WorldWideScience

Sample records for single mode optical

  1. Single-mode optical fibres

    CERN Document Server

    Cancellieri, G

    1991-01-01

    This book describes signal propagation in single-mode optical fibres for telecommunication applications. Such description is based on the analysis of field propagation, considering waveguide properties and also some of the particular characteristics of the material fibre. The book covers such recent advances as, coherent transmissions; optical amplification; MIR fibres; polarization maintaining; polarization diversity and photon counting.

  2. Optimize Etching Based Single Mode Fiber Optic Temperature Sensor

    OpenAIRE

    Ajay Kumar; Dr. Pramod Kumar

    2014-01-01

    This paper presents a description of etching process for fabrication single mode optical fiber sensors. The process of fabrication demonstrates an optimized etching based method to fabricate single mode fiber (SMF) optic sensors in specified constant time and temperature. We propose a single mode optical fiber based temperature sensor, where the temperature sensing region is obtained by etching its cladding diameter over small length to a critical value. It is observed that th...

  3. Optical measuring system with an interrogator and a polymer-based single-mode fibre optic sensor system

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates to an optical measuring system comprising a polymer-based single-mode fibre-optic sensor system (102), an optical interrogator (101), and an optical arrangement (103) interconnecting the optical interrogator (101) and the polymer-based single-mode fibre-optic sensor...... system (102). The invention further relates to an optical interrogator adapted to be connected to a polymer-based single-mode fibre-optic sensor system via an optical arrangement. The interrogator comprises a broadband light source arrangement (104) and a spectrum analysing arrangement which receives...

  4. Single-mode glass waveguide technology for optical interchip communication on board level

    Science.gov (United States)

    Brusberg, Lars; Neitz, Marcel; Schröder, Henning

    2012-01-01

    The large bandwidth demand in long-distance telecom networks lead to single-mode fiber interconnects as result of low dispersion, low loss and dense wavelength multiplexing possibilities. In contrast, multi-mode interconnects are suitable for much shorter lengths up to 300 meters and are promising for optical links between racks and on board level. Active optical cables based on multi-mode fiber links are at the market and research in multi-mode waveguide integration on board level is still going on. Compared to multi-mode, a single-mode waveguide has much more integration potential because of core diameters of around 20% of a multi-mode waveguide by a much larger bandwidth. But light coupling in single-mode waveguides is much more challenging because of lower coupling tolerances. Together with the silicon photonics technology, a single-mode waveguide technology on board-level will be the straight forward development goal for chip-to-chip optical interconnects integration. Such a hybrid packaging platform providing 3D optical single-mode links bridges the gap between novel photonic integrated circuits and the glass fiber based long-distance telecom networks. Following we introduce our 3D photonic packaging approach based on thin glass substrates with planar integrated optical single-mode waveguides for fiber-to-chip and chip-to-chip interconnects. This novel packaging approach merges micro-system packaging and glass integrated optics. It consists of a thin glass substrate with planar integrated singlemode waveguide circuits, optical mirrors and lenses providing an integration platform for photonic IC assembly and optical fiber interconnect. Thin glass is commercially available in panel and wafer formats and characterizes excellent optical and high-frequency properties. That makes it perfect for microsystem packaging. The paper presents recent results in single-mode waveguide technology on wafer level and waveguide characterization. Furthermore the integration in a

  5. Direct detection of the optical field beyond single polarization mode.

    Science.gov (United States)

    Che, Di; Sun, Chuanbowen; Shieh, William

    2018-02-05

    Direct detection is traditionally regarded as a detection method that recovers only the optical intensity. Compared with coherent detection, it owns a natural advantage-the simplicity-but lacks a crucial capability of field recovery that enables not only the multi-dimensional modulation, but also the digital compensation of the fiber impairments linear with the optical field. Full-field detection is crucial to increase the capacity-distance product of optical transmission systems. A variety of methods have been investigated to directly detect the optical field of the single polarization mode, which normally sends a carrier traveling with the signal for self-coherent detection. The crux, however, is that any optical transmission medium supports at least two propagating modes (e.g. single mode fiber supports two polarization modes), and until now there is no direct detection that can recover the complete set of optical fields beyond one polarization, due to the well-known carrier fading issue after mode demultiplexing induced by the random mode coupling. To avoid the fading, direct detection receivers should recover the signal in an intensity space isomorphic to the optical field without loss of any degrees of freedom, and a bridge should be built between the field and its isomorphic space for the multi-mode field recovery. Based on this thinking, we propose, for the first time, the direct detection of dual polarization modes by a novel receiver concept, the Stokes-space field receiver (SSFR) and its extension, the generalized SSFR for multiple spatial modes. The idea is verified by a dual-polarization field recovery of a polarization-multiplexed complex signal over an 80-km single mode fiber transmission. SSFR can be applied to a much wider range of fields beyond optical communications such as coherent sensing and imaging, where simple field recovery without an extra local laser is desired for enhanced system performance.

  6. An optical channel modeling of a single mode fiber

    Science.gov (United States)

    Nabavi, Neda; Liu, Peng; Hall, Trevor James

    2018-05-01

    The evaluation of the optical channel model that accurately describes the single mode fibre as a coherent transmission medium is reviewed through analytical, numerical and experimental analysis. We used the numerical modelling of the optical transmission medium and experimental measurements to determine the polarization drift as a function of time for a fixed length of fibre. The probability distribution of the birefringence vector was derived, which is associated to the 'Poole' equation. The theory and experimental evidence that has been disclosed in the literature in the context of polarization mode dispersion - Stokes & Jones formulations and solutions for key statistics by integration of stochastic differential equations has been investigated. Besides in-depth definition of the single-mode fibre-optic channel, the modelling which concerns an ensemble of fibres each with a different instance of environmental perturbation has been analysed.

  7. Mode division multiplexing technology for single-fiber optical trapping axial-position adjustment.

    Science.gov (United States)

    Liu, Zhihai; Wang, Lei; Liang, Peibo; Zhang, Yu; Yang, Jun; Yuan, Libo

    2013-07-15

    We demonstrate trapped yeast cell axial-position adjustment without moving the optical fiber in a single-fiber optical trapping system. The dynamic axial-position adjustment is realized by controlling the power ratio of the fundamental mode beam (LP01) and the low-order mode beam (LP11) generated in a normal single-core fiber. In order to separate the trapping positions produced by the two mode beams, we fabricate a special fiber tapered tip with a selective two-step method. A yeast cell of 6 μm diameter is moved along the optical axis direction for a distance of ~3 μm. To the best of our knowledge, this is the first demonstration of the trapping position adjustment without moving the fiber for single-fiber optical tweezers. The excitation and utilization of multimode beams in a single fiber constitutes a new development for single-fiber optical trapping and makes possible more practical applications in biomedical research fields.

  8. Optical field-strength polarization of two-mode single-photon states

    Energy Technology Data Exchange (ETDEWEB)

    Linares, J; Nistal, M C; Barral, D; Moreno, V, E-mail: suso.linares.beiras@usc.e [Optics Area, Department of Applied Physics, Faculty of Physics and School of Optics and Optometry, University of Santiago de Compostela, Campus Universitario Sur s/n, 15782-Santiago de Compostela, Galicia (Spain)

    2010-09-15

    We present a quantum analysis of two-mode single-photon states based on the probability distributions of the optical field strength (or position quadrature) in order to describe their quantum polarization characteristics, where polarization is understood as a significative confinement of the optical field-strength values on determined regions of the two-mode optical field-strength plane. We will show that the mentioned probability distributions along with the values of quantum Stokes parameters allow us to characterize the polarization of a two-mode single-photon state, in an analogous way to the classical case, and to distinguish conceptually between mixture and partially polarized quantum states; in this way, we propose a simple definition of the quantum polarization degree based on the recent concept of distance measure to an unpolarized distribution, which gives rise to a depolarization degree equivalent to an overlapping between the probability distribution of the quantum state and a non-polarized two-mode Gaussian distribution. The work is particularly intended to university physics teachers and graduate students as well as to physicists and specialists concerned with the issue of optical polarization.

  9. Optical field-strength polarization of two-mode single-photon states

    International Nuclear Information System (INIS)

    Linares, J; Nistal, M C; Barral, D; Moreno, V

    2010-01-01

    We present a quantum analysis of two-mode single-photon states based on the probability distributions of the optical field strength (or position quadrature) in order to describe their quantum polarization characteristics, where polarization is understood as a significative confinement of the optical field-strength values on determined regions of the two-mode optical field-strength plane. We will show that the mentioned probability distributions along with the values of quantum Stokes parameters allow us to characterize the polarization of a two-mode single-photon state, in an analogous way to the classical case, and to distinguish conceptually between mixture and partially polarized quantum states; in this way, we propose a simple definition of the quantum polarization degree based on the recent concept of distance measure to an unpolarized distribution, which gives rise to a depolarization degree equivalent to an overlapping between the probability distribution of the quantum state and a non-polarized two-mode Gaussian distribution. The work is particularly intended to university physics teachers and graduate students as well as to physicists and specialists concerned with the issue of optical polarization.

  10. Linear optical quantum computing in a single spatial mode.

    Science.gov (United States)

    Humphreys, Peter C; Metcalf, Benjamin J; Spring, Justin B; Moore, Merritt; Jin, Xian-Min; Barbieri, Marco; Kolthammer, W Steven; Walmsley, Ian A

    2013-10-11

    We present a scheme for linear optical quantum computing using time-bin-encoded qubits in a single spatial mode. We show methods for single-qubit operations and heralded controlled-phase (cphase) gates, providing a sufficient set of operations for universal quantum computing with the Knill-Laflamme-Milburn [Nature (London) 409, 46 (2001)] scheme. Our protocol is suited to currently available photonic devices and ideally allows arbitrary numbers of qubits to be encoded in the same spatial mode, demonstrating the potential for time-frequency modes to dramatically increase the quantum information capacity of fixed spatial resources. As a test of our scheme, we demonstrate the first entirely single spatial mode implementation of a two-qubit quantum gate and show its operation with an average fidelity of 0.84±0.07.

  11. Holograms for laser diode: Single mode optical fiber coupling

    Science.gov (United States)

    Fuhr, P. L.

    1982-01-01

    The low coupling efficiency of semiconductor laser emissions into a single mode optical fibers place a severe restriction on their use. Associated with these conventional optical coupling techniques are stringent alignment sensitivities. Using holographic elements, the coupling efficiency may be increased and the alignment sensitivity greatly reduced. Both conventional and computer methods used in the generation of the holographic couplers are described and diagrammed. The reconstruction geometries used are shown to be somewhat restrictive but substantially less rigid than their conventional optical counterparts. Single and double hologram techniques are examined concerning their respective ease of fabrication and relative merits.

  12. Exact decoherence dynamics of a single-mode optical field

    International Nuclear Information System (INIS)

    An, J.-H.; Yeo Ye; Oh, C.H.

    2009-01-01

    We apply the influence-functional method of Feynman and Vernon to the study of a single-mode optical field that interacts with an environment at zero temperature. Using the coherent-state formalism of the path integral, we derive a generalized master equation for the single-mode optical field. Our analysis explicitly shows how non-Markovian effects manifest in the exact decoherence dynamics for different environmental correlation time scales. Remarkably, when these are equal to or greater than the time scale for significant change in the system, the interplay between the backaction-induced coherent oscillation and the dissipative effect of the environment causes the non-Markovian effect to have a significant impact not only on the short-time behavior but also on the long-time steady-state behavior of the system.

  13. Optical Field-Strength Polarization of Two-Mode Single-Photon States

    Science.gov (United States)

    Linares, J.; Nistal, M. C.; Barral, D.; Moreno, V.

    2010-01-01

    We present a quantum analysis of two-mode single-photon states based on the probability distributions of the optical field strength (or position quadrature) in order to describe their quantum polarization characteristics, where polarization is understood as a significative confinement of the optical field-strength values on determined regions of…

  14. Development of IR single mode optical fibers for DARWIN-nulling interferometry

    NARCIS (Netherlands)

    Chakkalakkal Abdulla, S.M.; Cheng, L.K.; Bosch, B. van den; Dijkhuizen, N.; Nieuwland, R.A.; Gielesen, W.L.M.; Lucas, J.; Boussard-Plédel, C.; Conseil, C.; Bureau, B.; Carmo, J.P. do

    2014-01-01

    The DARWIN mission aims to detect weak infra-red emission lines from distant orbiting earth-like planets using nulling interferometry. This requires filtering of wavefront errors using single mode waveguides operating at a wavelength range of 6.5-20 μm. This article describes the optical design of

  15. Single Mode Optical Fiber based Refractive Index Sensor using Etched Cladding

    OpenAIRE

    Kumar, Ajay; Gupta, Geeta; Mallik, Arun; Bhatnagar, Anuj

    2011-01-01

    The use of optical fiber for sensor applications is a topic of current interest. We report the fabrication of etched single mode optical fiber based refractive index sensor. Experiments are performed to determine the etch rate of fiber in buffered hydrofluoric acid, which can be high or low depending upon the temperature at which etching is carried out. Controlled wet etching of fiber cladding is performed using these measurements and etched fiber region is tested for refractive index sensing...

  16. Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres

    Science.gov (United States)

    Gissibl, Timo; Thiele, Simon; Herkommer, Alois; Giessen, Harald

    2016-01-01

    Micro-optics are widely used in numerous applications, such as beam shaping, collimation, focusing and imaging. We use femtosecond 3D printing to manufacture free-form micro-optical elements. Our method gives sub-micrometre accuracy so that direct manufacturing even on single-mode fibres is possible. We demonstrate the potential of our method by writing different collimation optics, toric lenses, free-form surfaces with polynomials of up to 10th order for intensity beam shaping, as well as chiral photonic crystals for circular polarization filtering, all aligned onto the core of the single-mode fibres. We determine the accuracy of our optics by analysing the output patterns as well as interferometrically characterizing the surfaces. We find excellent agreement with numerical calculations. 3D printing of microoptics can achieve sufficient performance that will allow for rapid prototyping and production of beam-shaping and imaging devices. PMID:27339700

  17. Multi-level single mode 2D polymer waveguide optical interconnects using nano-imprint lithography

    NARCIS (Netherlands)

    Khan, M.U.; Justice, J.; Petäjä, J.; Korhonen, T.; Boersma, A.; Wiegersma, S.; Karppinen, M.; Corbett, B.

    2015-01-01

    Single and multi-layer passive optical interconnects using single mode polymer waveguides are demonstrated using UV nano-imprint lithography. The fabrication tolerances associated with imprint lithography are investigated and we show a way to experimentally quantify a small variation in index

  18. Flexible long-range surface plasmon polariton single-mode waveguide for optical interconnects

    DEFF Research Database (Denmark)

    Vernoux, Christian; Chen, Yiting; Markey, Laurent

    2018-01-01

    We present the design, fabrication and characterization of long-range surface plasmon polariton waveguide arrays with materials, mainly silicones, carefully selected with the aim to be used as mechanically flexible single-mode optical interconnections, the socalled "plasmonic arc" working at 1.55μm...

  19. Single mode operation of a hybrid optically pumped D2O far infrared laser

    International Nuclear Information System (INIS)

    Yuan, D.C.; Siegrist, M.R.

    1990-04-01

    We have achieved single mode operation in a hybrid optically pumped D 2 O far infrared laser. The active volume of the resonator was divided into two sections separated by a thin plastic foil. The larger section served as the main gain medium and the shorter section as mode selective element. The vapor pressure in the smaller volume was either very low or alternatively about 3 times higher than the pressure in the main part. In both cases single mode operation was achieved without any reduction of the total output energy. (author) 13 refs., 7 figs

  20. A long-baseline interferometer employing single-mode fiber optics

    Science.gov (United States)

    Shaklan, Stuart

    The idea of the Fiber-Linked Optical Array Telescope proposed by Connes (1987) is to mount several small optical telescopes around the perimeter of a radio dish or other large steerable structure, couple the light into single-mode (SM) fibers, and use the fibers to coherently combine the beams at the output. This paper examines the important properties of SM fibers and then discusses the whole system in general terms, starting with the telescopes and following the light through to the detectors, along with the results of laboratory experiments evaluating the performance of SM fibers. The imaging capabilities of the array were simulated, and it was found that, using 10 telescopes on a 440-m dish, the array obtains images with resolution of the order of 2 milliarc seconds in the visible range.

  1. Single Mode Fiber Optic Transceiver Using Short Wavelength Active Devices In Long Wavelength Fiber

    Science.gov (United States)

    Gillham, Frederick J.; Campbell, Daniel R.; Corke, Michael; Stowe, David W.

    1990-01-01

    Presently, single mode optical fiber technology is being utilized in systems to supply telephone service to the subscriber. However, in an attempt to be competitive with copper based systems, there are many development programs underway to determine the most cost effective solution while still providing a service that will either satisfy or be upgradeable to satisfy the demands of the consumer for the next 10 to 20 years. One such approach is to combine low cost laser transmitters and silicon receivers, which have been developed for the "compact disc" industry, with fiber that operates in the single mode regime at 1300 nm. In this paper, an optical transceiver will be presented, consisting of a compact disc laser, a silicon detector and a single mode coupler at 1300 nm. A possible system layout is presented which operates at 780 nm bi-directionally for POTS and upgradeable to 1300 nm for video services. There are several important design criteria that have to be considered in the development of such a system which will be addressed. These include: 1. Optimization of coupled power from laser to fiber while maintaining stable launched conditions over a wide range of environmental conditions. 2. Consideration of the multimode operation of the 1300 nm single mode fiber while operating in the 780 nm wavelength region. 3. Development of a low cost pseudo-wavelength division multiplexer for 1300 nm single mode/780 nm multimode operation and a low cost dual mode 50/50, 780 nm splitter using 1300 nm fiber. Details will be given of the design criteria and solution in terms of optimized design. Results of the performance of several prototype devices will be given with indications of the merits of this approach and where further development effort should be applied.

  2. Rayleigh scattering in few-mode optical fibers.

    Science.gov (United States)

    Wang, Zhen; Wu, Hao; Hu, Xiaolong; Zhao, Ningbo; Mo, Qi; Li, Guifang

    2016-10-24

    The extremely low loss of silica fibers has enabled the telecommunication revolution, but single-mode fiber-optic communication systems have been driven to their capacity limits. As a means to overcome this capacity crunch, space-division multiplexing (SDM) using few-mode fibers (FMF) has been proposed and demonstrated. In single-mode optical fibers, Rayleigh scattering serves as the dominant mechanism for optical loss. However, to date, the role of Rayleigh scattering in FMFs remains elusive. Here we establish and experimentally validate a general model for Rayleigh scattering in FMFs. Rayleigh backscattering not only sets the intrinsic loss limit for FMFs but also provides the theoretical foundation for few-mode optical time-domain reflectometry, which can be used to probe perturbation-induced mode-coupling dynamics in FMFs. We also show that forward inter-modal Rayleigh scattering ultimately sets a fundamental limit on inter-modal-crosstalk for FMFs. Therefore, this work not only has implications specifically for SDM systems but also broadly for few-mode fiber optics and its applications in amplifiers, lasers, and sensors in which inter-modal crosstalk imposes a fundamental performance limitation.

  3. Cantilever-based sensor with integrated optical read-out using single mode waveguides

    DEFF Research Database (Denmark)

    Nordström, Maria; Zauner, Dan; Calleja, Montserrat

    2007-01-01

    This work presents the design, fabrication and mechanical characterisation of an integrated optical read-out scheme for cantilever-based biosensors. A cantilever can be used as a biosensor by monitoring its bending caused by the surface stress generated due to chemical reactions occurring on its...... surface. Here, we present a novel integrated optical read-out scheme based on single-mode waveguides that enables the fabrication of a compact system. The complete system is fabricated in the polymer SU-8. This manuscript shows the principle of operation and the design well as the fabrication...

  4. Mode conversion in hybrid optical fiber coupler

    Science.gov (United States)

    Stasiewicz, Karol A.; Marc, P.; Jaroszewicz, Leszek R.

    2012-04-01

    Designing of all in-line fiber optic systems with a supercontinuum light source gives some issues. The use of a standard single mode fiber (SMF) as an input do not secure single mode transmission in full wavelength range. In the paper, the experimental results of the tested hybrid fiber optic coupler were presented. It was manufactured by fusing a standard single mode fiber (SMF28) and a photonic crystal fiber (PCF). The fabrication process is based on the standard fused biconical taper technique. Two types of large mode area fibers (LMA8 and LAM10 NKT Photonics) with different air holes arrangements were used as the photonic crystal fiber. Spectral characteristics within the range of 800 nm - 1700 nm were presented. All process was optimized to obtain a mode conversion between SMF and PCF and to reach a single mode transmission in the PCF output of the coupler.

  5. Effects of {gamma} and neutron irradiation on the optical absorption of pure silica core single-mode optical fibres from Nufern

    Energy Technology Data Exchange (ETDEWEB)

    Calderon, A. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Martinez-Rivero, C. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Matorras, F. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Rodrigo, T. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Sobron, M. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Vila, I. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Virto, A.L. [Instituto de Fisica de Cantabria, CSIC-University of Cantabria, Santander (Spain); Alberdi, J. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Arce, P. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Barcala, J.M. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Calvo, E. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Ferrando, A. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain)]. E-mail: Antonio.Ferrando@ciemat.es; Josa, M.I. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Luque, J.M. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Molinero, A. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Navarrete, J. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Oller, J.C. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Valdivieso, P. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Yuste, C. [CIEMAT, Particle Physics, Avda. Complutense 22, 28040, Madrid (Spain); Fenyvesi, A. [Institute of Nuclear Research, ATOMKI, Debrecen (Hungary); Molnar, J. [Institute of Nuclear Research, ATOMKI, Debrecen (Hungary)

    2006-09-15

    A measurement of the optical absorption, induced by photon irradiation up to a dose of 0.9 MGy, in Nufern silica core single-mode optical fibres is presented. In addition, the fibres were irradiated with neutrons, up to a total fluence of 2x10{sup 14} cm{sup -2} and the induced optical absorption was evaluated for four different wavelengths: 630, 670, 681 and 785 nm.

  6. Effects of γ and neutron irradiation on the optical absorption of pure silica core single-mode optical fibres from Nufern

    International Nuclear Information System (INIS)

    Calderon, A.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Sobron, M.; Vila, I.; Virto, A.L.; Alberdi, J.; Arce, P.; Barcala, J.M.; Calvo, E.; Ferrando, A.; Josa, M.I.; Luque, J.M.; Molinero, A.; Navarrete, J.; Oller, J.C.; Valdivieso, P.; Yuste, C.; Fenyvesi, A.; Molnar, J.

    2006-01-01

    A measurement of the optical absorption, induced by photon irradiation up to a dose of 0.9 MGy, in Nufern silica core single-mode optical fibres is presented. In addition, the fibres were irradiated with neutrons, up to a total fluence of 2x10 14 cm -2 and the induced optical absorption was evaluated for four different wavelengths: 630, 670, 681 and 785 nm

  7. Nonlinear polarization effects in a birefringent single mode optical fiber

    International Nuclear Information System (INIS)

    Ishiekwene, G.C.; Mensah, S.Y.; Brown, C.S.

    2001-04-01

    The nonlinear polarization effects in a birefringent single mode optical fiber is studied using Jacobi elliptic functions. We find that the polarization state of the propagating beam depends on the initial polarization as well as the intensity of the input light in a complicated way. The Stokes polarization parameters are either periodic or aperiodic depending on the value of the Jacobian modulus. Our calculations suggest that the effective beat length of the fiber can become infinite at a higher critical value of the input power when polarization dependent losses are considered. (author)

  8. Adaptive optics correction into single mode fiber for a low Earth orbiting space to ground optical communication link using the OPALS downlink.

    Science.gov (United States)

    Wright, Malcolm W; Morris, Jeffery F; Kovalik, Joseph M; Andrews, Kenneth S; Abrahamson, Matthew J; Biswas, Abhijit

    2015-12-28

    An adaptive optics (AO) testbed was integrated to the Optical PAyload for Lasercomm Science (OPALS) ground station telescope at the Optical Communications Telescope Laboratory (OCTL) as part of the free space laser communications experiment with the flight system on board the International Space Station (ISS). Atmospheric turbulence induced aberrations on the optical downlink were adaptively corrected during an overflight of the ISS so that the transmitted laser signal could be efficiently coupled into a single mode fiber continuously. A stable output Strehl ratio of around 0.6 was demonstrated along with the recovery of a 50 Mbps encoded high definition (HD) video transmission from the ISS at the output of the single mode fiber. This proof of concept demonstration validates multi-Gbps optical downlinks from fast slewing low-Earth orbiting (LEO) spacecraft to ground assets in a manner that potentially allows seamless space to ground connectivity for future high data-rates network.

  9. Low-bending loss and single-mode operation in few-mode optical fiber

    Science.gov (United States)

    Yin, Ping; Wang, Hua; Chen, Ming-Yang; Wei, Jin; Cai, Zhi-Min; Li, Lu-Ming; Yang, Ji-Hai; Zhu, Yuan-Feng

    2016-10-01

    The technique of eliminating the higher-order modes in a few-mode optical fiber is proposed. The fiber is designed with a group of defect modes in the cladding. The higher-order modes in the fiber can be eliminated by bending the fiber to induce strong coupling between the defect modes and the higher-order modes. Numerical simulation shows the bending losses of the LP01 mode are lower than 1.5×10-4 dB/turn for the wavelength shorter than 1.625 μm. The proposed fiber can be bent multiple turns at small bending radius which are preferable for FTTH related applications.

  10. Mode coupling in hybrid square-rectangular lasers for single mode operation

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xiu-Wen; Huang, Yong-Zhen, E-mail: yzhuang@semi.ac.cn; Yang, Yue-De; Xiao, Jin-Long; Weng, Hai-Zhong; Xiao, Zhi-Xiong [State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100083 (China)

    2016-08-15

    Mode coupling between a square microcavity and a Fabry-Pérot (FP) cavity is proposed and demonstrated for realizing single mode lasers. The modulations of the mode Q factor as simulation results are observed and single mode operation is obtained with a side mode suppression ratio of 46 dB and a single mode fiber coupling loss of 3.2 dB for an AlGaInAs/InP hybrid laser as a 300-μm-length and 1.5-μm-wide FP cavity connected to a vertex of a 10-μm-side square microcavity. Furthermore, tunable single mode operation is demonstrated with a continuous wavelength tuning range over 10 nm. The simple hybrid structure may shed light on practical applications of whispering-gallery mode microcavities in large-scale photonic integrated circuits and optical communication and interconnection.

  11. Cavity Formation Modeling of Fiber Fuse in Single-Mode Optical Fibers

    Directory of Open Access Journals (Sweden)

    Yoshito Shuto

    2017-01-01

    Full Text Available The evolution of a fiber-fuse phenomenon in a single-mode optical fiber was studied theoretically. To clarify both the silica-glass densification and cavity formation, which have been observed in fiber fuse propagation, we investigated a nonlinear oscillation model using the Van Der Pol equation. This model was able to phenomenologically explain both the densification of the core material and the formation of periodic cavities in the core layer as a result of a relaxation oscillation.

  12. Electrically tunable Brillouin fiber laser based on a metal-coated single-mode optical fiber

    Directory of Open Access Journals (Sweden)

    S.M. Popov

    Full Text Available We explore tunability of the Brillouin fiber laser employing Joule heating. For this purpose, 10-m-length of a metal-coated single-mode optical cavity fiber has been directly included into an electrical circuit, like a conductor wire. With the current up to ∼3.5 A the laser tuning is demonstrated over a spectrum range of ∼400 MHz. The observed laser line broadening up to ∼2 MHz is explained by frequency drift and mode-hoping in the laser caused by thermal noise. Keywords: Brillouin fiber laser, Metal-coated optical fiber, Laser tuning, Fiber sensors

  13. The use of Lorentz group formalism in solving polarization effects of a birefringent single mode optical fiber

    International Nuclear Information System (INIS)

    Ishiekwene, G.C.; Brown, C.S.; Mensah, S.Y.; Bak, A.E.

    2000-07-01

    A theoretical analysis on the polarization effects of a light beam propagating in a birefringent single-mode fiber is presented. We derive a system of differential equations representing the evolution of Stokes parameters and illustrate their application to polarization effects in a straight birefringent single mode optical fiber. The solutions to the set of equations are obtained using specifically the methods of the unified formalism for polarization optics which adopt the use of the Stokes-Mueller equation and the Lorentz group to model polarization phenomena in media such as optical fibers. The analytical results presented using this approach are identical to results obtained from other conventional methods. We observe the characteristic exponential decrease in the total intensity of the input light due to attenuation by the fiber. (author)

  14. Dynamics of Nonlinear Excitation of the High-Order Mode in a Single-Mode Step-Index Optical Fiber

    Science.gov (United States)

    Burdin, V.; Bourdine, A.

    2018-04-01

    This work is concerned with approximate model of higher-order mode nonlinear excitation in a singlemode silica optical fiber. We present some results of simulation for step-index optical fiber under femtosecond optical pulse launching, which confirm ability of relatively stable higher-order mode excitation in such singlemode optical fiber over sufficiently narrow range of launched optical power variation.

  15. PREPARATION OF THE SINGLE MODE PLANAR OPTICAL SPLITTER MODULES AND THEIR CHARACTERIZATIONS

    Directory of Open Access Journals (Sweden)

    Vu Doan Mien

    2017-11-01

    Full Text Available Optical splitter modules have been prepared based on 1x8 single mode silica planar waveguide optical splitter chips with 250 µm spacing and v-groove fiber arrays for applications in fiber optic communications. We report the technology of precise optical coupling and packaging of the splitter modules and the measurements of the insertion loss (< 11 dB,  uniformity (< 0.80 dB and polarization dependence loss (PLD < 0.10 dB as well as the lateral profile and the image of the input and output lights for the wavelengths of 1310 nm and 1550 nm. The main characteristics of the prepared splitter modules are about the same for the commercial available products. The prepared modules have been tested for operation in the conditions of wide temperature range (5–80°C and humidity range (50–98% and no changes in the main characteristics were observed.

  16. Dual-mode optical microscope based on single-pixel imaging

    Science.gov (United States)

    Rodríguez, A. D.; Clemente, P.; Tajahuerce, E.; Lancis, J.

    2016-07-01

    We demonstrate an inverted microscope that can image specimens in both reflection and transmission modes simultaneously with a single light source. The microscope utilizes a digital micromirror device (DMD) for patterned illumination altogether with two single-pixel photosensors for efficient light detection. The system, a scan-less device with no moving parts, works by sequential projection of a set of binary intensity patterns onto the sample that are codified onto a modified commercial DMD. Data to be displayed are geometrically transformed before written into a memory cell to cancel optical artifacts coming from the diamond-like shaped structure of the micromirror array. The 24-bit color depth of the display is fully exploited to increase the frame rate by a factor of 24, which makes the technique practicable for real samples. Our commercial DMD-based LED-illumination is cost effective and can be easily coupled as an add-on module for already existing inverted microscopes. The reflection and transmission information provided by our dual microscope complement each other and can be useful for imaging non-uniform samples and to prevent self-shadowing effects.

  17. Single and two-mode mechanical squeezing of an optically levitated nanodiamond via dressed-state coherence

    International Nuclear Information System (INIS)

    Ge, Wenchao; Bhattacharya, M

    2016-01-01

    Nonclassical states of macroscopic objects are promising for ultrasensitive metrology as well as testing quantum mechanics. In this work, we investigate dissipative mechanical quantum state engineering in an optically levitated nanodiamond. First, we study single-mode mechanical squeezed states by magnetically coupling the mechanical motion to a dressed three-level system provided by a nitrogen-vacancy center in the nanoparticle. Quantum coherence between the dressed levels is created via microwave fields to induce a two-phonon transition, which results in mechanical squeezing. Remarkably, we find that in ultrahigh vacuum quantum squeezing is achievable at room temperature with feedback cooling. For moderate vacuum, quantum squeezing is possible with cryogenic temperature. Second, we present a setup for two mechanical modes coupled to the dressed three levels, which results in two-mode squeezing analogous to the mechanism of the single-mode case. In contrast to previous works, our study provides a deterministic method for engineering macroscopic squeezed states without the requirement for a cavity. (paper)

  18. Single and two-mode mechanical squeezing of an optically levitated nanodiamond via dressed-state coherence

    Science.gov (United States)

    Ge, Wenchao; Bhattacharya, M.

    2016-10-01

    Nonclassical states of macroscopic objects are promising for ultrasensitive metrology as well as testing quantum mechanics. In this work, we investigate dissipative mechanical quantum state engineering in an optically levitated nanodiamond. First, we study single-mode mechanical squeezed states by magnetically coupling the mechanical motion to a dressed three-level system provided by a nitrogen-vacancy center in the nanoparticle. Quantum coherence between the dressed levels is created via microwave fields to induce a two-phonon transition, which results in mechanical squeezing. Remarkably, we find that in ultrahigh vacuum quantum squeezing is achievable at room temperature with feedback cooling. For moderate vacuum, quantum squeezing is possible with cryogenic temperature. Second, we present a setup for two mechanical modes coupled to the dressed three levels, which results in two-mode squeezing analogous to the mechanism of the single-mode case. In contrast to previous works, our study provides a deterministic method for engineering macroscopic squeezed states without the requirement for a cavity.

  19. Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors

    DEFF Research Database (Denmark)

    Woyessa, Getinet; Fasano, Andrea; Stefani, Alessio

    2016-01-01

    We have fabricated the first single-mode step-index and humidity insensitive polymer optical fiber operating in the 850 nm wavelength ranges. The step-index preform is fabricated using injection molding, which is an efficient method for cost effective, flexible and fast preparation of the fiber...... preform. The fabricated single-mode step-index (SI) polymer optical fiber (POF) has a 4.8µm core made from TOPAS grade 5013S-04 with a glass transition temperature of 134°C and a 150 µm cladding made from ZEONEX grade 480R with a glass transition temperature of 138°C. The key advantages of the proposed...... SIPOF are low water absorption, high operating temperature and chemical inertness to acids and bases and many polar solvents as compared to the conventional poly-methyl-methacrylate (PMMA) and polystyrene based POFs. In addition, the fiber Bragg grating writing time is short compared to microstructured...

  20. Radiation resistance characteristics of optical communication system for single mode

    International Nuclear Information System (INIS)

    Ohe, Masamoto; Chigusa, Yoshiki; Kyodo, Tomohisa; Tanaka, Gohtaro; Watanabe, Hajime; Okamoto, Shin-ichi; Yamamoto, Takao.

    1988-01-01

    Optical communication has been utilized also for nuclear power stations and fuel reporocessing plants. As the sufficient safety countermeasures are required there, the amount of information becomes enormous, therefore, optical communication, by which the required space is expected to be reduced, becomes more important. Also in the application to submarine cables, attention must be paid to the radiation resistance as there are the effects of potassium contained in large amount in seawater and uranium deposits in sea bottom. Therefore, the reliability of the components of optical communication systems against radiation becomes a problem. In this study, single mode optical fibers and transmission and receipt modules were selected, and high dose rate irradiation supposing the case of using in a cell and low dose rate, long time irradiation supposing the case of submarine cables were carried out to evaluate the radiation resistance characteristics. The fibers tested were SiO 2 core/F-SiO 2 clad type and GeO 2 -SiO 2 core/SiO 2 clad type. The characteristics of increasing loss in irradiation and restoration after irradiation of the former type were superior to those of the latter type. The output of a receipt module was normal during irradiation, and the output power of a transmission module decreases, but other problems did not arise. (K.I.)

  1. Radiation-induced transient absorption in single mode optical fibers

    International Nuclear Information System (INIS)

    Looney, L.D.; Lyons, P.B.

    1988-01-01

    This paper reviews the measurements conducted by the Los Alamos National Laboratory in support of these NATO efforts wherein radiation-induced transient absorption was measured over time ranges from a few ns to several μs for two single mode fibers. Experimental conditions were varied to provide data for future development of standarized test conditions for single mode fibers. 8 refs., 11 figs

  2. Four-port mode-selective silicon optical router for on-chip optical interconnect.

    Science.gov (United States)

    Jia, Hao; Zhou, Ting; Fu, Xin; Ding, Jianfeng; Zhang, Lei; Yang, Lin

    2018-04-16

    We propose and demonstrate a four-port mode-selective optical router on a silicon-on-insulator platform. The passive routing property ensures that the router consumes no power to establish the optical links. For each port, input signals with different modes are selectively routed to the target ports through the pre-designed architecture. In general, the device intrinsically supports broadcasting of multiplexed signals from one port to the other three ports through mode division multiplexing. In some applications, the input signal from one port would only be sent to another port as in reconfigurable optical routers. The prototype is constructed by mode multiplexers/de-multiplexers and single-mode interconnect waveguides between them. The insertion losses for all optical links are lower than 8.0 dB, and the largest optical crosstalk values are lower than -18.7 dB and -22.0 dB for the broadcasting and port-to-port routing modes, respectively, at the wavelength range of 1525-1565 nm. In order to verify the routing functionality, a 40-Gbps bidirectional data transmission experiment is performed. The device offers a promising building block for passive routing by utilizing the dimension of the modes.

  3. Optical Microcavity: Sensing down to Single Molecules and Atoms

    Directory of Open Access Journals (Sweden)

    Shu-Yu Su

    2011-02-01

    Full Text Available This review article discusses fundamentals of dielectric, low-loss, optical micro-resonator sensing, including figures of merit and a variety of microcavity designs, and future perspectives in microcavity-based optical sensing. Resonance frequency and quality (Q factor are altered as a means of detecting a small system perturbation, resulting in realization of optical sensing of a small amount of sample materials, down to even single molecules. Sensitivity, Q factor, minimum detectable index change, noises (in sensor system components and microcavity system including environments, microcavity size, and mode volume are essential parameters to be considered for optical sensing applications. Whispering gallery mode, photonic crystal, and slot-type microcavities typically provide compact, high-quality optical resonance modes for optical sensing applications. Surface Bloch modes induced on photonic crystals are shown to be a promising candidate thanks to large field overlap with a sample and ultra-high-Q resonances. Quantum optics effects based on microcavity quantum electrodynamics (QED would provide novel single-photo-level detection of even single atoms and molecules via detection of doublet vacuum Rabi splitting peaks in strong coupling.

  4. Pulsed x-ray induced attenuation measurements of single mode optical fibers and coupler materials

    International Nuclear Information System (INIS)

    Johan, A.; Charre, P.

    1994-01-01

    Pulsed X-ray induced transient radiation attenuation measurements of single mode optical fibers have been performed versus total dose, light wavelength, optical power and fiber coil diameter in order to determine the behavior of parameters sensitive to ionizing radiation. The results did not show any photobleaching phenomenon and the attenuation was found independent of the spool diameter. As expected, transient attenuation was lower for higher wave-lengths. The recovery took place in the millisecond range and was independent of total dose, light wavelength and optical power. In optical modules and devices a large range of behaviors was observed according to coupler material i.e., Corning coupler showed a small peak attenuation that remained more than one day later; on the other hand LiTaO 3 material experienced an order of magnitude higher peak attenuation and a recovery in the millisecond range. For applications with optical fibers and integrated optics devices the authors showed that in many cases the optical fiber (length above 100 m) is the most sensitive device in a transient ionizing radiation field

  5. Current measurements by Faraday rotation in single mode optical fibers

    International Nuclear Information System (INIS)

    Chandler, G.I.; Jahoda, F.C.

    1984-01-01

    Development of techniques for measuring magnetic fields and currents by Faraday rotation in single-mode optical fibers has continued. We summarize the results of attempts to measure the toroidal plasma current in the ZT-40 Reversed-Field-Pinch using multi-turn fiber coils. The fiber response is reproducible and in accord with theory, but the amount and distribution of the stress-induced birefringence in this case are such that prediction of the sensor response at low currents is difficult if not impossible. The low-current difficulty can be overcome by twisting the fiber to induce a circular birefringence bias. We report the results of auxiliary experiments with a fiber that has been twisted with 15 turns per meter and then re-coated to lock the twist in place

  6. Electrically-pumped, broad-area, single-mode photonic crystal lasers.

    Science.gov (United States)

    Zhu, Lin; Chak, Philip; Poon, Joyce K S; DeRose, Guy A; Yariv, Amnon; Scherer, Axel

    2007-05-14

    Planar broad-area single-mode lasers, with modal widths of the order of tens of microns, are technologically important for high-power applications and improved coupling efficiency into optical fibers. They may also find new areas of applications in on-chip integration with devices that are of similar size scales, such as for spectroscopy in microfluidic chambers or optical signal processing with micro-electromechanical systems. An outstanding challenge is that broad-area lasers often require external means of control, such as injection-locking or a frequency/spatial filter to obtain single-mode operation. In this paper, we propose and demonstrate effective index-guided, large-area, edge-emitting photonic crystal lasers driven by pulsed electrical current injection at the optical telecommunication wavelength of 1550 nm. By suitable design of the photonic crystal lattice, our lasers operate in a single mode with a 1/e(2) modal width of 25 microm and a length of 600 microm.

  7. Modeling satellite-Earth quantum channel downlinks with adaptive-optics coupling to single-mode fibers

    Science.gov (United States)

    Gruneisen, Mark T.; Flanagan, Michael B.; Sickmiller, Brett A.

    2017-12-01

    The efficient coupling of photons from a free-space quantum channel into a single-mode optical fiber (SMF) has important implications for quantum network concepts involving SMF interfaces to quantum detectors, atomic systems, integrated photonics, and direct coupling to a fiber network. Propagation through atmospheric turbulence, however, leads to wavefront errors that degrade mode matching with SMFs. In a free-space quantum channel, this leads to photon losses in proportion to the severity of the aberration. This is particularly problematic for satellite-Earth quantum channels, where atmospheric turbulence can lead to significant wavefront errors. This report considers propagation from low-Earth orbit to a terrestrial ground station and evaluates the efficiency with which photons couple either through a circular field stop or into an SMF situated in the focal plane of the optical receiver. The effects of atmospheric turbulence on the quantum channel are calculated numerically and quantified through the quantum bit error rate and secure key generation rates in a decoy-state BB84 protocol. Numerical simulations include the statistical nature of Kolmogorov turbulence, sky radiance, and an adaptive-optics system under closed-loop control.

  8. Single-mode optical fiber design with wide-band ultra low bending-loss for FTTH application.

    Science.gov (United States)

    Watekar, Pramod R; Ju, Seongmin; Han, Won-Taek

    2008-01-21

    We propose a new design of a single-mode optical fiber (SMF) which exhibits ultra low bend sensitivity over a wide communication band (1.3 microm to 1.65 microm). A five-cladding fiber structure has been proposed to minimize the bending loss, estimated to be as low as 4.4x10(-10) dB/turn for the bend radius of 10 mm.

  9. Harnessing the mode mixing in optical fiber-tip cavities

    International Nuclear Information System (INIS)

    Podoliak, Nina; Horak, Peter; Takahashi, Hiroki; Keller, Matthias

    2017-01-01

    We present a systematic numerical study of Fabry–Pérot optical cavities with Gaussian-shape mirrors formed between tips of optical fibers. Such cavities can be fabricated by laser machining of fiber tips and are promising systems for achieving strong coupling between atomic particles and an optical field as required for quantum information applications. Using a mode mixing matrix method, we analyze the cavity optical eigenmodes and corresponding losses depending on a range of cavity-shape parameters, such as mirror radius of curvature, indentation depth and cavity length. The Gaussian shape of the mirrors causes mixing of optical modes in the cavity. We investigate the effect of the mode mixing on the coherent atom-cavity coupling as well as the mode matching between the cavity and a single-mode optical fiber. While the mode mixing is associated with increased cavity losses, it can also lead to an enhancement of the local optical field. We demonstrate that around the resonance between the fundamental and 2nd order Laguerre–Gaussian modes of the cavity it is possible to obtain 50% enhancement of the atom-cavity coupling at the cavity center while still maintaining low cavity losses and high cavity-fiber optical coupling. (paper)

  10. Enhancement of single mode operation in coaxial optical waveguide using DB boundary conditions

    Science.gov (United States)

    Lohia, Pooja; Prajapati, Y.; Saini, J. P.; Rai, B. S.

    2014-11-01

    In this study, a competent numerical strategy to compute the dispersion of optical waveguides is presented and propagation of electromagnetic waves in a coaxial optical waveguide with DB boundary conditions is instigated. For this intend, cylindrical coordinates are here being used to derive the DB boundary conditions and to obtain field components for the modes. The propagation constant for the waveguide to be studied is determined by solving the Bessel and the modified Bessel functions. The cutoff frequencies for various lower order modes have been calculated and their dispersion characteristics are plotted correspondingly. The behavior of the coaxial optical waveguide under DB boundary conditions is shown to be significantly different from that of coaxial optical waveguide and conventional optical waveguide under traditional or tangential boundary conditions. Finally, the effect of waveguide dimensions on the mode cutoff frequencies and fabrication issues are also addressed.

  11. Long-Period Gratings in Highly Germanium-Doped, Single-Mode Optical Fibers for Sensing Applications

    Science.gov (United States)

    Schlangen, Sebastian; Bremer, Kort; Zheng, Yulong; Böhm, Sebastian; Steinke, Michael; Wellmann, Felix; Neumann, Jörg; Overmeyer, Ludger

    2018-01-01

    Long-period fiber gratings (LPGs) are well known for their sensitivity to external influences, which make them interesting for a large number of sensing applications. For these applications, fibers with a high numerical aperture (i.e., fibers with highly germanium (Ge)-doped fused silica fiber cores) are more attractive since they are intrinsically photosensitive, as well as less sensitive to bend- and microbend-induced light attenuations. In this work, we introduce a novel method to inscribe LPGs into highly Ge-doped, single-mode fibers. By tapering the optical fiber, and thus, tailoring the effective indices of the core and cladding modes, for the first time, an LPG was inscribed into such fibers using the amplitude mask technique and a KrF excimer laser. Based on this novel method, sensitive LPG-based fiber optic sensors only a few millimeters in length can be incorporated in bend-insensitive fibers for use in various monitoring applications. Moreover, by applying the described inscription method, the LPG spectrum can be influenced and tailored according to the specific demands of a particular application. PMID:29702600

  12. Long-Period Gratings in Highly Germanium-Doped, Single-Mode Optical Fibers for Sensing Applications

    Directory of Open Access Journals (Sweden)

    Sebastian Schlangen

    2018-04-01

    Full Text Available Long-period fiber gratings (LPGs are well known for their sensitivity to external influences, which make them interesting for a large number of sensing applications. For these applications, fibers with a high numerical aperture (i.e., fibers with highly germanium (Ge-doped fused silica fiber cores are more attractive since they are intrinsically photosensitive, as well as less sensitive to bend- and microbend-induced light attenuations. In this work, we introduce a novel method to inscribe LPGs into highly Ge-doped, single-mode fibers. By tapering the optical fiber, and thus, tailoring the effective indices of the core and cladding modes, for the first time, an LPG was inscribed into such fibers using the amplitude mask technique and a KrF excimer laser. Based on this novel method, sensitive LPG-based fiber optic sensors only a few millimeters in length can be incorporated in bend-insensitive fibers for use in various monitoring applications. Moreover, by applying the described inscription method, the LPG spectrum can be influenced and tailored according to the specific demands of a particular application.

  13. Single-mode optical waveguides on native high-refractive-index substrates

    Directory of Open Access Journals (Sweden)

    Richard R. Grote

    2016-10-01

    Full Text Available High-refractive-index semiconductor optical waveguides form the basis for modern photonic integrated circuits (PICs. However, conventional methods for achieving optical confinement require a thick lower-refractive-index support layer that impedes large-scale co-integration with electronics and limits the materials on which PICs can be fabricated. To address this challenge, we present a general architecture for single-mode waveguides that confine light in a high-refractive-index material on a native substrate. The waveguide consists of a high-aspect-ratio fin of the guiding material surrounded by lower-refractive-index dielectrics and is compatible with standard top-down fabrication techniques. This letter describes a physically intuitive, semi-analytical, effective index model for designing fin waveguides, which is confirmed with fully vectorial numerical simulations. Design examples are presented for diamond and silicon at visible and telecommunications wavelengths, respectively, along with calculations of propagation loss due to bending, scattering, and substrate leakage. Potential methods of fabrication are also discussed. The proposed waveguide geometry allows PICs to be fabricated alongside silicon CMOS electronics on the same wafer, removes the need for heteroepitaxy in III-V PICs, and will enable wafer-scale photonic integration on emerging material platforms such as diamond and SiC.

  14. Accurate mode characterization of two-mode optical fibers by in-fiber acousto-optics.

    Science.gov (United States)

    Alcusa-Sáez, E; Díez, A; Andrés, M V

    2016-03-07

    Acousto-optic interaction in optical fibers is exploited for the accurate and broadband characterization of two-mode optical fibers. Coupling between LP 01 and LP 1m modes is produced in a broadband wavelength range. Difference in effective indices, group indices, and chromatic dispersions between the guided modes, are obtained from experimental measurements. Additionally, we show that the technique is suitable to investigate the fine modes structure of LP modes, and some other intriguing features related with modes' cut-off.

  15. Comparison of single-/few-/multi-mode 850 nm VCSELs for optical OFDM transmission.

    Science.gov (United States)

    Kao, Hsuan-Yun; Tsai, Cheng-Ting; Leong, Shan-Fong; Peng, Chun-Yen; Chi, Yu-Chieh; Huang, Jian Jang; Kuo, Hao-Chung; Shih, Tien-Tsorng; Jou, Jau-Ji; Cheng, Wood-Hi; Wu, Chao-Hsin; Lin, Gong-Ru

    2017-07-10

    For high-speed optical OFDM transmission applications, a comprehensive comparison of the homemade multi-/few-/single-transverse mode (MM/FM/SM) vertical cavity surface emitting laser (VCSEL) chips is performed. With microwave probe, the direct encoding of pre-leveled 16-QAM OFDM data and transmission over 100-m-long OM4 multi-mode-fiber (MMF) are demonstrated for intra-datacenter applications. The MM VCSEL chip with the largest emission aperture of 11 μm reveals the highest differential quantum efficiency which provides the highest optical power of 8.67 mW but exhibits the lowest encodable bandwidth of 21 GHz. In contrast, the SM VCSEL chip fabricated with the smallest emission aperture of only 3 μm provides the highest 3-dB encoding bandwidth up to 23 GHz at a cost of slight heat accumulation. After optimization, with the trade-off set between the receiving signal-to-noise ratio (SNR) and bandwidth, the FM VCSEL chip guarantees the highest optical OFDM transmission bit rate of 96 Gbit/s under back-to-back case with its strongest throughput. Among three VCSEL chips, the SM VCSEL chip with nearly modal-dispersion free feature is treated as the best candidate for carrying the pre-leveled 16-QAM OFDM data over 100-m OM4-MMF with same material structure but exhibits different oxide-layer confined gain cross-sections with one another at 80-Gbit/s with the smallest receiving power penalty of 1.77 dB.

  16. Single-mode annular chirally-coupled core fibers for fiber lasers

    Science.gov (United States)

    Zhang, Haitao; Hao, He; He, Linlu; Gong, Mali

    2018-03-01

    Chirally-coupled core (CCC) fiber can transmit single fundamental mode and effectively suppresses higher-order mode (HOM) propagation, thus improve the beam quality. However, the manufacture of CCC fiber is complicated due to its small side core. To decrease the manufacture difficulty in China, a novel fiber structure is presented, defined as annular chirally-coupled core (ACCC) fiber, replacing the small side core by a larger side annulus. In this paper, we designed the fiber parameters of this new structure, and demonstrated that the new structure has a similar property of single mode with traditional CCC fiber. Helical coordinate system was introduced into the finite element method (FEM) to analyze the mode field in the fiber, and the beam propagation method (BPM) was employed to analyze the influence of the fiber parameters on the mode loss. Based on the result above, the fiber structure was optimized for efficient single-mode transmission, in which the core diameter is 35 μm with beam quality M2 value of 1.04 and an optical to optical conversion efficiency of 84%. In this fiber, fundamental mode propagates in an acceptable loss, while the HOMs decay rapidly.

  17. Design of dual-mode optical fibres for the FTTH applications

    Science.gov (United States)

    Chen, Ming-Yang; Li, Yu-Rong; Zhang, Yin; Zhu, Yuan-Feng; Zhang, Yong-Kang; Zhou, Jun

    2011-01-01

    We present in this article a proposal and design for dual-mode optical fibres for fibre-to-the-home applications. High-order modes in the fibre can be effectively suppressed by the connection of the fibre with standard single-mode optical fibres at the two ends of the fibre. The alignment tolerance at the splicing process is presented. In particular, a low bending loss operation with low splice loss is demonstrated using the proposed technique.

  18. Design of dual-mode optical fibres for the FTTH applications

    International Nuclear Information System (INIS)

    Chen, Ming-Yang; Li, Yu-Rong; Zhang, Yin; Zhu, Yuan-Feng; Zhang, Yong-Kang; Zhou, Jun

    2011-01-01

    We present in this article a proposal and design for dual-mode optical fibres for fibre-to-the-home applications. High-order modes in the fibre can be effectively suppressed by the connection of the fibre with standard single-mode optical fibres at the two ends of the fibre. The alignment tolerance at the splicing process is presented. In particular, a low bending loss operation with low splice loss is demonstrated using the proposed technique

  19. Experimental demonstration of single-mode fiber coupling over relatively strong turbulence with adaptive optics.

    Science.gov (United States)

    Chen, Mo; Liu, Chao; Xian, Hao

    2015-10-10

    High-speed free-space optical communication systems using fiber-optic components can greatly improve the stability of the system and simplify the structure. However, propagation through atmospheric turbulence degrades the spatial coherence of the signal beam and limits the single-mode fiber (SMF) coupling efficiency. In this paper, we analyze the influence of the atmospheric turbulence on the SMF coupling efficiency over various turbulences. The results show that the SMF coupling efficiency drops from 81% without phase distortion to 10% when phase root mean square value equals 0.3λ. The simulations of SMF coupling with adaptive optics (AO) indicate that it is inevitable to compensate the high-order aberrations for SMF coupling over relatively strong turbulence. The SMF coupling efficiency experiments, using an AO system with a 137-element deformable mirror and a Hartmann-Shack wavefront sensor, obtain average coupling efficiency increasing from 1.3% in open loop to 46.1% in closed loop under a relatively strong turbulence, D/r0=15.1.

  20. Amplitude Noise Suppression and Orthogonal Multiplexing Using Injection-Locked Single-Mode VCSEL

    DEFF Research Database (Denmark)

    Lyubopytov, Vladimir; von Lerber, Tuomo; Lassas, Matti

    2017-01-01

    We experimentally demonstrate BER reduction and orthogonal modulation using an injection locked single-mode VCSEL. It allows us suppressing an amplitude noise of optical signal and/or double the capacity of an information channel.......We experimentally demonstrate BER reduction and orthogonal modulation using an injection locked single-mode VCSEL. It allows us suppressing an amplitude noise of optical signal and/or double the capacity of an information channel....

  1. Short pulse generation from a passively mode-locked fiber optical parametric oscillator with optical time-stretch.

    Science.gov (United States)

    Qiu, Yi; Wei, Xiaoming; Du, Shuxin; Wong, Kenneth K Y; Tsia, Kevin K; Xu, Yiqing

    2018-04-16

    We propose a passively mode-locked fiber optical parametric oscillator assisted with optical time-stretch. Thanks to the lately developed optical time-stretch technique, the onset oscillating spectral components can be temporally dispersed across the pump envelope and further compete for the parametric gain with the other parts of onset oscillating sidebands within the pump envelope. By matching the amount of dispersion in optical time-stretch with the pulse width of the quasi-CW pump and oscillating one of the parametric sidebands inside the fiber cavity, we numerically show that the fiber parametric oscillator can be operated in a single pulse regime. By varying the amount of the intracavity dispersion, we further verify that the origin of this single pulse mode-locking regime is due to the optical pulse stretching and compression.

  2. Single-Mode VCSELs

    Science.gov (United States)

    Larsson, Anders; Gustavsson, Johan S.

    The only active transverse mode in a truly single-mode VCSEL is the fundamental mode with a near Gaussian field distribution. A single-mode VCSEL produces a light beam of higher spectral purity, higher degree of coherence and lower divergence than a multimode VCSEL and the beam can be more precisely shaped and focused to a smaller spot. Such beam properties are required in many applications. In this chapter, after discussing applications of single-mode VCSELs, we introduce the basics of fields and modes in VCSELs and review designs implemented for single-mode emission from VCSELs in different materials and at different wavelengths. This includes VCSELs that are inherently single-mode as well as inherently multimode VCSELs where higher-order modes are suppressed by mode selective gain or loss. In each case we present the current state-of-the-art and discuss pros and cons. At the end, a specific example with experimental results is provided and, as a summary, the most promising designs based on current technologies are identified.

  3. All-fiber optical mode switching based on cascaded mode selective couplers for short-reach MDM networks

    Science.gov (United States)

    Ren, Fang; Li, Juhao; Wu, Zhongying; Yu, Jinyi; Mo, Qi; Wang, Jianping; He, Yongqi; Chen, Zhangyuan; Li, Zhengbin

    2017-04-01

    We propose and experimentally demonstrate an all-fiber optical mode switching structure supporting independent switching, exchanging, adding, and dropping functionalities in which each mode can be switched individually. The mode switching structure consists of cascaded mode selective couplers (MSCs) capable of exciting and selecting specific higher order modes in few-mode fibers with high efficiency and one multiport optical switch routing the independent spatial modes to their destinations. The data carried on three different spatial modes can be switched, exchanged, added, and dropped through this all-fiber structure. For this experimental demonstration, optical on-off-keying (OOK) signals at 10-Gb/s carried on three spatial modes are successfully processed with open and clear eye diagrams. The mode switch exhibits power penalties of less than 3.1 dB after through operation, less than 2.7 dB after exchange operation, less than 2.8 dB after switching operation, and less than 1.6 dB after mode adding and dropping operations at the bit-error rate (BER) of 10-3, while all three channels carried on three spatial modes are simultaneously routed. The proposed structure, compatible with current optical switching networks based on single-mode fibers, can potentially be used to expand the switching scalability in advanced and flexible short-reach mode-division multiplexing-based networks.

  4. Harnessing mode-selective nonlinear optics for on-chip multi-channel all-optical signal processing

    Directory of Open Access Journals (Sweden)

    Ming Ma

    2016-11-01

    Full Text Available All-optical signal processing based on nonlinear optical effects allows for the realization of important functions in telecommunications including wavelength conversion, optical multiplexing/demultiplexing, Fourier transformation, and regeneration, amongst others, on ultrafast time scales to support high data rate transmission. In integrated photonic subsystems, the majority of all-optical signal processing systems demonstrated to date typically process only a single channel at a time or perform a single processing function, which imposes a serious limitation on the functionality of integrated solutions. Here, we demonstrate how nonlinear optical effects can be harnessed in a mode-selective manner to perform simultaneous multi-channel (two and multi-functional optical signal processing (i.e., regenerative wavelength conversion in an integrated silicon photonic device. This approach, which can be scaled to a higher number of channels, opens up a new degree of freedom for performing a broad range of multi-channel nonlinear optical signal processing functions using a single integrated photonic device.

  5. Dual-mode optical microscope based on single-pixel imaging

    OpenAIRE

    Rodríguez Jiménez, Angel David; Clemente Pesudo, Pedro Javier; Tajahuerce, Enrique; Lancis Sáez, Jesús

    2016-01-01

    We demonstrate an inverted microscope that can image specimens in both reflection and transmission modes simultaneously with a single light source. The microscope utilizes a digital micromirror device (DMD) for patterned illumination altogether with two single-pixel photosensors for efficient light detection. The system, a scan-less device with no moving parts, works by sequential projection of a set of binary intensity patterns onto the sample that are codified onto a modified commercial DMD...

  6. Effects of the gamma-ray irradiation on the optical absorption of pure silica core single-mode fibres in the visible and NIR range

    International Nuclear Information System (INIS)

    Calderon, A.; Calvo, E.; Figueroa, C.F.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Sobron, M.; Vila, I.; Virto, A.L.; Arce, P.; Barcala, J.M.; Ferrando, A.; Josa, M.I.; Luque, J.M.; Molinero, A.; Navarrete, J.; Oller, J.C.; Yuste, C.

