WorldWideScience

Sample records for single leg stability

  1. Asymmetrical stabilization and mobilization exploited during static single leg stance and goal directed kicking.

    Science.gov (United States)

    King, Adam C; Wang, Zheng

    2017-08-01

    The motor control properties of the right and left legs are dependent on the stabilization and mobilization features of the motor tasks. The current investigation examined the right and left leg control differences - interlateral asymmetries - during static single leg stance and dynamic goal directed kicking with an emphasis of the asymmetrical stabilization and mobilization components of movements. Ten young, healthy, right-leg preferred individuals with minimal kicking experience completed both tests on each limb. During static single leg stance, participants were requested to stand as still as possible with one leg in contact with a force platform. Interlateral asymmetries of the standing leg were quantified using postural variability measures of the center of pressure (COP) standard deviation in the anterior-posterior (SD-COP AP ) and medial-lateral (SD-COP ML ) directions, resultant COP length and velocity, and 95% COP elliptical area. During dynamic goal directed kicking, participants stood on two adjacent force platforms in a side-by-side foot position and kicked a soccer ball toward three different directions as soon as they received an auditory cue of kicking. Three targets were located -30°, 0° or 30° in front and 3.05 m away from the participants' midline. Participants kicked the ball toward the targets with each of their feet. The vertical ground reaction force (vGRF) of the kicking leg was used to define the preparation (from above two standard deviations of vGRF baseline to toe-off) and swing (from toe-off to toe-return) phases of dynamic kicking. To determine the presence of interlateral asymmetries during dynamic kicking, the magnitude and timing of the anticipatory postural adjustments (APA) during the preparation phase of kicking were quantified using the lateral net COP (COPnet-ML) time series derived from both force platforms. Postural variability measures of the support leg and the kinematic joint range of motion (JROM) trajectories of the

  2. How does postural stability following a single leg drop jump landing task relate to postural stability during a single leg stance balance task?

    NARCIS (Netherlands)

    Fransz, Duncan P.; Huurnink, Arnold; Kingma, Idsart; van Dieën, Jaap H.

    2014-01-01

    We aimed to verify whether the static phase after a single leg drop jump (DJ) landing on a force plate may serve as a proxy for a single leg stance (SLS) balance task, as this would increase the application possibilities of landing tasks in the evaluation of sensorimotor function in relation to

  3. Postural stability during the transition from double-leg stance to single-leg stance in anterior cruciate ligament injured subjects.

    Science.gov (United States)

    Dingenen, Bart; Janssens, Luc; Luyckx, Thomas; Claes, Steven; Bellemans, Johan; Staes, Filip F

    2015-03-01

    An anterior cruciate ligament injury may lead to deteriorations in postural stability. The goal of this study was to evaluate postural stability during the transition from double-leg stance to single-leg stance of both legs in anterior cruciate ligament injured subjects and non-injured control subjects with a standardized methodology. Fifteen control subjects and 15 anterior cruciate ligament injured subjects (time after injury: mean (SD)=1.4 (0.7) months) participated in the study. Both groups were similar for age, gender, height, weight and body mass index. Spatiotemporal center of pressure outcomes of both legs of each subject were measured during the transition from double-leg stance to single-leg stance in eyes open and eyes closed conditions. Movement speed was standardized. The center of pressure displacement after a new stability point was reached during the single-leg stance phase was significantly increased in the anterior cruciate ligament injured group compared to the control group in the eyes closed condition (Plegs within both groups (P>.05). No significant differences were found during the transition itself (P>.05). The anterior cruciate ligament injured group showed postural stability deficits during the single-leg stance phase compared to the non-injured control group in the eyes closed condition. Using the non-injured leg as a normal reference when evaluating postural stability of the injured leg may lead to misinterpretations, as no significant differences were found between the injured and non-injured leg of the anterior cruciate ligament injured group. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Single-leg spica provides adequate stability after open reduction in developmental dysplasia of the hip.

    Science.gov (United States)

    Alassaf, Nabil

    2018-02-01

    The late detection of developmental dysplasia of the hip (DDH) will remain a major concern in some parts of the world until effective screening programs become available. With late diagnosis comes the need for open surgical reduction. Surgery is invariably followed by a period of immobilisation in a spica cast to prevent postoperative displacement. The goal of this study is to evaluate the effect of double-leg spica as compared to single-leg spica, on the risk of displacement after unilateral open reduction of the hip. This was a retrospective review of DDH patients from 2012 to 2016 and younger than 4 years of age, who had unilateral anterior open reduction. Patients who had one of the following were excluded: neuromuscular diagnosis, the addition of K-wire, and simultaneous bilateral open reductions. Demographic data were collected along with related clinical and radiographic variables. A total of 128 patients (162 hips) met the inclusion criteria; 93 were in the double-leg spica group, and 69 were in the single-leg spica group. The mean age was 25.4 ± 8.1 months and the mean follow-up was 18.6 ± 11.6 months. Baseline characteristics were balanced between the two groups. There were three events of redislocation in the double-leg spica group as compared to one redislocation in the single-leg spica group. The difference did not reach statistical significance (p = 0.637, risk ratio 1.317, CI 0.736-2.356). The difference in subsequent disruption of Shenton's line and hip migration of more than 29% was (p = 0.395, risk ratio 1.411, CI 0.892-2.234) and (p = 0.087, risk ratio 0.67, CI 0.417-1.078), respectively. Three patients had a greenstick distal femur fracture after double-leg spica and one after single-leg spica. These data suggest that including the contralateral hip in the cast after open reduction is not essential as it does not seem to improve stability.

  5. Postural stability deficits during the transition from double-leg stance to single-leg stance in anterior cruciate ligament reconstructed subjects.

    Science.gov (United States)

    Dingenen, Bart; Janssens, Luc; Claes, Steven; Bellemans, Johan; Staes, Filip F

    2015-06-01

    The goal of this study was to evaluate postural stability during the transition from double-leg stance (DLS) to single-leg stance (SLS) in anterior cruciate ligament reconstructed (ACLR) (n=20) and non-injured control subjects (n=20). All ACLR subjects had fully returned to their pre-injury sport participation. Both groups were similar for age, gender, height, weight, body mass index and activity level. Spatiotemporal center of pressure outcomes of both legs of each subject were measured during the transition from DLS to SLS in eyes open and eyes closed conditions. Movement speed was standardized. The center of pressure displacement after a new stability point was reached during the SLS phase was significantly increased in the ACLR group compared to the control group in the eyes closed condition (P=.001). No significant different postural stability outcomes were found between the operated and non-operated legs. In conclusion, the ACLR group showed postural stability deficits, indicating that these persons may have a decreased ability to stabilize their body after the internal postural perturbation created by the transition from DLS to SLS. The non-operated leg may not be the best reference when evaluating postural stability of the operated leg after ACLR, as no differences were found between legs. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. The Relationship of Anticipatory Gluteus Medius Activity to Pelvic and Knee Stability in the Transition to Single-Leg Stance.

    Science.gov (United States)

    Kim, Daehan; Unger, Janelle; Lanovaz, Joel L; Oates, Alison R

    2016-02-01

    The knee abduction moment in a weight-bearing limb is an important risk factor of conditions such as patellofemoral pain and knee osteoarthritis. Excessive pelvic drop in single-leg stance can increase the knee abduction moment. The gluteus medius muscle is crucial to prevent pelvic drop and must be activated in anticipation of the transition from double-leg to single-leg stance. To examine the relationship of anticipatory activity of the gluteus medius to pelvic drop and knee abduction moment. Observational, cross-sectional correlational study. Research laboratory. Twenty female adults (mean age 22.6 years, standard deviation 2.5) were recruited and fully participated. Participant selection was limited to healthy women who did not have a history of knee and ankle ligament injuries, any indication of knee, hip, and/or low back pain, and/or knowledge of the proper squat technique. Participants performed 16 single-leg mini squats on their nondominant leg. The onset and magnitude of anticipatory gluteus medius activity were measured in relation to toe-off of the dominant leg during the transition from double-leg to single-leg stance. Preplanned correlations between anticipatory gluteus medius onset and its activation magnitude, pelvic obliquity, and knee abduction moment were examined. The magnitude of anticipatory gluteus medius activity was significantly correlated with the knee abduction moment (rs (18) = -0.303, P pelvic obliquity (rs (18) = 0.361, P pelvic obliquity. The amount of gluteus medius activity is more important for controlling knee and pelvic stability in the frontal plane than the onset of activation. Copyright © 2016 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  7. Whole body, long-axis rotational training improves lower extremity neuromuscular control during single leg lateral drop landing and stabilization.

    Science.gov (United States)

    Nyland, John; Burden, Robert; Krupp, Ryan; Caborn, David N M

    2011-05-01

    Poor neuromuscular control during sports activities is associated with non-contact lower extremity injuries. This study evaluated the efficacy of progressive resistance, whole body, long-axis rotational training to improve lower extremity neuromuscular control during a single leg lateral drop landing and stabilization. Thirty-six healthy subjects were randomly assigned to either Training or Control groups. Electromyographic, ground reaction force, and kinematic data were collected from three pre-test, post-test trials. Independent sample t-tests with Bonferroni corrections for multiple comparisons were used to compare group mean change differences (P≤0.05/21≤0.0023). Training group gluteus maximus and gluteus medius neuromuscular efficiency improved 35.7% and 31.7%, respectively. Training group composite vertical-anteroposterior-mediolateral ground reaction force stabilization timing occurred 1.35s earlier. Training group knee flexion angle at landing increased by 3.5°. Training group time period between the initial two peak frontal plane knee displacements following landing increased by 0.17s. Training group peak hip and knee flexion velocity were 21.2°/s and 20.1°/s slower, respectively. Time period between the initial two peak frontal plane knee displacements following landing and peak hip flexion velocity mean change differences displayed a strong relationship in the Training group (r(2)=0.77, P=0.0001) suggesting improved dynamic frontal plane knee control as peak hip flexion velocity decreased. This study identified electromyographic, kinematic, and ground reaction force evidence that device training improved lower extremity neuromuscular control during single leg lateral drop landing and stabilization. Further studies with other populations are indicated. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. The effect of leg preference on postural stability in healthy athletes.

    Science.gov (United States)

    Huurnink, Arnold; Fransz, Duncan P; Kingma, Idsart; Hupperets, Maarten D W; van Dieën, Jaap H

    2014-01-03

    In research regarding postural stability, leg preference is often tested and controlled for. However, leg preference may vary between tasks. As athletes are a group of interest for postural stability testing, we evaluated the effect of five leg preference tasks categorization (step up, hop, ball kick, balance, pick up) on single-leg postural stability of 16 field hockey athletes. The 'center of pressure speed' was calculated as the primary outcome variable of single-leg postural stability. Secondary variables were 'mean length of the GRF vector in the horizontal plane', 'mean length of the ankle angular velocity vector', and 'mean length of the hip angular velocity vector', as well as the separate outcomes per degree of freedom. Results showed that leg preference was inconsistent between leg preference tasks. Moreover, the primary and secondary variables yielded no significant difference between the preferred and non-preferred legs, regardless of the applied leg preference task categorization (p>0.05). The present findings do not support the usability of leg preference tasks in controlling for bias of postural stability. In conclusion, none of the applied leg preference tasks revealed a significant effect on postural stability in healthy field hockey athletes. © 2013 Published by Elsevier Ltd.

  9. Active and Inactive Leg Hemodynamics during Sequential Single-Leg Interval Cycling.

    Science.gov (United States)

    Gordon, Nicole; Abbiss, Chris R; Ihsan, Mohammed; Maiorana, Andrew J; Peiffer, Jeremiah J

    2018-01-11

    Leg order during sequential single-leg cycling (i.e. exercising both legs independently within a single session) may affect local muscular responses potentially influencing adaptations. This study examined the cardiovascular and skeletal muscle hemodynamic responses during double-leg and sequential single-leg cycling. Ten young healthy adults (28 ± 6 y) completed six 1-min double-leg intervals interspersed with one minute of passive recovery and, on a separate occasion, 12 (six with one leg followed by six with the other leg) 1-min single-leg intervals interspersed with one minute of passive recovery. Oxygen consumption, heart rate, blood pressure, muscle oxygenation, muscle blood volume and power output were measured throughout each session. Oxygen consumption, heart rate and power output were not different between sets of single-leg intervals but the average of both sets was lower than the double-leg intervals. Mean arterial pressure was higher during double-leg compared with sequential single-leg intervals (115 ± 9 mmHg vs. 104 ± 9 mmHg; p<0.05) and higher during the initial compared with second set of single-leg intervals (108 ± 10 mmHg vs. 101 ± 10 mmHg; p<0.05). The increase in muscle blood volume from baseline was similar between the active single-leg and double-leg (267 ± 150 μM[BULLET OPERATOR]cm vs. 214 ± 169 μM[BULLET OPERATOR]cm; p=0.26). The pattern of change in muscle blood volume from the initial to second set of intervals was significantly different (p<0.05) when the leg was active in the initial (-52.3 ± 111.6%) compared with second set (65.1 ± 152.9%). These data indicate that the order in which each leg performs sequential single-leg cycling influences the local hemodynamic responses, with the inactive muscle influencing the stimulus experienced by the contralateral leg.

  10. Restless Legs Syndrome After Single Low Dose Quetiapine Administration.

    Science.gov (United States)

    Soyata, Ahmet Z; Celebi, Fahri; Yargc, Lutfi I

    2016-01-01

    Restless legs syndrome is an underdiagnosed sensori-motor disorder and psychotropic drugs are one of the main secondary causes of the illness. The most common psychotropic agents that cause restless legs syndrome are antidepressants; however, antipsychotics have also been reported to induce restless legs syndrome. The prevalence, vulnerability factors and the underlying mechanism of antipsychotic-induced restless legs syndrome are unclear. A possible explanation is that dopaminergic blockade is the main precipitator of the syndrome. Quetiapine-induced restless legs syndrome is another point of interest because of its low binding to D2 receptors. We herein report the case of a restless legs syndrome that emerged after a single low dose quetiapine administration.

  11. Single leg stance control in individuals with symptomatic gluteal tendinopathy.

    Science.gov (United States)

    Allison, Kim; Bennell, Kim L; Grimaldi, Alison; Vicenzino, Bill; Wrigley, Tim V; Hodges, Paul W

    2016-09-01

    Lateral hip pain during single leg loading, and hip abductor muscle weakness, are associated with gluteal tendinopathy, but it has not been shown how or whether kinematics in single leg stance differ in those with gluteal tendinopathy. To compare kinematics in preparation for, and during, single leg stance between individuals with and without gluteal tendinopathy, and the effect of hip abductor muscle strength on kinematics. Twenty individuals with gluteal tendinopathy and 20 age-matched pain-free controls underwent three-dimensional kinematic analysis of single leg stance and maximum isometric hip abductor strength testing. Maximum values of hip adduction, pelvic obliquity (contralateral pelvis rise/drop), lateral pelvic translation (ipsilateral/contralateral shift) and ipsilateral trunk lean during preparation for leg lift and average values in steady single leg stance, were compared between groups using an analysis of covariance, with and without anthropometric characteristics and strength as covariates. Individuals with gluteal tendinopathy demonstrated greater hip adduction (standardized mean difference (SMD)=0.70, P=0.04) and ipsilateral pelvic shift (SMD=1.1, P=0.002) in preparation for leg lift, and greater hip adduction (SMD=1.2, P=0.002) and less contralateral pelvic rise (SMD=0.86, P=0.02) in steady single leg stance than controls. When including strength as a covariate, only between-group differences in lateral pelvic shift persisted (SMD=1.7, P=0.01). Individuals with gluteal tendinopathy use different frontal plane kinematics of the hip and pelvis during single leg stance than pain-free controls. This finding is not influenced by pelvic dimension or the potentially modifiable factor of body mass index, but is by hip abductor muscle weakness. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Immediate effects of the trunk stabilizing exercise on static balance parameters in double-leg and one-leg stances

    OpenAIRE

    Kim, Jwa-jun; Park, Se-yeon

    2016-01-01

    [Purpose] The purpose of this study was to evaluate the immediate effect of stabilizing exercise using the PNF technique on standing balance in one-leg and double-leg stances. [Subjects and Methods] The present study recruited 34 healthy participants from a local university. The Participants performed four balance tests (double-leg stance with and without vision, one-leg stance with and without vision), before and after exercise. The exercise consisted of exercises performed using PNF techniq...

  13. Differences in take-off leg kinetics between horizontal and vertical single-leg rebound jumps.

    Science.gov (United States)

    Kariyama, Yasushi; Hobara, Hiroaki; Zushi, Koji

    2017-06-01

    This study aimed to clarify the differences between the horizontal single-leg rebound jump (HJ) and vertical single-leg rebound jump (VJ) in terms of three-dimensional joint kinetics for the take-off leg, while focusing on frontal and transverse plane movements. Eleven male track and field athletes performed HJ and VJ. Kinematic and kinetic data were calculated using data recorded with a motion capture system and force platforms. The hip abduction torque, trunk lateral flexion torque (flexion for the swing-leg side), hip external and internal torque, trunk rotational torque, and the powers associated with these torques were larger when performing HJ because of resistance to the impact ground reaction force and because of pelvic and posture control. Pelvic rotation was noted in HJ, and this was controlled not only by the hip and trunk joint torque from the transverse plane but also by the hip abduction torque. Therefore, hip and trunk joint kinetics in the frontal and transverse plane play an important role in a single-leg jump, regardless of the jumping direction, and may also play a more important role in HJ than in VJ.

  14. THE EFFECTS OF SINGLE LEG HOP PROGRESSION AND DOUBLE LEGS HOP PROGRESSION EXERCISE TO INCREASE SPEED AND EXPLOSIVE POWER OF LEG MUSCLE

    Directory of Open Access Journals (Sweden)

    Nining W. Kusnanik

    2015-05-01

    Full Text Available The main purpose of this study was to determine the effect of single leg hop progression and double legs hop progression exercise to increase speed and explosive power of leg muscles. Plyometric is one of the training methods that can increase explosive power. There are many models of plyometric training including single leg hop progression and double leg hop progression. This research was experimental using match subject design techniques. The subjects of this study were 39 students who joined basketball school club. There were 3 groups in this study: Group 1 were 13 students who given sin¬gle leg hop progression exercise, Group 2 were 13 students who given double legs hop progression exercise, Group 3 were 13 students who given conventional exercise. The data was collected during pre test and post test by testing 30m speed running and vertical jump. The data was analyzed using Analysis of Varians (Anova. It was found that there were significantly increased on speed and explosive power of leg muscles of Group 1 and Group 2. It can be stated that single leg hop progression exercise was more effective than double leg hop progression exercise. The recent findings supported the hypothesis that single leg hop progression and double legs hop progression exercise can increase speed and explosive power of leg muscles. These finding were supported by some previous studies (Singh, et al, 2011; Shallaby, H.K., 2010. The single leg hop progression is more effective than double legs hop progression. This finding was consistent with some previous evidences (McCurdy, et al, 2005; Makaruk et al, 2011.

  15. Biomechanical analysis of the single-leg decline squat

    NARCIS (Netherlands)

    Zwerver, J.; Bredeweg, S. W.; Hof, A. L.

    Background: The single-leg squat on a 25 decline board has been described as a clinical assessment tool and as a rehabilitation exercise for patients with patellar tendinopathy. Several assumptions have been made about its working mechanism on patellar load and patellofemoral forces, but these are

  16. Single-leg squats can predict leg alignment in dancers performing ballet movements in “turnout”

    Directory of Open Access Journals (Sweden)

    Hopper LS

    2016-11-01

    Full Text Available Luke S Hopper,1 Nahoko Sato,2 Andries L Weidemann1 1Western Australian Academy of Performing Arts, Edith Cowan University, Mt Lawley, WA, Australia; 2Department of Physical Therapy, Nagoya Gakuin University, Seto, Japan Abstract: The physical assessments used in dance injury surveillance programs are often adapted from the sports and exercise domain. Bespoke physical assessments may be required for dance, particularly when ballet movements involve “turning out” or external rotation of the legs beyond that typically used in sports. This study evaluated the ability of the traditional single-leg squat to predict the leg alignment of dancers performing ballet movements with turnout. Three-dimensional kinematic data of dancers performing the single-leg squat and five ballet movements were recorded and analyzed. Reduction of the three-dimensional data into a one-dimensional variable incorporating the ankle, knee, and hip joint center positions provided the strongest predictive model between the single-leg squat and the ballet movements. The single-leg squat can predict leg alignment in dancers performing ballet movements, even in “turned out” postures. Clinicians should pay careful attention to observational positioning and rating criteria when assessing dancers performing the single-leg squat. Keywords: injury, motion capture, clinical assessment

  17. Evaluation of a single leg stance balance test in children.

    Science.gov (United States)

    Zumbrunn, Thomas; MacWilliams, Bruce A; Johnson, Barbara A

    2011-06-01

    Balance is a major determinate of gait. In high functioning individuals without significant vestibular or vision impairments, a ceiling effect may be present when using a double limb support protocol to assess balance function. For these populations, a single leg stance protocol may be more suitable. 47 typically developing (TD) subjects and 10 patients with CEV performed a single leg stance test on a force plate. The center of pressure (COP) was determined and several COP derived variables were calculated. Included measurements were: standard deviation, maximum excursion, area, average radial displacement, path velocity and frequency of the COP. Directional components of suitable variables were used to analyze anterior/posterior and medial/lateral contributions. Correlations with age of TD subjects indicated that all balance variables except frequency were significantly correlated. Most parameters were highly inter-correlated. Age adjusted COP balance variables also correlated to the Bruininks-Oseretsky balance subtest. Highest correlations were determined by the maximum excursion and velocity of the COP in the anterior/posterior direction. Statistical comparisons between the CEV group and a 4-6 TD group indicated significant differences between groups for most COP balance parameters. These results indicated that a single limb balance assessment may be a useful assessment for determining balance impairments in higher functioning children with orthopedic impairments. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. The Comparing the Leg Muscles Electromyography during Single Leg Drop Landing in Pesplanus and Normal Men

    Directory of Open Access Journals (Sweden)

    mostafa bazvand

    2016-03-01

    Full Text Available Objective: pesplanus is one of the changes that brings about changes in muscle activation patterns. Being aware of muscles activity changes in various standing positions among pesplanus patients provides insights into preventing lower extremity injuries in this population. The aim of this study was to compare leg muscles electromyography during various standing positions in pesplanus and normal subjects. Methods: 60 healthy male university students, 30 subjects with pesplanus deformity (with average age 23/54±3/57 year, average height 175/34±7/62 cm, average weight 74/87±10/72 kg and 30 normal subjects (with average age 22/97±2/38 year, average height 176/6±5/59 cm, average weight 73/58±8/36 kg participated in this comparative study. Deformity of pesplanus was assessed with navicular drop test. Each subject performed single-leg landing dropping from 30cm height onto a force platform where muscles activity was recorded with EMG device. For data analysis, Matlab and Spss softwares were used and independent sample t-test was used to compare the dependent variables at a significance level of P &le 0/05. Results: Significant differences were observed between the two groups for the activities of the longus peroneus and anterior tibialis muscles ( p&le0/05 while no significant differences were observed in other muscles. Conclusion: The changes in the normal structure of the foot might affect muscle activities during standing, which can cause changes in the injury patterns. Therefore, it is proposed that focusing on corrective exercises and therapy plan can reduce these risks.

  19. Leg Preference and Interlateral Asymmetry of Balance Stability in Soccer Players

    Science.gov (United States)

    Teixeira, Luis Augusto; de Oliveira, Dalton Lustosa; Romano, Rosangela Guimaraes; Correa, Sonia Cavalcanti

    2011-01-01

    To examine the effect of long lasting practice on pedal behavior in sport, we compared experienced adult soccer players and nonsoccer players on leg preference in motor tasks requiring general mobilization, soccer related mobilization, and body balance stabilization. We also evaluated performance asymmetry between the right and left legs in static…

  20. Characterizing rapid-onset vasodilation to single muscle contractions in the human leg

    Science.gov (United States)

    Credeur, Daniel P.; Holwerda, Seth W.; Restaino, Robert M.; King, Phillip M.; Crutcher, Kiera L.; Laughlin, M. Harold; Padilla, Jaume

    2014-01-01

    Rapid-onset vasodilation (ROV) following single muscle contractions has been examined in the forearm of humans, but has not yet been characterized in the leg. Given known vascular differences between the arm and leg, we sought to characterize ROV following single muscle contractions in the leg. Sixteen healthy men performed random ordered single contractions at 5, 10, 20, 40, and 60% of their maximum voluntary contraction (MVC) using isometric knee extension made with the leg above and below heart level, and these were compared with single isometric contractions of the forearm (handgrip). Single thigh cuff compressions (300 mmHg) were utilized to estimate the mechanical contribution to leg ROV. Continuous blood flow was determined by duplex-Doppler ultrasound and blood pressure via finger photoplethysmography (Finometer). Single isometric knee extensor contractions produced intensity-dependent increases in peak leg vascular conductance that were significantly greater than the forearm in both the above- and below-heart level positions (e.g., above heart level: leg 20% MVC, +138 ± 28% vs. arm 20% MVC, +89 ± 17%; P leg. Collectively, these data demonstrate the presence of a rapid and robust vasodilation to single muscle contractions in the leg that is largely independent of mechanical factors, thus establishing the leg as a viable model to study ROV in humans. PMID:25539935

  1. Dynamic stability of running: The effects of speed and leg amputations on the maximal Lyapunov exponent

    Energy Technology Data Exchange (ETDEWEB)

    Look, Nicole [Department of Applied Mathematics, University of Colorado Boulder, Boulder, Colorado 80309 (United States); Arellano, Christopher J.; Grabowski, Alena M.; Kram, Rodger [Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado 80309 (United States); McDermott, William J. [The Orthopedic Specialty Hospital, Murray, Utah 84107 (United States); Bradley, Elizabeth [Department of Computer Science, University of Colorado Boulder, Boulder, Colorado 80309, USA and Santa Fe Institute, Santa Fe, New Mexico 87501 (United States)

    2013-12-15

    In this paper, we study dynamic stability during running, focusing on the effects of speed, and the use of a leg prosthesis. We compute and compare the maximal Lyapunov exponents of kinematic time-series data from subjects with and without unilateral transtibial amputations running at a wide range of speeds. We find that the dynamics of the affected leg with the running-specific prosthesis are less stable than the dynamics of the unaffected leg and also less stable than the biological legs of the non-amputee runners. Surprisingly, we find that the center-of-mass dynamics of runners with two intact biological legs are slightly less stable than those of runners with amputations. Our results suggest that while leg asymmetries may be associated with instability, runners may compensate for this effect by increased control of their center-of-mass dynamics.

  2. Dynamic stability of running: The effects of speed and leg amputations on the maximal Lyapunov exponent

    International Nuclear Information System (INIS)

    Look, Nicole; Arellano, Christopher J.; Grabowski, Alena M.; Kram, Rodger; McDermott, William J.; Bradley, Elizabeth

    2013-01-01

    In this paper, we study dynamic stability during running, focusing on the effects of speed, and the use of a leg prosthesis. We compute and compare the maximal Lyapunov exponents of kinematic time-series data from subjects with and without unilateral transtibial amputations running at a wide range of speeds. We find that the dynamics of the affected leg with the running-specific prosthesis are less stable than the dynamics of the unaffected leg and also less stable than the biological legs of the non-amputee runners. Surprisingly, we find that the center-of-mass dynamics of runners with two intact biological legs are slightly less stable than those of runners with amputations. Our results suggest that while leg asymmetries may be associated with instability, runners may compensate for this effect by increased control of their center-of-mass dynamics

  3. Operation analysis of a Chebyshev-Pantograph leg mechanism for a single DOF biped robot

    Science.gov (United States)

    Liang, Conghui; Ceccarelli, Marco; Takeda, Yukio

    2012-12-01

    In this paper, operation analysis of a Chebyshev-Pantograph leg mechanism is presented for a single degree of freedom (DOF) biped robot. The proposed leg mechanism is composed of a Chebyshev four-bar linkage and a pantograph mechanism. In contrast to general fully actuated anthropomorphic leg mechanisms, the proposed leg mechanism has peculiar features like compactness, low-cost, and easy-operation. Kinematic equations of the proposed leg mechanism are formulated for a computer oriented simulation. Simulation results show the operation performance of the proposed leg mechanism with suitable characteristics. A parametric study has been carried out to evaluate the operation performance as function of design parameters. A prototype of a single DOF biped robot equipped with two proposed leg mechanisms has been built at LARM (Laboratory of Robotics and Mechatronics). Experimental test shows practical feasible walking ability of the prototype, as well as drawbacks are discussed for the mechanical design.

  4. Comparison between Unilateral and Bilateral Plyometric Training on Single and Double Leg Jumping Performance and Strength.

    Science.gov (United States)

    Bogdanis, Gregory C; Tsoukos, Athanasios; Kaloheri, Olga; Terzis, Gerasimos; Veligekas, Panagiotis; Brown, Lee E

    2017-04-18

    This study compared the effects of unilateral and bilateral plyometric training on single and double-leg jumping performance, maximal strength and rate of force development (RFD). Fifteen moderately trained subjects were randomly assigned to either a unilateral (U, n=7) or bilateral group (B, n=8). Both groups performed maximal effort plyometric leg exercises two times per week for 6 weeks. The B group performed all exercises with both legs, while the U group performed half the repetitions with each leg, so that total exercise volume was the same. Jumping performance was assessed by countermovement jumps (CMJ) and drop jumps (DJ), while maximal isometric leg press strength and RFD were measured before and after training for each leg separately and both legs together. CMJ improvement with both legs was not significantly different between U (12.1±7.2%) and B (11.0±5.5%) groups. However, the sum of right and left leg CMJ only improved in the U group (19.0±7.1%, pplyometric training was more effective at increasing both single and double-leg jumping performance, isometric leg press maximal force and RFD when compared to bilateral training.

  5. The leg stiffnesses animals use may improve the stability of locomotion.

    Science.gov (United States)

    Shen, ZhuoHua; Seipel, Justin

    2015-07-21

    Despite a wide diversity of running animals, their leg stiffness normalized by animal size and weight (a relative leg stiffness) resides in a narrow range between 7 and 27. Here we determine if the stability of locomotion could be a driving factor for the tight distribution of animal leg stiffness. We simulated an established physics-based model (the actuated Spring-Loaded Inverted Pendulum model) of animal running and found that, with the same energetic cost, perturbations to locomotion are optimally corrected when relative leg stiffness is within the biologically observed range. Here we show that the stability of locomotion, in combination with energetic cost, could be a significant factor influencing the nearly universally observed animal relative leg stiffness range. The energetic cost of locomotion has been widely acknowledged as influencing the evolution of physiology and locomotion behaviors. Specifically, its potential importance for relative leg stiffness has been demonstrated. Here, we demonstrate that stability of locomotion may also be a significant factor influencing relative leg stiffness. Published by Elsevier Ltd.

  6. Athletes Rated as Poor Single-Leg Squat Performers Display Measureable Differences in Single-Leg Squat Biomechanics Compared to Good Performers.

    Science.gov (United States)

    Garrick, Lachlan E; Alexander, Bryce C; Schache, Anthony G; Pandy, Marcus G; Crossley, Kay M; Collins, Natalie J

    2017-11-15

    It is important to validate single-leg squat visual rating criteria used in clinical practice and research. Foot orthoses may improve single-leg squat performance in those who demonstrate biomechanics associated with increased risk of lower-limb injury. Validate visual rating criteria proposed by Crossley et al, by determining whether athletes rated as poor single-leg squat performers display different single-leg squat biomechanics than good performers; and evaluate immediate effects of foot orthoses on single-leg squat biomechanics in poor performers. Comparative cross-sectional study. University laboratory. 79 asymptomatic athletes underwent video classification of single-leg squat performance based on established visual rating criteria (overall impression, trunk posture, pelvis 'in space', hip movement, knee movement), and were rated as good (n=23), fair (n=41) or poor (n=15) performers. A subset of good (n=16) and poor (n=12) performers underwent biomechanical assessment, completing five continuous single-leg squats on their dominant limb while three-dimensional motion analysis and ground reaction force data were recorded. Poor performers repeated the task standing on prefabricated foot orthoses. Peak external knee adduction moment (KAM) and peak angles for the trunk, hip, knee and ankle. Compared to good performers, poor performers had a significantly lower peak KAM (mean difference 0.11 Nm/kg, 95% confidence interval [CI] 0.02 to 0.2 Nm/kg), higher peak hip adduction angle (-4.3°, -7.6° to -0.9°), and higher peak trunk axial rotation towards their stance limb (3.8°, 0.4° to 7.2°). Foot orthoses significantly increased the peak KAM in poor performers (-0.06 Nm/kg, -0.1 to -0.01 Nm/kg), with values approximating those observed in good performers. Findings validate Crossley et al's visual rating criteria for single-leg squat performance in asymptomatic athletes, and suggest that 'off-the-shelf' foot orthoses may be a simple intervention for poor performers

  7. Single leg balancing in ballet: effects of shoe conditions and poses.

    Science.gov (United States)

    Lobo da Costa, Paula H; Azevedo Nora, Fernanda G S; Vieira, Marcus Fraga; Bosch, Kerstin; Rosenbaum, Dieter

    2013-03-01

    The purpose of this study was to describe the effects of lower limb positioning and shoe conditions on stability levels of selected single leg ballet poses performed in demi-pointe position. Fourteen female non-professional ballet dancers (mean age of 18.4±2.8 years and mean body mass index of 21.5±2.8kg/m(2)) who had practiced ballet for at least seven years, without any musculoskeletal impairment volunteered to participate in this study. A capacitive pressure platform allowed for the assessment of center of pressure variables related to the execution of three single leg ballet poses in demi pointé position: attitude devant, attitude derriére, and attitude a la second. Peak pressures, contact areas, COP oscillation areas, anterior-posterior and medio-lateral COP oscillations and velocities were compared between two shoe conditions (barefoot versus slippers) and among the different poses. Barefoot performances produced more stable poses with significantly higher plantar contact areas, smaller COP oscillation areas and smaller anterior-posterior COP oscillations. COP oscillation areas, anterior-posterior COP oscillations and medio-lateral COP velocities indicated that attitude a la second is the least challenging and attitude derriére the most challenging pose. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. TRUNK LEAN DURING A SINGLE-LEG SQUAT IS ASSOCIATED WITH TRUNK LEAN DURING PITCHING.

    Science.gov (United States)

    Plummer, Hillary A; Oliver, Gretchen D; Powers, Christopher M; Michener, Lori A

    2018-02-01

    Impaired trunk motion during pitching may be a risk factor for upper extremity injuries. Specifically, increased forces about the shoulder and elbow have been observed in pitchers with excessive contralateral trunk lean during pitching. Because of the difficulty in identifying abnormal trunk motions during a high-speed task such as pitching, a clinical screening test is needed to identify pitchers who have impaired trunk motion during pitching. The purpose of this study was to determine the relationship between the degree of lateral trunk lean during the single-leg squat and amount of trunk lean during pitching and if trunk lean during pitching can be predicted from lean during the single-leg squat. Controlled Laboratory Study; Cross-sectional. Seventy-three young baseball pitchers (11.4 ± 1.7 years; 156.3 ± 11.9 cm; 50.5 ± 8.8 kg) participated. An electromagnetic tracking system was used to obtain trunk kinematic data during a single-leg squat task (lead leg) and at maximum shoulder external rotation of a fastball pitch. Pearson correlation coefficients for trunk lean during the single-leg squat and pitching were calculated. A linear regression analysis was performed to determine if trunk lean during pitching can be predicted from lean during the single-leg squat. There was a positive correlation between trunk lean during the single-leg squat and trunk lean during pitching (r = 0.53; plean during the single-leg squat predicted the amount of lateral trunk lean during pitching (R 2 = 0.28; p lean during an SLS and pitching. Trunk lean during the single-leg squat explained 28% of the variance in trunk lean during pitching. Diagnosis, level 3.

  9. Time to stabilization in single leg drop jump landings: An examination of calculation methods and assessment of differences in sample rate, filter settings and trial length on outcome values

    NARCIS (Netherlands)

    Fransz, D.P.; Huurnink, A.; Kingma, I.; van Dieen, J.H.

    2015-01-01

    Time to stabilization (TTS) is the time it takes for an individual to return to a baseline or stable state following a jump or hop landing. A large variety exists in methods to calculate the TTS. These methods can be described based on four aspects: (1) the input signal used (vertical,

  10. Physical Rehabilitation for Disabled People with Insulin-independent Diabetes after Single Leg Amputation

    Directory of Open Access Journals (Sweden)

    Nataliya A. Pilosyan

    2012-11-01

    Full Text Available The article presents the program of physical rehabilitation for the disabled people with insulin-independent diabetes, who came through single leg amputation. The program includes phantom-impulsive gymnastics, exercises for the remaining leg, back and shoulders, for the improvement of stump functional state, equilibrium exercises and exercises for arms supporting function development. Set of therapeutic exercises involves exercise machine training. The application of the developed physical rehabilitation program at the stage of preparation for fitting the prosthesis and learning to walk on prosthetic leg has proved its efficiency according to test results, biomedical methods of research and increases the motor activity of 100% percent of patients.

  11. Muscle activity of leg muscles during unipedal stance on therapy devices with different stability properties.

    Science.gov (United States)

    Wolburg, Thomas; Rapp, Walter; Rieger, Jochen; Horstmann, Thomas

    2016-01-01

    To test the hypotheses that less stable therapy devices require greater muscle activity and that lower leg muscles will have greater increases in muscle activity with less stable therapy devices than upper leg muscles. Cross-sectional laboratory study. Laboratory setting. Twenty-five healthy subjects. Electromyographic activity of four lower (gastrocnemius medialis, soleus, tibialis anterior, peroneus longus) and four upper leg muscles (vastus medialis and lateralis, biceps femoris, semitendinosus) during unipedal quiet barefoot stance on the dominant leg on a flat rigid surface and on five therapy devices with varying stability properties. Muscle activity during unipedal stance differed significantly between therapy devices (P leg) and therapy device (P = 0.985). Magnitudes of additional relative muscle activity for the respective therapy devices differed substantially among lower extremity muscles. The therapy devices offer a progressive increase in training intensity, and thus may be useful for incremental training programs in physiotherapeutic practice and sports training programs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Physiological responses to incremental, interval, and continuous counterweighted single-leg and double-leg cycling at the same relative intensities.

    Science.gov (United States)

    MacInnis, Martin J; Morris, Nathaniel; Sonne, Michael W; Zuniga, Amanda Farias; Keir, Peter J; Potvin, Jim R; Gibala, Martin J

    2017-07-01

    We compared physiological responses to incremental, interval, and continuous counterweighted single-leg and double-leg cycling at the same relative intensities. The primary hypothesis was that the counterweight method would elicit greater normalized power (i.e., power/active leg), greater electromyography (EMG) responses, and lower cardiorespiratory demand. Graded-exercise tests performed by 12 men (age: 21 ± 2 years; BMI: 24 ± 3 kg/m 2 ) initially established that peak oxygen uptake ([Formula: see text]; 76 ± 8.4%), expired ventilation ([Formula: see text]; 71 ± 6.8%), carbon dioxide production ([Formula: see text]; 71 ± 6.8%), heart rate (HRpeak; 91 ± 5.3%), and power output (PPO; 56 ± 3.6%) were lower during single-leg compared to double-leg cycling (main effect of mode; p cycling were performed at greater absolute power outputs but lower normalized power outputs compared to single-leg cycling (p  0.05), but semitendinosus was activated to a greater extent for single-leg cycling (p = 0.005). Single-leg interval and continuous cycling elicited lower mean [Formula: see text], [Formula: see text], [Formula: see text], HR and ratings of perceived exertion compared to double-leg cycling (p cycling elicits lower cardiorespiratory and perceptual responses than double-leg cycling at greater normalized power outputs.

  13. A comparison of ballet dancers with different level of experience in performing single-leg stance on retiré position.

    Science.gov (United States)

    Lin, Chia-Wei; Lin, Cheng-Feng; Hsue, Bih-Jen; Su, Fong-Chin

    2014-04-01

    The purpose of the current study was to evaluate the postural stability of single-leg standing on the retiré position in ballet dancers having three different levels of skill. Nine superior experienced female ballet dancers, 9 experienced, and 12 novice dancers performed single-leg standing in the retiré position. The parameters of center of pressure (COP) in the anterior-posterior and medial-lateral directions and the maximum distance between COP and the center of mass (COM) were measured. The inclination angles of body segments (head, torso, and supporting leg) in the frontal plane were also calculated. The findings showed that the novice dancers had a trend of greater torso inclination angles than the experienced dancers but that the superior experienced dancers had greater maximum COM-COP distance in the anterior-posterior direction. Furthermore, both experienced and novice dancers had better balance when standing on the nondominant leg, whereas the superior experienced dancers had similar postural stability between legs. Based on the findings, ballet training should put equal focus on both legs and frontal plane control (medial-lateral direction) should be integrated to ballet training program.

  14. The effects of surface condition on abdominal muscle activity during single-legged hold exercise.

    Science.gov (United States)

    Ha, Sung-min; Oh, Jae-seop; Jeon, In-cheol; Kwon, Oh-yun

    2015-02-01

    To treat low-back pain, various spinal stability exercises are commonly used to improve trunk muscle function and strength. Because human movement for normal daily activity occurs in multi-dimensions, the importance of exercise in multi-dimensions or on unstable surfaces has been emphasized. Recently, a motorized rotating platform (MRP) for facilitating multi-dimensions dynamic movement was introduced for clinical use. However, the abdominal muscle activity with this device has not been reported. The purpose of this study was to compare the abdominal muscle activity (rectus abdominis, external and internal oblique muscles) during an active single-leg-hold (SLH) exercise on a floor (stable surface), foam roll, and motorized rotating platform (MRP). Thirteen healthy male subjects participated in this study. Using electromyography, the abdominal muscle activity was measured while the subjects performed SLH exercises on floor (stable surface), foam roll, and MRP. There were significant differences in the abdominal muscle activities among conditions (P.05) (Fig. 2). After the Bonferroni correction, however, no significant differences among conditions remained, except for differences in both side IO muscle activity between the floor and foam roll conditions (padjactivities of both side of RA and IO, and Rt. EO compared to floor condition. However, there were no significant differences in abdominal muscles activity in the multiple comparison between conditions (mean difference were smaller than the standard deviation in the abdominal muscle activities) (padj>0.017), except for differences in both side IO muscle activity between the floor (stable surface) and foam roll (padj<0.017) (effect size: 0.79/0.62 (non-supporting/supporting leg) for foam-roll versus floor). Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Lower extremity muscle activation onset times during the transition from double-leg stance to single-leg stance in anterior cruciate ligament reconstructed subjects.

    Science.gov (United States)

    Dingenen, Bart; Janssens, Luc; Claes, Steven; Bellemans, Johan; Staes, Filip F

    2016-06-01

    Previous studies mainly focused on muscles at the operated knee after anterior cruciate ligament reconstruction, less on muscles around other joints of the operated and non-operated leg. The aim of this study was to investigate muscle activation onset times during the transition from double-leg stance to single-leg stance in anterior cruciate ligament reconstructed subjects. Lower extremity muscle activation onset times of both legs of 20 fully returned to sport anterior cruciate ligament reconstructed subjects and 20 non-injured control subjects were measured during the transition from double-leg stance to single-leg stance in eyes open and eyes closed conditions. Analysis of covariance (ANCOVA) was used to evaluate differences between groups and differences between legs within both groups, while controlling for peak center of pressure velocity. Significantly delayed muscle activation onset times were found in the anterior cruciate ligament reconstructed group compared to the control group for gluteus maximus, gluteus medius, vastus medialis obliquus, medial hamstrings, lateral hamstrings and gastrocnemius in both eyes open and eyes closed conditions (Panterior cruciate ligament reconstructed group, no significant different muscle activation onset times were found between the operated and non-operated leg (P>.05). Despite completion of rehabilitation and full return to sport, the anterior cruciate ligament reconstructed group showed neuromuscular control deficits that were not limited to the operated knee joint. Clinicians should focus on relearning multi-segmental anticipatory neuromuscular control strategies after anterior cruciate ligament reconstruction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Lower Limb Symmetry: Comparison of Muscular Power Between Dominant and Nondominant Legs in Healthy Young Adults Associated With Single-Leg-Dominant Sports.

    Science.gov (United States)

    Vaisman, Alex; Guiloff, Rodrigo; Rojas, Juan; Delgado, Iris; Figueroa, David; Calvo, Rafael

    2017-12-01

    Achieving a symmetrical power performance (difference symmetry does not act as a viable comparison. To (1) compare maximal muscular power between the dominant and nondominant legs in healthy young adults, (2) evaluate the effect of a single-leg-dominant sport activity performed at the professional level, and (3) propose a parameter of normality for maximal power difference in the lower limbs of this young adult population. Controlled laboratory study. A total of 78 healthy, male, young adults were divided into 2 groups according to sport activity level. Group 1 consisted of 51 nonathletes (mean ± SD age, 20.8 ± 1.5 years; weight, 71.9 ± 10.5 kg) who participated in less than 8 hours a week of recreational physical activity with nonspecific training; group 2 consisted of 27 single-leg-dominant professional soccer players (age, 18.4 ± 0.6 years; weight, 70.1 ± 7.5 kg) who specifically trained and competed at their particular activity 8 hours or more a week. For assessment of maximal leg power, both groups completed the single-leg squat jump test. Dominance was determined when participants completed 2 of 3 specific tests with the same extremity. Statistical analysis included the Student t test. No statistical difference was found for maximal power between dominant and nondominant legs for nonathletes ( t = -1.01, P = .316) or single-leg-dominant professional soccer players ( t = -1.10, P = .281). A majority (95%) of participants studied showed a power difference of less than 15% between their lower extremities. Among young healthy adults, symmetrical power performance is expected between lower extremities independent of the existence of dominance and difference in sport activity level. A less than 15% difference in power seems to be a proper parameter to define symmetrical power performance assessed by vertical single-leg jump tests.

  17. Ultrasound-guided single-penetration dual-injection block for leg and foot surgery

    DEFF Research Database (Denmark)

    Børglum, Jens; Johansen, Karina; Christensen, Karen Margrethe

    2014-01-01

    We describe a new approach to blocking the sciatic and saphenous nerves in the proximal thigh (level of the lesser trochanter or immediately below) using a single-penetration dual-injection (SPEDI) technique. The popliteal-sciatic approach necessitates repositioning of the leg exposing the poplit...

  18. The role of robust optimization in single-leg airline revenue management

    NARCIS (Netherlands)

    Birbil, S.I.; Frenk, J.B.G.; Gromicho Dos Santos, J.A.; Zhang, S.

    2009-01-01

    In this paper, we introduce robust versions of the classical static and dynamic single-leg seat allocation models. These robust models take into account the inaccurate estimates of the underlying probability distributions. As observed by simulation experiments, it turns out that for these robust

  19. An integrated approach to single-leg airline revenue management: The role of robust optimization

    NARCIS (Netherlands)

    S.I. Birbil (Ilker); J.B.G. Frenk (Hans); J.A.S. Gromicho (Joaquim); S. Zhang (Shuzhong)

    2006-01-01

    textabstractIn this paper we introduce robust versions of the classical static and dynamic single leg seat allocation models as analyzed by Wollmer, and Lautenbacher and Stidham, respectively. These robust models take into account the inaccurate estimates of the underlying probability distributions.

  20. An Integrated Approach to Single-Leg Airline Revenue Management: The Role of Robust Optimization

    NARCIS (Netherlands)

    S.I. Birbil (Ilker); J.B.G. Frenk (Hans); J.A.S. Gromicho (Joaquim); S. Zhang (Shuzhong)

    2006-01-01

    textabstractIn this paper we introduce robust versions of the classical static and dynamic single leg seat allocation models as analyzed by Wollmer, and Lautenbacher and Stidham, respectively. These robust models take into account the inaccurate estimates of the underlying probability distributions.

  1. Modeling and optimization of the single-leg multi-fare class ...

    African Journals Online (AJOL)

    This paper presents a static overbooking model for a single-leg multi-fare class flight. A realistic distribution of no-show data in modeling the cost function was considered using data collected from the Ethiopian airlines. The overbooking model developed considers the interaction (i.e. the transfer of an extra passenger in a ...

  2. Differences in Lower Extremity and Trunk Kinematics between Single Leg Squat and Step Down Tasks.

    Directory of Open Access Journals (Sweden)

    Cara L Lewis

    Full Text Available The single leg squat and single leg step down are two commonly used functional tasks to assess movement patterns. It is unknown how kinematics compare between these tasks. The purpose of this study was to identify kinematic differences in the lower extremity, pelvis and trunk between the single leg squat and the step down. Fourteen healthy individuals participated in this research and performed the functional tasks while kinematic data were collected for the trunk, pelvis, and lower extremities using a motion capture system. For the single leg squat task, the participant was instructed to squat as low as possible. For the step down task, the participant was instructed to stand on top of a box, slowly lower him/herself until the non-stance heel touched the ground, and return to standing. This was done from two different heights (16 cm and 24 cm. The kinematics were evaluated at peak knee flexion as well as at 60° of knee flexion. Pearson correlation coefficients (r between the angles at those two time points were also calculated to better understand the relationship between each task. The tasks resulted in kinematics differences at the knee, hip, pelvis, and trunk at both time points. The single leg squat was performed with less hip adduction (p ≤ 0.003, but more hip external rotation and knee abduction (p ≤ 0.030, than the step down tasks at 60° of knee flexion. These differences were maintained at peak knee flexion except hip external rotation was only significant in the 24 cm step down task (p ≤ 0.029. While there were multiple differences between the two step heights at peak knee flexion, the only difference at 60° of knee flexion was in trunk flexion (p < 0.001. Angles at the knee and hip had a moderate to excellent correlation (r = 0.51-0.98, but less consistently so at the pelvis and trunk (r = 0.21-0.96. The differences in movement patterns between the single leg squat and the step down should be considered when selecting a

  3. Impairment of dynamic single-leg balance performance in individuals with hip chondropathy.

    Science.gov (United States)

    Hatton, Anna L; Kemp, Joanne L; Brauer, Sandra G; Clark, Ross A; Crossley, Kay M

    2014-05-01

    Impaired balance control has been reported in the elderly with hip osteoarthritis, yet this relationship has not been explored in young adults with hip chondropathy. This study aimed to determine whether people with hip chondropathy demonstrated impaired balance ability during a dynamic single-leg squat with eyes open (SquatEO) and a single-leg standing task with eyes closed (StandEC) and whether hip range of motion (ROM) and hip muscle strength were correlated with balance measures in adults with hip chondropathy. Sixty-three adults with hip chondropathy and 60 controls performed 2 tasks: SquatEO and StandEC while standing on a Nintendo Wii Balance Board. Center of pressure (COP) movement in mediolateral and anteroposterior directions was extracted. Hip ROM and muscle strength were measured with an inclinometer and dynamometer. Data were analyzed using an analysis of covariance and stepwise multiple regression model. During SquatEO, greater COP mediolateral range (P = 0.023) and anteroposterior SD (P = 0.043) were observed in those with hip chondropathy compared to controls. No significant between-group differences were observed for StandEC. Hip external rotation ROM was significantly associated with mediolateral range during SquatEO. Dynamic single-leg balance squat performance is reduced in people with hip chondropathy compared to healthy adults, but static single-leg standing balance is not. This may be reflective of reduced control of dynamic movements. Those with greater hip joint external rotation ROM appear to have worse single-leg squat balance performance. Further investigation into balance deficits associated with hip disease is necessary to establish early identification strategies and a tailored approach to rehabilitation. Copyright © 2014 by the American College of Rheumatology.

  4. Self-Described Differences Between Legs in Ballet Dancers: Do They Relate to Postural Stability and Ground Reaction Force Measures?

    Science.gov (United States)

    Mertz, Laura; Docherty, Carrie

    2012-12-01

    Ballet technique classes are designed to train dancers symmetrically, but they may actually create a lateral bias. It is unknown whether dancers in general are functionally asymmetrical, or how an individual dancer's perceived imbalance between legs might manifest itself. The purpose of this study was to examine ballet dancers' lateral preference by analyzing their postural stability and ground reaction forces in fifth position when landing from dance-specific jumps. Thirty university ballet majors volunteered to participate in this study. The subjects wore their own ballet technique shoes and performed fundamental ballet jumps out of fifth position on a force plate. The force plate recorded center of pressure (COP) and ground reaction force (GRF) data. Each subject completed a laterality questionnaire that determined his or her preferred landing leg for ballet jumps, self-identified stronger leg, and self-identified leg with better balance. All statistical comparisons were made between the leg indicated on the laterality questionnaire and the other leg (i.e., if the dancer's response to a question was "left," the comparison was made with the left leg as the "preferred" leg and the right leg as the "non-preferred leg"). No significant differences were identified between the limbs in any of the analyses conducted (all statistical comparisons produced p values > 0.05). The results of this study indicate that a dancer's preferential use of one limb over the other has no bearing on GRFs or balance ability after landing jumps in ballet. Similarly, dancers' opinions of their leg characteristics (such as one leg being stronger than the other) seem not to correlate with the dancers' actual ability to absorb GRFs or to balance when landing from ballet jumps.

  5. Foot muscle morphology is related to center of pressure sway and control mechanisms during single-leg standing.

    Science.gov (United States)

    Zhang, Xianyi; Schütte, Kurt Heinrich; Vanwanseele, Benedicte

    2017-09-01

    Maintaining balance is vitally important in everyday life. Investigating the effects of individual foot muscle morphology on balance may provide insights into neuromuscular balance control mechanisms. This study aimed to examine the correlation between the morphology of foot muscles and balance performance during single-leg standing. Twenty-eight recreational runners were recruited in this study. An ultrasound device was used to measure the thickness and cross-sectional area of three intrinsic foot muscles (abductor hallucis, flexor digitorum brevis and quadratus plantae) and peroneus muscles. Participants were required to perform 30s of single-leg standing for three trials on a force plate, which was used to record the center of pressure (COP). The standard deviation of the amplitude and ellipse area of the COP were calculated. In addition, stabilogram diffusion analysis (SDA) was performed on COP data. Pearson correlation coefficients were computed to examine the correlation between foot muscle morphology and traditional COP parameters as well as with SDA parameters. Our results showed that larger abductor hallucis correlated to smaller COP sway, while larger peroneus muscles correlated to larger COP sway during single-leg standing. Larger abductor hallucis also benefited open-loop dynamic stability, as well as supported a more efficient transfer from open-loop to closed loop control mechanisms. These results suggest that the morphology of foot muscles plays an important role in balance performance, and that strengthening the intrinsic foot muscles may be an effective way to improve balance. Copyright © 2017. Published by Elsevier B.V.

  6. Biomechanical Comparison of Single- and Double-Leg Jump Landings in the Sagittal and Frontal Plane.

    Science.gov (United States)

    Taylor, Jeffrey B; Ford, Kevin R; Nguyen, Anh-Dung; Shultz, Sandra J

    2016-06-01

    Double-leg forward or drop-jump landing activities are typically used to screen for high-risk movement strategies and to determine the success of neuromuscular injury prevention programs. However, research suggests that these tasks that occur primarily in the sagittal plane may not adequately represent the lower extremity biomechanics that occur during unilateral foot contact or non-sagittal plane movements that are characteristic of many multidirectional sports. To examine the extent to which lower extremity biomechanics measured during a jump landing on a double leg (DL) after a sagittal plane (SAG) movement is representative of biomechanics measured during single-leg (SL) or frontal plane (FRONT) jump landing tasks. Controlled laboratory study. Lower extremity biomechanics were measured in 15 recreationally active females (mean age [±SD], 19.4 ± 2.1 years; mean height, 163.3 ± 5.9 cm; mean weight, 61.1 ± 7.1 kg) while performing SAGDL, SAGSL, FRONTDL, and FRONTSL jump landing tasks. Repeated-measures analyses of variance examined differences in lower extremity biomechanics between the 4 tasks, and linear regressions examined the extent to which an individual's biomechanics during SAGDL were representative of their biomechanics during SAGSL, FRONTDL, and FRONTSL. Lower extremity kinematics and kinetics differed by condition, with the SAGDL task generally eliciting greater hip and knee flexion angles and lower hip and knee forces than the other tasks (P plane jump landing tasks used to screen for ACL injury risk and the effectiveness of ACL injury prevention programs may not adequately represent the lower extremity biomechanics that occur during single-leg activities. These results support further investigation of single-leg multidirectional landings to identify high-risk movement strategies in female athletes playing multidirectional sports.

  7. Comparison of Abdominal Muscle Activity During a Single-Legged Hold in the Hook-Lying Position on the Floor and on a Round Foam Roll

    Science.gov (United States)

    Kim, Su-Jung; Kwon, Oh-Yun; Yi, Chung-Hwi; Jeon, Hye-Seon; Oh, Jae-Seop; Cynn, Heon-Seock; Weon, Jong-Hyuck

    2011-01-01

    Context: To improve trunk stability or trunk muscle strength, many athletic trainers and physiotherapists use various types of unstable equipment for training. The round foam roll is one of those unstable pieces of equipment and may be useful for improving trunk stability. Objective: To assess the effect of the supporting surface (floor versus round foam roll) on the activity of abdominal muscles during a single-legged hold exercise performed in the hook-lying position on the floor and on a round foam roll. Design: Crossover study. Setting: University research laboratory. Patients or Other Participants: Nineteen healthy volunteers (11 men, 8 women) from a university population. Interventions : The participants were instructed to perform a single-legged hold exercise while in the hook-lying position on the floor (stable surface) and on a round foam roll (unstable surface). Main Outcome Measure(s): Surface electromyography (EMG) signals were recorded from the bilateral rectus abdominis, internal oblique, and external oblique muscles. Dependent variables were examined with a paired t test. Results: The EMG activities in all abdominal muscles were greater during the single-legged hold exercise performed on the round foam roll than on the stable surface. Conclusions: The single-legged hold exercise in the hook-lying position on an unstable supporting surface induced greater abdominal muscle EMG amplitude than the same exercise performed on a stable supporting surface. These results suggest that performing the single-legged hold exercise while in the hook-lying position on a round foam roll is useful for activating the abdominal muscles. PMID:21944072

  8. Greater bilateral deficit in leg press than in handgrip exercise might be linked to differences in postural stability requirements.

