WorldWideScience

Sample records for single microwave frequency

  1. High accuracy microwave frequency measurement based on single-drive dual-parallel Mach-Zehnder modulator

    DEFF Research Database (Denmark)

    Zhao, Ying; Pang, Xiaodan; Deng, Lei

    2011-01-01

    A novel approach for broadband microwave frequency measurement by employing a single-drive dual-parallel Mach-Zehnder modulator is proposed and experimentally demonstrated. Based on bias manipulations of the modulator, conventional frequency-to-power mapping technique is developed by performing a...... 10−3 relative error. This high accuracy frequency measurement technique is a promising candidate for high-speed electronic warfare and defense applications....

  2. Processing of complex shapes with single-mode resonant frequency microwave applicators

    International Nuclear Information System (INIS)

    Fellows, L.A.; Delgado, R.; Hawley, M.C.

    1994-01-01

    Microwave processing is an alternative to conventional composite processing techniques. Single-mode microwave applicators efficiently couple microwave energy into the composite. The application of the microwave energy is greatly affected by the geometry of the composite. In the single mode microwave applicator, two types of modes are available. These modes are best suited to processing flat planar samples or cylindrical samples with geometries that align with the electric fields. Mode-switching is alternating between different electromagnetic modes with the intelligent selection of the modes to alleviate undesirable temperature profiles. This method has improved the microwave heating profiles of materials with complex shapes that do not align with either type of electric field. Parts with two different complex geometries were fabricated from a vinyl toluene/vinyl ester resin with a continuous glass fiber reinforcement by autoclaving and by microwave techniques. The flexural properties of the microwave processed samples were compared to the flexural properties of autoclaved samples. The trends of the mechanical properties for the complex shapes were consistent with the results of experiments with flat panels. This demonstrated that mode-switching techniques are as applicable for the complex shapes as they are for the simpler flat panel geometry

  3. Variable frequency microwave heating apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Bible, D.W.; Lauf, R.J.; Johnson, A.C.; Thigpen, L.T.

    1999-10-05

    A variable frequency microwave heating apparatus (10) designed to allow modulation of the frequency of the microwaves introduced into a multi-mode microwave cavity (34) for testing or other selected applications. The variable frequency microwave heating apparatus (10) includes a microwave signal generator (12) and a high-power microwave amplifier (20) or a high-power microwave oscillator (14). A power supply (22) is provided for operation of the high-power microwave oscillator (14) or microwave amplifier (20). A directional coupler (24) is provided for detecting the direction and amplitude of signals incident upon and reflected from the microwave cavity (34). A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).

  4. Soil moisture inversion from aircraft passive microwave observations during SMEX04 using a single-frequency algorithm

    International Nuclear Information System (INIS)

    Zeng, J Y; Li, Z; Chen, Q; Bi, H Y

    2014-01-01

    Soil moisture plays a key role in global water cycles. In the study, soil moisture retrievals from airborne microwave radiometer observations using a single-frequency algorithm were presented. The algorithm is based on a simplified radiative transfer (tau-omega) model and the influence of both the roughness and vegetation is combined into a single parameter in the algorithm. The microwave polarization difference index (MPDI) is used to eliminate the effects of temperature. Then soil moisture is obtained through a nonlinear iterative procedure by making the absolute value of the differences between the simulated and observed MPDI minimum. The algorithm was validated with aircraft passive microwave data from the Polarimetric Scanning Radiometer (PSR) at the Arizona during the Soil Moisture Experiment 2004 (SMEX04). The results show that the soil moisture retrieved by the algorithm is in good agreement with ground measurements with a small bias and an overall accuracy of 0.037m 3 m −3

  5. Microwave Frequency Multiplier

    Science.gov (United States)

    Velazco, J. E.

    2017-02-01

    High-power microwave radiation is used in the Deep Space Network (DSN) and Goldstone Solar System Radar (GSSR) for uplink communications with spacecraft and for monitoring asteroids and space debris, respectively. Intense X-band (7.1 to 8.6 GHz) microwave signals are produced for these applications via klystron and traveling-wave microwave vacuum tubes. In order to achieve higher data rate communications with spacecraft, the DSN is planning to gradually furnish several of its deep space stations with uplink systems that employ Ka-band (34-GHz) radiation. Also, the next generation of planetary radar, such as Ka-Band Objects Observation and Monitoring (KaBOOM), is considering frequencies in the Ka-band range (34 to 36 GHz) in order to achieve higher target resolution. Current commercial Ka-band sources are limited to power levels that range from hundreds of watts up to a kilowatt and, at the high-power end, tend to suffer from poor reliability. In either case, there is a clear need for stable Ka-band sources that can produce kilowatts of power with high reliability. In this article, we present a new concept for high-power, high-frequency generation (including Ka-band) that we refer to as the microwave frequency multiplier (MFM). The MFM is a two-cavity vacuum tube concept where low-frequency (2 to 8 GHz) power is fed into the input cavity to modulate and accelerate an electron beam. In the second cavity, the modulated electron beam excites and amplifies high-power microwaves at a frequency that is a multiple integer of the input cavity's frequency. Frequency multiplication factors in the 4 to 10 range are being considered for the current application, although higher multiplication factors are feasible. This novel beam-wave interaction allows the MFM to produce high-power, high-frequency radiation with high efficiency. A key feature of the MFM is that it uses significantly larger cavities than its klystron counterparts, thus greatly reducing power density and arcing

  6. High-power microwave generation from a frequency-stabilized virtual cathode source

    International Nuclear Information System (INIS)

    Fazio, M.V.; Hoeberling, R.F.; Kinross-Wright, J.

    1988-01-01

    The evolution of virtual cathode based high-power microwave-source technology has been directed primarily toward achieving higher peak-power levels. As peak powers in excess of 10 GW have been reported, attention has begun to focus on techniques for producing a more frequency- and phase-stable virtual cathode source. Free-running virtual cathode microwave sources characteristically exhibit bandwidths in a single pulse of tens of percent, which makes them unsuitable for many applications such as power sources for phased array antennas and microwave linear accelerators. Presented here are results of an experimental approach utilizing a high-Q, resonant cavity surrounding the oscillating virtual cathode to achieve frequency stabilization and repeatable narrow-band operation. A cylindrical cavity resonator is used with the microwave power being extracted radially through circumferential slot apertures into L-band waveguide

  7. Frequency-tuned microwave photon counter based on a superconductive quantum interferometer

    Science.gov (United States)

    Shnyrkov, V. I.; Yangcao, Wu; Soroka, A. A.; Turutanov, O. G.; Lyakhno, V. Yu.

    2018-03-01

    Various types of single-photon counters operating in infrared, ultraviolet, and optical wavelength ranges are successfully used to study electromagnetic fields, analyze radiation sources, and solve problems in quantum informatics. However, their operating principles become ineffective at millimeter band, S-band, and ultra-high frequency bands of wavelengths due to the decrease in quantum energy by 4-5 orders of magnitude. Josephson circuits with discrete Hamiltonians and qubits are a good foundation for the construction of single-photon counters at these frequencies. This paper presents a frequency-tuned microwave photon counter based on a single-junction superconducting quantum interferometer and flux qutrit. The control pulse converts the interferometer into a two-level system for resonance absorption of photons. Decay of the photon-induced excited state changes the magnetic flux in the interferometer, which is measured by a SQUID magnetometer. Schemes for recording the magnetic flux using a DC SQUID or ideal parametric detector, based on a qutrit with high-frequency excitation, are discussed. It is shown that the counter consisting of an interferometer with a Josephson junction and a parametric detector demonstrates high performance and is capable of detecting single photons in a microwave band.

  8. THEORETICAL MODELLING STUDY ON THE RELATIONSHIP BETWEEN MULTI-FREQUENCY MICROWAVE VEGETATION INDEX AND VEGETATION PROPERTIES (OPTICAL DEPTH AND SINGLE SCATTERING ALBEDO

    Directory of Open Access Journals (Sweden)

    S. Talebi

    2018-04-01

    Full Text Available This paper presents a theoretical study of derivation Microwave Vegetation Indices (MVIs in different pairs of frequencies using two methods. In the first method calculating MVI in different frequencies based on Matrix Doubling Model (to take in to account multi scattering effects has been done and analyzed in various soil properties. The second method was based on MVI theoretical basis and its independency to underlying soil surface signals. Comparing the results from two methods with vegetation properties (single scattering albedo and optical depth indicated partial correlation between MVI from first method and optical depth, and full correlation between MVI from second method and vegetation properties. The second method to derive MVI can be used widely in global microwave vegetation monitoring.

  9. Adhesive bonding using variable frequency microwave energy

    Science.gov (United States)

    Lauf, Robert J.; McMillan, April D.; Paulauskas, Felix L.; Fathi, Zakaryae; Wei, Jianghua

    1998-01-01

    Methods of facilitating the adhesive bonding of various components with variable frequency microwave energy are disclosed. The time required to cure a polymeric adhesive is decreased by placing components to be bonded via the adhesive in a microwave heating apparatus having a multimode cavity and irradiated with microwaves of varying frequencies. Methods of uniformly heating various articles having conductive fibers disposed therein are provided. Microwave energy may be selectively oriented to enter an edge portion of an article having conductive fibers therein. An edge portion of an article having conductive fibers therein may be selectively shielded from microwave energy.

  10. Study on the Microwave Permittivity of Single-Walled Carbon Nanotube

    Science.gov (United States)

    Liu, Xiaolai; Zhao, Donglin

    2009-01-01

    In this article, we studied the microwave permittivity of the complex of the single-walled carbon nanotube and paraffin in 2-18GHz. In the range, the dielectric loss of single-walled carbon nanotube is higher, and the real part and the imaginary part of the dielectric constant decrease with the increase of frequency, and the dielectric constant…

  11. Simplified atom trap using a single microwave modulated diode laser

    International Nuclear Information System (INIS)

    Newbury, N.R.; Myatt, C.J.; Wieman, C.E.

    1993-01-01

    We have demonstrated microwave modulation of a diode laser which is operated with optical feedback from a diffraction grating. By directly modulating the diode laser current at frequencies up to 6.8 GHz, we observed 2-30% of the laser power in a single sideband for 20mW of microwave power. Using such a diode laser modulated at 6.6GHz, we have trapped 87 Rb in a vapor cell. With 10mW of microwave power, the number of trapped atoms was only 15% smaller than the number obtained using two lasers in the conventional manner. A microwave modulated diode laser should also be useful for driving stimulated Raman transitions between the hyperfine levels of Rb or Cs

  12. Wideband Radio Frequency Interference Detection for Microwave Radiometer Subsystem

    Data.gov (United States)

    National Aeronautics and Space Administration — Anthropogenic Radio-Frequency Interference (RFI) is threatening the quality and utility of multi-frequency passive microwave radiometry. The GPM Microwave Imager...

  13. The microwave effects on the properties of alumina at high frequencies of microwave sintering

    International Nuclear Information System (INIS)

    Sudiana, I. Nyoman; Ngkoimani, La Ode; Usman, Ida; Mitsudo, Seitaro; Sako, Katsuhide; Inagaki, Shunsuke; Aripin, H.

    2016-01-01

    Microwave sintering of materials has attracted much research interest because of its significant advantages (e.g. reduced sintering temperatures and soaking times) over the conventional heating. Most researchers compared processes that occurred during the microwave and conventional heating at the same temperature and time. The enhancements found in the former method are indicated as a 'non-thermal effect' which is usually used for explaining the phenomena in microwave processing. Numerous recent studies have been focused on the effect to elucidate the microwave interaction mechanism with materials. Moreover, recent progress on microwave sources such as gyrotrons has opened the possibility for processing materials by using a higher microwave frequency. Therefore, the technology is expected to exhibit a stronger non-thermal effect. This paper presents results from a series of experiments to study the non-thermal effect on microwave sintered alumina. Sintering by using a wide rage of microwave frequencies up to 300 GHz as well as a conventional furnace was carried out. The linear shrinkages of samples for each sintering method were measured. Pores and grains taken from scanning electron microstructure (SEM) images of cut surfaces were also examined. The results of a comparative study of the shrinkages and microstructure evolutions of the sintered samples under annealing in microwave heating systems and in an electric furnace were analyzed. A notably different behavior of the shrinkages and microstructures of alumina after being annealed was found. The results suggested that microwave radiations provided an additional force for mass transports. The results also indicated that the sintering process depended on microwave frequencies.

  14. The microwave effects on the properties of alumina at high frequencies of microwave sintering

    Energy Technology Data Exchange (ETDEWEB)

    Sudiana, I. Nyoman, E-mail: sudiana75@yahoo.com; Ngkoimani, La Ode; Usman, Ida [Department of Physics, Faculty of Mathematic and Natural Science, Halu Oleo University, Kampus Bumi Tridharma Anduonohu, Kendari 93232 (Indonesia); Mitsudo, Seitaro; Sako, Katsuhide; Inagaki, Shunsuke [Research Center for Development of Far-Infrared Region, University of Fukui, 3-9-1 Bunkyo, Fukui-shi 910-8507 (Japan); Aripin, H. [Center for Material Processing and Renewable Energy, Faculty of Learning Teacher and Education Science, Siliwangi University, Jl. Siliwangi 24 Tasikmalaya 46115, West Java (Indonesia)

    2016-03-11

    Microwave sintering of materials has attracted much research interest because of its significant advantages (e.g. reduced sintering temperatures and soaking times) over the conventional heating. Most researchers compared processes that occurred during the microwave and conventional heating at the same temperature and time. The enhancements found in the former method are indicated as a 'non-thermal effect' which is usually used for explaining the phenomena in microwave processing. Numerous recent studies have been focused on the effect to elucidate the microwave interaction mechanism with materials. Moreover, recent progress on microwave sources such as gyrotrons has opened the possibility for processing materials by using a higher microwave frequency. Therefore, the technology is expected to exhibit a stronger non-thermal effect. This paper presents results from a series of experiments to study the non-thermal effect on microwave sintered alumina. Sintering by using a wide rage of microwave frequencies up to 300 GHz as well as a conventional furnace was carried out. The linear shrinkages of samples for each sintering method were measured. Pores and grains taken from scanning electron microstructure (SEM) images of cut surfaces were also examined. The results of a comparative study of the shrinkages and microstructure evolutions of the sintered samples under annealing in microwave heating systems and in an electric furnace were analyzed. A notably different behavior of the shrinkages and microstructures of alumina after being annealed was found. The results suggested that microwave radiations provided an additional force for mass transports. The results also indicated that the sintering process depended on microwave frequencies.

  15. High-frequency and microwave circuit design

    CERN Document Server

    Nelson, Charles

    2007-01-01

    An integral part of any communications system, high-frequency and microwave design stimulates major progress in the wireless world and continues to serve as a foundation for the commercial wireless products we use every day. The exceptional pace of advancement in developing these systems stipulates that engineers be well versed in multiple areas of electronics engineering. With more illustrations, examples, and worked problems, High-Frequency and Microwave Circuit Design, Second Edition provides engineers with a diverse body of knowledge they can use to meet the needs of this rapidly progressi

  16. Highly Stable Wideband Microwave Extraction by Synchronizing Widely Tunable Optoelectronic Oscillator with Optical Frequency Comb

    Science.gov (United States)

    Hou, D.; Xie, X. P.; Zhang, Y. L.; Wu, J. T.; Chen, Z. Y.; Zhao, J. Y.

    2013-12-01

    Optical frequency combs (OFCs), based on mode-locked lasers (MLLs), have attracted considerable attention in many fields over recent years. Among the applications of OFCs, one of the most challenging works is the extraction of a highly stable microwave with low phase noise. Many synchronisation schemes have been exploited to synchronise an electronic oscillator with the pulse train from a MLL, helping to extract an ultra-stable microwave. Here, we demonstrate novel wideband microwave extraction from a stable OFC by synchronising a single widely tunable optoelectronic oscillator (OEO) with an OFC at different harmonic frequencies, using an optical phase detection technique. The tunable range of the proposed microwave extraction extends from 2 GHz to 4 GHz, and in a long-term synchronisation experiment over 12 hours, the proposed synchronisation scheme provided a rms timing drift of 18 fs and frequency instabilities at 1.2 × 10-15/1 s and 2.2 × 10-18/10000 s.

  17. Method for curing polymers using variable-frequency microwave heating

    Science.gov (United States)

    Lauf, Robert J.; Bible, Don W.; Paulauskas, Felix L.

    1998-01-01

    A method for curing polymers (11) incorporating a variable frequency microwave furnace system (10) designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity (34). By varying the frequency of the microwave signal, non-uniformities within the cavity (34) are minimized, thereby achieving a more uniform cure throughout the workpiece (36). A directional coupler (24) is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. The furnace cavity (34) may be adapted to be used to cure materials defining a continuous sheet or which require compressive forces during curing.

  18. Reducing microwave absorption with fast frequency modulation.

    Science.gov (United States)

    Qin, Juehang; Hubler, A

    2017-05-01

    We study the response of a two-level quantum system to a chirp signal, using both numerical and analytical methods. The numerical method is based on numerical solutions of the Schrödinger solution of the two-level system, while the analytical method is based on an approximate solution of the same equations. We find that when two-level systems are perturbed by a chirp signal, the peak population of the initially unpopulated state exhibits a high sensitivity to frequency modulation rate. We also find that the aforementioned sensitivity depends on the strength of the forcing, and weaker forcings result in a higher sensitivity, where the frequency modulation rate required to produce the same reduction in peak population would be lower. We discuss potential applications of this result in the field of microwave power transmission, as it shows applying fast frequency modulation to transmitted microwaves used for power transmission could decrease unintended absorption of microwaves by organic tissue.

  19. Utilization of multiple frequencies in 3D nonlinear microwave imaging

    DEFF Research Database (Denmark)

    Jensen, Peter Damsgaard; Rubæk, Tonny; Mohr, Johan Jacob

    2012-01-01

    The use of multiple frequencies in a nonlinear microwave algorithm is considered. Using multiple frequencies allows for obtaining the improved resolution available at the higher frequencies while retaining the regularizing effects of the lower frequencies. However, a number of different challenges...... at lower frequencies are used as starting guesses for reconstructions at higher frequencies. The performance is illustrated using simulated 2-D data and data obtained with the 3-D DTU microwave imaging system....

  20. High Tc superconductors at microwave frequencies

    International Nuclear Information System (INIS)

    Gruener, G.

    1991-01-01

    The author discusses various experiments conducted in the micro- and millimeter wave spectral range on thin film and single crystal specimens of the high temperature oxide superconductors. For high quality film the surface resistance R s is, except at low temperatures, due to thermally excited carriers, with extrinsic effects playing only a secondary role. Because of the low loss various passive microwave components, such as resonators, delay lines and filters, with performance far superior to those made of normal metals can be fabricated. The conductivity measured at millimeter wave frequencies displays a peak below T c . Whether this is due to coherence factors or due to the change of the relaxation rate when the materials enter the superconducting state remains to be seen

  1. Microwave-induced co-tunneling in single electron tunneling transistors

    DEFF Research Database (Denmark)

    Ejrnaes, M.; Savolainen, M.; Manscher, M.

    2002-01-01

    on rubber bellows. Cross-talk was minimized by using individual coaxial lines between the sample and the room temperature electronics: The co-tunneling experiments were performed at zero DC bias current by measuring the voltage response to a very small amplitude 2 Hz current modulation with the gate voltage......The influence of microwaves on the co-tunneling in single electron tunneling transistors has been investigated as function of frequency and power in the temperature range from 150 to 500 mK. All 20 low frequency connections and the RF line were filtered, and the whole cryostat was suspended...

  2. Plasma filamentation and shock wave enhancement in microwave rockets by combining low-frequency microwaves with external magnetic field

    International Nuclear Information System (INIS)

    Takahashi, Masayuki; Ohnishi, Naofumi

    2016-01-01

    A filamentary plasma is reproduced based on a fully kinetic model of electron and ion transports coupled with electromagnetic wave propagation. The discharge plasma transits from discrete to diffusive patterns at a 110-GHz breakdown, with decrease in the ambient pressure, because of the rapid electron diffusion that occurs during an increase in the propagation speed of the ionization front. A discrete plasma is obtained at low pressures when a low-frequency microwave is irradiated because the ionization process becomes more dominant than the electron diffusion, when the electrons are effectively heated by the low-frequency microwave. The propagation speed of the plasma increases with decrease in the incident microwave frequency because of the higher ionization frequency and faster plasma diffusion resulting from the increase in the energy-absorption rate. An external magnetic field is applied to the breakdown volume, which induces plasma filamentation at lower pressures because the electron diffusion is suppressed by the magnetic field. The thrust performance of a microwave rocket is improved by the magnetic fields corresponding to the electron cyclotron resonance (ECR) and its higher-harmonic heating, because slower propagation of the ionization front and larger energy-absorption rates are obtained at lower pressures. It would be advantageous if the fundamental mode of ECR heating is coupled with a lower frequency microwave instead of combining the higher-harmonic ECR heating with the higher frequency microwave. This can improve the thrust performance with smaller magnetic fields even if the propagation speed increases because of the decrease in the incident microwave frequency.

  3. Plasma filamentation and shock wave enhancement in microwave rockets by combining low-frequency microwaves with external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Masayuki, E-mail: m.takahashi@al.t.u-tokyo.ac.jp [Department of Aeronautics and Astronautics, The University of Tokyo, Bunkyo-ku 113-8656 (Japan); Ohnishi, Naofumi [Department of Aerospace Engineering, Tohoku University, Sendai 980-8579 (Japan)

    2016-08-14

    A filamentary plasma is reproduced based on a fully kinetic model of electron and ion transports coupled with electromagnetic wave propagation. The discharge plasma transits from discrete to diffusive patterns at a 110-GHz breakdown, with decrease in the ambient pressure, because of the rapid electron diffusion that occurs during an increase in the propagation speed of the ionization front. A discrete plasma is obtained at low pressures when a low-frequency microwave is irradiated because the ionization process becomes more dominant than the electron diffusion, when the electrons are effectively heated by the low-frequency microwave. The propagation speed of the plasma increases with decrease in the incident microwave frequency because of the higher ionization frequency and faster plasma diffusion resulting from the increase in the energy-absorption rate. An external magnetic field is applied to the breakdown volume, which induces plasma filamentation at lower pressures because the electron diffusion is suppressed by the magnetic field. The thrust performance of a microwave rocket is improved by the magnetic fields corresponding to the electron cyclotron resonance (ECR) and its higher-harmonic heating, because slower propagation of the ionization front and larger energy-absorption rates are obtained at lower pressures. It would be advantageous if the fundamental mode of ECR heating is coupled with a lower frequency microwave instead of combining the higher-harmonic ECR heating with the higher frequency microwave. This can improve the thrust performance with smaller magnetic fields even if the propagation speed increases because of the decrease in the incident microwave frequency.

  4. Highly stable microwave carrier generation using a dual-frequency distributed feedback laser

    NARCIS (Netherlands)

    Khan, M.R.H.; Bernhardi, Edward; Marpaung, D.A.I.; Burla, M.; de Ridder, R.M.; Worhoff, Kerstin; Pollnau, Markus; Roeloffzen, C.G.H.

    2012-01-01

    Photonic generation of microwave carriers by using a dual-frequency distributed feedback waveguide laser in ytterbium-doped aluminum oxide is demonstrated. A highperformance optical frequency locked loop is implemented to stabilize the microwave carrier. This approach results in a microwave

  5. High-efficiency water-loaded microwave antenna in ultra-high-frequency band

    Science.gov (United States)

    Gong, Zilun; Bartone, Chris; Yang, Fuyi; Yao, Jie

    2018-03-01

    High-index dielectrics are widely used in microwave antennas to control the radiation characteristics. Liquid water, with a high dielectric index at microwave frequency, is an interesting material to achieving tunable functionalities. Here, we demonstrate a water-loaded microwave antenna system that has high loss-tolerance and wideband tunability enabled by fluidity. Our simulation and experimental results show that the resonance frequency can be effectively tuned by the size of loading water. Furthermore, the antenna systems with water loading can achieve high radiation efficiency (>90%) in the ultra-high-frequency (0.3-3 GHz) band. This work brings about opportunities in realistic tunable microwave antenna designs enabled by liquid.

  6. Microwave-Controlled Generation of Shaped Single Photons in Circuit Quantum Electrodynamics

    Directory of Open Access Journals (Sweden)

    M. Pechal

    2014-10-01

    Full Text Available Large-scale quantum information processors or quantum communication networks will require reliable exchange of information between spatially separated nodes. The links connecting these nodes can be established using traveling photons that need to be absorbed at the receiving node with high efficiency. This is achievable by shaping the temporal profile of the photons and absorbing them at the receiver by time reversing the emission process. Here, we demonstrate a scheme for creating shaped microwave photons using a superconducting transmon-type three-level system coupled to a transmission line resonator. In a second-order process induced by a modulated microwave drive, we controllably transfer a single excitation from the third level of the transmon to the resonator and shape the emitted photon. We reconstruct the density matrices of the created single-photon states and show that the photons are antibunched. We also create multipeaked photons with a controlled amplitude and phase. In contrast to similar existing schemes, the one we present here is based solely on microwave drives, enabling operation with fixed frequency transmons.

  7. Microwave-to-optical frequency conversion with a Rydberg atom coupled to a coplanar waveguide

    Science.gov (United States)

    Gard, Bryan; Jacobs, Kurt; McDermott, Robert; Saffman, Mark

    2017-04-01

    A primary candidate for converting quantum information from microwave to optical frequencies is the use of Rydberg states of a single atom trapped near a surface. The fact that the Rydberg states possess both large electric dipole moments and microwave transition frequencies allows them to interact with superconducting mesoscopic circuits. By considering a concrete example, that of a Cesium atom, and using numerical search methods to optimize the control protocols, we determine the fidelities and transmission rates that could be achievable with such a device. We show that while protocols that exploit the adiabatic STIRAP mechanism provide the best raw transfer fidelities, the fastest communication speeds can be obtained by using heralding, which allows one to remove the adiabatic constraint. Support from Oak Ridge Associated Universities.

  8. Frequency-multiplexed bias and readout of a 16-pixel superconducting nanowire single-photon detector array

    Science.gov (United States)

    Doerner, S.; Kuzmin, A.; Wuensch, S.; Charaev, I.; Boes, F.; Zwick, T.; Siegel, M.

    2017-07-01

    We demonstrate a 16-pixel array of microwave-current driven superconducting nanowire single-photon detectors with an integrated and scalable frequency-division multiplexing architecture, which reduces the required number of bias and readout lines to a single microwave feed line. The electrical behavior of the photon-sensitive nanowires, embedded in a resonant circuit, as well as the optical performance and timing jitter of the single detectors is discussed. Besides the single pixel measurements, we also demonstrate the operation of a 16-pixel array with a temporal, spatial, and photon-number resolution.

  9. Multikilowatt variable frequency microwave furnace

    International Nuclear Information System (INIS)

    Bible, D.W.; Lauf, R.J.; Everleigh, C.A.

    1992-01-01

    In this paper, the authors describe a new type of microwave processing furnace in which the frequency can be varied continuously from 4 to 8 GHz and the power level varied from zero up to 2.5 kW. The extraordinary bandwidth of this furnace is achieved by using a traveling wave tube (TWT) amplifier originally developed for electronic warfare applications. The TWT is a linear beam device characterized by a traveling electromagnetic wave that continuously extracts energy longitudinally along the path of an electron beam. The TWT, unlike other microwave tubes such as the magnetron, klystron, gyrotron, and others, does not depend upon resonant RF fields and is therefore capable of wide bandwidth operation.operation

  10. Millimeter-wave interconnects for microwave-frequency quantum machines

    Science.gov (United States)

    Pechal, Marek; Safavi-Naeini, Amir H.

    2017-10-01

    Superconducting microwave circuits form a versatile platform for storing and manipulating quantum information. A major challenge to further scalability is to find approaches for connecting these systems over long distances and at high rates. One approach is to convert the quantum state of a microwave circuit to optical photons that can be transmitted over kilometers at room temperature with little loss. Many proposals for electro-optic conversion between microwave and optics use optical driving of a weak three-wave mixing nonlinearity to convert the frequency of an excitation. Residual absorption of this optical pump leads to heating, which is problematic at cryogenic temperatures. Here we propose an alternative approach where a nonlinear superconducting circuit is driven to interconvert between microwave-frequency (7 ×109 Hz) and millimeter-wave-frequency photons (3 ×1011 Hz). To understand the potential for quantum state conversion between microwave and millimeter-wave photons, we consider the driven four-wave mixing quantum dynamics of nonlinear circuits. In contrast to the linear dynamics of the driven three-wave mixing converters, the proposed four-wave mixing converter has nonlinear decoherence channels that lead to a more complex parameter space of couplings and pump powers that we map out. We consider physical realizations of such converter circuits by deriving theoretically the upper bound on the maximum obtainable nonlinear coupling between any two modes in a lossless circuit, and synthesizing an optimal circuit based on realistic materials that saturates this bound. Our proposed circuit dissipates less than 10-9 times the energy of current electro-optic converters per qubit. Finally, we outline the quantum link budget for optical, microwave, and millimeter-wave connections, showing that our approach is viable for realizing interconnected quantum processors for intracity or quantum data center environments.

  11. BMFO-PVDF electrospun fiber based tunable metamaterial structures for electromagnetic interference shielding in microwave frequency region

    Science.gov (United States)

    Revathi, Venkatachalam; Dinesh Kumar, Sakthivel; Subramanian, Venkatachalam; Chellamuthu, Muthamizhchelvan

    2015-11-01

    Metamaterial structures are artificial structures that are useful in controlling the flow of electromagnetic radiation. In this paper, composite fibers of sub-micron thickness of barium substituted magnesium ferrite (Ba0.2Mg0.8Fe2O4) - polyvinylidene fluoride obtained by electrospinning is used as a substrate to design electromagnetic interference shielding structures. While electrospinning improves the ferroelectric properties of the polyvinylidene fluoride, the presence of barium magnesium ferrite modifies the magnetic property of the composite fiber. The dielectric and magnetic properties at microwave frequency measured using microwave cavity perturbation technique are used to design the reflection as well as absorption based tunable metamaterial structures for electromagnetic interference shielding in microwave frequency region. For one of the structures, the simulation indicates that single negative metamaterial structure becomes a double negative metamaterial under the external magnetic field.

  12. Dielectric characterization of materials at microwave frequency range

    Directory of Open Access Journals (Sweden)

    J. de los Santos

    2003-01-01

    Full Text Available In this study a coaxial line was used to connect a microwave-frequency Network Analyzer and a base moving sample holder for dielectric characterization of ferroelectric materials in the microwave range. The main innovation of the technique is the introduction of a special sample holder that eliminates the air gap effect by pressing sample using a fine pressure system control. The device was preliminary tested with alumina (Al2O3 ceramics and validated up to 2 GHz. Dielectric measurements of lanthanum and manganese modified lead titanate (PLTM ceramics were carried out in order to evaluate the technique for a high permittivity material in the microwave range. Results showed that such method is very useful for materials with high dielectric permittivities, which is generally a limiting factor of other techniques in the frequency range from 50 MHz to 2 GHz.

  13. High-Frequency Microwave Processing of Materials Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Conducts research on high-frequency microwave processing of materials using a highpower, continuous-wave (CW), 83-GHz, quasi-optical beam system for rapid,...

  14. Wideband Monolithic Microwave Integrated Circuit Frequency Converters with GaAs mHEMT Technology

    OpenAIRE

    Krozer, Viktor; Johansen, Tom Keinicke; Djurhuus, Torsten; Vidkjær, Jens

    2005-01-01

    We present monolithic microwave integrated circuit (MMIC) frequency converter, which can be used for up and down conversion, due to the large RF and IF port bandwidth. The MMIC converters are based on commercially available GaAs mHEMT technology and are comprised of a Gilbert mixer cell core, baluns and combiners. Single ended and balanced configurations DC and AC coupled have been investigated. The instantaneous 3 dB bandwidth at both the RF and the IF port of the frequency converters is ∼ 2...

  15. Characterizing the attenuation of coaxial and rectangular microwave-frequency waveguides at cryogenic temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Kurpiers, Philipp; Walter, Theodore; Magnard, Paul; Salathe, Yves; Wallraff, Andreas [ETH Zuerich, Department of Physics, Zuerich (Switzerland)

    2017-12-15

    Low-loss waveguides are required for quantum communication at distances beyond the chip-scale for any low-temperature solid-state implementation of quantum information processors. We measure and analyze the attenuation constant of commercially available microwave-frequency waveguides down to millikelvin temperatures and single photon levels. More specifically, we characterize the frequency-dependent loss of a range of coaxial and rectangular microwave waveguides down to 0.005 dB/m using a resonant-cavity technique. We study the loss tangent and relative permittivity of commonly used dielectric waveguide materials by measurements of the internal quality factors and their comparison with established loss models. The results of our characterization are relevant for accurately predicting the signal levels at the input of cryogenic devices, for reducing the loss in any detection chain, and for estimating the heat load induced by signal dissipation in cryogenic systems. (orig.)

  16. Highly chirped single-bandpass microwave photonic filter with reconfiguration capabilities.

    Science.gov (United States)

    Bolea, Mario; Mora, José; Ortega, Beatriz; Capmany, José

    2011-02-28

    We propose a novel photonic structure to implement a chirped single-bandpass microwave photonic filter based on the amplitude modulation of a broadband optical signal transmitted by a non-linear dispersive element and an interferometric system prior to balanced photodetection. A full reconfigurability of the filter is achieved since amplitude and phase responses can be independently controlled. We have experimentally demonstrated chirp values up to tens of ns/GHz, which is, as far as we know, one order of magnitude better than others achieved by electrical approaches and furthermore, without restrictions in terms of frequency tuning since a frequency operation range up to 40 GHz has been experimentally demonstrated.

  17. Vibrational resonances in biological systems at microwave frequencies.

    Science.gov (United States)

    Adair, Robert K

    2002-03-01

    Many biological systems can be expected to exhibit resonance behavior involving the mechanical vibration of system elements. The natural frequencies of such resonances will, generally, be in the microwave frequency range. Some of these systems will be coupled to the electromagnetic field by the charge distributions they carry, thus admitting the possibility that microwave exposures may generate physiological effects in man and other species. However, such microwave excitable resonances are expected to be strongly damped by interaction with their aqueous biological environment. Although those dissipation mechanisms have been studied, the limitations on energy transfers that follow from the limited coupling of these resonances to the electromagnetic field have not generally been considered. We show that this coupling must generally be very small and thus the absorbed energy is so strongly limited that such resonances cannot affect biology significantly even if the systems are much less strongly damped than expected from basic dissipation models.

  18. Automated electronic intruder simulator for evaluation of odd frequency microwave detectors

    International Nuclear Information System (INIS)

    1979-01-01

    A microwave intruder simulator for testing motion detection sensors is described. This simulator can be used to evaluate a variety of microwave sensors regardless of the value of the center frequency of the signal utilized. Representative curves from the evaluation of one microwave sensor are also presented

  19. Design and analysis of planar spiral resonator bandstop filter for microwave frequency

    Science.gov (United States)

    Motakabber, S. M. A.; Shaifudin Suharsono, Muhammad

    2017-11-01

    In microwave frequency, a spiral resonator can act as either frequency reject or acceptor circuits. A planar logarithmic spiral resonator bandstop filter has been developed based on this property. This project focuses on the rejection property of the spiral resonator. The performance analysis of the exhibited filter circuit has been performed by using scattering parameters (S-parameters) technique in the ultra-wideband microwave frequency. The proposed filter is built, simulated and S-parameters analysis have been accomplished by using electromagnetic simulation software CST microwave studio. The commercial microwave substrate Taconic TLX-8 has been used to build this filter. Experimental results showed that the -10 dB rejection bandwidth of the filter is 2.32 GHz and central frequency is 5.72 GHz which is suitable for ultra-wideband applications. The proposed design has been full of good compliance with the simulated and experimental results here.

  20. Nanoelectromechanical systems: Nanodevice motion at microwave frequencies

    Science.gov (United States)

    Henry Huang, Xue Ming; Zorman, Christian A.; Mehregany, Mehran; Roukes, Michael L.

    2003-01-01

    It has been almost forgotten that the first computers envisaged by Charles Babbage in the early 1800s were mechanical and not electronic, but the development of high-frequency nanoelectromechanical systems is now promising a range of new applications, including sensitive mechanical charge detectors and mechanical devices for high-frequency signal processing, biological imaging and quantum measurement. Here we describe the construction of nanodevices that will operate with fundamental frequencies in the previously inaccessible microwave range (greater than 1 gigahertz). This achievement represents a significant advance in the quest for extremely high-frequency nanoelectromechanical systems.

  1. Performance demonstration of a single-frequency optically-pumped cesium beam frequency standard for space applications

    Science.gov (United States)

    Lecomte, S.; Haldimann, M.; Ruffieux, R.; Thomann, P.; Berthoud, P.

    2017-11-01

    Observatoire de Neuchâtel (ON) is developing a compact optically-pumped cesium beam frequency standard in the frame of an ESA-ARTES 5 project. The simplest optical scheme, which is based on a single optical frequency for both preparation and detection processes of atoms, has been chosen to fulfill reliability constraints of space applications. With our laboratory demonstrator operated at 852 nm (D2 line), we have measured a frequency stability of σy=2.74x10-12 τ -1/2, which is compliant with the Galileo requirement. The atomic resonator is fully compliant to be operated with a single diode laser at 894 nm (D1 line). Sensitivity measurements of the clock signal to the microwave power and to the optical pumping power are also presented. Present performance limitations are discussed and further improvements are proposed in order to reach our ultimate frequency stability goal of σy=1x10-12 τ -1/2. The clock driving software is also briefly described.

  2. Intense high-frequency gyrotron-based microwave beams for material processing

    Energy Technology Data Exchange (ETDEWEB)

    Hardek, T.W.; Cooke, W.D.; Katz, J.D.; Perry, W.L.; Rees, D.E.

    1997-03-01

    Microwave processing of materials has traditionally utilized frequencies in the 0.915 and 2.45 GHz regions. Microwave power sources are readily available at these frequencies but the relatively long wavelengths can present challenges in uniformly heating materials. An additional difficulty is the poor coupling of ceramic based materials to the microwave energy. Los Alamos National Laboratory scientists, working in conjunction with the National Center for Manufacturing Sciences (NCMS), have assembled a high-frequency demonstration processing facility utilizing gyrotron based RF sources. The facility is primarily intended to demonstrate the unique features available at frequencies as high as 84 GHz. The authors can readily provide quasi-optical, 37 GHz beams at continuous wave (CW) power levels in the 10 kW range. They have also provided beams at 84 GHz at 10 kW CW power levels. They are presently preparing a facility to demonstrate the sintering of ceramics at 30 GHz. This paper presents an overview of the present demonstration processing facility and describes some of the features they have available now and will have available in the near future.

  3. Microwave-to-optical frequency conversion using a cesium atom coupled to a superconducting resonator

    Science.gov (United States)

    Gard, Bryan T.; Jacobs, Kurt; McDermott, R.; Saffman, M.

    2017-07-01

    A candidate for converting quantum information from microwave to optical frequencies is the use of a single atom that interacts with a superconducting microwave resonator on one hand and an optical cavity on the other. The large electric dipole moments and microwave transition frequencies possessed by Rydberg states allow them to couple strongly to superconducting devices. Lasers can then be used to connect a Rydberg transition to an optical transition to realize the conversion. Since the fundamental source of noise in this process is spontaneous emission from the atomic levels, the resulting control problem involves choosing the pulse shapes of the driving lasers so as to maximize the transfer rate while minimizing this loss. Here we consider the concrete example of a cesium atom, along with two specific choices for the levels to be used in the conversion cycle. Under the assumption that spontaneous emission is the only significant source of errors, we use numerical optimization to determine the likely rates for reliable quantum communication that could be achieved with this device. These rates are on the order of a few megaqubits per second.

  4. Large enhancement of deuteron polarization with frequency modulated microwaves

    CERN Document Server

    AUTHOR|(CDS)2067425; Arik, S; Arvidson, A; Badelek, B; Ballintijn, M K; Bardin,; Baum, G; Berglund, P; Betev, L; Birda, I G; Birsa, R; Bjrkholm, P; Bonner, B E; de Botton, N; Boutemeur, M; Bradamante, Franco; Bressan, A; Brullc, A; Buchanan, J; Bültmann, S; Burtin, E; Cavata, C; Chen, J P; Clement, J; Clocchiatti, M; Corcoran, M D; Crabb, D; Cranshaw, J; Çuhadar-Dönszelmann, T; Deshpande, S; Dalla Torre, A; Van Dantzig, R; Dhawan, S; Dulya, C; Dyring, A; Eichblatt, S; Faivre, Jean-Claude; Fasching, D; Day, D; Feinstein, F; Fernández, C; Frois, B; Garabatos, C; Garzón, J A; Gaussiran, T; Giorgi, M; von Goeler, E; Goloutvin, Igor A; Gómez, A; Gracia, G; De Groot, N; Grosse-Perdekamp, M; Gülmez, E; Hasegawa, T; Hautle, P; Hayashi, N; Heusch, C A; Horikawa, D; von Harrach, N; Hughes, V W; Igo, G; Ishimoto, S; Iwata, T; De Jong, M; Kabu, E M; Kageya, T; Kaiser, R; Karev, A; Kessler, H J; Ketel, T J; Kiryushin, Yu T; Kishi, A; Kisselev, Yu; Klostermann, L; Krämer, Dietrich; Kukhtin, V; Kyynarinen, J; Lamanna, M; Landgraf, U; Lau, V; Krivokhijinea, K; Layda, T; Le Go, J M; Lehár, F; de Lesquen, A; Lichtenstadt, J; Lindqvist, T; Litmaath, M; López-Ponte, S; Loewe, M; Magnon, A; Mallot, G K; Marie, F; Martin, A; Martino, J; Matsuda, T; Mayes, B; McCarthy, J S; van Middelkoop, K; Medved, G; Miller, D; Mitchell, J; Mori, K; Moromisato, J; Mutchler, G S; Nagaitsev, A; Nassalski, J; Naumann, Lutz; Neganov, B; Niinikoski, T O; Oberski, J E J; Ogawa, A; Okumi, S; Ozben, C S; Penzo, Aldo L; Pérez, C A; Perrot-Kunne, F; Piegaia, R; Pinsky, L; Platchkov, S; Pló, M; Pose, D; Postma, D; Peshekhonov, H; Pretz, J; Pussieux, T; Pyrlik, J; Reyhancan, I; Rieubland, Jean Michel; Rijllart, A; Roberts, J B; Rock, S E; Rodríguez, M; Rondio, E; Rondon, O; Ropelewski, Leszek; Rosado, A; Sabo, I; Saborido, J; Salvato, G; Sandacz, A; Sanders, D; Savin, I; Schiavon, Paolo; Schüler, K P; Segel, R; Seitz, R; Semertzidis, Y; Sergeev, S; Sever, F; Shanahan, P; Sichtermann, E P; Smirnov, G; Staude, A; Steinmetz, A; Stuhrmann, H; Teichert, K M; Tessarotto, F; Thiel, W; Velasco, M; Vogt, J; Voss, R; Weinstein, R; Whitten, C; Willumeit, R; Windmolders, R; Wislicki, W; Witzmann, A; Yañez, A; Zanetti, A M; Zhao, J; Zamiatin, N I

    1996-01-01

    We report a large enhancement of 1.7 in deuteron polarization up to values of 0.6 due to frequency modulation of the polarizing microwaves in a two liters polarized target using the method of dynamic nuclear polarization. This target was used during a deep inelastic polarized muon-deuteron scattering experiment at CERN. Measurements of the electron paramagnetic resonance absorption spectra show that frequency modulation gives rise to additional microwave absorption in the spectral wings. Although these results are not understood theoretically, they may provide a useful testing ground for the deeper understanding of dynamic nuclear polarization.

  5. Broadband microwave frequency doubler based on left-handed nonlinear transmission lines

    International Nuclear Information System (INIS)

    Huang Jie; Gu Wenwen; Zhao Qian

    2017-01-01

    A bandwidth microwave second harmonic generator is successfully designed using composite right/left-handed nonlinear transmission lines (CRLH NLTLs) in a GaAs monolithic microwave integrated circuit (MMIC) technology. The structure parameters of CRLH NLTLs, e.g. host transmission line, rectangular spiral inductor, and nonlinear capacitor, have a great impact on the second harmonic performance enhancement in terms of second harmonic frequency, output power, and conversion efficiency. It has been experimentally demonstrated that the second harmonic frequency is determined by the anomalous dispersion of CRLH NLTLs and can be significantly improved by effectively adjusting these structure parameters. A good agreement between the measured and simulated second harmonic performances of Ka-band CRLH NLTLs frequency multipliers is successfully achieved, which further validates the design approach of frequency multipliers on CRLH NLTLs and indicates the potentials of CRLH NLTLs in terms of the generation of microwave and millimeter-wave signal source. (paper)

  6. Dual-function photonic integrated circuit for frequency octo-tupling or single-side-band modulation.

    Science.gov (United States)

    Hasan, Mehedi; Maldonado-Basilio, Ramón; Hall, Trevor J

    2015-06-01

    A dual-function photonic integrated circuit for microwave photonic applications is proposed. The circuit consists of four linear electro-optic phase modulators connected optically in parallel within a generalized Mach-Zehnder interferometer architecture. The photonic circuit is arranged to have two separate output ports. A first port provides frequency up-conversion of a microwave signal from the electrical to the optical domain; equivalently single-side-band modulation. A second port provides tunable millimeter wave carriers by frequency octo-tupling of an appropriate amplitude RF carrier. The circuit exploits the intrinsic relative phases between the ports of multi-mode interference couplers to provide substantially all the static optical phases needed. The operation of the proposed dual-function photonic integrated circuit is verified by computer simulations. The performance of the frequency octo-tupling and up-conversion functions is analyzed in terms of the electrical signal to harmonic distortion ratio and the optical single side band to unwanted harmonics ratio, respectively.

  7. Monitoring and control system for tuneable high frequency microwave assisted chemistry

    International Nuclear Information System (INIS)

    Lewis, G P; Wylie, S R; Shaw, A; Al-Shamma'a, A I; Phipps, D; Alkhaddar, R; Bond, G

    2007-01-01

    Microwave chemistry is an established technique in the synthesis of organic compounds at a frequency of 2.45 GHz. This is considered to be a result of the development of microwave ovens, rather than an objective solution, which maximises efficiency through careful selection of the operating frequency. To obtain a frequency for a dielectric, the complex permittivity should be determined as a function of frequency. If the correct heating frequency is found, superheating can occur when a liquid solvent reaches its boiling point and exceeds it. This paper presents sensor diodes and temperature sensors used in a mono-mode reactor, with computer control of an E-H tuner, frequency and incident power to control temperature and power, experimental results showing heating and reactions using ethanol are reported

  8. Magnetization Switching of a Co /Pt Multilayered Perpendicular Nanomagnet Assisted by a Microwave Field with Time-Varying Frequency

    Science.gov (United States)

    Suto, Hirofumi; Kanao, Taro; Nagasawa, Tazumi; Mizushima, Koichi; Sato, Rie

    2018-05-01

    Microwave-assisted magnetization switching (MAS) is attracting attention as a method for reversing nanomagnets with a high magnetic anisotropy by using a small-amplitude magnetic field. We experimentally study MAS of a perpendicularly magnetized nanomagnet by applying a microwave magnetic field with a time-varying frequency. Because the microwave field frequency can follow the nonlinear decrease of the resonance frequency, larger magnetization excitation than that in a constant-frequency microwave field is induced, which enhances the MAS effect. The switching field decreases almost linearly as the start value of the time-varying microwave field frequency increases, and it becomes smaller than the minimum switching field in a constant-frequency microwave field. To obtain this enhancement of the MAS effect, the end value of the time-varying microwave field frequency needs to be almost the same as or lower than the critical frequency for MAS in a constant-frequency microwave field. In addition, the frequency change typically needs to take 1 ns or longer to make the rate of change slow enough for the magnetization to follow the frequency change. This switching behavior is qualitatively explained by the theory based on the macrospin model.

  9. High-performance flexible microwave passives on plastic

    Science.gov (United States)

    Ma, Zhenqiang; Seo, Jung-Hun; Cho, Sang June; Zhou, Weidong

    2014-06-01

    We report the demonstration of bendable inductors, capacitors and switches fabricated on a polyethylene terephthalate (PET) substrate that can operate at high microwave frequencies. By employing bendable dielectric and single crystalline semiconductor materials, spiral inductors and metal-insulator-metal (MIM) capacitors with high quality factors and high resonance frequencies and single-pole, single-throw (SPST) switches were archived. The effects of mechanical bending on the performance of inductors, capacitors and switches were also measured and analyzed. We further investigated the highest possible resonance frequencies and quality factors of inductors and capacitors and, high frequency responses and insertion loss. These demonstrations will lead to flexible radio-frequency and microwave systems in the future.

  10. Nonreciprocal frequency conversion in a multimode microwave optomechanical circuit

    Science.gov (United States)

    Feofanov, A. K.; Bernier, N. R.; Toth, L. D.; Koottandavida, A.; Kippenberg, T. J.

    Nonreciprocal devices such as isolators, circulators, and directional amplifiers are pivotal to quantum signal processing with superconducting circuits. In the microwave domain, commercially available nonreciprocal devices are based on ferrite materials. They are barely compatible with superconducting quantum circuits, lossy, and cannot be integrated on chip. Significant potential exists for implementing non-magnetic chip-scale nonreciprocal devices using microwave optomechanical circuits. Here we demonstrate a possibility of nonreciprocal frequency conversion in a multimode microwave optomechanical circuit using solely optomechanical interaction between modes. The conversion scheme and the results reflecting the actual progress on the experimental implementation of the scheme will be presented.

  11. Development of a Multi-Point Microwave Interferometry (MPMI) Method

    Energy Technology Data Exchange (ETDEWEB)

    Specht, Paul Elliott [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cooper, Marcia A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jilek, Brook Anton [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    A multi-point microwave interferometer (MPMI) concept was developed for non-invasively tracking a shock, reaction, or detonation front in energetic media. Initially, a single-point, heterodyne microwave interferometry capability was established. The design, construction, and verification of the single-point interferometer provided a knowledge base for the creation of the MPMI concept. The MPMI concept uses an electro-optic (EO) crystal to impart a time-varying phase lag onto a laser at the microwave frequency. Polarization optics converts this phase lag into an amplitude modulation, which is analyzed in a heterodyne interfer- ometer to detect Doppler shifts in the microwave frequency. A version of the MPMI was constructed to experimentally measure the frequency of a microwave source through the EO modulation of a laser. The successful extraction of the microwave frequency proved the underlying physical concept of the MPMI design, and highlighted the challenges associated with the longer microwave wavelength. The frequency measurements made with the current equipment contained too much uncertainty for an accurate velocity measurement. Potential alterations to the current construction are presented to improve the quality of the measured signal and enable multiple accurate velocity measurements.

  12. Measurement of optical-beat frequency in a photoconductive terahertz-wave generator using microwave higher harmonics.

    Science.gov (United States)

    Murasawa, Kengo; Sato, Koki; Hidaka, Takehiko

    2011-05-01

    A new method for measuring optical-beat frequencies in the terahertz (THz) region using microwave higher harmonics is presented. A microwave signal was applied to the antenna gap of a photoconductive (PC) device emitting a continuous electromagnetic wave at about 1 THz by the photomixing technique. The microwave higher harmonics with THz frequencies are generated in the PC device owing to the nonlinearity of the biased photoconductance, which is briefly described in this article. Thirteen nearly periodic peaks in the photocurrent were observed when the microwave was swept from 16 to 20 GHz at a power of -48 dBm. The nearly periodic peaks are generated by the homodyne detection of the optical beat with the microwave higher harmonics when the frequency of the harmonics coincides with the optical-beat frequency. Each peak frequency and its peak width were determined by fitting a Gaussian function, and the order of microwave harmonics was determined using a coarse (i.e., lower resolution) measurement of the optical-beat frequency. By applying the Kalman algorithm to the peak frequencies of the higher harmonics and their standard deviations, the optical-beat frequency near 1 THz was estimated to be 1029.81 GHz with the standard deviation of 0.82 GHz. The proposed method is applicable to a conventional THz-wave generator with a photomixer.

  13. Measurement system of correlation functions of microwave single photon source in real time

    Science.gov (United States)

    Korenkov, A.; Dmitriev, A.; Astafiev, O.

    2018-02-01

    Several quantum setups, such as quantum key distribution networks[1] and quantum simulators (e.g. boson sampling), by their design rely on single photon sources (SPSs). These quantum setups were demonstrated to operate in optical frequency domain. However, following the steady advances in circuit quantum electrodynamics, a proposal has been made recently[2] to demonstrate boson sampling with microwave photons. This in turn requires the development of reliable microwave SPS. It's one of the most important characteristics are the first-order and the second-order correlation functions g1 and g2. The measurement technique of g1 and g2 is significantly different from that in the optical domain [3],[4] because of the current unavailability of microwave single-photon detectors. In particular, due to high levels of noise present in the system a substantial amount of statistics in needed to be acquired. This work presents a platform for measurement of g1 and g2 that processes the incoming data in real time, maximizing the efficiency of data acquisition. The use of field-programmable gate array (FPGA) electronics, common in similar experiments[3] but complex in programming, is avoided; instead, the calculations are performed on a standard desktop computer. The platform is used to perform the measurements of the first-order and the second-order correlation functions of the microwave SPS.

  14. Influence of microwave frequency electromagnetic radiation on terpene emission and content in aromatic plants.

    Science.gov (United States)

    Soran, Maria-Loredana; Stan, Manuela; Niinemets, Ülo; Copolovici, Lucian

    2014-09-15

    Influence of environmental stress factors on both crop and wild plants of nutritional value is an important research topic. The past research has focused on rising temperatures, drought, soil salinity and toxicity, but the potential effects of increased environmental contamination by human-generated electromagnetic radiation on plants have little been studied. Here we studied the influence of microwave irradiation at bands corresponding to wireless router (WLAN) and mobile devices (GSM) on leaf anatomy, essential oil content and volatile emissions in Petroselinum crispum, Apium graveolens and Anethum graveolens. Microwave irradiation resulted in thinner cell walls, smaller chloroplasts and mitochondria, and enhanced emissions of volatile compounds, in particular, monoterpenes and green leaf volatiles (GLV). These effects were stronger for WLAN-frequency microwaves. Essential oil content was enhanced by GSM-frequency microwaves, but the effect of WLAN-frequency microwaves was inhibitory. There was a direct relationship between microwave-induced structural and chemical modifications of the three plant species studied. These data collectively demonstrate that human-generated microwave pollution can potentially constitute a stress to the plants. Copyright © 2014 Elsevier GmbH. All rights reserved.

  15. Influence of microwave frequency electromagnetic radiation on terpene emission and content in aromatic plants

    Science.gov (United States)

    Soran, Maria-Loredana; Stan, Manuela; Niinemets, Ülo; Copolovici, Lucian

    2015-01-01

    Influence of environmental stress factors on both crop and wild plants of nutritional value is an important research topic. The past research has focused on rising temperatures, drought, soil salinity and toxicity, but the potential effects of increased environmental contamination by human-generated electromagnetic radiation on plants have little been studied. Here we studied the influence of microwave irradiation at bands corresponding to wireless router (WLAN) and mobile devices (GSM) on leaf anatomy, essential oil content and volatile emissions in Petroselinum crispum, Apium graveolens and Anethum graveolens. Microwave irradiation resulted in thinner cell walls, smaller chloroplasts and mitochondria, and enhanced emissions of volatile compounds, in particular, monoterpenes and green leaf volatiles. These effects were stronger for WLAN-frequency microwaves. Essential oil content was enhanced by GSM-frequency microwaves, but the effect of WLAN-frequency microwaves was inhibitory. There was a direct relationship between microwave-induced structural and chemical modifications of the three plant species studied. These data collectively demonstrate that human-generated microwave pollution can potentially constitute a stress to the plants. PMID:25050479

  16. Microwave Frequency Comb from a Semiconductor in a Scanning Tunneling Microscope.

    Science.gov (United States)

    Hagmann, Mark J; Yarotski, Dmitry A; Mousa, Marwan S

    2017-04-01

    Quasi-periodic excitation of the tunneling junction in a scanning tunneling microscope, by a mode-locked ultrafast laser, superimposes a regular sequence of 15 fs pulses on the DC tunneling current. In the frequency domain, this is a frequency comb with harmonics at integer multiples of the laser pulse repetition frequency. With a gold sample the 200th harmonic at 14.85 GHz has a signal-to-noise ratio of 25 dB, and the power at each harmonic varies inversely with the square of the frequency. Now we report the first measurements with a semiconductor where the laser photon energy must be less than the bandgap energy of the semiconductor; the microwave frequency comb must be measured within 200 μm of the tunneling junction; and the microwave power is 25 dB below that with a metal sample and falls off more rapidly at the higher harmonics. Our results suggest that the measured attenuation of the microwave harmonics is sensitive to the semiconductor spreading resistance within 1 nm of the tunneling junction. This approach may enable sub-nanometer carrier profiling of semiconductors without requiring the diamond nanoprobes in scanning spreading resistance microscopy.

  17. Temperature dependence of microwave absorption phenomena in single and biphase soft magnetic microwires

    Energy Technology Data Exchange (ETDEWEB)

    El Kammouni, Rhimou, E-mail: elkammounirhimou@gmail.com [Instituto de Ciencia de Materiales de Madrid, CSIC, 28049 Madrid (Spain); Vázquez, Manuel [Instituto de Ciencia de Materiales de Madrid, CSIC, 28049 Madrid (Spain); Lezama, Luis [Depto. Química Inorgánica, Universidad País Vasco, UPV/EHU, Bilbao (Spain); Kurlyandskaya, Galina [Depto. Electricidad y Electrónica, Universidad País Vasco, UPV/EHU, Bilbao (Spain); Dept. Magnetism and Magnetic Nanomaterials, Ural Federal University, Ekaterinburg (Russian Federation); Kraus, Ludek [Institute of Physics, Academy of Sciences of the Czech Republic, Prague (Czech Republic)

    2014-11-15

    The microwave absorption phenomena of single and biphase magnetic microwires with soft magnetic behavior have been investigated as a function of DC applied magnetic field using two alternative techniques: (i) absorption measurements in the temperature range of 4–300 K using a spectrometer operating at X-band frequency, at 9.5 GHz, and (ii) room-temperature, RT, ferromagnetic resonance measurements in a network analyzer in the frequency range up to 20 GHz. Complementary low-frequency magnetic characterization was performed in a Vibrating Sample Magnetometer. Studies have been performed for 8 μm diameter small-magnetostriction amorphous CoFeSiB single-phase microwire, coated by micrometric Pyrex layer, and after electroplating an external shell, 2 µm or 4 µm thick, of FeNi alloys. For single phase CoFeSiB microwire, a single absorption is observed, whose DC field dependence of resonance frequency at RT fits to a Kittel-law behavior for in-plane magnetized thin film. The temperature dependence behavior shows a monotonic increase in the resonance field, H{sub r}, with temperature. A parallel reduction of the circular anisotropy field, H{sub K}, is deduced from the temperature dependence of hysteresis loops. For biphase, CoFeSiB/FeNi, microwires, the absorption phenomena at RT also follow the Kittel condition. The observed opposite evolution with temperature of resonance field, H{sub r}, in 2 and 4 µm thick FeNi samples is interpreted considering the opposite sign of magnetostriction of the respective FeNi layers. The stress-induced magnetic anisotropy field, H{sub K}, in the FeNi shell is deduced to change sign at around 130 K. - Highlights: • A single absorption phenomenon is observed for single phase CoFeSiB. • The T dependence of the microwave behavior shows a monotonic increase of H{sub r} with T. • The absorption at RT follows the Kittel condition for biphase CoFe/FeNi microwires. • The T dependence of resonant field of CoFe/FeNi is interpreted to be

  18. Preparation, crystal structure, and dielectric characterization of Li2W2O7 ceramic at RF and microwave frequency range

    Directory of Open Access Journals (Sweden)

    Jinwu Chen

    2017-02-01

    Full Text Available Single phase Li2W2O7 with anorthic structure was prepared by the conventional solid-state reaction method at 550∘C and the anorthic structure was stable up to 660∘C. The dielectric properties at radio frequency (RF and microwave frequency range were characterized. The sample sintered at 640∘C exhibited the optimum microwave dielectric properties with a relative permittivity of 12.2, a quality factor value of 17,700GHz (at 9.8GHz, and a temperature coefficient of the resonant frequency of −232ppm/∘C as well as a high relative density ∼94.1%. Chemical compatibility measurement indicated Li2W2O7 did not react with aluminum electrodes when sintered at 640∘C for 4h.

  19. Diagnosis of Unmagnetized Plasma Electron Number Density and Electron-neutral Collision Frequency by Using Microwave

    International Nuclear Information System (INIS)

    Yuan Zhongcai; Shi Jiaming; Xu Bo

    2005-01-01

    The plasma diagnostic method using the transmission attenuation of microwaves at double frequencies (PDMUTAMDF) indicates that the frequency and the electron-neutral collision frequency of the plasma can be deduced by utilizing the transmission attenuation of microwaves at two neighboring frequencies in a non-magnetized plasma. Then the electron density can be obtained from the plasma frequency. The PDMUTAMDF is a simple method to diagnose the plasma indirectly. In this paper, the interaction of electromagnetic waves and the plasma is analyzed. Then, based on the attenuation and the phase shift of a microwave in the plasma, the principle of the PDMUTAMDF is presented. With the diagnostic method, the spatially mean electron density and electron collision frequency of the plasma can be obtained. This method is suitable for the elementary diagnosis of the atmospheric-pressure plasma

  20. High-frequency and microwave heating as a pretreatment to kiln drying of hollowed-out timber

    International Nuclear Information System (INIS)

    Yamada, N.; Okumura, S.; Taniguchi, Y.

    2001-01-01

    To dry hollowed-out timber without V-shaped drying checks, its inner part should be dried faster than the outer part. The feasibility of high frequency heating and microwave heating as a pretreatment of kiln drying of hollow timber was examined. During high frequency heating, the top and bottom parts of the timber were dried faster than the right and left parts because the central hollow acts as an air-gap. The outer part dried faster than the inner part during microwave heating, probably because of insufficient penetration of microwave energy into the inner part. The uneven heating of hollowed timber was improved by turning the specimen around its axis during high frequency heating and by setting the specimen upright in the microwave oven

  1. Effects of microwave on spin tunneling in single-molecule magnets

    Science.gov (United States)

    Kim, Gwang-Hee; Kim, Tae-Suk

    2005-03-01

    We study theoretically the effects of the irradiated microwave on the magnetization in single-molecule magnets (SMMs) like V15 and Fe8. We find that the shape of magnetization depends on the microwave intensity as well as the microwave polarization. The applied microwave field enhances the tunneling probability. The linearly polarized microwaves induce the suppression of magnetization at both positive and negative magnetic fields. The circularly polarized microwaves are absorbed either at one direction of magnetic field or at both directions of magnetic fields, depending on the polarization directions with respect to the direction of longitudinal magnetic field. The generic features we found will be compared with the recent experimental results.

  2. Single-Shot Quantum Nondemolition Detection of Individual Itinerant Microwave Photons

    Science.gov (United States)

    Besse, Jean-Claude; Gasparinetti, Simone; Collodo, Michele C.; Walter, Theo; Kurpiers, Philipp; Pechal, Marek; Eichler, Christopher; Wallraff, Andreas

    2018-04-01

    Single-photon detection is an essential component in many experiments in quantum optics, but it remains challenging in the microwave domain. We realize a quantum nondemolition detector for propagating microwave photons and characterize its performance using a single-photon source. To this aim, we implement a cavity-assisted conditional phase gate between the incoming photon and a superconducting artificial atom. By reading out the state of this atom in a single shot, we reach an external (internal) photon-detection fidelity of 50% (71%), limited by transmission efficiency between the source and the detector (75%) and the coherence properties of the qubit. By characterizing the coherence and average number of photons in the field reflected off the detector, we demonstrate its quantum nondemolition nature. We envisage applications in generating heralded remote entanglement between qubits and for realizing logic gates between propagating microwave photons.