    2005-01-01

    Optical absorption induced by photon radiation was evaluated for several commercial pure silica core, single mode, optical fibres. The study was performed for three different wavelengths: 630, 670 and 785 nm. We have identified a fibre whose induced transmission loss stays below 1 dB/m after 300 kGy gamma-ray irradiation

  7. A versatile optical microscope for time-dependent single-molecule and single-particle spectroscopy

    Science.gov (United States)

    Li, Hao; Yang, Haw

    2018-03-01

    This work reports the design and implementation of a multi-function optical microscope for time-dependent spectroscopy on single molecules and single nanoparticles. It integrates the now-routine single-object measurements into one standalone platform so that no reconfiguration is needed when switching between different types of sample or spectroscopy modes. The illumination modes include evanescent field through total internal reflection, dark-field illumination, and epi-excitation onto a diffraction-limited spot suitable for confocal detection. The detection modes include spectrally resolved line imaging, wide-field imaging with dual-color capability, and two-color single-element photon-counting detection. The switch between different spectroscopy and data acquisition modes is fully automated and executed through computer programming. The capability of this microscope is demonstrated through selected proof-of-principle experiments.

  8. A versatile optical microscope for time-dependent single-molecule and single-particle spectroscopy.

    Science.gov (United States)

    Li, Hao; Yang, Haw

    2018-03-28

    This work reports the design and implementation of a multi-function optical microscope for time-dependent spectroscopy on single molecules and single nanoparticles. It integrates the now-routine single-object measurements into one standalone platform so that no reconfiguration is needed when switching between different types of sample or spectroscopy modes. The illumination modes include evanescent field through total internal reflection, dark-field illumination, and epi-excitation onto a diffraction-limited spot suitable for confocal detection. The detection modes include spectrally resolved line imaging, wide-field imaging with dual-color capability, and two-color single-element photon-counting detection. The switch between different spectroscopy and data acquisition modes is fully automated and executed through computer programming. The capability of this microscope is demonstrated through selected proof-of-principle experiments.

  9. Single-mode surface plasmon distributed feedback lasers.

    Science.gov (United States)

    Karami Keshmarzi, Elham; Tait, R Niall; Berini, Pierre

    2018-03-29

    Single-mode surface plasmon distributed feedback (DFB) lasers are realized in the near infrared using a two-dimensional non-uniform long-range surface plasmon polariton structure. The surface plasmon mode is excited onto a 20 nm-thick, 1 μm-wide metal stripe (Ag or Au) on a silica substrate, where the stripe is stepped in width periodically, forming a 1st order Bragg grating. Optical gain is provided by optically pumping a 450 nm-thick IR-140 doped PMMA layer as the top cladding, which covers the entire length of the Bragg grating, thus creating a DFB laser. Single-mode lasing peaks of very narrow linewidth were observed for Ag and Au DFBs near 882 nm at room temperature. The narrow linewidths are explained by the low spontaneous emission rate into the surface plasmon lasing mode as well as the high quality factor of the DFB structure. The lasing emission is exclusively TM polarized. Kinks in light-light curves accompanied by spectrum narrowing were observed, from which threshold pump power densities can be clearly identified (0.78 MW cm-2 and 1.04 MW cm-2 for Ag and Au DFB lasers, respectively). The Schawlow-Townes linewidth for our Ag and Au DFB lasers is estimated and very narrow linewidths are predicted for the lasers. The lasers are suitable as inexpensive, recyclable and highly coherent sources of surface plasmons, or for integration with other surface plasmon elements of similar structure.

  10. Adapting the mode profile of planar waveguides to single-mode fibers : a novel method

    NARCIS (Netherlands)

    Smit, M.K.; Vreede, De A.H.

    1991-01-01

    A novel method for coupling single-mode fibers to planar optical circuits with small waveguide dimensions is proposed. The method eliminates the need to apply microoptics or to adapt the waveguide dimensions within the planar circuit to the fiber dimensions. Alignment tolerances are comparable to

  11. Optical Splitters Based on Self-Imaging Effect in Multi-Mode Waveguide Made by Ion Exchange in Glass

    Directory of Open Access Journals (Sweden)

    O. Barkman

    2013-04-01

    Full Text Available Design and modeling of single mode optical multi-mode interference structures with graded refractive index is reported. Several samples of planar optical channel waveguides were obtained by Ag+, Na+ and K+, Na+ one step thermal ion exchange process in molten salt on GIL49 glass substrate and new special optical glass for ion exchange technology. Waveguide properties were measured by optical mode spectroscopy. Obtained data were used for further design and modeling of single mode channel waveguide and subsequently for the design of 1 to 3 multimode interference power splitter in order to improve simulation accuracy. Designs were developed by utilizing finite difference beam propagation method.

  12. Zero-mode waveguide nanophotonic structures for single molecule characterization

    Science.gov (United States)

    Crouch, Garrison M.; Han, Donghoon; Bohn, Paul W.

    2018-05-01

    Single-molecule characterization has become a crucial research tool in the chemical and life sciences, but limitations, such as limited concentration range, inability to control molecular distributions in space, and intrinsic phenomena, such as photobleaching, present significant challenges. Recent developments in non-classical optics and nanophotonics offer promising routes to mitigating these restrictions, such that even low affinity (K D ~ mM) biomolecular interactions can be studied. Here we introduce and review specific nanophotonic devices used to support single molecule studies. Optical nanostructures, such as zero-mode waveguides (ZMWs), are usually fabricated in thin gold or aluminum films and serve to confine the observation volume of optical microspectroscopy to attoliter to zeptoliter volumes. These simple nanostructures allow individual molecules to be isolated for optical and electrochemical analysis, even when the molecules of interest are present at high concentration (µM–mM) in bulk solution. Arrays of ZMWs may be combined with optical probes such as single molecule fluorescence, single molecule fluorescence resonance energy transfer, and fluorescence correlation spectroscopy for distributed analysis of large numbers of single-molecule reactions or binding events in parallel. Furthermore, ZMWs may be used as multifunctional devices, for example by combining optical and electrochemical functions in a single discrete architecture to achieve electrochemical ZMWs. In this review, we will describe the optical properties, fabrication, and applications of ZMWs for single-molecule studies, as well as the integration of ZMWs into systems for chemical and biochemical analysis.

  13. The quantum dynamics of two qubits inside two distant microcavities connected via a single-mode optical fiber

    International Nuclear Information System (INIS)

    Nguyen, Van Hieu; Nguyen, Bich Ha; Duong, Hai Trieu

    2010-01-01

    For application to studying the transmission of quantum information, also called quantum communication, between two identical qubits placed inside two identical single-mode microcavities connected via a single-mode optical fiber, the time evolution of this system is investigated. In the Markovian approximation, the von Neumann equation for its reduced density matrix contains a completely positive linear operator called the Liouvillian operator describing the decoherence of this system due to its interaction with the environment. By using the Linblad formula for the Liouvillian operator, a system of rate equations can be derived. In the special case of resonance between the energy difference of two states in each qubit and the energy of the fiber mode, the rate equations for the system excited up to the first level are solved in first order approximation with respect to the decoherence constants. It is shown that when there is no decoherence, the perfect quantum state transmission between two qubits can take place if the physical parameters of the system satisfy definite conditions. A possible extension to studying the system excited to high energy states is also discussed

  14. Low-Threshold Optical Parametric Oscillations in a Whispering Gallery Mode Resonator

    DEFF Research Database (Denmark)

    Fürst, J. U.; Strekalov, D. V.; Elser, D.

    2010-01-01

    In whispering gallery mode (WGM) resonator light is guided by continuous total internal reflection along a curved surface. Fabricating such resonators from an optically nonlinear material one takes advantage of their exceptionally high quality factors and small mode volumes to achieve extremely...... efficient optical frequency conversion. Our analysis of the phase-matching conditions for optical parametric down-conversion (PDC) in a spherical WGM resonator shows their direct relation to the sum rules for photons' angular momenta and predicts a very low parametric oscillation threshold. We realized...... such an optical parametric oscillator (OPO) based on naturally phase-matched PDC in lithium niobate. We demonstrated a single-mode, strongly nondegenerate OPO with a threshold of 6.7  μW and linewidth under 10 MHz. This work demonstrates the remarkable capabilities of WGM-based OPOs....

  15. Interaction of solitary pulses in single mode optical fibres | Usman ...

    African Journals Online (AJOL)

    Two solitary waves launched, by way of incidence, into an optical fibre from a single pulse if the pulses are in-phase as understood from results of inverse scattering transform method applied to the cubic nonlinear Schrödinger equations, (CNLSE\\'s). The single CNLSE is then understood to describe evolution of coupled ...

  16. Fabrication of Long Period Gratings by Periodically Removing the Coating of Cladding-Etched Single Mode Optical Fiber Towards Optical Fiber Sensor Development.

    Science.gov (United States)

    Ascorbe, Joaquin; Corres, Jesus M; Del Villar, Ignacio; Matias, Ignacio R

    2018-06-07

    Here, we present a novel method to fabricate long period gratings using standard single mode optical fibers (SMF). These optical devices were fabricated in a three-step process, which consisted of etching the SMF, then coating it with a thin-film and, the final step, which involved removing sections of the coating periodically by laser ablation. Tin dioxide was chosen as the material for this study and it was sputtered using a pulsed DC sputtering system. Theoretical simulations were performed in order to select the appropriate parameters for the experiments. The responses of two different devices to different external refractive indices was studied, and the maximum sensitivity obtained was 6430 nm/RIU for external refractive indices ranging from 1.37 to 1.39.

  17. Fabrication of Long Period Gratings by Periodically Removing the Coating of Cladding-Etched Single Mode Optical Fiber Towards Optical Fiber Sensor Development

    Directory of Open Access Journals (Sweden)

    Joaquin Ascorbe

    2018-06-01

    Full Text Available Here, we present a novel method to fabricate long period gratings using standard single mode optical fibers (SMF. These optical devices were fabricated in a three-step process, which consisted of etching the SMF, then coating it with a thin-film and, the final step, which involved removing sections of the coating periodically by laser ablation. Tin dioxide was chosen as the material for this study and it was sputtered using a pulsed DC sputtering system. Theoretical simulations were performed in order to select the appropriate parameters for the experiments. The responses of two different devices to different external refractive indices was studied, and the maximum sensitivity obtained was 6430 nm/RIU for external refractive indices ranging from 1.37 to 1.39.

  18. Signal Processing using Nonlinear Optical Eects in Single- and Few-Mode Fibers

    DEFF Research Database (Denmark)

    Friis, Søren Michael Mørk

    noise, loss, and pump depletion on the noise properties of parametric frequency conversion and phase-insensitive and phase-sensitive parametric amplification. An important part of realizing space-division multiplexing is the ability of optical signal processing so the second part of this thesis......-wave mixing in two-mode fibers acvi counting for six simultaneous processes is derived, and the conversion efficiency from signal to idler in the four-wave mixing processes of phase conjugation and Bragg scattering in two two-mode fibers with different phase matching properties are experimentally investigated......The stagnating increase in data transmission capacity in optical communication systems combined with the ever growing demand of transmission bandwidth is leading to an impending capacity crunch, referring to the point in time after which the available bandwidth of the individual user starts...

  19. Single-photon generator for optical telecommunication wavelength

    International Nuclear Information System (INIS)

    Usuki, T; Sakuma, Y; Hirose, S; Takemoto, K; Yokoyama, N; Miyazawa, T; Takatsu, M; Arakawa, Y

    2006-01-01

    We report on the generation of single-photon pulses from a single InAs/InP quantum dot in telecommunication bands (1.3-1.55 μm: higher transmittance through an optical fiber). First we prepared InAs quantum dots on InP (0 0 1) substrates in a low-pressure MOCVD by using a so-called InP 'double-cap' procedure. The quantum dots have well-controlled photo emission wavelength in the telecommunication bands. We also developed a single-photon emitter in which quantum dots were embedded. Numerical simulation designed the emitter to realize efficient injection of the emitted photons into a single-mode optical fiber. Using a Hanbury-Brown and Twiss technique has proved that the photons through the fiber were single photons

  20. Ultra-Low Power Optical Transistor Using a Single Quantum Dot Embedded in a Photonic Wire

    DEFF Research Database (Denmark)

    Nguyen, H.A.; Grange, T.; Malik, N.S.

    2017-01-01

    Using a single InAs quantum dot embedded in a GaAs photonic wire, we realize a giant non-linearity between two optical modes to experimentally demonstrate an all-optical transistor triggered by 10 photons.......Using a single InAs quantum dot embedded in a GaAs photonic wire, we realize a giant non-linearity between two optical modes to experimentally demonstrate an all-optical transistor triggered by 10 photons....

  1. The hydrogen-bond network of water supports propagating optical phonon-like modes.

    Science.gov (United States)

    Elton, Daniel C; Fernández-Serra, Marivi

    2016-01-04

    The local structure of liquid water as a function of temperature is a source of intense research. This structure is intimately linked to the dynamics of water molecules, which can be measured using Raman and infrared spectroscopies. The assignment of spectral peaks depends on whether they are collective modes or single-molecule motions. Vibrational modes in liquids are usually considered to be associated to the motions of single molecules or small clusters. Using molecular dynamics simulations, here we find dispersive optical phonon-like modes in the librational and OH-stretching bands. We argue that on subpicosecond time scales these modes propagate through water's hydrogen-bond network over distances of up to 2 nm. In the long wavelength limit these optical modes exhibit longitudinal-transverse splitting, indicating the presence of coherent long-range dipole-dipole interactions, as in ice. Our results indicate the dynamics of liquid water have more similarities to ice than previously thought.

  2. Single-mode Laser by Parity-time Symmetry Breaking

    Science.gov (United States)

    2014-11-21

    solenoid -like Pds5B that reside in direct proximity to Wapl and the Smc3-Scc1 in- teraction interface (fig. S13), implying that Wapl and Pds5 control the...accepted 26 September 2014 10.1126/science.1256904 REPORTS ◥ OPTICS Single-mode laser by parity-time symmetry breaking Liang Feng,1* Zi Jing Wong,1...Ren-Min Ma,1* Yuan Wang,1,2 Xiang Zhang1,2† Effective manipulation of cavity resonant modes is crucial for emission control in laser physics and

  3. Dual-mode optical fiber-based tweezers for robust trapping and manipulation of absorbing particles in air

    Science.gov (United States)

    Sil, Souvik; Kanti Saha, Tushar; Kumar, Avinash; Bera, Sudipta K.; Banerjee, Ayan

    2017-12-01

    We develop an optical tweezers system using a single dual-mode optical fiber where mesoscopic absorbing particles can be trapped in three dimensions and manipulated employing photophoretic forces. We generate a superposition of fundamental and first order Hermite-Gaussian beam modes by the simple innovation of coupling a laser into a commercial optical fiber designed to be single mode for a wavelength higher than that of the laser. We achieve robust trapping of the absorbing particles for hours using both the pure fundamental and superposition mode beams and attain large manipulation velocities of ˜5 mm s-1 in the axial direction and ˜0.75 mm s-1 in the radial direction. We then demonstrate that the superposition mode is more effective in trapping and manipulation compared to the fundamental mode by around 80%, which may be increased several times by the use of a pure first order Hermite-Gaussian mode. The work has promising implications for trapping and spectroscopy of aerosols in air using simple optical fiber-based traps.

  4. Enhancement of oscillation characteristics of a gyrotron by a built-in quasi-optical mode converter

    International Nuclear Information System (INIS)

    Hayashi, Kenichi; Mitsunaka, Yoshika; Komuro, Mitsuo

    1994-01-01

    Oscillation characteristics are analyzed experimentally and numerically by using two gyrotrons with a power level of 500 kW, a conventional tube and a tube with a built-in quasi-optical mode converter. Both tubes have a 120 GHz, TE 12,2 cavity of the same geometry and a single disk alumina window. The quasi-optical mode converter consists of an α-cut launcher and five mirrors. In the conventional tube, reflection of the competing mode at the output window prevents the main mode from oscillating stably in the operation region predicted by the design. Mode selectivity of the quasi-optical mode converter removes the influence of the reflection on the oscillation. Consequently, the experimental results in the tube with the quasi-optical mode converter are in good agreement with the design values. (author)

  5. Two mode optical fiber in space optics communication

    Science.gov (United States)

    Hampl, Martin

    2017-11-01

    In our contribution we propose to use of a two-mode optical fiber as a primary source in a transmitting optical head instead of the laser diode. The distribution of the optical intensity and the complex degree of the coherence on the output aperture of the lens that is irradiated by a step-index weakly guiding optical fiber is investigated. In our treatment we take into account weakly guided modes with polarization corrections to the propagation constant and unified theory of second order coherence and polarization of electromagnetic beams.

  6. Statistical properties of intensity of partially polarised semiconductor laser light backscattered by a single-mode optical fibre

    International Nuclear Information System (INIS)

    Alekseev, A E; Potapov, V T; Gorshkov, B G

    2015-01-01

    We report the results of studying statistical properties of the intensity of partially polarised coherent light backscattered by a single mode optical fibre. An expression is derived for the deviation of the backscattered light intensity depending on the scattering region length, the degree of the light source coherence and the degree of scattered light polarisation. It is shown that the backscattered light in a fibre scattered-light interferometer is partially polarised with the polarisation degree P = 1/3 in the case of external perturbations of the interferometer fibre. (scattering of light)

  7. Spatially single-mode source of bright squeezed vacuum

    OpenAIRE

    Pérez, A. M.; Iskhakov, T. Sh.; Sharapova, P.; Lemieux, S.; Tikhonova, O. V.; Chekhova, M. V.; Leuchs, G.

    2014-01-01

    Bright squeezed vacuum, a macroscopic nonclassical state of light, can be obtained at the output of a strongly pumped non-seeded traveling-wave optical parametric amplifier (OPA). By constructing the OPA of two consecutive crystals separated by a large distance we make the squeezed vacuum spatially single-mode without a significant decrease in the brightness or squeezing.

  8. Modeling of mode-locked coupled-resonator optical waveguide lasers

    DEFF Research Database (Denmark)

    Agger, Christian; Skovgård, Troels Suhr; Gregersen, Niels

    2010-01-01

    Coupled-resonator optical waveguides made from coupled high-Q photonic crystal nanocavities are investigated for use as cavities in mode-locked lasers. Such devices show great potential in slowing down light and can serve to reduce the cavity length of a mode-locked laser. An explicit expression...... of the emerging pulse train. A range of tuning around this frequency allows for effective mode locking. Finally, noise is added to the generalized single-cavity eigenfrequencies in order to evaluate the effects of fabrication imperfections on the cold-cavity transmission properties and consequently on the locking...

  9. Watt-level widely tunable single-mode emission by injection-locking of a multimode Fabry-Perot quantum cascade laser

    Science.gov (United States)

    Chevalier, Paul; Piccardo, Marco; Anand, Sajant; Mejia, Enrique A.; Wang, Yongrui; Mansuripur, Tobias S.; Xie, Feng; Lascola, Kevin; Belyanin, Alexey; Capasso, Federico

    2018-02-01

    Free-running Fabry-Perot lasers normally operate in a single-mode regime until the pumping current is increased beyond the single-mode instability threshold, above which they evolve into a multimode state. As a result of this instability, the single-mode operation of these lasers is typically constrained to few percents of their output power range, this being an undesired limitation in spectroscopy applications. In order to expand the span of single-mode operation, we use an optical injection seed generated by an external-cavity single-mode laser source to force the Fabry-Perot quantum cascade laser into a single-mode state in the high current range, where it would otherwise operate in a multimode regime. Utilizing this approach, we achieve single-mode emission at room temperature with a tuning range of 36 cm-1 and stable continuous-wave output power exceeding 1 W at 4.5 μm. Far-field measurements show that a single transverse mode is emitted up to the highest optical power, indicating that the beam properties of the seeded Fabry-Perot laser remain unchanged as compared to free-running operation.

  10. Multiparameter estimation with single photons—linearly-optically generated quantum entanglement beats the shotnoise limit

    Science.gov (United States)

    You, Chenglong; Adhikari, Sushovit; Chi, Yuxi; LaBorde, Margarite L.; Matyas, Corey T.; Zhang, Chenyu; Su, Zuen; Byrnes, Tim; Lu, Chaoyang; Dowling, Jonathan P.; Olson, Jonathan P.

    2017-12-01

    It was suggested in (Motes et al 2015 Phys. Rev. Lett. 114 170802) that optical networks with relatively inexpensive overheads—single photon Fock states, passive optical elements, and single photon detection—can show significant improvements over classical strategies for single-parameter estimation, when the number of modes in the network is small (ncompute the quantum Cramér-Rao bound to show these networks can have a constant-factor quantum advantage in multi-parameter estimation for even large number of modes. Additionally, we provide a simplified measurement scheme using only single-photon (on-off) detectors that is capable of approximately obtaining this sensitivity for a small number of modes.

  11. Single-mode fiber laser based on core-cladding mode conversion.

    Science.gov (United States)

    Suzuki, Shigeru; Schülzgen, Axel; Peyghambarian, N

    2008-02-15

    A single-mode fiber laser based on an intracavity core-cladding mode conversion is demonstrated. The fiber laser consists of an Er-doped active fiber and two fiber Bragg gratings. One Bragg grating is a core-cladding mode converter, and the other Bragg grating is a narrowband high reflector that selects the lasing wavelength. Coupling a single core mode and a single cladding mode by the grating mode converter, the laser operates as a hybrid single-mode laser. This approach for designing a laser cavity provides a much larger mode area than conventional large-mode-area step-index fibers.

  12. Large-core single-mode rib SU8 waveguide using solvent-assisted microcontact molding.

    Science.gov (United States)

    Huang, Cheng-Sheng; Wang, Wei-Chih

    2008-09-01

    This paper describes a novel fabrication technique for constructing a polymer-based large-core single-mode rib waveguide. A negative tone SU8 photoresist with a high optical transmission over a large wavelength range and stable mechanical properties was used as a waveguide material. A waveguide was constructed by using a polydimethylsiloxane stamp combined with a solvent-assisted microcontact molding technique. The effects on the final pattern's geometry of four different process conditions were investigated. Optical simulations were performed using beam propagation method software. Single-mode beam propagation was observed at the output of the simulated waveguide as well as the actual waveguide through the microscope image.

  13. Single-nanoparticle detection with slot-mode photonic crystal cavities

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Cheng; Kita, Shota; Lončar, Marko, E-mail: loncar@seas.harvard.edu [School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States); Quan, Qimin [Rowland Institute at Harvard University, Cambridge, Massachusetts 02142 (United States); Li, Yihang [School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States); Department of Electronic Engineering, Tsinghua University, Beijing 100084 (China)

    2015-06-29

    Optical cavities that are capable for detecting single nanoparticles could lead to great progress in early stage disease diagnostics and the study of biological interactions on the single-molecule level. In particular, photonic crystal (PhC) cavities are excellent platforms for label-free single-nanoparticle detection, owing to their high quality (Q) factors and wavelength-scale modal volumes. Here, we demonstrate the design and fabrication of a high-Q (>10{sup 4}) slot-mode PhC nanobeam cavity, which is able to strongly confine light in the slotted regions. The enhanced light-matter interaction results in an order of magnitude improvement in both refractive index sensitivity (439 nm/RIU) and single-nanoparticle sensitivity compared with conventional dielectric-mode PhC cavities. Detection of single polystyrene nanoparticles with radii of 20 nm and 30 nm is demonstrated in aqueous environments (D{sub 2}O), without additional laser and temperature stabilization techniques.

  14. Enhanced light scattering of the forbidden longitudinal optical phonon mode studied by micro-Raman spectroscopy on single InN nanowires

    International Nuclear Information System (INIS)

    Schaefer-Nolte, E O; Stoica, T; Gotschke, T; Limbach, F A; Gruetzmacher, D; Calarco, R; Sutter, E; Sutter, P

    2010-01-01

    In the literature, there are controversies on the interpretation of the appearance in InN Raman spectra of a strong scattering peak in the energy region of the unscreened longitudinal optical (LO) phonons, although a shift caused by the phonon-plasmon interaction is expected for the high conductance observed in this material. Most measurements on light scattering are performed on ensembles of InN nanowires (NWs). However, it is important to investigate the behavior of individual nanowires and here we report on micro-Raman measurements on single nanowires. When changing the polarization direction of the incident light from parallel to perpendicular to the wire, the expected reduction of the Raman scattering was observed for transversal optical (TO) and E 2 phonon scattering modes, while a strong symmetry-forbidden LO mode was observed independently on the laser polarization direction. Single Mg- and Si-doped crystalline InN nanowires were also investigated. Magnesium doping results in a sharpening of the Raman peaks, while silicon doping leads to an asymmetric broadening of the LO peak. The results can be explained based on the influence of the high electron concentration with a strong contribution of the surface accumulation layer and the associated internal electric field.

  15. Enhanced Light Scattering of the Forbidden longitudinal Optical Phonon Mode Studied by Micro-Raman Spectroscopy on Single InN nanowires

    International Nuclear Information System (INIS)

    Sutter, E.; Schafer-Nolte, E.O.; Stoica, T.; Gotschke, T.; Limbach, F.A.; Sutter, P.; Grutzmacher, D.; Calarco, R.

    2010-01-01

    In the literature, there are controversies on the interpretation of the appearance in InN Raman spectra of a strong scattering peak in the energy region of the unscreened longitudinal optical (LO) phonons, although a shift caused by the phonon-plasmon interaction is expected for the high conductance observed in this material. Most measurements on light scattering are performed on ensembles of InN nanowires (NWs). However, it is important to investigate the behavior of individual nanowires and here we report on micro-Raman measurements on single nanowires. When changing the polarization direction of the incident light from parallel to perpendicular to the wire, the expected reduction of the Raman scattering was observed for transversal optical (TO) and E2 phonon scattering modes, while a strong symmetry-forbidden LO mode was observed independently on the laser polarization direction. Single Mg- and Si-doped crystalline InN nanowires were also investigated. Magnesium doping results in a sharpening of the Raman peaks, while silicon doping leads to an asymmetric broadening of the LO peak. The results can be explained based on the influence of the high electron concentration with a strong contribution of the surface accumulation layer and the associated internal electric field.

  16. Enhanced light scattering of the forbidden longitudinal optical phonon mode studied by micro-Raman spectroscopy on single InN nanowires.

    Science.gov (United States)

    Schäfer-Nolte, E O; Stoica, T; Gotschke, T; Limbach, F A; Sutter, E; Sutter, P; Grützmacher, D; Calarco, R

    2010-08-06

    In the literature, there are controversies on the interpretation of the appearance in InN Raman spectra of a strong scattering peak in the energy region of the unscreened longitudinal optical (LO) phonons, although a shift caused by the phonon-plasmon interaction is expected for the high conductance observed in this material. Most measurements on light scattering are performed on ensembles of InN nanowires (NWs). However, it is important to investigate the behavior of individual nanowires and here we report on micro-Raman measurements on single nanowires. When changing the polarization direction of the incident light from parallel to perpendicular to the wire, the expected reduction of the Raman scattering was observed for transversal optical (TO) and E(2) phonon scattering modes, while a strong symmetry-forbidden LO mode was observed independently on the laser polarization direction. Single Mg- and Si-doped crystalline InN nanowires were also investigated. Magnesium doping results in a sharpening of the Raman peaks, while silicon doping leads to an asymmetric broadening of the LO peak. The results can be explained based on the influence of the high electron concentration with a strong contribution of the surface accumulation layer and the associated internal electric field.

  17. Low-loss single mode light waveguides in polymer

    Science.gov (United States)

    Sieber, Heinrich; Boehm, Hans-Jürgen; Hollenbach, Uwe; Mohr, Jürgen; Ostrzinski, Ute; Pfeiffer, Karl; Szczurowski, Marcin; Urbanczyk, Waclaw

    2012-06-01

    We report on the development of a UV-lithography manufacturing process for low loss single mode light waveguides in a novel polymer and the characterization of the fabricated components in a broad wavelength range from 808 nm to 1550 nm. The main focus of this work lies in providing a quick and cost efficient production technique for single mode waveguides and low loss integrated optical circuits. To achieve this goal we chose a novel photo-structurable polymer host-guest-system consisting of SU8 and a low refractive dopant monomer. Near and far-field measurements at different wavelengths show that the mode propagating within a well designed integrated waveguide structure and the mode of a standard fiber can exhibit a mode overlap value of approximately 1 and suffer only very low coupling losses. We demonstrate excess loss of 0.14 dB/cm for 808 nm, 0.33 dB/cm for 1310 nm and 2.86 dB/cm for 1550 nm. Typical insertion loss values of straight waveguides with a length of 36 mm are 0.9 dB for 808 nm, 1.5 dB for 1310 nm and 10.4 dB for 1550 nm. Polarization dependent loss was found to be less than 0.2 dB on sets of test structures of 36 mm length. We measured material attenuation in the novel polymer material before cross-linking of approximately 0.04 dB/cm for 808 nm and around 0.20 dB/cm for 1310 nm respectively. The presented production technique is suitable to provide low loss and low cost integrated optical circuits for sensor and communication applications in a broad wavelength range.

  18. Mode conversion efficiency to Laguerre-Gaussian OAM modes using spiral phase optics.

    Science.gov (United States)

    Longman, Andrew; Fedosejevs, Robert

    2017-07-24

    An analytical model for the conversion efficiency from a TEM 00 mode to an arbitrary Laguerre-Gaussian (LG) mode with null radial index spiral phase optics is presented. We extend this model to include the effects of stepped spiral phase optics, spiral phase optics of non-integer topological charge, and the reduction in conversion efficiency due to broad laser bandwidth. We find that through optimization, an optimal beam waist ratio of the input and output modes exists and is dependent upon the output azimuthal mode number.

  19. Single-mode hole-assisted fiber as a bending-loss insensitive fiber

    Science.gov (United States)

    Nakajima, Kazuhide; Shimizu, Tomoya; Matsui, Takashi; Fukai, Chisato; Kurashima, Toshio

    2010-12-01

    We investigate the design and characteristics of a single-mode and low bending loss HAF both numerically and experimentally. An air filling fraction S is introduced to enable us to design a HAF with desired characteristics more easily. We show that we can expect to realize a single-mode and low bending loss HAF by considering the S dependence of the bending loss α b and cutoff wavelength λ c as well as their relative index difference Δ dependence. We also show that the mode-field diameter (MFD) and chromatic dispersion characteristics of the single-mode and low bending loss HAF can be tailored by optimizing the distance between the core and the air holes. We also investigate the usefulness of the fabricated HAFs taking the directly modulated transmission and multipath interference (MPI) characteristics into consideration. We show that the designed HAF has sufficient applicability to both analog and digital transmission systems. Our results reveal that the single-mode and low bending loss HAF is beneficial in terms of developing a future fiber to the home (FTTH) network as well as for realizing flexible optical wiring.

  20. Terahertz cross-phase modulation of an optical mode

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Novitsky, Andrey; Zalkovskij, Maksim

    2013-01-01

    We discuss an optical scheme which facilitates modulation of an optical waveguide mode by metallic-nanoslit-enhanced THz radiation. The waveguide mode acquires an additional phase shift due to THz nonlinearity with fields reachable in experiments.......We discuss an optical scheme which facilitates modulation of an optical waveguide mode by metallic-nanoslit-enhanced THz radiation. The waveguide mode acquires an additional phase shift due to THz nonlinearity with fields reachable in experiments....

  1. Optical-domain Compensation for Coupling between Optical Fiber Conjugate Vortex Modes

    DEFF Research Database (Denmark)

    Lyubopytov, Vladimir S.; Tatarczak, Anna; Lu, Xiaofeng

    2016-01-01

    We demonstrate for the first time optical-domain compensation for coupling between conjugate vortex modes in optical fibers. We introduce a novel method for reconstructing the complex propagation matrix of the optical fiber with straightforward implementation.......We demonstrate for the first time optical-domain compensation for coupling between conjugate vortex modes in optical fibers. We introduce a novel method for reconstructing the complex propagation matrix of the optical fiber with straightforward implementation....

  2. Single Nanoparticle Detection Using Optical Microcavities.

    Science.gov (United States)

    Zhi, Yanyan; Yu, Xiao-Chong; Gong, Qihuang; Yang, Lan; Xiao, Yun-Feng

    2017-03-01

    Detection of nanoscale objects is highly desirable in various fields such as early-stage disease diagnosis, environmental monitoring and homeland security. Optical microcavity sensors are renowned for ultrahigh sensitivities due to strongly enhanced light-matter interaction. This review focuses on single nanoparticle detection using optical whispering gallery microcavities and photonic crystal microcavities, both of which have been developing rapidly over the past few years. The reactive and dissipative sensing methods, characterized by light-analyte interactions, are explained explicitly. The sensitivity and the detection limit are essentially determined by the cavity properties, and are limited by the various noise sources in the measurements. On the one hand, recent advances include significant sensitivity enhancement using techniques to construct novel microcavity structures with reduced mode volumes, to localize the mode field, or to introduce optical gain. On the other hand, researchers attempt to lower the detection limit by improving the spectral resolution, which can be implemented by suppressing the experimental noises. We also review the methods of achieving a better temporal resolution by employing mode locking techniques or cavity ring up spectroscopy. In conclusion, outlooks on the possible ways to implement microcavity-based sensing devices and potential applications are provided. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Monolithic optofluidic mode coupler for broadband thermo- and piezo-optical characterization of liquids.

    Science.gov (United States)

    Pumpe, Sebastian; Chemnitz, Mario; Kobelke, Jens; Schmidt, Markus A

    2017-09-18

    We present a monolithic fiber device that enables investigation of the thermo- and piezo-optical properties of liquids using straightforward broadband transmission measurements. The device is a directional mode coupler consisting of a multi-mode liquid core and a single-mode glass core with pronounced coupling resonances whose wavelength strongly depend on the operation temperature. We demonstrated the functionality and flexibility of our device for carbon disulfide, extending the current knowledge of the thermo-optic coefficient by 200 nm at 20 °C and uniquely for high temperatures. Moreover, our device allows measuring the piezo-optic coefficient of carbon disulfide, confirming results first obtained by Röntgen in 1891. Finally, we applied our approach to obtain the dispersion of the thermo-optic coefficients of benzene and tetrachloroethylene between 450 and 800 nm, whereas no data was available for the latter so far.

  4. Bio-inspired multi-mode optic flow sensors for micro air vehicles

    Science.gov (United States)

    Park, Seokjun; Choi, Jaehyuk; Cho, Jihyun; Yoon, Euisik

    2013-06-01

    Monitoring wide-field surrounding information is essential for vision-based autonomous navigation in micro-air-vehicles (MAV). Our image-cube (iCube) module, which consists of multiple sensors that are facing different angles in 3-D space, can be applied to the wide-field of view optic flows estimation (μ-Compound eyes) and to attitude control (μ- Ocelli) in the Micro Autonomous Systems and Technology (MAST) platforms. In this paper, we report an analog/digital (A/D) mixed-mode optic-flow sensor, which generates both optic flows and normal images in different modes for μ- Compound eyes and μ-Ocelli applications. The sensor employs a time-stamp based optic flow algorithm which is modified from the conventional EMD (Elementary Motion Detector) algorithm to give an optimum partitioning of hardware blocks in analog and digital domains as well as adequate allocation of pixel-level, column-parallel, and chip-level signal processing. Temporal filtering, which may require huge hardware resources if implemented in digital domain, is remained in a pixel-level analog processing unit. The rest of the blocks, including feature detection and timestamp latching, are implemented using digital circuits in a column-parallel processing unit. Finally, time-stamp information is decoded into velocity from look-up tables, multiplications, and simple subtraction circuits in a chip-level processing unit, thus significantly reducing core digital processing power consumption. In the normal image mode, the sensor generates 8-b digital images using single slope ADCs in the column unit. In the optic flow mode, the sensor estimates 8-b 1-D optic flows from the integrated mixed-mode algorithm core and 2-D optic flows with an external timestamp processing, respectively.

  5. Toward photostable multiplex analyte detection on a single mode planar optical waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Mukundan, Harshini [Los Alamos National Laboratory; Xei, Hongshi [Los Alamos National Laboratory; Anderson, Aaron S [Los Alamos National Laboratory; Grace, Wynne K [Los Alamos National Laboratory; Martinez, Jennifer S [NON LANL; Swanson, Basil [Los Alamos National Laboratory

    2009-01-01

    We have developed a waveguide-based optical biosensor for the sensitive and specific detection of biomarkers associated with disease. Our technology combines the superior optical properties of single-mode planar waveguides, the robust nature of functionalized self-assembled monolayer sensing films and the specificity of fluorescence sandwich immunoassays to detect biomarkers in complex biological samples such as serum, urine and sputum. We have previously reported the adaptation of our technology to the detection of biomarkers associated with breast cancer and anthrax. However, these approaches primarily used phospholipid bilayers as the functional film and organic dyes (ex: AlexaFluors) as the fluorescence reporter. Organic dyes are easily photodegraded and are not amenable to multiplexing because of their narrow Stokes' shift. Here we have developed strategies for conjugation of the detector antibodies with quantum dots for use in a multiplex detection platform. We have previously evaluated dihydroxylipoic acid quantum dots for the detection of a breast cancer biomarker. In this manuscript, we investigate the detection of the Bacillus anthracis protective antigen using antibodies conjugated with polymer-coated quantum dots. Kinetics of binding on the waveguide-based biosensor is reported. We compare the sensitivity of quantum dot labeled antibodies to those labeled with AlexaFluor and demonstrate the photostability of the former in our assay platform. In addition, we compare sulfydryl labeling of the antibody in the hinge region to that of nonspecific amine labeling. This is but the first step in developing a multiplex assay for such biomarkers on our waveguide platform.

  6. Investigation of single lateral mode for 852nm diode lasers with ridge waveguide design

    Science.gov (United States)

    Liu, Chu; Guan, Baolu; Mi, Guoxin; Liao, Yiru; Liu, Zhenyang; Li, Jianjun; Xu, Chen

    2016-11-01

    852nm Narrow linewidth lasers can be widely used in the field of ultra-fine spectrum measurement, Cs atomic clock control, satellite and optical fiber communication and so on. Furthermore, the stability of the single lateral mode is a very important condition to guarantee the narrow linewidth lasers. Here we investigate experimentally the influence of the narrow ridge structure and asymmetrical waveguide design on the stability single lateral mode of an 852nm diode laser. According to the waveguide theoretical analysis, ridge mesa etch depth (Δη , related to the refractive index difference of parallel to the junction) and ridge mesa width (the narrower the more control force to low order mode) are the main elements for lateral modes. In this paper, we designed different structures to investigate and verify major factors for lateral mode by experiment, and to confirm our thought. Finally, the 5μm mesa ridge laser, 800nm etch depth, with groove structure obtains excellent steady single lateral mode output by 150mA operating current and 30°C temperature. The optical spectrum FWHM is 0.5nm and side mode suppression ratio is 27dBm with uncoated. The laser with 1mm cavity length showed the threshold current of 50mA, a lasing wavelength of λ = 852.6nm, slope efficiency of above 0.7mW/mA. We accomplished single lateral mode of ridge waveguide edge-emitting lasers which can also be used as a laser source in the ultra-narrow linewidth external cavity laser system.

  7. Optically pumped semiconductor lasers: Conception and characterization of a single mode source for Cesium atoms manipulation

    International Nuclear Information System (INIS)

    Cocquelin, B.

    2009-02-01

    Lasers currently used in atomic clocks or inertial sensors are suffering from a lack of power, narrow linewidth or compactness for future spatial missions. Optically pumped semiconductor lasers, which combine the approach of classical solid state lasers and the engineering of semiconductor laser, are considered here as a candidate to a metrological laser source dedicated to the manipulation of Cesium atoms in these instruments. These lasers have demonstrated high power laser emission in a circular single transverse mode, as well as single longitudinal mode emission, favoured by the semiconductor structure and the external cavity design. We study the definition and the characterization of a proper semiconductor structure for the cooling and the detection of Cesium atoms at 852 nm. A compact and robust prototype tunable on the Cesium D2 hyperfine structure is built. The laser frequency is locked to an atomic transition thanks to a saturated absorption setup. The emission spectral properties are investigated, with a particular attention to the laser frequency noise and the laser linewidth. Finally, we describe and model the thermal properties of the semiconductor structure, which enables the simulation of the laser power characteristic. The experimental parameters are optimised to obtain the maximum output power with our structure. Thanks to our analysis, we propose several ways to overcome these limitations, by reducing the structure heating. (authors)

  8. Statistical properties of single-mode fiber coupling of satellite-to-ground laser links partially corrected by adaptive optics.

    Science.gov (United States)

    Canuet, Lucien; Védrenne, Nicolas; Conan, Jean-Marc; Petit, Cyril; Artaud, Geraldine; Rissons, Angelique; Lacan, Jerome

    2018-01-01

    In the framework of satellite-to-ground laser downlinks, an analytical model describing the variations of the instantaneous coupled flux into a single-mode fiber after correction of the incoming wavefront by partial adaptive optics (AO) is presented. Expressions for the probability density function and the cumulative distribution function as well as for the average fading duration and fading duration distribution of the corrected coupled flux are given. These results are of prime interest for the computation of metrics related to coded transmissions over correlated channels, and they are confronted by end-to-end wave-optics simulations in the case of a geosynchronous satellite (GEO)-to-ground and a low earth orbit satellite (LEO)-to-ground scenario. Eventually, the impact of different AO performances on the aforementioned fading duration distribution is analytically investigated for both scenarios.

  9. Quantum dash based single section mode locked lasers for photonic integrated circuits.

    Science.gov (United States)

    Joshi, Siddharth; Calò, Cosimo; Chimot, Nicolas; Radziunas, Mindaugas; Arkhipov, Rostislav; Barbet, Sophie; Accard, Alain; Ramdane, Abderrahim; Lelarge, Francois

    2014-05-05

    We present the first demonstration of an InAs/InP Quantum Dash based single-section frequency comb generator designed for use in photonic integrated circuits (PICs). The laser cavity is closed using a specifically designed Bragg reflector without compromising the mode-locking performance of the self pulsating laser. This enables the integration of single-section mode-locked laser in photonic integrated circuits as on-chip frequency comb generators. We also investigate the relations between cavity modes in such a device and demonstrate how the dispersion of the complex mode frequencies induced by the Bragg grating implies a violation of the equi-distance between the adjacent mode frequencies and, therefore, forbids the locking of the modes in a classical Bragg Device. Finally we integrate such a Bragg Mirror based laser with Semiconductor Optical Amplifier (SOA) to demonstrate the monolithic integration of QDash based low phase noise sources in PICs.

  10. Self-Similar Nanocavity Design with Ultrasmall Mode Volume for Single-Photon Nonlinearities

    DEFF Research Database (Denmark)

    Choi, Hyeongrak; Heuck, Mikkel; Englund, Dirk R.

    2017-01-01

    We propose a photonic crystal nanocavity design with self-similar electromagnetic boundary conditions, achieving ultrasmall mode volume (V-eff). The electric energy density of a cavity mode can be maximized in the air or dielectric region, depending on the choice of boundary conditions. We illust...... at the single-photon level. These features open new directions in cavity quantum electrodynamics, spectroscopy, and quantum nonlinear optics....

  11. Silicon photonics WDM transmitter with single section semiconductor mode-locked laser

    Science.gov (United States)

    Müller, Juliana; Hauck, Johannes; Shen, Bin; Romero-García, Sebastian; Islamova, Elmira; Azadeh, Saeed Sharif; Joshi, Siddharth; Chimot, Nicolas; Moscoso-Mártir, Alvaro; Merget, Florian; Lelarge, François; Witzens, Jeremy

    2015-04-01

    We demonstrate a wavelength domain-multiplexed (WDM) optical link relying on a single section semiconductor mode-locked laser (SS-MLL) with quantum dash (Q-Dash) gain material to generate 25 optical carriers spaced by 60.8 GHz, as well as silicon photonics (SiP) resonant ring modulators (RRMs) to modulate individual optical channels. The link requires optical reamplification provided by an erbium-doped fiber amplifier (EDFA) in the system experiments reported here. Open eye diagrams with signal quality factors (Q-factors) above 7 are measured with a commercial receiver (Rx). For higher compactness and cost effectiveness, reamplification of the modulated channels with a semiconductor optical amplifier (SOA) operated in the linear regime is highly desirable. System and device characterization indicate compatibility with the latter. While we expect channel counts to be primarily limited by the saturation output power level of the SOA, we estimate a single SOA to support more than eight channels. Prior to describing the system experiments, component design and detailed characterization results are reported including design and characterization of RRMs, ring-based resonant optical add-drop multiplexers (RR-OADMs) and thermal tuners, S-parameters resulting from the interoperation of RRMs and RR-OADMs, and characterization of Q-Dash SS-MLLs reamplified with a commercial SOA. Particular emphasis is placed on peaking effects in the transfer functions of RRMs and RR-OADMs resulting from transient effects in the optical domain, as well as on the characterization of SS-MLLs in regard to relative intensity noise (RIN), stability of the modes of operation, and excess noise after reamplification.

  12. Alcohol sensor based on single-mode-multimode-single-mode fiber structure

    Science.gov (United States)

    Mefina Yulias, R.; Hatta, A. M.; Sekartedjo, Sekartedjo

    2016-11-01

    Alcohol sensor based on Single-mode -Multimode-Single-mode (SMS) fiber structure is being proposed to sense alcohol concentration in alcohol-water mixtures. This proposed sensor uses refractive index sensing as its sensing principle. Fabricated SMS fiber structure had 40 m of multimode length. With power input -6 dBm and wavelength 1550 nm, the proposed sensor showed good response with sensitivity 1,983 dB per % v/v with measurement range 05 % v/v and measurement span 0,5% v/v.

  13. Tailoring light-sound interactions in a single mode fiber for the high-power transmission or sensing applications

    Science.gov (United States)

    Gulistan, Aamir; Rahman, M. M.; Ghosh, Souvik; Rahman, B. M. A.

    2018-03-01

    A full-vectorial numerically efficient Finite Element Method (FEM) based computer code is developed to study complex light-sound interactions in a single mode fiber (SMF). The SBS gain or SBS threshold in a fiber is highly related to the overlap between the optical and acoustic modes. For a typical SMF the acoustic-optic overlap strongly depends on the optical and acoustic mode profiles and it is observed that the acoustic mode is more confined in the core than the optical mode and reported overlap is around 94 % between these fundamental optical and acoustic modes. However, it is shown here that selective co-doping of Aluminum and Germanium in core reduces the acoustic index while keeping the optical index of the same value and thus results in increased acoustic- optic overlap of 99.7%. On the other hand, a design of acoustic anti-guide fiber for high-power transmission systems is also proposed, where the overlap between acoustic and optical modes is reduced. Here, we show that by keeping the optical properties same as a standard SMF and introducing a Boron doped 2nd layer in the cladding, a very low value of 2.7% overlap is achieved. Boron doping in cladding 2nd layer results in a high acoustic index and acoustic modes shifts in the cladding from the core, allowing much high power delivery through this SMF.

  14. Single mode operation of a TEA CO2 laser

    International Nuclear Information System (INIS)

    Wada, Kazuhiro; Tunawaki, Yoshiaki; Yamanaka, Masanobu.

    1993-01-01

    Single mode operation of a TEA CO 2 laser was performed by using an optical system of Fox-Smith type. Laser beam was taken out from the cavity by using a beam splitter, and was reflected by a mirror back to the cavity. By inserting a Fabry-Perot etalon between the splitter and the mirror, beat of laser pulses can be removed completly. (author)

  15. Azimuthal decomposition of optical modes

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2012-07-01

    Full Text Available This presentation analyses the azimuthal decomposition of optical modes. Decomposition of azimuthal modes need two steps, namely generation and decomposition. An azimuthally-varying phase (bounded by a ring-slit) placed in the spatial frequency...

  16. Fully quantum-mechanical dynamic analysis of single-photon transport in a single-mode waveguide coupled to a traveling-wave resonator

    International Nuclear Information System (INIS)

    Hach, Edwin E. III; Elshaari, Ali W.; Preble, Stefan F.

    2010-01-01

    We analyze the dynamics of single-photon transport in a single-mode waveguide coupled to a micro-optical resonator by using a fully quantum-mechanical model. We examine the propagation of a single-photon Gaussian packet through the system under various coupling conditions. We review the theory of single-photon transport phenomena as applied to the system and we develop a discussion on the numerical technique we used to solve for dynamical behavior of the quantized field. To demonstrate our method and to establish robust single-photon results, we study the process of adiabatically lowering or raising the energy of a single photon trapped in an optical resonator under active tuning of the resonator. We show that our fully quantum-mechanical approach reproduces the semiclassical result in the appropriate limit and that the adiabatic invariant has the same form in each case. Finally, we explore the trapping of a single photon in a system of dynamically tuned, coupled optical cavities.

  17. Experimental demonstration of all-optical weak magnetic field detection using beam-deflection of single-mode fiber coated with cobalt-doped nickel ferrite nanoparticles.

    Science.gov (United States)

    Pradhan, Somarpita; Chaudhuri, Partha Roy

    2015-07-10

    We experimentally demonstrate single-mode optical-fiber-beam-deflection configuration for weak magnetic-field-detection using an optimized (low coercive-field) composition of cobalt-doped nickel ferrite nanoparticles. Devising a fiber-double-slit type experiment, we measure the surrounding magnetic field through precisely measuring interference-fringe yielding a minimum detectable field ∼100  mT and we procure magnetization data of the sample that fairly predicts SQUID measurement. To improve sensitivity, we incorporate etched single-mode fiber in double-slit arrangement and recorded a minimum detectable field, ∼30  mT. To further improve, we redefine the experiment as modulating fiber-to-fiber light-transmission and demonstrate the minimum field as 2.0 mT. The device will be uniquely suited for electrical or otherwise hazardous environments.

  18. Cladding modes of optical fibers: properties and applications

    International Nuclear Information System (INIS)

    Ivanov, Oleg V; Nikitov, Sergei A; Gulyaev, Yurii V

    2006-01-01

    One of the new methods of fiber optics uses cladding modes for controlling propagation of radiation in optical fibers. This paper reviews the results of studies on the propagation, excitation, and interaction of cladding modes in optical fibers. The resonance between core and cladding modes excited by means of fiber Bragg gratings, including tilted ones, is analyzed. Propagation of cladding modes in microstructured fibers is considered. The most frequently used method of exciting cladding modes is described, based on the application of long-period fiber gratings. Examples are presented of long-period gratings used as sensors and gain equalizers for fiber amplifiers, as well as devices for coupling light into and out of optical fibers. (instruments and methods of investigation)

  19. Research and design of quasi-optical mode converter

    International Nuclear Information System (INIS)

    Liu Jianwei; Zhao Qing

    2013-01-01

    This paper presents a quasi-optical mode converter which can convert the output mode of gyrotrons and other high-power microwave oscillators into quasi-Gaussian beam, aiming to achieve transverse output of quasi-Gaussian beam TEM 00 mode. First, we analyze mode propagation in the waveguide and the working mechanism of the Vlasov launcher. Then the radiation fields are calculated using vector diffraction theory. At last a quasi-optical mode converter is designed to convert the 94 GHz, TE 62 mode millimeter wave into quasi-Gaussian beam with programming method. The results prove that quasi-Gaussian mode can be obtained at the output window with a simple Vlasov launcher and two mirrors, and the power transmission efficiency of the quasi-optical mode converter reaches to 87.5%. (authors)

  20. Adaptable Optical Fiber Displacement-Curvature Sensor Based on a Modal Michelson Interferometer with a Tapered Single Mode Fiber.

    Science.gov (United States)

    Salceda-Delgado, G; Martinez-Rios, A; Selvas-Aguilar, R; Álvarez-Tamayo, R I; Castillo-Guzman, A; Ibarra-Escamilla, B; Durán-Ramírez, V M; Enriquez-Gomez, L F

    2017-06-02

    A compact, highly sensitive optical fiber displacement and curvature radius sensor is presented. The device consists of an adiabatic bi-conical fused fiber taper spliced to a single-mode fiber (SMF) segment with a flat face end. The bi-conical taper structure acts as a modal coupling device between core and cladding modes for the SMF segment. When the bi-conical taper is bent by an axial displacement, the symmetrical bi-conical shape of the tapered structure is stressed, causing a change in the refractive index profile which becomes asymmetric. As a result, the taper adiabaticity is lost, and interference between modes appears. As the bending increases, a small change in the fringe visibility and a wavelength shift on the periodical reflection spectrum of the in-fiber interferometer is produced. The displacement sensitivity and the spectral periodicity of the device can be adjusted by the proper selection of the SMF length. Sensitivities from around 1.93 to 3.4 nm/mm were obtained for SMF length between 7.5 and 12.5 cm. Both sensor interrogations, wavelength shift and visibility contrast, can be used to measure displacement and curvature radius magnitudes.

  1. Crosstalk-aware virtual network embedding over inter-datacenter optical networks with few-mode fibers

    Science.gov (United States)

    Huang, Haibin; Guo, Bingli; Li, Xin; Yin, Shan; Zhou, Yu; Huang, Shanguo

    2017-12-01

    Virtualization of datacenter (DC) infrastructures enables infrastructure providers (InPs) to provide novel services like virtual networks (VNs). Furthermore, optical networks have been employed to connect the metro-scale geographically distributed DCs. The synergistic virtualization of the DC infrastructures and optical networks enables the efficient VN service over inter-DC optical networks (inter-DCONs). While the capacity of the used standard single-mode fiber (SSMF) is limited by their nonlinear characteristics. Thus, mode-division multiplexing (MDM) technology based on few-mode fibers (FMFs) could be employed to increase the capacity of optical networks. Whereas, modal crosstalk (XT) introduced by optical fibers and components deployed in the MDM optical networks impacts the performance of VN embedding (VNE) over inter-DCONs with FMFs. In this paper, we propose a XT-aware VNE mechanism over inter-DCONs with FMFs. The impact of XT is considered throughout the VNE procedures. The simulation results show that the proposed XT-aware VNE can achieves better performances of blocking probability and spectrum utilization compared to conventional VNE mechanisms.

  2. Acousto-optic resonant coupling of three spatial modes in an optical fiber.

    Science.gov (United States)

    Park, Hee Su; Song, Kwang Yong

    2014-01-27

    A fiber-optic analogue to an externally driven three-level quantum state is demonstrated by acousto-optic coupling of the spatial modes in a few-mode fiber. Under the condition analogous to electromagnetically induced transparency, a narrow-bandwidth transmission within an absorption band for the fundamental mode is demonstrated. The presented structure is an efficient converter between the fundamental mode and the higher-order modes that cannot be easily addressed by previous techniques, therefore can play a significant role in the next-generation space-division multiplexing communications as an arbitrarily mode-selectable router.

  3. Q-switching and efficient harmonic generation from a single-mode LMA photonic bandgap rod fiber laser

    DEFF Research Database (Denmark)

    Laurila, Marko; Saby, Julien; Alkeskjold, Thomas T.

    2011-01-01

    We demonstrate a Single-Mode (SM) Large-Mode-Area (LMA) ytterbium-doped PCF rod fiber laser with stable and close to diffraction limited beam quality with 110W output power. Distributed-Mode-Filtering (DMF) elements integrated in the cladding of the rod fiber provide a robust spatial mode...... with a Mode-Field-Diameter (MFD) of 59 mu m. We further demonstrate high pulse energy Second-Harmonic-Generation (SHG) and Third Harmonic Generation (THG) using a simple Q-switched single-stage rod fiber laser cavity architecture reaching pulse energies up to 1mJ at 515nm and 0.5mJ at 343nm. (C) 2011 Optical...

  4. 3-4.5 μm continuously tunable single mode VECSEL

    Science.gov (United States)

    Fill, M.; Felder, F.; Rahim, M.; Khiar, A.; Zogg, H.

    2012-11-01

    We present continuously tunable Vertical External Cavity Surface Emitting Lasers (VECSEL) in the mid-infrared. The structure based on IV-VI semiconductors is epitaxially grown on a Si-substrates. The VECSEL emit one single mode, which is mode hop-free tunable over 50-100 nm around the center wavelength. In this work, two different devices are presented, emitting at 3.4 μm and 3.9 μm, respectively. The lasers operate near room temperature with thermoelectric stabilization. They are optically pumped, yielding an output power >10 mWp. The axial symmetric emission beam has a half divergence angle of <3.3∘.

  5. Multistabilities and symmetry-broken one-color and two-color states in closely coupled single-mode lasers.

    Science.gov (United States)

    Clerkin, Eoin; O'Brien, Stephen; Amann, Andreas

    2014-03-01

    We theoretically investigate the dynamics of two mutually coupled, identical single-mode semi-conductor lasers. For small separation and large coupling between the lasers, symmetry-broken one-color states are shown to be stable. In this case the light outputs of the lasers have significantly different intensities while at the same time the lasers are locked to a single common frequency. For intermediate coupling we observe stable symmetry-broken two-color states, where both lasers lase simultaneously at two optical frequencies which are separated by up to 150 GHz. Using a five-dimensional model, we identify the bifurcation structure which is responsible for the appearance of symmetric and symmetry-broken one-color and two-color states. Several of these states give rise to multistabilities and therefore allow for the design of all-optical memory elements on the basis of two coupled single-mode lasers. The switching performance of selected designs of optical memory elements is studied numerically.

  6. Catastrophic optical bulk degradation in high-power single- and multi-mode InGaAs-AlGaAs strained QW lasers: part II

    Science.gov (United States)

    Sin, Yongkun; Ayvazian, Talin; Brodie, Miles; Lingley, Zachary

    2018-03-01

    High-power single-mode (SM) and multi-mode (MM) InGaAs-AlGaAs strained quantum well (QW) lasers are critical components for both terrestrial and space satellite communications systems. Since these lasers predominantly fail by catastrophic and sudden degradation due to catastrophic optical damage (COD), it is especially crucial for space satellite applications to investigate reliability, failure modes, precursor signatures of failure, and degradation mechanisms of these lasers. Our group reported a new failure mode in MM and SM InGaAs-AlGaAs strained QW lasers in 2009 and 2016, respectively. Our group also reported in 2017 that bulk failure due to catastrophic optical bulk damage (COBD) is the dominant failure mode of both SM and MM lasers that were subject to long-term life-tests. For the present study, we continued our physics of failure investigation by performing long-term life-tests followed by failure mode analysis (FMA) using nondestructive and destructive micro-analytical techniques. We performed long-term accelerated life-tests on state-of-the-art SM and MM InGaAs- AlGaAs strained QW lasers under ACC mode. Our life-tests have accumulated over 25,000 test hours for SM lasers and over 35,000 test hours for MM lasers. We first employed electron beam induced current (EBIC) technique to identify failure modes of degraded SM lasers by observing dark line defects. All the SM failures that we studied showed catastrophic and sudden degradation and all of these failures were bulk failures. Since degradation mechanisms responsible for COBD are still not well understood, we also employed other techniques including focused ion beam (FIB) and high-resolution TEM to further study dark line defects and dislocations in post-aged lasers. Keywor

  7. Fiber cavities with integrated mode matching optics.

    Science.gov (United States)

    Gulati, Gurpreet Kaur; Takahashi, Hiroki; Podoliak, Nina; Horak, Peter; Keller, Matthias

    2017-07-17

    In fiber based Fabry-Pérot Cavities (FFPCs), limited spatial mode matching between the cavity mode and input/output modes has been the main hindrance for many applications. We have demonstrated a versatile mode matching method for FFPCs. Our novel design employs an assembly of a graded-index and large core multimode fiber directly spliced to a single mode fiber. This all-fiber assembly transforms the propagating mode of the single mode fiber to match with the mode of a FFPC. As a result, we have measured a mode matching of 90% for a cavity length of ~400 μm. This is a significant improvement compared to conventional FFPCs coupled with just a single mode fiber, especially at long cavity lengths. Adjusting the parameters of the assembly, the fundamental cavity mode can be matched with the mode of almost any single mode fiber, making this approach highly versatile and integrable.

