generation and transmission test cases by comparing with a previously reported model based on the Wiener-Hopf technique and with reference numerical simulations. Finally it is used to analyze the tonal rotor-stator interaction noise in a typical low-speed fan architecture. The interest of the mode-matching technique is that it could be easily transposed to a three-dimensional annular cascade in cylindrical coordinates in a future work. This makes it an attractive alternative to the classical strip-theory approach.

  8. Low-temperature evaporative glass scoring using a single-mode ytterbium fiber laser

    Science.gov (United States)

    Tu, J. F.; Riley, P. E. B.

    2013-06-01

    Glass cutting is increasingly important in industry to cut glass into various sizes for high definition televisions, cell phones, laptops, and tablet computers. A conventional mechanical cutter is usually used to score the glass before a bending force is applied to separate the glass along the scoring mark. This paper presents a laser glass scoring technique aimed at replacing the mechanical cutter to reduce cracks. This scoring technique, denoted as the Low-temperature Evaporative Glass Scoring process (LEGS), is different because laser energy is not directly absorbed by the glass. To achieve the proposed laser scoring, a laser beam is focused through the glass onto a metal substrate. The metal substrate absorbs the laser energy to generate a metal vapor to etch the glass, forming a scoring mark. The feasibility of this glass scoring technique is demonstrated using a continuous-wave fiber laser, at a low power of 60 W, and a 7075-T6 Aluminum alloy plate as the metal substrate. When the laser beam scans across the substrate, the laser energy creates a quasi-static aluminum molten pool, covered by an aluminum vapor at a temperature about 3000 K. At an optimal setting of 51 μm gap distance, 60 W laser power, and 6 mm/s scoring speed, a uniform scoring mark of 37 μm width and 120 μm depth was successfully generated on a piece of soda-lime glass without visible micro-cracks. The paper also discussed the uncertainties and their remedies involved in the LEGS process. To facilitate the process design, a model for predicting the aluminum vapor temperature was developed. This model accounted for the laser focus, reflection, absorption and transmission, laser energy distribution, and the aluminum melting and vaporization processes. Finally, this model was validated by comparing the actual melt depth of the aluminum substrate with the one predicted by the model.

  9. The frequency of single-bicycle crashes (SBCs) in countries with varying bicycle mode shares

    DEFF Research Database (Denmark)

    Schepers, Paul; Agerholm, Niels; Amoros, Emmanuelle

    In  order  to  encourage  cycling,  we  need  to  reduce  the  hazards  that  cyclists  face. Single-bicycle crashes or ‘bicycle-only crashes’ are falls and obstacle collisions in which only one cyclist is involved. Between 60 and 95% of cyclists admitted to hospital or treated at an emergency...... department are victims of single-bicycle crashes. As proportion of the total number of traffic casualties  the  share  exceeds  20%  in  most  countries  with  medium  to  high  levels  of cycling.  This paper  discusses  the  prevalence  of  the  problem  and  describes  measures  that  may  both reduce...

  10. Bovine lymphocytic leukemia: studies of etiology, pathogenesis, and mode of transmission. Progress report No. 19, June 1978-June 1979

    Energy Technology Data Exchange (ETDEWEB)

    Sorensen, D.K.

    1979-07-01

    Bovine leukemia is believed to be caused by an oncogenic RNA virus designated bovine leukemia virus (BLV). The presence of BLV particles in lymphocyte cultures from leukemic cattle and cattle with a persistent lymphocytosis has been consistentily demonstrated. Concentrated, cell free, BLV preparations were used to inoculate 12 late stage bovine fetuses (in utero) and two newborn calves. Current studies involve extensive monitoring of these inoculated animals to detect precancerous changes and obtain a detailed description of the events preceding the development of lymphosarcoma. Ongoing monitoring studies will provide a complete record of all changes in the various leukemia associated parameters. We will then be able to detail when, in what sequence, and to what extent each parameter changes in the course of lymphosarcoma development. Fourteen animals were successfully inoculated during the study. Eleven remain alive, and comprise the current monitoring program. All eleven of these animals are definitely infected with BLV, and in nine the infection has substantially progressed with respect to the parameters being monitored. In addition to transmission and monitoring studies, various lymphocyte subpopulations were examined to determine which cell type(s) are involved in the pathogenesis of bovine lymphosarcoma. These studies have conclusively established that B-lymphocytes are the target cells for BLV infection and that they carry the morphologic nuclear abnormality associated with this disease.