    Science.gov (United States)

    Magnus, Charlene R A; Farthing, Jonathan P

    2008-12-01

    Bilateral deficit is defined as the difference in the summed force between contracting muscles alone and contracting contralateral homologous muscles in combination. The purpose of the study was to investigate how postural stability influences bilateral deficit by comparing an exercise requiring more postural stability (the leg press) with an exercise requiring less postural stability (the handgrip). Eight participants volunteered for the study (3 males, 5 females). Maximal strength was determined by a 1-repetition maximum for the leg press (weight machine) and handgrip (dynamometer) exercises. Electromyography was used to measure activation of the effectors (flexor carpi ulnaris for the handgrip and vastus lateralis for the leg press) and the core muscles (rectus abdominis and external obliques). Bilateral deficit was greater in the leg press (-12.08 +/- 10.22%) than the handgrip (-0.677 +/- 5.00%; p < 0.05). Muscle activation of the effectors and core muscles was not significantly different between unilateral and bilateral conditions for either exercise. However, core muscle activation was significantly greater during the leg press (48.30 +/- 19.60 microV) than during the handgrip (16.50 +/- 8.10 microV; p < 0.05) exercise. These results support the hypothesis that an exercise requiring more postural stability (e.g., the leg press) will have a larger deficit and greater activation of core muscles than an exercise requiring less postural stability (e.g., the handgrip). Since the bilateral deficit was only apparent for the leg press exercise, we conclude that postural stability requirements might influence the magnitude of bilateral deficit.

  9. Knee proprioception and strength and landing kinematics during a single-leg stop-jump task.

    Science.gov (United States)

    Nagai, Takashi; Sell, Timothy C; House, Anthony J; Abt, John P; Lephart, Scott M

    2013-01-01

    The importance of the sensorimotor system in maintaining a stable knee joint has been recognized. As individual entities, knee-joint proprioception, landing kinematics, and knee muscles play important roles in functional joint stability. Preventing knee injuries during dynamic tasks requires accurate proprioceptive information and adequate muscular strength. Few investigators have evaluated the relationship between knee proprioception and strength and landing kinematics. To examine the relationship between knee proprioception and strength and landing kinematics. Cross-sectional study. University research laboratory. Fifty physically active men (age = 26.4 ± 5.8 years, height = 176.5 ± 8.0 cm, mass = 79.8 ± 16.6 kg). Three tests were performed. Knee conscious proprioception was evaluated via threshold to detect passive motion (TTDPM). Knee strength was evaluated with a dynamometer. A 3-dimensional biomechanical analysis of a single-legged stop-jump task was used to calculate initial contact (IC) knee-flexion angle and knee-flexion excursion. The TTDPM toward knee flexion and extension, peak knee flexion and extension torque, and IC knee-flexion angle and knee flexion excursion. Linear correlation and stepwise multiple linear regression analyses were used to evaluate the relationships of both proprioception and strength against landing kinematics. The α level was set a priori at .05. Enhanced TTDPM and greater knee strength were positively correlated with greater IC knee-flexion angle (r range = 0.281-0.479, P range = .001-.048). The regression analysis revealed that 27.4% of the variance in IC knee-flexion angle could be accounted for by knee-flexion peak torque and TTDPM toward flexion (P = .001). The current research highlighted the relationship between knee proprioception and strength and landing kinematics. Individuals with enhanced proprioception and muscular strength had better control of IC knee-flexion angle during a dynamic task.

  10. Single-leg landing neuromechanical data following load and land height manipulations

    Directory of Open Access Journals (Sweden)

    Andrew D. Nordin

    2016-09-01

    Full Text Available Lower extremity sagittal kinematic and kinetic data are summarized alongside electrical muscle activities during single-leg landing trials completed in contrasting external load and landing height conditions. Nineteen subjects were analyzed during 9 landing trials in each of 6 experimental conditions computed as percentages of subject anthropometrics (bodyweight: BW and subject height: H; BW, BW+12.5%, BW+25%, and H12.5%, H25%. Twelve lower extremity variables (sagittal hip, knee, ankle angles and moments, vertical ground reaction force (GRFz, gluteus maximus, biceps femoris, vastus medials, medial gastrocnemius, and tibialis anterior muscles were assessed using separate principal component analyses (PCA. Variable trends across conditions were summarized in “Neuromechanical synergies in single-leg landing reveal changes in movement control. Human Movement Science” (Nordin and Dufek, 2016 [1], revealing changes in landing biomechanics and movement control.

  11. Individuals with chronic ankle instability exhibit decreased postural sway while kicking in a single-leg stance.

    Science.gov (United States)

    dos Santos, Marcio José; Gorges, Ana Luiza; Rios, Jaqueline Lourdes

    2014-01-01

    Individuals with chronic ankle instability (CAI) usually experience deficits in balance control, which increase displacement in the body's center of pressure (COP) when they balance on a single leg. Little is known, however, about whether or not these individuals use the strategies of postural adjustment properly, especially during functional tasks that may predispose them to ankle sprain. The aim of this study was to investigate anticipatory (APA) and compensatory (CPA) postural adjustments in individuals with and without CAI as they kick a ball while standing in a single-leg stance with their ankle in neutral and supinated positions. COP displacements were calculated and their magnitudes (range) analyzed during APA and CPA intervals and over the duration of the whole task, represented by the COP area of sway and mean velocity. The CAI group exhibited a significant decrease in CPA and area of sway over the whole task, relative to controls. These results suggest that the decreased balance sway could be caused by the need for further stabilization of the ankle in more unstable postures to prevent recurrent sprain. Our findings could help clinicians to better understand the strategies of postural adjustments in individuals with CAI, and may assist and motivate new investigations into balance control interventions in such individuals, as well as proactively address recurrent ankle sprain conditions. Published by Elsevier B.V.

  12. An Integrated Approach to Single-Leg Airline Revenue Management: The Role of Robust Optimization

    OpenAIRE

    Birbil, Ilker; Frenk, Hans; Gromicho, Joaquim; Zhang, Shuzhong

    2006-01-01

    textabstractIn this paper we introduce robust versions of the classical static and dynamic single leg seat allocation models as analyzed by Wollmer, and Lautenbacher and Stidham, respectively. These robust models take into account the inaccurate estimates of the underlying probability distributions. As observed by simulation experiments it turns out that for these robust versions the variability compared to their classical counter parts is considerably reduced with a negligible decrease of av...

  13. Asymmetry between the Dominant and Non-Dominant Legs in the Kinematics of the Lower Extremities during a Running Single Leg Jump in Collegiate Basketball Players.

    Science.gov (United States)

    Sugiyama, Takashi; Kameda, Mai; Kageyama, Masahiro; Kiba, Kazufusa; Kanehisa, Hiroaki; Maeda, Akira

    2014-12-01

    The present study aimed to clarify the asymmetry between the dominant (DL) and non-dominant takeoff legs (NDL) in terms of lower limb behavior during running single leg jumps (RSJ) in collegiate male basketball players in relation to that of the jump height. Twenty-seven players performed maximal RSJ with a 6 m approach. Three-dimensional kinematics data during RSJ was collected using a 12 Raptor camera infrared motion analysis system (MAC 3D system) at a sampling frequency of 500 Hz. The symmetry index in the jump heights and the kinematics variables were calculated as {2 × (DL - NDL) / (DL + NDL)} × 100. The run-up velocity was similar between the two legs, but the jump height was significantly higher in the DL than in the NDL. During the takeoff phase, the joint angles of the ankle and knee were significantly larger in the DL than the NDL. In addition, the contact time for the DL was significantly shorter than that for the NDL. The symmetry index of the kinematics for the ankle joint was positively correlated with that of jump height, but that for the knee joint was not. The current results indicate that, for collegiate basketball players, the asymmetry in the height of a RSJ can be attributed to that in the joint kinematics of the ankle during the takeoff phase, which may be associated with the ability to effectively transmit run-up velocity to jump height. Key pointsAsymmetry of height during running single leg jump between two legs is due to the behavior of the ankle joint (i.e. stiffer the ankle joint and explosive bounding).The dominant leg can transmit run-up velocity into the vertical velocity at takeoff phase to jump high compared with the non-dominant leg.Basketball players who have a greater asymmetry of the RSJ at the collegiate level could be assessed as non-regulars judging by the magnitude of asymmetry.

  14. The Effects of Active Straight Leg Raising on Tonicity and Activity of Pelvic Stabilizer Muscles

    Directory of Open Access Journals (Sweden)

    Azadeh Shadmehr

    2011-01-01

    Full Text Available Objective: Active straight leg raising (SLR test is advocated as a valid diagnostic method in diagnosis of sacroiliac joint (SIJ dysfunction that can assess the quality of load transfer between trunk and lower limb. The aim of this study is Comparison of changes in tonicity and activity of pelvic stabilizer muscles during active SLR, between healthy individuals and patients with sacroiliac joint pain. Materials & Methods: A case – control study was designed in 26 women (19-50 years old. With use of simple sampling, surface electromyography from rectus abdominis, external oblique, internal oblique, adductor longus, erector spine, gluteus maximus and biceps femoris was recorded in 26 subjects (15 healthy females and 11 females with sacroiliac pain in resting position and during active SLR test. Resting muscle tonicity and rms during ramp time and hold time in active SLR test were assessed by non parametric-two independent sample test. Results: Biceps femoris activity in resting position was significantly larger in patients group (P<0.05. During the active SLR, the women with sacroiliac joint pain used much less activity in some pelvic stabilizer muscles compared to the healthy subjects (P<0.05. Conclusion: The increased resting tonicity of biceps femoris and decreased activity of pelvic stabilizer muscles in subjects with sacroiliac joint pain, suggests an alteration in the strategy for lumbopelvic stabilization that may disrupt load transference through the pelvis.

  15. Leg kinematics and kinetics in landing from a single-leg hop for distance. A comparison between dominant and non-dominant leg

    NARCIS (Netherlands)

    van der Harst, J. J.; Gokeler, A.; Hof, A. L.

    Background. Anterior cruciate ligament (ACL) deficiency can be a major problem for athletes and subsequent reconstruction of the ACL may be indicated if a conservative regimen has failed. After ACL reconstruction signs of abnormality in the use of the leg remain for a long time. It is expected that

  16. BUILDING A BETTER GLUTEAL BRIDGE: ELECTROMYOGRAPHIC ANALYSIS OF HIP MUSCLE ACTIVITY DURING MODIFIED SINGLE-LEG BRIDGES

    Science.gov (United States)

    Edwards, Michael; Haverkamp, Ryan; Martin, Lani; Porter, Kambry; Thach, Kailey; Sack, Richard J.; Hakansson, Nils A.

    2017-01-01

    Background Gluteal strength plays a role in injury prevention, normal gait patterns, eliminating pain, and enhancing athletic performance. Research shows high gluteal muscle activity during a single-leg bridge compared to other gluteal strengthening exercises; however, prior studies have primarily measured muscle activity with the active lower extremity starting in 90 ° of knee flexion with an extended contralateral knee. This standard position has caused reports of hamstring cramping, which may impede optimal gluteal strengthening. Hypothesis/Purpose The purpose of this study was to determine which modified position for the single-leg bridge is best for preferentially activating the gluteus maximus and medius. Study Design Cross-Sectional Methods Twenty-eight healthy males and females aged 18-30 years were tested in five different, randomized single-leg bridge positions. Electromyography (EMG) electrodes were placed on subjects’ gluteus maximus, gluteus medius, rectus femoris, and biceps femoris of their bridge leg (i.e., dominant or kicking leg), as well as the rectus femoris of their contralateral leg. Subjects performed a maximal voluntary isometric contraction (MVIC) for each tested muscle prior to performing five different bridge positions in randomized order. All bridge EMG data were normalized to the corresponding muscle MVIC data. Results A modified bridge position with the knee of the bridge leg flexed to 135 ° versus the traditional 90 ° of knee flexion demonstrated preferential activation of the gluteus maximus and gluteus medius compared to the traditional single-leg bridge. Hamstring activation significantly decreased (p gluteus maximus and medius, respectively). Conclusion Modifying the traditional single-leg bridge by flexing the active knee to 135 ° instead of 90 ° minimizes hamstring activity while maintaining high levels of gluteal activation, effectively building a bridge better suited for preferential gluteal activation

  17. The Effect of Single-Leg Stance on Dancer and Control Group Static Balance.

    Science.gov (United States)

    Kilroy, Elisabeth A; Crabtree, Olivia M; Crosby, Brittany; Parker, Amanda; Barfield, William R

    The purpose of this study was to compare kinetic differences of static balance between female dancers (D) with at least seven years of dance experience and female non-dancers (ND) who were typical college students. Participants were tested in single-leg stance. Both the dominant leg (DL) and non-dominant leg (NDL) were tested with the participants shod (S) and barefoot (BF). Kinetic variables (vertical, medio-lateral [ML], antero-posterior [AP] maximum ground reaction forces (GRF), and center of pressure (COP) ML and AP) were measured by a Bertec force platform at 1000 Hz with participants S and BF. Each subject's stance was measured over 3 × 30-second intervals. No significant differences (p≥0.05) existed between groups for height, body mass, or age. Significant differences existed between groups for balance time, AP GRF in both BF and S conditions for both DL and NDL, and ML GRF in BF NDL and S DL and NDL conditions. D and ND in BF and S conditions with DL and NDL static stance demonstrate different AP and ML GRF when balancing over a 30-second time interval. Data may suggest that ND are more prone to lose their balance. Further investigation is warranted to understand whether individuals in the rehabilitative field and athletic populations can use dance therapy for injury prevention and rehabilitation.

  18. Reliability of Single-Leg Balance and Landing Tests in Rugby Union; Prospect of Using Postural Control to Monitor Fatigue

    Directory of Open Access Journals (Sweden)

    Jordan C. Troester, Jason G. Jasmin, Rob Duffield

    2018-06-01

    Full Text Available The present study examined the inter-trial (within test and inter-test (between test reliability of single-leg balance and single-leg landing measures performed on a force plate in professional rugby union players using commercially available software (SpartaMARS, Menlo Park, USA. Twenty-four players undertook test – re-test measures on two occasions (7 days apart on the first training day of two respective pre-season weeks following 48h rest and similar weekly training loads. Two 20s single-leg balance trials were performed on a force plate with eyes closed. Three single-leg landing trials were performed by jumping off two feet and landing on one foot in the middle of a force plate 1m from the starting position. Single-leg balance results demonstrated acceptable inter-trial reliability (ICC = 0.60-0.81, CV = 11-13% for sway velocity, anterior-posterior sway velocity, and mediolateral sway velocity variables. Acceptable inter-test reliability (ICC = 0.61-0.89, CV = 7-13% was evident for all variables except mediolateral sway velocity on the dominant leg (ICC = 0.41, CV = 15%. Single-leg landing results only demonstrated acceptable inter-trial reliability for force based measures of relative peak landing force and impulse (ICC = 0.54-0.72, CV = 9-15%. Inter-test results indicate improved reliability through the averaging of three trials with force based measures again demonstrating acceptable reliability (ICC = 0.58-0.71, CV = 7-14%. Of the variables investigated here, total sway velocity and relative landing impulse are the most reliable measures of single-leg balance and landing performance, respectively. These measures should be considered for monitoring potential changes in postural control in professional rugby union.

  19. Hip-abductor fatigue and single-leg landing mechanics in women athletes.

    Science.gov (United States)

    Patrek, Mary F; Kernozek, Thomas W; Willson, John D; Wright, Glenn A; Doberstein, Scott T

    2011-01-01

    Reduced hip-abductor strength and muscle activation may be associated with altered lower extremity mechanics, which are thought to increase the risk for anterior cruciate ligament injury. However, experimental evidence supporting this relationship is limited. To examine the changes in single-leg landing mechanics and gluteus medius recruitment that occur after a hip-abductor fatigue protocol. Descriptive laboratory study. Twenty physically active women (age  =  21.0 ± 1.3 years). Participants were tested before (prefatigue) and after (postfatigue) a hip-abductor fatigue protocol consisting of repetitive side-lying hip abduction. Outcome measures included sagittal-plane and frontal-plane hip and knee kinematics at initial contact and at 60 milliseconds after initial contact during 5 single-leg landings from a height of 40 cm. Peak hip and knee sagittal-plane and frontal-plane joint moments during this time interval were also analyzed. Measures of gluteus medius activation, including latency, peak amplitude, and integrated signal, were recorded. A small (hip-abduction angle at initial contact and a small (hip at initial contact or at 60 milliseconds after initial contact. Peak external knee-adduction moment decreased 27% and peak hip adduction moment decreased 24% during the postfatigue landing condition. Gluteus medius activation was delayed after the protocol, but no difference in peak or integrated signal was seen during the landing trials. Changes observed during single-leg landings after hip-abductor fatigue were not generally considered unfavorable to the integrity of the anterior cruciate ligament. Further work may be justified to study the role of hip-abductor activation in protecting the knee during landing.

  20. Neuromuscular Control Mechanisms During Single-Leg Jump Landing in Subacute Ankle Sprain Patients: A Case Control Study.

    Science.gov (United States)

    Allet, Lara; Zumstein, Franziska; Eichelberger, Patric; Armand, Stéphane; Punt, Ilona M

    2017-03-01

    Optimal neuromuscular control mechanisms are essential for preparing, maintaining, and restoring functional joint stability during jump landing and to prevent ankle injuries. In subacute ankle sprain patients, neither muscle activity nor kinematics during jump landing has previously been assessed. To compare neuromuscular control mechanisms and kinematics between subacute ankle sprain patients and healthy persons before and during the initial contact phase of a 25-cm single-leg jump. Case-control study. University hospital. Fifteen patients with grade I or II acute ankle sprains were followed up after 4 weeks of conservative management not involving physical therapy. Subjects performed alternately 3 single-leg forward jumps of 25 cm (toe-to-heel distance) barefoot. Their results were compared with the data of 15 healthy subjects. Electromyographic (EMG) activity of the musculus (m.) gastrocnemius lateralis, m. tibialis anterior, and m. peroneus longus as well as kinematics for ankle, knee, and hip joint were recorded for pre-initial contact (IC) phase, post-initial contact phase, and reflex-induced phase. The results showed that EMG activity of the 3 muscles did not differ between ankle sprain patients (n = 15) and healthy persons (n = 15) for any of the analyzed time intervals (all P > .05). However, during the pre-IC phase, ankle sprain patients presented less plantar flexion, as well as during the post-IC phase after jump landing, compared to healthy persons (P ankle joint can lead to neuromuscular control mechanism disturbances through which functional instability might arise. III. Copyright © 2017 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  1. Predicting muscle forces during the propulsion phase of single leg triple hop test.

    Science.gov (United States)

    Alvim, Felipe Costa; Lucareli, Paulo Roberto Garcia; Menegaldo, Luciano Luporini

    2018-01-01

    Functional biomechanical tests allow the assessment of musculoskeletal system impairments in a simple way. Muscle force synergies associated with movement can provide additional information for diagnosis. However, such forces cannot be directly measured noninvasively. This study aims to estimate muscle activations and forces exerted during the preparation phase of the single leg triple hop test. Two different approaches were tested: static optimization (SO) and computed muscle control (CMC). As an indirect validation, model-estimated muscle activations were compared with surface electromyography (EMG) of selected hip and thigh muscles. Ten physically healthy active women performed a series of jumps, and ground reaction forces, kinematics and EMG data were recorded. An existing OpenSim model with 92 musculotendon actuators was used to estimate muscle forces. Reflective markers data were processed using the OpenSim Inverse Kinematics tool. Residual Reduction Algorithm (RRA) was applied recursively before running the SO and CMC. For both, the same adjusted kinematics were used as inputs. Both approaches presented similar residuals amplitudes. SO showed a closer agreement between the estimated activations and the EMGs of some muscles. Due to inherent EMG methodological limitations, the superiority of SO in relation to CMC can be only hypothesized. It should be confirmed by conducting further studies comparing joint contact forces. The workflow presented in this study can be used to estimate muscle forces during the preparation phase of the single leg triple hop test and allows investigating muscle activation and coordination. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. BUILDING A BETTER GLUTEAL BRIDGE: ELECTROMYOGRAPHIC ANALYSIS OF HIP MUSCLE ACTIVITY DURING MODIFIED SINGLE-LEG BRIDGES.

    Science.gov (United States)

    Lehecka, B J; Edwards, Michael; Haverkamp, Ryan; Martin, Lani; Porter, Kambry; Thach, Kailey; Sack, Richard J; Hakansson, Nils A

    2017-08-01

    Gluteal strength plays a role in injury prevention, normal gait patterns, eliminating pain, and enhancing athletic performance. Research shows high gluteal muscle activity during a single-leg bridge compared to other gluteal strengthening exercises; however, prior studies have primarily measured muscle activity with the active lower extremity starting in 90 ° of knee flexion with an extended contralateral knee. This standard position has caused reports of hamstring cramping, which may impede optimal gluteal strengthening. The purpose of this study was to determine which modified position for the single-leg bridge is best for preferentially activating the gluteus maximus and medius. Cross-Sectional. Twenty-eight healthy males and females aged 18-30 years were tested in five different, randomized single-leg bridge positions. Electromyography (EMG) electrodes were placed on subjects' gluteus maximus, gluteus medius, rectus femoris, and biceps femoris of their bridge leg (i.e., dominant or kicking leg), as well as the rectus femoris of their contralateral leg. Subjects performed a maximal voluntary isometric contraction (MVIC) for each tested muscle prior to performing five different bridge positions in randomized order. All bridge EMG data were normalized to the corresponding muscle MVIC data. A modified bridge position with the knee of the bridge leg flexed to 135 ° versus the traditional 90 ° of knee flexion demonstrated preferential activation of the gluteus maximus and gluteus medius compared to the traditional single-leg bridge. Hamstring activation significantly decreased (p bridge by flexing the active knee to 135 ° instead of 90 ° minimizes hamstring activity while maintaining high levels of gluteal activation, effectively building a bridge better suited for preferential gluteal activation. 3.

  3. RELIABILITY OF KINEMATICS AND KINETICS ASSOCIATED WITH HORIZONTAL SINGLE LEG DROP JUMP ASSESSMENT. A BRIEF REPORT

    Directory of Open Access Journals (Sweden)

    Markus Stålbom

    2007-06-01

    Full Text Available Determining the reliability of a unilateral horizontal drop jump for displacement provided the focus for this research. Eighteen male subjects were required to step off a 20cm box and land on a force plate with one leg and thereafter jump for maximal horizontal displacement on two different days. Dependent variables from the jump assessment included mean and peak vertical (V and horizontal (H ground reaction forces (GRF and impulses, horizontal displacement and contact time. The between-trial variability of all kinematic and kinetic measures was less than 7%. The most consistent measure over both trials was the horizontal displacement jumped (1.2 to 1.4% and the most variable were the contact time the first day (6.5% and peak HGRF the second day (4.3%. In all cases there was less variation associated with the second rather than the first day. In terms of test-retest variability the percent changes in the means and coefficient of variations (CVs were all under 10%. The smallest changes in the mean (0.43 %, least variation (< 2.26 % and second highest intraclass correlation co-efficient (ICC = 0.95 were found for horizontal displacement jumped. The highest ICC (0.96 was found for horizontal impulse. Given the reliability of the single leg drop jump, it may offer better prognostic and diagnostic information than that obtained with bilateral vertical jumps

  4. Effect of ankle braces on lower extremity joint energetics in single-leg landings.

    Science.gov (United States)

    Gardner, Jacob K; McCaw, Steven T; Laudner, Kevin G; Smith, Peter J; Stafford, Lindsay N

    2012-06-01

    Ankle sprains are one of the most common injuries in competitive and recreational athletics. Studies have shown that the use of prophylactic ankle braces effectively reduces the frequency of ankle sprains in athletes. However, although it is generally accepted that the ankle braces are effective at reducing frontal plane motion, some researchers report that the design of the brace may also reduce ankle sagittal plane motion. The purpose of this study was to quantify lower extremity joint contributions to energy absorption during single-legged drop landings in three ankle brace conditions (no brace, boot brace, and hinged brace). Eleven physically active females experienced in landing and free of lower extremity injury (age = 22.3 ± 1.7 yr, height = 1.66 ± 0.04 m, mass = 58.43 ± 5.83 kg) performed 10 single-leg drop landings in three conditions (one unbraced, two braced) from a 0.33-m height. Measurements taken were hip, knee, and ankle joint impulse; hip, knee, ankle, and total work; and hip, knee, and ankle joint relative work. Total energy absorption remained consistent across the braced conditions (P = 0.057). Wearing the boot brace reduced relative ankle work (P = 0.04, Cohen d = 0.43) but did not change relative knee (P = 0.08, Cohen d = 0.32) or hip (P = 0.14, Cohen d = 0.20) work compared with the no-brace condition. In an ankle-braced condition, ankle, knee, and hip energetics may be altered depending on the design of the brace.

  5. Ankle muscle activity modulation during single-leg stance differs between children, young adults and seniors.

    Science.gov (United States)

    Kurz, Eduard; Faude, Oliver; Roth, Ralf; Zahner, Lukas; Donath, Lars

    2018-02-01

    Incomplete maturation and aging-induced declines of the neuromuscular system affect postural control both in children and older adults and lead to high fall rates. Age-specific comparisons of the modulation of ankle muscle activation and behavioral center of pressure (COP) indices during upright stance have been rarely conducted. The objective of the present study was to quantify aging effects on a neuromuscular level. Thus, surface electromyography (SEMG) modulation and co-activity of ankle muscles during single-leg standing was compared in healthy children, young adults and seniors. Postural steadiness (velocity and mean sway frequency of COP), relative muscle activation (SEMG modulation) and co-activation of two ankle muscles (tibialis anterior, TA; soleus, SO) were examined during single-leg stance in 19 children [age, 9.7 (SD 0.5) years], 30 adults [23.3 (1.5) years] and 29 seniors [62.7 (6.1) years]. Velocity of COP in medio-lateral and anterior-posterior directions, mean sway frequency in anterior-posterior direction, relative muscle activation (TA and SO) and co-activation revealed large age effects (P  0.14). Post-hoc comparisons indicated higher COP velocities, anterior-posterior frequencies, relative SO activation and co-activation in children and seniors when compared with adults. Relative TA activation was higher in children and adults compared with seniors (P modulation. However, TA modulation is higher in children and adults, whereas seniors' TA modulation capacity is diminished. An aging-induced decline of TA motor units might account for deteriorations of TA modulation in seniors.

  6. Technology in Rehabilitation: Evaluating the Single Leg Squat Exercise with Wearable Inertial Measurement Units.

    Science.gov (United States)

    Whelan, Darragh F; O'Reilly, Martin A; Ward, Tomás E; Delahunt, Eamonn; Caulfield, Brian

    2017-03-23

    The single leg squat (SLS) is a common lower limb rehabilitation exercise. It is also frequently used as an evaluative exercise to screen for an increased risk of lower limb injury. To date athlete / patient SLS technique has been assessed using expensive laboratory equipment or subjective clinical judgement; both of which are not without shortcomings. Inertial measurement units (IMUs) may offer a low cost solution for the objective evaluation of athlete / patient SLS technique. The aims of this study were to determine if in combination or in isolation IMUs positioned on the lumbar spine, thigh and shank are capable of: (a) distinguishing between acceptable and aberrant SLS technique; (b) identifying specific deviations from acceptable SLS technique. Eighty-three healthy volunteers participated (60 males, 23 females, age: 24.68 + / - 4.91 years, height: 1.75 + / - 0.09 m, body mass: 76.01 + / - 13.29 kg). All participants performed 10 SLSs on their left leg. IMUs were positioned on participants' lumbar spine, left shank and left thigh. These were utilized to record tri-axial accelerometer, gyroscope and magnetometer data during all repetitions of the SLS. SLS technique was labelled by a Chartered Physiotherapist using an evaluation framework. Features were extracted from the labelled sensor data. These features were used to train and evaluate a variety of random-forests classifiers that assessed SLS technique. A three IMU system was moderately successful in detecting the overall quality of SLS performance (77 % accuracy, 77 % sensitivity and 78 % specificity). A single IMU worn on the shank can complete the same analysis with 76 % accuracy, 75 % sensitivity and 76 % specificity. Single sensors also produce competitive classification scores relative to multi-sensor systems in identifying specific deviations from acceptable SLS technique. A single IMU positioned on the shank can differentiate between acceptable and aberrant

  7. Steadiness of Spinal Regions during Single-Leg Standing in Older Adults with and without Chronic Low Back Pain.

    Directory of Open Access Journals (Sweden)

    Yi-Liang Kuo

    Full Text Available The aims of this study were to compare the steadiness index of spinal regions during single-leg standing in older adults with and without chronic low back pain (LBP and to correlate measurements of steadiness index with the performance of clinical balance tests. Thirteen community-dwelling older adults (aged 55 years or above with chronic LBP and 13 age- and gender-matched asymptomatic volunteers participated in this study. Data collection was conducted in a university research laboratory. Measurements were steadiness index of spinal regions (trunk, thoracic spine, lumbar spine, and pelvis during single-leg standing including relative holding time (RHT and relative standstill time (RST, and clinical balance tests (timed up and go test and 5-repetition sit to stand test. The LBP group had a statistically significantly smaller RHT than the control group, regardless of one leg stance on the painful or non-painful sides. The RSTs on the painful side leg in the LBP group were not statistically significantly different from the average RSTs of both legs in the control group; however, the RSTs on the non-painful side leg in the LBP group were statistically significantly smaller than those in the control group for the trunk, thoracic spine, and lumbar spine. No statistically significant intra-group differences were found in the RHTs and RSTs between the painful and non-painful side legs in the LBP group. Measurements of clinical balance tests also showed insignificant weak to moderate correlations with steadiness index. In conclusion, older adults with chronic LBP demonstrated decreased spinal steadiness not only in the symptomatic lumbar spine but also in the other spinal regions within the kinetic chain of the spine. When treating older adults with chronic LBP, clinicians may also need to examine their balance performance and spinal steadiness during balance challenging tests.

  8. Influence of shoes and foot orthoses on lower extremity muscle activation onset times in healthy subjects during the transition from double-leg stance to single-leg stance.

    Science.gov (United States)

    Dingenen, B; Peeraer, L; Deschamps, K; Fieuws, S; Janssens, L; Staes, F

    2015-01-01

    The aim of this study was to evaluate the influence of shoes and foot orthoses on lower extremity muscle activation patterns in healthy subjects during the transition from double-leg stance to single-leg stance. Eight male and seven female young asymptomatic adults who wear foot orthoses were recruited. Muscle activation onset times of 9 lower extremity muscles were recorded using surface electromyography during the transition from double-leg stance to single-leg stance, performed with eyes open and with eyes closed. This was tested in 4 experimental conditions: 1) barefoot (BF); 2) shoes only (SO); 3) shoes with standardized FO (SSFO); and 4) shoes with customized FO (SCFO). Based on a four-way (condition-region-leg-vision) linear model for repeated measures, we found a significant condition effect (P=0.025). Differences between conditions did not depend on the leg and/or the vision condition, but on the region (ankle-knee-hip). Based on a two-way (condition-muscle) linear model within each region, only significant differences between conditions for peroneus longus (P=0.003) were found. The onset times of peroneus longus were significantly earlier in SO (P=0.029) and SCFO (P=0.001) compared to BF. These results indicate that SO and SCFO can accelerate peroneus longus muscle activation onset times during the transition from double-leg stance to single-leg stance. Further research is required to determine how these adaptations may develop over time.

  9. Report on single beam stability - coherent effects

    International Nuclear Information System (INIS)

    Brouzet, E.; Gareyte, J.; Hofmann, A.; Laclare, J.C.; Leleux, G.; Miles, J.; Schindl, K.H.

    1980-01-01

    Group 1A was concerned with single beam stability, coherent effects. Theory is available. Most of the material for this work was drawn from F.J. Sacherer theory which has been left in reasonably good shape in the sense that given any coupling impedance, its effect on the beam can be estimated. The EBI computer program was extensively used in this respect. We still lack thorough knowledge of the SPS coupling impedance. Accordingly our results rest on a model. This model should be too unrealistic since it originates from various data of the SPS and other machines. Nevertheless any complementary information about the SPS impedance would be welcome. Broad-band impedance and parasitic effects on transverse and longitudinal motions will be reviewed. We shall mainly focus on the 270 GeV case with six equidistant bunches and 10 11 particles per bunch. For other schemes results can be obtained in a similar fashion. Some relevant figures will be given for the situation at injection. (orig.)

  10. Lower eccentric hamstring strength and single leg hop for distance predict hamstring injury in PETE students.

    Science.gov (United States)

    Goossens, L; Witvrouw, E; Vanden Bossche, L; De Clercq, D

    2015-01-01

    Hamstring injuries have not been under research in physical education teacher education (PETE) students so far. Within the frame of the development of an injury prevention program, for this study we conducted an analysis of modifiable risk factors for hamstring injuries in PETE students. Hamstring injuries of 102 freshmen bachelor PETE students were registered prospectively during one academic year. Eighty-one students completed maximum muscle strength tests of hip extensors, hamstrings, quadriceps (isometric) and hamstrings (eccentric) at the start of the academic year. Sixty-nine of the latter completed a single leg hop for distance (SLHD). Risk factors for hamstring injuries were statistically detected using logistic regression. Sixteen hamstring injuries (0.16 injuries/student/academic year; 0.46 injuries/1000 h) occurred to 10 participants. Eight cases were included in the risk factor analysis. Lower eccentric hamstring strength (odds ratio (ODD) = 0.977; p = 0.043), higher isometric/eccentric hamstring strength ratio (ODD = 970.500; p = 0.019) and lower score on the SLHD (ODD = 0.884; p = 0.005) were significant risk factors for hamstring injury. A combination of eccentric hamstring strength test and SLHD could give a good risk analysis of hamstring injuries in PETE students. This might offer great perspectives for easily applicable screening in a clinical setting.

  11. Single-leg drop landing motor control strategies following acute ankle sprain injury.

    Science.gov (United States)

    Doherty, C; Bleakley, C; Hertel, J; Caulfield, B; Ryan, J; Delahunt, E

    2015-08-01

    No research currently exists investigating the effect of acute injury on single-limb landing strategies. The aim of the current study was to analyze the coordination strategies of participants in the acute phase of lateral ankle sprain (LAS) injury. Thirty-seven participants with acute, first-time LAS and 19 uninjured participants completed a single-leg drop landing task on both limbs. Three-dimensional kinematic (angular displacement) and sagittal plane kinetic (moment-of-force) data were acquired for the joints of the lower extremity from 200 ms pre-initial contact (IC) to 200 ms post-IC. The peak magnitude of the vertical component of the ground reaction force (GRF) was also computed. Injured participants displayed a bilateral increase in hip flexion, with altered transverse plane kinematic profiles at the knee and ankle for both limbs (P < 0.05). This coincided with a reduction in the net-supporting flexor moment of the lower extremity (P < 0.05) and magnitude of the peak vertical GRF for the injured limb (21.82 ± 2.44 N/kg vs 24.09 ± 2.77 N/kg; P = 0.013) in injured participants compared to control participants. These results demonstrate that compensatory movement strategies are utilized by participants with acute LAS to successfully reduce the impact forces of landing. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. X-pod: a small footprint multi-legged piezoelectric single-crystal unimorph-based actuator concept

    Science.gov (United States)

    Shukla, Rahul; Lim, Leong-Chew; Gandhi, Prasanna

    2012-06-01

    Multi-legged piezoelectric single-crystal actuators with small footprints using an X-pod approach, namely, the Tripod and Tetrapod, have been conceptualized, each leg being a unimorph driven by Pb(Zn1/3Nb2/3)O3-(6-7)%PbTiO3 (PZN-(6-7)%PT) single crystals of [110]L × [001]T cut. Both finite-element analysis and experimental investigations are carried out to evaluate the performance of the Tripod and Tetrapod actuators. When operated at 0.57 kV mm-1, both actuators exhibit an axial displacement of nearly 60 µm. Blocking forces of about 10 N and 14 N are observed for the Tripod and the Tetrapod, respectively. The blocking forces are roughly doubled if the perfectly clamped condition is imposed for the legs at the pedestal end while the axial displacement is lowered marginally by 12%. In addition to small footprints, other attractive features of the actuators include greater flexibility to modify the leg geometry and their inclination to suit the application.

  13. Lower limb muscle pre-motor time measures during a choice reaction task associate with knee abduction loads during dynamic single leg landings.

    Science.gov (United States)

    McLean, Scott G; Borotikar, Bhushan; Lucey, Sarah M

    2010-07-01

    Female neuromuscular control during dynamic landings is considered central to their increased ACL injury risk relative to males. There is limited insight, however, into the neuromuscular parameters governing this risk, which may hinder prevention success. This study targeted a new screenable and potentially trainable neuromuscular risk factor. Specifically, we examined whether lower limb muscle pre-motor times, being the time between stimulus presentation and initiation of the muscle EMG burst, elicited during a simple choice reaction task correlated with knee abduction loads during separate single leg landings. Twenty female NCAA athletes had muscle (n=8) pre-motor time and knee biomechanics data recorded bilaterally during a choice reaction task. Knee biomechanics were also quantified during anticipated and unanticipated single (dominant and non-dominant) leg landings. Mean peak knee abduction loads during landings were submitted to a two-way ANOVA to test for limb and decision effects. Individual regression coefficients were initially computed between-limb-based muscle pre-motor times and peak abduction moments elicited during both the choice reaction and landing tasks. Limb-based linear stepwise regression coefficients were also computed between muscle PMT's demonstrating significant (Pmuscle pre-motor times during a specific choice reaction task are associated with peak knee abduction loads during separate single leg landings. These muscles appear critical in stabilizing the knee against the extreme dynamic load states associated with such tasks. Targeted screening and training of supraspinal processes governing these muscle pre-motor times may ultimately enable external knee loads associated with landings to be more effectively countered by the overarching neuromuscular strategy. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  14. Abdominal Hollowing Reduces Lateral Trunk Displacement During Single-Leg Squats in Healthy Females But Does Not Affect Peak Hip Abduction Angle or Knee Abductio Angle/Moment.

    Science.gov (United States)

    Linde, Lukas D; Archibald, Jessica; Lampert, Eve C; Srbely, John Z

    2017-07-17

    Females suffer 4-6 times more non-contact anterior cruciate ligament (ACL) injuries than males due to neuromuscular control deficits of the hip musculature leading to increases in hip adduction angle, knee abduction angle, and knee abduction moment during dynamic tasks such as single-leg squats. Lateral trunk displacement has been further related to ACL injury risk in females, leading to the incorporation of core strength/stability exercises in ACL preventative training programs. However, the direct mechanism relating lateral trunk displacement and lower limb ACL risk factors is not well established. To assess the relationship between lateral trunk displacement and lower limb measures of ACL injury risk by altering trunk control through abdominal activation techniques during single-leg squats in healthy females. Interventional Study Setting: Movement and Posture Laboratory Participants: 13 healthy females (21.3±0.88y, 1.68±0.07m, 58.27±5.46kg) Intervention: Trunk position and lower limb kinematics were recorded using an optoelectric motion capture system during single-leg squats under differing conditions of abdominal muscle activation (abdominal hollowing, abdominal bracing, control), confirmed via surface electromyography. Lateral trunk displacement, peak hip adduction angle, peak knee abduction angle/moment, and average muscle activity from bilateral internal oblique, external oblique, and erector spinae muscles. No differences were observed for peak lateral trunk displacement, peak hip adduction angle or peak knee abduction angle/moment. Abdominal hollowing and bracing elicited greater muscle activation than the control condition, and bracing was greater than hollowing in four of six muscles recorded. The lack of reduction in trunk, hip, and knee measures of ACL injury risk during abdominal hollowing and bracing suggests that these techniques alone may provide minimal benefit in ACL injury prevention training.

  15. Comparative Effects of Four Single Leg Squat Exercises in Subjects with Gluteus Medius Weakness.

    Science.gov (United States)

    Han, Hae-Rim; Yi, Chung-Hwi; You, Sung-Hyun; Cynn, Heon-Seock; Lim, One-Bin; Son, Jae-Ik

    2017-07-17

    Of the weight bearing exercises, single leg squat (SLS) represents one of the most commonly used hip strengthening exercises that require more gluteus medius (GMED) activity. To date, no studies have investigated how the four SLS exercises affects muscle imbalance of GMED, tensor fasciae latae (TFL), and adductor longus (AL), and kinematics of hip. To investigate the hip muscle activities, onset time, and kinematics during four different SLS exercises (unilateral squat, unilateral wall-squat, lateral step-down, and front step-down) in subjects with GMED weakness. Repeated-measures experimental design. Research laboratory. Twenty-two subjects (11 males and 11 females) participated in this study and were compared using one-way repeated analysis of variance. Surface electromyography was used to measure the muscle activities and onset time of the GMED, TFL, and AL, and 3-dimensional motion tracking system was used to measure the hip adduction and internal/external rotation angles during SLS exercises. One-way repeated analysis of variance was used at a significance level of p<0.05. The unilateral wall-squat produced higher GMED/TFL activity ratio and lower GMED/TFL onset time ratio than in the other three exercises (p<0.05). No difference in GMED/AL activity ratio and GMED/AL onset time ratio was observed. The hip adduction angle was greater in unilateral wall-squat than in the other three exercises (p<0.05). As for the hip internal/external rotation, lateral step-down exhibited higher hip internal rotation angle than front step-down (p<0.05). The unilateral wall-squat may be recommended as an effective exercise for the subjects with GMED weakness, but they should take care to avoid excessive hip adduction during the exercise.

  16. ANKLE JOINT CONTROL DURING SINGLE-LEGGED BALANCE USING COMMON BALANCE TRAINING DEVICES - IMPLICATIONS FOR REHABILITATION STRATEGIES

    DEFF Research Database (Denmark)

    Strøm, Mark; Thorborg, Kristian; Bandholm, Thomas

    2016-01-01

    BACKGROUND: A lateral ankle sprain is the most prevalent musculoskeletal injury in sports. Exercises that aim to improve balance are a standard part of the ankle rehabilitation process. In an optimal progression model for ankle rehabilitation and prevention of future ankle sprains, it is important...... to characterize different balance exercises based on level of difficulty and sensori-motor training stimulus. PURPOSE: The purpose of this study was to investigate frontal-plane ankle kinematics and associated peroneal muscle activity during single-legged balance on stable surface (floor) and three commonly used...... balance devices (Airex®, BOSU® Ball and wobble board). DESIGN: Descriptive exploratory laboratory study. METHODS: Nineteen healthy subjects performed single-legged balance with eyes open on an Airex® mat, BOSU® Ball, wobble board, and floor (reference condition). Ankle kinematics were measured using...

  17. Venogram - leg

    Science.gov (United States)

    Phlebogram - leg; Venography - leg; Angiogram - leg ... into a vein in the foot of the leg being looked at. An intravenous (IV) line is ... vein. A tourniquet may be placed on your leg so the dye flows into the deeper veins. ...

  18. Influence of increasing knee flexion angle on knee-ankle varus stress during single-leg jump landing

    Directory of Open Access Journals (Sweden)

    Mariam A. Ameer, PhD

    2017-12-01

    Full Text Available Objectives: The primary aim of this study was to identify the relationship between the peak knee flexion angle and knee-ankle varus stress in the landing phase of the single-leg jump during running. Methods: Fifteen male handball players from the first Saudi Arabian handball team were incorporated in this study. Each player performed a single-leg jump-land after running a fixed distance of 450 cm. The data were measured using a 3D motion analysis system. The maximum knee flexion angle, knee varus angle, centre of pressure pathway in the medio-lateral direction, and ankle varus moment were measured. Results: The Pearson Product Moment Correlation showed that a greater knee flexion angle was related to a greater lateral displacement of the centre of pressure (r = 0.794, P = 0.000, a greater ankle varus moment (r = 0.707, P = 0.003, and a greater knee varus angle (r = 0.753, P = 0.001. In addition, the greater ankle varus moment was related to the greater lateral displacement of the centre of pressure (r = 0.734, P = 0.002. Conclusions: These findings may help physical therapists and conditioning professionals to understand the impact of increasing knee flexion angle on the lower limb joints. Such findings may help to develop training protocols for enhancing the lateral body reaction during the landing phase of the single-leg jump, which may protect the knee and ankle joints from excessive varus stresses. Keywords: 3D motion analysis, Ankle kinetic, Centre of pressure pathway, Handball playing, Knee kinematic, Single-leg jump

  19. Steadiness of Spinal Regions during Single-Leg Standing in Older Adults with and without Chronic Low Back Pain

    OpenAIRE

    Kuo, Yi-Liang; Huang, Kuo-Yuan; Chiang, Pei-Tzu; Lee, Pei-Yun; Tsai, Yi-Ju

    2015-01-01

    The aims of this study were to compare the steadiness index of spinal regions during single-leg standing in older adults with and without chronic low back pain (LBP) and to correlate measurements of steadiness index with the performance of clinical balance tests. Thirteen community-dwelling older adults (aged 55 years or above) with chronic LBP and 13 age- and gender-matched asymptomatic volunteers participated in this study. Data collection was conducted in a university research laboratory. ...

  20. Single-leg balance and core motor control in children: when does the risk for ACL injury occurs?

    OpenAIRE

    Hutchinson, Allison B; Yao, Paul; Hutchinson, Mark R

    2016-01-01

    Introduction While numerous publications have demonstrated the correlation of poor single-leg balance and core motor control with an increased risk of anterior cruciate ligament (ACL) injuries in skeletally mature female athletes, few have analysed the preadolescent population regarding when indeed comparative deficits in balance and core control actually occur. The purpose of this study was to assess whether the neuromotor factors that place mature females at increased risk of ACL injury act...

  1. Control strategy for Single-phase Transformerless Three-leg Unified Power Quality Conditioner Based on Space Vector Modulation

    DEFF Research Database (Denmark)

    Lu, Yong; Xiao, Guochun; Wang, Xiongfei

    2016-01-01

    The unified power quality conditioner (UPQC) is known as an effective compensation device to improve PQ for sensitive end-users. This paper investigates the operation and control of a single-phase three-leg UPQC (TL-UPQC), where a novel space vector modulation method is proposed for naturally...... solving the coupling problem introduced by the common switching leg. The modulation method is similar to the well-known space vector modulation widely used with three-phase voltage source converters, which thus brings extra flexibility to the TL-UPQC system. Two optimized modulation modes with either...... reduced switching loss or harmonic distortion are derived, evaluated, and discussed, in order to demonstrate the flexibility brought by the space vector modulated TL-UPQC. Simulations and experimental results are presented to verify the feasibility and effectiveness of the proposed space vector modulation...

  2. Limb symmetry during double-leg squats and single-leg squats on land and in water in adults with long-standing unilateral anterior knee pain; a cross sectional study.

    Science.gov (United States)

    Severin, Anna C; Burkett, Brendan J; McKean, Mark R; Wiegand, Aaron N; Sayers, Mark G L

    2017-01-01

    The presence of pain during movement typically results in changes in technique. However, the physical properties of water, such as flotation, means that water-based exercise may not only reduce compensatory movement patterns but also allow pain sufferers to complete exercises that they are unable to perform on land. The purpose of this study was to assess bilateral kinematics during double-leg squats and single-leg squats on land and in water in individuals with unilateral anterior knee pain. A secondary aim was to quantify bilateral asymmetry in both environments in affected and unaffected individuals using a symmetry index. Twenty individuals with unilateral knee pain and twenty healthy, matched controls performed body weight double- and single-leg squats in both environments while inertial sensors (100 Hz) recorded trunk and lower body kinematics. Repeated-measures statistics tested for environmental effects on movement depths and peak angles within the anterior knee pain group. Differences in their inter-limb symmetry in each environments was compared to the control group using analysis of variance tests. Water immersion allowed for greater movement depths during both exercises (double-leg squat: +7 cm, p  = 0.032, single-leg squat: +9 cm, p  = 0.002) for the knee pain group. The double-leg squat was symmetrical on land but water immersion revealed asymmetries in the lower body frontal plane movements. The single-leg squat revealed decreased hip flexion and frontal plane shank motions on the affected limb in both environments. Water immersion also affected the degree of lower limb asymmetry in both groups, with differences also showing between groups. Individuals with anterior knee pain achieved increased squat depth during both exercises whilst in water. Kinematic differences between the affected and unaffected limbs were often increased in water. Individuals with unilateral anterior knee pain appear to utilise different kinematics in the affected

  3. The single-leg Roman chair hold is more effective than the Nordic hamstring curl in improving hamstring strength-endurance in Gaelic footballers with previous hamstring injury.

    Science.gov (United States)

    Macdonald, Ben; O'Neill, John; Pollock, Noel; Van Hooren, Bas

    2018-03-06

    Poor hamstring strength-endurance is a risk factor for hamstring injuries. This study investigated the effectiveness of the single-leg Roman hold and Nordic hamstring curl in improving hamstring strength-endurance. Twelve Gaelic footballers (mean ± standard deviation age, height and mass were 25.17 ± 3.46 years, 179.25 ± 5.88 cm, 85.75 ± 4.75 kilo) with a history of hamstring injury were randomized into 2 groups that performed 6 weeks of either Nordic hamstring curl, or single-leg Roman chair hold training. The single-leg hamstring bridge (SLHB) was measured pre- and post- intervention. The Roman chair group showed a very likely moderate magnitude improvement on SLHB performance for both legs (23.7% for the previously injured leg [90% confidence interval 9.6% to 39.6%] and 16.9% for the non-injured leg [6.2% to 28.8%]). The Nordic curl group showed a likely trivial change in SLHB performance for the non-injured leg (-2.1% [-6.7% to 2.6%]) and an unclear, but possibly trivial change for the previously injured leg (0.3% [-5.6% to 6.6%]). The Roman chair group improved very likely more with a moderate magnitude in both the non-injured (19.5% [8.0% to 32.2%]) and the previously injured leg (23.3% [8.5% to 40.0%]) compared to the Nordic curl group. This study demonstrated that 6-weeks single-leg Roman chair training substantially improved SLHB performance, suggesting that it may be an efficacious strategy to mitigate hamstring (re-) injury risk. Conversely, 6-weeks Nordic curl training did not substantially improve SLHB performance, suggesting this may not be the intervention of choice for modifying this risk factor.

  4. Leg extensor muscle strength, postural stability, and fear of falling after a 2-month home exercise program in women with severe knee joint osteoarthritis.

    Science.gov (United States)

    Rätsepsoo, Monika; Gapeyeva, Helena; Sokk, Jelena; Ereline, Jaan; Haviko, Tiit; Pääsuke, Mati

    2013-01-01

    BACKGROUND AND OBJECTIVE. The aim of this study was to compare the leg extensor muscle strength, the postural stability, and the fear of falling in the women with severe knee joint osteoarthritis (OA) before and after a 2-month home exercise program (HEP). MATERIAL AND METHODS. In total, 17 women aged 46-72 years with late-stage knee joint OA scheduled for total knee arthroplasty participated in this study before and after the 2-month HEP with strengthening, stretching, balance, and step exercises. The isometric peak torque (PT) of the leg extensors and postural stability characteristics when standing on a firm or a foam surface for 30 seconds were recorded. The fear of falling and the pain intensity (VAS) were estimated. RESULTS. A significant increase in the PT and the PT-to-body weight (PT-to-BW) ratio of the involved leg as well as the bilateral PT and the PT-to-BW ratio was found after the 2-month HEP compared with the data before the HEP (Pafter the HEP (PAfter the 2-month HEP, the leg extensor muscle strength increased and the postural sway length on a foam surface decreased. The results indicate that the increased leg extensor muscle strength improves postural stability and diminishes the fear of falling in women with late-stage knee joint OA.

  5. Strategies for equilibrium maintenance during single leg standing on a wobble board

    DEFF Research Database (Denmark)

    Silva, Priscila de Brito; Oliveira, Anderson Souza; Mrachacz-Kersting, Natalie

    2016-01-01

    (p CoP and WB angular movement measures were weakly and not significantly correlated between tasks. This lack of correlation indicates that WB balance maintenance...... to calculate trunk and contralateral-leg excursion (EXC) and velocity (VEL), and center of pressure (CoP) EXC and VEL during FS on a force platform. From the WB test, standing time (WBTIME) was determined and the board's angular EXC and VEL were calculated from four markers on the WB as surrogate measures...... for CoP dynamics. Electromyographic average rectified values (ARV) from eight leg and thigh muscles of the supporting limb were calculated for both tasks. WB ARV amplitudes were normalized with respect to the value of FS ARV and presented significantly higher peroneus longus and biceps femoris activity...

  6. Leg contracture in mice after single and multifractionated 137Cs exposure

    International Nuclear Information System (INIS)

    Masuda, K.; Hunter, N.; Stone, H.B.; Withers, H.R.

    1987-01-01

    This is a report of studies of time-dose relationships for post-irradiation leg contractures in mice. The isoeffect doses for various degrees of contracture, measured 250 days after irradiation, increased with the number of fractions, but not with the overall treatment times, throughout 30 days. The isoeffect curves relating the total doses for given levels of responses to the doses per fraction were steeper for leg contractures than for acute skin reactions. The alpha/beta ratios ranged from 1.4 to 5.0 Gy, depending on the degrees of contracture. They were less than the 7.5 to 50 Gy for acute skin reactions as determined in previous experiments using the same animals and irradiation systems. Thus, the data resembled those from other slowly-responding normal tissues such as the spinal cord, kidney and lung. The leg contracture consisted of dermatogenic, myogenic, and arthrogenic components; after the mice were sacrificed there was residual contracture following removal of the skin and muscle. Inhibition of bone growth accounted for only a small proportion of the contracture. The overall response reflected responses of several tissue types

  7. Leg contracture in mice after single and multifractionated 137Cs exposure

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, K.; Hunter, N.; Stone, H.B.; Withers, H.R.

    1987-08-01

    This is a report of studies of time-dose relationships for post-irradiation leg contractures in mice. The isoeffect doses for various degrees of contracture, measured 250 days after irradiation, increased with the number of fractions, but not with the overall treatment times, throughout 30 days. The isoeffect curves relating the total doses for given levels of responses to the doses per fraction were steeper for leg contractures than for acute skin reactions. The alpha/beta ratios ranged from 1.4 to 5.0 Gy, depending on the degrees of contracture. They were less than the 7.5 to 50 Gy for acute skin reactions as determined in previous experiments using the same animals and irradiation systems. Thus, the data resembled those from other slowly-responding normal tissues such as the spinal cord, kidney and lung. The leg contracture consisted of dermatogenic, myogenic, and arthrogenic components; after the mice were sacrificed there was residual contracture following removal of the skin and muscle. Inhibition of bone growth accounted for only a small proportion of the contracture. The overall response reflected responses of several tissue types.

  8. Quantifying kinematic differences between land and water during squats, split squats, and single-leg squats in a healthy population.

    Directory of Open Access Journals (Sweden)

    Anna C Severin

    Full Text Available Aquatic exercises can be used in clinical and sporting disciplines for both rehabilitation and sports training. However, there is limited knowledge on the influence of water immersion on the kinematics of exercises commonly used in rehabilitation and fitness programs. The aim of this study was to use inertial sensors to quantify differences in kinematics and movement variability of bodyweight squats, split squats, and single-leg squats performed on dry land and whilst immersed to the level of the greater trochanter. During two separate testing sessions, 25 active healthy university students (22.3±2.9 yr. performed ten repetitions of each exercise, whilst tri-axial inertial sensors (100 Hz recorded their trunk and lower body kinematics. Repeated-measures statistics tested for differences in segment orientation and speed, movement variability, and waveform patterns between environments, while coefficient of variance was used to assess differences in movement variability. Between-environment differences in segment orientation and speed were portrayed by plotting the mean difference ±95% confidence intervals (CI throughout the tasks. The results showed that the depth of the squat and split squat were unaffected by the changed environment while water immersion allowed for a deeper single leg squat. The different environments had significant effects on the sagittal plane orientations and speeds for all segments. Water immersion increased the degree of movement variability of the segments in all exercises, except for the shank in the frontal plane, which showed more variability on land. Without compromising movement depth, the aquatic environment induces more upright trunk and shank postures during squats and split squats. The aquatic environment allows for increased squat depth during the single-leg squat, and increased shank motions in the frontal plane. Our observations therefore support the use of water-based squat tasks for rehabilitation as

  9. Quantifying kinematic differences between land and water during squats, split squats, and single-leg squats in a healthy population.