  8. Single Photon Source with a Diamond Nanocrystal on an Optical Nanofiber

    International Nuclear Information System (INIS)

    Lars Liebermeister

    2014-01-01

    The development of high yield single photon sources is crucial for applications in quantum information science as well as for experiments on the foundations of quantum physics. The NV-center in diamond is a promising solid state candidate. By using nanodiamonds the single photon emission can easily be coupled to integrated nano-optical and plasmonic structures. Our approach is to utilize efficient coupling of fluorescence of a single NV-center to the evanescent field of an optical nanofiber. A hybrid microscope (confocal microscope combined with an AFM) allows to optically characterize and preselect diamond nanocrystals and then to apply an AFM nanomanipulation technique to move a selected nanodiamond deterministically onto the tapered optical fiber. We report on first results with single diamond nanocrystals containing several NV-centers positioned on a tapered optical fiber. We observe fluorescence emission in the guided mode of the fiber. The second order correlation recorded between the free-space and the guided fluorescence shows pronounced antibunching. This demonstrated efficient evanescent coupling with low background. (author)

  9. Frustration of Bragg reflection by cooperative dual-mode interference: a new mode of optical propagation.

    Science.gov (United States)

    Yariv, A

    1998-12-01

    A new optical mode of propagation is described, which is the natural eigenmode (supermode) of a fiber (or any optical waveguide) with two cospatial periodic gratings. The mode frustrates the backward Bragg scattering from the grating by destructive interference of its two constituent submodes (which are eigenmodes of a uniform waveguide). It can be used in a new type of spatial mode conversion in optical guides.

  10. Quench Propagation Ignition using Single-Mode Diode Laser

    CERN Document Server

    Trillaud, F; Devred, Arnaud; Fratini, M; Leboeuf, D; Tixador, P

    2005-01-01

    The stability of NbTi-based multifilamentary composite wires subjected to local heat disturbances of short durations is studied in pool boiling helium conditions. A new type of heater is being developed to characterize the superconducting to normal state transition. It relies on a single-mode Diode Laser with an optical fiber illuminating the wire surface. This first paper focuses mainly on the feasibility of this new heater technology and eventually discusses the difficulties related to it. A small overview of Diode Lasers and optical fibers revolving around our application is given. Then, we describe the experimental setup, and present some recorded voltage traces of transition and recovery processes. In addition, we present also some energy and Normal Zone Propagation Velocity data and we outline ameliorations that will be done to the system.

  11. Reflection-mode micro-spherical fiber-optic probes for in vitro real-time and single-cell level pH sensing.

    Science.gov (United States)

    Yang, Qingbo; Wang, Hanzheng; Lan, Xinwei; Cheng, Baokai; Chen, Sisi; Shi, Honglan; Xiao, Hai; Ma, Yinfa

    2015-02-01

    pH sensing at the single-cell level without negatively affecting living cells is very important but still a remaining issue in the biomedical studies. A 70 μm reflection-mode fiber-optic micro-pH sensor was designed and fabricated by dip-coating thin layer of organically modified aerogel onto a tapered spherical probe head. A pH sensitive fluorescent dye 2', 7'-Bis (2-carbonylethyl)-5(6)-carboxyfluorescein (BCECF) was employed and covalently bonded within the aerogel networks. By tuning the alkoxide mixing ratio and adjusting hexamethyldisilazane (HMDS) priming procedure, the sensor can be optimized to have high stability and pH sensing ability. The in vitro real-time sensing capability was then demonstrated in a simple spectroscopic way, and showed linear measurement responses with a pH resolution up to an average of 0.049 pH unit within a narrow, but biological meaningful pH range of 6.12-7.81. Its novel characterizations of high spatial resolution, reflection mode operation, fast response and high stability, great linear response within biological meaningful pH range and high pH resolutions, make this novel pH probe a very cost-effective tool for chemical/biological sensing, especially within the single cell level research field.

  12. Infrared-active optical phonons in LiFePO4 single crystals

    Science.gov (United States)

    Stanislavchuk, T. N.; Middlemiss, D. S.; Syzdek, J. S.; Janssen, Y.; Basistyy, R.; Sirenko, A. A.; Khalifah, P. G.; Grey, C. P.; Kostecki, R.

    2017-07-01

    Infrared-active optical phonons were studied in olivine LiFePO4 oriented single crystals by means of both rotating analyzer and rotating compensator spectroscopic ellipsometry in the spectral range between 50 and 1400 cm-1. The eigenfrequencies, oscillator strengths, and broadenings of the phonon modes were determined from fits of the anisotropic harmonic oscillator model to the data. Optical phonons in a heterosite FePO4 crystal were measured from the delithiated ab-surface of the LiFePO4 crystal and compared with the phonon modes of the latter. Good agreement was found between experimental data and the results of solid-state hybrid density functional theory calculations for the phonon modes in both LiFePO4 and FePO4.

  13. Bend compensated large-mode-area fibers: achieving robust single-modedness with transformation optics.

    Science.gov (United States)

    Fini, John M; Nicholson, Jeffrey W

    2013-08-12

    Fibers with symmetric bend compensated claddings are proposed, and demonstrate performance much better than conventional designs. These fibers can simultaneously achieve complete HOM suppression, negligible bend loss, and mode area >1000 square microns. The robust single-modedness of these fibers offers a path to overcoming mode instability limits on high-power amplifiers and lasers. The proposed designs achieve many of the advantages of our previous (asymmetric) bend compensation strategy in the regime of moderately large area, and are much easier to fabricate and utilize.

  14. Pulse patterning effect in optical pulse division multiplexing for flexible single wavelength multiple access optical network

    Science.gov (United States)

    Jung, Sun-Young; Kim, Chang-Hun; Han, Sang-Kook

    2018-05-01

    A demand for high spectral efficiency requires multiple access within a single wavelength, but the uplink signals are significantly degraded because of optical beat interference (OBI) in intensity modulation/direct detection system. An optical pulse division multiplexing (OPDM) technique was proposed that could effectively reduce the OBI via a simple method as long as near-orthogonality is satisfied, but the condition was strict, and thus, the number of multiplexing units was very limited. We propose pulse pattern enhanced OPDM (e-OPDM) to reduce the OBI and improve the flexibility in multiple access within a single wavelength. The performance of the e-OPDM and patterning effect are experimentally verified after 23-km single mode fiber transmission. By employing pulse patterning in OPDM, the tight requirement was relaxed by extending the optical delay dynamic range. This could support more number of access with reduced OBI, which could eventually enhance a multiple access function.

  15. Integrated optical isolators based on two-mode interference couplers

    International Nuclear Information System (INIS)

    Sun, Yiling; Zhou, Haifeng; Jiang, Xiaoqing; Hao, Yinlei; Yang, Jianyi; Wang, Minghua

    2010-01-01

    This paper presents an optical waveguide isolator based on two-mode interference (TMI) couplers, by utilizing the magneto-optical nonreciprocal phase shift (NPS). The operating principle of this device is to utilize the difference between the nonreciprocal phase shifts of the two lowest-order modes. A two-dimensional (2D) semi-vectorial finite difference method is used to calculate the difference between the nonreciprocal phase shifts of the two lowest-order modes and optimize the parameters. The proposed device may play an important role in integrated optical devices and optical communication systems

  16. Modeling bidirectionally coupled single-mode semiconductor lasers

    International Nuclear Information System (INIS)

    Mulet, Josep; Masoller, Cristina; Mirasso, Claudio R.

    2002-01-01

    We develop a dynamical model suitable for the description of two mutually coupled semiconductor lasers in a face-to-face configuration. Our study considers the propagation of the electric field along the compound system as well as the evolution of the carrier densities within each semiconductor laser. Mutual injection, passive optical feedback, and multiple reflections are accounted for in this framework, although under weak to moderate coupling conditions. We systematically describe the effect of the coupling strength on the spectrum of monochromatic solutions and on the respective dynamical behavior. By assuming single-longitudinal-mode operation, weak mutual coupling and slowly varying approximation, the dynamical model can be reduced to rate equations describing the mutual injection from one laser to its counterpart and vice versa. A good agreement between the complete and simplified models is found for small coupling. For larger coupling, higher-order terms lead to a smaller threshold reduction, reflected itself in the spectrum of the monochromatic solutions and in the dynamics of the optical power

  17. Note: Pulsed single longitudinal mode optical parametric oscillator for sub-Doppler spectroscopy of jet cooled transient species

    Science.gov (United States)

    Zhang, Qiang; Zhu, Boxing; Zhang, Deping; Gu, Jingwang; Zhao, Dongfeng; Chen, Yang

    2017-12-01

    We present a pulsed single longitudinal mode optical parametric oscillator that was recently constructed for sub-Doppler spectroscopic studies of transient species in a supersonic slit jet expansion environment. The system consists of a Littman-type grazing-incidence-grating resonator and a KTP crystal and is pumped at 532 nm. By spatially filtering the pump laser beam and employing an active cavity-length-stabilization scheme, a frequency down-conversion efficiency up to 18% and generation of Fourier-transform limited pulses with a typical pulse duration of ˜5.5 ns and a bandwidth less than 120 MHz have been achieved. In combination with a slit jet expansion, a sub-Doppler spectrum of SiC2 has been recorded at ˜498 nm, showing a spectral resolution of Δν/ν ≈ 6.2 × 10-7.

  18. Single-mode waveguides with SU-8 polymer core and cladding for MOEMS applications

    OpenAIRE

    Nordström, Maria; Zauner, Dan; Boisen, Anja; Hübner, Jörg

    2007-01-01

    Fabrication and optical characterization of singlemode polymeric embedded waveguides are performed. A specific material combination (SU-8 2005 as core and the modified SU-8 mr-L 6050XP as cladding) is chosen in order to obtain a small refractive index difference for single-mode propagation combined with the conventional fabrication method UV lithography to facilitate the integration of different types of optical detection methods on lab-on-a-chip systems. We analyze the behavior of the refrac...

  19. Piezoelectric transducer parameter selection for exciting a single mode from multiple modes of Lamb waves

    International Nuclear Information System (INIS)

    Zhang Hai-Yan; Yu Jian-Bo

    2011-01-01

    Excitation and propagation of Lamb waves by using rectangular and circular piezoelectric transducers surface-bonded to an isotropic plate are investigated in this work. Analytical stain wave solutions are derived for the two transducer shapes, giving the responses of these transducers in Lamb wave fields. The analytical study is supported by a numerical simulation using the finite element method. Symmetric and antisymmetric components in the wave propagation responses are inspected in detail with respect to test parameters such as the transducer geometry, the length and the excitation frequency. By placing only one piezoelectric transducer on the top or the bottom surface of the plate and weakening the strength of one mode while enhancing the strength of the other modes to find the centre frequency, with which the peak wave amplitude ratio between the S0 and A0 modes is maximum, a single mode excitation from the multiple modes of the Lamb waves can be achieved approximately. Experimental data are presented to show the validity of the analyses. The results are used to optimize the Lamb wave detection system. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  20. Optical phonon modes of wurtzite InP

    Science.gov (United States)

    Gadret, E. G.; de Lima, M. M.; Madureira, J. R.; Chiaramonte, T.; Cotta, M. A.; Iikawa, F.; Cantarero, A.

    2013-03-01

    Optical vibration modes of InP nanowires in the wurtzite phase were investigated by Raman scattering spectroscopy. The wires were grown along the [0001] axis by the vapor-liquid-solid method. The A1(TO), E2h, and E1(TO) phonon modes of the wurtzite symmetry were identified by using light linearly polarized along different directions in backscattering configuration. Additionally, forbidden longitudinal optical modes have also been observed. Furthermore, by applying an extended 11-parameter rigid-ion model, the complete dispersion relations of InP in the wurtzite phase have been calculated, showing a good agreement with the Raman experimental data.

  1. 2-μm optical time domain reflectometry measurements from novel Al-, Ge-, CaAlSi- doped and standard single-mode fibers

    Science.gov (United States)

    Rodriguez-Novelo, J. C.; Sanchez-Nieves, J. A.; Sierra-Calderon, A.; Sanchez-Lara, R.; Alvarez-Chavez, J. A.

    2017-08-01

    The development of novel Al-, Ge- doped and un-doped standard single mode fibers for future optical communication at 2μm requires the integration of, among other pieces of equipment, an optical time domain reflectometry (OTDR) technique for precise spectral attenuation characterization, including the well-known cut-back method. The integration of a state of the art OTDR at 2μm could provide valuable attenuation information from the aforementioned novel fibers. The proposed setup consists of a 1.7 mW, 1960nm pump source, a 30 dB gain Thulium doped fibre amplifier at 2μm, an 0.8mm focal length lens with a 0.5 NA, a 30 MHz acusto-optic modulator, a 3.1 focal length lens with a 0.68NA, an optical circulator at 2μm, an InGaAs photodetector for 1.2 nm-2.6 nm range, a voltage amplifier and an oscilloscope. The propagated pulse rate is 50 KHz, with 500 ns, 200 ns, 100 ns and 50 ns pulse widths. Attenuation versus novel fibers types for lengths ranging from 400- to 1000- meter samples were obtained using the proposed setup.

  2. Utilizing wheel-ring architecture for stable and selectable single-longitudinal-mode erbium fiber laser

    Science.gov (United States)

    Yeh, Chien-Hung; Yang, Zi-Qing; Huang, Tzu-Jung; Chow, Chi-Wai

    2018-03-01

    To achieve a steady single-longitudinal-mode (SLM) erbium-doped fiber (EDF) laser, the wheel-ring architecture is proposed in the laser cavity. According to Vernier effect, the proposed wheel-ring can produce three different free spectrum ranges (FSRs) to serve as the mode-filter for suppressing the densely multi-longitudinal-mode (MLM). Here, to complete wavelength-tunable EDF laser, an optical tunable bandpass filter (OTBF) is utilized inside the cavity for tuning arbitrarily. In addition, the entire output performances of the proposed EDF wheel-ring laser are also discussed and analyzed experimentally.

  3. Optical Mode Converters Final Report CRADA No. TC-0838-94

    Energy Technology Data Exchange (ETDEWEB)

    Pocha, Michael D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Carey, Kent [Hewlett-Packard Company, Palo Alto, CA (United States). Agilent Technologies

    2017-11-09

    The information age was maturing, and photonics was emerging as a significant technology with important'national security and commercial implications at the time of the CRADA. This was largely due to the vast information carrying capacity of optical beams and the availability of cheap.and effective optical fiber waveguides to guide the light. However, a major limitation to the widespread deployment of photonic systems was the high-cost (in an economic and performance sense) associated with coupling optical power between optoelectronic waveguide devices or between a device and an optical fiber. The problem was critical in the case of single-mode waveguide devices. Mitigating these costs would be a significant and pervasive enabler of the technology for a wide variety of applications that would have crucial defense and economic impact. The partners worked together to develop optical mode size converters on silicon substrates. Silicon was chosen because of its compatibility with the required photolithographic and micromachining techniques. By choosing silicon, these techniques could enable the close coupling of high-speed, high density silicon electronic circuitry to efficient low-cost photonics. The efficient coupling of electronics and photonics technologies would be important for many information age technologies. The joint nature of this project was intended to allow HP to benefit from some unique LLNL capabilities, and LLNL would be in a position to learn from HP and enhance its value to fundamental DP missions. Although the CRADA began as a hardware development project to develop the mode converter, it evolved into a software development venture. LLNL and HP researchers examined literature, performed some preliminary calculations, and evaluated production trade-offs of several known techniques to determine the best candidates for an integrated system.

  4. Tunable and stable single-longitudinal-mode dual-wavelength erbium fiber laser with 1.3 nm mode spacing output

    International Nuclear Information System (INIS)

    Yeh, C H; Shih, F Y; Wang, C H; Chow, C W; Chi, S

    2008-01-01

    In this investigation, we propose and investigate a stable and tunable dual-wavelength erbium-doped fiber (EDF) ring laser with self-injected Fabry-Perot laser diode (FP-LD) scheme. By using an FP-LD incorporated with a tunable bandpass filter (TBF) within the gain cavity, the fiber laser can lase at two single-longitudinal-mode (SLM) wavelengths simultaneously due to the self-injected operation. The proposed dual-wavelength laser has a good performance of the output power and optical side-mode suppression ratio (SMSR). The laser also shows a wide tuning range from 1523.08 to 1562.26 nm. Besides, the output stabilities of the fiber laser are also discussed

  5. Fused-fiber-based 3-dB mode insensitive power splitters for few-mode optical fiber networks

    Science.gov (United States)

    Ren, Fang; Huang, Xiaoshan; Wang, Jianping

    2017-11-01

    We propose a 3-dB mode insensitive power splitter (MIPS) capable of broadcasting and combining optical signals. It is fabricated with two identical few-mode fibers (FMFs) by a heating and pulling technique. The mode-dependent power transfer characteristic as a function of pulling length is investigated. For exploiting its application, we experimentally demonstrate both FMF-based transmissive and reflective star couplers consisting of multiple 3-dB mode insensitive power splitters, which perform broadcasting and routing signals in few-mode optical fiber networks such as mode-division multiplexing (MDM) local area networks using star topology. For experimental demonstration, optical on-off keying signals at 10 Gb/s carried on three spatial modes are successfully processed with open and clear eye diagrams. Measured bit error ratio results show reasonable power penalties. It is found that a reflective star coupler in MDM networks can reduce half of the total amount of required fibers comparing to that of a transmissive star coupler. This MIPS is more efficient, more reliable, more flexible, and more cost-effective for future expansion and application in few-mode optical fiber networks.

  6. Experimental demonstration of time- and mode-division multiplexed passive optical network

    Science.gov (United States)

    Ren, Fang; Li, Juhao; Tang, Ruizhi; Hu, Tao; Yu, Jinyi; Mo, Qi; He, Yongqi; Chen, Zhangyuan; Li, Zhengbin

    2017-07-01

    A time- and mode-division multiplexed passive optical network (TMDM-PON) architecture is proposed, in which each optical network unit (ONU) communicates with the optical line terminal (OLT) independently utilizing both different time slots and switched optical linearly polarized (LP) spatial modes. Combination of a mode multiplexer/demultiplexer (MUX/DEUX) and a simple N × 1 optical switch is employed to select the specific LP mode in each ONU. A mode-insensitive power splitter is used for signal broadcast/combination between OLT and ONUs. We theoretically propose a dynamic mode and time slot assignment scheme for TMDM-PON based on inter-ONU priority rating, in which the time delay and packet loss ratio's variation tendency are investigated by simulation. Moreover, we experimentally demonstrate 2-mode TMDM-PON transmission over 10 km FMF with 10-Gb/s on-off keying (OOK) signal and direct detection.

  7. Mode structure in an optically pumped D2O far infrared ring laser

    International Nuclear Information System (INIS)

    Yuan, D.C.; Soumagne, G.; Siegrist, M.R.

    1989-07-01

    The mode structures in an optically pumped D 2 O far infrared ring laser and a corresponding linear resonator have been compared. While single mode operation can be obtained over the whole useful pressure range in the ring structure, this is only possible at pressures greater than 8 Torr in the linear resonator case. A numerical model predicts quite well the pulse shape, pressure dependence and influence of the resonator quality in the ring cavity. (author) 12 figs., 8 refs

  8. Single-mode propagation in optical waveguides and fibres: a critical review of its treatment in physics textbooks

    Energy Technology Data Exchange (ETDEWEB)

    Ruddock, Ivan S [Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom)], E-mail: i.s.ruddock@strath.ac.uk

    2009-03-15

    The derivation and description of the modes in optical waveguides and fibres are reviewed. The version frequently found in undergraduate textbooks is shown to be incorrect and misleading due to the assumption of an axial ray of light corresponding to the lowest order mode. It is pointed out that even the lowest order must still be represented in an elementary treatment by a ray reflecting between opposite core and cladding boundaries.

  9. Testing ultrafast mode-locking at microhertz relative optical linewidth.

    Science.gov (United States)

    Martin, Michael J; Foreman, Seth M; Schibli, T R; Ye, Jun

    2009-01-19

    We report new limits on the phase coherence of the ultrafast mode-locking process in an octave-spanning Ti:sapphire comb.We find that the mode-locking mechanism correlates optical phase across a full optical octave with less than 2.5 microHZ relative linewidth. This result is at least two orders of magnitude below recent predictions for quantum-limited individual comb-mode linewidths, verifying that the mode-locking mechanism strongly correlates quantum noise across the comb spectrum.

  10. Testing ultrafast mode-locking at microhertz relative optical linewidth

    OpenAIRE

    Martin, Michael J.; Foreman, Seth M.; Schibli, T. R.; Ye, Jun

    2008-01-01

    We report new limits on the phase coherence of the ultrafast mode-locking process in an octave-spanning Ti:sapphire comb. We find that the mode-locking mechanism correlates optical phase across a full optical octave with less than 2.5 micro Hz relative linewidth. This result is at least two orders of magnitude below recent predictions for quantum-limited individual comb-mode linewidths, verifying that the mode-locking mechanism strongly correlates quantum noise across the comb spectrum.

  11. Mid-infrared performance of single mode chalcogenide fibers

    Science.gov (United States)

    Cook, Justin; Sincore, Alex; Tan, Felix; El Halawany, Ahmed; Riggins, Anthony; Shah, Lawrence; Abouraddy, Ayman F.; Richardson, Martin C.; Schepler, Kenneth L.

    2018-02-01

    Due to the intrinsic absorption edge in silica near 2.4 μm, more exotic materials are required to transmit laser power in the IR such as fluoride or chalcogenide glasses (ChGs). In particular, ChG fibers offer broad IR transmission with low losses fibers at four different infrared wavelengths: 2053 nm, 2520 nm and 4550 nm. Polymer clad ChG fibers were drawn with 12.3 μm and 25 μm core diameters. Testing at 2053 nm was accomplished using a > 15 W, CW Tm:fiber laser. Power handling up to 10.2 W with single mode beam quality has been demonstrated, limited only by the available Tm:fiber output power. Anti-reflective coatings were successfully deposited on the ChG fiber facets, allowing up to 90.6% transmission with 12.2 MW/cm2 intensity on the facet. Single mode guidance at 4550 nm was also demonstrated using a quantum cascade laser (QCL). A custom optical system was constructed to efficiently couple the 0.8 NA QCL radiation into the 0.2 NA ChG fiber, allowing for a maximum of 78% overlap between the QCL radiation and fundamental mode of the fiber. With an AR-coated, 25 μm core diameter fiber, >50 mW transmission was demonstrated with > 87% transmission. Finally, we present results on fiber coupling from a free space Cr:ZnSe resonator at 2520 nm.

  12. Computation of mode eigenfunctions in graded-index optical fibers by the propagating beam method

    International Nuclear Information System (INIS)

    Feit, M.D.; Fleck, J.A. Jr.

    1980-01-01

    The propagating beam method utilizes discrete Fourier transforms for generating configuration-space solutions to optical waveguide problems without reference to modes. The propagating beam method can also give a complete description of the field in terms of modes by a Fourier analysis with respect to axial distance of the computed fields. Earlier work dealt with the accurate determination of mode propagation constants and group delays. In this paper the method is extended to the computation of mode eigenfunctions. The method is efficient, allowing generation of a large number of eigenfunctions from a single propagation run. Computations for parabolic-index profiles show excellent agreement between analytic and numerically generated eigenfunctions

  13. Single-mode distributed feedback laser operation with no dependence on the morphology of the gain medium

    Energy Technology Data Exchange (ETDEWEB)

    Umar, Muhammad [Department of Energy Systems Research, Ajou University, Suwon (Korea, Republic of); Min, Kyungtaek [Department of Energy Systems Research, Ajou University, Suwon (Korea, Republic of); Inter-university Semiconductor Research Center, Seoul National University (Korea, Republic of); Jeon, Heonsu [Department of Physics and Astronomy, Seoul National University (Korea, Republic of); Kim, Sunghwan [Department of Energy Systems Research, Ajou University, Suwon (Korea, Republic of); Department of Physics, Ajou University, Suwon (Korea, Republic of)

    2017-06-15

    Organic distributed feedback (DFB) lasers can be useful photonic tools for biological applications where the roles of organic materials are important, because highly coherent single mode emission with broad tuning range can be obtained. However, the formulaic structures of organic lasers, and the uses of gain media as resonators themselves, are not suitable for inducing laser emission from irregular shaped gain media, such as dye-staining cells and tissues. Here, we report a reusable photonic template comprising an exceedingly thin and discrete titanium dioxide (TiO{sub 2}) layer on a one-dimensional (1D) quartz grating to induce single mode DFB lasing from a variety of states of optical gain media. Using the same template, the external gain media of optically thick and thin casted film, liquid, and a free-standing thick film reveal single mode lasing with reliable performance. Numerical simulations demonstrate that the 25-nm thick TiO{sub 2} disconnected grating lines support a spatially confined DFB mode in the vertical direction, even under no index difference between superstrate and substrate. Additionally, not using the typical waveguide gain layer promises high sensitivity and detection limit in refractometric sensing. These results suggest that the photonic structure may serve as a versatile sensing platform for bioapplications. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Fast all-optical multistate flip-flop operation realized by a single self-sustained micro-ring laser memory cell

    International Nuclear Information System (INIS)

    Wang, Zhuoran; Yuan, Guohui

    2013-01-01

    We investigate all-optical multistate flip-flop operation realized by a single self-sustained micro-ring laser memory cell based on a time-domain multi-mode nonlinear model. Each state is written by the corresponding 100 ps-width input non-return-to-zero (NRZ) pulse carrying the directional and wavelength information, and the cell remains in the written state until another trigger arrives. The effects of key parameters including the detuning frequency and injection power ratio on the injection locking and flipping regions of different modes in both directions of the micro-ring device are studied. By optimizing the operation conditions, we simulate the minimal switching speed for each mode. The fast switching speed of less than 20 ps and up to ten mode flip-flop operation indicate that this single optical memory cell can support ten states at a data rate of at least 10 Gbps, which is particularly valuable for the realization of future all-optical networking and functional sub-system technology. (letter)

  15. Differential modal delay measurements in a graded-index multimode fibre waveguide, using a single-mode fibre pro mode selection

    International Nuclear Information System (INIS)

    Sunak, H.R.D.; Soares, S.M.

    1981-01-01

    Differential model delay (DMD) measurements in graded-index multimode optical fibre waveguides, which are very promising for many types of communication system were carried out. These DMD measurements give a direct indication of the deviation of the refractive index profile, from the optimum value, at a given wavelength. For the first time, by using a single-mode fibre, a few guided modes in the graded-index fibre were selected, in two different ways: launching a few modes at the input end or selecting a few modes at the output end. By doing so important features of propagation in the fibre were revealed, especially the intermodal coupling that may exist. The importance of this determination of intermodal coupling or mode mixing, particularly when many fibres are joined together in a link, and the merits of DMD measurements in general and their importance for the production of high bandwidth graded-index fibres are discussed. (Author) [pt

  16. Interferometric measurement of refractive index modification in a single mode microfiber

    Science.gov (United States)

    Ahmed, Farid; Ahsani, Vahid; Jun, Martin B. G.

    2017-02-01

    Efficient and cost effective measurement of the refractive index profile in an optical fiber is a significant technical job to design and manufacture in-fiber photonic devices and communication systems. For instance, to design fiber gratings, it is required to estimate the refractive index modulation to be inscribed by the fabrication apparatus such as ultraviolet or infrared lasers. Mach-Zehnder interferometer (MZI) based quantification of refractive index change written in single mode microfiber by femtosecond laser radiation is presented in this study. The MZI is constructed by splicing a microfiber (core diameter: 3.75 μm, cladding diameter: 40 μm) between standard single mode fibers. To measure the RI inscribed by infrared femtosecond laser, 200 μm length of the core within the MZI was scanned with laser radiation. As the higher index was written within 200 μm length of the core, the transmission spectrum of the interferometer displayed a corresponding red shift. The observed spectral shift was used to calculate the amount of refractive index change inscribed by the femtosecond irradiation. For the MZI length of 3.25 mm, and spectral shift of 0.8 nm, the calculated refractive index was found to be 0.00022. The reported results display excellent agreement between theory and experimental findings. Demonstrated method provides simple yet very effective on-site measurement of index change in optical fibers. Since the MZI can be constructed in diverse fiber types, this technique offers flexibility to quantify index change in various optical fibers.

  17. Mode analysis and structure parameter optimization of a novel SiGe-OI rib optical waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Feng Song; Gao Yong; Yang Yuan [Department of Electronic Engineering, Xi' an University of Technology, Xi' an 710048 (China); Feng Yuchun, E-mail: vonfs@yahoo.com.c [Key Laboratories of Optoelectronic Devices and Systems, Shenzhen University, Shenzhen 518060 (China)

    2009-08-15

    The mode of a novel SiGe-OI optical waveguide is analyzed, and its single-mode conditions are derived. The Ge content and structure parameters of SiGe-OI optical waveguides are respectively optimized. Under an operation wavelength of 1300 nm, the structures of SiGe-OI rib optical waveguides are built and analyzed with Optiwave software, and the optical field and transmission losses of the SiGe-OI rib optical waveguides are analyzed. The optimization results show that when the structure parameters H, h, W are respectively 500 nm, 250 nm, 500 nm and the Ge content is 5%, the total power loss of SiGe-OI rib waveguides is 0.3683 dB/cm considering the loss of radiation outside the waveguides and materials, which is less than the traditional value of 0.5 dB/cm. The analytical technique for SiGe-OI optical waveguides and structure parameters computed by this paper are proved to be accurate and computationally efficient compared with the beam propagation method (BPM) and the experimental results. (semiconductor devices)

  18. Using optical fibers with different modes to improve the signal-to-noise ratio of diffuse correlation spectroscopy flow-oximeter measurements

    Science.gov (United States)

    He, Lian; Lin, Yu; Shang, Yu; Shelton, Brent J.; Yu, Guoqiang

    2013-03-01

    The dual-wavelength diffuse correlation spectroscopy (DCS) flow-oximeter is an emerging technique enabling simultaneous measurements of blood flow and blood oxygenation changes in deep tissues. High signal-to-noise ratio (SNR) is crucial when applying DCS technologies in the study of human tissues where the detected signals are usually very weak. In this study, single-mode, few-mode, and multimode fibers are compared to explore the possibility of improving the SNR of DCS flow-oximeter measurements. Experiments on liquid phantom solutions and in vivo muscle tissues show only slight improvements in flow measurements when using the few-mode fiber compared with using the single-mode fiber. However, light intensities detected by the few-mode and multimode fibers are increased, leading to significant SNR improvements in detections of phantom optical property and tissue blood oxygenation. The outcomes from this study provide useful guidance for the selection of optical fibers to improve DCS flow-oximeter measurements.

  19. Single Molecule Detection in Living Biological Cells using Carbon Nanotube Optical Probes

    Science.gov (United States)

    Strano, Michael

    2009-03-01

    Nanoscale sensing elements offer promise for single molecule analyte detection in physically or biologically constrained environments. Molecular adsorption can be amplified via modulation of sharp singularities in the electronic density of states that arise from 1D quantum confinement [1]. Single-walled carbon nanotubes (SWNT), as single molecule optical sensors [2-3], offer unique advantages such as photostable near-infrared (n-IR) emission for prolonged detection through biological media, single-molecule sensitivity and, nearly orthogonal optical modes for signal transduction that can be used to identify distinct classes of analytes. Selective binding to the SWNT surface is difficult to engineer [4]. In this lecture, we will briefly review the immerging field of fluorescent diagnostics using band gap emission from SWNT. In recent work, we demonstrate that even a single pair of SWNT provides at least four optical modes that can be modulated to uniquely fingerprint chemical agents by the degree to which they alter either the emission band intensity or wavelength. We validate this identification method in vitro by demonstrating detection and identification of six genotoxic analytes, including chemotherapeutic drugs and reactive oxygen species (ROS), which are spectroscopically differentiated into four distinct classes. We also demonstrate single-molecule sensitivity in detecting hydrogen peroxide, one of the most common genotoxins and an important cellular signal. Finally, we employ our sensing and fingerprinting method of these analytes in real time within live 3T3 cells, demonstrating the first multiplexed optical detection from a nanoscale biosensor and the first label-free tool to optically discriminate between genotoxins. We will also discuss our recent efforts to fabricate biomedical sensors for real time detection of glucose and other important physiologically relevant analytes in-vivo. The response of embedded SWNT in a swellable hydrogel construct to

  20. Measuring a Fiber-Optic Delay Line Using a Mode-Locked Laser

    Science.gov (United States)

    Tu, Meirong; McKee, Michael R.; Pak, Kyung S.; Yu, Nan

    2010-01-01

    The figure schematically depicts a laboratory setup for determining the optical length of a fiber-optic delay line at a precision greater than that obtainable by use of optical time-domain reflectometry or of mechanical measurement of length during the delay-line-winding process. In this setup, the delay line becomes part of the resonant optical cavity that governs the frequency of oscillation of a mode-locked laser. The length can then be determined from frequency-domain measurements, as described below. The laboratory setup is basically an all-fiber ring laser in which the delay line constitutes part of the ring. Another part of the ring - the laser gain medium - is an erbium-doped fiber amplifier pumped by a diode laser at a wavelength of 980 nm. The loop also includes an optical isolator, two polarization controllers, and a polarizing beam splitter. The optical isolator enforces unidirectional lasing. The polarization beam splitter allows light in only one polarization mode to pass through the ring; light in the orthogonal polarization mode is rejected from the ring and utilized as a diagnostic output, which is fed to an optical spectrum analyzer and a photodetector. The photodetector output is fed to a radio-frequency spectrum analyzer and an oscilloscope. The fiber ring laser can generate continuous-wave radiation in non-mode-locked operation or ultrashort optical pulses in mode-locked operation. The mode-locked operation exhibited by this ring is said to be passive in the sense that no electro-optical modulator or other active optical component is used to achieve it. Passive mode locking is achieved by exploiting optical nonlinearity of passive components in such a manner as to obtain ultra-short optical pulses. In this setup, the particular nonlinear optical property exploited to achieve passive mode locking is nonlinear polarization rotation. This or any ring laser can support oscillation in multiple modes as long as sufficient gain is present to overcome

  1. Continuous parametric feedback cooling of a single atom in an optical cavity

    Science.gov (United States)

    Sames, C.; Hamsen, C.; Chibani, H.; Altin, P. A.; Wilk, T.; Rempe, G.

    2018-05-01

    We demonstrate a feedback algorithm to cool a single neutral atom trapped inside a standing-wave optical cavity. The algorithm is based on parametric modulation of the confining potential at twice the natural oscillation frequency of the atom, in combination with fast and repetitive atomic position measurements. The latter serve to continuously adjust the modulation phase to a value for which parametric excitation of the atomic motion is avoided. Cooling is limited by the measurement backaction which decoheres the atomic motion after only a few oscillations. Nonetheless, applying this feedback scheme to an ˜5 -kHz oscillation mode increases the average storage time of a single atom in the cavity by a factor of 60 to more than 2 s. In contrast to previous feedback schemes, our algorithm is also capable of cooling a much faster ˜500 -kHz oscillation mode within just microseconds. This demonstrates that parametric cooling is a powerful technique that can be applied in all experiments where optical access is limited.

  2. Single-mode operation of a coiled multimode fiber amplifier

    International Nuclear Information System (INIS)

    Koplow, Jeffrey P.; Kliner, Dahv A. V.; Goldberg, Lew

    2000-01-01

    We report a new approach to obtaining single-transverse-mode operation of a multimode fiber amplifier in which the gain fiber is coiled to induce significant bend loss for all but the lowest-order mode. We demonstrated this method by constructing a coiled amplifier using Yb-doped, double-clad fiber with a core diameter of 25 μm and a numerical aperture of ∼0.1 (V≅7.4) . When the amplifier was operated as an amplified-spontaneous-emission source, the output beam had an M 2 value of 1.09±0.09 ; when seeded at 1064 nm, the slope efficiency was similar to that of an uncoiled amplifier. This technique will permit scaling of pulsed fiber lasers and amplifiers to significantly higher pulse energies and peak powers and cw fiber sources to higher average powers while maintaining excellent beam quality. (c) 2000 Optical Society of America

  3. Spiral Transformation for High-Resolution and Efficient Sorting of Optical Vortex Modes

    Science.gov (United States)

    Wen, Yuanhui; Chremmos, Ioannis; Chen, Yujie; Zhu, Jiangbo; Zhang, Yanfeng; Yu, Siyuan

    2018-05-01

    Mode sorting is an essential function for optical multiplexing systems that exploit the orthogonality of the orbital angular momentum mode space. The familiar log-polar optical transformation provides a simple yet efficient approach whose resolution is, however, restricted by a considerable overlap between adjacent modes resulting from the limited excursion of the phase along a complete circle around the optical vortex axis. We propose and experimentally verify a new optical transformation that maps spirals (instead of concentric circles) to parallel lines. As the phase excursion along a spiral in the wave front of an optical vortex is theoretically unlimited, this new optical transformation can separate orbital angular momentum modes with superior resolution while maintaining unity efficiency.

  4. Nonlinear High-Energy Pulse Propagation in Graded-Index Multimode Optical Fibers for Mode-Locked Fiber Lasers

    Science.gov (United States)

    2014-12-23

    power kW at nm in a C-GIMF segment in the lowest order mode ; this pulse can be ob- tained from a typical titanium –sapphire mode-locked laser . A much...single- andmulticore double- clad and PCF lasers . He was a Senior Research Scientist at Corning Inc. from 2005 to 2008. He is currently an Assistant...High-Energy Pulse Propagation in Graded-Index Multimode Optical Fibers for Mode-Locked Fiber Lasers 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-12-1

  5. Instant recording of the duration of a single mode-locked Nd:YAG laser pulse

    International Nuclear Information System (INIS)

    Lompre, L.A.; Mainfray, G.; Thebault, J.

    1975-01-01

    An electro-optic streak camera incorporating a storage memory video system has been developed and used to instantly visualize and record the shape of a 1.06-μ-wavelength pulse generated by a mode-locked Nd:YAG laser. The duration of a single laser pulse (approximately 30 psec) has been directly measured with and without laser amplification. (U.S.)

  6. Single-mode ytterbium-doped large-mode-area photonic bandgap rod fiber amplifier

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Scolari, Lara; Broeng, Jes

    2011-01-01

    bandgap structure. The structure allows resonant coupling of higher-order modes from the core and acts as a spatially Distributed Mode Filter (DMF). With this approach, we demonstrate passive SM performance in an only ~50cm long and straight ytterbium-doped rod fiber. The amplifier has a mode field...... diameter of ∼59Lim at 1064nm and exhibits a pump absorption of 27dB/m at 976nm. © 2011 Optical Society of America....

  7. Effects of underwater turbulence on laser beam propagation and coupling into single-mode optical fiber.

    Science.gov (United States)

    Hanson, Frank; Lasher, Mark

    2010-06-01

    We characterize and compare the effects of turbulence on underwater laser propagation with theory. Measurements of the coupling efficiency of the focused beam into a single-mode fiber are reported. A simple tip-tilt control system, based on the position of the image centroid in the focal plane, was shown to maintain good coupling efficiency for a beam radius equal to the transverse coherence length, r(0). These results are relevant to high bandwidth communication technology that requires good spatial mode quality.

  8. Robust fiber optic flexure sensor exploiting mode coupling in few-mode fiber

    Science.gov (United States)

    Nelsen, Bryan; Rudek, Florian; Taudt, Christopher; Baselt, Tobias; Hartmann, Peter

    2015-05-01

    Few-mode fiber (FMF) has become very popular for use in multiplexing telecommunications data over fiber optics. The simplicity of producing FMF and the relative robustness of the optical modes, coupled with the simplicity of reading out the information make this fiber a natural choice for communications. However, little work has been done to take advantage of this type of fiber for sensors. Here, we demonstrate the feasibility of using FMF properties as a mechanism for detecting flexure by exploiting mode coupling between modes when the cylindrical symmetry of the fiber is perturbed. The theoretical calculations shown here are used to understand the coupling between the lowest order linearly polarized mode (LP01) and the next higher mode (LP11x or LP11y) under the action of bending. Twisting is also evaluated as a means to detect flexure and was determined to be the most reliable and effective method when observing the LP21 mode. Experimental results of twisted fiber and observations of the LP21 mode are presented here. These types of fiber flexure sensors are practical in high voltage, high magnetic field, or high temperature medical or industrial environments where typical electronic flexure sensors would normally fail. Other types of flexure measurement systems that utilize fiber, such as Rayleigh back-scattering [1], are complicated and expensive and often provide a higher-than necessary sensitivity for the task at hand.

  9. Active material, optical mode and cavity impact on nanoscale electro-optic modulation performance

    Science.gov (United States)

    Amin, Rubab; Suer, Can; Ma, Zhizhen; Sarpkaya, Ibrahim; Khurgin, Jacob B.; Agarwal, Ritesh; Sorger, Volker J.

    2017-10-01

    Electro-optic modulation is a key function in optical data communication and possible future optical compute engines. The performance of modulators intricately depends on the interaction between the actively modulated material and the propagating waveguide mode. While a variety of high-performance modulators have been demonstrated, no comprehensive picture of what factors are most responsible for high performance has emerged so far. Here we report the first systematic and comprehensive analytical and computational investigation for high-performance compact on-chip electro-optic modulators by considering emerging active materials, model considerations and cavity feedback at the nanoscale. We discover that the delicate interplay between the material characteristics and the optical mode properties plays a key role in defining the modulator performance. Based on physical tradeoffs between index modulation, loss, optical confinement factors and slow-light effects, we find that there exist combinations of bias, material and optical mode that yield efficient phase or amplitude modulation with acceptable insertion loss. Furthermore, we show how material properties in the epsilon near zero regime enable reduction of length by as much as by 15 times. Lastly, we introduce and apply a cavity-based electro-optic modulator figure of merit, Δλ/Δα, relating obtainable resonance tuning via phase shifting relative to the incurred losses due to the fundamental Kramers-Kronig relations suggesting optimized device operating regions with optimized modulation-to-loss tradeoffs. This work paves the way for a holistic design rule of electro-optic modulators for high-density on-chip integration.

  10. Single-mode waveguides with SU-8 polymer core and cladding for MOEMS applications

    DEFF Research Database (Denmark)

    Nordström, Maria; Zauner, Dan; Boisen, Anja

    2007-01-01

    Fabrication and optical characterization of singlemode polymeric embedded waveguides are performed. A specific material combination (SU-8 2005 as core and the modified SU-8 mr-L 6050XP as cladding) is chosen in order to obtain a small refractive index difference for single-mode propagation combined...... can fabricate waveguides with an index difference in the order of 10−3, where both the core material and the cladding material are based on SU-8. The refractive index measurements are performed on thin polymeric films, while further optical characterizations are performed on waveguides with a height...

  11. Biochemical component identification by plasmonic improved whispering gallery mode optical resonance based sensor

    Science.gov (United States)

    Saetchnikov, Vladimir A.; Tcherniavskaia, Elina A.; Saetchnikov, Anton V.; Schweiger, Gustav; Ostendorf, Andreas

    2014-05-01

    Experimental data on detection and identification of variety of biochemical agents, such as proteins, microelements, antibiotic of different generation etc. in both single and multi component solutions under varied in wide range concentration analyzed on the light scattering parameters of whispering gallery mode optical resonance based sensor are represented. Multiplexing on parameters and components has been realized using developed fluidic sensor cell with fixed in adhesive layer dielectric microspheres and data processing. Biochemical component identification has been performed by developed network analysis techniques. Developed approach is demonstrated to be applicable both for single agent and for multi component biochemical analysis. Novel technique based on optical resonance on microring structures, plasmon resonance and identification tools has been developed. To improve a sensitivity of microring structures microspheres fixed by adhesive had been treated previously by gold nanoparticle solution. Another technique used thin film gold layers deposited on the substrate below adhesive. Both biomolecule and nanoparticle injections caused considerable changes of optical resonance spectra. Plasmonic gold layers under optimized thickness also improve parameters of optical resonance spectra. Biochemical component identification has been also performed by developed network analysis techniques both for single and for multi component solution. So advantages of plasmon enhancing optical microcavity resonance with multiparameter identification tools is used for development of a new platform for ultra sensitive label-free biomedical sensor.

  12. Squeezing in multi-mode nonlinear optical state truncation

    International Nuclear Information System (INIS)

    Said, R.S.; Wahiddin, M.R.B.; Umarov, B.A.

    2007-01-01

    In this Letter, we show that multi-mode qubit states produced via nonlinear optical state truncation driven by classical external pumpings exhibit squeezing condition. We restrict our discussions to the two- and three-mode cases

  13. Optical cavity cooling of mechanical modes of a semiconductor nanomembrane

    DEFF Research Database (Denmark)

    Usami, Koji; Naesby, A.; Bagci, Tolga

    2012-01-01

    Mechanical oscillators can be optically cooled using a technique known as optical-cavity back-action. Cooling of composite metal–semiconductor mirrors, dielectric mirrors and dielectric membranes has been demonstrated. Here we report cavity cooling of mechanical modes in a high-quality-factor and......Mechanical oscillators can be optically cooled using a technique known as optical-cavity back-action. Cooling of composite metal–semiconductor mirrors, dielectric mirrors and dielectric membranes has been demonstrated. Here we report cavity cooling of mechanical modes in a high...

  14. Inter-comb synchronization by mode-to-mode locking

    Science.gov (United States)

    Chun, Byung Jae; Kim, Young-Jin; Kim, Seung-Woo

    2016-08-01

    Two combs of fiber femtosecond lasers are synchronized through the optical frequency reference created by injection-locking of a diode laser to a single comb mode. Maintaining a mHz-level narrow linewidth, the optical frequency reference permits two combs to be stabilized by mode-to-mode locking with a relative stability of 1.52  ×  10-16 at 10 s with a frequency slip of 2.46 mHz. This inter-comb synchronization can be utilized for applications such as dual-comb spectroscopy or ultra-short pulse synthesis without extra narrow-linewidth lasers.

  15. Higher order modes of coupled optical fibres

    International Nuclear Information System (INIS)

    Alexeyev, C N; Yavorsky, M A; Boklag, N A

    2010-01-01

    The structure of hybrid higher order modes of two coupled weakly guiding identical optical fibres is studied. On the basis of perturbation theory with degeneracy for the vector wave equation expressions for modes with azimuthal angular number l ≥ 1 are obtained that allow for the spin–orbit interaction. The spectra of polarization corrections to the scalar propagation constants are calculated in a wide range of distances between the fibres. The limiting cases of widely and closely spaced fibres are studied. The obtained results can be used for studying the tunnelling of optical vortices in directional couplers and in matters concerned with information security

  16. A novel high-efficiency single-mode quantum dot single photon source

    DEFF Research Database (Denmark)

    Gerard, J.M.; Gregersen, Niels; Nielsen, Torben Roland

    2008-01-01

    We present a novel single-mode single photon source exploiting the emission of a semiconductor quantum dot (QD) located inside a photonic wire. Besides an excellent coupling (>95%) of QD spontaneous emission to the fundamental guided mode [1], we show that a single photon collection efficiency...... above 80% within a 0.5 numerical aperture can be achieved using a bottom Bragg mirror and a tapering of the nanowire tip. Because this photon collection strategy does not exploit the Purcell effect, it could also be efficiently applied to broadband single photon emitters such as F-centers in diamond....

  17. GaSb-based single-mode distributed feedback lasers for sensing (Conference Presentation)

    Science.gov (United States)

    Gupta, James A.; Bezinger, Andrew; Lapointe, Jean; Poitras, Daniel; Aers, Geof C.

    2017-02-01

    GaSb-based tunable single-mode diode lasers can enable rapid, highly-selective and highly-sensitive absorption spectroscopy systems for gas sensing. In this work, single-mode distributed feedback (DFB) laser diodes were developed for the detection of various trace gases in the 2-3.3um range, including CO2, CO, HF, H2S, H2O and CH4. The lasers were fabricated using an index-coupled grating process without epitaxial regrowth, making the process significantly less expensive than conventional DFB fabrication. The devices are based on InGaAsSb/AlGaAsSb separate confinement heterostructures grown on GaSb by molecular beam epitaxy. DFB lasers were produced using a two step etch process. Narrow ridge waveguides were first defined by optical lithography and etched into the semiconductor. Lateral gratings were then defined on both sides of the ridge using electron-beam lithography and etched to produce the index-grating. Effective index modeling was used to optimize the ridge width, etch depths and the grating pitch to ensure single-lateral-mode operation and adequate coupling strength. The effective index method was further used to simulate the DFB laser emission spectrum, based on a transfer matrix model for light transmission through the periodic structure. The fabricated lasers exhibit single-mode operation which is tunable through the absorption features of the various target gases by adjustment of the drive current. In addition to the established open-path sensing applications, these devices have great potential for optoelectronic integrated gas sensors, making use of integrated photodetectors and possibly on-chip Si photonics waveguide structures.

  18. Towards attosecond synchronization of remote mode-locked lasers using stabilized transmission of optical comb frequencies

    Science.gov (United States)

    Wilcox, R. B.; Byrd, J. M.; Doolittle, L. R.; Holzwarth, R.; Huang, G.

    2011-09-01

    We propose a method of synchronizing mode-locked lasers separated by hundreds of meters with the possibility of achieving sub-fs performance by locking the phases of corresponding lines in the optical comb spectrum. The optical phase from one comb line is transmitted to the remote laser over an interferometrically stabilized link by locking a single frequency laser to a comb line with high phase stability. We describe how these elements are integrated into a complete system and estimate the potential performance.

  19. A narrow linewidth tunable single longitudinal mode Ga-EDF fiber laser

    Science.gov (United States)

    Mohamed Halip, N. H.; Abu Bakar, M. H.; Latif, A. A.; Muhd-Yasin, S. Z.; Zulkifli, M. I.; Mat-Sharif, K. A.; Omar, N. Y. M.; Mansoor, A.; Abdul-Rashid, H. A.; Mahdi, M. A.

    2018-05-01

    A tunable ring cavity single longitudinal mode (SLM) fiber laser incorporating Gallium-Erbium co-doped fiber (Ga-EDF) gain medium and several mode filtration techniques is demonstrated. With Ga-EDF, high emission power was accorded in short fiber length, allowing shorter overall cavity length and wider free spectral range. Tunable bandpass filter, sub-ring structure, and cascaded dissimilar fiber taper were utilized to filter multi-longitudinal modes. Each of the filter mechanism was tested individually within the laser cavity to assess its performance. Once the performance of each filter was obtained, all of them were deployed into the laser system. Ultimately, the 1561.47 nm SLM laser achieved a narrow linewidth laser, optical signal-to-noise ratio, and power fluctuation of 1.19 kHz, 61.52 dB and 0.16 dB, respectively. This work validates the feasibility of Ga-EDF to attain a stable SLM output in simple laser configuration.

  20. Self-generation of optical frequency comb in single section quantum dot Fabry-Perot lasers: a theoretical study.

    Science.gov (United States)

    Bardella, Paolo; Columbo, Lorenzo Luigi; Gioannini, Mariangela

    2017-10-16

    Optical Frequency Comb (OFC) generated by semiconductor lasers are currently widely used in the extremely timely field of high capacity optical interconnects and high precision spectroscopy. In the last decade, several experimental evidences of spontaneous OFC generation have been reported in single section Quantum Dot (QD) lasers. Here we provide a physical understanding of these self-organization phenomena by simulating the multi-mode dynamics of a single section Fabry-Perot (FP) QD laser using a Time-Domain Traveling-Wave (TDTW) model that properly accounts for coherent radiation-matter interaction in the semiconductor active medium and includes the carrier grating generated by the optical standing wave pattern in the laser cavity. We show that the latter is the fundamental physical effect at the origin of the multi-mode spectrum appearing just above threshold. A self-mode-locking regime associated with the emission of OFC is achieved for higher bias currents and ascribed to nonlinear phase sensitive effects as Four Wave Mixing (FWM). Our results explain in detail the behaviour observed experimentally by different research groups and in different QD and Quantum Dash (QDash) devices.

  1. 25-Gbit/s burst-mode optical receiver using high-speed avalanche photodiode for 100-Gbit/s optical packet switching.

    Science.gov (United States)

    Nada, Masahiro; Nakamura, Makoto; Matsuzaki, Hideaki

    2014-01-13

    25-Gbit/s error-free operation of an optical receiver is successfully demonstrated against burst-mode optical input signals without preambles. The receiver, with a high-sensitivity avalanche photodiode and burst-mode transimpedance amplifier, exhibits sufficient receiver sensitivity and an extremely quick response suitable for burst-mode operation in 100-Gbit/s optical packet switching.

  2. Cross-correlated imaging of single-mode photonic crystal rod fiber with distributed mode filtering

    DEFF Research Database (Denmark)

    Laurila, Marko; Barankov, Roman; Jørgensen, Mette Marie

    2013-01-01

    Photonic crystal bandgap fibers employing distributed mode filtering design provide near diffraction-limited light outputs, a critical property of fiber-based high-power lasers. Microstructure of the fibers is tailored to achieve single-mode operation at specific wavelength by resonant mode...... identify regimes of resonant coupling between higher-order core modes and cladding band. We demonstrate a passive fiber design in which the higher-order modal content inside the single-mode guiding regime is suppressed by at least 20 dB even for significantly misaligned input-coupling configurations....

  3. Towards single photon generation using NV centers in diamond coupled to thin layer optical waveguides

    International Nuclear Information System (INIS)

    Toshiyuki Tashima

    2014-01-01

    Single photon emitters like the nitrogen-vacancy (NV) center in diamond are important for quantum communication such as quantum cryptography and quantum metrology. In this context, e.g. tapered optical nano-fibers are a promising approach as they allow efficient coupling of single photons into a single spatial mode. Yet, integration of such fibers in a compact integrated quantum circuit is demanding. Here we propose a NV defect center in diamond as a single photon emitter coupled to a thin layer photonic waveguide. The benefit is to allow smaller size devices while having a similar strong evanescent field like tapered nano-optical fibers. We present numerical simulations and fabrication steps of such structures. (author)

  4. An ultra-long cavity passively mode-locked fiber laser based on nonlinear polarization rotation in a semiconductor optical amplifier

    International Nuclear Information System (INIS)

    Liu, Tonghui; Jia, Dongfang; Yang, Jingwen; Chen, Jiong; Wang, Zhaoying; Yang, Tianxin

    2013-01-01

    In this paper we investigate an ultra-long cavity passively mode-locked fiber laser based on a semiconductor optical amplifier (SOA). Experimental results are presented which indicate that stable mode-locked pulses can be obtained by combining nonlinear polarization rotation (NPR) in the SOA with a polarization controller. By adding a 4 km single mode fiber into the ring cavity, a stable fundamental-order mode-locked pulse train with a repetition rate of 50.72 kHz is generated through the NPR effect in the SOA. The central wavelength, 3 dB bandwidth and single pulse energy of the output pulse are 1543.95 nm, 1.506 nm and 33.12 nJ, respectively. Harmonic mode-locked pulses are also observed in experiments when the parameters are chosen properly. (paper)

  5. On the magnon interaction in haematite. I - Magnon energy of optical mode.

    Science.gov (United States)

    Nagai, O.; Tanaka, T.; Bonavito, N. L.

    1972-01-01

    The effect of magnon interaction on the magnon energies of haematite was studied by the use of a recently developed random phase approximation. In this study, the spin Hamiltonian and the magnon energy were written in a power series of (1/S), where S denotes the magnitude of spin. It is known that the expression of magnon energy is rigorous up to the second term of this series. It is found that the optic mode energy is small if the free optic mode energy is small, which is contrary to Herbert's (1969) conclusion. This direct proportionality between the optic mode energy and the free optic mode energy was not confirmed in the higher order terms of 1/S.

  6. Generalized effective mode volume for leaky optical cavities

    DEFF Research Database (Denmark)

    Kristensen, Philip Trøst; Van Vlack, C.; Hughes, S.

    2012-01-01

    We show explicitly how the commonly adopted prescription for calculating effective mode volumes is wrong and leads to uncontrolled errors. Instead, we introduce a generalized mode volume that can be easily evaluated based on the mode calculation methods typically applied in the literature, and wh......, and which allows one to compute the Purcell effect and other interesting optical phenomena in a rigorous and unambiguous way....

  7. Reconfigurable optical interconnection network for multimode optical fiber sensor arrays

    Science.gov (United States)

    Chen, R. T.; Robinson, D.; Lu, H.; Wang, M. R.; Jannson, T.; Baumbick, R.

    1992-01-01

    A single-source, single-detector architecture has been developed to implement a reconfigurable optical interconnection network multimode optical fiber sensor arrays. The network was realized by integrating LiNbO3 electrooptic (EO) gratings working at the Raman Na regime and a massive fan-out waveguide hologram (WH) working at the Bragg regime onto a multimode glass waveguide. The glass waveguide utilized the whole substrate as a guiding medium. A 1-to-59 massive waveguide fan-out was demonstrated using a WH operating at 514 nm. Measured diffraction efficiency of 59 percent was experimentally confirmed. Reconfigurability of the interconnection was carried out by generating an EO grating through an externally applied electric field. Unlike conventional single-mode integrated optical devices, the guided mode demonstrated has an azimuthal symmetry in mode profile which is the same as that of a fiber mode.

  8. Crosstalk-Managed Heterogeneous Single-Mode 32-Core Fibre

    DEFF Research Database (Denmark)

    Sasaki, Y.; Fukumoto, Ryohei; Takenaga, Katsuhiro

    2016-01-01

    A heterogeneous single-mode 32-core fibre with a cladding diameter of 243 micrometer is designed and fabricated. The highest core count in single-mode multi-core fibres and low worst-case crosstalk of less than -24 dB/1000 km in C-band are achieved simultaneously....

  9. Study of structural and optical properties of YAG and Nd:YAG single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kostić, S. [Institute of Physics, University of Belgrade, P.O. Box 68, Pregrevica 118, Zemun, Belgrade (Serbia); Lazarević, Z.Ž., E-mail: lzorica@yahoo.com [Institute of Physics, University of Belgrade, P.O. Box 68, Pregrevica 118, Zemun, Belgrade (Serbia); Radojević, V. [Faculty of Technology and Metallurgy, University of Belgrade, Belgrade (Serbia); Milutinović, A.; Romčević, M.; Romčević, N.Ž. [Institute of Physics, University of Belgrade, P.O. Box 68, Pregrevica 118, Zemun, Belgrade (Serbia); Valčić, A. [Faculty of Technology and Metallurgy, University of Belgrade, Belgrade (Serbia)

    2015-03-15

    Highlights: • Transparent YAG and pale pink Nd:YAG single crystals were produced by the Czochralski technique. • Growth mechanisms and shape of the liquid/solid interface and incorporation of Nd{sup 3+} were studied. • The structure of the crystals was investigated by X-ray diffraction, Raman and IR spectroscopy. • The 15 Raman and 17 IR modes were observed. • The obtained YAG and Nd:YAG single crystals were without core and of good optical quality. - Abstract: Yttrium aluminum garnet (YAG, Y{sub 3}Al{sub 5}O{sub 12}) and yttrium aluminum garnet doped with neodymium (Nd:YAG) single crystals were grown by the Czochralski technique. The critical diameter and the critical rate of rotation were calculated. Suitable polishing and etching solutions were determined. As a result of our experiments, the transparent YAG and pale pink Nd:YAG single crystals were produced. The obtained crystals were studied by X-ray diffraction, Raman and IR spectroscopy. The crystal structure was confirmed by XRD. The 15 Raman and 17 IR modes were observed. The Raman and IR spectroscopy results are in accordance with X-ray diffraction analysis. The obtained YAG and Nd:YAG single crystals were without core and of good optical quality. The absence of a core was confirmed by viewing polished crystal slices. Also, it is important to emphasize that the obtained Nd:YAG single crystal has a concentration of 0.8 wt.% Nd{sup 3+} that is characteristic for laser materials.