  3. Simulation and Automation of Microwave Frequency Control in Dynamic Nuclear Polarization for Solid Polarized Targets

    Science.gov (United States)

    Perera, Gonaduwage; Johnson, Ian; Keller, Dustin

    2017-09-01

    Dynamic Nuclear Polarization (DNP) is used in most of the solid polarized target scattering experiments. Those target materials must be irradiated using microwaves at a frequency determined by the difference in the nuclear Larmor and electron paramagnetic resonance (EPR) frequencies. But the resonance frequency changes with time as a result of radiation damage. Hence the microwave frequency should be adjusted accordingly. Manually adjusting the frequency can be difficult, and improper adjustments negatively impact the polarization. In order to overcome these difficulties, two controllers were developed which automate the process of seeking and maintaining the optimal frequency: one being a standalone controller for a traditional DC motor and the other a LabVIEW VI for a stepper motor configuration. Further a Monte-Carlo simulation was developed which can accurately model the polarization over time as a function of microwave frequency. In this talk, analysis of the simulated data and recent improvements to the automated system will be presented. DOE.

  4. The microwave absorbing properties of ZnO/Fe3O4/paraffin composites in low frequency band

    Science.gov (United States)

    Yin, Pengfei; Deng, Yu; Zhang, Limin; Huang, Juan; Li, Huayao; Li, Youhongyu; Qi, Yali; Tao, Yu

    2018-02-01

    ZnO/Fe3O4/paraffin composites with good microwave absorption performance in low frequency band were prepared by physical blending technology. The morphology, phase structures, frequency-dependent electromagnetic and microwave absorbing properties of the composites were investigated. The results showed that the addition content of ZnO can adjust the microwave absorbing properties i.e. the position, intensity, and absorption bandwidth of composites, and the synergetic consequence of dielectric loss and magnetic loss is the main microwave absorption mechanism of the composites. The bandwidths with RL below -10 dB over different frequency ranges were obtained in the low frequency range of 0.5 ˜ 3 GHz at a thickness of 5 mm, e.g. 0.93 GHz from 1.59 to 2.52 GHz and 0.85 GHz from 1.26 to 2.11 GHz corresponding to the mass ratios of ZnO and Fe3O4 are 1:2 and 1:4, respectively. Thus, such absorbers can be applied as effective microwave absorbers in low frequency range of 0.5 ˜ 3 GHz.

  5. On chip frequency discriminator for microwave photonics signal processing

    NARCIS (Netherlands)

    Marpaung, D.A.I.; Roeloffzen, C.G.H.

    2012-01-01

    Microwave photonics (MWP) techniques for the generation, distribution and pro- cessing of radio frequency (RF) signals have enjoyed a surge of interest in the last few years. The workhorse behind these MWP functionalities is a high performance MWP link. Such a link needs to fulfill several criteria

  6. Joseph F. Keithley Award For Advances in Measurement Science Talk: Precision Noise Measurements at Microwave and Optical Frequencies

    Science.gov (United States)

    Ivanov, Eugene

    2010-03-01

    The quest to detect Gravitational Waves resulted in a number of important developments in the fields of oscillator frequency stabilization and precision noise measurements. This was due to the realization of similarities between the principles of high sensitivity measurements of weak mechanical forces and phase/amplitude fluctuations of microwave signals. In both cases interferometric carrier suppression and low-noise amplification of the residual noise sidebands were the main factors behind significant improvements in the resolution of spectral measurements. In particular, microwave frequency discriminators with almost thermal noise limited sensitivity were constructed leading to microwave oscillators with more than 25dB lower phase noise than the previous state-of-the-art. High power solid-state microwave amplifiers offered further opportunity of oscillator phase noise reduction due to the increased energy stored in the high-Q resonator of the frequency discriminator. High power microwave oscillators with the phase noise spectral density close to -160dBc/Hz at 1kHz Fourier frequency have been recently demonstrated. The principles of interferometric signal processing have been applied to the study of noise phenomena in microwave components which were considered to be ``noise free''. This resulted in the first experimental evidence of phase fluctuations in microwave circulators. More efficient use of signal power enabled construction of the ``power recycled'' interferometers with spectral resolution of -200dBc/Hz at 1kHz Fourier frequency. This has been lately superseded by an order of magnitude with a waveguide interferometer due to its higher power recycling factor. A number of opto-electronic measurement systems were developed to characterize the fidelity of frequency transfer from the optical to the microwave domain. This included a new type of a phase detector capable of measuring phase fluctuations of the weak microwave signals extracted from the demodulated

  7. Microwave generation and frequency conversion using intense relativistic electron beams

    International Nuclear Information System (INIS)

    Buzzi, J.M.; Doucet, H.J.; Etlicher, B.

    1977-01-01

    Some aspects of the microwave generation and frequency conversion by relativistic electron beams are studied. Using an electron synchrotron maser, the excitation of microwaves by an annular relativistic electron beam propagating through a circular wave guide immersed in a longitudinal magnetic field is analyzed. This theoretical model is somewhat more realistic than the previous one because the guiding centers are not on the wave guide axis. Microwave reflection is observed on a R.E.B. front propagating into a gas filled waveguide. The frequency conversion from the incident X-band e.m. waves and the reflected Ka band observed signal is consistent with the Doppler model for β = 0.7. This value agrees with the average beam front velocity as measured from time-of-flight using two B/sub theta/ probes. The reflection is found to occur during the current rise time. With a low impedance device (2 Ω, 400 keV) a GW X-band emission has been observed using thin anodes and a gas filled waveguide. This emission is probably due to the self-fields of the beam and could be used as a diagnostic

  8. Dielectric properties of materials at microwave frequencies

    Directory of Open Access Journals (Sweden)

    Ivo Křivánek

    2008-01-01

    Full Text Available The paper introduces the review of the present state of art in the measurement of the interaction of electromagnetic waves with different kinds of materials. It is analysis of the possibilities of the mea­surement of the interaction of high frequencies waves (microwaves with materials and proposal of the experimental method for the studies mentioned above.The electromagnetic field consists of two components: electric and magnetic field. The influence of these components on materials is different. The influence of the magnetic field is negligible and it has no impact on practical use. The influence of the electric field is strong as the interaction between them results in the creation of electric currents in the material (Křivánek and Buchar, 1993.Experiments focused on the evaluation of the complex dielectric permitivity of different materials have been performed. The permitivity of solid material is also measurable by phasemethod, when the specimen is a part of transmission sub-circuit. Microwave instrument for complex permittivity measurement works in X frequency band (8.2–12.5 GHz, the frequency 10.1 GHz was used for all the measurement in the laboratory of physics, Mendel University in Brno. The extensive number of experimental data have been obtained for different materials. The length of the square side of the ae­rial open end was 50 mm and internal dimensions of waveguides were 23 mm × 10 mm. The samples have form of the plate shape with dimensions 150 mm × 150 mm × 4 mm.

  9. Frequency stabilization of an optically pumped far-infrared laser to the harmonic of a microwave synthesizer.

    Science.gov (United States)

    Danylov, A A; Light, A R; Waldman, J; Erickson, N

    2015-12-10

    Measurements of the frequency stability of a far-infrared molecular laser have been made by mixing the harmonic of an ultrastable microwave source with a portion of the laser output signal in a terahertz (THz) Schottky diode balanced mixer. A 3 GHz difference-frequency signal was used in a frequency discriminator circuit to lock the laser to the microwave source. Comparisons of the short- and long-term laser frequency stability under free-running and locked conditions show a significant improvement with locking. Short-term frequency jitter was reduced by an order of magnitude, from approximately 40 to 4 kHz, and long-term drift was reduced by more than three orders of magnitude, from approximately 250 kHz to 80 Hz. The results, enabled by the efficient Schottky diode balanced mixer downconverter, demonstrate that ultrastable microwave-based frequency stabilization of THz optically pumped lasers (OPLs) will now be possible at frequencies extending well above 4.0 THz.

  10. An improved model for the dielectric constant of sea water at microwave frequencies

    Science.gov (United States)

    Klein, L. A.; Swift, C. T.

    1977-01-01

    The advent of precision microwave radiometry has placed a stringent requirement on the accuracy with which the dielectric constant of sea water must be known. To this end, measurements of the dielectric constant have been conducted at S-band and L-band with a quoted uncertainty of tenths of a percent. These and earlier results are critically examined, and expressions are developed which will yield computations of brightness temperature having an error of no more than 0.3 K for an undisturbed sea at frequencies lower than X-band. At the higher microwave and millimeter wave frequencies, the accuracy is in question because of uncertainties in the relaxation time and the dielectric constant at infinite frequency.

  11. Analysis of microwave amplifier and frequency multiplier tube with a multipactor electron gun

    International Nuclear Information System (INIS)

    Yokoo, Kuniyoshi; Ono, Shoichi; Tai, Dong-Zhe.

    1983-01-01

    The performance analysis was made for a multipactor microwave tube with the aim of realizing a microwave amplifier or a frequency multiplier tube with a multipactor cathode with high efficiency and high power. The possibility for producing the multipactor tube with high efficiency and high power was shown by using effectively the characteristics of the multipactor cathode which emits pulsed electron current with narrow band, synchronizing with high frequency period. As the operating conditions for the multipactor cathode, it was shown that the wide spacing of the cathode was needed for the operation in high operating power, and the narrow spacing was needed for the operation in high efficiency and for reducing power consumption. It was also shown that there were the best values of the high-frequency voltage for the cathode operation. The study by the simulation for the multipactor cathode and for the acceleration zone of electron current was also performed to examine the possible performance for a microwave amplifier and a frequency multiplier tube. For the use of the multipactor cathode with a spacing of 1 mm, the conversion efficiency for d. c. input power was 86, 56 and 31 % for the primary, the secondary and the tertiary harmonic wave amplifications, respectively. (Asami, T.)

  12. High field high frequency EPR techniques and their application to single molecule magnets

    International Nuclear Information System (INIS)

    Edwards, R.S.; Hill, S.; Goy, P.; Wylde, R.; Takahashi, S.

    2004-01-01

    We present details of a new high-field/high-frequency EPR technique, and its application to measurements of single-molecule magnets (SMMs). By using a quasi-optical set-up and microwave sources covering a continuous frequency range from 170 to 600 GHz, in conjunction with a millimetre-wave vector network analyser, we are able to measure EPR to high magnetic fields. For example, a g=2 system will exhibit EPR at about 14 T at a frequency of 400 GHz. We illustrate the technique by presenting details of recent high-frequency experiments on several SMMs which are variations of the well-known SMM Mn 12 -Ac. This material has a spin ground state of S=10 and large uniaxial anisotropy, hence frequencies above 300 GHz are required in order to observe EPR from the ground state

  13. On the Power Dependence of Extraneous Microwave Fields in Atomic Frequency Standards

    Science.gov (United States)

    2005-01-01

    uncertainty”, Metrologia 35 (1998) pp. 829-845. [6] K. Dorenwendt and A. Bauch, “Spurious Microwave Fields in Caesium Atomic Beam Standards...Cesium Beam Clocks Induced by Microwave Leakages”, IEEE Trans. UFFC 45 (1998)728-738. [8] M. Abgrall, “Evaluation des Performances de la Fontaine...Proc of the EFTF 2005 – in press. [12] A. DeMarchi, “The Optically Pumped Caesium Fountain: 10-15 Frequency Accuracy?”, Metrologia 18 (1982) pp

  14. Collective strong coupling with homogeneous Rabi frequencies using a 3D lumped element microwave resonator

    International Nuclear Information System (INIS)

    Angerer, Andreas; Astner, Thomas; Wirtitsch, Daniel; Majer, Johannes; Sumiya, Hitoshi; Onoda, Shinobu; Isoya, Junichi; Putz, Stefan

    2016-01-01

    We design and implement 3D-lumped element microwave cavities that spatially focus magnetic fields to a small mode volume. They allow coherent and uniform coupling to electron spins hosted by nitrogen vacancy centers in diamond. We achieve large homogeneous single spin coupling rates, with an enhancement of more than one order of magnitude compared to standard 3D cavities with a fundamental resonance at 3 GHz. Finite element simulations confirm that the magnetic field distribution is homogeneous throughout the entire sample volume, with a root mean square deviation of 1.54%. With a sample containing 10"1"7 nitrogen vacancy electron spins, we achieve a collective coupling strength of Ω = 12 MHz, a cooperativity factor C = 27, and clearly enter the strong coupling regime. This allows to interface a macroscopic spin ensemble with microwave circuits, and the homogeneous Rabi frequency paves the way to manipulate the full ensemble population in a coherent way.

  15. Microwave Enhanced Cotunneling in SET Transistors

    DEFF Research Database (Denmark)

    Manscher, Martin; Savolainen, M.; Mygind, Jesper

    2003-01-01

    Cotunneling in single electron tunneling (SET) devices is an error process which may severely limit their electronic and metrologic applications. Here is presented an experimental investigation of the theory for adiabatic enhancement of cotunneling by coherent microwaves. Cotunneling in SET...... transistors has been measured as function of temperature, gate voltage, frequency, and applied microwave power. At low temperatures and applied power levels, including also sequential tunneling, the results can be made consistent with theory using the unknown damping in the microwave line as the only free...

  16. Terahertz Harmonic Operation of Microwave Fresnel Zone Plate Lens and Antenna: Frequency Filtering and Space Resolution Properties

    Directory of Open Access Journals (Sweden)

    Hristo D. Hristov

    2011-01-01

    Full Text Available This paper examines the binary Fresnel zone plate (FZP lens frequency-harmonic and space-resolution focusing, and its application as a FZP lens antenna. A microwave FZP lens antenna (FZPA radiates both at design (90 GHz and terahertz (THz odd harmonic frequencies. Frequency and space domain antenna operation are studied analytically by use of the vector diffraction integral applied to a realistic printed FZPA. It is found that all harmonic gain peaks are roughly identical in form, bandwidth, and top values. At each harmonic frequency, the FZPA has a beamwidth that closely follows the Rayleigh resolution criterion. If the lens/antenna resolution is of prime importance and the small aperture efficiency is a secondary problem the microwave-design FZP lens antenna can be of great use at much higher terahertz frequencies. Important feature of the microwave FZP lens is its broader-zone construction compared to the equal in resolution terahertz-design FZP lens. Thus, unique and expensive microtechnology for the microwave FZP lens fabrication is not required. High-order harmonic operation of the FZP lens or lens antenna could find space resolution and frequency filtering applications in the terahertz and optical metrology, imaging tomography, short-range communications, spectral analysis, synchrotron facilities, and so on.

  17. Microwave dynamics of YBCO bi-epitaxial Josephson structures

    DEFF Research Database (Denmark)

    Constantinian, K. Y.; Ovsyannikov, G. A.; Mashtakov, A. D.

    1996-01-01

    The processes of interaction of microwaves (frequency View the MathML source) with a single high-Tc superconducting YBa2Cu3Ox (YBCO) bi-epitaxial grain-boundary junction and with an array of two junctions connected in series, have been investigated experimentally at temperatures T = 4.2− 77 K......, as well as the subharmonic detector response at weak magnetic fields φ microwave field induced frequency synchronization of two series connected bi-epitaxial YBCO junctions....

  18. Microwave single-scattering properties of randomly oriented soft-ice hydrometeors

    Directory of Open Access Journals (Sweden)

    D. Casella

    2008-11-01

    Full Text Available Large ice hydrometeors are usually present in intense convective clouds and may significantly affect the upwelling radiances that are measured by satellite-borne microwave radiometers – especially, at millimeter-wavelength frequencies. Thus, interpretation of these measurements (e.g., for precipitation retrieval requires knowledge of the single scattering properties of ice particles. On the other hand, shape and internal structure of these particles (especially, the larger ones is very complex and variable, and therefore it is necessary to resort to simplifying assumptions in order to compute their single-scattering parameters.

    In this study, we use the discrete dipole approximation (DDA to compute the absorption and scattering efficiencies and the asymmetry factor of two kinds of quasi-spherical and non-homogeneous soft-ice particles in the frequency range 50–183 GHz. Particles of the first kind are modeled as quasi-spherical ice particles having randomly distributed spherical air inclusions. Particles of the second kind are modeled as random aggregates of ice spheres having random radii. In both cases, particle densities and dimensions are coherent with the snow hydrometeor category that is utilized by the University of Wisconsin – Non-hydrostatic Modeling System (UW-NMS cloud-mesoscale model. Then, we compare our single-scattering results for randomly-oriented soft-ice hydrometeors with corresponding ones that make use of: a effective-medium equivalent spheres, b solid-ice equivalent spheres, and c randomly-oriented aggregates of ice cylinders. Finally, we extend to our particles the scattering formulas that have been developed by other authors for randomly-oriented aggregates of ice cylinders.

  19. Low phase noise microwave extraction from femtosecond laser by frequency conversion pair and IF-domain processing.

    Science.gov (United States)

    Dai, Yitang; Cen, Qizhuang; Wang, Lei; Zhou, Yue; Yin, Feifei; Dai, Jian; Li, Jianqiang; Xu, Kun

    2015-12-14

    Extraction of a microwave component from a low-time-jitter femtosecond pulse train has been attractive for current generation of spectrally pure microwave. In order to avoid the transfer from the optical amplitude noise to microwave phase noise (AM-PM), we propose to down-convert the target component to intermediate frequency (IF) before the opto-electronic conversion. Due to the much lower carrier frequency, the AM-PM is greatly suppressed. The target is then recovered by up-conversion with the same microwave local oscillation (LO). As long as the time delay of the second LO matches that of the IF carrier, the phase noise of the LO shows no impact on the extraction process. The residual noise of the proposed extraction is analyzed in theory, which is also experimentally demonstrated as averagely around -155 dBc/Hz under offset frequency larger than 1 kHz when 10-GHz tone is extracted from a home-made femtosecond fiber laser. Large tunable extraction from 1 GHz to 10 GHz is also reported.

  20. Microwave frequency detector at X-band using GaAs MMIC technology

    International Nuclear Information System (INIS)

    Zhang Jun; Liao Xiaoping; Jiao Yongchang

    2009-01-01

    The design, fabrication, and experimental results of an MEMS microwave frequency detector are presented for the first time. The structure consists of a microwave power divider, two CPW transmission lines, a microwave power combiner, an MEMS capacitive power sensor and a thermopile. The detector has been designed and fabricated on GaAs substrate using the MMIC process at the X-band successfully. The MEMS capacitive power sensor is used for detecting the high power signal, while the thermopile is used for detecting the low power signal. Signals of 17 and 10 dBm are measured over the X-band. The sensitivity is 0.56 MHz/fF under 17 dBm by the capacitive power sensor, and 6.67 MHz/μV under 10 dBm by the thermopile, respectively. The validity of the presented design has been confirmed by the experiment.

  1. A simple microwave technique for plasma density measurement using frequency modulation

    International Nuclear Information System (INIS)

    Bora, D.; Jayakumar, R.; Vijayashankar, M.K.

    1984-01-01

    A simple method of determining the phase variation unambiguously during microwave interferometric measurement is described. The frequency of the Klystron source is modulated with the help of staircase voltage pulse. The height of each stair is adjusted such that the corresponding phase shift in the test branch with an additional path length is 90 0 . Signals, proportional to cosine and sine of the phase shift due to plasma, can be generated in the same channel and plasma density information can be inferred. The microwave hardware remains the same as in conventional interferometry and the cost of such a scheme is low. (author)

  2. Advanced RF and microwave functions based on an integrated optical frequency comb source.

    Science.gov (United States)

    Xu, Xingyuan; Wu, Jiayang; Nguyen, Thach G; Shoeiby, Mehrdad; Chu, Sai T; Little, Brent E; Morandotti, Roberto; Mitchell, Arnan; Moss, David J

    2018-02-05

    We demonstrate advanced transversal radio frequency (RF) and microwave functions based on a Kerr optical comb source generated by an integrated micro-ring resonator. We achieve extremely high performance for an optical true time delay aimed at tunable phased array antenna applications, as well as reconfigurable microwave photonic filters. Our results agree well with theory. We show that our true time delay would yield a phased array antenna with features that include high angular resolution and a wide range of beam steering angles, while the microwave photonic filters feature high Q factors, wideband tunability, and highly reconfigurable filtering shapes. These results show that our approach is a competitive solution to implementing reconfigurable, high performance and potentially low cost RF and microwave signal processing functions for applications including radar and communication systems.

  3. Peak effect in surface resistance at microwave frequencies in Dy ...

    Indian Academy of Sciences (India)

    In the measurements at both frequencies the induced microwave current was always less than the critical current of the films. The reason for observation of this peak effect in these films has been explained in our earlier publication [5]. Comparing figures 1 and 2, it is observed that the peaks in sample S1 are broader and.

  4. Single frequency intracavity SRO

    DEFF Research Database (Denmark)

    Abitan, Haim; Buchhave, Preben

    2000-01-01

    Summary form only given. A single resonance optical parametric oscillator (SRO) is inserted intracavity to a CW high power, single frequency, and ring Nd:YVO4 laser. We obtain a stable single frequency CW SRO with output at 1.7-1.9 μm (idler) and a resonating signal at 2.3-2.6 μm. The behavior...

  5. Advanced microwave processing concepts

    Energy Technology Data Exchange (ETDEWEB)

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L. [Oak Ridge National Laboratory, TN (United States)

    1995-05-01

    The purpose of this work is to explore the feasibility of several advanced microwave processing concepts to develop new energy-efficient materials and processes. The project includes two tasks: (1) commercialization of the variable-frequency microwave furnace; and (2) microwave curing of polymer composites. The variable frequency microwave furnace, whose initial conception and design was funded by the AIC Materials Program, will allow us, for the first time, to conduct microwave processing studies over a wide frequency range. This novel design uses a high-power traveling wave tube (TWT) originally developed for electronic warfare. By using this microwave source, one can not only select individual microwave frequencies for particular experiments, but also achieve uniform power densities over a large area by the superposition of many different frequencies. Microwave curing of thermoset resins will be studied because it hold the potential of in-situ curing of continuous-fiber composites for strong, lightweight components. Microwave heating can shorten curing times, provided issues of scaleup, uniformity, and thermal management can be adequately addressed.

  6. CO-ANALYSIS OF SOLAR MICROWAVE AND HARD X-RAY SPECTRAL EVOLUTIONS. I. IN TWO FREQUENCY OR ENERGY RANGES

    International Nuclear Information System (INIS)

    Song Qiwu; Huang Guangli; Nakajima, Hiroshi

    2011-01-01

    Solar microwave and hard X-ray spectral evolutions are co-analyzed in the 2000 June 10 and 2002 April 10 flares, and are simultaneously observed by the Owens-Valley Solar Array in the microwave band and by Yohkoh/Hard X-ray Telescope or RHESSI in the hard X-ray band, with multiple subpeaks in their light curves. The microwave and hard X-ray spectra are fitted by a power law in two frequency ranges of the optical thin part and two photon energy ranges, respectively. Similar to an earlier event in Shao and Huang, the well-known soft-hard-soft pattern of the lower energy range changed to the hard-soft-hard (HSH) pattern of the higher energy range during the spectral evolution of each subpeak in both hard X-ray flares. This energy dependence is actually supported by a positive correlation between the overall light curves and spectral evolution in the lower energy range, while it becomes an anti-correlation in the higher energy range. Regarding microwave data, the HSH pattern appears in the spectral evolution of each subpeak in the lower frequency range, which is somewhat similar to Huang and Nakajima. However, it returns back to the well-known pattern of soft-hard-harder for the overall spectral evolution in the higher frequency range of both events. This frequency dependence is confirmed by an anti-correlation between the overall light curves and spectral evolution in the lower frequency range, but it becomes a positive correlation in the higher frequency range. The possible mechanisms are discussed, respectively, for reasons why hard X-ray and microwave spectral evolutions have different patterns in different energy and frequency intervals.

  7. Enhanced high-frequency microwave absorption of Fe3O4 architectures based on porous nanoflake

    DEFF Research Database (Denmark)

    Wang, Xiaoliang; Liu, Yanguo; Han, Hongyan

    2017-01-01

    Hierarchical Fe3O4 architectures assembled with porous nanoplates (p-Fe3O4) were synthesized. Due to the strong shape anisotropy of the nanoplates, the p-Fe3O4 exhibits increased microwave resonance towards high frequency range. The improved microwave absorption properties of the p-Fe3O4, including...

  8. Enhanced high-frequency microwave absorption of Fe3O4 architectures based on porous nanoflake

    DEFF Research Database (Denmark)

    Wang, Xiaoliang; Liu, Yanguo; Han, Hongyan

    2017-01-01

    Hierarchical Fe3O4 architectures assembled with porous nanoplates (p-Fe3O4) were synthesized. Due to the strong shape anisotropy of the nanoplates, the p-Fe3O4 exhibits increased microwave resonance towards high frequency range. The improved microwave absorption properties of the p-Fe3O4, includi...

  9. Microwave Imaging for Breast Cancer Detection

    DEFF Research Database (Denmark)

    Rubæk, Tonny; Fhager, Andreas; Jensen, Peter Damsgaard

    2011-01-01

    Still more research groups are promoting microwave imaging as a viable supplement or substitution to more conventional imaging modalities. A widespread approach for microwave imaging of the breast is tomographic imaging in which one seeks to reconstruct the distributions of permittivity and condu......Still more research groups are promoting microwave imaging as a viable supplement or substitution to more conventional imaging modalities. A widespread approach for microwave imaging of the breast is tomographic imaging in which one seeks to reconstruct the distributions of permittivity...... and conductivity in the breast. In this paper two nonlinear tomographic algorithms are compared – one is a single-frequency algorithm and the other is a time-domain algorithm....

  10. Normal and superconducting metals at microwave frequencies-classic experiments

    International Nuclear Information System (INIS)

    Dheer, P.N.

    1999-01-01

    A brief review of experimental and theoretical work on the behaviour of normal and superconducting materials at microwave frequencies before the publication of Bardeen, Cooper and Schrieffer's theory of superconductivity is given. The work discussed is mostly that of Pippard and his coworkers. It is shown that these investigations lead not only to a better understanding of the electrodynamics of normal and superconducting state but also of the nature of the superconducting state itself. (author)

  11. Design of 2.5 GHz broad bandwidth microwave bandpass filter at operating frequency of 10 GHz using HFSS

    Science.gov (United States)

    Jasim, S. E.; Jusoh, M. A.; Mahmud, S. N. S.; Zamani, A. H.

    2018-04-01

    Development of low losses, small size and broad bandwidth microwave bandpass filter operating at higher frequencies is an active area of research. This paper presents a new route used to design and simulate microwave bandpass filter using finite element modelling and realized broad bandwidth, low losses, small dimension microwave bandpass filter operating at 10 GHz frequency using return loss method. The filter circuit has been carried out using Computer Aid Design (CAD), Ansoft HFSS software and designed with four parallel couple line model and small dimension (10 × 10 mm2) using LaAlO3 substrate. The response of the microwave filter circuit showed high return loss -50 dB at operating frequency at 10.4 GHz and broad bandwidth of 2.5 GHz from 9.5 to 12 GHz. The results indicate the filter design and simulation using HFSS is reliable and have the opportunity to transfer from lab potential experiments to the industry.

  12. Experimental Verification of Plasmonic Cloaking at Microwave Frequencies with Metamaterials

    International Nuclear Information System (INIS)

    Edwards, Brian; Engheta, Nader; Alu, Andrea; Silveirinha, Mario G.

    2009-01-01

    Plasmonic cloaking is a scattering-cancellation technique based on the local negative polarizability of metamaterials. Here we report its first experimental realization and measurement at microwave frequencies. An array of metallic fins embedded in a high-permittivity fluid has been used to create a metamaterial plasmonic shell capable of cloaking a dielectric cylinder, yielding over 75% reduction of total scattering width.

  13. Dielectric properties of almond shells in the development of radio frequency and microwave pasteurization

    Science.gov (United States)

    To develop pasteurization treatments based on radio frequency (RF) or microwave energy, dielectric properties of almond shells were determined using an open-ended coaxial-probe with an impedance analyzer over a frequency range of 10 to 1800 MHz. Both the dielectric constant and loss factor of almond...

  14. Germination Response of MR 219 Rice Variety to Different Exposure Times and Periods of 2450 MHz Microwave Frequency

    Directory of Open Access Journals (Sweden)

    Daryush Talei

    2013-01-01

    Full Text Available Germination is a key process in plants' phenological cycles. Accelerating this process could lead to improvment of the seedling growth as well as the cultivation efficiency. To achieve this, the effect of microwave frequency on the germination of rice seeds was examined. The physiological feedbacks of the MR 219 rice variety in terms of seed germination rate (GR, germination percentage (GP, and mean germination time (MGT were analyzed by exposing its seeds to 2450 MHz of microwave frequency for one, four, seven, and ten hours. It was revealed that exposing the seeds to the microwave frequency for 10 hours resulted in the highest GP. This treatment led to 100% of germination after three days with a mean germination time of 2.1 days. Although the other exposure times of microwave frequency caused the moderate effects on germination with a GPa3 ranged from 93% to 98%, they failed to reduce the MGTa3. The results showed that ten-hour exposure times of microwave frequency for six days significantly facilitated and improved the germination indices (primary shoot and root length. Therefore, the technique is expected to benefit the improvement of rice seed germination considering its simplicity and efficacy in increasing the germination percentage and rate as well as the primary shoot and root length without causing any environmental toxicity.

  15. Soil moisture and temperature profile effects on microwave emission at low frequencies

    International Nuclear Information System (INIS)

    Raju, S.; Chanzy, A.; Wigneron, J.P.; Calvet, J.C.; Kerr, Y.; Laguerre, L.

    1995-01-01

    Soil moisture and temperature vertical profiles vary quickly during the day and may have a significant influence on the soil microwave emission. The objective of this work is to quantify such an influence and the consequences in soil moisture estimation from microwave radiometric information. The analysis is based on experimental data collected by the ground-based PORTOS radiometer at 1.4, 5.05, and 10.65 GHz and data simulated by a coherent model of microwave emission from layered media [Wilheit model (1978)]. In order to simulate diurnal variations of the brightness temperature (TB), the Wilheit model is coupled to a mechanistic model of heat and water flows in the soil. The Wilheit model is validated on experimental data and its performances for estimating TB are compared to those of a simpler approach based on a description of the soil media as a single layer (Fresnel model). When the depth of this single layer (hereafter referred to as the sampling depth) is determined to fit the experimental data, similar accuracy in TB estimation is found with both the Wilheit and Fresnel models. The soil microwave emission is found to be strongly affected by the diurnal variations of soil moisture and temperature profiles. Consequently, the TB sensitivity to soil moisture and temperature profiles has an influence on the estimation, from microwave observations, of the surface soil moisture in a surface layer with a fixed depth (05): the accuracy of θs retrievals and the optimal sampling depth depends both on the variation in soil moisture and temperature profile shape. (author)

  16. Microwave amplifier and active circuit design using the real frequency technique

    CERN Document Server

    Jarry, Pierre

    2016-01-01

    This book focuses on the authors' Real Frequency Technique (RFT) and its application to a wide variety of multi-stage microwave amplifiers and active filters, and passive equalizers for radar pulse shaping and antenna return loss applications. The first two chapters review the fundamentals of microwave amplifier design and provide a description of the RFT. Each subsequent chapter introduces a new type of amplifier or circuit design, reviews its design problems, and explains how the RFT can be adapted to solve these problems. The authors take a practical approach by summarizing the design steps and giving numerous examples of amplifier realizations and measured responses. Provides a complete description of the RFT as it is first used to design multistage lumped amplifiers using a progressive optimization of the equalizers, leading to a small umber of parameters to optimize simultaneously Presents modifications to the RFT to design trans-impedance microwave amplifiers that are used for photodiodes acti...

  17. Great microwave bursts and hard X-rays from solar flares

    International Nuclear Information System (INIS)

    Wiehl, H.J.; Batchelor, D.A.; Crannell, C.J.; Dennis, B.R.; Price, P.N.

    1983-06-01

    The microwave and hard X-ray charateristics of 13 solar flares that produced microwave fluxes greater than 500 Solar Flux Units were analyzed. These Great Microwave Bursts were observed in the frequency range from 3 to 35 GHz at Berne, and simultaneous hard X-ray observations were made in the energy range from 30 to 500 keV with the Hard X-Ray Burst Spectrometer on the Solar Maximum Mission spacecraft. The principal aim of this analysis is to determine whether or not the same distribution of energetic electrons can explain both emissions. Correlations were found between respective temporal characteristics and, for the first time, between microwave and hard X-ray spectral characteristics. A single-temperature and a multi-temperature model from the literature were tested for consistency with the coincident X-ray and microwave spectra at microwave burst maximum. Four events are inconsistent with both of the models tested, and neither of the models attempts to explain the high-frequency part of the microwave spectrum. A model in which the emissions above and below the peak frequency originate in two different parts of a diverging magnetic loop is proposed. With this model the entire microwave spectrum of all but one of the events is explained

  18. Microwave effects on NiMoS and CoMoS single-sheet catalysts.

    Science.gov (United States)

    Borges, I; Silva, Alexander M; Modesto-Costa, Lucas

    2018-05-04

    Single-sheet nanoclusters of MoS 2 , NiMoS or CoMoS are widely used in hydrodesulfurization (HDS) catalysis in the petroleum industry. In HDS reactions under microwave irradiation, experiments indirectly pointed out that for pristine MoS 2 reaction rates are accelerated because hot spots are generated on the catalyst bed. In this work, we investigated NiMoS and CoMoS isolated single-sheet substituted catalysts before and after thiophene adsorption focusing on quantifying the effect of microwave irradiation. For that purpose, density functional theory (DFT) molecular charge densities of each system were decomposed according to the distributed multipole analysis (DMA) of Stone. Site dipole values of each system were directly associated with a larger or smaller interaction with the microwave field according to a proposed general approach. We showed that microwave enhancement of HDS reaction rates can occur more efficiently in the CoMoS and NiMoS promoted clusters compared to pristine MoS 2 in the following order: CoMoS > NiMoS > MoS 2 . The atomic origin of the catalyst hot spots induced by microwaves was clearly established in the promoted clusters.

  19. High-Power Microwave Transmission and Mode Conversion Program

    Energy Technology Data Exchange (ETDEWEB)

    Vernon, Ronald J. [Univ. of Wisconsin, Madison, WI (United States)

    2015-08-14

    This is a final technical report for a long term project to develop improved designs and design tools for the microwave hardware and components associated with the DOE Plasma Fusion Program. We have developed basic theory, software, fabrication techniques, and low-power measurement techniques for the design of microwave hardware associated gyrotrons, microwave mode converters and high-power microwave transmission lines. Specifically, in this report we discuss our work on designing quasi-optical mode converters for single and multiple frequencies, a new method for the analysis of perturbed-wall waveguide mode converters, perturbed-wall launcher design for TE0n mode gyrotrons, quasi-optical traveling-wave resonator design for high-power testing of microwave components, and possible improvements to the HSX microwave transmission line.

  20. A semiconductor nanowire Josephson junction microwave laser

    Science.gov (United States)

    Cassidy, Maja; Uilhoorn, Willemijn; Kroll, James; de Jong, Damaz; van Woerkom, David; Nygard, Jesper; Krogstrup, Peter; Kouwenhoven, Leo

    We present measurements of microwave lasing from a single Al/InAs/Al nanowire Josephson junction strongly coupled to a high quality factor superconducting cavity. Application of a DC bias voltage to the Josephson junction results in photon emission into the cavity when the bias voltage is equal to a multiple of the cavity frequency. At large voltage biases, the strong non-linearity of the circuit allows for efficient down conversion of high frequency microwave photons down to multiple photons at the fundamental frequency of the cavity. In this regime, the emission linewidth narrows significantly below the bare cavity linewidth to 50%. The junction-cavity coupling and laser emission can be tuned rapidly via an external gate, making it suitable to be integrated into a scalable qubit architecture as a versatile source of coherent microwave radiation. This work has been supported by the Netherlands Organisation for Scientific Research (NWO/OCW), Foundation for Fundamental Research on Matter (FOM), European Research Council (ERC), and Microsoft Corporation Station Q.

  1. Connecting field ionization to photoionization via 17- and 36-GHz microwave fields

    International Nuclear Information System (INIS)

    Gurian, J. H.; Overstreet, K. R.; Gallagher, T. F.; Maeda, H.

    2010-01-01

    Here we present experimental results connecting field ionization to photoionization in Li Rydberg atoms obtained with 17- and 36-GHz microwave fields. At a low principal quantum number n, where the microwave frequency ω is much lower than the classical, or Kepler frequency, ω K =1/n 3 , microwave ionization occurs by field ionization, at E=1/9n 4 . When the microwave frequency exceeds the Kepler frequency, ω>1/n 3 , the field required for ionization is independent of n and given by E=2.4ω 5/3 , in agreement with dynamic localization models, which cross over to a Fermi's Golden Rule approach at the photoionization limit. A surprising aspect of our results is that when ω≅1/2n 2 , the one- and multiphoton ionization rates are similar, and even at the lowest microwave powers, all are 10 times lower than the perturbation theory rate calculated for single-photon ionization. Further, we show that when the Rydberg atoms are excited in the presence of the microwave field, the probability of an atom's being bound at the end of the microwave pulse passes smoothly across the limit. This microwave stimulated recombination to bound Rydberg states can be well described by a simple classical model. More generally, these results suggest that the problem of a Rydberg atom coupled to a high-frequency microwave field is similar to the problem of interchannel internal coupling in multilimit atoms, a problem well described by quantum defect theory.

  2. Swept frequency measurements of microwave antennas in feline and canine brain

    International Nuclear Information System (INIS)

    Salcman, M.; Neuberth, G.; Nudelman, R.W.; Ferraro, F.T.; Hartman, M.

    1986-01-01

    Interstitial microwave hyperthermia may prove to be an important therapy for malignant brain tumors. For safety and efficiency, the size and number of intracranial microwave antennas needs to be limited. Low power swept frequency measurements of VSWR were carried out in the brains of anesthetized cats and dogs utilizing stereotactically placed monopole antennas. The coupling efficiency of antennas at any frequency was degraded (VSWR>2:1) if a length of antenna less than 2h was inserted or if a plastic catheter was utilized. Such measurements indicate that (h) can be shortened 25% from the resonant length without seriously degrading antenna performance. The total length can be halved if a catheter with a high dielectric is used. High power tests (2-10w) of short antennas at 915 MHz in a ceramic catheter (e = 10) at 45-50 0 C produce thermal fields approximately 2 cm in diameter in normal brain. It should be possible to efficiently and safely heat human brain tumors of average size utilizing these antennas and catheters at 915 MHz

  3. Compensation of temperature frequency pushing in microwave resonator-meters on the basis VCO

    Directory of Open Access Journals (Sweden)

    Drobakhin O. O.

    2008-02-01

    Full Text Available It is shown that the influence of temperature oscillations on the error of measurements of parameters in the case of the application of microwave resonator meters on the basis of a voltage-controlled oscillator (VCO can be minimized by software using a special algorithm of VCO frequency setting correction. An algorithm of VCO frequency setting correction for triangle control voltage is proposed.

  4. Effect of microwave treatment on the luminescence properties of CdS and CdTe:Cl Single Crystals

    International Nuclear Information System (INIS)

    Red’ko, R. A.; Budzulyak, S. I.; Korbutyak, D. V.; Lotsko, A. P.; Vakhnyak, N. D.; Demchyna, L. A.; Kalytchuk, S. M.; Konakova, R. V.; Milenin, V. V.; Bykov, Yu. V.; Egorov, S. V.; Eremeev, A. G.

    2015-01-01

    The effect of microwave radiation on the luminescence properties of CdS and CdTe:Cl single crystals is studied. It is established that the exposure of these semiconductors to short-term (≤30 s) microwave radiation substantially modifies their impurity and defect structure. The mechanisms of transformation of the defect subsystem of II–VI single crystals upon microwave treatment are discussed. It is shown that the experimentally observed changes are defined by the nonthermal effects of microwave radiation at a power density of 7.5 W cm –2 ; at 90 W cm –2 , nonthermal effects are prevailing

  5. Filterless low-phase-noise frequency-quadrupled microwave generation based on a multimode optoelectronic oscillator

    Science.gov (United States)

    Teng, Yichao; Zhang, Pin; Zhang, Baofu; Chen, Yiwang

    2018-02-01

    A scheme to realize low-phase-noise frequency-quadrupled microwave generation without any filter is demonstrated. In this scheme, a multimode optoelectronic oscillator is mainly contributed by dual-parallel Mach-Zehnder modulators, fiber, photodetector, and microwave amplifier. The local source signal is modulated by a child MZM (MZMa), which is worked at maximum transmission point. Through properly adjusting the bias voltages of the other child MZM (MZMb) and the parent MZM (MZMc), optical carrier is effectively suppressed and second sidebands are retained, then the survived optical signal is fed back to the photodetector and MZMb to form an optoelectronic hybrid resonator and realize frequency-quadrupled signal generation. Due to the high Q-factor and mode selection effect of the optoelectronic hybrid resonator, compared with the source signal, the generated frequency-quadrupled signal has a lower phase noise. The approach has verified by experiments, and 18, 22, and 26 GHz frequency-quadrupled signal are generated by 4.5, 5.5, and 6.5 GHz local source signals. Compared with 4.5 GHz source signal, the phase noise of generated 18 GHz signal at 10 kHz frequency offset has 26.5 dB reduction.

  6. A New Microwave Shield Preparation for Super High Frequency Range: Occupational Approach to Radiation Protection.

    Science.gov (United States)

    Zaroushani, Vida; Khavanin, Ali; Jonidi Jafari, Ahmad; Mortazavi, Seyed Bagher

    2016-01-01

    Widespread use of X-band frequency (a part of the super high frequency microwave) in the various workplaces would contribute to occupational exposure with potential of adverse health effects.  According to limited study on microwave shielding for the workplace, this study tried to prepare a new microwave shielding for this purpose. We used EI-403 epoxy thermosetting resin as a matrix and nickel oxide nanoparticle with the diameter of 15-35 nm as filler. The Epoxy/ Nickel oxide composites with 5, 7, 9 and 11 wt% were made in three different thicknesses (2, 4 and 6 mm). According to transmission / reflection method, shielding effectiveness (SE) in the X-band frequency range (8-12.5 GHz) was measured by scattering parameters directly given by the 2-port Vector Network Analyzer. The fabricated composites characterized by X-ray Diffraction and Field Emission Scanning Electron Microscope. The best average of shielding effectiveness in each thickness of fabricated composites obtained by 11%-2 mm, 7%-4 mm and 7%-6 mm composites with SE values of 46.80%, 66.72% and 64.52%, respectively. In addition, the 11%-6 mm, 5%-6 mm and 11%-4 mm-fabricated composites were able to attenuate extremely the incident microwave energy at 8.01, 8.51 and 8.53 GHz by SE of 84.14%, 83.57 and 81.30%, respectively. The 7%-4mm composite could be introduced as a suitable alternative microwave shield in radiation protection topics in order to its proper SE and other preferable properties such as low cost and weight, resistance to corrosion etc. It is necessary to develop and investigate the efficacy of the fabricated composites in the fields by future studies.

  7. Microwave-assisted headspace single-drop microextration of chlorobenzenes from water samples

    Energy Technology Data Exchange (ETDEWEB)

    Vidal, Lorena [Departamento de Quimica Analitica, Nutricion y Bromatologia, Universidad de Alicante, P.O. Box 99, E-03080 Alicante (Spain); Domini, Claudia E. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Universidad de Alicante, P.O. Box 99, E-03080 Alicante (Spain); Grane, Nuria [Departamento de Quimica Analitica, Nutricion y Bromatologia, Universidad de Alicante, P.O. Box 99, E-03080 Alicante (Spain); Psillakis, Elefteria [Department of Environmental Engineering, Technical University of Crete, Polytechneioupolis, GR-73100 Chania, Crete (Greece); Canals, Antonio [Departamento de Quimica Analitica, Nutricion y Bromatologia, Universidad de Alicante, P.O. Box 99, E-03080 Alicante (Spain)]. E-mail: a.canals@ua.es

    2007-05-29

    A one-step and in-situ sample preparation method used for quantifying chlorobenzene compounds in water samples has been developed, coupling microwave and headspace single-drop microextraction (MW-HS-SDME). The chlorobenzenes in water samples were extracted directly onto an ionic liquid single-drop in headspace mode under the aid of microwave radiation. For optimization, a Plackett-Burman screening design was initially used, followed by a mixed-level factorial design. The factors considered were: drop volume, aqueous sample volume, stirring speed, ionic strength, extraction time, ionic liquid type, microwave power and length of the Y-shaped glass-tube. The optimum experimental conditions found from this statistical evaluation were: a 5 {mu}L microdrop of 1-hexyl-3-methylimidazolium hexafluorophosphate exposed for 20 min to the headspace of a 30 mL aqueous sample, irradiated by microwaves at 200 W and placed in a 50 mL spherical flask connected to a 25 cm Y-shaped glass-tube. Under the optimised experimental conditions, the response of a high performance liquid chromatographic system was found to be linear over the range studied and with correlation coefficients ranging between 0.9995 and 0.9999. The method showed a good level of repeatability, with relative standard deviations varying between 2.3 and 8.3% (n = 5). Detection limits were found in the low {mu}g L{sup -1} range varying between 0.016 and 0.039 {mu}g L{sup -1}. Overall, the performance of the proposed method demonstrated the favourable effect of microwave sample irradiation upon HS-SDME. Finally, recovery studies from different types of environmental water samples revealed that matrix had little effect upon extraction.

  8. Microwave-assisted headspace single-drop microextration of chlorobenzenes from water samples

    International Nuclear Information System (INIS)

    Vidal, Lorena; Domini, Claudia E.; Grane, Nuria; Psillakis, Elefteria; Canals, Antonio

    2007-01-01

    A one-step and in-situ sample preparation method used for quantifying chlorobenzene compounds in water samples has been developed, coupling microwave and headspace single-drop microextraction (MW-HS-SDME). The chlorobenzenes in water samples were extracted directly onto an ionic liquid single-drop in headspace mode under the aid of microwave radiation. For optimization, a Plackett-Burman screening design was initially used, followed by a mixed-level factorial design. The factors considered were: drop volume, aqueous sample volume, stirring speed, ionic strength, extraction time, ionic liquid type, microwave power and length of the Y-shaped glass-tube. The optimum experimental conditions found from this statistical evaluation were: a 5 μL microdrop of 1-hexyl-3-methylimidazolium hexafluorophosphate exposed for 20 min to the headspace of a 30 mL aqueous sample, irradiated by microwaves at 200 W and placed in a 50 mL spherical flask connected to a 25 cm Y-shaped glass-tube. Under the optimised experimental conditions, the response of a high performance liquid chromatographic system was found to be linear over the range studied and with correlation coefficients ranging between 0.9995 and 0.9999. The method showed a good level of repeatability, with relative standard deviations varying between 2.3 and 8.3% (n = 5). Detection limits were found in the low μg L -1 range varying between 0.016 and 0.039 μg L -1 . Overall, the performance of the proposed method demonstrated the favourable effect of microwave sample irradiation upon HS-SDME. Finally, recovery studies from different types of environmental water samples revealed that matrix had little effect upon extraction

  9. Microwave integrated circuits for space applications

    Science.gov (United States)

    Leonard, Regis F.; Romanofsky, Robert R.

    1991-01-01

    Monolithic microwave integrated circuits (MMIC), which incorporate all the elements of a microwave circuit on a single semiconductor substrate, offer the potential for drastic reductions in circuit weight and volume and increased reliability, all of which make many new concepts in electronic circuitry for space applications feasible, including phased array antennas. NASA has undertaken an extensive program aimed at development of MMICs for space applications. The first such circuits targeted for development were an extension of work in hybrid (discrete component) technology in support of the Advanced Communication Technology Satellite (ACTS). It focused on power amplifiers, receivers, and switches at ACTS frequencies. More recent work, however, focused on frequencies appropriate for other NASA programs and emphasizes advanced materials in an effort to enhance efficiency, power handling capability, and frequency of operation or noise figure to meet the requirements of space systems.

  10. Spin dynamics in the single molecule magnet Ni4 under microwave irradiation

    Science.gov (United States)

    de Loubens, Gregoire

    2009-03-01

    Quantum mechanical effects such as quantum tunneling of magnetization (QTM) and quantum phase interference have been intensively studied in single molecule magnets (SMMs). These materials have also been suggested as candidates for qubits and are promising for molecular spintronics. Understanding decoherence and energy relaxation mechanisms in SMMs is then both of fundamental interest and important for the use of SMMs in applications. Interestingly, the single-spin relaxation rate due to direct process of a SMM embedded in an elastic medium can be derived without any unknown coupling constant [1]. Moreover, nontrivial relaxation mechanisms are expected from collective effects in SMM single crystals, such as phonon superradiance or phonon bottleneck. In order to investigate the spin relaxation between the two lowest lying spin-states of the S=4 single molecule magnet Ni4, we have developed an integrated sensor that combines a microstrip resonator and micro-Hall effect magnetometer on a chip [2]. This sensor enables both real time studies of magnetization dynamics under pulse irradiation as well as simultaneous measurements of the absorbed power and magnetization changes under continuous microwave irradiation. The latter technique permits the study of small deviations from equilibrium under steady state conditions, i.e. small amplitude cw microwave irradiation. This has been used to determine the energy relaxation rate of a Ni4 single crystal as a function of temperature at two frequencies, 10 and 27.8 GHz. A strong temperature dependence is observed below 1.5 K, which is not consistent with a direct spin-phonon relaxation process. The data instead suggest that the spin relaxation is dominated by a phonon bottleneck at low temperatures and occurs by an Orbach process involving excited spin-levels at higher temperatures [3]. Experimental results will be compared with detailed calculations of the relaxation rate using the density matrix equation with the relaxation

  11. Plasma relativistic microwave electronics

    International Nuclear Information System (INIS)

    Kuzelev, M.V.; Loza, O.T.; Rukhadze, A.A.; Strelkov, P.S.; Shkvarunets, A.G.

    2001-01-01

    One formulated the principles of plasma relativistic microwave electronics based on the induced Cherenkov radiation of electromagnetic waves at interaction of a relativistic electron beam with plasma. One developed the theory of plasma relativistic generators and accelerators of microwave radiation, designed and studied the prototypes of such devices. One studied theoretically the mechanisms of radiation, calculated the efficiencies and the frequency spectra of plasma relativistic microwave generators and accelerators. The theory findings are proved by the experiment: intensity of the designed sources of microwave radiation is equal to 500 μW, the frequency of microwave radiation is increased by 7 times (from 4 up to 28 GHz), the width of radiation frequency band may vary from several up to 100%. The designed sources of microwave radiation are no else compared in the electronics [ru

  12. Microwave moisture meter for in-shell almonds.

    Science.gov (United States)

    Determining almond kernel moisture content while still in the shell is important for both almond growers and processors. A dielectric method was developed for almond kernel moisture determination from dielectric measurements on in-shell almonds at a single microwave frequency. A sample holder was fi...

  13. Single frequency semiconductor lasers

    CERN Document Server

    Fang, Zujie; Chen, Gaoting; Qu, Ronghui

    2017-01-01

    This book systematically introduces the single frequency semiconductor laser, which is widely used in many vital advanced technologies, such as the laser cooling of atoms and atomic clock, high-precision measurements and spectroscopy, coherent optical communications, and advanced optical sensors. It presents both the fundamentals and characteristics of semiconductor lasers, including basic F-P structure and monolithic integrated structures; interprets laser noises and their measurements; and explains mechanisms and technologies relating to the main aspects of single frequency lasers, including external cavity lasers, frequency stabilization technologies, frequency sweeping, optical phase locked loops, and so on. It paints a clear, physical picture of related technologies and reviews new developments in the field as well. It will be a useful reference to graduate students, researchers, and engineers in the field.

  14. Cosmic microwave background distortions at high frequencies

    International Nuclear Information System (INIS)

    Peter, W.; Peratt, A.L.

    1988-01-01

    The authors analyze the deviation of the cosmic background radiation spectrum from the 2.76+-0.02 0 Κ blackbody curve. If the cosmic background radiation is due to absorption and re-emission of synchrotron radiation from galactic-width current filaments, higher-order synchrotron modes are less thermalized than lower-order modes, causing a distortion of the blackbody curve at higher frequencies. New observations of the microwave background spectrum at short wavelengths should provide an indication of the number of synchrotron modes thermalized in this process. The deviation of the spectrum from that of a perfect blackbody can thus be correlated with astronomical observations such as filament temperatures and electron energies. The results are discussed and compared with the theoretical predictions of other models which assume the presence of intergalactic superconducting cosmic strings

  15. Decomposition of methane hydrate for hydrogen production using microwave and radio frequency in-liquid plasma methods

    International Nuclear Information System (INIS)

    Rahim, Ismail; Nomura, Shinfuku; Mukasa, Shinobu; Toyota, Hiromichi

    2015-01-01

    This research involves two in-liquid plasma methods of methane hydrate decomposition, one using radio frequency wave (RF) irradiation and the other microwave radiation (MW). The ultimate goal of this research is to develop a practical process for decomposition of methane hydrate directly at the subsea site for fuel gas production. The mechanism for methane hydrate decomposition begins with the dissociation process of methane hydrate formed by CH_4 and water. The process continues with the simultaneously occurring steam methane reforming process and methane cracking reaction, during which the methane hydrate is decomposed releasing CH_4 into H_2, CO and other by-products. It was found that methane hydrate can be decomposed with a faster rate of CH_4 release using microwave irradiation over that using radio frequency irradiation. However, the radio frequency plasma method produces hydrogen with a purity of 63.1% and a CH conversion ratio of 99.1%, which is higher than using microwave plasma method which produces hydrogen with a purity of 42.1% and CH_4 conversion ratio of 85.5%. - Highlights: • The decomposition of methane hydrate is proposed using plasma in-liquid method. • Synthetic methane hydrate is used as the sample for decomposition in plasma. • Hydrogen can be produced from decomposition of methane hydrate. • Hydrogen purity is higher when using radio frequency stimulation.

  16. Microwave multiplex readout for superconducting sensors

    Energy Technology Data Exchange (ETDEWEB)

    Ferri, E., E-mail: elena.ferri@mib.infn.it [Università Milano-Bicocca, Milan (Italy); INFN Sez. di Milano-Bicocca, Milan (Italy); Becker, D.; Bennett, D. [NIST, Boulder, CO (United States); Faverzani, M. [Università Milano-Bicocca, Milan (Italy); INFN Sez. di Milano-Bicocca, Milan (Italy); Fowler, J.; Gard, J. [NIST, Boulder, CO (United States); Giachero, A. [Università Milano-Bicocca, Milan (Italy); INFN Sez. di Milano-Bicocca, Milan (Italy); Hays-Wehle, J.; Hilton, G. [NIST, Boulder, CO (United States); Maino, M. [Università Milano-Bicocca, Milan (Italy); INFN Sez. di Milano-Bicocca, Milan (Italy); Mates, J. [NIST, Boulder, CO (United States); Puiu, A.; Nucciotti, A. [Università Milano-Bicocca, Milan (Italy); INFN Sez. di Milano-Bicocca, Milan (Italy); Reintsema, C.; Schmidt, D.; Swetz, D.; Ullom, J.; Vale, L. [NIST, Boulder, CO (United States)

    2016-07-11

    The absolute neutrino mass scale is still an outstanding challenge in both particle physics and cosmology. The calorimetric measurement of the energy released in a nuclear beta decay is a powerful tool to determine the effective electron-neutrino mass. In the last years, the progress on low temperature detector technologies has allowed to design large scale experiments aiming at pushing down the sensitivity on the neutrino mass below 1 eV. Even with outstanding performances in both energy (~ eV on keV) and time resolution (~ 1 μs) on the single channel, a large number of detectors working in parallel is required to reach a sub-eV sensitivity. Microwave frequency domain readout is the best available technique to readout large array of low temperature detectors, such as Transition Edge Sensors (TESs) or Microwave Kinetic Inductance Detectors (MKIDs). In this way a multiplex factor of the order of thousands can be reached, limited only by the bandwidth of the available commercial fast digitizers. This microwave multiplexing system will be used to readout the HOLMES detectors, an array of 1000 microcalorimeters based on TES sensors in which the {sup 163}Ho will be implanted. HOLMES is a new experiment for measuring the electron neutrino mass by means of the electron capture (EC) decay of {sup 163}Ho. We present here the microwave frequency multiplex which will be used in the HOLMES experiment and the microwave frequency multiplex used to readout the MKID detectors developed in Milan as well.

  17. Single-scattering properties of ice particles in the microwave regime: Temperature effect on the ice refractive index with implications in remote sensing

    International Nuclear Information System (INIS)

    Ding, Jiachen; Bi, Lei; Yang, Ping; Kattawar, George W.; Weng, Fuzhong; Liu, Quanhua; Greenwald, Thomas

    2017-01-01

    An ice crystal single-scattering property database is developed in the microwave spectral region (1 to 874 GHz) to provide the scattering, absorption, and polarization properties of 12 ice crystal habits (10-plate aggregate, 5-plate aggregate, 8-column aggregate, solid hexagonal column, hollow hexagonal column, hexagonal plate, solid bullet rosette, hollow bullet rosette, droxtal, oblate spheroid, prolate spheroid, and sphere) with particle maximum dimensions from 2 µm to 10 mm. For each habit, four temperatures (160, 200, 230, and 270 K) are selected to account for temperature dependence of the ice refractive index. The microphysical and scattering properties include projected area, volume, extinction efficiency, single-scattering albedo, asymmetry factor, and six independent nonzero phase matrix elements (i.e. P_1_1, P_1_2, P_2_2, P_3_3, P_4_3 and P_4_4). The scattering properties are computed by the Invariant Imbedding T-Matrix (II-TM) method and the Improved Geometric Optics Method (IGOM). The computation results show that the temperature dependence of the ice single-scattering properties in the microwave region is significant, particularly at high frequencies. Potential active and passive remote sensing applications of the database are illustrated through radar reflectivity and radiative transfer calculations. For cloud radar applications, ignoring temperature dependence has little effect on ice water content measurements. For passive microwave remote sensing, ignoring temperature dependence may lead to brightness temperature biases up to 5 K in the case of a large ice water path. - Highlights: • Single-scattering properties of ice crystals are computed from 1 to 874 GHz. • Ice refractive index temperature dependence is considered at 160, 200, 230 and 270 K. • Potential applications of the database to microwave remote sensing are illustrated. • Ignoring temperature dependence of ice refractive index can lead to 5 K difference in IWP retrieval

  18. High speed and high resolution interrogation of a fiber Bragg grating sensor based on microwave photonic filtering and chirped microwave pulse compression.

    Science.gov (United States)

    Xu, Ou; Zhang, Jiejun; Yao, Jianping

    2016-11-01

    High speed and high resolution interrogation of a fiber Bragg grating (FBG) sensor based on microwave photonic filtering and chirped microwave pulse compression is proposed and experimentally demonstrated. In the proposed sensor, a broadband linearly chirped microwave waveform (LCMW) is applied to a single-passband microwave photonic filter (MPF) which is implemented based on phase modulation and phase modulation to intensity modulation conversion using a phase modulator (PM) and a phase-shifted FBG (PS-FBG). Since the center frequency of the MPF is a function of the central wavelength of the PS-FBG, when the PS-FBG experiences a strain or temperature change, the wavelength is shifted, which leads to the change in the center frequency of the MPF. At the output of the MPF, a filtered chirped waveform with the center frequency corresponding to the applied strain or temperature is obtained. By compressing the filtered LCMW in a digital signal processor, the resolution is improved. The proposed interrogation technique is experimentally demonstrated. The experimental results show that interrogation sensitivity and resolution as high as 1.25 ns/με and 0.8 με are achieved.

  19. Comprehensive high frequency electron paramagnetic resonance studies of single molecule magnets

    Science.gov (United States)

    Lawrence, Jonathan D.

    This dissertation presents research on a number of single molecule magnet (SMM) compounds conducted using high frequency, low temperature magnetic resonance spectroscopy of single crystals. By developing a new technique that incorporated other devices such as a piezoelectric transducer or Hall magnetometer with our high frequency microwaves, we were able to collect unique measurements on SMMs. This class of materials, which possess a negative, axial anisotropy barrier, exhibit unique magnetic properties such as quantum tunneling of a large magnetic moment vector. There are a number of spin Hamiltonians used to model these systems, the most common one being the giant spin approximation. Work done on two nickel systems with identical symmetry and microenvironments indicates that this model can contain terms that lack any physical significance. In this case, one must turn to a coupled single ion approach to model the system. This provides information on the nature of the exchange interactions between the constituent ions of the molecule. Additional studies on two similar cobalt systems show that, for these compounds, one must use a coupled single ion approach since the assumptions of the giant spin model are no longer valid. Finally, we conducted a collection of studies on the most famous SMM, Mn12Ac. Three different techniques were used to study magnetization dynamics in this system: stand-alone HFEPR in two different magnetization relaxation regimes, HFEPR combined with magnetometry, and HFEPR combined with surface acoustic waves. All of this research gives insight into the relaxation mechanisms in Mn12Ac.

  20. Entanglement transfer from microwaves to diamond NV centers

    Science.gov (United States)

    Gomez, Angela V.; Rodriguez, Ferney J.; Quiroga, Luis

    2014-03-01

    Strong candidates to create quantum entangled states in solid-state environments are the nitrogen-vacancy (NV) defect centers in diamond. By the combination of radiation from different wavelength (optical, microwave and radio-frequency), several protocols have been proposed to create entangled states of different NVs. Recently, experimental sources of non-classical microwave radiation have been successfully realized. Here, we consider the entanglement transfer from spatially separated two-mode microwave squeezed (entangled) photons to a pair of NV centers by exploiting the fact that the spin triplet ground state of a NV has a natural splitting with a frequency on the order of GHz (microwave range). We first demonstrate that the transfer process in the simplest case of a single pair of spatially separated NVs is feasible. Moreover, we proceed to extend the previous results to more realistic scenarios where 13C nuclear spin baths surrounding each NV are included, quantifying the degradation of the entanglement transfer by the dephasing/dissipation effects produced by the nuclear baths. Finally, we address the issue of assessing the possibility of entanglement transfer from the squeezed microwave light to two nuclear spins closely linked to different NV center electrons. Facultad de Ciencias Uniandes.

  1. Wideband Monolithic Microwave Integrated Circuit Frequency Converters with GaAs mHEMT Technology

    DEFF Research Database (Denmark)

    Krozer, Viktor; Johansen, Tom Keinicke; Djurhuus, Torsten

    2005-01-01

    We present monolithic microwave integrated circuit (MMIC) frequency converter, which can be used for up and down conversion, due to the large RF and IF port bandwidth. The MMIC converters are based on commercially available GaAs mHEMT technology and are comprised of a Gilbert mixer cell core...

  2. Microwave-induced electrophilic addition of single-walled carbon nanotubes with alkylhalides

    Energy Technology Data Exchange (ETDEWEB)

    Xu Yang [Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062 (China); Wang Xianbao [Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062 (China); Ministry-of-Education, Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062 (China)], E-mail: wxb@hubu.edu.cn; Tian Rong; Li Shaoqing; Wan Li; Li Mingjian; You Haijun; Li Qin [Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062 (China); Wang Shimin [Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062 (China); Ministry-of-Education, Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062 (China)

    2008-02-15

    We report the microwave-induced electrophilic addition of single-walled carbon nanotubes (SWNTs) with alkylhalides using Lewis acid as a catalyst followed by hydrolysis. The reaction results in the attachment of alkyl and hydroxyl groups to the surface of the nanotubes. This rapid and high-energy microwave radiation is found to be highly efficient for this reaction, which only needs as low as several minutes. The resulting nanotubes were characterized with FTIR, UV-vis-NIR, Raman, TGA, TEM and AFM. It demonstrates that iodo-alkanes show higher reaction activity with SWNTs than chloro- and bromo-alkanes.