    Science.gov (United States)

    Severin, Anna C; Burkett, Brendan J; McKean, Mark R; Wiegand, Aaron N; Sayers, Mark G L

    2017-01-01

    Aquatic exercises can be used in clinical and sporting disciplines for both rehabilitation and sports training. However, there is limited knowledge on the influence of water immersion on the kinematics of exercises commonly used in rehabilitation and fitness programs. The aim of this study was to use inertial sensors to quantify differences in kinematics and movement variability of bodyweight squats, split squats, and single-leg squats performed on dry land and whilst immersed to the level of the greater trochanter. During two separate testing sessions, 25 active healthy university students (22.3±2.9 yr.) performed ten repetitions of each exercise, whilst tri-axial inertial sensors (100 Hz) recorded their trunk and lower body kinematics. Repeated-measures statistics tested for differences in segment orientation and speed, movement variability, and waveform patterns between environments, while coefficient of variance was used to assess differences in movement variability. Between-environment differences in segment orientation and speed were portrayed by plotting the mean difference ±95% confidence intervals (CI) throughout the tasks. The results showed that the depth of the squat and split squat were unaffected by the changed environment while water immersion allowed for a deeper single leg squat. The different environments had significant effects on the sagittal plane orientations and speeds for all segments. Water immersion increased the degree of movement variability of the segments in all exercises, except for the shank in the frontal plane, which showed more variability on land. Without compromising movement depth, the aquatic environment induces more upright trunk and shank postures during squats and split squats. The aquatic environment allows for increased squat depth during the single-leg squat, and increased shank motions in the frontal plane. Our observations therefore support the use of water-based squat tasks for rehabilitation as they appear to

  10. Single-Leg Hop Test Performance and Isokinetic Knee Strength After Anterior Cruciate Ligament Reconstruction in Athletes.

    Science.gov (United States)

    Sueyoshi, Ted; Nakahata, Akihiro; Emoto, Gen; Yuasa, Tomoki

    2017-11-01

    Isokinetic strength and hop tests are commonly used to assess athletes' readiness to return to sport after knee surgery. The purpose of this study was to investigate the results of single-leg hop and isokinetic knee strength testing in athletes who underwent anterior cruciate ligament reconstruction (ACLR) upon returning to sport participation as well as to study the correlation between these 2 test batteries. The secondary purpose was to compare the test results by graft type (patellar tendon or hamstring). It was hypothesized that there would be no statistically significant limb difference in either isokinetic knee strength or single-leg hop tests, that there would be a moderate to strong correlation between the 2 test batteries, and that there would be no significant difference between graft types. Cross-sectional study; Level of evidence, 3. Twenty-nine high school and collegiate athletes who underwent ACLR participated in this study. At the time of return to full sport participation, a series of hop tests and knee extension/flexion isokinetic strength measurements were conducted. The results were analyzed using analysis of variance and Pearson correlation ( r ). The timed 6-m hop test was the only hop test that showed a significant difference between the involved and uninvolved limbs (2.3 and 2.2 seconds, respectively; P = .02). A significant difference between limbs in knee strength was found for flexion peak torque/body weight at 180 deg/s ( P = .03), flexion total work/body weight at 180 deg/s ( P = .04), and flexion peak torque/body weight at 300 deg/s ( P = .03). The strongest correlation between the hop tests and knee strength was found between the total distance of the hop tests and flexion total work/body weight at 300 deg/s ( r = 0.69) and between the timed 6-m hop test and flexion peak torque/body weight at 300 deg/s ( r = -0.54). There was no statistically significant difference in hop test performance or isokinetic knee strength between graft types

  11. Single bunch stability in the ESRF

    International Nuclear Information System (INIS)

    Farvacque, L.

    1990-01-01

    The longitudinal wake potential/impedance and bunch lengthening/stability in ESRF were studied. A cylindrical approximation of individual components of the vacuum chamber were studied. The results are wake potential and loss parameters. Measurements are necessary when the cylindrical approximation is not realistic. The coaxial wire method which is used gives a wake potential that can be substituted for the computed wake in the analysis. A measurement bench is presently being tested at ESRF. Wake potentials (computed or measured) are added before modeling or approximation is made. The impedance model used is the broad-band resonator model. Equations are derived for the longitudinal potential well. The bunch shape can be estimated knowing the first moments of the line density function. Mode coupling cannot explain the turbulent instability threshold. The threshold has then to be estimated by crude assumptions on potential well or bunch shape distortions. In the ESRF case, this threshold corresponds to a value of asymmetry s (th) = 0.6. Above the threshold the bunch lengthens with this constant asymmetry value

  12. Effects of heat stress and probiotic supplementation on protein functionality and oxidative stability of ground chicken leg meat during display storage.

    Science.gov (United States)

    Kim, Hyun-Wook; Kim, Ji-Han; Yan, Feifei; Cheng, Heng-Wei; Brad Kim, Yuan H

    2017-12-01

    The present study aimed to evaluate the effects of heat stress and probiotic supplementation on protein functionality and oxidative stability of ground chicken leg during display storage. Two hundred and forty, 1-day-old male chicks (5 birds per pen) were subjected to four treatments in a 2 (thermoneutral condition at 21 °C and cyclic heat stress at 32-21-32 °C for 10 h day -1 ) × 2 (regular diet with 0 or 0.25 g kg -1 Bacillus subtilis) factorial design. Chickens were harvested at day 46, and pairs of whole legs were collected at 1 day postmortem. The chicken legs were deboned, ground, tray-packaged with oxygen-permeable film, and displayed for 3 days. Heat stress and probiotic supplementation had no impact on pH, water-holding capacity, color, protein functionality, lipid lipolysis and lipid/protein oxidation stability (P > 0.05). Display storage increased the pH and lipid oxidation of ground chicken legs (P chicken leg meat. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  13. Effects of foot rotation positions on knee valgus during single-leg drop landing: Implications for ACL injury risk reduction.

    Science.gov (United States)

    Teng, P S P; Kong, P W; Leong, K F

    2017-06-01

    Non-contact anterior cruciate ligament (ACL) injuries commonly occur when athletes land in high risk positions such as knee valgus. The position of the foot at landing may influence the transmission of forces from the ankle to the knee. Using an experimental approach to manipulate foot rotation positions, this study aimed to provide new insights on how knee valgus during single-leg landing may be influenced by foot positions. Eleven male recreational basketball players performed single-leg drop landings from a 30-cm high platform in three foot rotation positions (toe-in, toe-forward and toe-out) at initial contact. A motion capture system and a force plate were used to measure lower extremity kinematics and kinetics. Knee valgus angles at initial contact (KVA) and maximum knee valgus moments (KVM), which were known risk factors associated with ACL injury, were measured. A one-way repeated measures Analysis of Variance was conducted (α=0.05) to compare among the three foot positions. Foot rotation positions were found to have a significant effect on KVA (p<0.001, η 2 =0.66) but the difference between conditions (about 1°) was small and not clinically meaningful. There was a significant effect of foot position on KVM (p<0.001, η 2 =0.55), with increased moment observed in the toe-out position as compared to toe-forward (p=0.012) or toe-in positions (p=0.002). When landing with one leg, athletes should avoid extreme toe-out foot rotation positions to minimise undesirable knee valgus loading associated with non-contact ACL injury risks. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. The reliability and criterion validity of 2D video assessment of single leg squat and hop landing.

    Science.gov (United States)

    Herrington, Lee; Alenezi, Faisal; Alzhrani, Msaad; Alrayani, Hasan; Jones, Richard

    2017-06-01

    The objective was to assess the intra-tester, within and between day reliability of measurement of hip adduction (HADD) and frontal plane projection angles (FPPA) during single leg squat (SLS) and single leg landing (SLL) using 2D video and the validity of these measurements against those found during 3D motion capture. 15 healthy subjects had their SLS and SLL assessed using 3D motion capture and video analysis. Inter-tester reliability for both SLS and SLL when measuring FPPA and HADD show excellent correlations (ICC 2,1 0.97-0.99). Within and between day assessment of SLS and SLL showed good to excellent correlations for both variables (ICC 3,1 0.72-91). 2D FPPA measures were found to have good correlation with knee abduction angle in 3-D (r=0.79, p=0.008) during SLS, and also to knee abduction moment (r=0.65, p=0.009). 2D HADD showed very good correlation with 3D HADD during SLS (r=0.81, p=0.001), and a good correlation during SLL (r=0.62, p=0.013). All other associations were weak (r<0.4). This study suggests that 2D video kinematics have a reasonable association to what is being measured with 3D motion capture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Single-shell tank interim stabilization project plan

    International Nuclear Information System (INIS)

    Ross, W.E.

    1998-01-01

    Solid and liquid radioactive waste continues to be stored in 149 single-shell tanks at the Hanford Site. To date, 119 tanks have had most of the pumpable liquid removed by interim stabilization. Thirty tanks remain to be stabilized. One of these tanks (C-106) will be stabilized by retrieval of the tank contents. The remaining 29 tanks will be interim stabilized by saltwell pumping. In the summer of 1997, the US Department of Energy (DOE) placed a moratorium on the startup of additional saltwell pumping systems because of funding constraints and proposed modifications to the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) milestones to the Washington State Department of Ecology (Ecology). In a letter dated February 10, 1998, Final Determination Pursuant to Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) in the Matter of the Disapproval of the DOE's Change Control Form M-41-97-01 (Fitzsimmons 1998), Ecology disapproved the DOE Change Control Form M-41-97-01. In response, Fluor Daniel Hanford, Inc. (FDH) directed Lockheed Martin Hanford Corporation (LNMC) to initiate development of a project plan in a letter dated February 25, 1998, Direction for Development of an Aggressive Single-Shell Tank (SST) Interim Stabilization Completion Project Plan in Support of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement). In a letter dated March 2, 1998, Request for an Aggressive Single-Shell Tank (SST) Interim Stabilization Completion Project Plan, the DOE reaffirmed the need for an aggressive SST interim stabilization completion project plan to support a finalized Tri-Party Agreement Milestone M-41 recovery plan. This project plan establishes the management framework for conduct of the TWRS Single-Shell Tank Interim Stabilization completion program. Specifically, this plan defines the mission needs and requirements; technical objectives and approach; organizational structure, roles, responsibilities

  16. The predictive validity of a single leg bridge test for hamstring injuries in Australian Rules Football Players.

    Science.gov (United States)

    Freckleton, Grant; Cook, Jill; Pizzari, Tania

    2014-04-01

    Hamstring muscle strain injuries (HMSI) are the greatest injury problem in kicking sports such as Australian Rules Football. Reduced hamstring muscle strength is commonly perceived to be a risk factor for hamstring injury; however, evidence is inconclusive. Testing hamstring strength with the hip and knee at functional angles and assessing endurance parameters may be more relevant for examining the risk of hamstring injury. The primary aim of this prospective study was to examine if reduced hamstring muscle strength assessed with the single leg hamstring bridge (SLHB) was a risk factor for hamstring injury. Hamstring muscle strength of 482 amateur and semielite players from 16 football clubs, mean age 20.7 (range 16-34 years), was tested during the 2011 preseason. Players were then monitored throughout the 2011 playing season for HMSI. A total of 28 hamstring injuries, 16 right and 12 left, were recorded. Players who sustained a right HMSI during the season had a significantly lower mean right SLHB score (p=0.029), were older (p=0.002) and were more likely to have sustained a past right hamstring injury (p=0.02) or right knee injury (p=0.035). For left-sided hamstring injury, the injured group was more likely to be left leg dominant (p=0.001), older athletes (p=0.002) and there was a trend towards a history of left hamstring injury (p=0.07). This study demonstrated a significant deficit in preseason SLHB scores on the right leg of players that subsequently sustained a right-sided hamstring injury. Age, previous knee injury and a history of hamstring injury were other risk factors supported in this study. Low hamstring strength appears to be a risk factor for hamstring injury; however, due to the confounding variables and low injury rate in this study, further studies are required.

  17. Single-shell tank interim stabilization risk analysis

    International Nuclear Information System (INIS)

    Basche, A.D.

    1998-01-01

    The purpose of the Single-Shell Tank (SST) Interim Stabilization Risk Analysis is to provide a cost and schedule risk analysis of HNF-2358, Rev. 1, Single-Shell Tank Interim Stabilization Project Plan (Project Plan) (Ross et al. 1998). The analysis compares the required cost profile by fiscal year (Section 4.2) and revised schedule completion date (Section 4.5) to the Project Plan. The analysis also evaluates the executability of the Project Plan and recommends a path forward for risk mitigation

  18. Changes in foot pressure elicited by 3D air balance exercise and pelvic stability exercise for functional leg-length discrepancy in adult women.

    Science.gov (United States)

    Lee, Byung-Hoon; Kim, Jeong-Ja; Kim, Chan-Kyu

    2015-03-01

    [Purpose] This study was conducted to examine the effect of pelvic stabilization exercise and 3D equipment exercise on adult women with Functional Leg-Length Discrepancy (FLLD). [Subjects and Methods] Twenty female students in their 20's having FLLD without Structural Leg Length Discrepancy were selected. Exercise was performed for 50 min per session, three times a week, for six weeks. The Pelvic stabilization exercise (PSE) group performed pelvic stabilization exercises for 50 minutes, and the 3D exercise (3DE) group performed 3D Air Balance exercise for 10 minutes after performing the pelvic stabilization exercise program for 40 minutes. [Results] The PSE group showed statistically significant differences in tape measure method (TMM) and maximum pressure between pre-test and post-test, and 3DE showed statistically significant differences in TMM, the difference in maximum pressure, the difference in average pressure, and the difference in support area. At the end of the 6-week intervention, TMM, difference in maximum pressure, difference in average pressure, and difference in support area showed significantly greater reduction in the 3DE group. [Conclusion] The results show that 3D stabilization exercise was more effective at improving the stabilization of the deep muscles surrounding the pelvis and left-right muscular balance. We consider that 3D exercise should be included in exercise programs for improving pelvic cavity and spinal stability in the future.

  19. Single-shell tank interim stabilization project plan

    Energy Technology Data Exchange (ETDEWEB)

    Ross, W.E.

    1998-05-11

    This project plan establishes the management framework for conduct of the TWRS Single-Shell Tank Interim Stabilization completion program. Specifically, this plan defines the mission needs and requirements; technical objectives and approach; organizational structure, roles, responsibilities, and interfaces; and operational methods. This plan serves as the project executional baseline.

  20. Stability and manoeuvrability characteristics of single track vehicles.

    NARCIS (Netherlands)

    Godthelp, J. & Buist, M.

    1975-01-01

    An investigation was carried out concerning stability and manoeuvrability characteristics of single track vehicles. This report deals with the first phase of this study and refers to experiments carried out(1) with an instrumented varied and (2) with a number of popular bicycles and mopeds. In

  1. Breakwater stability with damaged single layer armour units

    NARCIS (Netherlands)

    De Rover, R.; Verhagen, H.J.; Van den Berge, A.; Reedijk, B.

    2008-01-01

    The effect of single layer interlocking armour unit breakage on the hydraulic armour layer stability and potential damage progression is addressed in this paper. A 2-dimensional scale model of a rubble mound breakwater with an armour layer consisting of Xbloc armour units was tested. The residual

  2. Single Shell Tank (SST) Interim Stabilization Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    VLADIMIROFF, D.T.; BOYLES, V.C.

    2000-05-22

    This project plan establishes the management framework for the conduct of the CHG Single-Shell Tank Interim Stabilization completion program. Specifically, this plan defines the mission needs and requirements; technical objectives and approach; organization structure, roles, responsibilities, and interfaces; and operational methods. This plan serves as the project executional baseline.

  3. ANKLE JOINT CONTROL DURING SINGLE-LEGGED BALANCE USING COMMON BALANCE TRAINING DEVICES - IMPLICATIONS FOR REHABILITATION STRATEGIES

    DEFF Research Database (Denmark)

    Strøm, Mark; Thorborg, Kristian; Bandholm, Thomas

    2016-01-01

    to characterize different balance exercises based on level of difficulty and sensori-motor training stimulus. PURPOSE: The purpose of this study was to investigate frontal-plane ankle kinematics and associated peroneal muscle activity during single-legged balance on stable surface (floor) and three commonly used...... compared to Airex® and floor. This study can serve as guidance for clinicians who wish to implement a gradual progression of ankle rehabilitation and prevention exercises by taking the related ankle kinematics and muscle activity into account. LEVEL OF EVIDENCE: Level 3.......BACKGROUND: A lateral ankle sprain is the most prevalent musculoskeletal injury in sports. Exercises that aim to improve balance are a standard part of the ankle rehabilitation process. In an optimal progression model for ankle rehabilitation and prevention of future ankle sprains, it is important...

  4. Can two-dimensional video analysis during single-leg drop vertical jumps help identify non-contact knee injury risk? A one-year prospective study.

    Science.gov (United States)

    Dingenen, Bart; Malfait, Bart; Nijs, Stefaan; Peers, Koen H E; Vereecken, Styn; Verschueren, Sabine M P; Staes, Filip F

    2015-10-01

    Previous studies showed that the amount of hip flexion and the combination of knee valgus and lateral trunk motion, measured with two-dimensional video analysis, were related to three-dimensional measured knee joint moments during single-leg drop vertical jumps, but it remains unclear whether these measurements can be used to identify non-contact knee injury risk. Fifty injury-free female athletes participated in the study. Two-dimensional video analysis was used to measure hip flexion, knee valgus and lateral trunk motion angles during single-leg drop vertical jumps. Time loss non-contact knee injuries were registered during a one-year follow-up. Independent t-tests and receiver operating characteristic analysis were used to analyze the predictive ability of the two-dimensional angles. Seven participants sustained a time loss non-contact knee injury. Hip flexion was not significantly different between groups (P>.05). The combination of knee valgus and lateral trunk motion was significantly smaller in the injured (P=.036) and non-injured legs (P=.009) of the future injured group compared with the respective matched leg of the non-injured group. The receiver operating characteristic analysis showed a significant discriminative accuracy between groups for the combination of knee valgus and lateral trunk motion of the uninjured leg of the future injured group with the matched leg of the non-injured group (area under curve=0.803; P=.012). The measurement of a combination of increased knee valgus and ipsilateral trunk motion during the single-leg drop vertical jump with two-dimensional video analysis can be used to help identify female athletes with increased non-contact knee injury risk. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Four Weeks in a Single-Leg Weight-Bearing Hip Spica Cast is Sufficient Treatment for Isolated Femoral Shaft Fractures in Children Aged 1 to 3 Years.

    Science.gov (United States)

    Jaafar, Sami; Sobh, Ali; Legakis, Julie E; Thomas, Ronald; Buhler, Kelsey; Jones, Eric T

    2016-01-01

    Hip spica casting regimens for the treatment of femoral shaft fractures in a pediatric population aged 1 to 3 years vary. Patient charts were reviewed to determine if there are any clinical differences between 3 and 4 weeks in an ambulatory single-leg hip spica (SLHS) cast versus 6 to 8 weeks in a standard double-leg, non-weight-bearing hip spica cast. The medical records of 109 patients with femoral shaft fractures treated with a hip spica casting from January 1, 2008 to December 31, 2011 were examined. After exclusions, 94 patients were eligible for inclusion in the study. Patient records were assessed, noting age, weight, type of cast, time in cast, and complications. All casts were applied by senior pediatric orthopaedic surgeons at a single institution. Two groups were evaluated: 59 patients in the SLHS group and 35 in the double-leg hip spica group. The 2 groups were demographically similar with an average age of 2 years, 70.2% of patients were male, 45.7% were black, and 35.1% were white. The average time to cast removal was 4.1 weeks for the single-leg group and 5.3 weeks for the double-leg group (Pshaft fractures in patients less than 4 years old can be treated in a weight-bearing SLHS casts for approximately 4 weeks with fewer alignment and skin complications. Level III-clinical retrospective comparative study.

  6. Number of test trials needed for performance stability and interrater reliability of the one leg stand test in patients with a major non-traumatic lower limb amputation

    DEFF Research Database (Denmark)

    Kristensen, Morten Tange; Nielsen, Anni Østergaard; Madsen Topp, Ulla

    2014-01-01

    Balance is beneficial for daily functioning of patients with a lower limb amputation and sometimes assessed by the one-leg stand test (OLST). The aims of the study were to examine (1) the number of trials needed to achieve performance stability, (2) the interrater reliability of the OLST...... in patients with a major non-traumatic lower limb amputation, and (3) to provide a test procedure....

  7. Real stabilization method for nuclear single-particle resonances

    International Nuclear Information System (INIS)

    Zhang Li; Zhou Shangui; Meng Jie; Zhao Enguang

    2008-01-01

    We develop the real stabilization method within the framework of the relativistic mean-field (RMF) model. With the self-consistent nuclear potentials from the RMF model, the real stabilization method is used to study single-particle resonant states in spherical nuclei. As examples, the energies, widths, and wave functions of low-lying neutron resonant states in 120 Sn are obtained. These results are compared with those from the scattering phase-shift method and the analytic continuation in the coupling constant approach and satisfactory agreements are found

  8. The Effect of Intelligence, Leg Muscle Strength, and Balance Towards The Learning Outcomes of Pencak Silat with Empty-Handed Single Artistic

    Directory of Open Access Journals (Sweden)

    Aridhotul Haqiyah

    2017-10-01

    Full Text Available This study aims to Determine the effect of intelligence, leg muscle strength, as well as the balance towards the learning outcomes of pencak silat empty-handed single artistic on the Physical Education students of Islamic University 45 Bekasi. The research method is a survey, and the analysis technique is path analysis. This research held in Islamic University 45 Bekasi with 122 people of population. The sampling technique used is random sampling, then a sample of this research is 60 people. The instruments used are a rubric 4 scale (very good, good, enough and less of the learning outcomes of pencak silat emptyhanded single artistic, intelligence test with IST (Intelligent Structure Test, leg muscle strength with instrument squat test, and test of balance by using the modified bass test of dynamic balance. Based the result of the data processing and analysis, the Conclusions are: : (1 Intelligence directly effect on the learningoutcomes of pencak silat empty-handed single artistic with ρy1  = 0.359, (2 Leg muscles strength directlyeffect on the learning outcomes of pencak silat empty-handed single artistic with ρy2 = 0.228, (3 Balance directly effect on the learning outcomes of pencak silat empty-handed single artistic with ρy3 = 0.356, (4 Intelligence directly effects on the balance with ρ31 = 0.662, and (5 Leg muscle strength directly effectson the balance with ρ32 = 0.298.

  9. Single leg jumping neuromuscular control is improved following whole body, long-axis rotational training.

    Science.gov (United States)

    Nyland, John; Burden, Robert; Krupp, Ryan; Caborn, David N M

    2011-04-01

    Improved lower extremity neuromuscular control during sports may decrease injury risk. This prospective study evaluated progressive resistance, whole body, long-axis rotational training on the Ground Force 360 device. Our hypothesis was that device training would improve lower extremity neuromuscular control based on previous reports of kinematic, ground reaction force (GRF) or electromyographic (EMG) evidence of safer or more efficient dynamic knee stability during jumping. Thirty-six healthy subjects were randomly assigned to either training (Group 1) or control (Group 2) groups. Using a pre-test, post-test study design data were collected from three SLVJ trials. Unpaired t-tests with adjustments for multiple comparisons were used to evaluate group mean change differences (P≤0.05/25≤0.002). During propulsion Group 1 standardized EMG amplitude mean change differences for gluteus maximus (-21.8% vs. +17.4%), gluteus medius (-28.6% vs. +15.0%), rectus femoris (-27.1% vs. +11.2%), vastus medialis (-20.2% vs. +9.1%), and medial hamstrings (-38.3% vs. +30.3%) differed from Group 2. During landing Group 1 standardized EMG amplitude mean change differences for gluteus maximus (-32.9% vs. +11.1%) and rectus femoris (-33.3% vs. +29.0%) also differed from Group 2. Group 1 peak propulsion vertical GRF (+0.24N/kg vs. -0.46N/kg) and landing GRF stabilization timing (-0.68 vs. +0.05s) mean change differences differed from Group 2. Group 1 mean hip (-16.3 vs. +7.8°/s) and knee (-21.4 vs. +18.5°/s) flexion velocity mean change differences also differed from Group 2. Improved lower extremity neuromuscular efficiency, increased peak propulsive vertical GRF, decreased mean hip and knee flexion velocities during landing, and earlier landing stabilization timing in the training group suggests improved lower extremity neuromuscular control. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Single Bunch Stability in LER of PEP II

    Energy Technology Data Exchange (ETDEWEB)

    Heifets, S.; /SLAC; Sabbi, G.; /Fermilab

    2011-10-11

    The note describes results of studies of the single bunch stability in the low energy ring (LER) of the PEP-II B-factory. Simulations describe the potential well distortion (PWD) obtained by numerical solution of the Haiisinski equation and results on the beam stability obtained with the code TRISIM. Both longitudinal and transverse wake fields are taken into account. Preliminary estimates indicate that single bunch in the LER of the PEP-II B-factory has to be stable, both longitudinally and transversely, at the maximum design bunch current 1.8 mA (beam current 3A). However, realistic wakes of the machine has been constructed only recently using results of the extensive numerical simulations of the vacuum components of the ring. Additional to that, the code TRISIM, a simulation program for single-bunch collective effects written by one of the authors (G. S.), became recently available. This allows us to study beam stability in a more reliable way than it is possible analytically.

  11. Time series of ground reaction forces following a single leg drop jump landing in elite youth soccer players consist of four distinct phases

    NARCIS (Netherlands)

    Fransz, Duncan P.; Huurnink, Arnold; de Boode, Vosse A.; Kingma, Idsart; van Dieën, Jaap H.

    2016-01-01

    The single leg drop jump landing test may assess dynamic and static balance abilities in different phases of the landing. However objective definitions of different phases following landing and associated reliability are lacking. Therefore, we determined the existence of possible distinct phases of

  12. Effects of menarcheal age on the anterior cruciate ligament injury risk factors during single-legged drop landing in female artistic elite gymnasts.

    Science.gov (United States)

    Kim, Kew-Wan; Lim, Bee-Oh

    2014-11-01

    Although numerous studies have demonstrated the relationship between maturation and lower extremity biomechanics during landing in team sport athletes, we are presently uninformed of any research that examined the single-legged drop landing biomechanics of gymnasts. The purpose of this study is to investigate the effects of the menarcheal age on the lower extremity biomechanics during a single-legged drop landing in female artistic elite gymnasts. Twenty-two female artistic elite gymnasts, between 9 and 36 years of age, participated in this study. The participants were divided into two groups pre- (n = 11) and post- (n = 11) menarche and asked to perform a single-legged drop landing on top of a 30 cm platform and land on a force plate. The statistical analysis consisted of the multivariate analysis with the level of significance set at p knee flexion angle and increase in their maximum knee abduction angle, maximum internal tibial rotation angle, maximum knee abduction moment, and hamstring-quadriceps muscle activity ratio compared with the pre-menarche group during the single-legged drop landing. The post-menarche group showed an increased noncontact anterior cruciate ligament injury risk, due to their greater knee loads, compared with the pre-menarche group.

  13. Elevated gastrocnemius forces compensate for decreased hamstrings forces during the weight-acceptance phase of single-leg jump landing: implications for anterior cruciate ligament injury risk.

    Science.gov (United States)

    Morgan, Kristin D; Donnelly, Cyril J; Reinbolt, Jeffrey A

    2014-10-17

    Approximately 320,000 anterior cruciate ligament (ACL) injuries in the United States each year are non-contact injuries, with many occurring during a single-leg jump landing. To reduce ACL injury risk, one option is to improve muscle strength and/or the activation of muscles crossing the knee under elevated external loading. This study's purpose was to characterize the relative force production of the muscles supporting the knee during the weight-acceptance (WA) phase of single-leg jump landing and investigate the gastrocnemii forces compared to the hamstrings forces. Amateur male Western Australian Rules Football players completed a single-leg jump landing protocol and six participants were randomly chosen for further modeling and simulation. A three-dimensional, 14-segment, 37 degree-of-freedom, 92 muscle-tendon actuated model was created for each participant in OpenSim. Computed muscle control was used to generate 12 muscle-driven simulations, 2 trials per participant, of the WA phase of single-leg jump landing. A one-way ANOVA and Tukey post-hoc analysis showed both the quadriceps and gastrocnemii muscle force estimates were significantly greater than the hamstrings (p<0.001). Elevated gastrocnemii forces corresponded with increased joint compression and lower ACL forces. The elevated quadriceps and gastrocnemii forces during landing may represent a generalized muscle strategy to increase knee joint stiffness, protecting the knee and ACL from external knee loading and injury risk. These results contribute to our understanding of how muscle's function during single-leg jump landing and should serve as the foundation for novel muscle-targeted training intervention programs aimed to reduce ACL injuries in sport. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Single-leg drop landing movement strategies 6 months following first-time acute lateral ankle sprain injury.

    Science.gov (United States)

    Doherty, C; Bleakley, C; Hertel, J; Caulfield, B; Ryan, J; Delahunt, E

    2015-12-01

    No research exists predicating a link between acute ankle sprain injury-affiliated movement patterns and those of chronic ankle instability (CAI) populations. The aim of the current study was to perform a biomechanical analysis of participants, 6 months after they sustained a first-time acute lateral ankle sprain (LAS) injury to establish this link. Fifty-seven participants with a 6-month history of first-time LAS and 20 noninjured participants completed a single-leg drop landing task on both limbs. Three-dimensional kinematic (angular displacement) and sagittal plane kinetic (moment of force) data were acquired for the joints of the lower extremity, from 200 ms pre-initial contact (IC) to 200 ms post-IC. Individual joint stiffnesses and the peak magnitude of the vertical component of the ground reaction force (GRF) were also computed. LAS participants displayed increases in hip flexion and ankle inversion on their injured limb (P < 0.05); this coincided with a reduction in the net flexion-extension moment at the hip joint, with an increase in its stiffness (P < 0.05). There was no difference in the magnitude of the peak vertical GRF for either limb compared with controls. These results demonstrate that altered movement strategies persist in participants, 6 months following acute LAS, which may precipitate the onset of CAI. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Reproducibility of Dynamic Body Balance Measurement by Center of Foot Pressure Analysis Immediately after Single-Leg Hop Landing.

    Science.gov (United States)

    Kawakami, Yukiko; Yonetani, Yasukazu; Takao, Rikio; Ogasawara, Issei; Mae, Tatsuo; Nakata, Ken; Horibe, Shuji

    2016-01-01

    Dynamic balance was evaluated using the trajectory length of the center of foot pressure (COP) in the early phase from immediately after landing to the time of pastoral maintenance. Ten young volunteers with an average age of 23.8 years were asked to stand on one foot on a horizontal floor, hop forward half a step and land on one foot 10 times on each of 3 non-consecutive days. The peak of the vertical component of the floor reaction force (Fz), and the initiation time of the maximum value (tz) and COP trajectory length were measured by a force plate (AMTI, Ltd.). None of the subjects complained of any feeling of fear or loss of balance during the 3 days.The interclass correlation coefficient values of Fz and tz over the three days were 0.75 or higher. Single-leg hop for half a step as a motor task enabled safe measurement of COP trajectory length with high reproducibility. Fz reached its peak within 200 ms after landing and the COP trajectory length within 200 ms after landing accounted for approximately 50% of the total COP trajectory length at one second. Although the length differed in each subject, the interclass correlation coefficients for COP up to 100 ms and 200 ms were 0.68 and 0.80, respectively.The COP trajectory length within 200 ms after landing was considered to be useful as an objective criteria for the evaluation of dynamic balance in the early phase after landing.

  16. Propulsion phase of the single leg triple hop test in women with patellofemoral pain syndrome: a biomechanical study.

    Directory of Open Access Journals (Sweden)

    Andre Serra Bley

    Full Text Available Asymmetry in the alignment of the lower limbs during weight-bearing activities is associated with patellofemoral pain syndrome (PFPS, caused by an increase in patellofemoral (PF joint stress. High neuromuscular demands are placed on the lower limb during the propulsion phase of the single leg triple hop test (SLTHT, which may influence biomechanical behavior. The aim of the present cross-sectional study was to compare kinematic, kinetic and muscle activity in the trunk and lower limb during propulsion in the SLTHT using women with PFPS and pain free controls. The following measurements were made using 20 women with PFPS and 20 controls during propulsion in the SLTHT: kinematics of the trunk, pelvis, hip, and knee; kinetics of the hip, knee and ankle; and muscle activation of the gluteus maximus (GM, gluteus medius (GMed, biceps femoris (BF and vastus lateralis (VL. Differences between groups were calculated using three separate sets of multivariate analysis of variance for kinematics, kinetics, and electromyographic data. Women with PFPS exhibited ipsilateral trunk lean; greater trunk flexion; greater contralateral pelvic drop; greater hip adduction and internal rotation; greater ankle pronation; greater internal hip abductor and ankle supinator moments; lower internal hip, knee and ankle extensor moments; and greater GM, GMed, BL, and VL muscle activity. The results of the present study are related to abnormal movement patterns in women with PFPS. We speculated that these findings constitute strategies to control a deficient dynamic alignment of the trunk and lower limb and to avoid PF pain. However, the greater BF and VL activity and the extensor pattern found for the hip, knee, and ankle of women with PFPS may contribute to increased PF stress.

  17. Propulsion Phase of the Single Leg Triple Hop Test in Women with Patellofemoral Pain Syndrome: A Biomechanical Study

    Science.gov (United States)

    Bley, Andre Serra; Correa, João Carlos Ferrari; Reis, Amir Curcio Dos; Rabelo, Nayra Deise Dos Anjos; Marchetti, Paulo Henrique; Lucareli, Paulo Roberto Garcia

    2014-01-01

    Asymmetry in the alignment of the lower limbs during weight-bearing activities is associated with patellofemoral pain syndrome (PFPS), caused by an increase in patellofemoral (PF) joint stress. High neuromuscular demands are placed on the lower limb during the propulsion phase of the single leg triple hop test (SLTHT), which may influence biomechanical behavior. The aim of the present cross-sectional study was to compare kinematic, kinetic and muscle activity in the trunk and lower limb during propulsion in the SLTHT using women with PFPS and pain free controls. The following measurements were made using 20 women with PFPS and 20 controls during propulsion in the SLTHT: kinematics of the trunk, pelvis, hip, and knee; kinetics of the hip, knee and ankle; and muscle activation of the gluteus maximus (GM), gluteus medius (GMed), biceps femoris (BF) and vastus lateralis (VL). Differences between groups were calculated using three separate sets of multivariate analysis of variance for kinematics, kinetics, and electromyographic data. Women with PFPS exhibited ipsilateral trunk lean; greater trunk flexion; greater contralateral pelvic drop; greater hip adduction and internal rotation; greater ankle pronation; greater internal hip abductor and ankle supinator moments; lower internal hip, knee and ankle extensor moments; and greater GM, GMed, BL, and VL muscle activity. The results of the present study are related to abnormal movement patterns in women with PFPS. We speculated that these findings constitute strategies to control a deficient dynamic alignment of the trunk and lower limb and to avoid PF pain. However, the greater BF and VL activity and the extensor pattern found for the hip, knee, and ankle of women with PFPS may contribute to increased PF stress. PMID:24830289

  18. Impact of a single session of intermittent pneumatic leg compressions on skeletal muscle and isolated artery gene expression in rats.

    Science.gov (United States)

    Roseguini, Bruno T; Arce-Esquivel, Arturo A; Newcomer, Sean C; Laughlin, M H

    2011-12-01

    Intermittent pneumatic leg compressions (IPC) have proven to be an effective noninvasive approach for treatment of patients with claudication, but the mechanisms underlying the clinical benefits remain elusive. In the present study, a rodent model of claudication produced by bilateral ligation of the femoral artery was used to investigate the acute impact of a single session of IPC (150 min) on hemodynamics, skeletal muscle (tibialis anterior), and isolated collateral artery (perforating artery) expression of a subset of genes associated with inflammation and vascular remodeling. In addition, the effect of compression frequency (15 vs. 3 compressions/min) on the expression of these factors was studied. In ligated animals, IPC evoked an increase of monocyte chemoattractant protein-1 (MCP-1) and cytokine-induced neutrophil chemoattractant 1 (CXCL1) mRNA (P < 0.01) and immunostaining (P < 0.05), as well as a minor increase in VEGF immunostaining in the muscle endomysium 150 min postintervention. Further, collateral arteries from these animals showed an increased expression of MCP-1 (approximately twofold, P = 0.02). These effects were most evident in the group exposed to the high-frequency protocol (15 compressions/min). In contrast, IPC in sham-operated control animals evoked a modest initial upregulation of VEGF (P = 0.01), MCP-1 (P = 0.02), and CXCL1 (P = 0.03) mRNA in the muscle without concomitant changes in protein levels. No changes in gene expression were observed in arteries isolated from sham animals. In conclusion, IPC acutely up-regulates the expression of important factors involved in vascular remodeling in the compressed muscle and collateral arteries in a model of hindlimb ischemia. These effects appear to be dependent on the compression frequency, such that a high compression frequency (15 compressions/min) evokes more consistent and robust effects compared with the frequency commonly employed clinically to treat patients with claudication (3

  19. Functional instability of the ankle: differences in patterns of ankle and knee movement prior to and post landing in a single leg jump.

    Science.gov (United States)

    Caulfield, B M; Garrett, M

    2002-01-01

    The aim of this study was to investigate motor control in subjects with functional instability of the ankle joint. This was achieved by analysing patterns of lower extremity motion prior to and immediately following landing during single leg jumping in subjects with functional instability of the ankle. Fourteen subjects with unilateral functional instability and 10 healthy control subjects performed single leg jumps from a 40 cm height whilst angular displacement of their ankle and knee joints were recorded. Subjects with functional instability demonstrated significantly greater ankle dorsiflexion over the period encompassing 10 ms pre landing to 20 ms post landing (p < 0.05). They also exhibited a significantly greater level of knee flexion than controls over the period from 20 ms pre landing to 60 ms post landing (p < 0.05). The timing of these significant differences leads us to conclude that they do not arise as a result of reflexively mediated peripheral events following landing.

  20. Single-leg squats identify independent stair negotiation ability in older adults referred for a physiotherapy mobility assessment at a rural hospital.

    Science.gov (United States)

    Hockings, Rowena L; Schmidt, David D; Cheung, Christopher W

    2013-07-01

    To determine whether single-leg squats identify ability to negotiate stairs in older adults at a rural hospital. Cross-sectional analytical study. Acute wards and emergency department of a rural hospital in Australia. A systematic sample of 143 older adults (72 men, 71 women, 80.0 ± 6.8 years) from the emergency department or acute wards of Shoalhaven Hospital referred for a physiotherapy mobility assessment. Ability to complete up to three single-leg squats and negotiate up to three steps were measured. Covariates and demographic variables were collected. The squat test had 86% sensitivity, 100% specificity, 100% positive predictive value, and 49% negative predictive value in correctly identifying stair negotiation ability. Participants who could complete single-leg squats were 57 times more likely to be able to independently negotiate stairs than participants who could not complete squats. Multivariate regression analysis indicated that walker use, pain severity and whether participants lived alone were significant and independent predictors of ability to negotiate stairs independently. Single-leg squats may be an accurate identifier of stair negotiation ability in older adults admitted to the hospital for an acute illness or injury. A traditional stairs assessment would be required if older adults were unable to complete the squat test or had moderate to severe pain, used a walker to ambulate, or did not live alone. The squat test is a potentially more-efficient assessment tool than traditional stair assessments in determining an individual's ability to negotiate stairs and suitability for discharge where poor mobility is a problem. © 2013, Copyright the Authors Journal compilation © 2013, The American Geriatrics Society.

  1. Clinical outcomes and frontal plane two-dimensional biomechanics during the 30-second single leg stance test in patients before and after hip abductor tendon reconstructive surgery.

    Science.gov (United States)

    Huxtable, Rose E; Ackland, Timothy R; Janes, Gregory C; Ebert, Jay R

    2017-07-01

    Hip abductor tendon tears are a common cause of Greater Trochanteric Pain Syndrome. Conservative treatments are often ineffective and surgical reconstruction may be recommended. This study investigated the improvement in clinical outcomes and frontal plane two-dimensional biomechanics during a 30-second single leg stance test, in patients undergoing reconstruction. We hypothesized that clinical scores and pertinent biomechanical variables would significantly improve post-surgery, and these outcomes would be significantly correlated. Twenty-one patients with symptomatic tendon tears underwent reconstruction. Patients were evaluated pre-surgery, and at 6 and 12months post-surgery, using patient-reported outcome measures, assessment of hip abductor strength and six-minute walk capacity. Frontal plane, two-dimensional, biomechanical variables including pelvis-on-femur angle, pelvic drop, trunk lean and lateral pelvic shift, were evaluated throughout a 30-second single leg stance test. ANOVA evaluated outcomes over time, while Pearson's correlations investigated associations between clinical scores, pain, functional and biomechanical outcome variables. While clinical and functional measures significantly improved (P0.05) were observed in biomechanical variables from pre- to post-surgery. While five patients displayed a positive Trendelenburg sign pre-surgery, only one was positive post-surgery. Clinical outcomes and biomechanical variables during the single leg stance test were not correlated. Despite improvements in clinical and functional measures over time, biomechanical changes during a weight bearing single leg stance test were not significantly different following tendon repair. Follow up beyond 12months may be required, whereby symptomatic relief may precede functional and biomechanical improvement. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Reliability of 3-Dimensional Measures of Single-Leg Cross Drop Landing Across 3 Different Institutions: Implications for Multicenter Biomechanical and Epidemiological Research on ACL Injury Prevention.

    Science.gov (United States)

    DiCesare, Christopher A; Bates, Nathaniel A; Barber Foss, Kim D; Thomas, Staci M; Wordeman, Samuel C; Sugimoto, Dai; Roewer, Benjamin D; Medina McKeon, Jennifer M; Di Stasi, Stephanie; Noehren, Brian W; Ford, Kevin R; Kiefer, Adam W; Hewett, Timothy E; Myer, Gregory D

    2015-12-01

    Anterior cruciate ligament (ACL) injuries are physically and financially devastating but affect a relatively small percentage of the population. Prospective identification of risk factors for ACL injury necessitates a large sample size; therefore, study of this injury would benefit from a multicenter approach. To determine the reliability of kinematic and kinetic measures of a single-leg cross drop task across 3 institutions. Controlled laboratory study. Twenty-five female high school volleyball players participated in this study. Three-dimensional motion data of each participant performing the single-leg cross drop were collected at 3 institutions over a period of 4 weeks. Coefficients of multiple correlation were calculated to assess the reliability of kinematic and kinetic measures during the landing phase of the movement. Between-centers reliability for kinematic waveforms in the frontal and sagittal planes was good, but moderate in the transverse plane. Between-centers reliability for kinetic waveforms was good in the sagittal, frontal, and transverse planes. Based on these findings, the single-leg cross drop task has moderate to good reliability of kinematic and kinetic measures across institutions after implementation of a standardized testing protocol. Multicenter collaborations can increase study numbers and generalize results, which is beneficial for studies of relatively rare phenomena, such as ACL injury. An important step is to determine the reliability of risk assessments across institutions before a multicenter collaboration can be initiated.

  3. Safety evaluation of interim stabilization of non-stabilized single-shell watch list tanks

    International Nuclear Information System (INIS)

    Stahl, S.M.

    1994-01-01

    This report provides results of a review of recently completed safety analyses related to hazards associated with Interim Stabilization of Single analyses related to hazards included oh the Hanford Site Waste Tank-Watch Shell Tanks (SSTs) that are included on the Hanford List. The purpose of the review was to identify and summarize conclusions regarding the safety of interim stabilization of Watch List SSTs, and to highlight applicable limitations, restrictions, and controls. The scope of this review was restricted to SSTs identified List in the categories of flammable gas ferrocyanide, and organic salts. High heat tanks were not included in the scope. A Watch List tank is defined as an underground storage tank containing waste that requires special safety precautions because it may have a serious potential for release of high level radioactive waste because of uncontrolled increases in temperature or pressure. Special restrictions have been placed on these tanks

  4. Robust stability analysis of adaptation algorithms for single perceptron.

    Science.gov (United States)

    Hui, S; Zak, S H

    1991-01-01

    The problem of robust stability and convergence of learning parameters of adaptation algorithms in a noisy environment for the single preceptron is addressed. The case in which the same input pattern is presented in the adaptation cycle is analyzed. The algorithm proposed is of the Widrow-Hoff type. It is concluded that this algorithm is robust. However, the weight vectors do not necessarily converge in the presence of measurement noise. A modified version of this algorithm in which the reduction factors are allowed to vary with time is proposed, and it is shown that this algorithm is robust and that the weight vectors converge in the presence of bounded noise. Only deterministic-type arguments are used in the analysis. An ultimate bound on the error in terms of a convex combination of the initial error and the bound on the noise is obtained.

  5. Effect of Feedback Corrective Exercise on Knee Valgus and Electromyographic Activity of Lower Limb Muscles in Single Leg Squat

    Directory of Open Access Journals (Sweden)

    Negar Koorosh-fard

    2015-07-01

    Full Text Available Objective: The aim of this study was assessing the effect of feedback correcting exercise in front of mirror during running on frontal plane knee and pelvic kinematic and electromyography activity of some lower extremity muscles in single leg squat (SLS. Materials & Methods: This study was quasi experimental. 23 active female subjects participated in two experimental and control groups with mean age (21.86± 2.43 years .experimental group contains subjects with knee valgus and pelvic drop angle more than a mean plus one standard deviation of the population in functional SLS. Muscular activity (RMS of gluteus maximus, Gluteus medius, rectus femoris, vastus medialis, vastus lateralis, biceps femoris and semitendinosus, angle of knee valgus and pelvic drop were register in end of SLS Pre and post of 8 training sessions. Comparing Variable has done with independent t statistical test between 2 groups and pair sample t test within each groups with significant level of 0.05. Results: Statistical analysis Before training showed no significant differences in pelvic drop between two groups (P&ge0.05, but knee valgus angle was significantly more than control group (P&le0.05. In spit that most muscle activities (% MVC except biceps femoris (P&le0.05, were greater in experimental group, no significant difference (P&ge0.05 has seen in two groups. Comparing pre and post test has showed no significant difference in knee valgus of experimental group, however it decreased around 2 degrees and although %MVC decreased in all muscles, just rectuse femoris has shown significant difference (P&le0.05. No significant difference has seen in control group in all variables (P&ge0.05. Conclusion: Findings showed poor neuromuscular control in experimental group which improved to some extent after training because lower muscle activity and energy consumption in specific movement with similar kinematic indicate improvement of motor control or cause learning. It seems that

  6. Effectiveness of electronic stability control on single-vehicle accidents.

    Science.gov (United States)

    Lyckegaard, Allan; Hels, Tove; Bernhoft, Inger Marie

    2015-01-01

    This study aims at evaluating the effectiveness of electronic stability control (ESC) on single-vehicle injury accidents while controlling for a number of confounders influencing the accident risk. Using police-registered injury accidents from 2004 to 2011 in Denmark with cars manufactured in the period 1998 to 2011 and the principle of induced exposure, 2 measures of the effectiveness of ESC were calculated: The crude odds ratio and the adjusted odds ratio, the latter by means of logistic regression. The logistic regression controlled for a number of confounding factors, of which the following were significant. For the driver: Age, gender, driving experience, valid driving license, and seat belt use. For the vehicle: Year of registration, weight, and ESC. For the accident surroundings: Visibility, light, and location. Finally, for the road: Speed limit, surface, and section characteristics. The present study calculated the crude odds ratio for ESC-equipped cars of getting in a single-vehicle injury accident as 0.40 (95% confidence interval [CI], 0.34-0.47) and the adjusted odds ratio as 0.69 (95% CI, 0.54-0.88). No difference was found in the effectiveness of ESC across the injury severity categories (slight, severe, and fatal). In line with previous results, this study concludes that ESC reduces the risk for single-vehicle injury accidents by 31% when controlling for various confounding factors related to the driver, the car, and the accident surroundings. Furthermore, it is concluded that it is important to control for human factors (at a minimum age and gender) in analyses where evaluations of this type are performed.

  7. Hydrogel Tethering Enhances Interdomain Stabilization of Single-Chain Antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Yijia [Department; Ford, Nicole R. [Marine; Hecht, Karen A. [Marine; Roesijadi, Guritno [Marine; Department; Squier, Thomas C. [Department

    2017-10-12

    Self-assembly of recombinant proteins within the biosilica of living diatoms represents a means to construct functional materials in a reproducible and scalable manner that enable applications that harness the inherent specificities of proteins to sense and respond to environmental cues. Here we describe the use of a silaffin-derived lysine-rich 39 amino-acid targeting sequence (Sil3T8) to direct a single chain fragment variable (scFv) antibody or an enhanced green fluorescent protein (EGFP) to assemble within the biosilica frustule, resulting in abundances in excess of 200,000 proteins per frustule. The fluorescence of either a derivative of trinitrotoluene (TNT) bound to the scFv or the endogenous fluorescence of EGFP was used to monitor pro-tein conformational dynamics, accessibility to external quenchers, binding affinity, and conformational stability. We find that proteins within isolated frustules undergo isotropic rotational motions with two-fold increases in rotational correlation times, which are indicative of weak macromolecular associations within the biosilica. Solvent accessibilities and high-affinity (pM) binding are comparable to those in solution. In contrast to solution conditions, scFv antibod-ies within the biosilica matrix retain their binding affinity in the presence of chaotropic agents (i.e., 8 M urea). These results argue that dramatic increases in protein conforma-tional stability within the biosilica frustule matrices arise through molecular crowding, acting to retain native protein folds and associated functionality to allow the utility of engineered proteins under a range of harsh environmental conditions associated with environmental sensing and industrial catalytic transformations.

  8. MD1228: Validation of Single Bunch Stability Threshold & MD1751: Instability Studies with a Single Beam

    CERN Document Server

    Carver, Lee Robert; Biancacci, Nicolo; Buffat, Xavier; Iadarola, Giovanni; Lasocha, Kacper; Li, Kevin Shing Bruce; Levens, Tom; Metral, Elias; Salvant, Benoit; Tambasco, Claudia; CERN. Geneva. ATS Department

    2017-01-01

    Instabilities were being routinely observed in B1V during ADJUST. The timing of the instabilities has been localised to shortly after the TOTEM bump has been implemented. The result is emittance blowup which can negatively effect the luminosity output of the fill. This MD aimed to rule out possible sources of the instability (i.e. beam-beam effects or electron cloud) by only taking one single beam to 6.5TeV and going through the full machine cycle. After the implementation of the TOTEM bump, a reduction of the octupole current was performed in order to determine if there was a discrepancy in the threshold between simulations and measurement. As a precursor, the results of the End of Fill MD: Validation of Single Bunch Stability Threshold will also be described.

  9. Frontal and transverse plane hip kinematics and gluteus maximus recruitment correlate with frontal plane knee kinematics during single-leg squat tests in women.

    Science.gov (United States)

    Hollman, John H; Galardi, Christy M; Lin, I-Hsuan; Voth, Brandon C; Whitmarsh, Crystal L

    2014-04-01

    Hip muscle dysfunction may be associated with knee valgus that contributes to problems like patellofemoral pain syndrome. The purpose of this study was to (1) compare knee and hip kinematics and hip muscle strength and recruitment between "good" and "poor" performers on a single-leg squat test developed to assess hip muscle dysfunction and (2) examine relationships between hip muscle strength, recruitment and frontal plane knee kinematics to see which variables correlated with knee valgus during the test. Forty-one active women classified via visual rating as "good" or "poor" performers on the test participated. Participants completed 5-repetition single-leg squat tests. Isometric hip extension and abduction strength, gluteus maximus and gluteus medius recruitment, and 3-dimensional hip and knee kinematics during the test were compared between groups and examined for their association with frontal plane knee motion. "Poor" performers completed the test with more hip adduction (mean difference=7.6°) and flexion (mean difference=6.3°) than "good" performers. No differences in knee kinematics, hip strength or hip muscle recruitment occurred. However, the secondary findings indicated that increased medial hip rotation (partial r=0.94) and adduction (partial r=0.42) and decreased gluteus maximus recruitment (partial r=0.35) correlated with increased knee valgus. Whereas hip muscle function and knee kinematics did not differ between groups as we'd hypothesized, frontal plane knee motion correlated with transverse and frontal plane hip motions and with gluteus maximus recruitment. Gluteus maximus recruitment may modulate frontal plane knee kinematics during single-leg squats. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Leg Swelling

    Science.gov (United States)

    ... ed. New York, N.Y.: The McGraw Hill Companies; 2016. http://www.accessmedicine.com. Accessed Dec. 31, ... http://www.mayoclinic.org/symptoms/leg-swelling/basics/definition/SYM-20050910 . Mayo Clinic Footer Legal Conditions and ...

  11. THE ASSOCIATIONS BETWEEN HIP STRENGTH AND HIP KINEMATICS DURING A SINGLE LEG HOP IN RECREATIONAL ATHLETES POST ACL RECONSTRUCTION COMPARED TO HEALTHY CONTROLS.

    Science.gov (United States)

    Tate, Jeremiah; Suckut, Tell; Wages, Jensen; Lyles, Heather; Perrin, Benjamin

    2017-06-01

    Only a small amount of evidence exists linking hip abductor weakness to dynamic knee valgus during static and dynamic activities. The associations of hip extensor strength and hip kinematics during the landing of a single leg hop are not known. Purpose: To determine if relationships exist between hip extensor and abductor strength and hip kinematics in both involved and uninvolved limb during the landing phase of a single leg hop in recreational athletes post anterior cruciate ligament (ACL) reconstruction. The presence of similar associations was also evaluated in healthy recreational athletes. Controlled Laboratory Study; Cross-sectional. Twenty-four recreational college-aged athletes participated in the study (12 post ACL reconstruction; 12 healthy controls). Sagittal and frontal plane hip kinematic data were collected for five trials during the landing of a single leg hop. Hip extensor and abductor isometric force production was measured using a hand-held dynamometer and normalized to participants' height and weight. Dependent and independent t-tests were used to analyze for any potential differences in hip strength or kinematics within and between groups, respectively. Pearson's r was used to demonstrate potential associations between hip strength and hip kinematics for both limbs in the ACL group and the right limb in the healthy control group. Independent t-tests revealed that participants post ACL reconstruction exhibited less hip extensor strength (0.18 N/Ht*BW vs. 0.25 N/Ht*BW, p=hip adduction (9.0 º vs. 0.8 º, p=hip extensor strength and maximum hip abduction/adduction angle in the involved limb. A moderate and direct relationship between hip abductor strength and maximum hip flexion angle was demonstrated in the both the involved ( r =.62) and uninvolved limb ( r =.65, p=.02). No significant associations were demonstrated between hip extensor or abductor strength and hip flexion and/or abduction/adduction angles in the healthy group. The

  12. Running over unknown rough terrain with a one-legged planar robot

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, Ben; Miller, Bruce; Clark, Jonathan E [Department of Mechanical Engineering, Florida State University, Tallahassee, FL 32310 (United States); Schmitt, John, E-mail: clarkj@eng.fsu.edu [Department of Mechanical Engineering, Oregon State University, Corvallis, OR 97331 (United States)

    2011-06-15

    The ability to traverse unknown, rough terrain is an advantage that legged locomoters have over their wheeled counterparts. However, due to the complexity of multi-legged systems, research in legged robotics has not yet been able to reproduce the agility found in the animal kingdom. In an effort to reduce the complexity of the problem, researchers have developed single-legged models to gain insight into the fundamental dynamics of legged running. Inspired by studies of animal locomotion, researchers have proposed numerous control strategies to achieve stable, one-legged running over unknown, rough terrain. One such control strategy incorporates energy variations into the system during the stance phase by changing the force-free leg length as a sinusoidal function of time. In this research, a one-legged planar robot capable of implementing this and other state-of-the-art control strategies was designed and built. Both simulated and experimental results were used to determine and compare the stability of the proposed controllers as the robot was subjected to unknown drop and raised step perturbations equal to 25% of the nominal leg length. This study illustrates the relative advantages of utilizing a minimal-sensing, active energy removal control scheme to stabilize running over rough terrain.

  13. Running over unknown rough terrain with a one-legged planar robot

    International Nuclear Information System (INIS)

    Andrews, Ben; Miller, Bruce; Clark, Jonathan E; Schmitt, John

    2011-01-01

    The ability to traverse unknown, rough terrain is an advantage that legged locomoters have over their wheeled counterparts. However, due to the complexity of multi-legged systems, research in legged robotics has not yet been able to reproduce the agility found in the animal kingdom. In an effort to reduce the complexity of the problem, researchers have developed single-legged models to gain insight into the fundamental dynamics of legged running. Inspired by studies of animal locomotion, researchers have proposed numerous control strategies to achieve stable, one-legged running over unknown, rough terrain. One such control strategy incorporates energy variations into the system during the stance phase by changing the force-free leg length as a sinusoidal function of time. In this research, a one-legged planar robot capable of implementing this and other state-of-the-art control strategies was designed and built. Both simulated and experimental results were used to determine and compare the stability of the proposed controllers as the robot was subjected to unknown drop and raised step perturbations equal to 25% of the nominal leg length. This study illustrates the relative advantages of utilizing a minimal-sensing, active energy removal control scheme to stabilize running over rough terrain.

  14. Spine buddy® supportive pad impact on single-leg static balance and a jogging gait of individuals wearing a military backpack.