  10. 1.9 W continuous-wave single transverse mode emission from 1060 nm edge-emitting lasers with vertically extended lasing area

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. J., E-mail: jarez.miah@tu-berlin.de; Posilovic, K.; Kalosha, V. P.; Rosales, R.; Bimberg, D. [Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin (Germany); Kettler, T. [Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin (Germany); PBC Lasers GmbH, Hardenbergstr. 36, 10623 Berlin (Germany); Skoczowsky, D. [PBC Lasers GmbH, Hardenbergstr. 36, 10623 Berlin (Germany); Pohl, J.; Weyers, M. [Ferdinand-Braun-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin (Germany)

    2014-10-13

    High-brightness edge-emitting semiconductor lasers having a vertically extended waveguide structure emitting in the 1060 nm range are investigated. Ridge waveguide (RW) lasers with 9 μm stripe width and 2.64 mm cavity length yield highest to date single transverse mode output power for RW lasers in the 1060 nm range. The lasers provide 1.9 W single transverse mode optical power under continuous-wave (cw) operation with narrow beam divergences of 9° in lateral and 14° (full width at half maximum) in vertical direction. The beam quality factor M{sup 2} is less than 1.9 up to 1.9 W optical power. A maximum brightness of 72 MWcm{sup −2}sr{sup −1} is obtained. 100 μm wide and 3 mm long unpassivated broad area lasers provide more than 9 W optical power in cw operation.

  11. Writing single-mode waveguides in lithium niobate by ultra-low intensity solitons

    International Nuclear Information System (INIS)

    Fazio, E.; Ramadan, W.; Petris, A.; Chauvet, M.; Bosco, A.; Vlad, V.I.; Bertolotti, M.

    2005-01-01

    Optical waveguides can be conveniently written in photorefractive materials by using spatial solitons. We have generated bright spatial solitons inside lithium niobate which allow single-mode light propagation. Efficient waveguides have been generated with CW light powers as high as few microwatts. According to the soliton formation, waveguides can be formed with different shapes. Due to the slow response time of the lithium niobate, both for soliton formation and relaxation, the soliton waveguide remains memorised for a long time, of the order of months

  12. Whispering gallery mode selection in optical bottle microresonators

    Science.gov (United States)

    Ding, Ming; Senthil Murugan, Ganapathy; Brambilla, Gilberto; Zervas, Michalis N.

    2012-02-01

    We demonstrated a method to excite selected whispering gallery modes in optical bottle microresonators (BMR) by inscribing microgroove scars on their surface by focused ion beam milling. Substantial spectral clean-up is obtained in appropriately scarred BMRs, providing the potential for high performance sensors and other optical devices.

  13. Single-mode regime in large-mode-area rare-earth-doped rod-type PCFs

    DEFF Research Database (Denmark)

    Poli, F.; Cucinotta, A.; Passaro, D.

    2009-01-01

    In this paper, large-mode-area, double-cladding, rare-earth-doped photonic crystal fibers are investigated in order to understand how the refractive index distribution and the mode competition given by the amplification can assure single-mode propagation. Fibers with different core diameters, i...

  14. Gigahertz repetition rate, sub-femtosecond timing jitter optical pulse train directly generated from a mode-locked Yb:KYW laser.

    Science.gov (United States)

    Yang, Heewon; Kim, Hyoji; Shin, Junho; Kim, Chur; Choi, Sun Young; Kim, Guang-Hoon; Rotermund, Fabian; Kim, Jungwon

    2014-01-01

    We show that a 1.13 GHz repetition rate optical pulse train with 0.70 fs high-frequency timing jitter (integration bandwidth of 17.5 kHz-10 MHz, where the measurement instrument-limited noise floor contributes 0.41 fs in 10 MHz bandwidth) can be directly generated from a free-running, single-mode diode-pumped Yb:KYW laser mode-locked by single-wall carbon nanotube-coated mirrors. To our knowledge, this is the lowest-timing-jitter optical pulse train with gigahertz repetition rate ever measured. If this pulse train is used for direct sampling of 565 MHz signals (Nyquist frequency of the pulse train), the jitter level demonstrated would correspond to the projected effective-number-of-bit of 17.8, which is much higher than the thermal noise limit of 50 Ω load resistance (~14 bits).

  15. Optical vortex propagation in few-mode rectangular polymer waveguides

    DEFF Research Database (Denmark)

    Lyubopytov, Vladimir S.; Chipouline, Arkadi; Zywietz, Urs

    2017-01-01

    We demonstrate that rectangular few-mode dielectric waveguides, fabricated with standard lithographic technique, can support on-chip propagation of optical vortices. We show that specific superpositions of waveguide eigenmodes form quasi-degenerate modes carrying light with high purity states...

  16. No-go theorem for passive single-rail linear optical quantum computing.

    Science.gov (United States)

    Wu, Lian-Ao; Walther, Philip; Lidar, Daniel A

    2013-01-01

    Photonic quantum systems are among the most promising architectures for quantum computers. It is well known that for dual-rail photons effective non-linearities and near-deterministic non-trivial two-qubit gates can be achieved via the measurement process and by introducing ancillary photons. While in principle this opens a legitimate path to scalable linear optical quantum computing, the technical requirements are still very challenging and thus other optical encodings are being actively investigated. One of the alternatives is to use single-rail encoded photons, where entangled states can be deterministically generated. Here we prove that even for such systems universal optical quantum computing using only passive optical elements such as beam splitters and phase shifters is not possible. This no-go theorem proves that photon bunching cannot be passively suppressed even when extra ancilla modes and arbitrary number of photons are used. Our result provides useful guidance for the design of optical quantum computers.

  17. Coherent coupling of two different semiconductor quantum dots via an optical cavity mode

    Energy Technology Data Exchange (ETDEWEB)

    Laucht, Arne; Villas-Boas, Jose M.; Hauke, Norman; Hofbauer, Felix; Boehm, Gerhard; Kaniber, Michael; Finley, Jonathan J. [Walter Schottky Institut, Technische Universitaet Muenchen, Garching (Germany)

    2010-07-01

    We present a combined experimental and theoretical study of a strongly coupled system consisting of two spatially separated self-assembled InGaAs quantum dots and a single optical nanocavity mode. Due to their different size and strain profile, the two dots exhibit markedly different electric field dependences due to the quantum confined Stark effect. This allows us to tune them into resonance simply by changing the applied bias voltage and to independently tune them into the photonic crystal nanocavity mode. Photoluminescence measurements show a characteristic triple peak during the double anticrossing, which is a clear signature of a coherently coupled system of three quantum states. We fit the emission spectra of the coupled system to theory and are able to investigate the coupling between the two quantum dots directly via the cavity mode. Furthermore, we investigate the coupling between the two quantum dots when they are detuned from the cavity mode in a V-system where dephasing due to incoherent losses from the cavity mode can be reduced.

  18. Coherent coupling of two different semiconductor quantum dots via an optical cavity mode

    Energy Technology Data Exchange (ETDEWEB)

    Villas-Boas, Jose M. [Universidade Federal de Uberlandia (UFU), MG (Brazil). Inst. de Fisica; Laucht, Arne; Hauke, Norman; Hofbauer, Felix; Boehm, Gerhard; Kaniber, Michael; Finley, Jonathan J. [Technische Universitaet Muenchen, Garching (Germany). Walter Schottky Inst.

    2011-07-01

    Full text. We present a combined experimental and theoretical study of a strongly coupled system consisting of two spatially separated self-assembled InGaAs quantum dots and a single optical nano cavity mode. Due to their different size and strain profile, the two dots exhibit markedly different electric field dependences due to the quantum confined Stark effect. This allows us to tune them into resonance simply by changing the applied bias voltage and to independently tune them into the photonic crystal nano cavity mode. Photoluminescence measurements show a characteristic triple peak during the double anti crossing, which is a clear signature of a coherently coupled system of three quantum states. We fit the emission spectra of the coupled system to theory and are able to investigate the coupling between the two quantum dots directly via the cavity mode. Furthermore, we investigate the coupling between the two quantum dots when they are detuned from the cavity mode in a V-system where dephasing due to incoherent losses from the cavity mode can be reduced

  19. Polymer optical fiber Bragg grating inscription with a single UV laser pulse

    DEFF Research Database (Denmark)

    Pospori, Andreas; Marques, A.T.; Bang, Ole

    2017-01-01

    We experimentally demonstrate the first polymer optical fiber Bragg grating inscribed with only one krypton fluoride laser pulse. The device has been recorded in a single-mode poly(methyl methacrylate) optical fiber, with a core doped with benzyl dimethyl ketal for photosensitivity enhancement. One...... laser pulse with a duration of 15 ns, which provide energy density of 974 mJ/cm2, is adequate to introduce a refractive index change of 0.74×10-4 in the fiber core. After the exposure, the reflectivity of the grating increases for a few minutes following a second order exponential saturation...

  20. BEND-INDUCED LOSSES IN A SINGLE-MODE MICROSTRUCTURED FIBER WITH A LARGE CORE

    Directory of Open Access Journals (Sweden)

    Y. A. Gatchin

    2015-03-01

    Full Text Available A study of bend-induced losses in a silica-based single-mode microstructured fiber with a core diameter ranging from 20 to 35 microns and increased relative air content in the holey cladding has been conducted. With the use of the equivalent step-index profile method in approximation of waveguide parameters of microstructured fiber (normalized frequency and normalized transverse attenuation constant the effect of bending on the spectral position of the fundamentalmode short-wavelength leakage boundary has been analyzed. Upon measurement of spectral characteristics of attenuation in the considered fibers good accordance of numerical and experimental data has been found out. It is shown that increase of the air content in the holey cladding leads to expansion of the mentioned boundary to lower wavelengths for the value from 150 to 800 nm depending on the core size and bending conditions. A single-transverse-mode propagation is achieved on fiber length of 5-10 meters due to a substantial difference in losses of fundamental and higher-order guided modes attained by bending. Optical losses in all studied samples are less than 10 dB/km at the wavelength λ = 1550 nm. The results of the study can be applied in the design of high-power laser systems having such basic requirements as a relatively large mode spot and high beam quality.

  1. Dual-Mode Operation of an Optical Lattice Clock Using Strontium and Ytterbium Atoms.

    Science.gov (United States)

    Akamatsu, Daisuke; Kobayashi, Takumi; Hisai, Yusuke; Tanabe, Takehiko; Hosaka, Kazumoto; Yasuda, Masami; Hong, Feng-Lei

    2018-06-01

    We have developed an optical lattice clock that can operate in dual modes: a strontium (Sr) clock mode and an ytterbium (Yb) clock mode. Dual-mode operation of the Sr-Yb optical lattice clock is achieved by alternately cooling and trapping 87 Sr and 171 Yb atoms inside the vacuum chamber of the clock. Optical lattices for Sr and Yb atoms were arranged with horizontal and vertical configurations, respectively, resulting in a small distance of the order of between the trapped Sr and Yb atoms. The 1 S 0 - 3 P 0 clock transitions in the trapped atoms were interrogated in turn and the clock lasers were stabilized to the transitions. We demonstrated the frequency ratio measurement of the Sr and Yb clock transitions by using the dual-mode operation of the Sr-Yb optical lattice clock. The dual-mode operation can reduce the uncertainty of the blackbody radiation shift in the frequency ratio measurement, because both Sr and Yb atoms share the same blackbody radiation.

  2. Observation of phase noise reduction in photonically synthesized sub-THz signals using a passively mode-locked laser diode and highly selective optical filtering

    DEFF Research Database (Denmark)

    Criado, A. R.; Acedo, P.; Carpintero, G.

    2012-01-01

    A Continuous Wave (CW) sub-THz photonic synthesis setup based on a single Passively Mode-Locked Laser Diode (PMLLD) acting as a monolithic Optical Frequency Comb Generator (OFCG) and highly selective optical filtering has been implemented to evaluate the phase noise performance of the generated sub...

  3. Single-mode coherent synchrotron radiation instability

    Directory of Open Access Journals (Sweden)

    S. Heifets

    2003-06-01

    Full Text Available The microwave instability driven by the coherent synchrotron radiation (CSR has been previously studied [S. Heifets and G. V. Stupakov, Phys. Rev. ST Accel. Beams 5, 054402 (2002] neglecting effect of the shielding caused by the finite beam pipe aperture. In practice, the unstable mode can be close to the shielding threshold where the spectrum of the radiation in a toroidal beam pipe is discrete. In this paper, the CSR instability is studied in the case when it is driven by a single synchronous mode. A system of equations for the beam-wave interaction is derived and its similarity to the 1D free-electron laser theory is demonstrated. In the linear regime, the growth rate of the instability is obtained and a transition to the case of continuous spectrum is discussed. The nonlinear evolution of the single-mode instability, both with and without synchrotron damping and quantum diffusion, is also studied.

  4. Quasi-single-mode homogeneous 31-core fibre

    DEFF Research Database (Denmark)

    Sasaki, Y.; Saitoh, S.; Amma, Y.

    2015-01-01

    A homogeneous 31-core fibre with a cladding diameter of 230 μm for quasi-single-mode transmission is designed and fabricated. LP01-crosstalk of -38.4 dB/11 km at 1550 nm is achieved by using few-mode trench-assisted cores....

  5. Optical fibers with low nonlinearity and low polarization-mode dispersion for terabit communications

    Science.gov (United States)

    Baghdadi, J. A.; Safaai-Jazi, A.; Hattori, H. T.

    2001-07-01

    Refractive-index nonlinearities have negligible effect on the performance of short-haul fiber-optic communication links utilizing electronic repeaters. However, in long links, nonlinearities can cause severe signal degradations. To mitigate nonlinear effects, a new generation of fibers, referred to as large effective-area fibers, have been introduced in recent years. This paper reviews the latest research and development work on these fibers conducted by several research groups around the world. Attention is focused on a class of large effective-area fibers that are based on a depressed-core multiple-cladding design. Another important issue in long-haul and high capacity fiber optic systems is the polarization-mode dispersion (PMD) which has been recognized as a serious limiting factor. In this paper, an improved fiber design is proposed which, in addition to providing large effective-area and low bending loss, eliminates PMD due to elliptical deformation in the single-mode wavelength region. Furthermore, this design is allowed to provide a small chromatic dispersion about few ps/ nm km , in order to overcome four-wave mixing effects.

  6. Open quantum systems and the two-level atom interacting with a single mode of the electromagnetic field

    International Nuclear Information System (INIS)

    Sandulescu, A.; Stefanescu, E.

    1987-07-01

    On the basis of Lindblad theory of open quantum systems we obtain new optical equations for the system of two-level atom interacting with a single mode of the electromagnetic field. The conventional Block equations in a generalized form with field phases are obtained in the hypothesis that all the terms are slowly varying in the rotating frame.(authors)

  7. Two-photon optics of Bessel-Gaussian modes

    CSIR Research Space (South Africa)

    McLaren, M

    2013-09-01

    Full Text Available In this paper we consider geometrical two-photon optics of Bessel-Gaussian modes generated in spontaneous parametric down-conversion of a Gaussian pump beam. We provide a general theoretical expression for the orbital angular momentum (OAM) spectrum...

  8. Progress Toward Single-Photon-Level Nonlinear Optics in Crystalline Microcavities

    Science.gov (United States)

    Kowligy, Abijith S.

    Over the last two decades, the emergence of quantum information science has uncovered many practical applications in areas such as communications, imaging, and sensing where harnessing quantum features of Nature provides tremendous benefits over existing methods exploiting classical physical phenomena. In this effort, one of the frontiers of research has been to identify and utilize quantum phenomena that are not susceptible to environmental and parasitic noise processes. Quantum photonics has been at the forefront of these studies because it allows room-temperature access to its inherently quantum-mechanical features, and allows leveraging the mature telecommunication industry. Accompanying the weak environmental influence, however, are also weak optical nonlinearities. Efficient nonlinear optical interactions are indispensible for many of the existing protocols for quantum optical computation and communication, e.g. high-fidelity entangling quantum logic gates rely on large nonlinear responses at the one- or few-photon-level. While this has been addressed to a great extent by interfacing photons with single quantum emitters and cold atomic gases, scalability has remained elusive. In this work, we identify the macroscopic second-order nonlinear polarization as a robust platform to address this challenge, and utilize the recent advances in the burgeoning field of optical microcavities to enhance this nonlinear response. In particular, we show theoretically that by using the quantum Zeno effect, low-noise, single-photon-level optical nonlinearities can be realized in lithium niobate whispering-gallery-mode microcavities, and present experimental progress toward this goal. Using the measured strength of the second-order nonlinear response in lithium niobate, we modeled the nonlinear system in the strong coupling regime using the Schrodinger picture framework and theoretically demonstrated that the single-photon-level operation can be observed for cavity lifetimes in

  9. Tunable negative-tap photonic microwave filter based on a cladding-mode coupler and an optically injected laser of large detuning.

    Science.gov (United States)

    Chan, Sze-Chun; Liu, Qing; Wang, Zhu; Chiang, Kin Seng

    2011-06-20

    A tunable negative-tap photonic microwave filter using a cladding-mode coupler together with optical injection locking of large wavelength detuning is demonstrated. Continuous and precise tunability of the filter is realized by physically sliding a pair of bare fibers inside the cladding-mode coupler. Signal inversion for the negative tap is achieved by optical injection locking of a single-mode semiconductor laser. To couple light into and out of the cladding-mode coupler, a pair of matching long-period fiber gratings is employed. The large bandwidth of the gratings requires injection locking of an exceptionally large wavelength detuning that has never been demonstrated before. Experimentally, injection locking with wavelength detuning as large as 27 nm was achieved, which corresponded to locking the 36-th side mode. Microwave filtering with a free-spectral range tunable from 88.6 MHz to 1.57 GHz and a notch depth larger than 35 dB was obtained.

  10. Experimental demonstration of a simple displacement sensor based on a bent single-mode–multimode–single-mode fiber structure

    International Nuclear Information System (INIS)

    Wu, Qiang; Semenova, Yuliya; Wang, Pengfei; Hatta, Agus Muhamad; Farrell, Gerald

    2011-01-01

    A simple displacement sensor based on a bent single-mode–multimode–single-mode (SMS) fiber structure is proposed and experimentally investigated. The sensor offers a wider displacement range, not limited by the risk of fiber breakage, as well as a three-fold increase in displacement sensitivity by comparison with a straight SMS structure sensor. This sensor can be interrogated by either an optical spectral analyzer (OSA) or a ratiometric interrogation system: (1) if interrogated by an OSA assuming a resolution of 1 pm, it has a sensitivity of 28.2 nm for a displacement measurement range from 0 to 280 µm; (2) if interrogated by a ratiometric interrogation system, it has worst and best case resolutions of 556 and 38 nm, respectively, for a displacement measurement range from 0 to 520 µm

  11. Demonstration of glass-based photonic interposer for mid-board-optical engines and electrical-optical circuit board (EOCB) integration strategy

    Science.gov (United States)

    Schröder, H.; Neitz, M.; Schneider-Ramelow, M.

    2018-02-01

    Due to its optical transparency and superior dielectric properties glass is regarded as a promising candidate for advanced applications as active photonic interposer for mid-board-optics and optical PCB waveguide integration. The concepts for multi-mode and single-mode photonic system integration are discussed and related demonstration project results will be presented. A hybrid integrated photonic glass body interposer with integrated optical lenses for multi-mode data communication wavelength of 850 nm have been realized. The paper summarizes process developments which allow cost efficient metallization of TGV. Electro-optical elements like photodiodes and VCSELs can be directly flip-chip mounted on the glass substrate according to the desired lens positions. Furthermore results for a silicon photonic based single-mode active interposer integration onto a single mode glass made EOCB will be compared in terms of packaging challenges. The board level integration strategy for both of these technological approaches and general next generation board level integration concepts for photonic interposer will be introductorily discussed.

  12. Quasi-optical millimeter wave rotating TE62 mode generator

    International Nuclear Information System (INIS)

    Li Shaopu; Zhang Conghui; Wang Zhong; Guo Feng; Chen Hongbin; Hu Linlin; Pan Wenwu

    2011-01-01

    The design,measurement technique and experimental results of rotating TE 6 2 mode generator are presented. The source includes millimeter wave optical system and open coaxial wave guide system. The millimeter wave optical system consists of pyramid antenna, hyperbolical reflector, parabolic reflector and quasi parabolic reflector. The open coaxial wave guide system contains open coaxial wave guide cavity, cylinder wave guide and output antenna. It is tested by network analyser and millimeter wave near field pattern auto-test system, and the purity of rotating TE 6 2 mode at 96.4 GHz is about 97%. (authors)

  13. Propagation of an optical discharge through optical fibres upon interference of modes

    International Nuclear Information System (INIS)

    Bufetov, I A; Frolov, A A; Shubin, A V; Likhachev, M E; Lavrishchev, S V; Dianov, E M

    2008-01-01

    The propagation of an optical discharge (OD) through optical fibres upon interference of LP 01 and LP 02 modes is studied. Under these conditions after the OD propagation through the fibre, the formation of an axially-symmetric group sequence of voids with a spatial period equal to that of mode interference (200-500 μm depending on the parameters of the fibre) is observed. The groups of voids are formed near the sections of the fibre with a minimal diameter of the intensity distribution of laser radiation. Large spaces between voids in the fibre have allowed us to measure accurately the difference Δn of refractive indices of the fibre core and cladding and distribution of dopants in different cross sections of the fibre after the OD propagation. A substantial increase in Δn (up to ten times) is observed. Approximately half this increase is caused by compression and densification of the fibre material after the propagation of the optical discharge. (interaction of laser radiation with matter. laser plasma)

  14. Physics and technology of tunable pulsed single longitudinal mode ...

    Indian Academy of Sciences (India)

    Design and technology demonstration of compact, narrow bandwidth, high repetition rate, tunable SLM dye lasers in two different configurations, namely Littrow and grazing incidence grating (GIG), were carried out in our lab at BARC, India. The single longitudinal mode (SLM) dye laser generates single-mode laser beams ...

  15. Active composite waveguides with a suppressed competition of optical modes

    International Nuclear Information System (INIS)

    Vysotskii, D V; Elkin, N N; Napartovich, A P

    2008-01-01

    The possibilities of separating the fundamental optical mode in composite waveguides by selecting the structure of amplifying regions are analysed. Conditions are presented under which the fundamental mode preserves the highest gain at any saturation. (letters)

  16. Theoretical Design of a Depolarized Interferometric Fiber-Optic Gyroscope (IFOG) on SMF-28 Single-Mode Standard Optical Fiber Based on Closed-Loop Sinusoidal Phase Modulation with Serrodyne Feedback Phase Modulation Using Simulation Tools for Tactical and Industrial Grade Applications.

    Science.gov (United States)

    Pérez, Ramón José; Álvarez, Ignacio; Enguita, José María

    2016-04-27

    This article presents, by means of computational simulation tools, a full analysis and design of an Interferometric Fiber-Optic Gyroscope (IFOG) prototype based on a closed-loop configuration with sinusoidal bias phase- modulation. The complete design of the different blocks, optical and electronic, is presented, including some novelties as the sinusoidal bias phase-modulation and the use of an integrator to generate the serrodyne phase-modulation signal. The paper includes detailed calculation of most parameter values, and the plots of the resulting signals obtained from simulation tools. The design is focused in the use of a standard single-mode optical fiber, allowing a cost competitive implementation compared to commercial IFOG, at the expense of reduced sensitivity. The design contains an IFOG model that accomplishes tactical and industrial grade applications (sensitivity ≤ 0.055 °/h). This design presents two important properties: (1) an optical subsystem with advanced conception: depolarization of the optical wave by means of Lyot depolarizers, which allows to use a sensing coil made by standard optical fiber, instead by polarization maintaining fiber, which supposes consequent cost savings and (2) a novel and simple electronic design that incorporates a linear analog integrator with reset in feedback chain, this integrator generating a serrodyne voltage-wave to apply to Phase-Modulator (PM), so that it will be obtained the interferometric phase cancellation. This particular feedback design with sawtooth-wave generated signal for a closed-loop configuration with sinusoidal bias phase modulation has not been reported till now in the scientific literature and supposes a considerable simplification with regard to previous designs based on similar configurations. The sensing coil consists of an 8 cm average diameter spool that contains 300 m of standard single-mode optical-fiber (SMF-28 type) realized by quadrupolar winding. The working wavelength will be

  17. Theoretical Design of a Depolarized Interferometric Fiber-Optic Gyroscope (IFOG on SMF-28 Single-Mode Standard Optical Fiber Based on Closed-Loop Sinusoidal Phase Modulation with Serrodyne Feedback Phase Modulation Using Simulation Tools for Tactical and Industrial Grade Applications

    Directory of Open Access Journals (Sweden)

    Ramón José Pérez

    2016-04-01

    Full Text Available This article presents, by means of computational simulation tools, a full analysis and design of an Interferometric Fiber-Optic Gyroscope (IFOG prototype based on a closed-loop configuration with sinusoidal bias phase- modulation. The complete design of the different blocks, optical and electronic, is presented, including some novelties as the sinusoidal bias phase-modulation and the use of an integrator to generate the serrodyne phase-modulation signal. The paper includes detailed calculation of most parameter values, and the plots of the resulting signals obtained from simulation tools. The design is focused in the use of a standard single-mode optical fiber, allowing a cost competitive implementation compared to commercial IFOG, at the expense of reduced sensitivity. The design contains an IFOG model that accomplishes tactical and industrial grade applications (sensitivity ≤ 0.055 °/h. This design presents two important properties: (1 an optical subsystem with advanced conception: depolarization of the optical wave by means of Lyot depolarizers, which allows to use a sensing coil made by standard optical fiber, instead by polarization maintaining fiber, which supposes consequent cost savings and (2 a novel and simple electronic design that incorporates a linear analog integrator with reset in feedback chain, this integrator generating a serrodyne voltage-wave to apply to Phase-Modulator (PM, so that it will be obtained the interferometric phase cancellation. This particular feedback design with sawtooth-wave generated signal for a closed-loop configuration with sinusoidal bias phase modulation has not been reported till now in the scientific literature and supposes a considerable simplification with regard to previous designs based on similar configurations. The sensing coil consists of an 8 cm average diameter spool that contains 300 m of standard single-mode optical-fiber (SMF-28 type realized by quadrupolar winding. The working

  18. Measurement-induced nonlinearity in linear optics

    International Nuclear Information System (INIS)

    Scheel, Stefan; Knight, Peter L.; Nemoto, Kae; Munro, William J.

    2003-01-01

    We investigate the generation of nonlinear operators with single-photon sources, linear optical elements, and appropriate measurements of auxiliary modes. We provide a framework for the construction of useful single-mode and two-mode quantum gates necessary for all-optical quantum information processing. We focus our attention generally on using minimal physical resources while providing a transparent and algorithmic way of constructing these operators

  19. A sensitivity-enhanced refractive index sensor using a single-mode thin-core fiber incorporating an abrupt taper.

    Science.gov (United States)

    Shi, Jie; Xiao, Shilin; Yi, Lilin; Bi, Meihua

    2012-01-01

    A sensitivity-enhanced fiber-optic refractive index (RI) sensor based on a tapered single-mode thin-core diameter fiber is proposed and experimentally demonstrated. The sensor head is formed by splicing a section of tapered thin-core diameter fiber (TCF) between two sections of single-mode fibers (SMFs). The cladding modes are excited at the first SMF-TCF interface, and then interfere with the core mode at the second interface, thus forming an inter-modal interferometer (IMI). An abrupt taper (tens of micrometers long) made by the electric-arc-heating method is utilized, and plays an important role in improving sensing sensitivity. The whole manufacture process only involves fiber splicing and tapering, and all the fabrication process can be achieved by a commercial fiber fusion splicer. Using glycerol and water mixture solution as an example, the experimental results show that the refractive index sensitivity is measured to be 0.591 nm for 1% change of surrounding RI. The proposed sensor structure features simple structure, low cost, easy fabrication, and high sensitivity.

  20. A Sensitivity-Enhanced Refractive Index Sensor Using a Single-Mode Thin-Core Fiber Incorporating an Abrupt Taper

    Directory of Open Access Journals (Sweden)

    Jie Shi

    2012-04-01

    Full Text Available A sensitivity-enhanced fiber-optic refractive index (RI sensor based on a tapered single-mode thin-core diameter fiber is proposed and experimentally demonstrated. The sensor head is formed by splicing a section of tapered thin-core diameter fiber (TCF between two sections of single-mode fibers (SMFs. The cladding modes are excited at the first SMF-TCF interface, and then interfere with the core mode at the second interface, thus forming an inter-modal interferometer (IMI. An abrupt taper (tens of micrometers long made by the electric-arc-heating method is utilized, and plays an important role in improving sensing sensitivity. The whole manufacture process only involves fiber splicing and tapering, and all the fabrication process can be achieved by a commercial fiber fusion splicer. Using glycerol and water mixture solution as an example, the experimental results show that the refractive index sensitivity is measured to be 0.591 nm for 1% change of surrounding RI. The proposed sensor structure features simple structure, low cost, easy fabrication, and high sensitivity.

  1. Quasi-optical mode converter for a coaxial cavity gyrotron

    International Nuclear Information System (INIS)

    Jin, J.

    2007-03-01

    This work concentrates on the synthesis of the quasioptical mode converter for the 170 GHz, TE 34,19 -mode, 2MW, CW coaxial-cavity gyrotron at Forschungszentrum Karlsruhe (FZK). The improvement of the general method for the design of so-call dimpled-wall launcher to provide a good Gaussian mode content is described. This method is verified through the design of a launcher operating in the TE 22,6 mode at 118 GHz. A phase rule is proposed as a quality criterion for monitoring the optimization and the choices of parameters of the quasi-optical mode converter. High-order harmonics introduced to the launcher wall deformations are proposed for this gyrotron. The launcher is numerically optimized, the fields on the cut edges are suppressed. The fields in the launcher are well approximated by the waveguide modes, the radiated fields are calculated using the scalar diffraction integral. The procedure for the numerical optimization of the mirror system is improved, the tolerance conditions of the phase correcting mirrors are investigated. A conversion efficiency of 95.8% to the circular fundamental Gaussian distribution with 20mm beam waist and power transmission of 90% are achieved in the window plane using the optimized quasi-optical mode converter. The methods to ameliorate the initial conditions of the phase correcting mirrors are explored. (orig.)

  2. Continuous-wave singly resonant optical parametric oscillator placed inside a ring laser

    DEFF Research Database (Denmark)

    Abitan, Haim; Buchhave, Preben

    2003-01-01

    A cw singly resonant optical parametric oscillator (SRO) was built and placed inside the cavity of a ring laser. The system consists of a diode-end-pumped Nd:YVO4 ring laser with intracavity periodically poled lithium niobate as the nonlinear gain medium of the SRO. When the laser was operated...... in a unidirectional mode, we obtained more than 520 mW of signal power in one beam. When the laser was operated in a bidirectional mode, we obtained 600 mW of signal power (300 mW in two separate beams). The power and the spectral features of the laser in the unidirectional and bidirectional modes were measured while...... the laser was coupled with the SRO. The results show that it is preferable to couple a SRO with a unidirectional ring laser....

  3. Investigation of bending loss in a single-mode optical fibre

    Indian Academy of Sciences (India)

    been studied. Twisting the optical fibre and its influence on power loss also have been investigated. ... been employed, to investigate their effects on bending loss. A simple semi-empirical .... optical correction factor [10]). This model (equation) ...

  4. Recirculating beam-breakup thresholds for polarized higher-order modes with optical coupling

    Directory of Open Access Journals (Sweden)

    Georg H. Hoffstaetter

    2007-04-01

    Full Text Available Here we will derive the general theory of the beam-breakup (BBU instability in recirculating linear accelerators with coupled beam optics and with polarized higher-order dipole modes. The bunches do not have to be at the same radio-frequency phase during each recirculation turn. This is important for the description of energy recovery linacs (ERLs where beam currents become very large and coupled optics are used on purpose to increase the threshold current. This theory can be used for the analysis of phase errors of recirculated bunches, and of errors in the optical coupling arrangement. It is shown how the threshold current for a given linac can be computed and a remarkable agreement with tracking data is demonstrated. General formulas are then analyzed for several analytically solvable problems: (a Why can different higher order modes (HOM in one cavity couple and why can they then not be considered individually, even when their frequencies are separated by much more than the resonance widths of the HOMs? For the Cornell ERL as an example, it is noted that optimum advantage is taken of coupled optics when the cavities are designed with an x-y HOM frequency splitting of above 50 MHz. The simulated threshold current is then far above the design current of this accelerator. To justify that the simulation can represent an actual accelerator, we simulate cavities with 1 to 8 modes and show that using a limited number of modes is reasonable. (b How does the x-y coupling in the particle optics determine when modes can be considered separately? (c How much of an increase in threshold current can be obtained by coupled optics and why does the threshold current for polarized modes diminish roughly with the square root of the HOMs’ quality factors. Because of this square root scaling, polarized modes with coupled optics increase the threshold current more effectively for cavities that have rather large HOM quality factors, e.g. those without very

  5. Investigation of single-mode and multi-mode hydromagnetic Rayleigh-Taylor instability in planar geometry

    International Nuclear Information System (INIS)

    Roderick, N.F.; Cochrane, K.; Douglas, M.R.

    1998-01-01

    Previous investigations carried out to study various methods of seeding the hydromagnetic Rayleigh-Taylor instability in magnetohydrodynamic simulations showed features similar to those seen in hydrodynamic calculations. For periodic single-mode initiations the results showed the appearance of harmonics as the single modes became nonlinear. For periodic multi-mode initiations new modes developed that indicated the presence of mode coupling. The MHD simulations used parameters of the high velocity large radius z-pinch experiments performed in the Z-accelerator at Sandia National Laboratories. The cylindrical convergent geometry and variable acceleration of these configurations made comparison with analytic, developed for planar geometry with constant acceleration, difficult. A set of calculations in planar geometry using constant current to produce acceleration and parameters characteristic of the cylindrical implosions has been performed to allow a better comparison. Results of these calculations, comparison with analytic theory, and comparison with the cylindrical configuration calculations will be discussed

  6. Nonlocal quasinormal modes for arbitrarily shaped three-dimensional plasmonic resonators

    DEFF Research Database (Denmark)

    Kamandar Dezfouli, Mohsen; Tserkezis, Christos; Mortensen, N. Asger

    2017-01-01

    Nonlocal effects have been shown to be responsible for a variety of non-trivial optical effects in small-size plasmonic nanoparticles, beyond classical electrodynamics. However, it is not clear whether optical mode descriptions can be applied to such extreme confinement regimes. Here, we present...... quasinormal modes, even at the single mode level. We exemplify the use of this theory by calculating the Purcell factors of single quantum emitters, the electron energy-loss spectroscopy spatial maps, as well as the Mollow triplet spectra of field-driven quantum dots with and without nonlocal effects...... for different size nanoresonators. Our nonlocal quasinormal mode theory offers a reliable and efficient technique to study both classical and quantum optical problems in nanoplasmonics....

  7. Diffractive optical elements for transformation of modes in lasers

    Science.gov (United States)

    Sridharan, Arun K.; Pax, Paul H.; Heebner, John E.; Drachenberg, Derrek R.; Armstrong, James P.; Dawson, Jay W.

    2015-09-01

    Spatial mode conversion modules are described, with the capability of efficiently transforming a given optical beam profile, at one plane in space into another well-defined optical beam profile at a different plane in space, whose detailed spatial features and symmetry properties can, in general, differ significantly. The modules are comprised of passive, high-efficiency, low-loss diffractive optical elements, combined with Fourier transform optics. Design rules are described that employ phase retrieval techniques and associated algorithms to determine the necessary profiles of the diffractive optical components. System augmentations are described that utilize real-time adaptive optical techniques for enhanced performance as well as power scaling.

  8. Single-particle states vs. collective modes: friends or enemies ?

    Science.gov (United States)

    Otsuka, T.; Tsunoda, Y.; Togashi, T.; Shimizu, N.; Abe, T.

    2018-05-01

    The quantum self-organization is introduced as one of the major underlying mechanisms of the quantum many-body systems. In the case of atomic nuclei as an example, two types of the motion of nucleons, single-particle states and collective modes, dominate the structure of the nucleus. The collective mode arises as the balance between the effect of the mode-driving force (e.g., quadrupole force for the ellipsoidal deformation) and the resistance power against it. The single-particle energies are one of the sources to produce such resistance power: a coherent collective motion is more hindered by larger spacings between relevant single particle states. Thus, the single-particle state and the collective mode are "enemies" against each other. However, the nuclear forces are rich enough so as to enhance relevant collective mode by reducing the resistance power by changing single-particle energies for each eigenstate through monopole interactions. This will be verified with the concrete example taken from Zr isotopes. Thus, the quantum self-organization occurs: single-particle energies can be self-organized by (i) two quantum liquids, e.g., protons and neutrons, (ii) monopole interaction (to control resistance). In other words, atomic nuclei are not necessarily like simple rigid vases containing almost free nucleons, in contrast to the naïve Fermi liquid picture. Type II shell evolution is considered to be a simple visible case involving excitations across a (sub)magic gap. The quantum self-organization becomes more important in heavier nuclei where the number of active orbits and the number of active nucleons are larger.

  9. Mode-Locked Semiconductor Lasers for Optical Communication Systems

    DEFF Research Database (Denmark)

    Yvind, Kresten; Larsson, David; Oxenløwe, Leif Katsuo

    2005-01-01

    We present investigations on 10 and 40 GHz monolithic mode-locked lasers for applications in optical communications systems. New all-active lasers with one to three quantum wells have been designed, fabricated and characterized....

  10. Optical self-injection mode-locking of semiconductor optical amplifier fiber ring with electro-absorption modulation—fundamentals and applications

    International Nuclear Information System (INIS)

    Chi, Yu-Chieh; Lin, Gong-Ru

    2013-01-01

    The optical self-injection mode-locking of a semiconductor optical amplifier incorporated fiber ring laser (SOAFL) with spectrally sliced multi-channel carriers is demonstrated for applications. The synthesizer-free SOAFL pulse-train is delivered by optical injection mode-locking with a 10 GHz self-pulsed electro-absorption modulator (EAM). Such a coupled optical and electronic resonator architecture facilitates a self-feedback oscillation with a higher Q-factor and lower phase/intensity noises when compared with conventional approaches. The theoretical model of such an injection-mode-locking SOAFL is derived to improve the self-pulsating performance of the optical return-to-zero (RZ) carrier, thus providing optimized pulsewidth, pulse extinction ratio, effective Q-factor, frequency variation and timing jitter of 11.4 ps, 9.1 dB, 4 × 10 5 , −1 bi-directional WDM transmission network with down-stream RZ binary phase-shift keying (RZ-BPSK) and up-stream re-modulated RZ on–off-keying (RZ-OOK) formats. Under BPSK/OOK bi-directional data transmission, the self-pulsed harmonic mode-locking SOAFL simultaneously provides four to six WDM channels for down-stream RZ-BPSK and up-stream RZ-OOK formats with receiving sensitivities of −17 and −15.2 dBm at a bit error rate of 10 −9 , respectively. (paper)

  11. Optical Communications With A Geiger Mode APD Array

    Science.gov (United States)

    2016-02-09

    practical performance of a Geiger mode avalanche photodiode ( GM -APD, or Geiger mode APD) array for use in optical com- munications systems. I designed and...signal quality in the first half of the frame. These shorter reset times also did not offer any advantage in the maximum number of counts able to be...pattern was advantageous for the modifications being made in post-processing on the benchmark data. In particular, this allowed post-processing results

  12. Analysis of Optical Fiber Complex Propagation Matrix on the Basis of Vortex Modes

    DEFF Research Database (Denmark)

    Lyubopytov, Vladimir S.; Tatarczak, Anna; Lu, Xiaofeng

    2016-01-01

    We propose and experimentally demonstrate a novel method for reconstruction of the complex propagation matrix of optical fibers supporting propagation of multiple vortex modes. This method is based on the azimuthal decomposition approach and allows the complex matrix elements to be determined...... by direct calculations. We apply the proposed method to demonstrate the feasibility of optical compensation for coupling between vortex modes in optical fiber....

  13. Stable single longitudinal mode erbium-doped silica fiber laser based on an asymmetric linear three-cavity structure

    International Nuclear Information System (INIS)

    Feng Ting; Yan Feng-Ping; Li Qi; Peng Wan-Jing; Feng Su-Chun; Tan Si-Yu; Wen Xiao-Dong

    2013-01-01

    We present a stable linear-cavity single longitudinal mode (SLM) erbium-doped silica fiber laser. It consists of four fiber Bragg gratings (FBGs) directly written in a section of photosensitive erbium-doped fiber (EDF) to form an asymmetric three-cavity structure. The stable SLM operation at a wavelength of 1545.112 nm with a 3-dB bandwidth of 0.012 nm and an optical signal-to-noise ratio (OSNR) of about 60 dB is verified experimentally. Under laboratory conditions, the performance of a power fluctuation of less than 0.05 dB observed from the power meter for 6 h and a wavelength variation of less than 0.01 nm obtained from the optical spectrum analyzer (OSA) for about 1.5 h are demonstrated. The gain fiber length is no longer limited to only several centimeters for SLM operation because of the excellent mode-selecting ability of the asymmetric three-cavity structure. The proposed scheme provides a simple and cost-effective approach to realizing a stable SLM fiber laser. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  14. Fiber Optic Sensors for Health Monitoring of Morphing Airframes. Part 2; Chemical Sensing Using Optical Fibers with Bragg Gratings

    Science.gov (United States)

    Wood, Karen; Brown, Timothy; Rogowski, Robert; Jensen, Brian

    2000-01-01

    Part 1 of this two part series described the fabrication and calibration of Bragg gratings written into a single mode optical fiber for use in strain and temperature monitoring. Part 2 of the series describes the use of identical fibers and additional multimode fibers, both with and without Bragg gratings, to perform near infrared spectroscopy. The demodulation system being developed at NASA Langley Research Center currently requires the use of a single mode optical fiber. Attempts to use this single mode fiber for spectroscopic analysis are problematic given its small core diameter, resulting in low signal intensity. Nonetheless, we have conducted a preliminary investigation using a single mode fiber in conjunction with an infrared spectrometer to obtain spectra of a high-performance epoxy resin system. Spectra were obtained using single mode fibers that contained Bragg gratings; however, the peaks of interest were barely discernible above the noise. The goal of this research is to provide a multipurpose sensor in a single optical fiber capable of measuring a variety of chemical and physical properties.

  15. Direct generation of an optical vortex beam in a single-frequency Nd:YVO4 laser.

    Science.gov (United States)

    Kim, D J; Kim, J W

    2015-02-01

    A simple method for generating a Laguerre-Gaussian (LG) mode optical vortex beam with well-determined handedness in a single-frequency solid state laser end-pumped by a ring-shaped pump beam is reported. After investigating the intensity profile and the wavefront helicity of each longitudinal mode output to understand generation of the LG mode in a Nd:YVO4 laser resonator, selection of the wavefront handedness has been achieved simply by inserting and tilting an etalon in the resonator, which breaks the propagation symmetry of the Poynting vectors with opposite helicity. Simple calculation and the experimental results are discussed for supporting this selection mechanism.

  16. Single-mode electrically pumped GaSb-based VCSELs emitting continuous-wave at 2.4 and 2.6 μm

    International Nuclear Information System (INIS)

    Bachmann, Alexander; Arafin, Shamsul; Kashani-Shirazi, Kaveh

    2009-01-01

    Vertical-cavity surface-emitting lasers (VCSELs) are perfect light sources for spectroscopic applications, where properties such as continuous-wave (cw) operation, single-mode emission, high lifetime and often low power consumption are crucial. For applications such as tunable diode laser absorption spectroscopy (TDLAS), there is a growing interest in laser devices emitting in the near- to mid-infrared wavelength range, where many environmentally and technologically important gases show strong absorption lines. The (AlGaIn)(AsSb) material system based on GaSb is the material of choice for covering the 2.0-3.3 μm range. In this paper, we report on electrically pumped single-mode VCSELs with emission wavelengths of 2.4 and 2.6 μm, operating cw at room temperature and beyond. By (electro-) thermal tuning, the emission wavelength can be tuned mode-hop free over a range of several nanometers. In addition, low threshold currents of several milliamperes promise mobile application. In the devices, a structured buried tunnel junction with subsequent overgrowth has been used in order to achieve efficient current confinement, reduced optical losses and increased electrical conductivity. Furthermore, strong optical confinement is introduced in the lasers due to laterally differing cavity lengths.

  17. Cavity quantum electrodynamics with Anderson-localized modes

    DEFF Research Database (Denmark)

    Sapienza, Luca; Nielsen, Henri Thyrrestrup; Stobbe, Søren

    2010-01-01

    by a factor of 15 on resonance with the Anderson-localized mode, and 94% of the emitted single photons coupled to the mode. Disordered photonic media thus provide an efficient platform for quantum electrodynamics, offering an approach to inherently disorder-robust quantum information devices.......A major challenge in quantum optics and quantum information technology is to enhance the interaction between single photons and single quantum emitters. This requires highly engineered optical cavities that are inherently sensitive to fabrication imperfections. We have demonstrated a fundamentally...... different approach in which disorder is used as a resource rather than a nuisance. We generated strongly confined Anderson-localized cavity modes by deliberately adding disorder to photonic crystal waveguides. The emission rate of a semiconductor quantum dot embedded in the waveguide was enhanced...

  18. Proposal for efficient mode converter based on cavity quantum electrodynamics dark mode in a semiconductor quantum dot coupled to a bimodal microcavity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jiahua [School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); Key Laboratory of Fundamental Physical Quantities Measurement of Ministry of Education, Wuhan 430074 (China); Yu, Rong, E-mail: yurong321@126.com [School of Science, Hubei Province Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan 430073 (China); Ma, Jinyong; Wu, Ying, E-mail: yingwu2@163.com [School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-10-28

    The ability to engineer and convert photons between different modes in a solid-state approach has extensive technological implications not only for classical communication systems but also for future quantum networks. In this paper, we put forward a scheme for coherent mode conversion of optical photons by utilizing the intermediate coupling between a single quantum dot and a bimodal photonic crystal microcavity via a waveguide. Here, one mode of the photonic crystal microcavity is coherently driven by an external single-frequency continuous-wave laser field and the two cavity modes are not coupled to each other due to their orthogonal polarizations. The undriven cavity mode is thus not directly coupled to the input driving laser and the only way it can get light is via the quantum dot. The influences of the system parameters on the photon-conversion efficiency are analyzed in detail in the limit of weak probe field and it is found that high photon-conversion efficiency can be achieved under appropriate conditions. It is shown that the cavity dark mode, which is a superposition of the two optical modes and is decoupled from the quantum dot, can appear in such a hybrid optical system. We discuss the properties of the dark mode and indicate that the formation of the dark mode enables the efficient transfer of optical fields between the two cavity modes.

  19. Mode-field half-widths of Gaussian approximation for the fundamental mode of two kinds of optical waveguides

    International Nuclear Information System (INIS)

    Lian-Huang, Li; Fu-Yuan, Guo

    2009-01-01

    This paper analyzes the characteristic of matching efficiency between the fundamental mode of two kinds of optical waveguides and its Gaussian approximate field. Then, it presents a new method where the mode-field half-width of Gaussian approximation for the fundamental mode should be defined according to the maximal matching efficiency method. The relationship between the mode-field half-width of the Gaussian approximate field obtained from the maximal matching efficiency and normalized frequency is studied; furthermore, two formulas of mode-field half-widths as a function of normalized frequency are proposed

  20. Linear Transformation of the Polarization Modes in Coiled Optical Spun-Fibers with Strong Unperturbed Linear Birefringence. I. Nonresonant Transformation

    Science.gov (United States)

    Malykin, G. B.; Pozdnyakova, V. I.

    2018-03-01

    A linear transformation of orthogonal polarization modes in coiled optical spun-fibers with strong unperturbed linear birefringence, which causes the emergence of the dependences of the integrated elliptical birefringence and the ellipticity and azimuth of the major axis of the ellipse, as well as the polarization state of radiation (PSR), on the length of optical fiber has been considered. Optical spun-fibers are subjected to a strong mechanical twisting, which is frozen into the structure of the optical fiber upon cooling, in the process of being drawn out from the workpiece. Since the values of the local polarization parameters of coiled spunwaveguides vary according to a rather complex law, the calculations were carried out by numerical modeling of the parameters of the Jones matrices. Since the rotation speed of the axes of the birefringence is constant on a relatively short segment of a coiled optical spun-fiber in the accompanying torsion (helical) coordinate system, the so-called "Ginzburg helical polarization modes" (GHPMs)—two mutually orthogonal ellipses with the opposite directions of traversal, the axis of which rotate relative to the fixed coordinate system uniformly and unidirectionally—are approximately the local normal polarization modes of such optical fiber. It has been shown that, despite the fact that the unperturbed linear birefringence of the spun-fibers significantly exceeds the linear birefringence, which is caused by the winding on a coil, the integral birefringence of an extended segment of such a fiber coincides in order of magnitude with the linear birefringence, which is caused by the winding on the coil, and the integral polarization modes tend asymptotically to circular ones. It has been also shown that the values of the circular birefringence of twisted single-mode fibers, which were calculated in a nonrotating and torsion helical coordinate systems, differ significantly. It has been shown that the polarization phenomena occur

  1. 3D finite element simulation of optical modes in VCSELs

    OpenAIRE

    Rozova, M.; Pomplun, J.; Zschiedrich, L.; Schmidt, F.; Burger, S.

    2011-01-01

    We present a finite element method (FEM) solver for computation of optical resonance modes in VCSELs. We perform a convergence study and demonstrate that high accuracies for 3D setups can be attained on standard computers. We also demonstrate simulations of thermo-optical effects in VCSELs.

  2. Simple immunoglobulin G sensor based on thin core single-mode fiber

    Science.gov (United States)

    Zheng, Yingfang; Lang, Tingting; Shen, Tingting; Shen, Changyu

    2018-03-01

    In this paper, a simple fiber biosensor (FOB) for immunoglobulin G (IgG) detection is designed and experimentally verified. The FOB is constructed by a 20 mm long thin core single-mode fiber (TCSMF) sandwiched between two single-mode optical fibers (SMFs). First, the refractive index (RI) sensitivity of the fiber structures is calculated by the beam propagation method. The refractive index sensing experiment is performed using different concentrations of glycerol solutions, and the experimental results are mostly consistent with the simulation predictions. The experimental RI sensitivity increases with the surrounding RI and reaches 82.7 nm/RIU. Then the surface of the FOB is functionalized by APTES for covalent bonding. The human IgG and goat anti-human IgG are chosen as a bioconjugated pair to examine the bio-sensing effectiveness of this FOB. The sensitivity of IgG detection is determined to be 10.4 nm/(mg/ml). And the serum IgG concentration in normal adults lies within the range of 6-16 mg/ml (Worsfold et al., 1985), so the sensor is applicable to human IgG monitoring. The specificity of the FOB is also verified by a contrast experiment conducted using rabbit immunoglobulin G. The proposed FOB is simple, low loss, cost-effective, and can be used for various biological and chemical applications.

  3. Free-space optics mode-wavelength division multiplexing system using LG modes based on decision feedback equalization

    Science.gov (United States)

    Amphawan, Angela; Ghazi, Alaan; Al-dawoodi, Aras

    2017-11-01

    A free-space optics mode-wavelength division multiplexing (MWDM) system using Laguerre-Gaussian (LG) modes is designed using decision feedback equalization for controlling mode coupling and combating inter symbol interference so as to increase channel diversity. In this paper, a data rate of 24 Gbps is achieved for a FSO MWDM channel of 2.6 km in length using feedback equalization. Simulation results show significant improvement in eye diagrams and bit-error rates before and after decision feedback equalization.

  4. Single-mode, All-Solid-State Nd:YAG Laser Pumped UV Converter

    Science.gov (United States)

    Prasad, Narasimha S.; Armstrong, Darrell, J.; Edwards, William C.; Singh, Upendra N.

    2008-01-01

    In this paper, the status of a high-energy, all solid-state Nd:YAG laser pumped nonlinear optics based UV converter development is discussed. The high-energy UV transmitter technology is being developed for ozone sensing applications from space based platforms using differential lidar technique. The goal is to generate greater than 200 mJ/pulse with 10-50 Hz PRF at wavelengths of 308 nm and 320 nm. A diode-pumped, all-solid-state and single longitudinal mode Nd:YAG laser designed to provide conductively cooled operation at 1064 nm has been built and tested. Currently, this pump laser provides an output pulse energy of >1 J/pulse at 50 Hz PRF and a pulsewidth of 22 ns with an electrical-to-optical system efficiency of greater than 7% and a M(sup 2) value of UV converter arrangement basically consists of an IR Optical Parametric Oscillator (OPO) and a Sum Frequency Generator (SFG) setups that are pumped by 532 nm wavelength obtained via Second Harmonic Generation (SHG). In this paper, the operation of an inter cavity SFG with CW laser seeding scheme generating 320 nm wavelength is presented. Efforts are underway to improve conversion efficiency of this mJ class UV converter by modifying the spatial beam profile of the pump laser.

  5. Semiconductor Mode-Locked Lasers for Optical Communication Systems

    DEFF Research Database (Denmark)

    Yvind, Kresten

    2003-01-01

    The thesis deals with the design and fabrication of semiconductor mode-locked lasers for use in optical communication systems. The properties of pulse sources and characterization methods are described as well as requirements for application in communication systems. Especially, the importance of...

  6. Free-space optics mode-wavelength division multiplexing system using LG modes based on decision feedback equalization

    Directory of Open Access Journals (Sweden)

    Amphawan Angela

    2017-01-01

    Full Text Available A free-space optics mode-wavelength division multiplexing (MWDM system using Laguerre-Gaussian (LG modes is designed using decision feedback equalization for controlling mode coupling and combating inter symbol interference so as to increase channel diversity. In this paper, a data rate of 24 Gbps is achieved for a FSO MWDM channel of 2.6 km in length using feedback equalization. Simulation results show significant improvement in eye diagrams and bit-error rates before and after decision feedback equalization.

  7. Single-mode biological distributed feedback laser

    DEFF Research Database (Denmark)

    Vannahme, Christoph; Maier-Flaig, Florian; Lemmer, Uli

    2013-01-01

    Single-mode second order distributed feedback (DFB) lasers of riboflavin (vitamin B2) doped gelatine films on nanostructured low refractive index material are demonstrated. Manufacturing is based on a simple UV nanoimprint and spin-coating. Emission wavelengths of 543 nm and 562 nm for two...

  8. Design and prototyping of self-centering optical single-mode fiber alignment structures

    International Nuclear Information System (INIS)

    Ebraert, Evert; Gao, Fei; Thienpont, Hugo; Van Erps, Jürgen; Beri, Stefano; Watté, Jan

    2016-01-01

    The European Commission’s goal of providing each European household with at least a 30 Mb s −1 Internet connection by 2020 would be facilitated by a widespread deployment of fibre-to-the-home, which would in turn be sped up by the development of connector essential components, such as high-precision alignment features. Currently, the performance of state-of-the-art physical contact optical fiber connectors is limited by the tolerance on the cladding of standard telecom-grade single-mode fiber (SMF), which is typically smaller than  ±1 μ m. We propose to overcome this limit by developing micro-spring-based self-centering alignment structures (SCAS) for SMF-connectors. We design these alignment structures with robustness and low-cost replication in mind, allowing for large-scale deployment. Both theoretical and finite element analysis (FEA) models are used to determine the optimal dimensions of the beams of which the micro-springs of the SCAS are comprised. Two topologies of the SCAS, consisting of three and four micro-springs respectively, are investigated for two materials: polysulfone (PSU) and polyetherimide (PEI). These materials hold great potential for high-performance fiber connectors while being compatible with low-cost production and with the harsh environmental operation conditions of those connectors. The theory and FEA agree well (<3% difference) for a simple micro-spring. When including a pedestal on the micro-spring (to bring it further away from the fiber) and for shorter spring lengths the agreement worsens. This is due to spring compression effects not being taken into account in our theoretical model. Prototypes are successfully fabricated using deep proton writing and subsequently characterized. The controlled insertion of an SMF in the SCAS is investigated and we determine that a force of 0.11 N is required. The fiber insertion also causes an out-of-plane deformation of the micro-springs in the SCAS of about 7 μ m, which is no

  9. 7 CFR 1755.404 - Fiber optic cable telecommunications plant measurements.

    Science.gov (United States)

    2010-01-01

    ... performed on each optical fiber within the cable. (2) Method of measurement. For single mode fibers, the end-to-end attenuation measurements of each optical fiber at 1310 and/or 1550 nanometers in each...-end attenuation of each single mode optical fiber at 1310 and/or 1550 nanometers shall not exceed the...

  10. Tunable orbital angular momentum mode filter based on optical geometric transformation.

    Science.gov (United States)

    Huang, Hao; Ren, Yongxiong; Xie, Guodong; Yan, Yan; Yue, Yang; Ahmed, Nisar; Lavery, Martin P J; Padgett, Miles J; Dolinar, Sam; Tur, Moshe; Willner, Alan E

    2014-03-15

    We present a tunable mode filter for spatially multiplexed laser beams carrying orbital angular momentum (OAM). The filter comprises an optical geometric transformation-based OAM mode sorter and a spatial light modulator (SLM). The programmable SLM can selectively control the passing/blocking of each input OAM beam. We experimentally demonstrate tunable filtering of one or multiple OAM modes from four multiplexed input OAM modes with vortex charge of ℓ=-9, -4, +4, and +9. The measured output power suppression ratio of the propagated modes to the blocked modes exceeds 14.5 dB.

  11. Analytical study of nonlinear phase shift through stimulated Brillouin scattering in single mode fiber with the pump power recycling technique

    International Nuclear Information System (INIS)

    Al-Asadi, H A; Mahdi, M A; Bakar, A A A; Adikan, F R Mahamd

    2011-01-01

    We present a theoretical study of nonlinear phase shift through stimulated Brillouin scattering in single mode optical fiber. Analytical expressions describing the nonlinear phase shift for the pump and Stokes waves in the pump power recycling technique have been derived. The dependence of the nonlinear phase shift on the optical fiber length, the reflectivity of the optical mirror and the frequency detuning coefficient have been analyzed for different input pump power values. We found that with the recycling pump technique, the nonlinear phase shift due to stimulated Brillouin scattering reduced to less than 0.1 rad for 5 km optical fiber length and 0.65 reflectivity of the optical mirror, respectively, at an input pump power equal to 30 mW

  12. High-power single-mode cw dye ring laser

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, H W; Stein, L; Froelich, D; Fugger, B; Welling, H [Technische Univ. Hannover (Germany, F.R.). Inst. fuer Angewandte Physik

    1977-12-01

    Due to spatial hole burning, standing-wave dye lasers require a large amount of selectivity inside the cavity for single-mode operation. The output power of these lasers is limited by losses caused by the frequency selecting elements. In a travelling-wave laser, on the other hand, spatial hole burning does not exist, thereby eliminating the need for high selectivity. A travelling-wave cw dye laser was realized by unidirectional operation of a ring laser, yielding single mode output powers of 1.2 W at 595 nm and of 55 mW in the UV-region with intracavity frequency doubling.

  13. Single-molecule electronics: Cooling individual vibrational modes by the tunneling current.

    Science.gov (United States)

    Lykkebo, Jacob; Romano, Giuseppe; Gagliardi, Alessio; Pecchia, Alessandro; Solomon, Gemma C

    2016-03-21

    Electronic devices composed of single molecules constitute the ultimate limit in the continued downscaling of electronic components. A key challenge for single-molecule electronics is to control the temperature of these junctions. Controlling heating and cooling effects in individual vibrational modes can, in principle, be utilized to increase stability of single-molecule junctions under bias, to pump energy into particular vibrational modes to perform current-induced reactions, or to increase the resolution in inelastic electron tunneling spectroscopy by controlling the life-times of phonons in a molecule by suppressing absorption and external dissipation processes. Under bias the current and the molecule exchange energy, which typically results in heating of the molecule. However, the opposite process is also possible, where energy is extracted from the molecule by the tunneling current. Designing a molecular "heat sink" where a particular vibrational mode funnels heat out of the molecule and into the leads would be very desirable. It is even possible to imagine how the vibrational energy of the other vibrational modes could be funneled into the "cooling mode," given the right molecular design. Previous efforts to understand heating and cooling mechanisms in single molecule junctions have primarily been concerned with small models, where it is unclear which molecular systems they correspond to. In this paper, our focus is on suppressing heating and obtaining current-induced cooling in certain vibrational modes. Strategies for cooling vibrational modes in single-molecule junctions are presented, together with atomistic calculations based on those strategies. Cooling and reduced heating are observed for two different cooling schemes in calculations of atomistic single-molecule junctions.