  3. Microwave frequency sensor for detection of biological cells in microfluidic channels.

    Science.gov (United States)

    Nikolic-Jaric, M; Romanuik, S F; Ferrier, G A; Bridges, G E; Butler, M; Sunley, K; Thomson, D J; Freeman, M R

    2009-08-12

    We present details of an apparatus for capacitive detection of biomaterials in microfluidic channels operating at microwave frequencies where dielectric effects due to interfacial polarization are minimal. A circuit model is presented, which can be used to adapt this detection system for use in other microfluidic applications and to identify ones where it would not be suitable. The detection system is based on a microwave coupled transmission line resonator integrated into an interferometer. At 1.5 GHz the system is capable of detecting changes in capacitance of 650 zF with a 50 Hz bandwidth. This system is well suited to the detection of biomaterials in a variety of suspending fluids, including phosphate-buffered saline. Applications involving both model particles (polystyrene microspheres) and living cells-baker's yeast (Saccharomyces cerevisiae) and Chinese hamster ovary cells-are presented.

  4. A microwave powered sensor assembly for microwave ovens

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to a microwave powered sensor assembly for micro- wave ovens. The microwave powered sensor assembly comprises a microwave antenna for generating an RF antenna signal in response to microwave radiation at a predetermined excitation frequency. A dc power supply circuit...... of the microwave powered sensor assembly is operatively coupled to the RF antenna signal for extracting energy from the RF antenna signal and produce a power supply voltage. A sensor is connected to the power supply voltage and configured to measure a physical or chemical property of a food item under heating...... in a microwave oven chamber....

  5. The Microwave Properties of Simulated Melting Precipitation Particles: Sensitivity to Initial Melting

    Science.gov (United States)

    Johnson, B. T.; Olson, W. S.; Skofronick-Jackson, G.

    2016-01-01

    A simplified approach is presented for assessing the microwave response to the initial melting of realistically shaped ice particles. This paper is divided into two parts: (1) a description of the Single Particle Melting Model (SPMM), a heuristic melting simulation for ice-phase precipitation particles of any shape or size (SPMM is applied to two simulated aggregate snow particles, simulating melting up to 0.15 melt fraction by mass), and (2) the computation of the single-particle microwave scattering and extinction properties of these hydrometeors, using the discrete dipole approximation (via DDSCAT), at the following selected frequencies: 13.4, 35.6, and 94.0GHz for radar applications and 89, 165.0, and 183.31GHz for radiometer applications. These selected frequencies are consistent with current microwave remote-sensing platforms, such as CloudSat and the Global Precipitation Measurement (GPM) mission. Comparisons with calculations using variable-density spheres indicate significant deviations in scattering and extinction properties throughout the initial range of melting (liquid volume fractions less than 0.15). Integration of the single-particle properties over an exponential particle size distribution provides additional insight into idealized radar reflectivity and passive microwave brightness temperature sensitivity to variations in size/mass, shape, melt fraction, and particle orientation.

  6. A microwave exciter for Cs frequency standards based on a sapphire-loaded cavity oscillator.

    Science.gov (United States)

    Koga, Y; McNeilage, C; Searls, J H; Ohshima, S

    2001-01-01

    A low noise and highly stable microwave exciter system has been built for Cs atomic frequency standards using a tunable sapphire-loaded cavity oscillator (SLCO), which works at room temperature. This paper discusses the successful implementation of a control system for locking the SLCO to a long-term reference signal and reports an upper limit of the achieved frequency tracking error 6 x 10(-15) at tau = 1 s.

  7. Role of Radio Frequency and Microwaves in Magnetic Fusion Plasma Research

    Directory of Open Access Journals (Sweden)

    Hyeon K. Park

    2017-10-01

    Full Text Available The role of electromagnetic (EM waves in magnetic fusion plasma—ranging from radio frequency (RF to microwaves—has been extremely important, and understanding of EM wave propagation and related technology in this field has significantly advanced magnetic fusion plasma research. Auxiliary heating and current drive systems, aided by various forms of high-power RF and microwave sources, have contributed to achieving the required steady-state operation of plasmas with high temperatures (i.e., up to approximately 10 keV; 1 eV = 10000 K that are suitable for future fusion reactors. Here, various resonance values and cut-off characteristics of wave propagation in plasmas with a nonuniform magnetic field are used to optimize the efficiency of heating and current drive systems. In diagnostic applications, passive emissions and active sources in this frequency range are used to measure plasma parameters and dynamics; in particular, measurements of electron cyclotron emissions (ECEs provide profile information regarding electron temperature. Recent developments in state-of-the-art 2D microwave imaging systems that measure fluctuations in electron temperature and density are largely based on ECE. The scattering process, phase delays, reflection/diffraction, and the polarization of actively launched EM waves provide us with the physics of magnetohydrodynamic instabilities and transport physics.

  8. Excitation of hypersonic acoustic waves in diamond-based piezoelectric layered structure on the microwave frequencies up to 20GHz.

    Science.gov (United States)

    Sorokin, B P; Kvashnin, G M; Novoselov, A S; Bormashov, V S; Golovanov, A V; Burkov, S I; Blank, V D

    2017-07-01

    First ultrahigh frequency (UHF) investigation of quality factor Q for the piezoelectric layered structure «Al/(001)AlN/Mo/(100) diamond» has been executed in a broad frequency band from 1 up to 20GHz. The record-breaking Q·f quality parameter up to 2.7·10 14 Hz has been obtained close to 20GHz. Frequency dependence of the form factor m correlated with quality factor has been analyzed by means of computer simulation, and non-monotonic frequency dependence can be explained by proper features of thin-film piezoelectric transducer (TFPT). Excluding the minimal Q magnitudes measured at the frequency points associated with minimal TFPT effectiveness, one can prove a rule of Qf∼f observed for diamond on the frequencies above 1GHz and defined by Landau-Rumer's acoustic attenuation mechanism. Synthetic IIa-type diamond single crystal as a substrate material for High-overtone Bulk Acoustic Resonator (HBAR) possesses some excellent acoustic properties in a wide microwave band and can be successfully applied for design of acoustoelectronic devices, especially the ones operating at a far UHF band. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Phase-coded microwave signal generation based on a single electro-optical modulator and its application in accurate distance measurement.

    Science.gov (United States)

    Zhang, Fangzheng; Ge, Xiaozhong; Gao, Bindong; Pan, Shilong

    2015-08-24

    A novel scheme for photonic generation of a phase-coded microwave signal is proposed and its application in one-dimension distance measurement is demonstrated. The proposed signal generator has a simple and compact structure based on a single dual-polarization modulator. Besides, the generated phase-coded signal is stable and free from the DC and low-frequency backgrounds. An experiment is carried out. A 2 Gb/s phase-coded signal at 20 GHz is successfully generated, and the recovered phase information agrees well with the input 13-bit Barker code. To further investigate the performance of the proposed signal generator, its application in one-dimension distance measurement is demonstrated. The measurement accuracy is less than 1.7 centimeters within a measurement range of ~2 meters. The experimental results can verify the feasibility of the proposed phase-coded microwave signal generator and also provide strong evidence to support its practical applications.

  10. Near-Field Microwave Magnetic Nanoscopy of Superconducting Radio Frequency Cavity Materials

    OpenAIRE

    Tai, Tamin; Ghamsari, Behnood G.; Bieler, Thomas R.; Tan, Teng; Xi, X. X.; Anlage, Steven M.

    2013-01-01

    A localized measurement of the RF critical field on superconducting radio frequency (SRF) cavity materials is a key step to identify specific defects that produce quenches of SRF cavities. Two new measurements are performed to demonstrate these capabilities with a novel near-field scanning probe microwave microscope. The first is a third harmonic nonlinear measurement on a high Residual- Resistance-Ratio bulk Nb sample showing strong localized nonlinear response for the first time, with surfa...

  11. Detection of On-Chip Generated Weak Microwave Radiation Using Superconducting Normal-Metal SET

    Directory of Open Access Journals (Sweden)

    Behdad Jalali-Jafari

    2016-01-01

    Full Text Available The present work addresses quantum interaction phenomena of microwave radiation with a single-electron tunneling system. For this study, an integrated circuit is implemented, combining on the same chip a Josephson junction (Al/AlO x /Al oscillator and a single-electron transistor (SET with the superconducting island (Al and normal-conducting leads (AuPd. The transistor is demonstrated to operate as a very sensitive photon detector, sensing down to a few tens of photons per second in the microwave frequency range around f ∼ 100 GHz. On the other hand, the Josephson oscillator, realized as a two-junction SQUID and coupled to the detector via a coplanar transmission line (Al, is shown to provide a tunable source of microwave radiation: controllable variations in power or in frequency were accompanied by significant changes in the detector output, when applying magnetic flux or adjusting the voltage across the SQUID, respectively. It was also shown that the effect of substrate-mediated phonons, generated by our microwave source, on the detector output was negligibly small.

  12. Fully tunable 360° microwave photonic phase shifter based on a single semiconductor optical amplifier.

    Science.gov (United States)

    Sancho, Juan; Lloret, Juan; Gasulla, Ivana; Sales, Salvador; Capmany, José

    2011-08-29

    A fully tunable microwave photonic phase shifter involving a single semiconductor optical amplifier (SOA) is proposed and demonstrated. 360° microwave phase shift has been achieved by tuning the carrier wavelength and the optical input power injected in an SOA while properly profiting from the dispersion feature of a conveniently designed notch filter. It is shown that the optical filter can be advantageously employed to switch between positive and negative microwave phase shifts. Numerical calculations corroborate the experimental results showing an excellent agreement.

  13. New calibration algorithms for dielectric-based microwave moisture sensors

    Science.gov (United States)

    New calibration algorithms for determining moisture content in granular and particulate materials from measurement of the dielectric properties at a single microwave frequency are proposed. The algorithms are based on identifying empirically correlations between the dielectric properties and the par...

  14. 21 CFR 179.30 - Radiofrequency radiation for the heating of food, including microwave frequencies.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Radiofrequency radiation for the heating of food... PRODUCTION, PROCESSING AND HANDLING OF FOOD Radiation and Radiation Sources § 179.30 Radiofrequency radiation for the heating of food, including microwave frequencies. Radiofrequency radiation, including...

  15. Microwave amplification based on quasiparticle SIS up and down frequency converters

    Directory of Open Access Journals (Sweden)

    T. Kojima

    2018-02-01

    Full Text Available Heterodyne instruments have recently attained quantum-limited low-noise performance, particularly in radio astronomy, but it is difficult to develop large heterodyne arrays such as a modern radio camera using cryogenic sensitive detectors based on microwave kinetic inductance detectors, transition edge sensors, etc. In the realization of the heterodyne array, the reduction of power dissipation for semiconductor-based amplifiers remains a major challenge. Alternatively, superconducting parametric amplifiers still seem to have several barriers to application, especially in terms of operating temperature. Here, we show a novel concept of microwave amplification based on up and down frequency-conversion processes using quasiparticle superconductor-insulator-superconductor (SIS tunnel junctions. We demonstrate positive gain using a proof-of-concept test module, which operates with a power dissipation of several μW at a bath temperature of 4 K. The performance of the module suggests great potential for application in large arrays.

  16. Implications of Microwave Holography Using Minimum Required Frequency Samples for Weakly- and Strongly-Scattering Indications

    Science.gov (United States)

    Fallahpour, M.; Case, J. T.; Kharkovsky, S.; Zoughi, R.

    2010-01-01

    Microwave imaging techniques, an integral component of nondestructive testing and evaluation (NDTE), have received significant attention in the past decade. These techniques have included the implementation of synthetic aperture focusing (SAF) algorithms for obtaining high spatial resolution images. The next important step in these developments is the implementation of 3-D holographic imaging algorithms. These are well-known wideband imaging technique requiring a swept-frequency (i.e., wideband), which unlike SAF that is a single frequency technique, are not easily performed on a real-time basis. This is due to the fact that a significant number of data points (in the frequency domain) must be obtained within the frequency band of interest. This not only makes for a complex imaging system design, it also significantly increases the image-production time. Consequently in an attempt to reduce the measurement time and system complexity, an investigation was conducted to determine the minimum required number of frequency samples needed to image a specific object while preserving a desired maximum measurement range and range resolution. To this end the 3-D holographic algorithm was modified to use properlyinterpolated frequency data. Measurements of the complex reflection coefficient for several samples were conducted using a swept-frequency approach. Subsequently, holographical images were generated using data containing a relatively large number of frequency samples and were compared with images generated by the reduced data set data. Quantitative metrics such as average, contrast, and signal-to-noise ratio were used to evaluate the quality of images generated using reduced data sets. Furthermore, this approach was applied to both weakly- and strongly-scattering indications. This paper presents the methods used and the results of this investigation.

  17. Recommended safety procedures for the installation and use of radiofrequency and microwave devices in the frequency range 10 MHz-300 GHz

    International Nuclear Information System (INIS)

    1979-02-01

    Studies of possible hazards to human health from exposure to radio frequency and microwave radiation show that there is a need for controls. Exposure to high levels of radio frequency and microwave radiation over prolonged periods can cause adverse health effects. The type and extent of injury depend not only on the intensity (strength) of the field and the exposure duration but also on various other factors such as the frequency of the radiation, type of modulation, polarization, and distance from the source. (auth)

  18. Measurement of high-power microwave pulse under intense ...

    Indian Academy of Sciences (India)

    Abstract. KALI-1000 pulse power system has been used to generate single pulse nanosecond duration high-power microwaves (HPM) from a virtual cathode oscillator. (VIRCATOR) device. HPM power measurements were carried out using a transmitting– receiving system in the presence of intense high frequency (a few ...

  19. Effect of microwave (24 GHz) radiation treatment on impurity photoluminescence of CdTe:Cl single crystals

    International Nuclear Information System (INIS)

    Red'ko, R.A.; Budzulyak, S.I.; Vakhnyak, N.D.; Demchina, L.A.; Korbutyak, D.V.; Konakova, R.V.; Lotsko, A.P.; Okhrimenko, O.B.; Berezovskaya, N.I.; Bykov, Yu.V.; Egorov, S.V.; Eremeev, A.G.

    2016-01-01

    Effect of microwave radiation (24 GHz) on transformation of impurity-defect complexes in CdTe:Cl single crystals within the spectral range 1.3–1.5 eV was studied using the low-temperature (T=2 K) photoluminescence (PL) technique. The shapes of donor–acceptor pairs (DAP) and Y PL bands were studied in detail. The Huang–Rhys factor was calculated for the DAP luminescence depending on microwave radiation treatment. The increase of the distance between the DAP components responsible for emission at 1.455 eV and the quenching of Y-band due to microwave irradiation were observed. The method to decrease the amount of extended defects in near-surface layers of CdTe:Cl single crystals has been proposed.

  20. Change in Dielectric Properties in the Microwave Frequency Region of Polypyrrole–Coated Textiles during Aging

    Directory of Open Access Journals (Sweden)

    Eva Hakansson

    2016-07-01

    Full Text Available Complex permittivity of conducting polypyrrole (PPy-coated Nylon-Lycra textiles is measured using a free space transmission measurement technique over the frequency range of 1–18 GHz. The aging of microwave dielectric properties and reflection, transmission and absorption for a period of 18 months is demonstrated. PPy-coated fabrics are shown to be lossy over the full frequency range. The levels of absorption are shown to be higher than reflection in the tested samples. This is attributed to the relatively high resistivity of the PPy-coated fabrics. Both the dopant concentration and polymerisation time affect the total shielding effectiveness and microwave aging behaviour. Distinguishing either of these two factors as being exclusively the dominant mechanism of shielding effectiveness is shown to be difficult. It is observed that the PPy-coated Nylon-Lycra samples with a p-toluene sulfonic acid (pTSA concentration of 0.015 M and polymerisation times of 60 min and 180 min have 37% and 26% decrease in total transmission loss, respectively, upon aging for 72 weeks at room temperature (20 °C, 65% Relative humidity (RH. The concentration of the dopant also influences the microwave aging behaviour of the PPy-coated fabrics. The samples with a higher dopant concentration of 0.027 mol/L pTSA are shown to have a transmission loss of 32.6% and 16.5% for short and long polymerisation times, respectively, when aged for 72 weeks. The microwave properties exhibit better stability with high dopant concentration and/or longer polymerization times. High pTSA dopant concentrations and/or longer polymerisation times result in high microwave insertion loss and are more effective in reducing the transmission and also increasing the longevity of the electrical properties.

  1. A single-layer wide-angle negative-index metamaterial at visible frequencies.

    Science.gov (United States)

    Burgos, Stanley P; de Waele, Rene; Polman, Albert; Atwater, Harry A

    2010-05-01

    Metamaterials are materials with artificial electromagnetic properties defined by their sub-wavelength structure rather than their chemical composition. Negative-index materials (NIMs) are a special class of metamaterials characterized by an effective negative index that gives rise to such unusual wave behaviour as backwards phase propagation and negative refraction. These extraordinary properties lead to many interesting functions such as sub-diffraction imaging and invisibility cloaking. So far, NIMs have been realized through layering of resonant structures, such as split-ring resonators, and have been demonstrated at microwave to infrared frequencies over a narrow range of angles-of-incidence and polarization. However, resonant-element NIM designs suffer from the limitations of not being scalable to operate at visible frequencies because of intrinsic fabrication limitations, require multiple functional layers to achieve strong scattering and have refractive indices that are highly dependent on angle of incidence and polarization. Here we report a metamaterial composed of a single layer of coupled plasmonic coaxial waveguides that exhibits an effective refractive index of -2 in the blue spectral region with a figure-of-merit larger than 8. The resulting NIM refractive index is insensitive to both polarization and angle-of-incidence over a +/-50 degree angular range, yielding a wide-angle NIM at visible frequencies.

  2. Rapid synthesis of single-phase bismuth ferrite by microwave-assisted hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Wenqian [College of Materials Science and Engineering, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education District, Hangzhou 310018, Zhejiang Province (China); Chen, Zhi, E-mail: zchen0@gmail.com [College of Materials Science and Engineering, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education District, Hangzhou 310018, Zhejiang Province (China); Gao, Tong; Zhou, Dantong; Leng, Xiaonan; Niu, Feng [College of Materials Science and Engineering, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education District, Hangzhou 310018, Zhejiang Province (China); Zhu, Yuxiang [College of Materials Science and Engineering, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education District, Hangzhou 310018, Zhejiang Province (China); Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science and Technology, Tianjin (China); Qin, Laishun, E-mail: qinlaishun@yeah.net [College of Materials Science and Engineering, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education District, Hangzhou 310018, Zhejiang Province (China); Wang, Jiangying; Huang, Yuexiang [College of Materials Science and Engineering, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education District, Hangzhou 310018, Zhejiang Province (China)

    2016-06-01

    This paper describes on the fast synthesis of bismuth ferrite by the simple microwave-assisted hydrothermal method. The phase transformation and the preferred growth facets during the synthetic process have been investigated by X-ray diffraction. Bismuth ferrite can be quickly prepared by microwave hydrothermal method by simply controlling the reaction time, which is further confirmed by Fourier Transform infrared spectroscopy and magnetic measurement. - Graphical abstract: Single-phase BiFeO{sub 3} could be realized at a shortest reaction time of 65 min. The reaction time has strong influences on the phase transformation and the preferred growth facets. - Highlights: • Rapid synthesis (65 min) of BiFeO{sub 3} by microwave-assisted hydrothermal method. • Reaction time has influence on the purity and preferred growth facets. • FTIR and magnetic measurement further confirm the pure phase.

  3. Rapid synthesis of single-phase bismuth ferrite by microwave-assisted hydrothermal method

    International Nuclear Information System (INIS)

    Cao, Wenqian; Chen, Zhi; Gao, Tong; Zhou, Dantong; Leng, Xiaonan; Niu, Feng; Zhu, Yuxiang; Qin, Laishun; Wang, Jiangying; Huang, Yuexiang

    2016-01-01

    This paper describes on the fast synthesis of bismuth ferrite by the simple microwave-assisted hydrothermal method. The phase transformation and the preferred growth facets during the synthetic process have been investigated by X-ray diffraction. Bismuth ferrite can be quickly prepared by microwave hydrothermal method by simply controlling the reaction time, which is further confirmed by Fourier Transform infrared spectroscopy and magnetic measurement. - Graphical abstract: Single-phase BiFeO_3 could be realized at a shortest reaction time of 65 min. The reaction time has strong influences on the phase transformation and the preferred growth facets. - Highlights: • Rapid synthesis (65 min) of BiFeO_3 by microwave-assisted hydrothermal method. • Reaction time has influence on the purity and preferred growth facets. • FTIR and magnetic measurement further confirm the pure phase.

  4. The microwave absorbing properties of SmCo attached single wall carbon nanotube/epoxy composites

    International Nuclear Information System (INIS)

    Yu, Liming; Li, Bo; Sheng, Leimei; An, Kang; Zhao, Xinluo

    2013-01-01

    Highlights: •The SmCo nanoparticles attached SWCNTs were prepared by dc arc discharge method. •The nano-composite prepared by a rare earth permanent magnet Sm 2 Co 17 as catalyst. •The SmCo attached SWCNT/epoxy composites have an excellent electromagnetic matching characteristics. •The reflection loss and bandwidth below −20 dB of the composite can reach −23.7 dB, 6.2 GHz, respectively. -- Abstract: The SmCo nanoparticles attached single wall carbon nanotubes (SmCo attached SWCNTs) were prepared by hydrogen dc arc discharge method using 2:17 type SmCo permanent powder as catalyst. The SmCo attached SWCNT/epoxy composites with different doping ratios were investigated in the frequency region of 2–18 GHz. The complex permittivity and permeability of the SmCo attached SWCNT/epoxy composites were calculated. The reflection loss properties were simulated by transmission line theory and the microwave absorptive mechanisms were discussed. The results indicate that, due to the better interfacial polarization absorption mechanism of SmCo attached SWCNTs and the electromagnetic (EM) matching of magnetic loss and dielectric loss, the microwave absorption properties of SmCo attached SWCNT/epoxy are evidently improved. When the SmCo attached SWCNTs is doped by 1 wt%, the composite display a larger and wider absorption peak, and the bandwidth of the reflection loss below −20 dB is larger than 6 GHz with the thickness of 3.3 mm. It is expected that the new SmCo attached SWCNT/epoxy composites will be a good microwave absorbing material for the applications in X band, Ku band, or even K band

  5. A Quarter Ellipse Microstrip Resonator for Filters in Microwave Frequencies

    Directory of Open Access Journals (Sweden)

    Samuel Á. Jaramillo-Flórez

    2013-11-01

    Full Text Available This work describes the results of computational simulations and construction of quadrant elliptical resonators excited by coplanar slot line waveguide for designing microwave filters in RF communications systems. By means of the equation of optics, are explained the fundamentals of these geometry of resonators proposed. Are described the construction of quadrant elliptical resonators, one of microstrip and other two of cavity, of size different, and an array of four quadrant elliptical resonators in cascade. The results of the measures and the computational calculus of scattering S11 and S21 of elliptical resonators is made for to identify the resonant frequencies of the resonators studied, proving that these have performance in frequency as complete ellipses by the image effect due to their two mirror in both semiaxis, occupying less area, and the possible applications are discussed.

  6. Microwave Resonators and Filters

    Science.gov (United States)

    2015-12-22

    1 Microwave Resonators and Filters Daniel E. Oates MIT Lincoln Laboratory 244 Wood St. Lexington, MA 02478 USA Email: oates@ll.mit.edu...explained in other chapters, the surface resistance of superconductors at microwave frequencies can be as much as three orders of magnitude lower than the...resonators and filters in the first edition of this handbook (Z.-Y. Shen 2003) discussed the then state of the art of microwave frequency applications

  7. Microwave generation and complex microwave responsivity measurements on small Dayem bridges

    DEFF Research Database (Denmark)

    Pedersen, Niels Falsig; Sørensen, O; Mygind, Jesper

    1977-01-01

    Measurements of the active properties of a Dayem micro-bridge at X-band frequencies is described. The bridge was mounted in a microwave cavity designed to match the bridge properly and the microwave output from the cavity was detected using a sensitive X-band spectrometer. Microwave power...

  8. Single-frequency blue light generation by single-pass sum-frequency generation in a coupled ring cavity tapered laser

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Petersen, Paul Michael

    2013-01-01

    A generic approach for generation of tunable single frequency light is presented. 340 mW of near diffraction limited, single-frequency, and tunable blue light around 459 nm is generated by sum-frequency generation (SFG) between two tunable tapered diode lasers. One diode laser is operated in a ring...... cavity and another tapered diode laser is single-passed through a nonlinear crystal which is contained in the coupled ring cavity. Using this method, the single-pass conversion efficiency is more than 25%. In contrast to SFG in an external cavity, the system is entirely self-stabilized with no electronic...

  9. Continuous-Wave Single-Photon Transistor Based on a Superconducting Circuit

    DEFF Research Database (Denmark)

    Kyriienko, Oleksandr; Sørensen, Anders Søndberg

    2016-01-01

    We propose a microwave frequency single-photon transistor which can operate under continuous wave probing and represents an efficient single microwave photon detector. It can be realized using an impedance matched system of a three level artificial ladder-type atom coupled to two microwave cavities...... and the appearance of a photon flux leaving the second cavity through a separate input-output port. The proposal does not require time variation of the probe signals, thus corresponding to a passive version of a single-photon transistor. The resulting device is robust to qubit dephasing processes, possesses low dark...

  10. Microwave frequency dependence of the properties of the ion beam extracted from a CAPRICE type ECRIS

    International Nuclear Information System (INIS)

    Maimone, F.; Tinschert, K.; Spaedtke, P.; Maeder, J.; Rossbach, J.; Lang, R.; Celona, L.

    2012-01-01

    In order to improve the quality of ion beams extracted from ECR ion sources it is mandatory to better understand the relations between the plasma conditions and the beam properties. The present investigations concentrate on the analysis of different beam properties under the influence of various applications of frequency tuning and of multiple frequency heating. The changes in the microwave frequency feeding the plasma affect the electromagnetic field distribution and the dimension and position of the ECR surface inside the plasma chamber. This in turn has an influence on the generation of the extracted ion beam in terms of intensity, shape and emittance. In order to analyze the corresponding effects, measurements have been performed with the CAPRICE-Type ECRIS installed at the ECR Injector Setup (EIS) of GSI. The experimental setup uses a microwave sweep generator which feeds a TWTA (Traveling Wave Tube Amplifier) covering a wide frequency range from 12.5 to 16.5 GHz. This arrangement provides a precise determination of the frequencies and of the reflection coefficient along with the beam properties and it confirms again how the frequency and the corresponding electromagnetic field feeding the plasma affects the ECRIS performances. A sequence of viewing targets positioned inside the beam line monitors the beam shape evolution. The paper is followed by the associated poster

  11. Microwave pumped high-efficient thermoacoustic tumor therapy with single wall carbon nanotubes.

    Science.gov (United States)

    Wen, Liewei; Ding, Wenzheng; Yang, Sihua; Xing, Da

    2016-01-01

    The ultra-short pulse microwave could excite to the strong thermoacoustic (TA) shock wave and deeply penetrate in the biological tissues. Based on this, we developed a novel deep-seated tumor therapy modality with mitochondria-targeting single wall carbon nanotubes (SWNTs) as microwave absorbing agents, which act efficiently to convert ultra-short microwave energy into TA shock wave and selectively destroy the targeted mitochondria, thereby inducing apoptosis in cancer cells. After the treatment of SWNTs (40 μg/mL) and ultra-short microwave (40 Hz, 1 min), 77.5% of cancer cells were killed and the vast majority were caused by apoptosis that initiates from mitochondrial damage. The orthotopic liver cancer mice were established as deep-seated tumor model to investigate the anti-tumor effect of mitochondria-targeting TA therapy. The results suggested that TA therapy could effectively inhibit the tumor growth without any observable side effects, while it was difficult to achieve with photothermal or photoacoustic therapy. These discoveries implied the potential application of TA therapy in deep-seated tumor models and should be further tested for development into a promising therapeutic modality for cancer treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Evaluating superconductors for microwave applications

    International Nuclear Information System (INIS)

    Hammond, B.; Bybokas, J.

    1989-01-01

    It is becoming increasingly obvious that some of the earliest applications for high Tc superconductors will be in the microwave market. While this is a major opportunity for the superconductor community, it also represents a significant challenge. At DC or low frequencies a superconductor can be easily characterized by simple measurements of resistivity and magnetic susceptibility versus temperature. These parameters are fundamental to superconductor characterization and various methods exist for measuring them. The only valid way to determine the microwave characteristics of a superconductor is to measure it at microwave frequencies. It is for this reason that measuring microwave surface resistance has emerged as one of the most demanding and telling tests for materials intended for high frequency applications. In this article, the theory of microwave surface resistance is discussed. Methods for characterizing surface resistance theoretically and by practical implementation are described

  13. Advances in microwaves 8

    CERN Document Server

    Young, Leo

    2013-01-01

    Advances in Microwaves, Volume 8 covers the developments in the study of microwaves. The book discusses the circuit forms for microwave integrated circuits; the analysis of microstrip transmission lines; and the use of lumped elements in microwave integrated circuits. The text also describes the microwave properties of ferrimagnetic materials, as well as their interaction with electromagnetic waves propagating in bounded waveguiding structures. The integration techniques useful at high frequencies; material technology for microwave integrated circuits; specific requirements on technology for d

  14. Planck intermediate results: XVII. Emission of dust in the diffuse interstellar medium from the far-infrared to microwave frequencies

    DEFF Research Database (Denmark)

    Bartlett, J.G.; Cardoso, J.-F.; Delabrouille, J.

    2014-01-01

    H-atom. The dust temperature is observed to be anti-correlated with the dust emissivity and opacity. We interpret this result as evidence of dust evolution within the diffuse ISM. The mean dust opacity is measured to be (7.1 ± 0.6) × 10-27 cm2 H-1 × (v/353 GHz) 1.53 ± 0.03for 100 ≤ v ≤ 353 GHz......The dust-Hi correlation is used to characterize the emission properties of dust in the diffuse interstellar medium (ISM) from far infrared wavelengths to microwave frequencies. The field of this investigation encompasses the part of the southern sky best suited to study the cosmic infrared...... and microwave backgrounds. We cross-correlate sky maps from Planck, the Wilkinson Microwave Anisotropy Probe (WMAP), and the diffuse infrared background experiment (DIRBE), at 17 frequencies from 23 to 3000 GHz, with the Parkes survey of the 21 cm line emission of neutral atomic hydrogen, over a contiguous area...

  15. Dielectric and microwave absorption properties of TiO_2/Al_2O_3 coatings and improved microwave absorption by FSS incorporation

    International Nuclear Information System (INIS)

    Yang, Zhaoning; Luo, Fa; Hu, Yang; Duan, Shichang; Zhu, Dongmei; Zhou, Wancheng

    2016-01-01

    In this paper, TiO_2/Al_2O_3 ceramic coatings were prepared by atmospheric plasma spraying (APS) technique. The phase composition and morphological characterizations of the synthesized TiO_2/Al_2O_3 powders and coatings were performed by X-ray diffraction and scanning electron microscopy (SEM), respectively. The dielectric properties of these coatings were discussed in the frequency range from 8.2 to 12.4 GHz (X-band). By calculating the microwave-absorption as a single-layer absorber, their microwave absorption properties were investigated at different content and thickness in details. Furthermore, by combination of the Frequency selective surface (FSS) and ceramic coatings, a double absorption band of the reflection loss spectra had been observed. The microwave absorbing properties of coatings both in absorbing intensity and absorbing bandwidth were improved. The reflection loss values of TiO_2/Al_2O_3 coatings exceeding −10 dB (larger than 90% absorption) can be obtained in the whole frequency range of X-band with 17 wt% TiO_2 content when the coating thickness is 2.3 mm. - Highlights: • Dielectric properties of TiO_2/Al_2O_3 ceramics fabricated by APS technique are reported for the first time. • Microwave absorption properties of TiO_2/Al_2O_3 composites are improved by FSS. • Reflection loss values exceeding −10 dB can be obtained in the whole X-band when coating thickness is 2.3 mm.

  16. Microwave absorptions of ultrathin conductive films and designs of frequency-independent ultrathin absorbers

    International Nuclear Information System (INIS)

    Li, Sucheng; Anwar, Shahzad; Lu, Weixin; Hang, Zhi Hong; Hou, Bo; Shen, Mingrong; Wang, Chin-Hua

    2014-01-01

    We study the absorption properties of ultrathin conductive films in the microwave regime, and find a moderate absorption effect which gives rise to maximal absorbance 50% if the sheet (square) resistance of the film meets an impedance matching condition. The maximal absorption exhibits a frequency-independent feature and takes place on an extremely subwavelength scale, the film thickness. As a realistic instance, ∼5 nm thick Au film is predicted to achieve the optimal absorption. In addition, a methodology based on metallic mesh structure is proposed to design the frequency-independent ultrathin absorbers. We perform a design of such absorbers with 50% absorption, which is verified by numerical simulations

  17. Integration of semiconductor and ceramic superconductor devices for microwave applications

    International Nuclear Information System (INIS)

    Klopman, B.B.G.; Weijers, H.W.; Gao, J.; Gerritsma, G.J.; Rogalla, H.

    1991-01-01

    Due to the very low-loss properties of ceramic superconductors high-performance microwave resonators and filters can be realized. The fact that these devices may be operated at liquid nitrogen temperature, facilitates the integration with semiconductor devices. Examples are bandpass amplifiers, microwave-operated SQUIDs combined with GaAs preamplifiers, detectors, and MOSFET low-frequency amplifiers. This paper discusses the design of such circuits on a single one inch alumina substrate using surface mount techniques. Furthermore data on circuits that have been realized in our laboratory will be presented

  18. The microwave market

    International Nuclear Information System (INIS)

    Bybokas, J.

    1989-01-01

    As superconductors move from the laboratory to the marketplace, it becomes more important for researchers and manufacturers to understand the markets for this technology. The large market for microwave systems represents a major opportunity for high-T c superconductors. Conductor losses are a primary design limitation in conventional microwave systems. The low losses of superconductors at microwave frequencies will allow component designers and system designers to improve their products in many ways. The most important market segments for microwave systems are outlined in this discussion

  19. Near-field microwave magnetic nanoscopy of superconducting radio frequency cavity materials

    Science.gov (United States)

    Tai, Tamin; Ghamsari, Behnood G.; Bieler, Thomas R.; Tan, Teng; Xi, X. X.; Anlage, Steven M.

    2014-06-01

    A localized measurement of the RF critical field on superconducting radio frequency (SRF) cavity materials is a key step to identify specific defects that produce quenches of SRF cavities. Two measurements are performed to demonstrate these capabilities with a near-field scanning probe microwave microscope. The first is a third harmonic nonlinear measurement on a high Residual-Resistance-Ratio bulk Nb sample showing strong localized nonlinear response, with surface RF magnetic field Bsurface˜102 mT. The second is a raster scanned harmonic response image on a MgB2 thin film demonstrating a uniform nonlinear response over large areas.

  20. Single and multi-frequency impedance characterization of symmetric activated carbon single capacitor cells

    Directory of Open Access Journals (Sweden)

    Suzana Sopčić

    2018-05-01

    Full Text Available Electrochemical impedance spectroscopy (EIS technique is used for characterization of single cell symmetric capacitors having different mass loadings of activated carbon (AC. Relevant values of charge storage capacitance (CT and internal resistance (ESR were evaluated by the single frequency and multi-frequency analyses of measured impedance spectra. Curve fittings were based on the non-ideal R-C model that takes into account the parasitic inductance, contributions from electrode materials/contacts and the effects of AC porosity. Higher CT and lower ESR values were obtained not only for the cell with higher mass of AC, but also using the single vs. multi-frequency approach. Lower CT and higher values of ESR that are generally obtained using the multi-frequency method and curve fittings should be related to the not ideal capacitive response of porous AC material and too high frequency chosen in applying the single frequency analysis.

  1. Demodulation effect is observed in neurones by exposure to low frequency modulated microwaves

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Bruzon, R N; Figols, T; Azanza, M J [Laboratorio de Magnetobiologia, Departamento de Anatomia e Histologia Humanas, Facultad de Medicina, Universidad de Zaragoza (Spain); Moral, A del, E-mail: naogit@yahoo.co [Laboratorio de Magnetismo de Solidos, Departamento de Fisica de Materia Condensada and Instituto de Ciencia de Materiales de Aragon, Universidad de Zaragoza and CSIC (Spain)

    2010-01-01

    Neurones exposure to a microwave (carrier f{sub c}=13.6 GHz; power P {approx_equal} 5 mW; H{sub o} {approx_equal} 0.10 Am{sup -1} = 1.25 mOe; E{sub 0} {approx_equal} 3.5 V/m; {Delta}T {approx_equal} 0.01{sup 0}C; SAR: 3.1x10{sup -3} - 5.8x10{sup -3} W/Kg) EMF amplitude modulated by ELF-AC field (frequency, f{sub m}= 0-100 Hz) shows no electrophysiological effect under the carrier MF alone, but {sup f}requency resonances: at 2, 4, 8, 12, 16, 50, 100 Hz: demodulation effect. Resonances appear when applied ELF-MF is close to a dominant characteristic frequency of the neurone impulse Fourier spectrum. This is an interesting result considering that ELF-MF modulating RF or MW in the range of human EEG could induce frequency-resonant effects on exposed human brain.

  2. Dynamic regimes in YBCO in applied magnetic field probed by swept frequency microwave measurements

    International Nuclear Information System (INIS)

    Sarti, S; Silva, E; Giura, M; Fastampa, R; Boffa, M; Cucolo, A M

    2004-01-01

    We report measurements of the microwave resistivity in YBa 2 Cu 3 O 7-δ (YBCO), in the presence of an applied magnetic field. Measurements are performed as a function of frequency, over a continuum spectrum between 6 and 20 GHz, by means of a Corbino disc geometry. These data allow for a direct identification of different dynamical regimes in the dissipation of YBCO in the presence of an applied magnetic field. While at high temperatures a frequency independent resistivity is observed, at lower temperatures we find a marked frequency dependence. The line in the (H,T) plane at which this change in the dynamical regime is observed is clearly identified and discussed in terms of vortex motion and fluctuational resistivity

  3. A Novel Application of Fourier Transform Spectroscopy with HEMT Amplifiers at Microwave Frequencies

    Science.gov (United States)

    Wilkinson, David T.; Page, Lyman

    1995-01-01

    The goal was to develop cryogenic high-electron-mobility transistor (HEMT) based radiometers and use them to measure the anisotropy in the cosmic microwave background (CMB). In particular, a novel Fourier transform spectrometer (FTS) built entirely of waveguide components would be developed. A dual-polarization Ka-band HEMT radiometer and a similar Q-band radiometer were built. In a series of measurements spanning three years made from a ground-based site in Saskatoon, SK, the amplitude, frequency spectrum, and spatial frequency spectrum of the anisotropy were measured. A prototype Ka-band FTS was built and tested, and a simplified version is proposed for the MAP satellite mission. The 1/f characteristics of HEMT amplifiers were quantified using correlation techniques.

  4. Demodulation effect is observed in neurones by exposure to low frequency modulated microwaves

    International Nuclear Information System (INIS)

    Perez-Bruzon, R N; Figols, T; Azanza, M J; Moral, A del

    2010-01-01

    Neurones exposure to a microwave (carrier f c =13.6 GHz; power P ≅ 5 mW; H o ≅ 0.10 Am -1 = 1.25 mOe; E 0 ≅ 3.5 V/m; ΔT ≅ 0.01 0 C; SAR: 3.1x10 -3 - 5.8x10 -3 W/Kg) EMF amplitude modulated by ELF-AC field (frequency, f m = 0-100 Hz) shows no electrophysiological effect under the carrier MF alone, but f requency resonances: at 2, 4, 8, 12, 16, 50, 100 Hz: demodulation effect. Resonances appear when applied ELF-MF is close to a dominant characteristic frequency of the neurone impulse Fourier spectrum. This is an interesting result considering that ELF-MF modulating RF or MW in the range of human EEG could induce frequency-resonant effects on exposed human brain.

  5. Integrated microwave photonics

    NARCIS (Netherlands)

    Marpaung, D.A.I.; Roeloffzen, C.G.H.; Heideman, Rene; Leinse, Arne; Sales, S.; Capmany, J.

    2013-01-01

    Microwave photonics (MWP) is an emerging field in which radio frequency (RF) signals are generated, distributed, processed and analyzed using the strength of photonic techniques. It is a technology that enables various functionalities which are not feasible to achieve only in the microwave domain. A

  6. Cytogenetic monitoring of personnel occupationally exposed to microwave radiation of GEM radar

    International Nuclear Information System (INIS)

    Garaj-Vrhovac, Vera; Gajski, Goran; Brumen, Vlatka

    2008-01-01

    In the present study we analyzed and followed-up on the DNA damaging effects of microwave radiation of GEM radar equipment within microwave field of 10 μW/cm 2 to 10 mW/cm 2 in personnel occupationally exposed to frequency range of 1.5 GHz to 10.9 GHz. The single cell gel electrophoresis (SCGE)/comet assay as a tool for the bio monitoring of individuals accidentally, environmentally or occupationally exposed to physical or chemical agents was used to evaluate possible genotoxic effect on peripheral human blood lymphocytes. The comet assay is a method that allows efficient determination of single strand breaks (SSB) and double-strand breaks (DSB), as well as alkali-labile sites in the DNA of single cells. The comet assay was carried out under alkaline conditions. We measured the baseline comet assay effect in whole blood samples. Parameter of the comet assay was studied in workers occupationally exposed to microwave radiation of GEM radar and in corresponding unexposed control subjects. It was found that in the subjects who were occupationally exposed to microwave radiation, the levels of DNA damage increased compare to control group and showed interindividual variations. As a measure of DNA damage tail length was used, calculated from the centre of the head and presented in micrometers (μm). Mean value of exposed group was 13.54±1.44 as opposed to control mean value that was 13.15±1.39. Differences between mean tail lengths were statistically significant (P<0.05, ANOVA). The results of this study indicate that individuals occupationally exposed to microwave frequency of GEM radar equipment may experience an increased genotoxic risk, emphasizing the importance of individual bio monitoring, limiting exposure and radiation safety programs. (author)

  7. MICROWAVE INTERACTIONS WITH INHOMOGENEOUS PARTIALLY IONIZED PLASMA

    Energy Technology Data Exchange (ETDEWEB)

    Kritz, A. H.

    1962-11-15

    Microwave interactions with inhomogeneous plasmas are often studied by employing a simplified electromagnetic approach, i.e., by representing the effects of the plasma by an effective dielectric coefficient. The problems and approximations associated with this procedure are discussed. The equation describing the microwave field in an inhomogeneous partially ionized plasma is derived, and the method that is applied to obtain the reflected, transmitted, and absorbed intensities in inhomogeneous plasmas is presented. The interactions of microwaves with plasmas having Gaussian electron density profiles are considered. The variation of collision frequency with position is usually neglected. In general, the assumption of constant collision frequency is not justified; e.g., for a highly ionized plasma, the electron density profile determines, in part, the profile of the electron-ion collision frequency. The effect of the variation of the collision frequency profile on the interaction of microwaves with inhomogeneous plasmas is studied in order to obtain an estimate of the degree of error that may result when constant collision frequency is assumed instead of a more realistic collision frequency profile. It is shown that the degree of error is of particular importance when microwave analysis is used as a plasma diagnostic. (auth)

  8. Measuring the global distribution of intense convection over land with passive microwave radiometry

    Science.gov (United States)

    Spencer, R. W.; Santek, D. A.

    1985-01-01

    The global distribution of intense convective activity over land is shown to be measurable with satellite passive-microwave methods through a comparison of an empirical rain rate algorithm with a climatology of thunderstorm days for the months of June-August. With the 18 and 37 GHz channels of the Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR), the strong volume scattering effects of precipitation can be measured. Even though a single frequency (37 GHz) is responsive to the scattering signature, two frequencies are needed to remove most of the effect that variations in thermometric temperatures and soil moisture have on the brightness temperatures. Because snow cover is also a volume scatterer of microwave energy at these microwavelengths, a discrimination procedure involving four of the SMMR channels is employed to separate the rain and snow classes, based upon their differences in average thermometric temperature.

  9. Microwave mixer technology and applications

    CERN Document Server

    Henderson, Bert

    2013-01-01

    Although microwave mixers play a critical role in wireless communication and other microwave applications employing frequency conversion circuits, engineers find that most books on this subject emphasize theoretical aspects, rather than practical applications. That's about to change with the forthcoming release of Microwave Mixer Technology and Applications. Based on a review of over one thousand patents on mixers and frequency conversion, authors Bert Henderson and Edmar Camargo have written a comprehensive book for mixer designers who want solid ideas for solving their own design challenges.

  10. Frequency-Locked Single-Frequency Fiber Laser at 2 Micron, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Frequency-locked single-frequency 2 micron fiber laser is proposed to be used for airborne/spaceborne coherent lidar measurements, i.e., Active Sensing of CO2...

  11. Branched carbon nanofiber network synthesis at room temperature using radio frequency supported microwave plasmas

    OpenAIRE

    Boskovic, BO; Stolojan, V; Zeze, DA; Forrest, RD; Silva, SRP; Haq, S

    2004-01-01

    Carbon nanofibers have been grown at room temperature using a combination of radio frequency and microwave assisted plasma-enhanced chemical vapor deposition. The nanofibers were grown, using Ni powder catalyst, onto substrates kept at room temperature by using a purposely designed water-cooled sample holder. Branched carbon nanofiber growth was obtained without using a template resulting in interconnected carbon nanofiber network formation on substrates held at room temperatur...

  12. Dielectric Properties and Oxidation Roasting of Molybdenite Concentrate by Using Microwave Energy at 2.45 GHz Frequency

    Science.gov (United States)

    Yonglin, Jiang; Bingguo, Liu; Peng, Liu; Jinhui, Peng; Libo, Zhang

    2017-12-01

    Conversion of electromagnetic energy into heat depends largely on the dielectric properties of the material being treated. Therefore, determining the dielectric properties of molybdenite concentrate and its microwave power penetration depth in relation to a temperature increment at the commercial frequency of 2.45 GHz is necessary to design industrial microwave processing units. In this study, the dielectric constants increased as the temperature increased in the entire experimental range. The loss factor presented an opposite trend, except for 298 K to 373 K (25 °C to 100 °C) in which a cavity perturbation resonator was used. The plots of nonlinear surface fitting indicate that the increase in dielectric loss causes a considerable decrease in penetration depth, but the dielectric constants exert a small positive effect. The thermogravimetric analysis (TGA-DSC) of the molybdenite concentrate was carried out to track its thermal decomposition process, aim to a dielectric analysis during the microwave heating. MoO3 was prepared from molybdenite concentrate through oxidation roasting in a microwave heating system and a resistance furnace, respectively. The phase transitions and morphology evolutions during oxidation roasting were characterized through X-ray diffraction and scanning electron microscopy. Results show that microwave thermal technique can produce high-purity molybdenum trioxide.

  13. Limitations in distance and frequency due to chromatic dispersion in fibre-optic microwave and millimeter-wave links

    DEFF Research Database (Denmark)

    Gliese, Ulrik Bo; Nielsen, Søren Nørskov; Nielsen, Søren Nørskov

    1996-01-01

    Chromatic dispersion significantly limits the distance and/or frequency in fibre-optic microwave and millimeter-wave links based on direct detection due to a decrease of the carrier to noise ratio. The limitations in links based on coherent remote heterodyne detection, however, are far less...

  14. Computational fluid dynamics and frequency-dependent finite-difference time-domain method coupling for the interaction between microwaves and plasma in rocket plumes

    International Nuclear Information System (INIS)

    Kinefuchi, K.; Funaki, I.; Shimada, T.; Abe, T.

    2012-01-01

    Under certain conditions during rocket flights, ionized exhaust plumes from solid rocket motors may interfere with radio frequency transmissions. To understand the relevant physical processes involved in this phenomenon and establish a prediction process for in-flight attenuation levels, we attempted to measure microwave attenuation caused by rocket exhaust plumes in a sea-level static firing test for a full-scale solid propellant rocket motor. The microwave attenuation level was calculated by a coupling simulation of the inviscid-frozen-flow computational fluid dynamics of an exhaust plume and detailed analysis of microwave transmissions by applying a frequency-dependent finite-difference time-domain method with the Drude dispersion model. The calculated microwave attenuation level agreed well with the experimental results, except in the case of interference downstream the Mach disk in the exhaust plume. It was concluded that the coupling estimation method based on the physics of the frozen plasma flow with Drude dispersion would be suitable for actual flight conditions, although the mixing and afterburning in the plume should be considered depending on the flow condition.

  15. Computational fluid dynamics and frequency-dependent finite-difference time-domain method coupling for the interaction between microwaves and plasma in rocket plumes

    Energy Technology Data Exchange (ETDEWEB)

    Kinefuchi, K. [Department of Aeronautics and Astronautics, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Funaki, I.; Shimada, T.; Abe, T. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1, Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan)

    2012-10-15

    Under certain conditions during rocket flights, ionized exhaust plumes from solid rocket motors may interfere with radio frequency transmissions. To understand the relevant physical processes involved in this phenomenon and establish a prediction process for in-flight attenuation levels, we attempted to measure microwave attenuation caused by rocket exhaust plumes in a sea-level static firing test for a full-scale solid propellant rocket motor. The microwave attenuation level was calculated by a coupling simulation of the inviscid-frozen-flow computational fluid dynamics of an exhaust plume and detailed analysis of microwave transmissions by applying a frequency-dependent finite-difference time-domain method with the Drude dispersion model. The calculated microwave attenuation level agreed well with the experimental results, except in the case of interference downstream the Mach disk in the exhaust plume. It was concluded that the coupling estimation method based on the physics of the frozen plasma flow with Drude dispersion would be suitable for actual flight conditions, although the mixing and afterburning in the plume should be considered depending on the flow condition.

  16. Ferrite Nanoparticles, Films, Single Crystals, and Metamaterials: High Frequency Applications

    International Nuclear Information System (INIS)

    Harris, V.

    2006-01-01

    Ferrite materials have long played an important role in power conditioning, conversion, and generation across a wide spectrum of frequencies (up to ten decades). They remain the preferred magnetic materials, having suitably low losses, for most applications above 1 MHz, and are the only viable materials for nonreciprocal magnetic microwave and millimeter-wave devices (including tunable filters, isolators, phase shifters, and circulators). Recently, novel processing techniques have led to a resurgence of research interest in the design and processing of ferrite materials as nanoparticles, films, single crystals, and metamaterials. These latest developments have set the stage for their use in emerging technologies that include cancer remediation therapies such as magnetohyperthermia, magnetic targeted drug delivery, and magneto-rheological fluids, as well as enhanced magnetic resonance imaging. With reduced dimensionality of nanoparticles and films, and the inherent nonequilibrium nature of many processing schemes, changes in local chemistry and structure have profound effects on the functional properties and performance of ferrites. In this lecture, we will explore these effects upon the fundamental magnetic and electronic properties of ferrites. Density functional theory will be applied to predict the properties of these ferrites, with synchrotron radiation techniques used to elucidate the chemical and structural short-range order. This approach will be extended to study the atomic design of ferrites by alternating target laser-ablation deposition. Recently, this approach has been shown to produce ferrites that offer attractive properties not found in conventionally grown ferrites. We will explore the latest research developments involving ferrites as related to microwave and millimeter-wave applications and the attempt to integrate these materials with semiconductor materials platforms

  17. On-Demand Microwave Generator of Shaped Single Photons

    Science.gov (United States)

    Forn-Díaz, P.; Warren, C. W.; Chang, C. W. S.; Vadiraj, A. M.; Wilson, C. M.

    2017-11-01

    We demonstrate the full functionality of a circuit that generates single microwave photons on demand, with a wave packet that can be modulated with a near-arbitrary shape. We achieve such a high tunability by coupling a superconducting qubit near the end of a semi-infinite transmission line. A dc superconducting quantum interference device shunts the line to ground and is employed to modify the spatial dependence of the electromagnetic mode structure in the transmission line. This control allows us to couple and decouple the qubit from the line, shaping its emission rate on fast time scales. Our decoupling scheme is applicable to all types of superconducting qubits and other solid-state systems and can be generalized to multiple qubits as well as to resonators.

  18. Measuring Radiofrequency and Microwave Radiation from Varying Signal Strengths

    Science.gov (United States)

    Davis, Bette; Gaul, W. C.

    2007-01-01

    This viewgraph presentation discusses the process of measuring radiofrequency and microwave radiation from various signal strengths. The topics include: 1) Limits and Guidelines; 2) Typical Variable Standard (IEEE) Frequency Dependent; 3) FCC Standard 47 CFR 1.1310; 4) Compliance Follows Unity Rule; 5) Multiple Sources Contribute; 6) Types of RF Signals; 7) Interfering Radiations; 8) Different Frequencies Different Powers; 9) Power Summing - Peak Power; 10) Contribution from Various Single Sources; 11) Total Power from Multiple Sources; 12) Are You Out of Compliance?; and 13) In Compliance.

  19. Nonlinear effects in microwave photoconductivity of two-dimensional electron systems

    International Nuclear Information System (INIS)

    Ryzhii, V; Suris, R

    2003-01-01

    We present a model for microwave photoconductivity of two-dimensional electron systems in a magnetic field which describes the effects of strong microwave and steady-state electric fields. Using this model, we derive an analytical formula for the photoconductivity associated with photon- and multi-photon-assisted impurity scattering as a function of the frequency and power of microwave radiation. According to the developed model, the microwave conductivity is an oscillatory function of the frequency of microwave radiation and the cyclotron frequency which becomes zero at the cyclotron resonance and its harmonics. It exhibits maxima and minima (with absolute negative conductivity) at microwave frequencies somewhat different from the resonant frequencies. The calculated power dependence of the amplitude of the microwave photoconductivity oscillations exhibits pronounced sublinear behaviour similar to a logarithmic function. The height of the microwave photoconductivity maxima and the depth of its minima are nonmonotonic functions of the electric field. The possibility of a strong widening of the maxima and minima due to a strong sensitivity of their parameters on the electric field and the presence of strong long-range electric-field fluctuations is pointed to. The obtained dependences are consistent with the results of the experimental observations

  20. Frequency, moisture content, and temperature dependent dielectric properties of potato starch related to drying with radio-frequency/microwave energy.

    Science.gov (United States)

    Zhu, Zhuozhuo; Guo, Wenchuan

    2017-08-24

    To develop advanced drying methods using radio-frequency (RF) or microwave (MW) energy, dielectric properties of potato starch were determined using an open-ended coaxial-line probe and network analyzer at frequencies between 20 and 4,500 MHz, moisture contents between 15.1% and 43.1% wet basis (w.b.), and temperatures between 25 and 75 °C. The results showed that both dielectric constant (ε') and loss factor (ε″) were dependent on frequency, moisture content, and temperature. ε' decreased with increasing frequency at a given moisture content or temperature. At low moisture contents (≤25.4% w.b.) or low temperatures (≤45 °C), ε″ increased with increasing frequency. However, ε″ changed from decrease to increase with increasing frequency at high moisture contents or temperatures. At low temperatures (25-35 °C), both ε' and ε″ increased with increasing moisture content. At low moisture contents (15.1-19.5% w.b.), they increased with increasing temperature. The change trends of ε' and ε″ were different and dependent on temperature and moisture content at their high levels. The penetration depth (d p ) decreased with increasing frequency. RF treatments may provide potential large-scale industrial drying application for potato starch. This research offers useful information on dielectric properties of potato starch related to drying with electromagnetic energy.

  1. Microwave reflection, transmission, and absorption by human brain tissue

    Science.gov (United States)

    Ansari, M. A.; Akhlaghipour, N.; Zarei, M.; Niknam, A. R.

    2018-04-01

    These days, the biological effects of electromagnetic (EM) radiations on the brain, especially in the frequency range of mobile communications, have caught the attention of many scientists. Therefore, in this paper, the propagation of mobile phone electromagnetic waves in the brain tissues is investigated analytically and numerically. The brain is modeled by three layers consisting of skull, grey and white matter. First, we have analytically calculated the microwave reflection, transmission, and absorption coefficients using signal flow graph technique. The effect of microwave frequency and variations in the thickness of layers on the propagation of microwave through brain are studied. Then, the penetration of microwave in the layers is numerically investigated by Monte Carlo method. It is shown that the analytical results are in good agreement with those obtained by Monte Carlo method. Our results indicate the absorbed microwave energy depends on microwave frequency and thickness of brain layers, and the absorption coefficient is optimized at a number of frequencies. These findings can be used for comparing the microwave absorbed energy in a child's and adult's brain.

  2. DMSP SSM/I- Microwave Imager

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The SSM/I is a seven-channel, four frequency, linearly-polarized, passive microwave radiometric system which measures atmospheric, ocean and terrain microwave...

  3. Multiplexing Superconducting Qubit Circuit for Single Microwave Photon Generation

    Science.gov (United States)

    George, R. E.; Senior, J.; Saira, O.-P.; Pekola, J. P.; de Graaf, S. E.; Lindström, T.; Pashkin, Yu A.

    2017-10-01

    We report on a device that integrates eight superconducting transmon qubits in λ /4 superconducting coplanar waveguide resonators fed from a common feedline. Using this multiplexing architecture, each resonator and qubit can be addressed individually, thus reducing the required hardware resources and allowing their individual characterisation by spectroscopic methods. The measured device parameters agree with the designed values, and the resonators and qubits exhibit excellent coherence properties and strong coupling, with the qubit relaxation rate dominated by the Purcell effect when brought in resonance with the resonator. Our analysis shows that the circuit is suitable for generation of single microwave photons on demand with an efficiency exceeding 80%.

  4. Electromagnetic and microwave absorption properties of single-walled carbon nanotubes and CoFe{sub 2}O{sub 4} nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guo; Sheng, Leimei, E-mail: slmss@shu.edu.cn; Yu, Liming; An, Kang; Ren, Wei; Zhao, Xinluo, E-mail: xlzhao@shu.edu.cn

    2015-03-15

    Highlights: • LPA-SWCNTs have been abundantly fabricated by a facile, time-saving, economical and non-hazardous method using DC arc discharge technique in low-pressure air. • The electromagnetic and microwave absorption properties of LPA-SWCNTs, CoFe{sub 2}O{sub 4} nanocrystals and LPA-SWCNT/CoFe{sub 2}O{sub 4} nanocomposites were investigated and the LPA-SWCNT/CoFe{sub 2}O{sub 4} nanocomposites exhibited excellent microwave absorption properties. • The Debye theory and impedance matching were used to analyze the electromagnetic parameters and microwave absorption properties. - Abstract: Single-walled carbon nanotubes were facilely and abundantly synthesized by low-pressure air arc discharge method (LPA-SWCNTs), and CoFe{sub 2}O{sub 4} nanocrystals were synthesized by a nitrate citric acid sol–gel auto-ignition method. The electromagnetic and microwave absorption properties of LPA-SWCNTs, CoFe{sub 2}O{sub 4} nanocrystals and their nanocomposites were investigated. The LPA-SWCNT/CoFe{sub 2}O{sub 4} nanocomposites showed excellent microwave absorption properties. The minimum efficient reflection loss is −30.7 dB at 12.9 GHz for 10 wt% of LPA-SWCNTs in the nanocomposites, and an effective absorption bandwidth with a reflection loss below −10 dB is 7.2 GHz. The Debye equation and impedance matching were introduced to explain the microwave absorption properties. Compared with the single-component materials, the LPA-SWCNT/CoFe{sub 2}O{sub 4} nanocomposites are an excellent candidate for microwave absorbers.

  5. All-fiber incoherent frequency-to-time mapping method for microwave signal generation with baseband transmission and multicasting support

    DEFF Research Database (Denmark)

    Company Torres, Victor; Tafur Monroy, Idelfonso; Lancis, Jesus

    2008-01-01

    We present a proof-of-principle experiment for achieving simultaneous distribution of baseband radio-frequency data and up-conversion with broadcasting support over a passive optical network. The technique is based on an incoherent frequency-to-time mapping method for pulse shaping. Specifically...... resembles the shape of the incoherent source. The photodetected signal contains both the baseband data and an up-frequency converted copy with central wavelength for the microwave carrier into the ultra-wideband range and tuning capability by selection of the fiber length. (c) 2008 Elsevier B.V. All rights...

  6. Advances in microwaves

    CERN Document Server

    Young, Leo

    1967-01-01

    Advances in Microwaves, Volume 2 focuses on the developments in microwave solid-state devices and circuits. This volume contains six chapters that also describe the design and applications of diplexers and multiplexers. The first chapter deals with the parameters of the tunnel diode, oscillators, amplifiers and frequency converter, followed by a simple physical description and the basic operating principles of the solid state devices currently capable of generating coherent microwave power, including transistors, harmonic generators, and tunnel, avalanche transit time, and diodes. The next ch

  7. Occupational exposure to radio frequency/microwave radiation and the risk of brain tumors

    DEFF Research Database (Denmark)

    Berg, Gabriele; Spallek, Jacob; Schüz, Joachim

    2006-01-01

    It is still under debate whether occupational exposure to radio frequency/microwave electromagnetic fields (RF/MW-EMF) contributes to the development of brain tumors. This analysis examined the role of occupational RF/MW-EMF exposure in the risk of glioma and meningioma. A population-based, case....... "High" exposure was defined as an occupational exposure that may exceed the RF/MW-EMF exposure limits for the general public recommended by the International Commission on Non-Ionizing Radiation Protection. Multiple conditional logistic regressions were performed separately for glioma and meningioma...

  8. Tunable complex-valued multi-tap microwave photonic filter based on single silicon-oninsulator microring resonator

    DEFF Research Database (Denmark)

    Lloret, Juan; Sancho, Juan; Pu, Minhao

    2011-01-01

    A complex-valued multi-tap tunable microwave photonic filter based on single silicon-on-insulator microring resonator is presented. The degree of tunability of the approach involving two, three and four taps is theoretical and experimentally characterized, respectively. The constraints of exploit...

  9. Modulated microwave microscopy and probes used therewith

    Science.gov (United States)

    Lai, Keji; Kelly, Michael; Shen, Zhi-Xun

    2012-09-11

    A microwave microscope including a probe tip electrode vertically positionable over a sample and projecting downwardly from the end of a cantilever. A transmission line connecting the tip electrode to the electronic control system extends along the cantilever and is separated from a ground plane at the bottom of the cantilever by a dielectric layer. The probe tip may be vertically tapped near or at the sample surface at a low frequency and the microwave signal reflected from the tip/sample interaction is demodulated at the low frequency. Alternatively, a low-frequency electrical signal is also a non-linear electrical element associated with the probe tip to non-linearly interact with the applied microwave signal and the reflected non-linear microwave signal is detected at the low frequency. The non-linear element may be semiconductor junction formed near the apex of the probe tip or be an FET formed at the base of a semiconducting tip.

  10. Microwave-assisted shingled magnetic recording simulations on an exchange-coupled composite medium

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T., E-mail: t-tanaka@ed.kyushu-u.ac.jp [Department of Electronics, Graduate School of Information Science and Electrical Engineering, Kyushu University, Motoota 744, Nishi-ku, Fukuoka 819-0395 (Japan); Kashiwagi, S. [Department of Electronics, Graduate School of Information Science and Electrical Engineering, Kyushu University, Motoota 744, Nishi-ku, Fukuoka 819-0395 (Japan); Kanai, Y. [Department of Information and Electronics Engineering, Niigata Institute of Technology, Fujihashi 1719, Kashiwazaki, Niigata 945-1195 (Japan); Matsuyama, K. [Department of Electronics, Graduate School of Information Science and Electrical Engineering, Kyushu University, Motoota 744, Nishi-ku, Fukuoka 819-0395 (Japan)

    2016-10-15

    The potential of microwave-assisted magnetic recording combined with the shingled recording scheme has been studied by simulating read/write processes on exchange-coupled composite media focusing on recording characteristics in the cross-track direction. Microwave fields enhance writability, especially at the track edge, resulting in lower noise and higher signal-to-noise ratio (SNR), which enables higher track density in the shingled recording scheme. Read/write simulations of microwave-assisted shingled recording achieve 1.4 Mtracks/in. while retaining high SNR. Further increases in SNR and track density will require either a narrower reader or track edge noise reduction. - Highlights: • Signal recording of shingled magnetic recording using an asymmetric single pole type head combined with a microwave assistance was numerically demonstrated. • Writability is improved by microwave fields with a moderate frequency at the track edge of the shielded side, resulting in higher signal-to-noise ratio. • 1.41 Mtpi of track density is feasible for the recording scheme of shingled magnetic recording with microwave assistance.

  11. Microwave-assisted shingled magnetic recording simulations on an exchange-coupled composite medium

    International Nuclear Information System (INIS)

    Tanaka, T.; Kashiwagi, S.; Kanai, Y.; Matsuyama, K.