    Science.gov (United States)

    Ward, John; Coats, Jesse; Pourmoghaddam, Amir

    2014-12-09

    The Spine Buddy® supportive pad was developed to be inserted underneath military backpacks to help disperse the heavy load of the backpack. The purpose of this study was to determine the impact the additional supportive pad had on static balance and a running gait while wearing a military backpack. Forty healthy subjects (age= 27.5 + 5.6 yrs, body height= 1.78 + 0.06 m, body mass= 86.5 + 14.0 kg: mean + SD) participated in a static single-leg balance test on a force plate with each lower limb while wearing a 15.9 kg military backpack for 30 s. Following this, participants were randomized to one of two interventions: 1) Intervention, which wore the Spine Buddy® supportive pad underneath their backpack or 2) Control, with no additional supportive pad. Post-intervention measurements of static single-leg balance were then recorded. Afterwards, a similar pre vs post testing schedule and randomization scheme was used to test the impact of the supportive pad on a 5 mph jogging gait using Vicon® cameras. Within-group data were analyzed with a 2-way repeated measures ANOVA. Statistically significant differences were not seen between the control and experimental group for balance and gait variables. Preliminarily, this suggests that the Spine Buddy® supportive pad causes no deleterious effect on static balance and a jogging gait in 18-45 year-old asymptomatic individuals.

  15. Spine Buddy® Supportive Pad Impact on Single-Leg Static Balance and a Jogging Gait of Individuals Wearing a Military Backpack

    Directory of Open Access Journals (Sweden)

    Ward John

    2014-12-01

    Full Text Available The Spine Buddy® supportive pad was developed to be inserted underneath military backpacks to help disperse the heavy load of the backpack. The purpose of this study was to determine the impact the additional supportive pad had on static balance and a running gait while wearing a military backpack. Forty healthy subjects (age= 27.5 + 5.6 yrs, body height= 1.78 + 0.06 m, body mass= 86.5 + 14.0 kg: mean + SD participated in a static single-leg balance test on a force plate with each lower limb while wearing a 15.9 kg military backpack for 30 s. Following this, participants were randomized to one of two interventions: 1 Intervention, which wore the Spine Buddy® supportive pad underneath their backpack or 2 Control, with no additional supportive pad. Post-intervention measurements of static single-leg balance were then recorded. Afterwards, a similar pre vs post testing schedule and randomization scheme was used to test the impact of the supportive pad on a 5 mph jogging gait using Vicon® cameras. Within-group data were analyzed with a 2-way repeated measures ANOVA. Statistically significant differences were not seen between the control and experimental group for balance and gait variables. Preliminarily, this suggests that the Spine Buddy® supportive pad causes no deleterious effect on static balance and a jogging gait in 18-45 year-old asymptomatic individuals.

  16. Effects of fatigue on lower limb, pelvis and trunk kinematics and lower limb muscle activity during single-leg landing after anterior cruciate ligament reconstruction.

    Science.gov (United States)

    Lessi, Giovanna Camparis; Serrão, Fábio Viadanna

    2017-08-01

    Because there are no studies that have evaluated the effects of fatigue on the kinematics of the trunk and pelvis or on muscle activation in subjects with ACL reconstruction, the aim of this study was to evaluate the effects of fatigue on the lower limb, pelvis and trunk kinematics and lower limb muscle activation in subjects with ACL reconstruction during a single-leg landing compared to a healthy control group. The participants included 20 subjects with ACL reconstruction (ACL reconstruction group-ACLRG) and 20 healthy subjects (control group-CG) who were aged between 18 and 35 years. Kinematic and electromyographic analyses were performed during a single-leg landing before and after fatigue. The fatigue protocol included a series of 10 squats, two vertical jumps, and 20 steps. The effects of fatigue were increased peak trunk flexion and increased activation of the vastus lateralis, biceps femoris (BF) and gluteus maximus (GMax) during the landing phase. After the fatigue protocol, an increase in peak trunk flexion and activation of the GMax and BF were observed, most likely as a strategy to reduce the load on the ACL. ACL injury prevention programs should include strength and endurance exercises for the hip and trunk extensor muscles so that they can efficiently control trunk flexion during landing. Prospective comparative study, Level II.

  17. Venous leg ulcers.

    Science.gov (United States)

    Nelson, E Andrea

    2011-12-21

    Leg ulcers usually occur secondary to venous reflux or obstruction, but 20% of people with leg ulcers have arterial disease, with or without venous disorders. Between 1.5 and 3.0/1000 people have active leg ulcers. Prevalence increases with age to about 20/1000 in people aged over 80 years. We conducted a systematic review and aimed to answer the following clinical questions: What are the effects of standard treatments, adjuvant treatments, and organisational interventions for venous leg ulcers? What are the effects of advice about self-help interventions in people receiving usual care for venous leg ulcers? What are the effects of interventions to prevent recurrence of venous leg ulcers? We searched: Medline, Embase, The Cochrane Library, and other important databases up to June 2011 (Clinical Evidence reviews are updated periodically; please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). We found 101 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. In this systematic review we present information relating to the effectiveness and safety of the following interventions: compression bandages and stockings, cultured allogenic (single or bilayer) skin replacement, debriding agents, dressings (cellulose, collagen, film, foam, hyaluronic acid-derived, semi-occlusive alginate), hydrocolloid (occlusive) dressings in the presence of compression, intermittent pneumatic compression, intravenous prostaglandin E1, larval therapy, laser treatment (low-level), leg ulcer clinics, multilayer elastic system, multilayer elastomeric (or non-elastomeric) high-compression regimens or bandages, oral treatments (aspirin, flavonoids, pentoxifylline, rutosides, stanozolol, sulodexide

  18. Broken Leg

    Science.gov (United States)

    ... the leg, which can result in a fracture. Stress fractures outside of sport situations are more common in people who have: ... shoes. Choose the appropriate shoe for your favorite sports or activities. And ... can prevent stress fractures. Rotate running with swimming or biking. If ...

  19. Whole body and local cryotherapy in restless legs syndrome: A randomized, single-blind, controlled parallel group pilot study.

    Science.gov (United States)

    Happe, Svenja; Evers, Stefan; Thiedemann, Christian; Bunten, Sabine; Siegert, Rudolf

    2016-11-15

    Treatment of restless legs syndrome (RLS) is primarily based on drugs. Since many patients report improvement of symptoms due to cooling their legs, we examined the efficacy of cryotherapy in RLS. 35 patients (28 women, 60.9±12.5years) with idiopathic RLS and symptoms starting not later than 6pm were randomized into three groups: cold air chamber at -60°C (n=12); cold air chamber at -10°C (n=12); local cryotherapy at -17°C (n=11). After a two week baseline, the different therapies were applied three minutes daily at 6pm over two weeks, followed by a four week observation period. The patients completed several questionnaires regarding RLS symptoms, sleep, and quality of life on a weekly basis (IRLS, ESS), VAS and sleep/morning protocol were completed daily, MOSS/RLS-QLI were completed once in each period. Additionally, the PLM index was measured by a mobile device at the end of baseline, intervention, and follow-up. The IRLS score was chosen as primary efficacy parameter. At the end of follow-up, significant improvement of RLS symptoms and quality of life could be observed only in the -60°C group as compared to baseline (IRLS: p=0.009; RLS-QLI: p=0.006; ESS: p=0.020). Local cryotherapy led to improvement in quality of life (VAS4: p=0.028; RLS-QLI: p=0.014) and sleep quality (MOSS: p=0.020; MOSS2: p=0.022) but not in IRLS and ESS. In the -10°C group, the only significant effect was shortening of number of wake phases per night. Serious side-effects were not reported. Whole body cryotherapy at -60°C and, to a less extent, local cryotherapy seem to be a treatment option for RLS in addition to conventional pharmacological treatment. However, the exact mode of cryotherapy needs to be established. Copyright © 2016. Published by Elsevier B.V.

  20. Single Family Loan Sale Initiative - Neighborhood Stabilization Outcome Pool Offering

    Data.gov (United States)

    Department of Housing and Urban Development — The FHA Office of Housing is conducting a series of mortgage loan sales under the Single Family Loan Sale (SFLS) Initiative. The current sales structure consists of...

  1. Night Leg Cramps

    Science.gov (United States)

    Symptoms Night leg cramps By Mayo Clinic Staff Night leg cramps, also called nocturnal leg cramps, are painful, involuntary contractions or spasms of muscles in your legs, usually occurring when you're in bed. Night ...

  2. Dynamic knee valgus alignment influences impact attenuation in the lower extremity during the deceleration phase of a single-leg landing.

    Directory of Open Access Journals (Sweden)

    Akihiro Tamura

    Full Text Available Dynamic knee valgus during landings is associated with an increased risk of non-contact anterior cruciate ligament (ACL injury. In addition, the impact on the body during landings must be attenuated in the lower extremity joints. The purpose of this study was to investigate landing biomechanics during landing with dynamic knee valgus by measuring the vertical ground reaction force (vGRF and angular impulses in the lower extremity during a single-leg landing. The study included 34 female college students, who performed the single-leg drop vertical jump. Lower extremity kinetic and kinematic data were obtained from a 3D motion analysis system. Participants were divided into valgus (N = 19 and varus (N = 15 groups according to the knee angular displacement during landings. The vGRF and angular impulses of the hip, knee, and ankle were calculated by integrating the vGRF-time curve and each joint's moment-time curve. vGRF impulses did not differ between two groups. Hip angular impulse in the valgus group was significantly smaller than that in the varus group (0.019 ± 0.033 vs. 0.067 ± 0.029 Nms/kgm, p<0.01, whereas knee angular impulse was significantly greater (0.093 ± 0.032 vs. 0.045 ± 0.040 Nms/kgm, p<0.01. There was no difference in ankle angular impulse between the groups. Our results indicate that dynamic knee valgus increases the impact the knee joint needs to attenuate during landing; conversely, the knee varus participants were able to absorb more of the landing impact with the hip joint.

  3. Safety evaluation of interim stabilization of non-stabilized single-shell watch list tanks

    Energy Technology Data Exchange (ETDEWEB)

    Stahl, S.M.

    1994-12-30

    The report provides a summation of the status of safety issues associated with interim stabilization of Watch List SSTs (organic, ferrocyanide, and flammable gas), as extracted from recent safety analyses, including the Tank Farms Accelerated Safety Analysis efforts.

  4. Safety evaluation of interim stabilization of non-stabilized single-shell watch list tanks

    International Nuclear Information System (INIS)

    Stahl, S.M.

    1994-01-01

    The report provides a summation of the status of safety issues associated with interim stabilization of Watch List SSTs (organic, ferrocyanide, and flammable gas), as extracted from recent safety analyses, including the Tank Farms Accelerated Safety Analysis efforts

  5. Global Asymptotic Stability for Discrete Single Species Population Models

    Directory of Open Access Journals (Sweden)

    A. Bilgin

    2017-01-01

    Full Text Available We present some basic discrete models in populations dynamics of single species with several age classes. Starting with the basic Beverton-Holt model that describes the change of single species we discuss its basic properties such as a convergence of all solutions to the equilibrium, oscillation of solutions about the equilibrium solutions, Allee’s effect, and Jillson’s effect. We consider the effect of the constant and periodic immigration and emigration on the global properties of Beverton-Holt model. We also consider the effect of the periodic environment on the global properties of Beverton-Holt model.

  6. Single Stance Stability and Proprioceptive Control in Older Adults Living at Home: Gender and Age Differences

    Directory of Open Access Journals (Sweden)

    Dario Riva

    2013-01-01

    Full Text Available In developed countries, falls in older people represent a rising problem. As effective prevention should start before the risk becomes evident, an early predictor is needed. Single stance instability would appear as a major risk factor. Aims of the study were to describe single stance stability, its sensory components, and their correlation with age and gender. A random sample of 597 older adults (319 men, 278 women living at home, aged 65–84, was studied. Stability tests were performed with an electronic postural station. The single stance test showed the impairment of single stance stability in older individuals (75–84 yrs. The significant decline of stability in the older subjects may be explained by the impairment of proprioceptive control together with the decrease in compensatory visual stabilization and emergency responses. Younger subjects (65–74 yrs exhibited better, but still inadequate, proprioceptive control with compensatory visual stabilization. Gender differences appeared in older subjects: women were significantly less stable than men. The measurement of the sensory components of single stance stability could aid in the early detection of a decay in antigravity movements many years before the risk of falling becomes evident. Adequate proprioceptive control could mitigate the effects of all other risks of falling.

  7. STABILITY OF AXIALLY COMPRESSED SINGLE-CELL MONO ...

    African Journals Online (AJOL)

    60. N.N. OSADEBE and J.C. EZEH. Figure 1 shows one of the cross sections of a single-cell mono symmetric thin-walled closed column under consideration. Using. Lagrange's principle, Vlasov [6] expressed the displacements in the longitudinal and transverse directions, u(x, s) and v(x, s) of a thin-walled closed structure in ...

  8. Recurrent Neural Network for Single Machine Power System Stabilizer

    Directory of Open Access Journals (Sweden)

    Widi Aribowo

    2010-04-01

    Full Text Available In this paper, recurrent neural network (RNN is used to design power system stabilizer (PSS due to its advantage on the dependence not only on present input but also on past condition. A RNN-PSS is able to capture the dynamic response of a system without any delays caused by external feedback, primarily by the internal feedback loop in recurrent neuron. In this paper, RNNPSS consists of a RNN-identifier and a RNN-controller. The RNN-Identifier functions as the tracker of dynamics characteristics of the plant, while the RNN-controller is used to damp the system’s low frequency oscillations. Simulation results using MATLAB demonstrate that the RNNPSS can successfully damp out oscillation and improve the performance of the system.

  9. Single-Bunch Stability With Direct Space Charge

    CERN Multimedia

    Oeftiger, Adrian

    2017-01-01

    Previous studies have shown the suppressing effect of direct space charge on impedance-driven head-tail instabilities. The present work investigates transverse stability for the HL-LHC scenario based on our macro-particle simulation tool PyHEADTAIL using realistic bunch distributions. The impact of selfconsistent modelling is briefly discussed for non-linear space charge forces. We study how space charge pushes the instability threshold for the transverse mode coupling instability (TMCI) occurring between mode 0 and -1. Next we consider finite chromaticity: in absence of space charge, the impedance model predicts head-tail instabilities. For a selected case below TMCI threshold at Q0 = 5, we demonstrate the stabilising effect of space charge. Finally, we compare simulation results to past LHC measurements.

  10. Strategies for Balance maintenance in Different Support Surfaces - Mechanisms, Trainability and Transfer to Single-Leg Landing Performance

    DEFF Research Database (Denmark)

    Silva, Priscila de Brito

    2016-01-01

    Well-adapted control of posture is crucial for the human body function. Postural control relates to coordination of body segments to maintain or restore balance, making the execution of a task safer with less effort. This PhD thesis focuses on the effects of different support surfaces on postural...... that postural control strategies are affected by surface stability and optimized with training, but also that the adaptations to training are transferred to movement strategies of sports gestures not involved in the training. This thesis offers a new perspective on how balance training provides protective...

  11. Number of test trials needed for performance stability and interrater reliability of the one leg stand test in patients with a major non-traumatic lower limb amputation.

    Science.gov (United States)

    Kristensen, Morten Tange; Nielsen, Anni Østergaard; Topp, Ulla Madsen; Jakobsen, Berit; Nielsen, Kirsten Juel; Juul-Larsen, Helle Gybel; Jakobsen, Thomas Linding

    2014-01-01

    Balance is beneficial for daily functioning of patients with a lower limb amputation and sometimes assessed by the one-leg stand test (OLST). The aims of the study were to examine (1) the number of trials needed to achieve performance stability, (2) the interrater reliability of the OLST in patients with a major non-traumatic lower limb amputation, and (3) to provide a test procedure. Thirteen women and 23 men with a mean age (SD) of 67.4 (10.6) years; 19 below-knee and 17 above-knee amputees who performed the OLST at a mean of 14.5 (4.5) days post-amputation. All patients performed five timed OLST-trials with 1-min rest intervals between trials, supervised by a physical therapist, of which 28 included in the reliability-part conducted this twice, separated with a mean of 3.4 (0.78)h. Repeated measures Friedman determined the number of trials needed to ensure stable OLST-scores while the ICC1.1, the standard error of measurement (SEM) and the smallest real difference (SRD) determined reproducibility. No learning curve was found for the five OLST-trials (p=0.241), with the best of the five trials reaching a median (25-75% quartile) of 2.9 (1.7-8.2)s, and with only six patients able to stand for more than 10s. The ICC (95% CI), SEM and SRD were respectively 0.87 (0.61-0.96), 0.99 s and 2.74 s. Findings suggest that the best of five trials be used for the OLST in unilateral non-traumatic amputee patients as we found excellent interrater reliability and acceptable agreement when using this score. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Stability Analysis and Controller Synthesis for Digital Single-Loop Voltage-Controlled Inverters

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Loh, Poh Chiang; Blaabjerg, Frede

    2016-01-01

    This paper analyzes first the stability of single-loop digital voltage control scheme for the LC-filtered voltage source inverters. It turns out that the phase lag, caused by the time delay of digital control system and by the use of integral controller, can stabilize the voltage loop without...... damping of LC-filter resonance. The stability regions are then identified with alternative voltage controller synthesized. For further widening the stability region, an active damping approach is proposed and co-designed with the voltage controller in the discrete z-domain. Simulations and experimental...

  13. Experimental research on the stability of armour and secondary layer in a single layered Tetrapod breakwater

    NARCIS (Netherlands)

    De Jong, W.; Verhagen, H.J.; Olthof, J.

    2004-01-01

    Physical model tests were done on an armour of Tetrapods, placed in a single layer. The objective of the investigations was to study the stability of the secondary layer, and to see if the material of this secondary layer could be washed out through the single layer of Tetrapods. It was concluded

  14. Effectiveness of electronic stability control on single-vehicle accidents

    DEFF Research Database (Denmark)

    Lyckegaard, Allan; Hels, Tove; Bernhoft, Inger Marie

    2015-01-01

    the following were significant. For the driver: Age, gender, driving experience, valid driving license, and seat belt use. For the vehicle: Year of registration, weight, and ESC. For the accident surroundings: Visibility, light, and location. Finally, for the road: Speed limit, surface, and section...... manufactured in the period 1998 to 2011 and the principle of induced exposure, 2 measures of the effectiveness of ESC were calculated: The crude odds ratio and the adjusted odds ratio, the latter by means of logistic regression. The logistic regression controlled for a number of confounding factors, of which...... characteristics. Results: The present study calculated the crude odds ratio for ESC-equipped cars of getting in a single-vehicle injury accident as 0.40 (95% confidence interval [CI], 0.34-0.47) and the adjusted odds ratio as 0.69 (95% CI, 0.54-0.88). No difference was found in the effectiveness of ESC across...

  15. Hydraulic Stability of Single-Layer Dolos and Accropode Armour Layers

    DEFF Research Database (Denmark)

    Christensen, M.; Burcharth, H. F.

    1995-01-01

    A new design for Dolos breakwater armour layers is presented: Dolos armour units are placed in a selected geometric pattern in a single layer. A series of model tests have been performed in order to determine the stability of such single-layer Dolos armour layers. The test results are presented...... and compared to the stability formula for the traditional double-layer, randomly placed Dolos armour layer design presented by Burcharth (1992). The results of a series of stability tests performed with Accropode® armour layers is presented and compared to the test results obtained with single-layer Dolos...... armour layers. Run-up and reflection are presented for both single-layer Dolos armour and Accropode armour....

  16. A diode laser stabilization scheme for 40Ca+ single-ion spectroscopy

    Science.gov (United States)

    Rohde, F.; Almendros, M.; Schuck, C.; Huwer, J.; Hennrich, M.; Eschner, J.

    2010-06-01

    We present a scheme for stabilizing multiple lasers at wavelengths between 795 and 866 nm to the same atomic reference line. A reference laser at 852 nm is stabilized to the Cs D2 line using a Doppler-free frequency modulation technique. Through transfer cavities, four lasers are stabilized to the relevant atomic transitions in 40Ca+. The rms linewidth of a transfer-locked laser is measured to be 123 kHz over 200 ms with respect to an independent atomic reference, the Rb D1 line. This stability is confirmed by the comparison of an excitation spectrum of a single 40Ca+ ion to an eight-level Bloch equation model. The long-term stability with respect to the same reference is measured to be 130 kHz over a period of 2 h. The high degree of stability is demonstrated by the measured Allan deviation around 10-11 between 1 and 100 s.

  17. A diode laser stabilization scheme for 40Ca+ single-ion spectroscopy

    International Nuclear Information System (INIS)

    Rohde, F; Almendros, M; Schuck, C; Huwer, J; Hennrich, M; Eschner, J

    2010-01-01

    We present a scheme for stabilizing multiple lasers at wavelengths between 795 and 866 nm to the same atomic reference line. A reference laser at 852 nm is stabilized to the Cs D 2 line using a Doppler-free frequency modulation technique. Through transfer cavities, four lasers are stabilized to the relevant atomic transitions in 40 Ca + . The rms linewidth of a transfer-locked laser is measured to be 123 kHz over 200 ms with respect to an independent atomic reference, the Rb D 1 line. This stability is confirmed by the comparison of an excitation spectrum of a single 40 Ca + ion to an eight-level Bloch equation model. The long-term stability with respect to the same reference is measured to be 130 kHz over a period of 2 h. The high degree of stability is demonstrated by the measured Allan deviation around 10 -11 between 1 and 100 s.

  18. Comparison of a laboratory grade force platform with a Nintendo Wii Balance Board on measurement of postural control in single-leg stance balance tasks.

    Science.gov (United States)

    Huurnink, Arnold; Fransz, Duncan P; Kingma, Idsart; van Dieën, Jaap H

    2013-04-26

    Training and testing of balance have potential applications in sports and medicine. Laboratory grade force plates (FP) are considered the gold standard for the measurement of balance performance. Measurements in these systems are based on the parameterization of center of pressure (CoP) trajectories. Previous research validated the inexpensive, widely available and portable Nintendo Wii Balance Board (WBB). The novelty of the present study is that FP and WBB are compared on CoP data that was collected simultaneously, by placing the WBB on the FP. Fourteen healthy participants performed ten sequences of single-leg stance tasks with eyes open (EO), eyes closed (EC) and after a sideways hop (HOP). Within trial comparison of the two systems showed small root-mean-square differences for the CoP trajectories in the x and y direction during the three tasks (mean±SD; EO: 0.33±0.10 and 0.31±0.16 mm; EC: 0.58±0.17 and 0.63±0.19 mm; HOP: 0.74±0.34 and 0.74±0.27 mm, respectively). Additionally, during all 420 trials, comparison of FP and WBB revealed very high Pearson's correlation coefficients (r) of the CoP trajectories (x: 0.999±0.002; y: 0.998±0.003). A general overestimation was found on the WBB compared to the FP for 'CoP path velocity' (EO: 5.3±1.9%; EC: 4.0±1.4%; HOP: 4.6±1.6%) and 'mean absolute CoP sway' (EO: 3.5±0.7%; EC: 3.7±0.5%; HOP: 3.6±1.0%). This overestimation was highly consistent over the 140 trials per task (r>0.996). The present findings demonstrate that WBB is sufficiently accurate in quantifying CoP trajectory, and overall amplitude and velocity during single-leg stance balance tasks. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Greater Hip Extension but Not Hip Abduction Explosive Strength Is Associated With Lesser Hip Adduction and Knee Valgus Motion During a Single-Leg Jump-Cut.

    Science.gov (United States)

    Cronin, Baker; Johnson, Samuel T; Chang, Eunwook; Pollard, Christine D; Norcross, Marc F

    2016-04-01

    The relationships between hip abductor and extensor strength and frontal plane hip and knee motions that are associated with anterior cruciate ligament injury risk are equivocal. However, previous research on these relationships has evaluated relatively low-level movement tasks and peak torque rather than a time-critical strength measure such as the rate of torque development (RTD). Females with greater hip abduction and extension RTD would exhibit lesser frontal plane hip and knee motion during a single-leg jump-cutting task. Descriptive laboratory study. Forty recreationally active females performed maximal isometric contractions and single-leg jump-cuts. From recorded torque data, hip extension and abduction RTD was calculated from torque onset to 200 ms after onset. Three-dimensional motion analysis was used to quantify frontal plane hip and knee kinematics during the movement task. For each RTD measure, jump-cut biomechanics were compared between participants in the highest (high) and lowest (low) RTD tertiles. No differences in frontal plane hip and knee kinematics were identified between high and low hip abduction RTD groups. However, those in the high hip extension RTD group exhibited lower hip adduction (high, 3.8° ± 3.0°; low, 6.5° ± 3.0°; P = .019) and knee valgus (high, -2.5° ± 2.3°; low, -4.4° ± 3.2°; P = .046) displacements during the jump-cut. In movements such as cutting that are performed with the hip in a relatively abducted and flexed position, the ability of the gluteus medius to control hip adduction may be compromised. However, the gluteus maximus, functioning as a hip abductor, may take on a pivotal role in controlling hip adduction and knee valgus motion during these types of tasks. Training with a specific emphasis on increasing explosive strength of the hip extensors may be a means through which to improve frontal plane hip and knee control during high-risk maneuvers such as cutting.

  20. Mild hallux valgus angle affects single-limb postural stability in asymptomatic subjects.

    Science.gov (United States)

    Çınar-Medeni, Özge; Atalay Guzel, Nevin; Basar, Selda

    2016-01-01

    Single-limb postural stability is a key component of lower extremity functional status. Factors affecting postural stability should be well defined to prevent injuries. The aim of this study was to investigate the effect of the hallux valgus angle on postural stability in asymptomatic subjects. A total of 19 subjects were included in the study. The hallux valgus angle and postural stability were assessed. Participants were assigned to two groups according to whether the hallux valgus angle was pathological or not. A hallux valgus angle greater than 15 degrees was accepted as pathological. The relationship between the hallux valgus angle and postural stability, and the differences in postural stability scores between the two groups were analyzed. Postural stability was assessed with a stabilometer. The test was performed with the eyes open. We found a significant correlation between the hallux valgus angle and mediolateral and overall stability index (r= 0.484, p= 0.036; r = 0.463, p= 0.046 respectively). Subjects with a pathological mild hallux valgus angle had greater stability index scores than normal subjects (phallux valgus angle has negative effects on postural stability as a forefoot deformity. This deformity should be taken into account for injury prevention strategies in pain-free younger adults.

  1. Altered lower extremity joint mechanics occur during the star excursion balance test and single leg hop after ACL-reconstruction in a collegiate athlete.

    Science.gov (United States)

    Samaan, Michael A; Ringleb, Stacie I; Bawab, Sebastian Y; Greska, Eric K; Weinhandl, Joshua T

    2018-03-15

    The effects of ACL-reconstruction on lower extremity joint mechanics during performance of the Star Excursion Balance Test (SEBT) and Single Leg Hop (SLH) are limited. The purpose of this study was to determine if altered lower extremity mechanics occur during the SEBT and SLH after ACL-reconstruction. One female Division I collegiate athlete performed the SEBT and SLH tasks, bilaterally, both before ACL injury and 27 months after ACL-reconstruction. Maximal reach, hop distances, lower extremity joint kinematics and moments were compared between both time points. Musculoskeletal simulations were used to assess muscle force production during the SEBT and SLH at both time points. Compared to the pre-injury time point, SEBT reach distances were similar in both limbs after ACL-reconstruction except for the max anterior reach distance in the ipsilateral limb. The athlete demonstrated similar hop distances, bilaterally, after ACL-reconstruction compared to the pre-injury time point. Despite normal functional performance during the SEBT and SLH, the athlete exhibited altered lower extremity joint mechanics during both of these tasks. These results suggest that measuring the maximal reach and hop distances for these tasks, in combination with an analysis of the lower extremity joint mechanics that occur after ACL-reconstruction, may help clinicians and researchers to better understand the effects of ACL-reconstruction on the neuromuscular system during the SEBT and SLH.

  2. The Acute Effects of Unilateral Ankle Plantar Flexors Static- Stretching on Postural Sway and Gastrocnemius Muscle Activity During Single-Leg Balance Tasks

    Directory of Open Access Journals (Sweden)

    Bráulio N. Lima, Paulo R.G. Lucareli, Willy A. Gomes, Josinaldo J. Silva, Andre S. Bley, Erin H. Hartigan, Paulo H. Marchetti

    2014-09-01

    Full Text Available The aim of this study was to investigate the acute effects of unilateral ankle plantar flexors static- stretching on surface electromyography (sEMG and the center of pressure (COP during a single-leg balance task in both lower limbs. Fourteen young healthy, non-athletic individuals performed unipodal quiet standing for 30s before and after (stretched limb: immediately post-stretch, 10 and 20 minutes and non-stretched limb: immediately post-stretch a unilateral ankle plantar flexor static- stretching protocol [6 sets of 45s/15s, 70-90% point of discomfort (POD]. Postural sway was described using the COP area, COP speed (antero-posterior and medio-lateral directions and COP frequency (antero-posterior and medio-lateral directions. Surface EMG (EMG integral [IEMG] and Median frequency[FM] was used to describe the muscular activity of gastrocnemius lateralis. Ankle dorsiflexion passive range of motion increased in the stretched limb before and after the static-stretching protocol (mean ± SD: 15.0° ± 6.0 and 21.5° ± 7.0 [p < 0.001]. COP area and IEMG increased in the stretch limb between pre-stretching and immediately post-stretching (p = 0.015 and p = 0.036, respectively. In conclusion, our static- stretching protocol effectively increased passive ankle ROM. The increased ROM appears to increase postural sway and muscle activity; however these finding were only a temporary or transient effect.

  3. Effects of two football stud configurations on biomechanical characteristics of single-leg landing and cutting movements on infilled synthetic turf.

    Science.gov (United States)

    Brock, Elizabeth; Zhang, Songning; Milner, Clare; Liu, Xuan; Brosnan, James T; Sorochan, John C

    2014-11-01

    Multiple playing surfaces and footwear used in American football warrant a better understanding of relationship between different combinations of turf and footwear. The purpose of this study was to examine effects of shoe and stud types on ground reaction force (GRF) and ankle and knee kinematics of a 180° cut and a single-leg 90° land-cut on synthetic turf. Fourteen recreational football players performed five trials of the 180° cut and 90° land-cut in three shoe conditions: non-studded running shoe, and football shoe with natural and synthetic turf studs. Variables were analyzed with a 3 × 2 (shoe × movement) repeated measures analysis of variance (p < 0.05). Peak vertical GRF (p < 0.001) and loading rate (p < 0.001) were greater during 90° land-cut than 180° cut. For 180° cut, natural turf studs produced smaller peak medial GRFs compared to synthetic turf studs and non-studded shoe (p = 0.012). For land-cut, peak eversion velocity was reduced in running shoes compared to natural (p = 0.016) and synthetic (p = 0.002) turf studs. The 90° land-cut movement resulted in greater peak vertical GRF and loading rate compared to the 180° cut. Overall, increased GRFs in the 90° land-cut movement may increase the chance of injury.

  4. Leg Injuries and Disorders

    Science.gov (United States)

    Your legs are made up of bones, blood vessels, muscles, and other connective tissue. They are important for motion ... falling, or having an accident can damage your legs. Common leg injuries include sprains and strains, joint ...

  5. Single-walled carbon nanotubes as stabilizing agents in red phosphorus Li-ion battery anodes

    KAUST Repository

    Smajic, Jasmin

    2017-08-16

    Phosphorus boasts extremely high gravimetric and volumetric capacities but suffers from poor electrochemical stability with significant capacity loss immediately after the first cycle. We propose to circumvent this issue by mixing amorphous red phosphorus with single-walled carbon nanotubes. Employing a non-destructive sublimation–deposition method, we have synthesized composites where the synergetic effect between red phosphorus and single-walled carbon nanotubes allows for a considerable improvement in the electrochemical stability of battery anodes. In contrast to the average 40% loss of capacity after 50 cycles for other phosphorus–carbon composites in the literature, our material shows losses of just 22% under analogous cycling conditions.

  6. Stability boundary analysis in single-phase grid-connected inverters with PLL by LTP theory

    OpenAIRE

    Salis, Valerio; Costabeber, Alessando; Cox, Stephen M.; Zanchetta, Pericle; Formentini, Andrea

    2017-01-01

    Stability analysis of power converters in AC net¬works is complex due to the non-linear nature of the conversion systems. Whereas interactions of converters in DC networks can be studied by linearising about the operating point, the extension of the same approach to AC systems poses serious challenges, especially for single-phase or unbalanced three-phase systems. A general method for stability analysis of power converters suitable for single-phase or unbalanced AC networks is presented in th...

  7. Sex and the single (-eared) female: leg function, limb autotomy and mating history trade-offs in field crickets (Gryllus bimaculatus)

    Science.gov (United States)

    Bateman, Philip W; Fleming, Patricia A

    2005-01-01

    Both male and female field crickets (Gryllus bimaculatus) autotomize front (tympanal) limbs more slowly than hind limbs. Arguably, this pattern could reflect possible differences in the mechanism of limb autotomy. However, we demonstrate that, for females, limb autotomy is also dependent on their mating status: virgin females autotomize front legs significantly more slowly than mated females. This response suggests a central control for leg autotomy in these animals, and less readiness to autotomize a front leg, possibly because the tympanum is crucial for mate location. PMID:17148319

  8. Peripheral artery disease - legs

    Science.gov (United States)

    Peripheral vascular disease; PVD; PAD; Arteriosclerosis obliterans; Blockage of leg arteries; Claudication; Intermittent claudication; Vaso-occlusive disease of the legs; Arterial insufficiency of ...

  9. Stability of Axially Compressed Single-Cell Mono-Symmetric Thin ...

    African Journals Online (AJOL)

    Compared with conventional structural columns, the pronounced role of instabilities complicates the behaviour and design of thin-walled columns. This study investigated the stability of axially compressed single-cell thin-walled column with mono-symmetric non-deformable cross-sections. The work involved a theoretical ...

  10. Stability results for a reaction-diffusion system with a single measurement

    Energy Technology Data Exchange (ETDEWEB)

    Ramoul, Hichem [Centre universitaire de Khenchela, Route de Batna, BP 1252, Liberte, 40004 Khenchela (Algeria); Gaitan, Patricia [Laboratoire d' analyse, topologie, probabilites CNRS UMR 6632, Marseille (France) and Universite Aix-Marseille II (France); Cristofol, Michel [Laboratoire d' analyse, topologie, probabilites CNRS UMR 6632, Marseille, France and Universite Aix-Marseille III (France)

    2007-06-15

    For a two by two reaction-diffusion system on a bounded domain we give a simultaneous stability result for one coefficient and for the initial conditions. The key ingredient is a global Carleman-type estimate with a single observation acting on a subdomain.

  11. Stability of the single-mode output of a laser diode array with phase conjugate feedback

    DEFF Research Database (Denmark)

    Juul Jensen, S.; Løbel, M.; Petersen, P.M.

    2000-01-01

    . The output power and the center wavelength are found to be extremely stable in a 100 h stability measurement. External feedback of the output beam into the laser is seen to decrease both the spatial and the temporal coherence of the output significantly. We outline an approach to obtain a stable single......The stability of the output of a single-mode laser diode array with frequency selective phase conjugate feedback has been investigated experimentally. Both the long-term stability of the laser output and the sensitivity to feedback generated by external reflection of the output beam are examined......-mode output when external feedback is present using spatial filtering in the path of the output beam. (C) 2000 American Institute of Physics....

  12. A diode laser stabilization scheme for {sup 40}Ca{sup +} single-ion spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rohde, F; Almendros, M; Schuck, C; Huwer, J; Hennrich, M; Eschner, J, E-mail: felix.rohde@icfo.e [ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, E-08860 Castelldefels, Barcelona (Spain)

    2010-06-14

    We present a scheme for stabilizing multiple lasers at wavelengths between 795 and 866 nm to the same atomic reference line. A reference laser at 852 nm is stabilized to the Cs D{sub 2} line using a Doppler-free frequency modulation technique. Through transfer cavities, four lasers are stabilized to the relevant atomic transitions in {sup 40}Ca{sup +}. The rms linewidth of a transfer-locked laser is measured to be 123 kHz over 200 ms with respect to an independent atomic reference, the Rb D{sub 1} line. This stability is confirmed by the comparison of an excitation spectrum of a single {sup 40}Ca{sup +} ion to an eight-level Bloch equation model. The long-term stability with respect to the same reference is measured to be 130 kHz over a period of 2 h. The high degree of stability is demonstrated by the measured Allan deviation around 10{sup -11} between 1 and 100 s.

  13. Fusion Peptide Improves Stability and Bioactivity of Single Chain Antibody against Rabies Virus.

    Science.gov (United States)

    Xi, Hualong; Zhang, Kaixin; Yin, Yanchun; Gu, Tiejun; Sun, Qing; Shi, Linqing; Zhang, Renxia; Jiang, Chunlai; Kong, Wei; Wu, Yongge

    2017-04-28

    The combination of rabies immunoglobulin (RIG) with a vaccine is currently effective against rabies infections, but improvements are needed. Genetic engineering antibody technology is an attractive approach for developing novel antibodies to replace RIG. In our previous study, a single-chain variable fragment, scFv57R, against rabies virus glycoprotein was constructed. However, its inherent weak stability and short half-life compared with the parent RIG may limit its diagnostic and therapeutic application. Therefore, an acidic tail of synuclein (ATS) derived from the C-terminal acidic tail of human alpha-synuclein protein was fused to the C-terminus of scFv57R in order to help it resist adverse stress and improve the stability and halflife. The tail showed no apparent effect on the preparation procedure and affinity of the protein, nor did it change the neutralizing potency in vitro. In the ELISA test of molecular stability, the ATS fusion form of the protein, scFv57R-ATS, showed an increase in thermal stability and longer half-life in serum than scFv57R. The protection against fatal rabies virus challenge improved after fusing the tail to the scFv, which may be attributed to the improved stability. Thus, the ATS fusion approach presented here is easily implemented and can be used as a new strategy to improve the stability and half-life of engineered antibody proteins for practical applications.

  14. Bio-inspired swing leg control for spring-mass robots running on ground with unexpected height disturbance.

    Science.gov (United States)

    Vejdani, H R; Blum, Y; Daley, M A; Hurst, J W

    2013-12-01

    We proposed three swing leg control policies for spring-mass running robots, inspired by experimental data from our recent collaborative work on ground running birds. Previous investigations suggest that animals may prioritize injury avoidance and/or efficiency as their objective function during running rather than maintaining limit-cycle stability. Therefore, in this study we targeted structural capacity (maximum leg force to avoid damage) and efficiency as the main goals for our control policies, since these objective functions are crucial to reduce motor size and structure weight. Each proposed policy controls the leg angle as a function of time during flight phase such that its objective function during the subsequent stance phase is regulated. The three objective functions that are regulated in the control policies are (i) the leg peak force, (ii) the axial impulse, and (iii) the leg actuator work. It should be noted that each control policy regulates one single objective function. Surprisingly, all three swing leg control policies result in nearly identical subsequent stance phase dynamics. This implies that the implementation of any of the proposed control policies would satisfy both goals (damage avoidance and efficiency) at once. Furthermore, all three control policies require a surprisingly simple leg angle adjustment: leg retraction with constant angular acceleration.

  15. Frequency stabilization of multiple lasers on a single medium-finesse cavity

    Science.gov (United States)

    Han, Chengyin; Zhou, Min; Gao, Qi; Li, Shangyan; Zhang, Shuang; Qiao, Hao; Ai, Di; Zhang, Mengya; Lou, Ge; Luo, Limeng; Xu, Xinye

    2018-04-01

    We present a simple, compact, and robust frequency stabilization system of three lasers operating at 649, 759, and 770 nm, respectively. These lasers are applied in experiments on ytterbium optical lattice clocks, for which each laser needs to have a linewidth of a few hundred or tens of kilohertz while maintaining a favorable long-term stability. Here, a single medium-finesse cavity is adopted as the frequency reference and the standard Pound-Drever-Hall technique is used to stabilize the laser frequencies. Based on the independent phase modulation, multiple-laser locking is demonstrated without mutual intervention. The locked lasers are measured to have a linewidth of 100 kHz and the residual frequency drift is about 78.5 Hz s-1. This kind of setup provides a construction that is much simpler than that in previous work.

  16. Emulsion stability measurements by single electrode capacitance probe (SeCaP) technology

    International Nuclear Information System (INIS)

    Schüller, R B; Løkra, S; Egelandsdal, B; Salas-Bringas, C; Engebretsen, B

    2008-01-01

    This paper describes a new and novel method for the determination of the stability of emulsions. The method is based on the single electrode capacitance technology (SeCaP). A measuring system consisting of eight individual measuring cells, each with a volume of approximately 10 ml, is described in detail. The system has been tested on an emulsion system based on whey proteins (WPC80), oil and water. Xanthan was added to modify the emulsion stability. The results show that the new measuring system is able to quantify the stability of the emulsion in terms of a differential variable. The whole separation process is observed much faster in the SeCaP system than in a conventional separation column. The complete separation process observed visually over 30 h is seen in less than 1.4 h in the SeCaP system

  17. An Oxygen Scavenging System for Improvement of Dye Stability in Single-Molecule Fluorescence Experiments☆

    Science.gov (United States)

    Aitken, Colin Echeverría; Marshall, R. Andrew; Puglisi, Joseph D.

    2008-01-01

    The application of single-molecule fluorescence techniques to complex biological systems places demands on the performance of single fluorophores. We present an enzymatic oxygen scavenging system for improved dye stability in single-molecule experiments. We compared the previously described protocatechuic acid/protocatechuate-3,4-dioxygenase system to the currently employed glucose oxidase/catalase system. Under standardized conditions, we observed lower dissolved oxygen concentrations with the protocatechuic acid/protocatechuate-3,4-dioxygenase system. Furthermore, we observed increased initial lifetimes of single Cy3, Cy5, and Alexa488 fluorophores. We further tested the effects of chemical additives in this system. We found that biological reducing agents increase both the frequency and duration of blinking events of Cy5, an effect that scales with reducing potential. We observed increased stability of Cy3 and Alexa488 in the presence of the antioxidants ascorbic acid and n-propyl gallate. This new O2-scavenging system should have wide application for single-molecule fluorescence experiments. PMID:17921203

  18. Determining the activation of gluteus medius and the validity of the single leg stance test in chronic, nonspecific low back pain.

    Science.gov (United States)

    Penney, Tracy; Ploughman, Michelle; Austin, Mark W; Behm, David G; Byrne, Jeannette M

    2014-10-01

    To determine the activation of the gluteus medius in persons with chronic, nonspecific low back pain compared with that in control subjects, and to determine the association of the clinical rating of the single leg stance (SLS) with chronic low back pain (CLBP) and gluteus medius weakness. Cohort-control comparison. Academic research laboratory. Convenience sample of people (n=21) with CLBP (>12wk) recruited by local physiotherapists, and age- and sex-matched controls (n=22). Subjects who received specific pain diagnoses were excluded. Not applicable. Back pain using the visual analog scale (mm); back-related disability using the Oswestry Back Disability Index (%); strength of gluteus medius measured using a hand dynamometer (N/kg); SLS test; gluteus medius onset and activation using electromyography during unipedal stance on a forceplate. Individuals in the CLBP group exhibited significant weakness in the gluteus medius compared with controls (right, P=.04; left, P=.002). They also had more pain (CLBP: mean, 20.50mm; 95% confidence interval [CI], 13.11-27.9mm; control subjects: mean, 1.77mm; 95% CI, -.21 to 3.75mm) and back-related disability (CLBP: mean, 18.52%; 95% CI, 14.46%-22.59%; control subjects: mean, .68%; 95% CI, -.41% to 1.77%), and reported being less physically active. Weakness was accompanied by increased gluteus medius activation during unipedal stance (R=.50, P=.001) but by no difference in muscle onset times. Although greater gluteus medius weakness was associated with greater pain and disability, there was no difference in muscle strength between those scoring positive and negative on the SLS test (right: F=.002, P=.96; left: F=.1.75, P=.19). Individuals with CLBP had weaker gluteus medius muscles than control subjects without back pain. Even though there was no significant difference in onset time of the gluteus medius when moving to unipedal stance between the groups, the CLBP group had greater gluteus medius activation. A key finding was that

  19. Towards ALD thin film stabilized single-atom Pd1 catalysts.

    Science.gov (United States)

    Piernavieja-Hermida, Mar; Lu, Zheng; White, Anderson; Low, Ke-Bin; Wu, Tianpin; Elam, Jeffrey W; Wu, Zili; Lei, Yu

    2016-08-18

    Supported precious metal single-atom catalysts have shown interesting activity and selectivity in recent studies. However, agglomeration of these highly mobile mononuclear surface species can eliminate their unique catalytic properties. Here we study a strategy for synthesizing thin film stabilized single-atom Pd1 catalysts using atomic layer deposition (ALD). The thermal stability of the Pd1 catalysts is significantly enhanced by creating a nanocavity thin film structure. In situ infrared spectroscopy and Pd K-edge X-ray absorption spectroscopy (XAS) revealed that the Pd1 was anchored on the surface through chlorine sites. The thin film stabilized Pd1 catalysts were thermally stable under both oxidation and reduction conditions. The catalytic performance in the methanol decomposition reaction is found to depend on the thickness of protecting layers. While Pd1 catalysts showed promising activity at low temperature in a methanol decomposition reaction, 14 cycle TiO2 protected Pd1 was less active at high temperature. Pd L3 edge XAS indicated that the low reactivity compared with Pd nanoparticles is due to the strong adsorption of carbon monoxide even at 250 °C. These results clearly show that the ALD nanocavities provide a basis for future design of single-atom catalysts that are highly efficient and stable.

  20. Leg lengthening - slideshow

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/presentations/100127.htm Leg lengthening - series—Indications To use the sharing features ... with lengthening procedures are the bones of the leg, the tibia and the femur. Surgical treatment may ...

  1. Arterial bypass leg - slideshow

    Science.gov (United States)

    ... medlineplus.gov/ency/presentations/100155.htm Arterial bypass leg - series—Normal anatomy To use the sharing features ... Overview The arteries which supply blood to the leg originate from the aorta and iliac vessels. Review ...

  2. Leg lengthening and shortening

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002965.htm Leg lengthening and shortening To use the sharing features on this page, please enable JavaScript. Leg lengthening and shortening are types of surgery to ...

  3. Response matrix method and its application to SCWR single channel stability analysis

    International Nuclear Information System (INIS)

    Zhao, Jiyun; Tseng, K.J.; Tso, C.P.

    2011-01-01

    To simulate the reactor system dynamic features during density wave oscillations (DWO), both the non-linear method and the linear method can be used. Although some transient information is lost through model linearization, the high computational efficiency and relatively accurate results make the linear analysis methodology attractive, especially for prediction of the onset of instability. In the linear stability analysis, the system models are simplified through linearization of the complex non-linear differential equations, and then, the linear differential equations are generally solved in the frequency domain through Laplace transformation. In this paper, a system response matrix method was introduced by directly solving the differential equations in the time domain. By using a system response matrix method, the complicated transfer function derivation, which must be done in the frequency domain method, can be avoided. Using the response matrix method, a model was developed and applied to the single channel or parallel channel type instability analyses of the typical proposed SCWR design. The sensitivity of the decay ratio (DR) to the axial mesh size was analyzed and it was found that the DR is not sensitive to mesh size once sufficient number of axial nodes is applied. To demonstrate the effects of the inlet orificing to the stability feature for the supercritical condition, the sensitivity of the stability to inlet orifice coefficient was conducted for hot channel. It is clearly shown that a higher inlet orifice coefficient will make the system more stable. The susceptibility of stability to operating parameters such as mass flow rate, power and system pressure was also performed. And the measure to improve the SCWR stability sensitivity to operating parameters was investigated. It was found that the SCWR stability sensitivity feature can be improved by carefully managing the inlet orifices and choosing proper operating parameters. (author)

  4. Ferric carboxymaltose in patients with restless legs syndrome and nonanemic iron deficiency: A randomized trial.

    Science.gov (United States)

    Trenkwalder, Claudia; Winkelmann, Juliane; Oertel, Wolfgang; Virgin, Garth; Roubert, Bernard; Mezzacasa, Anna

    2017-10-01

    Compromised iron status is important in restless legs syndrome pathophysiology. We compared the efficacy and tolerability of ferric carboxymaltose (single intravenous dose) versus placebo for restless legs syndrome treatment in iron-deficient nonanemic patients. Patients with moderate to severe restless legs syndrome and serum ferritin Restless Legs Syndrome Severity Scale score from baseline to week 4 was the primary end point; week 12 was a secondary end point. Ferric carboxymaltose treatment (n = 59) led to nonsignificant improvement over placebo (n = 51) in International Restless Legs Syndrome Severity Scale score at week 4 (difference [95% confidence interval], -2.5 [-5.93 to 1.02], P = 0.163), reaching significance by week 12 (-4.66 [-8.59 to -0.73], P = 0.021). In patients who responded to treatment, ferric carboxymaltose may require more time to stabilize restless legs syndrome than previously assumed. © 2017 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society. © 2017 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.

  5. Foot, leg, and ankle swelling

    Science.gov (United States)

    Swelling of the ankles - feet - legs; Ankle swelling; Foot swelling; Leg swelling; Edema - peripheral; Peripheral edema ... Foot, leg, and ankle swelling is common when the person also: Is overweight Has a blood clot in the leg Is older Has ...

  6. Remarks on the stabilization of the systems a single unstable leading mode

    International Nuclear Information System (INIS)

    Cotsaftis, M.

    1978-07-01

    Different types of stabilization were proposed for cancelling the plasma motion due to instabilities. The problem of the conventional feedback systems of 'passive' type currently used is rediscussed. The analysis is dealing with the simple case of a plasma with a single leading unstable mode. It is shown that whereas the usual passive feedback cannot achieve a compplete stability on the full interval some other type of more convenient control loops can be used in such a way that the plasma comes back to its original state after a given time, with a power consumption much weaker than in the first case. These properties are also shown to be saved under rather large assumptions in more general situations including the adjunction of delay terms, nonlinear or decoupling terms in the evolution equations of the plasma system [fr

  7. Dystrophic calcification in muscles of legs in calcinosis, Raynaud's phenomenon, esophageal dysmotility, sclerodactyly, and telangiectasia syndrome: Accurate evaluation of the extent with (99m)Tc-methylene diphosphonate single photon emission computed tomography/computed tomography.

    Science.gov (United States)

    Chakraborty, Partha Sarathi; Karunanithi, Sellam; Dhull, Varun Singh; Kumar, Kunal; Tripathi, Madhavi

    2015-01-01

    We present the case of a 35-year-old man with calcinosis, Raynaud's phenomenon, esophageal dysmotility, sclerodactyly and telangiectasia variant scleroderma who presented with dysphagia, Raynaud's phenomenon and calf pain. (99m)Tc-methylene diphosphonate bone scintigraphy was performed to identify the extent of the calcification. It revealed extensive dystrophic calcification in the left thigh and bilateral legs which was involving the muscles and was well-delineated on single photon emission computed tomography/computed tomography. Calcinosis in scleroderma usually involves the skin but can be found in deeper periarticular tissues. Myopathy is associated with a poor prognosis.

  8. Relation between peak knee flexion angle and knee ankle kinetics in single-leg jump landing from running: a pilot study on male handball players to prevent ACL injury.

    Science.gov (United States)

    Ameer, Mariam A; Muaidi, Qassim I

    2017-09-01

    The relationship between knee kinematics and knee-ankle kinetics during the landing phase of single leg jumping has been widely studied to identify proper strategies for preventing non-contact ACL injury. However, there is a lack of study on knee-ankle kinetics at peak knee flexion angle during jumping from running. Hence, the purpose of this study is to establish the relationship between peak knee flexion angle, knee extension moment, ankle plantar flexion moment and ground reaction force in handball players in order to protect ACL from excessive stress during single leg jumping. In addition, the study also clarifies the role of calf muscles in relieving part of ACL stresses with different knee flexion angles during landing. Fifteen active male elite handball players of Saudi Arabia have participated in this study (Age = 22.6 ± 3.5years, Height = 182 ± 3.7 cm, Weight = 87.5 ± 10.2 kg). The players performed three successful landings of single-leg jump following running a fixed distance of about 450cm. The data were collected using a 3D motion capture and analysis system (VICON). Pearson product moment correlation coefficients showed that greater peak knee flexion angle is related significantly to both lesser knee extension moment (r = -.623, P = .013) and vertical component of ground reaction force (VGRF) (r = -.688, P = .005) in landing phase. Moreover, increasing the peak knee flexion angle in landing phase tends to increase the ankle plantar flexion moment significantly (r = .832, P = .000). With an increase of the peak knee flexion angle during single leg jump landing from running, there would be less knee extension moment, low impact force and more plantar flexion moment. As such, the clinical implication of this study is that there may be a possible protective mechanism by increasing the knee flexion angle during landing phase, which tends to protect the ACL from vigorous strain and injuries.

  9. Enhancing Stability of Camelid and Shark Single Domain Antibodies: An Overview

    Directory of Open Access Journals (Sweden)

    Ellen R. Goldman

    2017-07-01

    Full Text Available Single domain antibodies (sdAbs are gaining a reputation as superior recognition elements as they combine the advantages of the specificity and affinity found in conventional antibodies with high stability and solubility. Melting temperatures (Tms of sdAbs cover a wide range from below 50 to over 80°C. Many sdAbs have been engineered to increase their Tm, making them stable until exposed to extreme temperatures. SdAbs derived from the variable heavy chains of camelid and shark heavy chain-only antibodies are termed VHH and VNAR, respectively, and generally exhibit some ability to refold and bind antigen after heat denaturation. This ability to refold varies from 0 to 100% and is a property dependent on both intrinsic factors of the sdAb and extrinsic conditions such as the sample buffer ionic strength, pH, and sdAb concentration. SdAbs have also been engineered to increase their solubility and refolding ability, which enable them to function even after exposure to temperatures that exceed their melting point. In addition, efforts to improve their stability at extreme pH and in the presence of chemical denaturants or proteases have been undertaken. Multiple routes have been employed to engineer sdAbs with these enhanced stabilities. The methods utilized to achieve these goals include grafting complementarity-determining regions onto stable frameworks, introduction of non-canonical disulfide bonds, random mutagenesis combined with stringent selection, point mutations such as inclusion of negative charges, and genetic fusions. Increases of up to 20°C have been realized, pushing the Tm of some sdAbs to over 90°C. Herein, we present an overview of the work done to stabilize sdAbs derived from camelids and sharks. Utilizing these various strategies sdAbs have been stabilized without significantly compromising their affinity, thereby providing superior reagents for detection, diagnostic, and therapeutic applications.

  10. Optical Properties And Thermal Stability Of Single-Point Diamond-Machined Aluminum Alloys

    Science.gov (United States)

    Ogloza, A. A.; Decker, D. L.; Archibald, P. C.; O'Connor, D. A.; Bueltmann, E. R.

    1989-01-01

    This paper presents the results of diamond-turned surfaces of a wide range of aluminum alloys. The alloys machined included a sand-cast A201 alloy manufactured by Specialty Aluminum Inc., conventionally extruded plate alloys 2024, 3003, 5052, 6061, 7075, and for comparison as a best and worst case possible a high-purity aluminum single crystal, and tooling plate. The surfaces were obtained by diamond single-point machining using an interferometrically controlled two-axis, air-bearing lathe. The effect of tool-rake angle and machining fluid on surface quality is examined. Surface characterization was performed by Nomarski microscopy and noncontact optical surface profilometry. The optical properties measured included absolute reflectance at 3.8 μm, total integrated scatter at 752.5 nm, and bidirectional reflection distribution function measurements at 632.8 nm. The dimensional stability of the aluminum alloys subject to thermal cycling is examined.

  11. High performance p-type segmented leg of misfit-layered cobaltite and half-Heusler alloy

    International Nuclear Information System (INIS)

    Hung, Le Thanh; Van Nong, Ngo; Snyder, G. Jeffrey; Viet, Man Hoang; Balke, Benjamin; Han, Li; Stamate, Eugen; Linderoth, Søren; Pryds, Nini

    2015-01-01

    Highlights: • p-type segmented leg of oxide and half-Heusler was for the first time demonstrated. • The maximum conversion efficiency reached a value of about 5%. • The results are among the highest reported values so far for oxide-based legs. • Oxide-based segmented leg is very promising for generating electricity. - Abstract: In this study, a segmented p-type leg of doped misfit-layered cobaltite Ca 2.8 Lu 0.15 Ag 0.05 Co 4 O 9+δ and half-Heusler Ti 0.3 Zr 0.35 Hf 0.35 CoSb 0.8 Sn 0.2 alloy was fabricated and characterized. The thermoelectric properties of single components, segmented leg, and the electrical contact resistance of the joint part were measured as a function of temperature. The output power generation characteristics of segmented legs were characterized in air under various temperature gradients, ΔT, with the hot side temperature up to 1153 K. At ΔT ≈ 756 K, the maximum conversion efficiency reached a value of ∼5%, which is about 65% of that expected from the materials without parasitic losses. The long-term stability investigation for two weeks at the hot and cold side temperatures of 1153/397 K shows that the segmented leg has good durability as a result of stable and low electrical resistance contacts

  12. Application of single background quality control chart in monitoring the long-term stability of RIA counter

    International Nuclear Information System (INIS)

    Sun Jianwen; Zhang Qin; Wang Xufu; Wang Guoming; Zuo Shuyao; Li Yusheng

    2004-01-01

    The method of making a single background quality control charge and its application in the long-term stability of RIA counter are studied. The results show that the method can be regarded as an index of the long-term stability checking and quantification

  13. A neuro-mechanical model of a single leg joint highlighting the basic physiological role of fast and slow muscle fibres of an insect muscle system.