  14. Interband optical pulse injection locking of quantum dot mode-locked semiconductor laser.

    Science.gov (United States)

    Kim, Jimyung; Delfyett, Peter J

    2008-07-21

    We experimentally demonstrate optical clock recovery from quantum dot mode-locked semiconductor lasers by interband optical pulse injection locking. The passively mode-locked slave laser oscillating on the ground state or the first excited state transition is locked through the injection of optical pulses generated via the opposite transition bands, i.e. the first excited state or the ground state transition from the hybridly mode-locked master laser, respectively. When an optical pulse train generated via the first excited state from the master laser is injected to the slave laser oscillating via ground state, the slave laser shows an asymmetric locking bandwidth around the nominal repetition rate of the slave laser. In the reverse injection case of, i.e. the ground state (master laser) to the first excited state (slave laser), the slave laser does not lock even though both lasers oscillate at the same cavity frequency. In this case, the slave laser only locks to higher injection rates as compared to its own nominal repetition rate, and also shows a large locking bandwidth of 6.7 MHz.

  15. A deterministic guide for material and mode dependence of on-chip electro-optic modulator performance

    Science.gov (United States)

    Amin, Rubab; Suer, Can; Ma, Zhizhen; Sarpkaya, Ibrahim; Khurgin, Jacob B.; Agarwal, Ritesh; Sorger, Volker J.

    2017-10-01

    Electro-optic modulation is a key function in optical data communication and possible future optical computing engines. The performance of modulators intricately depends on the interaction between the actively modulated material and the propagating waveguide mode. While high-performing modulators were demonstrated before, the approaches were taken as ad-hoc. Here we show the first systematic investigation to incorporate a holistic analysis for high-performance and ultra-compact electro-optic modulators on-chip. We show that intricate interplay between active modulation material and optical mode plays a key role in the device operation. Based on physical tradeoffs such as index modulation, loss, optical confinement factors and slow-light effects, we find that bias-material-mode regions exist where high phase modulation and high loss (absorption) modulation is found. This work paves the way for a holistic design rule of electro-optic modulators for on-chip integration.

  16. Few-mode fiber, splice and SDM component characterization by spatially-diverse optical vector network analysis

    DEFF Research Database (Denmark)

    Rommel, Simon; Mendinueta, José Manuel Delgado; Klaus, Werner

    2017-01-01

    This paper discusses spatially diverse optical vector network analysis for space division multiplexing (SDM) component and system characterization, which is becoming essential as SDM is widely considered to increase the capacity of optical communication systems. Characterization of a 108-channel ...... in the few-mode multi-core fiber and their impact on system IL and MDL are analyzed, finding splices to cause significant mode-mixing and to be non-negligible in system capacity analysis.......This paper discusses spatially diverse optical vector network analysis for space division multiplexing (SDM) component and system characterization, which is becoming essential as SDM is widely considered to increase the capacity of optical communication systems. Characterization of a 108-channel...... photonic lantern spatial multiplexer, coupled to a 36-core 3-mode fiber, is experimentally demonstrated, extracting the full impulse response and complex transfer function matrices as well as insertion loss (IL) and mode-dependent loss (MDL) data. Moreover, the mode-mixing behavior of fiber splices...

  17. Bending , Heating and Pressure Effects of He-Ne Laserin Single Mode Fiber

    Directory of Open Access Journals (Sweden)

    Nizar Salim Shnan

    2017-12-01

    Full Text Available In this paper a single mode fiber have been chosen with a refractive index (1.50 to the core, and (1.485 to the cladding, with length of (2 m. It was exposed this optical fiber to a bending with different diameters, and to a different temperatures as well as pressure due to putting different weights to study dispersion phenomenon which affects on a pulse shape that travels in optical fiber. Experimental results explain when a bending diameter for an optical fiber increases it will decrease the dispersion and pulse shape will approximate from a Gaussian shape , and the increasing in temperature will increasing  the attenuation in the pulse transfer through the optical fiber .                                                                                                 But when increasing pressure, the dispersion will increases and the pulse shape will be distorted

  18. Physics and technology of tunable pulsed single longitudinal mode ...

    Indian Academy of Sciences (India)

    precious materials. In particular, single-longitudinal mode dye lasers are useful ... to the longitudinal mode spacing of 10 GHz. Grating of 3300 .... the band of wavelength covering 3 pm and SLM operation was shown in the band of 0.5 pm.

  19. Terraced-heterostructure large-optical-cavity AlGaAs diode laser - A new type of high-power CW single-mode device

    Science.gov (United States)

    Botez, D.; Connolly, J. C.

    1982-01-01

    A new terraced lateral wave confining structure is obtained by liquid phase epitaxy over channeled substrates misoriented perpendicular to the channels' direction. Single spatial and longitudinal mode CW operation is achieved to 50 mW from one facet, in large spot sizes (2 x 7.5 micron, 1/e squared points in intensity) and narrow beams (6 deg x 23 deg), full width half-power). At 70 C ambient temperature CW lasing is obtained to 15 mW from one facet. Weak mode confinement in an asymmetric lateral waveguides provides discrimination against high-order mode oscillation.

  20. On the fundamental mode of the optical resonator with toroidal mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Serednyakov, S.S.; Vinokurov, N.A. [Budker Institute of Nuclear Physics, Novosibirsk (Russian Federation)

    1995-12-31

    The fundamental mode of the optical resonator with the toroidal mirrors is investigated. The losses in such resonator with the on-axis holes are low in compare with the case of spherical mirrors. The use of this type of optical resonator is briefly discussed.

  1. Generation efficiency of single-photon current pulses in the Geiger mode of silicon avalanche photodiodes

    International Nuclear Information System (INIS)

    Verkhovtseva, A. V.; Gergel, V. A.

    2009-01-01

    Statistical fluctuations of the avalanche's multiplication efficiency were studied as applied to the single-photon (Geiger) mode of avalanche photodiodes. The distribution function of partial multiplication factors with an anomalously wide (of the order of the average) dispersion was obtained. Expressions for partial feedback factors were derived in terms of the average gain and the corresponding dependences on the diode's overvoltage were calculated. Final expressions for the photon-electric pulse's conversion were derived by averaging corresponding formulas over the coordinate of initiating photoelectron generation using the functions of optical photon absorption in silicon.

  2. Analysis of Few-Mode Multi-Core Fiber Splice Behavior Using an Optical Vector Network Analyzer

    DEFF Research Database (Denmark)

    Rommel, Simon; Mendinueta, Jose Manuel Delgado; Klaus, Werner

    2017-01-01

    The behavior of splices in a 3-mode 36-core fiber is analyzed using optical vector network analysis. Time-domain response analysis confirms splices may cause significant mode-mixing, while frequency-domain analysis shows splices may affect system level mode-dependent loss both positively and negativ......The behavior of splices in a 3-mode 36-core fiber is analyzed using optical vector network analysis. Time-domain response analysis confirms splices may cause significant mode-mixing, while frequency-domain analysis shows splices may affect system level mode-dependent loss both positively...

  3. Integrated Optical Circuit Engineering

    Science.gov (United States)

    Sriram, S.

    1985-04-01

    Implementation of single-mode optical fiber systems depends largely on the availability of integrated optical components for such functions as switching, multiplexing, and modulation. The technology of integrated optics is maturing very rapidly, and its growth justifies the optimism that now exists in the optical community.

  4. Static thermo-optic instability in double-pass fiber amplifiers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper

    2016-01-01

    A coupled-mode formalism, earlier used to describe transverse mode instabilities in single-pass optical fiber amplifiers, is extended to the case of double-pass amplifiers. Contrary to the single-pass case, it is shown that the thermo-optic nonlinearity can couple light at the same frequency...... between the LP01 and LP11 modes, leading to a static deformation of the output beam profile. This novel phenomenon is caused by the interaction of light propagating in either direction with thermo-optic index perturbations caused by light propagating in the opposite direction. The threshold power...... for the static deformation is found to be several times lower than what is typically found for the dynamic modal instabilities observed in single-pass amplifiers. (C) 2016 Optical Society of America...

  5. Assessment of magneto-optic Faraday effect-based drift on interferometric single-mode fiber optic gyroscope (IFOG) as a function of variable degree of polarization (DOP)

    International Nuclear Information System (INIS)

    Çelikel, Oğuz; Sametoğlu, Ferhat

    2012-01-01

    In this study, a novel interferometric fiber optic gyroscope (IFOG), which has a different depolarizer structure, is designed in TUBITAK UME (National Metrology Institute of Turkey) to experimentally and relatively evaluate the effect of the degree of polarization on the Faraday effect-based drift of the light waves injected into both arms of a Sagnac interferometer. In order to observe whether or not any change occurs in the Faraday-based drift, depending on the variations in degree of polarization (DOP), a triple structure-depolarizer IFOG possessing adjustable DOP is firstly designed and prototyped. The minimum DOP achieved with triple structure-depolarizers is typically 0.15% for both clockwise (CW) and counterclockwise (CCW) light waves at both arms of the Sagnac interferometer. The experimental evaluations about the drift are given for DOP changes extending from 78.00% to 0.15% together with two main and different theoretical approaches in the literature. According to the experimental evaluations given herein, it is experimentally proved that the Faraday-based drift does not change depending on DOP values of both CW and CCW light waves injected into the single-mode (SM) sensing coil and it is impossible to state a concept of a depolarized IFOG by considering the polarization state at the entrance arms of the SM sensing coil. (paper)

  6. Structure of modes of smoothly irregular three-dimensional integrated optical four-layer waveguide

    International Nuclear Information System (INIS)

    Egorov, A.A.; Ajryan, Eh.A.; Sevast'yanov, A.L.; Sevast'yanov, L.A.

    2009-01-01

    As a method of research of an integrated optical multilayer waveguide, satisfying the condition of smooth modification of the shape of the studied three-dimensional structure, an asymptotic method is used. Three-dimensional fields of smoothly deforming modes of the integrated optical waveguide are circumscribed analytically. An evident dependence of the contributions of the first order of smallness in the amplitudes of the electrical and magnetic fields of the quasi-waveguide modes is obtained. The canonical type of the equations circumscribing propagation of quasi-TE and quasi-TM modes in the smoothly irregular part of a four-layer integrated optical waveguide is represented for an asymptotic method. With the help of the method of coupled waves and perturbation theory method, the shifts of complex propagation constants for quasi-TE and quasi-TM modes are obtained in an explicit form. The elaborated theory is applicable for the analysis of similar structures of dielectric, magnetic and metamaterials in a sufficiently broad band of electromagnetic wavelengths

  7. Post-processing with linear optics for improving the quality of single-photon sources

    International Nuclear Information System (INIS)

    Berry, Dominic W; Scheel, Stefan; Myers, Casey R; Sanders, Barry C; Knight, Peter L; Laflamme, Raymond

    2004-01-01

    Triggered single-photon sources produce the vacuum state with non-negligible probability, but produce a much smaller multiphoton component. It is therefore reasonable to approximate the output of these photon sources as a mixture of the vacuum and single-photon states. We show that it is impossible to increase the probability for a single photon using linear optics and photodetection on fewer than four modes. This impossibility is due to the incoherence of the inputs; if the inputs were pure-state superpositions, it would be possible to obtain a perfect single-photon output. In the more general case, a chain of beam splitters can be used to increase the probability for a single photon, but at the expense of adding an additional multiphoton component. This improvement is robust against detector inefficiencies, but is degraded by distinguishable photons, dark counts or multiphoton components in the input

  8. Customization of Protein Single Nanowires for Optical Biosensing.

    Science.gov (United States)

    Sun, Yun-Lu; Sun, Si-Ming; Wang, Pan; Dong, Wen-Fei; Zhang, Lei; Xu, Bin-Bin; Chen, Qi-Dai; Tong, Li-Min; Sun, Hong-Bo

    2015-06-24

    An all-protein single-nanowire optical biosensor is constructed by a facile and general femtosecond laser direct writing approach with nanoscale structural customization. As-formed protein single nanowires show excellent optical properties (fine waveguiding performance and bio-applicable transmission windows), and are utilized as evanescent optical nanobiosensors for label-free biotin detection. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Fabrication of polymer microlenses on single mode optical fibers for light coupling

    Science.gov (United States)

    Zaboub, Monsef; Guessoum, Assia; Demagh, Nacer-Eddine; Guermat, Abdelhak

    2016-05-01

    In this paper, we present a technique for producing fibers optics micro-collimators composed of polydimethylsiloxane PDMS microlenses of different radii of curvature. The waist and working distance values obtained enable the optimization of optical coupling between optical fibers, fibers and optical sources, and fibers and detectors. The principal is based on the injection of polydimethylsiloxane (PDMS) into a conical micro-cavity chemically etched at the end of optical fibers. A spherical microlens is then formed that is self-centered with respect to the axis of the fiber. Typically, an optimal radius of curvature of 10.08 μm is obtained. This optimized micro-collimator is characterized by a working distance of 19.27 μm and a waist equal to 2.28 μm for an SMF 9/125 μm fiber. The simulation and experimental results reveal an optical coupling efficiency that can reach a value of 99.75%.

  10. Tripartite entanglement of bosonic systems in a noninertial frame beyond the single- mode approximation

    Directory of Open Access Journals (Sweden)

    M Soltani

    2015-12-01

    Full Text Available In this work, we generalize the entanglement of three-qbit Bosonic systems beyond the single-mode approximation when one of the observers is accelerated. For this purpose, we review the effects of acceleration on field modes and quantum states. The single-mode approximation and beyond the single-mode approximation methods are introduced. After this brief introduction, the main problem of this paper, tripartite entanglement of bosonic systems in a noninertial frame beyond the single- mode approximation is investigated. The tripartite entangled states have different classes with GHZ and W states being most important. Here, we choose &pi-tangle as a measure of tripartite entanglement. If the three parties share GHZ state, the corresponding &pi-tangle will increase by increasing acceleration for some Unruh modes. This phenomenon, increasing entanglement, has never been observed in the single-mode approximation for bosonic case. Moreover, the &pi-tangle dose not exhibit a monotonic behavior with increasing acceleration. In the infinite acceleration limit, the &pi-tangle goes to different nonzero values for distinct Unruh modes. Unlike GHZ state, the entanglement of the W state shows only monotonically increasing and decreasing behaviors with increasing acceleration. Also, the entanglement for all possible choices of Unruh modes approaches only 0.176 in the high acceleration limit. Therefore, according to the quantum entanglement, there is no distinction between the single-mode approximation and beyond the single-mode approximation methods in this limit.

  11. DBD plasma source operated in single-filamentary mode for therapeutic use in dermatology

    Energy Technology Data Exchange (ETDEWEB)

    Rajasekaran, Priyadarshini; Mertmann, Philipp; Bibinov, Nikita; Awakowicz, Peter [Institute for Electrical Engineering and Plasma Technology, Ruhr-Universitaet Bochum, Universitaetsstr. 150, 44801 Bochum (Germany); Wandke, Dirk [CINOGY GmbH, Max-Naeder-Str. 15, 37114 Duderstadt (Germany); Vioel, Wolfgang, E-mail: rajasekaran@aept.rub.d, E-mail: mertmann@aept.rub.d, E-mail: Nikita.Bibinov@rub.d, E-mail: dirk.wandke@cinogy.co, E-mail: vioel@hawk-hhg.d, E-mail: awakowicz@aept.rub.d [University of Applied Sciences and Arts, Faculty of Natural Sciences and Technology, Von-Ossietzky-Str. 99, 37085 Goettingen (Germany)

    2009-11-21

    Our dielectric barrier discharge (DBD) plasma source for bio-medical application comprises a copper electrode covered with ceramic. Objects of high capacitance such as the human body can be used as the opposite electrode. In this study, the DBD source is operated in single-filamentary mode using an aluminium spike as the opposite electrode, to imitate the conditions when the discharge is ignited on a raised point, such as hair, during therapeutic use on the human body. The single-filamentary discharge thus obtained is characterized using optical emission spectroscopy, numerical simulation, voltage-current measurements and microphotography. For characterization of the discharge, averaged plasma parameters such as electron distribution function and electron density are determined. Fluxes of nitric oxide (NO), ozone (O{sub 3}) and photons reaching the treated surface are simulated. The calculated fluxes are finally compared with corresponding fluxes used in different bio-medical applications.

  12. Parametric feedback cooling of a single atom inside on optical cavity

    International Nuclear Information System (INIS)

    Tatjana Wilk

    2014-01-01

    An optical cavity can be used as a kind of intensifier to study radiation features of an atom, which are hard to detect in free space, like squeezing. Such experiments make use of strong coupling between atom and cavity mode, which experimentally requires the atom to be well localized in the cavity mode. This can be achieved using feedback on the atomic motion: from intensity variations of a probe beam transmitted through the cavity information about the atomic motion is gained, which is used to synchronously modulate the trapping potential holding the atom, leading to cooling and better localization. Here, we report on efficient parametric feedback cooling of a single atom held in an intra-cavity standing wave dipole trap. In contrast to previous feedback strategies, this scheme cools the fast axial oscillation of the atom as well as the slower radial motion. (author)

  13. Nonlinear optics in the LP(02) higher-order mode of a fiber.

    Science.gov (United States)

    Chen, Y; Chen, Z; Wadsworth, W J; Birks, T A

    2013-07-29

    The distinct disperion properties of higher-order modes in optical fibers permit the nonlinear generation of radiation deeper into the ultraviolet than is possible with the fundamental mode. This is exploited using adiabatic, broadband mode convertors to couple light efficiently from an input fundamental mode and also to return the generated light to an output fundamental mode over a broad spectral range. For example, we generate visible and UV supercontinuum light in the LP(02) mode of a photonic crystal fiber from sub-ns pulses with a wavelength of 532 nm.

  14. “MODAL NOISE” IN SINGLE-MODE FIBERS: A CAUTIONARY NOTE FOR HIGH PRECISION RADIAL VELOCITY INSTRUMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Halverson, Samuel; Roy, Arpita; Mahadevan, Suvrath [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Schwab, Christian, E-mail: shalverson@psu.edu [Macquarie University, Sydney, NSW 2109 (Australia)

    2015-12-01

    Exploring the use of single-mode fibers (SMFs) in high precision Doppler spectrometers has become increasingly attractive since the advent of diffraction-limited adaptive optics systems on large-aperture telescopes. Spectrometers fed with these fibers can be made significantly smaller than typical “seeing-limited” instruments, greatly reducing cost and overall complexity. Importantly, classical mode interference and speckle issues associated with multi-mode fibers, also known as “modal noise,” are mitigated when using SMFs, which also provide perfect radial and azimuthal image scrambling. However, SMFs do support multiple polarization modes, an issue that is generally ignored for larger-core fibers given the large number of propagation modes. Since diffraction gratings used in most high resolution astronomical instruments have dispersive properties that are sensitive to incident polarization changes, any birefringence variations in the fiber can cause variations in the efficiency profile, degrading illumination stability. Here we present a cautionary note outlining how the polarization properties of SMFs can affect the radial velocity (RV) measurement precision of high resolution spectrographs. This work is immediately relevant to the rapidly expanding field of diffraction-limited, extreme precision RV spectrographs that are currently being designed and built by a number of groups.

  15. Label-free tracking of single extracellular vesicles in a nano-fluidic optical fiber (Conference Presentation)

    Science.gov (United States)

    van der Pol, Edwin; Weidlich, Stefan; Lahini, Yoav; Coumans, Frank A. W.; Sturk, Auguste; Nieuwland, Rienk; Schmidt, Markus A.; Faez, Sanli; van Leeuwen, Ton G.

    2016-03-01

    Background: Extracellular vesicles, such as exosomes, are abundantly present in human body fluids. Since the size, concentration and composition of these vesicles change during disease, vesicles have promising clinical applications, including cancer diagnosis. However, since ~70% of the vesicles have a diameter <70 nm, detection of single vesicles remains challenging. Thus far, vesicles <70 nm have only be studied by techniques that require the vesicles to be adhered to a surface. Consequently, the majority of vesicles have never been studied in their physiological environment. We present a novel label-free optical technique to track single vesicles <70 nm in suspension. Method: Urinary vesicles were contained within a single-mode light-guiding silica fiber containing a 600 nm nano-fluidic channel. Light from a diode laser (660 nm wavelength) was coupled to the fiber, resulting in a strongly confined optical mode in the nano-fluidic channel, which continuously illuminated the freely diffusing vesicles inside the channel. The elastic light scattering from the vesicles, in the direction orthogonal to the fiber axis, was collected using a microscope objective (NA=0.95) and imaged with a home-built microscope. Results: We have tracked single urinary vesicles as small as 35 nm by elastic light scattering. Please note that vesicles are low-refractive index (n<1.4) particles, which we confirmed by combining data on thermal diffusion and light scattering cross section. Conclusions: For the first time, we have studied vesicles <70 nm freely diffusing in suspension. The ease-of-use and performance of this technique support its potential for vesicle-based clinical applications.

  16. Electrical and optical 3D modelling of light-trapping single-photon avalanche diode

    Science.gov (United States)

    Zheng, Tianzhe; Zang, Kai; Morea, Matthew; Xue, Muyu; Lu, Ching-Ying; Jiang, Xiao; Zhang, Qiang; Kamins, Theodore I.; Harris, James S.

    2018-02-01

    Single-photon avalanche diodes (SPADs) have been widely used to push the frontier of scientific research (e.g., quantum science and single-molecule fluorescence) and practical applications (e.g., Lidar). However, there is a typical compromise between photon detection efficiency and jitter distribution. The light-trapping SPAD has been proposed to break this trade-off by coupling the vertically incoming photons into a laterally propagating mode while maintaining a small jitter and a thin Si device layer. In this work, we provide a 3D-based optical and electrical model based on practical fabrication conditions and discuss about design parameters, which include surface texturing, photon injection position, device area, and other features.

  17. Fibre Optic Sensors Using Adiabatically Tapered Single Mode Fibres

    Science.gov (United States)

    1994-02-01

    molecules were then coupled hack into the fundamental guided mode of the taper. The level of these emissions was characterised by using a monochromati’r...y y y Pae Ps4 Pase4 Pasc4_ Pase4jPase4 _Pasc4 I pase Plate 3: Can be the bof~tom of Plate 1 after it has been read. P7 28 29 3 31 1 32 PB I PG PG G2 P

  18. Adaptive phase measurements in linear optical quantum computation

    International Nuclear Information System (INIS)

    Ralph, T C; Lund, A P; Wiseman, H M

    2005-01-01

    Photon counting induces an effective non-linear optical phase shift in certain states derived by linear optics from single photons. Although this non-linearity is non-deterministic, it is sufficient in principle to allow scalable linear optics quantum computation (LOQC). The most obvious way to encode a qubit optically is as a superposition of the vacuum and a single photon in one mode-so-called 'single-rail' logic. Until now this approach was thought to be prohibitively expensive (in resources) compared to 'dual-rail' logic where a qubit is stored by a photon across two modes. Here we attack this problem with real-time feedback control, which can realize a quantum-limited phase measurement on a single mode, as has been recently demonstrated experimentally. We show that with this added measurement resource, the resource requirements for single-rail LOQC are not substantially different from those of dual-rail LOQC. In particular, with adaptive phase measurements an arbitrary qubit state α vertical bar 0>+β vertical bar 1> can be prepared deterministically

  19. Optical Computing

    Indian Academy of Sciences (India)

    Other advantages of optics include low manufacturing costs, immunity to ... It is now possible to control atoms by trapping single photons in small, .... cement, and optical spectrum analyzers. ... risk of noise is further reduced, as light is immune to electro- ..... mode of operation including management of large multimedia.

  20. Single spin stochastic optical reconstruction microscopy

    OpenAIRE

    Pfender, Matthias; Aslam, Nabeel; Waldherr, Gerald; Wrachtrup, Jörg

    2014-01-01

    We experimentally demonstrate precision addressing of single quantum emitters by combined optical microscopy and spin resonance techniques. To this end we utilize nitrogen-vacancy (NV) color centers in diamond confined within a few ten nanometers as individually resolvable quantum systems. By developing a stochastic optical reconstruction microscopy (STORM) technique for NV centers we are able to simultaneously perform sub diffraction-limit imaging and optically detected spin resonance (ODMR)...

  1. Observing Exoplanets with High-dispersion Coronagraphy. II. Demonstration of an Active Single-mode Fiber Injection Unit

    Energy Technology Data Exchange (ETDEWEB)

    Mawet, D.; Ruane, G.; Xuan, W.; Echeverri, D.; Klimovich, N.; Randolph, M.; Fucik, J.; Wang, J.; Dekany, R.; Delorme, J.-R. [Department of Astronomy, California Institute of Technology, 1200 East California Boulevard, MC 249-17, Pasadena, CA 91125 (United States); Wallace, J. K.; Vasisht, G.; Mennesson, B.; Choquet, E.; Serabyn, E., E-mail: dmawet@astro.caltech.edu [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)

    2017-04-01

    High-dispersion coronagraphy (HDC) optimally combines high-contrast imaging techniques such as adaptive optics/wavefront control plus coronagraphy to high spectral resolution spectroscopy. HDC is a critical pathway toward fully characterizing exoplanet atmospheres across a broad range of masses from giant gaseous planets down to Earth-like planets. In addition to determining the molecular composition of exoplanet atmospheres, HDC also enables Doppler mapping of atmosphere inhomogeneities (temperature, clouds, wind), as well as precise measurements of exoplanet rotational velocities. Here, we demonstrate an innovative concept for injecting the directly imaged planet light into a single-mode fiber, linking a high-contrast adaptively corrected coronagraph to a high-resolution spectrograph (diffraction-limited or not). Our laboratory demonstration includes three key milestones: close-to-theoretical injection efficiency, accurate pointing and tracking, and on-fiber coherent modulation and speckle nulling of spurious starlight signal coupling into the fiber. Using the extreme modal selectivity of single-mode fibers, we also demonstrated speckle suppression gains that outperform conventional image-based speckle nulling by at least two orders of magnitude.

  2. Single-longitudinal mode distributed-feedback fiber laser with low-threshold and high-efficiency

    Science.gov (United States)

    Jiang, Man; Zhou, Pu; Gu, Xijia

    2018-01-01

    Single-frequency fiber laser has attracted a lot of interest in recent years due to its numerous application potentials in telecommunications, LIDAR, high resolution sensing, atom frequency standard, etc. Phosphate glass fiber is one of the candidates for building compact high gain fiber lasers because of its capability of high-concentration of rare-earth ions doping in fiber core. Nevertheless, it is challenging for the integration of UV-written intra-core fiber Bragg gratings into the fiber laser cavity due to the low photosensitivity of phosphate glass fiber. The research presented in this paper will focus on demonstration of UV-written Bragg gratings in phosphate glass fiber and its application in direct-written short monolithic single-frequency fiber lasers. Strong π-phase shift Bragg grating structure is direct-inscribed into the Er/Yb co-doped gain fiber using an excimer laser, and a 5-cm-long phase mask is used to inscribe a laser cavity into the Er/Yb co-doped phosphate glass fibers. The phase mask is a uniform mask with a 50 μm gap in the middle. The fiber laser device emits output power of 10.44 mW with a slope efficiency of 21.5% and the threshold power is about 42.8 mW. Single-longitudinal mode operation is validated by radio frequency spectrum measurement. Moreover, the output spectrum at the highest power shows an excellent optical signal to noise ratio of about 70 dB. These results, to the best of our knowledge, show the lowest power threshold and highest efficiency among the reports that using the same structure to achieve single-longitudinal mode laser output.

  3. Design of all solid state tunable single-mode Ti: sapphire laser for nuclear industry

    International Nuclear Information System (INIS)

    Lee, J.H.; Nam, S.M.; Lee, Y.J.; Lee, J.M.; Horn, Roland E.; Wendt, Klaus

    1999-01-01

    We designed a Ti:Sapphire laser pumped by a diode laser pumped solid state laser (DPSSL). The DPSSL was intra-cavity frequency doubled and it had 20 W output power. The Ti:Sapphire laser was designed for single longitudinal mode lasing. For single mode lasing, the laser used several solid etalons. We simulated temporal evolution of the laser pulse and single pass amplification rate of the photons in each modes from rate equations. From the result, we found that single mode lasing is viable in this cavity

  4. Adaption of optical Fresnel transform to optical Wigner transform

    International Nuclear Information System (INIS)

    Lv Cuihong; Fan Hongyi

    2010-01-01

    Enlightened by the algorithmic isomorphism between the rotation of the Wigner distribution function (WDF) and the αth fractional Fourier transform, we show that the optical Fresnel transform performed on the input through an ABCD system makes the output naturally adapting to the associated Wigner transform, i.e. there exists algorithmic isomorphism between ABCD transformation of the WDF and the optical Fresnel transform. We prove this adaption in the context of operator language. Both the single-mode and the two-mode Fresnel operators as the image of classical Fresnel transform are introduced in our discussions, while the two-mode Wigner operator in the entangled state representation is introduced for fitting the two-mode Fresnel operator.

  5. Near surface mechanical properties of optical single crystals and surface response to deterministic microgrinding

    Science.gov (United States)

    Randi, Joseph A., III

    2005-12-01

    This thesis makes use of microindentation, nanoindentation and nanoscratching methods to better understand the mechanical properties of single crystalline silicon, calcium fluoride, and magnesium fluoride. These properties are measured and are used to predict the material's response to material removal, specifically by grinding and polishing, which is a combination of elastic, plastic and fracture processes. The hardness anisotropy during Knoop microindentation, hardness from nanoindentation, and scratch morphology from nanoscratching are reported. This information is related to the surface microroughness from grinding. We show that mechanical property relationships that predict the surface roughness from lapping and deterministic microgrinding of optical glasses are applicable to single crystals. We show the range of hardness from some of the more common crystallographic faces. Magnesium fluoride, having a tetragonal structure, has 2-fold hardness anisotropy. Nanoindentation, as expected provides higher hardness than microindentation, but anisotropy is not observed. Nanoscratching provides the scratch profile during loading, after the load has been removed, and the coefficient of friction during the loading. Ductile and brittle mode scratching is present with brittle mode cracking being orientation specific. Subsurface damage (SSD) measurements are made using a novel process known as the MRF technique. Magnetorheological finishing is used to polish spots into the ground surface where SSD can be viewed. SSD is measured using an optical microscope and knowledge of the spot profile. This technique is calibrated with a previous technique and implemented to accurately measure SSD in single crystals. The data collected are compared to the surface microroughness of the ground surface, resulting in an upper bound relationship. The results indicate that SSD is always less than 1.4 times the peak-to-valley surface microroughness for single crystals regardless of the

  6. Optical property of few-mode fiber with non-uniform refractive index for cylindrical vector beam generation

    Science.gov (United States)

    Li, Hongye; Wan, Hongdan; Zhang, Zuxing; Sun, Bing; Zhang, Lin

    2016-10-01

    This paper investigates optical properties of few-mode fiber with non-uniform refractive index, namely: the few mode fiber with U-shape refractive index and the two-mode and four-mode few-mode fiber with bent radius. Finite element method is used to analyze the mode distributions based on their non-uniform refractive index. Effective mode control can be achieved through these few mode fibers to achieve vector beam generation. Finally, reflection spectra of a few-mode fiber Bragg grating are calculated theoretically and then measured under different bending conditions. Experimental results are in good accordance with the theoretical ones. These few mode fibers show potential applications in generation of cylindrical vector beam both for optical lasing and sensing systems.

  7. Coupled-Mode Theory derivation of the formal equivalence between a three-mode waveguide and a set of three mutually coupled single-mode waveguides

    Directory of Open Access Journals (Sweden)

    Boucher Yann G.

    2017-01-01

    Full Text Available The formal identification between a two-mode waveguide and a system of two mutually coupled single-mode waveguides stems from the symmetries of the evolution operator. When the gap tends to zero, the super-modes of the coupled system merge continuously into the modes of the multimode waveguide. For modelling purposes, it is very tempting to extend the analogy to three-mode waveguides (and beyond. But not without some precautions…

  8. Phonon anomalies in optical spectra of LiNbO3 single crystals

    Directory of Open Access Journals (Sweden)

    ANDREJA VALCIC

    2004-06-01

    Full Text Available LiNbO3 single crystals were grown by the Czochralski technique in an air atmosphere. The critical crystal diameter Dc = 1.5 cm and the critical rate of rotation wc = 35 rpm were calculated by equations from the hydrodynamics of the melt. The domain inversion was carried out at 1430 K using a 3.75 V/cm electric field for 10 min. The obtained crystals were cut, polished and etched to determine the presence of dislocations and single domain structures. The optical properties were studied by infrared and Raman spectroscopy as a function of temperature. With decreasing temperature, an atypical behaviour of the phonon modes could be seen in the ferroelectrics LiNbO3. The obtained results are discussed and compared with published data.

  9. Energy-saving framework for passive optical networks with ONU sleep/doze mode.

    Science.gov (United States)

    Van, Dung Pham; Valcarenghi, Luca; Dias, Maluge Pubuduni Imali; Kondepu, Koteswararao; Castoldi, Piero; Wong, Elaine

    2015-02-09

    This paper proposes an energy-saving passive optical network framework (ESPON) that aims to incorporate optical network unit (ONU) sleep/doze mode into dynamic bandwidth allocation (DBA) algorithms to reduce ONU energy consumption. In the ESPON, the optical line terminal (OLT) schedules both downstream (DS) and upstream (US) transmissions in the same slot in an online and dynamic fashion whereas the ONU enters sleep mode outside the slot. The ONU sleep time is maximized based on both DS and US traffic. Moreover, during the slot, the ONU might enter doze mode when only its transmitter is idle to further improve energy efficiency. The scheduling order of data transmission, control message exchange, sleep period, and doze period defines an energy-efficient scheme under the ESPON. Three schemes are designed and evaluated in an extensive FPGA-based evaluation. Results show that whilst all the schemes significantly save ONU energy for different evaluation scenarios, the scheduling order has great impact on their performance. In addition, the ESPON allows for a scheduling order that saves ONU energy independently of the network reach.

  10. The reform of the teaching mode of Applied Optics curriculum and analysis of teaching effect

    Science.gov (United States)

    Ning, Yu; Xu, Zhongjie; Li, Dun; Chen, Zilun; Cheng, Xiangai; Zhong, Hairong

    2017-08-01

    Military academies have two distinctive characteristics on talent training: Firstly, we must teach facing actual combat and connecting with academic frontier. Secondly, the bachelor's degree education and the military education should be balanced. The teaching mode of basic curriculum in military academies must be reformed and optimized on the basis of the traditional teaching mode, so as to ensure the high quality of teaching and provide enough guidance and help for students to support their academic burden. In this paper, our main work on "Applied Optics" teaching mode reform is introduced: First of all, we research extensively and learn fully from advanced teaching modes of the well-known universities at home and abroad, a whole design is made for the teaching mode of the core curriculum of optical engineering in our school "Applied Optics", building a new teaching mode which takes the methods of teaching basic parts as details, teaching application parts as emphases, teaching frontier parts as topics and teaching actual combat parts on site. Then combining with the questionnaire survey of students and opinions proposed by relevant experts in the teaching seminar, teaching effect and generalizability of the new teaching mode are analyzed and evaluated.

  11. Enhancing Optical Communications with Brand New Fibers

    DEFF Research Database (Denmark)

    Morioka, Toshio; Awaji, Yoshinari; Ryf, Roland

    2012-01-01

    Optical fibers have often been considered to offer effectively infinite capacity to support the rapid traffic growth essential to our information society. However, as demand has grown and technology has developed, we have begun to realize that there is a fundamental limit to fiber capacity of ~ 100...... Tb/s per fiber for systems based on conventional single-core single-mode optical fiber as the transmission medium. This limit arises from the interplay of a number of factors including the Shannon limit, optical fiber nonlinearities, the fiber fuse effect, as well as optical amplifier bandwidth...... new fibers for space-division multiplexing and mode-division multiplexing....

  12. Geometric phases in astigmatic optical modes of arbitrary order

    International Nuclear Information System (INIS)

    Habraken, Steven J. M.; Nienhuis, Gerard

    2010-01-01

    The transverse spatial structure of a paraxial beam of light is fully characterized by a set of parameters that vary only slowly under free propagation. They specify bosonic ladder operators that connect modes of different orders, in analogy to the ladder operators connecting harmonic-oscillator wave functions. The parameter spaces underlying sets of higher-order modes are isomorphic to the parameter space of the ladder operators. We study the geometry of this space and the geometric phase that arises from it. This phase constitutes the ultimate generalization of the Gouy phase in paraxial wave optics. It reduces to the ordinary Gouy phase and the geometric phase of nonastigmatic optical modes with orbital angular momentum in limiting cases. We briefly discuss the well-known analogy between geometric phases and the Aharonov-Bohm effect, which provides some complementary insights into the geometric nature and origin of the generalized Gouy phase shift. Our method also applies to the quantum-mechanical description of wave packets. It allows for obtaining complete sets of normalized solutions of the Schroedinger equation. Cyclic transformations of such wave packets give rise to a phase shift, which has a geometric interpretation in terms of the other degrees of freedom involved.

  13. Phase collapse and revival of a 1-mode Bose-Einstein condensate induced by an off-resonant optical probe field and superselection rules

    Science.gov (United States)

    Arruda, L. G. E.; Prataviera, G. A.; de Oliveira, M. C.

    2018-02-01

    Phase collapse and revival for Bose-Einstein condensates are nonlinear phenomena appearing due to atomic collisions. While it has been observed in a general setting involving many modes, for one-mode condensates its occurrence is forbidden by the particle number superselection rule (SSR), which arises because there is no phase reference available. We consider a single mode atomic Bose-Einstein condensate interacting with an off-resonant optical probe field. We show that the condensate phase revival time is dependent on the atom-light interaction, allowing optical control on the atomic collapse and revival dynamics. Incoherent effects over the condensate phase are included by considering a continuous photo-detection over the probe field. We consider conditioned and unconditioned photo-counting events and verify that no extra control upon the condensate is achieved by the probe photo-detection, while further inference of the atomic system statistics is allowed leading to a useful test of the SSR on particle number and its imposition on the kind of physical condensate state.

  14. Fibre-optic communications

    CERN Document Server

    Lecoy, Pierre

    2010-01-01

    This book describes in a comprehensive manner the components and systems of fiber optic communications and networks. The first section explains the theory of multimode and single-mode fibers, then the technological features, including manufacturing, cabling, and connecting. The second section describes the various components (passive and active optical components, integrated optics, opto-electronic transmitters and receivers, and optical amplifiers) used in fiber optic systems. Finally, the optical transmission system design is explained, and applications to optical networks and fiber optic se

  15. Optical Control of Mechanical Mode-Coupling within a MoS2 Resonator in the Strong-Coupling Regime.

    Science.gov (United States)

    Liu, Chang-Hua; Kim, In Soo; Lauhon, Lincoln J

    2015-10-14

    Two-dimensional (2-D) materials including graphene and transition metal dichalcogenides (TMDs) are an exciting platform for ultrasensitive force and displacement detection in which the strong light-matter coupling is exploited in the optical control of nanomechanical motion. Here we report the optical excitation and displacement detection of a ∼ 3 nm thick MoS2 resonator in the strong-coupling regime, which has not previously been achieved in 2-D materials. Mechanical mode frequencies can be tuned by more than 12% by optical heating, and they exhibit avoided crossings indicative of strong intermode coupling. When the membrane is optically excited at the frequency difference between vibrational modes, normal mode splitting is observed, and the intermode energy exchange rate exceeds the mode decay rate by a factor of 15. Finite element and analytical modeling quantifies the extent of mode softening necessary to control intermode energy exchange in the strong coupling regime.

  16. Finite-mode analysis by means of intensity information in fractional optical systems

    NARCIS (Netherlands)

    Alieva, T.; Bastiaans, M.J.

    2002-01-01

    It is shown how a coherent optical signal that contains only a finite number of Hermite-Gauss modes, can be reconstructed from the knowledge of its Radon-Wigner transform -- associated with the intensity distribution in a fractional Fourier transform optical system -- at only two transversal points.

  17. Few-mode fiber, splice and SDM component characterization by spatially-diverse optical vector network analysis.

    Science.gov (United States)

    Rommel, Simon; Mendinueta, José Manuel Delgado; Klaus, Werner; Sakaguchi, Jun; Olmos, Juan José Vegas; Awaji, Yoshinari; Monroy, Idelfonso Tafur; Wada, Naoya

    2017-09-18

    This paper discusses spatially diverse optical vector network analysis for space division multiplexing (SDM) component and system characterization, which is becoming essential as SDM is widely considered to increase the capacity of optical communication systems. Characterization of a 108-channel photonic lantern spatial multiplexer, coupled to a 36-core 3-mode fiber, is experimentally demonstrated, extracting the full impulse response and complex transfer function matrices as well as insertion loss (IL) and mode-dependent loss (MDL) data. Moreover, the mode-mixing behavior of fiber splices in the few-mode multi-core fiber and their impact on system IL and MDL are analyzed, finding splices to cause significant mode-mixing and to be non-negligible in system capacity analysis.

  18. X-mode artificial optical emissions and attendant phenomena at EISCAT/Heating

    Science.gov (United States)

    Blagoveshchenskaya, Nataly; Sergienko, Tima; Rietveld, Michael; Brandstrom, Urban; Senior, Andrew; Haggstrom, Ingemar; Kosch, Michael; Borisova, Tatiana; Yeoman, Tim

    We present the experimental evidence for the formation of the artificial optical emissions induced by the X-mode powerful HF radio waves injected towards the magnetic zenith (MZ) into the high latitude F region of the ionosphere. The experiments were conducted in the course of Russian EISCAT heating campaigns in October 2012 and October 2013 at the Heating facility at Tromsø, Norway. The HF pump wave with the X-mode polarization was radiated at 7.1 or 6.2 MHz. The phased array 1, resulting in an ERP = 430 - 600 MW was used. Optical emissions at red (630 nm) and green (557 nm) lines were imaged from Tromsø site by the digital All-Sky Imager mark 2 (DASI - 2) and from a remote site at Abisco by the Auroral Large Imaging System (ALIS) in Scandinavia. The intensities of X-mode emissions at red and green lines varied between about of 150 - 1000 R and 50 - 300 R above the background respectively in different experiments. The artificial optical emissions were accompanied by very strong HF-enhanced ion lines and HF induced plasma lines from the EISCAT UHF incoherent scatter radar measurements and artificial small-scale field-aligned irregularities from CUTLASS (SuperDARN) HF coherent radar in Finland. The results obtained are discussed.

  19. Terahertz light-emitting graphene-channel transistor toward single-mode lasing

    Science.gov (United States)

    Yadav, Deepika; Tamamushi, Gen; Watanabe, Takayuki; Mitsushio, Junki; Tobah, Youssef; Sugawara, Kenta; Dubinov, Alexander A.; Satou, Akira; Ryzhii, Maxim; Ryzhii, Victor; Otsuji, Taiichi

    2018-03-01

    A distributed feedback dual-gate graphene-channel field-effect transistor (DFB-DG-GFET) was fabricated as a current-injection terahertz (THz) light-emitting laser transistor. We observed a broadband emission in a 1-7.6-THz range with a maximum radiation power of 10 μW as well as a single-mode emission at 5.2 THz with a radiation power of 0.1 μW both at 100 K when the carrier injection stays between the lower cutoff and upper cutoff threshold levels. The device also exhibited peculiar nonlinear threshold-like behavior with respect to the current-injection level. The LED-like broadband emission is interpreted as an amplified spontaneous THz emission being transcended to a single-mode lasing. Design constraints on waveguide structures for better THz photon field confinement with higher gain overlapping as well as DFB cavity structures with higher Q factors are also addressed towards intense, single-mode continuous wave THz lasing at room temperature.

  20. Ultralow power all-optical switch

    DEFF Research Database (Denmark)

    Nguyen, H.; Grange, T.; Reznychenko, B.

    2017-01-01

    Optical logic down to the single photon level holds the promise of data processing with a better energy efficiency than electronic devices [1]. In addition, preservation of quantum coherence in such logical components could lead to optical quantum logical gates [2--4]. Optical logic requires......-level systems coupled to light via a tailored photonic environment [8--13]. However optical logic requires two-mode non-linearities [14, 15]. Here we take advantage of the large coupling efficiency and the broadband operation of a photonic wire containing a semiconductor quantum dot (QD) [16] to implement...... an all-optical logical component, wherein as few as 10 photons per QD lifetime in one mode control the reflectivity of another, spectrally distinct, mode. Whether classical or quantum, optical communication has proven to be the best choice for long distance information distribution. All-optical data...

  1. Calcium fluoride whispering gallery mode optical resonator with reduced thermal sensitivity

    Science.gov (United States)

    Savchenkov, Anatoliy; Matsko, Andrey

    2018-03-01

    We demonstrate a crystalline CaF2 resonator with thermal sensitivity of the optical modes approaching zero. The resonator is made by laminating a calcium fluoride layer forming an optical monolithic cavity with ceramic compensation layers. The ceramics is characterized with negative thermal expansion coefficient achievable in a certain temperature range. The thermally compensated resonator has a potential application for laser frequency stabilization.

  2. On the Theory of Coupled Modes in Optical Cavity-Waveguide Structures

    DEFF Research Database (Denmark)

    Kristensen, Philip Trøst; de Lasson, Jakob Rosenkrantz; Heuck, Mikkel

    2017-01-01

    Light propagation in systems of optical cavities coupled to waveguides can be conveniently described by a general rate equation model known as (temporal) coupled mode theory (CMT). We present an alternative derivation of the CMT for optical cavitywaveguide structures, which explicitly relies...... in the coupled systems. Practical application of the theory is illustrated using example calculations in one and two dimensions....

  3. 428-Gb/s single-channel coherent optical OFDM transmission over 960-km SSMF with constellation expansion and LDPC coding.

    Science.gov (United States)

    Yang, Qi; Al Amin, Abdullah; Chen, Xi; Ma, Yiran; Chen, Simin; Shieh, William

    2010-08-02

    High-order modulation formats and advanced error correcting codes (ECC) are two promising techniques for improving the performance of ultrahigh-speed optical transport networks. In this paper, we present record receiver sensitivity for 107 Gb/s CO-OFDM transmission via constellation expansion to 16-QAM and rate-1/2 LDPC coding. We also show the single-channel transmission of a 428-Gb/s CO-OFDM signal over 960-km standard-single-mode-fiber (SSMF) without Raman amplification.

  4. Research status of large mode area single polarization active fiber

    Science.gov (United States)

    Xiao, Chun; Zhang, Ge; Yang, Bin-hua; Cheng, Wei-feng; Gu, Shao-yi

    2018-03-01

    As high power fiber laser used more and more widely, to increase the output power of fiber laser and beam quality improvement have become an important goal for the development of high power fiber lasers. The use of large mode fiber is the most direct and effective way to solve the nonlinear effect and fiber damage in the fiber laser power lifting process. In order to reduce the effect of polarization of the fiber laser system, the study found that when introduces a birefringence in the single-mode fiber, the polarization state changes caused by the birefringence is far greater than the random polarization state changes, then the external disturbance is completely submerged, finally the polarization can be controlled and stabilized. Through the fine design of the fiber structure, if the birefringence is high enough to achieve the separation of the two polarization states, the fiber will have a different cut-off mechanism to eliminate polarization which is not need, which will realize single mode single polarization transmission in a band. In this paper, different types of single polarization fiber design are presented and the application of these fibers are also discussed.

  5. Processing of complex shapes with single-mode resonant frequency microwave applicators

    International Nuclear Information System (INIS)

    Fellows, L.A.; Delgado, R.; Hawley, M.C.

    1994-01-01

    Microwave processing is an alternative to conventional composite processing techniques. Single-mode microwave applicators efficiently couple microwave energy into the composite. The application of the microwave energy is greatly affected by the geometry of the composite. In the single mode microwave applicator, two types of modes are available. These modes are best suited to processing flat planar samples or cylindrical samples with geometries that align with the electric fields. Mode-switching is alternating between different electromagnetic modes with the intelligent selection of the modes to alleviate undesirable temperature profiles. This method has improved the microwave heating profiles of materials with complex shapes that do not align with either type of electric field. Parts with two different complex geometries were fabricated from a vinyl toluene/vinyl ester resin with a continuous glass fiber reinforcement by autoclaving and by microwave techniques. The flexural properties of the microwave processed samples were compared to the flexural properties of autoclaved samples. The trends of the mechanical properties for the complex shapes were consistent with the results of experiments with flat panels. This demonstrated that mode-switching techniques are as applicable for the complex shapes as they are for the simpler flat panel geometry

  6. Acousto-optic interaction in polyimide coated optical fibers with flexural waves

    OpenAIRE

    ALCUSA-SÁEZ, E. P.; Díez, A.; Rivera-Pérez, E.; Margulis, W.; Norin, L.; Andrés, M. V.

    2017-01-01

    Acousto-optic coupling in polyimide-coated single-mode optical fibers using flexural elastic waves is demonstrated. The effect of the polyimide coating on the acousto-optic interaction process is analyzed in detailed. Theoretical and experimental results are in good agreement. Although the elastic attenuation is significant, we show that acousto-optic coupling can be produced with a reasonably good efficiency. To our knowledge, it is the first experimental demonstration of acousto-optic coupl...

  7. Quantum interference effects on the intensity of the G modes in double-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Tran, Huy Nam; Blancon, Jean-Christophe Robert; Arenal, Raul

    2017-01-01

    The effects of quantum interferences on the excitation dependence of the intensity of G modes have been investigated on single-walled carbon nanotubes [Duque et al., Phys. Rev. Lett.108, 117404 (2012)]. In this work, by combining optical absorption spectroscopy and Raman scattering on individual index identified double-walled carbon nanotubes, we examine the experimental excitation dependence of the intensity of longitudinal optical and transverse optical G modes of the constituent inner and outer single-walled carbon nanotubes. The observed striking dependencies are understood in terms of quantum interference effects. Considering such effects, the excitation dependence of the different components of the G modes permit to unambiguously assign each of them as originating from the longitudinal or transverse G modes of inner and outer tubes.

  8. Black phosphorus: broadband nonlinear optical absorption and application

    Science.gov (United States)

    Li, Ying; He, Yanliang; Cai, Yao; Chen, Shuqing; Liu, Jun; Chen, Yu; Yuanjiang, Xiang

    2018-02-01

    Black phosphorus (BP), 2D layered material with layered dependent direct bandgap (0.3 eV (bulk), 2.0 eV (single layer)) that has gained renewed attention, has been demonstrated as an extremely appropriate optical material for broadband optical applications from infrared to mid-infrared wavebands. Herein, by coupling multi-layer BP films with microfiber, we fabricated a nonlinear optical device with long light-matter interaction distance and enhanced damage threshold. Through taking full advantage of its fine nonlinear optical absorption property, we obtained stable mode-locking (51 ps) and Q-switched mode-locking states in Yb-doped or Er-doped (403.7 fs) all-fiber lasers and the single-longitudinal-mode operation (53 kHz) in an Er-doped fiber laser with enhanced power tolerance, using the same nonlinear optical device. Our results showed that BP could be a favorable nonlinear optical material for developing BP-enabled wave-guiding photonic devices, and revealed new insight into BP for high optical power unexplored optical devices.

  9. Detecting mode hopping in single-longitudinal-mode fiber ring lasers based on an unbalanced fiber Michelson interferometer.

    Science.gov (United States)

    Ma, Mingxiang; Hu, Zhengliang; Xu, Pan; Wang, Wei; Hu, Yongming

    2012-10-20

    A method of detecting mode hopping for single-longitudinal-mode (SLM) fiber ring lasers has been proposed and experimentally demonstrated. The method that is based on an unbalanced Michelson interferometer (MI) utilizing phase generated carrier modulation instantly transforms mode-hopping dynamics into steep phase changes of the interferometer. Multiform mode hops in an SLM erbium-doped fiber ring laser with an 18.6 MHz mode spacing have been detected exactly in real-time domain and discussed in detail. Numerical results show that the MI-based method has a high testing sensitivity for identifying mode hopping, which will play a significant role in evaluating the output stability of SLM fiber lasers.

  10. Femtosecond Mode-locked Fiber Laser at 1 μm Via Optical Microfiber Dispersion Management.

    Science.gov (United States)

    Wang, Lizhen; Xu, Peizhen; Li, Yuhang; Han, Jize; Guo, Xin; Cui, Yudong; Liu, Xueming; Tong, Limin

    2018-03-16

    Mode-locked Yb-doped fiber lasers around 1 μm are attractive for high power applications and low noise pulse train generation. Mode-locked fiber lasers working in soliton and stretched-pulse regime outperform others in terms of the laser noise characteristics, mechanical stability and easy maintenance. However, conventional optical fibers always show a normal group velocity dispersion around 1 μm, leading to the inconvenience for necessary dispersion management. Here we show that optical microfibers having a large anomalous dispersion around 1 μm can be integrated into mode-locked Yb-doped fiber lasers with ultralow insertion loss down to -0.06 dB, enabling convenient dispersion management of the laser cavity. Besides, optical microfibers could also be adopted to spectrally broaden and to dechirp the ultrashort pulses outside the laser cavity, giving rise to a pulse duration of about 110 fs. We believe that this demonstration may facilitate all-fiber format high-performance ultrashort pulse generation at 1 μm and may find applications in precision measurements, large-scale facility synchronization and evanescent-field-based optical sensing.

  11. Growth mode, magnetic and magneto-optical properties of pulsed-laser-deposited Au/Co/Au(1 1 1) trilayers

    International Nuclear Information System (INIS)

    Clavero, C.; Cebollada, A.; Armelles, G.; Fruchart, O.

    2010-01-01

    The growth mode, magnetic and magneto-optical properties of epitaxial Au/Co/Au(1 1 1) ultrathin trilayers grown by pulsed-laser deposition (PLD) under ultra-high vacuum are presented. Sapphire wafers buffered with a single-crystalline Mo(1 1 0) buffer layer were used as substrates. Owing to PLD-induced interfacial intermixing at the lower Co/Au(1 1 1) interface, a close-to layer-by-layer growth mode is promoted. Surprisingly, despite this intermixing, ferromagnetic behavior is found at room temperature for coverings starting at 1 atomic layer (AL). The films display perpendicular magnetization with anisotropy constants reduced by 50% compared to TD-grown or electrodeposited films, and with a coercivity more than one order of magnitude lower (≤5mT). The magneto-optical (MO) response in the low Co thickness range is dominated by Au/Co interface contributions. For thicknesses starting at 3 AL Co, the MO response has a linear dependence with the Co thickness, indicative of a continuous-film-like MO behavior.

  12. Compressive multi-mode superresolution display

    KAUST Repository

    Heide, Felix

    2014-01-01

    Compressive displays are an emerging technology exploring the co-design of new optical device configurations and compressive computation. Previously, research has shown how to improve the dynamic range of displays and facilitate high-quality light field or glasses-free 3D image synthesis. In this paper, we introduce a new multi-mode compressive display architecture that supports switching between 3D and high dynamic range (HDR) modes as well as a new super-resolution mode. The proposed hardware consists of readily-available components and is driven by a novel splitting algorithm that computes the pixel states from a target high-resolution image. In effect, the display pixels present a compressed representation of the target image that is perceived as a single, high resolution image. © 2014 Optical Society of America.

  13. All-optical in-depth detection of the acoustic wave emitted by a single gold nanorod

    Science.gov (United States)

    Xu, Feng; Guillet, Yannick; Ravaine, Serge; Audoin, Bertrand

    2018-04-01

    A single gold nanorod dropped on the surface of a silica substrate is used as a transient optoacoustic source of gigahertz hypersounds. We demonstrate the all-optical detection of the as-generated acoustic wave front propagating in the silica substrate. For this purpose, time-resolved femtosecond pump-probe experiments are performed in a reflection configuration. The fundamental breathing mode of the nanorod is detected at 23 GHz by interferometry, and the longitudinal acoustic wave radiated in the silica substrate is detected by time-resolved Brillouin scattering. By tuning the optical probe wavelength from 750 to 900 nm, hypersounds with wavelengths of 260-315 nm are detected in the silica substrate, with corresponding acoustic frequencies in the range of 19-23 GHz. To confirm the origin of these hypersounds, we theoretically analyze the influence of the acoustic excitation spectrum on the temporal envelope of the transient reflectivity. This analysis proves that the acoustic wave detected in the silica substrate results from the excitation of the breathing mode of the nanorod. These results pave the way for performing local in-depth elastic nanoscopy.

  14. Thermo-optic characteristic of DNA thin solid film and its application as a biocompatible optical fiber temperature sensor.

    Science.gov (United States)

    Hong, Seongjin; Jung, Woohyun; Nazari, Tavakol; Song, Sanggwon; Kim, Taeoh; Quan, Chai; Oh, Kyunghwan

    2017-05-15

    We report unique thermo-optical characteristics of DNA-Cetyl tri-methyl ammonium (DNA-CTMA) thin solid film with a large negative thermo-optical coefficient of -3.4×10-4/°C in the temperature range from 20°C to 70°C without any observable thermal hysteresis. By combining this thermo-optic DNA film and fiber optic multimode interference (MMI) device, we experimentally demonstrated a highly sensitive compact temperature sensor with a large spectral shift of 0.15 nm/°C. The fiber optic MMI device was a concatenated structure with single-mode fiber (SMF)-coreless silica fiber (CSF)-single mode fiber (SMF) and the DNA-CTMA film was deposited on the CSF. The spectral shifts of the device in experiments were compared with the beam propagation method, which showed a good agreement.

  15. Mode-selective mapping and control of vectorial nonlinear-optical processes in multimode photonic-crystal fibers.

    Science.gov (United States)

    Hu, Ming-Lie; Wang, Ching-Yue; Song, You-Jian; Li, Yan-Feng; Chai, Lu; Serebryannikov, Evgenii; Zheltikov, Aleksei

    2006-02-06

    We demonstrate an experimental technique that allows a mapping of vectorial nonlinear-optical processes in multimode photonic-crystal fibers (PCFs). Spatial and polarization modes of PCFs are selectively excited in this technique by varying the tilt angle of the input beam and rotating the polarization of the input field. Intensity spectra of the PCF output plotted as a function of the input field power and polarization then yield mode-resolved maps of nonlinear-optical interactions in multimode PCFs, facilitating the analysis and control of nonlinear-optical transformations of ultrashort laser pulses in such fibers.

  16. Rapid 3D µ-printing of polymer optical whispering-gallery mode resonators.

    Science.gov (United States)

    Wu, Jushuai; Guo, Xin; Zhang, A Ping; Tam, Hwa-Yaw

    2015-11-16

    A novel microfabrication method for rapid printing of polymer optical whispering-gallery mode (WGM) resonators is presented. A 3D micro-printing technology based on high-speed optical spatial modulator (SLM) and high-power UV light source is developed to fabricate suspended-disk WGM resonator array using SU-8 photoresist. The optical spectral responses of the fabricated polymer WGM resonators were measured with a biconically tapered optical fiber. Experimental results reveal that the demonstrated method is very flexible and time-saving for rapid fabrication of complex polymer WGM resonators.

  17. Ring-shaped active mode-locked tunable laser using quantum-dot semiconductor optical amplifier

    Science.gov (United States)

    Zhang, Mingxiao; Wang, Yongjun; Liu, Xinyu

    2018-03-01

    In this paper, a lot of simulations has been done for ring-shaped active mode-locked lasers with quantum-dot semiconductor optical amplifier (QD-SOA). Based on the simulation model of QD-SOA, we discussed about the influence towards mode-locked waveform frequency and pulse caused by QD-SOA maximum mode peak gain, active layer loss coefficient, bias current, incident light pulse, fiber nonlinear coefficient. In the meantime, we also take the tunable performance of the laser into consideration. Results showed QD-SOA a better performance than original semiconductor optical amplifier (SOA) in recovery time, line width, and nonlinear coefficients, which makes it possible to output a locked-mode impulse that has a higher impulse power, narrower impulse width as well as the phase is more easily controlled. After a lot of simulations, this laser can realize a 20GHz better locked-mode output pulse after 200 loops, where the power is above 17.5mW, impulse width is less than 2.7ps, moreover, the tunable wavelength range is between 1540nm-1580nm.