    2016-01-01

    The potential of microwave-assisted magnetic recording combined with the shingled recording scheme has been studied by simulating read/write processes on exchange-coupled composite media focusing on recording characteristics in the cross-track direction. Microwave fields enhance writability, especially at the track edge, resulting in lower noise and higher signal-to-noise ratio (SNR), which enables higher track density in the shingled recording scheme. Read/write simulations of microwave-assisted shingled recording achieve 1.4 Mtracks/in. while retaining high SNR. Further increases in SNR and track density will require either a narrower reader or track edge noise reduction. - Highlights: • Signal recording of shingled magnetic recording using an asymmetric single pole type head combined with a microwave assistance was numerically demonstrated. • Writability is improved by microwave fields with a moderate frequency at the track edge of the shielded side, resulting in higher signal-to-noise ratio. • 1.41 Mtpi of track density is feasible for the recording scheme of shingled magnetic recording with microwave assistance.

  12. Microwave Plasma System: PVA Tepla 300

    Data.gov (United States)

    Federal Laboratory Consortium — Description:CORAL Name: Microwave AsherA tool using microwave oxygen plasma to remove organics on the surfacesSpecifications / Capabilities:Frequency: 2.45 GHzPower:...

  13. Analytical Retrieval of Global Land Surface Emissivity Maps at AMSR-E passive microwave frequencies

    Science.gov (United States)

    Norouzi, H.; Temimi, M.; Khanbilvardi, R.

    2009-12-01

    Land emissivity is a crucial boundary condition in Numerical Weather Prediction (NWP) modeling. Land emissivity is also a key indicator of land surface and subsurface properties. The objective of this study, supported by NOAA-NESDIS, is to develop global land emissivity maps using AMSR-E passive microwave measurements along with several ancillary data. The International Satellite Cloud Climatology Project (ISCCP) database has been used to obtain several inputs for the proposed approach such as land surface temperature, cloud mask and atmosphere profile. The Community Radiative Transfer Model (CRTM) has been used to estimate upwelling and downwelling atmospheric contributions. Although it is well known that correction of the atmospheric effect on brightness temperature is required at higher frequencies (over 19 GHz), our preliminary results have shown that a correction at 10.7 GHz is also necessary over specific areas. The proposed approach is based on three main steps. First, all necessary data have been collected and processed. Second, a global cloud free composite of AMSR-E data and corresponding ancillary images is created. Finally, monthly composting of emissivity maps has been performed. AMSR-E frequencies at 6.9, 10.7, 18.7, 36.5 and 89.0 GHz have been used to retrieve the emissivity. Water vapor information obtained from ISCCP (TOVS data) was used to calculate upwelling, downwelling temperatures and atmospheric transmission in order to assess the consistency of those derived from the CRTM model. The frequent land surface temperature (LST) determination (8 times a day) in the ISCCP database has allowed us to assess the diurnal cycle effect on emissivity retrieval. Differences in magnitude and phase between thermal temperature and low frequencies microwave brightness temperature have been noticed. These differences seem to vary in space and time. They also depend on soil texture and thermal inertia. The proposed methodology accounts for these factors and

  14. Removal of contaminated concrete surfaces by microwave heating: Phase 1 results

    International Nuclear Information System (INIS)

    White, T.L.; Grubb, R.G.; Pugh, L.P.; Foster, D. Jr.; Box, W.D.

    1992-01-01

    Oak Ridge National Laboratory (ORNL) is developing a microwave heating process to remove radiologically contaminated surface layers from concrete. The microwave energy is directed at the concrete surface and heats the concrete and free water present in the concrete matrix. Continued heating produces steam-pressure-induced mechanical stresses that cause the concrete surface to burst. The concrete particles from this steam explosion are small enough to be removed by a vacuum system, yet less than 1% of the debris is small enough to pose an airborne contamination hazard. The first phase of this program has demonstrated reliable removal of noncontaminated concrete surfaces at frequencies of 2.45 GHz and 10.6 GHz. Continuous concrete removal rates of 1.07 cm 3 /s with 5.2 kW of 2.45.-GHz power and 2.11 cm 3 /s with 3.6 kW of 10.6-GHz power have been demonstrated. Figures-of-merit for microwave removal of concrete have been calculated to be 0.21 cm 3 /s/kW at 2.45 GHz and 0.59 cm 3 /s/kW at 10.6 GHz. The amount of concrete removed in a single pass can be controlled by choosing the frequency and power of the microwave system

  15. Variable Power, Short Microwave Pulses Generation using a CW Magnetron

    Directory of Open Access Journals (Sweden)

    CIUPA, R.

    2011-05-01

    Full Text Available Fine control of microwave power radiation in medical and scientific applications is a challenging task. Since a commercial Continuous Wave (CW magnetron is the most inexpensive microwave device available today on the market, it becomes the best candidate for a microwave power generator used in medical diathermy and hyperthermia treatments or high efficiency chemical reactions using microwave reactors as well. This article presents a new method for driving a CW magnetron with short pulses, using a modified commercial Zero Voltage Switching (ZVS inverter, software driven by a custom embedded system. The microwave power generator designed with this method can be programmed for output microwave pulses down to 1% of the magnetron's power and allows microwave low frequency pulse modulation in the range of human brain electrical activity, intended for medical applications. Microwave output power continuous control is also possible with the magnetron running in the oscillating area, using a dual frequency Pulse Width Modulation (PWM, where the low frequency PWM pulse is modulating a higher resonant frequency required by the ZVS inverter's transformer. The method presented allows a continuous control of both power and energy (duty-cycle at the inverter's output.

  16. Experimental and numerical modeling research of rubber material during microwave heating process

    Science.gov (United States)

    Chen, Hailong; Li, Tao; Li, Kunling; Li, Qingling

    2018-05-01

    This paper aims to investigate the heating behaviors of block rubber by experimental and simulated method. The COMSOL Multiphysics 5.0 software was utilized in numerical simulation work. The effects of microwave frequency, power and sample size on temperature distribution are examined. The effect of frequency on temperature distribution is obvious. The maximum and minimum temperatures of block rubber increase first and then decrease with frequency increasing. The microwave heating efficiency is maximum in the microwave frequency of 2450 MHz. However, more uniform temperature distribution is presented in other microwave frequencies. The influence of microwave power on temperature distribution is also remarkable. The smaller the power, the more uniform the temperature distribution on the block rubber. The effect of power on microwave heating efficiency is not obvious. The effect of sample size on temperature distribution is evidently found. The smaller the sample size, the more uniform the temperature distribution on the block rubber. However, the smaller the sample size, the lower the microwave heating efficiency. The results can serve as references for the research on heating rubber material by microwave technology.

  17. Tunability of resonance frequencies in a superconducting microwave resonator by using SrTiO sub 3 ferroelectric films

    CERN Document Server

    Sok, J; Lee, E H

    1998-01-01

    An applied dc voltage varies the dielectric constant of ferroelectric SrTiO sub 3 films. A tuning mechanism for superconducting microwave resonators was realized by using the variation in the dielectric constant of SrTiO sub 3 films. In order to estimate the values of the capacitance, C, and the loss tangent, tan delta, of SrTiO sub 3 ferroelectric capacitors, we used high-temperature superconducting microwave resonators which were composed of two ports, two poles, and dc bias circuits at the zero-field points. SrTiO sub 3 ferroelectric capacitors successfully controlled the resonant frequency of the resonator. Resonant frequencies of 3.98 GHz and 4.20 GHz were measured at bias voltages of 0 V and 50 V which correspond to capacitance values of 0.94 pF and 0.7pF, respectively. The values of the loss tangent, tan delta sub e sub f sub f , obtained in this measurements, were about 0.01.

  18. Microwave integrated circuit for Josephson voltage standards

    Science.gov (United States)

    Holdeman, L. B.; Toots, J.; Chang, C. C. (Inventor)

    1980-01-01

    A microwave integrated circuit comprised of one or more Josephson junctions and short sections of microstrip or stripline transmission line is fabricated from thin layers of superconducting metal on a dielectric substrate. The short sections of transmission are combined to form the elements of the circuit and particularly, two microwave resonators. The Josephson junctions are located between the resonators and the impedance of the Josephson junctions forms part of the circuitry that couples the two resonators. The microwave integrated circuit has an application in Josephson voltage standards. In this application, the device is asymmetrically driven at a selected frequency (approximately equal to the resonance frequency of the resonators), and a d.c. bias is applied to the junction. By observing the current voltage characteristic of the junction, a precise voltage, proportional to the frequency of the microwave drive signal, is obtained.

  19. Microwave and RF engineering

    CERN Document Server

    Sorrentino, Roberto

    2010-01-01

    An essential text for both students and professionals, combining detailed theory with clear practical guidance This outstanding book explores a large spectrum of topics within microwave and radio frequency (RF) engineering, encompassing electromagnetic theory, microwave circuits and components. It provides thorough descriptions of the most common microwave test instruments and advises on semiconductor device modelling. With examples taken from the authors' own experience, this book also covers:network and signal theory;electronic technology with guided electromagnetic pr

  20. Dielectric and Radiative Properties of Sea Foam at Microwave Frequencies: Conceptual Understanding of Foam Emissivity

    OpenAIRE

    Peter W. Gaiser; Magdalena D. Anguelova

    2012-01-01

    Foam fraction can be retrieved from space-based microwave radiometric data at frequencies from 1 to 37 GHz. The retrievals require modeling of ocean surface emissivity fully covered with sea foam. To model foam emissivity well, knowledge of foam properties, both mechanical and dielectric, is necessary because these control the radiative processes in foam. We present a physical description of foam dielectric properties obtained from the foam dielectric constant including foam skin depth; foam ...

  1. Imaging of microwave-induced acoustic fields in LiNbO{sub 3} by high-performance Brillouin microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, B [Lab. Europeen de Recherche Univ.: Saarland-Lorraine, Univ. des Saarlandes, D-66041 Saarbruecken (Germany)]|[Lab. de Physique des Milieux Ionises et Applications, CNRS-UMR 7040, Univ. H. Poincare, Nancy I, F-54506 (France); Krueger, J K [Lab. Europeen de Recherche Univ.: Saarland-Lorraine, Univ. des Saarlandes, D-66041 Saarbruecken (Germany)]|[Fachrichtung 7.2, Experimentalphysik, Univ. des Saarlandes, Bau 38, D-66041 Saarbruecken (Germany); Elmazria, O [Laboratoire Europeen de Recherche Universitaire: Saarland-Lorraine, Universitaet des Saarlandes, D-66041 Saarbruecken (Germany)]|[Laboratoire de Physique des Milieux Ionises et Applications, CNRS-UMR 7040, Universite H. Poincare, Nancy I, F-54506 (France); Bouvot, L [Laboratoire Europeen de Recherche Universitaire: Saarland-Lorraine, Universitaet des Saarlandes, D-66041 Saarbruecken (Germany)]|[Laboratoire de Physique des Milieux Ionises et Applications, CNRS-UMR 7040, Universite H. Poincare, Nancy I, F-54506 (France); Mainka, J [Laboratoire Europeen de Recherche Universitaire: Saarland-Lorraine, Universitaet des Saarlandes, D-66041 Saarbruecken (Germany)]|[Fachrichtung 7.2, Experimentalphysik, Universitaet des Saarlandes, Bau 38, D-66041 Saarbruecken (Germany); Sanctuary, R [Laboratoire Europeen de Recherche Universitaire: Saarland-Lorraine, Universitaet des Saarlandes, D-66041 Saarbruecken (Germany)]|[Laboratoire de Physique des Materiaux, Campus Luxembourg-Limpertsberg, L-1511 Luxembourg (Luxembourg); Rouxel, D [Lab. Europeen de Recherche Univ.: Saarland-Lorraine, Univ. des Saarlandes, D-66041 Saarbruecken (Germany)]|[Lab. de Physique des Milieux Ionises et Applications, CNRS-UMR 7040, Univ. H. Poincare, Nancy I, F-54506 (France); Alnot, P [Lab. Europeen de Recherche Univ.: Saarland-Lorraine, Univ. des Saarlandes, D-66041 Saarbruecken (Germany)]|[Lab. de Physique des Milieux Ionises et Applications, CNRS-UMR 7040, Univ. H. Poincare, Nancy I, F-54506 (France)

    2005-06-21

    High performance Brillouin microscopy (BM) has been used to characterize the spatial distribution of piezoelectrically induced acoustic fields excited at microwave frequencies in a LiNbO{sub 3} single crystal. It is demonstrated that under suitable conditions BM is able to detect microwave-induced bulk as well as surface acoustic waves. Brillouin spectroscopy is able to probe sound wave intensities of induced phonons, which are as small as those of thermal phonons.

  2. The scientific base of heating water by microwave

    Energy Technology Data Exchange (ETDEWEB)

    Akdoğan, Ender, E-mail: ender.akdogan@tpe.gov.tr [Department of Physics Engineering, Ankara University, Dögol St. Tandoğan Ankara 06560 Türkiye (Turkey); Çiftçi, Muharrem, E-mail: muharrem-ciftci@windowslive.com [Author" 1 Department of Physics, Ankara University, Dögol St. Tandoğan Ankara 06560 Türkiye (Turkey)

    2016-03-25

    This article is based on the master thesis [4] related to our invention which was published in World Intellectual Property Organization (WO/2011/048506) as a microwave water heater. In the project, a prototype was produced to use microwave in industrial heating. In order to produce the prototype, the most appropriate material kind for microwave-water experiments was determined by a new energy loss rate calculation technique. This new energy loss calculation is a determinative factor for material permeability at microwave frequency band (1-100 GHz). This experimental series aim to investigate the rationality of using microwave in heating industry. Theoretically, heating water by microwave (with steady frequency 2.45 GHz) is analyzed from sub-molecular to Classical Mechanic results of heating. In the study, we examined Quantum Mechanical base of heating water by microwave experiments. As a result, we derived a Semi-Quantum Mechanical equation for microwave-water interactions and thus, Wien displacement law can be derived to verify experimental observations by this equation.

  3. A single source microwave photonic filter using a novel single-mode fiber to multimode fiber coupling technique.

    Science.gov (United States)

    Chang, John; Fok, Mable P; Meister, James; Prucnal, Paul R

    2013-03-11

    In this paper we present a fully tunable and reconfigurable single-laser multi-tap microwave photonic FIR filter that utilizes a special SM-to-MM combiner to sum the taps. The filter requires only a single laser source for all the taps and a passive component, a SM-to-MM combiner, for incoherent summing of signal. The SM-to-MM combiner does not produce optical interference during signal merging and is phase-insensitive. We experimentally demonstrate an eight-tap filter with both positive and negative programmable coefficients with excellent correspondence between predicted and measured values. The magnitude response shows a clean and accurate function across the entire bandwidth, and proves successful operation of the FIR filter using a SM-to-MM combiner.

  4. Advances in microwaves 7

    CERN Document Server

    Young, Leo

    2013-01-01

    Advances in Microwaves, Volume 7 covers the developments in the study of microwaves. The book discusses the effect of surface roughness on the propagation of the TEM mode, as well as the voltage breakdown of microwave antennas. The text also describes the theory and design considerations of single slotted-waveguide linear arrays and the techniques and theories that led to the achievement of wide bandwidths and ultralow noise temperatures for communication applications. The book will prove invaluable to microwave engineers.

  5. Microwave integrated circuit radiometer front-ends for the Push Broom Microwave Radiometer

    Science.gov (United States)

    Harrington, R. F.; Hearn, C. P.

    1982-01-01

    Microwave integrated circuit front-ends for the L-band, S-band and C-band stepped frequency null-balanced noise-injection Dicke-switched radiometer to be installed in the NASA Langley airborne prototype Push Broom Microwave Radiometer (PBMR) are described. These front-ends were developed for the fixed frequency of 1.413 GHz and the variable frequencies of 1.8-2.8 GHz and 3.8-5.8 GHz. Measurements of the noise temperature of these units were made at 55.8 C, and the results of these tests are given. While the overall performance was reasonable, improvements need to be made in circuit losses and noise temperatures, which in the case of the C-band were from 1000 to 1850 K instead of the 500 K specified. Further development of the prototypes is underway to improve performance and extend the frequency range.

  6. Experimental verification of the dominant microwaves from the reflexing electrons

    International Nuclear Information System (INIS)

    Wu, M.W.; Chen, C.Y.; Hwong, C.S.; Guung, T.C.; Tung, K.N.; Hou, W.S.

    1989-01-01

    At a fixed diode voltage and a cathode-anode gap of 4.5 mm, the frequency of the dominant microwaves scales approximately one-fourth of the diode current for the diode current from 3.7 to 4.9 kA, showing that the dominant microwaves are not generated from the oscillating virtual cathodes. The most persuasive result is that the frequency of the dominant microwaves is kept almost constant as the diode current increases from 4.9 to 7.5 kA, which indicates that these microwaves are generated from the oscillations of the reflexing electrons. The frequency of the dominant microwaves for the overall range of the diode current is 8.0 - 8.5 GHz and the maximum peak power of the microwaves is --40 MW. The complete spectra of the microwaves at various diode current is presented and the components contributed from the oscillations of the virtual cathodes in each spectrum are pointed out

  7. Single-transducer dual-frequency ultrasound generation to enhance acoustic cavitation.

    Science.gov (United States)

    Liu, Hao-Li; Hsieh, Chao-Ming

    2009-03-01

    Dual- or multiple-frequency ultrasound stimulation is capable of effectively enhancing the acoustic cavitation effect over single-frequency ultrasound. Potential application of this sonoreactor design has been widely proposed such as on sonoluminescence, sonochemistry enhancement, and transdermal drug release enhancement. All currently available sonoreactor designs employed multiple piezoelectric transducers for generating single-frequency ultrasonic waves separately and then these waves were mixed and interfered in solutions. The purpose of this research is to propose a novel design of generating dual-frequency ultrasonic waves with single piezoelectric elements, thereby enhancing acoustic cavitation. Macroscopic bubbles were detected optically, and they were quantified at either a single-frequency or for different frequency combinations for determining their efficiency for enhancing acoustic cavitation. Visible bubbles were optically detected and hydrogen peroxide was measured to quantify acoustic cavitation. Test water samples with different gas concentrations and different power levels were used to determine the efficacy of enhancing acoustic cavitation of this design. The spectrum obtained from the backscattered signals was also recorded and examined to confirm the occurrence of stable cavitation. The results confirmed that single-element dual-frequency ultrasound stimulation can enhance acoustic cavitation. Under certain testing conditions, the generation of bubbles can be enhanced up to a level of five times higher than the generation of bubbles in single-frequency stimulation, and can increase the hydrogen peroxide production up to an increase of one fold. This design may serve as a useful alternative for future sonoreactor design owing to its simplicity to produce dual- or multiple-frequency ultrasound.

  8. Condition for a single bunch high frequency fast blow-up

    International Nuclear Information System (INIS)

    Wang, J.M.; Pellegrini, C.

    1980-01-01

    We study the longitudinal stability of a single particle bunch in a storage ring using Vlasov equation. We show that the Vlasov equation has solutions corresponding to a fast, microwave instability if a condition on the beam current, qualitatively similar to the stability condition for a coasting beam, is satisfied. This condition can be used to define a threshold current, and to discuss its dependence on the longitudinal coupling impedance

  9. Controlled Microwave Heating Accelerates Rolling Circle Amplification.

    Directory of Open Access Journals (Sweden)

    Takeo Yoshimura

    Full Text Available Rolling circle amplification (RCA generates single-stranded DNAs or RNA, and the diverse applications of this isothermal technique range from the sensitive detection of nucleic acids to analysis of single nucleotide polymorphisms. Microwave chemistry is widely applied to increase reaction rate as well as product yield and purity. The objectives of the present research were to apply microwave heating to RCA and indicate factors that contribute to the microwave selective heating effect. The microwave reaction temperature was strictly controlled using a microwave applicator optimized for enzymatic-scale reactions. Here, we showed that microwave-assisted RCA reactions catalyzed by either of the four thermostable DNA polymerases were accelerated over 4-folds compared with conventional RCA. Furthermore, the temperatures of the individual buffer components were specifically influenced by microwave heating. We concluded that microwave heating accelerated isothermal RCA of DNA because of the differential heating mechanisms of microwaves on the temperatures of reaction components, although the overall reaction temperatures were the same.

  10. Controlled Microwave Heating Accelerates Rolling Circle Amplification.

    Science.gov (United States)

    Yoshimura, Takeo; Suzuki, Takamasa; Mineki, Shigeru; Ohuchi, Shokichi

    2015-01-01

    Rolling circle amplification (RCA) generates single-stranded DNAs or RNA, and the diverse applications of this isothermal technique range from the sensitive detection of nucleic acids to analysis of single nucleotide polymorphisms. Microwave chemistry is widely applied to increase reaction rate as well as product yield and purity. The objectives of the present research were to apply microwave heating to RCA and indicate factors that contribute to the microwave selective heating effect. The microwave reaction temperature was strictly controlled using a microwave applicator optimized for enzymatic-scale reactions. Here, we showed that microwave-assisted RCA reactions catalyzed by either of the four thermostable DNA polymerases were accelerated over 4-folds compared with conventional RCA. Furthermore, the temperatures of the individual buffer components were specifically influenced by microwave heating. We concluded that microwave heating accelerated isothermal RCA of DNA because of the differential heating mechanisms of microwaves on the temperatures of reaction components, although the overall reaction temperatures were the same.

  11. Microwave loss mechanisms in Ba0.25Sr0.75TiO3 films

    International Nuclear Information System (INIS)

    Vorobiev, A.; Rundqvist, P.; Gevorgian, S.

    2005-01-01

    Trilayer Au(Pt)/Ba 0.25 Sr 0.75 TiO 3 /(Pt)Au thin film varactors are fabricated on high resistive Si substrate and characterized at dc, rf and microwave frequencies. In the frequency range of 10-45 GHz the varactors reveal relatively low losses, the loss tangent is less than 0.025 at 45 GHz. Due to the thick and highly conductive Pt/Au electrodes the metal losses are less than 10%. However, the loss tangent of the ferroelectric film is still 3-5 times higher than that in Ba 0.27 Sr 0.73 TiO 3 single crystal. The analysis of the dc field dependent loss tangent and permittivity in a wide frequency range show that these additional losses are mainly due to the charged defects. Extrapolation of measured low frequency (1 MHz) loss tangents to the microwave region using the power law ω 1/3 is in good agreement with the experiment. We assume that the oxygen vacancies within the grain boundaries of ferroelectric film act as charged defects and cause extrinsic microwave losses. The knowledge of the extrinsic loss mechanism and corresponding microstructure defects is useful in optimization of the varactor design, deposition, and/or annealing process and further improvement of the varactor performance

  12. Modeling microwave/electron-cloud interaction

    International Nuclear Information System (INIS)

    Mattes, M; Sorolla, E; Zimmermann, F

    2013-01-01

    Starting from the separate codes BI-RME and ECLOUD or PyECLOUD, we are developing a novel joint simulation tool, which models the combined effect of a charged particle beam and of microwaves on an electron cloud. Possible applications include the degradation of microwave transmission in telecommunication satellites by electron clouds; the microwave-transmission techniques being used in particle accelerators for the purpose of electroncloud diagnostics; the microwave emission by the electron cloud itself in the presence of a magnetic field; and the possible suppression of electron-cloud formation in an accelerator by injecting microwaves of suitable amplitude and frequency. A few early simulation results are presented. (author)

  13. Frequency-domain cascading microwave superconducting quantum interference device multiplexers; beyond limitations originating from room-temperature electronics

    Science.gov (United States)

    Kohjiro, Satoshi; Hirayama, Fuminori

    2018-07-01

    A novel approach, frequency-domain cascading microwave multiplexers (MW-Mux), has been proposed and its basic operation has been demonstrated to increase the number of pixels multiplexed in a readout line U of MW-Mux for superconducting detector arrays. This method is an alternative to the challenging development of wideband, large power, and spurious-free room-temperature (300 K) electronics. The readout system for U pixels consists of four main parts: (1) multiplexer chips connected in series those contain U superconducting resonators in total. (2) A cryogenic high-electron-mobility transistor amplifier (HEMT). (3) A 300 K microwave frequency comb generator based on N(≡U/M) parallel units of digital-to-analog converters (DAC). (4) N parallel units of 300 K analog-to-digital converters (ADC). Here, M is the number of tones each DAC produces and each ADC handles. The output signal of U detectors multiplexed at the cryogenic stage is transmitted through a cable to the room temperature and divided into N processors where each handles M pixels. Due to the reduction factor of 1/N, U is not anymore dominated by the 300 K electronics but can be increased up to the potential value determined by either the bandwidth or the spurious-free power of the HEMT. Based on experimental results on the prototype system with N = 2 and M = 3, neither excess inter-pixel crosstalk nor excess noise has been observed in comparison with conventional MW-Mux. This indicates that the frequency-domain cascading MW-Mux provides the full (100%) usage of the HEMT band by assigning N 300 K bands on the frequency axis without inter-band gaps.

  14. Microwave Regenerable Air Purification Device

    Science.gov (United States)

    Atwater, James E.; Holtsnider, John T.; Wheeler, Richard R., Jr.

    1996-01-01

    The feasibility of using microwave power to thermally regenerate sorbents loaded with water vapor, CO2, and organic contaminants has been rigorously demonstrated. Sorbents challenged with air containing 0.5% CO2, 300 ppm acetone, 50 ppm trichloroethylene, and saturated with water vapor have been regenerated, singly and in combination. Microwave transmission, reflection, and phase shift has also been determined for a variety of sorbents over the frequency range between 1.3-2.7 GHz. This innovative technology offers the potential for significant energy savings in comparison to current resistive heating methods because energy is absorbed directly by the material to be heated. Conductive, convective and radiative losses are minimized. Extremely rapid heating is also possible, i.e., 1400 C in less than 60 seconds. Microwave powered thermal desorption is directly applicable to the needs of Advance Life Support in general, and of EVA in particular. Additionally, the applicability of two specific commercial applications arising from this technology have been demonstrated: the recovery for re-use of acetone (and similar solvents) from industrial waste streams using a carbon based molecular sieve; and the separation and destruction of trichloroethylene using ZSM-5 synthetic zeolite catalyst, a predominant halocarbon environmental contaminant. Based upon these results, Phase II development is strongly recommended.

  15. Heat transfer within a concrete slab applying the microwave decontamination process

    International Nuclear Information System (INIS)

    Li, W.; Ebadian, M.A.; White, T.L.; Grubb, R.G.

    1993-01-01

    Decontamination of a radioactive contaminated concrete surface is a new technology for the treatment of radioactive waste. In this paper, concrete decontamination using microwave technology is investigated theoretically. A plane wave assumption of microwave propagation has been employed to estimate the microwave field and power dissipation within the concrete. A one-dimensional, unsteady heat conduction model with microwave heat dissipation resulting from microwave-material interaction has been used to evaluate frequency, steel reinforcement within the concrete, and thermal boundary conditions are also considered in the present model. Four commonly used microwave frequencies of 0.896, 2.45, 10.6, and 18.0 GHz have been utilized in the analysis. The results revealed that as the microwave frequency increases to, or higher than 10.6 GHz, the microwave power dissipation shifts toward the front surface of the concrete. Furthermore, it was observed that use of a higher frequency microwave could reduce power intensity requirements needed to raise the temperature difference or thermal stress to the same value in the same period of time. It was found that the presence of reinforcing steel mesh causes part of the microwave energy to be blocked and reflected. Thus, the temperature or thermal stress of the concrete increases before the reinforcement, and decreases after the reinforcement. 16 refs., 6 figs., 3 tabs

  16. The relationship between brightness temperature and soil moisture. Selection of frequency range for microwave remote sensing

    International Nuclear Information System (INIS)

    Rao, K.S.; Chandra, G.; Rao, P.V.N.

    1987-01-01

    The analysis of brightness temperature data acquired from field and aircraft experiments demonstrates a linear relationship between soil moisture and brightness temperature. However, the analysis of brightness temperature data acquired by the Skylab radiometer demonstrates a non-linear relationship between soil moisture and brightness temperature. In view of the above and also because of recent theoretical developments for the calculation of the dielectric constant and brightness temperature under varying soil moisture profile conditions, an attempt is made to study the theoretical relationship between brightness temperature and soil moisture as a function of frequency. Through the above analysis, the appropriate microwave frequency range for soil moisture studies is recommended

  17. Tunable Multiband Microwave Photonic Filters

    Directory of Open Access Journals (Sweden)

    Mable P. Fok

    2017-11-01

    Full Text Available The increasing demand for multifunctional devices, the use of cognitive wireless technology to solve the frequency resource shortage problem, as well as the capabilities and operational flexibility necessary to meet ever-changing environment result in an urgent need of multiband wireless communications. Spectral filter is an essential part of any communication systems, and in the case of multiband wireless communications, tunable multiband RF filters are required for channel selection, noise/interference removal, and RF signal processing. Unfortunately, it is difficult for RF electronics to achieve both tunable and multiband spectral filtering. Recent advancements of microwave photonics have proven itself to be a promising candidate to solve various challenges in RF electronics including spectral filtering, however, the development of multiband microwave photonic filtering still faces lots of difficulties, due to the limited scalability and tunability of existing microwave photonic schemes. In this review paper, we first discuss the challenges that were facing by multiband microwave photonic filter, then we review recent techniques that have been developed to tackle the challenge and lead to promising developments of tunable microwave photonic multiband filters. The successful design and implementation of tunable microwave photonic multiband filter facilitate the vision of dynamic multiband wireless communications and radio frequency signal processing for commercial, defense, and civilian applications.

  18. Probing the local microwave properties of superconducting thin films by a scanning microwave near-field microscope

    CERN Document Server

    Wu, L Y; Wang, K L; Jiang, T; Kang, L; Yang, S Z; Wu, P H

    2002-01-01

    In this paper, we present our approach to probe the local microwave properties of superconducting thin films by using the microwave near-field scanning technique. We have employed a coaxial cavity together with a niobium tip as the probe and established a scanning sample stage cooled by liquid nitrogen to study thin film devices at low temperature in our scanning microwave near-field microscope. Nondestructive images have been obtained on the inhomogeneity of the YBaCuO superconducting thin films at microwave frequency. We believe that these results would be helpful in evaluating the microwave performance of the devices.

  19. Modeling Plasma Formation in a Micro-gap at Microwave Frequency

    Science.gov (United States)

    Bowman, Arthur; Remillard, Stephen

    2013-03-01

    In the presence of a strong electric field, gas molecules become ionized, forming a plasma. The study of this dielectric breakdown at microwave frequency has important applications in improving the operation of radio frequency (RF) devices, where the high electric fields present in small gaps can easily ionize gases like air. A cone and tuner resonant structure was used to induce breakdown of diatomic Nitrogen in adjustable micro-gaps ranging from 13 to 1,156 μm. The electric field for plasma formation exhibited strong pressure dependence in the larger gap sizes, as predicted by previous theoretical and experimental work. Pressure is proportional to the frequency of collision between electrons and molecules, which increases with pressure when the gap is large, but levels off in the micro-gap region. A separate model of the breakdown electric field based on the characteristic diffusion length of the plasma also fit the data poorly for these smaller gap sizes. This may be explained by a hypothesis that dielectric breakdown at and below the 100 μm gap size occurs outside the gap, an argument that is supported by the observation of very high breakdown threshold electric fields in this region. Optical emissions revealed that vibrational and rotational molecular transitions of the first positive electronic system are suppressed in micro-gaps, indicating that transitions into the molecular ground state do not occur in micro-gap plasmas. Acknowledgements: National Science Foundation under NSF-REU Grant No. PHY/DMR-1004811, the Provost's Office of Hope College, and the Hope College Division of Natural and Applied Sciences.

  20. Photonic microwave signals with zeptosecond-level absolute timing noise

    Science.gov (United States)

    Xie, Xiaopeng; Bouchand, Romain; Nicolodi, Daniele; Giunta, Michele; Hänsel, Wolfgang; Lezius, Matthias; Joshi, Abhay; Datta, Shubhashish; Alexandre, Christophe; Lours, Michel; Tremblin, Pierre-Alain; Santarelli, Giorgio; Holzwarth, Ronald; Le Coq, Yann

    2017-01-01

    Photonic synthesis of radiofrequency (RF) waveforms revived the quest for unrivalled microwave purity because of its ability to convey the benefits of optics to the microwave world. In this work, we perform a high-fidelity transfer of frequency stability between an optical reference and a microwave signal via a low-noise fibre-based frequency comb and cutting-edge photodetection techniques. We demonstrate the generation of the purest microwave signal with a fractional frequency stability below 6.5 × 10-16 at 1 s and a timing noise floor below 41 zs Hz-1/2 (phase noise below -173 dBc Hz-1 for a 12 GHz carrier). This outperforms existing sources and promises a new era for state-of-the-art microwave generation. The characterization is achieved through a heterodyne cross-correlation scheme with the lowermost detection noise. This unprecedented level of purity can impact domains such as radar systems, telecommunications and time-frequency metrology. The measurement methods developed here can benefit the characterization of a broad range of signals.

  1. Point-to-point microwave power transmission experiment; Maikuroha ni yoru denryoku yuso no kiso kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Shimokura, N.; Kirihara, T. [Kansai Electric Power Co. Inc., Osaka (Japan)

    1997-09-30

    In order to demonstrate the power transmission using microwave and arrange advantages and problems in the wireless power transmission, field tests of point-to-point power transmission were conducted. Microwave frequency of 2.45 GHz was used, which is assigned as the industrial, scientific and medical frequency. The transmission system is composed of generator, director tube, primary radiator, and transmission antenna. The maximum 5 kW of microwave power can be transmitted by combining a 3 m-diameter parabolic antenna and a magnetron. The receiving system is composed of devices called as RECTENNA (rectifying antenna). A large capacity and high efficiency RECTENNA was developed, by which the maximum 2.5 W of input power per single device can be provided. As a result of the experiments, efficiency at the transmission side was over 70%, and RF-DC efficiency at the receiving side was about 51%. At the open-air test site, however, the total efficiency of only 14.8% could be obtained. 8 refs., 12 figs.

  2. Integrated InP frequency discriminator for Phase-modulated microwave photonic links.

    Science.gov (United States)

    Fandiño, J S; Doménech, J D; Muñoz, P; Capmany, J

    2013-02-11

    We report the design, fabrication and characterization of an integrated frequency discriminator on InP technology for microwave photonic phase modulated links. The optical chip is, to the best of our knowledge, the first reported in an active platform and the first to include the optical detectors. The discriminator, designed as a linear filter in intensity, features preliminary SFDR values the range between 67 and 79 dB.Hz(2/3) for signal frequencies in the range of 5-9 GHz limited, in principle, by the high value of the optical losses arising from the use of several free space coupling devices in our experimental setup. As discussed, these losses can be readily reduced by the use of integrated spot-size converters improving the SFDR by 17.3 dB (84-96 dB.Hz(2/3)). Further increase up to a range of (104-116 dB.Hz(2/3)) is possible by reducing the system noise eliminating the EDFA employed in the setup and using a commercially available laser source providing higher output power and lower relative intensity noise. Other paths for improvement requiring a filter redesign to be linear in the optical field are also discussed.

  3. Compact frequency-modulation Q-switched single-frequency fiber laser at 1083 nm

    International Nuclear Information System (INIS)

    Zhang, Yuanfei; Feng, Zhouming; Xu, Shanhui; Mo, Shupei; Yang, Changsheng; Li, Can; Gan, Jiulin; Chen, Dongdan; Yang, Zhongmin

    2015-01-01

    A compact frequency-modulation Q-switched single-frequency fiber laser is demonstrated at 1083 nm. The short linear resonant cavity consists of a 12 mm long homemade Yb 3+ -doped phosphate fiber and a pair of fiber Bragg gratings (FBGs) in which the Q-switching and the frequency excursion is achieved by a tensile-induced period modulation. Over 375 MHz frequency-tuning range is achieved with a modulation frequency varying from tens to hundreds of kilohertz. The highest peak power of the output pulse reaching 6.93 W at the repetition rate of 10 kHz is obtained. (paper)

  4. Microwave power engineering generation, transmission, rectification

    CERN Document Server

    Okress, Ernest C

    1968-01-01

    Microwave Power Engineering, Volume 1: Generation, Transmission, Rectification considers the components, systems, and applications and the prevailing limitations of the microwave power technology. This book contains four chapters and begins with an introduction to the basic concept and developments of microwave power technology. The second chapter deals with the development of the main classes of high-power microwave and optical frequency power generators, such as magnetrons, crossed-field amplifiers, klystrons, beam plasma amplifiers, crossed-field noise sources, triodes, lasers. The third

  5. Microwave Tokamak Experiment

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    The Microwave Tokamak Experiment, now under construction at the Laboratory, will use microwave heating from a free-electron laser. The intense microwave pulses will be injected into the tokamak to realize several goals, including a demonstration of the effects of localized heat deposition within magnetically confined plasma, a better understanding of energy confinement in tokamaks, and use of the new free-electron laser technology for plasma heating. The experiment, soon to be operational, provides an opportunity to study dense plasmas heated by powers unprecedented in the electron-cyclotron frequency range required by the especially high magnetic fields used with the MTX and needed for reactors. 1 references, 5 figures, 3 tables

  6. Multiscale multichroic focal planes for measurements of the cosmic microwave background

    Science.gov (United States)

    Cukierman, Ari; Lee, Adrian T.; Raum, Christopher; Suzuki, Aritoki; Westbrook, Benjamin

    2018-01-01

    We report on the development of multiscale multichroic focal planes for measurements of the cosmic microwave background (CMB). A multichroic focal plane, i.e., one that consists of pixels that are simultaneously sensitive in multiple frequency bands, is an efficient architecture for increasing the sensitivity of an experiment as well as for disentangling the contamination due to galactic foregrounds, which is increasingly becoming the limiting factor in extracting cosmological information from CMB measurements. To achieve these goals, it is necessary to observe across a broad frequency range spanning roughly 30-350 GHz. For this purpose, the Berkeley CMB group has been developing multichroic pixels consisting of planar superconducting sinuous antennas coupled to extended hemispherical lenslets, which operate at sub-Kelvin temperatures. The sinuous antennas, microwave circuitry and the transition-edge-sensor (TES) bolometers to which they are coupled are integrated in a single lithographed wafer.We describe the design, fabrication, testing and performance of multichroic pixels with bandwidths of 3:1 and 4:1 across the entire frequency range of interest. Additionally, we report on a demonstration of multiscale pixels, i.e., pixels whose effective size changes as a function of frequency. This property keeps the beam width approximately constant across all frequencies, which in turn allows the sensitivity of the experiment to be optimal in every frequency band. We achieve this by creating phased arrays from neighboring lenslet-coupled sinuous antennas, where the size of each phased array is chosen independently for each frequency band. We describe the microwave circuitry in detail as well as the benefits of a multiscale architecture, e.g., mitigation of beam non-idealities, reduced readout requirements, etc. Finally, we discuss the design and fabrication of the detector modules and focal-plane structures including cryogenic readout components, which enable the

  7. Integrated Microwave Photonics

    OpenAIRE

    Marpaung, David; Roeloffzen, Chris; Heideman, René; Leinse, Arne; Sales Maicas, Salvador; Capmany Francoy, José

    2013-01-01

    Microwave photonics (MWP) is an emerging field in which radio frequency (RF) signals are generated, distributed, processed and analyzed using the strength of photonic techniques. It is a technology that enables various functionalities which are not feasible to achieve only in the microwave domain. A particular aspect that recently gains significant interests is the use of photonic integrated circuit (PIC) technology in the MWP field for enhanced functionalities and robustness as well as the r...

  8. Microwave processing of radioactive materials-I

    International Nuclear Information System (INIS)

    White, T.L.; Berry, J.B.

    1989-01-01

    This paper is the first of two papers that reviews the major past and present applications of microwave energy for processing radioactive materials, with particular emphasis on processing radioactive wastes. Microwave heating occurs through the internal friction produced inside a dielectric material when its molecules vibrate in response to an oscillating microwave field. For this presentation, we shall focus on the two FCC-approved microwave frequencies for industrial, scientific, and medical use, 915 and 2450 MHz. Also, because of space limitations, we shall postpone addressing plasma processing of hazardous wastes using microwave energy until a later date. 13 refs., 4 figs

  9. 360° tunable microwave phase shifter based on silicon-on-insulator dual-microring resonator

    DEFF Research Database (Denmark)

    Pu, Minhao; Xue, Weiqi; Liu, Liu

    2010-01-01

    We demonstrate tunable microwave phase shifters based on electrically tunable silicon-on-insulator dual-microring resonators. A quasi-linear phase shift of 360° with ~2dB radio frequency power variation at a microwave frequency of 40GHz is obtained......We demonstrate tunable microwave phase shifters based on electrically tunable silicon-on-insulator dual-microring resonators. A quasi-linear phase shift of 360° with ~2dB radio frequency power variation at a microwave frequency of 40GHz is obtained...

  10. Frequency Standards and Metrology

    Science.gov (United States)

    Maleki, Lute

    2009-04-01

    Preface / Lute Maleki -- Symposium history / Jacques Vanier -- Symposium photos -- pt. I. Fundamental physics. Variation of fundamental constants from the big bang to atomic clocks: theory and observations (Invited) / V. V. Flambaum and J. C. Berengut. Alpha-dot or not: comparison of two single atom optical clocks (Invited) / T. Rosenband ... [et al.]. Variation of the fine-structure constant and laser cooling of atomic dysprosium (Invited) / N. A. Leefer ... [et al.]. Measurement of short range forces using cold atoms (Invited) / F. Pereira Dos Santos ... [et al.]. Atom interferometry experiments in fundamental physics (Invited) / S. W. Chiow ... [et al.]. Space science applications of frequency standards and metrology (Invited) / M. Tinto -- pt. II. Frequency & metrology. Quantum metrology with lattice-confined ultracold Sr atoms (Invited) / A. D. Ludlow ... [et al.]. LNE-SYRTE clock ensemble: new [symbol]Rb hyperfine frequency measurement - spectroscopy of [symbol]Hg optical clock transition (Invited) / M. Petersen ... [et al.]. Precise measurements of S-wave scattering phase shifts with a juggling atomic clock (Invited) / S. Gensemer ... [et al.]. Absolute frequency measurement of the [symbol] clock transition (Invited) / M. Chwalla ... [et al.]. The semiclassical stochastic-field/atom interaction problem (Invited) / J. Camparo. Phase and frequency noise metrology (Invited) / E. Rubiola ... [et al.]. Optical spectroscopy of atomic hydrogen for an improved determination of the Rydberg constant / J. L. Flowers ... [et al.] -- pt. III. Clock applications in space. Recent progress on the ACES mission (Invited) / L. Cacciapuoti and C. Salomon. The SAGAS mission (Invited) / P. Wolf. Small mercury microwave ion clock for navigation and radioScience (Invited) / J. D. Prestage ... [et al.]. Astro-comb: revolutionizing precision spectroscopy in astrophysics (Invited) / C. E. Kramer ... [et al.]. High frequency very long baseline interferometry: frequency standards and

  11. Dual-band and high-efficiency polarization converter based on metasurfaces at microwave frequencies

    Science.gov (United States)

    Liu, Yajun; Xia, Song; Shi, Hongyu; Zhang, Anxue; Xu, Zhuo

    2016-06-01

    We present a dual-band and high-efficiency polarization converter in microwave regime. The proposed converter can convert a linearly polarized wave to its cross-polarized wave for two distinct bands: Ku (11.5-20.0 GHz) and Ka (28.8-34.0 GHz). It can also convert the linearly polarized wave to a circularly polarized wave at four other frequencies. The experimental results are in good agreement with simulation results for both frequency bands. The polarization conversion ratio is above 0.94 for the Ku-band and 0.90 for the Ka-band. Furthermore, the converter can achieve dual-band and high-efficiency polarization conversion over angles of incidence up to 45°. The converter is also polarization-selective in that only the x- and y-polarized waves can be converted. The physical mechanism of the dual-band polarization conversion effect is interpreted via decomposed electric field components that couple with different plasmon resonance modes of the structure.

  12. Transmission system for distribution of video over long-haul optical point-to-point links using a microwave photonic filter in the frequency range of 0.01-10 GHz

    Science.gov (United States)

    Zaldívar Huerta, Ignacio E.; Pérez Montaña, Diego F.; Nava, Pablo Hernández; Juárez, Alejandro García; Asomoza, Jorge Rodríguez; Leal Cruz, Ana L.

    2013-12-01

    We experimentally demonstrate the use of an electro-optical transmission system for distribution of video over long-haul optical point-to-point links using a microwave photonic filter in the frequency range of 0.01-10 GHz. The frequency response of the microwave photonic filter consists of four band-pass windows centered at frequencies that can be tailored to the function of the spectral free range of the optical source, the chromatic dispersion parameter of the optical fiber used, as well as the length of the optical link. In particular, filtering effect is obtained by the interaction of an externally modulated multimode laser diode emitting at 1.5 μm associated to the length of a dispersive optical fiber. Filtered microwave signals are used as electrical carriers to transmit TV-signal over long-haul optical links point-to-point. Transmission of TV-signal coded on the microwave band-pass windows located at 4.62, 6.86, 4.0 and 6.0 GHz are achieved over optical links of 25.25 km and 28.25 km, respectively. Practical applications for this approach lie in the field of the FTTH access network for distribution of services as video, voice, and data.

  13. SETI - A preliminary search for narrowband signals at microwave frequencies

    Science.gov (United States)

    Cuzzi, J. N.; Clark, T. A.; Tarter, J. C.; Black, D. C.

    1977-01-01

    In the search for intelligent signals of extraterrestrial origin, certain forms of signals merit immediate and special attention. Extremely narrowband signals of spectral width similar to our own television transmissions are most favored energetically and least likely to be confused with natural celestial emission. A search of selected stars has been initiated using observational and data processing techniques optimized for the detection of such signals. These techniques allow simultaneous observation of 10 to the 5th to 10 to the 6th channels within the observed spectral range. About two hundred nearby (within 80 LY) solar type stars have been observed at frequencies near the main microwave transitions of the hydroxyl radical. In addition, several molecular (hydroxyl) masers and other non-thermal sources have been observed in this way in order to uncover any possible fine spectral structure of natural origin and to investigate the potential of such an instrument for radioastronomy.

  14. Dielectric properties of almond kernels associated with radio frequency and microwave pasteurization

    Science.gov (United States)

    Li, Rui; Zhang, Shuang; Kou, Xiaoxi; Ling, Bo; Wang, Shaojin

    2017-02-01

    To develop advanced pasteurization treatments based on radio frequency (RF) or microwave (MW) energy, dielectric properties of almond kernels were measured by using an open-ended coaxial-line probe and impedance analyzer at frequencies between 10 and 3000 MHz, moisture contents between 4.2% to 19.6% w.b. and temperatures between 20 and 90 °C. The results showed that both dielectric constant and loss factor of the almond kernels decreased sharply with increasing frequency over the RF range (10-300 MHz), but gradually over the measured MW range (300-3000 MHz). Both dielectric constant and loss factor of almond kernels increased with increasing temperature and moisture content, and largely enhanced at higher temperature and moisture levels. Quadratic polynomial equations were developed to best fit the relationship between dielectric constant or loss factor at 27, 40, 915 or 2450 MHz and sample temperature/moisture content with R2 greater than 0.967. Penetration depth of electromagnetic wave into samples decreased with increasing frequency (27-2450 MHz), moisture content (4.2-19.6% w.b.) and temperature (20-90 °C). The temperature profiles of RF heated almond kernels under three moisture levels were made using experiment and computer simulation based on measured dielectric properties. Based on the result of this study, RF treatment has potential to be practically used for pasteurization of almond kernels with acceptable heating uniformity.

  15. The Interaction of C-Band Microwaves with Large Plasma Sheets

    International Nuclear Information System (INIS)

    Ding Liang; Huo Wenqing; Yang Xinjie; Xu Yuemin

    2012-01-01

    A large plasma sheet 60 cm×60 cm×2 cm in size was generated using a hollow cathode, and measurements were conducted for interactions including transmission, reflection and absorption. With different discharge parameters, plasma sheets can vary and influence microwave strength. Microwave reflection decreases when the discharge current rises, and the opposite occurs in transmission. The C-band microwave is absorbed when it is propagated through large plasma sheets at higher pressure. When plasma density and collision frequency are fitted with incident microwave frequency, a large amount of microwave energy is consumed. Reflection, transmission and absorption all exist simultaneously. Plasma sheets are an attractive alternative to microwave steering at low pressure, and the microwave reflection used in receiving radar can be altered by changing the discharge parameters.

  16. Multiplying and detecting propagating microwave photons using inelastic Cooper-pair tunneling

    Science.gov (United States)

    Leppäkangas, Juha; Marthaler, Michael; Hazra, Dibyendu; Jebari, Salha; Albert, Romain; Blanchet, Florian; Johansson, Göran; Hofheinz, Max

    2018-01-01

    The interaction between propagating microwave fields and Cooper-pair tunneling across a DC-voltage-biased Josephson junction can be highly nonlinear. We show theoretically that this nonlinearity can be used to convert an incoming single microwave photon into an outgoing n -photon Fock state in a different mode. In this process, the electrostatic energy released in a Cooper-pair tunneling event is transferred to the outgoing Fock state, providing energy gain. The created multiphoton Fock state is frequency entangled and highly bunched. The conversion can be made reflectionless (impedance matched) so that all incoming photons are converted to n -photon states. With realistic parameters, multiplication ratios n >2 can be reached. By two consecutive multiplications, the outgoing Fock-state number can get sufficiently large to accurately discriminate it from vacuum with linear postamplification and power measurement. Therefore, this amplification scheme can be used as a single-photon detector without dead time.

  17. Microwave-assisted combustion synthesis of NiAl intermetallics in a single mode applicator: Modeling and optimisation

    International Nuclear Information System (INIS)

    Poli, G.; Sola, R.; Veronesi, P.

    2006-01-01

    The microwave-assisted combustion synthesis of NiAl intermetallics in a single mode applicator has been simulated numerically and performed with the aim of achieving the highest yields, energy efficiency and process reproducibility. The electromagnetic field modeling of the microwave system allowed to chose the proper experimental set-up and the materials more suitable for the application, minimising the reflected power and the risks of arcing. In all the experimental conditions tested, conversions of 3-5 g 1:1 atomic ratio Ni and Al powder compacts into NiAl ranged from 98.7% to 100%, requiring from 30 to 180 s with power from 500 to 1500 W. The optimisation procedure allowed to determine and quantify the effects of the main process variables on the ignition time, the NiAl yields and the specific energy consumption, leading to a fast, reproducible and cost-effective process of microwave-assisted combustion synthesis of NiAl intermetallics

  18. Microwave testing of high-Tc based direct current to a single flux quantum converter

    DEFF Research Database (Denmark)

    Kaplunenko, V. K.; Fischer, Gerd Michael; Ivanov, Z. G.

    1994-01-01

    Design, simulation, and experimental investigations of a direct current to a single flux quantum converter loaded with a Josephson transmission line and driven by an external 70 GHz microwave oscillator are reported. The test circuit includes nine YBaCuO Josephson junctions aligned on the grain...... boundary of a 0°–32° asymmetric Y-ZrO2 bicrystal substrate. The performance of such converters is important for the development of the fast Josephson samplers required for testing of high-Tc rapid single flux quantum circuits in high-speed digital superconducting electronics. Journal of Applied Physics...

  19. Linear, Low Noise Microwave Photonic Systems using Phase and Frequency Modulation

    Science.gov (United States)

    2012-05-11

    Lightwave Technology, Journal of, vol. 24, no. 12, pp. 4628 –4641, Dec 2006. [2] J. Capmany and D. Novak, “Microwave photonics combines two worlds...Journal of, vol. 32, no. 7, pp. 1141 –1149, Jul 1996. [13] J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nature Photonics, vol. 1, no... Capmany , “Analytical model and figures of merit for filtered Microwave photonic links,” Opt. Express, vol. 19, no. 20, pp. 19 758–19 774, Sep 2011

  20. System design development for microwave and millimeter-wave materials processing

    Science.gov (United States)

    Feher, Lambert; Thumm, Manfred

    2002-06-01

    The most notable effect in processing dielectrics with micro- and millimeter-waves is volumetric heating of these materials, offering the opportunity of very high heating rates for the samples. In comparison to conventional heating where the heat transfer is diffusive and depends on the thermal conductivity of the material, the microwave field penetrates the sample and acts as an instantaneous heat source at each point of the sample. By this unique property, microwave heating at 2.45 GHz and 915 MHz ISM (Industrial, Medical, Scientific) frequencies is established as an important industrial technology since more than 50 years ago. Successful application of microwaves in industries has been reported e.g. by food processing systems, domestic ovens, rubber industry, vacuum drying etc. The present paper shows some outlines of microwave system development at Forschungszentrum Karlsruhe, IHM by transferring properties from the higher frequency regime (millimeter-waves) to lower frequency applications. Anyway, the need for using higher frequencies like 24 GHz (ISM frequency) for industrial applications has to be carefully verified with respect to special physical/engineering advantages or to limits the standard microwave technology meets for the specific problem.

  1. RF and microwave microelectronics packaging II

    CERN Document Server

    Sturdivant, Rick

    2017-01-01

    Reviews RF, microwave, and microelectronics assembly process, quality control, and failure analysis Bridges the gap between low cost commercial and hi-res RF/Microwave packaging technologies Engages in an in-depth discussion of challenges in packaging and assembly of advanced high-power amplifiers This book presents the latest developments in packaging for high-frequency electronics. It is a companion volume to “RF and Microwave Microelectronics Packaging” (2010) and covers the latest developments in thermal management, electrical/RF/thermal-mechanical designs and simulations, packaging and processing methods, and other RF and microwave packaging topics. Chapters provide detailed coverage of phased arrays, T/R modules, 3D transitions, high thermal conductivity materials, carbon nanotubes and graphene advanced materials, and chip size packaging for RF MEMS. It appeals to practicing engineers in the electronic packaging and high-frequency electronics domain, and to academic researchers interested in underst...

  2. In-line moisture monitoring in fluidized bed granulation using a novel multi-resonance microwave sensor.

    Science.gov (United States)

    Peters, Johanna; Bartscher, Kathrin; Döscher, Claas; Taute, Wolfgang; Höft, Michael; Knöchel, Reinhard; Breitkreutz, Jörg

    2017-08-01

    Microwave resonance technology (MRT) is known as a process analytical technology (PAT) tool for moisture measurements in fluid-bed granulation. It offers a great potential for wet granulation processes even where the suitability of near-infrared (NIR) spectroscopy is limited, e.g. colored granules, large variations in bulk density. However, previous sensor systems operating around a single resonance frequency showed limitations above approx. 7.5% granule moisture. This paper describes the application of a novel sensor working with four resonance frequencies. In-line data of all four resonance frequencies were collected and further processed. Based on calculation of density-independent microwave moisture values multiple linear regression (MLR) models using Karl-Fischer titration (KF) as well as loss on drying (LOD) as reference methods were build. Rapid, reliable in-process moisture control (RMSEP≤0.5%) even at higher moisture contents was achieved. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Microwave and Millimeter Wave Properties of Vertically-Aligned Single Wall Carbon Nanotubes Films

    Science.gov (United States)

    Haddadi, K.; Tripon-Canseliet, C.; Hivin, Q.; Ducournau, G.; Teo, E.; Coquet, P.; Tay, B. K.; Lepilliet, S.; Avramovic, V.; Chazelas, J.; Decoster, D.

    2016-05-01

    We present the experimental determination of the complex permittivity of vertically aligned single wall carbon nanotubes (SWCNTs) films grown on quartz substrates in the microwave regime from 10 MHz up to 67 GHz, with the electrical field perpendicular to the main axis of the carbon nanotubes (CNTs), based on coplanar waveguide transmission line approach together with the measurement of the microwave impedance of top metalized vertically—aligned SWCNTs grown on conductive silicon substrates up to 26 GHz. From coplanar waveguide measurements, we obtain a real part of the permittivity almost equal to unity, which is interpreted in terms of low carbon atom density (3 × 1019 at/cm3) associated with a very low imaginary part of permittivity (vertically aligned CNTs bundle equivalent to a low resistance reveals a good conductivity (3 S/cm) parallel to the CNTs axis. From these two kinds of data, we experimentally demonstrate the tensor nature of the vertically grown CNTs bundles.

  4. Mechanism of single-frequency operation of the hybrid-CO2 laser

    International Nuclear Information System (INIS)

    Gondhalekar, A.; Heckenberg, N.R.; Holzhauer, E.

    1975-01-01

    The mechanism of a new method of obtaining high-power single-frequency pulses from a TEA-CO 2 laser is discussed. Measurements of the shape and monochromaticity of pulses from the hybrid laser which has both a TEA and a low-pressure gain section inside one resonator are presented. The mechanism of single-frequency operation of the hybrid laser is discussed with reference to numerical solutions of simplified rate equations. The low-pressure section provides gain only over a narrow range of frequencies so that a mode lying in that band-width builds up faster than neighboring modes to give a single-frequency pulse resembling in overall shape the normal TEA laser pulse. If the system is already lasing when the TEA discharge begins, the single-mode radiation already present rapidly grows to give a single-frequency pulse lacking a gain-switched peak. (U.S.)

  5. Harmonic distortion in microwave photonic filters.

    Science.gov (United States)

    Rius, Manuel; Mora, José; Bolea, Mario; Capmany, José

    2012-04-09

    We present a theoretical and experimental analysis of nonlinear microwave photonic filters. Far from the conventional condition of low modulation index commonly used to neglect high-order terms, we have analyzed the harmonic distortion involved in microwave photonic structures with periodic and non-periodic frequency responses. We show that it is possible to design microwave photonic filters with reduced harmonic distortion and high linearity even under large signal operation.

  6. Frequency Dependent Non- Thermal Effects of Oscillating Electric Fields in the Microwave Region on the Properties of a Solvated Lysozyme System: A Molecular Dynamics Study.

    Directory of Open Access Journals (Sweden)

    Stelios Floros

    Full Text Available The use of microwaves in every day's applications raises issues regarding the non thermal biological effects of microwaves. In this work we employ molecular dynamics simulations to advance further the dielectric studies of protein solutions in the case of lysozyme, taking into consideration possible frequency dependent changes in the structural and dynamic properties of the system upon application of electric field in the microwave region. The obtained dielectric spectra are identical with those derived in our previous work using the Fröhlich-Kirkwood approach in the framework of the linear response theory. Noticeable structural changes in the protein have been observed only at frequencies near its absorption maximum. Concerning Cα position fluctuations, different frequencies affected different regions of the protein sequence. Furthermore, the influence of the field on the kinetics of protein-water as well as on the water-water hydrogen bonds in the first hydration shell has been studied; an extension of the Luzar-Chandler kinetic model was deemed necessary for a better fit of the applied field results and for the estimation of more accurate hydrogen bond lifetime values.

  7. A database of microwave and sub-millimetre ice particle single scattering properties

    Science.gov (United States)

    Ekelund, Robin; Eriksson, Patrick

    2016-04-01

    Ice crystal particles are today a large contributing factor as to why cold-type clouds such as cirrus remain a large uncertainty in global climate models and measurements. The reason for this is the complex and varied morphology in which ice particles appear, as compared to liquid droplets with an in general spheroidal shape, thus making the description of electromagnetic properties of ice particles more complicated. Single scattering properties of frozen hydrometers have traditionally been approximated by representing the particles as spheres using Mie theory. While such practices may work well in radio applications, where the size parameter of the particles is generally low, comparisons with measurements and simulations show that this assumption is insufficient when observing tropospheric cloud ice in the microwave or sub-millimetre regions. In order to assist the radiative transfer and remote sensing communities, a database of single scattering properties of semi-realistic particles is being produced. The data is being produced using DDA (Discrete Dipole Approximation) code which can treat arbitrarily shaped particles, and Tmatrix code for simpler shapes when found sufficiently accurate. The aim has been to mainly cover frequencies used by the upcoming ICI (Ice Cloud Imager) mission with launch in 2022. Examples of particles to be included are columns, plates, bullet rosettes, sector snowflakes and aggregates. The idea is to treat particles with good average optical properties with respect to the multitude of particles and aggregate types appearing in nature. The database will initially only cover macroscopically isotropic orientation, but will eventually also include horizontally aligned particles. Databases of DDA particles do already exist with varying accessibility. The goal of this database is to complement existing data. Regarding the distribution of the data, the plan is that the database shall be available in conjunction with the ARTS (Atmospheric

  8. Superconducting Microwave Resonator Arrays for Submillimeter/Far-Infrared Imaging

    Science.gov (United States)

    Noroozian, Omid

    Superconducting microwave resonators have the potential to revolutionize submillimeter and far-infrared astronomy, and with it our understanding of the universe. The field of low-temperature detector technology has reached a point where extremely sensitive devices like transition-edge sensors are now capable of detecting radiation limited by the background noise of the universe. However, the size of these detector arrays are limited to only a few thousand pixels. This is because of the cost and complexity of fabricating large-scale arrays of these detectors that can reach up to 10 lithographic levels on chip, and the complicated SQUID-based multiplexing circuitry and wiring for readout of each detector. In order to make substantial progress, next-generation ground-based telescopes such as CCAT or future space telescopes require focal planes with large-scale detector arrays of 104--10 6 pixels. Arrays using microwave kinetic inductance detectors (MKID) are a potential solution. These arrays can be easily made with a single layer of superconducting metal film deposited on a silicon substrate and pattered using conventional optical lithography. Furthermore, MKIDs are inherently multiplexable in the frequency domain, allowing ˜ 10 3 detectors to be read out using a single coaxial transmission line and cryogenic amplifier, drastically reducing cost and complexity. An MKID uses the change in the microwave surface impedance of a superconducting thin-film microresonator to detect photons. Absorption of photons in the superconductor breaks Cooper pairs into quasiparticles, changing the complex surface impedance, which results in a perturbation of resonator frequency and quality factor. For excitation and readout, the resonator is weakly coupled to a transmission line. The complex amplitude of a microwave probe signal tuned on-resonance and transmitted on the feedline past the resonator is perturbed as photons are absorbed in the superconductor. The perturbation can be

  9. Multi-Functional Fibre-Optic Microwave Links

    DEFF Research Database (Denmark)

    Gliese, Ulrik Bo

    1998-01-01

    The multi-functionality of microwave links based on remote heterodyne detection of signals from a dual-frequency laser transmitter is discussed and experimentally demonstrated in this paper. Typically, direct detection in conjunction with optical intensity modulation is used to implement fibre......-optic microwave links. The resulting links are inherently transparent and mainly used for signal transmission. As opposed to direct detection links, remote heterodyne detection links can directly perform functionalities such as modulation, frequency conversion, and transparent signal recovery in addition...

  10. Self-seeded single-frequency laser peening method

    Science.gov (United States)

    DAne, C Brent; Hackey, Lloyd A; Harris, Fritz B

    2012-06-26

    A method of operating a laser to obtain an output pulse having a single wavelength, comprises inducing an intracavity loss into a laser resonator having an amount that prevents oscillation during a time that energy from the pump source is being stored in the gain medium. Gain is built up in the gain medium with energy from the pump source until formation of a single-frequency relaxation oscillation pulse in the resonator. Upon detection of the onset of the relaxation oscillation pulse, the intracavity loss is reduced, such as by Q-switching, so that the built-up gain stored in the gain medium is output from the resonator in the form of an output pulse at a single frequency. An electronically controllable output coupler is controlled to affect output pulse characteristics. The laser acts a master oscillator in a master oscillator power amplifier configuration. The laser is used for laser peening.