    Directory of Open Access Journals (Sweden)

    Tibor Istvan Toth

    Full Text Available In legged animals, the muscle system has a dual function: to produce forces and torques necessary to move the limbs in a systematic way, and to maintain the body in a static position. These two functions are performed by the contribution of specialized motor units, i.e. motoneurons driving sets of specialized muscle fibres. With reference to their overall contraction and metabolic properties they are called fast and slow muscle fibres and can be found ubiquitously in skeletal muscles. Both fibre types are active during stepping, but only the slow ones maintain the posture of the body. From these findings, the general hypothesis on a functional segregation between both fibre types and their neuronal control has arisen. Earlier muscle models did not fully take this aspect into account. They either focused on certain aspects of muscular function or were developed to describe specific behaviours only. By contrast, our neuro-mechanical model is more general as it allows functionally to differentiate between static and dynamic aspects of movement control. It does so by including both muscle fibre types and separate motoneuron drives. Our model helps to gain a deeper insight into how the nervous system might combine neuronal control of locomotion and posture. It predicts that (1 positioning the leg at a specific retraction angle in steady state is most likely due to the extent of recruitment of slow muscle fibres and not to the force developed in the individual fibres of the antagonistic muscles; (2 the fast muscle fibres of antagonistic muscles contract alternately during stepping, while co-contraction of the slow muscle fibres takes place during steady state; (3 there are several possible ways of transition between movement and steady state of the leg achieved by varying the time course of recruitment of the fibres in the participating muscles.

  14. Heavy metal bioleaching and sludge stabilization in a single-stage reactor using indigenous acidophilic heterotrophs.

    Science.gov (United States)

    Mehrotra, Akanksha; Sreekrishnan, T R

    2017-11-01

    Simultaneous sludge digestion and metal leaching (SSDML) have been reported at mesophilic temperature. It is generally perceived that while sludge stabilization is effected by heterotrophs at neutral pH, metal bioleaching is done by acidophilic autotrophs. However, little information is available on the microbial communities involved in the process. This study carried out SSDML in a single-stage reactor using sludge indigenous microorganisms and looked at the bacterial communities responsible for the process. Volatile suspended solids were reduced by more than 40%. The concentration of zinc, copper, chromium, cadmium and nickel decreased by more than 45% in the dry sludge. Acidophilic species of Alicyclobacillus genus were the dominant heterotrophs. A few heterotrophic bacteria were detected which can oxidize iron (Alicyclobacillus ferrooxydans, Alicyclobacillus ferripilum and Ferrimicrobium acidiphilum). Acidithiobacillus ferrooxidans (autotroph) was responsible for the oxidation of both iron and sulfur which lead to a change in the pH from neutral to acidic. The presence of acidophilic heterotrophs, which can oxidize either iron or sulfur, enhanced the efficiency of SSDML process with respect to sludge stabilization and metal leaching. This study shows that it is possible to carry out the SSDML in a single-stage reactor with indigenous microorganisms.

  15. Back Pain with Leg Pain.

    Science.gov (United States)

    Vulfsons, Simon; Bar, Negev; Eisenberg, Elon

    2017-07-01

    The clinical diagnostic dilemma of low back pain that is associated with lower limb pain is very common. In relation to back pain that radiates to the leg, the International Association for the Study of Pain (IASP) states: "Pain in the lower limb should be described specifically as either referred pain or radicular pain. In cases of doubt no implication should be made and the pain should be described as pain in the lower limb." Bogduks' editorial in the journal PAIN (2009) helps us to differentiate and define the terms somatic referred pain, radicular pain, and radiculopathy. In addition, there are other pathologies distal to the nerve root that could be relevant to patients with back pain and leg pain such as plexus and peripheral nerve involvement. Hence, the diagnosis of back pain with leg pain can still be challenging. In this article, we present a patient with back and leg pain. The patient appears to have a radicular pain syndrome, but has no neurological impairment and shows signs of myofascial involvement. Is there a single diagnosis or indeed two overlapping syndromes? The scope of our article encompasses the common diagnostic possibilities for this type of patient. A discussion of treatment is beyond the scope of this article and depends on the final diagnosis/diagnoses made.

  16. SCHEMA recombination of a fungal cellulase uncovers a single mutation that contributes markedly to stability.

    Science.gov (United States)

    Heinzelman, Pete; Snow, Christopher D; Smith, Matthew A; Yu, Xinlin; Kannan, Arvind; Boulware, Kevin; Villalobos, Alan; Govindarajan, Sridhar; Minshull, Jeremy; Arnold, Frances H

    2009-09-25

    A quantitative linear model accurately (R(2) = 0.88) describes the thermostabilities of 54 characterized members of a family of fungal cellobiohydrolase class II (CBH II) cellulase chimeras made by SCHEMA recombination of three fungal enzymes, demonstrating that the contributions of SCHEMA sequence blocks to stability are predominantly additive. Thirty-one of 31 predicted thermostable CBH II chimeras have thermal inactivation temperatures higher than the most thermostable parent CBH II, from Humicola insolens, and the model predicts that hundreds more CBH II chimeras share this superior thermostability. Eight of eight thermostable chimeras assayed hydrolyze the solid cellulosic substrate Avicel at temperatures at least 5 degrees C above the most stable parent, and seven of these showed superior activity in 16-h Avicel hydrolysis assays. The sequence-stability model identified a single block of sequence that adds 8.5 degrees C to chimera thermostability. Mutating individual residues in this block identified the C313S substitution as responsible for the entire thermostabilizing effect. Introducing this mutation into the two recombination parent CBH IIs not featuring it (Hypocrea jecorina and H. insolens) decreased inactivation, increased maximum Avicel hydrolysis temperature, and improved long time hydrolysis performance. This mutation also stabilized and improved Avicel hydrolysis by Phanerochaete chrysosporium CBH II, which is only 55-56% identical to recombination parent CBH IIs. Furthermore, the C313S mutation increased total H. jecorina CBH II activity secreted by the Saccharomyces cerevisiae expression host more than 10-fold. Our results show that SCHEMA structure-guided recombination enables quantitative prediction of cellulase chimera thermostability and efficient identification of stabilizing mutations.

  17. Venous leg ulcers.

    Science.gov (United States)

    Nelson, E Andrea; Adderley, Una

    2016-01-15

    Leg ulcers usually occur secondary to venous reflux or obstruction, but 20% of people with leg ulcers have arterial disease, with or without venous disorders. Between 1.5 and 3.0 in 1000 people have active leg ulcers. Prevalence increases with age to about 20 in 1000 people aged over 80 years. We conducted a systematic overview, aiming to answer the following clinical questions: What are the effects of treatments for venous leg ulcers? What are the effects of organisational interventions for venous leg ulcers? What are the effects of advice about self-help interventions in people receiving usual care for venous leg ulcers? What are the effects of interventions to prevent recurrence of venous leg ulcers? We searched: Medline, Embase, The Cochrane Library, and other important databases up to March 2014 (Clinical Evidence overviews are updated periodically; please check our website for the most up-to-date version of this overview). At this update, searching of electronic databases retrieved 116 studies. After deduplication and removal of conference abstracts, 63 records were screened for inclusion in the overview. Appraisal of titles and abstracts led to the exclusion of 43 studies and the further review of 20 full publications. Of the 20 full articles evaluated, four systematic reviews were updated and four RCTs were added at this update. We performed a GRADE evaluation for 23 PICO combinations. In this systematic overview, we categorised the efficacy for 13 interventions based on information about the effectiveness and safety of advice to elevate leg, advice to keep leg active, compression stockings for prevention of recurrence, compression bandages and stockings to treat venous leg ulcers, laser treatment (low level), leg ulcer clinics, pentoxifylline, skin grafting, superficial vein surgery for prevention of recurrence, superficial vein surgery to treat venous leg ulcers, therapeutic ultrasound, and topical negative pressure.

  18. Conjoined legs: Sirenomelia or caudal regression syndrome?

    OpenAIRE

    Das, Sakti Prasad; Ojha, Niranjan; Ganesh, G Shankar; Mohanty, Ram Narayan

    2013-01-01

    Presence of single umbilical persistent vitelline artery distinguishes sirenomelia from caudal regression syndrome. We report a case of a12-year-old boy who had bilateral umbilical arteries presented with fusion of both legs in the lower one third of leg. Both feet were rudimentary. The right foot had a valgus rocker-bottom deformity. All toes were present but rudimentary. The left foot showed absence of all toes. Physical examination showed left tibia vara. The chest evaluation in sitting re...

  19. Core stability, knee muscle strength, and anterior translation are correlated with postural stability in anterior cruciate ligament-reconstructed patients.

    Science.gov (United States)

    Cinar-Medeni, Ozge; Baltaci, Gul; Bayramlar, Kezban; Yanmis, Ibrahim

    2015-04-01

    The purpose of this study was to investigate the relationship of postural stability and lower extremity performance with core stability, knee laxity, and muscle strength in patients with anterior cruciate ligament reconstruction. Twenty-eight anterior cruciate ligament-reconstructed subjects were included in the study. Anterior knee laxity tests, isokinetic knee muscle strength tests, and core stability tests were performed. Single-limb postural stability was assessed in both eyes-open and eyes-closed positions on a static surface and an eyes-open condition on a foam surface. A single-legged hop test was performed to assess lower extremity performance. To detect differences between the operated and healthy leg, a Mann-Whitney U test was performed, and a correlation analysis was performed using the Spearman correlation coefficient. Knee muscle strength and laxity were different between the operated and healthy legs (P stability scores correlated with core stability tests (P core stability, decreased knee muscle strength, and increased knee laxity correlated with single-limb postural stability. Better hop performance was demonstrated with better knee flexor and extensor muscle strength and was independent from core stability.

  20. Deep vein thrombosis and/or pulmonary embolism concurrent with superficial vein thrombosis of the legs: cross-sectional single center study of prevalence and risk factors.

    Science.gov (United States)

    Hirmerova, J; Seidlerova, J; Subrt, I

    2013-08-01

    The aim of this paper was to assess the prevalence of concurrent deep vein thrombosis (DVT) and/or pulmonary embolism (PE) in the patients with superficial vein thrombosis (SVT) of the legs and to find factors significantly and independently associated with coincident DVT/PE. In the setting of a tertiary referral hospital, patients with SVT, attending vascular clinic, underwent physical examination, laboratory testing and leg vein ultrasound (in the case of clinically suspected PE also perfusion/ventilation lung scan or/and helical CT pulmonary angiography). In statistical analysis, we used unpaired t-test, non-parametric Wilcoxon rank sum test, stepwise logistic regression and multivariable logistic regression model. We examined 138 patients (age 61.4 ± 13.9 years, 36.2% men), with ST mostly on varicose veins (89.9%). The prevalence of concurrent DVT/PE was 34.1%. Neither the clinical manifestation nor SVT localization differed significantly between the group with isolated SVT and that with coincident DVT/PE. Of all the assessed patients characteristics (age and sex, BMI, history of SVT, DVT or PE, hypercoagulable states, cardiovascular risk factors) only two factors were significantly and independently associated with the presence of concurrent DVT/PE. Log BMI was significantly higher in the patients with isolated SVT. Factor V Leiden (FVL) was proved as an independent risk factor for concomitant DVT/PE with odds ratio 2,531 (95% CI 1,064-6,016). The prevalence of concurrent DVT/PE in patients with SVT, referred to hospital vascular clinic was 34.1%. Lower BMI (log BMI, respectively) and the presence of FVL were significantly and independently associated with concurrent DVT/PE. Our results should be further investigated in a larger prospective study.

  1. New Systematic CFD Methods to Calculate Static and Single Dynamic Stability Derivatives of Aircraft

    Directory of Open Access Journals (Sweden)

    Bai-gang Mi

    2017-01-01

    Full Text Available Several new systematic methods for high fidelity and reliability calculation of static and single dynamic derivatives are proposed in this paper. Angle of attack step response is used to obtain static derivative directly; then translation acceleration dynamic derivative and rotary dynamic derivative can be calculated by employing the step response motion of rate of the angle of attack and unsteady motion of pitching angular velocity step response, respectively. Longitudinal stability derivative calculations of SACCON UCAV are taken as test cases for validation. Numerical results of all cases achieve good agreement with reference values or experiments data from wind tunnel, which indicate that the proposed methods can be considered as new tools in the process of design and production of advanced aircrafts for their high efficiency and precision.

  2. Pattern formation in single-phase FAC. A stability analysis of an oxide layer

    Energy Technology Data Exchange (ETDEWEB)

    Zinemanas, Daniel [The Israel Electric Corp., Haifa (Israel). Dept. of Chemistry; Herszage, Amiel [The Israel Electric Corp., Haifa (Israel). Dept. of Energy Technologies Development

    2013-03-15

    Pattern formation is a salient characteristic of the flow-accelerated corrosion process, particularly in single-phase flow, where a typical ''orange peel'' surface texture is normally formed. The process of such pattern formation is, however, not well understood. In order to gain some insight into the role of the various processes and parameters involved in this process, a linear stability analysis of an oxide layer based on the Sanchez-Caldera model was performed. According to the results obtained in this study, it follows that the oxide layer is stable regarding perturbations of the oxide thickness or the reaction constant, but it is unstable in respect to perturbations of the mass transfer coefficient. These results suggest therefore that the flow, and not local surface in homogeneities, plays a central role in the pattern formation process. (orig.)

  3. Temperature dependence of hardness in yttria-stabilized zirconia single crystals

    Science.gov (United States)

    Morscher, Gregory N.; Pirouz, Pirouz; Heuer, Arthur H.

    1991-01-01

    The temperature dependence of hardness and microcracking in single-crystal 9.5-mol pct-Y2O3-fully-stabilized cubic-ZrO2 was studied as a function of orientation. Crack lengths increased with increased temperature up to 500 C; above 800 C, no cracks were found, indicating an indentation brittle-to-ductile transition of about 800 C. The temperature dependence of hardness was reduced around 500 C. Etching studies to delineate the plastic zone around and below indents identified the operative slip systems. The role of dislocations and their interactions within the plastic zone on the hardness and indentation fracture behavior of cubic-ZrO2 are discussed.

  4. Equilibrium stability and sub-millisecond refolding of a designed single-chain Arc repressor.

    Science.gov (United States)

    Robinson, C R; Sauer, R T

    1996-11-05

    Arc-L1-Arc is a single-chain variant of bacteriophage P22 Arc repressor in which a 15 residue linker joins the C-terminus of one subunit to the N-terminus of an otherwise identical subunit. Spectroscopic probes indicate that the native and denatured state of the single-chain protein are similar to those of the unlinked Arc dimer. In equilibrium experiments, Arc-L1-Arc denatures in a reaction without populated intermediate states as judged by the fits of the denaturation isotherms to a two-state model and by the coincidence of denaturation curves monitored by fluorescence and circular dichroism. Comparison of the equilibrium stabilities of Arc-L1-Arc and unlinked Arc gives an effective concentration of subunits in the denatured single-chain variant of 2.7 (+/- 0.7) mM. The kinetic refolding and unfolding reactions of Arc-L1-Arc also appear to proceed without populated intermediates. The rate constant for Arc-L1-Arc unfolding is about 2-fold faster than that of unlinked Arc, indicating that the linker mediates no significant contacts in the native structure that need to be broken to allow unfolding. As expected, the major effect of the linker occurs during the refolding reaction, where the effective subunit concentration calculated from the bimolecular and unimolecular refolding rate constants is 4.5 (+/- 1.8) mM. The transition states for the unfolding and refolding reactions of Arc-L1-Arc and wild-type Arc have similar solvent exposures as measured by the urea dependencies of the equilibrium and rate constants. In the absence of urea, the single-chain protein refolds very rapidly (kf approximately 10(4) s-1) in a reaction that is essentially complete in the sub-millisecond time regime.

  5. Stability of infants' preference for prosocial others: Implications for research based on single-choice paradigms.

    Science.gov (United States)

    Nighbor, Tyler; Kohn, Carolynn; Normand, Matthew; Schlinger, Henry

    2017-01-01

    Some research suggests infants display a tendency to judge others' prosocial behavior, and in particular, that infants show a strong preference for prosocial others. For example, data from one frequently cited and well-publicized study showed that, after watching a puppet show with three puppets, 74% of infants chose the puppet that "helped" rather than the puppet that "hindered" a third puppet from attaining its goal. The purpose of the current investigation was to replicate these methods and extend them by including a within-subject measure of infant puppet choice across repeated trials to assess the stability of infants' choice. In the current study, 20 infants viewed a puppet show and chose between two puppets (i.e., helper or hinderer) immediately following the puppet show. Although results were similar to previously published work on the first-choice trial (65% of infants chose the helper puppet on the first trial), infants did not consistently choose the helper across trials; several infants demonstrated a side preference, with 9 infants almost exclusively choosing puppets presented on the right or left side. The current investigation addressed limitations of previous research by including a between-subjects (replication) as well as a within-subjects (extension) repeated measure of choice that allowed for the examination of the stability of the choice measure. Our results, particularly in light of other failed replications, raise questions regarding the robustness of infants' preference for prosocial others and the reliability and validity of the single-choice paradigm.

  6. Soft Tissue Stability around Single Implants Inserted to Replace Maxillary Lateral Incisors: A 3D Evaluation

    Directory of Open Access Journals (Sweden)

    F. G. Mangano

    2016-01-01

    Full Text Available Purpose. To evaluate the soft tissue stability around single implants inserted to replace maxillary lateral incisors, using an innovative 3D method. Methods. We have used reverse-engineering software for the superimposition of 3D surface models of the dentogingival structures, obtained from intraoral scans of the same patients taken at the delivery of the final crown (S1 and 2 years later (S2. The assessment of soft tissues changes was performed via calculation of the Euclidean surface distances between the 3D models, after the superimposition of S2 on S1; colour maps were used for quantification of changes. Results. Twenty patients (8 males, 12 females were selected, 10 with a failing/nonrestorable lateral incisor (test group: immediate placement in postextraction socket and 10 with a missing lateral incisor (control group: conventional placement in healed ridge. Each patient received one immediately loaded implant (Anyridge®, Megagen, Gyeongbuk, South Korea. The superimposition of the 3D surface models taken at different times (S2 over S1 revealed a mean (±SD reduction of 0.057 mm (±0.025 and 0.037 mm (±0.020 for test and control patients, respectively. This difference was not statistically significant (p = 0.069. Conclusions. The superimposition of the 3D surface models revealed an excellent peri-implant soft tissue stability in both groups of patients, with minimal changes registered along time.

  7. Photocatalytic Stability of Single- and Few-Layer MoS₂.

    Science.gov (United States)

    Parzinger, Eric; Miller, Bastian; Blaschke, Benno; Garrido, Jose A; Ager, Joel W; Holleitner, Alexander; Wurstbauer, Ursula

    2015-11-24

    MoS2 crystals exhibit excellent catalytic properties and great potential for photocatalytic production of solar fuels such as hydrogen gas. In this regard, the photocatalytic stability of exfoliated single- and few-layer MoS2 immersed in water is investigated by μ-Raman spectroscopy. We find that while the basal plane of MoS2 can be treated as stable under photocatalytic conditions, the edge sites and presumably also defect sites are highly affected by a photoinduced corrosion process. The edge sites of MoS2 monolayers are significantly more resistant to photocatalytic degradation compared to MoS2 multilayer edge sites. The photostability of MoS2 edge sites depends on the photon energy with respect to the band gap in MoS2 and also on the presence of oxygen in the electrolyte. These findings are interpreted in the framework of an oxidation process converting MoS2 into MoOx in the presence of oxygen and photoinduced charge carriers. The high stability of the MoS2 basal plane under photocatalytic treatment under visible light irradiation of extreme light intensities on the order of P ≈ 10 mW/μm(2) substantiates MoS2's potential as photocatalyst for solar hydrogen production.

  8. Single-Source Multi-Battery Solar Charger: Analysis and Stability Issues

    Directory of Open Access Journals (Sweden)

    Alon Kuperman

    2015-06-01

    Full Text Available In this paper, dynamic analysis of a multi-battery dual mode charger, powered by a single solar array and suitable for lead-acid and lithium-ion cell-based batteries is presented. Each battery is interfaced to the solar array by means of a current-controlled buck power stage, operating either in constant power or constant voltage mode. Operation in former/latter charging mode implies regulating input/output voltage of the converter, which is a non-trivial situation since while feeding different batteries, all the converters share the same input terminals, connected to the solar array. It is revealed that when at least one of the batteries operates in constant power charging mode, open-loop instability occurs whenever converter input voltage is lower than maximum power point voltage of the solar array. Consequently, input voltage regulating controller must be designed to stabilize closed-loop dynamics for the worst case of instability, which is also derived. Moreover, it is shown that the dynamics of the converters operating under output voltage control are perceived as disturbances by input voltage control loop and must be properly rejected. Simple loop shaping design is proposed based on a PI controller, allowing stabilizing the system in case of worst case instability and rejecting output voltage control induced disturbances at the expense of non-constant, operating-point dependent closed-loop damping.

  9. Dynamically Stable Legged Locomotion.

    Science.gov (United States)

    1983-01-27

    balanced itself in 31) using a tabular ctontrol sclwnme. With only thUiee actuated degrees it used a shuffling gait to balance that reminds one of Charlie ... Chaplin . * The present study explores the control of a physical one-legged hopping machine. The objective of using a machine with only one leg was to

  10. Lyden-af-Leg

    DEFF Research Database (Denmark)

    Toft, Herdis

    Præsentation af seniorforsker-projekt Lyden-af-Leg i et traderingsperspektiv og med indledende fokus på YouTube som traderings-platform.......Præsentation af seniorforsker-projekt Lyden-af-Leg i et traderingsperspektiv og med indledende fokus på YouTube som traderings-platform....

  11. Combined single cell AFM manipulation and TIRFM for probing the molecular stability of multilayer fibrinogen matrices

    Energy Technology Data Exchange (ETDEWEB)

    Christenson, W. [Department of Physics, Arizona State University, Tempe, AZ 85287 (United States); Center for Biological Physics, Arizona State University, Tempe, AZ 85287 (United States); Yermolenko, I. [Department of Physics, Arizona State University, Tempe, AZ 85287 (United States); School of Life Sciences, Arizona State University, Tempe, AZ 85287 (United States); Plochberger, B. [Department of Physics, Arizona State University, Tempe, AZ 85287 (United States); Camacho-Alanis, F.; Ros, A. [Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287 (United States); Ugarova, T.P. [School of Life Sciences, Arizona State University, Tempe, AZ 85287 (United States); Ros, R., E-mail: Robert.Ros@asu.edu [Department of Physics, Arizona State University, Tempe, AZ 85287 (United States); Center for Biological Physics, Arizona State University, Tempe, AZ 85287 (United States)

    2014-01-15

    Adsorption of fibrinogen on various surfaces produces a nanoscale multilayer matrix, which strongly reduces the adhesion of platelets and leukocytes with implications for hemostasis and blood compatibility of biomaterials. The nonadhesive properties of fibrinogen matrices are based on their extensibility, ensuing the inability to transduce strong mechanical forces via cellular integrins and resulting in weak intracellular signaling. In addition, reduced cell adhesion may arise from the weaker associations between fibrinogen molecules in the superficial layers of the matrix. Such reduced stability would allow integrins to pull fibrinogen molecules out of the matrix with comparable or smaller forces than required to break integrin–fibrinogen bonds. To examine this possibility, we developed a method based on the combination of total internal reflection fluorescence microscopy, single cell manipulation with an atomic force microscope and microcontact printing to study the transfer of fibrinogen molecules out of a matrix onto cells. We calculated the average fluorescence intensities per pixel for wild-type HEK 293 (HEK WT) and HEK 293 cells expressing leukocyte integrin Mac-1 (HEK Mac-1) before and after contact with multilayered matrices of fluorescently labeled fibrinogen. For contact times of 500 s, HEK Mac-1 cells show a median increase of 57% of the fluorescence intensity compared to 6% for HEK WT cells. The results suggest that the integrin Mac-1-fibrinogen interactions are stronger than the intermolecular fibrinogen interactions in the superficial layer of the matrix. The low mechanical stability of the multilayer fibrinogen surface may contribute to the reduced cell adhesive properties of fibrinogen-coated substrates. We anticipate that the described method can be applied to various cell types to examine their integrin-mediated adhesion to the extracellular matrices with a variable protein composition. - Highlights: • We present a method combining

  12. Electrical properties and mechanical stability of anchoring groups for single-molecule electronics

    Directory of Open Access Journals (Sweden)

    Riccardo Frisenda

    2015-07-01

    Full Text Available We report on an experimental investigation of transport through single molecules, trapped between two gold nano-electrodes fabricated with the mechanically controlled break junction (MCBJ technique. The four molecules studied share the same core structure, namely oligo(phenylene ethynylene (OPE3, while having different aurophilic anchoring groups: thiol (SAc, methyl sulfide (SMe, pyridyl (Py and amine (NH2. The focus of this paper is on the combined characterization of the electrical and mechanical properties determined by the anchoring groups. From conductance histograms we find that thiol anchored molecules provide the highest conductance; a single-level model fit to current–voltage characteristics suggests that SAc groups exhibit a higher electronic coupling to the electrodes, together with better level alignment than the other three groups. An analysis of the mechanical stability, recording the lifetime in a self-breaking method, shows that Py and SAc yield the most stable junctions while SMe form short-lived junctions. Density functional theory combined with non-equlibrium Green’s function calculations help in elucidating the experimental findings.

  13. A single-blind randomized controlled trial to evaluate the effect of 6 months of progressive aerobic exercise training in patients with uraemic restless legs syndrome.

    Science.gov (United States)

    Giannaki, Christoforos D; Hadjigeorgiou, Georgios M; Karatzaferi, Christina; Maridaki, Maria D; Koutedakis, Yiannis; Founta, Paraskevi; Tsianas, Nikolaos; Stefanidis, Ioannis; Sakkas, Giorgos K

    2013-11-01

    Uraemic restless legs syndrome (RLS) affects a significant proportion of patients receiving haemodialysis (HD) therapy. Exercise training has been shown to improve RLS symptoms in uraemic RLS patients; however, the mechanism of exercise-induced changes in RLS severity is still unknown. The aim of the current randomized controlled exercise trial was to investigate whether the reduction of RLS severity, often seen after training, is due to expected systemic exercise adaptations or it is mainly due to the relief that leg movements confer during exercise training on a cycle ergometer. This is the first randomized controlled exercise study in uraemic RLS patients. Twenty-four RLS HD patients were randomly assigned to two groups: the progressive exercise training group (n = 12) and the control exercise with no resistance group (n = 12). The exercise session in both groups included intradialytic cycling for 45 min at 50 rpm. However, only in the progressive exercise training group was resistance applied, at 60-65% of maximum exercise capacity, which was reassessed every 4 weeks to account for the patients' improvement. The severity of RLS symptoms was evaluated using the IRLSSG severity scale, functional capacity by a battery of tests, while sleep quality, depression levels and daily sleepiness status were assessed via validated questionnaires, before and after the intervention period. All patients completed the exercise programme with no adverse effects. RLS symptom severity declined by 58% (P = 0.003) in the progressive exercise training group, while a no statistically significant decline was observed in the control group (17% change, P = 0.124). Exercise training was also effective in terms of improving functional capacity (P = 0.04), sleep quality (P = 0.038) and depression score (P = 0.000) in HD patients, while no significant changes were observed in the control group. After 6 months of the intervention, RLS severity (P = 0.017), depression score (P = 0.002) and

  14. An automatic hinge system for leg orthoses

    NARCIS (Netherlands)

    Rietman, J. S.; Goudsmit, J.; Meulemans, D.; Halbertsma, J. P. K.; Geertzen, J. H. B.

    2004-01-01

    This paper describes a new automatic hinge system for leg orthoses, which provides knee stability in stance, and allows knee-flexion during swing. Indications for the hinge system are a paresis or paralysis of the quadriceps muscles. Instrumented gait analysis was performed in three patients, fitted

  15. An automatic hinge system for leg orthoses

    NARCIS (Netherlands)

    Rietman, J.S.; Goudsmit, J.; Meulemans, D.; Halbertsma, J.P.K.; Geertzen, J.H.B.

    This paper describes a new, automatic hinge system for leg orthoses, which provides knee stability in stance, and allows knee-flexion during swing. Indications for the hinge system are a paresis or paralysis of the quadriceps muscles. Instrumented gait analysis was performed in three patients,

  16. Stability of equilibrium solutions of Hamiltonian systems with n-degrees of freedom and single resonance in the critical case

    Science.gov (United States)

    dos Santos, Fabio; Vidal, Claudio

    2018-04-01

    In this paper we give new results for the stability of one equilibrium solution of an autonomous analytic Hamiltonian system in a neighborhood of the equilibrium point with n-degrees of freedom. Our Main Theorem generalizes several results existing in the literature and mainly we give information in the critical cases (i.e., the condition of stability and instability is not fulfilled). In particular, our Main Theorem provides necessary and sufficient conditions for stability of the equilibrium solutions under the existence of a single resonance. Using analogous tools used in the Main Theorem for the critical case, we study the stability or instability of degenerate equilibrium points in Hamiltonian systems with one degree of freedom. We apply our results to the stability of Hamiltonians of the type of cosmological models as in planar as in the spatial case.

  17. Stability and Hopf Bifurcation of Fractional-Order Complex-Valued Single Neuron Model with Time Delay

    Science.gov (United States)

    Wang, Zhen; Wang, Xiaohong; Li, Yuxia; Huang, Xia

    2017-12-01

    In this paper, the problems of stability and Hopf bifurcation in a class of fractional-order complex-valued single neuron model with time delay are addressed. With the help of the stability theory of fractional-order differential equations and Laplace transforms, several new sufficient conditions, which ensure the stability of the system are derived. Taking the time delay as the bifurcation parameter, Hopf bifurcation is investigated and the critical value of the time delay for the occurrence of Hopf bifurcation is determined. Finally, two representative numerical examples are given to show the effectiveness of the theoretical results.

  18. Protection by S-2-(3-aminopropylamino)ethylphosphorothioic acid against radiation-induced leg contractures in mice

    International Nuclear Information System (INIS)

    Hunter, N.; Milas, L.

    1983-01-01

    S-2-(3-Aminopropylamino)ethylphosphorothioic acid (WR-2721) was shown to provide marked protection against development of radiation-induced leg contractures in C3Hf/Kam mice whose legs were exposed to single doses of gamma-radiation. The radiation doses ranged from 3300 to 6200 rads delivered to the right hind thighs from two parallelly opposed 137Cs sources. WR-2721 was given i.p. 30 min before irradiation. The severity of radiation-induced leg contractures in untreated and WR-2721-treated mice was followed for 342 days after irradiation. The degree of leg contractures in both control and WR-2721-treated mice increased up to 100 days after radiation, when the change stabilized, remaining more or less at the same level to the end of the observation period. During this entire period, the severity of contractures was less in WR-2721-treated mice. The dose-modifying factor for the level of 5 mm reduction in leg extension was 1.5 at 182 days after irradiation. Since WR-2721 did not prevent the radiocurability of 8-mm fibrosarcomas growing in the same legs, these data imply that WR-2721 has a high potential for increasing therapeutic gain when combined with irradiation in the treatment of tumors of an appreciable size

  19. Radiation pressure in galactic disks: stability, turbulence, and winds in the single-scattering limit

    Science.gov (United States)

    Wibking, Benjamin D.; Thompson, Todd A.; Krumholz, Mark R.

    2018-04-01

    The radiation force on dust grains may be dynamically important in driving turbulence and outflows in rapidly star-forming galaxies. Recent studies focus on the highly optically-thick limit relevant to the densest ultra-luminous galaxies and super star clusters, where reprocessed infrared photons provide the dominant source of electromagnetic momentum. However, even among starburst galaxies, the great majority instead lie in the so-called "single-scattering" limit, where the system is optically-thick to the incident starlight, but optically-thin to the re-radiated infrared. In this paper we present a stability analysis and multidimensional radiation-hydrodynamic simulations exploring the stability and dynamics of isothermal dusty gas columns in this regime. We describe our algorithm for full angle-dependent radiation transport based on the discontinuous Galerkin finite element method. For a range of near-Eddington fluxes, we show that the medium is unstable, producing convective-like motions in a turbulent atmosphere with a scale height significantly inflated compared to the gas pressure scale height and mass-weighted turbulent energy densities of ˜0.01 - 0.1 of the midplane radiation energy density, corresponding to mass-weighted velocity dispersions of Mach number ˜0.5 - 2. Extrapolation of our results to optical depths of 103 implies maximum turbulent Mach numbers of ˜20. Comparing our results to galaxy-averaged observations, and subject to the approximations of our calculations, we find that radiation pressure does not contribute significantly to the effective supersonic pressure support in star-forming disks, which in general are substantially sub-Eddington. We further examine the time-averaged vertical density profiles in dynamical equilibrium and comment on implications for radiation-pressure-driven galactic winds.

  20. Stability of infants’ preference for prosocial others: Implications for research based on single-choice paradigms

    Science.gov (United States)

    Normand, Matthew; Schlinger, Henry

    2017-01-01

    Some research suggests infants display a tendency to judge others’ prosocial behavior, and in particular, that infants show a strong preference for prosocial others. For example, data from one frequently cited and well-publicized study showed that, after watching a puppet show with three puppets, 74% of infants chose the puppet that “helped” rather than the puppet that “hindered” a third puppet from attaining its goal. The purpose of the current investigation was to replicate these methods and extend them by including a within-subject measure of infant puppet choice across repeated trials to assess the stability of infants’ choice. In the current study, 20 infants viewed a puppet show and chose between two puppets (i.e., helper or hinderer) immediately following the puppet show. Although results were similar to previously published work on the first-choice trial (65% of infants chose the helper puppet on the first trial), infants did not consistently choose the helper across trials; several infants demonstrated a side preference, with 9 infants almost exclusively choosing puppets presented on the right or left side. The current investigation addressed limitations of previous research by including a between-subjects (replication) as well as a within-subjects (extension) repeated measure of choice that allowed for the examination of the stability of the choice measure. Our results, particularly in light of other failed replications, raise questions regarding the robustness of infants’ preference for prosocial others and the reliability and validity of the single-choice paradigm. PMID:28575051

  1. Stability of an anaerobic single reactor filled with dolomitic limestone with increased organic load of sugarcane

    Directory of Open Access Journals (Sweden)

    Maria Magdalena Ribas Döll

    2017-12-01

    Full Text Available The anaerobic single-stage reactor was evaluated to treat vinasse and to evaluate its stability. This bench reactor was filled with dolomitic limestone with a horizontal plug flow to simulate a drainage channel. The experiment lasted 129 days while the reactor was submitted to different applied organic concentrations (chronologically applied: 3.0; 5.0; 12.0; 9.0 and 7.5 g L-1 as COD, chemical oxygen demand. COD removals were 50% and 9% with 3.0 and 7.5 g L-1, respectively. With 12.0 g L-1, reactor efficiency increased to 33%, with an abrupt drop to 3% on the 84th day. Therefore, in order to avoid reactor collapse, a remedial measure was necessary. The system remained in batch without feeding for 19 days (from the 85th to the 104th day with 9.0 g L-1. Afterwards, it was observed that the performance of the system tended to stabilize, reaching 47% with 7.5 g L-1 in the 118th day. At the end of the experiment, the potassium content of the wastewater decreased from 800 mg L-1 to 594 mg L-1 (on an average 25% and calcium and magnesium increased within the reactor liquor. The dissolution of the limestone inside the liquor reactor probably caused this result. After the treatment with limestone, the average pH value of the effluent increased from 4.9 to over 6.0 in all organic concentrations. It could be concluded that the reactor filled with dolomitic limestone in these operational conditions assured a low efficiency in COD removal, potassium reduction, increasing values of pH, alkalinity, calcium and magnesium. The instability was observed when there was increase in organic load to 12 g L-1 with subsequent recovery.

  2. Crash problem definition and safety benefits methodology for stability control for single-unit medium and heavy trucks and large-platform buses

    Science.gov (United States)

    2009-10-01

    This report presents the findings of a comprehensive engineering analysis of electronic stability control (ESC) and roll stability control (RSC) systems for single-unit medium and heavy trucks and large-platform buses. This report details the applica...

  3. RESTLESS LEGS SYNDROME

    Directory of Open Access Journals (Sweden)

    Dmitriy Valer'evich Artem'ev

    2009-01-01

    Full Text Available The paper describes the epidemiology, etiology, pathogenesis, clinical picture, diagnosis, differential diagnosis, and treatment of restless legs syndrome. Recommendations are given how to choose therapeutic modalities and drugs in relation to different factors.

  4. Restless legs syndrome.

    Science.gov (United States)

    Venkateshiah, Saiprakash B; Ioachimescu, Octavian C

    2015-07-01

    Restless legs syndrome is a common sensorimotor disorder characterized by an urge to move, and associated with uncomfortable sensations in the legs (limbs). Restless legs syndrome can lead to sleep-onset or sleep-maintenance insomnia, and occasionally excessive daytime sleepiness, all leading to significant morbidity. Brain iron deficiency and dopaminergic neurotransmission abnormalities play a central role in the pathogenesis of this disorder, along with other nondopaminergic systems, although the exact mechanisms are still. Intensive care unit patients are especially vulnerable to have unmasking or exacerbation of restless legs syndrome because of sleep deprivation, circadian rhythm disturbance, immobilization, iron deficiency, and use of multiple medications that can antagonize dopamine. Published by Elsevier Inc.

  5. Detailed stability investigation of amorphous solid dispersions prepared by single-needle and high speed electrospinning.

    Science.gov (United States)

    Démuth, B; Farkas, A; Pataki, H; Balogh, A; Szabó, B; Borbás, E; Sóti, P L; Vigh, T; Kiserdei, É; Farkas, B; Mensch, J; Verreck, G; Van Assche, I; Marosi, G; Nagy, Z K

    2016-02-10

    In this research the long-term stability (one year) of amorphous solid dispersions (ASDs) prepared by high speed electrospinning was investigated at 25 °C/60% relative humidity (RH) (closed conditions) and 40 °C/75% RH (open conditions). Single needle electrospinning and film casting were applied as reference technologies. Itraconazole (ITR) was used as the model API in 40% concentration and the ASDs consisted of either one of the following polymers as a comparison: polyvinylpyrrolidone-vinyl acetate 6:4 copolymer (no hydrogen bonds between API and polymer) and hydroxypropyl methylcellulose (possible hydrogen bonds between oxo or tertiary nitrogen function of API and hydroxyl moiety of polymer). DSC, XRPD and dissolution characteristics of samples at 0, 3 and 12 months were investigated. In addition, Raman maps of certain electrospun ASDs were assessed to investigate crystallinity. A new chemometric method, based on Multivariate Curve Resolution-Alternating Least Squares algorithm, was developed to calculate the spectrum of amorphous ITR in the matrices and to determine the crystalline/amorphous ratio of aged samples. As it was expected ITR in single needle electrospun SDs was totally amorphous at the beginning, in addition hydroxypropyl methylcellulose could keep ITR in this form at 40 °C/75% RH up to one year due to the hydrogen bonds and high glass transition temperature of the SD. In polyvinylpyrrolidone-vinyl acetate matrix ITR remained amorphous at 25 °C/60% RH throughout one year. Materials prepared by scaled-up, high throughput version of electrospinning, which is compatible with pharmaceutical industry, also gained the same quality. Therefore these ASDs are industrially applicable and with an appropriate downstream process it would be possible to bring them to the market. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Sweeter and stronger: enhancing sweetness and stability of the single chain monellin MNEI through molecular design

    Science.gov (United States)

    Leone, Serena; Pica, Andrea; Merlino, Antonello; Sannino, Filomena; Temussi, Piero Andrea; Picone, Delia

    2016-09-01

    Sweet proteins are a family of proteins with no structure or sequence homology, able to elicit a sweet sensation in humans through their interaction with the dimeric T1R2-T1R3 sweet receptor. In particular, monellin and its single chain derivative (MNEI) are among the sweetest proteins known to men. Starting from a careful analysis of the surface electrostatic potentials, we have designed new mutants of MNEI with enhanced sweetness. Then, we have included in the most promising variant the stabilising mutation E23Q, obtaining a construct with enhanced performances, which combines extreme sweetness to high, pH-independent, thermal stability. The resulting mutant, with a sweetness threshold of only 0.28 mg/L (25 nM) is the strongest sweetener known to date. All the new proteins have been produced and purified and the structures of the most powerful mutants have been solved by X-ray crystallography. Docking studies have then confirmed the rationale of their interaction with the human sweet receptor, hinting at a previously unpredicted role of plasticity in said interaction.

  7. Identifying sequential substrate binding at the single-molecule level by enzyme mechanical stabilization.

    Science.gov (United States)

    Rivas-Pardo, Jaime Andrés; Alegre-Cebollada, Jorge; Ramírez-Sarmiento, César A; Fernandez, Julio M; Guixé, Victoria

    2015-01-01

    Enzyme-substrate binding is a dynamic process intimately coupled to protein structural changes, which in turn changes the unfolding energy landscape. By the use of single-molecule force spectroscopy (SMFS), we characterize the open-to-closed conformational transition experienced by the hyperthermophilic adenine diphosphate (ADP)-dependent glucokinase from Thermococcus litoralis triggered by the sequential binding of substrates. In the absence of substrates, the mechanical unfolding of TlGK shows an intermediate 1, which is stabilized in the presence of Mg·ADP(-), the first substrate to bind to the enzyme. However, in the presence of this substrate, an additional unfolding event is observed, intermediate 1*. Finally, in the presence of both substrates, the unfolding force of intermediates 1 and 1* increases as a consequence of the domain closure. These results show that SMFS can be used as a powerful experimental tool to investigate binding mechanisms of different enzymes with more than one ligand, expanding the repertoire of protocols traditionally used in enzymology.

  8. The Stability of New Single-Layer Combined Lattice Shell Based on Aluminum Alloy Honeycomb Panels

    Directory of Open Access Journals (Sweden)

    Caiqi Zhao

    2017-11-01

    Full Text Available This article proposes a new type of single-layer combined lattice shell (NSCLS; which is based on aluminum alloy honeycomb panels. Six models with initial geometric defect were designed and precision made using numerical control equipment. The stability of these models was tested. The results showed that the stable bearing capacity of NSCLS was approximately 16% higher than that of a lattice shell with the same span without a reinforcing plate. At the same time; the properties of the NSCLS were sensitive to defects. When defects were present; its stable bearing capacity was decreased by 12.3% when compared with the defect-free model. The model with random defects following a truncated Gaussian distribution could be used to simulate the distribution of defects in the NSCLS. The average difference between the results of the nonlinear analysis and the experimental results was 5.7%. By calculating and analyzing nearly 20,000 NSCLS; the suggested values of initial geometric defect were presented. The results of this paper could provide a theoretical basis for making and revising the design codes for this new combined lattice shell structure.

  9. Stability of Child Behavioral Style in the First 30 Months of Life: Single Timepoint and Aggregated Measures

    Science.gov (United States)

    Parade, Stephanie H.; Dickstein, Susan; Schiller, Masha; Hayden, Lisa; Seifer, Ronald

    2015-01-01

    The current study examined the stability of temperament over time. Observers and mothers rated child behavior at eight timepoints across three assessment waves (8, 15, and 30 months of age). Internal consistency reliability of aggregates of the eight observer reports and eight mother reports were high. When considering single timepoint…

  10. A method for indication and improving the position stability of the bubble in single-bubble cavitation experiments

    Science.gov (United States)

    Plocek, Jaroslav

    2017-10-01

    A newly developed method for indication of the bubble state in classical single-bubble cavitation experiments is introduced. The method is based on processing the signal from a sensor, positioned on the flask from outside. The technical means of the method are further explored to improve the position stability of the bubble.

  11. Mononuclear Clusterfullerene Single-Molecule Magnet Containing Strained Fused-Pentagons Stabilized by a Nearly Linear Metal Cyanide Cluster

    DEFF Research Database (Denmark)

    Liu, Fupin; Wang, Song; Gao, Cong Li

    2017-01-01

    Fused-pentagons results in an increase of local steric strain according to the isolated pentagon rule (IPR), and for all reported non-IPR clusterfullerenes multiple (two or three) metals are required to stabilize the strained fused-pentagons, making it difficult to access the single-atom properti...... (SMM)....

  12. Scaling of the steady state and stability behaviour of single and two-phase natural circulation systems

    International Nuclear Information System (INIS)

    Vijayan, P.K.; Nayak, A.K.; Bade, M.H.; Kumar, N.; Saha, D.; Sinha, R.K.

    2002-01-01

    Scaling methods for both single-phase and two-phase natural circulation systems have been presented. For single-phase systems, simulation of the steady state flow can be achieved by preserving just one nondimensional parameter. For uniform diameter two-phase systems also, it is possible to simulate the steady state behaviour with just one non-dimensional parameter. Simulation of the stability behaviour requires geometric similarity in addition to the similarity of the physical parameters appearing in the governing equations. The scaling laws proposed have been tested with experimental data in case of single-phase natural circulation. (author)

  13. The two way shape memory effect: influence of stabilization in single and polycrystals of Cu-based alloys

    International Nuclear Information System (INIS)

    Cingolani, E.; Arneodo Larochette, P.; Ahlers, M.

    2000-01-01

    The possibility to obtain a two way shape memory effect (TWME) by stabilizing the martensite through diffusion controlled processes has been analysed in single and polycrystals of Cu-Zn-Al and in single crystals of Cu-Al-Be and Cu-Al-Ni. It is shown that the four systems behave very differently: Whereas in the Cu-Zn-Al single crystals sufficient vacancies remain available during extended times to obtain a perfect TWME, in Cu-Al-Be they anneal out fast, leading to a perfect TWME only right after quenching, and in Cu-Al-Ni they remain immobile below about 200 C. In polycrystals of Cu-Zn-Al the stabilization has only a negligible effect on the TWME, due to the formation of stable martensite configurations at the grain boundaries. (orig.)

  14. Stabilization

    Directory of Open Access Journals (Sweden)

    Muhammad H. Al-Malack

    2016-07-01

    Full Text Available Fuel oil flyash (FFA produced in power and water desalination plants firing crude oils in the Kingdom of Saudi Arabia is being disposed in landfills, which increases the burden on the environment, therefore, FFA utilization must be encouraged. In the current research, the effect of adding FFA on the engineering properties of two indigenous soils, namely sand and marl, was investigated. FFA was added at concentrations of 5%, 10% and 15% to both soils with and without the addition of Portland cement. Mixtures of the stabilized soils were thoroughly evaluated using compaction, California Bearing Ratio (CBR, unconfined compressive strength (USC and durability tests. Results of these tests indicated that stabilized sand mixtures could not attain the ACI strength requirements. However, marl was found to satisfy the ACI strength requirement when only 5% of FFA was added together with 5% of cement. When the FFA was increased to 10% and 15%, the mixture’s strength was found to decrease to values below the ACI requirements. Results of the Toxicity Characteristics Leaching Procedure (TCLP, which was performed on samples that passed the ACI requirements, indicated that FFA must be cautiously used in soil stabilization.

  15. Stabilization and synchronization of Genesio-Tesi system via single variable feedback controller

    International Nuclear Information System (INIS)

    Wang Guangming

    2010-01-01

    This Letter investigates the stabilization and synchronization of Genesio-Tesi systems. Firstly, modifying the previous method, we stabilize the Genesio-Tesi system. Then, we synchronize two identical Genesio chaotic system by extending the obtained stabilization results. To the best of our knowledge, the above controllers obtained in this Letter are simpler than those obtained in the existing results. Finally, numerical simulations verify the effectiveness and the validity of the above theoretical results.

  16. Task driven optimal leg trajectories in insect-scale legged microrobots

    Science.gov (United States)

    Doshi, Neel; Goldberg, Benjamin; Jayaram, Kaushik; Wood, Robert

    Origami inspired layered manufacturing techniques and 3D-printing have enabled the development of highly articulated legged robots at the insect-scale, including the 1.43g Harvard Ambulatory MicroRobot (HAMR). Research on these platforms has expanded its focus from manufacturing aspects to include design optimization and control for application-driven tasks. Consequently, the choice of gait selection, body morphology, leg trajectory, foot design, etc. have become areas of active research. HAMR has two controlled degrees-of-freedom per leg, making it an ideal candidate for exploring leg trajectory. We will discuss our work towards optimizing HAMR's leg trajectories for two different tasks: climbing using electroadhesives and level ground running (5-10 BL/s). These tasks demonstrate the ability of single platform to adapt to vastly different locomotive scenarios: quasi-static climbing with controlled ground contact, and dynamic running with un-controlled ground contact. We will utilize trajectory optimization methods informed by existing models and experimental studies to determine leg trajectories for each task. We also plan to discuss how task specifications and choice of objective function have contributed to the shape of these optimal leg trajectories.

  17. Contact Kinematics Correlates to Tibial Component Migration Following Single Radius Posterior Stabilized Knee Replacement.

    Science.gov (United States)

    Teeter, Matthew G; Perry, Kevin I; Yuan, Xunhua; Howard, James L; Lanting, Brent A

    2018-03-01

    Contact kinematics between total knee arthroplasty components is thought to affect implant migration; however, the interaction between kinematics and tibial component migration has not been thoroughly examined in a modern implant system. A total of 24 knees from 23 patients undergoing total knee arthroplasty with a single radius, posterior stabilized implant were examined. Patients underwent radiostereometric analysis at 2 and 6 weeks, 3 and 6 months, and 1 and 2 years to measure migration of the tibial component in all planes. At 1 year, patients also had standing radiostereometric analysis examinations acquired in 0°, 20°, 40°, and 60° of flexion, and the location of contact and magnitude of any condylar liftoff was measured for each flexion angle. Regression analysis was performed between kinematic variables and migration at 1 year. The average magnitude of maximum total point motion across all patients was 0.671 ± 0.270 mm at 1 year and 0.608 ± 0.359 mm at 2 years (P = .327). Four implants demonstrated continuous migration of >0.2 mm between the first and second year of implantation. There were correlations between the location of contact and tibial component anterior-posterior tilt, varus-valgus tilt, and anterior-posterior translation. The patients with continuous migration demonstrated atypical kinematics and condylar liftoff in some instances. Kinematics can influence tibial component migration, likely through alterations of force transmission. Abnormal kinematics may play a role in long-term implant loosening. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Adjusting output impedance using a PI controller to improve the stability of a single-phase inverter under weak grid

    Directory of Open Access Journals (Sweden)

    Jiao Jiao

    2016-11-01

    Full Text Available Explored in this paper is the grid impedance effect on the stability of a single-phase grid connected inverter with an LC filter based on an analysis of the inverter output impedance. For a single-phase grid connected inverter, a PI controller is often used to regulate the current injected into the grid. However, the control performance can be influenced when the inverter is connected to a weak grid. Also, the utility grid has background harmonic noise, which can make the injected current distorted. Therefore, analysis of the output impedance of a single-phase grid connected inverter is important for the robustness and stability of the system. By modeling the output impedance of inverter, it can be determined that the proportional gain and integral gain of the controller have an effect on the output impedance. Analytical results show that by adjusting the PI controller parameters, the ability for harmonic reduction and stability of the system can be improved. Simulation and experiments using a 1 kW single-phase grid connected inverter verify the effectiveness of the theoretical analysis.

  19. Use of a portable motion analysis system for knee dynamic stability assessment in anterior cruciate ligament deficiency during single-legged hop landing

    Directory of Open Access Journals (Sweden)

    Man-Yi Yeung

    2016-07-01

    Conclusion: The altered knee kinematics in ACL-deficient patients can be revealed by a portable motion capture system, which may enable the clinical application of kinematic assessment in the evaluation of ACL deficiency.

  20. The addition of body armor diminishes dynamic postural stability in military soldiers.

    Science.gov (United States)

    Sell, Timothy C; Pederson, Jonathan J; Abt, John P; Nagai, Takashi; Deluzio, Jennifer; Wirt, Michael D; McCord, Larry J; Lephart, Scott M

    2013-01-01

    Poor postural stability has been identified as a risk factor for lower extremity musculoskeletal injury. The additional weight of body armor carried by Soldiers alters static postural stability and may predispose Soldiers to lower extremity musculoskeletal injuries. However, static postural stability tasks poorly replicate the dynamic military environment, which places considerable stress on the postural control system during tactical training and combat. Therefore, the purpose of this study was to examine the effects of body armor on dynamic postural stability during single-leg jump landings. Thirty-six 101st Airborne Division (Air Assault) Soldiers performed single-leg jump landings in the anterior direction with and without wearing body armor. The dynamic postural stability index and the individual stability indices (medial-lateral stability index, anterior-posterior stability index, and vertical stability index) were calculated for each condition. Paired sample t-tests were performed to determine differences between conditions. Significant differences existed for the medial-lateral stability index, anterior-posterior stability index, vertical stability index, and dynamic postural stability index (p armor resulted in diminished dynamic postural stability, which may result in increased lower extremity injuries. Training programs should address the altered dynamic postural stability while wearing body armor in attempts to promote adaptations that will result in safer performance during dynamic tasks.

  1. Conjoined legs: Sirenomelia or caudal regression syndrome?

    Directory of Open Access Journals (Sweden)

    Sakti Prasad Das

    2013-01-01

    Full Text Available Presence of single umbilical persistent vitelline artery distinguishes sirenomelia from caudal regression syndrome. We report a case of a12-year-old boy who had bilateral umbilical arteries presented with fusion of both legs in the lower one third of leg. Both feet were rudimentary. The right foot had a valgus rocker-bottom deformity. All toes were present but rudimentary. The left foot showed absence of all toes. Physical examination showed left tibia vara. The chest evaluation in sitting revealed pigeon chest and elevated right shoulder. Posterior examination of the trunk showed thoracic scoliosis with convexity to right. The patient was operated and at 1 year followup the boy had two separate legs with a good aesthetic and functional results.

  2. Leg-adjustment strategies for stable running in three dimensions

    International Nuclear Information System (INIS)

    Peuker, Frank; Maufroy, Christophe; Seyfarth, André

    2012-01-01

    The dynamics of the center of mass (CoM) in the sagittal plane in humans and animals during running is well described by the spring-loaded inverted pendulum (SLIP). With appropriate parameters, SLIP running patterns are stable, and these models can recover from perturbations without the need for corrective strategies, such as the application of additional forces. Rather, it is sufficient to adjust the leg to a fixed angle relative to the ground. In this work, we consider the extension of the SLIP to three dimensions (3D SLIP) and investigate feed-forward strategies for leg adjustment during the flight phase. As in the SLIP model, the leg is placed at a fixed angle. We extend the scope of possible reference axes from only fixed horizontal and vertical axes to include the CoM velocity vector as a movement-related reference, resulting in six leg-adjustment strategies. Only leg-adjustment strategies that include the CoM velocity vector produced stable running and large parameter domains of stability. The ability of the model to recover from perturbations along the direction of motion (directional stability) depended on the strategy for lateral leg adjustment. Specifically, asymptotic and neutral directional stability was observed for strategies based on the global reference axis and the velocity vector, respectively. Additional features of velocity-based leg adjustment are running at arbitrary low speed (kinetic energy) and the emergence of large domains of stable 3D running that are smoothly transferred to 2D SLIP stability and even to 1D SLIP hopping. One of the additional leg-adjustment strategies represented a large convex region of parameters where stable and robust hopping and running patterns exist. Therefore, this strategy is a promising candidate for implementation into engineering applications, such as robots, for instance. In a preliminary comparison, the model predictions were in good agreement with the experimental data, suggesting that the 3D SLIP is an

  3. Y BALANCE TEST™ ANTERIOR REACH SYMMETRY AT THREE MONTHS IS RELATED TO SINGLE LEG FUNCTIONAL PERFORMANCE AT TIME OF RETURN TO SPORTS FOLLOWING ANTERIOR CRUCIATE LIGAMENT RECONSTRUCTION.

    Science.gov (United States)

    Garrison, J Craig; Bothwell, James M; Wolf, Gina; Aryal, Subhash; Thigpen, Charles A

    2015-10-01

    Restoration of symmetrical strength, balance, and power following anterior cruciate ligament reconstruction (ACL-R) are thought to be important factors for successful return to sports. Little information is available regarding early rehabilitation outcomes and achieving suggested limb indices of 90% on functional performance measures at the time of return to sports (RTS). To examine the relationship between symmetry of the anterior reach of the Y Balance Test™ at 12 weeks and functional performance measures at time of return to sports after anterior cruciate ligament (ACL) reconstruction. Retrospective Cohort. Forty subjects (mean ± SD age, 17.2 ± 3.8 years) who were in the process of rehabilitation following ACL reconstruction. Each subject volunteered and was enrolled in the study during physical therapy following ACL-R. Participants averaged two visits per week in physical therapy until the time of testing for RTS. The Y Balance Test™ was assessed at 12 weeks. Participants completed a battery of tests at RTS (6.4 ± 1.1 months) including triple hop distance (THD), single hop distance (SHD), isometric knee extension strength (KE), and the Vail Sport Test™. Side to side difference was calculated for the Y Balance Test™ anterior reach and limb symmetry indices (LSI) were computed for THD, SHD, and KE. Multiple regression models were used to study the relationship between variables at 12 weeks and RTS while controlling for age, gender, type of graft, and pain score. In addition, subjects were dichotomized based on a side-to-side Y Balance anterior reach difference into high risk (>4 cm) or low risk (≤4 cm) categories. A receiver operating characteristic (ROC) curve was used to identify individuals at 12 weeks who do not achieve 90% limb symmetry indices at time of RTS testing. . A statistically significant association was seen between Y Balance ANT at 12 weeks and SHD at RTS (β = -1.46, p = 0.0005, R(2) = 0.395), THD at RTS

  4. Timing of muscle response to a sudden leg perturbation: comparison between adolescents and adults with Down syndrome.

    Directory of Open Access Journals (Sweden)

    Maria Stella Valle

    Full Text Available Movement disturbances associated with Down syndrome reduce mechanical stability, worsening the execution of important tasks such as walking and upright standing. To compensate these deficits, persons with Down syndrome increase joint stability modulating the level of activation of single muscles or producing an agonist-antagonist co-activation. Such activations are also observed when a relaxed, extended leg is suddenly released and left to oscillate passively under the influence of gravity (Wartenberg test. In this case, the Rectus femoris of adults with Down syndrome displayed peaks of activation after the onset of the first leg flexion. With the aim to verify if these muscular reactions were acquired during the development time and to find evidences useful to give them a functional explanation, we used the Wartenberg test to compare the knee joint kinematics and the surface electromyography of the Rectus femoris and Biceps femoris caput longus between adolescents and adults with Down syndrome. During the first leg flexion, adolescents and adults showed single Rectus femoris activations while, a restricted number of participants exhibited agonist-antagonist co-activations. However, regardless the pattern of activation, adults initiated the muscle activity significantly later than adolescents. Although most of the mechanical parameters and the total movement variability were similar in the two groups, the onset of the Rectus femoris activation was well correlated with the time of the minimum acceleration variability. Thus, in adolescents the maximum mechanical stability occurred short after the onset of the leg fall, while adults reached their best joint stability late during the first flexion. These results suggest that between the adolescence and adulthood, persons with Down syndrome explore a temporal window to select an appropriate timing of muscle activation to overcome their inherent mechanical instability.