  18. LOPUT Laser: A novel concept to realize single longitudinal mode ...

    Indian Academy of Sciences (India)

    2014-02-05

    Feb 5, 2014 ... Abstract. We propose a novel type of cavity design to generate single longitudinal mode laser known as LOPUT cavity. LOPUT cavity stands for linear orthogonally polarized modes resulting in unidirectional travelling wave cavity. The technique can be applied to both isotropic as well as anisotropic gain ...

  19. Efficient On-chip Optical Microresonator for Optical Comb Generation: Design and Fabrication

    Science.gov (United States)

    Han, Kyunghun

    An optical frequency comb is a series of equally spaced frequency components. It has gained much attention since Nobel physics prize was awarded John L. Hall and Theodor W. Hansch for their contribution to the optical frequency comb technique in 2005. The optical frequency comb has been extensively studied because of its precision as a tool for spectroscopy, and is now widely used in bio- and chemical sensors, optical clocks, mode-locked dark pulse generation, soliton generation, and optical communication. Recently, thanks to the developments in nanotechnology, the optical frequency comb generation is made possible at a chip-scale level with microresonators. However, because the threshold power of the optical frequency comb generation is beyond the capability of the on-chip laser source, efficient microresonator is required. Here, we demonstrate an ultra-compact and highly efficient strip-slot direct mode coupler, aiming to achieve slotted silicon microresonator cladded with nonlinear polymer Poly-DDMEBT in SOI platform. As an application of the strip-slot direct mode coupling, a double slot fiber-to-chip edge coupler is demonstrated showing 2 dB insertion loss reduction compared to the conventional single tip edge coupler. For silicon nitride platform, we investigated evanescent wave coupling of microresonator, focusing on bus waveguide geometry optimization. The optimized waveguide width offers an efficient excitation of a fundamental mode in the resonator waveguide. This investigation can benefit low threshold comb generation by enhancing the extinction ratio. We experimentally demonstrated the high Q-factor micro-ring resonator with intrinsic Q of 12.6 million as well as the single FSR comb generation with 63 mW.

  20. Self-error-rejecting photonic qubit transmission in polarization-spatial modes with linear optical elements

    Science.gov (United States)

    Jiang, YuXiao; Guo, PengLiang; Gao, ChengYan; Wang, HaiBo; Alzahrani, Faris; Hobiny, Aatef; Deng, FuGuo

    2017-12-01

    We present an original self-error-rejecting photonic qubit transmission scheme for both the polarization and spatial states of photon systems transmitted over collective noise channels. In our scheme, we use simple linear-optical elements, including half-wave plates, 50:50 beam splitters, and polarization beam splitters, to convert spatial-polarization modes into different time bins. By using postselection in different time bins, the success probability of obtaining the uncorrupted states approaches 1/4 for single-photon transmission, which is not influenced by the coefficients of noisy channels. Our self-error-rejecting transmission scheme can be generalized to hyperentangled n-photon systems and is useful in practical high-capacity quantum communications with photon systems in two degrees of freedom.

  1. All optical OFDM transmission for passive optical networks

    Science.gov (United States)

    Kachare, Nitin; Ashik T., J.; Bai, K. Kalyani; Kumar, D. Sriram

    2017-06-01

    This paper demonstrates the idea of data transmission at a very higher rate (Tbits/s) through optical fibers in a passive optical network using the most efficient data transmission technique widely used in wireless communication that is orthogonal frequency division multiplexing. With an increase in internet users, data traffic has also increased significantly and the current dense wavelength division multiplexing (DWDM) systems may not support the next generation passive optical networks (PONs) requirements. The approach discussed in this paper allows to increase the downstream data rate per user and extend the standard single-mode fiber reach for future long-haul applications. All-optical OFDM is a promising solution for terabit per second capable single wavelength transmission, with high spectral efficiency and high tolerance to chromatic dispersion.

  2. Coupling Characteristics of Fused Optical Fiber Coupler Formed with Single-Mode Fiber and Photonic Crystal Fiber Having Air Hole Collapsed Taper

    Directory of Open Access Journals (Sweden)

    Hirohisa Yokota

    2016-01-01

    Full Text Available Fused coupler forming with a single-mode fiber (SMF and a photonic crystal fiber (PCF is one of the solutions for optical coupling from a light source to a PCF. In this paper, we presented coupling characteristics of a fused fiber coupler formed with an ordinary SMF and a PCF having air hole collapsed taper. A prototype of SMF-PCF coupler with air hole collapsed taper was fabricated using CO2 laser irradiation. The coupling efficiency from SMF to PCF was −6.2 dB at 1554 nm wavelength in the fabricated coupler. The structure of the SMF-PCF coupler to obtain high coupling efficiency was theoretically clarified by beam propagation analysis using an equivalent model of the coupler with simplification. It was clarified that appropriately choosing the prestretched or etched SMF diameter and the length of air hole collapsed region was effective to obtain high coupling efficiency that was a result of high extinction ratio at cross port and low excess loss. We also demonstrated that the diameter of prestretched SMF to obtain high coupling efficiency was insensitive to the air hole diameter ratio to pitch of the PCF in the air hole collapsed SMF-PCF coupler.

  3. Optically active vibrational modes of PPV derivatives on textile substrate

    International Nuclear Information System (INIS)

    Silva, M.A.T. da; Dias, I.F.L.; Santos, E.P. dos; Martins, A.A.; Duarte, J.L.; Laureto, E.; Reis, G.A. dos; Guimarães, P.S.S.; Cury, L.A.

    2013-01-01

    In this work, MEH-PPV and BDMO-PPV films were deposited by spin-coating on “dirty” textile substrates of canvas, nylon, canvas with resin, jeans and on glass and the temperature dependence of the optical properties of them was studied by photoluminescence and Raman (300 K) techniques. The temperature dependence of the energy, of the half line width at half height of the purely electronic peak, of the integrated PL intensity and of the Huang-Rhys factor, S=I (01) /I (00) , were obtained directly from the PL spectrum. For an analysis of the vibrational modes involved, Raman measurements were performed on substrates with and without polymers deposited and the results compared with those found in the literature. The films of MEH-PPV and BDMO-PPV showed optical properties similar to those films deposited on other substrates such as glass, metals, etc. It was observed an inversion of the first vibrational band in relation to the purely electronic peak with increasing temperature in the films deposited on nylon and canvas. The vibrational modes obtained by Raman were used to compose the simulation of the PL line shape of BDMO-PPV films on canvas and nylon, using a model proposed by Lin [29]. - Highlights: ► MEH-PPV and BDMO-PPV films were deposited by spin-coating on dirty textile. ► Their properties were studied by photoluminescence and Raman techniques. ► We observed inversion of first vibrational band in relation to purely electronic peak. ► Optically active vibrational modes of PPV derivatives were studied.

  4. Quasi-optical internal mode converters for 110 GHz gyrotrons

    International Nuclear Information System (INIS)

    Harper, B.M.; Lorbeck, J.A.; Vernon, R.J.

    1995-01-01

    Many early gyrotrons had a microwave output in the same mode that was produced in the microwave cavity, e.g. the TE 02 mode. These modes were often converted outside of the tube to a more desirable mode for plasma heating using a system of perturbed-wall waveguide mode converters. The current generation of gyrotrons commonly have cavity modes with a high azimuthal index, such as the rotating TE 22,6 mode. Mode conversion by means of waveguide mode converters is not usually practical for such cases. However, an output of a Gaussian beam or other desirable field pattern can be obtained by using a Vlasov-type launcher feeding a series of two or more reflectors. This system may be placed outside or inside of the gyrotron but there are advantages to placing it within the tube, e.g. allowing for a larger collector and smaller reflectors. When such a converter system is placed inside the gyrotron, it is usually preferable to use a modification to the simple Vlasov launcher such as the Denisov-type launcher, which incorporates a series of perturbations within it. The authors have designed both internal and external versions of such quasi-optical converters. They discuss an internal converter which was designed for use inside of a Varian 110 GHz gyrotron producing the TE 22,6 cavity mode. This design consists of four reflectors which are fed by a Denisov-type launcher. Design techniques for the reflector system are discussed and experimental results are presented

  5. Research on Experiment-Guidance-Theory teaching mode in optics course

    Science.gov (United States)

    Lai, Jiancheng; Li, Zhenhua; Ji, Yunjing; Qi, Jing; Song, Yang

    2017-08-01

    Optical theories were all originating from the experimental phenomena, as a result, we can combine the theories and experiments organically in optics teaching that can make the teaching content more intuitive and vivid to stimulate the students' learning interests. In this paper, we proposed the "Experiment-Guidance-Theory" teaching mode in optics course by integrating the theory of optics courses with corresponding experiments. Before the theoretical learning, the students would do some basic experiments to observe the optical phenomena on themselves and answer the corresponding illuminating questions to put themselves into the role, and then the teachers explain the corresponding optical methods and theories, at last, the students must attend an expansive discussion and innovation experiment around the optical theme to expand their scientific view and innovation ability. This is a kind of inquiry-based teaching method, which can stimulate the students' studying interests and improve learning initiative. Meanwhile, the ideas of scientific research also be integrated into teaching, which is beneficial to cultivate students' ability to carry out innovative research.

  6. External modes in quantum dot light emitting diode with filtered optical feedback

    International Nuclear Information System (INIS)

    Al Husseini, Hussein B.; Al Naimee, Kais A.; Al-Khursan, Amin H.; Khedir, Ali. H.

    2016-01-01

    This research reports a theoretical investigation on the role of filtered optical feedback (FOF) in the quantum dot light emitting diode (QD-LED). The underlying dynamics is affected by a sidle node, which returns to an elliptical shape when the wetting layer (WL) is neglected. Both filter width and time delay change the appearance of different dynamics (chaotic and mixed mode oscillations, MMOs). The results agree with the experimental observations. Here, the fixed point analysis for QDs was done for the first time. For QD-LED with FOF, the system transits from the coherence collapse case in conventional optical feedback to a coherent case with a filtered mode in FOF. It was found that the WL washes out the modes which is an unexpected result. This may attributed to the longer capture time of WL compared with that between QD states. Thus, WL reduces the chaotic behavior.

  7. Optical-cell model based on the lasing competition of mode structures with different Q-factors in high-power semiconductor lasers

    Energy Technology Data Exchange (ETDEWEB)

    Podoskin, A. A., E-mail: podoskin@mail.ioffe.ru; Shashkin, I. S.; Slipchenko, S. O.; Pikhtin, N. A.; Tarasov, I. S. [Russian Academy of Sciences, Ioffe Institute (Russian Federation)

    2015-08-15

    A model describing the operation of a completely optical cell, based on the competition of lasing of Fabry-Perot cavity modes and the high-Q closed mode in high-power semiconductor lasers is proposed. Based on rate equations, the conditions of lasing switching between Fabry-Perot modes for ground and excited lasing levels and the closed mode are considered in the case of increasing internal optical loss under conditions of high current pump levels. The optical-cell operation conditions in the mode of a high-power laser radiation switch (reversible mode-structure switching) and in the mode of a memory cell with bistable irreversible lasing switching between mode structures with various Q-factors are considered.

  8. 107.5 Gb/s 850 nm multi- and single-mode VCSEL transmission over 10 and 100 m of multi-mode fiber

    DEFF Research Database (Denmark)

    Puerta Ramírez, Rafael; Agustin, M.; Chorchos, L.

    2016-01-01

    First time successful 107.5 Gb/s MultiCAP 850 nm OM4 MMF transmissions over 10 m with multi-mode VCSEL and up to 100 m with single-mode VCSEL are demonstrated, with BER below 7% overhead FEC limit measured for each case.......First time successful 107.5 Gb/s MultiCAP 850 nm OM4 MMF transmissions over 10 m with multi-mode VCSEL and up to 100 m with single-mode VCSEL are demonstrated, with BER below 7% overhead FEC limit measured for each case....

  9. Low-order longitudinal modes of single-component plasmas

    International Nuclear Information System (INIS)

    Tinkle, M.D.; Greaves, R.G.; Surko, C.M.

    1995-01-01

    The low-order modes of spheroidal, pure electron plasmas have been studied experimentally, both in a cylindrical electrode structure and in a quadrupole trap. Comparison is made between measurements of mode frequencies, recent analytical theories, and numerical simulations. Effects considered include trap anharmonicity, image charges, and temperature. Quantitative agreement is obtained between the predictions and these measurements for spheroidal plasmas in the quadrupole trap. In many experiments on single-component plasmas, including antimatter plasmas, the standard diagnostic techniques used to measure the density and temperature are not appropriate. A new method is presented for determining the size, shape, average density, and temperature of a plasma confined in a Penning trap from measurements of the mode frequencies. copyright 1995 American Institute of Physics

  10. Optical defect modes in chiral liquid crystals

    International Nuclear Information System (INIS)

    Belyakov, V. A.; Semenov, S. V.

    2011-01-01

    An analytic approach to the theory of optical defect modes in chiral liquid crystals (CLCs) is developed. The analytic study is facilitated by the choice of the problem parameters. Specifically, an isotropic layer (with the dielectric susceptibility equal to the average CLC dielectric susceptibility) sandwiched between two CLC layers is studied. The chosen model allows eliminating the polarization mixing and reducing the corresponding equations to the equations for light of diffracting polarization only. The dispersion equation relating the defect mode (DM) frequency to the isotropic layer thickness and an analytic expression for the field distribution in the DM structure are obtained and the corresponding dependences are plotted for some values of the DM structure parameters. Analytic expressions for the transmission and reflection coefficients of the DM structure (CLC-defect layer-CLC) are presented and analyzed for nonabsorbing, absorbing, and amplifying CLCs. The anomalously strong light absorption effect at the DM frequency is revealed. The limit case of infinitely thick CLC layers is considered in detail. It is shown that for distributed feedback lasing in a defect structure, adjusting the lasing frequency to the DM frequency results in a significant decrease in the lasing threshold. The DM dispersion equations are solved numerically for typical values of the relevant parameters. Our approach helps clarify the physics of the optical DMs in CLCs and completely agrees with the corresponding results of the previous numerical investigations.

  11. Zeonex Microstructured Polymer Optical Fibre Bragg Grating Sensor

    DEFF Research Database (Denmark)

    Woyessa, Getinet; Fasano, Andrea; Markos, Christos

    2016-01-01

    We fabricated an endlessly single mode and humidity insensitive Zeonex microstructured polymer optical fibre (mPOF) for fibre Bragg grating (FBG) temperature and strain sensors. We inscribed and characterise FBGs in Zeonex mPOF for the first time.......We fabricated an endlessly single mode and humidity insensitive Zeonex microstructured polymer optical fibre (mPOF) for fibre Bragg grating (FBG) temperature and strain sensors. We inscribed and characterise FBGs in Zeonex mPOF for the first time....

  12. Comparison of coupled mode theory and FDTD simulations of coupling between bent and straight optical waveguides

    NARCIS (Netherlands)

    Bertolotti, M.; Symes, W.W.; Stoffer, Remco; Hiremath, K.R.; Driessen, A.; Michelotti, F; Hammer, Manfred

    Analysis of integrated optical cylindrical microresonators involves the coupling between a straight waveguide and a bent waveguide. Our (2D) variant of coupled mode theory is based on analytically represented mode profiles. With the bend modes expressed in Cartesian coordinates, coupled mode

  13. Continuous-variable quantum cloning of coherent states with phase-conjugate input modes using linear optics

    International Nuclear Information System (INIS)

    Chen, Haixia; Zhang, Jing

    2007-01-01

    We propose a scheme for continuous-variable quantum cloning of coherent states with phase-conjugate input modes using linear optics. The quantum cloning machine yields M identical optimal clones from N replicas of a coherent state and N replicas of its phase conjugate. This scheme can be straightforwardly implemented with the setups accessible at present since its optical implementation only employs simple linear optical elements and homodyne detection. Compared with the original scheme for continuous-variable quantum cloning with phase-conjugate input modes proposed by Cerf and Iblisdir [Phys. Rev. Lett. 87, 247903 (2001)], which utilized a nondegenerate optical parametric amplifier, our scheme loses the output of phase-conjugate clones and is regarded as irreversible quantum cloning

  14. Efficient continuous-wave eye-safe region signal output from intra-cavity singly resonant optical parametric oscillator

    International Nuclear Information System (INIS)

    Li Bin; Ding Xin; Sheng Quan; Yin Su-Jia; Shi Chun-Peng; Li Xue; Wen Wu-Qi; Yao Jian-Quan; Yu Xuan-Yi

    2012-01-01

    We report an efficient continuous-wave (CW) tunable intra-cavity singly resonant optical parametric oscillator based on the multi-period periodically poled lithium niobate and using a laser diode (LD) end-pumped CW 1064 nm Nd:YVO 4 laser as the pump source. A highly efficiency CW operation is realized through a careful cavity design for mode matching and thermal stability. The signal tuning range is 1401–1500 nm obtained by varying the domain period. The maximum output power of 2.2 W at 1500 nm is obtained with a 17.1 W 808 nm LD power and the corresponding conversion efficiency is 12.9%. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  15. Investigation on the growth, spectral, lifetime, mechanical analysis and third-order nonlinear optical studies of L-methionine admixtured D-mandelic acid single crystal: A promising material for nonlinear optical applications

    Science.gov (United States)

    Jayaprakash, P.; Sangeetha, P.; Kumari, C. Rathika Thaya; Caroline, M. Lydia

    2017-08-01

    A nonlinear optical bulk single crystal of L-methionine admixtured D-mandelic acid (LMDMA) has been grown by slow solvent evaporation technique using water as solvent at ambient temperature. The crystallized LMDMA single crystal subjected to single crystal X-ray diffraction study confirmed monoclinic system with the acentric space group P21. The FTIR analysis gives information about the modes of vibration in the various functional groups present in LMDMA. The UV-visible spectral analysis assessed the optical quality and linear optical properties such as extinction coefficient, reflectance, refractive index and from which optical conductivity and electric susceptibility were also evaluated. The frequency doubling efficiency was observed using Kurtz Perry powder technique. A multiple shot laser was utilized to evaluate the laser damage threshold energy of the crystal. Discrete thermodynamic properties were carried out by TG-DTA studies. The hardness, Meyer's index, yield strength, elastic stiffness constant, Knoop hardness, fracture toughness and brittleness index were analyzed using Vickers microhardness tester. Layer growth pattern and the surface defect were examined by chemical etching studies using optical microscope. Fluorescence emission spectrum was recorded and lifetime was also studied. The electric field response of crystal was investigated from the dielectric studies at various temperatures at different frequencies. The third-order nonlinear optical response in LMDMA has been investigated using Z-scan technique with He-Ne laser at 632.8 nm and nonlinear parameters such as refractive index (n2), absorption coefficient (β) and susceptibility (χ3) investigated extensively for they are in optical phase conjucation, high-speed optical switches and optical dielectric devices.

  16. Strain and temperature characteristics of the LP11 mode based on a few-mode fiber Bragg grating and core-offset splicing

    Science.gov (United States)

    Jin, Wenxing; Xu, Yao; Jiang, Youchao; Wu, Yue; Yao, Shuzhi; Xiao, Shiying; Qi, Yanhui; Ren, Wenhua; Jian, Shuisheng

    2018-02-01

    We propose and demonstrate a ring fiber laser based on a few-mode fiber Bragg grating for strain and temperature sensing using only the LP11 mode. The core-offset splicing method is used to ensure effective coupling from the fundamental mode to the LP11 mode. A stable erbium-doped fiber laser operating as a single LP11 mode with a 3 dB linewidth of about 0.02 nm and an optical signal-to-noise ratio over 42 dB is achieved by appropriately adjusting the polarization controller between the optical circulator and the few-mode fiber Bragg grating. A high axial strain sensitivity of 0.8778 pm μ\\varepsilon-1 and a temperature sensitivity of 9.9214 pm °C-1 are achieved with the advantages of all-fiber, simple construction and easy control.

  17. A Study on the Transversal Optical Mode in Amorphous Gallium Arsenide

    OpenAIRE

    Grado-Caffaro, M. A.; Grado-Caffaro, M.

    1998-01-01

    Contributions to the far-infrared spectrum corresponding to both dynamical and structural disorders in a-GaAs are examined when frequency coincides with the transversal optical mode. Under these circumstances, dipole moment matrix element is discussed.

  18. Single-mode, Rayleigh-Taylor growth-rate measurements on the OMEGA laser system

    International Nuclear Information System (INIS)

    Knauer, J. P.; Betti, R.; Bradley, D. K.; Boehly, T. R.; Collins, T. J. B.; Goncharov, V. N.; McKenty, P. W.; Meyerhofer, D. D.; Smalyuk, V. A.; Verdon, C. P.

    2000-01-01

    The results from a series of single-mode, Rayleigh-Taylor (RT) instability growth experiments performed on the OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] using planar targets are reported. Planar targets with imposed mass perturbations were accelerated using five or six 351 nm laser beams overlapped with total intensities up to 2.5x10 14 W/cm 2 . Experiments were performed with both 3 ns ramp and 3 ns flat-topped temporal pulse shapes. The use of distributed phase plates and smoothing by spectral dispersion resulted in a laser-irradiation nonuniformity of 4%-7% over a 600 μm diam region defined by the 90% intensity contour. The temporal growth of the modulation in optical depth was measured using throughfoil radiography and was detected with an x-ray framing camera for CH targets. Two-dimensional (2-D) hydrodynamic simulations (ORCHID) [R. L. McCrory and C. P. Verdon, in Inertial Confinement Fusion (Editrice Compositori, Bologna, 1989), pp. 83-124] of the growth of 20, 31, and 60 μm wavelength perturbations were in good agreement with the experimental data when the experimental details, including noise, were included. The amplitude of the simulation optical depth is in good agreement with the experimental optical depth; therefore, great care must be taken when the growth rates are compared to dispersion formulas. Since the foil's initial condition just before it is accelerated is not that of a uniformly compressed foil, the optical density measurement does not accurately reflect the amplitude of the ablation surface but is affected by the initial nonuniform density profile. (c) 2000 American Institute of Physics

  19. Single-mode, Rayleigh-Taylor growth-rate measurements on the OMEGA laser system

    Energy Technology Data Exchange (ETDEWEB)

    Knauer, J. P. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Betti, R. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Bradley, D. K. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Boehly, T. R. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Collins, T. J. B. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Goncharov, V. N. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); McKenty, P. W. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Meyerhofer, D. D. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Smalyuk, V. A. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Verdon, C. P. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)] (and others)

    2000-01-01

    The results from a series of single-mode, Rayleigh-Taylor (RT) instability growth experiments performed on the OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] using planar targets are reported. Planar targets with imposed mass perturbations were accelerated using five or six 351 nm laser beams overlapped with total intensities up to 2.5x10{sup 14} W/cm{sup 2}. Experiments were performed with both 3 ns ramp and 3 ns flat-topped temporal pulse shapes. The use of distributed phase plates and smoothing by spectral dispersion resulted in a laser-irradiation nonuniformity of 4%-7% over a 600 {mu}m diam region defined by the 90% intensity contour. The temporal growth of the modulation in optical depth was measured using throughfoil radiography and was detected with an x-ray framing camera for CH targets. Two-dimensional (2-D) hydrodynamic simulations (ORCHID) [R. L. McCrory and C. P. Verdon, in Inertial Confinement Fusion (Editrice Compositori, Bologna, 1989), pp. 83-124] of the growth of 20, 31, and 60 {mu}m wavelength perturbations were in good agreement with the experimental data when the experimental details, including noise, were included. The amplitude of the simulation optical depth is in good agreement with the experimental optical depth; therefore, great care must be taken when the growth rates are compared to dispersion formulas. Since the foil's initial condition just before it is accelerated is not that of a uniformly compressed foil, the optical density measurement does not accurately reflect the amplitude of the ablation surface but is affected by the initial nonuniform density profile. (c) 2000 American Institute of Physics.

  20. Manipulating single second mode transparency in a corrugated waveguide via the thickness of sputtered gold

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Dan [Key Lab of In-fiber Integrated Optics, Ministry of Education of China, Harbin Engineering University, Harbin 150001 (China); Photonics Research Center, College of Science, Harbin Engineering University, Harbin 150001 (China); Fan, Ya-Xian, E-mail: yxfan@hrbeu.edu.cn [Key Lab of In-fiber Integrated Optics, Ministry of Education of China, Harbin Engineering University, Harbin 150001 (China); Photonics Research Center, College of Science, Harbin Engineering University, Harbin 150001 (China); Sang, Tang-Qing; Xu, Lan-Lan; Bibi, Aysha [Key Lab of In-fiber Integrated Optics, Ministry of Education of China, Harbin Engineering University, Harbin 150001 (China); Photonics Research Center, College of Science, Harbin Engineering University, Harbin 150001 (China); Tao, Zhi-Yong, E-mail: zytao@hrbeu.edu.cn [Key Lab of In-fiber Integrated Optics, Ministry of Education of China, Harbin Engineering University, Harbin 150001 (China); Photonics Research Center, College of Science, Harbin Engineering University, Harbin 150001 (China)

    2016-03-11

    We propose a classical analog of electromagnetically induced transparency in a cylindrical waveguide with undulated metallic walls. The transparency, induced by multi-mode interactions in waveguides, not only has a narrow line-width, but also consists of a single second-order transverse mode, which corresponds to the Bessel function distributions investigated extensively due to their unique characteristics. By increasing the thickness of sputtered gold layers of the waveguide, we demonstrate a frequency-agile single mode transparency phenomenon in a terahertz radiation. It is found that the center frequency of the transparency is linearly related to the gold thickness, indicating the achievement of a controllable single mode terahertz device. The field distributions at the cross-sections of outlets verify the single second mode transparency and indicate the mechanism of its frequency manipulation, which will significantly benefit the mode-control engineering in terahertz applications. - Highlights: • An analog of electromagnetically induced transparency in terahertz tubes is proposed. • A single second transverse mode of Bessel distributions is observed in the pass band. • The operating frequency can be linearly controlled by the sputtered gold thickness. • We can effectively manipulate the slow down factor of light by the gold thickness. • The transparency characteristics rely on the transition of multi-mode interactions.

  1. Manipulating single second mode transparency in a corrugated waveguide via the thickness of sputtered gold

    International Nuclear Information System (INIS)

    Xu, Dan; Fan, Ya-Xian; Sang, Tang-Qing; Xu, Lan-Lan; Bibi, Aysha; Tao, Zhi-Yong

    2016-01-01

    We propose a classical analog of electromagnetically induced transparency in a cylindrical waveguide with undulated metallic walls. The transparency, induced by multi-mode interactions in waveguides, not only has a narrow line-width, but also consists of a single second-order transverse mode, which corresponds to the Bessel function distributions investigated extensively due to their unique characteristics. By increasing the thickness of sputtered gold layers of the waveguide, we demonstrate a frequency-agile single mode transparency phenomenon in a terahertz radiation. It is found that the center frequency of the transparency is linearly related to the gold thickness, indicating the achievement of a controllable single mode terahertz device. The field distributions at the cross-sections of outlets verify the single second mode transparency and indicate the mechanism of its frequency manipulation, which will significantly benefit the mode-control engineering in terahertz applications. - Highlights: • An analog of electromagnetically induced transparency in terahertz tubes is proposed. • A single second transverse mode of Bessel distributions is observed in the pass band. • The operating frequency can be linearly controlled by the sputtered gold thickness. • We can effectively manipulate the slow down factor of light by the gold thickness. • The transparency characteristics rely on the transition of multi-mode interactions.

  2. Optical levitation of microdroplet containing a single quantum dot

    OpenAIRE

    Minowa, Yosuke; Kawai, Ryoichi; Ashida, Masaaki

    2014-01-01

    We demonstrate the optical levitation or trapping in helium gas of a single quantum dot (QD) within a liquid droplet. Bright single photon emission from the levitated QD in the droplet was observed for more than 200 s. The observed photon count rates are consistent with the value theoretically estimated from the two-photon-action cross section. This paper presents the realization of an optically levitated solid-state quantum emitter. This paper was published in Optics Letters and is made avai...

  3. Threshold and maximum power evolution of stimulated Brillouin scattering and Rayleigh backscattering in a single mode fiber segment

    International Nuclear Information System (INIS)

    Sanchez-Lara, R; Alvarez-Chavez, J A; Mendez-Martinez, F; De la Cruz-May, L; Perez-Sanchez, G G

    2015-01-01

    The behavior of stimulated Brillouin scattering (SBS) and Rayleigh backscattering phenomena, which limit the forward transmission power in modern, ultra-long haul optical communication systems such as dense wavelength division multiplexing systems is analyzed via simulation and experimental investigation of threshold and maximum power. Evolution of SBS, Rayleigh scattering and forward powers are experimentally investigated with a 25 km segment of single mode fiber. Also, a simple algorithm to predict the generation of SBS is proposed where two criteria of power thresholds was used for comparison with experimental data. (paper)

  4. High-Power Microwave Transmission and Mode Conversion Program

    Energy Technology Data Exchange (ETDEWEB)

    Vernon, Ronald J. [Univ. of Wisconsin, Madison, WI (United States)

    2015-08-14

    This is a final technical report for a long term project to develop improved designs and design tools for the microwave hardware and components associated with the DOE Plasma Fusion Program. We have developed basic theory, software, fabrication techniques, and low-power measurement techniques for the design of microwave hardware associated gyrotrons, microwave mode converters and high-power microwave transmission lines. Specifically, in this report we discuss our work on designing quasi-optical mode converters for single and multiple frequencies, a new method for the analysis of perturbed-wall waveguide mode converters, perturbed-wall launcher design for TE0n mode gyrotrons, quasi-optical traveling-wave resonator design for high-power testing of microwave components, and possible improvements to the HSX microwave transmission line.

  5. Single Mode SU8 Polymer Based Mach-Zehnder Interferometer for Bio-Sensing Application

    Science.gov (United States)

    Boiragi, Indrajit; Kundu, Sushanta; Makkar, Roshan; Chalapathi, Krishnamurthy

    2011-10-01

    This paper explains the influence of different parameters to the sensitivity of an optical waveguide Mach-Zehnder Interferometer (MZI) for real time detection of biomolecules. The sensing principle is based on the interaction of evanescence field with the biomolecules that get immobilized on sensing arm. The sensitivity has been calculated by varying the sensing window length, wavelength and concentration of bio-analyte. The maximum attainable sensitivity for the preferred design is the order of 10-8 RIU at 840 nm wavelength with a sensing window length of 1cm. All the simulation work has been carried out with Opti-BPMCAD for the optimization of MZI device parameters. The SU8 polymers are used as a core and clad material to fabricate the waveguide. The refractive index of cladding layer is optimized by varying the curing temperature for a fixed time period and the achieved index difference between core and clad is Δn = 0.0151. The fabricated MZI device has been characterized with LASER beam profiler at 840 nm wavelength. This study demonstrates the effectiveness of the different parameter to the sensitivity of a single mode optical waveguide Mach-Zehnder Interferometer for bio-sensing application.

  6. Single crystal and optical ceramic multicomponent garnet scintillators: A comparative study

    International Nuclear Information System (INIS)

    Wu, Yuntao; Luo, Zhaohua; Jiang, Haochuan; Meng, Fang; Koschan, Merry; Melcher, Charles L.

    2015-01-01

    Multicomponent garnet materials can be made in optical ceramic as well as single crystal form due to their cubic crystal structure. In this work, high-quality Gd 3 Ga 3 Al 2 O 12 :0.2 at% Ce (GGAG:Ce) single crystal and (Gd,Lu) 3 Ga 3 Al 2 O 12 :1 at% Ce (GLuGAG:Ce) optical ceramics were fabricated by the Czochralski method and a combination of hot isostatic pressing (HIPing) and annealing treatment, respectively. Under optical and X-ray excitation, the GLuGAG:Ce optical ceramic exhibits a broad Ce 3+ transition emission centered at 550 nm, while the emission peak of the GGAG:Ce single crystal is centered at 540 nm. A self-absorption effect in GLuGAG:Ce optical ceramic results in this red-shift of the Ce 3+ emission peak compared to that in the GGAG:Ce single crystal. The light yield under 662 keV γ-ray excitation was 45,000±2500 photons/MeV and 48,200±2410 photons/MeV for the GGAG:Ce single crystal and GLuGAG:Ce optical ceramic, respectively. An energy resolution of 7.1% for 662 keV γ-rays was achieved in the GLuGAG:Ce optical ceramic with a Hamamatsu R6231 PMT, which is superior to the value of 7.6% for a GGAG:Ce single crystal. Scintillation decay time measurements under 137 Cs irradiation show two exponential decay components of 58 ns (47%) and 504 ns (53%) for the GGAG:Ce single crystal, and 84 ns (76%) and 148 ns (24%) for the GLuGAG:Ce optical ceramic. The afterglow level after X-ray cutoff in the GLuGAG:Ce optical ceramic is at least one order of magnitude lower than in the GGAG:Ce single crystal. - Highlights: • GGAG:Ce single crystal and GLuGAG:Ce optical ceramics were fabricated. • The light yield of both ceramic and crystal G(Lu)GAG:Ce reached the level of 45,000 photons/MeV. • GLuGAG:Ce optical ceramic showed a better energy resolution of 7.1% for 662 keV. • GLuGAG:Ce ceramics exhibited lower afterglow level than that of GGAG:Ce single crystals. • The possible optimization strategies for multicomponent aluminate garnets are discussed

  7. Generation of a single-cycle optical pulse

    International Nuclear Information System (INIS)

    Shverdin, M.Y.; Walker, D.R.; Yavuz, D.D.; Yin, G.Y.; Harris, S.E.

    2005-01-01

    We make use of coherent control of four-wave mixing to the ultraviolet as a diagnostic and describe the generation of a periodic optical waveform where the spectrum is sufficiently broad that the envelope is approximately a single-cycle in length, and where the temporal shape of this envelope may be synthesized by varying the coefficients of a Fourier series. Specifically, using seven sidebands, we report the generation of a train of single-cycle optical pulses with a pulse width of 1.6 fs, a pulse separation of 11 fs, and a peak power of 1 MW

  8. Three-dimensional single-mode nonlinear ablative Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Yan, R.; Aluie, H.; Betti, R.; Sanz, J.; Liu, B.; Frank, A.

    2016-01-01

    The nonlinear evolution of the single-mode ablative Rayleigh-Taylor instability is studied in three dimensions. As the mode wavelength approaches the cutoff of the linear spectrum (short-wavelength modes), it is found that the three-dimensional (3D) terminal bubble velocity greatly exceeds both the two-dimensional (2D) value and the classical 3D bubble velocity. Unlike in 2D, the 3D short-wavelength bubble velocity does not saturate. The growing 3D bubble acceleration is driven by the unbounded accumulation of vorticity inside the bubble. The vorticity is transferred by mass ablation from the Rayleigh-Taylor spikes to the ablated plasma filling the bubble volume

  9. Fibre Optic Gyroscope Developments Using Integrated Optic Components

    Science.gov (United States)

    Minford, W. J.; DePaula, R. M.

    1988-09-01

    The sensing of rotation using counterpropagating optical beams in a fiber loop (the SAGNAC effect) has gone through extensive developments and demonstrations since first proved feasible by Vali and Shorthilll in 1976. The interferometric fiber gyroscope minimum configuration2 which uses a common input-output port and single-mode filter was developed to provide the extreme high stability necessary to reach the sensitivities at low rotation rates attainable with current state-of-the-art detectors. The simplicity and performance of this configuration has led to its acceptance and wide-spread use. In order to increase the mechanical stability of this system, all single-mode fiber components are employed and a further advancement to integrated optics has enabled most of the optical functions to be placed on a single mass-producible substrate. Recent improvements in the components (eg polarization maintaining fiber and low coherence sources) have further enhanced the performance of the minimum configuration gyro. This presentation focused on the impact of LiNbO3 integrated optic components on gyroscope developments. The use of Ti-indiffused LiNbO3 waveguide optical circuits in interferometric fiber optic gyroscopes has taken two directions: to utilize only the phase modulator, or to combine many of the minimum configuration optical functions on the electro-optic substrate. The high-bandwidth phase modulator is the driving force for using LiNbO3 waveguide devices. This device allows both biasing the gyro for maximum sensitivity and closing the loop via frequency shifting, for example, thus increasing the dynamic range of the gyro and the linearity of the scale factor. Efforts to implement most of the minimum configuration optical functions onto a single LiNbO3 substrate have been led by Thomson CSF.3 They have demonstrated an interferometric gyroscope with excellent performance using a LiNbO3 optical circuit containing a Y-splitter, phase modulator, and surface

  10. Broadband photonic single sideband frequency up-converter based on the cross polarization modulation effect in a semiconductor optical amplifier for radio-over-fiber systems.

    Science.gov (United States)

    Lee, Seung-Hun; Kim, Hyoung-Jun; Song, Jong-In

    2014-01-13

    A broadband photonic single sideband (SSB) frequency up-converter based on the cross polarization modulation (XPolM) effect in a semiconductor optical amplifier (SOA) is proposed and experimentally demonstrated. An optical radio frequency (RF) signal in the form of an optical single sideband (OSSB) is generated by the photonic SSB frequency up-converter to solve the power fading problem caused by fiber chromatic dispersion. The generated OSSB RF signal has almost identical optical carrier power and optical sideband power. This SSB frequency up-conversion scheme shows an almost flat electrical RF power response as a function of the RF frequency in a range from 31 GHz to 75 GHz after 40 km single mode fiber (SMF) transmission. The photonic SSB frequency up-conversion technique shows negligible phase noise degradation. The phase noise of the up-converted RF signal at 49 GHz for an offset of 10 kHz is -93.17 dBc/Hz. Linearity analysis shows that the photonic SSB frequency up-converter has a spurious free dynamic range (SFDR) value of 79.51 dB · Hz(2/3).

  11. Low power excitation of gyrotron-type modes in cylindrical waveguide using quasi-optical techniques

    International Nuclear Information System (INIS)

    Alexandrov, N.L.; Whaley, D.R.; Tran, M.Q.; Denisov, D.R.

    1995-03-01

    Experimental results of low power excitation of a 118 GHz TE 22,6 rotating mode are presented. A rectangular mode is converted to a TE 22,6 circular waveguide using quasi-optical techniques. A good conversion efficiency is measured and the experimentally observed field intensity profiles show the percentage of unwanted modes to be small. (author) 10 figs., 10 refs

  12. Sensor system for multi-point monitoring using bending loss of single mode optical fiber

    International Nuclear Information System (INIS)

    Kim, Heon Young; Kim, Dae Hyun

    2015-01-01

    Applications of smart sensors have been extended to safety systems in the aerospace, transportation and civil engineering fields. In particular, structural health monitoring techniques using smart sensors have gradually become necessary and have been developed to prevent dangers to human life and damage to assets. Generally, smart sensors are based on electro-magnets and have several weaknesses, including electro-magnetic interference and distortion. Therefore, fiber optic sensors are an outstanding alternative to overcome the weaknesses of electro-magnetic sensors. However, they require expensive devices and complex systems. This paper proposes a new, affordable and simple sensor system that uses a single fiber to monitor pressures at multiple-points. Moreover, a prototype of the sensor system was manufactured and tested for a feasibility study. Based on the results of this experimental test, a relationship was carefully observed between the bend loss conditions and light-intensity. As a result, it was shown that impacts at multiple-points could be monitored.

  13. Low power wide spectrum optical transmitter using avalanche mode LEDs in SOI CMOS technology

    NARCIS (Netherlands)

    Agarwal, V.; Dutta, S; Annema, AJ; Hueting, RJE; Steeneken, P.G.; Nauta, B

    2017-01-01

    This paper presents a low power monolithically integrated optical transmitter with avalanche mode light emitting diodes in a 140 nm silicon-on-insulator CMOS technology. Avalanche mode LEDs in silicon exhibit wide-spectrum electroluminescence (400 nm < λ < 850 nm), which has a significant

  14. Extending Single-Molecule Microscopy Using Optical Fourier Processing

    Science.gov (United States)

    2015-01-01

    This article surveys the recent application of optical Fourier processing to the long-established but still expanding field of single-molecule imaging and microscopy. A variety of single-molecule studies can benefit from the additional image information that can be obtained by modulating the Fourier, or pupil, plane of a widefield microscope. After briefly reviewing several current applications, we present a comprehensive and computationally efficient theoretical model for simulating single-molecule fluorescence as it propagates through an imaging system. Furthermore, we describe how phase/amplitude-modulating optics inserted in the imaging pathway may be modeled, especially at the Fourier plane. Finally, we discuss selected recent applications of Fourier processing methods to measure the orientation, depth, and rotational mobility of single fluorescent molecules. PMID:24745862

  15. Coupling of single nitrogen-vacancy defect centers in diamond nanocrystals to optical antennas and photonic crystal cavities

    Energy Technology Data Exchange (ETDEWEB)

    Wolters, Janik; Kewes, Guenter; Schell, Andreas W.; Aichele, Thomas; Benson, Oliver [Humboldt-Universitaet zu Berlin, Institut fuer Physik, Berlin (Germany); Nuesse, Nils; Schoengen, Max; Loechel, Bernd [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Berlin (Germany); Hanke, Tobias; Leitenstorfer, Alfred [Department of Physics and Center for Applied Photonics, Universitaet Konstanz, Konstanz (Germany); Bratschitsch, Rudolf [Department of Physics and Center for Applied Photonics, Universitaet Konstanz, Konstanz (Germany); Technische Universitaet Chemnitz, Institut fuer Physik, Chemnitz (Germany)

    2012-05-15

    We demonstrate the ability to modify the emission properties and enhance the interaction strength of single-photon emitters coupled to nanophotonic structures based on metals and dielectrics. Assembly of individual diamond nanocrystals, metal nanoparticles, and photonic crystal cavities to meta-structures is introduced. Experiments concerning controlled coupling of single defect centers in nanodiamonds to optical nanoantennas made of gold bowtie structures are reviewed. By placing one and the same emitter at various locations with high precision, a map of decay rate enhancements was obtained. Furthermore, we demonstrate the formation of a hybrid cavity quantum electrodynamics system in which a single defect center is coupled to a single mode of a gallium phosphite photonic crystal cavity. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center

    Energy Technology Data Exchange (ETDEWEB)

    Liebermeister, Lars, E-mail: lars.liebermeister@physik.uni-muenchen.de; Petersen, Fabian; Münchow, Asmus v.; Burchardt, Daniel; Hermelbracht, Juliane; Tashima, Toshiyuki [Fakultät für Physik, Ludwig-Maximilians-Universität München, 80799 München (Germany); Schell, Andreas W.; Benson, Oliver [Institut für Physik, Humboldt-Universität zu Berlin, 12489 Berlin (Germany); Meinhardt, Thomas; Krueger, Anke [Institut für Organische Chemie, Universität Würzburg, 97074 Würzburg (Germany); Wilhelm Conrad Roentgen Research Center for Complex Materials Systems, Universität Würzburg, 97074 Würzburg (Germany); Stiebeiner, Ariane; Rauschenbeutel, Arno [Atominstitut, Technische Universität Wien, 1020 Wien (Austria); Weinfurter, Harald; Weber, Markus, E-mail: markusweber@lmu.de [Fakultät für Physik, Ludwig-Maximilians-Universität München, 80799 München (Germany); Max-Planck-Institut für Quantenoptik, 85748 Garching (Germany)

    2014-01-20

    A diamond nano-crystal hosting a single nitrogen vacancy (NV) center is optically selected with a confocal scanning microscope and positioned deterministically onto the subwavelength-diameter waist of a tapered optical fiber (TOF) with the help of an atomic force microscope. Based on this nano-manipulation technique, we experimentally demonstrate the evanescent coupling of single fluorescence photons emitted by a single NV-center to the guided mode of the TOF. By comparing photon count rates of the fiber-guided and the free-space modes and with the help of numerical finite-difference time domain simulations, we determine a lower and upper bound for the coupling efficiency of (9.5 ± 0.6)% and (10.4 ± 0.7)%, respectively. Our results are a promising starting point for future integration of single photon sources into photonic quantum networks and applications in quantum information science.

  17. Ultrafast Single-Shot Optical Oscilloscope based on Time-to-Space Conversion due to Temporal and Spatial Walk-Off Effects in Nonlinear Mixing Crystal

    Science.gov (United States)

    Takagi, Yoshihiro; Yamada, Yoshifumi; Ishikawa, Kiyoshi; Shimizu, Seiji; Sakabe, Shuji

    2005-09-01

    A simple method for single-shot sub-picosecond optical pulse diagnostics has been demonstrated by imaging the time evolution of the optical mixing onto the beam cross section of the sum-frequency wave when the interrogating pulse passes over the tested pulse in the mixing crystal as a result of the combined effect of group-velocity difference and walk-off beam propagation. A high linearity of the time-to-space projection is deduced from the process solely dependent upon the spatial uniformity of the refractive indices. A snap profile of the accidental coincidence between asynchronous pulses from separate mode-locked lasers has been detected, which demonstrates the single-shot ability.

  18. Modern optical science

    International Nuclear Information System (INIS)

    2001-05-01

    This book deals with modern optical science, which gives description of properties of light and transmission, ray tracing like Gaussian image, ray tracing and optical system, properties about light wave, a vector properties of light, interference and an interferometer, transform and application of interferometer, diffraction, application on diffraction, solid optical science, measurement of light and laser such as basic principle of laser, kinds of laser, pulse laser, resonator and single mode and multimode.

  19. A 380pW Dual Mode Optical Wake-up Receiver with Ambient Noise Cancellation.

    Science.gov (United States)

    Lim, Wootaek; Jang, Taekwang; Lee, Inhee; Kim, Hun-Seok; Sylvester, Dennis; Blaauw, David

    2016-06-01

    We present a sub-nW optical wake-up receiver for wireless sensor nodes. The wake-up receiver supports dual mode operation for both ultra-low standby power and high data rates, while canceling ambient in-band noise. In 0.18µm CMOS the receiver consumes 380pW in always-on wake-up mode and 28.1µW in fast RX mode at 250kbps.

  20. Growth, spectral and optical characterization of a novel nonlinear optical organic material: D-Alanine DL-Mandelic acid single crystal

    Science.gov (United States)

    Jayaprakash, P.; Mohamed, M. Peer; Caroline, M. Lydia

    2017-04-01

    An organic nonlinear optical single crystal, D-alanine DL-mandelic acid was synthesized and successfully grown by slow evaporation solution growth technique at ambient temperature using solvent of aqueous solution. The unit cell parameters were assessed from single crystal X-ray diffraction analysis. The presence of diverse functional groups and vibrational modes were identified using Fourier Transform Infra Red and Fourier Transform Raman spectral analyses. The chemical structure of grown crystal has been identified by Nuclear Magnetic Resonance spectroscopic study. Ultraviolet-visible spectral analysis reveal that the crystal has lower cut-off wavelength down to 259 nm, is a key factor to exhibit second harmonic generation signal. The electronic optical band gap and Urbach energy is calculated as 5.31 eV and 0.2425 eV respectively from the UV absorption profile. The diverse optical properties such as, extinction coefficient, reflectance, linear refractive index, optical conductivity was calculated using UV-visible data. The relative second harmonic efficiency of the compound is found to be 0.81 times greater than that of KH2PO4 (KDP). The thermal stability of the grown crystal was studied by thermogravimetric analysis and differential thermal analysis techniques. The luminescence spectrum exhibited two peaks (520 nm, 564 nm) due to the donation of protons from carboxylic acid to amino group. The Vickers microhardness test was carried out employing one of the as-grown hard crystal and there by hardness number (Hv), Meyer's index (n), yield strength (σy), elastic stiffness constant (C11) and Knoop hardness number (HK) were assessed. The dielectric behaviour of the as-grown crystal was analyzed for different temperatures (313 K, 333 K, 353 K, and 373 K) at different frequencies.

  1. Optical coupling structure made by imprinting between single-mode polymer waveguide and embedded VCSEL

    NARCIS (Netherlands)

    Karppinen, M.; Salminen, N.; Korhonen, T.; Alajoki, T.; Petäjä, J.; Bosman, E.; Steenberge, G. van; Justice, J.; Khan, U.; Corbett, B.; Boersma, A.

    2015-01-01

    Polymer-based integrated optics is attractive for inter-chip optical interconnection applications, for instance, for coupling photonic devices to fibers in high density packaging. In such a hybrid integration scheme, a key challenge is to achieve efficient optical coupling between the photonic chips

  2. Single mode dye-doped polymer photonic crystal lasers

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Buss, Thomas; Smith, Cameron

    2010-01-01

    Dye-doped polymer photonic crystal (PhC) lasers fabricated by combined nanoimprint and photolithography are studied for their reproducibility and stability characteristics. We introduce a phase shift in the PhC lattice that substantially improves the yield of single wavelength emission. Single mode...... emission and reproducibility of laser characteristics are important if the lasers are to be mass produced in, e. g., optofluidic sensor chips. The fabrication yield is above 85% with highly reproducible wavelengths (within 0.5%), and the temperature dependence on the wavelength is found to be -0.045 or -0...

  3. 850-nm hybrid fiber/free-space optical communications using orbital angular momentum modes

    DEFF Research Database (Denmark)

    Jurado-Navas, Antonio; Tatarczak, Anna; Lu, Xiaofeng

    2015-01-01

    Light beams can carry orbital angular momentum (OAM) associated to the helicity of their phasefronts. These OAM modes can be employed to encode information onto a laser beam for transmitting not only in a fiber link but also in a free-space optical (FSO) one. Regarding this latter scenario, FSO...... communications are considered as an alternative and promising mean complementing the traditional optical communications in many applications where the use of fiber cable is not justified. This next generation FSO communication systems have attracted much interest recently, and the inclusion of beams carrying OAM...... modes can be seen as an efficient solution to increase the capacity and the security in the link. In this paper, we discuss an experimental demonstration of a proposal for next generation FSO communication system where a light beam carrying different OAM modes and affected by M turbulence is coupled...

  4. Quantum discord dynamics of two qubits in single-mode cavities

    International Nuclear Information System (INIS)

    Wang Chen; Chen Qing-Hu

    2013-01-01

    The dynamics of quantum discord for two identical qubits in two independent single-mode cavities and a common single-mode cavity are discussed. For the initial Bell state with correlated spins, while the entanglement sudden death can occur, the quantum discord vanishes only at discrete moments in the independent cavities and never vanishes in the common cavity. Interestingly, quantum discord and entanglement show opposite behavior in the common cavity, unlike in the independent cavities. For the initial Bell state with anti-correlated spins, quantum discord and entanglement behave in the same way for both independent cavities and a common cavity. It is found that the detunings always stabilize the quantum discord. (general)

  5. Highly efficient, versatile, self-Q-switched, high-repetition-rate microchip laser generating Ince–Gaussian modes for optical trapping

    Energy Technology Data Exchange (ETDEWEB)

    Jun Dong; Yu He; Xiao Zhou; Shengchuang Bai [Department of Electronics Engineering, School of Information Science and Engineering, Xiamen, 361005 (China)

    2016-03-31

    Lasers operating in the Ince-Gaussian (IG) mode have potential applications for optical manipulation of microparticles and formation of optical vortices, as well as for optical trapping and optical tweezers. Versatile, self-Q-switched, high-peak-power, high-repetition-rate Cr, Nd:YAG microchip lasers operating in the IG mode are implemented under tilted, tightly focused laser-diode pumping. An average output power of over 2 W is obtained at an absorbed pump power of 6.4 W. The highest optical-to-optical efficiency of 33.2% is achieved at an absorbed pump power of 3.9 W. Laser pulses with a pulse energy of 7.5 μJ, pulse width of 3.5 ns and peak power of over 2 kW are obtained. A repetition rate up to 335 kHz is reached at an absorbed pump power of 5.8 W. Highly efficient, versatile, IG-mode lasers with a high repetition rate and a high peak power ensure a better flexibility in particle manipulation and optical trapping. (control of laser radiation parameters)

  6. Analysis of dual-mode lasing characteristics in a 1310-nm optically injected quantum dot distributed feedback laser

    Science.gov (United States)

    Raghunathan, R.; Olinger, J.; Hurtado, A.; Grillot, F.; Kovanis, V.; Lester, L. F.

    2015-03-01

    Recent work has shown the Quantum Dot (QD) material system to be well-suited to support dual-mode lasing. In particular, optical injection from a master laser (ML) into the residual Fabry-Perot (FP) modes of a 1310 nm Quantum Dot Distributed Feedback (QD-DFB) laser has been recently demonstrated to offer a highly reliable platform for stable dual-mode lasing operation. External controls on the ML, such as operating temperature and bias current, can be used to precisely adjust the spacing between the two lasing modes. This tunability of modeseparation is very promising for a range of applications requiring the generation of microwave, millimeter wave and terahertz signals. Considering the versatility and utility of such a scheme, it is imperative to acquire a deeper understanding of the factors that influence the dual-mode lasing process, in order to optimize performance. Toward this end, this paper seeks to further our understanding of the optically-injected dual-mode lasing mechanism. For fixed values of optical power injected into each FP residual mode and wavelength detuning, the dual-mode lasing characteristics are analyzed with regard to important system parameters such as the position and the intensity of the injected residual mode (relative to the Bragg and the other residual FP modes of the device) for two similarly-fabricated QD-DFBs. Results indicate that for dual mode lasing spaced less than 5 nm apart, the relative intensity of the injected FP mode and intracavity noise levels are critical factors in determining dual mode lasing behavior. Insight into the dual-mode lasing characteristics could provide an important design guideline for the master and QD-DFB slave laser cavities.

  7. Optothermal transport behavior in whispering gallery mode optical cavities

    Energy Technology Data Exchange (ETDEWEB)

    Soltani, Soheil [Ming Hsieh Department of Electrical Engineering-Electrophysics, University of Southern California, Los Angeles, California 90089 (United States); Armani, Andrea M., E-mail: armani@usc.edu [Ming Hsieh Department of Electrical Engineering-Electrophysics, University of Southern California, Los Angeles, California 90089 (United States); Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089 (United States)

    2014-08-04

    Over the past century, whispering gallery mode optical cavities have enabled numerous advances in science and engineering, such as discoveries in quantum mechanics and non-linear optics, as well as the development of optical gyroscopes and add drop filters. One reason for their widespread appeal is their ability to confine light for long periods of time, resulting in high circulating intensities. However, when sufficiently large amounts of optical power are coupled into these cavities, they begin to experience optothermal or photothermal behavior, in which the optical energy is converted into heat. Above the optothermal threshold, the resonance behavior is no longer solely defined by electromagnetics. Previous work has primarily focused on the role of the optothermal coefficient of the material in this instability. However, the physics of this optothermal behavior is significantly more complex. In the present work, we develop a predictive theory based on a generalizable analytical expression in combination with a geometry-specific COMSOL Multiphysics finite element method model. The simulation couples the optical and thermal physics components, accounting for geometry variations as well as the temporal and spatial profile of the optical field. To experimentally verify our theoretical model, the optothermal thresholds of a series of silica toroidal resonant cavities are characterized at different wavelengths (visible through near-infrared) and using different device geometries. The silica toroid offers a particularly rigorous case study for the developed optothermal model because of its complex geometrical structure which provides multiple thermal transport paths.

  8. Normal mode splitting and ground state cooling in a Fabry—Perot optical cavity and transmission line resonator

    International Nuclear Information System (INIS)

    Chen Hua-Jun; Mi Xian-Wu

    2011-01-01

    Optomechanical dynamics in two systems which are a transmission line resonator and Fabrya—Perot optical cavity via radiation—pressure are investigated by linearized quantum Langevin equation. We work in the resolved sideband regime where the oscillator resonance frequency exceeds the cavity linewidth. Normal mode splittings of the mechanical resonator as a pure result of the coupling interaction in the two optomechanical systems is studied, and we make a comparison of normal mode splitting of mechanical resonator between the two systems. In the optical cavity, the normal mode splitting of the movable mirror approaches the latest experiment very well. In addition, an approximation scheme is introduced to demonstrate the ground state cooling, and we make a comparison of cooling between the two systems dominated by two key factors, which are the initial bath temperature and the mechanical quality factor. Since both the normal mode splitting and cooling require working in the resolved sideband regime, whether the normal mode splitting influences the cooling of the mirror is considered. Considering the size of the mechanical resonator and precooling the system, the mechanical resonator in the transmission line resonator system is easier to achieve the ground state cooling than in optical cavity. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  9. Dual-channel amplification in a single-mode diode laser for multi-isotope laser cooling

    International Nuclear Information System (INIS)

    Booth, James L.; Van Dongen, Janelle; Lebel, Paul; Klappauf, Bruce G.; Madison, Kirk W.

    2007-01-01

    The output from two grating-stabilized external-cavity diode lasers were injected into a single-mode diode laser. Operating at a wavelength of 780 nm, this laser produced ∼50 mW of power with two main frequency components of the same spectral characteristics of the seed lasers. The power ratio of the amplified components was freely adjustable due to gain saturation, and amplification was observed for frequency differences of the two seed lasers in the range from 73 MHz to 6.6 GHz. This system was used to realize a dual isotope magneto-optic trap (MOT) for rubidium ( 85 Rb and 87 Rb). The resulting position and cloud size of the dual isotope MOT was the same as that of the single species MOTs to within ±10 and ±20 μm, respectively. We also characterized the additional spectral components produced by four wave mixing (FWM) in the diode laser amplifier and utilized a particular FWM sideband to realize hyperfine pumping and subsequent laser trapping of 85 Rb in the absence of a 'repump' laser dedicated to hyperfine pumping

  10. Diffractive optics for reduction of hot cracking in pulsed mode Nd:YAG laser welding

    DEFF Research Database (Denmark)

    Bagger, Claus; Olesen, Søren; Roos, Sven-Olov

    2001-01-01

    In order to reduce the susceptibility to hot cracking in pulsed mode laser welding of austenitic stainless steel, an optical system for reduction of the cooling rate is sought developed. Based on intensive numerical simulations, an optical system producing three focused spots is made. In a number...

  11. Lead-silicate glass optical microbubble resonator

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Pengfei, E-mail: pengfei.wang@dit.ie [Photonics Research Centre, Dublin Institute of Technology, Kevin Street, Dublin 8 (Ireland); Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ (United Kingdom); Ward, Jonathan; Yang, Yong; Chormaic, Síle Nic [Light-Matter Interactions Unit, OIST Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495 (Japan); Feng, Xian; Brambilla, Gilberto [Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ (United Kingdom); Farrell, Gerald [Photonics Research Centre, Dublin Institute of Technology, Kevin Street, Dublin 8 (Ireland)

    2015-02-09

    Microbubble whispering gallery resonators have the potential to become key components in a variety of active and passive photonic circuit devices by offering a range of significant functionalities. Here, we report on the fabrication, optical characterization, and theoretical analysis of lead-silicate glass and optical microbubble resonators. Evanescent field coupling to the microbubbles was achieved using a 1 μm diameter, silica microfiber at a wavelength of circa 775 nm. High Q-factor modes were efficiently excited in both single-stem and two-stem, lead-silicate glass, and microbubble resonators, with bubble diameters of 38 μm (single-stem) and 48 μm (two-stem). Whispering gallery mode resonances with Q-factors as high as 2.3 × 10{sup 5} (single-stem) and 7 × 10{sup 6} (two-stem) were observed. By exploiting the high-nonlinearity of the lead-silicate glass, this work will act as a catalyst for studying a range of nonlinear optical effects in microbubbles, such as Raman scattering and four-wave mixing, at low optical powers.