  11. Microwave frequency sweep interferometer for plasma density measurements in ECR ion sources: Design and preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Torrisi, Giuseppe [INFN - Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); University Mediterranea of Reggio Calabria, Reggio Calabria (Italy); Mascali, David; Neri, Lorenzo; Leonardi, Ornella; Celona, Luigi; Castro, Giuseppe; Agnello, Riccardo; Caruso, Antonio; Passarello, Santi; Longhitano, Alberto; Gammino, Santo [INFN - Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); Sorbello, Gino [INFN - Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); University of Catania, Catania, Italy and INFN-LNS, Catania (Italy); Isernia, Tommaso [University Mediterranea of Reggio Calabria, Reggio Calabria (Italy)

    2016-02-15

    The Electron Cyclotron Resonance Ion Sources (ECRISs) development is strictly related to the availability of new diagnostic tools, as the existing ones are not adequate to such compact machines and to their plasma characteristics. Microwave interferometry is a non-invasive method for plasma diagnostics and represents the best candidate for plasma density measurement in hostile environment. Interferometry in ECRISs is a challenging task mainly due to their compact size. The typical density of ECR plasmas is in the range 10{sup 11}–10{sup 13} cm{sup −3} and it needs a probing beam wavelength of the order of few centimetres, comparable to the chamber radius. The paper describes the design of a microwave interferometer developed at the LNS-INFN laboratories based on the so-called “frequency sweep” method to filter out the multipath contribution in the detected signals. The measurement technique and the preliminary results (calibration) obtained during the experimental tests will be presented.

  12. A single sensor and single actuator approach to performance tailoring over a prescribed frequency band.

    Science.gov (United States)

    Wang, Jiqiang

    2016-03-01

    Restricted sensing and actuation control represents an important area of research that has been overlooked in most of the design methodologies. In many practical control engineering problems, it is necessitated to implement the design through a single sensor and single actuator for multivariate performance variables. In this paper, a novel approach is proposed for the solution to the single sensor and single actuator control problem where performance over any prescribed frequency band can also be tailored. The results are obtained for the broad band control design based on the formulation for discrete frequency control. It is shown that the single sensor and single actuator control problem over a frequency band can be cast into a Nevanlinna-Pick interpolation problem. An optimal controller can then be obtained via the convex optimization over LMIs. Even remarkable is that robustness issues can also be tackled in this framework. A numerical example is provided for the broad band attenuation of rotor blade vibration to illustrate the proposed design procedures. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Heat transfer within a concrete slab with a finite microwave heating source

    International Nuclear Information System (INIS)

    Lagos, L.E.; Li, W.; Ebadian, M.A.; Grubb, R.G.

    1995-01-01

    In the present paper, the concrete decontamination and decommissioning process with a finite microwave heating source is investigated theoretically. For the microwave induced heating pattern, a multilayer concrete slab, which includes steel reinforcement mesh, is assumed to be exposed to a finite plane microwave source at normal incidence. Two-dimensional heat transport within the concrete is also considered to evaluate the variations of temperature with heating time at different frequencies with and without the presence of the reinforcement bars. Four commonly used industrial microwave frequencies of 0.896, 2.45, 10.6 and 18.0 GHz have been selected. The results revealed that as the microwave frequency increases to, or higher than 10.6 GHz, the maximum temperature shifts toward the front surface of the concrete. It was found that the presence of a steel reinforcement mesh causes part of the microwave energy to be blocked and reflected. Furthermore, it was observed that the temperature distribution is nearly uniform within the dimensions of the microwave applicator for a high microwave power intensity and a short heating time. (author)

  14. Photon correlation in single-photon frequency upconversion.

    Science.gov (United States)

    Gu, Xiaorong; Huang, Kun; Pan, Haifeng; Wu, E; Zeng, Heping

    2012-01-30

    We experimentally investigated the intensity cross-correlation between the upconverted photons and the unconverted photons in the single-photon frequency upconversion process with multi-longitudinal mode pump and signal sources. In theoretical analysis, with this multi-longitudinal mode of both signal and pump sources system, the properties of the signal photons could also be maintained as in the single-mode frequency upconversion system. Experimentally, based on the conversion efficiency of 80.5%, the joint probability of simultaneously detecting at upconverted and unconverted photons showed an anti-correlation as a function of conversion efficiency which indicated the upconverted photons were one-to-one from the signal photons. While due to the coherent state of the signal photons, the intensity cross-correlation function g(2)(0) was shown to be equal to unity at any conversion efficiency, agreeing with the theoretical prediction. This study will benefit the high-speed wavelength-tunable quantum state translation or photonic quantum interface together with the mature frequency tuning or longitudinal mode selection techniques.

  15. Stepped-frequency radar sensors theory, analysis and design

    CERN Document Server

    Nguyen, Cam

    2016-01-01

    This book presents the theory, analysis and design of microwave stepped-frequency radar sensors. Stepped-frequency radar sensors are attractive for various sensing applications that require fine resolution. The book consists of five chapters. The first chapter describes the fundamentals of radar sensors including applications followed by a review of ultra-wideband pulsed, frequency-modulated continuous-wave (FMCW), and stepped-frequency radar sensors. The second chapter discusses a general analysis of radar sensors including wave propagation in media and scattering on targets, as well as the radar equation. The third chapter addresses the analysis of stepped-frequency radar sensors including their principles and design parameters. Chapter 4 presents the development of two stepped-frequency radar sensors at microwave and millimeter-wave frequencies based on microwave integrated circuits (MICs), microwave monolithic integrated circuits (MMICs) and printed-circuit antennas, and discusses their signal processing....

  16. A novel symmetrical microwave power sensor based on GaAs monolithic microwave integrated circuit technology

    International Nuclear Information System (INIS)

    Wang, De-bo; Liao, Xiao-ping

    2009-01-01

    A novel symmetrical microwave power sensor based on GaAs monolithic microwave integrated circuit (MMIC) technology is presented in this paper. In this power sensor, the left section inputs the microwave power, while the right section inputs the dc power. Because of the symmetrical structure, this power sensor is created to provide more accurate microwave power measurement capability without mismatch uncertainty and restrain temperature drift. The loss model is built and the loss voltage is 0.8 mV at 20 GHz when the input power is 100 mW. This power sensor is designed and fabricated using GaAs MMIC technology. And it is measured in the frequency range up to 20 GHz with the input power in the −20 dBm to 19 dBm range. Over the 19 dBm dynamic range, the sensitivity can achieve about 0.2 mV mW −1 . The difference between the input powers in the two sections is below 0.1% for equal output voltages. For an amplitude modulation measurement, the carrier frequency is the main factor to influence the measurement results. In short, the key aspect of this power sensor is that the microwave power measurement can be replaced by a dc power measurement with precise wideband

  17. Planck intermediate results XXXI. Microwave survey of Galactic supernova remnants

    DEFF Research Database (Denmark)

    Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.

    2016-01-01

    The all-sky Planck survey in 9 frequency bands was used to search for emission from all 274 known Galactic supernova remnants. Of these, 16 were detected in at least two Planck frequencies. The radio-through-microwave spectral energy distributions were compiled to determine the mechanism for micr......The all-sky Planck survey in 9 frequency bands was used to search for emission from all 274 known Galactic supernova remnants. Of these, 16 were detected in at least two Planck frequencies. The radio-through-microwave spectral energy distributions were compiled to determine the mechanism...... for microwave emission. In only one case, IC 443, is there high-frequency emission clearly from dust associated with the supernova remnant. In all cases, the low-frequency emission is from synchrotron radiation. As predicted for a population of relativistic particles with energy distribution that extends...

  18. Microwave absorption properties of a wave-absorbing coating employing carbonyl-iron powder and carbon black

    International Nuclear Information System (INIS)

    Liu Lidong; Duan Yuping; Ma Lixin; Liu Shunhua; Yu Zhen

    2010-01-01

    To prevent serious electromagnetic interference, a single-layer wave-absorbing coating employing complex absorbents composed of carbonyl-iron powder (CIP) and carbon black (CB) with epoxy resin as matrix was prepared. The morphologies of CIP and CB were characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM), respectively. The electromagnetic parameters of CIP and CB were measured in the frequency range of 2-18 GHz by transmission/reflection technology, and the electromagnetic loss mechanisms of the two particles were discussed, respectively. The microwave absorption properties of the coatings were investigated by measuring reflection loss (RL) using arch method. The effects of CIP ratio, CB content and thickness on the microwave absorption properties were discussed, respectively. The results showed that the higher thickness, CIP or CB content could make the absorption band shift towards the lower frequency range. Significantly, the wave-absorbing coating could be applied in different frequency ranges according to actual demand by controlling the content of CIP or CB in composites.

  19. Microwave absorption properties of a wave-absorbing coating employing carbonyl-iron powder and carbon black

    Science.gov (United States)

    Liu, Lidong; Duan, Yuping; Ma, Lixin; Liu, Shunhua; Yu, Zhen

    2010-11-01

    To prevent serious electromagnetic interference, a single-layer wave-absorbing coating employing complex absorbents composed of carbonyl-iron powder (CIP) and carbon black (CB) with epoxy resin as matrix was prepared. The morphologies of CIP and CB were characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM), respectively. The electromagnetic parameters of CIP and CB were measured in the frequency range of 2-18 GHz by transmission/reflection technology, and the electromagnetic loss mechanisms of the two particles were discussed, respectively. The microwave absorption properties of the coatings were investigated by measuring reflection loss (RL) using arch method. The effects of CIP ratio, CB content and thickness on the microwave absorption properties were discussed, respectively. The results showed that the higher thickness, CIP or CB content could make the absorption band shift towards the lower frequency range. Significantly, the wave-absorbing coating could be applied in different frequency ranges according to actual demand by controlling the content of CIP or CB in composites.

  20. Theoretical and experimental study of two-frequency solid-state lasers in the GHz to THz ranges. Opto-microwave applications waves

    International Nuclear Information System (INIS)

    Lai, N.D.

    2003-07-01

    We explored some new features of single- and dual-frequency solid-state lasers oscillating in continuous-wave or pulsed regimes. First, we have developed some techniques to optimise the characteristics of pulsed lasers. A weak modulation of the pump power made it possible to obtain a stable repetition rate with a relative stability of 10 -6 . The pulse duration was continuously controlled from ten nanoseconds to a few hundreds nanoseconds by three different methods: adjustment of the laser beam diameter in the absorber, adjustment of the pump beam diameter in the active medium, and, in particular, the use of forked eigenstates in a two-axis laser. Moreover, the forked eigenstates allows to increase the pulse energy by coherent addition of the pulses. A compact two-frequency Nd:YAG-Cr:YAG laser with a beat note frequency continuously adjustable up to 2,7 GHz was demonstrated. The two-frequency pulses are ideal sources to meet various needs of applications such as the Doppler lidar-radar. Moreover, we show that two-frequency pulses at 1,55 μm can be obtained by using a new c-cut Co:ASL saturable absorber in an Er-Yb:glass laser. These pulses are perfectly adapted to free-space detection systems requiring eye safety. The coherence time of the beat note in these lasers was also studied: it is limited by the pulse duration. A new technique of modulating the pump power of a solid-state laser at frequencies close to its relaxation oscillation frequency was studied and made it possible to generate a beat note coherence from pulse to pulse. Frequency conversion techniques using the nonlinear optical effects make it possible to obtain tunable two-frequency sources in the visible spectrum. Green and red two-frequency pulses were obtained by using different conversion techniques, intra-cavity or extra-cavity. A two-frequency THz source in the red spectrum was also obtained by doubling the frequencies of a two-frequency THz Er-Yb:glass laser using a mixed fan-out PPLN crystal

  1. Elliptical metasurfaces for cloaking and antenna applications at microwave and terahertz frequencies

    Science.gov (United States)

    Mehrpourbernety, Hossein

    One of the interesting applications of metamaterials is the phenomenon of electromagnetic invisibility and cloaking, which implies the suppression of bistatic scattering width of a given object, independent of incident and observation angles. In this regard, diverse techniques have been proposed to analyze and design electromagnetic cloak structures, including transformation optics, anomalous resonance methods, transmission-line networks, and plasmonic cloaking, among others. A common drawback of all these methods is that they rely on bulk materials, which are difficult to realize in practice. To overcome this issue, the mantle cloaking method has been proposed, which utilizes an ultrathin metasurface that provides anti-phase surface currents to reduce the scattering dominant mode of a given object. Recently, an analytical model has been proposed to cloak dielectric and conducting cylindrical objects realized with printed and slotted arrays at microwave frequencies. At low-terahertz (THz) frequencies, one of the promising materials to realize the required metasurface is graphene. In this regard, a graphene monolayer, characterized by inductive reactance, has been proposed to cloak dielectric planar and cylindrical objects. Then, it has been shown that a metasurface made of graphene nanopatches owns dual capacitive/inductive inductance and can be used to cloak both dielectric and conducting cylindrical objects at low-THz frequencies. So far, planar and cylindrical dielectric and conducting structures have been studied. In our study, we have extended the concept and presented an accurate analytical approach to investigate the cloaking of two-dimensional (2-D) elliptical objects including infinite dielectric elliptical cylinders using graphene monolayer; metallic elliptical cylinders, and also, as a special case, 2-D metallic strips using a nanostructured graphene patch array at low-THz frequencies. We have also obtained the results for cloaking of ellipses at

  2. Stable Single Polarization, Single Frequency, and Linear Cavity Er-Doped Fiber Laser Using a Saturable Absorber

    International Nuclear Information System (INIS)

    Li Qi; Yan Feng-Ping; Peng Wan-Jing; Feng Su-Chun; Feng Ting; Tan Si-Yu; Liu Peng

    2013-01-01

    A simple approach for stable single polarization, single frequency, and linear cavity erbium doped fiber laser is proposed and demonstrated. A Fabry—Pérot filter, polarizer and saturable absorber are used together to ensure stable single frequency, single polarization operation. The optical signal-to-noise ratio of the laser is approximately 57 dB, and the Lorentz linewidth is 13.9 kHz. The polarization state of the laser with good stability is confirmed and the degree of polarization is >99%

  3. Ionospheric correction for spaceborne single-frequency GPS based ...

    Indian Academy of Sciences (India)

    A modified ionospheric correction method and the corresponding approximate algorithm for spaceborne single-frequency Global Positioning System (GPS) users are proposed in this study. Single Layer Model (SLM) mapping function for spaceborne GPS was analyzed. SLM mapping functions at different altitudes were ...

  4. Study and development of different techniques for the generation, conversion, propagation, and radiation of high power microwaves for the electronic cyclotron frequency plasma heating

    International Nuclear Information System (INIS)

    Rebuffi, L.

    1987-10-01

    The development and optimization of a microwave technique, concerning the high frequency (electronic cyclotron frequency) plasma heating is presented. The experiments are effectuated on the Fontenay-aux-Roses TFR tokamak, with 660 kw whole power, during 100 msec, produced at 60 GHz. Low power tests are performed on the different transmission line components (there are 3, formed by metallic circular waveguides). The work also includes: the development of a lens formed by thin metallic plans; the study of slotted surface mirror; the development of a system for the accurate measurement (5.10 -6 ) of the gyrotronic frequency; a theory, based on the equivalent circuits method, generalized to the rotational and polarization mirrors; the development of a numerical simulation code. A practical scheme, for the optimization of the parameters concerning the optical transmission line project, is given. The results of this work can be applied to the experiment involving power levels, frequencies and times of impulsion increasingly higher (respectively about MW, 100 GHz and 10s) than the reported ones. Moreover, they can also be used in any experiment in the microwave field [fr

  5. Tunable Water-based Microwave Metasurface

    DEFF Research Database (Denmark)

    Kapitanova, Polina; Odit, Mikhail; Dobrykh, Dmitry

    2017-01-01

    A water-based dynamically tunable microwave metasurface is developed and experimentally investigated. A simple approach to tune the metasurface properties by changing the shape of water-based unit cells by gravitation force is proposed. The transmission spectra of the metasurface for linear...... angle. The proposed approach can be used to design cheap metasurfaces for electromagnetic wave control in the microwave frequency range....

  6. Branched carbon nanofiber network synthesis at room temperature using radio frequency supported microwave plasmas

    International Nuclear Information System (INIS)

    Boskovic, Bojan O.; Stolojan, Vlad; Zeze, Dagou A.; Forrest, Roy D.; Silva, S. Ravi P.; Haq, Sajad

    2004-01-01

    Carbon nanofibers have been grown at room temperature using a combination of radio frequency and microwave assisted plasma-enhanced chemical vapor deposition. The nanofibers were grown, using Ni powder catalyst, onto substrates kept at room temperature by using a purposely designed water-cooled sample holder. Branched carbon nanofiber growth was obtained without using a template resulting in interconnected carbon nanofiber network formation on substrates held at room temperature. This method would allow room-temperature direct synthesized nanofiber networks over relatively large areas, for a range of temperature sensitive substrates, such as organic materials, plastics, and other polymers of interest for nanoelectronic two-dimensional networks, nanoelectromechanical devices, nanoactuators, and composite materials

  7. Simple microwave plasma source at atmospheric pressure

    International Nuclear Information System (INIS)

    Kim, Jeong H.; Hong, Yong C.; Kim, Hyoung S.; Uhm, Han S.

    2003-01-01

    We have developed a thermal plasma source operating without electrodes. One electrodeless torch is the microwave plasma-torch, which can produce plasmas in large quantities. We can generate plasma at an atmospheric pressure by marking use of the same magnetrons used as commercial microwave ovens. Most of the magnetrons are operated at the frequency of 2.45 GHz; the magnetron power microwave is about 1kW. Electromagnetic waves from the magnetrons propagate through a shorted waveguide. Plasma was generated under a resonant condition, by an auxiliary ignition system. The plasma is stabilized by vortex stabilization. Also, a high-power and high-efficiency microwave plasma-torch has been operated in air by combining two microwave plasma sources with 1kW, 2.45 GHz. They are arranged in series to generate a high-power plasma flame. The second torch adds all its power to the plasma flame of the first torch. Basically, electromagnetic waves in the waveguide were studied by a High Frequency Structure Simulator (HFSS) code and preliminary experiments were conducted

  8. High-precision coseismic displacement estimation with a single-frequency GPS receiver

    Science.gov (United States)

    Guo, Bofeng; Zhang, Xiaohong; Ren, Xiaodong; Li, Xingxing

    2015-07-01

    To improve the performance of Global Positioning System (GPS) in the earthquake/tsunami early warning and rapid response applications, minimizing the blind zone and increasing the stability and accuracy of both the rapid source and rupture inversion, the density of existing GPS networks must be increased in the areas at risk. For economic reasons, low-cost single-frequency receivers would be preferable to make the sparse dual-frequency GPS networks denser. When using single-frequency GPS receivers, the main problem that must be solved is the ionospheric delay, which is a critical factor when determining accurate coseismic displacements. In this study, we introduce a modified Satellite-specific Epoch-differenced Ionospheric Delay (MSEID) model to compensate for the effect of ionospheric error on single-frequency GPS receivers. In the MSEID model, the time-differenced ionospheric delays observed from a regional dual-frequency GPS network to a common satellite are fitted to a plane rather than part of a sphere, and the parameters of this plane are determined by using the coordinates of the stations. When the parameters are known, time-differenced ionospheric delays for a single-frequency GPS receiver could be derived from the observations of those dual-frequency receivers. Using these ionospheric delay corrections, coseismic displacements of a single-frequency GPS receiver can be accurately calculated based on time-differenced carrier-phase measurements in real time. The performance of the proposed approach is validated using 5 Hz GPS data collected during the 2012 Nicoya Peninsula Earthquake (Mw 7.6, 2012 September 5) in Costa Rica. This shows that the proposed approach improves the accuracy of the displacement of a single-frequency GPS station, and coseismic displacements with an accuracy of a few centimetres are achieved over a 10-min interval.

  9. A stable wavelength-tunable single frequency and single polarization linear cavity erbium-doped fiber laser

    International Nuclear Information System (INIS)

    Feng, T; Yan, F P; Li, Q; Peng, W J; Tan, S Y; Feng, S C; Wen, X D; Liu, P

    2013-01-01

    We report the configuration and operation of a wavelength-tunable single frequency and single polarization erbium-doped fiber laser (EDFL) with a stable and high optical signal to noise ratio (OSNR) laser output. A narrow-band fiber Bragg grating (NBFBG), a FBG-based Fabry–Perot (FP) filter, a polarization controller (PC) and an unpumped erbium-doped fiber (EDF) as a saturable absorber (SA) are employed to realize stable single frequency lasing operation. An all-fiber polarizer (AFP) is introduced to suppress mode hopping and ensure the single polarization mode operation. By adjusting the length of the NBFBG using a stress adjustment module (SAM), four stable single frequency and single polarization laser outputs at wavelengths of 1544.946, 1545.038, 1545.118 and 1545.182 nm are obtained. At room temperature, performance with an OSNR of larger than 60 dB, power fluctuation of less than 0.04 dB, wavelength variation of less than 0.01 nm for about 5 h measurement, and degree of polarization (DOP) of close to 100% has been experimentally demonstrated for the fiber laser operating at these four wavelengths. (paper)

  10. Iodine-stabilized single-frequency green InGaN diode laser.

    Science.gov (United States)

    Chen, Yi-Hsi; Lin, Wei-Chen; Shy, Jow-Tsong; Chui, Hsiang-Chen

    2018-01-01

    A 520-nm InGaN diode laser can emit a milliwatt-level, single-frequency laser beam when the applied current slightly exceeds the lasing threshold. The laser frequency was less sensitive to diode temperature and could be finely tuned by adjusting the applied current. Laser frequency was stabilized onto a hyperfine component in an iodine transition through the saturated absorption spectroscopy. The uncertainty of frequency stabilization was approximately 8×10 -9 at a 10-s integration time. This compact laser system can replace the conventional green diode-pumped solid-state laser and applied as a frequency reference. A single longitudinal mode operational region with diode temperature, current, and output power was investigated.

  11. Tunable and broadband microwave frequency combs based on a semiconductor laser with incoherent optical feedback

    International Nuclear Information System (INIS)

    Zhao Mao-Rong; Wu Zheng-Mao; Deng Tao; Zhou Zhen-Li; Xia Guang-Qiong

    2015-01-01

    Based on a semiconductor laser (SL) with incoherent optical feedback, a novel all-optical scheme for generating tunable and broadband microwave frequency combs (MFCs) is proposed and investigated numerically. The results show that, under suitable operation parameters, the SL with incoherent optical feedback can be driven to operate at a regular pulsing state, and the generated MFCs have bandwidths broader than 40 GHz within a 10 dB amplitude variation. For a fixed bias current, the line spacing (or repetition frequency) of the MFCs can be easily tuned by varying the feedback delay time and the feedback strength, and the tuning range of the line spacing increases with the increase in the bias current. The linewidth of the MFCs is sensitive to the variation of the feedback delay time and the feedback strength, and a linewidth of tens of KHz can be achieved through finely adjusting the feedback delay time and the feedback strength. In addition, mappings of amplitude variation, repetition frequency, and linewidth of MFCs in the parameter space of the feedback delay time and the feedback strength are presented. (paper)

  12. Organic Synthesis Using Microwaves and Supported Reagents

    Science.gov (United States)

    In the electromagnetic radiation region, microwaves (0.3GHz-300GHz) lie between radiowave (Rf) and infrared (IR) frequencies with relatively large wavelengths (1 mm-1 m). Microwaves, non-ionizing radiation incapable of breaking bonds, are a form of energy that manifest as heat t...

  13. A Novel Technique for Sterilization Using a Power Self-Regulated Single-Mode Microwave Cavity.

    Science.gov (United States)

    Reverte-Ors, Juan D; Pedreño-Molina, Juan L; Fernández, Pablo S; Lozano-Guerrero, Antonio J; Periago, Paula M; Díaz-Morcillo, Alejandro

    2017-06-07

    In this paper, a novel technique to achieve precise temperatures in food sterilization has been proposed. An accurate temperature profile is needed in order to reach a commitment between the total removal of pathogens inside the product and the preservation of nutritional and organoleptic characteristics. The minimal variation of the target temperature in the sample by means of a monitoring and control software platform, allowing temperature stabilization over 100 °C, is the main goal of this work. A cylindrical microwave oven, under pressure conditions and continuous control of the microwave supply power as function of the final temperature inside the sample, has been designed and developed with conditions of single-mode resonance. The uniform heating in the product is achieved by means of sample movement and the self-regulated power control using the measured temperature. Finally, for testing the sterilization of food with this technology, specific biological validation based on Bacillus cereus as a biosensor of heat inactivation has been incorporated as a distribution along the sample in the experimental process to measure the colony-forming units (CFUs) for different food samples (laboratory medium, soup, or fish-based animal by-products). The obtained results allow the validation of this new technology for food sterilization with precise control of the microwave system to ensure the uniform elimination of pathogens using high temperatures.

  14. A Novel Technique for Sterilization Using a Power Self-Regulated Single-Mode Microwave Cavity

    Directory of Open Access Journals (Sweden)

    Juan D. Reverte-Ors

    2017-06-01

    Full Text Available In this paper, a novel technique to achieve precise temperatures in food sterilization has been proposed. An accurate temperature profile is needed in order to reach a commitment between the total removal of pathogens inside the product and the preservation of nutritional and organoleptic characteristics. The minimal variation of the target temperature in the sample by means of a monitoring and control software platform, allowing temperature stabilization over 100 °C, is the main goal of this work. A cylindrical microwave oven, under pressure conditions and continuous control of the microwave supply power as function of the final temperature inside the sample, has been designed and developed with conditions of single-mode resonance. The uniform heating in the product is achieved by means of sample movement and the self-regulated power control using the measured temperature. Finally, for testing the sterilization of food with this technology, specific biological validation based on Bacillus cereus as a biosensor of heat inactivation has been incorporated as a distribution along the sample in the experimental process to measure the colony-forming units (CFUs for different food samples (laboratory medium, soup, or fish-based animal by-products. The obtained results allow the validation of this new technology for food sterilization with precise control of the microwave system to ensure the uniform elimination of pathogens using high temperatures.

  15. Microwave bio-sensor based on symmetrical split ring resonator with spurline filters for therapeutic goods detection.

    Directory of Open Access Journals (Sweden)

    Rammah A Alahnomi

    Full Text Available A novel symmetrical split ring resonator (SSRR based microwave sensor with spurline filters for detecting and characterizing the properties of solid materials has been developed. Due to the weak perturbation in the interaction of material under test (MUT and planar microwave sensor, spurline filters were embedded to the SSRR microwave sensor which effectively enhanced Q-factor with suppressing the undesired harmonic frequency. The spurline filter structures force the presented sensor to resonate at a fundamental frequency of 2.2 GHz with the capabilities of suppressing rejected harmonic frequency and miniaturization in circuit size. A wide bandwidth rejection is achieved by using double spurlines filters with high Q-factor achievement (up to 652.94 compared to single spurline filter. The new SSRR sensor with spurline filters displayed desired properties such as high sensitivity, accuracy, and performance with a 1.3% typical percentage error in the measurement results. Furthermore, the sensor has been successfully applied for detecting and characterizing solid materials (such as Roger 5880, Roger 4350, and FR4 and evidently demonstrated that it can suppress the harmonic frequency effectively. This novel design with harmonic suppression is useful for various applications such as food industry (meat, fruit, vegetables, biological medicine (derived from proteins and other substances produced by the body, and Therapeutic goods (antiseptics, vitamins, anti-psychotics, and other medicines.

  16. Photonics-Based Microwave Image-Reject Mixer

    Directory of Open Access Journals (Sweden)

    Dan Zhu

    2018-03-01

    Full Text Available Recent developments in photonics-based microwave image-reject mixers (IRMs are reviewed with an emphasis on the pre-filtering method, which applies an optical or electrical filter to remove the undesired image, and the phase cancellation method, which is realized by introducing an additional phase to the converted image and cancelling it through coherent combination without phase shift. Applications of photonics-based microwave IRM in electronic warfare, radar systems and satellite payloads are described. The inherent challenges of implementing photonics-based microwave IRM to meet specific requirements of the radio frequency (RF system are discussed. Developmental trends of the photonics-based microwave IRM are also discussed.

  17. Study of the microwave emissivity characteristics over Gobi Desert

    International Nuclear Information System (INIS)

    Yubao, Qiu; Lijuan, Shi; Wenbo, Wu

    2014-01-01

    The microwave emissivity represents the capacity of the thermal radiation of the surface, and it is the significant parameter for understanding the geophysical processes such as surface energy budget and surface radiation. Different land covers have different emissivity properties, and the Gobi Desert in Central Asia seriously impact the sandstorms occur and develop in China, because of its special geographical environment and surface soil characteristics. In this study half-month averaged microwave emissivity from March 2003 to February 2004 over the Gobi Desert has been estimated. Emissivities in this area at different frequencies, polarization and their seasonal variations are discussed respectively. The results showed that emissivity polarization difference decrease as the frequency increases, and the polarization difference is large (0.03–0.127). The H polarization emissivity increases with increasing frequency, but the V-polarized microwave emissivity is reduced with increasing frequency because of the body scattering. In winter, emissivity decreases sharply in snow covered area, especially for higher frequencies (such as 89GHz). In addition, we compared emissivity with MODIS NDVI data at the same time in the Gobi Desert, and the results indicate that NDVI derived the good negative correlation with microwave emissivity polarization difference at 37GHz

  18. Complete FDTD analysis of microwave heating processes in frequency-dependent and temperature dependent media

    Energy Technology Data Exchange (ETDEWEB)

    Torres, F.; Jecko, B. [Univ. de Limoges (France). Inst. de Recherche en Communications Optiques et Microondes

    1997-01-01

    It is well known that the temperature rise in a material modifies its physical properties and, particularly, its dielectric permittivity. The dissipated electromagnetic power involved in microwave heating processes depending on {var_epsilon}({omega}), the electrical characteristics of the heated media must vary with the temperature to achieve realistic simulations. In this paper, the authors present a fast and accurate algorithm allowing, through a combined electromagnetic and thermal procedure, to take into account the influence of the temperature on the electrical properties of materials. First, the temperature dependence of the complex permittivity ruled by a Debye relaxation equation is investigated, and a realistic model is proposed and validated. Then, a frequency-dependent finite-differences time-domain ((FD){sup 2}TD) method is used to assess the instantaneous electromagnetic power lost by dielectric hysteresis. Within the same iteration, a time-scaled form of the heat transfer equation allows one to calculate the temperature distribution in the heated medium and then to correct the dielectric properties of the material using the proposed model. These new characteristics will be taken into account by the EM solver at the next iteration. This combined algorithm allows a significant reduction of computation time. An application to a microwave oven is proposed.

  19. Peak effect in laser ablated DyBa2Cu3O7-δ films at microwave frequencies at subcritical currents

    NARCIS (Netherlands)

    Bhangale, A.R.; Raychaudhuri, P.; Banerjee, T.; Shirodkar, V.S.

    2001-01-01

    In this article we report the observation of a peak in the microwave surface resistance (at frequencies ~10 GHz) of laser ablated DyBa2Cu3O7-δ films in magnetic field ranging from 2 to 9 kOe (||c) close to the superconducting transition temperature [Tc(H)]. The exact nature of the peak is sample

  20. Room temperature microwave-assisted recording on 500-Gbpsi-class perpendicular medium

    Science.gov (United States)

    Nozaki, Y.; Ishida, N.; Soeno, Y.; Sekiguchi, K.

    2012-10-01

    Microwave-assisted recording on a 500-Gbpsi-class perpendicular medium was experimentally demonstrated at room temperature. Magnetization reversal under a radio-frequency magnetic field was measured by an electrically shorted coplanar waveguide, which enabled us to evaluate the change in the medium's ferromagnetic resonance spectrum. A frequency-dependent reduction in the switching field was clearly observed in response to a microwave impulse 50 ns in duration. A significant reduction of up to 30% in the coercive field was achieved by applying a microwave impulse with an amplitude of 25 dBm and a frequency of 15 GHz.

  1. Study of the ion density of a radio-frequency plasma using electrostatic probes and focussed microwave interferometers

    International Nuclear Information System (INIS)

    Nguyen Cao, L.; Gagne, R.R.J.

    1976-01-01

    In order to verify experimentally and compare recent ion theories for cylindrical electrostatic probes, the ion density in a radio-frequency plasma was evaluated from V-I curves by means of six different theories. At low pressures, the theories of Bernstein and Rabinowitz, of Lam and Laframboise, give values of density which differ respectively by 20, 25 and 30% compared with the values obtained using a 10GHz focussed microwave interferometer. At the continuum limit, The Schulz and Brown's, and Su and Kiel's theories give density values which disagree respectively by 55 and 20%, compared with the values obtained by microwaves. For pressures varying from 0.05 to 3mmHg, the decrease of ion current, as predicted theorically by Waymouth, was observed. The density perturbation near the probe was found to be a dominant factor affecting the precision of density measurements, for pressures up to 2mmHg at least for our experimental conditions [fr

  2. On the Earth Microwave Background: Absorption and Scattering by the Atmosphere

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2007-07-01

    Full Text Available The absorption and scattering of microwave radiation by the atmosphere of the Earth is considered under a steady state scenario. Using this approach, it is demonstrated that the microwave background could not have a cosmological origin. Scientific observations in the microwave region are explained by considering an oceanic source, combined with both Rayleigh and Mie scattering in the atmosphere in the absence of net absorption. Importantly, at high frequencies, Mie scattering occurs primarily with forward propagation. This helps to explain the lack of high frequency microwave background signals when radio antennae are positioned on the Earth’s surface.

  3. Facile conversion of bulk metal surface to metal oxide single-crystalline nanostructures by microwave irradiation: Formation of pure or Cr-doped hematite nanostructure arrays

    International Nuclear Information System (INIS)

    Cho, Seungho; Jeong, Haeyoon; Lee, Kun-Hong

    2010-01-01

    We report a method for converting the surfaces of bulk metal substrates (pure iron or stainless steel) to metal oxide (hematite or Cr-doped hematite) nanostructures using microwave irradiation. When microwave radiation (2.45 GHz, single-mode) was applied to a metal substrate under the flow of a gas mixture containing O 2 and Ar, metal oxide nanostructures formed and entirely covered the substrate. The nanostructures were single crystalline, and the atomic ratios of the substrate metals were preserved in the nanostructures. When a pure iron sheet was used as a substrate, hematite nanowires (1000 W microwave radiation) or nanosheets (1800 W microwave radiation) formed on the surface of the substrate. When a SUS410 sheet was used as a substrate, slightly curved rod-like nanostructures were synthesized. The oxidation states of Fe and Cr in these nanorods were Fe 3+ and Cr 3+ . Quantitative analyses revealed an average Fe/Cr atomic ratio of 9.2, nearly identical to the ratio of the metals in the SUS410 substrate.

  4. Single-frequency thulium-doped distributed-feedback fibre laser

    DEFF Research Database (Denmark)

    Agger, Søren; Povlsen, Jørn Hedegaard; Varming, Poul

    2004-01-01

    We have successfully demonstrated a single-frequency distributed-feedback (DFB) thulium-doped silica fiber laser emitting at a wavelength of 1735 nm. The laser cavity is less than 5 cm long and is formed by intracore UV-written Bragg gratings with a phase shift. The laser is pumped at 790 nm from...... a Ti:sapphire laser and has a threshold pump power of 59 mW. The laser has a maximum output power of 1 mW in a singlefrequency, single-polarization radiation mode and is tunable over a few nanometers. To the best of the authors’ knowledge, this is the first report of a single-frequency DFB fiber laser...... that uses thulium as the amplifying medium. The lasing wavelength is the longest demonstrated with DFB fiber lasers and yet is among the shortest obtained for thulium-doped silica fiber lasers....

  5. Cavity design for single-frequency Yb:YAB microchip lasers

    International Nuclear Information System (INIS)

    Burns, P.; Dawes, J.M.; Piper, J.A.

    2000-01-01

    Full text: We have proposed a cavity configuration for compact, stable, single-frequency operation in Yb:YAB. Modelling of the cavity output in the infrared and green has shown that sufficient mode discrimination can be achieved within the tuning range of the crystal. Experiments are planned to demonstrate efficient single longitudinal mode infrared operation of the devices that can be extended to include the self-frequency-doubled output. Details of the modelling and preliminary results will be presented at the conference

  6. Experimental study on microwave vulnerability effect of integrated circuit

    International Nuclear Information System (INIS)

    Fang Jinyong; Shen Juai; Yang Zhiqiang; Qiao Dengjiang

    2003-01-01

    The microwave vulnerability effect of IC was presented in this paper. The damage power threshold of IC will decrease with the decrease of microwave frequency or the increase of pulse repetitive frequency, and if the microwave pulse width become larger, the damage power threshold will decrease too. However, there is an inflexion range and the damage power threshold varies little when the pulse width is larger than the inflexion range. The experiment results show that the damage power threshold of IC fit normal distribution, and the variance is very small, so the damage probability fits 0-1 distribution

  7. Performance of an on-chip superconducting circulator for quantum microwave systems

    Science.gov (United States)

    Chapman, Benjamin; Rosenthal, Eric; Moores, Bradley; Kerckhoff, Joseph; Mates, J. A. B.; Hilton, G. C.; Vale, L. R.; Ullom, J. N.; LalumíEre, Kevin; Blais, Alexandre; Lehnert, K. W.

    Microwave circulators enforce a single propagation direction for signals in an electrical network. Unfortunately, commercial circulators are bulky, lossy, and cannot be integrated close to superconducting circuits because they require strong ( kOe) magnetic fields produced by permanent magnets. Here we report on the performance of an on-chip, active circulator for superconducting microwave circuits, which uses no permanent magnets. Non-reciprocity is achieved by actively modulating reactive elements around 100 MHz, giving roughly a factor of 50 in the separation between signal and control frequencies, which facilitates filtering. The circulator's active components are dynamically tunable inductors constructed with arrays of dc-SQUIDs in series. Array inductance is tuned by varying the magnetic flux through the SQUIDs with fields weaker than 1 Oe. Although the instantaneous bandwidth of the device is narrow, the operation frequency is tunable between 4 and 8 GHz. This presentation will describe the device's theory of operation and compare its measured performance to design goals. This work is supported by the ARO under contract W911NF-14-1-0079 and the National Science Foundation under Grant Number 1125844.

  8. Strong coupling of a single electron in silicon to a microwave photon

    Science.gov (United States)

    Mi, X.; Cady, J. V.; Zajac, D. M.; Deelman, P. W.; Petta, J. R.

    2017-01-01

    Silicon is vital to the computing industry because of the high quality of its native oxide and well-established doping technologies. Isotopic purification has enabled quantum coherence times on the order of seconds, thereby placing silicon at the forefront of efforts to create a solid-state quantum processor. We demonstrate strong coupling of a single electron in a silicon double quantum dot to the photonic field of a microwave cavity, as shown by the observation of vacuum Rabi splitting. Strong coupling of a quantum dot electron to a cavity photon would allow for long-range qubit coupling and the long-range entanglement of electrons in semiconductor quantum dots.

  9. Ultra-high-frequency microwave response from flexible transparent Au electromagnetic metamaterial nanopatterned antenna

    Science.gov (United States)

    Liu, Dingxin; Niu, Jiebin; Zhu, Haolin; Zhang, Jianyong

    2018-02-01

    Flexible transparent materials are a hot spot in current research but also a key technical difficulty in industry. They are playing an increasingly important role in flexible transparent display applications such as organic light-emitting diodes, transparent electrodes, and so on. On the other hand, the present research on nanopatterned antennas is mainly concentrated on the optical frequency but rarely on the microwave (such as 3G, 4G, and 5G) and terahertz frequency band communications, where nanopatterned antennas can have many novel applications. To the authors’ knowledge, this is the first paper that presents a method for preparing a flexible transparent Au electromagnetic metamaterial nanopatterned antenna. We study its free-space performance at ultra-high frequency and its application in electronic products such as smartphones, tablets, personal computers, and wearable devices (such as smart watches) which have the function of mobile communication. The experimental results showed that the transparency of the antenna designed and fabricated in this work can be as high as 94%, and its efficiency can reach 74.5%-91.9% of antennas commonly seen at present in academia and industry. By adjusting the capacitive and inductive reactance of the nanopatterned antenna’s matching circuit, combined with its measured efficiency and 3D electromagnetic simulation results, we speculate on the mechanism of the Au electromagnetic metamaterial nanopatterned antenna with good performance.

  10. Gas Discharge Produced by Strong Microwaves of Nanosecond Duration

    International Nuclear Information System (INIS)

    Vikharev, A.L.

    2000-01-01

    The results of the investigation of nanosecond microwave discharge are reviewed. Nanosecond microwave discharge is a new branch of gas discharge physics. The paper lists base types of microwave generators used to produce nanosecond discharge and classifies the discharges relative to their base parameters: the way the discharge gets localized in a limited space, amplitude and frequency of microwave field, gas pressure, duration of microwave pulses. The laboratory experiments performed and the new effects which appear in nanosecond microwave discharge are briefly summarized. Different applications of such a discharge are analyzed on the basis of the experimental modelling. (author)

  11. Multiple linear regression to estimate time-frequency electrophysiological responses in single trials.

    Science.gov (United States)

    Hu, L; Zhang, Z G; Mouraux, A; Iannetti, G D

    2015-05-01

    Transient sensory, motor or cognitive event elicit not only phase-locked event-related potentials (ERPs) in the ongoing electroencephalogram (EEG), but also induce non-phase-locked modulations of ongoing EEG oscillations. These modulations can be detected when single-trial waveforms are analysed in the time-frequency domain, and consist in stimulus-induced decreases (event-related desynchronization, ERD) or increases (event-related synchronization, ERS) of synchrony in the activity of the underlying neuronal populations. ERD and ERS reflect changes in the parameters that control oscillations in neuronal networks and, depending on the frequency at which they occur, represent neuronal mechanisms involved in cortical activation, inhibition and binding. ERD and ERS are commonly estimated by averaging the time-frequency decomposition of single trials. However, their trial-to-trial variability that can reflect physiologically-important information is lost by across-trial averaging. Here, we aim to (1) develop novel approaches to explore single-trial parameters (including latency, frequency and magnitude) of ERP/ERD/ERS; (2) disclose the relationship between estimated single-trial parameters and other experimental factors (e.g., perceived intensity). We found that (1) stimulus-elicited ERP/ERD/ERS can be correctly separated using principal component analysis (PCA) decomposition with Varimax rotation on the single-trial time-frequency distributions; (2) time-frequency multiple linear regression with dispersion term (TF-MLRd) enhances the signal-to-noise ratio of ERP/ERD/ERS in single trials, and provides an unbiased estimation of their latency, frequency, and magnitude at single-trial level; (3) these estimates can be meaningfully correlated with each other and with other experimental factors at single-trial level (e.g., perceived stimulus intensity and ERP magnitude). The methods described in this article allow exploring fully non-phase-locked stimulus-induced cortical

  12. Generation of radio vortex beams with designable polarization using anisotropic frequency selective surface

    Science.gov (United States)

    Yang, Jin; Zhang, Cheng; Ma, Hui Feng; Zhao, Jie; Dai, Jun Yan; Yuan, Wei; Yang, Liu Xi; Cheng, Qiang; Cui, Tie Jun

    2018-05-01

    We propose a strategy to convert a linearly polarized wave from a single point source to an orbital angular momentum (OAM) wave by arbitrary polarization via an anisotropic frequency selective surface (FSS) in the microwave frequency. By tailoring the geometries of FSS elements, reflection-phases in x and y polarizations are engineered and encoded independently, which allows us to design the eventual polarization state of the generated OAM vortex beam by elaborately selecting individual coding sequences for each polarization. Two types of FSSs are designed and experimentally characterized to demonstrate the capability of OAM generation with circular and linear polarizations, respectively, showing excellent performance in a wide bandwidth from 14 to 16 GHz. This method provides opportunities for polarization multiplexing in microwave OAM communication systems.

  13. New measurements of the spectrum of the cosmic microwave background

    International Nuclear Information System (INIS)

    Peterson, J.B.; Richards, P.L.; Bonomo, J.L.; Timusk, T.

    1986-01-01

    Accurate measurements of the spectrum of the cosmic microwave background (CMB) can provide useful tests of cosmological theories. The data set existing in 1982 has been summarized on a number of occasions. To first approximation the CMB is characterized by a single temperature and thus has a blackbody spectrum over the frequency range from 0.02 to 24 cm/sup -1/. The error limits given for these experiments are dominated by systematic errors and are often very subjective. Consequently, it is not clear how to analyze the data set in a valid way. The general impression, however, is of a scatter in the high frequency data that is somewhat larger than would be expected from the given error limits

  14. Design of an ellipsoidal mirror for freewave characterization of materials at microwave frequencies

    International Nuclear Information System (INIS)

    Rojo, M; Muñoz, J; Molina-Cuberos, G J; Margineda, J; García-Collado, Á J

    2016-01-01

    Free-wave characterization of the electromagnetic properties of materials at microwave frequencies requires that scattering at the edges of the samples and/or holder be minimized. Here, an ellipsoidal mirror is designed and characterized in order to decrease the size of the beam, thereby avoiding the scattering problems, even when relatively small samples are used. In the experimental configuration, both the emitting antenna and sample are located at the mirror focuses. Since both the emitted and reflected (focused) beams are Gaussian in nature, we make use of Gaussian beam theory to carry out the design. The mirror parameters are optimized by numerical simulations (COMSOL Multiphysics ® ) and then experimentally tested. An experimental setup is presented for dielectric, magnetic and chiral measurement in the 4.5–18 GHz band. (paper)

  15. Cantilever-Based Microwave Biosensors: Analysis, Designs and Optimizations

    DEFF Research Database (Denmark)

    Jiang, Chenhui; Johansen, Tom Keinicke; Jónasson, Sævar Þór

    2011-01-01

    This paper presents a novel microwave readout scheme for measuring deflection of cantilevers in nanometer range. The cantilever deflection can be sensed by the variation of transmission levels or resonant frequencies of microwave signals. The sensitivity of the cantilever biosensor based on LC...

  16. Carbon Fiber TOW Angle Determination Using Microwave Reflectometry

    Science.gov (United States)

    Wilson, William C.; Moore, Jason P.; Juarez, Peter D.

    2016-01-01

    NASA's Advanced Composites Project is investigating technologies that increase automated remote inspection of aircraft composite structures. Therefore, microwave Frequency Domain Reflectometry (FDR) is being investigated as a method of enabling rapid remote inspection of angular orientation of the tow using microwave radiation. This work will present preliminary data demonstrating that frequency shifts in the reflection spectrum of a carbon fiber tow sample are indicative of the angle of the tow with respect to an interrogating antenna's linear polarized output.

  17. SPS ionosphere/microwave beam interactions: Arecibo experimental studies

    International Nuclear Information System (INIS)

    Duncan, L.M.

    1980-10-01

    The purpose of this program is to determine the environmental impacts associated with the operation of the proposed SPS microwave power transmission system. It is expected that thermal effects will provide the dominant force driving the nonlinear ionosphere/microwave beam interactions. Collisional damping of radio waves, producing ohmic heating of the ionospheric plasma, depends inversely on the square of the radio wave frequency. Therefore, equivalent heating and equivalent thermal forces can be generated at lower radiated power densities by using lower radio wave frequencies. This principle is fundamental to a large part of the experimental program. An understanding of the physics of the specific interactions excited by the SPS microwave beam is also an important part of the assessment program. This program is designed to determine instability thresholds, the growth rates and spatial extent of the resultant ionospheric disturbances, and the frequency and power dependences of the interactions. How these interactions are affected by variations in the natural ionospheric conditions, how different instabilities occurring simultaneously may affect each other, and how distinct microwave beams might mutually interact are studied. Status of the program is described

  18. Real-time multi-GNSS single-frequency precise point positioning

    NARCIS (Netherlands)

    de Bakker, P.F.; Tiberius, C.C.J.M.

    2017-01-01

    Precise Point Positioning (PPP) is a popular Global Positioning System (GPS) processing strategy, thanks to its high precision without requiring additional GPS infrastructure. Single-Frequency PPP (SF-PPP) takes this one step further by no longer relying on expensive dual-frequency GPS receivers,

  19. Investigation of dielectric properties of different cake formulations during microwave and infrared-microwave combination baking.

    Science.gov (United States)

    Sakiyan, Ozge; Sumnu, Gulum; Sahin, Serpil; Meda, Venkatesh

    2007-05-01

    Dielectric properties can be used to understand the behavior of food materials during microwave processing. Dielectric properties influence the level of interaction between food and high frequency electromagnetic energy. Dielectric properties are, therefore, important in the design of foods intended for microwave preparation. In this study, it was aimed to determine the variation of dielectric properties of different cake formulations during baking in microwave and infrared-microwave combination oven. In addition, the effects of formulation and temperature on dielectric properties of cake batter were examined. Dielectric constant and loss factor of cake samples were shown to be dependent on formulation, baking time, and temperature. The increase in baking time and temperature decreased dielectric constant and loss factor of all formulations. Fat content was shown to increase dielectric constant and loss factor of cakes.

  20. Microwave conductance properties of aligned multiwall carbon nanotube textile sheets

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Brian L. [Univ. of Texas, Dallas, TX (United States); Martinez, Patricia [Univ. of Texas, Dallas, TX (United States); Zakhidov, Anvar A. [Univ. of Texas, Dallas, TX (United States); Shaner, Eric A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lee, Mark [Univ. of Texas, Dallas, TX (United States)

    2015-07-06

    Understanding the conductance properties of multi-walled carbon nanotube (MWNT) textile sheets in the microwave regime is essential for their potential use in high-speed and high-frequency applications. To expand current knowledge, complex high-frequency conductance measurements from 0.01 to 50 GHz and across temperatures from 4.2 K to 300 K and magnetic fields up to 2 T were made on textile sheets of highly aligned MWNTs with strand alignment oriented both parallel and perpendicular to the microwave electric field polarization. Sheets were drawn from 329 and 520 μm high MWNT forests that resulted in different DC resistance anisotropy. For all samples, the microwave conductance can be modeled approximately by a shunt capacitance in parallel with a frequency-independent conductance, but with no inductive contribution. Finally, this is consistent with diffusive Drude conduction as the primary transport mechanism up to 50 GHz. Further, it is found that the microwave conductance is essentially independent of both temperature and magnetic field.

  1. Electron-beam and microwave treatment of some microbial strains

    International Nuclear Information System (INIS)

    Martin, D.; Ferdes, O.S.; Minea, R.; Tirlea, A.; Badea, M.; Plamadeala, S.; Ferdes, M.

    1998-01-01

    The experimental results concerning the combined effects of microwaves and accelerated electron beams on various microbial strains such as E. coli, Salmonella sp. and Monascus purpureus are presented. A special designed microwave applicator with a 2.45 GHz frequency CW magnetron of 850 maximum output power and with associate electronics that allow to control the microwave power, the current intensity, and the exposure time was used. The electron-beam irradiation was performed at different irradiation doses and at a dose rate of 1.5 - 2.0 kGy/min by using a linac at a mean electron energy about 6 MeV, mean bean current of 10 μA, pulse period of 3.5 μs and repetition frequency 100 Hz. The experiments were carried out in 5 variants: microwave treatment; electron-beam irradiation; microwaves followed by electron beam; electrons followed by microwaves; and simultaneous application of microwaves and electron beam. The microbiocidal effect was found to be enhanced by additional use of microwave energy to electron beam irradiation. Enhancement of inactivation rate is only remarkable for the microwave treatment or simultaneous electron beam and microwave irradiation at a temperature above the critical value at which microorganisms begin to perish by heat. Simultaneous irradiation with electron beam and microwaves results in a reduction of temperature and time as well as in the decrease of the upper limit of required electron beam absorbed dose for an assumed microbiological quality parameter. The results obtained indicate the occurrence of a synergistic effect of the two physical fields on a non-thermal basis. Hence, combined microwave-electron beam treatment may be applied as an effective method to reduce microbial load

  2. Trends of microwave dielectric materials for antenna application

    International Nuclear Information System (INIS)

    Sulong, T. A. T.; Osman, R. A. M.; Idris, M. S.

    2016-01-01

    Rapid development of a modern microwave communication system requires a high quality microwave dielectric ceramic material to be used as mobile and satellite communication. High permittivity of dielectric ceramics leads to fabrication of compact device for electronic components. Dielectric ceramics which used for microwave applications required three important parameters such as high or appropriate permittivity (ε_r), high quality factor (Q _f ≥ 5000 GH z) and good temperature coefficient of resonant frequency (τ_f). This paper review of various dielectric ceramic materials used as microwave dielectric materials and related parameters for antenna applications.

  3. Precision microwave applicators and systems for plasma and materials processing

    International Nuclear Information System (INIS)

    Asmussen, J.; Garard, R.

    1988-01-01

    Modern applications of microwave energy have imposed new requirements upon microwave processing systems. Interest in energy efficiency, processing uniformity and control of process cycles has placed new design conditions upon microwave power oscillators, microwave systems and microwave applicator design. One approach of meeting new application requirements is the use of single-mode or controlled multimode applicators. The use of a single-mode applicator for plasma generation and materials processing will be presented. Descriptions of actual applicator designs for heating, curing, and processing of solid materials and the generations of high and low pressure discharges will be given. The impact of these applicators on the total microwave system including the microwave power source will be described. Specific examples of applicator and associated microwave systems will be detailed for the applications of (1) plasma thin film deposition and (2) the precision processing and diagnosis of materials. Methods of process control and diagnosis, control of process uniformity and process scale up are discussed

  4. Frequency guided methods for demodulation of a single fringe pattern.

    Science.gov (United States)

    Wang, Haixia; Kemao, Qian

    2009-08-17

    Phase demodulation from a single fringe pattern is a challenging task but of interest. A frequency-guided regularized phase tracker and a frequency-guided sequential demodulation method with Levenberg-Marquardt optimization are proposed to demodulate a single fringe pattern. Demodulation path guided by the local frequency from the highest to the lowest is applied in both methods. Since critical points have low local frequency values, they are processed last so that the spurious sign problem caused by these points is avoided. These two methods can be considered as alternatives to the effective fringe follower regularized phase tracker. Demodulation results from one computer-simulated and two experimental fringe patterns using the proposed methods will be demonstrated. (c) 2009 Optical Society of America

  5. Soil Moisture Active Passive (SMAP) Microwave Radiometer Radio-Frequency Interference (RFI) Mitigation: Initial On-Orbit Results

    Science.gov (United States)

    Mohammed, Priscilla N.; Piepmeier, Jeffrey R.; Johnson, Joel T.; Aksoy, Mustafa; Bringer, Alexandra

    2015-01-01

    The Soil Moisture Active Passive (SMAP) mission, launched in January 2015, provides global measurements of soil moisture using a microwave radiometer. SMAPs radiometer passband lies within the passive frequency allocation. However, both unauthorized in-band transmitters as well as out-of-band emissions from transmitters operating at frequencies adjacent to this allocated spectrum have been documented as sources of radio frequency interference (RFI) to the L-band radiometers on SMOS and Aquarius. The spectral environment consists of high RFI levels as well as significant occurrences of low level RFI equivalent to 0.1 to 10 K. The SMAP ground processor reports the antenna temperature both before and after RFI mitigation is applied. The difference between these quantities represents the detected RFI level. The presentation will review the SMAP RFI detection and mitigation procedure and discuss early on-orbit RFI measurements from the SMAP radiometer. Assessments of global RFI properties and source types will be provided, as well as the implications of these results for SMAP soil moisture measurements.

  6. A reflexing electron microwave amplifier for rf particle accelerator applications

    International Nuclear Information System (INIS)

    Fazio, M.V.; Hoeberling, R.F.

    1988-01-01

    The evolution of rf-accelerator technology toward high-power, high-current, low-emittance beams produces an ever-increasing demand for efficient, very high power microwave power sources. The present klystron technology has performed very well but is not expected to produce reliable gigawatt peak-power units in the 1- to 10-GHz regime. Further major advancements must involve other types of sources. The reflexing-electron class of sources can produce microwave powers at the gigawatt level and has demonstrated operation from 800-MHz to 40-GHz. The pulse length appears to be limited by diode closure, and reflexing-electron devices have been operated in a repetitively pulsed mode. A design is presented for a reflexing electron microwave amplifier that is frequency and phase locked. In this design, the generated microwave power can be efficiently coupled to one or several accelerator loads. Frequency and phase-locking capability may permit parallel-source operation for higher power. The low-frequency (500-MHz to 10-GHz) operation at very high power required by present and proposed microwave particle accelerators makes an amplifier, based on reflexing electron phenomena, a candidate for the development of new accelerator power sources. (author)

  7. Retrieval of Effective Correlation Length and Snow Water Equivalent from Radar and Passive Microwave Measurements

    Directory of Open Access Journals (Sweden)

    Juha Lemmetyinen

    2018-01-01

    Full Text Available Current methods for retrieving SWE (snow water equivalent from space rely on passive microwave sensors. Observations are limited by poor spatial resolution, ambiguities related to separation of snow microstructural properties from the total snow mass, and signal saturation when snow is deep (~>80 cm. The use of SAR (Synthetic Aperture Radar at suitable frequencies has been suggested as a potential observation method to overcome the coarse resolution of passive microwave sensors. Nevertheless, suitable sensors operating from space are, up to now, unavailable. Active microwave retrievals suffer, however, from the same difficulties as the passive case in separating impacts of scattering efficiency from those of snow mass. In this study, we explore the potential of applying active (radar and passive (radiometer microwave observations in tandem, by using a dataset of co-incident tower-based active and passive microwave observations and detailed in situ data from a test site in Northern Finland. The dataset spans four winter seasons with daily coverage. In order to quantify the temporal variability of snow microstructure, we derive an effective correlation length for the snowpack (treated as a single layer, which matches the simulated microwave response of a semi-empirical radiative transfer model to observations. This effective parameter is derived from radiometer and radar observations at different frequencies and frequency combinations (10.2, 13.3 and 16.7 GHz for radar; 10.65, 18.7 and 37 GHz for radiometer. Under dry snow conditions, correlations are found between the effective correlation length retrieved from active and passive measurements. Consequently, the derived effective correlation length from passive microwave observations is applied to parameterize the retrieval of SWE using radar, improving retrieval skill compared to a case with no prior knowledge of snow-scattering efficiency. The same concept can be applied to future radar

  8. Investigation of a metallic photonic crystal high power microwave mode converter

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2015-02-01

    Full Text Available It is demonstrated that an L band metallic photonic crystal TEM-TE11 mode converter is suitable for narrow band high power microwave application. The proposed mode converter is realized by partially filling metallic photonic crystals along azimuthal direction in a coaxial transmission line for phase-shifting. A three rows structure is designed and simulated by commercial software CST Microwave Studio. Simulation results show that its conversion efficiency is 99% at the center frequency 1.58 GHz. Over the frequency range of 1.56-1.625 GHz, the conversion efficiency exceeds 90 %, with a corresponding bandwidth of 4.1 %. This mode converter has a gigawatt level power handling capability which is suitable for narrow band high power microwave application. Using magnetically insulated transmission line oscillator(MILO as a high power microwave source, particle-in-cell simulation is carried out to test the performance of the mode converter. The expected TE11 mode microwave output is obtained and the MILO works well. Mode conversion performance of the converter is tested by far-field measurement method. And the experimental result confirms the validity of our design. Then, high power microwave experiment is carried out on a Marx-driven Blumlein water line pulsed power accelerator. Microwave frequency, radiated pattern and power are measured in the far-field region and the results agree well with simulation results. The experiment also reveals that no microwave breakdown or pulse shortening took place in the experimental setup.

  9. Chemi- vs physisorption in the radical functionalization of single-walled carbon nanotubes under microwaves

    Directory of Open Access Journals (Sweden)

    Victor Mamane

    2014-04-01

    Full Text Available The effect of microwaves on the functionalization of single-walled carbon nanotubes (SWNTs by the diazonium method was studied. The usage of a new approach led to the identification of the strength of the interaction (physical or chemical between the functional groups and the carbon nanotube surface. Moreover, the nature (chemical formula of the adsorbed/grafted functional groups was determined. According to thermogravimetric analysis coupled with mass spectrometry and Raman spectroscopy, the optimal functionalization level was reached after 5 min of reaction. Prolonged reaction times can lead to undesired reactions such as defunctionalization, solvent addition and polymerization of the grafted functions. The strength (chemi- vs physisorption of the bonds between the grafted functional groups and the SWNTs is discussed showing the occurrence of physical adsorption as a consequence of defunctionalization after 15 min of reaction under microwaves. Several chemical mechanisms of grafting could be identified, and it was possible to distinguish conditions leading to the desired chemical grafting from those leading to undesired reactions such as physisorption and polymerization.

  10. Single-shot Thomson scattering on argon plasmas created by the Microwave Plasma Torch; evidence for a new plasma class

    NARCIS (Netherlands)

    Mullen, van der J.J.A.M.; Sande, van de M.J.; Vries, de N.; Broks, B.H.P.; Iordanova, E.I.; Gamero, A.; Torres, J.; Sola, A.

    2007-01-01

    To determine the fine-structure size of plasmas created by a Microwave Plasma Torch (MPT), single-shot Thomson scattering (TS) measurements were performed. The aim was to find a solution for the long-standing discrepancy between experiments and Global Plasma Models (GPMs). Since these GPMs are based

  11. A single cell model for pretreatment of wood by microwave explosion

    Science.gov (United States)

    Xianjun Li; Yongdong Zhou; Yonglin Yan; Zhiyong Cai; Fu Feng

    2010-01-01

    A theoretical model was developed to better understand the process of microwave explosion treatment of wood cells. The cell expansion and critical conditions concerning pressure and temperature of ray parenchyma cells in Eucalyptus urophylla were simulated during microwave pretreatment. The results indicate that longitudinal and circumferential stresses were generated...

  12. Compact microwave ion source

    International Nuclear Information System (INIS)

    Leung, K.N.; Walther, S.; Owren, H.W.

    1985-05-01

    A small microwave ion source has been fabricated from a quartz tube with one end enclosed by a two grid accelerator. The source is also enclosed by a cavity operated at a frequency of 2.45 GHz. Microwave power as high as 500 W can be coupled to the source plasma. The source has been operated with and without multicusp fields for different gases. In the case of hydrogen, ion current density of 200 mA/cm -2 with atomic ion species concentration as high as 80% has been extracted from the source

  13. High Energy Single Frequency Resonant Amplifier, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR phase I project proposes a single frequency high energy resonant amplifier for remote sensing. Current state-of-art technologies can not provide all...

  14. Microwaves absorption in superconducting materials

    International Nuclear Information System (INIS)

    Biasi, R.S. de; Fernandes, A.A.R.; Pereira, R.F.R.

    1989-01-01

    Microwaves absorption measures in two superconductors ceramics systems, Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O are compared with similars datas obtained in the same band of temperature by a conventional method, mutual inductance. The results suggest that the microwaves absorption can be used as single and non-destructive method for investigating the properties of ceramics superconductors. (C.G.C.) [pt

  15. Dose-response curve for translocation frequency with single pair of painted chromosome. A comparison with dicentric and micronuclei frequency

    Energy Technology Data Exchange (ETDEWEB)

    Venkatachalam, P.; Paul, S.F.D.; Mohankumar, M.N.; Prabhu, B.K.; Gajendiran, N.; Jeevanram, R.K

    2000-07-01

    A translocation dose-response curve using a single pair of painted chromosomes was constructed. The translocation frequencies observed at different doses were compared to those obtained for dicentrics (DC) and micronuclei (MN). The translocation and DC frequency followed the Poisson distribution and MN showed over-dispersion. The translocation and DC frequencies were nearly the same for each dose point. Micronuclei showed a comparatively lower frequency. The alpha/beta ratio for translocations (0.916) and DC (0.974) were comparable, whereas the value for MN (1.526) was much higher. The equal frequencies of translocations and DC observed for a given dose indicated that genomic translocation frequency estimated using a single pair of painted chromosomes provides a reliable and easy method to measure translocation frequency. (autho000.

  16. Dose-response curve for translocation frequency with single pair of painted chromosome. A comparison with dicentric and micronuclei frequency

    International Nuclear Information System (INIS)

    Venkatachalam, P.; Paul, S.F.D.; Mohankumar, M.N.; Prabhu, B.K.; Gajendiran, N.; Jeevanram, R.K.

    2000-01-01

    A translocation dose-response curve using a single pair of painted chromosomes was constructed. The translocation frequencies observed at different doses were compared to those obtained for dicentrics (DC) and micronuclei (MN). The translocation and DC frequency followed the Poisson distribution and MN showed over-dispersion. The translocation and DC frequencies were nearly the same for each dose point. Micronuclei showed a comparatively lower frequency. The alpha/beta ratio for translocations (0.916) and DC (0.974) were comparable, whereas the value for MN (1.526) was much higher. The equal frequencies of translocations and DC observed for a given dose indicated that genomic translocation frequency estimated using a single pair of painted chromosomes provides a reliable and easy method to measure translocation frequency. (author)

  17. Single-Antenna Temperature- and Humidity-Sounding Microwave Receiver

    Science.gov (United States)

    Hoppe, Daniel J.; Pukala, David M.; Lambrigtsen, Bjorn H.; Soria, Mary M.; Owen, Heather R.; Tanner, Alan B.; Bruneau, Peter J.; Johnson, Alan K.; Kagaslahti, Pekka P.; Gaier, Todd C.