  5. Thermal stability of radiation-induced free radicals in γ-irradiated l-alanine single crystals

    International Nuclear Information System (INIS)

    Maltar-Strmecki, N.; Rakvin, B.

    2005-01-01

    Decay of the radiation-induced stable free radicals in l-alanine single crystals and powders at the temperatures from 379 to 476K was examined by electron paramagnetic resonance. For single crystals, the calculated activation energy of the radical decay is 104.3±1.7kJ/mol (i.e. 12 538+/-202K) and the frequency factor lnν 0 is 24.1±0.4min -1 . The lifetime of the radical in single crystals at 296K is 162 years. The results confirm the long-term stability of the radicals, but the decay was found to be faster in large crystals than in powders

  6. ORTHOPEDIC LEG BRACE

    Science.gov (United States)

    Myers, William Neil (Inventor)

    2005-01-01

    Knee braces generally have been rigid in both the knee bending direction and in the knee straightening direction unless a manually operated release is incorporated in them to allow the knee to bend. Desirably a braced knee joint should effectively duplicate the compound, complex, actions of a normal knee. The key to knee braces is the knee joint housing. The housing herein carries a number of cam action pawls. with teeth adapted to engage the internal teeth of a ratchet ring mounted in the housing. Cam action return springs and the shape of the cam action pawl teeth allow rotation of the ratchet ring in a leg straightening direction while still supporting a load. The leg can then be extended during walking while at the same time being prevented by the cam action pawls from buckling in the knee bending direction.

  7. Legāti

    OpenAIRE

    Segliņa, Aiga

    2010-01-01

    Autore teorētiski analizē legāta jēdzienu testamentārās mantošanas ietvaros un atspoguļo praktiska pētījuma rezultātus. Teorētiskā daļa apskata legāta nodibināšanas formu un spēkā esamību, tā iegūšanu un atraidīšanu, izpildi un zaudēšanu, novēlējuma robežas un aprobežojumus. Pētījums veikts aptaujas veidā ar mērķi noskaidrot, cik liela Latvijas iedzīvotāju daļa apzinās legāta nodrošinātās priekšrocības testamentārajā mantošanā. Apskatīts notāra neitralitātes jautājums attiecībā pret mantošana...

  8. Analysis of polytype stability in PVT grown silicon carbide single crystal using competitive lattice model Monte Carlo simulations

    Directory of Open Access Journals (Sweden)

    Hui-Jun Guo

    2014-09-01

    Full Text Available Polytype stability is very important for high quality SiC single crystal growth. However, the growth conditions for the 4H, 6H and 15R polytypes are similar, and the mechanism of polytype stability is not clear. The kinetics aspects, such as surface-step nucleation, are important. The kinetic Monte Carlo method is a common tool to study surface kinetics in crystal growth. However, the present lattice models for kinetic Monte Carlo simulations cannot solve the problem of the competitive growth of two or more lattice structures. In this study, a competitive lattice model was developed for kinetic Monte Carlo simulation of the competition growth of the 4H and 6H polytypes of SiC. The site positions are fixed at the perfect crystal lattice positions without any adjustment of the site positions. Surface steps on seeds and large ratios of diffusion/deposition have positive effects on the 4H polytype stability. The 3D polytype distribution in a physical vapor transport method grown SiC ingot showed that the facet preserved the 4H polytype even if the 6H polytype dominated the growth surface. The theoretical and experimental results of polytype growth in SiC suggest that retaining the step growth mode is an important factor to maintain a stable single 4H polytype during SiC growth.

  9. A single-molecule force-spectroscopic study on stabilization of G-quadruplex DNA by a telomerase inhibitor.

    Science.gov (United States)

    Funayama, Ryoto; Nakahara, Yoshio; Kado, Shinpei; Tanaka, Mutsuo; Kimura, Keiichi

    2014-08-21

    Single-molecule force spectroscopy was carried out using AFM force measurements for the purpose of direct observation of the stabilization of G-quadruplex DNA by a telomerase inhibitor, which is 5,10,15,20-tetrakis(N-methylpyridinium-4-yl)porphyrin tetrakis(p-toluenesulfonate) (TMPyP). In AFM force measurements, we used an AFM tip and an Au substrate modified chemically with terminal-biotinylated telomere DNA and streptavidin, respectively. The telomere DNA was fully stretched by the AFM tip based on the bridge formation between the AFM tip and the Au substrate through the streptavidin-biotin interaction. The force-extension curves, which reflected the stretching of a single DNA molecule, were distinguished from all of the curves, judging from the rupture force and the contour length. The selected curves were analyzed using a worm-like chain model, and one of the fitting parameters, persistence length (lp), was used as an index for the stabilization of the G-quadruplex structure. Consequently, the lp value was significantly increased by the addition of TMPyP under the experimental conditions where the G-quadruplex structure could be formed. On the other hand, the value was hardly changed by the addition of TMPyP under the conditions except the above. Furthermore, the methodology developed and demonstrated in this work was applied to evaluate the stabilization of G-quadruplex DNA by other telomerase inhibitors such as ethidium bromide and p-xylene-bis(N-pyridinium bromide).

  10. Stable walking with asymmetric legs

    International Nuclear Information System (INIS)

    Merker, Andreas; Rummel, Juergen; Seyfarth, Andre

    2011-01-01

    Asymmetric leg function is often an undesired side-effect in artificial legged systems and may reflect functional deficits or variations in the mechanical construction. It can also be found in legged locomotion in humans and animals such as after an accident or in specific gait patterns. So far, it is not clear to what extent differences in the leg function of contralateral limbs can be tolerated during walking or running. Here, we address this issue using a bipedal spring-mass model for simulating walking with compliant legs. With the help of the model, we show that considerable differences between contralateral legs can be tolerated and may even provide advantages to the robustness of the system dynamics. A better understanding of the mechanisms and potential benefits of asymmetric leg operation may help to guide the development of artificial limbs or the design novel therapeutic concepts and rehabilitation strategies.

  11. Laterality of the legs in young female soccer players

    Directory of Open Access Journals (Sweden)

    Antosiak-Cyrak Katarzyna Z.

    2015-12-01

    Full Text Available Purpose. The aim of the present study was assessment of laterality of the legs of young female soccer players and their non-training counterparts. Methods. The study sample comprised 9 female soccer players and 19 non-training girls. They underwent three measurement sessions, one every six months. The applied tests included kinesthetic differentiation, rate of local movements, static balance, single-leg hop, rate of global movements, strength and speed, and functional asymmetry of the legs tests. Results. The soccer players were better than the controls in their performance of the rate of local movements, rate of global movements, kinesthetic differentiation, single-leg 15m timed hop and static balance tests. Smaller differences between the results of the left and the right legs in soccer players, than in non-training girls, were noted in the rate of local movements, rate of global movements and kinesthetic differentiation tests. In the static balance test, the differences were greater in the group of soccer players. Conclusions. Lateralization of the lower limbs is a highly complex characteristic with a different variability in athletes than in nontraining individuals. The results of the present study also point to the specialization of soccer players’ left legs in body balance and single-leg hop tests.

  12. Adaptive leg coordination with a biologically inspired neurocontroller

    Science.gov (United States)

    Braught, Grant; Thomopoulos, Stelios C.

    1996-10-01

    Natural selection is responsible for the creation of robust and adaptive control systems. Nature's control systems are created only from primitive building blocks. Using insect neurophysiology as a guide, a neural architecture for leg coordination in a hexapod robot has been developed. Reflex chains and sensory feedback mechanisms from various insects and crustacea form the basis of a pattern generator for intra-leg coordination. The pattern generator contains neural oscillators which learn from sensory feedback to produce stepping patterns. Using sensory feedback as the source of learning information allows the pattern generator to adapt to changes in the leg dynamics due to internal or external causes. A coupling between six of the single leg pattern generators is used to produce the inter-leg coordination necessary to establish stable gaits.

  13. Mechanical Stabilization of Martensite in Cu-Ni-Al Single Crystal and Unconventional Way to Detect It

    Science.gov (United States)

    Heczko, O.; Vronka, M.; Veřtát, P.; Rameš, M.; Onderková, K.; Kopecký, V.; Krátká, P.; Ge, Y.

    2018-03-01

    The microstructures and transformation behaviour of self-accommodated and mechanically stabilized martensite of Cu69.4Ni3.4Al27.2 (at.%) single crystal were investigated by optical microscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD) and magnetometry. XRD and TEM analyses showed the presence of both 2H and 18R phases in self-accommodated martensite. The mechanical compression of martensite (≈ 100 MPa) increased markedly the transformation temperature to austenite, i.e. resulting in significant mechanical stabilization of martensite. The 18R phase disappeared after the compression. This reveals the important role of 18R phase in transformation behaviour of Cu-Ni-Al alloy. Furthermore, we demonstrate that thermo-magnetic measurement is suitable method to analyse the martensitic transformation even for diamagnetic material.

  14. Creation of Single Chain of Nanoscale Skyrmion Bubbles with Record-high Temperature Stability in a Geometrically Confined Nanostripe

    KAUST Repository

    Hou, Zhipeng

    2018-01-04

    Nanoscale topologically nontrivial spin textures, such as magnetic skyrmions, have been identified as promising candidates for the transport and storage of information for spintronic applications, notably magnetic racetrack memory devices. The design and realization of a single skyrmion chain at room temperature (RT) and above in the low-dimensional nanostructures are of great importance for future practical applications. Here, we report the creation of a single skyrmion bubble chain in a geometrically confined Fe3Sn2 nanostripe with a width comparable to the featured size of a skyrmion bubble. Systematic investigations on the thermal stability have revealed that the single chain of skyrmion bubbles can keep stable at temperatures varying from RT up to a record-high temperature of 630 K. This extreme stability can be ascribed to the weak temperature-dependent magnetic anisotropy and the formation of edge states at the boundaries of the nanostripes. The realization of the highly stable skyrmion bubble chain in a geometrically confined nanostructure is a very important step toward the application of skyrmion-based spintronic devices.

  15. MUSCLE ACTIVITY RESPONSE TO EXTERNAL MOMENT DURING SINGLE-LEG DROP LANDING IN YOUNG BASKETBALL PLAYERS: THE IMPORTANCE OF BICEPS FEMORIS IN REDUCING INTERNAL ROTATION OF KNEE DURING LANDING

    Directory of Open Access Journals (Sweden)

    Meguru Fujii

    2012-06-01

    Full Text Available Internal tibial rotation with the knee close to full extension combined with valgus collapse during drop landing generally results in non-contact anterior cruciate ligament (ACL injury. The purpose of this study was to investigate the relationship between internal rotation of the knee and muscle activity from internal and external rotator muscles, and between the internal rotation of knee and externally applied loads on the knee during landing in collegiate basketball players. Our hypothesis was that the activity of biceps femoris muscle would be an important factor reducing internal knee rotation during landing. The subjects were 10 collegiate basketball students: 5 females and 5 males. The subjects performed a single-leg drop landing from a 25-cm height. Femoral and tibial kinematics were measured using a 3D optoelectronic tracking system during the drop landings, and then the knee angular motions were determined. Ground reaction forces and muscle activation patterns (lateral hamstring and medial hamstring were simultaneously measured and computed. Results indicated that lower peak internal tibial rotation angle at the time of landing was associated with greater lateral hamstring activity (r = -0.623, p < 0.001. When gender was considered, the statistically significant correlation remained only in females. There was no association between the peak internal tibial rotation angle and the knee internal rotation moment. Control of muscle activity in the lateral to medial hamstring would be an important factor in generating sufficient force to inhibit excessive internal rotation during landing. Strengthening the biceps femoris might mitigate the higher incidence of non-contact ACL injury in female athletes

  16. Artificial Leg Design and Control Research of a Biped Robot with Heterogeneous Legs Based on PID Control Algorithm

    Directory of Open Access Journals (Sweden)

    Hualong Xie

    2015-04-01

    Full Text Available A biped robot with heterogeneous legs (BRHL is proposed to provide an ideal test-bed for intelligent bionic legs (IBL. To make artificial leg gait better suited to a human, a four-bar mechanism is used as its knee joint, and a pneumatic artificial muscle (PAM is used as its driving source. The static mathematical model of PAM is established and the mechanical model of a single degree of freedom of a knee joint driven by PAM is analyzed. A control simulation of an artificial leg based on PID control algorithm is carried out and the simulation results indicate that the artificial leg can simulate precisely a normal human walking gait.

  17. Leg cramps and restless legs syndrome during pregnancy.

    Science.gov (United States)

    Hensley, Jennifer G

    2009-01-01

    Sleep disturbance during pregnancy can result in excessive daytime sleepiness, diminished daytime performance, inability to concentrate, irritability, and the potential for an increased length of labor and increased risk of operative birth. Sleep disturbance may be the result of a sleep disorder, such as leg cramps, a common yet benign disorder, or restless legs syndrome, a sensorimotor disorder. Both disrupt sleep, are distressing to the pregnant woman, and mimic one another and other serious disorders. During pregnancy, up to 30% of women can be affected by leg cramps, and up to 26% can be affected by restless legs syndrome.

  18. Stabilization of Pt nanoparticles by single stranded DNA and the binary assembly of Au and Pt nanoparticles without hybridization

    International Nuclear Information System (INIS)

    Yang, J.; Lee, Jim Yang; Too, Heng-Phon; Chow, Gan-Moog; Gan, Leong M.

    2006-01-01

    The non-specific interaction between single stranded DNA (ssDNA) and 12 nm Pt nanoparticles is investigated in this work. The data show a strong and non-specific interaction between the two which can be exploited for the stabilization of Pt nanoparticles in aqueous solutions. Based on the experimental findings, a non-hybridization based protocol to assemble 17 nm Au and Pt nanoparticles (12 nm cubic and 3.6 nm spherical) by single-stranded DNA was developed. Transmission electron microscopy (TEM) and UV-visible spectroscopy confirmed that Au and Pt nanoparticles could be assembled by the non-specific interaction in an orderly manner. The experimental results also caution against the potential pitfalls in using DNA melting point analysis to infer metal nanoparticle assembly by DNA hybridization

  19. Probing DNA-stabilized fluorescent silver nanocluster spectral heterogeneity by time-correlated single photon counting

    DEFF Research Database (Denmark)

    Carro, Miguel; Paolucci, Valentina; Hooley, Emma Nicole

    2016-01-01

    the comparison of sample preparation and the judgment of reproducibility. Therefore, we propose the use of the average decay time spectra as a robust and easy tool to characterize and compare different as-synthesized DNA-AgNC samples. The average decay time spectra can in general also be used to characterize......DNA-stabilized silver nanoclusters (DNA-AgNCs) are promising fluorophores whose photophysical properties and synthesis procedures have received increased attention in the literature. However, depending on the preparation conditions and the DNA sequence, the DNA-AgNC samples can host a range...

  20. [Swollen leg with blisters].

    Science.gov (United States)

    Rafeiner, Ph; Templeton, A J; Vonesch, H J

    2005-10-05

    We report the case of a 84-year-old woman suffering from strong pain in her right leg initially resembling thrombosis of deep veins. Eight hours after admission a superficial blister developed at the calf with following hemorrhagic aspect and spontanous eruption of clear yellowish fluid. Later on a new blister appeared at the thigh. The patient died 33 hours after admission of streptococcal toxic shock syndrome. The latter was based on a necrotizing fasciitis. Streptoccus pyogenes (group A) could be cultivated from the blood and fluid of the blister. We discuss the clinical presentation of necrotizing fasciitis with "pain out of proportion" as characteristic complaint and the appropriate management.

  1. Textiloma in the leg

    Directory of Open Access Journals (Sweden)

    Patel Amol

    2007-01-01

    Full Text Available Textiloma is defined as a tumor formed due to retained gauze. It is rarely reported in the musculoskeletal system. We are presenting a case with a soft tissue swelling over the lateral aspect of the lower third of the leg, come for implant removal of the distal tibia and fibular fracture. We removed the soft tissue mass enbloc thinking it to be a benign tumor. On cutting the mass on the operation table, a gauze piece encased by fibrous tissue was found. Textiloma can present as tumoral forms and can mimic as a pseudo-tumor.

  2. Skipping on uneven ground: trailing leg adjustments simplify control and enhance robustness

    Science.gov (United States)

    2018-01-01

    It is known that humans intentionally choose skipping in special situations, e.g. when descending stairs or when moving in environments with lower gravity than on Earth. Although those situations involve uneven locomotion, the dynamics of human skipping on uneven ground have not yet been addressed. To find the reasons that may motivate this gait, we combined experimental data on humans with numerical simulations on a bipedal spring-loaded inverted pendulum model (BSLIP). To drive the model, the following parameters were estimated from nine subjects skipping across a single drop in ground level: leg lengths at touchdown, leg stiffness of both legs, aperture angle between legs, trailing leg angle at touchdown (leg landing first after flight phase), and trailing leg retraction speed. We found that leg adjustments in humans occur mostly in the trailing leg (low to moderate leg retraction during swing phase, reduced trailing leg stiffness, and flatter trailing leg angle at lowered touchdown). When transferring these leg adjustments to the BSLIP model, the capacity of the model to cope with sudden-drop perturbations increased. PMID:29410879

  3. Strength and Stability Analysis of a Single Walled Black Phosphorus Tube under Axial Compression

    OpenAIRE

    Cai, Kun; Wan, Jing; Wei, Ning; Qin, Qinghua

    2016-01-01

    Few-layered black phosphorus materials recently attract much attention due to its special electronic properties. As a Consequence, the nano-tube from a single-layer black phosphorus has been theoretically built. The corresponding electronic properties of such black phosphorus nano-tube were also evaluated numerically.

  4. Stability of cell-free DNA from maternal plasma isolated following a single centrifugation step.

    Science.gov (United States)

    Barrett, Angela N; Thadani, Henna A; Laureano-Asibal, Cecille; Ponnusamy, Sukumar; Choolani, Mahesh

    2014-12-01

    Cell-free fetal DNA can be used for prenatal testing with no procedure-related risk to the fetus. However, yield of fetal DNA is low compared with maternal cell-free DNA fragments, resulting in technical challenges for some downstream applications. To maximize the fetal fraction, careful blood processing procedures are essential. We demonstrate that fetal fraction can be preserved using a single centrifugation step followed by postage of plasma to the laboratory for further processing. Digital PCR was used to quantify copies of total, maternal, and fetal DNA present in single-spun plasma at time points over a two-week period, compared with immediately processed double-spun plasma, with storage at room temperature, 4°C, and -80°C representing different postage scenarios. There was no significant change in total, maternal, or fetal DNA copy numbers when single-spun plasma samples were stored for up to 1 week at room temperature and 2 weeks at -80°C compared with plasma processed within 4 h. Following storage at 4°C no change in composition of cell-free DNA was observed. Single-spun plasma can be transported at room temperature if the journey is expected to take one week or less; shipping on dry ice is preferable for longer journeys. © 2014 John Wiley & Sons, Ltd.

  5. A single bout of whole-leg, peristaltic pulse external pneumatic compression upregulates PGC-1α mRNA and endothelial nitric oxide sythase protein in human skeletal muscle tissue.

    Science.gov (United States)

    Kephart, Wesley C; Mobley, C Brooks; Fox, Carlton D; Pascoe, David D; Sefton, JoEllen M; Wilson, Trent J; Goodlett, Michael D; Kavazis, Andreas N; Roberts, Michael D; Martin, Jeffrey S

    2015-07-01

    What is the central question of this study? Does 60 min of peristaltic pulse external pneumatic compression (EPC) alter gene and protein expression patterns related to metabolism, vascular biology, redox balance and inflammation in vastus lateralis biopsy samples? What is the main finding and its importance? A single bout of EPC transiently upregulates PGC-1α mRNA, while also upregulating endothelial nitric oxide synthase protein and nitric oxide metabolite concentrations in vastus lateralis biopsy samples. We investigated whether a single 60 min bout of whole-leg, lower pressure external pneumatic compression (EPC) altered select vascular, metabolic, antioxidant and inflammation-related mRNAs. Ten participants (eight male, two female; aged 22.0 ± 0.4 years) reported to the laboratory 4 h postprandial, and vastus lateralis muscle biopsies were obtained before (PRE) and 1 and 4 h after EPC treatment. Messenger RNA expression was analysed using real-time RT-PCR, and significant mRNA findings were investigated further by Western blot analysis of respective protein concentrations. Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) mRNA increased by 77% 1 h following EPC compared with PRE levels (P = 0.005), but no change in protein concentration 1 or 4 h post-EPC was observed. Increases in endothelial nitric oxide sythase (eNOS) mRNA (+44%) and superoxide dismutase 2 (SOD2) mRNA (+57%) 1 h post-EPC as well as an increase in interleukin-10 mRNA (+132%) 4 h post-EPC compared with PRE levels were observed, but only approached significance (P = 0.076, 0.077 and 0.074, respectively). Interestingly, eNOS protein (+40%, P = 0.025) and nitrate and nitrite (NOx) concentrations (+69%, P = 0.025) increased 1-4 h post-EPC. Moreover, SOD2 protein tended to increase from PRE to 4 h post-EPC (+43%, P = 0.074), although no changes in tissue 4-hydroxnonenal levels was observed. An acute bout of EPC transiently upregulates PGC-1α mRNA, while also upregulating e

  6. How to determine leg dominance: The agreement between self-reported and observed performance in healthy adults

    OpenAIRE

    van Melick, Nicky; Meddeler, Bart M.; Hoogeboom, Thomas J.; Nijhuis-van der Sanden, Maria W. G.; van Cingel, Robert E. H.

    2017-01-01

    CONTEXT: Since decades leg dominance is suggested to be important in rehabilitation and return to play in athletes with anterior cruciate ligament injuries. However, an ideal method to determine leg dominance in relation to task performance is still lacking. OBJECTIVE: To test the agreement between self-reported and observed leg dominance in bilateral mobilizing and unilateral stabilizing tasks, and to assess whether the dominant leg switches between bilateral mobilizing tasks and unilateral ...

  7. Stability Assessment of a System Comprising a Single Machine and Inverter with Scalable Ratings

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Brian B [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lin, Yashen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gevorgian, Vahan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Purba, Victor [University of Minnesota; Dhople, Sairaj [University of Minnesota

    2017-09-28

    From the inception of power systems, synchronous machines have acted as the foundation of large-scale electrical infrastructures and their physical properties have formed the cornerstone of system operations. However, power electronics interfaces are playing a growing role as they are the primary interface for several types of renewable energy sources and storage technologies. As the role of power electronics in systems continues to grow, it is crucial to investigate the properties of bulk power systems in low inertia settings. In this paper, we assess the properties of coupled machine-inverter systems by studying an elementary system comprised of a synchronous generator, three-phase inverter, and a load. Furthermore, the inverter model is formulated such that its power rating can be scaled continuously across power levels while preserving its closed-loop response. Accordingly, the properties of the machine-inverter system can be assessed for varying ratios of machine-to-inverter power ratings and, hence, differing levels of inertia. After linearizing the model and assessing its eigenvalues, we show that system stability is highly dependent on the interaction between the inverter current controller and machine exciter, thus uncovering a key concern with mixed machine-inverter systems and motivating the need for next-generation grid-stabilizing inverter controls.

  8. Stability Assessment of a System Comprising a Single Machine and Inverter with Scalable Ratings

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Brian B [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lin, Yashen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gevorgian, Vahan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Purba, Victor [University of Minnesota; Dhople, Sairaj [University of Minnesota

    2017-11-16

    Synchronous machines have traditionally acted as the foundation of large-scale electrical infrastructures and their physical properties have formed the cornerstone of system operations. However, with the increased integration of distributed renewable resources and energy-storage technologies, there is a need to systematically acknowledge the dynamics of power-electronics inverters - the primary energy-conversion interface in such systems - in all aspects of modeling, analysis, and control of the bulk power network. In this paper, we assess the properties of coupled machine-inverter systems by studying an elementary system comprised of a synchronous generator, three-phase inverter, and a load. The inverter model is formulated such that its power rating can be scaled continuously across power levels while preserving its closed-loop response. Accordingly, the properties of the machine-inverter system can be assessed for varying ratios of machine-to-inverter power ratings. After linearizing the model and assessing its eigenvalues, we show that system stability is highly dependent on the inverter current controller and machine exciter, thus uncovering a key concern with mixed machine-inverter systems and motivating the need for next-generation grid-stabilizing inverter controls.

  9. Stability of equidimensional pseudo-single-domain magnetite over billion-year timescales.

    Science.gov (United States)

    Nagy, Lesleis; Williams, Wyn; Muxworthy, Adrian R; Fabian, Karl; Almeida, Trevor P; Conbhuí, Pádraig Ó; Shcherbakov, Valera P

    2017-09-26

    Interpretations of paleomagnetic observations assume that naturally occurring magnetic particles can retain their primary magnetic recording over billions of years. The ability to retain a magnetic recording is inferred from laboratory measurements, where heating causes demagnetization on the order of seconds. The theoretical basis for this inference comes from previous models that assume only the existence of small, uniformly magnetized particles, whereas the carriers of paleomagnetic signals in rocks are usually larger, nonuniformly magnetized particles, for which there is no empirically complete, thermally activated model. This study has developed a thermally activated numerical micromagnetic model that can quantitatively determine the energy barriers between stable states in nonuniform magnetic particles on geological timescales. We examine in detail the thermal stability characteristics of equidimensional cuboctahedral magnetite and find that, contrary to previously published theories, such nonuniformly magnetized particles provide greater magnetic stability than their uniformly magnetized counterparts. Hence, nonuniformly magnetized grains, which are commonly the main remanence carrier in meteorites and rocks, can record and retain high-fidelity magnetic recordings over billions of years.

  10. Observation of single artificial atom optical bi-stability and its application to single-shot readout in circuit quantum electrodynamics

    Science.gov (United States)

    Sun, Luyan; Ginossar, Eran; Guy, Mikhael; Reed, Matthew; Paik, Hanhee; Bishop, Lev S.; Sears, Adam; Petrenko, Andrei; Brecht, Teresa; Frunzio, Luigi; Girvin, Steven; Schoelkopf, Robert

    2012-02-01

    The high power transient behavior of superconducting qubit-cavity systems has recently been used to perform high fidelity readout of transmon qubits [1]. We show that in the steady state, the system exhibits a bi-stable behavior that can be observed on the single-shot level, with the cavity state switching stochastically between dim and bright states. The switching times are shown to be long compared to the cavity and qubit lifetimes. Some features of the bi-stability can be explained by mean field theory, while its switching dynamics is studied with large scale simulations. Understanding these dynamics will be crucial for studying the transient response, an essential aspect of the qubit readout. We will discuss progress on optimizing readout by shaping the measurement pulse. [4pt] [1] M. D. Reed, L. DiCarlo, B. R. Johnson, L. Sun, D. I. Schuster, L. Frunzio, and R. J. Schoelkopf, Phys. Rev. Lett. 105, 173601 (2010)

  11. Modeling posture-dependent leg actuation in sagittal plane locomotion

    International Nuclear Information System (INIS)

    Schmitt, J; Clark, J

    2009-01-01

    The spring loaded inverted pendulum template has been shown to accurately model the steady locomotion dynamics of a variety of running animals, and has served as the inspiration for an entire class of dynamic running robots. While the template models the leg dynamics by an energy-conserving spring, insects and animals have structures that dissipate, store and produce energy during a stance phase. Recent investigations into the spring-like properties of limbs, as well as animal response to drop-step perturbations, suggest that animals use their legs to manage energy storage and dissipation, and that this management is important for gait stability. In this paper, we extend our previous analysis of control of the spring loaded inverted pendulum template via changes in the leg touch-down angle to include energy variations during the stance phase. Energy variations are incorporated through leg actuation that varies the force-free leg length during the stance phase, yet maintains qualitatively correct force and velocity profiles. In contrast to the partially asymptotically stable gaits identified in previous analyses, incorporating energy and leg angle variations in this manner produces complete asymptotic stability. Drop-step perturbation simulations reveal that the control strategy is rather robust, with gaits recovering from drops of up to 30% of the nominal hip height.

  12. Modeling posture-dependent leg actuation in sagittal plane locomotion

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, J [Department of Mechanical Engineering, Oregon State University, Corvallis, OR 97331 (United States); Clark, J, E-mail: schmitjo@engr.orst.ed [Department of Mechanical Engineering, Florida State University, Tallahassee, FL 32310 (United States)

    2009-12-15

    The spring loaded inverted pendulum template has been shown to accurately model the steady locomotion dynamics of a variety of running animals, and has served as the inspiration for an entire class of dynamic running robots. While the template models the leg dynamics by an energy-conserving spring, insects and animals have structures that dissipate, store and produce energy during a stance phase. Recent investigations into the spring-like properties of limbs, as well as animal response to drop-step perturbations, suggest that animals use their legs to manage energy storage and dissipation, and that this management is important for gait stability. In this paper, we extend our previous analysis of control of the spring loaded inverted pendulum template via changes in the leg touch-down angle to include energy variations during the stance phase. Energy variations are incorporated through leg actuation that varies the force-free leg length during the stance phase, yet maintains qualitatively correct force and velocity profiles. In contrast to the partially asymptotically stable gaits identified in previous analyses, incorporating energy and leg angle variations in this manner produces complete asymptotic stability. Drop-step perturbation simulations reveal that the control strategy is rather robust, with gaits recovering from drops of up to 30% of the nominal hip height.

  13. Comparison of Alternative Gaits for Multiped Robots with Severed Legs

    Directory of Open Access Journals (Sweden)

    Tse-Shuen Shih

    2012-10-01

    Full Text Available Multiped robots have become the focus of heated discussion lately, especially in applications involving rescue or military missions and underwater or extra-terrestrial explorations. The surroundings concerned are harsh and hazardous terrains, and predictably the malfunction rate is high. What if a leg is irreparably damaged? The original gait can no longer be used and an alternative gait must be taken for the robot to continue its mission. This paper studies and enumerates preferred alternative gaits for six- and eight-legged robots under a proposed severed leg scheme. A leg is assumed to be completely detachable when a failure occurs. Based on a new criterion called the progressive efficiency (PE, defined via the enhanced gait charts, along with other criteria like the stride length and the longitudinal stability, alternative gaits are evaluated. The tables of recommended gaits in this paper are useful for robots when a leg failure is foreseen. These tables not only provide a guideline as to what alternative gait to use, they also give insight into how important a certain leg is. A comparison between the severed leg scheme and the existing locked-joint strategy is also included.

  14. Mechanical stability of a locked step-plate versus single compression screw fixation for medial displacement calcaneal osteotomy.

    Science.gov (United States)

    Konan, Sujith; Meswania, Jay; Blunn, Gordon W; Madhav, Rohit T; Oddy, Michael J

    2012-08-01

    Reconstruction of a flatfoot commonly involves a calcaneal Medial Displacement Osteotomy (MDO) to correct hindfoot valgus in combination with soft tissue procedures. We compared fixation of an MDO using either a single, large cannulated screw versus a locking step-plate in load to failure in a cadaveric model. Eight matched pairs of cadaveric limbs were loaded using a mechanical testing rig. Two pairs served as non-operated controls. The remaining paired limbs underwent a 10-mm MDO stabilized either with a single 7-mm screw or a step-plate with four locking screws. One pair was used as a pilot study and the remaining five pairs were loaded up to 4500 N to failure. In the five pairs loaded to failure, the median (with 95% CI) maximum force were 1779 N (1099-2312) and 826 N (288-1607) for the plate and screw, respectively (p = 0.043). With single screw fixation, the tuberosity fragment consistently failed by rotation and angulation into varus. With plate fixation, failure occurred as the screws cut through the internal surfaces of the tuberosity and body with no failure at the screw-plate interface. In this cadaveric model, a locked step-plate supported a significantly higher maximum force than a single large cannulated screw. The magnitude of the load supported by the locking step-plate suggests that allowing early weightbearing post-operation may be safe in clinical practice before union of the osteotomy.

  15. Stability of single dispersed silver nanoparticles in natural and synthetic freshwaters: Effects of dissolved oxygen.

    Science.gov (United States)

    Zou, Xiaoyan; Li, Penghui; Lou, Jie; Fu, Xiaoyan; Zhang, Hongwu

    2017-11-01

    Silver nanoparticles (AgNPs) are increasingly used in various commercial products. This increased use raises ecological concerns because of the large release of AgNPs into the environment. Once released, the local water chemistry has the potential to influence the environmental fates and behaviors of AgNPs. The impacts of dissolved oxygen and natural organic matter (NOM) on the dissolution and stability of AgNPs were investigated in synthetic and natural freshwaters for 7 days. In synthetic freshwater, the aggregation of AgNPs occurred due to the compression of the electric double layer, accompanied by the dissolution of AgNPs. However, once oxygen was removed, the highest dissolved Ag (Ag dis ) concentration decreased from 356.5 μg/L to 272.1 μg/L, the pH of the AgNP suspensions increased from less than 7.6 to more than 8.4, and AgNPs were regenerated by the reduction of released Ag + by citrate. The addition of NOM mitigated aggregation, inhibited oxidative dissolution and induced the transformation of AgNPs into Ag 2 S due to the formation of NOM-adsorbed layers, the reduction of Ag + by NOM, and the high affinity of sulfur-enriched species in NOM for Ag. Likewise, in oxygen-depleted natural freshwaters, the inhibition of oxidative dissolution was obtained in comparison with oxygenated freshwaters, showing a decrease in the maximum Ag dis concentration from 137.6 and 57.0 μg/L to 83.3 and 42.4 μg/L from two natural freshwater sites. Our results suggested that aggregation and dissolution of AgNPs in aquatic environments depend on the chemical composition, where oxygen-depleted freshwaters more significantly increase the colloidal stability. In comparison with oxic conditions, anoxic conditions were more favorable to the regeneration of AgNPs by reducing species (e.g., citrate and NOM) and enhanced the stability of nanoparticles. This indicates that some AgNPs will be more stable for long periods in oxygen-deprived freshwaters, and pose more serious

  16. Testing Single and Combinations of Amendments for Stabilization of Metals in Contrasting Extremely Contaminated Soils

    Directory of Open Access Journals (Sweden)

    Siebielec G.

    2013-04-01

    Full Text Available Metals can be stabilized by soil amendments that increase metals adsorption or alter their chemical forms. Such treatments may limit the risk related to the contamination through reduction of metal transfer to the food chain (reduction of metal uptake by plants and its availability to soil organisms and metals migration within the environment. There is a need for experiments comparing various soil amendments available at reasonable amounts under similar environmental conditions. The other question is whether all components of soil environment or soil functions are similarly protected after remediation treatment. We conducted a series of pot studies to test some traditional and novel amendments and their combinations. The treatments were tested for several highly Zn/Cd/Pb contaminated soils. Among traditional amendments composts were the most effective – they ensured plant growth, increased soil microbial activity, reduced Cd in earthworms, reduced Pb bioaccessibility and increased share of unavailable forms of Cd and Pb.

  17. Magnitudes of muscle activation of spine stabilizers, gluteals, and hamstrings during supine bridge to neutral position.

    Science.gov (United States)

    Youdas, James W; Hartman, James P; Murphy, Brooke A; Rundle, Ashley M; Ugorowski, Jenna M; Hollman, John H

    2015-01-01

    The aim of this study was to compare the magnitude of selective core muscle activation during supine bridging to neutral exercises (three on a stable and three on an unstable surface). Surface EMG analysis was performed on the lumbar multifidus, gluteus medius, gluteus maximus, and hamstrings from 13 male and 13 female subjects. Lumbar multifidus recruitment was not influenced by exercise or condition and ranged between 29.2 and 35.9% of maximum voluntary isometric contraction (MVIC). Peak gluteus medius activation (42.0% MVIC) occurred in unstable single-leg bridge. Maximum recruitment of gluteus maximus (32.6% MVIC) appeared during stable single-leg bridge. Peak hamstring activation (59.6% MVIC) occurred during stable double-leg hamstring curl. Regardless of condition, hamstrings demonstrated high (51.9-59.6% MVIC) muscle recruitment during double-leg hamstring curls compared with the single-leg bridge or double-leg bridge. Various supine bridging to neutral exercises activated the hamstrings at levels conducive to strengthening, whereas recruitment of lumbar multifidus, gluteus medius, and gluteus maximus promoted endurance training. Clinically, we were unable to conclude the unstable support surface was preferable to the stable surface for boosting muscle recruitment of spine stabilizers, gluteals, and hamstring muscles during supine bridge to neutral position.

  18. Differentiating nocturnal leg cramps and restless legs syndrome.

    Science.gov (United States)

    Rana, Abdul Qayyum; Khan, Fatima; Mosabbir, Abdullah; Ondo, William

    2014-07-01

    Leg pain and discomfort are common complaints in any primary physician's clinic. Two common causes of pain or discomfort in legs are nocturnal leg cramps (NLC) and restless leg syndrome (RLS). NLC present as painful and sudden contractions mostly in part of the calf. Diagnosis of NLC is mainly clinical and sometimes involves investigations to rule out other mimics. RLS is a condition characterized by the discomfort or urge to move the lower limbs, which occurs at rest or in the evening/night. The similarity of RLS and leg cramps poses the issue of errors in diagnosing and differentiating the two. In this paper we review the pathopysiology of each entity and their diagnosis as well as treatment. The two conditions are then compared to appreciate the differences and similarities. Finally, suggestions are recommended for complete assessment.

  19. Effects of a balance-based exergaming intervention using the Kinect sensor on posture stability in individuals with Parkinson's disease: a single-blinded randomized controlled trial.

    Science.gov (United States)

    Shih, Meng-Che; Wang, Ray-Yau; Cheng, Shih-Jung; Yang, Yea-Ru

    2016-08-27

    The present study examined the effects of a balance-based exergaming intervention using the Kinect sensor on postural stability and balance in people with Parkinson's disease (PD). We conducted a subject-blinded, randomized controlled study. Twenty people with PD (Hoehn and Yahr stages I through III) were recruited and randomly assigned to either a balance-based exergaming group (N = 10) or a balance training group (N = 10) for an 8-week balance training period. Postural stability was assessed using the limits of stability (LOS) and one-leg stance (OLS) tests. Balance was assessed using the Berg Balance Scale (BBS) and the timed up and go (TUG) test. Participants were assessed pre- and post-training. After training, participants in the balance-based exergaming group showed significant improvements in LOS performance, and in the eyes-closed condition of the OLS test. Both training programs led to improvements in BBS and TUG performance. Furthermore, balance-based exergaming training resulted in significantly better performance in directional control in the LOS test (78.9 ± 7.65 %) compared with conventional balance training (70.6 ± 9.37 %). Balance-based exergaming training resulted in a greater improvement in postural stability compared with conventional balance training. Our results support the therapeutic use of exergaming aided by the Kinect sensor in people with PD. ClinicalTrials.gov. NCT02671396.

  20. A Single Mutation Increases the Activity and Stability of Pectobacterium carotovorum Nitrile Reductase.

    Science.gov (United States)

    Zhou, Zheng; Li, Min; Xu, Jian-He; Zhang, Zhi-Jun

    2018-03-02

    Nitrile reductases are considered to be promising and environmentally benign nitrile-reducing biocatalysts to replace traditional metal catalysts. Unfortunately, the catalytic efficiencies of the nitrile reductases reported so far are very low. To date, all attempts to increase the catalytic activity of nitrile reductases by protein engineering have failed. In this work, we successfully increased the specific activity of a nitrile reductase from Pectobacterium carotovorum from 354 to 526 U g prot -1 by engineering the substrate binding pocket; moreover, the thermostability was also improved (≈2-fold), showing half-lives of 140 and 32 h at 30 and 40 °C, respectively. In the bioreduction of 2-amino-5-cyanopyrrolo[2,3-d]pyrimidin-4-one (preQ 0 ) to 2-amino-5-aminomethylpyrrolo[2,3-d]pyrimidin-4-one (preQ 1 ), the variant was advantageous over the wild-type enzyme with a higher reaction rate and complete conversion of the substrate within a shorter period. Homology modeling and docking analysis revealed some possible origins of the increased activity and stability. These results establish a solid basis for future engineering of nitrile reductases to increase the catalytic efficiency further, which is a prerequisite for applying these novel biocatalysts in synthetic chemistry. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Klinefelter Syndrome With Leg Ulcers

    Directory of Open Access Journals (Sweden)

    Narendra G

    1999-01-01

    Full Text Available Leg ulcers are frequently caused by venous insufficiency, arterial insufficiency, neuropathy, or a combination of these factors. Klinefelter syndrome in association with chronic leg ulcers have been reported earlier. We report a case of Klinefelter syndrome with non- healing ulcer. The diagnosis of the Klinefelter syndrome was confirmed by karyotyping.

  2. Theory of single bunch stability and dynamics in linacs with strong wakefields and misalignments

    CERN Document Server

    Guignard, Gilbert

    1999-01-01

    The basic method we propose in order to solve analytically the equation of motion of a relativistic single-bunch travelling in a linac, in the presence of wakefields, has been summarised in a preceding report [1]. The extended treatment presented here includes the quadrupole transverse displacements, the chromatic variation of the magnetic focusing, the energy spread along the bunch and possible microwave quadrupoles. It deals with a Gaussian distribution of charge, linear variation of the wakefields within the bunch and smooth focusing. The energy is assumed to be constant in linac sectors, but increases from one sector to the next to simulate acceleration. The longitudinal and transverse equations of motion are solved,the second by using the perturbation method with partial expansions developed for this theory. The localised nature of the misalignment kicks and their superposition property are preserved by using thin lenses. The causality of the downstream oscillations due to these kicks is introduced via H...

  3. Reconstruction of human swing leg motion with passive biarticular muscle models.

    Science.gov (United States)

    Ahmad Sharbafi, Maziar; Mohammadi Nejad Rashty, Aida; Rode, Christian; Seyfarth, Andre

    2017-04-01

    Template models, which are utilized to demonstrate general aspects in human locomotion, mostly investigate stance leg operation. The goal of this paper is presenting a new conceptual walking model benefiting from swing leg dynamics. Considering a double pendulum equipped with combinations of biarticular springs for the swing leg beside spring-mass (SLIP) model for the stance leg, a novel SLIP-based model, is proposed to explain human-like leg behavior in walking. The action of biarticular muscles in swing leg motion helps represent human walking features, like leg retraction, ground reaction force and generating symmetric walking patterns, in simulations. In order to stabilize the motion by the proposed passive structure, swing leg biarticular muscle parameters such as lever arm ratios, stiffnesses and rest lengths need to be properly adjusted. Comparison of simulation results with human experiments shows the ability of the proposed model in replicating kinematic and kinetic behavior of both stance and swing legs as well as biarticular thigh muscle force of the swing leg. This substantiates the important functional role of biarticular muscles in leg swing. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Distance Reached in the Anteromedial Reach Test as a Function of Learning and Leg Length

    Science.gov (United States)

    Bent, Nicholas P.; Rushton, Alison B.; Wright, Chris C.; Batt, Mark E.

    2012-01-01

    The Anteromedial Reach Test (ART) is a new outcome measure for assessing dynamic knee stability in anterior cruciate ligament-injured patients. The effect of learning and leg length on distance reached in the ART was examined. Thirty-two healthy volunteers performed 15 trials of the ART on each leg. There was a moderate correlation (r = 0.44-0.50)…

  5. Dominant pinning mechanisms in YBa2Cu3O7-x films on single and polycrystalline yttria stabilized zirconia substrates

    Science.gov (United States)

    Harshavardhan, K. S.; Rajeswari, M.; Hwang, D. M.; Chen, C. Y.; Sands, T.; Venkatesan, T.; Tkaczyk, J. E.; Lay, K. W.; Safari, A.

    1992-04-01

    Critical-current densities have been measured in YBa2Cu3O7-x films deposited on (100) yttria stabilized zirconia (YSZ) and polycrystalline YSZ substrates as a function of temperature (4.5-88 K), magnetic field (0-1 T) and orientation relative to the applied field. The results indicate that in films on polycrystalline substrates, surface and interface pinning play a dominant role at high temperatures. In films on (100) YSZ, pinning is mainly due to intrinsic layer pinning as well as extrinsic pinning associated with the interaction of the fluxoids with point defects and low energy planar (2D) boundaries. The differences are attributed to the intrinsic rigidity of single fluxoids which is reduced in films on polycrystalline substrates thereby weakening the intrinsic layer pinning.

  6. Core stability training on lower limb balance strength.

    Science.gov (United States)

    Dello Iacono, Antonio; Padulo, Johnny; Ayalon, Moshe

    2016-01-01

    This study aimed to assess the effects of core stability training on lower limbs' muscular asymmetries and imbalances in team sport. Twenty footballers were divided into two groups, either core stability or control group. Before each daily practice, core stability group (n = 10) performed a core stability training programme, while control group (n = 10) did a standard warm-up. The effects of the core stability training programme were assessed by performing isokinetic tests and single-leg countermovement jumps. Significant improvement was found for knee extensors peak torque at 3.14 rad · s(-1) (14%; P strength asymmetries in core stability group (-71.4%; P = 0.02) while a concurrent increase was seen in the control group (33.3%; P lower limbs strength balance development in young soccer players.

  7. Leg ulcers in sickle cell patients: management challenges

    Directory of Open Access Journals (Sweden)

    El Khatib AM

    2016-11-01

    Full Text Available Arij M El Khatib,1 Shady N Hayek2 1Division of Plastic and Reconstructive Surgery, Department of Surgery, American University of Beirut Medical Center (AUBMC, 2Private Practice, Cosmetic Surgery Center, Beirut, Lebanon Abstract: Sickle cell disease is an autosomal recessive hemoglobinopathy caused by an amino acid substitution from glutamic acid to valine in the beta hemoglobin chain. One of the common symptoms occurring in sickle cell patients are leg ulcers, which are notoriously painful, difficult to treat, and frequently recurrent. These ulcers pose a therapeutic challenge with multiple modalities proposed for treatment, but with scarce evidence of efficacy of any single modality. Ulcer prevention, rigorous wound care, pain control, and surgery are the current mainstays of sickle cell leg ulcer treatment. Keywords: sickle cell leg ulcer, leg wound, sickle cell disease 

  8. Leg movement tracking in automatic video-based one-leg stance evaluation.

    Science.gov (United States)

    Kawa, Jacek; Stępień, Paula; Kapko, Wojciech; Niedziela, Aleksandra; Derejczyk, Jarosław

    2018-04-01

    Falls are a major risk in elder population. Early diagnosis is therefore an important step towards increasing the safety of elders. One of the common diagnostic tests is the Berg Balance Scale (BBS), consisting of 14 exercises arranged from the easiest (sitting-to-standing) to the most demanding (one-leg stance). In this study a novel approach to the automatic assessment of the time in which the patient can remain in the one-leg stance position without loosing balance is introduced. The data is collected using a regular video camera. No markers, special garments, or system calibration are required. Two groups are examined. The first group consists of 16 students: healthy, young adults (12 female, 4 male, avg. 20yrs±1). The second group consists of 50 elders (39 female, 11 male, avg. 78.8yrs±5.9). Data (short, one minute recordings) are collected in a controlled environment using a digital video recorder (50fps, 1920×1080) fixed to a tripod. Data are processed off-line. First, the region of interest is determined. Next, the Kanade-Lucas-Tomasi tracking is performed. Best tracks are selected based on the registered vertical movement and two tracks are obtained corresponding to the left and right leg movements. Tracks are later subjected to the sparse signal baseline estimation, denoising and thresholding to detect the raised leg. Results are compared frame-wise to the ground truth reference obtained in the manual processing procedure. Both legs are evaluated in the elder group (in all cases several attempts featuring both legs were registered), resulting in 89.18%±11.27% DICE, 93.07%±5.43% sensitivity and 96.94%±6.11% specificity values for both legs. The signal of a single leg is evaluated in the student group (in all cases only one attempt was needed to perform the full examination) resulting in 98.96%±1.2% DICE, 98.78%±1.65% sensitivity and 98.73%±2.69% specificity values. This is the first step towards a video-based system enabling the automatic

  9. How to determine leg dominance: The agreement between self-reported and observed performance in healthy adults.

    Directory of Open Access Journals (Sweden)

    Nicky van Melick

    Full Text Available Since decades leg dominance is suggested to be important in rehabilitation and return to play in athletes with anterior cruciate ligament injuries. However, an ideal method to determine leg dominance in relation to task performance is still lacking.To test the agreement between self-reported and observed leg dominance in bilateral mobilizing and unilateral stabilizing tasks, and to assess whether the dominant leg switches between bilateral mobilizing tasks and unilateral stabilizing tasks.Cross-sectional study.Forty-one healthy adults: 21 men aged 36 ± 17 years old and 20 women aged 36 ±15 years old.Participants self-reported leg dominance in the Waterloo Footedness Questionnaire-Revised (WFQ-R, and leg dominance was observed during performance of four bilateral mobilizing tasks and two unilateral stabilizing tasks. Descriptive statistics and crosstabs were used to report the percentages of agreement.The leg used to kick a ball had 100% agreement between the self-reported and observed dominant leg for both men and women. The dominant leg in kicking a ball and standing on one leg was the same in 66.7% of the men and 85.0% of the women. The agreement with jumping with one leg was lower: 47.6% for men and 70.0% for women.It is appropriate to ask healthy adults: "If you would shoot a ball on a target, which leg would you use to shoot the ball?" to determine leg dominance in bilateral mobilizing tasks. However, a considerable number of the participants switched the dominant leg in a unilateral stabilizing task.

  10. Restless legs syndrome

    Directory of Open Access Journals (Sweden)

    Ovallath S

    2012-10-01

    Full Text Available Sujith Ovallath, P DeepaJames Parkinson's Movement Disorder Research Centre, Kannur Medical College, Kerala, IndiaBackground: Restless legs syndrome (RLS is a common sleep-related disorder characterized by abnormal sensation and an urge to move the lower limbs. Symptoms occur at rest in the evening or at night, and they are alleviated by moving the affected extremity or by walking. Although the exact etiopathogenesis of RLS remains elusive, the rapid improvement of symptoms with dopaminergic agents suggests that dopaminergic system dysfunction may be a basic mechanism. Dopaminergic agents are the best-studied agents, and are considered first-line treatment of RLS.Objective: To review the diagnostic criteria, clinical features, etiopathogenesis, and the treatment options of RLS.Methods: The suggestions are based on evidence from studies published in peer-reviewed journals, or upon a comprehensive review of the medical literature.Results/conclusion: Extensive data are available for proving the link between the dopaminergic system and RLS. A possible genetic link also has been studied extensively. Dopamine agonists, especially pramipexole and ropinirole, are particularly useful in the treatment of RLS. Pharmacological treatment should however be limited to those patients who suffer from clinically relevant RLS with impaired sleep quality or quality of life.Keywords: dopamine, levodopa, pramipexole

  11. Restless legs syndrome: literature review

    Directory of Open Access Journals (Sweden)

    Emmanouil Symvoulakis

    Full Text Available Restless legs syndrome is a distressing condition, with negative effects on sleep and daytime activities that affect personal, family and occupational life. The overall impact of restless legs syndrome on quality of life is comparable to that of chronic and frustrating conditions such as depression and diabetes. Misdiagnosis and inappropriate treatment may increase patients' suffering in terms of uncertainty, overuse or misuse of care services and lack of trust. Presenting a synthesis of the main topics in the literature on restless legs syndrome facilitates for a better understanding and its management in primary care settings.

  12. Cervical stability training with and without core stability training for patients with cervical disc herniation: A randomized, single-blind study.

    Science.gov (United States)

    Buyukturan, B; Guclu-Gunduz, A; Buyukturan, O; Dadali, Y; Bilgin, S; Kurt, E E

    2017-11-01

    This study aims at evaluating and comparing the effects of cervical stability training to combined cervical and core stability training in patients with neck pain and cervical disc herniation. Fifty patients with neck pain and cervical disc herniation were included in the study, randomly divided into two groups as cervical stability and cervical-core stability. Training was applied three times a week in three phases, and lasted for a total duration of 8 weeks. Pain, activation and static endurance of deep cervical flexor muscles, static endurance of neck muscles, cross-sectional diameter of M. Longus Colli, static endurance of trunk muscles, disability and kinesiophobia were assessed. Pain, activation and static endurance of deep cervical flexors, static endurance of neck muscles, cross-sectional diameter of M. Longus Colli, static endurance of trunk muscles, disability and kinesiophobia improved in both groups following the training sessions (p < 0.05). Comparison of the effectiveness of these two training methods revealed that the cervical stability group produced a greater increase in the right transverse diameter of M. Longus Colli (p < 0.05). However, static endurance of trunk muscles and kinesiophobia displayed better improvement in the cervical-core stability group (p < 0.05). Cervical stability training provided benefit to patients with cervical disc herniation. The addition of core stability training did not provide any additional significant benefit. Further research is required to investigate the efficacy of combining other techniques with cervical stability training in patients with cervical disc herniation. Both cervical stability training and its combination with core stability training were significantly and similarly effective on neck pain and neck muscle endurance in patients with cervical disc herniation. © 2017 European Pain Federation - EFIC®.

  13. Measurement of body fat using leg to leg bioimpedance

    OpenAIRE

    Sung, R; Lau, P; Yu, C; Lam, P; Nelson, E

    2001-01-01

    AIMS—(1) To validate a leg to leg bioimpedance analysis (BIA) device in the measurement of body composition in children by assessment of its agreement with dual energy x ray absorptiometry (DXA) and its repeatability. (2) To establish a reference range of percentage body fat in Hong Kong Chinese children.
METHODS—Sequential BIA and DXA methods were used to determine body composition in 49 children aged 7-18 years; agreement between the two methods was calculated. Repea...

  14. Numerical Estimation of Balanced and Falling States for Constrained Legged Systems

    Science.gov (United States)

    Mummolo, Carlotta; Mangialardi, Luigi; Kim, Joo H.

    2017-08-01

    Instability and risk of fall during standing and walking are common challenges for biped robots. While existing criteria from state-space dynamical systems approach or ground reference points are useful in some applications, complete system models and constraints have not been taken into account for prediction and indication of fall for general legged robots. In this study, a general numerical framework that estimates the balanced and falling states of legged systems is introduced. The overall approach is based on the integration of joint-space and Cartesian-space dynamics of a legged system model. The full-body constrained joint-space dynamics includes the contact forces and moments term due to current foot (or feet) support and another term due to altered contact configuration. According to the refined notions of balanced, falling, and fallen, the system parameters, physical constraints, and initial/final/boundary conditions for balancing are incorporated into constrained nonlinear optimization problems to solve for the velocity extrema (representing the maximum perturbation allowed to maintain balance without changing contacts) in the Cartesian space at each center-of-mass (COM) position within its workspace. The iterative algorithm constructs the stability boundary as a COM state-space partition between balanced and falling states. Inclusion in the resulting six-dimensional manifold is a necessary condition for a state of the given system to be balanced under the given contact configuration, while exclusion is a sufficient condition for falling. The framework is used to analyze the balance stability of example systems with various degrees of complexities. The manifold for a 1-degree-of-freedom (DOF) legged system is consistent with the experimental and simulation results in the existing studies for specific controller designs. The results for a 2-DOF system demonstrate the dependency of the COM state-space partition upon joint-space configuration (elbow-up vs

  15. Leg pain and gynecologic malignancy.

    Science.gov (United States)

    Singh, Lilly; Stevens, Erin E

    2013-09-01

    Gynecologic malignancies affect more than 83 000 women in the United States, each year. Because the disease involves the pelvis, many patients have side effects distal to this area in their lower extremities. The differential diagnosis of leg pain can be divided into vascular, neurologic, and musculoskeletal causes. In this review article, we address numerous etiologies of leg pain, reviewing the prevalence of disease, physical examination findings, diagnostic as well as treatment modalities.

  16. Importance of Hypervariable Region 2 for Stability and Affinity of a Shark Single-Domain Antibody Specific for Ebola Virus Nucleoprotein.