  11. Single Carrier Cyclic Prefix-Assisted CDMA System with Frequency Domain Equalization for High Data Rate Transmission

    Directory of Open Access Journals (Sweden)

    Madhukumar A. S.

    2004-01-01

    Full Text Available Multiple-access interference and interfinger interference limit the capacity of conventional single-carrier DS-CDMA systems. Even though multicarrier CDMA posses the advantages of conventional CDMA and OFDM, it suffers from two major implementation difficulties such as peak-to-average power ratio and high sensitivity to frequency offset and RF phase noise. A novel approach based on single-carrier cyclic prefix-assisted CDMA has been proposed to overcome the disadvantages of single-carrier CDMA and multicarrier modulation. The usefulness of the proposed approach for high-speed packet access with simplified channel estimation procedures are investigated in this paper. The paper also proposes a data-dependent pilot structure for the downlink transmission of the proposed system for enhancing pilot-assisted channel estimation in frequency domain. The performance of the proposed pilot structure is compared against the data-independent common pilot structure. The proposed system is extensively simulated for different channel parameters with different channel estimation and equalization methods and the results are compared against conventional multicarrier CDMA systems with identical system specifications.

  12. Decay modes of high-lying single-particle states in [sup 209]Pb

    Energy Technology Data Exchange (ETDEWEB)

    Beaumel, D.; Fortier, S.; Gales, S.; Guillot, J.; Langevin-Joliot, H.; Laurent, H.; Maison, J.M.; Vernotte, J.; Bordewijk, J.A.; Brandenburg, S.; Krasznahorkay, A.; Crawley, G.M.; Massolo, C.P.; Renteria, M. (Institut de Physique Nucleaire, Institut National de Physique Nucleaire et de Physique des Particules Centre National de la Recherche Scientifique, 91406 Orsay Cedex (France) Kernfysisch Versneller Instituut, 9747AA Groningen (Netherlands) National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824 (United States) Departamento de Fisica, Fac. Cs. Exactas, Universidad Nacional de La Plata, CC No. 67, 1900 La Plata (Argentina))

    1994-05-01

    The neutron decay of high-lying single-particle states in [sup 209]Pb excited by means of the ([alpha],[sup 3]He) reaction has been investigated at 122 MeV incident energy using a multidetector array. The high spin values of these states, inferred from previous inclusive experiments, are confirmed by the present data involving angular correlation measurements and the determination of branching ratios to low lying levels in [sup 208]Pb. The structure located between 8.5 and 12 MeV excitation energy in [sup 209]Pb displays large departures from a pure statistical decay with significant direct feeding of the low-lying collective states (3[sup [minus

  13. Decay modes of high-lying single-particle states in 209Pb

    International Nuclear Information System (INIS)

    Beaumel, D.; Fortier, S.; Gales, S.; Guillot, J.; Crawley, G.M.; Massolo, C.P.; Renteria, M.

    1993-01-01

    The neutron decay of high-lying single-particle states in 209 Pb excited by means of the (α, 3 He) reaction has been investigated at 122 MeV incident energy using the multidetector array EDEN. The high spin values of these states, inferred from previous inclusive experiments, are confirmed by the present data involving angular correlation measurements and the determination of branching ratios to low lying levels in 208 Pb. The structure located between 8.5 and 12 MeV excitation energy in 209 Pb displays large departures from a pure statistical decay with significant direct feeding of the low-lying collective states (3 - ,5 - ) of 208 Pb. At higher excitation energy up to 20 MeV, the measured neutron decay is in agreement with the predictions of the statistical model. (authors). 24 refs., 16 figs., 2 tabs

  14. Dual-source parallel RF transmission for diffusion-weighted imaging of the abdomen using different b values: image quality and apparent diffusion coefficient comparison with conventional single-source transmission.

    Science.gov (United States)