    2011-01-01

    For humidity and temperature sounding of Earth s atmosphere, a single-antenna/LNA (low-noise amplifier) is needed in place of two separate antennas for the two frequency bands. This results in significant mass and power savings for GeoSTAR that is comprised of hundreds of antennas per frequency channel. Furthermore, spatial anti-aliasing would reduce the number of horns. An anti-aliasing horn antenna will enable focusing the instrument field of view to the hurricane corridor by reducing spatial aliasing, and thus reduce the number of required horns by up to 50 percent. The single antenna/receiver assembly was designed and fabricated by a commercial vendor. The 118 183-GHz horn is based upon a profiled, smooth-wall design, and the OMT (orthomode transducer) on a quad-ridge design. At the input end, the OMT presents four ver y closely spaced ridges [0.0007 in. (18 m)]. The fabricated assembly contains a single horn antenna and low-noise broadband receiver front-end assembly for passive remote sensing of both temperature and humidity profiles in the Earth s atmosphere at 118 and 183 GHz. The wideband feed with dual polarization capability is the first broadband low noise MMIC receiver with the 118 to 183 GHz bandwidth. This technology will significantly reduce PATH/GeoSTAR mass and power while maintaining 90 percent of the measurement capabilities. This is required for a Mission-of-Opportunity on NOAA s GOES-R satellite now being developed, which in turn will make it possible to implement a Decadal-Survey mission for a fraction of the cost and much sooner than would otherwise be possible.

  18. 1.26 Single Frequency Fiber Laser, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is for the development of an innovative compact, high power, and extremely reliable 1.26 micron Ho-doped single frequency fiber laser. The proposed...

  19. 1.26 Single Frequency Fiber Laser, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is for the development of an innovative compact, high power, and extremely reliable 1.26 micron Ho-doped single frequency fiber laser. The proposed...

  20. Study on preparation and microwave absorption property of the core-nanoshell composite materials doped with La.

    Science.gov (United States)

    Wei, Liqiu; Che, Ruxin; Jiang, Yijun; Yu, Bing

    2013-12-01

    Microwave absorbing material plays a great role in electromagnetic pollution controlling, electromagnetic interference shielding and stealth technology, etc. The core-nanoshell composite materials doped with La were prepared by a solid-state reaction method, which is applied to the electromagnetic wave absorption. The core is magnetic fly-ash hollow cenosphere, and the shell is the nanosized ferrite doped with La. The thermal decomposition process of the sample was investigated by thermogravimetry and differential thermal analysis. The morphology and components of the composite materials were investigated by the X-ray diffraction analysis, the microstructure was observed by scanning electron microscope and transmission electron microscope. The results of vibrating sample magnetometer analysis indicated that the exchange-coupling interaction happens between ferrite of magnetic fly-ash hollow cenosphere and nanosized ferrite coating, which caused outstanding magnetic properties. The microwave absorbing property of the sample was measured by reflectivity far field radar cross section of radar microwave absorbing material with vector network analyzer. The results indicated that the exchange-coupling interaction enhanced magnetic loss of composite materials. Therefore, in the frequency of 5 GHz, the reflection coefficient can achieve -24 dB. It is better than single material and is consistent with requirements of the microwave absorbing material at the low-frequency absorption. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  1. A low phase noise microwave frequency synthesis for a high-performance cesium vapor cell atomic clock

    Energy Technology Data Exchange (ETDEWEB)

    François, B.; Boudot, R. [FEMTO-ST, CNRS, Université de Franche-Comté, 26 chemin de l' Epitaphe, 25030 Besançon (France); Calosso, C. E. [INRIM, Strada delle Cacce 91, 10135 Torino (Italy); Danet, J. M. [LNE-SYRTE, Observatoire de Paris, CNRS-UPMC, 61 avenue de l' Observatoire, 75014 Paris (France)

    2014-09-15

    We report the development, absolute phase noise, and residual phase noise characterization of a 9.192 GHz microwave frequency synthesis chain devoted to be used as a local oscillator in a high-performance cesium vapor cell atomic clock based on coherent population trapping (CPT). It is based on frequency multiplication of an ultra-low phase noise 100 MHz oven-controlled quartz crystal oscillator using a nonlinear transmission line-based chain. Absolute phase noise performances of the 9.192 GHz output signal are measured to be −42, −100, −117 dB rad{sup 2}/Hz and −129 dB rad{sup 2}/Hz at 1 Hz, 100 Hz, 1 kHz, and 10 kHz offset frequencies, respectively. Compared to current results obtained in a state-of-the-art CPT-based frequency standard developed at LNE-SYRTE, this represents an improvement of 8 dB and 10 dB at f = 166 Hz and f = 10 kHz, respectively. With such performances, the expected Dick effect contribution to the atomic clock short term frequency stability is reported at a level of 6.2 × 10{sup −14} at 1 s integration time, that is a factor 3 higher than the atomic clock shot noise limit. Main limitations are pointed out.

  2. The frequency spectrum crisis - Issues and answers

    Science.gov (United States)

    Armes, G. L.

    The frequency spectrum represents a unique resource which can be overtaxed. In the present investigation, it is attempted to evalute the demand for satellite and microwave services. Dimensions of increased demand are discussed, taking into account developments related to the introduction of the personal computer, the activities of the computer and communications industries in preparation for the office of the future, and electronic publishing. Attention is given to common carrier spectrum congestion, common carrier microwave, satellite communications, teleports, international implications, satellite frequency bands, satellite spectrum implications, alternatives regarding the utilization of microwave frequency bands, U.S. Government spectrum utilization, and the impact at C-band.

  3. RF and microwave engineering fundamentals of wireless communications

    CERN Document Server

    Gustrau, Frank

    2012-01-01

    This book provides a fundamental and practical introduction to radio frequency and microwave engineering and physical aspects of wireless communication In this book, the author addresses a wide range of radio-frequency and microwave topics with emphasis on physical aspects including EM and voltage waves, transmission lines, passive circuits, antennas, radio wave propagation. Up-to-date RF design tools like RF circuit simulation, EM simulation and computerized smith charts, are used in various examples to demonstrate how these methods can be applied effectively in RF engineering

  4. Performance Analysis of Low-Cost Single-Frequency GPS Receivers in Hydrographic Surveying

    Science.gov (United States)

    Elsobeiey, M.

    2017-10-01

    The International Hydrographic Organization (IHO) has issued standards that provide the minimum requirements for different types of hydrographic surveys execution to collect data to be used to compile navigational charts. Such standards are usually updated from time to time to reflect new survey techniques and practices and must be achieved to assure both surface navigation safety and marine environment protection. Hydrographic surveys can be classified to four orders namely, special order, order 1a, order 1b, and order 2. The order of hydrographic surveys to use should be determined in accordance with the importance to the safety of navigation in the surveyed area. Typically, geodetic-grade dual-frequency GPS receivers are utilized for position determination during data collection in hydrographic surveys. However, with the evolution of high-sensitivity low-cost single-frequency receivers, it is very important to evaluate the performance of such receivers. This paper investigates the performance of low-cost single-frequency GPS receivers in hydrographic surveying applications. The main objective is to examine whether low-cost single-frequency receivers fulfil the IHO standards for hydrographic surveys. It is shown that the low-cost single-frequency receivers meet the IHO horizontal accuracy for all hydrographic surveys orders at any depth. However, the single-frequency receivers meet only order 2 requirements for vertical accuracy at depth more than or equal 100 m.

  5. Microwave heating behavior and microwave absorption properties of barium titanate at high temperatures

    Directory of Open Access Journals (Sweden)

    K. Kashimura

    2016-06-01

    Full Text Available The temperature dependence of the microwave absorption behavior of BaTiO3 particles was investigated over various frequencies and temperatures of 25-1000 ∘C. First, using both the coaxial transmission line method and the cavity perturbation method by a network analyzer, the real and imaginary parts of the relative permittivity of BaTiO3 ( ε r ′ and ε r ″ , respectively were measured, in order to improve the reliability of the data obtained at 2.45 GHz. The imaginary parts of the relative permittivity as measured by the two methods were explored by their heating behaviors. Furthermore, the temperature dependence of the microwave absorption behavior of BaTiO3 particles was investigated for frequencies of 2.0-13.5 GHz and temperatures of 25-1000 ∘C using the coaxial transmission line method.

  6. Gigahertz flexible graphene transistors for microwave integrated circuits.

    Science.gov (United States)

    Yeh, Chao-Hui; Lain, Yi-Wei; Chiu, Yu-Chiao; Liao, Chen-Hung; Moyano, David Ricardo; Hsu, Shawn S H; Chiu, Po-Wen

    2014-08-26

    Flexible integrated circuits with complex functionalities are the missing link for the active development of wearable electronic devices. Here, we report a scalable approach to fabricate self-aligned graphene microwave transistors for the implementation of flexible low-noise amplifiers and frequency mixers, two fundamental building blocks of a wireless communication receiver. A devised AlOx T-gate structure is used to achieve an appreciable increase of device transconductance and a commensurate reduction of the associated parasitic resistance, thus yielding a remarkable extrinsic cutoff frequency of 32 GHz and a maximum oscillation frequency of 20 GHz; in both cases the operation frequency is an order of magnitude higher than previously reported. The two frequencies work at 22 and 13 GHz even when subjected to a strain of 2.5%. The gigahertz microwave integrated circuits demonstrated here pave the way for applications which require high flexibility and radio frequency operations.

  7. Trends of microwave dielectric materials for antenna application

    Energy Technology Data Exchange (ETDEWEB)

    Sulong, T. A. T., E-mail: tuanamirahtuansulong@gmail.com; Osman, R. A. M., E-mail: rozana@unimap.edu.my [School of Microelectronic Engineering, Universiti Malaysia Perlis, Pauh Putra Campus, 02600 Arau, Perlis (Malaysia); Idris, M. S., E-mail: sobri@unimap.edu.my [Sustainable Engineering Research Cluster, School of Material Engineering, Universiti Malaysia Perlis, Blok B, Taman Pertiwi Indah, Seriab, 01000 Kangar, Perlis (Malaysia)

    2016-07-19

    Rapid development of a modern microwave communication system requires a high quality microwave dielectric ceramic material to be used as mobile and satellite communication. High permittivity of dielectric ceramics leads to fabrication of compact device for electronic components. Dielectric ceramics which used for microwave applications required three important parameters such as high or appropriate permittivity (ε{sub r}), high quality factor (Q {sub f} ≥ 5000 GH z) and good temperature coefficient of resonant frequency (τ{sub f}). This paper review of various dielectric ceramic materials used as microwave dielectric materials and related parameters for antenna applications.

  8. Microwave-assisted one-step patterning of aqueous colloidal silver.

    Science.gov (United States)

    Yang, G; Zhou, Y W; Guo, Z R; Wan, Y; Ding, Q; Bai, T T; Wang, C L; Gu, N

    2012-07-05

    A new approach of utilizing microwave to pattern gradient concentric silver nanoparticle ring structures has been presented. The width and height of a single ring and the space between adjacent rings can be adjusted by changing the silver colloidal concentration and the microwave output power. By simply enhancing the ambient vapour pressure to the saturated value during microwave-assisted evaporation, sub-100 nm rings can be deposited in between adjacent micro-rings over a distance of millimetres. Combined with microwave sintering, this approach can also create conductive silver tracks in a single step, showing huge potential in fabricating micro- and nano-electronic devices in an ultra-fast and cost-effective fashion.

  9. Coherent radio-frequency detection for narrowband direct comb spectroscopy.

    Science.gov (United States)

    Anstie, James D; Perrella, Christopher; Light, Philip S; Luiten, Andre N

    2016-02-22

    We demonstrate a scheme for coherent narrowband direct optical frequency comb spectroscopy. An extended cavity diode laser is injection locked to a single mode of an optical frequency comb, frequency shifted, and used as a local oscillator to optically down-mix the interrogating comb on a fast photodetector. The high spectral coherence of the injection lock generates a microwave frequency comb at the output of the photodiode with very narrow features, enabling spectral information to be further down-mixed to RF frequencies, allowing optical transmittance and phase to be obtained using electronics commonly found in the lab. We demonstrate two methods for achieving this step: a serial mode-by-mode approach and a parallel dual-comb approach, with the Cs D1 transition at 894 nm as a test case.

  10. The numerical simulation of plasma flow in cylindrical resonant cavity of microwave plasma thruster

    International Nuclear Information System (INIS)

    Tang, J.-L.; He, H.-Q; Mao, G.-W.

    2004-01-01

    Microwave Plasma Thruster (MPT) is an electro-thermal propulsive device. MPT consists of microwave generator, gas storing and supplying system, resonant cavity and accelerative nozzle. It generates free-floating plasma brought by the microwave discharge breakdown gas in the resonant cavity, and the plasma exhausted from nozzle produces thrust. MPT has prospective application in spacecraft because of its advantages of high thrust, moderate specific impulse and high efficiency. In this paper, the numerical simulation of the coupling flow field of microwave plasma in resonant cavity under different frequencies will be discussed. The results of numerical simulation are as follows: 1) When the resonant model TM 011 was used, the higher the microwave frequency was, the smaller the size of MPT. The distribution of the electromagnetic field in small cavity, however, remain unchanged. 2) When the resonant model was used, the distribution of the temperature, the pressure and the electronic density in the resonant cavity remained unchanged under different resonant frequencies. 3) When the resonant frequency was increased with a fixed pressure distribution in a small cavity, compare to the MPT with lower frequency, the gas flow rate, the microwave power and the nozzle throat diameter of MPT all decreased. 4) The electromagnetic field in the cylindrical resonant cavity for all MPT with different frequencies was disturbed by the plasma formation. The strong disturbance happened in the region close to the plasma. (author)

  11. CAMAC system for computer control of microwave spectrometers

    International Nuclear Information System (INIS)

    Zizka, G.; Turko, B.; Kolbe, B.

    1979-01-01

    An interface between a microwave spectrometer and a computer is described. It consists of three CAMAC modules and uses a standard CAMAC crate and controller. The hardware, in conjunction with appropriate software routines was designed to synchronize measurements, to collect data, and to control the microwave frequency and other experimental parameters

  12. Remote transfer of ultrastable frequency references via fiber networks

    International Nuclear Information System (INIS)

    Foreman, Seth M.; Holman, Kevin W.; Hudson, Darren D.; Jones, David J.; Ye, Jun

    2007-01-01

    Three distinct techniques exist for distributing an ultrastable frequency reference over optical fibers. For the distribution of a microwave frequency reference, an amplitude-modulated continuous wave (cw) laser can be used. Over kilometer-scale lengths this approach provides an instability at 1 s of ∼3x10 -14 without stabilization of the fiber-induced noise and ∼1x10 -14 with active noise cancellation. An optical frequency reference can be transferred by directly transmitting a stabilized cw laser over fiber and then disseminated to other optical and microwave regions using an optical frequency comb. This provides an instability at 1 s of 2x10 -14 without active noise cancellation and 3x10 -15 with active noise cancellation [Recent results reduce the instability at 1 s to 6x10 -18 .] Finally, microwave and optical frequency references can be simultaneously transmitted using an optical frequency comb, and we expect the optical transfer to be similar in performance to the cw optical frequency transfer. The instability at 1 s for transfer of a microwave frequency reference with the comb is ∼3x10 -14 without active noise cancellation and -15 with active stabilization. The comb can also distribute a microwave frequency reference with root-mean-square timing jitter below 16 fs integrated over the Nyquist bandwidth of the pulse train (∼50 MHz) when high-bandwidth active noise cancellation is employed, which is important for remote synchronization applications

  13. Radio frequency scanning tunneling spectroscopy for single-molecule spin resonance.

    Science.gov (United States)

    Müllegger, Stefan; Tebi, Stefano; Das, Amal K; Schöfberger, Wolfgang; Faschinger, Felix; Koch, Reinhold

    2014-09-26

    We probe nuclear and electron spins in a single molecule even beyond the electromagnetic dipole selection rules, at readily accessible magnetic fields (few mT) and temperatures (5 K) by resonant radio-frequency current from a scanning tunneling microscope. We achieve subnanometer spatial resolution combined with single-spin sensitivity, representing a 10 orders of magnitude improvement compared to existing magnetic resonance techniques. We demonstrate the successful resonant spectroscopy of the complete manifold of nuclear and electronic magnetic transitions of up to ΔI(z)=±3 and ΔJ(z)=±12 of single quantum spins in a single molecule. Our method of resonant radio-frequency scanning tunneling spectroscopy offers, atom-by-atom, unprecedented analytical power and spin control with an impact on diverse fields of nanoscience and nanotechnology.

  14. The Python Sky Model: software for simulating the Galactic microwave sky

    Science.gov (United States)

    Thorne, B.; Dunkley, J.; Alonso, D.; Næss, S.

    2017-08-01

    We present a numerical code to simulate maps of Galactic emission in intensity and polarization at microwave frequencies, aiding in the design of cosmic microwave background experiments. This python code builds on existing efforts to simulate the sky by providing an easy-to-use interface and is based on publicly available data from the WMAP (Wilkinson Microwave Anisotropy Probe) and Planck satellite missions. We simulate synchrotron, thermal dust, free-free and anomalous microwave emission over the whole sky, in addition to the cosmic microwave background, and include a set of alternative prescriptions for the frequency dependence of each component, for example, polarized dust with multiple temperatures and a decorrelation of the signals with frequency, which introduce complexity that is consistent with current data. We also present a new prescription for adding small-scale realizations of these components at resolutions greater than current all-sky measurements. The usefulness of the code is demonstrated by forecasting the impact of varying foreground complexity on the recovered tensor-to-scalar ratio for the LiteBIRD satellite. The code is available at: https://github.com/bthorne93/PySM_public.

  15. Frequency-Stabilized Source of Single Photons from a Solid-State Qubit

    Directory of Open Access Journals (Sweden)

    Jonathan H. Prechtel

    2013-10-01

    Full Text Available Single quantum dots are solid-state emitters that mimic two-level atoms but with a highly enhanced spontaneous emission rate. A single quantum dot is the basis for a potentially excellent single-photon source. One outstanding problem is that there is considerable noise in the emission frequency, making it very difficult to couple the quantum dot to another quantum system. We solve this problem here with a dynamic feedback technique that locks the quantum-dot emission frequency to a reference. The incoherent scattering (resonance fluorescence represents the single-photon output, whereas the coherent scattering (Rayleigh scattering is used for the feedback control. The fluctuations in emission frequency are reduced to 20 MHz, just approximately 5% of the quantum-dot optical linewidth, even over several hours. By eliminating the 1/f-like noise, the relative fluctuations in quantum-dot noise power are reduced to approximately 10^{-5} at low frequency. Under these conditions, the antibunching dip in the resonance fluorescence is described extremely well by the two-level atom result. The technique represents a way of removing charge noise from a quantum device.

  16. Passive microwave remote sensing of soil moisture

    International Nuclear Information System (INIS)

    Jackson, T.J.; Schmugge, T.J.

    1986-01-01

    Microwave remote sensing provides a unique capability for direct observation of soil moisture. Remote measurements from space afford the possibility of obtaining frequent, global sampling of soil moisture over a large fraction of the Earth's land surface. Microwave measurements have the benefit of being largely unaffected by cloud cover and variable surface solar illumination, but accurate soil moisture estimates are limited to regions that have either bare soil or low to moderate amounts of vegetation cover. A particular advantage of passive microwave sensors is that in the absence of significant vegetation cover soil moisture is the dominant effect on the received signal. The spatial resolutions of passive microwave soil moisture sensors currently considered for space operation are in the range 10–20 km. The most useful frequency range for soil moisture sensing is 1–5 GHz. System design considerations include optimum choice of frequencies, polarizations, and scanning configurations, based on trade-offs between requirements for high vegetation penetration capability, freedom from electromagnetic interference, manageable antenna size and complexity, and the requirement that a sufficient number of information channels be available to correct for perturbing geophysical effects. This paper outlines the basic principles of the passive microwave technique for soil moisture sensing, and reviews briefly the status of current retrieval methods. Particularly promising are methods for optimally assimilating passive microwave data into hydrologic models. Further studies are needed to investigate the effects on microwave observations of within-footprint spatial heterogeneity of vegetation cover and subsurface soil characteristics, and to assess the limitations imposed by heterogeneity on the retrievability of large-scale soil moisture information from remote observations

  17. Dielectric Behavior of Low Microwave Loss Unit Cell for All Dielectric Metamaterial

    Directory of Open Access Journals (Sweden)

    Tianhuan Luo

    2015-01-01

    Full Text Available With a deep study of the metamaterial, its unit cells have been widely extended from metals to dielectrics. The dielectric based unit cells attract much attention because of the advantage of easy preparation, tunability, and higher frequency response, and so forth. Using the conventional solid state method, we prepared a kind of incipient ferroelectrics (calcium titanate, CaTiO3 with higher microwave permittivity and lower loss, which can be successfully used to construct metamaterials. The temperature and frequency dependence of dielectric constant are also measured under different sintering temperatures. The dielectric spectra showed a slight permittivity decrease with the increase of temperature and exhibited a loss of 0.0005, combined with a higher microwave dielectric constant of ~167 and quality factor Q of 2049. Therefore, CaTiO3 is a kind of versatile and potential metamaterial unit cell. The permittivity of CaTiO3 at higher microwave frequency was also examined in the rectangular waveguide and we got the permittivity of 165, creating a new method to test permittivity at higher microwave frequency.

  18. Microwave properties of La{sub 0.8}Ag{sub 0.2}MnO{sub 3} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Rostamnejadi, Ali [Malek Ashtar University of Technology, Electroceram Research Center, Shahin Shahr, Isfahan (Iran, Islamic Republic of)

    2016-11-15

    In this research, single-phase nanoparticles of La{sub 0.8}Ag{sub 0.2}MnO{sub 3} with mean particle size of 15 nm have been synthesized by sol-gel method. The microwave properties of La{sub 0.8}Ag{sub 0.2}MnO{sub 3}/paraffin nanocomposite are studied by measuring the complex permittivity and permeability in the frequency range of 1-18 GHz. The composite shows both reflection and absorption electromagnetic shielding effectiveness with maximum total value of 36 dB, which is suitable for defense and microwave radiation shielding applications at high temperatures. The electromagnetic absorption properties are described in terms of dielectric relaxation processes. (orig.)

  19. High-kinetic inductance additive manufactured superconducting microwave cavity

    Science.gov (United States)

    Holland, Eric T.; Rosen, Yaniv J.; Materise, Nicholas; Woollett, Nathan; Voisin, Thomas; Wang, Y. Morris; Torres, Sharon G.; Mireles, Jorge; Carosi, Gianpaolo; DuBois, Jonathan L.

    2017-11-01

    Investigations into the microwave surface impedance of superconducting resonators have led to the development of single photon counters that rely on kinetic inductance for their operation, while concurrent progress in additive manufacturing, "3D printing," opens up a previously inaccessible design space for waveguide resonators. In this manuscript, we present results from the synthesis of these two technologies in a titanium, aluminum, vanadium (Ti-6Al-4V) superconducting radio frequency resonator which exploits a design unattainable through conventional fabrication means. We find that Ti-6Al-4V has two distinct superconducting transition temperatures observable in heat capacity measurements. The higher transition temperature is in agreement with DC resistance measurements, while the lower transition temperature, not previously known in the literature, is consistent with the observed temperature dependence of the superconducting microwave surface impedance. From the surface reactance, we extract a London penetration depth of 8 ± 3 μm—roughly an order of magnitude larger than other titanium alloys and several orders of magnitude larger than other conventional elemental superconductors.

  20. Delivering Microwave Spectroscopy to the Masses: a Design of a Low-Cost Microwave Spectrometer Operating in the 18-26 GHZ Frequency Range

    Science.gov (United States)

    Steber, Amanda; Pate, Brooks

    2014-06-01

    Advances in chip-level microwave technology in the communications field have led to the possibilities of low cost alternatives for current Fourier transform microwave (FTMW) spectrometers. Many of the large, expensive microwave components in a traditional design can now be replaced by robust, mass market monolithic microwave integrated circuits (MMICs). "Spectrometer on a board" designs are now feasible that offer dramatic cost reduction for microwave spectroscopy. These chip-level components can be paired with miniature computers to produce compact instruments that are operable through USB. A FTMW spectrometer design using the key MMIC components that drive cost reduction will be presented. Two dual channel synthesizers (Valon Technology Model 5008), a digital pattern generator (Byte Paradigm Wav Gen Xpress), and a high-speed digitizer/arbitrary waveform generator combination unit (Tie Pie HS-5 530 XM) form the key components of the spectrometer for operation in the 18-26.5 GHz range. The design performance is illustrated using a spectrometer that is being incorporated into a museum display for astrochemistry. For this instrument a user interface, developed in Python, has been developed and will be shown.

  1. Single Frequency Networks (SFN in Digital Terrestrial Broadcasting

    Directory of Open Access Journals (Sweden)

    V. Ricny

    2007-12-01

    Full Text Available The paper deals with principles and properties of single frequency networks of digital television and radio transmitters. Basic definitions and contextual relationships (guard interval, area of SFN, influence of used modulation parameters etc. are explained.

  2. Direct-reading type microwave interferometer

    International Nuclear Information System (INIS)

    Matsuura, Kiyokata; Fujita, Junji; Ogata, Atsushi; Haba, Kiichiro.

    1977-10-01

    A new microwave interferometer has been developed and applied to the electron density measurement on JIPP T-II plasma device. The interferometer generates an output voltage proportional to the number of fringe shifts and also output pulses which indicate the change of electron density for the convenience of data processing, where the resolution is a quarter of fringe shift. The principle is based on the digitization of fringe shifts utilizing the phase detection of microwave signals with two-level modulation of source frequency. With this system and 70 GHz microwave source, a change of electron density as rapid as about 2 x 10 13 cm -3 in 1 ms has been measured at the tokamak operation of JIPP T-II. (auth.)

  3. New measurements of the spectrum of the cosmic microwave background

    International Nuclear Information System (INIS)

    Peterson, J.B.; Richards, P.L.; Bonomo, J.L.; Timusk, T.

    1984-06-01

    Accurate measurements of the spectrum of the cosmic microwave background (CMB) can provide useful tests of cosmological theories. The data set existing in 1982 has been summarized on a number of occasions and is shown. To first approximation the CMB is characterized by a single temperature and thus has a blackbody spectrum over the frequency range from 0.02 to 24 cm -1 . The error limits given for these experiments are dominated by systematic errors and are often very subjective. Consequently, it is not clear how to analyze the data set in a valid way. The general impression, however, is of a scatter in the high frequency data that is somewhat larger than would be expected from the given error limits. We have designed a new apparatus to measure the spectrum of the CMB in the frequency range from 3 to 10 cm -1 . 13 references, 5 figures

  4. Application of high power microwave vacuum electron devices

    International Nuclear Information System (INIS)

    Ding Yaogen; Liu Pukun; Zhang Zhaochuan; Wang Yong; Shen Bin

    2011-01-01

    High power microwave vacuum electron devices can work at high frequency, high peak and average power. They have been widely used in military and civil microwave electron systems, such as radar, communication,countermeasure, TV broadcast, particle accelerators, plasma heating devices of fusion, microwave sensing and microwave heating. In scientific research, high power microwave vacuum electron devices are used mainly on high energy particle accelerator and fusion research. The devices include high peak power klystron, CW and long pulse high power klystron, multi-beam klystron,and high power gyrotron. In national economy, high power microwave vacuum electron devices are used mainly on weather and navigation radar, medical and radiation accelerator, TV broadcast and communication system. The devices include high power pulse and CW klystron, extended interaction klystron, traveling wave tube (TWT), magnetron and induced output tube (IOT). The state of art, common technology problems and trends of high power microwave vacuum electron devices are introduced in this paper. (authors)

  5. Tunable Magnetic Resonance in Microwave Spintronics Devices

    Science.gov (United States)

    Chen, Yunpeng; Fan, Xin; Xie, Yunsong; Zhou, Yang; Wang, Tao; Wilson, Jeffrey D.; Simons, Rainee N.; Chui, Sui-Tat; Xiao, John Q.

    2015-01-01

    Magnetic resonance is one of the key properties of magnetic materials for the application of microwave spintronics devices. The conventional method for tuning magnetic resonance is to use an electromagnet, which provides very limited tuning range. Hence, the quest for enhancing the magnetic resonance tuning range without using an electromagnet has attracted tremendous attention. In this paper, we exploit the huge exchange coupling field between magnetic interlayers, which is on the order of 4000 Oe and also the high frequency modes of coupled oscillators to enhance the tuning range. Furthermore, we demonstrate a new scheme to control the magnetic resonance frequency. Moreover, we report a shift in the magnetic resonance frequency as high as 20 GHz in CoFe based tunable microwave spintronics devices, which is 10X higher than conventional methods.

  6. The Physics of Superconducting Microwave Resonators

    Science.gov (United States)

    Gao, Jiansong

    Over the past decade, low temperature detectors have brought astronomers revolutionary new observational capabilities and led to many great discoveries. Although a single low temperature detector has very impressive sensitivity, a large detector array would be much more powerful and are highly demanded for the study of more difficult and fundamental problems in astronomy. However, current detector technologies, such as transition edge sensors and superconducting tunnel junction detectors, are difficult to integrate into a large array. The microwave kinetic inductance detector (MKID) is a promising new detector technology invented at Caltech and JPL which provides both high sensitivity and an easy solution to the detector integration. It senses the change in the surface impedance of a superconductor as incoming photons break Cooper pairs, by using high-Q superconducting microwave resonators capacitively coupled to a common feedline. This architecture allows thousands of detectors to be easily integrated through passive frequency domain multiplexing. In this thesis, we explore the rich and interesting physics behind these superconducting microwave resonators. The first part of the thesis discusses the surface impedance of a superconductor, the kinetic inductance of a superconducting coplanar waveguide, and the circuit response of a resonator. These topics are related with the responsivity of MKIDs. The second part presents the study of the excess frequency noise that is universally observed in these resonators. The properties of the excess noise, including power, temperature, material, and geometry dependence, have been quantified. The noise source has been identified to be the two-level systems in the dielectric material on the surface of the resonator. A semi-empirical noise model has been developed to explain the power and geometry dependence of the noise, which is useful to predict the noise for a specified resonator geometry. The detailed physical noise

  7. Enhancing the accuracy of GPS point positioning by converting the single frequency data to dual frequency data

    Directory of Open Access Journals (Sweden)

    Aly M. El-naggar

    2011-09-01

    Full Text Available The global positioning system (GPS has been used to support a wide variety of applications, such as high-accuracy positioning and navigation. Differential GPS techniques can largely eliminate common-mode errors between the reference and the rover GPS stations resulting from ionospheric and tropospheric refraction and delays, satellite and receiver clock biases, and orbital errors [1]. The ionospheric delay in the propagation of global positioning system (GPS signals is one of the main sources of error in GPS precise positioning and navigation. A dual-frequency GPS receiver can eliminate (to the first order the ionospheric delay through a linear combination of the L1 and L2 observations [2]. The most significant effect of ionospheric delay appear in case of using single frequency data. In this paper the single frequency data of concerned station are converted to dual frequency data by employing dual frequency data from 11 regional GPS stations distributed around it. Total electron content (TEC was calculated at every GPS station to produce the mathematical model of TEC which is a function of latitude (Φ and longitude (λ. By using this mathematical model the values of TEC and L2 can be predicted at the single frequency GPS station for each satellite, after that the comparison between predicted and observation values of TEC and L2 was performed. The estimation method and test results of the proposed method indicates that the difference between predicted and observation values is very small.

  8. Frequency up-conversion and spectral breaking of a high power microwave pulse propagation in a self-generated plasma

    International Nuclear Information System (INIS)

    Kuo, S.P.; Ren, A.

    1993-01-01

    The main concern of the propagation of high power microwave pulse is the energy loss of the pulse before reaching the destination. The loss is caused by self-generated plasma. There are two processes which are responsible for the energy loss (so called tail erosion). They are collisional damping and cutoff reflection. In very high power region, the cutoff reflection is much more severe than the collisional damping. A frequency up-conversion process may help to avoid the cutoff reflection of powerful electromagnetic pulse propagating in a self-generated plasma. Both chamber experiments and numerical simulation are performed. When the field amplitude only slightly exceeds the breakdown threshold field of the background gas, the result shows that the carrier frequency ω of the pulse shifts upward during the growth of local plasma frequency ωpe 2 . Thus, the self-generated plasma remains underdense to the pulse. However, the spectrum of the pulse starts to break up into two major peaks when the amplitude of the pulse is further increased. The frequency of one of the peaks is lower than the original carrier frequency and that of the other peak is higher than the original carrier frequency. These phenomena are observed both experimentally and numerically. The frequency down shift result is believed to be caused by damping mechanisms. Good agreement between the experimental results and the numerical simulation is obtained

  9. Dual frequency comb metrology with one fiber laser

    Science.gov (United States)

    Zhao, Xin; Takeshi, Yasui; Zheng, Zheng

    2016-11-01

    Optical metrology techniques based on dual optical frequency combs have emerged as a hotly studied area targeting a wide range of applications from optical spectroscopy to microwave and terahertz frequency measurement. Generating two sets of high-quality comb lines with slightly different comb-tooth spacings with high mutual coherence and stability is the key to most of the dual-comb schemes. The complexity and costs of such laser sources and the associated control systems to lock the two frequency combs hinder the wider adoption of such techniques. Here we demonstrate a very simple and rather different approach to tackle such a challenge. By employing novel laser cavity designs in a mode-locked fiber laser, a simple fiber laser setup could emit dual-comb pulse output with high stability and good coherence between the pulse trains. Based on such lasers, comb-tooth-resolved dual-comb optical spectroscopy is demonstrated. Picometer spectral resolving capability could be realized with a fiber-optic setup and a low-cost data acquisition system and standard algorithms. Besides, the frequency of microwave signals over a large range can be determined based on a simple setup. Our results show the capability of such single-fiber-laser-based dual-comb scheme to reduce the complexity and cost of dual-comb systems with excellent quality for different dual-comb applications.

  10. Tunable microwave signal generation based on an Opto-DMD processor and a photonic crystal fiber

    International Nuclear Information System (INIS)

    Wang Tao; Sang Xin-Zhu; Yan Bin-Bin; Li Yan; Song Fei-Jun; Zhang Xia; Wang Kui-Ru; Yuan Jin-Hui; Yu Chong-Xiu; Ai Qi; Chen Xiao; Zhang Ying; Chen Gen-Xiang; Xiao Feng; Kamal Alameh

    2014-01-01

    Frequency-tunable microwave signal generation is proposed and experimentally demonstrated with a dual-wavelength single-longitudinal-mode (SLM) erbium-doped fiber ring laser based on a digital Opto-DMD processor and four-wave mixing (FWM) in a high-nonlinear photonic crystal fiber (PCF). The high-nonlinear PCF is employed for the generation of the FWM to obtain stable and uniform dual-wavelength oscillation. Two different short passive sub-ring cavities in the main ring cavity serve as mode filters to make SLM lasing. The two lasing wavelengths are electronically selected by loading different gratings on the Opto-DMD processor controlled with a computer. The wavelength spacing can be smartly adjusted from 0.165 nm to 1.08 nm within a tuning accuracy of 0.055 nm. Two microwave signals at 17.23 GHz and 27.47 GHz are achieved. The stability of the microwave signal is discussed. The system has the ability to generate a 137.36-GHz photonic millimeter signal at room temperature

  11. The application of microwave photonic detection in quantum communication

    Science.gov (United States)

    Diao, Wenting; Zhuang, Yongyong; Song, Xuerui; Wang, Liujun; Duan, Chongdi

    2018-03-01

    Quantum communication has attracted much attention in recent years, provides an ultimate level of security, and uniquely it is one of the most likely practical quantum technologies at present. In order to realize global coverage of quantum communication networks, not only need the help of satellite to realize wide area quantum communication, need implementation of optical fiber system to realize city to city quantum communication, but also, it is necessary to implement end-to-end quantum communications intercity and wireless quantum communications that can be received by handheld devices. Because of the limitation of application of light in buildings, it needs quantum communication with microwave band to achieve quantum reception of wireless handheld devices. The single microwave photon energy is very low, it is difficult to directly detect, which become a difficulty in microwave quantum detection. This paper summarizes the mode of single microwave photon detection methods and the possibility of application in microwave quantum communication, and promotes the development of quantum communication in microwave band and quantum radar.

  12. Ionospheric correction for spaceborne single-frequency GPS based ...

    Indian Academy of Sciences (India)

    The Klobuchar model was used to compute ionospheric delays for the dlft station, and .... dual-frequency GPS receivers; therefore, the iono- ... The mapping function is defined as the ratio of .... eter in the processing of an extended set of single.

  13. A high power, continuous-wave, single-frequency fiber amplifier at 1091 nm and frequency doubling to 545.5 nm

    International Nuclear Information System (INIS)

    Stappel, M; Steinborn, R; Kolbe, D; Walz, J

    2013-01-01

    We present a high power single-frequency ytterbium fiber amplifier system with an output power of 30 W at 1091 nm. The amplifier system consists of two stages, a preamplifier stage in which amplified spontaneous emission is efficiently suppressed (>40 dB) and a high power amplifier with an efficiency of 52%. Two different approaches to frequency doubling are compared. We achieve 8.6 W at 545.5 nm by single-pass frequency doubling in a MgO-doped periodically poled stoichiometric LiTaO 3 crystal and up to 19.3 W at 545.5 nm by frequency doubling with a lithium-triborate crystal in an external enhancement cavity. (paper)

  14. Operational features and microwave characteristics of the Vircator II experiment

    International Nuclear Information System (INIS)

    Price, D.; Fittinghoff, O.; Benford, J.; Sze, H.; Woo, W.

    1988-01-01

    The Vircator II oscillating virtual-cathode microwave source operates with diode voltages between 600 and 800 kV and diode current between 50 and 120 kA. Maximal microwave output power between 200 and 500 MW is achieved when the diode aspect ratio, cathode surface, charge voltage, and extraction coupling are arranged to simultaneously 1) maximize diode voltage, 2) satisfy magnetic insulation criteria, 3) avoid nonuniform or unstable electron emission, and 4) optimize microwave transmission from the virtual cathode to the launching antenna. Broad-band radiation between 0.4 and 5.5 GHz is generated. The central frequency follows the beam plasma frequency. It is tuned by varying the current density with anode-cathode (A-K) gap adjustments

  15. The non-planar single-frequency ring laser with variable output coupling

    Science.gov (United States)

    Wu, Ke-ying; Yang, Su-hui; Wei, Guang-hui

    2002-03-01

    We put forward a novel non-planar single-frequency ring laser, which consists of a corner cube prism and a specially cut Porro prism made by Nd:YAG crystal. The relative angle between the corner cube and the Porro prism could be adjusted to control the output coupling of the laser resonator and the polarization-state of the output laser. A 1.06 μm single-frequency laser with 1 W output has been obtained.

  16. Photonics-based microwave frequency measurement using a double-sideband suppressed-carrier modulation and an InP integrated ring-assisted Mach-Zehnder interferometer filter.

    Science.gov (United States)

    Fandiño, Javier S; Muñoz, Pascual

    2013-11-01

    A photonic system capable of estimating the unknown frequency of a CW microwave tone is presented. The core of the system is a complementary optical filter monolithically integrated in InP, consisting of a ring-assisted Mach-Zehnder interferometer with a second-order elliptic response. By simultaneously measuring the different optical powers produced by a double-sideband suppressed-carrier modulation at the outputs of the photonic integrated circuit, an amplitude comparison function that depends on the input tone frequency is obtained. Using this technique, a frequency measurement range of 10 GHz (5-15 GHz) with a root mean square value of frequency error lower than 200 MHz is experimentally demonstrated. Moreover, simulations showing the impact of a residual optical carrier on system performance are also provided.

  17. K-Band Radio frequency Interference Survey of Southeastern Michigan

    DEFF Research Database (Denmark)

    Curry, Shannon; Ahlers, Michael Faursby; Elliot, Harvey

    2010-01-01

    The Radio frequency Interference Survey of Earth (RISE) is a new type of instrument used to survey and characterize the presence of Radio Frequency Interference (RFI) that can affect microwave radiometers. It consists of a combined microwave radiometer and kurtosis spectrometer with broad frequen...

  18. A Novel Frequency Measurement Method Suitable for a Large Frequency Ratio Condition

    Institute of Scientific and Technical Information of China (English)

    ZHOU Wei; XUAN Zong-Qiang; YU Jian-Guo; WANG Hai; ZHOU Hui; LI Zhi-Qi

    2004-01-01

    @@ As for the obstacles to direct comparison between superhigh and lower frequencies, we accomplish the accurate comparison between low and microwave frequencies with the 105 ratios of the operating frequencies on the basis of phase comparison between the signals whose frequencies are related by an arbitrary integer. This method is simple and accurate, and will be widely used as a special frequency comparison approach.

  19. Radio-frequency integrated-circuit engineering

    CERN Document Server

    Nguyen, Cam

    2015-01-01

    Radio-Frequency Integrated-Circuit Engineering addresses the theory, analysis and design of passive and active RFIC's using Si-based CMOS and Bi-CMOS technologies, and other non-silicon based technologies. The materials covered are self-contained and presented in such detail that allows readers with only undergraduate electrical engineering knowledge in EM, RF, and circuits to understand and design RFICs. Organized into sixteen chapters, blending analog and microwave engineering, Radio-Frequency Integrated-Circuit Engineering emphasizes the microwave engineering approach for RFICs. Provide

  20. Single bunch fast longitudinal instability

    International Nuclear Information System (INIS)

    Wang, J.M.; Pellegrini, C.

    1979-01-01

    Single bunch longitudinal instability producing an increase of the bunch areas has been observed in proton synchrotron and storage rings. Singals at microwave frequencies are observed during the bunch blow-up and because of this the effect has been called the microwave instability. A similar increase in bunch area is observed also in electron storage rings, where it is usually referred to as the bunch lengthening effect. This paper is an attempt to obtain a more general theory of this effect. Here we describe the model used and the method of calculation, together with some general results. The main result of this paper is the derivation of a condition for the existence of a fast longitudinal bunch blow-up. This condition is a generalized threshold formula, showing explicitly the dependence on the bunch energy spread and length

  1. Reduction of Electromagnetic Interference Using ZnO-PCL Nanocomposites at Microwave Frequency

    Directory of Open Access Journals (Sweden)

    Abubakar Yakubu

    2015-01-01

    Full Text Available In industrial equipment and home appliance applications, the electromagnetic compatibility compliance directive (ECCD demands that electromagnetic interference side effects be eliminated or marginally minimized. The equipment must not disturb radio and telecommunication as well as other appliances. Additionally the ECCD also governs the immunity of such equipment to interference and seeks to ensure that this equipment is not disturbed by radio emissions when used as intended. Many types of absorbing materials are commercially available. However, many are expensive and not environmentally friendly. It is in the light of the above that we studied the electromagnetic absorption properties of ZnO-PCL nanocomposites prepared from cheap and abundant resources which are environmentally friendly (zinc and polycaprolactone. The test was carried out using a microstrip, open ended coaxial probe, and vector network analyzer. Amongst other findings, result showed that the ZnO-PCL nanocomposite has the capability of attenuating microwave frequency up to −18.2 dB due to their very high specific surface areas attributed to the nanofillers at 12 GHz.

  2. Magnon transport through microwave pumping

    OpenAIRE

    Nakata Kouki; Simon Pascal; Loss Daniel

    2015-01-01

    We present a microscopic theory of magnon transport in ferromagnetic insulators (FIs). Using magnon injection through microwave pumping, we propose a way to generate magnon dc currents and show how to enhance their amplitudes in hybrid ferromagnetic insulating junctions. To this end focusing on a single FI, we first revisit microwave pumping at finite (room) temperature from the microscopic viewpoint of magnon injection. Next, we apply it to two kinds of hybrid ferromagnetic insulating juncti...

  3. Magnetic and microwave absorption properties of La-Nd-Fe alloys

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Ziqiang [School of Material Science and Engineering & Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004 (China); Pan, Shunkang, E-mail: skpan88@163.com [School of Material Science and Engineering & Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004 (China); Xiong, Jilei [Chinalco Guangxi Non Ferrous Jinyuan Rare Earth CO., LTD, Hezhou 542603 (China); Cheng, Lichun; Yao, Qingrong [School of Material Science and Engineering & Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004 (China); School of Materials and Engineering, Central South University, Changsha 410083 (China); Lin, Peihao [School of Material Science and Engineering & Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004 (China)

    2017-02-01

    Through arc smelting and high energy ball milling method to synthesized the powders of La{sub x}Nd{sub 2-x}Fe{sub 17} (x=0.0, 0.2, 0.4, 0.6). By x-ray diffraction (XRD), scanning electron microscopy (SEM) and laser particle analyzer (LPS) to study the structural, morphology, particle size distribution of the powders, respectively. The electromagnetic parameters and saturation magnetization of the powers were measured by a vector network analyzer (VNA) and vibrating sample magnetometer (VSM), respectively. The saturation magnetization decreases with the La increasing. The minimum absorption peak frequency shifts towards a lower frequency region with an increase of La concentration. The microwave absorbing properties of the composite with different ratios of La{sub 0.2}Nd{sub 1.8}Fe{sub 17}/Ni were studied. The microwave absorbing peaks of the composite shift to higher frequencies, and the microwave absorbing properties improved with the Ni content increase to 20%. The minimum reflection loss is −32.5 dB at 9.8 GHz and the bandwidth less than −10 dB (Microwave absorption rate 90%) reaches 3 GHz with a thickness of 1.8 mm.

  4. Microwave SQUID Multiplexer Demonstration for Cosmic Microwave Background Imagers.

    Science.gov (United States)

    Dober, B; Becker, D T; Bennett, D A; Bryan, S A; Duff, S M; Gard, J D; Hays-Wehle, J P; Hilton, G C; Hubmayr, J; Mates, J A B; Reintsema, C D; Vale, L R; Ullom, J N

    2017-12-01

    Key performance characteristics are demonstrated for the microwave SQUID multiplexer (µmux) coupled to transition edge sensor (TES) bolometers that have been optimized for cosmic microwave background (CMB) observations. In a 64-channel demonstration, we show that the µmux produces a white, input referred current noise level of [Formula: see text] at -77 dB microwave probe tone power, which is well below expected fundamental detector and photon noise sources for a ground-based CMB-optimized bolometer. Operated with negligible photon loading, we measure [Formula: see text] in the TES-coupled channels biased at 65% of the sensor normal resistance. This noise level is consistent with that predicted from bolometer thermal fluctuation (i.e. phonon) noise. Furthermore, the power spectral density is white over a range of frequencies down to ~ 100 mHz, which enables CMB mapping on large angular scales that constrain the physics of inflation. Additionally, we report cross-talk measurements that indicate a level below 0.3%, which is less than the level of cross-talk from multiplexed readout systems in deployed CMB imagers. These measurements demonstrate the µmux as a viable readout technique for future CMB imaging instruments.

  5. Measurements of nonionizing radiation emitted from microwave oven

    International Nuclear Information System (INIS)

    Elnour, Yassir Elnour Osman

    2014-05-01

    There is an increase in the usage of microwave oven which is used electromagnetic radiation in the microwave range, which believed to be harmful to human health. The measurements were taken at distance of range(0-100) cm from the microwave oven. The study concluded that the risk possibility of the radiation increases at high mode. We measured the power density, magnetic field and signal strength of microwave oven using the SPECTRAN high frequency (HF-6080) detector. The experimental results of power density were found to be (3.78-208000) nW/m 2 and magnetic field is (0.001-0.744) mA/m. These values are less than the exposure limits recommended. (author)

  6. A feasibility study on the application of microwaves for online biofilm monitoring in the pipelines

    International Nuclear Information System (INIS)

    Saber, Nasser; Ju, Yang; Hsu, Hung-Yao; Lee, Sang-Heon

    2013-01-01

    This study investigates the potential of microwave technique for online monitoring and evaluation of biofilms in the pipelines. A microwave vector network analyser and an in-house built transmitting and receiving coaxial-line transducer were employed to transmit microwave signals in the pipe. The brass pipe specimen was tested by adhering different volumes of polymeric tape layers onto its internal surface simulating the biofilm build-up. By taking the pipe as a circular waveguide of microwave, the frequency domain measurements were conducted in the 45–47 GHz range with TM 01 dominant wave mode. The permittivity of the biofilm-contained area has been expressed as a function of the resonance frequency after establishing the resonance condition in the waveguide. It was realized that the resonance frequencies experience systematic shifts with the growth of biofilm layer length and thickness. The effects of dielectric material properties and the volume of the added biofilm layer on the resonance frequency records were then explained using the cavity perturbation theory which confirmed the experimental findings. Measurement results indicated a high degree of sensitivity to the small amounts of introduced biofilm which proves the potential of the microwave technique for online biofilm monitoring in both closed-end and open-end terminal conditions. -- Highlights: • An online biofilm monitoring method in pipelines using microwaves is reported. • Time and frequency domain measurements conducted in the pipe as a waveguide. • Resonance frequencies show systematic shifts with the growth of biofilm layer. • Relationship of the biofilm volume and the resonance frequency changes is expressed. • Perturbation theory is used to explain the results

  7. A Microwave Tunable Bandpass Filter for Liquid Crystal Applications

    Science.gov (United States)

    Cao, Weiping; Jiang, Di; Liu, Yupeng; Yang, Yuanwang; Gan, Baichuan

    2017-07-01

    In this paper, a novel microwave continuously tunable band-pass filter, based on nematic liquid crystals (LCs), is proposed. It uses liquid crystal (LC) as the electro-optic material to mainly realize frequency shift at microwave band by changing the dielectric anisotropy, when applying the bias voltage. According to simulation results, it achieves 840 MHz offset. Comparing to the existing tunable filter, it has many advantages, such as continuously tunable, miniaturization, low processing costs, low tuning voltage, etc. Thus, it has shown great potentials in frequency domain and practical applications in modern communication.

  8. Microwave based method of monitoring crack formation

    International Nuclear Information System (INIS)

    Aman, Sergej; Aman, Alexander; Majcherek, Soeren; Hirsch, Soeren; Schmidt, Bertram

    2014-01-01

    The formation of cracks in glass particles was monitored by application of linearly polarized microwaves. The breakage behavior of glass spheres coated with a thin gold layer of about 50 nm, i.e. a thickness that is lower than the microwave penetration depth, was tested. In this way the investigation of fracture behavior of electronic circuits was simulated. A shielding current was induced in the gold layer by the application of microwaves. During the crack formation the distribution of this current changed abruptly and a scattered microwave signal appeared at the frequency of the incident microwaves. The time behavior of the scattered signal reflects the microscopic processes occurring during the fracture of the specimen. The duration of the increasing signal corresponds to the crack formation time in the tested specimen. This time was estimated as particle size divided by crack development speed in glass. An intense emission of electrons occurs during the formation of cracks. Due to this, coherent Thomson scattering of microwaves by emitted electrons becomes significant with a delay of a few microseconds after the initial phase of crack formation. In this time the intensity of the microwave signal increases. (paper)

  9. One-third (period three) harmonic generation in microwave-driven Josephson tunnel junctions

    DEFF Research Database (Denmark)

    Hansen, Jørn Bindslev; Clarke, J.; Mygind, Jesper

    1986-01-01

    One-third harmonic signals have been generated in the zero voltage state of a Josephson tunnel junction driven with a microwave current in the frequency range 8–20 GHz. The signal was as much as 50 dB above the noise level of the detector with a linewidth of less than 100 Hz. The junction...... parameters and microwave current were measured in situ in separate experiments. The subharmonic generation occurred for ranges of microwave current and frequency that were in reasonable agreement with the results of digital computer simulations. Applied Physics Letters is copyrighted by The American...

  10. Highly efficient single-pass sum frequency generation by cascaded nonlinear crystals

    DEFF Research Database (Denmark)

    Hansen, Anders Kragh; Andersen, Peter E.; Jensen, Ole Bjarlin

    2015-01-01

    , despite differences in the phase relations of the involved fields. An unprecedented 5.5 W of continuous-wave diffraction-limited green light is generated from the single-pass sum frequency mixing of two diode lasers in two periodically poled nonlinear crystals (conversion efficiency 50%). The technique......The cascading of nonlinear crystals has been established as a simple method to greatly increase the conversion efficiency of single-pass second-harmonic generation compared to a single-crystal scheme. Here, we show for the first time that the technique can be extended to sum frequency generation...... is generally applicable and can be applied to any combination of fundamental wavelengths and nonlinear crystals....

  11. Passband switchable microwave photonic multiband filter

    Science.gov (United States)

    Ge, Jia; Fok, Mable P.

    2015-01-01

    A reconfigurable microwave photonic (MWP) multiband filter with selectable and switchable passbands is proposed and experimentally demonstrated, with a maximum of 12 simultaneous passbands evenly distributed from 0 to 10 GHz. The scheme is based on the generation of tunable optical comb lines using a two-stage Lyot loop filter, such that various filter tap spacings and spectral combinations are obtained for the configuration of the MWP filter. Through polarization state adjustment inside the Lyot loop filter, an optical frequency comb with 12 different comb spacings is achieved, which corresponds to a MWP filter with 12 selectable passbands. Center frequencies of the filter passbands are switchable, while the number of simultaneous passbands is tunable from 1 to 12. Furthermore, the MWP multiband filter can either work as an all-block, single-band or multiband filter with various passband combinations, which provide exceptional operation flexibility. All the passbands have over 30 dB sidelobe suppression and 3-dB bandwidth of 200 MHz, providing good filter selectivity. PMID:26521693

  12. On-Chip Microwave Quantum Hall Circulator

    Directory of Open Access Journals (Sweden)

    A. C. Mahoney

    2017-01-01

    Full Text Available Circulators are nonreciprocal circuit elements that are integral to technologies including radar systems, microwave communication transceivers, and the readout of quantum information devices. Their nonreciprocity arises from the interference of microwaves over the centimeter scale of the signal wavelength, in the presence of bulky magnetic media that breaks time-reversal symmetry. Here, we realize a completely passive on-chip microwave circulator with size 1/1000th the wavelength by exploiting the chiral, “slow-light” response of a two-dimensional electron gas in the quantum Hall regime. For an integrated GaAs device with 330  μm diameter and about 1-GHz center frequency, a nonreciprocity of 25 dB is observed over a 50-MHz bandwidth. Furthermore, the nonreciprocity can be dynamically tuned by varying the voltage at the port, an aspect that may enable reconfigurable passive routing of microwave signals on chip.

  13. Multifunctional fiber-optic microwave links based on remote heterodyne detection

    DEFF Research Database (Denmark)

    Gliese, Ulrik Bo; Nielsen, Torben Nørskov; Nielsen, Søren Nørskov

    1998-01-01

    The multifunctionality of microwave links based on remote heterodyne detection (RHD) of signals from a dual-frequency laser transmitter is discussed and experimentally demonstrated in this paper. Typically, direct detection (DD) in conjunction with optical intensity modulation is used to implement...... fiber-optic microwave links. The resulting links are inherently transparent. As opposed to DD links, RHD links can perform radio-system functionalities such as modulation and frequency conversion in addition to transparency. All of these three functionalities are presented and experimentally...

  14. Low-frequency noise in single electron tunneling transistor

    DEFF Research Database (Denmark)

    Tavkhelidze, A.N.; Mygind, Jesper

    1998-01-01

    The noise in current biased aluminium single electron tunneling (SET) transistors has been investigated in the frequency range of 5 mHz ..., we find the same input charge noise, typically QN = 5 × 10–4 e/Hz1/2 at 10 Hz, with and without the HF shielding. At lower frequencies, the noise is due to charge trapping, and the voltage noise pattern superimposed on the V(Vg) curve (voltage across transistor versus gate voltage) strongly depends...... when ramping the junction voltage. Dynamic trapping may limit the high frequency applications of the SET transistor. Also reported on are the effects of rf irradiation and the dependence of the SET transistor noise on bias voltage. ©1998 American Institute of Physics....

  15. Development of a 100 W, single frequency, CW Nd:YAG Laser

    International Nuclear Information System (INIS)

    Veitch, P.J.; Mudge, D.; Munch, J.; Hamilton, M.W.; Ostermeyer, M.; Hosken, D.; Brooks, A.

    2002-01-01

    Full text: High power, diode-laser-pumped, continuous wave (cw) solid-state lasers with excellent beam quality, efficiency and reliability are required for demanding applications, including gravitational wave interferometry, where current additional requirements include single frequency, low noise and Nd:YAG. Our approach is a chain of injection locked laser oscillators, theoretically capable of achieving the lowest noise possible. We use a single-frequency (100 mW) master laser to injection lock a medium-power (10 W) laser that in turn injection locks a 100 W laser. Injection locking requires an optimized, single mode, power slave laser at each stage. We shall describe the nearly completed 10 W brass-board laser, which will also be deployed at the ACIGA Test Facility at Gingin. We shall also describe our 100 W laser using a scalable diode pumping scheme, an active control of thermal lensing and a stable-unstable resonator. Initial tests showed mode control to be limited by thermal focusing and thermally induced birefringence in the Nd:YAG medium at 70 W output. Recent efforts have identified the source of the thermal lens and significantly reduced its magnitude, leading to a modified design. We shall present our latest results from the experiments to demonstrate single mode, single frequency laser at 100 W

  16. A Microwave Photonic Interference Canceller: Architectures, Systems, and Integration

    Science.gov (United States)

    Chang, Matthew P.

    This thesis is a comprehensive portfolio of work on a Microwave Photonic Self-Interference Canceller (MPC), a specialized optical system designed to eliminate interference from radio-frequency (RF) receivers. The novelty and value of the microwave photonic system lies in its ability to operate over bandwidths and frequencies that are orders of magnitude larger than what is possible using existing RF technology. The work begins, in 2012, with a discrete fiber-optic microwave photonic canceller, which prior work had demonstrated as a proof-of-concept, and culminates, in 2017, with the first ever monolithically integrated microwave photonic canceller. With an eye towards practical implementation, the thesis establishes novelty through three major project thrusts. (Fig. 1): (1) Extensive RF and system analysis to develop a full understanding of how, and through what mechanisms, MPCs affect an RF receiver. The first investigations of how a microwave photonic canceller performs in an actual wireless environment and a digital radio are also presented. (2) New architectures to improve the performance and functionality of MPCs, based on the analysis performed in Thrust 1. A novel balanced microwave photonic canceller architecture is developed and experimentally demonstrated. The balanced architecture shows significant improvements in link gain, noise figure, and dynamic range. Its main advantage is its ability to suppress common-mode noise and reduce noise figure by increasing the optical power. (3) Monolithic integration of the microwave photonic canceller into a photonic integrated circuit. This thrust presents the progression of integrating individual discrete devices into their semiconductor equivalent, as well as a full functional and RF analysis of the first ever integrated microwave photonic canceller.

  17. Effect of Nd-doping on structure and microwave electromagnetic properties of BiFeO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Sheng [School of Physics and Electronics, Institute of Super-microstructure and Ultrafast Process in Advanced Materials, Central South University, Changsha 410083 (China); Luo, Heng [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Yan, Shuoqing; Yao, Lingling; He, Jun; Li, Yuhan; He, Longhui; Huang, Shengxiang; Deng, Lianwen [School of Physics and Electronics, Institute of Super-microstructure and Ultrafast Process in Advanced Materials, Central South University, Changsha 410083 (China)

    2017-03-15

    The single-phase Bi{sub 1-x}Nd{sub x}FeO{sub 3} (x=0, 0.05, 0.10, 0.15, 0.20) were synthesized by the sol-gel method. Their crystal structure and microwave electromagnetic property in the frequency range of 2–18 GHz were investigated. The XRD patterns and Raman spectra showed that structural transition from rhombohedral (x=0, 0.05, 0.1) to triclinic (x=0.15) and tetragonal structure (x=0.20) appeared in the Bi{sub 1-x}Nd{sub x}FeO{sub 3}. Electromagnetic measurement suggested that both microwave permeability μ′ and magnetic loss tanδ{sub m} increased remarkably over 2–18 GHz by doping Nd. Strong dielectric loss peak was observed on the samples of Bi{sub 1-x}Nd{sub x}FeO{sub 3} (x=0.15) and Bi{sub 1-x}Nd{sub x}FeO{sub 3} (x=0.2). Results show that Nd substitution is an effective way to push BiFeO{sub 3} to become microwave absorbing materials with high performance. - Highlights: • Single-phase Bi{sub 1-x}Nd{sub x}FeO{sub 3} samples were prepared by a sol-gel method. • Strong dielectric loss peak was observed in BiFeO{sub 3} with high doping content. • Significant enhancement of microwave absorption property was found in Nd-doped BiFeO{sub 3}.

  18. MEMS-based transmission lines for microwave applications

    Science.gov (United States)

    Wu, Qun; Fu, Jiahui; Gu, Xuemai; Shi, Huajuan; Lee, Jongchul

    2003-04-01

    This paper mainly presents a briefly review for recent progress in MEMS-based transmission lines for use in microwave and millimeterwave range. MEMS-based transmission lines including different transmission line structure such as membrane-supported microstrip line microstrip line, coplanar microshield transmission line, LIGA micromachined planar transmission line, micromachined waveguides and coplanar waveguide are discussed. MEMS-based transmission lines are characterized by low propagation loss, wide operation frequency band, low dispersion and high quality factor, in addition, the fabrication is compatible with traditional processing of integrated circuits (IC"s). The emergence of MEMS-based transmission lines provided a solution for miniaturizing microwave system and monolithic microwave integrated circuits.

  19. Single- and multi-frequency detection of surface displacements via scanning probe microscopy.

    Science.gov (United States)

    Romanyuk, Konstantin; Luchkin, Sergey Yu; Ivanov, Maxim; Kalinin, Arseny; Kholkin, Andrei L

    2015-02-01

    Piezoresponse force microscopy (PFM) provides a novel opportunity to detect picometer-level displacements induced by an electric field applied through a conducting tip of an atomic force microscope (AFM). Recently, it was discovered that superb vertical sensitivity provided by PFM is high enough to monitor electric-field-induced ionic displacements in solids, the technique being referred to as electrochemical strain microscopy (ESM). ESM has been implemented only in multi-frequency detection modes such as dual AC resonance tracking (DART) and band excitation, where the response is recorded within a finite frequency range, typically around the first contact resonance. In this paper, we analyze and compare signal-to-noise ratios of the conventional single-frequency method with multi-frequency regimes of measuring surface displacements. Single-frequency detection ESM is demonstrated using a commercial AFM.

  20. Synthesis of BiFeO3 thin films on single-terminated Nb : SrTiO3 (111 substrates by intermittent microwave assisted hydrothermal method

    Directory of Open Access Journals (Sweden)

    Ivan Velasco-Davalos

    2016-06-01

    Full Text Available We report on a simple and fast procedure to create arrays of atomically flat terraces on single crystal SrTiO3 (111 substrates and the deposition of ferroelectric BiFeO3 thin films on such single-terminated surfaces. A microwave-assisted hydrothermal method in deionized water and ammonia solution selectively removes either (SrO34− or Ti4+ layers to ensure the same chemical termination on all terraces. Measured step heights of 0.225 nm (d111 and uniform contrast in the phase image of the terraces confirm the single termination in pure and Nb doped SrTiO3 single crystal substrates. Multiferroic BiFeO3 thin films were then deposited by the same microwave assisted hydrothermal process on Nb : SrTiO3 (111 substrates. Bi(NO33 and Fe(NO33 along with KOH served as the precursors solution. Ferroelectric behavior of the BiFeO3 films on Nb : SrTiO3 (100 substrates was verified by piezoresponse force microscopy.

  1. Microwave absorption in X and Ku band frequency of cotton fabric coated with Ni–Zn ferrite and carbon formulation in polyurethane matrix

    International Nuclear Information System (INIS)

    Gupta, K.K.; Abbas, S.M.; Goswami, T.H.; Abhyankar, A.C.