  12. Optical and transport properties of single crystal rubrene: A theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Lipeng [Division of Materials Science, Nanyang Technological University, Singapore 639798 (Singapore); Lu, Jing [Division of Materials Science, Nanyang Technological University, Singapore 639798 (Singapore); Faculty of Chemistry, Northeast Normal University, Changchun (China); Long, Guankui; Zheng, Fulu [Division of Materials Science, Nanyang Technological University, Singapore 639798 (Singapore); Zhang, Jingping [Faculty of Chemistry, Northeast Normal University, Changchun (China); Zhao, Yang, E-mail: YZhao@ntu.edu.sg [Division of Materials Science, Nanyang Technological University, Singapore 639798 (Singapore)

    2016-12-20

    Optical and charge transport properties of single crystal rubrene are investigated using the multi-mode Brownian oscillator (MBO) model, the charge hopping model with quantum nuclear tunneling, and the Munn–Silbey approach. The MBO model is adopted to calculate absorption and photoluminescence spectra, yielding results in excellent agreement with measurements. In addition, temperature dependence of zero phonon lines (ZPL) and phonon sidebands (PSBs) of absorption spectra is also examined using the MBO model, revealing a nearly linear dependence of line widths of the ZPL and the PSBs on temperature. Model parameters obtained from MBO fitting and TD-DFT computation are then utilized for hole mobility calculations. It is found that temperature dependence of the calculated mobility is in general agreement with measurements, exhibiting “band-like” transport behavior.

  13. Facile synthesis of graphene on single mode fiber via chemical vapor deposition

    International Nuclear Information System (INIS)

    Zhang, C.; Man, B.Y.; Jiang, S.Z.; Yang, C.; Liu, M.; Chen, C.S.; Xu, S.C.; Feng, D.J.; Bi, D.; Liu, F.Y.; Qiu, H.W.

    2014-01-01

    Direct deposition of graphene film on the standard single mode fiber is offered using a Cu-vapor-assisted chemical vapor deposition system. The gas flow of H 2 and Ar before the growth process plays a crucial role for the direct deposition of the graphene film and the layers of the graphene can be controlled by the growth time. With a large gas flow, Cu atoms are carried off with the gas flow and hard to deposit on the surface of the single mode fiber before the growth process. Consequently, uniform graphene film is obtained in this case. On the contrary, with a lower one, Cu atoms is facile to deposit on the surface of the single mode fiber and form nanodots acting as active catalytic sites for the growth of carbon nanotubes. This method presents us a promising transfer-free technique for fabrication of the photonic applications.

  14. Phase-sensitive detection of optical resonances by using an acousto-optic modulator in the Raman - Nath diffraction mode

    International Nuclear Information System (INIS)

    Baryshev, V N; Domnin, Yu S; Kopylov, L N

    2007-01-01

    A new method for frequency control of an external cavity diode laser without direct modulation of the injection current is proposed. The Pound - Drever optical heterodyne technique or the method of frequency control by frequency-modulated sidebands, in which an acousto-optic modulator operating in the Raman - Nath diffraction mode is used as an external phase modulator, can be employed to obtain error signals upon automatic frequency locking of the diode laser to the saturated absorption resonances within the D 2 line of cesium atoms or to the optical cavity resonances. (control of laser radiation parameters)

  15. Efficient all-optical switching using slow light within a hollow fiber

    DEFF Research Database (Denmark)

    Bajcsy, Michal; Hofferberth, S.; Balic, Vlatko

    2009-01-01

    We demonstrate a fiber-optical switch that is activated at tiny energies corresponding to a few hundred optical photons per pulse. This is achieved by simultaneously confining both photons and a small laser-cooled ensemble of atoms inside the microscopic hollow core of a single-mode photonic-crys......-crystal fiber and using quantum optical techniques for generating slow light propagation and large nonlinear interaction between light beams.......We demonstrate a fiber-optical switch that is activated at tiny energies corresponding to a few hundred optical photons per pulse. This is achieved by simultaneously confining both photons and a small laser-cooled ensemble of atoms inside the microscopic hollow core of a single-mode photonic...

  16. Celiac disease biodetection using lossy-mode resonances generated in tapered single-mode optical fibers

    Science.gov (United States)

    Socorro, A. B.; Corres, J. M.; Del Villar, I.; Matias, I. R.; Arregui, F. J.

    2014-05-01

    This work presents the development and test of an anti-gliadin antibodies biosensor based on lossy mode resonances (LMRs) to detect celiac disease. Several polyelectrolites were used to perform layer-by-layer assembly processes in order to generate the LMR and to fabricate a gliadin-embedded thin-film. The LMR shifted 20 nm when immersed in a 5 ppm anti-gliadin antibodies-PBS solution, what makes this bioprobe suitable for detecting celiac disease. This is the first time, to our knowledge, that LMRs are used to detect celiac disease and these results suppose promising prospects on the use of such phenomena as biological detectors.

  17. Multi-mode optical fibers for connecting space-based spectrometers

    Science.gov (United States)

    Roberts, W. T.; Lindenmisth, C. A.; Bender, S.; Miller, E. A.; Motts, E.; Ott, M.; LaRocca, F.; Thomes, J.

    2017-11-01

    significantly smaller, less massive and less robust. Large core multi-mode optical fibers are often used to accommodate the optical connection of the two separated portions of such instrumentation. In some cases, significant throughput efficiency improvement can be realized by judiciously orienting the strands of multi-fiber cable, close-bunching them to accommodate a tight focus of the optical system on the optical side of the connection, and splaying them out linearly along a spectrometer slit on the other end. For such instrumentation to work effectively in identifying elements and molecules, and especially to produce accurate quantitative results, the spectral throughput of the optical fiber connection must be consistent over varying temperatures, over the range of motion of the optical head (and it's implied optical cable stresses), and over angle-aperture invariant of the total system. While the first two of these conditions have been demonstrated[4], spectral observations of the latter present a cause for concern, and may have an impact on future design of fiber-connected LIBS and Raman spectroscopy instruments. In short, we have observed that the shape of the spectral efficiency curve of a large multi-mode core optical fiber changes as a function of input angle.

  18. Saturated evanescent-wave absorption of few-layer graphene-covered side-polished single-mode fiber for all-optical switching

    Science.gov (United States)

    Peng, Kaung-Jay; Wu, Chun-Lung; Lin, Yung-Hsiang; Wang, Hwai-Yung; Cheng, Chih-Hsien; Chi, Yu-Chieh; Lin, Gong-Ru

    2018-01-01

    Using the evanescent-wave saturation effect of hydrogen-free low-temperature synthesized few-layer graphene covered on the cladding region of a side-polished single-mode fiber, a blue pump/infrared probe-based all-optical switch is demonstrated with specific wavelength-dependent probe modulation efficiency. Under the illumination of a blue laser diode at 405 nm, the few-layer graphene exhibits cross-gain modulation at different wavelengths covering the C- and L-bands. At a probe power of 0.5 mW, the L-band switching throughput power variant of 16 μW results in a probe modulation depth of 3.2%. Blue shifting the probe wavelength from 1580 to 1520 nm further enlarges the switching throughput power variant to 24 mW and enhances the probe modulation depth to 5%. Enlarging the probe power from 0.5 to 1 mW further enlarges the switching throughput power variant from 25 to 58 μW to promote its probe modulation depth of up to 5.8% at 1520 nm. In contrast, the probe modulation depth degrades from 5.1% to 1.2% as the pumping power reduces from 85 to 24 mW, which is attributed to the saturable absorption of the few-layer graphene-based evanescent-wave absorber. The modulation depth at wavelength of 1550 nm under a probe power of 1 mW increases from 1.2% to 5.1%, as more carriers can be excited when increasing the blue laser power from 24 to 85 mW, whereas it decreases from 5.1% to 3.3% by increasing the input probe power from 1 to 2 mW to show an easier saturated condition at longer wavelength.

  19. Multispectral optical tweezers for molecular diagnostics of single biological cells

    Science.gov (United States)

    Butler, Corey; Fardad, Shima; Sincore, Alex; Vangheluwe, Marie; Baudelet, Matthieu; Richardson, Martin

    2012-03-01

    Optical trapping of single biological cells has become an established technique for controlling and studying fundamental behavior of single cells with their environment without having "many-body" interference. The development of such an instrument for optical diagnostics (including Raman and fluorescence for molecular diagnostics) via laser spectroscopy with either the "trapping" beam or secondary beams is still in progress. This paper shows the development of modular multi-spectral imaging optical tweezers combining Raman and Fluorescence diagnostics of biological cells.

  20. Overlapping double potential wells in a single optical microtube cavity with vernier-scale-like tuning effect

    International Nuclear Information System (INIS)

    Madani, A.; Schmidt, O. G.; Bolaños Quiñones, V. A.; Ma, L. B.; Jorgensen, M. R.; Miao, S. D.

    2016-01-01

    Spatially and temporally overlapping double potential wells are realized in a hybrid optical microtube cavity due to the coexistence of an aggregate of luminescent quantum dots embedded in the tube wall and the cone-shaped tube's geometry. The double potential wells produce two independent sets of optical modes with different sets of mode numbers, indicating phase velocity separation for the modes overlapping at the same frequency. The overlapping mode position can be tuned by modifying the tube cavity, where these mode sets shift with different magnitudes, allowing for a vernier-scale-like tuning effect.

  1. Acousto-optical interaction of surface acoustic and optical waves in a two-dimensional phoxonic crystal hetero-structure cavity.

    Science.gov (United States)

    Ma, Tian-Xue; Zou, Kui; Wang, Yue-Sheng; Zhang, Chuanzeng; Su, Xiao-Xing

    2014-11-17

    Phoxonic crystal is a promising material for manipulating sound and light simultaneously. In this paper, we theoretically demonstrate the propagation of acoustic and optical waves along the truncated surface of a two-dimensional square-latticed phoxonic crystal. Further, a phoxonic crystal hetero-structure cavity is proposed, which can simultaneously confine surface acoustic and optical waves. The interface motion and photoelastic effects are taken into account in the acousto-optical coupling. The results show obvious shifts in eigenfrequencies of the photonic cavity modes induced by different phononic cavity modes. The symmetry of the phononic cavity modes plays a more important role in the single-phonon exchange process than in the case of the multi-phonon exchange. Under the same deformation, the frequency shift of the photonic transverse electric mode is larger than that of the transverse magnetic mode.

  2. Single-mode multicore fiber for dense space division multiplexing

    DEFF Research Database (Denmark)

    Sasaki, Yusuke; Amma, Yoshimichi; Takenaga, Katsuhiro

    2016-01-01

    Single-mode multicore fiber (SM-MCF) is attractive for high-capacity transmission. Our fabricated SM-MCFs achieve high core count and low crosstalk with a cladding diameter of 230 µm. Characteristics of fan-in/fan-out for the SM-MCFs are also investigated....

  3. Entangling optical and microwave cavity modes by means of a nanomechanical resonator

    Energy Technology Data Exchange (ETDEWEB)

    Barzanjeh, Sh. [Department of Physics, Faculty of Science, University of Isfahan, Hezar Jerib, 81746-73441 Isfahan (Iran, Islamic Republic of); School of Science and Technology, Physics Division, Universita di Camerino, I-62032 Camerino, Macerata (Italy); Vitali, D.; Tombesi, P. [School of Science and Technology, Physics Division, Universita di Camerino, I-62032 Camerino, Macerata (Italy); Milburn, G. J. [Centre for Engineered Quantum Systems, School of Physical Sciences, University of Queensland, Saint Lucia, Queensland 4072 (Australia)

    2011-10-15

    We propose a scheme that is able to generate stationary continuous-variable entanglement between an optical and a microwave cavity mode by means of their common interaction with a nanomechanical resonator. We show that when both cavities are intensely driven, one can generate bipartite entanglement between any pair of the tripartite system, and that, due to entanglement sharing, optical-microwave entanglement is efficiently generated at the expense of microwave-mechanical and optomechanical entanglement.

  4. Entangling optical and microwave cavity modes by means of a nanomechanical resonator

    International Nuclear Information System (INIS)

    Barzanjeh, Sh.; Vitali, D.; Tombesi, P.; Milburn, G. J.

    2011-01-01

    We propose a scheme that is able to generate stationary continuous-variable entanglement between an optical and a microwave cavity mode by means of their common interaction with a nanomechanical resonator. We show that when both cavities are intensely driven, one can generate bipartite entanglement between any pair of the tripartite system, and that, due to entanglement sharing, optical-microwave entanglement is efficiently generated at the expense of microwave-mechanical and optomechanical entanglement.

  5. Spatial-mode switchable ring fiber laser based on low mode-crosstalk all-fiber mode MUX/DEMUX

    Science.gov (United States)

    Ren, Fang; Yu, Jinyi; Wang, Jianping

    2018-05-01

    We report an all-fiber ring laser that emits linearly polarized (LP) modes based on the intracavity all-fiber mode multiplexer/demultiplexer (MUX/DEMUX). Multiple LP modes in ring fiber laser are generated by taking advantage of mode MUX/DEMUX. The all-fiber mode MUX/DEMUX are composed of cascaded mode-selective couplers (MSCs). The output lasing mode of the ring fiber laser can be switched among the three lowest-order LP modes by employing combination of a mode MUX and a simple N × 1 optical switch. The slope efficiencies, optical spectra and mode profiles are measured.

  6. Single mode dye-doped polymer photonic crystal lasers

    International Nuclear Information System (INIS)

    Christiansen, Mads B; Buß, Thomas; Smith, Cameron L C; Petersen, Sidsel R; Jørgensen, Mette M; Kristensen, Anders

    2010-01-01

    Dye-doped polymer photonic crystal (PhC) lasers fabricated by combined nanoimprint and photolithography are studied for their reproducibility and stability characteristics. We introduce a phase shift in the PhC lattice that substantially improves the yield of single wavelength emission. Single mode emission and reproducibility of laser characteristics are important if the lasers are to be mass produced in, e.g., optofluidic sensor chips. The fabrication yield is above 85% with highly reproducible wavelengths (within 0.5%), and the temperature dependence on the wavelength is found to be −0.045 or −0.066 nm K -1 , depending on the material

  7. Low-loss single-mode hollow-core fiber with anisotropic anti-resonant elements

    DEFF Research Database (Denmark)

    Habib, Selim; Bang, Ole; Bache, Morten

    2016-01-01

    A hollow-core fiber using anisotropic anti-resonant tubes in thecladding is proposed for low loss and effectively single-mode guidance. We show that the loss performance and higher-order mode suppression is significantly improved by using symmetrically distributed anisotropic antiresonant tubes i...

  8. The effect of irradiation temperature on the optical attenuation recovery in heavily Ge-doped single mode silica core fibers

    International Nuclear Information System (INIS)

    Bertolotti, M.; Mabrouk, M.A.; Ferrari, A.; Serra, A.; Viezzoli, G.

    1992-01-01

    The behaviour under irradiation of a single mode fiber heavily doped with germanium has been investigated at 0.85 μm and 1.3 μm under different irradiation temperatures in the range from -65degC to 60degC. The time behaviour of the recovery of the induced attenuation has been described using empirical equations, for different temperatures. An nth order kinetics seems appropriate to describe the results and the order of kinetics has been determined at different temperatures. (orig.)

  9. Tunable single-polarization single-longitudinal-mode erbium-doped fiber ring laser employing a CMFBG filter and saturable absorber

    Science.gov (United States)

    Feng, Suchun; Lu, Shaohua; Peng, Wanjing; Li, Qi; Feng, Ting; Jian, Shuisheng

    2013-04-01

    A tunable single-polarization single-longitudinal-mode (SLM) erbium-doped fiber ring laser is proposed and demonstrated. For the first time as we know, a chirped moiré fiber Bragg grating (CMFBG) filter with ultra-narrow transmission band and a uniform fiber Bragg grating (UFBG) are used to select the laser longitudinal mode. The stable SLM operation of the fiber laser is guaranteed by the combination of the CMFBG filter and 3 m unpumped erbium-doped fiber acting as a saturable absorber. The single polarization operation of the fiber laser is obtained by using an inline broadband polarizer. A tuning range of about 0.7 nm with about 0.1 nm step is achieved by stretching the uniform FBG.

  10. Transfer of an exfoliated monolayer graphene flake onto an optical fiber end face for erbium-doped fiber laser mode-locking

    International Nuclear Information System (INIS)

    Rosa, Henrique Guimaraes; De Souza, Eunézio A Thoroh; Gomes, José Carlos Viana

    2015-01-01

    This paper presents, for the first time, the successful transfer of exfoliated monolayer graphene flake to the optical fiber end face and alignment to its core. By fabricating and optimizing a polymeric poly(methyl methacrylate) (PMMA) and polyvinyl alcohol (PVA) substrate, it is possible to obtain a contrast of up to 11% for green light illumination, allowing the identification of monolayer graphene flakes that were transferred to optical fiber samples and aligned to its core. With Raman spectroscopy, it is demonstrated that graphene flake completely covers the optical fiber core, and its quality remains unaltered after the transfer. The generation of mode-locked erbium-doped fiber laser pulses, with a duration of 672 fs, with a single-monolayer graphene flake as a saturable absorber, is demonstrated for the first time. This transfer technique is of general applicability and can be used for other two-dimensional (2D) exfoliated materials. (letter)

  11. Semiconductor quantum optics with tailored photonic nanostructures

    International Nuclear Information System (INIS)

    Laucht, Arne

    2011-01-01

    This thesis describes detailed investigations of the effects of photonic nanostructures on the light emission properties of self-assembled InGaAs quantum dots. Nanoscale optical cavities and waveguides are employed to enhance the interaction between light and matter, i.e. photons and excitons, up to the point where optical non-linearities appear at the quantum (single photon) level. Such non-linearities are an essential component for the realization of hardware for photon based quantum computing since they can be used for the creation and detection of non-classical states of light and may open the way to new genres of quantum optoelectronic devices such as optical modulators and optical transistors. For single semiconductor quantum dots in photonic crystal nanocavities we investigate the coupling between excitonic transitions and the highly localized mode of the optical cavity. We explore the non-resonant coupling mechanisms which allow excitons to couple to the cavity mode, even when they are not spectrally in resonance. This effect is not observed for atomic cavity quantum electrodynamics experiments and its origin is traced to phonon-assisted scattering for small detunings (ΔE ∝5 meV). For quantum dots in high-Q cavities we observe the coherent coupling between exciton and cavity mode in the strong coupling regime of light-matter interaction, probe the influence of pure dephasing on the coherent interaction at high excitation levels and high lattice temperatures, and examine the coupling of two spatially separated quantum dots via the exchange of real and virtual photons mediated by the cavity mode. Furthermore, we study the spontaneous emission properties of quantum dots in photonic crystal waveguide structures, estimate the fraction of all photons emitted into the propagating waveguide mode, and demonstrate the on-chip generation of single photon emission into the waveguide. The results obtained during the course of this thesis contribute significantly to

  12. Compact akinetic swept source optical coherence tomography angiography at 1060 nm supporting a wide field of view and adaptive optics imaging modes of the posterior eye.

    Science.gov (United States)

    Salas, Matthias; Augustin, Marco; Felberer, Franz; Wartak, Andreas; Laslandes, Marie; Ginner, Laurin; Niederleithner, Michael; Ensher, Jason; Minneman, Michael P; Leitgeb, Rainer A; Drexler, Wolfgang; Levecq, Xavier; Schmidt-Erfurth, Ursula; Pircher, Michael

    2018-04-01

    Imaging of the human retina with high resolution is an essential step towards improved diagnosis and treatment control. In this paper, we introduce a compact, clinically user-friendly instrument based on swept source optical coherence tomography (SS-OCT). A key feature of the system is the realization of two different operation modes. The first operation mode is similar to conventional OCT imaging and provides large field of view (FoV) images (up to 45° × 30°) of the human retina and choroid with standard resolution. The second operation mode enables it to optically zoom into regions of interest with high transverse resolution using adaptive optics (AO). The FoV of this second operation mode (AO-OCT mode) is 3.0° × 2.8° and enables the visualization of individual retinal cells such as cone photoreceptors or choriocapillaris. The OCT engine is based on an akinetic swept source at 1060 nm and provides an A-scan rate of 200 kHz. Structural as well as angiographic information can be retrieved from the retina and choroid in both operational modes. The capabilities of the prototype are demonstrated in healthy and diseased eyes.

  13. Integrated optics nano-opto-fluidic sensor based on whispering gallery modes for picoliter volume refractometry

    NARCIS (Netherlands)

    Gilardi, G.; Beccherelli, R.

    2013-01-01

    We propose and numerically investigate an integrated optics refractometric nano-opto-fluidic sensor based on whispering gallery modes in sapphire microspheres. A measurand fluid is injected in a micromachined reservoir defined in between the microsphere and an optical waveguide. The wavelength shift

  14. Reverse-mode PSLC multi-plane optical see-through display for AR applications.

    Science.gov (United States)

    Liu, Shuxin; Li, Yan; Zhou, Pengcheng; Chen, Quanming; Su, Yikai

    2018-02-05

    In this paper we propose an optical see-through multi-plane display with reverse-mode polymer-stabilized liquid crystal (PSLC). Our design solves the problem of accommodation-vergence conflict with correct focus cues. In the reverse mode PSLC system, power consumption could be reduced to ~1/(N-1) of that in a normal mode system if N planes are displayed. The PSLC films fabricated in our experiment exhibit a low saturation voltage ~20 V rms , a high transparent-state transmittance (92%), and a fast switching time within 2 ms and polarization insensitivity. A proof-of-concept two-plane color display prototype and a four-plane monocolor display prototype were implemented.

  15. Overlapping double potential wells in a single optical microtube cavity with vernier-scale-like tuning effect

    Energy Technology Data Exchange (ETDEWEB)

    Madani, A.; Schmidt, O. G. [Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstr. 20, 01069 Dresden (Germany); Material Systems for Nanoelectronics, Chemnitz University of Technology, Reichenhainer Str. 70, 09107 Chemnitz (Germany); Bolaños Quiñones, V. A.; Ma, L. B., E-mail: l.ma@ifw-dresden.de; Jorgensen, M. R. [Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstr. 20, 01069 Dresden (Germany); Miao, S. D. [Anhui Key Lab of Controllable Chemical Reaction and Material Chemical Engineering, School of Chemical Engineering, Hefei University of Technology, Tunxi Road. 193, Hefei, Anhui 230009 (China)

    2016-04-25

    Spatially and temporally overlapping double potential wells are realized in a hybrid optical microtube cavity due to the coexistence of an aggregate of luminescent quantum dots embedded in the tube wall and the cone-shaped tube's geometry. The double potential wells produce two independent sets of optical modes with different sets of mode numbers, indicating phase velocity separation for the modes overlapping at the same frequency. The overlapping mode position can be tuned by modifying the tube cavity, where these mode sets shift with different magnitudes, allowing for a vernier-scale-like tuning effect.

  16. Femtosecond Laser Structuring in Optical Fiber and Transparent Films

    Directory of Open Access Journals (Sweden)

    Herman Peter R.

    2013-11-01

    Full Text Available Femtosecond laser processing is optimized for writing optical circuits, optical resonators, and microfluidic devices inside the cladding of single-mode optical fiber that couple efficiently with the fiber core waveguide. The laser processes open new directions towards Labon-a-Fiber.

  17. Study of optical phonon modes of CdS nanoparticles using Raman

    Indian Academy of Sciences (India)

    In this paper we report the study of optical phonon modes of nanoparticles of CdS using Raman spectroscopy. Nanoparticle sample for the present study was synthesized through chemical precipitation technique. The CdS nanoparticles were then subjected to heat treatment at low temperature (150°C) for extended time ...

  18. Wideband optical vector network analyzer based on optical single-sideband modulation and optical frequency comb.

    Science.gov (United States)

    Xue, Min; Pan, Shilong; He, Chao; Guo, Ronghui; Zhao, Yongjiu

    2013-11-15

    A novel approach to increase the measurement range of the optical vector network analyzer (OVNA) based on optical single-sideband (OSSB) modulation is proposed and experimentally demonstrated. In the proposed system, each comb line in an optical frequency comb (OFC) is selected by an optical filter and used as the optical carrier for the OSSB-based OVNA. The frequency responses of an optical device-under-test (ODUT) are thus measured channel by channel. Because the comb lines in the OFC have fixed frequency spacing, by fitting the responses measured in all channels together, the magnitude and phase responses of the ODUT can be accurately achieved in a large range. A proof-of-concept experiment is performed. A measurement range of 105 GHz and a resolution of 1 MHz is achieved when a five-comb-line OFC with a frequency spacing of 20 GHz is applied to measure the magnitude and phase responses of a fiber Bragg grating.

  19. Cost-effective, compact and high-speed integrable multi-mode interference modulator

    NARCIS (Netherlands)

    Lenstra, Daan; Yao, Weiming; Cardarelli, Simone; Mink, Jan

    2017-01-01

    Theoretical analysis of the modulation performance of this wave-guide device shows great potential when combined with a single-mode laser on a monolithic optical chip. On the basis of the reversed-bias electro-optic effect, modulation speeds surmounting 25 Gbit/s with 10 dB extinction ratio are

  20. Peristaltic modes of a single vortex in the Abelian Higgs model

    International Nuclear Information System (INIS)

    Kojo, Toru; Suganuma, Hideo; Tsumura, Kyosuke

    2007-01-01

    Using the Abelian Higgs model, we study the radial excitations of single vortex and their propagation modes along the vortex line. We call such beyond-stringy modes peristaltic modes of single vortex. With the profile of the static vortex, we derive the vortex-induced potential, i.e., single-particle potential for the Higgs and the photon field fluctuations around the static vortex, and investigate the coherently propagating fluctuations which correspond to the vibration of the vortex. We derive, analyze, and numerically solve the field equations of the Higgs and the photon field fluctuations around the static vortex with various Ginzburg-Landau parameter κ and topological charge n. Around the Bogomol'nyi-Prasad-Sommerfield value or critical coupling κ 2 =1/2, there appears a significant correlation between the Higgs and the photon field fluctuations mediated by the static vortex. As a result, for κ 2 =1/2, we find the characteristic new-type discrete pole of the peristaltic mode corresponding to the quasibound state of coherently fluctuating fields and the static vortex. We investigate its excitation energy, correlation energy of coherent fluctuations, spatial distributions, and the resulting magnetic flux behavior in detail. Our investigation covers not only usual type-II vortices with n=1 but also type-I and type-II vortices with n set-membership sign Z for the application to various general systems where the vortexlike objects behave as the essential degrees of freedom

  1. Growth and characterization of dichlorobis L-proline Zn(II): A semiorganic nonlinear optical single crystal

    Science.gov (United States)

    Lydia Caroline, M.; Kandasamy, A.; Mohan, R.; Vasudevan, S.

    2009-02-01

    A semiorganic nonlinear optical material dichlorobis L-proline Zn (II) (DBLPZ), with molecular formula [ZnCl 2(C 5H 9NO 2) 2], has been synthesized from mixed solvents of deionised water and methanol. Single crystals of DBLPZ were successfully grown by the slow evaporation method at an ambient temperature. Single-crystal X-ray diffractometer was utilized to measure unit cell parameters and to confirm the crystal structure. The powder X-ray diffraction pattern of the grown DBLPZ has been indexed. The modes of vibration of different molecular groups present in the sample were identified by the FTIR spectral analysis. The optical transmittance window and the lower cutoff wavelength of the DBLPZ have been identified by UV-vis-NIR studies. Thermal stability of the DBLPZ was determined from TG/DTA/DSC curves, which indicate that the material is stable up to 242.3 °C. The existence of second harmonic generation signals was observed using Nd:YAG laser with fundamental wavelength of 1064 nm possessing SHG efficiency of 0.5 times of KDP and hence it can be a potential material for the frequency-doubling process.

  2. Advanced sensing with micro-optical whispering-gallery-mode resonators

    CERN Document Server

    Righini, Giancarlo C

    2017-01-01

    This Spotlight examines an increasingly popular class of optical sensors that comprises microresonators based on the propagation of whispering gallery modes (WGMs). Several 2D and 3D WGM microresonators have already proved their capabilities as general-purpose sensors (especially as biosensors), and they have potential applications outside of research laboratories. Topics include the fundamentals of WGM propagation, types and characterization of microresonators, microfabrication issues, categories of sensing (physical, chemical, and biological), and state of the art sensors.

  3. Quantum routing of single optical photons with a superconducting flux qubit

    Science.gov (United States)

    Xia, Keyu; Jelezko, Fedor; Twamley, Jason

    2018-05-01

    Interconnecting optical photons with superconducting circuits is a challenging problem but essential for building long-range superconducting quantum networks. We propose a hybrid quantum interface between the microwave and optical domains where the propagation of a single-photon pulse along a nanowaveguide is controlled in a coherent way by tuning the electromagnetically induced transparency window with the quantum state of a flux qubit mediated by the spin in a nanodiamond. The qubit can route a single-photon pulse using the nanodiamond into a quantum superposition of paths without the aid of an optical cavity—simplifying the setup. By preparing the flux qubit in a superposition state our cavityless scheme creates a hybrid state-path entanglement between a flying single optical photon and a static superconducting qubit.

  4. Wavelength Dependence of the Polarization Singularities in a Two-Mode Optical Fiber

    Directory of Open Access Journals (Sweden)

    V. V. G. Krishna Inavalli

    2012-01-01

    Full Text Available We present here an experimental demonstration of the wavelength dependence of the polarization singularities due to linear combination of the vector modes excited directly in a two-mode optical fiber. The coherent superposition of the vector modes excited by linearly polarized Gaussian beam as offset skew rays propagated in a helical path inside the fiber results in the generation of phase singular beams with edge dislocation in the fiber output. The polarization character of these beams is found to change dramatically with wavelength—from left-handed elliptically polarized edge dislocation to right-handed elliptically polarized edge-dislocation through disclinations. The measured behaviour is understood as being due to intermodal dispersion of the polarization corrections to the propagating vector modes, as the wavelength of the input beam is scanned.

  5. Stabilization of self-mode-locked quantum dash lasers by symmetric dual-loop optical feedback

    Science.gov (United States)

    Asghar, Haroon; Wei, Wei; Kumar, Pramod; Sooudi, Ehsan; McInerney, John. G.

    2018-02-01

    We report experimental studies of the influence of symmetric dual-loop optical feedback on the RF linewidth and timing jitter of self-mode-locked two-section quantum dash lasers emitting at 1550 nm. Various feedback schemes were investigated and optimum levels determined for narrowest RF linewidth and low timing jitter, for single-loop and symmetric dual-loop feedback. Two symmetric dual-loop configurations, with balanced and unbalanced feedback ratios, were studied. We demonstrate that unbalanced symmetric dual loop feedback, with the inner cavity resonant and fine delay tuning of the outer loop, gives narrowest RF linewidth and reduced timing jitter over a wide range of delay, unlike single and balanced symmetric dual-loop configurations. This configuration with feedback lengths 80 and 140 m narrows the RF linewidth by 4-67x and 10-100x, respectively, across the widest delay range, compared to free-running. For symmetric dual-loop feedback, the influence of different power split ratios through the feedback loops was determined. Our results show that symmetric dual-loop feedback is markedly more effective than single-loop feedback in reducing RF linewidth and timing jitter, and is much less sensitive to delay phase, making this technique ideal for applications where robustness and alignment tolerance are essential.

  6. Broadband micro-Michelson interferometer with multi-optical-path beating using a sphered-end hollow fiber.

    Science.gov (United States)

    Chen, Nan-Kuang; Lu, Kuan-Yi; Shy, Jow-Tsong; Lin, Chinlon

    2011-06-01

    We demonstrate a high-sensitivity broadband (1250-1650 nm) fiber micro-Michelson interferometer using a single-mode fiber end-spliced with a sphered-end hollow-core fiber. The hollow core is slightly smaller than the solid core of a single-mode fiber, so the fractional power of the core mode is converted into cladding modes. The excited cladding modes propagate at distinct optical paths along the hollow-core fiber and have individual foci outside the spherical lens. The reflected core mode, generated at the solid core-air interface, and the reflected cladding modes, generated at external material, interfere with each other to produce beating in the interference signals. © 2011 Optical Society of America

  7. Semiconductor optical amplifier-based heterodyning detection for resolving optical terahertz beat-tone signals from passively mode-locked semiconductor lasers

    International Nuclear Information System (INIS)

    Latkowski, Sylwester; Maldonado-Basilio, Ramon; Carney, Kevin; Parra-Cetina, Josue; Philippe, Severine; Landais, Pascal

    2010-01-01

    An all-optical heterodyne approach based on a room-temperature controlled semiconductor optical amplifier (SOA) for measuring the frequency and linewidth of the terahertz beat-tone signal from a passively mode-locked laser is proposed. Under the injection of two external cavity lasers, the SOA acts as a local oscillator at their detuning frequency and also as an optical frequency mixer whose inputs are the self-modulated spectrum of the device under test and the two laser beams. Frequency and linewidth of the intermediate frequency signal (and therefore, the beat-tone signal) are resolved by using a photodiode and an electrical spectrum analyzer.

  8. A New Three-Dimensional High-Accuracy Automatic Alignment System For Single-Mode Fibers

    Science.gov (United States)

    Yun-jiang, Rao; Shang-lian, Huang; Ping, Li; Yu-mei, Wen; Jun, Tang

    1990-02-01

    In order to achieve the low-loss splices of single-mode fibers, a new three-dimension high-accuracy automatic alignment system for single -mode fibers has been developed, which includes a new-type three-dimension high-resolution microdisplacement servo stage driven by piezoelectric elements, a new high-accuracy measurement system for the misalignment error of the fiber core-axis, and a special single chip microcomputer processing system. The experimental results show that alignment accuracy of ±0.1 pin with a movable stroke of -±20μm has been obtained. This new system has more advantages than that reported.

  9. Allocation of spectral and spatial modes in multidimensional metro-access optical networks

    Science.gov (United States)

    Gao, Wenbo; Cvijetic, Milorad

    2018-04-01

    Introduction of spatial division multiplexing (SDM) has added a new dimension in an effort to increase optical fiber channel capacity. At the same time, it can also be explored as an advanced optical networking tool. In this paper, we have investigated the resource allocation to end-users in multidimensional networking structure with plurality of spectral and spatial modes actively deployed in different networking segments. This presents a more comprehensive method as compared to the common practice where the segments of optical network are analyzed independently since the interaction between network hierarchies is included into consideration. We explored the possible transparency from the metro/core network to the optical access network, analyzed the potential bottlenecks from the network architecture perspective, and identified an optimized network structure. In our considerations, the viability of optical grooming through the entire hierarchical all-optical network is investigated by evaluating the effective utilization and spectral efficiency of the network architecture.

  10. Interaction of a single mode field cavity with the 1D XY model: Energy spectrum

    International Nuclear Information System (INIS)

    Tonchev, H; Donkov, A A; Chamati, H

    2016-01-01

    In this work we use the fundamental in quantum optics Jaynes-Cummings model to study the response of spin 1/2chain to a single mode of a laser light falling on one of the spins, a focused interaction model between the light and the spin chain. For the spin-spin interaction along the chain we use the XY model. We report here the exact analytical results, obtained with the help of a computer algebra system, for the energy spectrum in this model for chains of up to 4 spins with nearest neighbors interactions, either for open or cyclic chain configurations. Varying the sign and magnitude of the spin exchange coupling relative to the light-spin interaction we have investigated both cases of ferromagnetic or antiferromagnetic spin chains. (paper)

  11. Emergence of resonant mode-locking via delayed feedback in quantum dot semiconductor lasers.

    Science.gov (United States)

    Tykalewicz, B; Goulding, D; Hegarty, S P; Huyet, G; Erneux, T; Kelleher, B; Viktorov, E A

    2016-02-22

    With conventional semiconductor lasers undergoing external optical feedback, a chaotic output is typically observed even for moderate levels of the feedback strength. In this paper we examine single mode quantum dot lasers under strong optical feedback conditions and show that an entirely new dynamical regime is found consisting of spontaneous mode-locking via a resonance between the relaxation oscillation frequency and the external cavity repetition rate. Experimental observations are supported by detailed numerical simulations of rate equations appropriate for this laser type. The phenomenon constitutes an entirely new mode-locking mechanism in semiconductor lasers.

  12. Single ion implantation for single donor devices using Geiger mode detectors

    International Nuclear Information System (INIS)

    Bielejec, E; Seamons, J A; Carroll, M S

    2010-01-01

    Electronic devices that are designed to use the properties of single atoms such as donors or defects have become a reality with recent demonstrations of donor spectroscopy, single photon emission sources, and magnetic imaging using defect centers in diamond. Ion implantation, an industry standard for atom placement in materials, requires augmentation for single ion capability including a method for detecting a single ion arrival. Integrating single ion detection techniques with the single donor device construction region allows single ion arrival to be assured. Improving detector sensitivity is linked to improving control over the straggle of the ion as well as providing more flexibility in lay-out integration with the active region of the single donor device construction zone by allowing ion sensing at potentially greater distances. Using a remotely located passively gated single ion Geiger mode avalanche diode (SIGMA) detector we have demonstrated 100% detection efficiency at a distance of >75 μm from the center of the collecting junction. This detection efficiency is achieved with sensitivity to ∼600 or fewer electron-hole pairs produced by the implanted ion. Ion detectors with this sensitivity and integrated with a thin dielectric, for example a 5 nm gate oxide, using low energy Sb implantation would have an end of range straggle of -1 and 10 -4 for operation temperatures of ∼300 K and ∼77 K, respectively. Low temperature operation and reduced false, 'dark', counts are critical to achieving high confidence in single ion arrival. For the device performance in this work, the confidence is calculated as a probability of >98% for counting one and only one ion for a false count probability of 10 -4 at an average ion number per gated window of 0.015.

  13. Optical sum-frequency generation in a whispering-gallery-mode resonator

    International Nuclear Information System (INIS)

    Strekalov, Dmitry V; Kowligy, Abijith S; Huang, Yu-Ping; Kumar, Prem

    2014-01-01

    We demonstrate sum-frequency generation between a telecom wavelength and the Rb D2 line, achieved through natural phase matching in a nonlinear whispering gallery mode resonator. Due to the strong optical field confinement and ultra high Q of the cavity, the process saturates already at sub-mW pump peak power, at least two orders of magnitude lower than in existing waveguide-based devices. The experimental data are in agreement with the nonlinear dynamics and phase matching theory based on spherical geometry. Our experimental and theoretical results point toward a new platform for manipulating the color and quantum states of light waves for applications such as atomic memory based quantum networking and logic operations with optical signals. (paper)

  14. Single-pulse CARS based multimodal nonlinear optical microscope for bioimaging.

    Science.gov (United States)

    Kumar, Sunil; Kamali, Tschackad; Levitte, Jonathan M; Katz, Ori; Hermann, Boris; Werkmeister, Rene; Považay, Boris; Drexler, Wolfgang; Unterhuber, Angelika; Silberberg, Yaron

    2015-05-18

    Noninvasive label-free imaging of biological systems raises demand not only for high-speed three-dimensional prescreening of morphology over a wide-field of view but also it seeks to extract the microscopic functional and molecular details within. Capitalizing on the unique advantages brought out by different nonlinear optical effects, a multimodal nonlinear optical microscope can be a powerful tool for bioimaging. Bringing together the intensity-dependent contrast mechanisms via second harmonic generation, third harmonic generation and four-wave mixing for structural-sensitive imaging, and single-beam/single-pulse coherent anti-Stokes Raman scattering technique for chemical sensitive imaging in the finger-print region, we have developed a simple and nearly alignment-free multimodal nonlinear optical microscope that is based on a single wide-band Ti:Sapphire femtosecond pulse laser source. Successful imaging tests have been realized on two exemplary biological samples, a canine femur bone and collagen fibrils harvested from a rat tail. Since the ultra-broad band-width femtosecond laser is a suitable source for performing high-resolution optical coherence tomography, a wide-field optical coherence tomography arm can be easily incorporated into the presented multimodal microscope making it a versatile optical imaging tool for noninvasive label-free bioimaging.

  15. Single-mode pulsed dye laser pumped by using a diode-pumped Nd:YAG laser with a long pulse width

    CERN Document Server

    Yi, J H; Moon, H J; Rho, S P; Han, J M; Rhee, Y J; Lee, J M

    1999-01-01

    The lasing characteristics of a single-mode dye laser pumped by using a diode-pumped solid-state laser (DPSSL) with a high repetition rate is described. A 45-mm-long Nd:YAG rod was pumped by three CW diode arrays and it was acousto-optically Q-switched. A KTP crystal was used for intracavity frequency doubling. The pulse width of the laser ranged from 90 ns to 200 ns, depending on the diode current and the Q-switching frequency. The single-mode dye laser had a grazing incidence configuration. The pulse width of the dye laser was reduced to about 1/8 of the pumping laser pulse width. The effects of the DPSSL Q-switching frequency, the driving current, and the cavity loss on the dye laser pulse width were investigated by using a simple plane-parallel cavity. From the measured pulse width of the dye laser as a function of the reflectivity of the dye laser output coupler, we found that the cavity loss due to the frequency selection elements and the output coupler should be less than 70 % in order to avoid a drast...

  16. Single-mode pulsed dye laser pumped by using a diode-pumped Nd:YAG laser with a long pulse width

    International Nuclear Information System (INIS)

    Yi, Jong Hoon; Kim, Jin Tae; Moon, Hee Jong; Rho, Si Pyo; Han, Jae Min; Rhee, Yong Joo; Lee, Jong Min

    1999-01-01

    The lasing characteristics of a single-mode dye laser pumped by using a diode-pumped solid-state laser (DPSSL) with a high repetition rate is described. A 45-mm-long Nd:YAG rod was pumped by three CW diode arrays and it was acousto-optically Q-switched. A KTP crystal was used for intracavity frequency doubling. The pulse width of the laser ranged from 90 ns to 200 ns, depending on the diode current and the Q-switching frequency. The single-mode dye laser had a grazing incidence configuration. The pulse width of the dye laser was reduced to about 1/8 of the pumping laser pulse width. The effects of the DPSSL Q-switching frequency, the driving current, and the cavity loss on the dye laser pulse width were investigated by using a simple plane-parallel cavity. From the measured pulse width of the dye laser as a function of the reflectivity of the dye laser output coupler, we found that the cavity loss due to the frequency selection elements and the output coupler should be less than 70 % in order to avoid a drastically reduced pulse width

  17. Fiber-Optic Pyrometer with Optically Powered Switch for Temperature Measurements.

    Science.gov (United States)

    Vázquez, Carmen; Pérez-Prieto, Sandra; López-Cardona, Juan D; Tapetado, Alberto; Blanco, Enrique; Moreno-López, Jorge; Montero, David S; Lallana, Pedro C

    2018-02-06

    We report the experimental results on a new infrared fiber-optic pyrometer for very localized and high-speed temperature measurements ranging from 170 to 530 °C using low-noise photodetectors and high-gain transimpedance amplifiers with a single gain mode in the whole temperature range. We also report a shutter based on an optical fiber switch which is optically powered to provide a reference signal in an optical fiber pyrometer measuring from 200 to 550 °C. The tests show the potential of remotely powering via optical means a 300 mW power-hungry optical switch at a distance of 100 m, avoiding any electromagnetic interference close to the measuring point.

  18. Fiber-Optic Pyrometer with Optically Powered Switch for Temperature Measurements

    Directory of Open Access Journals (Sweden)

    Carmen Vázquez

    2018-02-01

    Full Text Available We report the experimental results on a new infrared fiber-optic pyrometer for very localized and high-speed temperature measurements ranging from 170 to 530 °C using low-noise photodetectors and high-gain transimpedance amplifiers with a single gain mode in the whole temperature range. We also report a shutter based on an optical fiber switch which is optically powered to provide a reference signal in an optical fiber pyrometer measuring from 200 to 550 °C. The tests show the potential of remotely powering via optical means a 300 mW power-hungry optical switch at a distance of 100 m, avoiding any electromagnetic interference close to the measuring point.

  19. Dynamic optical arbitrary waveform shaping based on cascaded optical modulators of single FBG.

    Science.gov (United States)

    Chen, Jingyuan; Li, Peili

    2015-08-10

    A dynamic optical arbitrary waveform generation (O-AWG) with amplitude and phase independently controlled in optical modulators of single fiber Bragg Grating (FBG) has been proposed. This novel scheme consists of several optical modulators. In the optical modulator (O-MOD), a uniform FBG is used to filter spectral component of the input signal. The amplitude is controlled by fiber stretcher (FS) in Mach-Zehnder interference (MZI) structure through interference of two MZI arms. The phase is manipulated via the second FS in the optical modulator. This scheme is investigated by simulation. Consequently, optical pulse trains with different waveforms as well as pulse trains with nonuniform pulse intensity, pulse spacing and pulse width within each period are obtained through FSs adjustment to alter the phase shifts of signal in each O-MOD.

  20. Performance evaluation of a burst-mode EDFA in an optical packet and circuit integrated network.

    Science.gov (United States)

    Shiraiwa, Masaki; Awaji, Yoshinari; Furukawa, Hideaki; Shinada, Satoshi; Puttnam, Benjamin J; Wada, Naoya

    2013-12-30

    We experimentally investigate the performance of burst-mode EDFA in an optical packet and circuit integrated system. In such networks, packets and light paths can be dynamically assigned to the same fibers, resulting in gain transients in EDFAs throughout the network that can limit network performance. Here, we compare the performance of a 'burst-mode' EDFA (BM-EDFA), employing transient suppression techniques and optical feedback, with conventional EDFAs, and those using automatic gain control and previous BM-EDFA implementations. We first measure gain transients and other impairments in a simplified set-up before making frame error-rate measurements in a network demonstration.

  1. Development of a 10-decade single-mode reactor flux monitoring system

    International Nuclear Information System (INIS)

    Valentine, K.H.; Shepard, R.L.; Falter, K.G.; Reese, W.B.

    1988-01-01

    Conventional wide-range neutron channels employ three optional modes to monitor the required flux range from source levels to full power (typically 10 or more decades). Difficult calibrations are necessary to provide a continuous output signal when such a system switches from counting mode in the source range to mean-square voltage mode in the midrange to dc current mode in the power range. In an ORNL proof-of-principle test, a method of extended range counting was implemented with a fission counter and conventional wide-band pulse processing electronics to provide a single-mode, monotonically increasing signal that spanned /approximately 10/ decades of neutron flux. Ongoing work includes design, fabrication, and testing of a comlpete neutron flux monitoring system suitable for advanced liquid metal reactor designs. 6 refs., 4 figs

  2. Entanglement indicators for quantum optical fields: three-mode multiport beamsplitters EPR interference experiments

    Science.gov (United States)

    Ryu, Junghee; Marciniak, Marcin; Wieśniak, Marcin; Żukowski, Marek

    2018-04-01

    We generalize a new approach to entanglement conditions for light of undefined photons numbers given in Żukowski et al (2017 Phys. Rev. A 95 042113) for polarization correlations to a broader family of interferometric phenomena. Integrated optics allows one to perform experiments based upon multiport beamsplitters. To observe entanglement effects one can use multi-mode parametric down-conversion emissions. When the structure of the Hamiltonian governing the emissions has (infinitely) many equivalent Schmidt decompositions into modes (beams), one can have perfect EPR-like correlations of numbers of photons emitted into ‘conjugate modes’ which can be monitored at spatially separated detection stations. We provide entanglement conditions for experiments involving three modes on each side, and three-input-three-output multiport beamsplitters, and show their violations by bright squeezed vacuum states. We show that a condition expressed in terms of averages of observed rates is a much better entanglement indicator than a related one for the usual intensity variables. Thus, the rates seem to emerge as a powerful concept in quantum optics, especially for fields of undefined intensities.

  3. Saturation of single toroidal number Alfvén modes

    International Nuclear Information System (INIS)

    Wang, X; Briguglio, S

    2016-01-01

    The results of numerical simulations are presented to illustrate the saturation mechanism of a single toroidal number Alfvén mode, driven unstable, in a tokamak plasma, by the resonant interaction with energetic ions. The effects of equilibrium geometry non-uniformities and finite mode radial width on the wave-particle nonlinear dynamics are discussed. Saturation occurs as the fast-ion density flattening produced by the radial flux associated to the resonant particles captured in the potential well of the Alfvén wave extends over the whole region where mode-particle power exchange can take place. The occurrence of two different saturation regimes is shown. In the first regime, dubbed resonance detuning, that region is limited by the resonance radial width (that is, the width of the region where the fast-ion resonance frequency matches the mode frequency). In the second regime, called radial decoupling, the power exchange region is limited by the mode radial width. In the former regime, the mode saturation amplitude scales quadratically with the growth rate; in the latter, it scales linearly. The occurrence of one or the other regime can be predicted on the basis of linear dynamics: in particular, the radial profile of the fast-ion resonance frequency and the mode structure. Here, we discuss how such properties can depend on the considered toroidal number and compare simulation results with the predictions obtained from a simplified nonlinear pendulum model. (paper)

  4. Experimental design rules for implementing biconically tapered single mode optical fibre displacement sensors

    Science.gov (United States)

    Arregui, Francisco J.; Matias, Ignacio R.; Bariain, Candido; Lopez-Amo, Manuel

    1998-06-01

    Tapered optical fibers are used to design couplers, wavelength division multiplexers, near field scanning optical microscopy, just to mention a few. Moreover, and due to its strong transmission dependence to external medium the tapered fiber may also be used to sense distinct parameters such as temperature, humidity, PH, etc. In this work bending effects in tapers are exploited to achieved displacement sensors and to present design rules for implementing these sensors according to the desired both range and sensitivity.

  5. Wannier–Stark electro-optical effect, quasi-guided and photonic modes in 2D macroporous silicon structures with SiO_2 coatings

    International Nuclear Information System (INIS)

    Karachevtseva, L.; Goltviansky, Yu.; Sapelnikova, O.; Lytvynenko, O.; Stronska, O.; Bo, Wang; Kartel, M.

    2016-01-01

    Highlights: • The IR absorption spectra of oxidized macroporous silicon were studied. • The Wannier–Stark electro-optical effect on Si-SiO_2 boundary was confirmed. • An additional electric field of quasi-guided optical modes was evaluated. • The photonic modes and band gaps were measured as peculiarities in absorption spectra. - Abstract: Opportunities to enhance the properties of structured surfaces were demonstrated on 2D macroporous silicon structures with SiO_2 coatings. We investigated the IR light absorption oscillations in macroporous silicon structures with SiO2 coatings 0–800 nm thick. The Wannier–Stark electro-optical effect due to strong electric field on Si-SiO_2boundary and an additional electric field of quasi-guided optical modes were taken into account. The photonic modes and band gaps were also considered as peculiarities in absorbance spectra of macroporous silicon structures with a thick SiO_2 coating. The photonic modes do not coincide with the quasi-guided modes in the silicon matrix and do not appear in absorption spectra of 2D macroporous silicon structures with surface nanocrystals.

  6. An optical technique to measure the frequency and mode emission of tunable lasers

    International Nuclear Information System (INIS)

    Marchetti, S.; Simili, R.

    1988-01-01

    To use mode tunable lasers it is necessary to measure the laser frequency and the mode emission. This problem is very important when waveguide lasers are used. Normally this information is obtained by a heterodyne technique, but there are some difficulties to perform this method in a large electrical noise environment, when pulsed of radiofrequency lasers are used. This laser information was obtained by using an alternative low-cost optical system. With this apparatus the cavity pulling was measured and an upper limit for the linewidth of a radiofrequency, high pressure, line and mode-tunable, CO 2 laser was roughly estimated

  7. Fast and Simple Method for Evaluation of Polarization Correction to Propagation Constant of Arbitrary Order Guided Modes in Optical Fibers with Arbitrary Refractive Index Profile

    Directory of Open Access Journals (Sweden)

    Anton Bourdine

    2015-01-01

    Full Text Available This work presents fast and simple method for evaluation of polarization correction to scalar propagation constant of arbitrary order guided modes propagating over weakly guiding optical fibers. Proposed solution is based on earlier on developed modified Gaussian approximation extended for analysis of weakly guiding optical fibers with arbitrary refractive index profile in the core region bounded by single solid outer cladding. Some results are presented that illustrate the decreasing of computational error during the estimation of propagation constant when polarization corrections are taken into account. Analytical expressions for the first and second derivatives of polarization correction are derived and presented.

  8. A fiber-optic polarimetric demonstration kit

    International Nuclear Information System (INIS)

    Eftimov, T; Dimitrova, T L; Ivanov, G

    2012-01-01

    A simple and multifunctional fiber-optic polarimetric kit on the basis of highly birefringent single-mode fibers is presented. The fiber-optic polarimetric kit allows us to perform the following laboratory exercises: (i) fiber excitation and the measurement of numerical aperture, (ii) polarization preservation and (iii) obtain polarization-sensitive fiberized interferometers.

  9. Measurement of flow fluctuations in single longitudinal mode pulsed ...

    Indian Academy of Sciences (India)

    2014-02-12

    Feb 12, 2014 ... Page 1 ... Keywords. Dye lasers; single longitudinal mode; flow fluctuations. PACS Nos 42.55.Mv; 42.60.Mi; 42.60.By. 1. Introduction. Narrow-band dye lasers offer ... stabilized tunable laser source plays an important role for many applications as mentioned above [1]. For tight wavelength control, the ...

  10. Probing quantum entanglement in the Schwarzschild space-time beyond the single-mode approximation

    Science.gov (United States)

    He, Juan; Ding, Zhi-Yong; Ye, Liu

    2018-05-01

    In this paper, we deduce the vacuum structure for Dirac fields in the background of Schwarzschild space-time beyond the single-mode approximation and discuss the performance of quantum entanglement between particle and antiparticle modes of a Dirac field with Hawking effect. It is shown that Hawking radiation does not always destroy the physically accessible entanglement, and entanglement amplification may happen in some cases. This striking result is different from that of the single-mode approximation, which holds that the Hawking radiation can only destroy entanglement. Lastly, we analyze the physically accessible entanglement relation outside the event horizon and demonstrate that the monogamy inequality is constantly established regardless of the choice of given parameters.

  11. The second-order interference of two independent single-mode He-Ne lasers

    Science.gov (United States)

    Liu, Jianbin; Le, Mingnan; Bai, Bin; Wang, Wentao; Chen, Hui; Zhou, Yu; Li, Fu-li; Xu, Zhuo

    2015-09-01

    The second-order spatial and temporal interference patterns with two independent single-mode continuous-wave He-Ne lasers are observed when these two lasers are incident to two adjacent input ports of a 1:1 non-polarizing beam splitter, respectively. Two-photon interference based on the superposition principle in Feynman's path integral theory is employed to interpret the experimental results. The conditions to observe the second-order interference pattern with two independent single-mode continuous-wave lasers are discussed. It is concluded that frequency stability is important to observe the second-order interference pattern with two independent light beams.

  12. Modulation stability and dispersive optical soliton solutions of higher order nonlinear Schrödinger equation and its applications in mono-mode optical fibers

    Science.gov (United States)

    Arshad, Muhammad; Seadawy, Aly R.; Lu, Dianchen

    2018-01-01

    In mono-mode optical fibers, the higher order non-linear Schrödinger equation (NLSE) describes the propagation of enormously short light pulses. We constructed optical solitons and, solitary wave solutions of higher order NLSE mono-mode optical fibers via employing modified extended mapping method which has important applications in Mathematics and physics. Furthermore, the formation conditions are also given on parameters in which optical bright and dark solitons can exist for this media. The moment of the obtained solutions are also given graphically, that helps to realize the physical phenomena's of this model. The modulation instability analysis is utilized to discuss the model stability, which verifies that all obtained solutions are exact and stable. Many other such types of models arising in applied sciences can also be solved by this reliable, powerful and effective method. The method can also be functional to other sorts of higher order nonlinear problems in contemporary areas of research.

  13. Interplay of nonclassicality and entanglement of two-mode Gaussian fields generated in optical parametric processes

    Czech Academy of Sciences Publication Activity Database

    Arkhipov, Ie.I.; Peřina, Jan; Peřina, J.; Miranowicz, A.

    2016-01-01

    Roč. 94, č. 1 (2016), 1-15, č. článku 013807. ISSN 2469-9926 R&D Projects: GA ČR GAP205/12/0382 Institutional support: RVO:68378271 Keywords : two-mode Gaussian fields * optical parametric processes Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.925, year: 2016

  14. Design of fiber optic probes for laser light scattering

    Science.gov (United States)

    Dhadwal, Harbans S.; Chu, Benjamin

    1989-01-01

    A quantitative analysis is presented of the role of optical fibers in laser light scattering. Design of a general fiber optic/microlens probe by means of ray tracing is described. Several different geometries employing an optical fiber of the type used in lightwave communications and a graded index microlens are considered. Experimental results using a nonimaging fiber optic detector probe show that due to geometrical limitations of single mode fibers, a probe using a multimode optical fiber has better performance, for both static and dynamic measurements of the scattered light intensity, compared with a probe using a single mode fiber. Fiber optic detector probes are shown to be more efficient at data collection when compared with conventional approaches to measurements of the scattered laser light. Integration of fiber optic detector probes into a fiber optic spectrometer offers considerable miniaturization of conventional light scattering spectrometers, which can be made arbitrarily small. In addition static and dynamic measurements of scattered light can be made within the scattering cell and consequently very close to the scattering center.

  15. Quantum Logic Using Excitonic Quantum Dots in External Optical Microcavities

    National Research Council Canada - National Science Library

    Raymer, Michael

    2003-01-01

    An experimental project was undertaken to develop means to achieve quantum optical strong coupling between a single GaAs quantum dot and the optical mode of a microcavity for the purpose of quantum...

  16. Single-walled carbon nanotubes as near-infrared optical biosensors for life sciences and biomedicine.

    Science.gov (United States)

    Jain, Astha; Homayoun, Aida; Bannister, Christopher W; Yum, Kyungsuk

    2015-03-01

    Single-walled carbon nanotubes that emit photostable near-infrared fluorescence have emerged as near-infrared optical biosensors for life sciences and biomedicine. Since the discovery of their near-infrared fluorescence, researchers have engineered single-walled carbon nanotubes to function as an optical biosensor that selectively modulates its fluorescence upon binding of target molecules. Here we review the recent advances in the single-walled carbon nanotube-based optical sensing technology for life sciences and biomedicine. We discuss the structure and optical properties of single-walled carbon nanotubes, the mechanisms for molecular recognition and signal transduction in single-walled carbon nanotube complexes, and the recent development of various single-walled carbon nanotube-based optical biosensors. We also discuss the opportunities and challenges to translate this emerging technology into biomedical research and clinical use, including the biological safety of single-walled carbon nanotubes. The advances in single-walled carbon nanotube-based near-infrared optical sensing technology open up a new avenue for in vitro and in vivo biosensing with high sensitivity and high spatial resolution, beneficial for many areas of life sciences and biomedicine. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Vibration modes of a single plate with general boundary conditions

    Directory of Open Access Journals (Sweden)

    Phamová L.

    2016-06-01

    Full Text Available This paper deals with free flexural vibration modes and natural frequencies of a thin plate with general boundary conditions — a simply supported plate connected to its surroundings with torsional springs. Vibration modes were derived on the basis of the Rajalingham, Bhat and Xistris approach. This approach was originally used for a clamped thin plate, so its adaptation was needed. The plate vibration function was usually expressed as a single partial differential equation. This partial differential equation was transformed into two ordinary differential equations that can be solved in the simpler way. Theoretical background of the computations is briefly described. Vibration modes of the supported plate with torsional springs are presented graphically and numerically for three different values of stiffness of torsional springs.

  18. Detecting cm-scale hot spot over 24-km-long single-mode fiber by using differential pulse pair BOTDA based on double-peak spectrum.

    Science.gov (United States)

    Diakaridia, Sanogo; Pan, Yue; Xu, Pengbai; Zhou, Dengwang; Wang, Benzhang; Teng, Lei; Lu, Zhiwei; Ba, Dexin; Dong, Yongkang

    2017-07-24

    In distributed Brillouin optical fiber sensor when the length of the perturbation to be detected is much smaller than the spatial resolution that is defined by the pulse width, the measured Brillouin gain spectrum (BGS) experiences two or multiple peaks. In this work, we propose and demonstrate a technique using differential pulse pair Brillouin optical time-domain analysis (DPP-BOTDA) based on double-peak BGS to enhance small-scale events detection capability, where two types of single mode fiber (main fiber and secondary fiber) with 116 MHz Brillouin frequency shift (BFS) difference have been used. We have realized detection of a 5-cm hot spot at the far end of 24-km single mode fiber by employing a 50-cm spatial resolution DPP-BOTDA with only 1GS/s sampling rate (corresponding to 10 cm/point). The BFS at the far end of 24-km sensing fiber has been measured with 0.54 MHz standard deviation which corresponds to a 0.5°C temperature accuracy. This technique is simple and cost effective because it is implemented using the similar experimental setup of the standard BOTDA, however, it should be noted that the consecutive small-scale events have to be separated by a minimum length corresponding to the spatial resolution defined by the pulse width difference.