    Directory of Open Access Journals (Sweden)

    George P Anderson

    Full Text Available Single-domain antibodies derived from the unique New Antigen Receptor found in sharks have numerous potential applications, ranging from diagnostic reagents to therapeutics. Shark-derived single-domain antibodies possess the same characteristic ability to refold after heat denaturation found in single-domain antibodies derived from camelid heavy-chain-only antibodies. Recently, two shark derived single-domain antibodies specific for the nucleoprotein of Ebola virus were described. Our evaluation confirmed their high affinity for the nucleoprotein, but found their melting temperatures to be low relative to most single-domain antibodies. Our first approach towards improving their stability was grafting antigen-binding regions (complementarity determining regions of one of these single-domain antibodies onto a high melting temperature shark single-domain antibody. This resulted in two variants: one that displayed excellent affinity with a low melting temperature, while the other had poor affinity but a higher melting temperature. These new proteins, however, differed in only 3 amino acids within the complementarity determining region 2 sequence. In shark single-domain antibodies, the complementarity determining region 2 is often referred to as hypervariable region 2, as this segment of the antibody domain is truncated compared to the sequence in camelid single-domain antibodies and conventional heavy chain variable domains. To elucidate which of the three amino acids or combinations thereof were responsible for the affinity and stability we made the 6 double and single point mutants that covered the intermediates between these two clones. We found a single amino acid change that achieved a 10°C higher melting temperature while maintaining sub nM affinity. This research gives insights into the impact of the shark sdAb hypervariable 2 region on both stability and affinity.

  17. Comparison of postural stability between injured and uninjured ballet dancers.

    Science.gov (United States)

    Lin, Cheng-Feng; Lee, I-Jung; Liao, Jung-Hsien; Wu, Hong-Wen; Su, Fong-Chin

    2011-06-01

    Ballet movements require a limited base of support; thus, ballet dancers require a high level of postural control. However, postural stability in ballet dancers is still unclear and needs to be understood. To evaluate ballet dancers' postural stability in performing single-leg standing, the en pointe task, and the first and fifth positions and to determine differences in task performance among healthy nondancers, healthy dancers, and dancers with ankle sprains. Controlled laboratory study. Injured dancers, uninjured dancers, and nondancers were recruited for this study (N = 33 age-matched participants; n= 11 per group). The tasks tested were single-leg standing with eyes open and closed, first position, fifth position, and en pointe. Center of pressure parameters were calculated from the ground-reaction force collected with 1 force plate. Analysis of variance was used to assess the differences of center of pressure parameters among 3 groups in single-leg standing; independent t test was used to examine the differences of center of pressure parameters between injured and uninjured dancers. During single-leg standing, injured dancers had significantly greater maximum displacement in the medial-lateral direction and total trajectory of center of pressure, compared with the uninjured dancers and nondancers. During the first and fifth positions, the injured dancers demonstrated significantly greater standard deviation of center of pressure position in the medial-lateral and anterior-posterior directions, compared with the uninjured dancers. During en pointe, the injured dancers had significantly greater maximum displacement in the medial-lateral direction and the anterior-posterior direction, compared with the uninjured dancers. The injured and uninjured dancers demonstrated differences in postural stability in the medial-lateral direction during single-leg standing and the ballet postures. Although the injured dancers received ballet training, their postural stability

  18. Facial gingival tissue stability after connective tissue graft with single immediate tooth replacement in the esthetic zone: consecutive case report.

    Science.gov (United States)

    Kan, Joseph Y K; Rungcharassaeng, Kitichai; Morimoto, Taichiro; Lozada, Jaime

    2009-11-01

    The present consecutive case report evaluated facial gingival tissue stability after immediate tooth replacement with connective tissue grafting in the esthetic zone. The implant success rate and peri-implant tissue response were also recorded. A total of 20 consecutive patients with a mean age of 52.3 years (range 28 to 71), who had undergone 20 single immediate tooth replacement with connective tissue grafting, were evaluated clinically and radiographically at the preoperative examination, immediately after implant placement and provisionalization with connective tissue grafting, and at the latest follow-up appointment. The data were analyzed using the t test and Wilcoxon signed rank test at a significance level of alpha = .05. At the preoperative examination, a thick gingival biotype was observed in 8 patients and a thin gingival biotype in 12. At a mean follow-up of 2.15 years (range 1 to 4), all implants were functioning and exhibited a thick biotype. At the latest follow-up appointment, no significant differences (P > .05) were found between the initially thick and thin gingival biotypes in the mean mesial marginal bone level changes (-0.53 versus -0.55 mm), the mean distal marginal bone level changes (-0.50 versus -0.44 mm), and the mean facial gingival level changes (+0.23 mm versus +0.06 mm). The frequency distribution of the papilla index score showed that peri-implant papillae were well preserved at the latest follow-up visit. With proper 3-dimensional implant positioning and bone grafting into the implant-socket gap, the facial gingival level can be maintained after connective tissue grafting with single immediate tooth replacement, regardless of the initial gingival biotype, indicating that the thin gingival biotype can be converted to the thick gingival biotype morphologically and behaviorally with this procedure. Nevertheless, careful patient selection and treatment planning, as well as immaculate execution by skillful clinicians, are required to

  19. Restless Legs Syndrome and Leg Motor Restlessness in Parkinson's Disease.

    Science.gov (United States)

    Suzuki, Keisuke; Miyamoto, Masayuki; Miyamoto, Tomoyuki; Hirata, Koichi

    2015-01-01

    Sleep disturbances are important nonmotor symptoms in Parkinson's disease (PD) that are associated with a negative impact on quality of life. Restless legs syndrome (RLS), which is characterized by an urge to move the legs accompanied by abnormal leg sensations, can coexist with PD, although the pathophysiology of these disorders appears to be different. RLS and PD both respond favorably to dopaminergic treatment, and several investigators have reported a significant relationship between RLS and PD. Sensory symptoms, pain, motor restlessness, akathisia, and the wearing-off phenomenon observed in PD should be differentiated from RLS. RLS in PD may be confounded by chronic dopaminergic treatment; thus, more studies are needed to investigate RLS in drug-naïve patients with PD. Recently, leg motor restlessness (LMR), which is characterized by an urge to move the legs that does not fulfill the diagnostic criteria for RLS, has been reported to be observed more frequently in de novo patients with PD than in age-matched healthy controls, suggesting that LMR may be a part of sensorimotor symptoms intrinsic to PD. In this paper, we provide an overview of RLS, LMR, and PD and of the relationships among these disorders.

  20. Effects of specimen size and yttria concentration on mechanical properties of single crystalline yttria-stabilized tetragonal zirconia nanopillars

    Science.gov (United States)

    Zhang, Ning; Asle Zaeem, Mohsen

    2017-07-01

    The nanoscale plastic deformation of yttria-stabilized tetragonal zirconia (YSTZ) is highly dependent on the crystallographic orientations, i.e., dislocation is induced when the loading direction is 45° tilted to {111} and {101} slip planes, while tetragonal to monoclinic phase transformation dominates the plastic deformation when loading direction is perpendicular to the slip planes. This study investigates the effects of specimen size and yttria concentration on the mechanical response of single crystalline YSTZ nanopillars. Through uniaxial compression test, the smaller-is-stronger phenomenon is revealed in nanopillars deformed through a dislocation motion mechanism. Serrated stacking faults are observed in the smallest nanopillar, while neat primary slip plane forms in the largest nanopillar. In contrast, the larger-is-stronger relation is observed in nanopillars in which deformation is mediated by tetragonal to monoclinic phase transformation. It is noted that the ratio of transformed monoclinic phase to the remaining tetragonal phase is the highest in the smallest nanopillar. The strength of nanopillars is identified to decrease by increasing the amount of yttria due to the creation of more oxygen vacancies that act as weak points to facilitate dislocation motion and accelerate phase transformation.

  1. A single cysteine post-translational oxidation suffices to compromise globular proteins kinetic stability and promote amyloid formation

    Directory of Open Access Journals (Sweden)

    Patrizia Marinelli

    2018-04-01

    Full Text Available Oxidatively modified forms of proteins accumulate during aging. Oxidized protein conformers might act as intermediates in the formation of amyloids in age-related disorders. However, it is not known whether this amyloidogenic conversion requires an extensive protein oxidative damage or it can be promoted just by a discrete, localized post-translational modification of certain residues. Here, we demonstrate that the irreversible oxidation of a single free Cys suffices to severely perturb the folding energy landscape of a stable globular protein, compromise its kinetic stability, and lead to the formation of amyloids under physiological conditions. Experiments and simulations converge to indicate that this specific oxidation-promoted protein aggregation requires only local unfolding. Indeed, a large scale analysis indicates that many cellular proteins are at risk of undergoing this kind of deleterious transition; explaining how oxidative stress can impact cell proteostasis and subsequently lead to the onset of pathological states. Keywords: Protein oxidation, Protein misfolding, Protein aggregation, Oxidative stress, Post-translational modification

  2. Hybrid control and motion planning of dynamical legged locomotion

    CERN Document Server

    2012-01-01

    "This book provides a comprehensive presentation of issues and challenges faced by researchers and practicing engineers in motion planning and hybrid control of dynamical legged locomotion. The major features range from offline and online motion planning algorithms to generate desired feasible periodic walking and running motions and tow-level control schemes, including within-stride feedback laws, continuous time update laws and event-based update laws, to asymptotically stabilize the generated desired periodic orbits. This book describes the current state of the art and future directions across all domains of dynamical legged locomotion so that readers can extend proposed motion planning algorithms and control methodologies to other types of planar and 3D legged robots".

  3. Influence of “J”-Curve Spring Stiffness on Running Speeds of Segmented Legs during High-Speed Locomotion

    Directory of Open Access Journals (Sweden)

    Runxiao Wang

    2016-01-01

    Full Text Available Both the linear leg spring model and the two-segment leg model with constant spring stiffness have been broadly used as template models to investigate bouncing gaits for legged robots with compliant legs. In addition to these two models, the other stiffness leg spring models developed using inspiration from biological characteristic have the potential to improve high-speed running capacity of spring-legged robots. In this paper, we investigate the effects of “J”-curve spring stiffness inspired by biological materials on running speeds of segmented legs during high-speed locomotion. Mathematical formulation of the relationship between the virtual leg force and the virtual leg compression is established. When the SLIP model and the two-segment leg model with constant spring stiffness and with “J”-curve spring stiffness have the same dimensionless reference stiffness, the two-segment leg model with “J”-curve spring stiffness reveals that (1 both the largest tolerated range of running speeds and the tolerated maximum running speed are found and (2 at fast running speed from 25 to 40/92 m s−1 both the tolerated range of landing angle and the stability region are the largest. It is suggested that the two-segment leg model with “J”-curve spring stiffness is more advantageous for high-speed running compared with the SLIP model and with constant spring stiffness.

  4. Influence of "J"-Curve Spring Stiffness on Running Speeds of Segmented Legs during High-Speed Locomotion.

    Science.gov (United States)

    Wang, Runxiao; Zhao, Wentao; Li, Shujun; Zhang, Shunqi

    2016-01-01

    Both the linear leg spring model and the two-segment leg model with constant spring stiffness have been broadly used as template models to investigate bouncing gaits for legged robots with compliant legs. In addition to these two models, the other stiffness leg spring models developed using inspiration from biological characteristic have the potential to improve high-speed running capacity of spring-legged robots. In this paper, we investigate the effects of "J"-curve spring stiffness inspired by biological materials on running speeds of segmented legs during high-speed locomotion. Mathematical formulation of the relationship between the virtual leg force and the virtual leg compression is established. When the SLIP model and the two-segment leg model with constant spring stiffness and with "J"-curve spring stiffness have the same dimensionless reference stiffness, the two-segment leg model with "J"-curve spring stiffness reveals that (1) both the largest tolerated range of running speeds and the tolerated maximum running speed are found and (2) at fast running speed from 25 to 40/92 m s -1 both the tolerated range of landing angle and the stability region are the largest. It is suggested that the two-segment leg model with "J"-curve spring stiffness is more advantageous for high-speed running compared with the SLIP model and with constant spring stiffness.

  5. The Narrow Ridge Balance Test : A measure for one-leg lateral balance control

    NARCIS (Netherlands)

    Curtze, Carolin; Postema, Klaas; Akkermans, Hilda W.; Otten, Bert; Hof, At L.

    2010-01-01

    The assessment of balance capacity for people with widely different balance abilities is an important issue in clinical practice We propose the narrow ridge balance test as a sensitive tool to assess one-leg balance capacity In this test participants are asked to perform single-leg stance on ridges

  6. Restless legs syndrome and periodic leg movements of sleep.

    Science.gov (United States)

    Rye, David B; Trotti, Lynn Marie

    2012-11-01

    Women are more commonly affected than men by restless legs syndrome, and prevalence is highest amongst those of northern European heritage. The motor manifestations include nonvolitional myoclonus (periodic leg movements). Disinhibition of spinal sensorimotor circuits may underlie these primary features and can be affected by peripheral as well as supraspinal networks. Insufficient mobilizable iron stores increase expressivity in some individuals. The sensorimotor features are relieved by dopamine, especially dopamine agonists, gabapentin and its derivatives, and opioids. A diagnosis relies on recognition of key primary and supportive features, and treatments are generally well tolerated, efficacious, and life-changing. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Two Pilot Studies of the Effect of Bicycling on Balance and Leg Strength among Older Adults

    OpenAIRE

    Rissel, Chris; Passmore, Erin; Mason, Chloe; Merom, Dafna

    2013-01-01

    Objectives. Study 1 examines whether age-related declines in balance are moderated by bicycling. Study 2 tests whether regular cycling can increase leg strength and improve balance. Methods. Study 1: a cross-sectional survey of 43 adults aged 44–79 was conducted. Leg strength was measured, and Balance was measured using the choice stepping reaction time (CSRT) test (decision time and response time), leg strength and timed single leg standing. Study 2: 18 older adults aged 49–72 were recruited...

  8. Theoretical and experimental study on a compliant flipper-leg during terrestrial locomotion.

    Science.gov (United States)

    Fang, Tao; Zhou, Youcheng; Li, Shikun; Xu, Min; Liang, Haiyi; Li, Weihua; Zhang, Shiwu

    2016-08-17

    An amphibious robot with straight compliant flipper-legs can conquer various amphibious environments. The robot can rotate its flipper-legs and utilize their large deflection to walk on rough terrain, and it can oscillate the straight flipper-legs to propel itself underwater. This paper focuses on the dynamics of the compliant straight flipper-legs during terrestrial locomotion by modeling its deformation dynamically with large deflection theory and simulating it to investigate the parameters of locomotion such as trajectory, velocity, and propulsion. To validate the theoretical model of dynamic locomotion, a single-leg experimental platform is used to explore the flipper-legs in motion with various structural and kinematic parameters. Furthermore, a robotic platform mounting with four compliant flipper-legs is also developed and used to experiment with locomotion. The trajectories of the rotating axle of the compliant flipper-leg during locomotion were approximately coincidental in simulation and in experiments. The speed of locomotion and cost of transport during locomotion were explored and analyzed. The performance of different types of compliant flipper-legs during locomotion shows that varying the degrees of stiffness will have a significant effect on their locomotion. The dynamic model and analysis of the compliant flipper-leg for terrestrial locomotion facilitates the ability of amphibious robots to conquer complex environments.

  9. Alternative Gaits for Multiped Robots with Leg Failures to Retain Maneuverability

    Directory of Open Access Journals (Sweden)

    Kazi Mostafa

    2010-12-01

    Full Text Available In modern day, from planetary exploration, disaster response to antiterrorism mission multiped robot has become the major tool. Smart robot with effective gait plan may play a significant role in such missions. But if a leg is injured, it is not possible to repair in this kind of mission. Then robot needs some alternative strategies to complete its mission. This paper proposes a removable sliding leg approach to solve this problem. A fault leg can be detaches and other legs can be slide to better position by the command of operator to get optimum alternative gait configuration. Based on leg sequence, stride length, longitudinal stability and efficiency, alternative gaits are evaluated. This paper recommends tables for different gait sequence with progressive efficiency. These tables can provide options for alternative gait and information about certain damaged leg. Moreover, a procedure for a multi-legged robot to complete its mission after serious leg failure is included. By taking the recommended tables and procedure, the multiped Robot can overcome any fault event and maintain stability and efficiency.

  10. Promethus Hot Leg Piping Concept

    International Nuclear Information System (INIS)

    AM Girbik; PA Dilorenzo

    2006-01-01

    The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactor (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept

  11. Leg ulcers due to hyperhomocysteinemia

    Directory of Open Access Journals (Sweden)

    Krupa Shankar D

    2006-01-01

    Full Text Available Chronic leg ulcers are rare in young adults and generally indicate a vascular cause. We report a case of a 26-year-old man with leg ulcers of eight months duration. Doppler study indicated venous incompetence and a postphlebitic limb. However, as the distribution and number of ulcers was not consistent with stasis alone and no features of collagen vascular disease were noted, a hyperviscosity state was considered and confirmed with significantly elevated homocysteine level in the serum. Administration of vitamins B1, B2, B6 and B12, trimethyl-glycine, mecobalamine, folic acid and povidone iodine dressings with culture-directed antibiotic therapy led to a satisfactory healing of ulcers over a period of one month. Hyperhomocysteinemia must be considered in the differential diagnosis of leg ulcers in young individuals.

  12. Tissue stability of implants placed in fresh extraction sockets: a 5-year prospective single-cohort study.

    Science.gov (United States)

    Covani, Ugo; Canullo, Luigi; Toti, Paolo; Alfonsi, Fortunato; Barone, Antonio

    2014-09-01

    Several materials have been used for ridge preservation after tooth extraction. This 5-year prospective single-cohort study is aimed at evaluating the success rate, marginal bone level (MBL), soft tissue stability, and subjective patient evaluation of implants placed in fresh extraction sockets with the use of a flapless technique and a xenograft to treat the peri-implant bone defect. Patients requiring a single implant in fresh extraction sockets were selected. After flapless extraction and implant insertion, the peri-implant bone defect was grafted with porcine bone. Collagen membrane was used to stabilize the graft. Four months later, a second surgery and prosthetic procedures were performed. Clinical parameters (width of keratinized gingiva [WKG], facial soft tissue level [FST], papilla index, plaque index, and bleeding on probing) were measured, and periapical radiographs were taken at the time of implant placement (baseline) and then at 1, 3, and 5 years thereafter. Image analysis software was applied to measure changes in the marginal bone level (ΔMBL). Additionally, patient satisfaction regarding the implant treatment was evaluated. All analyses were collected and measured by an independent, trained observer. Together with descriptive statistics, for each of the outcome variables, pairwise comparisons were performed using the Wilcoxon signed-rank test for matched samples. The level of statistical significance was set at 0.01 for all analyses. Forty-seven consecutive patients were treated, with an implant survival rate at 5 years of 95.7%. ΔMBL showed statistically significant differences: mean values were -0.68 ± 0.39, -0.94 ± 0.44, and -1.08 ± 0.43 mm at the 1, 3, and 5-year follow-up, respectively. Changes in WKG (ΔWKG) and FST (ΔFST) decreased from the 1-year point of the survey (0.80 ± 0.79 and 0.71 ± 0.73 mm for ΔWKG and ΔFST, respectively) to the last follow-up check at 5 years (0.67 ± 0.74 and 0.56 ± 0.69 mm for ΔWKG and

  13. Cross-legged Gods and One-legged Foresters

    NARCIS (Netherlands)

    Petrovskaia, N.I.

    The present article is a re-evaluation of a marvellous element in a medieval Welsh romance, Chwedl Iarlles y Ffynnawn ‘Tale of the Lady of the Fountain’, also known as Owein. One of the characters encountered by the hero is a one-eyed one-legged dark giant forester who appears to have a particular

  14. Effect of elastic bandage wraps on leg edema in patients before and after liver transplant.

    Science.gov (United States)

    Mathews, Susan; James, Shantell; Anderson, Janet D; Merchant, Mehwish; Benenati, Sonia; Henry, Samantha; Comrie, Gem; Pirani, Shamsa; Zellinger, Mary

    2015-12-01

    Few studies have evaluated the benefits of short-term use of compression therapy to prevent or minimize edema and/or pain in the legs of acutely ill, hospitalized patients without venous leg ulcers. To determine if the use of elastic bandage wraps of the leg in patients before and after liver transplant decreases edema formation and pain in the leg. Study Population-A convenience sample of inpatients before and after liver transplant. Pretest, posttest, randomized controlled trial with each participant serving as his or her own control. Intervention-Elastic bandage wrap applied to leg for 8 hours. Edema and pain in leg. In 13 patients before and 11 patients after liver transplant, the mean (SD) change in leg circumference after a single 8-hour application of an elastic bandage wrap was -2.6 (2.2) cm at the ankle and -3.1 (2.9) cm at midcalf for wrapped legs, as opposed to -0.4 (1.6) cm at the ankle and 1.0 (2.8) cm at midcalf for unwrapped legs (PLeg pain, measured on a visual analog scale, was significantly lower for the wrapped (mean [SD], 10.3 [26.5] mm) versus the unwrapped (20.3 [33.5] mm) leg (P=.04). In inpatients before and after liver transplant, the application of elastic bandage wraps to 1 leg for an 8-hour period led to significantly less edema formation and pain compared with the unwrapped leg. These results support the use of elastic bandage wraps in liver transplant patients to reduce leg edema and improve comfort.

  15. A single-arm trial indirect comparison investigation: a proof-of-concept method to predict venous leg ulcer healing time for a new acellular synthetic matrix matched to standard care control.

    Science.gov (United States)

    Shannon, Ronald; Nelson, Andrea

    2017-08-01

    To compare data on time to healing from two separate cohorts: one treated with a new acellular synthetic matrix plus standard care (SC) and one matched from four large UK pragmatic, randomised controlled trials [venous leg ulcer (VLU) evidence network]. We introduce a new proof-of-concept strategy to a VLU clinical evidence network, propensity score matching and sensitivity analysis to predict the feasibility of the new acellular synthetic matrix plus SC for success in future randomised, controlled clinical trials. Prospective data on chronic VLUs from a safety and effectiveness study on an acellular synthetic matrix conducted in one wound centre in the UK (17 patients) and three wound centres in Australia (36 patients) were compared retrospectively to propensity score-matched data from patients with comparable leg ulcer disease aetiology, age, baseline ulcer area, ulcer duration, multi-layer compression bandaging and majority of care completed in specialist wound centres (average of 1 visit per week), with the outcome measures at comparable follow-up periods from patients enrolled in four prospective, multicentre, pragmatic, randomised studies of venous ulcers in the UK (the comparison group; VLU evidence network). Analysis using Kaplan-Meier survival curves showed a mean healing time of 73·1 days for ASM plus SC (ASM) treated ulcers in comparison with 83·5 days for comparison group ulcers treated with SC alone (Log rank test, χ 2 5·779, P = 0·016) within 12 weeks. Sensitivity analysis indicates that an unobserved covariate would have to change the odds of healing for SC by a factor of 1·1 to impact the baseline results. Results from this study predict a significant effect on healing time when using a new ASM as an adjunct to SC in the treatment of non-healing venous ulcers in the UK, but results are sensitive to unobserved covariates that may be important in healing time comparison. © 2016 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  16. Extracorporal Shock Waves Activate Migration, Proliferation and Inflammatory Pathways in Fibroblasts and Keratinocytes, and Improve Wound Healing in an Open-Label, Single-Arm Study in Patients with Therapy-Refractory Chronic Leg Ulcers.

    Science.gov (United States)

    Aschermann, Ilknur; Noor, Seema; Venturelli, Sascha; Sinnberg, Tobias; Mnich, Christian D; Busch, Christian

    2017-01-01

    Chronic leg ulcers (CLUs) are globally a major cause of morbidity and mortality with increasing prevalence. Their treatment is highly challenging, and many conservative, surgical or advanced therapies have been suggested, but with little overall efficacy. Since the 1980s extracorporal shock wave therapy (ESWT) has gained interest as treatment for specific indications. Here, we report that patients with CLU showed wound healing after ESWT and investigated the underlying molecular mechanisms. We performed cell proliferation and migration assays, FACS- and Western blot analyses, RT-PCR, and Affymetrix gene expression analyses on human keratinocytes and fibroblasts, and a tube formation assay on human microvascular endothelial cells to assess the impact of shock waves in vitro. In vivo, chronic therapy-refractory leg ulcers were treated with ESWT, and wound healing was assessed. Upon ESWT, we observed morphological changes and increased cell migration of keratinocytes. Cell-cycle regulatory genes were upregulated, and proliferation induced in fibroblasts. This was accompanied by secretion of pro-inflammatory cytokines from keratinocytes, which are known to drive wound healing, and a pro-angiogenic activity of endothelial cells. These observations were transferred "from bench to bedside", and 60 consecutive patients with 75 CLUs with different pathophysiologies (e.g. venous, mixed arterial-venous, arterial) were treated with ESWT. In this setting, 41% of ESWT-treated CLUs showed complete healing, 16% significant improvement, 35% improvement, and 8% of the ulcers did not respond to ESWT. The induction of healing was independent of patient age, duration or size of the ulcer, and the underlying pathophysiology. The efficacy of ESWT needs to be confirmed in controlled trials to implement ESWT as an adjunct to standard therapy or as a stand-alone treatment. Our results suggest that EWST may advance the treatment of chronic, therapy-refractory ulcers. © 2017 The Author

  17. Extracorporal Shock Waves Activate Migration, Proliferation and Inflammatory Pathways in Fibroblasts and Keratinocytes, and Improve Wound Healing in an Open-Label, Single-Arm Study in Patients with Therapy-Refractory Chronic Leg Ulcers

    Directory of Open Access Journals (Sweden)

    Ilknur Aschermann

    2017-02-01

    Full Text Available Background/Aims: Chronic leg ulcers (CLUs are globally a major cause of morbidity and mortality with increasing prevalence. Their treatment is highly challenging, and many conservative, surgical or advanced therapies have been suggested, but with little overall efficacy. Since the 1980s extracorporal shock wave therapy (ESWT has gained interest as treatment for specific indications. Here, we report that patients with CLU showed wound healing after ESWT and investigated the underlying molecular mechanisms. Methods: We performed cell proliferation and migration assays, FACS- and Western blot analyses, RT-PCR, and Affymetrix gene expression analyses on human keratinocytes and fibroblasts, and a tube formation assay on human microvascular endothelial cells to assess the impact of shock waves in vitro. In vivo, chronic therapy-refractory leg ulcers were treated with ESWT, and wound healing was assessed. Results: Upon ESWT, we observed morphological changes and increased cell migration of keratinocytes. Cell-cycle regulatory genes were upregulated, and proliferation induced in fibroblasts. This was accompanied by secretion of pro-inflammatory cytokines from keratinocytes, which are known to drive wound healing, and a pro-angiogenic activity of endothelial cells. These observations were transferred “from bench to bedside”, and 60 consecutive patients with 75 CLUs with different pathophysiologies (e.g. venous, mixed arterial-venous, arterial were treated with ESWT. In this setting, 41% of ESWT-treated CLUs showed complete healing, 16% significant improvement, 35% improvement, and 8% of the ulcers did not respond to ESWT. The induction of healing was independent of patient age, duration or size of the ulcer, and the underlying pathophysiology. Conclusions: The efficacy of ESWT needs to be confirmed in controlled trials to implement ESWT as an adjunct to standard therapy or as a stand-alone treatment. Our results suggest that EWST may advance the

  18. The one-leg standing radiograph

    OpenAIRE

    Pinsornsak, P.; Naratrikun, K.; Kanitnate, S.; Sangkomkamhang, T.

    2016-01-01

    Objectives The purpose of this study was to compare the joint space width between one-leg and both-legs standing radiographs in order to diagnose a primary osteoarthritis of the knee. Methods Digital radiographs of 100 medial osteoarthritic knees in 50 patients were performed. The patients had undergone one-leg standing anteroposterior (AP) views by standing on the affected leg while a both-legs standing AP view was undertaken while standing on both legs. The severity of the osteoarthritis wa...

  19. [Role of centro-medullary nailing in fractures of the distal quarter of the leg: about 30 cases].

    Science.gov (United States)

    Margad, Omar; Boukhris, Jalal; Sallahi, Hicham; Azriouil, Ouahb; Daoudi, Mohamed; Koulali, Khalid

    2017-01-01

    The fractures of the distal quarter of the leg are characterized by fracture line located at the level of the lower quarter of the tibia, according to Gerard and Evrard definition [1]. They are serious and pose problems for consolidation, immobilization and stability. We here describe our experience in the Department of Orthopaedics and Traumatology at the Avicenne Military Hospital, Marrakech. We report 30 cases of closed fractures of the lower quarter of the leg treated with centro-medullary nailing over a period of 10 years (January 2001-December 2010). Locked nailing was performed in 80% of cases and simple nailing was performed in the other cases. The average age of patients was 36 years. There was a clear male predominance (27 men, 3 women). The average time for consolidation was 17 weeks and functional outcomes were satisfactory. A single case of infection occurred 6 months after surgery (3.3%) and no other complication was reported. Malunion was detected in 30% of patients. Our epidemiological data and results were almost identical to those in the literature. Angular results were significantly lower than those obtained with the series of plates. By contrast, data on infections called for caution and some nails produced excellent angular results when nail fixation was stable. In the light of these results, codified indications for locked centro-medullary nailing should be extended to the fractures of the lower quarter of the leg, provided that stable fixation using double screw distal locking and primary osteosynthesis of distal fibula fractures are performed.

  20. Combining in situ chemical oxidation, stabilization, and anaerobic bioremediation in a single application to reduce contaminant mass and leachability in soil.

    Science.gov (United States)

    Cassidy, Daniel P; Srivastava, Vipul J; Dombrowski, Frank J; Lingle, James W

    2015-10-30

    Laboratory batch reactors were maintained for 32 weeks to test the potential for an in situ remedy that combines chemical oxidation, stabilization, and anaerobic bioremediation in a single application to treat soil from a manufactured gas plant, contaminated with polycyclic aromatic hydrocarbons (PAH) and benzene, toluene, ethylbenzene, and xylenes (BTEX). Portland cement and slaked lime were used to activate the persulfate and to stabilize/encapsulate the contaminants that were not chemically oxidized. Native sulfate-reducing bacteria degraded residual contaminants using the sulfate left after persulfate activation. The ability of the combined remedy to reduce contaminant mass and leachability was compared with NaOH-activated persulfate, stabilization, and sulfate-reducing bioremediation as stand-alone technologies. The stabilization amendments increased pH and temperature sufficiently to activate the persulfate within 1 week. Activation with both stabilization amendments and NaOH removed between 55% and 70% of PAH and BTEX. However, combined persulfate and stabilization significantly reduced the leachability of residual BTEX and PAH compared with NaOH activation. Sulfide, 2-naphthoic acid, and the abundance of subunit A of the dissimilatory sulfite reductase gene (dsrA) were used to monitor native sulfate-reducing bacteria, which were negatively impacted by activated persulfate, but recovered completely within weeks. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Kan leg skabe fremtidens vindere?

    DEFF Research Database (Denmark)

    Holm, Claus

    2006-01-01

    Dansk Boldspil Union skruer ned for den præstationsorienterede tilgang til børnefodbold. I stedet skal børnenes leg med bolden i fokus. Målet er at forhindre massivt frafald i børne- og ungdomsfodbolden og højne niveauet hos topspillerne....

  2. Doppler ultrasound exam of an arm or leg

    Science.gov (United States)

    Peripheral vascular disease - Doppler; PVD - Doppler; PAD - Doppler; Blockage of leg arteries - Doppler; Intermittent claudication - Doppler; Arterial insufficiency of the legs - Doppler; Leg pain and ...

  3. Dissociation of periodic leg movements from arousals in restless legs syndrome.

    Science.gov (United States)

    Manconi, Mauro; Ferri, Raffaele; Zucconi, Marco; Bassetti, Claudio L; Fulda, Stephany; Aricò, Debora; Ferini-Strambi, Luigi

    2012-06-01

    The purpose of this study was to characterize the nature of the relation between periodic leg movements during sleep (PLMS) and cortical arousals to contribute to the debate on the clinical significance and treatment of PLMS. A prospective, placebo-controlled, single-blind, parallel group study was carried out including 46 drug-naive patients with idiopathic restless legs syndrome (RLS). Each patient underwent 2 consecutive full-night polysomnographic studies. The first night was the baseline night. Prior to the second night, 1 group received a single oral dose of 0.25mg pramipexole, whereas a second group received a single oral dose of 0.5mg clonazepam, and the remaining patients received placebo. Sleep stages, cyclic alternating pattern (CAP), and leg movement activity were scored following standard criteria; symptoms of RLS were also assessed. Pramipexole suppressed PLMS without affecting electroencephalographic (EEG) instability (CAP) and arousals (corresponding to CAP A3 and, partially, A2 subtypes), whereas clonazepam did the opposite, reducing non-rapid eye movement sleep EEG instability without effects on PLMS. Both drugs were effective on sensory RLS symptoms. This study demonstrates that a selective pharmacological approach can disconnect PLMS from arousal events, suggesting an indirect relation between each other. These results might weaken the hypothesis of a direct pathological role of PLMS in sleep disruption and can be important for the discussion on the existence of a distinct entity called periodic limb movements disorder. Moreover, the study opens the doors to the possibility of a joint treatment for RLS targeting sensory and motor symptoms, as well as sleep instability. Copyright © 2012 American Neurological Association.

  4. Concentration-dependent optical properties of TGA stabilized CdTe Quantum dots synthesized via the single injection hydrothermal method in the ambient environment

    Science.gov (United States)

    Jai Kumar, B.; Mahesh, H. M.

    2017-04-01

    Thioglycolic acid (TGA) stabilized aqueous CdTe Quantum dots (QDs) were synthesized using a facile, cost efficient Single Injection Hydrothermal (SIH) method. The complete preparation of precursors and growth of QDs was carried out in the ambient environment without inter gas protection. The Cadmium and Tellurium precursors were prepared from cadmium nitrate and elemental tellurium powder with sodium borohydride as reducing agent respectively. A systematic investigation was carried out in order to study the effect of 0.04M and 0.08M TGA concentration on ease synthesis, stability and size-tunable optical absorbance, bandgap, photoluminescence (PL) and Quantum yield (QY) of CdTe QDs. The Structure of QDs was verified by XRD and optical properties by absorbance and PL spectra. Experimental results revealed that the 0.08M TGA QDs possess good chemical and optical stability with high luminescence and decent QY, ready to use in optoelectronics, photovoltaic and biological application.

  5. Leg preference associated with protective stepping responses in older adults.

    Science.gov (United States)

    Young, Patricia M; Whitall, Jill; Bair, Woei-Nan; Rogers, Mark W

    2013-10-01

    Asymmetries in dynamic balance stability have been previously observed. The goal of this study was to determine whether leg preference influenced the stepping response to a waist-pull perturbation in older adult fallers and non-fallers. 39 healthy, community-dwelling, older adult (>65 years) volunteers participated. Participants were grouped into non-faller and faller cohorts based on fall history in the 12 months prior to the study. Participants received 60 lateral waist-pull perturbations of varying magnitude towards their preferred and non-preferred sides during quiet standing. Outcome measures included balance tolerance limit, number of recovery steps taken and type of recovery step taken for perturbations to each side. No significant differences in balance tolerance limit (P ≥ 0.102) or number of recovery steps taken (η(2)partial ≤ 0.027; P ≥ 0.442) were observed between perturbations towards the preferred and non-preferred legs. However, non-faller participants more frequently responded with a medial step when pulled towards their non-preferred side and cross-over steps when pulled towards their preferred side (P=0.015). Leg preference may influence the protective stepping response to standing balance perturbations in older adults at risk for falls, particularly with the type of recovery responses used. Such asymmetries in balance stability recovery may represent a contributing factor for falls among older individuals and should be considered for rehabilitation interventions aimed at improving balance stability and reducing fall risk. © 2013.

  6. Stabilization of a Network of the FitzHugh–Nagumo Oscillators by Means of a Single Capacitor Based RC Filter Feedback Technique

    Directory of Open Access Journals (Sweden)

    Elena Adomaitienė

    2017-01-01

    Full Text Available We suggest employing the first-order stable RC filters, based on a single capacitor, for control of unstable fixed points in an array of oscillators. A single capacitor is sufficient to stabilize an entire array, if the oscillators are coupled strongly enough. An array, composed of 24 to 30 mean-field coupled FitzHugh–Nagumo (FHN type asymmetric oscillators, is considered as a case study. The investigation has been performed using analytical, numerical, and experimental methods. The analytical study is based on the mean-field approach, characteristic equation for finding the eigenvalue spectrum, and the Routh–Hurwitz stability criteria using low-rank Hurwitz matrix to calculate the threshold value of the coupling coefficient. Experiments have been performed with a hardware electronic analog, imitating dynamical behavior of an array of the FHN oscillators.

  7. Combining in situ chemical oxidation, stabilization, and anaerobic bioremediation in a single application to reduce contaminant mass and leachability in soil

    Energy Technology Data Exchange (ETDEWEB)

    Cassidy, Daniel P., E-mail: daniel.cassidy@wmich.edu [Department of Geosciences, Western Michigan University, Kalamazoo, MI 49008 (United States); Srivastava, Vipul J., E-mail: vipul.srivastava@ch2m.com [CH2M HILL, 125S Wacker, Ste 3000, Chicago, IL 60606 (United States); Dombrowski, Frank J., E-mail: frank.dombrowski@we-energies.com [We Energies, 333W Everett St., A231, Milwaukee, WI 53203 (United States); Lingle, James W., E-mail: jlingle@epri.com [Electric Power Research Institute (EPRI), 4927W Willow Road, Brown Deer, WI 53223 (United States)

    2015-10-30

    Highlights: • Portland cement and lime activated persulfate by increasing pH and temperature. • Chemical oxidation achieved BTEX and PAH removal ranging from 55% to 75%. • Activating persulfate with ISS amendments reduced leachability more than NaOH. • Native sulfate-reducing bacteria degraded PAHs within weeks after ISCO finished. • ISCO, ISS, and anaerobic bioremediation were combined in a single application. - Abstract: Laboratory batch reactors were maintained for 32 weeks to test the potential for an in situ remedy that combines chemical oxidation, stabilization, and anaerobic bioremediation in a single application to treat soil from a manufactured gas plant, contaminated with polycyclic aromatic hydrocarbons (PAH) and benzene, toluene, ethylbenzene, and xylenes (BTEX). Portland cement and slaked lime were used to activate the persulfate and to stabilize/encapsulate the contaminants that were not chemically oxidized. Native sulfate-reducing bacteria degraded residual contaminants using the sulfate left after persulfate activation. The ability of the combined remedy to reduce contaminant mass and leachability was compared with NaOH-activated persulfate, stabilization, and sulfate-reducing bioremediation as stand-alone technologies. The stabilization amendments increased pH and temperature sufficiently to activate the persulfate within 1 week. Activation with both stabilization amendments and NaOH removed between 55% and 70% of PAH and BTEX. However, combined persulfate and stabilization significantly reduced the leachability of residual BTEX and PAH compared with NaOH activation. Sulfide, 2-naphthoic acid, and the abundance of subunit A of the dissimilatory sulfite reductase gene (dsrA) were used to monitor native sulfate-reducing bacteria, which were negatively impacted by activated persulfate, but recovered completely within weeks.

  8. A single-longitudinal-mode Brillouin fiber laser passively stabilized at the pump resonance frequency with a dynamic population inversion grating

    International Nuclear Information System (INIS)

    Spirin, V V; López-Mercado, C A; Kinet, D; Mégret, P; Fotiadi, A A; Zolotovskiy, I O

    2013-01-01

    We demonstrate a single-longitudinal-mode Brillouin ring fiber laser passively stabilized at the resonance frequency with a 1.7 m section that is an unpumped polarization-maintaining erbium-doped fiber. The two coupled all-fiber Fabry–Perot interferometers that comprise the cavity, in combination with the dynamical population inversion gratings self-induced in the active fiber, provide adaptive pump-mode selection and Stokes wave generation at the same time. The laser is shown to emit a single-frequency Stokes wave with a linewidth narrower than 100 Hz. (letter)

  9. Single-Aperture GPS-based Attitude (GPS/A) Sensor for Spin-Stabilized Platforms, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Attitude determination of spin-stabilized platforms is especially challenging. Current low-cost gyroscope technology does not lend itself to attitude determination...

  10. A comparison of one-legged and two-legged countermovement jumps

    NARCIS (Netherlands)

    van Soest, A J; Roebroeck, M.E.; Bobbert, M F; Huijing, P A; van Ingen Schenau, G J

    1985-01-01

    Ten well-trained male volleyball players performed one-legged and two-legged vertical countermovement jumps. Ground reaction forces, cinematographic data, and electromyographic data were recorded. Jumping height in one-legged jumps was 58.5% of that reached in two-legged jumps. Mean net torques in

  11. Trunk orientation causes asymmetries in leg function in small bird terrestrial locomotion.

    Science.gov (United States)

    Andrada, Emanuel; Rode, Christian; Sutedja, Yefta; Nyakatura, John A; Blickhan, Reinhard

    2014-12-22

    In contrast to the upright trunk in humans, trunk orientation in most birds is almost horizontal (pronograde). It is conceivable that the orientation of the heavy trunk strongly influences the dynamics of bipedal terrestrial locomotion. Here, we analyse for the first time the effects of a pronograde trunk orientation on leg function and stability during bipedal locomotion. For this, we first inferred the leg function and trunk control strategy applied by a generalized small bird during terrestrial locomotion by analysing synchronously recorded kinematic (three-dimensional X-ray videography) and kinetic (three-dimensional force measurement) quail locomotion data. Then, by simulating quail gaits using a simplistic bioinspired numerical model which made use of parameters obtained in in vivo experiments with real quail, we show that the observed asymmetric leg function (left-skewed ground reaction force and longer leg at touchdown than at lift-off) is necessary for pronograde steady-state locomotion. In addition, steady-state locomotion becomes stable for specific morphological parameters. For quail-like parameters, the most common stable solution is grounded running, a gait preferred by quail and most of the other small birds. We hypothesize that stability of bipedal locomotion is a functional demand that, depending on trunk orientation and centre of mass location, constrains basic hind limb morphology and function, such as leg length, leg stiffness and leg damping. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  12. Comparison of kinematic and dynamic leg trajectory optimization techniques for biped robot locomotion

    Science.gov (United States)

    Khusainov, R.; Klimchik, A.; Magid, E.

    2017-01-01

    The paper presents comparison analysis of two approaches in defining leg trajectories for biped locomotion. The first one operates only with kinematic limitations of leg joints and finds the maximum possible locomotion speed for given limits. The second approach defines leg trajectories from the dynamic stability point of view and utilizes ZMP criteria. We show that two methods give different trajectories and demonstrate that trajectories based on pure dynamic optimization cannot be realized due to joint limits. Kinematic optimization provides unstable solution which can be balanced by upper body movement.

  13. Expression, purification and characterization of a novel double-sites mutant of the single-chain sweet-tasting protein monellin (MNEI) with both improved sweetness and stability.

    Science.gov (United States)

    Zheng, Weiwei; Yang, Liu; Cai, Chenggu; Ni, Jinfeng; Liu, Bo

    2018-03-01

    The sweet protein monellin has high sweet potency with limited stability. In this study, 3 double-sites mutants (E2N/E23A, E2N/Y65R and E23A/Y65R) of the single-chain monellin (MNEI) were constructed. The proteins were expressed in E. coli BL21 and purified to homogeneity by nickel affinity chromatography with yields above 10 mg/L cell culture. Introduction of a sweeter mutant E2N into E23A or Y65R (E2N/E23A and E2N/Y65R) led to about 3-fold increase of sweetness, while addition of a more stable mutant E23A into E2N or Y65R (E2N/E23A and E23A/Y65R) resulted in improved thermal stability (about 10 °C). The results indicate that residues E2 and E23 mediate the sweetness and thermal stability of the protein, respectively. Multiple mutations of different residues (E2N/E23A) led to an additive performance with both improved sweetness and stability, suggesting that the sweetness and stability could be modulated by the independent molecular mechanism. The sweeter and thermal stable variant has a potential in further industrial applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. [Restless legs syndrome and nocturnal leg pain : Differential diagnosis and treatment].

    Science.gov (United States)

    Hornyak, M; Stiasny-Kolster, K; Evers, S; Happe, S

    2011-09-01

    Pain in the legs belongs to the five most frequent regional pain symptoms. Restless legs syndrome (RLS) presents a particular differential diagnosis for pain in the legs, which is characterized by a nocturnal urge to move the legs often associated with painful sensations in the legs. It is one of the most common neurological disorders and probably the leading cause of nocturnal pain in the legs. In this overview, the diagnosis and therapy of RLS as well as aspects of pain therapy of the disorder are presented. In addition, the differential diagnoses for exclusion of other specific causes of nocturnal pain in the legs are discussed.

  15. Anti-phase action between the angular accelerations of trunk and leg is reduced in the elderly.

    Science.gov (United States)

    Kato, Tomohisa; Yamamoto, Shin-ichiro; Miyoshi, Tasuku; Nakazawa, Kimitaka; Masani, Kei; Nozaki, Daichi

    2014-01-01

    Quiet standing posture in humans has often been modeled as a single inverted pendulum pivoting around the ankle joint. However, recent studies have suggested that anti-phase action between leg and trunk segments plays a significant role in stabilizing posture by reducing the acceleration of the center of mass (COM) of the body. The aim of this study is to test the hypothesis that anti-phase action is attenuated in the elderly compared to the young. The anterior-posterior movements of leg and trunk segments were measured using 4 laser displacement sensors from 22 healthy young subjects (age range, 20-35 years) and 38 healthy elderly subjects (age range, 57-80 years) standing quietly for 30s twice. To focus on the segmental action between trunk and legs, we applied constraints (i.e., wooden splints) on each segment. We found that the velocity and acceleration of the COM (standard deviation of the time series was evaluated) were significantly higher for the elderly subjects than for young subjects. The increase in the acceleration of the COM resulted not only from an increase in the angular acceleration of the segments but also from the reduction of their anti-phase relationship, as demonstrated by an index that quantifies the degree of cancelation between both segments. We conclude that the degree of anti-phase action between trunk and leg segments during quiet standing is smaller for elderly subjects than for young subjects, and that this change of the anti-phase action due to aging resulted in increased COM acceleration in the elderly subjects. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Gait Planning Research for an Electrically Driven Large-Load-Ratio Six-Legged Robot

    Directory of Open Access Journals (Sweden)

    Hong-Chao Zhuang

    2017-03-01

    Full Text Available Gait planning is an important basis for the walking of a legged robot. To improve the walking stability of multi-legged robots and to reduce the impact force between the foot and the ground, gait planning strategies are presented for an electrically driven large-load-ratio six-legged robot. First, the configuration and walking gait of the electrically driven large-load-ratio six-legged robot are designed. The higher-stable swing sequences of legs and typical walking modes are respectively obtained. Based on the Denavit–Hartenberg (D–H method, the analyses of the forward and inverse kinematics are implemented. The mathematical models of the articulated rotation angles are respectively established. In view of the buffer device installed at the end of shin to decrease the impact force between the foot and the ground, an initial lift height of the leg is brought into gait planning when the support phase changes into the transfer phase. The mathematical models of foot trajectories are established. Finally, a prototype of the electrically driven large-load-ratio six-legged robot is developed. The experiments of the prototype are carried out regarding the aspects of the walking speed and surmounting obstacle. Then, the reasonableness of gait planning is verified based on the experimental results. The proposed strategies of gait planning lay the foundation for effectively reducing the foot–ground impact force and can provide a reference for other large-load-ratio multi-legged robots.

  17. Leg 201Tl-SPECT in chronic exertional compartment syndrome

    International Nuclear Information System (INIS)

    Elkadri, N.; Slim, I.; Blondet, C.; Choquet, Ph.; Constantinesco, A.; Lecocq, J.

    2004-01-01

    Leg 201 Tl-SPECT in chronic exertional compartment syndrome Background: The chronic exertional compartment syndrome is one of the most frequent origins regarding leg pain due to sport training. The diagnosis can be established by invasive compartment pressure measurement. The aim of this study is to evaluate the role that could have 201 Tl-SPECT for patients with suspicion of compartment syndrome. Patients and methods: 51 leg 201 Tl-SPECT exams were performed (exercise - and rest without reinjection) in 49 patients; 28 had compartment syndrome confirmed by pressure measurement. About 100 MBq of 201 Tl were injected during exercise, when pain appeared or at least after 25 minutes exercise. We studied mean percentages of level uptake for each compartment, referred to the maximal uptake of both legs. Results: 47 compartments were concerned by compartment syndrome and 361 compartments were not. Scintigraphic patterns in compartments are reversible ischaemia (45%), uptake stability (36%) or reverse redistribution (19%); these patterns are not linked to compartment syndrome. However, there is a significant difference of rest 201 Tl level uptake between compartments with and without compartment syndrome and a significant correlation between muscular pressure measurement and rest level uptake. Conclusion: 201 Tl-SPECT shows that only ischaemia does not explain compartment syndrome. Moreover, it allows to predict pressure variation during exercise but it does not offer any interest in order to select patients for muscular invasive pressure measurement. (author)

  18. [Etiological diagnosis of leg ulcers].

    Science.gov (United States)

    Debure, Clélia

    2010-09-20

    Etiological diagnosis of leg ulcers must be the first step of treatment, even if we know that veinous disease is often present. We can build a clinical decisional diagram, which helps us to understand and not forget the other causes of chronic wounds and choose some basic examination, like ultrasound and histological findings. This diagnosis helps to choose the right treatment in order to cure even the oldest venous ulcers. Educational programs should be improved to prevent recurrence.

  19. Trunk stabilization exercises for healthy individuals

    Directory of Open Access Journals (Sweden)

    Francisco J Vera-Garcia

    2014-01-01

    Full Text Available DOI: http://dx.doi.org/10.5007/1980-0037.2014v16n2p200   The aim of this study was to analyze the trunk muscular response during different variations of some of the most popular stabilization exercises: front-bridge, back-bridge, side-bridge, and bird-dog. Surface electromyography was bilaterally re-corded from rectus abdominis, external and internal oblique and erector spinae during 25 variations of the aforementioned exercises. Compared to the conventional form of the front- and side-bridge, performing these exercises kneeling on a bench or with elbows extended reduced the muscular challenge. Conversely, performing the back-bridge with elbows extended elicited higher muscular activation than the conventional exercise. While bridge exercises with double leg support produced the highest activation levels in those muscles that counteracted gravity, single leg support while bridging increased the activation of the trunk rotators, especially internal oblique. The highest activation levels were found in three exercises: sagittal walkout in a front-bridge position, rolling from right side-bridge into front-bridge position, and side-bridge with single leg support on a BOSUTMbalance trainer. Although the exercises performed on unstable surfaces usu-ally enhanced the muscle activation, performing the exercises on the BOSUTMbalance trainer did not always increase the trunk muscle activity. Overall, this information may be useful to guide fitness instructors and clinicians when establishing stabilization exercise progressions for the trunk musculature.

  20. Developing a Reliable Core Stability Assessment Battery for Patients with Nonspecific Low Back Pain.

    Science.gov (United States)

    Ozcan Kahraman, Buse; Salik Sengul, Yesim; Kahraman, Turhan; Kalemci, Orhan

    2016-07-15

    Test-retest design. The objective was to examine the intrarater (test-retest) reliability of the core stability related tests and to develop a reliable core stability assessment battery. Studies suggest that core stability exercises may improve function and decrease pain in patients with nonspecific low back pain (LBP). Reliable clinical tests are required to implement adequate rehabilitation and to evaluate results of these interventions. The study had a test-retest design. Thirty-three different tests that might relate to core stability were identified with their mostly used protocols. Five different components of core stability including endurance, flexibility, strength, functional performance, and motor control were assessed in 38 patients with nonspecific LBP. The same testing procedure was performed again after 48 to 72 hours. Intraclass correlation coefficients (ICCs), standard error of measurement, and minimal detectable change were calculated to assess the intrarater reliability. The intrarater reliability of the tests ranged from little to very high (ICC = 0.08-0.98). Partial curl-up (ICC = 0.90), lateral bridge (ICC = 0.95-0.96), trunk flexor endurance (ICC = 0.97), sit and reach (ICC = 0.98), single-legged hop (ICC = 0.98-0.97), lateral step-down (ICC = 0.93-0.92), eyes open right and left leg unilateral stance (ICC = 0.97 and 0.91) tests had the highest intrarater reliability for each core stability component. The results indicated that the partial curl-up test (strength), side bridge and trunk flexor tests (endurance), sit-and-reach test (flexibility), single-legged hop, and lateral step-down (functional), unilateral stance test with eyes open (motor control) had very high intrarater reliability. A core stability assessment battery involving these tests can be used in patients with nonspecific LBP to assess all components of core stability. 3.

  1. Thick legs - not always lipedema.

    Science.gov (United States)

    Reich-Schupke, Stefanie; Altmeyer, Peter; Stücker, Markus

    2013-03-01

    Due to its increased presence in the press and on television, the diagnosis of lipedema is on the way to becoming a trendy diagnosis for those with thick legs. Despite this, one must recognize that lipedema is a very rare disease. It is characterized by disproportional obesity of the extremities, especially in the region of the hip and the legs, hematoma development after minimal trauma, and increased pressure-induced or spontaneous pain. Aids for making the correct diagnosis are (duplex) sonography, the waist-hip index or the waist-height index and lymphoscintigraphy. Important differential diagnoses are constitutional variability of the legs, lipohypertrophy in obesity, edema in immobility, edema in chronic venous insufficiency and rheumatic diseases. The symptom-based therapy of lipedema consists of conservative (compression, manual lymphatic drainage, exercise) and surgical treatments (liposuction). Until now there is no curative therapy. Obesity is an important risk factor for the severity and prognosis of lipedema. Further studies for a better understanding of the pathogenesis of lipedema and in the end possible curative treatments are urgently needed. © The Authors | Journal compilation © Blackwell Verlag GmbH, Berlin.

  2. Cellulose nanofiber/single-walled carbon nanotube hybrid non-woven macrofiber mats as novel wearable supercapacitors with excellent stability, tailorability and reliability

    Science.gov (United States)

    Niu, Qingyuan; Gao, Kezheng; Shao, Ziqiang

    2014-03-01

    Non-woven macrofiber mats are prepared by simply controlling the extrusion patterns of cellulose nanofiber/single-walled carbon nanotube suspensions in an ethanol coagulation bath, and drying in air under restricted conditions. These novel wearable supercapacitors based on non-woven macrofiber mats are demonstrated to have excellent tailorability, electrochemical stability, and damage reliability.Non-woven macrofiber mats are prepared by simply controlling the extrusion patterns of cellulose nanofiber/single-walled carbon nanotube suspensions in an ethanol coagulation bath, and drying in air under restricted conditions. These novel wearable supercapacitors based on non-woven macrofiber mats are demonstrated to have excellent tailorability, electrochemical stability, and damage reliability. Electronic supplementary information (ESI) available: Experimental, TEM image, IR spectra, and XRD spectra of cellulose nanofibers, photograph of the cellulose nanofiber/single-walled carbon nanotube suspension, cellulose nanofiber/single-walled carbon nanotube non-woven macrofiber mat and non-woven macrofiber mat wearable supercapacitors. The electrochemical performance of the CNF/SWCNT hybrid fiber wearable supercapacitor. Photograph of the non-woven macrofiber mat wearable supercapacitors integrated within textiles. See DOI: 10.1039/c3nr05929d

  3. Comparison of Biomechanical Characteristics and Pelvic Ring Stability Using Different Fixation Methods to Treat Pubic Symphysis Diastasis

    Science.gov (United States)

    Yao, Feng; He, Yu; Qian, Hebu; Zhou, Dongsheng; Li, Qinghu

    2015-01-01

    Abstract The intention of this study was to compare the biomechanical characteristics using 5 internal fixation methods used clinically to stabilize a pubic symphysis diastasis (PSD, Tile type B1). A 3-dimensional finite element model of PSD was simulated using 5 implants, including single superior plate (Single-Plate), superior and anterior plate (Dual-Plate), single cannulated screw (Single-Screw), crossed dual cannulated screws (Cross-Screw), and parallel dual cannulated screws (Para-Screw). Three loads were distributed in all models, including dual-leg standing, single-leg stance, and rotation. To evaluate the biomechanical properties, the construct stiffness, the stress distribution, and the von Misses stress were recorded and analyzed. To evaluate pelvic ring stability, the micromotion of the pubic symphysis and iliosacral joint was analyzed. Disruption of pubic symphysis dramatically decreased the pelvic ring stability. Cross-screw and Para-Screw showed higher stiffness than other methods. All implants endured the maximum von Misses stress under single-leg stance. For Plate-Screw system, the maximum stress occurred at a place where it strides over pubic symphysis and adjacent Plate-Screw interface. The single implant and Para-Screw had a tendency to fail. Para-Screw showed the best fixation effect under dual-leg conditions. Cross-screw showed superior antishearing force capacity under single-leg stance. Dual-Plate provided maximum antihorizontal rotation. Para-Screw provided the maximum stabilization for the posterior pelvic ring. This study showed the biomechanical advantages of dual-implant for PSD only from the finite element view. The Para-Screw provided high construct stiffness under 3 load conditions. The single implant and Para-Screw had a tendency to fail. The better anterior and posterior pelvic stabilization were obtained by the dual-implant fixation than other methods. Therefore, the Cross-Screw and Dual-Plate fixation methods should be preferred

  4. Advantage of minimal anterior knee pain and long-term survivorship of cemented single radius posterior-stabilized total knee arthroplasty without patella resurfacing.