    2014-01-01

    The present study highlights various microwave properties, i.e. reflection, transmission, absorption and reflection loss, of the coated cotton fabric [formulation: Ni–Zn ferrite (Ni 0.5 Zn 0.5 Fe 2 O 4 ) and carbon black (acetylene black) at concentrations of 30, 40, 50, 60 and70 g of ferrite and 5 g carbon in each 100 ml polyurethane] evaluated at 8–18 GHz frequency. The uniform density of filling materials in coated fabrics (dotted marks in SEM micrograph) indicates homogeneous dispersion of conducting fillers in polyurethane and the density of filling material cluster increases with increase in ferrite concentration. SEM images also show uniform coating of conducting fillers/resin system over individual fibers and interweave spaces. The important parameters governing the microwave properties of coated fabrics i.e. permittivity and permeability, S-parameters, reflection loss, etc. were studied in a HVS free space microwave measurement system. The lossy character of coated fabric is found to increase with increase of ferrite content; the ferrite content decreases the impedance and increases the permittivity and permeability values. The 1.6–1.8 mm thick coated fabric sample (40 wt% ferrite, 3 wt% carbon and 57 wt% PU) has shown about 40% absorption, 20% transmission and 40% reflectance in X (8.2–12.4 GHz) and Ku (12–18 GHz) frequency bands. The reflection loss at 13.5 GHz has shown the highest peak value (22.5 dB) due to coated sample optical thickness equal to λ/4 and more than 7.5 dB in entire Ku band. Owing to its thin and flexible nature, the coated fabric can be used as apparel in protecting human being from hazardous microwaves and also as radar camouflage covering screen in defense. - Highlights: • Ni–Zn ferrite (Ni 0.5 Zn 0.5 Fe 2 O 4 ) with acetylene black found effective coating for microwave absorption. • Coating formulation containing 40 wt% ferrite, 3 wt% carbon and 57 wt% PU offered 40% absorption, 20% transmission and 40% reflection

  2. Microwave absorption in X and Ku band frequency of cotton fabric coated with Ni–Zn ferrite and carbon formulation in polyurethane matrix

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, K.K., E-mail: krishna62@rediffmail.com [Defence Materials and Stores Research and Development Establishment, Kanpur PO, GT Road, Kanpur 208013 (India); Abbas, S.M.; Goswami, T.H. [Defence Materials and Stores Research and Development Establishment, Kanpur PO, GT Road, Kanpur 208013 (India); Abhyankar, A.C. [Defence Institute of Advanced Technology( DIAT), Giri Nagar, Pune 411025 (India)

    2014-08-01

    The present study highlights various microwave properties, i.e. reflection, transmission, absorption and reflection loss, of the coated cotton fabric [formulation: Ni–Zn ferrite (Ni {sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4}) and carbon black (acetylene black) at concentrations of 30, 40, 50, 60 and70 g of ferrite and 5 g carbon in each 100 ml polyurethane] evaluated at 8–18 GHz frequency. The uniform density of filling materials in coated fabrics (dotted marks in SEM micrograph) indicates homogeneous dispersion of conducting fillers in polyurethane and the density of filling material cluster increases with increase in ferrite concentration. SEM images also show uniform coating of conducting fillers/resin system over individual fibers and interweave spaces. The important parameters governing the microwave properties of coated fabrics i.e. permittivity and permeability, S-parameters, reflection loss, etc. were studied in a HVS free space microwave measurement system. The lossy character of coated fabric is found to increase with increase of ferrite content; the ferrite content decreases the impedance and increases the permittivity and permeability values. The 1.6–1.8 mm thick coated fabric sample (40 wt% ferrite, 3 wt% carbon and 57 wt% PU) has shown about 40% absorption, 20% transmission and 40% reflectance in X (8.2–12.4 GHz) and Ku (12–18 GHz) frequency bands. The reflection loss at 13.5 GHz has shown the highest peak value (22.5 dB) due to coated sample optical thickness equal to λ/4 and more than 7.5 dB in entire Ku band. Owing to its thin and flexible nature, the coated fabric can be used as apparel in protecting human being from hazardous microwaves and also as radar camouflage covering screen in defense. - Highlights: • Ni–Zn ferrite (Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4}) with acetylene black found effective coating for microwave absorption. • Coating formulation containing 40 wt% ferrite, 3 wt% carbon and 57 wt% PU offered 40% absorption, 20

  3. Fluorescence, Decay Time, and Structural Change of Laser Dye Cresyl Violet in Solution due to Microwave Irradiation at GSM 900/1800 Mobile Phone Frequencies

    Directory of Open Access Journals (Sweden)

    Fuat Bayrakceken

    2012-01-01

    Full Text Available Microwave irradiation at GSM 900/1800 MHz mobile phone frequencies affects the electronic structure of cresyl violet in solution. These changes are important because laser-dye cresyl violet strongly bonds to DNA- and RNA-rich cell compounds in nerve tissues. The irradiation effects on the electronic structure of cresyl violet and its fluorescence data were all obtained experimentally at room temperature. For most laser dyes, this is not a trivial task because laser dye molecules possess a relatively complex structure. They usually consist of an extended system of conjugated double or aromatic π-bonds with attached auxochromic (electron donating groups shifting the absorption band further towards longer wavelength. Because of the intrinsically high degree of conjugation, the vibrational modes of the molecular units couple strongly with each other. We found that the fluorescence quantum yield was increased from to due to intramolecular energy hopping of cresyl violet in solution which is exposed to microwave irradiation at mobile phone frequencies, and the photonic product cannot be used as a laser dye anymore.

  4. Microwave permeability of stripe patterned FeCoN thin film

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yuping [Temasek Laboratories, National University of Singapore, 5A Engineering Drive 1, Singapore 117411 (Singapore); Yang, Yong, E-mail: tslyayo@nus.edu.sg [Temasek Laboratories, National University of Singapore, 5A Engineering Drive 1, Singapore 117411 (Singapore); Ma, Fusheng; Zong, Baoyu; Yang, Zhihong [Temasek Laboratories, National University of Singapore, 5A Engineering Drive 1, Singapore 117411 (Singapore); Ding, Jun [Department of Materials Science and Engineering, National University of Singapore, Singapore 117574 (Singapore)

    2017-03-15

    Magnetic stripe patterns are of great importance for microwave applications owing to their highly tunable microwave permeability by adjusting the geometrical dimensions. In this work, stripe patterned FeCoN films with 160 nm thickness are fabricated by using standard UV photolithography. Their microwave permeability are investigated systematically via both experiment and micromagnetic simulation. The good agreement between experimental and simulation results suggests that stripe width is crucial for the microwave magnetic properties of the stripe pattern. It is demonstrated by simulation that with increasing stripe width from 1 to 80 µm the initial permeability shows a continuous growth from about 8–322, whiles the resonance frequency drops dramatically from 18.7 to 3.1 GHz at 4 µm gap size. Smaller gap size would result in slightly increased initial permeability due to larger magnetic volume ratio, accompanied by decreased resonance frequency because of stronger magnetostatic interaction. Moreover, the experimental investigation on stripe length effect indicates that the stripe length should be kept as long as possible to achieve uniform bulk resonance mode and high permeability value. Insufficient stripe length would result in low frequency edge mode and decayed bulk mode. This study could provide valuable guidelines on the selection of proper geometry dimensions of FeCoN stripe patterns for high frequency applications. - Highlights: • This work presents a systematic study on permeability of FeCoN stripe pattern. • Geometrical parameters of the stripe pattern are systematically optimized. • Several important conclusions has been obtained. • The results offer guideline on FeCoN stripe patterns for high frequency applications.

  5. Microwave-Based Water Decontamination System

    Science.gov (United States)

    Arndt, G. Dickey (Inventor); Byerly, Diane (Inventor); Sognier, Marguerite (Inventor); Dusl, John (Inventor)

    2016-01-01

    A system for decontaminating a medium. The system can include a medium having one or more contaminants disposed therein. The contaminants can be or include bacteria, fungi, parasites, viruses, and combinations thereof. A microwave energy radiation device can be positioned proximate the medium. The microwave energy radiation device can be adapted to generate a signal having a frequency from about 10 GHz to about 100 GHz. The signal can be adapted to kill one or more of the contaminants disposed within the medium while increasing a temperature of the medium by less than about 10 C.

  6. Conversion from non-orthogonally to orthogonally polarized optical single-sideband modulation using optically injected semiconductor lasers.

    Science.gov (United States)

    Hung, Yu-Han; Tseng, Chin-Hao; Hwang, Sheng-Kwang

    2018-06-01

    This Letter investigates an optically injected semiconductor laser for conversion from non-orthogonally to orthogonally polarized optical single-sideband modulation. The underlying mechanism relies solely on nonlinear laser characteristics and, thus, only a typical semiconductor laser is required as the key conversion unit. This conversion can be achieved for a broadly tunable frequency range up to at least 65 GHz. After conversion, the microwave phase quality, including linewidth and phase noise, is mostly preserved, and simultaneous microwave amplification up to 23 dB is feasible.

  7. Combined Brillouin light scattering and microwave absorption study of magnon-photon coupling in a split-ring resonator/YIG film system

    Energy Technology Data Exchange (ETDEWEB)

    Klingler, S., E-mail: stefan.klingler@wmi.badw.de; Maier-Flaig, H.; Weiler, M. [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Walther-Meißner-Straße 8, 85748 Garching (Germany); Physik-Department, Technische Universität München, 85748 Garching (Germany); Gross, R.; Huebl, H.; Goennenwein, S. T. B. [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Walther-Meißner-Straße 8, 85748 Garching (Germany); Physik-Department, Technische Universität München, 85748 Garching (Germany); Nanosystems Initiative Munich (NIM), 80799 Munich (Germany); Hu, C.-M. [Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T2N2 (Canada)

    2016-08-15

    Microfocused Brillouin light scattering (BLS) and microwave absorption (MA) are used to study magnon-photon coupling in a system consisting of a split-ring microwave resonator and an yttrium iron garnet (YIG) film. The split-ring resonator is defined by optical lithography and loaded with a 1 μm-thick YIG film grown by liquid phase epitaxy. BLS and MA spectra of the hybrid system are simultaneously recorded as a function of the applied magnetic field magnitude and microwave excitation frequency. Strong coupling of the magnon and microwave resonator modes is found with a coupling strength of g{sub eff} /2π = 63 MHz. The combined BLS and MA data allow us to study the continuous transition of the hybridized modes from a purely magnonic to a purely photonic mode by varying the applied magnetic field and microwave frequency. Furthermore, the BLS data represent an up-conversion of the microwave frequency coupling to optical frequencies.

  8. Resonant freak microwaves

    International Nuclear Information System (INIS)

    Aguiar, F.M. de

    2011-01-01

    The Helmholtz equation describing transverse magnetic modes in a closed flat microwave resonator with 60 randomly distributed discs is numerically solved. At lower frequencies, the calculated wave intensity spatially distributed obeys the universal Porter-Thomas form if localized modes are excluded. A superposition of resonant modes is shown to lead to rare events of extreme intensities (freak waves) at localized 'hot spots'. The temporally distributed intensity of such a superposition at the center of a hot spot also follows the Porter-Thomas form. Branched modes are found at higher frequencies. The results bear resemblance to recent experiments reported in an open cavity.

  9. A microwave window for K band electromagnetic systems

    DEFF Research Database (Denmark)

    Rybalko, Oleksandr

    2017-01-01

    This article proposes a solution for microwave window at K band. Properties of the window such as performance (transparency) at microwave frequencies, dimensions, and mounting place are discussed. The dimensions of the window were optimized in a full-wave simulator. To verify the design...... and simulation results the prototype of the window is realized by implementing into transition section and tested experimentally. The microwave window provides low return loss |S11| below −30 dB, low insertion loss |S21| below −0.5 dB and can be used for electromagnetic systems where vacuum sealing is required...

  10. Microwave dielectric characterization of binary mixture of formamide ...

    Indian Academy of Sciences (India)

    The mixtures exhibit a principle dispersion of the Davidson–Cole relaxation type at microwave frequencies. Bilinear calibration method is used to obtain complex permittivity *() from complex reflection coefficient ρ*() over the frequency range of 10 MHz to 10 GHz. The excess permittivity (E), excessinverse relaxation ...

  11. Microwave combustion and sintering without isostatic pressure

    International Nuclear Information System (INIS)

    Ebadian, M.A.

    1998-01-01

    In recent years interest has grown rapidly in the application of microwave energy to the processing of ceramics, composites, polymers, and other materials. Advances in the understanding of microwave/materials interactions will facilitate the production of new ceramic materials with superior mechanical properties. One application of particular interest is the use of microwave energy for the mobilization of uranium for subsequent redeposition. Phase III (FY98) will focus on the microwave assisted chemical vapor infiltration tests for mobilization and redeposition of radioactive species in the mixed sludge waste. Uranium hexachloride and uranium (IV) borohydride are volatile compounds for which the chemical vapor infiltration procedure might be developed for the separation of uranium. Microwave heating characterized by an inverse temperature profile within a preformed ceramic matrix will be utilized for CVI using a carrier gas. Matrix deposition is expected to commence from the inside of the sample where the highest temperature is present. The preform matrix materials, which include aluminosilicate based ceramics and silicon carbide based ceramics, are all amenable to extreme volume reduction, densification, and vitrification. Important parameters of microwave sintering such as frequency, power requirement, soaking temperature, and holding time will be investigated to optimize process conditions for the volatilization of uranyl species using a reactive carrier gas in a microwave chamber

  12. Feasibility and Performance of the Microwave Thermal Rocket Launcher

    OpenAIRE

    Parkin, Kevin L. G.; Culick, Fred E. C.

    2004-01-01

    Beamed-energy launch concepts employing a microwave thermal thruster are feasible in principle, and microwave sources of sufficient power to launch tons into LEO already exist. Microwave thermal thrusters operate on an analogous principle to nuclear thermal thrusters, which have experimentally demonstrated specific impulses exceeding 850 seconds. Assuming such performance, simple application of the rocket equation suggests that payload fractions of 10% are possible for a single stage to orbit...

  13. Microwave reflection properties of planar anisotropy Fe50Ni50 powder/paraffin composites

    International Nuclear Information System (INIS)

    Wei Jian-Qiang; Zhang Zhao-Qi; Han Rui; Wang Tao; Li Fa-Shen

    2012-01-01

    The reflection properties of planar anisotropy Fe 50 Ni 50 powder/paraffin composites have been studied in the microwave frequency range. The permeability of Fe 50 Ni 50 powder/paraffin composites is greatly enhanced by introducing the planar anisotropy, and can be further enhanced by using a rotational orientation method. The complex permeability can be considered as the superposition of two types of magnetic resonance. The resonance peak at high frequency is attributed to the natural resonance, while the peak at low frequency is attributed to the domain-wall resonance. The simulated results of the microwave reflectivity show that the matching thickness, peak frequency, permeability, and permittivity are closely related to the quarter wavelength matching condition. The Fe 50 Ni 50 powder/paraffin composites can be attractive candidates for thinner microwave absorbers in the L-band (1–2 GHz). (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  14. Heterodyne detector for measuring the characteristic of elliptically polarized microwaves

    DEFF Research Database (Denmark)

    Leipold, Frank; Nielsen, Stefan Kragh; Michelsen, Susanne

    2008-01-01

    In the present paper, a device is introduced, which is capable of determining the three characteristic parameters of elliptically polarized light (ellipticity, angle of ellipticity, and direction of rotation) for microwave radiation at a frequency of 110 GHz. The device consists of two perpendicu......In the present paper, a device is introduced, which is capable of determining the three characteristic parameters of elliptically polarized light (ellipticity, angle of ellipticity, and direction of rotation) for microwave radiation at a frequency of 110 GHz. The device consists of two...... be calculated. Results from measured and calculated wave characteristics of an elliptically polarized 110 GHz microwave beam for plasma heating launched into the TEXTOR-tokamak experiment are presented. Measurement and calculation are in good agreement. ©2008 American Institute of Physics...

  15. Microwave SQUID multiplexer demonstration for cosmic microwave background imagers

    Science.gov (United States)

    Dober, B.; Becker, D. T.; Bennett, D. A.; Bryan, S. A.; Duff, S. M.; Gard, J. D.; Hays-Wehle, J. P.; Hilton, G. C.; Hubmayr, J.; Mates, J. A. B.; Reintsema, C. D.; Vale, L. R.; Ullom, J. N.

    2017-12-01

    Key performance characteristics are demonstrated for the microwave superconducting quantum interference device (SQUID) multiplexer (μmux) coupled to transition edge sensor (TES) bolometers that have been optimized for cosmic microwave background (CMB) observations. In a 64-channel demonstration, we show that the μmux produces a white, input referred current noise level of 29 pA/ √{H z } at a microwave probe tone power of -77 dB, which is well below the expected fundamental detector and photon noise sources for a ground-based CMB-optimized bolometer. Operated with negligible photon loading, we measure 98 pA/ √{H z } in the TES-coupled channels biased at 65% of the sensor normal resistance. This noise level is consistent with that predicted from bolometer thermal fluctuation (i.e., phonon) noise. Furthermore, the power spectral density is white over a range of frequencies down to ˜100 mHz, which enables CMB mapping on large angular scales that constrain the physics of inflation. Additionally, we report cross-talk measurements that indicate a level below 0.3%, which is less than the level of cross-talk from multiplexed readout systems in deployed CMB imagers. These measurements demonstrate the μmux as a viable readout technique for future CMB imaging instruments.

  16. Non-destructive radio-frequency and microwave measurement of moisture content in agricultural commodities

    International Nuclear Information System (INIS)

    Nelson, S.O.

    1994-01-01

    The importance of moisture content in agricultural commodities, the usefulness of the dielectric properties of such products for sensing moisture content by radiofrequency and microwave measurements, and factors affecting these properties are briefly discussed. Recent developments in the understanding of principles for online moisture sensing and the sensing of individual kernel, seed, nut and fruit moisture contents by radiofrequency and microwave techniques are reviewed. A brief discussion is included on aspects of practical application

  17. Optimization of the microwave coupler and microwave measurements of the microtron cavity for 20 MeV pre-injector microtron for INDUS-I SRS

    International Nuclear Information System (INIS)

    Wanmode, Y.D.; Shrivastava, Purushottam; Hannurkar, P.R.

    2003-01-01

    A 20 MeV microtron was developed indigenously by CAT for pre-injection of 20 MeV electrons to the 450 MeV/700 MeV Booster Synchrotron for INDUS-I and INDUS-II Synchrotron Radiation Sources. The injector microtron uses a high Q microwave cavity for acceleration of electrons. The microwave power is fed to the microtron cavity through an iris type coupler whose dimensions are optimized for the coupling factor and resonant frequency for the accelerator. The present paper gives the procedure details for coupling factor optimization, tuning of the resonant frequency and results achieved. (author)

  18. Autonomous low-noise system for broadband measurements of the cosmic microwave background radiation

    Science.gov (United States)

    Dekoulis, George

    2009-05-01

    This paper describes the digital side implementation of a new suborbital experiment for the measurement of broadband radiation emissions of the Cosmic Microwave Background (CMB) anisotropy. The system has been used in campaign mode for initial mapping of the galactic radiation power received at a single frequency. The recorded galactic sky map images are subsequently being used to forecast the emitted radiation at neighboring frequencies. A planned second campaign will verify the prediction algorithms efficiency in an autonomous manner. The system has reached an advanced stage in terms of hardware and software combined operation and intelligence, where other Space Physics measurements are performed autonomously depending on the burst event under investigation. The system has been built in a modular manner to expedite hardware and software upgrades. Such an upgrade has recently occurred mainly to expand the frequency range of space observations.

  19. Optical Stabilization of a Microwave Oscillator for Fountain Clock Interrogation.

    Science.gov (United States)

    Lipphardt, Burghard; Gerginov, Vladislav; Weyers, Stefan

    2017-04-01

    We describe an optical frequency stabilization scheme of a microwave oscillator that is used for the interrogation of primary cesium fountain clocks. Because of its superior phase noise properties, this scheme, which is based on an ultrastable laser and a femtosecond laser frequency comb, overcomes the frequency instability limitations of fountain clocks given by the previously utilized quartz-oscillator-based frequency synthesis. The presented scheme combines the transfer of the short-term frequency instability of an optical cavity and the long-term frequency instability of a hydrogen maser to the microwave oscillator and is designed to provide continuous long-term operation for extended measurement periods of several weeks. The utilization of the twofold stabilization scheme on the one hand ensures the referencing of the fountain frequency to the hydrogen maser frequency and on the other hand results in a phase noise level of the fountain interrogation signal, which enables fountain frequency instabilities at the 2.5 ×10 -14 (τ/s) -1/2 level that are quantum projection noise limited.

  20. GYRO-INTERACTION OF MICROWAVES IN MAGNETO PLASMAS IN ATMOSPHERIC GASES

    Energy Technology Data Exchange (ETDEWEB)

    Narasinga Rao, K. V.; Goldstein, L.

    1963-05-15

    Electron cyclotron resonance absorption of microwave energy by the electron gas in decaying magneto plasmas of oxygen and nitrogen gases is investigated. The technique of interaction of microwaves of diffent frequencies is utilized to measure the enhancement in electronic energy caused by resonance absorption. The results of these experiments show that the inelastic collisions of low energy electrons introduce a barrier for rapid heating of the electron gas. The implication of these results to the control of the ionospheric plasma parameters by radio frequency EM waves is discussed. (auth)

  1. Combination microwave ovens: an innovative design strategy.

    Science.gov (United States)

    Tinga, Wayne R; Eke, Ken

    2012-01-01

    Reducing the sensitivity of microwave oven heating and cooking performance to load volume, load placement and load properties has been a long-standing challenge for microwave and microwave-convection oven designers. Conventional design problem and solution methods are reviewed to provide greater insight into the challenge and optimum operation of a microwave oven after which a new strategy is introduced. In this methodology, a special load isolating and energy modulating device called a transducer-exciter is used containing an iris, a launch box, a phase, amplitude and frequency modulator and a coupling plate designed to provide spatially distributed coupling to the oven. This system, when applied to a combined microwave-convection oven, gives astounding performance improvements to all kinds of baked and roasted foods including sensitive items such as cakes and pastries, with the only compromise being a reasonable reduction in the maximum available microwave power. Large and small metal utensils can be used in the oven with minimal or no performance penalty on energy uniformity and cooking results. Cooking times are greatly reduced from those in conventional ovens while maintaining excellent cooking performance.

  2. Photonic microwave carrier recovery using period-one nonlinear dynamics of semiconductor lasers for OFDM-RoF coherent detection.

    Science.gov (United States)

    Hung, Yu-Han; Yan, Jhih-Heng; Feng, Kai-Ming; Hwang, Sheng-Kwang

    2017-06-15

    This study investigates an all-optical scheme based on period-one (P1) nonlinear dynamics of semiconductor lasers, which regenerates the microwave carrier of an orthogonal frequency division multiplexing radio-over-fiber (OFDM-RoF) signal and uses it as a microwave local oscillator for coherent detection. Through the injection locking established between the OFDM-RoF signal and the P1 dynamics, frequency synchronization with highly preserved phase quality is inherently achieved between the recovered microwave carrier and the microwave carrier of the OFDM-RoF signal. A bit-error ratio down to 1.9×10-9 is achieved accordingly using the proposed scheme for coherent detection of a 32-GHz OFDM-RoF signal carrying 4  Gb/s 16-quadrature amplitude modulation data. No electronic microwave generators or electronic phase-locked loops are thus required. The proposed system can be operated up to at least 100 GHz and can be self-adapted to certain changes in the operating microwave frequency.

  3. Frequency Adaptive Repetitive Control of Grid-Tied Single-Phase PV Inverters

    DEFF Research Database (Denmark)

    Zhou, Keliang; Yang, Yongheng; Blaabjerg, Frede

    2015-01-01

    . This paper thus explores a frequency adaptive repetitive control strategy for grid converters, which employs fractional delay filters in order to adapt to the change of the grid frequency. Case studies with experimental results of a single-phase grid-connected PV inverter system are provided to verify...

  4. Widely Tunable On-Chip Microwave Circulator for Superconducting Quantum Circuits

    Science.gov (United States)

    Chapman, Benjamin J.; Rosenthal, Eric I.; Kerckhoff, Joseph; Moores, Bradley A.; Vale, Leila R.; Mates, J. A. B.; Hilton, Gene C.; Lalumière, Kevin; Blais, Alexandre; Lehnert, K. W.

    2017-10-01

    We report on the design and performance of an on-chip microwave circulator with a widely (GHz) tunable operation frequency. Nonreciprocity is created with a combination of frequency conversion and delay, and requires neither permanent magnets nor microwave bias tones, allowing on-chip integration with other superconducting circuits without the need for high-bandwidth control lines. Isolation in the device exceeds 20 dB over a bandwidth of tens of MHz, and its insertion loss is small, reaching as low as 0.9 dB at select operation frequencies. Furthermore, the device is linear with respect to input power for signal powers up to hundreds of fW (≈103 circulating photons), and the direction of circulation can be dynamically reconfigured. We demonstrate its operation at a selection of frequencies between 4 and 6 GHz.

  5. Graphene-Based Josephson-Junction Single-Photon Detector

    Science.gov (United States)

    Walsh, Evan D.; Efetov, Dmitri K.; Lee, Gil-Ho; Heuck, Mikkel; Crossno, Jesse; Ohki, Thomas A.; Kim, Philip; Englund, Dirk; Fong, Kin Chung

    2017-08-01

    We propose to use graphene-based Josephson junctions (GJJs) to detect single photons in a wide electromagnetic spectrum from visible to radio frequencies. Our approach takes advantage of the exceptionally low electronic heat capacity of monolayer graphene and its constricted thermal conductance to its phonon degrees of freedom. Such a system could provide high-sensitivity photon detection required for research areas including quantum information processing and radio astronomy. As an example, we present our device concepts for GJJ single-photon detectors in both the microwave and infrared regimes. The dark count rate and intrinsic quantum efficiency are computed based on parameters from a measured GJJ, demonstrating feasibility within existing technologies.

  6. Comparison the treatment effects between simultaneous dual frequency and single frequency irradiation of ultrasound in a murine model of breast adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Mahboobeh Alamolhoda

    2010-12-01

    Full Text Available Introduction: Transient cavitations induced by low frequency irradiation of ultrasound can be used to treat tumors. Previous studies in in-vitro experiments have shown that induced cavitation by dual or multiple frequencies of ultrasound is greater than induced cavitation by single frequency irradiation. In this study, we compared and evaluated the treatment effects of dual frequency irradiation of ultrasound (1 MHz and 150 kHz and single frequency irradiation in in-vivo experiments on breast adenocarcinoma tumors. Material and Method: In this study, the tumor-bearing mice were divided into 5 groups: control, sham, treated group for 30 min with 150 kHz frequency in continuous mode, another group with 1 MHz frequency in pulse mode, and treated group with combined dual frequency ultrasound (150 kHz in continuous mode and 1 MHz in 80% pulse mode. To evaluate the effects of ultrasound irradiation on tumor growth delay, the volumes of the tumors were investigated for 30 days. Tumor growth delay parameters including relative volume, inhibition ratio percentage and the required times for the tumor volume to reach to two (T2 and five (T5 times its initial volume were calculated. Results: The results showed that the treated groups with single frequency irradiation of 150 kHz continuous mode and 1 MHz pulse mode and combined dual frequency had statistically significant differences in tumor relative volume percentage during the period of 3 to 24 days after treatment (p

  7. Microwave Readout Techniques for Very Large Arrays of Nuclear Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Ullom, Joel [Univ. of Colorado, Boulder, CO (United States). Dept. of Physics

    2017-05-17

    During this project, we transformed the use of microwave readout techniques for nuclear sensors from a speculative idea to reality. The core of the project consisted of the development of a set of microwave electronics able to generate and process large numbers of microwave tones. The tones can be used to probe a circuit containing a series of electrical resonances whose frequency locations and widths depend on the state of a network of sensors, with one sensor per resonance. The amplitude and phase of the tones emerging from the circuit are processed by the same electronics and are reduced to the sensor signals after two demodulation steps. This approach allows a large number of sensors to be interrogated using a single pair of coaxial cables. We successfully developed hardware, firmware, and software to complete a scalable implementation of these microwave control electronics and demonstrated their use in two areas. First, we showed that the electronics can be used at room temperature to read out a network of diverse sensor types relevant to safeguards or process monitoring. Second, we showed that the electronics can be used to measure large numbers of ultrasensitive cryogenic sensors such as gamma-ray microcalorimeters. In particular, we demonstrated the undegraded readout of up to 128 channels and established a path to even higher multiplexing factors. These results have transformed the prospects for gamma-ray spectrometers based on cryogenic microcalorimeter arrays by enabling spectrometers whose collecting areas and count rates can be competitive with high purity germanium but with 10x better spectral resolution.

  8. [Benefit of microwaves in case of heat-sensitive agglomerate drying].

    Science.gov (United States)

    Kelen, Akos; Hegedüs, Agota; Nagy, Tibor; Máthé, Zoltán; Hódi, Klára

    2003-01-01

    The microwave assisted vacuum drying of heat-sensitive materials is increasing in the pharmaceutical industry since the eighties. This paper deals with results of two experiment series obtained on a laboratory scale single pot dryer (Collette Ultima 251). Firstly water was heated up to the boiling point exclusively by predetermined microwave energy and then by various wall temperatures in order to determine the convection efficiency of the system. The experiments were carried out at fixed pressure level (80 mbar) and with optimum bowl load (15 kg). According to the demonstrated idea each single pot system efficiency can be specified at any type and quantity of load. With the help of the presented results the second experiments were designed to compare the microwave and convection efficiency of the single pot system during granule drying. A placebo granule was dried either by an exclusive convection or microwave method up to the determined LOD (< 0.5%). According to the tests extreme high wall temperature (85 degrees C) had to be used to achieve the same drying time--and efficiency--as with the usage of dielectric heating. Based on the results it can be stated that the shorter drying time under favourable conditions is the advantage of microwave radiation over the conventional technique.

  9. Theory and design of microwave filters

    CERN Document Server

    Hunter, Ian

    2000-01-01

    This is a thorough, graduate-level text which provides a single source for filter design including basic circuit theory, network synthesis and the design of a variety of microwave filter structures. The aim is to present design theories followed by specific examples with numerical simulations of the designs, with pictures of real devices wherever possible. The book is aimed at designers, engineers and researchers working in microwave electronics who need to design or specify filters.

  10. Single and double-layer composite microwave absorbers with hexaferrite BaZn{sub 0.6}Zr{sub 0.3}X{sub 0.3}Fe{sub 10.8}O{sub 19} (X = Ti, Ce, Sn) powders

    Energy Technology Data Exchange (ETDEWEB)

    Afghahi, Seyyed Salman Seyyed [Department of Materials Science and Engineering, Imam Hossein University, Tehran (Iran, Islamic Republic of); Jafarian, Mojtaba, E-mail: m.jafarian@srbiau.ac.ir [Young Researchers and Elites Club, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Atassi, Yomen [Department of Applied Physics, Higher Institute for Applied Sciences and Technology, Damascus (Syrian Arab Republic); Stergiou, Charalampos A. [Lab. of Inorganic Materials, Centre for Research and Technology Hellas, 57001, Thermi (Greece)

    2017-01-15

    In the present study, substituted barium hexaferrites with the composition BaZn{sub 0.6}Zr{sub 0.3} × {sub 0.3}Fe{sub 10.8}O{sub 19} (where X = Ti, Ce, Sn) are prepared with the solid-state reaction method. X-ray diffraction (XRD), scanning electron microscopy (SEM), vibrating sample magnetometry (VSM) and network analysis techniques are used to analyze the crystal phases, morphology, static magnetic and microwave absorption properties, respectively. Based on the recorded results, barium hexaferrite is the major phase obtained after milling of the powders for 20 h, followed by calcination at 1000 °C for 5 h. The morphology of the particles of the substituted ferrite samples is plate-like with hexagonal shape. The microwave absorption in the X-band of epoxy composites loaded with the ferrite fillers, either separately, in pairs or all together, has been extensively investigated. Multicomponent composites filled with the new hexaferrites under study are promising candidates for electromagnetic absorbers in the 8–12 GHz range. It is found that single-layer absorbers of 5 mm thickness with 45 wt% of a binary (Sn and Ti-doped hexaferrite) or ternary filler mixture exhibit the maximum bandwidth of 2.7 GHz at the level of −10 dB or maximum losses of 26.4 dB at 10.8 GHz, respectively. - Highlights: • Preparation of substituted hexaferrites via mechanical activation. • We designed a broad band microwave absorber with mixing powders. • We designed single layer absorber with RL{sub min} = −26.4 dB and 1.6 GHz bandwidth. • We designed double layer absorbers, as monoband absorbers at a matching frequency.

  11. Single-frequency, fully integrated, miniature DPSS laser based on monolithic resonator

    Science.gov (United States)

    Dudzik, G.; Sotor, J.; Krzempek, K.; Soboń, G.; Abramski, K. M.

    2014-02-01

    We present a single frequency, stable, narrow linewidth, miniature laser sources operating at 532 nm (or 1064 nm) based on a monolithic resonators. Such resonators utilize birefringent filters formed by YVO4 beam displacer and KTP or YVO4 crystals to force single frequency operation at 532 nm or 1064 nm, respectively. In both configurations Nd:YVO4 gain crystal is used. The resonators dimensions are 1x1x10.5 mm3 and 1x1x8.5 mm3 for green and infrared configurations, respectively. Presented laser devices, with total dimensions of 40x52x120 mm3, are fully equipped with driving electronics, pump diode, optical and mechanical components. The highly integrated (36x15x65 mm3) low noise driving electronics with implemented digital PID controller was designed. It provides pump current and resonator temperature stability of ±30 μA@650 mA and ±0,003ºC, respectively. The laser parameters can be set and monitored via the USB interface by external application. The developed laser construction is universal. Hence, the other wavelengths can be obtained only by replacing the monolithic resonator. The optical output powers in single frequency regime was at the level of 42 mW@532 nm and 0.5 W@1064 nm with the long-term fluctuations of ±0.85 %. The linewidth and the passive frequency stability under the free running conditions were Δν < 100 kHz and 3ṡ10-9@1 s integration time, respectively. The total electrical power supply consumption of laser module was only 4 W. Presented compact, single frequency laser operating at 532 nm and 1064 nm may be used as an excellent source for laser vibrometry, interferometry or seed laser for fiber amplifiers.

  12. Superconductor Microwave Kinetic Inductance Detectors: System Model of the Readout Electronics

    Directory of Open Access Journals (Sweden)

    F. Alimenti

    2009-06-01

    Full Text Available This paper deals with the readout electronics needed by superconductor Microwave Kinetic Inductance Detectors (MKIDs. MKIDs are typically implemented in the form of cryogenic-cooled high quality factor microwave resonator. The natural frequency of these resonators changes as a millimeter or sub-millimeter wave radiation impinges on the resonator itself. A quantitative system model of the readout electronics (very similar to that of a vector network analyzer has been implemented under ADS environment and tested by several simulation experiments. The developed model is a tool to further optimize the readout electronic and to design the frequency allocation of parallel-connected MKIDs resonators. The applications of MKIDs will be in microwave and millimeter-wave radiometric imaging as well as in radio-astronomy focal plane arrays.

  13. High-frequency behavior of magnetic composites

    International Nuclear Information System (INIS)

    Lagarkov, Andrey N.; Rozanov, Konstantin N.

    2009-01-01

    The paper reviews recent progress in the field of microwave magnetic properties of composites. The problem under discussion is developing composites with high microwave permeability that are needed in many applications. The theory of magnetic composites is briefly sketched with the attention paid to the laws governing the magnetic frequency dispersion in magnetic materials and basic mixing rules for composites. Recent experimental reports on the microwave performance of magnetic composites, as well as data on the agreement of the mixing rules with the measured permeability of composites that are available from the literature are discussed. From the data, a conclusion is made that the validity of a mixing rule is determined by the permeability contrast in the composite, i.e., the difference between permeability of inclusions and that of the host matrix. When the contrast is low, the Maxwell Garnet mixing rule is frequently valid. When the contrast is high, which is of the most interest for obtaining high microwave permeability of a composite, no conventionally accepted theory is capable of accurately predicting the permeability of the composites. Therefore, the mixing rules do not allow the microwave properties of magnetic composites to be predicted when the permeability of inclusions is high, that is the case of the most interest. Because of that, general limitations to the microwave performance of composites are of importance. In particular, an important relation constraining the microwave permeability of composites follows from Kittel's theory of ferromagnetic resonance and analytical properties of frequency dependence of permeability. Another constraint concerning the bandwidth of electromagnetic wave absorbers follows from the Kramers-Kronig relations for the reflection coefficient. The constraints are of importance in design and analysis of electromagnetic wave absorbers and other devices that employ the microwave magnetic properties of composites, such as

  14. Formation of virtual cathodes and microwave generation in relativistic electron beams

    International Nuclear Information System (INIS)

    Kwan, T.J.T.; Thode, L.E.

    1984-01-01

    Simulation of the generation of a relativistic electron beam in a foil diode configuration and the subsequent intense microwave generation resulting from the formation of the virtual cathode is presented. The oscillating virtual cathode and the trapped beam electrons between the real and the virtual cathodes were found to generate microwaves at two distinct frequencies. Generation of high-power microwaves with about 10% efficiency might reasonably be expected from such a virtual-cathode configuration

  15. Microwave stability at transition

    International Nuclear Information System (INIS)

    Holt, J.A.; Colestock, P.L.

    1995-05-01

    The question of microwave stability at transition is revisited using a Vlasov approach retaining higher order terms in the particle dynamics near the transition energy. A dispersion relation is derived which can be solved numerically for the complex frequency in terms of the longitudinal impedance and other beam parameters. Stability near transition is examined and compared with simulation results

  16. 2-mm microwave interferometer

    International Nuclear Information System (INIS)

    Futch, A.H.; Mortensen, W.K.

    1977-01-01

    A 2-mm microwave interferometer has been developed, and phase shift measurements have been made on the Baseball II experiment. The interferometer system employs a 140-GHz receiver for double down conversion of the plasma signal to a 60-MHz, IF frequency. The 140-GHz references signal is also down-converted and compared with the plasma signal to provide the desired phase change of the signal passing through the plasma. A feedback voltage from a 60-MHz discriminator to a voltage-controlled oscillator in the receiver provides frequency stability of the 60-MHz IF signals

  17. Frequency-agile gyrotron for electron decoupling and pulsed dynamic nuclear polarization

    Science.gov (United States)

    Scott, Faith J.; Saliba, Edward P.; Albert, Brice J.; Alaniva, Nicholas; Sesti, Erika L.; Gao, Chukun; Golota, Natalie C.; Choi, Eric J.; Jagtap, Anil P.; Wittmann, Johannes J.; Eckardt, Michael; Harneit, Wolfgang; Corzilius, Björn; Th. Sigurdsson, Snorri; Barnes, Alexander B.

    2018-04-01

    We describe a frequency-agile gyrotron which can generate frequency-chirped microwave pulses. An arbitrary waveform generator (AWG) within the NMR spectrometer controls the microwave frequency, enabling synchronized pulsed control of both electron and nuclear spins. We demonstrate that the acceleration of emitted electrons, and thus the microwave frequency, can be quickly changed by varying the anode voltage. This strategy results in much faster frequency response than can be achieved by changing the potential of the electron emitter, and does not require a custom triode electron gun. The gyrotron frequency can be swept with a rate of 20 MHz/μs over a 670 MHz bandwidth in a static magnetic field. We have already implemented time-domain electron decoupling with dynamic nuclear polarization (DNP) magic angle spinning (MAS) with this device. In this contribution, we show frequency-swept DNP enhancement profiles recorded without changing the NMR magnet or probe. The profile of endofullerenes exhibits a DNP profile with a <10 MHz linewidth, indicating that the device also has sufficient frequency stability, and therefore phase stability, to implement pulsed DNP mechanisms such as the frequency-swept solid effect. We describe schematics of the mechanical and vacuum construction of the device which includes a novel flanged sapphire window assembly. Finally, we discuss how commercially available continuous-wave gyrotrons can potentially be converted into similar frequency-agile high-power microwave sources.

  18. Novel Approach to Design Ultra Wideband Microwave Amplifiers: Normalized Gain Function Method

    Directory of Open Access Journals (Sweden)

    R. Kopru

    2013-09-01

    Full Text Available In this work, we propose a novel approach called as “Normalized Gain Function (NGF method” to design low/medium power single stage ultra wide band microwave amplifiers based on linear S parameters of the active device. Normalized Gain Function TNGF is defined as the ratio of T and |S21|^2, desired shape or frequency response of the gain function of the amplifier to be designed and the shape of the transistor forward gain function, respectively. Synthesis of input/output matching networks (IMN/OMN of the amplifier requires mathematically generated target gain functions to be tracked in two different nonlinear optimization processes. In this manner, NGF not only facilitates a mathematical base to share the amplifier gain function into such two distinct target gain functions, but also allows their precise computation in terms of TNGF=T/|S21|^2 at the very beginning of the design. The particular amplifier presented as the design example operates over 800-5200 MHz to target GSM, UMTS, Wi-Fi and WiMAX applications. An SRFT (Simplified Real Frequency Technique based design example supported by simulations in MWO (MicroWave Office from AWR Corporation is given using a 1400mW pHEMT transistor, TGF2021-01 from TriQuint Semiconductor.

  19. Transport Characteristics of Mesoscopic Radio-Frequency Single Electron Transistor

    International Nuclear Information System (INIS)

    Phillips, A. H.; Kirah, K.; Aly, N. A. I.; El-Sayes, H. E.

    2008-01-01

    The transport property of a quantum dot under the influence of external time-dependent field is investigated. The mesoscopic device is modelled as semiconductor quantum dot coupled weakly to superconducting leads via asymmetric double tunnel barriers of different heights. An expression for the current is deduced by using the Landauer–Buttiker formula, taking into consideration of both the Coulomb blockade effect and the magnetic field. It is found that the periodic oscillation of the current with the magnetic field is controlled by the ratio of the frequency of the applied ac-field to the electron cyclotron frequency. Our results show that the present device operates as a radio-frequency single electron transistor

  20. Broadening microwave absorption via a multi-domain structure

    Directory of Open Access Journals (Sweden)

    Zhengwang Liu

    2017-04-01

    Full Text Available Materials with a high saturation magnetization have gained increasing attention in the field of microwave absorption; therefore, the magnetization value depends on the magnetic configuration inside them. However, the broad-band absorption in the range of microwave frequency (2-18 GHz is a great challenge. Herein, the three-dimensional (3D Fe/C hollow microspheres are constructed by iron nanocrystals permeating inside carbon matrix with a saturation magnetization of 340 emu/g, which is 1.55 times as that of bulk Fe, unexpectedly. Electron tomography, electron holography, and Lorentz transmission electron microscopy imaging provide the powerful testimony about Fe/C interpenetration and multi-domain state constructed by vortex and stripe domains. Benefiting from the unique chemical and magnetic microstructures, the microwave minimum absorption is as strong as −55 dB and the bandwidth (<−10 dB spans 12.5 GHz ranging from 5.5 to 18 GHz. Morphology and distribution of magnetic nano-domains can be facilely regulated by a controllable reduction sintering under H2/Ar gas and an optimized temperature over 450–850 °C. The findings might shed new light on the synthesis strategies of the materials with the broad-band frequency and understanding the association between multi-domain coupling and microwave absorption performance.

  1. Realization of Miniaturized Multi-/Wideband Microwave Front-Ends

    Science.gov (United States)

    Al Shamaileh, Khair A.

    The ever-growing demand toward designing microwave front-end components with enhanced access to the radio spectrum (e.g., multi-/wideband functionality) and improved physical features (e.g., miniaturized circuitry, ease and cost of fabrication) is becoming more paramount than ever before. This dissertation proposes new design methodologies, simulations, and experimental validations of passive front-ends (i.e., antennas, couplers, dividers) at microwave frequencies. The presented design concepts optimize both electrical and physical characteristics without degrading the intended performance. The developed designs are essential to the upcoming wireless technologies. The first proposed component is a compact ultra-wideband (UWB) Wilkinson power divider (WPD). The design procedure is accomplished by replacing the uniform transmission lines in each arm of the conventional single-frequency divider with impedance-varying profiles governed by a truncated Fourier series. While such non-uniform transmission lines (NTLs) are obtained through the even-mode analysis, three isolation resistors are optimized in the odd-mode circuit to achieve proper isolation and output ports matching over the frequency range of interest. The proposed design methodology is systematic, and results in single-layered and compact structures. For verification purposes, an equal split WPD is designed, simulated, and measured. The obtained results show that the input and output ports matching as well as the isolation between the output ports are below --10 dB; whereas the transmission parameters vary between --3.2 dB and --5 dB across the 3.1--10.6 GHz band. The designed divider is expected to find applications in UWB antenna diversity, multiple-input-multiple-output (MIMO) schemes, and antenna arrays feeding networks. The second proposed component is a wideband multi-way Bagley power divider (BPD). Wideband functionality is achieved by replacing the single-frequency matching uniform microstrip lines in

  2. Single-Session CT-Guided Percutaneous Microwave Ablation of Bilateral Adrenal Gland Hyperplasia Due to Ectopic ACTH Syndrome

    International Nuclear Information System (INIS)

    Sarma, Asha; Shyn, Paul B.; Vivian, Mark A.; Ng, Ju-Mei; Tuncali, Kemal; Lorch, Jorchen H.; Zaheer, Sarah N.; Gordon, Michael S.; Silverman, Stuart G.

    2015-01-01

    Bilateral adrenalectomy is currently the only available treatment for adrenocorticotropic hormone (ACTH)-dependent Cushing’s syndrome (ectopic ACTH syndrome) that is refractory to pharmacologic therapy. We describe two patients with refractory ectopic ACTH syndrome who were treated with CT-guided percutaneous microwave ablation of both hyperplastic adrenal glands in a single session: One was not a surgical candidate, and the other had undergone unsuccessful surgery. Following the procedure, both patients achieved substantial decreases in serum cortisol, symptomatic improvement, and decreased anti-hypertensive medication requirements

  3. Single-Session CT-Guided Percutaneous Microwave Ablation of Bilateral Adrenal Gland Hyperplasia Due to Ectopic ACTH Syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Sarma, Asha, E-mail: ashasarma@gmail.com; Shyn, Paul B., E-mail: pshyn@partners.org [Brigham and Women’s Hospital, Department of Radiology (United States); Vivian, Mark A. [University of Manitoba, Department of Radiology (Canada); Ng, Ju-Mei [Brigham and Women’s Hospital, Department of Anesthesiology (United States); Tuncali, Kemal [Brigham and Women’s Hospital, Department of Radiology (United States); Lorch, Jorchen H. [Dana Farber Cancer Institute, Department of Medicine (United States); Zaheer, Sarah N.; Gordon, Michael S. [Brigham and Women’s Hospital, Department of Endocrinology (United States); Silverman, Stuart G. [Brigham and Women’s Hospital, Department of Radiology (United States)

    2015-10-15

    Bilateral adrenalectomy is currently the only available treatment for adrenocorticotropic hormone (ACTH)-dependent Cushing’s syndrome (ectopic ACTH syndrome) that is refractory to pharmacologic therapy. We describe two patients with refractory ectopic ACTH syndrome who were treated with CT-guided percutaneous microwave ablation of both hyperplastic adrenal glands in a single session: One was not a surgical candidate, and the other had undergone unsuccessful surgery. Following the procedure, both patients achieved substantial decreases in serum cortisol, symptomatic improvement, and decreased anti-hypertensive medication requirements.

  4. 200-W single frequency laser based on short active double clad tapered fiber

    Science.gov (United States)

    Pierre, Christophe; Guiraud, Germain; Yehouessi, Jean-Paul; Santarelli, Giorgio; Boullet, Johan; Traynor, Nicholas; Vincont, Cyril

    2018-02-01

    High power single frequency lasers are very attractive for a wide range of applications such as nonlinear conversion, gravitational wave sensing or atom trapping. Power scaling in single frequency regime is a challenging domain of research. In fact, nonlinear effect as stimulated Brillouin scattering (SBS) is the primary power limitation in single frequency amplifiers. To mitigate SBS, different well-known techniques has been improved. These techniques allow generation of several hundred of watts [1]. Large mode area (LMA) fibers, transverse acoustically tailored fibers [2], coherent beam combining and also tapered fiber [3] seem to be serious candidates to continue the power scaling. We have demonstrated the generation of stable 200W output power with nearly diffraction limited output, and narrow linewidth (Δν<30kHz) by using a tapered Yb-doped fiber which allow an adiabatic transition from a small purely single mode input to a large core output.

  5. Design of a New ENG Metamaterial for S-Band Microwave Applications

    Directory of Open Access Journals (Sweden)

    ISLAM Sikder Sunbeam

    2014-10-01

    Full Text Available In this paper we propose a new metamaterial unit cell structure on FR-4 substrate material that shows resonance in the microwave S-Band frequency range and also shows negative permittivity at that frequency. The material shows better performances with two resonances and Double Negative characteristics if Rogers RT 6010 substrate material is used. In this design two separate split ring resonators is used. We have used the CST Microwave Studio simulation software to get the reflection and transmission parameters for this unit cell.

  6. Microwave Triggered Laser Ionization of Air

    Science.gov (United States)

    Vadiee, Ehsan; Prasad, Sarita; Jerald Buchenauer, C.; Schamiloglu, Edl

    2012-10-01

    The goal of this work is to study the evolution and dynamics of plasma expansion when a high power microwave (HPM) pulse is overlapped in time and space on a very small, localized region of plasma formed by a high energy laser pulse. The pulsed Nd:YAG laser (8 ns, 600mJ, repetition rate 10 Hz) is focused to generate plasma filaments in air with electron density of 10^17/cm^3. When irradiated with a high power microwave pulse these electrons would gain enough kinetic energy and further escalate avalanche ionization of air due to elastic electron-neutral collisions thereby causing an increased volumetric discharge region. An X-band relativistic backward wave oscillator(RBWO) at the Pulsed Power,Beams and Microwaves laboratory at UNM is constructed as the microwave source. The RBWO produces a microwave pulse of maximum power 400 MW, frequency of 10.1 GHz, and energy of 6.8 Joules. Special care is being given to synchronize the RBWO and the pulsed laser system in order to achieve a high degree of spatial and temporal overlap. A photodiode and a microwave waveguide detector will be used to ensure the overlap. Also, a new shadowgraph technique with a nanosecond time resolution will be used to detect changes in the shock wave fronts when the HPM signal overlaps the laser pulse in time and space.

  7. Consideration on the Mechanism of Microwave Emission Due to Rock Fracture

    Science.gov (United States)

    Takano, Tadashi; Sugita, Seiji; Yoshida, Shingo; Maeda, Takashi

    2010-05-01

    Microwave emission due to rock fracture was found at 300 MHz, 2 GHz, and 22 GHz, and its power was calibrated in laboratory for the first time in the world. The observed waveform is impulsive, and contains correspondent frequency component inside the envelope at each frequency band. At such high frequencies, the electro-magnetic signal power can be calibrated as a radiating wave with high accuracy. Accordingly, it was verified that a substantial power is emitted. The microwave emission phenomena were also observed on occasions of hypervelocity impact, and esteemed as phenomena generally associated with material destruction. Earthquakes and volcanic activities are association with rock fractures so that the microwave is expected to be emitted. Actually, the e emission was confirmed by the data analysis of the brightness temperature obtained by a remote sensing satellite, which flew over great earthquakes of Wuenchan and Sumatra, and great volcanic eruptions of Reventador and Chanten. It is important to show the microwave emission during rock fracture in natural phenomena. Therefore, the field test to detect the microwave due to the collapse of a crater cliff was planned and persecuted at the volcano of Miyake-jima about 100 km south of Tokyo. Volcanic activity may be more convenient than an earthquake because of the known location and time. As a result, they observed the microwave emission which was strongly correlated with the cliff collapses. Despite of the above-mentioned phenomenological fruits, the reason of the microwave emission is not fixed yet. We have investigated the mechanism of the emission in consideration of the obtained data in rock fracture experiments so far and the study results on material destruction by hypervelocity impact. This paper presents the proposal of the hypothesis and resultant discussions. The microwave sensors may be useful to monitor natural hazards such as an earthquake or a volcanic eruption, because the microwave due to rock

  8. An adjustable multi-scale single beam acoustic tweezers based on ultrahigh frequency ultrasonic transducer.

    Science.gov (United States)

    Chen, Xiaoyang; Lam, Kwok Ho; Chen, Ruimin; Chen, Zeyu; Yu, Ping; Chen, Zhongping; Shung, K Kirk; Zhou, Qifa

    2017-11-01

    This paper reports the fabrication, characterization, and microparticle manipulation capability of an adjustable multi-scale single beam acoustic tweezers (SBAT) that is capable of flexibly changing the size of "tweezers" like ordinary metal tweezers with a single-element ultrahigh frequency (UHF) ultrasonic transducer. The measured resonant frequency of the developed transducer at 526 MHz is the highest frequency of piezoelectric single crystal based ultrasonic transducers ever reported. This focused UHF ultrasonic transducer exhibits a wide bandwidth (95.5% at -10 dB) due to high attenuation of high-frequency ultrasound wave, which allows the SBAT effectively excite with a wide range of excitation frequency from 150 to 400 MHz by using the "piezoelectric actuator" model. Through controlling the excitation frequency, the wavelength of ultrasound emitted from the SBAT can be changed to selectively manipulate a single microparticle of different sizes (3-100 μm) by using only one transducer. This concept of flexibly changing "tweezers" size is firstly introduced into the study of SBAT. At the same time, it was found that this incident ultrasound wavelength play an important role in lateral trapping and manipulation for microparticle of different sizes. Biotechnol. Bioeng. 2017;114: 2637-2647. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Multi-band microwave photonic satellite repeater scheme employing intensity Mach-Zehnder modulators

    Institute of Scientific and Technical Information of China (English)

    Yin Jie; Dong Tao; Zhang Bin; Hao Yan; Cao Guixing; Cheng Zijing; Xu Kun; Zhou Yue; Dai Jian

    2017-01-01

    To solve the satellite repeater's flexible and wideband frequency conversion problem,we propose a novel microwave photonic repeater system,which can convert the upload signal's carrier to six different frequencies.The scheme employs one 20 GHz bandwidth dual-drive Mach-Zehnder modulator (MZM) and two 10 GHz bandwidth MZMs.The basic principle of this scheme is filtering out two optical sidebands after the optical carrier suppression (OCS) modulation and combining two sidebands modulated by the input radio frequency (RF) signal.This structure can realize simultaneous multi-band frequency conversion with only one frequency-fixed microwave source and prevent generating harmful interference sidebands by using two corresponding optical filters after optical modulation.In the simulation,one C-band signal of 6 GHz carrier can be successfully converted to 12 GHz (Ku-band),28 GHz,34 GHz,40 GHz,46 GHz (Ka-band) and 52 GHz (V-band),which can be an attractive method to realize multi-band microwave photonic satellite repeater.Alternatively,the scheme can be configured to generate multi-band local oscillators (LOs) for widely satellite onboard clock distribution when the input RF signal is replaced by the internal clock source.

  10. A Dual-Mode Microwave Applicator for Liver Tumor Thermotherapy

    Science.gov (United States)

    Reimann, Carolin; Schüßler, Martin; Jakoby, Rolf; Bazrafshan, Babak; Hübner, Frank; Vogl, Thomas

    2018-03-01

    The concept of a novel dual-mode microwave applicator for diagnosis and thermal ablation treatment of tumorous tissue is presented in this paper. This approach is realized by integrating a planar resonator array to, firstly, detect abnormalities by a relative dielectric analysis, and secondly, perform a highly localized thermal ablation. A further essential advantage is addressed by designing the applicator to be MRI compatible to provide a multimodal imaging procedure. Investigations for an appropriate frequency range lead to the use of much higher operating frequencies between 5 GHz and 10 GHz, providing a significantly lower power consumption for microwave ablation of only 20 W compared to commercial available applicators.

  11. High-frequency behavior of amorphous microwires and its applications

    International Nuclear Information System (INIS)

    Marin, P.; Cortina, D.; Hernando, A.

    2005-01-01

    A magnetic microwire is a continuous filament of total diameter less than 100 μm consisting of an inner metallic magnetic nuclei covered by a glassy outer shell, usually obtained by Taylor's technique, with interesting magnetic properties connected with its high axial magnetic anisotropy. Magnetic sensors based on microwires used, as operating principle, the strong connection between the composition and the uniaxial anisotropy through a magnetostriction constant such as the large Barkhausen effect, Mateucci effect and giant magneto-impedance effect. The study of the microwave properties is also very promising technologically. In the microwave region (approaching GHz range), the ferromagnetic resonance (FMR) occurs and it is connected with the spin precession of the magnetisation vector due to the effect of the high-frequency electromagnetic field applied such that the magnetic component is perpendicular to the magnetisation vector. The natural ferromagnetic resonance (NFMR) has been also observed. The frequency depends upon the value of magnetic anisotropy and it is characterised by the single well-distinguished line in the 2-10 GHz range. Tags detector based on the microwires FMR and a new kind of electromagnetic radiation absorbers based on the microwires NFMR have been developed

  12. Enhanced microwave absorption properties in cobalt–zinc ferrite based nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Poorbafrani, A., E-mail: a.poorbafrani@gmail.com; Kiani, E.

    2016-10-15

    In an attempt to find a solution to the problem of the traditional spinel ferrite used as the microwave absorber, the Co{sub 0.6}Zn{sub 0.4}Fe{sub 2}O{sub 4}–Paraffin nanocomposites were investigated. Cobalt–zinc ferrite powders, synthesized through PVA sol–gel method, were combined with differing concentrations of Paraffin wax. The nanocomposite samples were characterized employing various experimental techniques including X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Alternating Gradient Force Magnetometer (AGFM), and Vector Network Analyzer (VNA). The saturation magnetization and coercivity were enhanced utilizing appropriate stoichiometry, coordinate agent, and sintering temperature required for the preparation of cobalt–zinc ferrite. The complex permittivity and permeability spectra, and Reflection Loss (RL) of Co{sub 0.6}Zn{sub 0.4}Fe{sub 2}O{sub 4}–Paraffin nanocomposites were measured in the frequency range of 1–18 GHz. The microwave absorption properties of nanocomposites indicated that the absorbing composite containing 20 wt% of paraffin manifests the strongest microwave attenuation ability. The composite exhibited the reflection loss less than –10 dB in the whole C-band and 30% of the X-band frequencies. - Highlights: • We enhanced the magnetic properties of cobalt–zinc Ferrite nanocomposites. • The samples showed absorption in the whole C-band and 30% of the X-band frequencies. • We tried to solve the problem of the spinel ferrite utilized as efficient absorber. • We enhanced the microwave reflection loss over extended frequency ranges.

  13. Classification of sea ice types with single-band (33.6 GHz) airborne passive microwave imagery

    Science.gov (United States)

    Eppler, Duane T.; Farmer, L. Dennis; Lohanick, Alan W.; Hoover, Mervyn

    1986-09-01

    During March 1983 extensive high-quality airborne passive Ka band (33.6 GHz) microwave imagery and coincident high-resolution aerial photography were obtained of ice along a 378-km flight line in the Beaufort Sea. Analysis of these data suggests that four classes of winter surfaces can be distinguished solely on the basis of 33.6-GHz brightness temperature: open water, frazil, old ice, and young/first-year ice. New ice (excluding frazil) and nilas display brightness temperatures that overlap the range of temperatures characteristic of old ice and, to a lesser extent, young/first-year ice. Scenes in which a new ice or nilas are present in appreciable amounts are subject to substantial errors in classification if static measures of Ka band radiometric brightness temperature alone are considered. Textural characteristics of nilas and new ice, however, differ significantly from textural features characteristic of other ice types and probably can be used with brightness temperature data to classify ice type in high-resolution single-band microwave images. In any case, open water is radiometrically the coldest surface observed in any scene. Lack of overlap between brightness temperatures characteristic of other surfaces indicates that estimates of the areal extent of open water based on only 33.6-GHz brightness temperatures are accurate.

  14. The removal of concrete layers from biological shields by microwaves

    International Nuclear Information System (INIS)

    Hills, D.L.

    1989-01-01

    Concrete blocks reinforced with steel bars have been subjected to microwave attack at a frequency of 896 MHz at power levels up to 25 kW. The surface concrete has been explosively removed to the depth of the reinforcement, 10 cm, at a rate of about 2 litres per kWh. Heating was localized around the point of attack, with temperatures up to 300 0 C at the fractured face being attained. A simple mathematical model of the propagation and absorption of micro-waves was used to estimate the temperature rise of concrete at microwave frequencies of 896 wand 2450 MHz, at different power levels with and without the presence of reinforcing bars. This demonstrated that reinforcement is expected to significantly increase the temperature rise in the concrete between the irradiated surface and the reinforcement, and that near-surface heating should be more rapid at the higher frequency. There was reasonable agreement between predicted and observed temperature at the higher power levels. Further desk and laboratory studies are proposed before proceeding to a fullscale practical demolition machine and the requirements for a prototype remotely-operated demonstration system have been identified. This consists of a static generator of high power (at least 50 kW) transmitting microwaves via a steerable waveguide to a remote applicator mounted on a simple three-axis manipulator capable of traversing realistically large concrete test panels

  15. Single bunch fast longitudinal instability

    International Nuclear Information System (INIS)

    Wang, J.M.; Pellegrini, C.

    1979-01-01

    Single bunch longitudinal instability producing an increase of the bunch area have been observed in proton synchrotron and storage rings. Signals at microwave frequencies are observed during the bunch blow-up and because of this the effect has been called the microwave instability. A similar increase in bunch area is observed also in electron storage rings, where it is usually referred to as the bunch lengthening effect. This paper is an attempt to obtain a more general theory of this effect. Here we describe the model used and the method of calculation, together with some general results. More detailed results will be given in another paper. The main result is the derivation of a condition for the existence of a fast longitudinal bunch blow-up. This condition is a generalized threshold formula, showing explicitly the dependence on the bunch energy spread and length. This condition is qualitatively in agreement with Boussard's suggestion

  16. Formation of silicides in a cavity applicator microwave system

    International Nuclear Information System (INIS)

    Thompson, D.C.; Kim, H.C.; Alford, T.L.; Mayer, J.W.

    2003-01-01

    Metal silicides of nickel and cobalt are formed in a cavity applicator microwave system with a magnetron power of 1200 W and a frequency of 2.45 GHz. X-ray diffraction, Rutherford backscattering spectrometry, and four-point-probe measurements are used to identify the silicide phase present and layer thicknesses. Additional processing confirmed that the products attained from heating by microwaves do not differ appreciably from those attained in heating by thermal processes. Materials properties are used to explain microwave power absorption and demonstrate how to tailor a robust process in which thin film reactions can be attained and specific products isolated

  17. Tunable Single Frequency 1.55 Micron Fiber Laser, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposal, we propose to demonstrate and build a widely tunable, narrow linewidth, single frequency fiber laser by developing an innovative Er/Yb-co-doped...

  18. FINGERPRINTS OF GALACTIC LOOP I ON THE COSMIC MICROWAVE BACKGROUND

    International Nuclear Information System (INIS)

    Liu, Hao; Mertsch, Philipp; Sarkar, Subir

    2014-01-01

    We investigate possible imprints of galactic foreground structures such as the ''radio loops'' in the derived maps of the cosmic microwave background. Surprisingly, there is evidence for these not only at radio frequencies through their synchrotron radiation, but also at microwave frequencies where emission by dust dominates. This suggests the mechanism is magnetic dipole radiation from dust grains enriched by metallic iron or ferrimagnetic molecules. This new foreground we have identified is present at high galactic latitudes, and potentially dominates over the expected B-mode polarization signal due to primordial gravitational waves from inflation

  19. Comparison of carrot (Daucus carota drying in microwave and in vacuum microwave

    Directory of Open Access Journals (Sweden)

    R. Béttega

    2014-06-01

    Full Text Available Drying is a single operation employed to prolong the life of a large quantity of vegetables. Carrot (Daucus carota drying has been the subject of many studies. This plant has been highlighted in the human diet for having high nutritional value, mainly due to the high content of β-carotene. In this work, carrot drying behavior was studied in a regular microwave dryer and a vacuum microwave dryer. A vacuum of 450 mmHg was applied for drying of carrot in different geometrical shapes (cubes, discs and sticks. The samples were dried at power ratings of 1.0 W/g, 1.5 W/g and 2.0 W/g for both methods of drying. The evolution of physical properties such as density, volume and porosity was monitored and related to the moisture content of the sample and to the method of drying and power rating used. The geometric shape of the sample influenced the drying kinetics and it was verified that the cubic form was responsible for a slower drying. The application of vacuum showed no major changes in the drying kinetics in microwave but influenced the physical properties of the material. The influence of power ratings on the content of β-carotene was also evaluated and discussed. The main difference observed was the lower shrinkage of the samples dried in the vacuum microwave compared to those dried only in microwave.