    Guo, Lijun; Liu, Cheng; Chen, Weibo; Chan, Queenie; Wang, Guangbin

    2013-04-01

    To prospectively and intraindividually evaluate what effects dual-source parallel radiofrequency (RF) transmission have on image quality and apparent diffusion coefficient (ADC) of abdomen diffusion-weighted imaging (DWI) using different b values, compared with the single-source RF transmission. Eighteen healthy male volunteers were enrolled in this Health Insurance Portability and Accountability Act (HIPAA)-compliant Institutional Review Board (IRB)-approved study. Abdominal DWI was performed with dual-source and single-source RF transmission at 3.0 T using a series of b-value combinations: 0/100, 0/500, 0/800, and 0/100/800. RF field homogeneity, subjective image quality, and signal to noise ratio (SNR) of each abdominal organ were evaluated. ADC values were calculated for each abdominal organ. Wilcoxon test and repeated-measures analysis of variance was used to calculate statistical significance. The parallel RF transmission significantly improved homogeneity of the RF field (P = 0.0001-0.008) and subjective image quality (P source and single-source images were significantly different (P = 0.0001-0.047). At b = 0/500, there was no significant difference in ADC measurements between dual-source and single-source RF transmission for abdominal organs, except a slight statistically significant difference for spleen (P = 0.047). Parallel RF transmission significantly improved the image quality and homogeneity of the RF field. The RF transmission had a significant influence on measured ADC of lateral left hepatic lobe and spleen. At b = 0/500 the influence was minimum for all abdominal organs. Copyright © 2012 Wiley Periodicals, Inc.

  15. Growth Termination and Multiple Nucleation of Single-Wall Carbon Nanotubes Evidenced by in Situ Transmission Electron Microscopy

    DEFF Research Database (Denmark)

    Zhang, Lili; He, Maoshuai; Hansen, Thomas Willum

    2017-01-01

    In order to controllably grow single-wall carbon nanotubes (SWCNTs), a better understanding of the growth processes and how they are influenced by external parameters such as catalyst and gaseous environment is required. Here, we present direct evidence of growth termination of individual SWCNTs...... and successive growth of additional SWCNTs on Co catalyst particles supported on MgO by means of environmental transmission electron microscopy. Such in situ observations reveal the plethora of solid carbon formations at the local scale while it is happening and thereby elucidate the multitude of configurations...... resulting from identical external synthesis conditions, which should be considered in the quest for controlled SWCNT growth. Using CO and a mixture of and H2 as carbon sources, we show that the growth of SWCNTs terminates with a reduced tube−catalyst adhesion strength. Two main reasons for the cessation...

  16. Shedding light on avian influenza H4N6 infection in mallards: modes of transmission and implications for surveillance.

    Directory of Open Access Journals (Sweden)

    Kaci K VanDalen

    Full Text Available BACKGROUND: Wild mallards (Anas platyrhychos are considered one of the primary reservoir species for avian influenza viruses (AIV. Because AIV circulating in wild birds pose an indirect threat to agriculture and human health, understanding the ecology of AIV and developing risk assessments and surveillance systems for prevention of disease is critical. METHODOLOGY/PRINCIPAL FINDINGS: In this study, mallards were experimentally infected with an H4N6 subtype of AIV by oral inoculation or contact with an H4N6 contaminated water source. Cloacal swabs, oropharyngeal swabs, fecal samples, and water samples were collected daily and tested by real-time RT-PCR (RRT-PCR for estimation of viral shedding. Fecal samples had significantly higher virus concentrations than oropharyngeal or cloacal swabs and 6 month old ducks shed significantly more viral RNA than 3 month old ducks regardless of sample type. Use of a water source contaminated by AIV infected mallards, was sufficient to transmit virus to naïve mallards, which shed AIV at higher or similar levels as orally-inoculated ducks. CONCLUSIONS: Bodies of water could serve as a transmission pathway for AIV in waterfowl. For AIV surveillance purposes, water samples and fecal samples appear to be excellent alternatives or additions to cloacal and oropharyngeal swabbing. Furthermore, duck age (even within hatch-year birds may be important when interpreting viral shedding results from experimental infections or surveillance. Differential shedding among hatch-year mallards could affect prevalence estimates, modeling of AIV spread, and subsequent risk assessments.

  17. Removal of Muscle Artifacts from Single-Channel EEG Based on Ensemble Empirical Mode Decomposition and Multiset Canonical Correlation Analysis

    Directory of Open Access Journals (Sweden)

    Xun Chen

    2014-01-01

    Full Text Available Electroencephalogram (EEG recordings are often contaminated with muscle artifacts. This disturbing muscular activity strongly affects the visual analysis of EEG and impairs the results of EEG signal processing such as brain connectivity analysis. If multichannel EEG recordings are available, then there exist a considerable range of methods which can remove or to some extent suppress the distorting effect of such artifacts. Yet to our knowledge, there is no existing means to remove muscle artifacts from single-channel EEG recordings. Moreover, considering the recently increasing need for biomedical signal processing in ambulatory situations, it is crucially important to develop single-channel techniques. In this work, we propose a simple, yet effective method to achieve the muscle artifact removal from single-channel EEG, by combining ensemble empirical mode decomposition (EEMD with multiset canonical correlation analysis (MCCA. We demonstrate the performance of the proposed method through numerical simulations and application to real EEG recordings contaminated with muscle artifacts. The proposed method can successfully remove muscle artifacts without altering the recorded underlying EEG activity. It is a promising tool for real-world biomedical signal processing applications.