  19. Semiconductor quantum optics with tailored photonic nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Laucht, Arne

    2011-06-15

    This thesis describes detailed investigations of the effects of photonic nanostructures on the light emission properties of self-assembled InGaAs quantum dots. Nanoscale optical cavities and waveguides are employed to enhance the interaction between light and matter, i.e. photons and excitons, up to the point where optical non-linearities appear at the quantum (single photon) level. Such non-linearities are an essential component for the realization of hardware for photon based quantum computing since they can be used for the creation and detection of non-classical states of light and may open the way to new genres of quantum optoelectronic devices such as optical modulators and optical transistors. For single semiconductor quantum dots in photonic crystal nanocavities we investigate the coupling between excitonic transitions and the highly localized mode of the optical cavity. We explore the non-resonant coupling mechanisms which allow excitons to couple to the cavity mode, even when they are not spectrally in resonance. This effect is not observed for atomic cavity quantum electrodynamics experiments and its origin is traced to phonon-assisted scattering for small detunings ({delta}E<{proportional_to}5 meV) and a multi-exciton-based, Auger-like process for larger detunings ({delta}E >{proportional_to}5 meV). For quantum dots in high-Q cavities we observe the coherent coupling between exciton and cavity mode in the strong coupling regime of light-matter interaction, probe the influence of pure dephasing on the coherent interaction at high excitation levels and high lattice temperatures, and examine the coupling of two spatially separated quantum dots via the exchange of real and virtual photons mediated by the cavity mode. Furthermore, we study the spontaneous emission properties of quantum dots in photonic crystal waveguide structures, estimate the fraction of all photons emitted into the propagating waveguide mode, and demonstrate the on-chip generation of

  20. Temporal mode selectivity by frequency conversion in second-order nonlinear optical waveguides

    DEFF Research Database (Denmark)

    Reddy, D. V.; Raymer, M. G.; McKinstrie, C. J.

    2013-01-01

    in a transparent optical network using temporally orthogonal waveforms to encode different channels. We model the process using coupled-mode equations appropriate for wave mixing in a uniform second-order nonlinear optical medium pumped by a strong laser pulse. We find Green functions describing the process...... in this optimal regime. We also find an operating regime in which high-efficiency frequency conversion without temporal-shape selectivity can be achieved while preserving the shapes of a wide class of input pulses. The results are applicable to both classical and quantum frequency conversion....

  1. Hyperparametric effects in a whispering-gallery mode rutile dielectric resonator at liquid helium temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Nand, Nitin R.; Goryachev, Maxim; Floch, Jean-Michel le; Creedon, Daniel L.; Tobar, Michael E. [ARC Centre for Engineered Quantum Systems, School of Physics, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia (Australia)

    2014-10-07

    We report the first observation of low power drive level sensitivity, hyperparametric amplification, and single-mode hyperparametric oscillations in a dielectric rutile whispering-gallery mode resonator at 4.2 K. The latter gives rise to a comb of sidebands at 19.756 GHz. Whereas, most frequency combs in the literature have been observed in optical systems using an ensemble of equally spaced modes in microresonators or fibers, the present work represents generation of a frequency comb using only a single-mode. The experimental observations are explained by an additional 1/2 degree-of-freedom originating from an intrinsic material nonlinearity at optical frequencies, which affects the microwave properties due to the extremely low loss of rutile. Using a model based on lumped circuits, we demonstrate that the resonance between the photonic and material 1/2 degree-of-freedom, is responsible for the hyperparametric energy transfer in the system.

  2. Semiclassical Wigner distribution for a two-mode entangled state generated by an optical parametric oscillator

    International Nuclear Information System (INIS)

    Dechoum, K.; Hahn, M. D.; Khoury, A. Z.; Vallejos, R. O.

    2010-01-01

    We derive the steady-state solution of the Fokker-Planck equation that describes the dynamics of the nondegenerate optical parametric oscillator in the truncated Wigner representation of the density operator. We assume that the pump mode is strongly damped, which permits its adiabatic elimination. When the elimination is correctly executed, the resulting stochastic equations contain multiplicative noise terms and do not admit a potential solution. However, we develop a heuristic scheme leading to a satisfactory steady-state solution. This provides a clear view of the intracavity two-mode entangled state valid in all operating regimes of the optical parametric oscillator. A non-Gaussian distribution is obtained for the above threshold solution.

  3. Coupled opto electronic oscillator with a passively mode locked extended cavity diode laser

    International Nuclear Information System (INIS)

    Lee, Jeongmin; Jang, Gwang Hoon; Yoon, Duseong; Song, Minsoo; Yoon, Tai Hyun

    2008-01-01

    An opto electronic oscillator(OEO)has very unique properties compared to the conventional quartz based microwave oscillators in that its oscillation frequency is determined by the beat note frequency of a phase coherent optical frequency comb generated as a side bands to an optical single mode carrier by using an electro optic modulator (EOM)or a direct current modulation of a semiconductor laser. Recently, a different type of OEO called a COEO has been demonstrated, where the optical carrier in the OEO system has been replaced by a mode locked laser so that an EOM or a direct current modulation are no longer necessary, but has potentially a much lower phase noise thanks to the high Q value of the optical frequency comb due to the mode locking mechanism. In this paper, we propose and demonstrate a COEO based on a passively mode locked ECDL at 852nm in which the fourth harmonic of the repetition frequency of the ECDL matched exactly the ground state hyperfine splitting frequency of the Cs atoms

  4. Coupled opto electronic oscillator with a passively mode locked extended cavity diode laser

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeongmin; Jang, Gwang Hoon; Yoon, Duseong; Song, Minsoo; Yoon, Tai Hyun [Korea Univ., Seoul (Korea, Republic of)

    2008-11-15

    An opto electronic oscillator(OEO)has very unique properties compared to the conventional quartz based microwave oscillators in that its oscillation frequency is determined by the beat note frequency of a phase coherent optical frequency comb generated as a side bands to an optical single mode carrier by using an electro optic modulator (EOM)or a direct current modulation of a semiconductor laser. Recently, a different type of OEO called a COEO has been demonstrated, where the optical carrier in the OEO system has been replaced by a mode locked laser so that an EOM or a direct current modulation are no longer necessary, but has potentially a much lower phase noise thanks to the high Q value of the optical frequency comb due to the mode locking mechanism. In this paper, we propose and demonstrate a COEO based on a passively mode locked ECDL at 852nm in which the fourth harmonic of the repetition frequency of the ECDL matched exactly the ground state hyperfine splitting frequency of the Cs atoms.

  5. Optical properties of a single free standing nanodiamond

    Energy Technology Data Exchange (ETDEWEB)

    Sun, K W; Wang, C Y [Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu, 300, Taiwan (China)

    2007-12-15

    We report the techniques for measuring optical properties of a single nanometer-sized diamond. The electron beam (e-beam) lithography defined coordination markers on a silicon wafer provide us a convenient tool for allocating a single nanodiamond immobilized on the surface. By combining a confocal microscope with the e-beam lithography patterned smart substrate, we are able to measure the Raman and photoluminescence spectra from a single nanodiamond with a size less than 100 nm.

  6. Optical properties of a single free standing nanodiamond

    International Nuclear Information System (INIS)

    Sun, K W; Wang, C Y

    2007-01-01

    We report the techniques for measuring optical properties of a single nanometer-sized diamond. The electron beam (e-beam) lithography defined coordination markers on a silicon wafer provide us a convenient tool for allocating a single nanodiamond immobilized on the surface. By combining a confocal microscope with the e-beam lithography patterned smart substrate, we are able to measure the Raman and photoluminescence spectra from a single nanodiamond with a size less than 100 nm

  7. Coupling single NV-centres to high-Q whispering gallery modes of a preselected frequency-matched microresonator

    International Nuclear Information System (INIS)

    Schietinger, Stefan; Benson, Oliver

    2009-01-01

    In this paper, we report the controlled coupling of fluorescence from a single NV-centre in a single nanodiamond to the high-Q modes of a preselected microsphere. Microspheres from an ensemble with a finite size distribution can be characterized precisely via white light Mie-scattering. The mode spectrum of individual spheres can be determined with high precision. A sphere with an appropriate spectrum can be selected, and a nanodiamond containing a single NV-centre can be coupled to it. The spectral position of the calculated lowest order whispering gallery modes are found to be in very good agreement with the experimentally observed resonances of the coupled fluorescence from the single NV-re.

  8. High performance mode locking characteristics of single section quantum dash lasers.

    Science.gov (United States)

    Rosales, Ricardo; Murdoch, S G; Watts, R T; Merghem, K; Martinez, Anthony; Lelarge, Francois; Accard, Alain; Barry, L P; Ramdane, Abderrahim

    2012-04-09

    Mode locking features of single section quantum dash based lasers are investigated. Particular interest is given to the static spectral phase profile determining the shape of the mode locked pulses. The phase profile dependence on cavity length and injection current is experimentally evaluated, demonstrating the possibility of efficiently using the wide spectral bandwidth exhibited by these quantum dash structures for the generation of high peak power sub-picosecond pulses with low radio frequency linewidths.

  9. Optical sensor in planar configuration based on multimode interference

    Science.gov (United States)

    Blahut, Marek

    2017-08-01

    In the paper a numerical analysis of optical sensors based on multimode interference in planar one-dimensional step-index configuration is presented. The structure consists in single-mode input and output waveguides and multimode waveguide which guide only few modes. Material parameters discussed refer to a SU8 polymer waveguide on SiO2 substrate. The optical system described will be designed to the analysis of biological substances.

  10. Tailoring surface plasmon resonance and dipole cavity plasmon modes of scattering cross section spectra on the single solid-gold/gold-shell nanorod

    International Nuclear Information System (INIS)

    Chou Chau, Yuan-Fong; Lim, Chee Ming; Kumara, N. T. R. N.; Yoong, Voo Nyuk; Lee, Chuanyo; Huang, Hung Ji; Lin, Chun-Ting; Chiang, Hai-Pang

    2016-01-01

    Tunable surface plasmon resonance (SPR) and dipole cavity plasmon modes of the scattering cross section (SCS) spectra on the single solid-gold/gold-shell nanorod have been numerically investigated by using the finite element method. Various effects, such as the influence of SCS spectra under x- and y-polarizations on the surface of the single solid-gold/gold-shell nanorod, are discussed in detail. With the single gold-shell nanorod, one can independently tune the relative SCS spectrum width by controlling the rod length and rod diameter, and the surface scattering by varying the shell thickness and polarization direction, as well as the dipole peak energy. These behaviors are consistent with the properties of localized SPRs and offer a way to optically control and produce selected emission wavelengths from the single solid-gold/gold-shell nanorod. The electric field and magnetic distributions provide us a qualitative idea of the geometrical properties of the single solid-gold/gold-shell nanorod on plasmon resonance.

  11. High-power actively Q-switched single-mode 1342 nm Nd:YVO4 ring laser, injection-locked by a cw single-frequency microchip laser.

    Science.gov (United States)

    Koch, Peter; Bartschke, Juergen; L'huillier, Johannes A

    2015-11-30

    In this paper we report on the realization of a single-mode Q-switched Nd:YVO4 ring laser at 1342 nm. Unidirectional and single-mode operation of the ring laser is achieved by injection-locking with a continuous wave Nd:YVO4 microchip laser, emitting a single-frequency power of up to 40 mW. The ring laser provides a single-mode power of 13.9 W at 10 kHz pulse repetition frequency with a pulse duration of 18.2 ns and an excellent beam quality (M2 laser, a power of 8.7 W at 671 nm with a pulse duration of 14.8 ns and a beam propagation factor of M2 < 1.1 is obtained. The 671 nm radiation features a long-term spectral width of 75 MHz.

  12. Optical properties of Sulfur doped InP single crystals

    Science.gov (United States)

    El-Nahass, M. M.; Youssef, S. B.; Ali, H. A. M.

    2014-05-01

    Optical properties of InP:S single crystals were investigated using spectrophotometric measurements in the spectral range of 200-2500 nm. The absorption coefficient and refractive index were calculated. It was found that InP:S crystals exhibit allowed and forbidden direct transitions with energy gaps of 1.578 and 1.528 eV, respectively. Analysis of the refractive index in the normal dispersion region was discussed in terms of the single oscillator model. Some optical dispersion parameters namely: the dispersion energy (Ed), single oscillator energy (Eo), high frequency dielectric constant (ɛ∞), and lattice dielectric constant (ɛL) were determined. The volume and the surface energy loss functions (VELF & SELF) were estimated. Also, the real and imaginary parts of the complex conductivity were calculated.

  13. Single mode optical fiber vibration sensor: design and development

    Science.gov (United States)

    Alanis-Carranza, L. E.; Alvarez-Chavez, J. A.; Perez-Sanchez, G. G.; Sierra-Calderon, A.; Rodriguez-Novelo, J. C.

    2016-09-01

    This work deals with the design and development of an SMF28-based vibration detector including the fiber segment, the data acquisition via an NI-USB-6212 card, the data processing code in Visual Basic and the signal spectrum obtained via Fourier analysis. The set-up consists of a regulated voltage source at 2.6V, 300mA, which serves as the power source for a 980nm semiconductor laser operating at 150mW which is fiber coupled into a 20m-piece of SMF-28 fiber. Perpendicular to such fiber the perturbations ranged from 1 to 100 kHz, coming from a DC motor at 12 Volts. At the detection stage, a simple analog filter and a commercial photo diode were employed for data acquisition, before a transimpedance amplification stage reconstructed the signal into the National Instruments data acquisition card. At the output, the signals Fourier transformation allows the signal to be displayed in a personal computer. The presentation will include a full electrical and optical characterization of the device and preliminary sensing results, which could be suitable for structural health monitoring applications.

  14. Single particle dynamics

    International Nuclear Information System (INIS)

    Siemens, P.J.; Jensen, A.S.

    1985-01-01

    It is shown that the opening of the 3-quasiparticle continuum at 3Δ sets the energy scale for the enhancement of the effective mass near the Fermi surface of nuclei. The authors argue that the spreading width of single-particle states due to coupling with low-lying collective modes is qualitatively different from the two-body collision mechanism, and contributes little to the single-particle lifetime in the sense of the optical model. (orig.)

  15. Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber.

    Science.gov (United States)

    Tian, Zhaobing; Yam, Scott S-H; Loock, Hans-Peter

    2008-05-15

    A simple refractive index sensor based on a Michelson interferometer in a single-mode fiber is constructed and demonstrated. The sensor consists of a single symmetrically abrupt taper region in a short piece of single-mode fiber that is terminated by approximately 500 nm thick gold coating. The sensitivity of the new sensor is similar to that of a long-period-grating-type sensor, and its ease of fabrication offers a low-cost alternative to current sensing applications.

  16. Nonlinear localized modes in dipolar Bose-Einstein condensates in optical lattices

    International Nuclear Information System (INIS)

    Rojas-Rojas, S.; Vicencio, R. A.; Molina, M. I.; Abdullaev, F. Kh.

    2011-01-01

    Modulational instability and discrete matter wave solitons in dipolar BECs, loaded into a deep optical lattice, are investigated analytically and numerically. The process of modulational instability of nonlinear plane matter waves in a dipolar nonlinear lattice is studied and the regions of instability are established. The existence and stability of bulk discrete solitons are analyzed analytically and confirmed by numerical simulations. In marked contrast with the usual discrete nonlinear Schroedinger behavior (no dipolar interactions), we found a region where the two fundamental modes are simultaneously unstable, allowing enhanced mobility across the lattice for large norm values. To study the existence and properties of surface discrete solitons, an analysis of the dimer configuration is performed. The properties of symmetric and antisymmetric modes including stability diagrams and bifurcations are investigated in closed form. For the case of a bulk medium, properties of fundamental on-site and intersite localized modes are analyzed. On-site and intersite surface localized modes are studied, and we find that they do not exist when nonlocal interactions predominate with respect to local ones.

  17. Polymer waveguides for electro-optical integration in data centers and high-performance computers.

    Science.gov (United States)

    Dangel, Roger; Hofrichter, Jens; Horst, Folkert; Jubin, Daniel; La Porta, Antonio; Meier, Norbert; Soganci, Ibrahim Murat; Weiss, Jonas; Offrein, Bert Jan

    2015-02-23

    To satisfy the intra- and inter-system bandwidth requirements of future data centers and high-performance computers, low-cost low-power high-throughput optical interconnects will become a key enabling technology. To tightly integrate optics with the computing hardware, particularly in the context of CMOS-compatible silicon photonics, optical printed circuit boards using polymer waveguides are considered as a formidable platform. IBM Research has already demonstrated the essential silicon photonics and interconnection building blocks. A remaining challenge is electro-optical packaging, i.e., the connection of the silicon photonics chips with the system. In this paper, we present a new single-mode polymer waveguide technology and a scalable method for building the optical interface between silicon photonics chips and single-mode polymer waveguides.

  18. Spatiotemporal light-beam compression from nonlinear mode coupling

    Science.gov (United States)

    Krupa, Katarzyna; Tonello, Alessandro; Couderc, Vincent; Barthélémy, Alain; Millot, Guy; Modotto, Daniele; Wabnitz, Stefan

    2018-04-01

    We experimentally demonstrate simultaneous spatial and temporal compression in the propagation of light pulses in multimode nonlinear optical fibers. We reveal that the spatial beam self-cleaning recently discovered in graded-index multimode fibers is accompanied by significant temporal reshaping and up to fourfold shortening of the injected subnanosecond laser pulses. Since the nonlinear coupling among the modes strongly depends on the instantaneous power, we explore the entire range of the nonlinear dynamics with a single optical pulse, where the optical power is continuously varied across the pulse profile.

  19. Noncritical quadrature squeezing in two-transverse-mode optical parametric oscillators

    International Nuclear Information System (INIS)

    Navarrete-Benlloch, Carlos; Roldan, Eugenio; Valcarcel, German J. de; Romanelli, Alejandro

    2010-01-01

    In this article we explore the quantum properties of a degenerate optical parametric oscillator when it is tuned to the first family of transverse modes at the down-converted frequency. Recently we found [C. Navarrete-Benlloch et al., Phys. Rev. Lett. 100, 203601 (2008)] that above threshold a TEM 10 mode following a random rotation in the transverse plane emerges in this system (we denote it as the bright mode), breaking thus its rotational invariance. Then, owing to the mode orientation being undetermined, we showed that the phase quadrature of the transverse mode orthogonal to this one (denoted as the dark mode) is perfectly squeezed at any pump level and without an increase in the fluctuations on its amplitude quadrature (which seems to contradict the uncertainty principle). In this article we go further in the study of this system and analyze some important features not considered previously. First we show that the apparent violation of the uncertainty principle is just that -'apparent' - as the conjugate pair of the squeezed quadrature is not another quadrature but the orientation of the bright mode (which is completely undetermined in the long term). We also study a homodyne scheme in which the local oscillator is not perfectly matched to the dark mode, as this could be impossible in real experiments due to the random rotation of the mode, showing that even in this case large levels of noise reduction can be obtained (also including the experimentally unavoidable phase fluctuations). Finally, we show that neither the adiabatic elimination of the pump variables nor the linearization of the quantum equations are responsible for the remarkable properties of the dark mode (which we prove analytically and through numerical simulations, respectively), which were simplifying assumptions used in Navarrete-Benlloch et al. [Phys. Rev. Lett. 100, 203601 (2008)]. These studies show that the production of noncritically squeezed light through spontaneous rotational

  20. Optical microcavities based on surface modes in two-dimensional photonic crystals and silicon-on-insulator photonic crystals

    DEFF Research Database (Denmark)

    Xiao, Sanshui; Qiu, M.

    2007-01-01

    Surface-mode optical microcavities based on two-dimensional photonic crystals and silicon-on-insulator photonic crystals are studied. We demonstrate that a high-quality-factor microcavity can be easily realized in these structures. With an increasing of the cavity length, the quality factor is gr...... is gradually enhanced and the resonant frequency converges to that of the corresponding surface mode in the photonic crystals. These structures have potential applications such as sensing.......Surface-mode optical microcavities based on two-dimensional photonic crystals and silicon-on-insulator photonic crystals are studied. We demonstrate that a high-quality-factor microcavity can be easily realized in these structures. With an increasing of the cavity length, the quality factor...

  1. Acoustical and optical radiation pressure and the development of single beam acoustical tweezers

    International Nuclear Information System (INIS)

    Thomas, Jean-Louis; Marchiano, Régis; Baresch, Diego

    2017-01-01

    Studies on radiation pressure in acoustics and optics have enriched one another and have a long common history. Acoustic radiation pressure is used for metrology, levitation, particle trapping and actuation. However, the dexterity and selectivity of single-beam optical tweezers are still to be matched with acoustical devices. Optical tweezers can trap, move and position micron size particles, biological samples or even atoms with subnanometer accuracy in three dimensions. One limitation of optical tweezers is the weak force that can be applied without thermal damage due to optical absorption. Acoustical tweezers overcome this limitation since the radiation pressure scales as the field intensity divided by the speed of propagation of the wave. However, the feasibility of single beam acoustical tweezers was demonstrated only recently. In this paper, we propose a historical review of the strong similarities but also the specificities of acoustical and optical radiation pressures, from the expression of the force to the development of single-beam acoustical tweezers. - Highlights: • Studies on radiation pressure in acoustics and optics have enriched one another and have a long common history. • Acoustic radiation pressure is used for metrology, levitation, particle trapping and actuation. • However, the dexterity and selectivity of single-beam optical tweezers are still to be matched with acoustical devices. • Optical tweezers can trap, move and positioned micron size particles with subnanometer accuracy in three dimensions. • One limitation of optical tweezers is the weak force that can be applied without thermal damage due to optical absorption. • Acoustical tweezers overcome this limitation since the force scales as the field intensity divided by its propagation speed. • However, the feasibility of single beam acoustical tweezers was demonstrated only recently. • We propose a review of the strong similarities but also the specificities of acoustical

  2. Research on FBG-based longitudinal-acousto-optic modulator with Fourier mode coupling method.

    Science.gov (United States)

    Li, Zhuoxuan; Pei, Li; Liu, Chao; Ning, Tigang; Yu, Shaowei

    2012-10-20

    Fourier mode coupling model was first applied to achieve the spectra property of a fiber Bragg grating (FBG)-based longitudinal-acousto-optic modulator. Compared with traditional analysis algorithms, such as the transfer matrix method, the Fourier mode coupling model could improve the computing efficiency up to 100 times with a guarantee of accuracy. In this paper, based on the theoretical analysis of this model, the spectra characteristics of the modulator in different frequencies and acoustically induced strains were numerically simulated. In the experiment, a uniform FBG was modulated by acoustic wave (AW) at 12 different frequencies. In particular, the modulator responses at 563 and 885.5 KHz with three different lead zirconate titanate (PZT) loads applied were plotted for illustration, and the linear fitting of experimental data demonstrated a good match with the simulation result. The acoustic excitation of the longitudinal wave is obtained using a conic silica horn attached to the surface of a shear-mode PZT plate paralleled to the fiber axis. This way of generating longitudinal AW with a transversal PZT may shed light on the optimal structural design for the FBG-based longitudinal-acousto-optic modulator.

  3. Efficient single-mode operation of a cladding-pumped ytterbium-doped helical-core fiber laser.

    Science.gov (United States)

    Wang, P; Cooper, L J; Sahu, J K; Clarkson, W A

    2006-01-15

    A novel approach to achieving robust single-spatial-mode operation of cladding-pumped fiber lasers with multimode cores is reported. The approach is based on the use of a fiber geometry in which the core has a helical trajectory within the inner cladding to suppress laser oscillation on higher-order modes. In a preliminary proof-of-principle study, efficient single-mode operation of a cladding-pumped ytterbium-doped helical-core fiber laser with a 30 microm diameter core and a numerical aperture of 0.087 has been demonstrated. The laser yielded 60.4 W of output at 1043 nm in a beam with M2 clad fiber lasers.

  4. Two-dimensional photonic crystal bandedge laser with hybrid perovskite thin film for optical gain

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Hyungrae [Department of Biophysics and Chemical Biology, Seoul National University, Seoul 08826 (Korea, Republic of); Inter-University Semiconductor Research Center, Seoul National University, Seoul 08826 (Korea, Republic of); Bae, Seunghwan [Department of Materials Science and Engineering, Seoul National University, Seoul 08826 (Korea, Republic of); Lee, Myungjae [Inter-University Semiconductor Research Center, Seoul National University, Seoul 08826 (Korea, Republic of); Department of Physics and Astronomy, Seoul National University, Seoul 08826 (Korea, Republic of); Jeon, Heonsu, E-mail: hsjeon@snu.ac.kr [Department of Biophysics and Chemical Biology, Seoul National University, Seoul 08826 (Korea, Republic of); Inter-University Semiconductor Research Center, Seoul National University, Seoul 08826 (Korea, Republic of); Department of Physics and Astronomy, Seoul National University, Seoul 08826 (Korea, Republic of)

    2016-05-02

    We report optically pumped room temperature single mode laser that contains a thin film of hybrid perovskite, an emerging photonic material, as gain medium. Two-dimensional square lattice photonic crystal (PhC) backbone structure enables single mode laser operation via a photonic bandedge mode, while a thin film of methyl-ammonium lead iodide (CH{sub 3}NH{sub 3}PbI{sub 3}) spin-coated atop provides optical gain for lasing. Two kinds of bandedge modes, Γ and M, are employed, and both devices laser in single mode at similar laser thresholds of ∼200 μJ/cm{sup 2} in pulse energy density. Polarization dependence measurements reveal a clear difference between the two kinds of bandedge lasers: isotropic for the Γ-point laser and highly anisotropic for the M-point laser. These observations are consistent with expected modal properties, confirming that the lasing actions indeed originate from the corresponding PhC bandedge modes.

  5. Benchmarking of Grid Fault Modes in Single-Phase Grid-Connected Photovoltaic Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Blaabjerg, Frede; Zou, Zhixiang

    2013-01-01

    Pushed by the booming installations of singlephase photovoltaic (PV) systems, the grid demands regarding the integration of PV systems are expected to be modified. Hence, the future PV systems should become more active with functionalities of Low Voltage Ride-Through (LVRT) and grid support...... phase systems under grid faults. The intent of this paper is to present a benchmarking of grid fault modes that might come in future single-phase PV systems. In order to map future challenges, the relevant synchronization and control strategies are discussed. Some faulty modes are studied experimentally...... and provided at the end of this paper. It is concluded that there are extensive control possibilities in single-phase PV systems under grid faults. The Second Order General Integral based PLL technique might be the most promising candidate for future single-phase PV systems because of its fast adaptive...

  6. Design and characterization of 16-mode PANDA polarization-maintaining few-mode ring-core fiber for spatial division multiplexing

    Science.gov (United States)

    Cao, Yuan; Zhao, Yongli; Yu, Xiaosong; Han, Jiawei; Zhang, Jie

    2017-11-01

    A PANDA polarization-maintaining few-mode ring-core fiber (PM-FM-RCF) structure with two air holes around the ring core is proposed. The relative mode multiplicity factor (RMMF) is defined to evaluate the spatial efficiency of the designed PM-FM-RCF. The performance analysis and comparison of the proposed PANDA PM-FM-RCFs considering three different types of step-index profiles are detailed. Through modal characteristic analysis and numerical simulation, the PM-FM-RCF with a lower refractive index difference (Δnoi=1.5%) between the ring core and the inner central circle can support up to 16 polarization modes with large RMMF at C-band, which shows the optimum modal properties compared with the PM-FM-RCF with higher Δnoi. All the supported polarization modes are effectively separated from their adjacent polarization modes with effective refractive index differences (Δn) larger than 10-4, which also show relatively small chromatic dispersion (-20 to 25 ps/nm/km), low attenuation (<1.4 dB/km), and small bending radius (˜8 mm) over the C-band. The designed PM-FM-RCF can be compatible with standard single-mode fibers and applied in multiple-input multiple-output-free spatial division multiplexing optical networks for short-reach optical interconnection.

  7. Luminescence and scintillation properties of YAG:Ce single crystal and optical ceramics

    CERN Document Server

    Mihóková, E; Mareš, J A; Beitlerová, A; Vedda, A; Nejezchleb, K; Blažek, K; D’Ambrosio, C

    2007-01-01

    We use various techniques to study optical and scintillation properties of Ce-doped yttrium aluminum garnet, Y3Al5O12 (YAG:Ce), in the form of a high-quality industrial single crystal. This was compared to optical ceramics prepared from YAG:Ce nanopowders. We present experimental data in the areas of optical absorption, radioluminescence, scintillation decay, photoelectron yield, thermally stimulated luminescence and radiation-induced absorption. The results point to an interesting feature—the absence of antisite (YAl, i.e. Y at the Al site) defects in optical ceramics. The scintillation decay of the ceramics is faster than that of the single crystal, but its photoelectron yield (measured with 1 μs integration time) is about 30–40% lower. Apart from the photoelectron yield value the YAG:Ce optical ceramic is fully comparable to a high quality industrial YAG:Ce single crystal and can become a competitive scintillator material.

  8. Single-photon semiconductor photodiodes for distributed optical fiber sensors: state of the art and perspectives

    Science.gov (United States)

    Ripamonti, Giancarlo; Lacaita, Andrea L.

    1993-03-01

    The extreme sensitivity and time resolution of Geiger-mode avalanche photodiodes (GM- APDs) have already been exploited for optical time domain reflectometry (OTDR). Better than 1 cm spatial resolution in Rayleigh scattering detection was demonstrated. Distributed and quasi-distributed optical fiber sensors can take advantage of the capabilities of GM-APDs. Extensive studies have recently disclosed the main characteristics and limitations of silicon devices, both commercially available and developmental. In this paper we report an analysis of the performance of these detectors. The main characteristics of GM-APDs of interest for distributed optical fiber sensors are briefly reviewed. Command electronics (active quenching) is then introduced. The detector timing performance sets the maximum spatial resolution in experiments employing OTDR techniques. We highlight that the achievable time resolution depends on the physics of the avalanche spreading over the device area. On the basis of these results, trade-off between the important parameters (quantum efficiency, time resolution, background noise, and afterpulsing effects) is considered. Finally, we show first results on Germanium devices, capable of single photon sensitivity at 1.3 and 1.5 micrometers with sub- nanosecond time resolution.

  9. Silicon Integrated Dual-Mode Interferometer with Differential Outputs

    Directory of Open Access Journals (Sweden)

    Niklas Hoppe

    2017-09-01

    Full Text Available The dual-mode interferometer (DMI is an attractive alternative to Mach-Zehnder interferometers for sensor purposes, achieving sensitivities to refractive index changes close to state-of-the-art. Modern designs on silicon-on-insulator (SOI platforms offer thermally stable and compact devices with insertion losses of less than 1 dB and high extinction ratios. Compact arrays of multiple DMIs in parallel are easy to fabricate due to the simple structure of the DMI. In this work, the principle of operation of an integrated DMI with differential outputs is presented which allows the unambiguous phase shift detection with a single wavelength measurement, rather than using a wavelength sweep and evaluating the optical output power spectrum. Fluctuating optical input power or varying attenuation due to different analyte concentrations can be compensated by observing the sum of the optical powers at the differential outputs. DMIs with two differential single-mode outputs are fabricated in a 250 nm SOI platform, and corresponding measurements are shown to explain the principle of operation in detail. A comparison of DMIs with the conventional Mach-Zehnder interferometer using the same technology concludes this work.

  10. Practical Considerations Concerning the Interleaved Transition Mode Single-stage Ballast

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Kjær, Søren Bækhøj; Munk-Nielsen, Stig

    2002-01-01

    The aim of this paper is to present a novel single-stage interleaved ballast focusing on practical design aspects like: key current expression, overall losses, harmonic analysis of the differential-mode EMI current and preheating ballast function. A new preheating method is also presented. A PSPICE...

  11. Anisotropic anti-resonant elements gives broadband single-mode low-loss hollow-core fibers

    DEFF Research Database (Denmark)

    Habib, Selim; Bang, Ole; Bache, Morten

    2016-01-01

    Hollow-core fibers with node-free anisotropic anti-resonant elements give broadband low-loss fibers that are also single-moded. At 1.06 μm silica-based fiber designs show higher-order-mode extinction-ratio >1000 and losses below 10 dB/km over a broad wavelength range....

  12. A tuneable, power efficient and narrow single longitudinal mode fibre ring laser using an inline dual-taper fibre Mach–Zehnder filter

    International Nuclear Information System (INIS)

    Ahmad, H; Dernaika, M; Alimadad, M; Ibrahim, M F; Lim, K S; Harun, S W; Kharraz, O M

    2014-01-01

    A tuneable single longitudinal mode fibre ring laser with dual-taper fibre filter is proposed and experimentally demonstrated in this paper. The single longitudinal mode operation, and power limitations for a Mach–Zehnder interferometer filter generated from a single mode fibre, are verified for the first time. Incorporating an in-line taper fibre Mach–Zehnder interferometer filter inside the laser ring cavity causes a spatial mode beating interference, resulting in a passive narrow band filter with the ability to generate stable single longitudinal modes. The single longitudinal mode achieves a side mode suppression ratio of more than 60 dB using low pump power. The tuneability of the fibre laser ranges from 1525 to 1562 nm using a passive band pass filter. A study of the stability and limitation of the single longitudinal mode in the Mach–Zehnder tapered fibre is also presented. (paper)

  13. Observation of magnetic domains using a reflection-mode scanning near-field optical microscope

    OpenAIRE

    SHVETS, IGOR

    1997-01-01

    PUBLISHED It is demonstrated that it is possible to image magnetic domains with a resolution of better than 60 nm with the Kerr effect in a reflection-mode scanning near-field optical microscope. Images taken of tracks of thermomagnetically prewritten bits in a Co/Pt multilayer structure magnetized out-of plane showed optical features in a track pattern whose appearance was determined by the position of an analyzer in front of the photomultiplier tube. These features were not apparent in t...

  14. Observation of magnetic domains using a reflection mode scanning near-field optical microscope

    OpenAIRE

    Durkam, C.; Shvets, I.V.; Lodder, J.C.

    1997-01-01

    It is demonstrated that it is possible to image magnetic domains with a resolution of better than 60 nm with the Kerr effect in a reflection-mode scanning near-field optical microscope. Images taken of tracks of thermomagnetically prewritten bits in a Co/Pt multilayer structure magnetized out-of plane showed optical features in a track pattern whose appearance was determined by the position of an analyzer in front of the photomultiplier tube. These features were not apparent in the topography...

  15. ONU power saving modes in next generation optical access networks: progress, efficiency and challenges.

    Science.gov (United States)

    Dixit, Abhishek; Lannoo, Bart; Colle, Didier; Pickavet, Mario; Demeester, Piet

    2012-12-10

    The optical network unit (ONU), installed at a customer's premises, accounts for about 60% of power in current fiber-to-the-home (FTTH) networks. We propose a power consumption model for the ONU and evaluate the ONU power consumption in various next generation optical access (NGOA) architectures. Further, we study the impact of the power savings of the ONU in various low power modes such as power shedding, doze and sleep.

  16. Mid-Infrared Continuously Tunable Single Mode VECSEL

    Science.gov (United States)

    Khiar, A.; Rahim, M.; Felder, F.; Fill, M.; Zogg, H.

    2011-12-01

    Tunable mid-infrared vertical external cavity surface emitting lasers were developed for the wavelength range around 3.8-3.9 μm and 3.2-3.3 μm, respectively. The devices are based on lead salt materials epitaxially grown by MBE on a Si substrate. The active part consists of PbSe QW in a PbSrSe host layer. Both devices are operated around -20 °C and have output power of several 10 mW. By changing the cavity length, a single mode hop free tuning range up to 80 cm-1 is achieved.

  17. Single-spin stochastic optical reconstruction microscopy.

    Science.gov (United States)

    Pfender, Matthias; Aslam, Nabeel; Waldherr, Gerald; Neumann, Philipp; Wrachtrup, Jörg

    2014-10-14

    We experimentally demonstrate precision addressing of single-quantum emitters by combined optical microscopy and spin resonance techniques. To this end, we use nitrogen vacancy (NV) color centers in diamond confined within a few ten nanometers as individually resolvable quantum systems. By developing a stochastic optical reconstruction microscopy (STORM) technique for NV centers, we are able to simultaneously perform sub-diffraction-limit imaging and optically detected spin resonance (ODMR) measurements on NV spins. This allows the assignment of spin resonance spectra to individual NV center locations with nanometer-scale resolution and thus further improves spatial discrimination. For example, we resolved formerly indistinguishable emitters by their spectra. Furthermore, ODMR spectra contain metrology information allowing for sub-diffraction-limit sensing of, for instance, magnetic or electric fields with inherently parallel data acquisition. As an example, we have detected nuclear spins with nanometer-scale precision. Finally, we give prospects of how this technique can evolve into a fully parallel quantum sensor for nanometer resolution imaging of delocalized quantum correlations.

  18. TV-acquired optical diagnostics systems on ATA

    International Nuclear Information System (INIS)

    Kalibjian, R.; Chong, Y.P.; Cornish, J.P.; Jackson, C.H.; Fessenden, T.J.

    1984-06-01

    The purpose of this paper is to report on optical system developments on the ATA and their applications to ATA beam characterization. Television (TV)-acquired optical diagnostics data provide spatial and temporal properties of the ATA beam that complements recorded information from other types of sensors, such as, beam-wall current monitors, x-ray probes, and rf probes. The ATA beam operates: (1) in the normal mode at 50-MeV, 10-kA at a 1-Hz rate; and (2) in the 1-KHz burst mode (for 10-pulses) at a 0.5 Hz rate. The beam has a 70-ns pulse width in vacuum propagation; however, beam-head erosion will occur in atmospheric propagation, thus limiting the pulse width to less than 50-ns. Various optical systems are used for ATA diagnostics. Optical-imaging provides a convenient measurement in a single pulse of the 2-dimensional profile of the beam intensity. It can also provide multiple 2-D framing in a single pulse. In some studies it may be desirable to study optical events with temporal resolution less than 100-ps with 1-dimensional streak cameras. Spatially integrated data from phototube cameras can also be used for background measurement applications as well as for single pixel monitoring. The optical line-of-sight (LOS) configurations have been made versatile to accommodate a large number of options for the various optical systems

  19. Feedback stabilization system for pulsed single longitudinal mode tunable lasers

    Science.gov (United States)

    Esherick, Peter; Raymond, Thomas D.

    1991-10-01

    A feedback stabilization system for pulse single longitudinal mode tunable lasers having an excited laser medium contained within an adjustable length cavity and producing a laser beam through the use of an internal dispersive element, including detection of angular deviation in the output laser beam resulting from detuning between the cavity mode frequency and the passband of the internal dispersive element, and generating an error signal based thereon. The error signal can be integrated and amplified and then applied as a correcting signal to a piezoelectric transducer mounted on a mirror of the laser cavity for controlling the cavity length.

  20. Focusing over Optical Fiber Using Time Reversal

    DEFF Research Database (Denmark)

    Piels, Molly; Porto da Silva, Edson; Estaran Tolosa, Jose Manuel

    2015-01-01

    A time-reversal array in multimode fiber is proposed for lossless remotely controlled switching using passive optical splitters. The signal to be transmitted is digitally pre-distorted so that it is routed through the physical layer in order to arrive at only one receiver in an array. System...... performance in the presence of additive white gaussian noise, modal group delay, and timing error is investigated numerically for single-mode and 10-mode fiber. Focusing using a two-transmitter array and 44 km of single- mode fiber is demonstrated experimentally for 3 GBd QPSK signals with a bit error rate...

  1. Individual optimization of InAlGaAsP-InP sections for 1.55-μm passively mode-locked lasers

    DEFF Research Database (Denmark)

    Kulkova, Irina; Larsson, David; Semenova, Elizaveta

    2012-01-01

    We present integrated single QW semiconductor optical amplifier and MQW electroabsorber modulator based on InAlGaAsP-InP materials for application in a monolithic mode-locked laser. Optimized structures with high-quality butt-joint interfaces are demonstrated.......We present integrated single QW semiconductor optical amplifier and MQW electroabsorber modulator based on InAlGaAsP-InP materials for application in a monolithic mode-locked laser. Optimized structures with high-quality butt-joint interfaces are demonstrated....

  2. Over 19 W Single-Mode 1545 nm Er,Yb Codoped All-Fiber Laser

    Directory of Open Access Journals (Sweden)

    Jiadong Wu

    2017-01-01

    Full Text Available We report a high-power cladding-pumped Er,Yb codoped all-fiber laser with truly single transverse mode output. The fiber laser is designed to operate at 1545 nm by the use of a pair of fiber Bragg gratings (FBGs to lock and narrow the output spectrum, which can be very useful in generating the eye-safe ~1650 nm laser emission through the Stimulated Raman Scattering (SRS in silica fibers that is of interest in many applications. Two pieces of standard single-mode fibers are inserted into the laser cavity and output port to guarantee the truly single-mode output as well as good compatibility with other standard fiber components. We have obtained a maximum output power of 19.2 W at 1544.68 nm with a FWHM spectral width of 0.08 nm, corresponding to an average overall slope efficiency of 31.9% with respect to the launched pump power. This is, to the best of our knowledge, the highest output power reported from simple all-fiber single-mode Er,Yb codoped laser oscillator architecture.

  3. Single-mode temperature and polarisation-stable high-speed 850nm vertical cavity surface emitting lasers

    International Nuclear Information System (INIS)

    Nazaruk, D E; Blokhin, S A; Maleev, N A; Bobrov, M A; Pavlov, M M; Kulagina, M M; Vashanova, K A; Zadiranov, Yu M; Ustinov, V M; Kuzmenkov, A G; Vasil'ev, A P; Gladyshev, A G; Blokhin, A A; Salut, 7 Larina Str, N Novgorod, 603950 (Russian Federation))" data-affiliation=" (JSV Salut, 7 Larina Str, N Novgorod, 603950 (Russian Federation))" >Fefelov, A G

    2014-01-01

    A new intracavity-contacted design to realize temperature and polarization-stable high-speed single-mode 850 nm vertical cavity surface emitting lasers (VCSELs) grown by molecular-beam epitaxy is proposed. Temperature dependences of static and dynamic characteristics of the 4.5 pm oxide aperture InGaAlAs VCSEL were investigated in detail. Due to optimal gain-cavity detuning and enhanced carrier localization in the active region the threshold current remains below 0.75 mA for the temperature range within 20-90°C, while the output power exceeds 1 mW up to 90°C. Single-mode operation with side-mode suppression ratio higher than 30 dB and orthogonal polarization suppression ratio more than 18 dB was obtained in the whole current and temperature operation range. Device demonstrates serial resistance less than 250 Ohm, which is rather low for any type of single-mode short- wavelength VCSELs. VCSEL demonstrates temperature robust high-speed operation with modulation bandwidth higher than 13 GHz in the entire temperature range of 20-90°C. Despite high resonance frequency the high-speed performance of developed VCSELs was limited by the cut-off frequency of the parasitic low pass filter created by device resistances and capacitances. The proposed design is promising for single-mode high-speed VCSEL applications in a wide spectral range

  4. Tunable single photonic defect-mode in cholesteric liquid crystals with laser-induced local modifications of helix

    International Nuclear Information System (INIS)

    Yoshida, Hiroyuki; Lee, Chee Heng; Fujii, Akihiko; Ozaki, Masanori

    2006-01-01

    The authors demonstrate a tunable single photonic defect-mode in a single cholesteric liquid crystal material based on a structural defect introduced by local modification of the helix. An unpolymerized region of cholesteric liquid crystal acting as the defect was left between two polymerized regions via a two-photon excitation laser-lithography process. Upon polymerization, the cholesteric liquid crystal helix elongated and became thermally stable, and a single photonic defect mode was exhibited due to the contrast in the helix pitch at the defect. The defect mode showed tunability upon heating, and a 36 nm redshift was seen over a temperature range of 30 deg. C

  5. Hybrid UWB and WiMAX radio-over-multi-mode fibre for in-building optical networks

    International Nuclear Information System (INIS)

    Perez, J; Llorente, R

    2014-01-01

    In this paper the use of hybrid WiMedia-defined ultra-wideband (UWB) and IEEE 802.16d WiMAX radio-over-fibre is proposed and experimentally demonstrated for multi-mode based in-building optical networks with the advantage of great immunity to optical transmission impairments. In the proposed approach, spectral coexistence of both signals must be achieved with negligible mutual interference. The experimental study performed addressed an indoor configuration with 50 μm multi-mode fibres (MMF) and 850 nm vertical-cavity surface-emitting laser (VCSEL) transmitters. The results indicate that the impact of the wireless convergence in radio-over-multi-mode fibre (RoMMF) is significant for UWB transmissions, mainly due to MMF dispersion and electrooptical (EO) devices with limited bandwidth. On the other hand, WiMAX transmission is feasible for a 300 m MMF and 30 m wireless link in the presence of UWB, with −31 dBm WiMAX EVM. (paper)

  6. Quantum optics. All-optical routing of single photons by a one-atom switch controlled by a single photon.

    Science.gov (United States)

    Shomroni, Itay; Rosenblum, Serge; Lovsky, Yulia; Bechler, Orel; Guendelman, Gabriel; Dayan, Barak

    2014-08-22

    The prospect of quantum networks, in which quantum information is carried by single photons in photonic circuits, has long been the driving force behind the effort to achieve all-optical routing of single photons. We realized a single-photon-activated switch capable of routing a photon from any of its two inputs to any of its two outputs. Our device is based on a single atom coupled to a fiber-coupled, chip-based microresonator. A single reflected control photon toggles the switch from high reflection (R ~ 65%) to high transmission (T ~ 90%), with an average of ~1.5 control photons per switching event (~3, including linear losses). No additional control fields are required. The control and target photons are both in-fiber and practically identical, making this scheme compatible with scalable architectures for quantum information processing. Copyright © 2014, American Association for the Advancement of Science.

  7. Cost-Effective Brillouin Optical Time-Domain Analysis Sensor Using a Single Optical Source and Passive Optical Filtering

    Directory of Open Access Journals (Sweden)

    H. Iribas

    2016-01-01

    Full Text Available We present a simplified configuration for distributed Brillouin optical time-domain analysis sensors that aims to reduce the cost of the sensor by reducing the number of components required for the generation of the two optical waves involved in the sensing process. The technique is based on obtaining the pump and probe waves by passive optical filtering of the spectral components generated in a single optical source that is driven by a pulsed RF signal. The optical source is a compact laser with integrated electroabsorption modulator and the optical filters are based on fiber Bragg gratings. Proof-of-concept experiments demonstrate 1 m spatial resolution over a 20 km sensing fiber with a 0.9 MHz precision in the measurement of the Brillouin frequency shift, a performance similar to that of much more complex setups. Furthermore, we discuss the factors limiting the sensor performance, which are basically related to residual spectral components in the filtering process.

  8. Optical frequency upconversion technique for transmission of wireless MIMO-type signals over optical fiber.

    Science.gov (United States)

    Shaddad, R Q; Mohammad, A B; Al-Gailani, S A; Al-Hetar, A M

    2014-01-01

    The optical fiber is well adapted to pass multiple wireless signals having different carrier frequencies by using radio-over-fiber (ROF) technique. However, multiple wireless signals which have the same carrier frequency cannot propagate over a single optical fiber, such as wireless multi-input multi-output (MIMO) signals feeding multiple antennas in the fiber wireless (FiWi) system. A novel optical frequency upconversion (OFU) technique is proposed to solve this problem. In this paper, the novel OFU approach is used to transmit three wireless MIMO signals over a 20 km standard single mode fiber (SMF). The OFU technique exploits one optical source to produce multiple wavelengths by delivering it to a LiNbO3 external optical modulator. The wireless MIMO signals are then modulated by LiNbO3 optical intensity modulators separately using the generated optical carriers from the OFU process. These modulators use the optical single-sideband with carrier (OSSB+C) modulation scheme to optimize the system performance against the fiber dispersion effect. Each wireless MIMO signal is with a 2.4 GHz or 5 GHz carrier frequency, 1 Gb/s data rate, and 16-quadrature amplitude modulation (QAM). The crosstalk between the wireless MIMO signals is highly suppressed, since each wireless MIMO signal is carried on a specific optical wavelength.

  9. Geometric characterization of separability and entanglement in pure Gaussian states by single-mode unitary operations

    Science.gov (United States)

    Adesso, Gerardo; Giampaolo, Salvatore M.; Illuminati, Fabrizio

    2007-10-01

    We present a geometric approach to the characterization of separability and entanglement in pure Gaussian states of an arbitrary number of modes. The analysis is performed adapting to continuous variables a formalism based on single subsystem unitary transformations that has been recently introduced to characterize separability and entanglement in pure states of qubits and qutrits [S. M. Giampaolo and F. Illuminati, Phys. Rev. A 76, 042301 (2007)]. In analogy with the finite-dimensional case, we demonstrate that the 1×M bipartite entanglement of a multimode pure Gaussian state can be quantified by the minimum squared Euclidean distance between the state itself and the set of states obtained by transforming it via suitable local symplectic (unitary) operations. This minimum distance, corresponding to a , uniquely determined, extremal local operation, defines an entanglement monotone equivalent to the entropy of entanglement, and amenable to direct experimental measurement with linear optical schemes.

  10. Geometric characterization of separability and entanglement in pure Gaussian states by single-mode unitary operations

    International Nuclear Information System (INIS)

    Adesso, Gerardo; Giampaolo, Salvatore M.; Illuminati, Fabrizio

    2007-01-01

    We present a geometric approach to the characterization of separability and entanglement in pure Gaussian states of an arbitrary number of modes. The analysis is performed adapting to continuous variables a formalism based on single subsystem unitary transformations that has been recently introduced to characterize separability and entanglement in pure states of qubits and qutrits [S. M. Giampaolo and F. Illuminati, Phys. Rev. A 76, 042301 (2007)]. In analogy with the finite-dimensional case, we demonstrate that the 1xM bipartite entanglement of a multimode pure Gaussian state can be quantified by the minimum squared Euclidean distance between the state itself and the set of states obtained by transforming it via suitable local symplectic (unitary) operations. This minimum distance, corresponding to a, uniquely determined, extremal local operation, defines an entanglement monotone equivalent to the entropy of entanglement, and amenable to direct experimental measurement with linear optical schemes

  11. Multimode nonlinear optical imaging of the dermis in ex vivo human skin based on the combination of multichannel mode and Lambda mode.

    Science.gov (United States)

    Zhuo, Shuangmu; Chen, Jianxin; Luo, Tianshu; Zou, Dingsong

    2006-08-21

    A Multimode nonlinear optical imaging technique based on the combination of multichannel mode and Lambda mode is developed to investigate human dermis. Our findings show that this technique not only improves the image contrast of the structural proteins of extracellular matrix (ECM) but also provides an image-guided spectral analysis method to identify both cellular and ECM intrinsic components including collagen, elastin, NAD(P)H and flavin. By the combined use of multichannel mode and Lambda mode in tandem, the obtained in-depth two photon-excited fluorescence (TPEF) and second-harmonic generation (SHG) imaging and TPEF/SHG signals depth-dependence decay can offer a sensitive tool for obtaining quantitative tissue structural and biochemical information. These results suggest that the technique has the potential to provide more accurate information for determining tissue physiological and pathological states.

  12. Second-order interference of two independent and tunable single-mode continuous-wave lasers

    International Nuclear Information System (INIS)

    Liu Jianbin; Chen Hui; Zheng Huaibin; Xu Zhuo; Wei Dong; Zhou Yu; Gao Hong; Li Fu-Li

    2016-01-01

    The second-order temporal interference of two independent single-mode continuous-wave lasers is discussed by employing two-photon interference in Feynman’s path integral theory. It is concluded that whether the second-order temporal interference pattern can or cannot be retrieved via two-photon coincidence counting rate is dependent on the resolution time of the detection system and the frequency difference between these two lasers. Two identical and tunable single-mode continuous-wave diode lasers are employed to verify the predictions. These studies are helpful to understand the physics of two-photon interference with photons of different spectra. (paper)

  13. Single-mode solid-state polymer dye laser fabricated with standard I-line UV lithography

    DEFF Research Database (Denmark)

    Balslev, Søren; Mironov, Andrej; Nilsson, Daniel

    2005-01-01

    We present single-mode solid-state polymer dye lasers fabricated with standard UV lithography. The lasers use a high-order Bragg grating and rely on index-tuning of a photosensitive polymer for waveguiding. The gain medium is Rhodamine 6G.......We present single-mode solid-state polymer dye lasers fabricated with standard UV lithography. The lasers use a high-order Bragg grating and rely on index-tuning of a photosensitive polymer for waveguiding. The gain medium is Rhodamine 6G....

  14. Remote Spectroscopy in the Visible Using Fibers on the Optical Internet Network

    Science.gov (United States)

    Ribeiro, Rafael A. S.; de Oliveira, Anderson R.; Zilio, Sergio C.

    2010-01-01

    The work presented here demonstrates the feasibility of using the single-mode fibers of an optical Internet network to deliver visible light between separate laboratories as a way to perform remote spectroscopy in the visible for teaching purposes. The coupling of a broadband light source into the single-mode fiber (SMF) and the characterization…

  15. A multi-ring optical packet and circuit integrated network with optical buffering.

    Science.gov (United States)

    Furukawa, Hideaki; Shinada, Satoshi; Miyazawa, Takaya; Harai, Hiroaki; Kawasaki, Wataru; Saito, Tatsuhiko; Matsunaga, Koji; Toyozumi, Tatuya; Wada, Naoya

    2012-12-17

    We newly developed a 3 × 3 integrated optical packet and circuit switch-node. Optical buffers and burst-mode erbium-doped fiber amplifiers with the gain flatness are installed in the 3 × 3 switch-node. The optical buffer can prevent packet collisions and decrease packet loss. We constructed a multi-ring optical packet and circuit integrated network testbed connecting two single-ring networks and a client network by the 3 × 3 switch-node. For the first time, we demonstrated 244 km fiber transmission and 5-node hopping of multiplexed 14-wavelength 10 Gbps optical paths and 100 Gbps optical packets encapsulating 10 Gigabit Ethernet frames on the testbed. Error-free (frame error rate optical packets of various packet lengths. In addition, successful avoidance of packet collisions by optical buffers was confirmed.

  16. Toward single-mode random lasing within a submicrometre-sized spherical ZnO particle film

    International Nuclear Information System (INIS)

    Niyuki, Ryo; Fujiwara, Hideki; Sasaki, Keiji; Ishikawa, Yoshie; Koshizaki, Naoto; Tsuji, Takeshi

    2016-01-01

    We had recently reported unique random laser action such as quasi-single-mode and low-threshold lasing from a submicrometre-sized spherical ZnO nanoparticle film with polymer particles as defects. The present study demonstrates a novel approach to realize single-mode random lasing by adjusting the sizes of the defect particles. From the dependence of random lasing properties on defect size, we find that the average number of lasing peaks can be modified by the defect size, while other lasing properties such as lasing wavelengths and thresholds remain unchanged. These results suggest that lasing wavelengths and thresholds are determined by the resonant properties of the surrounding scatterers, while the defect size stochastically determines the number of lasing peaks. Therefore, if we optimize the sizes of the defects and scatterers, we can intentionally induce single-mode lasing even in a random structure (Fujiwara et al 2013 Appl. Phys. Lett. 102 061110). (paper)

  17. A 66 fs highly stable single wall carbon nanotube mode locked fiber laser

    International Nuclear Information System (INIS)

    Yu, Zhenhua; Zhang, Xiao; Dong, Xinzheng; Tian, Jinrong; Song, Yanrong; Wang, Yonggang

    2014-01-01

    We demonstrate a highly stable mode locked fiber laser based on single wall carbon nanotubes. The mode locking is achieved by the evanescent field interaction of the propagating light with a single wall carbon nanotube saturable absorber in a microfiber. The pulse width is 66 fs, which, to the best of our knowledge, is the shortest pulse achieved in a carbon nanotube mode locked fiber laser. The maximum average output power is 26 mW, which is about 20 times larger than that of a typical carbon nanotube mode locked fiber laser. The center of the wavelength is 1555 nm, with 54 nm spectral width. The repetition rate is 146 MHz. To investigate the laser’s stability, the output pulses are monitored for 120 h and there is no significant degradation of the laser spectral width or shape. (paper)

  18. Polarization mode dispersion in optical fiber transmission systems

    Science.gov (United States)

    Cameron, John Charles

    The birefringence of optical fibers causes pulse broadening in fiber-optic communication systems. This phenomenon is known as polarization mode dispersion (PMD). PMD is one of the most important limiting factors for high capacity fiber-optic systems. A number of aspects of PMD are examined in this thesis. In Chapter 2 an expression is derived for the probability density function of the pulse broadening due to first-order PMD. This result is used to obtain an expression for the system limitation due to PMD. The birefringence of optical fibers is commonly simulated with the waveplate model. In Chapter 3 two standard versions of the waveplate model are introduced. In addition, a novel waveplate model is proposed. The characteristics of the three versions of the waveplate model are examined to confirm their suitability for use in subsequent chapters of the thesis. Simulations with the waveplate model are performed in Chapter 4 for three purposes: (1) to determine the impact of chromatic dispersion on the system limitation due to PMD, (2) to examine the effectiveness of three different PMD compensation techniques in the presence of chromatic dispersion, and (3) to examine the interaction of second-order chromatic dispersion with PMD. The simulations in Chapter 4 reveal that it is possible with one compensation technique to have output pulses that are narrower than the input pulses. In Chapter 5, this anomalous pulse narrowing is demonstrated analytically for a simple model of PMD and through experiment. It is also shown that this pulse narrowing can be explained as an interference phenomenon. Chapter 6 presents measurements of PMD and state of polarization on installed optical fibers. The PMD coefficients of 122 fibers are presented and the results are analyzed in terms of the age of the fibers and the type of cabling. Measurements of the time evolution of PMD and state of polarization are presented for fibers installed in both buried and aerial cables. The uncertainty

  19. 3 kW single stage all-fiber Yb-doped single-mode fiber laser for highly reflective and highly thermal conductive materials processing

    Science.gov (United States)

    Ikoma, S.; Nguyen, H. K.; Kashiwagi, M.; Uchiyama, K.; Shima, K.; Tanaka, D.

    2017-02-01

    A 3 kW single stage all-fiber Yb-doped single-mode fiber laser with bi-directional pumping configuration has been demonstrated. Our newly developed high-power LD modules are employed for a high available pump power of 4.9 kW. The length of the delivery fiber is 20 m which is long enough to be used in most of laser processing machines. An output power of 3 kW was achieved at a pump power of 4.23 kW. The slope efficiency was 70%. SRS was able to be suppressed at the same output power by increasing ratio of backward pump power. The SRS level was improved by 5dB when 57% backward pump ratio was adopted compared with the case of 50%. SRS was 35dB below the laser power at the output power of 3 kW even with a 20-m delivery fiber. The M-squared factor was 1.3. Single-mode beam quality was obtained. To evaluate practical utility of the 3 kW single-mode fiber laser, a Bead-on-Plate (BoP) test onto a pure copper plate was executed. The BoP test onto a copper plate was made without stopping or damaging the laser system. That indicates our high power single-mode fiber lasers can be used practically in processing of materials with high reflectivity and high thermal conductivity.

  20. VCSEL Transmission at 10 Gb/s for 20 km Single Mode Fiber WDM-PON without Dispersion Compensation or Injection Locking

    DEFF Research Database (Denmark)

    Gibbon, Timothy Braidwood; Prince, Kamau; Pham, Tien Thang

    2011-01-01

    how off-center wavelength filtering of the VCSEL spectrum at an array waveguide grating can be used to mitigate the effect of chirp and the dispersion penalty. Transmission at 10Gb/s VCSEL over 23.6 km of single mode fiber is experimentally demonstrated, with a dispersion penalty of only 2.9 d......B. Simulated results are also presented which show that off-center wavelength filtering can extend the 10 Gb/s network reach from 11.7 km to 25.8 km for a 4 dB dispersion penalty. This allows for cheap and simple dispersion mitigation in next generation VCSEL based optical access networks....