  20. Microplasmas ignited and sustained by microwaves

    Science.gov (United States)

    Hopwood, Jeffrey; Hoskinson, Alan R.; Gregório, José

    2014-12-01

    The challenges and benefits of microwave-induced microdischarges are reviewed. Transmission lines, resonators and surface wave launchers may be used for coupling microwave power to very small plasmas. Fortunately, microplasmas are typically much smaller than the wavelength of microwaves, and the electromagnetic problem may be treated electrostatically within the plasma. It is possible to trap electrons within small discharge gaps if the amplitude of electron oscillation is smaller than the plasma size. Typically occurring above 0.3 GHz, this condition results in lower breakdown fields than are required by direct current or radio frequency systems. Trapping of electrons also decreases the electrode potential to only tens of volts and makes the plasma density invariant in time. The steady-state microplasma produces electron densities of up to 1015 cm-3 in argon but the electrons are not in equilibrium with the low gas temperatures (500-1000 K). Microwave discharges are compared with other forms of microplasma and guidelines for device selection are recommended. Scale-up of microplasmas using array concepts are presented followed by some exciting new applications.

  1. Extended Special Sensor Microwave Imager (SSM/I) Temperature Data Record (TDR) in netCDF

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Special Sensor Microwave Imager (SSM/I) is a seven-channel linearly polarized passive microwave radiometer that operates at frequencies of 19.36 (vertically and...

  2. Extended Special Sensor Microwave Imager (SSM/I) Sensor Data Record (SDR) in netCDF

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Special Sensor Microwave Imager (SSM/I) is a seven-channel linearly polarized passive microwave radiometer that operates at frequencies of 19.36 (vertically and...

  3. Handbook on dielectric and thermal properties of microwaveable materials

    CERN Document Server

    Komarov, Vyacheslav V

    2012-01-01

    The application of microwave energy for thermal processing of different materials and substances is a rapidly growing trend in modern science and engineering. In fact, optimal design work involving microwaves is impossible without solid knowledge of the properties of these materials. Here s a practical reference that collects essential data on the dielectric and thermal properties of microwaveable materials, saving you countless hours on projects in a wide range of areas, including microwave design and heating, applied electrodynamics, food science, and medical technology. This unique book provides hard-to-find information on complex dielectric permittivity of media at industrial, scientific, and medical frequencies (430 MHz, 915MHz, 2.45GHz, 5.8 GHz, and 24.125GHz). Written by a leading expert in the field, this authoritative book does an exceptional job at presenting critical data on various materials and explaining what their key characteristics are concerning microwaves.

  4. Experimental study of microwave-induced thermoacoustic imaging

    Science.gov (United States)

    Jacobs, Ryan T.

    Microwave-Induced Thermoacoustic Imaging (TAI) is a noninvasive hybrid modality which improves contrast by using thermoelastic wave generation induced by microwave absorption. Ultrasonography is widely used in medical practice as a low-cost alternative and supplement to magnetic resonance imaging (MRI). Although ultrasonography has relatively high image resolution (depending on the ultrasonic wavelength at diagnostic frequencies), it suffers from low image contrast of soft tissues. In this work samples are irradiated with sub-microsecond electromagnetic pulses inducing acoustic waves in the sample that are then detected with an unfocused transducer. The advantage of this hybrid modality is the ability to take advantage of the microwave absorption coefficients which provide high contrast in tissue samples. This in combination with the superior spatial resolution of ultrasound waves is important to providing a low-cost alternative to MRI and early breast cancer detection methods. This work describes the implementation of a thermoacoustic experiment using a 5 kW peak power microwave source.

  5. Influence of 2. 45 GHz microwave radiation on enzyme activity

    Energy Technology Data Exchange (ETDEWEB)

    Galvin, M J; Parks, D L; McRee, D I

    1981-05-01

    The in vitro activity of acetylcholinesterase and creatine phosphokinase was determined during in vitro exposure to 2.45 GHz microwave radiation. The enzyme activities were examined during exposure to microwave radiation at specific absorption rates (SAR) of 1, 10, 50, and 100 mW/g. These specific absorption rates had no effect on the activity of either enzyme when the temperature of the control and exposed samples were similar. These data demonstrate that the activity of these two enzymes is not affected by microwave radiation at the SARs and frequency employed in this study.

  6. An RFI Detection Algorithm for Microwave Radiometers Using Sparse Component Analysis

    Science.gov (United States)

    Mohammed-Tano, Priscilla N.; Korde-Patel, Asmita; Gholian, Armen; Piepmeier, Jeffrey R.; Schoenwald, Adam; Bradley, Damon

    2017-01-01

    Radio Frequency Interference (RFI) is a threat to passive microwave measurements and if undetected, can corrupt science retrievals. The sparse component analysis (SCA) for blind source separation has been investigated to detect RFI in microwave radiometer data. Various techniques using SCA have been simulated to determine detection performance with continuous wave (CW) RFI.

  7. Improvement of Frequency Locking Algorithm for Atomic Frequency Standards

    Science.gov (United States)

    Park, Young-Ho; Kang, Hoonsoo; Heyong Lee, Soo; Eon Park, Sang; Lee, Jong Koo; Lee, Ho Seong; Kwon, Taeg Yong

    2010-09-01

    The authors describe a novel method of frequency locking algorithm for atomic frequency standards. The new algorithm for locking the microwave frequency to the Ramsey resonance is compared with the old one that had been employed in the cesium atomic beam frequency standards such as NIST-7 and KRISS-1. Numerical simulations for testing the performance of the algorithm show that the new method has a noise filtering performance superior to the old one by a factor of 1.2 for the flicker signal noise and 1.4 for random-walk signal noise. The new algorithm can readily be used to enhance the frequency stability for a digital servo employing the slow square wave frequency modulation.

  8. CREST-Snow Field Experiment: analysis of snowpack properties using multi-frequency microwave remote sensing data

    Directory of Open Access Journals (Sweden)

    T. Y. Lakhankar

    2013-02-01

    Full Text Available The CREST-Snow Analysis and Field Experiment (CREST-SAFE was carried out during January–March 2011 at the research site of the National Weather Service office, Caribou, ME, USA. In this experiment dual-polarized microwave (37 and 89 GHz observations were accompanied by detailed synchronous observations of meteorology and snowpack physical properties. The objective of this long-term field experiment was to improve understanding of the effect of changing snow characteristics (grain size, density, temperature under various meteorological conditions on the microwave emission of snow and hence to improve retrievals of snow cover properties from satellite observations. In this paper we present an overview of the field experiment and comparative preliminary analysis of the continuous microwave and snowpack observations and simulations. The observations revealed a large difference between the brightness temperature of fresh and aged snowpack even when the snow depth was the same. This is indicative of a substantial impact of evolution of snowpack properties such as snow grain size, density and wetness on microwave observations. In the early spring we frequently observed a large diurnal variation in the 37 and 89 GHz brightness temperature with small depolarization corresponding to daytime snowmelt and nighttime refreeze events. SNTHERM (SNow THERmal Model and the HUT (Helsinki University of Technology snow emission model were used to simulate snowpack properties and microwave brightness temperatures, respectively. Simulated snow depth and snowpack temperature using SNTHERM were compared to in situ observations. Similarly, simulated microwave brightness temperatures using the HUT model were compared with the observed brightness temperatures under different snow conditions to identify different states of the snowpack that developed during the winter season.

  9. Comparison of skin sensory thresholds using pre-programmed or single-frequency transcutaneous electrical nerve stimulation.

    Science.gov (United States)

    Kang, Jong Ho

    2015-12-01

    [Purpose] The purpose of the present study was to compare the sensory thresholds of healthy subjects using pre-programmed or single-frequency transcutaneous electrical nerve stimulation. [Subjects] Ninety healthy adult subjects were randomly assigned to pre-programmed or single-frequency stimulation groups, each consisting of 45 participants. [Methods] Sensory thresholds were measured in the participants' forearms using von Frey filaments before and after pre-programmed or single-frequency transcutaneous electrical nerve stimulation, and the result in values were analyzed. [Results] Significant increases in sensory threshold after stimulation were observed in both groups. However, there were no significant differences between the two groups in sensory thresholds after stimulation or in the magnitude of threshold increases following stimulation. [Conclusion] Our results show that there are no differences between sensory threshold increases induced by pre-programmed and single-frequency transcutaneous electrical nerve stimulation.

  10. Preparation and investigation of structural, magnetic and microwave absorption properties of cerium doped barium hexaferrite

    Directory of Open Access Journals (Sweden)

    P Kameli

    2015-01-01

    Full Text Available In this study the structure, magnetic and microwave absorption properties of cerium (Ce doped barium hexaferrite with general formulae BaCexFe12-xO19 (x=0.0, 0.05, 0.1, 0.15, 0.2 have been investigated. These samples have been prepared by sol- gel method. Influence of replacing Fe+3 ion by rare- earth Ce+3 ion on the structural, magnetic and microwave absorption properties have been investigated by X- ray diffraction (XRD, Fourier transform infrared (FT-IR, Vibrating sample magnetometer (VSM and vector network analyzer (VNA. X-ray diffraction analysis indicated that the samples are of single phase with space group p63/mmc. The magnetic properties of samples indicated that with the Ce doping the saturation magnetization show no regular behavior. Moreover, coercivity (Hc first decreased and reached to the minimum value for x=0.1 sample and then increased with Ce content increasing. Also, measurement of electromagnetic wave absorption in X and Ku frequency bands indicated that the maximum of reflection loss obtained for x=0.15 sample. Moreover, result indicated that absorption peak shifted toward a lower frequency when thickness was increased.

  11. Microwave Technologies as Part of an Integrated Weed Management Strategy: A Review

    Directory of Open Access Journals (Sweden)

    Graham Brodie

    2012-01-01

    Full Text Available Interest in controlling weed plants using radio frequency or microwave energy has been growing in recent years because of the growing concerns about herbicide resistance and chemical residues in the environment. This paper reviews the prospects of using microwave energy to manage weeds. Microwave energy effectively kills weed plants and their seeds; however, most studies have focused on applying the microwave energy over a sizable area, which requires about ten times the energy that is embodied in conventional chemical treatments to achieve effective weed control. A closer analysis of the microwave heating phenomenon suggests that thermal runaway can reduce microwave weed treatment time by at least one order of magnitude. If thermal runaway can be induced in weed plants, the energy costs associated with microwave weed management would be comparable with chemical weed control.

  12. Nano-optomechanical system based on microwave frequency surface acoustic waves

    Science.gov (United States)

    Tadesse, Semere Ayalew

    Cavity optomechnics studies the interaction of cavity confined photons with mechanical motion. The emergence of sophisticated nanofabrication technology has led to experimental demonstrations of a wide range of novel optomechanical systems that exhibit strong optomechanical coupling and allow exploration of interesting physical phenomena. Many of the studies reported so far are focused on interaction of photons with localized mechanical modes. For my doctoral research, I did experimental investigations to extend this study to propagating phonons. I used surface travelling acoustic waves as the mechanical element of my optomechanical system. The optical cavities constitute an optical racetrack resonator and photonic crystal nanocavity. This dissertation discusses implementation of this surface acoustic wave based optomechanical system and experimental demonstrations of important consequences of the optomechanical coupling. The discussion focuses on three important achievements of the research. First, microwave frequency surface acoustic wave transducers were co-integrated with an optical racetrack resonator on a piezoelectric aluminum nitride film deposited on an oxidized silicon substrate. Acousto-optic modulation of the resonance modes at above 10 GHz with the acoustic wavelength significantly below the optical wavelength was achieved. The phase and modal matching conditions in this paradigm were investigated for efficient optmechanical coupling. Second, the optomechanical coupling was pushed further into the sideband resolved regime by integrating the high frequency surface acoustic wave transducers with a photonic crystal nanocavity. This device was used to demonstrate optomecahnically induced transparency and absorption, one of the interesting consequences of cavity optomechanics. Phase coherent interaction of the acoustic wave with multiple nanocavities was also explored. In a related experiment, the photonic crystal nanoscavity was placed inside an acoustic

  13. Pulsed single-photon spectrometer by frequency-to-time mapping using chirped fiber Bragg gratings.

    Science.gov (United States)

    Davis, Alex O C; Saulnier, Paul M; Karpiński, Michał; Smith, Brian J

    2017-05-29

    A fiber-integrated spectrometer for single-photon pulses outside the telecommunications wavelength range based upon frequency-to-time mapping, implemented by chromatic group delay dispersion (GDD), and precise temporally-resolved single-photon counting, is presented. A chirped fiber Bragg grating provides low-loss GDD, mapping the frequency distribution of an input pulse onto the temporal envelope of the output pulse. Time-resolved detection with fast single-photon-counting modules enables monitoring of a wavelength range from 825 nm to 835 nm with nearly uniform efficiency at 55 pm resolution (24 GHz at 830 nm). To demonstrate the versatility of this technique, spectral interference of heralded single photons and the joint spectral intensity distribution of a photon-pair source are measured. This approach to single-photon-level spectral measurements provides a route to realize applications of time-frequency quantum optics at visible and near-infrared wavelengths, where multiple spectral channels must be simultaneously monitored.

  14. Microwave absorption properties of gold nanoparticle doped polymers

    DEFF Research Database (Denmark)

    Jiang, Chenhui; Ouattara, Lassana; Ingrosso, Chiara

    2011-01-01

    This paper presents a method for characterizing microwave absorption properties of gold nanoparticle doped polymers. The method is based on on-wafer measurements at the frequencies from 0.5GHz to 20GHz. The on-wafer measurement method makes it possible to characterize electromagnetic (EM) property...... of small volume samples. The epoxy based SU8 polymer and SU8 doped with gold nanoparticles are chosen as the samples under test. Two types of microwave test devices are designed for exciting the samples through electrical coupling and magnetic coupling, respectively. Measurement results demonstrate...... that the nanocomposites absorb a certain amount of microwave energy due to gold nanoparticles. Higher nanoparticle concentration results in more significant absorption effect....

  15. Microwave absorption properties of gold nanoparticle doped polymers

    Science.gov (United States)

    Jiang, C.; Ouattara, L.; Ingrosso, C.; Curri, M. L.; Krozer, V.; Boisen, A.; Jakobsen, M. H.; Johansen, T. K.

    2011-03-01

    This paper presents a method for characterizing microwave absorption properties of gold nanoparticle doped polymers. The method is based on on-wafer measurements at the frequencies from 0.5 GHz to 20 GHz. The on-wafer measurement method makes it possible to characterize electromagnetic (EM) property of small volume samples. The epoxy based SU8 polymer and SU8 doped with gold nanoparticles are chosen as the samples under test. Two types of microwave test devices are designed for exciting the samples through electrical coupling and magnetic coupling, respectively. Measurement results demonstrate that the nanocomposites absorb a certain amount of microwave energy due to gold nanoparticles. Higher nanoparticle concentration results in more significant absorption effect.

  16. Design and thermometry of an intracavitary microwave applicator suitable for treatment of some vaginal and rectal cancers

    International Nuclear Information System (INIS)

    Li, D.J.; Luk, K.H.; Jiang, H.B.; Chou, C.K.; Hwang, G.Z.

    1984-01-01

    The construction of a modified coaxial cable as an intracavitary microwave applicator suitable for use in some vaginal and rectal cancers is presented. Thermometry is performed for microwave frequencies of 300, 400, 650, and 915 MHz. Temperature profiles in tissue phantoms were obtained with Vitek 101 temperature probes and thermography, and the data were compared with those obtained in dogs. The temperature profiles are dependent on the frequency of the microwaves and the insertion depth of the applicator. In addition, a lucite cylindrical spacer external to the applicator also altered the heating pattern. Therefore, with proper combinations of frequency, insertion depth, and spacer, the applicator can be used for heating tumors in some clinical situations. Two patients were treated with this intracavitary microwave applicator in conjunction with interstitial radiation therapy. Tolerance to such combined therapy was satisfactory in these preliminary trial treatments

  17. Induction of stress volatiles and changes in essential oil content and composition upon microwave exposure in the aromatic plant Ocimum basilicum

    Energy Technology Data Exchange (ETDEWEB)

    Lung, Ildikó [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, Cluj-Napoca 400293 (Romania); Soran, Maria-Loredana, E-mail: loredana.soran@itim-cj.ro [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, Cluj-Napoca 400293 (Romania); Opriş, Ocsana; Truşcă, Mihail Radu Cătălin [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, Cluj-Napoca 400293 (Romania); Niinemets, Ülo [Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 1 Kreutzwaldi Street, Tartu 51014 (Estonia); Copolovici, Lucian [Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 1 Kreutzwaldi Street, Tartu 51014 (Estonia); Institute of Technical and Natural Sciences Research-Development of “Aurel Vlaicu” University, 2 Elena Drăgoi Street, Arad 310330 (Romania)

    2016-11-01

    Exposure to sustained low intensity microwaves can constitute a stress for the plants, but its effects on plant secondary chemistry are poorly known. We studied the influence of GSM and WLAN-frequency microwaves on emissions of volatile organic compounds and content of essential oil in the aromatic plant Ocimum basilicum L. hypothesizing that microwave exposure leads to enhanced emissions of stress volatiles and overall greater investment in secondary compounds. Compared to the control plants, microwave irradiation led to decreased emissions of β-pinene, α-phellandrene, bornyl acetate, β-myrcene, α-caryophyllene and benzaldehyde, but increased emissions of eucalyptol, estragole, caryophyllene oxide, and α-bergamotene. The highest increase in emission, 21 times greater compared to control, was observed for caryophyllene oxide. The irradiation resulted in increases in the essential oil content, except for the content of phytol which decreased by 41% in the case of GSM-frequency, and 82% in the case of WLAN-frequency microwave irradiation. The strongest increase in response to WLAN irradiation, > 17 times greater, was observed for hexadecane and octane contents. Comparisons of volatile compositions by multivariate analyses demonstrated a clear separation of different irradiance treatments, and according to the changes in the volatile emissions, the WLAN-frequency irradiation represented a more severe stress than the GSM-frequency irradiation. Overall, these results demonstrating important modifications in the emission rates, essential oil content and composition indicate that microwave irradiation influences the quality of herbage of this economically important spice plant. - Highlights: • Microwave irradiation represents a stress for the plants. • Microwave exposure leads to enhanced emissions of stress volatiles. • O. basilicum irradiation with microwaves increases the essential oil content. • Microwave pollution can constitute a threat to the

  18. Induction of stress volatiles and changes in essential oil content and composition upon microwave exposure in the aromatic plant Ocimum basilicum

    International Nuclear Information System (INIS)

    Lung, Ildikó; Soran, Maria-Loredana; Opriş, Ocsana; Truşcă, Mihail Radu Cătălin; Niinemets, Ülo; Copolovici, Lucian

    2016-01-01

    Exposure to sustained low intensity microwaves can constitute a stress for the plants, but its effects on plant secondary chemistry are poorly known. We studied the influence of GSM and WLAN-frequency microwaves on emissions of volatile organic compounds and content of essential oil in the aromatic plant Ocimum basilicum L. hypothesizing that microwave exposure leads to enhanced emissions of stress volatiles and overall greater investment in secondary compounds. Compared to the control plants, microwave irradiation led to decreased emissions of β-pinene, α-phellandrene, bornyl acetate, β-myrcene, α-caryophyllene and benzaldehyde, but increased emissions of eucalyptol, estragole, caryophyllene oxide, and α-bergamotene. The highest increase in emission, 21 times greater compared to control, was observed for caryophyllene oxide. The irradiation resulted in increases in the essential oil content, except for the content of phytol which decreased by 41% in the case of GSM-frequency, and 82% in the case of WLAN-frequency microwave irradiation. The strongest increase in response to WLAN irradiation, > 17 times greater, was observed for hexadecane and octane contents. Comparisons of volatile compositions by multivariate analyses demonstrated a clear separation of different irradiance treatments, and according to the changes in the volatile emissions, the WLAN-frequency irradiation represented a more severe stress than the GSM-frequency irradiation. Overall, these results demonstrating important modifications in the emission rates, essential oil content and composition indicate that microwave irradiation influences the quality of herbage of this economically important spice plant. - Highlights: • Microwave irradiation represents a stress for the plants. • Microwave exposure leads to enhanced emissions of stress volatiles. • O. basilicum irradiation with microwaves increases the essential oil content. • Microwave pollution can constitute a threat to the

  19. Multiband rectenna for microwave applications

    Science.gov (United States)

    Okba, Abderrahim; Takacs, Alexandru; Aubert, Hervé; Charlot, Samuel; Calmon, Pierre-François

    2017-02-01

    This paper reports a multiband rectenna (rectifier + antenna) suitable for the electromagnetic energy harvesting of the spill-over loss of microwave antennas placed on board of geostationary satellites. Such rectenna is used for powering autonomous wireless sensors for satellite health monitoring. The topology of the rectenna is presented. The experimental results demonstrate that the proposed compact rectenna can harvest efficiently the incident electromagnetic energy at three different frequencies that are close to the resonant frequencies of the cross-dipoles implemented in the antenna array. xml:lang="fr"

  20. Ceramic-glass-metal seal by microwave heating

    Science.gov (United States)

    Meek, Thomas T.; Blake, Rodger D.

    1985-01-01

    A method for producing a ceramic-glass-metal seal by microwaving mixes a slurry of glass sealing material and coupling agent and applies same to ceramic and metal workpieces. The slurry and workpieces are then insulated and microwaved at a power, time and frequency sufficient to cause a liquid phase reaction in the slurry. The reaction of the glass sealing material forms a chemically different seal than that which would be formed by conventional heating because it is formed by diffusion rather than by wetting of the reactants.

  1. Broadband Spectroscopic Thermoacoustic Characterization of Single-Walled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Daniel R. Bauer

    2015-01-01

    Full Text Available Carbon nanotubes have attracted interest as contrast agents for biomedical imaging because they strongly absorb electromagnetic radiation in the optical and microwave regions. This study applies thermoacoustic (TA imaging and spectroscopy to measure the frequency-dependent absorption profile of single-walled carbon nanotubes (SWNT in the ranges of 2.7–3.1 GHz and 7–9 GHz using two tunable microwave sources. Between 7 and 9 GHz, the peak TA signal for solutions containing semiconducting and metallic SWNTs increased monotonically with a slope of 1.75 AU/GHz (R2=0.95 and 2.8 AU/GHz (R2=0.93, respectively, relative to a water baseline. However, after compensating for the background signal from water, it was revealed that the TA signal from metallic SWNTs increased exponentially within this frequency band. Results suggest that TA imaging and spectroscopy could be a powerful tool for quantifying the absorption properties of SWNTs and optimizing their performance as contrast agents for imaging or heat sources for thermal therapy.

  2. Breakdown simulations in a focused microwave beam within the simplified model

    International Nuclear Information System (INIS)

    Semenov, V. E.; Rakova, E. I.; Glyavin, M. Yu.; Nusinovich, G. S.

    2016-01-01

    The simplified model is proposed to simulate numerically air breakdown in a focused microwave beam. The model is 1D from the mathematical point of view, but it takes into account the spatial non-uniformity of microwave field amplitude along the beam axis. The simulations are completed for different frequencies and different focal lengths of microwave beams. The results demonstrate complicated regimes of the breakdown evolution which represents a series of repeated ionization waves. These waves start at the focal point and propagate towards incident microwave radiation. The ionization wave parameters vary during propagation. At relatively low frequencies, the propagation regime of subsequent waves can also change qualitatively. Each next ionization wave is less pronounced than the previous one, and the breakdown evolution approaches the steady state with relatively small plasma density. The ionization wave parameters are sensitive to the weak source of external ionization, but the steady state is independent on such a source. As the beam focal length decreases, the stationary plasma density increases and the onset of the steady state occurs faster.

  3. Evaluation of DNA damage using microwave dielectric absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hirayama, Makoto; Matuo, Youichrou; Izumi, Yoshinobu [Research Institute of Nuclear Engineering, University of Fukui, Fukui (Japan); Sunagawa, Takeyoshi [Fukui University of Technology, Fukui (Japan)

    2016-12-15

    Evaluation of deoxyribonucleic acid (DNA)-strand break is important to elucidate the biological effect of ionizing radiations. The conventional methods for DNA-strand break evaluation have been achieved by Agarose gel electrophoresis and others using an electrical property of DNAs. Such kinds of DNA-strand break evaluation systems can estimate DNA-strand break, according to a molecular weight of DNAs. However, the conventional method needs pre-treatment of the sample and a relatively long period for analysis. They do not have enough sensitivity to detect the strand break products in the low-dose region. The sample is water, methanol and plasmid DNA solution. The plasmid DNA pUC118 was multiplied by using Escherichia coli JM109 competent cells. The resonance frequency and Q-value were measured by means of microwave dielectric absorption spectroscopy. When a sample is located at a center of the electric field, resonance curve of the frequency that existed as a standing wave is disturbed. As a result, the perturbation effect to perform a resonance with different frequency is adopted. The resonance frequency shifted to higher frequency with an increase in a concentration of methanol as the model of the biological material, and the Q-value decreased. The absorption peak in microwave power spectrum of the double-strand break plasmid DNA shifted from the non-damaged plasmid DNA. Moreover, the sharpness of absorption peak changed resulting in change in Q-value. We confirmed that a resonance frequency shifted to higher frequency with an increase in concentration of the plasmid DNA. We developed a new technique for an evaluation of DNA damage. In this paper, we report the evaluation method of DNA damage using microwave dielectric absorption spectroscopy.

  4. Evaluation of DNA damage using microwave dielectric absorption spectroscopy

    International Nuclear Information System (INIS)

    Hirayama, Makoto; Matuo, Youichrou; Izumi, Yoshinobu; Sunagawa, Takeyoshi

    2016-01-01

    Evaluation of deoxyribonucleic acid (DNA)-strand break is important to elucidate the biological effect of ionizing radiations. The conventional methods for DNA-strand break evaluation have been achieved by Agarose gel electrophoresis and others using an electrical property of DNAs. Such kinds of DNA-strand break evaluation systems can estimate DNA-strand break, according to a molecular weight of DNAs. However, the conventional method needs pre-treatment of the sample and a relatively long period for analysis. They do not have enough sensitivity to detect the strand break products in the low-dose region. The sample is water, methanol and plasmid DNA solution. The plasmid DNA pUC118 was multiplied by using Escherichia coli JM109 competent cells. The resonance frequency and Q-value were measured by means of microwave dielectric absorption spectroscopy. When a sample is located at a center of the electric field, resonance curve of the frequency that existed as a standing wave is disturbed. As a result, the perturbation effect to perform a resonance with different frequency is adopted. The resonance frequency shifted to higher frequency with an increase in a concentration of methanol as the model of the biological material, and the Q-value decreased. The absorption peak in microwave power spectrum of the double-strand break plasmid DNA shifted from the non-damaged plasmid DNA. Moreover, the sharpness of absorption peak changed resulting in change in Q-value. We confirmed that a resonance frequency shifted to higher frequency with an increase in concentration of the plasmid DNA. We developed a new technique for an evaluation of DNA damage. In this paper, we report the evaluation method of DNA damage using microwave dielectric absorption spectroscopy

  5. Large microwave tunability of GaAs-based multiferroic heterostructure for applications in monolithic microwave integrated circuits

    International Nuclear Information System (INIS)

    Chen Yajie; Gao Jinsheng; Vittoria, C; Harris, V G; Heiman, D

    2010-01-01

    Microwave magnetoelectric coupling in a ferroelectric/ferromagnetic/semiconductor multiferroic (MF) heterostructure, consisting of a Co 2 MnAl epitaxial film grown on a GaAs substrate bonded to a lead magnesium niobate-lead titanate (PMN-PT) crystal, is reported. Ferromagnetic resonance measurements were carried out at X-band under the application of electric fields. Results indicate a frequency tuning of 125 MHz for electric field strength of 8 kV cm -1 resulting in a magnetoelectric coupling coefficient of 3.4 Oe cm kV -1 . This work explores the potential of electronically controlled MF devices for use in future monolithic microwave integrated circuits.

  6. Microwave ionization and excitation of Ba Rydberg atoms

    International Nuclear Information System (INIS)

    Eichmann, U.; Dexter, J.L.; Xu, E.Y.; Gallagher, T.F.

    1989-01-01

    We have investigated ionization and excitation of the Ba 6sn s 1 S 0 and 6snd 1,3 D 2 series in strong microwave fields. The observed microwave ionization threshold fields, scaling as 0.28 n -5 , and the state mixing fields cannot be completely explained in terms of a single cycle Landau-Zener model. However, by taking into account multiphoton resonant transitions driven by many cycles of the microwave field we have been able to interpret the data. In particular multi-photon transitions have been found to be responsible for apparent resonance structures and for the unexpectedly low mixing fields. Not surprisingly, doubly excited valence states introduce irregularities into both the microwave ionization and the state mixing field values. (orig.)

  7. Integrated Advanced Microwave Sounding Unit-A (AMSU-A). Engineering Test Report: Radiated Emissions and SARR, SARP, DCS Receivers, Link Frequencies EMI Sensitive Band Test Results, AMSU-A1, S/N 109

    Science.gov (United States)

    Valdez, A.

    2000-01-01

    This is the Engineering Test Report, Radiated Emissions and SARR, SARP, DCS Receivers, Link Frequencies EMI Sensitive Band Test Results, AMSU-A1, S/N 109, for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A).

  8. Cosmic microwave background science at commercial airline altitudes

    Science.gov (United States)

    Feeney, Stephen M.; Gudmundsson, Jon E.; Peiris, Hiranya V.; Verde, Licia; Errard, Josquin

    2017-07-01

    Obtaining high-sensitivity measurements of degree-scale cosmic microwave background (CMB) polarization is the most direct path to detecting primordial gravitational waves. Robustly recovering any primordial signal from the dominant foreground emission will require high-fidelity observations at multiple frequencies, with excellent control of systematics. We explore the potential for a new platform for CMB observations, the Airlander 10 hybrid air vehicle, to perform this task. We show that the Airlander 10 platform, operating at commercial airline altitudes, is well suited to mapping frequencies above 220 GHz, which are critical for cleaning CMB maps of dust emission. Optimizing the distribution of detectors across frequencies, we forecast the ability of Airlander 10 to clean foregrounds of varying complexity as a function of altitude, demonstrating its complementarity with both existing (Planck) and ongoing (C-BASS) foreground observations. This novel platform could play a key role in defining our ultimate view of the polarized microwave sky.

  9. Cryogenic microwave channelized receiver

    International Nuclear Information System (INIS)

    Rauscher, C.; Pond, J.M.; Tait, G.B.

    1996-01-01

    The channelized receiver being presented demonstrates the use of high temperature superconductor technology in a microwave system setting where superconductor, microwave-monolithic-integrated-circuit, and hybrid-integrated-circuit components are united in one package and cooled to liquid-nitrogen temperatures. The receiver consists of a superconducting X-band four-channel demultiplexer with 100-MHz-wide channels, four commercial monolithically integrated mixers, and four custom-designed hybrid-circuit detectors containing heterostructure ramp diodes. The composite receiver unit has been integrated into the payload of the second-phase NRL high temperature superconductor space experiment (HTSSE-II). Prior to payload assembly, the response characteristics of the receiver were measured as functions of frequency, temperature, and drive levels. The article describes the circuitry, discusses the key issues related to design and implementation, and summarizes the experimental results

  10. Recent advances in processing and applications of microwave ferrites

    International Nuclear Information System (INIS)

    Harris, Vincent G.; Geiler, Anton; Chen Yajie; Yoon, Soack Dae; Wu Mingzhong; Yang, Aria; Chen Zhaohui; He Peng; Parimi, Patanjali V.; Zuo Xu; Patton, Carl E.; Abe, Manasori; Acher, Olivier

    2009-01-01

    Next generation magnetic microwave devices will be planar, smaller, weigh less, and perform well beyond the present state-of-the-art. For this to become a reality advances in ferrite materials must first be realized. These advances include self-bias magnetization, tunability of the magnetic anisotropy, low microwave loss, and volumetric and weight reduction. To achieve these goals one must turn to novel materials processing methods. Here, we review recent advances in the processing of microwave ferrites. Attention is paid to the processing of ferrite films by pulsed laser deposition, liquid phase epitaxy, spin spray ferrite plating, screen printing, and compaction of quasi-single crystals. Conventional and novel applications of ferrite materials, including microwave non-reciprocal passive devices, microwave signal processing, negative index metamaterial-based electronics, and electromagnetic interference suppression are discussed.

  11. Removal of concrete layers from biological shields by microwaves

    International Nuclear Information System (INIS)

    Wace, P.F.; Harker, A.H.; Hills, D.L.

    1990-01-01

    A comprehensive literature review has been carried out, to provide information for an experimental programme and equipment design. Mathematical modelling of the microwave and power fields in a concrete block, both steel reinforced and unreinforced, subjected to a microwave attack at two frequencies, has been carried out and estimates of the likely temperature rise with time obtained. A method of launching microwaves into concrete has been established from theoretical considerations and from the findings of the literature review. Equipment for laboratory trials has been designed and assembled using an 896 MHz, 25 kW microwave generator. Reinforced concrete blocks, 0.6 m in dimension and representing the concrete in a Magnox reactor biological shield, have been attacked at different power levels and the surface removed to the depth of the reinforcing steel (100 mm). Outline proposals for the design of a remotely operated prototype microwave machine for stripping the surface of large concrete test panels have been prepared. (author)

  12. Development of a long-slot microwave plasma source

    Energy Technology Data Exchange (ETDEWEB)

    Kuwata, Y., E-mail: euo1304@mail4.doshisha.ac.jp; Kasuya, T.; Miyamoto, N.; Wada, M. [Graduate School of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321 (Japan)

    2016-02-15

    A 20 cm long 10 cm wide microwave plasma source was realized by inserting two 20 cm long 1.5 mm diameter rod antennas into the plasma. Plasma luminous distributions around the antennas were changed by magnetic field arrangement created by permanent magnets attached to the source. The distributions appeared homogeneous in one direction along the antenna when the spacing between the antenna and the source wall was 7.5 mm for the input microwave frequency of 2.45 GHz. Plasma density and temperature at a plane 20 cm downstream from the microwave shield were measured by a Langmuir probe array at 150 W microwave power input. The measured electron density and temperature varied over space from 3.0 × 10{sup 9} cm{sup −3} to 5.8 × 10{sup 9} cm{sup −3}, and from 1.1 eV to 2.1 eV, respectively.

  13. Sideband-cooling of trapped ytterbium-ions in the microwave regime

    International Nuclear Information System (INIS)

    Scharfenberger, Benedikt J.

    2012-01-01

    Trapped ions in a Paul trap are at present one of the most promising candidates for Quantum Information Processing (QIP). The technique that is used for this purpose in this experiment was introduced in 2001 by F. Mintert and Ch. Wunderlich. The core of this method is the use of atomic transitions in the radio- or microwave region, while a magnetic field gradient along the trap axis (where the ion chain is situated) lifts the degeneracy of the transition frequencies, such that the ions can be distinguished in frequency space; it also serves for the coupling of internal and external degrees of freedom of the ion chain. This method is called MAGIC (MAgnetic Gradient Induced Coupling). The performance of the measurements required that the apparatus of the experiment, which consists of laser sources, lambdameter, vacuum- and microwave system as well as imaging- and detection-units, had to be assembled and tested, which was an important prerequisite for the successful performance of the here described experiments. For the experiments it is advantageous to prepare the ions in an energetic state close to the motional ground state, which contributes to a reduction of the dephasing of the system while manipulating it with microwaves. By using the sideband-cooling technique to the sub-Doppler regime it is taken advantage of the fact, that ions in a linear trap are in good approximation situated in a harmonic oscillator potential and can therefore only populate discrete vibrational energy levels, whose frequency difference is given by the axial trap frequency ω z . If the system is excited by a microwave, which frequency is detuned from resonance to lower energies by a vibrational quantum, the ion looses one such phonon within each cooling-cycle. When this cycle is driven several times, the average phonon number and thus the temperature of the ion can be reduced efficiently and the ion can be initialized in a state close to the motional ground state. As sideband

  14. Low intensity microwave radiation induced oxidative stress, inflammatory response and DNA damage in rat brain.

    Science.gov (United States)

    Megha, Kanu; Deshmukh, Pravin Suryakantrao; Banerjee, Basu Dev; Tripathi, Ashok Kumar; Ahmed, Rafat; Abegaonkar, Mahesh Pandurang

    2015-12-01

    Over the past decade people have been constantly exposed to microwave radiation mainly from wireless communication devices used in day to day life. Therefore, the concerns over potential adverse effects of microwave radiation on human health are increasing. Until now no study has been proposed to investigate the underlying causes of genotoxic effects induced by low intensity microwave exposure. Thus, the present study was undertaken to determine the influence of low intensity microwave radiation on oxidative stress, inflammatory response and DNA damage in rat brain. The study was carried out on 24 male Fischer 344 rats, randomly divided into four groups (n=6 in each group): group I consisted of sham exposed (control) rats, group II-IV consisted of rats exposed to microwave radiation at frequencies 900, 1800 and 2450 MHz, specific absorption rates (SARs) 0.59, 0.58 and 0.66 mW/kg, respectively in gigahertz transverse electromagnetic (GTEM) cell for 60 days (2h/day, 5 days/week). Rats were sacrificed and decapitated to isolate hippocampus at the end of the exposure duration. Low intensity microwave exposure resulted in a frequency dependent significant increase in oxidative stress markers viz. malondialdehyde (MDA), protein carbonyl (PCO) and catalase (CAT) in microwave exposed groups in comparison to sham exposed group (pmicrowave exposed groups (pmicrowave exposed animal (pmicrowave exposed groups as compared to their corresponding values in sham exposed group (pmicrowave radiation induces oxidative stress, inflammatory response and DNA damage in brain by exerting a frequency dependent effect. The study also indicates that increased oxidative stress and inflammatory response might be the factors involved in DNA damage following low intensity microwave exposure. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Microwave absorbing properties of polyaniline/multi-walled carbon nanotube composites with various polyaniline contents

    International Nuclear Information System (INIS)

    Ting, T.H.; Jau, Y.N.; Yu, R.P.

    2012-01-01

    Polyaniline/multi-walled carbon nanotube (PANI/MWNT) composites were synthesized using in situ polymerization at different aniline/multi-walled carbon nanotube weight ratios (Ani/MWNT = 1/2, 1/1, 2/1 and 3/1) and introduced into an epoxy resin to act as a microwave absorber. The spectroscopic characterization of the process of formation of PANI/MWNT composites were studied using Fourier transform infrared spectroscopy, an ultraviolet-visible spectrophotometer, X-ray diffraction, scanning electron microscopy, transmission electron microscopy and electron spin resonance. The microwave absorbing properties were investigated by measuring complex permittivity, complex permeability and reflection loss in the 2-18 and 18-40 GHz microwave frequency range, using the free space method. The results showed that the addition of PANI was useful for achieving a large absorption over a wide frequency range, especially for higher frequency values.

  16. Calibrated complex impedance of CHO cells and E. coli bacteria at GHz frequencies using scanning microwave microscopy

    International Nuclear Information System (INIS)

    Tuca, Silviu-Sorin; Gramse, Georg; Kasper, Manuel; Oh, Yoo Jin; Zhu, Rong; Hinterdorfer, Peter; Badino, Giorgio; Brinciotti, Enrico; Rankl, Christian; Kienberger, Ferry

    2016-01-01

    The application of scanning microwave microscopy (SMM) to extract calibrated electrical properties of cells and bacteria in air is presented. From the S _1_1 images, after calibration, complex impedance and admittance images of Chinese hamster ovary cells and E. coli bacteria deposited on a silicon substrate have been obtained. The broadband capabilities of SMM have been used to characterize the bio-samples between 2 GHz and 20 GHz. The resulting calibrated cell and bacteria admittance at 19 GHz were Y _c_e_l_l = 185 μS + j285 μS and Y _b_a_c_t_e_r_i_a = 3 μS + j20 μS, respectively. A combined circuitry-3D finite element method EMPro model has been developed and used to investigate the frequency response of the complex impedance and admittance of the SMM setup. Based on a proposed parallel resistance–capacitance model, the equivalent conductance and parallel capacitance of the cells and bacteria were obtained from the SMM images. The influence of humidity and frequency on the cell conductance was experimentally studied. To compare the cell conductance with bulk water properties, we measured the imaginary part of the bulk water loss with a dielectric probe kit in the same frequency range resulting in a high level of agreement. (paper)

  17. Development of High Frequency Transition-Edge-Sensor Polarimeters for Next Generation Cosmic Microwave Background Experiments and Galactic Foreground Measurements

    Science.gov (United States)

    Walker, Samantha; Sierra, Carlos E.; Austermann, Jason Edward; Beall, James; Becker, Dan; Dober, Bradley; Duff, Shannon; Hilton, Gene; Hubmayr, Johannes; Van Lanen, Jeffrey L.; McMahon, Jeff; Simon, Sara M.; Ullom, Joel; Vissers, Michael R.; NIST Quantum Sensors Group

    2018-06-01

    Observations of the cosmic microwave background (CMB) provide a powerful tool for probing the earliest moments of the universe and therefore have the potential to transform our understanding of cosmology. In particular, precision measurements of its polarization can reveal the existence of gravitational waves produced during cosmic inflation. However, these observations are complicated by the presence of astrophysical foregrounds, which may be separated by using broad frequency coverage, as the spectral energy distribution between foregrounds and the CMB is distinct. For this purpose, we are developing large-bandwidth, feedhorn-coupled transition-edge-sensor (TES) arrays that couple polarized light from waveguide to superconducting microstrip by use of a symmetric, planar orthomode transducer (OMT). In this work, we describe two types of pixels, an ultra-high frequency (UHF) design, which operates from 195 GHz-315 GHz, and an extended ultra-high frequency (UHF++) design, which operates from 195 GHz-420 GHz, being developed for next generation CMB experiments that will come online in the next decade, such as CCAT-prime and the Simons Observatory. We present the designs, simulation results, fabrication, and preliminary measurements of these prototype pixels.

  18. Critical current fluctuation in a microwave-driven Josephson junction

    International Nuclear Information System (INIS)

    Dong Ning; Sun Guozhu; Wang Yiwen; Cao Junyu; Yu Yang; Chen Jian; Kang Lin; Xu Weiwei; Han Siyuan; Wu Peiheng

    2007-01-01

    Josephson junction devices are good candidates for quantum computation. A large energy splitting was observed in the spectroscopy of a superconducting Josephson junction. The presence of the critical current fluctuation near the energy splitting indicated coupling between the junction and a two-level system. Furthermore, we find that this fluctuation is microwave dependent. It only appears at certain microwave frequency. This relation suggested that the decoherence of qubits is influenced by the necessary computing operations

  19. Skin effect of microwaves and transverse pseudowaves in plasmas

    International Nuclear Information System (INIS)

    Minami, Kazuo

    1977-09-01

    Using linearized Vlasov-Maxwell equations, the skin effect of microwaves and transverse pseudowaves excited by an idealized grid antenna in plasmas are analyzed. It is shown that the latter is predominant over the former, in such a plasma that ω sub(p) v sub(t)/ωc >= 1, where ω sub(p) and ω are the plasma and microwave angular frequencies, v sub(t) and c are the electron thermal and light velocities, respectively. (auth.)

  20. A new approach to sum frequency generation of single-frequency blue light in a coupled ring cavity

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Petersen, Paul Michael

    2014-01-01

    We present a generic approach for the generation of tunable single-frequency light and demonstrate generation of more than 300 mW tunable light around 460 nm. One tapered diode laser is operated in a coupled ring cavity containing the nonlinear crystal and another tapered diode laser is sent thro...... through the nonlinear crystal in a single pass. A high conversion efficiency of more than 25 % of the single-pass laser is enabled by the high circulating power in the coupled cavity. The system is entirely self-stabilized with no need for electronic locking....

  1. Tunable complex-valued multi-tap microwave photonic filter based on single silicon-on-insulator microring resonator.

    Science.gov (United States)

    Lloret, Juan; Sancho, Juan; Pu, Minhao; Gasulla, Ivana; Yvind, Kresten; Sales, Salvador; Capmany, José

    2011-06-20

    A complex-valued multi-tap tunable microwave photonic filter based on single silicon-on-insulator microring resonator is presented. The degree of tunability of the approach involving two, three and four taps is theoretical and experimentally characterized, respectively. The constraints of exploiting the optical phase transfer function of a microring resonator aiming at implementing complex-valued multi-tap filtering schemes are also reported. The trade-off between the degree of tunability without changing the free spectral range and the number of taps is studied in-depth. Different window based scenarios are evaluated for improving the filter performance in terms of the side-lobe level.

  2. Trapped Ion Oscillation Frequencies as Sensors for Spectroscopy

    Directory of Open Access Journals (Sweden)

    Wilfried Nörtershäuser

    2010-03-01

    Full Text Available The oscillation frequencies of charged particles in a Penning trap can serve as sensors for spectroscopy when additional field components are introduced to the magnetic and electric fields used for confinement. The presence of so-called “magnetic bottles” and specific electric anharmonicities creates calculable energy-dependences of the oscillation frequencies in the radiofrequency domain which may be used to detect the absorption or emission of photons both in the microwave and optical frequency domains. The precise electronic measurement of these oscillation frequencies therefore represents an optical sensor for spectroscopy. We discuss possible applications for precision laser and microwave spectroscopy and their role in the determination of magnetic moments and excited state lifetimes. Also, the trap-assisted measurement of radiative nuclear de-excitations in the X-ray domain is discussed. This way, the different applications range over more than 12 orders of magnitude in the detectable photon energies, from below μeV in the microwave domain to beyond MeV in the X-ray domain.

  3. Package Holds Five Monolithic Microwave Integrated Circuits

    Science.gov (United States)

    Mysoor, Narayan R.; Decker, D. Richard; Olson, Hilding M.

    1996-01-01

    Packages protect and hold monolithic microwave integrated circuit (MMIC) chips while providing dc and radio-frequency (RF) electrical connections for chips undergoing development. Required to be compact, lightweight, and rugged. Designed to minimize undesired resonances, reflections, losses, and impedance mismatches.

  4. Simple-design ultra-low phase noise microwave frequency synthesizers for high-performing Cs and Rb vapor-cell atomic clocks

    Energy Technology Data Exchange (ETDEWEB)

    François, B. [FEMTO-ST, CNRS, Université de Franche-Comté, 26 chemin de l’Epitaphe, 25030 Besançon (France); INRIM, Strada delle Cacce 91, 10135 Torino (Italy); Calosso, C. E.; Micalizio, S. [INRIM, Strada delle Cacce 91, 10135 Torino (Italy); Abdel Hafiz, M.; Boudot, R. [FEMTO-ST, CNRS, Université de Franche-Comté, 26 chemin de l’Epitaphe, 25030 Besançon (France)

    2015-09-15

    We report on the development and characterization of novel 4.596 GHz and 6.834 GHz microwave frequency synthesizers devoted to be used as local oscillators in high-performance Cs and Rb vapor-cell atomic clocks. The key element of the synthesizers is a custom module that integrates a high spectral purity 100 MHz oven controlled quartz crystal oscillator frequency-multiplied to 1.6 GHz with minor excess noise. Frequency multiplication, division, and mixing stages are then implemented to generate the exact output atomic resonance frequencies. Absolute phase noise performances of the output 4.596 GHz signal are measured to be −109 and −141 dB rad{sup 2}/Hz at 100 Hz and 10 kHz Fourier frequencies, respectively. The phase noise of the 6.834 GHz signal is −105 and −138 dB rad{sup 2}/Hz at 100 Hz and 10 kHz offset frequencies, respectively. The performances of the synthesis chains contribute to the atomic clock short term fractional frequency stability at a level of 3.1 × 10{sup −14} for the Cs cell clock and 2 × 10{sup −14} for the Rb clock at 1 s averaging time. This value is comparable with the clock shot noise limit. We describe the residual phase noise measurements of key components and stages to identify the main limitations of the synthesis chains. The residual frequency stability of synthesis chains is measured to be at the 10{sup −15} level for 1 s integration time. Relevant advantages of the synthesis design, using only commercially available components, are to combine excellent phase noise performances, simple-architecture, low-cost, and to be easily customized for signal output generation at 4.596 GHz or 6.834 GHz for applications to Cs or Rb vapor-cell frequency standards.

  5. Electronic and ionic conductivity studies on microwave synthesized glasses containing transition metal ions

    Directory of Open Access Journals (Sweden)

    Basareddy Sujatha

    2017-01-01

    Full Text Available Glasses in the system xV2O5·20Li2O·(80 − x [0.6B2O3:0.4ZnO] (where 10 ≤ x ≤ 50 have been prepared by a simple microwave method. Microwave synthesis of materials offers advantages of efficient transformation of energy throughout the volume in an effectively short time. Conductivity in these glasses was controlled by the concentration of transition metal ion (TMI. The dc conductivity follows Arrhenius law and the activation energies determined by regression analysis varies with the content of V2O5 in a non-linear passion. This non-linearity is due to different conduction mechanisms operating in the investigated glasses. Impedance and electron paramagnetic resonance (EPR spectroscopic studies were performed to elucidate the nature of conduction mechanism. Cole–cole plots of the investigated glasses consist of (i single semicircle with a low frequency spur, (ii two depressed semicircles and (iii single semicircle without spur, which suggests the operation of two conduction mechanisms. EPR spectra reveal the existence of electronic conduction between aliovalent vanadium sites. Further, in highly modified (10V2O5 mol% glasses Li+ ion migration dominates.

  6. Spectrum of density turbulence measured by microwave reflectometer

    International Nuclear Information System (INIS)

    Ding Xuantong; Cao Janyong; Xu Deming; Zhang Hongying; Yang Qinwei

    1993-01-01

    The principle of measuring lower frequency density turbulence with microwave reflectometer is presented. Preliminary results from the HL-1 tokamak have been obtained and compared with the results measured by means of electrostatic probe

  7. Influence of voltage rise time on microwave generation in relativistic backward wave oscillator

    International Nuclear Information System (INIS)

    Wu, Ping; Deng, Yuqun; Sun, Jun; Teng, Yan; Shi, Yanchao; Chen, Changhua

    2015-01-01

    In relativistic backward wave oscillators (RBWOs), although the slow wave structure (SWS) and electron beam determine the main characteristics of beam-wave interaction, many other factors can also significantly affect the microwave generation process. This paper investigates the influence of voltage rise time on beam-wave interaction in RBWOs. Preliminary analysis and PIC simulations demonstrate if the voltage rise time is moderately long, the microwave frequency will gradually increase during the startup process until the voltage reaches its amplitude, which can be explained by the dispersion relation. However, if the voltage rise time is long enough, the longitudinal resonance of the finitely-long SWS will force the RBWO to work with unwanted longitudinal modes for a while and then gradually hop to the wanted longitudinal mode, and this will lead to an impure microwave frequency spectrum. Besides, a longer voltage rise time will delay the startup process and thus lead to a longer microwave saturation time. And if unwanted longitudinal modes are excited due to long voltage rise time, the microwave saturation time will be further lengthened. Therefore, the voltage rise time of accelerators adopted in high power microwave technology should not be too long in case unwanted longitudinal modes are excited

  8. RF Testing Of Microwave Integrated Circuits

    Science.gov (United States)

    Romanofsky, R. R.; Ponchak, G. E.; Shalkhauser, K. A.; Bhasin, K. B.

    1988-01-01

    Fixtures and techniques are undergoing development. Four test fixtures and two advanced techniques developed in continuing efforts to improve RF characterization of MMIC's. Finline/waveguide test fixture developed to test submodules of 30-GHz monolithic receiver. Universal commercially-manufactured coaxial test fixture modified to enable characterization of various microwave solid-state devices in frequency range of 26.5 to 40 GHz. Probe/waveguide fixture is compact, simple, and designed for non destructive testing of large number of MMIC's. Nondestructive-testing fixture includes cosine-tapered ridge, to match impedance wavequide to microstrip. Advanced technique is microwave-wafer probing. Second advanced technique is electro-optical sampling.

  9. Photoinduced spin polarization and microwave technology

    International Nuclear Information System (INIS)

    Antipov, Sergey; Poluektov, Oleg; Schoessow, Paul; Kanareykin, Alexei; Jing, Chunguang

    2013-01-01

    We report here on studies of optically pumped active microwave media based on various fullerene derivatives, with an emphasis on the use of these materials in microwave electronics. We have investigated a class of optically excited paramagnetic materials that demonstrate activity in the X-band as candidate materials. We found that a particular fullerene derivative, Phenyl-C 61 -butyric acid methyl ester (PCBM), produced the largest electron paramagnetic resonance (EPR) emission signal compared to other organic compounds that have been suggested for use as microwave active materials. We also studied the effects of concentration, temperature, solvent etc. on the activity of the material. In these experiments, EPR studies using a commercial spectrometer were followed up by measurements of an RF signal reflected from a resonator loaded with the PCBM-based material. The activity was directly demonstrated through the change in the quality factor and RF coupling between the resonator and waveguide feed. At the inception of these experiments the primary interest was the development of a microwave PASER. The PASER (particle acceleration by stimulated emission of radiation [1]) is a novel acceleration concept that is based on the direct energy transfer from an active medium to a charged particle beam. While the previous work on the PASER has emphasized operations at infrared or visible wavelengths, operating in the microwave regime has significant advantages in terms of the less stringent quality requirements placed on the electron beam provided an appropriate microwave active medium can be found. This paper is focused on our investigation of the possibility of a PASER operating in the microwave frequency regime [2] using active paramagnetic materials. While a high level of gain for PCBM was demonstrated compared to other candidate materials, dielectric losses and quenching effects were found to negatively impact its performance for PASER applications. We present results on

  10. Integrated Advanced Microwave Sounding Unit-A (AMSU-A). Engineering Test Report: Radiated Emissions and SARR, SARP, DCS Receivers, Link Frequencies EMI Sensitive Band Test Results, AMSU-A1, S/N 108 2

    Science.gov (United States)

    Valdez, A.

    2000-01-01

    This is the Engineering Test Report, Radiated Emissions and SARR, SARP, DCS Receivers, Link Frequencies EMI Sensitive Band Test Results, AMSU-A1 SIN 108, for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A).

  11. Influence of the magnetic field in the time evolution of the solar explosion radiation in X-ray and microwaves

    International Nuclear Information System (INIS)

    Costa, J.E.R.

    1983-01-01

    It has been made a theoretical development, sel-consistent with recent models for the explosive source, applied to time delays of peak emission at different microwave frequencies, and between microwaves and hard X-ray emission. A working hipothesis has been assumed with the adoption of a growing magnetic field during the solar flare explosion, and therefore contributing to a growth in microwave emission, differential in frequency, producing delays of maximum emission towards lower microwave frequencies, and delays of microwave maximum emission with respect to hard X-rays. It has been found that these delays are consistent with a growth in the magnetic field of about 14% by assuming both thermal and non-thermal models. This variation in magnetic field has been associated to movements of thermal sources downwards in the solar atmosphere, and it has been found that the estimated velocities of displacement were consistent compared to characteristic velocities of anomalous conduction fronts of thermal models. (Author) [pt

  12. Feasibility and Performance of the Microwave Thermal Rocket Launcher

    Science.gov (United States)

    Parkin, Kevin L. G.; Culick, Fred E. C.

    2004-03-01

    Beamed-energy launch concepts employing a microwave thermal thruster are feasible in principle, and microwave sources of sufficient power to launch tons into LEO already exist. Microwave thermal thrusters operate on an analogous principle to nuclear thermal thrusters, which have experimentally demonstrated specific impulses exceeding 850 seconds. Assuming such performance, simple application of the rocket equation suggests that payload fractions of 10% are possible for a single stage to orbit (SSTO) microwave thermal rocket. We present an SSTO concept employing a scaled X-33 aeroshell. The flat aeroshell underside is covered by a thin-layer microwave absorbent heat-exchanger that forms part of the thruster. During ascent, the heat-exchanger faces the microwave beam. A simple ascent trajectory analysis incorporating X-33 aerodynamic data predicts a 10% payload fraction for a 1 ton craft of this type. In contrast, the Saturn V had 3 non-reusable stages and achieved a payload fraction of 4%.

  13. Development of low-power loss Mn–Zn ferrites using microwave ...

    Indian Academy of Sciences (India)

    Unknown

    sinusoidal voltage of 25 V with frequency, 1 MHz. The efficiency and surface rise of temperature of trans- former were found to be high and low, respectively. Keywords. Ferrites; microwave sintering; conventional sintering; power loss; hysteresis loss; eddy current loss; transformer; high frequency applications. 1. Introduction.

  14. Microplasmas ignited and sustained by microwaves

    International Nuclear Information System (INIS)

    Hopwood, Jeffrey; Hoskinson, Alan R; Gregório, José

    2014-01-01

    The challenges and benefits of microwave-induced microdischarges are reviewed. Transmission lines, resonators and surface wave launchers may be used for coupling microwave power to very small plasmas. Fortunately, microplasmas are typically much smaller than the wavelength of microwaves, and the electromagnetic problem may be treated electrostatically within the plasma. It is possible to trap electrons within small discharge gaps if the amplitude of electron oscillation is smaller than the plasma size. Typically occurring above 0.3 GHz, this condition results in lower breakdown fields than are required by direct current or radio frequency systems. Trapping of electrons also decreases the electrode potential to only tens of volts and makes the plasma density invariant in time. The steady-state microplasma produces electron densities of up to 10 15  cm −3 in argon but the electrons are not in equilibrium with the low gas temperatures (500–1000 K). Microwave discharges are compared with other forms of microplasma and guidelines for device selection are recommended. Scale-up of microplasmas using array concepts are presented followed by some exciting new applications. (paper)

  15. Development of microwave-enhanced spark-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Ikeda, Yuji; Moon, Ahsa; Kaneko, Masashi

    2010-01-01

    We propose microwave-enhanced spark-induced breakdown spectroscopy with the same measurement and analysis processes as in laser-induced breakdown spectroscopy, but with a different plasma generation mechanism. The size and lifetime of the plasma generated can contribute to increased measurement accuracy and expand its applicability to industrial measurement, such as an exhaust gas analyzer for automobile engine development and its regulation, which has been hard to operate by laser at an engineering evaluation site. The use of microwaves in this application helps lower the cost, reduce the system size, and increase the ease of operation to make it commercially viable. A microwave frequency of 2.45 GHz was used to enhance the volume and lifetime of the plasma at atmospheric condition even at elevated pressure.

  16. Synthesis of BiFeO{sub 3} thin films on single-terminated Nb : SrTiO{sub 3} (111) substrates by intermittent microwave assisted hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Velasco-Davalos, Ivan; Ambriz-Vargas, Fabian; Kolhatkar, Gitanjali; Thomas, Reji, E-mail: ruediger@emt.inrs.ca, E-mail: reji.thomas@emt.inrs.ca; Ruediger, Andreas, E-mail: ruediger@emt.inrs.ca, E-mail: reji.thomas@emt.inrs.ca [Centre Énergie, Matériaux et Télécommunications, INRS, 1650 Lionel-Boulet, Varennes, Québec, J3X1S2 (Canada)

    2016-06-15

    We report on a simple and fast procedure to create arrays of atomically flat terraces on single crystal SrTiO{sub 3} (111) substrates and the deposition of ferroelectric BiFeO{sub 3} thin films on such single-terminated surfaces. A microwave-assisted hydrothermal method in deionized water and ammonia solution selectively removes either (SrO{sub 3}){sup 4−} or Ti{sup 4+} layers to ensure the same chemical termination on all terraces. Measured step heights of 0.225 nm (d{sub 111}) and uniform contrast in the phase image of the terraces confirm the single termination in pure and Nb doped SrTiO{sub 3} single crystal substrates. Multiferroic BiFeO{sub 3} thin films were then deposited by the same microwave assisted hydrothermal process on Nb : SrTiO{sub 3} (111) substrates. Bi(NO{sub 3}){sub 3} and Fe(NO{sub 3}){sub 3} along with KOH served as the precursors solution. Ferroelectric behavior of the BiFeO{sub 3} films on Nb : SrTiO{sub 3} (100) substrates was verified by piezoresponse force microscopy.

  17. Study of mode locking in a microwave-pumped diode laser close to the generation threshold

    International Nuclear Information System (INIS)

    Bagaev, Sergei N; Zakharyash, Valerii F; Kashirsky, Aleksandr V; Klementyev, Vasilii M; Kuznetsov, Sergei A; Pivtsov, V S

    2004-01-01

    Active mode locking is studied in a diode laser with a three-mirror resonator upon the microwave modulation of the pump current. The mode-locking region with the minimal width of the spectrum of intermode beats is found, when the microwave frequency is close to the intermode frequency of an external resonator. This region is shown to be located close to the threshold pump current. (lasers, active media)

  18. Spiking irregularity and frequency modulate the behavioral report of single-neuron stimulation.

    Science.gov (United States)

    Doron, Guy; von Heimendahl, Moritz; Schlattmann, Peter; Houweling, Arthur R; Brecht, Michael

    2014-02-05

    The action potential activity of single cortical neurons can evoke measurable sensory effects, but it is not known how spiking parameters and neuronal subtypes affect the evoked sensations. Here, we examined the effects of spike train irregularity, spike frequency, and spike number on the detectability of single-neuron stimulation in rat somatosensory cortex. For regular-spiking, putative excitatory neurons, detectability increased with spike train irregularity and decreasing spike frequencies but was not affected by spike number. Stimulation of single, fast-spiking, putative inhibitory neurons led to a larger sensory effect compared to regular-spiking neurons, and the effect size depended only on spike irregularity. An ideal-observer analysis suggests that, under our experimental conditions, rats were using integration windows of a few hundred milliseconds or more. Our data imply that the behaving animal is sensitive to single neurons' spikes and even to their temporal patterning. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Integrated Advanced Microwave Sounding Unit-A (AMSU-A). Engineering Test Report: Radiated Emissions and SARR, SARP, DCS Receivers, Link Frequencies EMI Sensitive Band Test Results, AMSU-A2, S/N 108, 08

    Science.gov (United States)

    Valdez, A.

    2000-01-01

    This is the Engineering Test Report, Radiated Emissions and SARR, SARP, DCS Receivers, Link Frequencies EMI Sensitive Band Test Results, AMSU-A2, S/N 108, for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A).

  20. A measurement of the low frequency spectrum of the cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Levin, S.M.

    1987-04-01

    As part of a larger effort to measure the spectrum of the Cosmic Background Radiation (CBR) at low frequencies, the intensity of the CBR has been measured at a frequency of 1.410 GHz. The measurement was made by comparing the power received from the sky with the power received from a specially designed cooled calibration target with known properties. Sources of radiation other than the CBR were then identified and subtracted to calculate the antenna temperature of the CBR at 1.410 GHz. The instrument used to measure the CBR was a total-power microwave radiometer with a 25 MHz bandwidth centered at 1.410 GHz. The radiometer had a noise temperature of 80 K, and sufficient data were taken that radiometer noise did not contribute significantly to the total measurement error. The sources of error were predominantly systematic in nature, and the largest error was due to uncertainty in the reflection characteristics of the cold-load calibrator. Identification and subtraction of signals from the Galaxy (0.7 K) and the Earth's atmosphere (0.8 K) were also significant parts of the data reduction and error analysis. The brightness temperature of the Cosmic Background Radiation at 1.410 GHz is 222. +- 0.55 Kelvin. The spectrum of the CBR, as determined by this measurement and other published results, is consistent with a blackbody spectrum of temperature 2.741 +- 0.016. Constraints on the amount by which the CBR spectrum deviates from Planck spectrum are used to place limits on energy releases early in the history of the universe. 55 refs., 25 figs., 8 tabs