  18. A dual-mode single-molecule fluorescence assay for the detection of expanded CGG repeats in Fragile X syndrome.

    Science.gov (United States)

    Cannon, Brian; Pan, Cynthia; Chen, Liangjing; Hadd, Andrew G; Russell, Rick

    2013-01-01

    Fragile X syndrome is the leading cause of inherited mental impairment and is associated with expansions of CGG repeats within the FMR1 gene. To detect expanded CGG repeats, we developed a dual-mode single-molecule fluorescence assay that allows acquisition of two parallel, independent measures of repeat number based on (1) the number of Cy3-labeled probes bound to the repeat region and (2) the physical length of the electric field-linearized repeat region, obtained from the relative position of a single Cy5 dye near the end of the repeat region. Using target strands derived from cell-line DNA with defined numbers of CGG repeats, we show that this assay can rapidly and simultaneously measure the repeats of a collection of individual sample strands within a single field of view. With a low occurrence of false positives, the assay differentiated normal CGG repeat lengths (CGG( N ), N = 23) and expanded CGG repeat lengths (CGG( N ), N = 118), representing a premutation disease state. Further, mixtures of these DNAs gave results that correlated with their relative populations. This strategy may be useful for identifying heterozygosity or for screening collections of individuals, and it is readily adaptable for screening other repeat disorders.

  19. Sensor system for multi-point monitoring using bending loss of single mode optical fiber

    International Nuclear Information System (INIS)

    Kim, Heon Young; Kim, Dae Hyun

    2015-01-01

    Applications of smart sensors have been extended to safety systems in the aerospace, transportation and civil engineering fields. In particular, structural health monitoring techniques using smart sensors have gradually become necessary and have been developed to prevent dangers to human life and damage to assets. Generally, smart sensors are based on electro-magnets and have several weaknesses, including electro-magnetic interference and distortion. Therefore, fiber optic sensors are an outstanding alternative to overcome the weaknesses of electro-magnetic sensors. However, they require expensive devices and complex systems. This paper proposes a new, affordable and simple sensor system that uses a single fiber to monitor pressures at multiple-points. Moreover, a prototype of the sensor system was manufactured and tested for a feasibility study. Based on the results of this experimental test, a relationship was carefully observed between the bend loss conditions and light-intensity. As a result, it was shown that impacts at multiple-points could be monitored.

  20. Whispering Gallery mode ESR spectroscopy and parameters measurement in single crystal SrLaAlO4at millikelvin temperature.

    Science.gov (United States)

    Hosain, M A; Le Floch, J-M; Krupka, J; Tobar, M E

    2017-08-01

    A cylindrical single crystal SrLaAlO 4 Whispering Gallery mode dielectric resonator was cooled to millikelvin temperature using a dilution refrigerator. By controlling a DC-magnetic field, impurity ions' spins were coupled to a variety of modes allowing the measurement of hybrid spin-photon systems. This Electron Spin Resonance mapping technique allowed us to detect Cu 2+ ,Fe 3+ and Mn 4+ impurity ions (at the level of parts per million (ppm) to parts per billion (ppb)), verified by the measurement of the spin parameters along with their site symmetry. Whispering Gallery modes exhibited Q-factors ⩾10 5 at a temperature less than 20mK, allowing sensitive spectroscopy with high precision. Measured hyperfine line constants of the Cu 2+ ion shows different parallel g-factors, g ‖Cu , of 2.526,2.375,2.246 and 2.142. The spin-orbit coupling constant of the Cu 2+ ion was determined to be λ≃-635cm -1 . The low-spin state Fe 3+ ion's measured parallel g-factor, g ‖Fe , of 2.028 reveals tetragonal anisotropy. The Mn 4+ ion is identified in the lattice, producing hyperfine structure with high-valued g-factors,g ‖Mn , of 7.789,7.745,7.688,7.613,7.5304 and 7.446. The hyperfine structures of the Cu 2+ and Mn 4+ ions show broadening of about 79G between 9.072GHz and 10.631GHz, and 24.5G broadening between 9.072GHz and 14.871GHz, respectively. Copyright © 2017 Elsevier Inc. All rights reserved.