    Science.gov (United States)

    Ji, Hyung-Min; Ha, Yong-Chan; Baek, Ji-Hoon; Ko, Young-Bong

    2015-03-01

    The single radius total knee prosthesis was introduced with the advantage of reduced patellar symptoms; however, there is no long-term follow-up study of the same. The purpose of this study was to determine the survival rate of single radius posterior-stabilized total knee arthroplasty and patellofemoral complication rates in a consecutive series. Seventy-one patients (103 knees) who underwent arthroplasty without patellar resurfacing using a single radius posterior-stabilized total knee prosthesis were followed up for a minimum 10 years. Clinical evaluation using Knee Society knee and function scores and radiologic evaluation were performed at regular intervals. Anterior knee pain as well as patellofemoral complications were evaluated with a simple questionnaire. The Kaplan-Meier product-limit method was used to estimate survival. Seventeen patients (23 knees) were excluded due to death (12 knees) or lost to follow-up (11 knees). Of the 80 knees enrolled, all femoral components and 78 tibial components were well fixed without loosening at final follow-up. Two revisions were performed because of tibial component loosening and periprosthetic joint infection. One patient with tibial component loosening refused to have revision surgery. No obvious tibial insert polyethylene wear was observed. The survivorships at 132 months were 96.7% using revision or pending revision as end points. Anterior knee pain was present in 6 patients (6 knees, 7.5%) at the latest follow-up. No patellofemoral complication requiring revision was encountered. The single radius posterior-stabilized total knee prosthesis demonstrated an excellent minimum 10-year survivorship. The low rates of implant loosening and 7.5% of anterior knee pain as a patellofemoral complication are comparable with those reported for other modern total knee prosthesis.

  5. Sustaining Behavior Changes Following a Venous Leg Ulcer Client Education Program.

    Science.gov (United States)

    Miller, Charne; Kapp, Suzanne; Donohue, Lisa

    2014-09-04

    Venous leg ulcers are a symptom of chronic insufficiency of the veins. This study considered the sustainability of behavior changes arising from a client focus e-Learning education program called the "Leg Ulcer Prevention Program" (LUPP) for people with a venous leg ulcer. Data from two related studies were used to enable a single sample (n = 49) examination of behavior maintenance across an average 8 to 9 months period. Physical activity levels increased over time. Leg elevation, calf muscle exercises, and soap substitute use were seen to fluctuate over the follow up time points. The use of a moisturizer showed gradual decline over time. The provision of a client-focused venous leg ulcer program was associated with behavior changes that had varied sustainability across the evaluation period.

  6. Preliminary results of dancing exercise on postural stability in adolescent females.

    Science.gov (United States)

    Cheng, Hsu-Sheng; Law, Cheung-Lun; Pan, Hui-Fang; Hsiao, Yueh-Ping; Hu, Jeng-Ho; Chuang, Fu-Kai; Huang, Mao-Hsiung

    2011-12-01

    Twenty-six female student dancers of Chung-hua school of Art (mean age 17.5 ± 0.5 years) and twenty-five healthy active female collegiate students (mean age 18.1 ± 1.0 years) participated in this study to investigate the effects of dancing exercise on postural stability of adolescent female through a comparison study of two cohorts. The groups were matched in height and weight. Participants were excluded for left-side dominance, sustained lower extremity injury, any known vestibular system dysfunction, uncorrected visual problems, and other neurological conditions. Static and dynamic standing balances were measured by means of Biodex Stability System in six conditions include bilateral, dominant, and nondominant single leg stances with eye-open and eye-closed conditions. To investigate the difference between static and dynamic stabilities, two protocols were performed: the first protocol consisted of four positions including static position, Level 8, Level 4, and Level 1, respectively. They were instructed to maintain a level platform as stably as possible for a period of 30 seconds for each test and given a 30-second rest between tests. The second protocol was descending stability level that was gradually changed from Level 12 to Level 1 for 60 seconds. Balance indices included overall stability index, anterior-posterior stability index (APSI), and medial-lateral stability index. The results of first protocol showed that there were significant differences in overall stability index score between study and control groups at Level 8 with dominant single leg standing in the eye-open condition and the APSI score at Level 8 and at Level 4 with dominant single-leg standing in the eye-closed condition. There was no significant difference in the second protocol. The possible explanation is loss of familiarization adaptation because of level change consequently in both the groups, not step-by-step as in the first protocol study. Furthermore, a positive correlation was

  7. A Series Active Damper with Closed-loop Control for Stabilizing Single-phase Power-Electronics-Based Power System

    DEFF Research Database (Denmark)

    Lu, Dapeng; Wang, Xiongfei; Bai, Haofeng

    2016-01-01

    Active damper is a promising solution to address the stability issues caused by the interaction between the parallel grid-connected converters, which are the results from the coupled grid impedance. To futher improve that, this paper proposes a series active damper that using a virtual damping...

  8. A single session of perturbation-based gait training with the A-TPAD improves dynamic stability in healthy young subjects.

    Science.gov (United States)

    Martelli, Dario; Kang, Jiyeon; Agrawal, Sunil K

    2017-07-01

    Gait and balance disorders are among the most common causes of falls in older adults. Most falls occur as a result of unexpected hazards while walking. In order to improve the effectiveness of current fall-prevention programs, new balance training paradigms aim to strengthen the control of the compensatory responses required after external perturbations. The aim of this study was to analyze the adaptions of reactive and proactive strategies to control stability after repeated exposures to waist-pull perturbations delivered while walking. Eight healthy young subjects participated in a single training session with the Active Tethered Pelvic assisted Device (A-TPAD). Participants were exposed to repeated multi-directional perturbations of increasing intensity. The Antero-Posterior (AP) and Medio-Lateral (ML) Base of Support (BoS) and Margin of Stability (MoS) during the response to diagonal perturbations were compared before and after the training. Results showed that participants adapted both the reactive and proactive strategies to control walking balance by significantly increasing their pre- and post-perturbation stability. The changes were principally accounted for by an increment of the AP BoS and MoS and a reduction of ML BoS. This improved their ability to react to a diagonal perturbation. We envision that this system can be used to develop a perturbation-based gait training aimed at improving balance and control of stability during walking, thus reducing fall risk.

  9. Comparison of the Local Tolerability to 5 Long-acting Drug Nanosuspensions with Different Stabilizing Excipients, Following a Single Intramuscular Administration in the Rat.

    Science.gov (United States)

    Chamanza, Ronnie; Darville, Nicolas; van Heerden, Marjolein; De Jonghe, Sandra

    2018-01-01

    To investigate the effects of common nanosuspension-stabilizing excipients on the nature and temporal evolution of histopathological changes at intramuscular (i.m.) administration sites, 5 groups of 39 male rats per group received a single injection of 1 of the 5 analogous crystalline drug nanosuspensions containing 200 mg/ml of an antiviral compound with particle sizes of ±200 nm and identical vehicle compositions, except for the type of nanosuspension stabilizer. The investigated stabilizers were poloxamer 338, poloxamer 407, d-α-tocopherol polyethylene glycol 1,000-succinate (TPGS), polysorbate 80, and polysorbate 80 combined with egg phosphatidylglycerol. Histopathology and immunohistochemistry revealed progressive inflammatory changes at the i.m. administration sites and the draining lymph nodes that differed according to the time point of sacrifice and the type of stabilizer. Although the overall time course of inflammatory changes was similar across the groups, differences in the nature, severity, and timing of the inflammatory response were observed between animals injected with poloxamer- or TPGS-containing nanosuspensions and those injected with formulations containing polysorbate 80. A more severe and prolonged active inflammatory phase, the presence of multinucleate giant cells, prolonged macrophage infiltration of the formulation depot, and more persistent histiocytic infiltrates in the lymph nodes were observed in the polysorbate 80-containing nanosuspension groups. Such vehicle-mediated effects could influence the overall tolerability profile of long-acting nanosuspensions.

  10. A Longitudinal Study of Predictors of Housing Stability, Housing Quality, and Mental Health Functioning Among Single Homeless Individuals Staying in Emergency Shelters.

    Science.gov (United States)

    Aubry, Tim; Duhoux, Arnaud; Klodawsky, Fran; Ecker, John; Hay, Elizabeth

    2016-09-01

    The current study examined risk and resilience factors at multiple levels that affect homeless individuals' ability to exit homelessness and achieve housing stability. It also examined the relationship between housing status, housing quality and mental health functioning. The methodology is a longitudinal study of single homeless individuals staying in emergency shelters in a medium-sized Canadian city who were followed for a 2 year period. Data were collected from participants at a baseline interview when they were homeless and at a 2-year follow-up. There were 329 participants interviewed at baseline and 197 (59.9%) participants interviewed at follow-up. Results from a structural equation modelling analysis found that having interpersonal and community resources were predictive of achieving housing stability. Specifically, having a larger social support network, access to subsidized housing, and greater income was related to achieving housing stability. On the other hand, having a substance use problem was a risk factor associated with a failure to achieving housing stability. Being female, feeling personally empowered, having housing that is perceived of being of higher quality were directly predictive of mental health functioning at follow-up. Findings are discussed in the context of previous research and their policy implications. © Society for Community Research and Action 2016.

  11. Motion stability of high-speed maglev systems in consideration of aerodynamic effects: a study of a single magnetic suspension system

    Science.gov (United States)

    Wu, Han; Zeng, Xiao-Hui; Yu, Yang

    2017-12-01

    In this study, the intrinsic mechanism of aerodynamic effects on the motion stability of a high-speed maglev system was investigated. The concept of a critical speed for maglev vehicles considering the aerodynamic effect is proposed. The study was carried out based on a single magnetic suspension system, which is convenient for proposing relevant concepts and obtaining explicit expressions. This study shows that the motion stability of the suspension system is closely related to the vehicle speed when aerodynamic effects are considered. With increases of the vehicle speed, the stability behavior of the system changes. At a certain vehicle speed, the stability of the system reaches a critical state, followed by instability. The speed corresponding to the critical state is the critical speed. Analysis reveals that when the system reaches the critical state, it takes two forms, with two critical speeds, and thus two expressions for the critical speed are obtained. The conditions of the existence of the critical speed were determined, and the effects of the control parameters and the lift coefficient on the critical speed were analyzed by numerical analysis. The results show that the first critical speed appears when the aerodynamic force is upward, and the second critical speed appears when the aerodynamic force is downward. Moreover, both critical speeds decrease with the increase of the lift coefficient.

  12. Effect of Loop Diameter on the Steady State and Stability Behaviour of Single-Phase and Two-Phase Natural Circulation Loops

    Directory of Open Access Journals (Sweden)

    P. K. Vijayan

    2008-01-01

    Full Text Available In natural circulation loops, the driving force is usually low as it depends on the riser height which is generally of the order of a few meters. The heat transport capability of natural circulation loops (NCLs is directly proportional to the flow rate it can generate. With low driving force, the straightforward way to enhance the flow is to reduce the frictional losses. A simple way to do this is to increase the loop diameter which can be easily adopted in pressure tube designs such as the AHWR and the natural circulation boilers employed in fossil-fuelled power plants. Further, the loop diameter also plays an important role on the stability behavior. An extensive experimental and theoretical investigation of the effect of loop diameter on the steady state and stability behavior of single- and two-phase natural circulation loops have been carried out and the results of this study are presented in this paper.

  13. Pt atoms stabilized on hexagonal boron nitride as efficient single-atom catalysts for CO oxidation: A first-principles investigation

    KAUST Repository

    Liu, Xin

    2015-01-01

    Taking CO oxidation as a probe, we investigated the electronic structure and reactivity of Pt atoms stabilized by vacancy defects on hexagonal boron nitride (h-BN) by first-principles-based calculations. As a joint effect of the high reactivity of both a single Pt atom and a boron vacancy defect (PtBV), the Pt-N interaction is -4.40 eV and is already strong enough to prohibit the diffusion and aggregation of the stabilized Pt atom. Facilitated by the upshifted Pt-d states originated from the Pt-N interaction, the barriers for CO oxidation through the Langmuir-Hinshelwood mechanism for formation and dissociation of peroxide-like intermediate and the regeneration are as low as 0.38, 0.10 and 0.04 eV, respectively, suggesting the superiority of PtBV as a catalyst for low temperature CO oxidation.

  14. Comparing core stability and traditional trunk exercise on chronic low back pain patients using three functional lumbopelvic stability tests.

    Science.gov (United States)

    Shamsi, Mohammad Bagher; Sarrafzadeh, Javad; Jamshidi, Aliashraf

    2015-02-01

    It is a matter of controversy whether core stability exercise is preferred to other types of exercise for chronic low back pain. Lumbopelvic stability is an important element in low back pain. No study was found using lumbopelvic stability tests in comparing core stability and other exercises. The single leg squat, dip test, and runner pose test appear to be suitable as tests for lumbopelvic stability. The aim of this study was to compare "core stability" and "traditional trunk exercise" using these tests and also the Oswestry disability questionnaire and pain intensity. Twenty-nine non-specific chronic low back pain subjects were alternately allocated in one of the two exercise groups. For both groups, a 16-sessions exercise program was provided. Before and after training: (1) video was recorded while subjects performed the tests; (2) Oswestry disability questionnaire was completed; and (3) pain intensity was measured by visual analogue scale. The test videos were scored by three physiotherapists. Statistical analysis revealed a significant improvement in stability test scores (p = 0.020 and p = 0.041) and reduction in disability (p stability or equal effectiveness of TTE and CSE on improving LPS. The non-significant differences may also be attributable to the lack of sensitivity of our tests to assess stability change in two groups after training given the relatively small sample size.

  15. Stability investigation of a high number density Pt1/Fe2O3single-atom catalyst under different gas environments by HAADF-STEM.

    Science.gov (United States)

    Duan, Sibin; Wang, Rongming; Liu, Jingyue

    2018-05-18

    Catalysis by supported single metal atoms has demonstrated tremendous potential for practical applications due to their unique catalytic properties. Unless they are strongly anchored to the support surfaces, supported single atoms, however, are thermodynamically unstable, which poses a major obstacle for broad applications of single-atom catalysts (SACs). In order to develop strategies to improve the stability of SACs, we need to understand the intrinsic nature of the sintering processes of supported single metal atoms, especially under various gas environments that are relevant to important catalytic reactions. We report on the synthesis of high number density Pt 1 /Fe 2 O 3 SACs using a facial strong adsorption method and the study of the mobility of these supported Pt single atoms at 250 °C under various gas environments that are relevant to CO oxidation, water-gas shift, and hydrogenation reactions. Under the oxidative gas environment, Fe 2 O 3 supported Pt single atoms are stable even at high temperatures. The presence of either CO or H 2 molecules in the gas environment, however, facilitates the movement of the Pt atoms. The strong interaction between CO and Pt weakens the binding between the Pt atoms and the support, facilitating the movement of the Pt single atoms. The dissociation of H 2 molecules on the Pt atoms and their subsequent interaction with the oxygen species of the support surfaces dislodge the surface oxygen anchored Pt atoms, resulting in the formation of Pt clusters. The addition of H 2 O molecules to the CO or H 2 significantly accelerates the sintering of the Fe 2 O 3 supported Pt single atoms. An anchoring-site determined sintering mechanism is further proposed, which is related to the metal-support interaction.

  16. Biomechanical effect of interspinous dynamic stabilization adjacent to single-level fusion on range of motion of the transition segment and the adjacent segment.

    Science.gov (United States)

    Kong, Chao; Lu, Shibao; Hai, Yong; Zang, Lei

    2015-05-01

    Despite numerous biomechanical studies have been carried out on dynamic stabilizers, there is very little information on their hybrid application, especially when combined interspinous dynamic stabilization with single-level fusion. The aim of this study is to assess the biomechanical effect of interspinous dynamic stabilization adjacent to single-level fusion on range of motion of the transition segment and the adjacent segment. Six fresh lumbosacral spines (L2-S1) were tested in the following sequence: 1) intact (Construct A); 2) fusion in L5/S1 and intact in L4/5 (Construct B); 3) fusion in L5/S1 and unstable state in L4/5 (Construct C); 4) fusion in L5/S1 and Coflex in L4/5 (Construct D). Range of motion (at L3/4 and L4/5) was recorded and calculated. Range of motion in L3/4 in the four constructs showed no difference under all motion states. Under flexion/extension, the range of motion of L4/5 in Construct B and Construct C increased, while the range of motion of L4/5 in Construct D decreased compared with Construct A. Compared with Construct D, the range of motion of L4/5 in Constructs B and C showed a significant increase. Under lateral bending and axial rotation, Construct A showed similar range of motion of L3/4 compared with other constructs. Fusion combined with Coflex is able to stabilize the transition segment and restrict flexion and extension in that segment, while having no significant effect on the range of motion of the adjacent segment or the range of motion of the transition segment under lateral bending and axial rotation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Epilepsy and restless legs syndrome.

    Science.gov (United States)

    Geyer, James D; Geyer, Emery E; Fetterman, Zachary; Carney, Paul R

    2017-03-01

    Restless legs syndrome (RLS) is a common neurological movement disorder occurring in approximately 10% of the general population. The prevalence of moderately severe RLS is 2.7% overall (3.7% for women and 1.7% for men). Epilepsy is also a common neurological disorder with significant associated morbidity and impact on quality of life. We evaluated the severity and frequency of primary RLS in patients with localization-related temporal lobe epilepsy (TLE) and investigated the role of prodromal RLS symptoms as a warning sign and lateralizing indicator. All epilepsy patients seen in the outpatient clinic were screened for movement disorders from 2005 to 2015. Ninety-eight consecutive patients with localization-related TLE (50 right TLE and 48 left TLE) who met inclusion criteria were seen in the outpatient clinic. The control group consisted of 50 individuals with no history or immediate family history of epilepsy. Each patient was evaluated with the International Restless Legs Study Group (IRLSSG) questionnaire, NIH RLS diagnostic criteria, ferritin level, and comprehensive sleep screening including polysomnography. Furthermore, patients with obstructive sleep apnea or a definite cause of secondary restless legs syndrome such as low serum ferritin or serum iron levels were also excluded from the study. There was a significant association between the type of epilepsy and whether or not patients had RLS χ 2 (1)=10.17, prestlessness was typically described as moderately severe. The RLS symptoms were more common and somewhat more severe in the right TLE group than the left TLE group. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Quinine for Nocturnal Leg Cramps

    Science.gov (United States)

    Man-Son-Hing, Malcolm; Wells, George; Lau, Anita

    1998-01-01

    OBJECTIVE With respect to the use of quinine for the treatment of nocturnal leg cramps, to determine whether the findings of a previously performed meta-analysis of published data are altered with the addition of unpublished data, and whether publication bias is present in this area. DESIGN A meta-analysis of eight (four published and four unpublished) randomized, double-blind, placebo-controlled trials, seven of which had a crossover design. SETTING Randomized trials that were available as of July 1997. SUBJECTS Ambulatory patients (659) who suffered from regular nocturnal leg cramps. MAIN RESULTS When individual patient data from all crossover studies were pooled, persons had 3.60 (95% confidence interval [CI] 2.15, 5.05) fewer cramps in a 4-week period when taking quinine compared with placebo. This compared with an estimate of 8.83 fewer cramps (95% CI 4.16, 13.49) from pooling published studies alone. The corresponding relative risk reductions were 21% (95% CI 12%, 30%) and 43% (95% CI 21%, 65%), respectively. Compared with placebo, the use of quinine was associated with an increased incidence of side effects, particularly tinnitus. Publication bias is present in the reporting of the efficacy of quinine for this indication, as almost all published studies reported larger estimates of its efficacy than did unpublished studies. CONCLUSIONS This study confirms that quinine is efficacious in the prevention of nocturnal leg cramps. However, its benefit may not be as large as reported from the pooling of published studies alone. Given the side effect profile of quinine, nonpharmacologic therapy (e.g., regular passive stretching of the affected muscle) is the best first-line treatment. For persons who find this ineffective and whose quality of life is significantly affected, a trial of quinine is warranted. Prescribing physicians must closely monitor the risks and benefits in individual patients. Publication bias is present in this area even though there is

  19. Stabilizing Single Sites on Solid Supports: Robust Grafted Ti(IV)-Calixarene Olefin Epoxidation Catalysts via Surface Polymerization and Cross-Linking

    OpenAIRE

    Guo, Yijun; Solovyov, Andrew; Grosso-Giordano, Nicolás A.; Hwang, Son-Jong; Katz, Alexander

    2016-01-01

    This manuscript develops a surface polymerization and cross-linking approach for the stabilization of single-site catalysts on solid surfaces, which is demonstrated here for grafted Ti(IV)-calixarene Lewis acids on silica. Our approach relies on cationic polymerization that is initiated by an adsorbed B(C_6F_5)_3 and uses styrene as the monomer and diisopropenylbenzene as the cross-linking agent. The mildness of this polymerization method is demonstrated by its lack of blocking micropores and...

  20. Kinematic primitives for walking and trotting gaits of a quadruped robot with compliant legs.

    Science.gov (United States)

    Spröwitz, Alexander T; Ajallooeian, Mostafa; Tuleu, Alexandre; Ijspeert, Auke Jan

    2014-01-01

    In this work we research the role of body dynamics in the complexity of kinematic patterns in a quadruped robot with compliant legs. Two gait patterns, lateral sequence walk and trot, along with leg length control patterns of different complexity were implemented in a modular, feed-forward locomotion controller. The controller was tested on a small, quadruped robot with compliant, segmented leg design, and led to self-stable and self-stabilizing robot locomotion. In-air stepping and on-ground locomotion leg kinematics were recorded, and the number and shapes of motion primitives accounting for 95% of the variance of kinematic leg data were extracted. This revealed that kinematic patterns resulting from feed-forward control had a lower complexity (in-air stepping, 2-3 primitives) than kinematic patterns from on-ground locomotion (νm4 primitives), although both experiments applied identical motor patterns. The complexity of on-ground kinematic patterns had increased, through ground contact and mechanical entrainment. The complexity of observed kinematic on-ground data matches those reported from level-ground locomotion data of legged animals. Results indicate that a very low complexity of modular, rhythmic, feed-forward motor control is sufficient for level-ground locomotion in combination with passive compliant legged hardware.

  1. Kinematic primitives for a quadruped robot walk and trot with compliant legs

    Directory of Open Access Journals (Sweden)

    Alexander Thomas Sprowitz

    2014-03-01

    Full Text Available In this work we research the role of body dynamics in the complexity of kinematic patterns in a quadruped robot with compliant legs. Two gait patterns, lateral sequence walk and trot, along with leg length control patterns of different complexity were implemented in a modular, feed-forward locomotion controller. The controller was tested on a small, quadruped robot with compliant, segmented leg design, and led to self-stable and self-stabilizing robot locomotion. In-air stepping and on-ground locomotion leg kinematics were recorded, and the number and shapes of motion primitives accounting for 95% of the variance of kinematic leg data were extracted. This revealed that kinematic patterns resulting from feed-forward control had a lower complexity (in-air stepping, 2 to 3 primitives than kinematic patterns from on-ground locomotion (4 primitives, although both experiments applied identical motor patterns. The complexity of on-ground kinematic patterns had increased, through ground contact and mechanical entrainment. The complexity of observed kinematic on-ground data matches those reported from level-ground locomotion data of legged animals. Results indicate that a very low complexity of modular, rhythmic, feed-forward motor control is sufficient for level-ground locomotion in combination with passive compliant legged hardware.

  2. Biomechanical comparisons of knee stability after anterior cruciate ligament reconstruction between 2 clinically available transtibial procedures: anatomic double bundle versus single bundle.

    Science.gov (United States)

    Kondo, Eiji; Merican, Azhar M; Yasuda, Kazunori; Amis, Andrew A

    2010-07-01

    Several trials have compared the clinical results between anatomic double-bundle and single-bundle anterior cruciate ligament reconstruction procedures. However, it remains controversial whether the anatomic double-bundle procedure is superior to the single-bundle procedure. The anatomic double-bundle procedure will be better than the single-bundle procedure at resisting anterior laxity, internal rotation laxity, and pivot-shift instability. Controlled laboratory study. Eight cadaveric knees were tested in a 6 degrees of freedom rig using the following loading conditions: 90-N anterior tibialforce, 5-N.m internal and external tibial torques, and a simulated pivot-shift test. Tibiofemoral kinematics during the flexion-extension cycle were recorded with an optical tracking system for (1) intact, (2) anterior cruciate ligament-deficient knee, (3) anatomic double-bundle reconstruction, and (4) single-bundle reconstruction placed at 11 o'clock in the intercondylar notch. There were significant reductions of anterior laxity of 3.5 mm at 20 degrees of flexion, internal rotational laxity of 2.5 degrees at 20 degrees of flexion, and anterior translations (2 mm) and internal rotations (5 degrees ) in the simulated pivot-shift test in the double-bundle reconstruction com-pared with the single-bundle reconstruction. There were no significant differences between the 2 procedures for external rotation laxity. The postoperative anterior translation and internal rotation stability after anatomic double-bundle anterior cruciate ligament reconstruction were significantly better than after single-bundle reconstruction, in both static tests and the pivot shift. Unlike previous laboratory studies, this work used clinical arthroscopic methods for anterior cruciate ligament reconstruction, and found that the anatomic reconstruction was superior to a single graft placed at 11 o'clock.

  3. Leg fluid accumulation during prolonged sitting.

    Science.gov (United States)

    Vena, Daniel; Rubianto, Jonathan; Popovic, Milos; Yadollahi, Azadeh

    2016-08-01

    The accumulation of fluid in the legs due to sedentariness can be a health risk in extreme cases. Negative health impacts associated with leg fluid accumulation include leg edema and risk of blood clots. Furthermore, fluid accumulating in the legs is accompanied by fluid shift into the upper body which is also associated with health risks such as: increased blood pressure when lying down, respiratory problems in people with heart failure, and increased sleep apnea. Understanding the pattern by which fluid accumulates in the legs can aid in the development of devices for reducing leg fluid accumulation. The purpose of this study was to characterize the time course of fluid accumulation over a two-and-half-hour seated period. Non-obese participants with sleep apnea and no other co-morbidities were included in the sample as part of a larger study. Leg fluid was measured continuously using a method of bioelectrical impedance. Participants were first asked to lie supine for 30 minutes as a washout, and then sat with their legs still for two and a half hours. The main finding of this study is that the pattern of leg fluid accumulation differed in the first 45 minutes compared to the latter 105 minutes. In the first 45 minutes, fluid accumulated according to first order exponential function. In the latter period, fluid accumulated according to a linear function. The initial exponential accumulation is likely due to the large increase in capillary pressure caused by rapid blood flow into the legs due to gravity, leading to substantial filtration of blood plasma into the tissue spaces. The latter linear portion likely represents continued slow filtration of fluid out of the vasculature and into the tissue spaces. This is the first study to show that fluid accumulation in the legs is a combination of an exponential and linear functions. The linear increase identifies that there is no foreseeable point in which leg fluid stops accumulating while sitting for prolonged periods.

  4. The effects of ruthenium on the phase stability of fourth generation Ni-base single crystal superalloys

    International Nuclear Information System (INIS)

    Sato, Atsushi; Harada, Hiroshi; Yokokawa, Tadaharu; Murakumo, Takao; Koizumi, Yutaka; Kobayashi, Toshiharu; Imai, Hachiro

    2006-01-01

    The formation of topologically close-packed (TCP) phases in nickel-base single crystal superalloys causes considerable degradation of the mechanical properties. It has recently been found that platinum-group metals can be effective in controlling the precipitation of such phases, and this extent of precipitation control requires further investigation. This study compares Ru-containing and non-Ru-containing single crystal superalloys. Scanning electron microscopy microstructural observations showed that the rate of TCP phase precipitations decreased through Ru addition. Transmission electron microscopy microstructural observations showed that the P phase, one of the TCP phases, was eliminated through the addition of Ru. The occurrence of this phenomenon will be discussed

  5. The effect of the single-spin defect on the stability of the in-plane vortex state in 2D magnetic nanodots

    International Nuclear Information System (INIS)

    Mamica, S.; Lévy, J.-C. S.; Depondt, Ph.; Krawczyk, M.

    2011-01-01

    The aim of this study is to analyse the stability of the single in-plane vortex state in two-dimensional magnetic nanodots with a nonmagnetic impurity (single-spin defect) at the centre. Small square and circular dots including up to a few thousand of spins are studied by means of a microscopic theory with nearest-neighbour exchange interactions and dipolar interactions fully taken into account. We calculate the spin-wave frequencies versus the dipolar-to-exchange interaction ratio d to find the values of d for which the assumed state is stable. Transitions to other states and their dependence on d and the vortex size are investigated as well, with two types of transition found: vortex core formation for small d values (strong exchange interactions), and in-plane reorientation of spins for large d values (strong dipolar interactions). Various types of localized spin waves responsible for these transitions are identified.

  6. Running with a load increases leg stiffness.

    Science.gov (United States)

    Silder, Amy; Besier, Thor; Delp, Scott L

    2015-04-13

    Spring-mass models have been used to characterize running mechanics and leg stiffness in a variety of conditions, yet it remains unknown how running while carrying a load affects running mechanics and leg stiffness. The purpose of this study was to test the hypothesis that running with a load increases leg stiffness. Twenty-seven subjects ran at a constant speed on a force-measuring treadmill while carrying no load, and while wearing weight vests loaded with 10%, 20%, and 30% of body weight. We measured lower extremity motion and created a scaled musculoskeletal model of each subject, which we used to estimate lower extremity joint angles and leg length. We estimated dimensionless leg stiffness as the ratio of the peak vertical ground reaction force (normalized to body weight) and the change in stance phase leg length (normalized to leg length at initial foot contact). Leg length was calculated as the distance from the center of the pelvis to the center-of-pressure under the foot. We found that dimensionless leg stiffness increased when running with load (p=0.001); this resulted from an increase in the peak vertical ground reaction force (pleg length (p=0.025). When running with load, subjects had longer ground contact times (pleg stiffness to accommodate an added load. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Evaluating plyometric exercises using time to stabilization.

    Science.gov (United States)

    Ebben, William P; Vanderzanden, Tyler; Wurm, Bradley J; Petushek, Erich J

    2010-02-01

    Plyometric exercises are frequently used in strength and conditioning and rehabilitation programs because the landing phase of these exercises requires dynamic stabilization. This study examined the differences in landing stability of a variety of plyometric exercises by assessing time to stabilization (TTS), its reliability, and sex differences therein. Forty-nine men and women performed a variety of plyometric exercises thought to represent a continuum of difficulty of dynamic stabilization during landing. Plyometric exercises included line hops, cone hops, squat jumps, tuck jumps, countermovement jumps, dumbbell countermovement jumps, and single leg countermovement jumps, each performed for 3 repetitions on a force platform. A 2-way mixed analysis of covariance with repeated measures for plyometric exercise type was used to evaluate the main effects for plyometric exercise type and the interaction between plyometric exercise type and sex for TTS. Subject jumping ability was evaluated as a covariate. Results revealed significant main effects for plyometric exercise type (p plyometric exercise type and sex (p = 0.002). Bonferroni adjusted post hoc analysis demonstrated differences in TTS between a number of plyometric exercises for men and women. Reliability analysis revealed intraclass correlation coefficients ranging from 0.51 to 0.86 with no significant difference between trials (p > 0.05). Practitioners who use plyometrics to train dynamic stability should create programs that progress the intensity of the exercises based on the results of this study. This study also demonstrated that TTS is moderately to highly reliable for a variety of jumping conditions for both men and women.

  8. Restless legs syndrome and periodic leg movements in patients with movement disorders: Specific considerations.

    Science.gov (United States)

    Högl, Birgit; Stefani, Ambra

    2017-05-01

    Restless legs syndrome is a frequent neurological disorder with potentially serious and highly distressing treatment complications. The role and potential implications of periodic leg movements during sleep range from being a genetic risk marker for restless legs syndrome to being a cardiovascular risk factor. The diagnosis of restless legs syndrome in patients with daytime movement disorders is challenging and restless legs syndrome needs to be differentiated from other sleep-related movement disorders. This article provides an update on the diagnosis of restless legs syndrome as an independent disorder and the role of periodic leg movements and reviews the association of restless legs syndrome with Parkinson's disease and other movement disorders. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.

  9. Analysis of phase-locked loop influence on the stability of single-phase grid-connected inverter

    DEFF Research Database (Denmark)

    Zhang, Chong; Wang, Xiongfei; Blaabjerg, Frede

    2015-01-01

    A controlled power inverter can cause instability at the point of common coupling (PCC) with its output filter and the grid. This paper analyzes the influence of the Phase-Locked Loop (PLL) on the output admittance of single-phase current-controlled inverters with different grid stiffness. It shows...

  10. FOOTBALL PLAYERS’ LEGS BIOMECHANICS DURING THE GAME AND THE REQUIREMENTS FOR FOOTBALL SHOES

    OpenAIRE

    Cornelia Ionescu Luca; Cristina Secan

    2013-01-01

    Football players, during the game, find themselves in both static and dynamic positions. Movement may be accomplished through walking, marching, running and jumping. While walking, the step may be simple, if referred to a single leg or double when talking about both legs. The simple steps have different phases for the bare-foot, the impact phase, supported foot and oscillating shank-bone and propulsion. Football shoes for walking make contact with the support surface through cleats. The back...

  11. Amino Acid Functionalization of Doped Single-Walled Carbon Nanotubes: Effects of Dopants and Side Chains as Well as Zwitterionic Stabilizations.

    Science.gov (United States)

    Jiang, Lisha; Zhu, Chang; Fu, Yujie; Yang, Gang

    2017-04-06

    Functionalization of single-walled carbon nanotubes (SWCNTs) is necessitated in a number of conditions such as drug delivery, and here amino acid functionalization of SWCNTs is conducted within the framework of density functional theory. Functionalization efficiencies of Gly are largely determined by dopants, as a combined effect of atomic radius, electronic configuration, and distortion to SWCNTs. Different functionalization sites in Gly have divergent interaction strengths with M/SWCNTs that decline as O b > N > O a , and this trend seems almost independent of the identity of metallic dopants. B/SWCNT behaves distinctly and prefers to the N site. Dopants affect principally interaction strengths, while amino acids regulate significantly both functionalization configurations and interaction energies. Then focus is given to stabilization of zwitterionic amino acids due to enhanced interactions with the widely used zwitterionic drugs. All metallic dopants render zwitterionic Gly to be the most stable, and side chains in amino acids rather than dopants in M/SWCNTs cause more pronounced effects to zwitterionic stabilizations. Charge transfers between amino acids and M/SWCNTs are closely associated with zwitterionic stabilization effects, and different charge transfer mechanisms between M/SWCNTs and metal ions are interpreted. Thus, this work provides a comprehensive understanding of amino acid functionalization of M/SWCNTs.

  12. Effect of Substituents and Initial Degree of Functionalization of Alkylated Single-Walled Carbon Nanotubes on Their Thermal Stability and Photoluminescence Properties.

    Science.gov (United States)

    Maeda, Yutaka; Takehana, Yuya; Dang, Jing-Shuang; Suzuki, Mitsuaki; Yamada, Michio; Nagase, Shigeru

    2017-02-03

    Alkylated single-walled carbon nanotubes (SWNTs) have been thermally treated to determine the influence of substituents and the degree of functionalization on their thermal stability and photoluminescence (PL) properties. Alkylated SWNTs were prepared by treating SWNTs with sodium naphthalenide and alkyl bromide. The defunctionalization of the alkylated SWNTs was monitored by absorption and Raman spectra. Selective recovery of the characteristic absorption and radial breathing mode peaks was observed during the thermal treatment, which indicates that the thermal stability of the alkylated SWNTs decreases with increases in SWNT diameter and degree of functionalization. n-Butylated and phenethylated SWNTs showed higher thermal stability than sec-butylated and benzylated SWNTs for a similar degree of functionalization, respectively. The diameter selectivity and effect of substituents on the thermal elimination reaction were confirmed by density functional theory. In addition, it was shown that the initial degree of functionalization of the alkylated SWNTs, with the alkyl group and degree of functionalization being kept constant after thermal treatment, strongly affects their PL properties; Stokes shift, and PL peak intensity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Study on the stability of a single-phase natural circulation flow in a closed loop. Demonstrative experiments on the higher-mode density wave oscillation

    International Nuclear Information System (INIS)

    Nishihara, Takashi

    1997-01-01

    Single-phase natural circulation loops are very important systems driven by the density variation generated thermally and have various applications in energy systems. Many theoretical and experimental works have been carried out on them and it has been known that the oscillatory instability can occur under some conditions. Most of the works on the oscillatory instability have been limited to specific geometry of the loops and they have paid attention only to the instability of fundamental mode, which has the period approximately equal to the item that the fluid goes round the loop, hereinafter referred to as the typical period. The author had applied the linear stability analysis to the simplified rectangular loop to investigate the basic stability characteristics of a natural circulation flow in a closed loop. The results indicate that various higher-mode oscillatory instabilities can be caused with a period approximately equal to one nth of the typical period according to parameters such as the pressure loss coefficient, the locations of a heat source and a heat sink, and so on. In this report, experimental tests were carried out and it was demonstrated that the higher-mode oscillatory instability can be caused with features as predicted in the analysis. The stability analysis was applied to the geometry of the experimental apparatus. The analytical results and those of experiments were compared with regard to the mode and the region of the parameters to be unstable and they have a good agreement qualitatively. (author)

  14. Long-term stability of superhydrophilic oxygen plasma-modified single-walled carbon nanotube network surfaces and the influence on ammonia gas detection

    Energy Technology Data Exchange (ETDEWEB)

    Min, Sungjoon [Department of Biomicrosystem Technology, Korea University, Seoul 136-713 (Korea, Republic of); Kim, Joonhyub [Department of Control and Instrumentation Engineering, Korea University, 2511 Sejong-ro, Sejong City 339-770 (Korea, Republic of); Park, Chanwon [Department of Electrical and Electronic Engineering, Kangwon National University, Chuncheon 200-701 (Korea, Republic of); Jin, Joon-Hyung, E-mail: jj1023@chol.com [Department of Chemical Engineering, Kyonggi University, 154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16227 (Korea, Republic of); Min, Nam Ki, E-mail: nkmin@korea.ac.kr [Department of Biomicrosystem Technology, Korea University, Seoul 136-713 (Korea, Republic of)

    2017-07-15

    Graphical abstract: Superhydrophilic single-walled carbon nanotube obtained by O{sub 2} plasma treatment voluntarily and non-reversibly reverts to a metastable state. This aerobic aging is an essential process to develop a stable carbon nanotube-based sensor. - Highlights: • Superhydrophilic single-walled carbon nanotube network can be obtained by O{sub 2} plasma-based surface modification. • The modified carbon nanotube surface invariably reverts to a metastable state in a non-reversible manner. • Aerobic aging is essential to stabilize the modified carbon nanotube and the carbon nanotube-based sensing device due to minimized sensor-to-sensor variation. - Abstract: Single-walled carbon nanotube (SWCNT) networks are subjected to a low-powered oxygen plasma for the surface modification. Changes in the surface chemical composition and the stability of the plasma-treated SWCNT (p-SWCNT) with aging in air for up to five weeks are studied using X-ray photoelectron spectroscopy (XPS) and contact angle analysis. The contact angle decreases from 120° of the untreated hydrophobic SWCNT to 0° for the superhydrophilic p-SWCNT. Similarly, the ratio of oxygen to carbon (O:C) based on the XPS spectra increases from 0.25 to 1.19, indicating an increase in surface energy of the p-SWCNT. The enhanced surface energy is gradually dissipated and the p-SWCNT network loses the superhydrophilic surface property. However, it never revert to the original hydrophobic surface state but to a metastable hydrophilic state. The aging effect on sensitivity of the p-SWCNT network-based ammonia sensor is investigated to show the importance of the aging process for the stabilization of the p-SWCNT. The best sensitivity for monitoring NH{sub 3} gas is observed with the as-prepared p-SWCNT, and the sensitivity decreases as similar as the p-SWCNT loses its hydrophilicity with time goes by. After a large performance degradation during the aging time for about two weeks, the response

  15. A Combination of Structural and Empirical Analyses Delineates the Key Contacts Mediating Stability and Affinity Increases in an Optimized Biotherapeutic Single-chain Fv (scFv)*

    Science.gov (United States)

    Tu, Chao; Terraube, Virginie; Tam, Amy Sze Pui; Stochaj, Wayne; Fennell, Brian J.; Lin, Laura; Stahl, Mark; LaVallie, Edward R.; Somers, Will; Finlay, William J. J.; Mosyak, Lydia; Bard, Joel; Cunningham, Orla

    2016-01-01

    Fully-human single-chain Fv (scFv) proteins are key potential building blocks of bispecific therapeutic antibodies, but they often suffer from manufacturability and clinical development limitations such as instability and aggregation. The causes of these scFv instability problems, in proteins that should be theoretically stable, remains poorly understood. To inform the future development of such molecules, we carried out a comprehensive structural analysis of the highly stabilized anti-CXCL13 scFv E10. E10 was derived from the parental 3B4 using complementarity-determining region (CDR)-restricted mutagenesis and tailored selection and screening strategies, and carries four mutations in VL-CDR3. High-resolution crystal structures of parental 3B4 and optimized E10 scFvs were solved in the presence and absence of human CXCL13. In parallel, a series of scFv mutants was generated to interrogate the individual contribution of each of the four mutations to stability and affinity improvements. In combination, these analyses demonstrated that the optimization of E10 was primarily mediated by removing clashes between both the VL and the VH, and between the VL and CXCL13. Importantly, a single, germline-encoded VL-CDR3 residue mediated the key difference between the stable and unstable forms of the scFv. This work demonstrates that, aside from being the critical mediators of specificity and affinity, CDRs may also be the primary drivers of biotherapeutic developability. PMID:26515064

  16. Single layers and multilayers of GaN and AlN in square-octagon structure: Stability, electronic properties, and functionalization

    Science.gov (United States)

    Gürbüz, E.; Cahangirov, S.; Durgun, E.; Ciraci, S.

    2017-11-01

    Further to planar single-layer hexagonal structures, GaN and AlN can also form free-standing, single-layer structures constructed from squares and octagons. We performed an extensive analysis of dynamical and thermal stability of these structures in terms of ab initio finite-temperature molecular dynamics and phonon calculations together with the analysis of Raman and infrared active modes. These single-layer square-octagon structures of GaN and AlN display directional mechanical properties and have wide, indirect fundamental band gaps, which are smaller than their hexagonal counterparts. These density functional theory band gaps, however, increase and become wider upon correction. Under uniaxial and biaxial tensile strain, the fundamental band gaps decrease and can be closed. The electronic and magnetic properties of these single-layer structures can be modified by adsorption of various adatoms, or by creating neutral cation-anion vacancies. The single-layer structures attain magnetic moment by selected adatoms and neutral vacancies. In particular, localized gap states are strongly dependent on the type of vacancy. The energetics, binding, and resulting electronic structure of bilayer, trilayer, and three-dimensional (3D) layered structures constructed by stacking the single layers are affected by vertical chemical bonds between adjacent layers. In addition to van der Waals interaction, these weak vertical bonds induce buckling in planar geometry and enhance their binding, leading to the formation of stable 3D layered structures. In this respect, these multilayers are intermediate between van der Waals solids and wurtzite crystals, offering a wide range of tunability.

  17. Restless legs syndrome mimicking S1 radiculopathy.

    Science.gov (United States)

    Zambelis, Th; Wolgamuth, B R; Papoutsi, S N; Economou, N T

    2016-01-01

    Α case of a chronic idiopathic form of a severe type of Restless Legs Syndrome (RLS), which developed during pregnancy and persisted after this, misdiagnosed for 34 years as radiculopathy S1, is reported. In spite of the thorough clinical and laboratory investigation, in addition to constant changes of the therapeutic approach, the diagnosis of S1 radiculopathy could not be confirmed, resulting in a chronic clinical course; the latter was characterized by relapses and remissions not attributed or linked in any way to the treatment (various types of). In fact, it was due to a routine workup in a sleep clinic, where the patient was referred because of a coincident chronic insomnia (Restless Legs Syndrome is a known and important cause of insomnia/chronic insomnia), which resulted in a proper diagnosis and treatment of this case. With the use of Restless Legs Syndrome appropriate treatment (Pramipexole 0.18 mg taken at bedtime, a dopaminergic agent and Level A recommended drug for Restless Legs Syndrome) an excellent response and immediate elimination of symptoms was achieved. Restless Legs Syndrome may present with a variety of symptoms (with the most prominent shortly being reported with the acronym URGE: Urge to move the legs usually associated with unpleasant leg sensations, Rest induces symptoms, Getting active brings relief, Evening and night deteriorate symptoms); given the fact that Restless Legs Syndrome presents with a great variety and heterogeneity of symptoms (mostly pain, dysesthesia and paresthesia), which may occur in several other diseases (the so called "RLS mimics"), proper diagnosis of Restless Legs Syndrome usually fails. Restless Legs Syndrome misinterpreted as S1 radiculopathy, to the best of our knowledge, has not been reported yet in the literature. Here, case history, clinical course and common RLS mimics are presented. Different forms of Restless Legs Syndrome manifestations, which are commonly -as in this case- misinterpreted due to their

  18. Stability of single and multiple matter-wave dark solitons in collisionally inhomogeneous Bose-Einstein condensates

    Science.gov (United States)

    Kevrekidis, P. G.; Carretero-González, R.; Frantzeskakis, D. J.

    2017-04-01

    We examine the spectral properties of single and multiple matter-wave dark solitons in Bose-Einstein condensates confined in parabolic traps, where the scattering length is periodically modulated. In addition to the large density limit picture previously established for homogeneous nonlinearities, we explore a perturbative analysis in the vicinity of the linear limit, which provides good agreement with the observed spectral modes. Between these two analytically tractable limits, we use numerical computations to fill in the relevant intermediate regime. We find that the scattering length modulation can cause a variety of features absent for homogeneous nonlinearities. Among them, we note the potential oscillatory instability even of the single dark soliton, the potential absence of instabilities in the immediate vicinity of the linear limit for two dark solitons, and the existence of an exponential instability associated with the in-phase motion of three dark solitons.

  19. The Influence of phase-locked loop on the stability of single-phase grid-connected inverter

    DEFF Research Database (Denmark)

    Zhang, Chong; Wang, Xiongfei; Blaabjerg, Frede

    2015-01-01

    admittance of single-phase current-controlled inverters with different grid stiffness is analyzed in this paper. It shows that the PLL introduces a negative paralleled admittance into the output admittance of the inverter, which may lead to unintentional low-order harmonic oscillation in a weak grid...... for avoiding the PLL induced instability in single-phase inverters. At last the relationship between PLL bandwidth and the Short Circuit Ratio (SCR) of the grid has been derived to guide the design of the PLL. Experimental results are presented in order to verify this analysis, and the resonant frequencies can...... be predicted by the method. The possible instability due to different PLL bandwidth is also demonstrated....

  20. Swing-leg trajectory of running guinea fowl suggests task-level priority of force regulation rather than disturbance rejection.

    Directory of Open Access Journals (Sweden)

    Yvonne Blum

    Full Text Available To achieve robust and stable legged locomotion in uneven terrain, animals must effectively coordinate limb swing and stance phases, which involve distinct yet coupled dynamics. Recent theoretical studies have highlighted the critical influence of swing-leg trajectory on stability, disturbance rejection, leg loading and economy of walking and running. Yet, simulations suggest that not all these factors can be simultaneously optimized. A potential trade-off arises between the optimal swing-leg trajectory for disturbance rejection (to maintain steady gait versus regulation of leg loading (for injury avoidance and economy. Here we investigate how running guinea fowl manage this potential trade-off by comparing experimental data to predictions of hypothesis-based simulations of running over a terrain drop perturbation. We use a simple model to predict swing-leg trajectory and running dynamics. In simulations, we generate optimized swing-leg trajectories based upon specific hypotheses for task-level control priorities. We optimized swing trajectories to achieve i constant peak force, ii constant axial impulse, or iii perfect disturbance rejection (steady gait in the stance following a terrain drop. We compare simulation predictions to experimental data on guinea fowl running over a visible step down. Swing and stance dynamics of running guinea fowl closely match simulations optimized to regulate leg loading (priorities i and ii, and do not match the simulations optimized for disturbance rejection (priority iii. The simulations reinforce previous findings that swing-leg trajectory targeting disturbance rejection demands large increases in stance leg force following a terrain drop. Guinea fowl negotiate a downward step using unsteady dynamics with forward acceleration, and recover to steady gait in subsequent steps. Our results suggest that guinea fowl use swing-leg trajectory consistent with priority for load regulation, and not for steadiness of gait

  1. Swing-Leg Trajectory of Running Guinea Fowl Suggests Task-Level Priority of Force Regulation Rather than Disturbance Rejection

    Science.gov (United States)

    Blum, Yvonne; Vejdani, Hamid R.; Birn-Jeffery, Aleksandra V.; Hubicki, Christian M.; Hurst, Jonathan W.; Daley, Monica A.

    2014-01-01

    To achieve robust and stable legged locomotion in uneven terrain, animals must effectively coordinate limb swing and stance phases, which involve distinct yet coupled dynamics. Recent theoretical studies have highlighted the critical influence of swing-leg trajectory on stability, disturbance rejection, leg loading and economy of walking and running. Yet, simulations suggest that not all these factors can be simultaneously optimized. A potential trade-off arises between the optimal swing-leg trajectory for disturbance rejection (to maintain steady gait) versus regulation of leg loading (for injury avoidance and economy). Here we investigate how running guinea fowl manage this potential trade-off by comparing experimental data to predictions of hypothesis-based simulations of running over a terrain drop perturbation. We use a simple model to predict swing-leg trajectory and running dynamics. In simulations, we generate optimized swing-leg trajectories based upon specific hypotheses for task-level control priorities. We optimized swing trajectories to achieve i) constant peak force, ii) constant axial impulse, or iii) perfect disturbance rejection (steady gait) in the stance following a terrain drop. We compare simulation predictions to experimental data on guinea fowl running over a visible step down. Swing and stance dynamics of running guinea fowl closely match simulations optimized to regulate leg loading (priorities i and ii), and do not match the simulations optimized for disturbance rejection (priority iii). The simulations reinforce previous findings that swing-leg trajectory targeting disturbance rejection demands large increases in stance leg force following a terrain drop. Guinea fowl negotiate a downward step using unsteady dynamics with forward acceleration, and recover to steady gait in subsequent steps. Our results suggest that guinea fowl use swing-leg trajectory consistent with priority for load regulation, and not for steadiness of gait. Swing-leg

  2. Single-phase and two-phase anaerobic digestion of fruit and vegetable waste: Comparison of start-up, reactor stability and process performance

    International Nuclear Information System (INIS)

    Ganesh, Rangaraj; Torrijos, Michel; Sousbie, Philippe; Lugardon, Aurelien; Steyer, Jean Philippe; Delgenes, Jean Philippe

    2014-01-01

    Highlights: • Single-phase and two-phase systems were compared for fruit and vegetable waste digestion. • Single-phase digestion produced a methane yield of 0.45 m 3 CH 4 /kg VS and 83% VS removal. • Substrate solubilization was high in acidification conditions at 7.0 kg VS/m 3 d and pH 5.5–6.2. • Energy yield was lower by 33% for two-phase system compared to the single-phase system. • Simple and straight-forward operation favored single phase process over two-phase process. - Abstract: Single-phase and two-phase digestion of fruit and vegetable waste were studied to compare reactor start-up, reactor stability and performance (methane yield, volatile solids reduction and energy yield). The single-phase reactor (SPR) was a conventional reactor operated at a low loading rate (maximum of 3.5 kg VS/m 3 d), while the two-phase system consisted of an acidification reactor (TPAR) and a methanogenic reactor (TPMR). The TPAR was inoculated with methanogenic sludge similar to the SPR, but was operated with step-wise increase in the loading rate and with total recirculation of reactor solids to convert it into acidification sludge. Before each feeding, part of the sludge from TPAR was centrifuged, the centrifuge liquid (solubilized products) was fed to the TPMR and centrifuged solids were recycled back to the reactor. Single-phase digestion produced a methane yield of 0.45 m 3 CH 4 /kg VS fed and VS removal of 83%. The TPAR shifted to acidification mode at an OLR of 10.0 kg VS/m 3 d and then achieved stable performance at 7.0 kg VS/m 3 d and pH 5.5–6.2, with very high substrate solubilization rate and a methane yield of 0.30 m 3 CH 4 /kg COD fed. The two-phase process was capable of high VS reduction, but material and energy balance showed that the single-phase process was superior in terms of volumetric methane production and energy yield by 33%. The lower energy yield of the two-phase system was due to the loss of energy during hydrolysis in the TPAR and the

  3. Comparison of Biomechanical Characteristics and Pelvic Ring Stability Using Different Fixation Methods to Treat Pubic Symphysis Diastasis: A Finite Element Study.

    Science.gov (United States)

    Yao, Feng; He, Yu; Qian, Hebu; Zhou, Dongsheng; Li, Qinghu

    2015-12-01

    The intention of this study was to compare the biomechanical characteristics using 5 internal fixation methods used clinically to stabilize a pubic symphysis diastasis (PSD, Tile type B1).A 3-dimensional finite element model of PSD was simulated using 5 implants, including single superior plate (Single-Plate), superior and anterior plate (Dual-Plate), single cannulated screw (Single-Screw), crossed dual cannulated screws (Cross-Screw), and parallel dual cannulated screws (Para-Screw). Three loads were distributed in all models, including dual-leg standing, single-leg stance, and rotation. To evaluate the biomechanical properties, the construct stiffness, the stress distribution, and the von Misses stress were recorded and analyzed. To evaluate pelvic ring stability, the micromotion of the pubic symphysis and iliosacral joint was analyzed.Disruption of pubic symphysis dramatically decreased the pelvic ring stability. Cross-screw and Para-Screw showed higher stiffness than other methods. All implants endured the maximum von Misses stress under single-leg stance. For Plate-Screw system, the maximum stress occurred at a place where it strides over pubic symphysis and adjacent Plate-Screw interface. The single implant and Para-Screw had a tendency to fail. Para-Screw showed the best fixation effect under dual-leg conditions. Cross-screw showed superior antishearing force capacity under single-leg stance. Dual-Plate provided maximum antihorizontal rotation. Para-Screw provided the maximum stabilization for the posterior pelvic ring.This study showed the biomechanical advantages of dual-implant for PSD only from the finite element view. The Para-Screw provided high construct stiffness under 3 load conditions. The single implant and Para-Screw had a tendency to fail. The better anterior and posterior pelvic stabilization were obtained by the dual-implant fixation than other methods. Therefore, the Cross-Screw and Dual-Plate fixation methods should be preferred in the

  4. Intensive treatment of leg lymphedema

    Directory of Open Access Journals (Sweden)

    Pereira de Godoy Jose

    2010-01-01

    Full Text Available Background: Despite of all the problems caused by lymphedema, this disease continues to affect millions of people worldwide. Thus, the identification of the most efficacious forms of treatment is necessary. Aim: The aim of this study was to evaluate a novel intensive outpatient treatment for leg lymphedema. Methods: Twenty-three legs of 19 patients were evaluated in a prospective randomized study. The inclusion criteria were patients with Grade II and III lymphedema, where the difference, measured by volumetry, between the affected limb below the knee and the healthy limb was greater than 1.5 kg. Intensive treatment was carried out for 6- to 8-h sessions in the outpatient clinic. Analysis of variance was utilized for statistical analysis with an alpha error of 5% (P-value < 0.05 being considered significant. Results: All limbs had significant reductions in size with the final mean loss being 81.1% of the volume of edema. The greatest losses occurred in the first week (P-value < 0.001. Losses of more than 90% of the lymphedema occurred in 9 (39.13% patients; losses of more than 80% in 13 (56.52%, losses of more than 70% in 17 (73.91% and losses of more than 50% were recorded for 95.65% of the patients; only 1 patient lost less than 50% (37.9% of the edema. Conclusion: The intensive treatment of lymphedema in the outpatient clinic can produce significant reductions in the volume of edema over a short period of time and can be recommended for any grade of lymphedema, in particular the more advanced degrees.

  5. Leg blood flow during static exercise.

    Science.gov (United States)

    Kilbom, A; Persson, J

    1982-01-01

    Leg blood flow was studied with the constant infusion dye technique during static exercise of the thigh muscles (quadriceps) and during hand-grips at 15 and 25-30% of MVC. Blood flow and oxygen uptake in the leg increased in quadriceps exercise and reached their highest values (around 1.21/min and 165 ml/min respectively) at 25-30% of MVC, whereas leg vascular resistance decreased. Regional circulatory adaptations and the oxygen uptake - leg blood flow relationship were in close agreement with the responses found in dynamic leg exercise. In view of the marked rise in intramuscular pressure previously observed during quadriceps contractions, a restriction of blood flow and an increased vascular resistance had been expected. Involuntary activation of leg muscles other than the quadriceps may explain the finding. Contractions of the contralateral quadriceps induced a slight increase in leg blood flow, whereas hand-grips had no influence on blood flow or vascular resistance in the leg. The distribution of the cardiac output during static contractions is discussed, and it is concluded that during hand-grips the increase in blood flow is predominantly distributed to the upper part of the body.

  6. Børns leg og eksperimenterende virksomhed

    DEFF Research Database (Denmark)

    Damgaard Warrer, Sarah; Broström, Stig

    Børns leg og eksperimenterende virksomhed er et rigt felt med mange perspektiver, indgangsvinkler og nuancer. I denne bog kædes leg og det eksperimenterende og skabende sammen som to gensidigt forbundne fænomener og belyses i pædagogisk og didaktisk perspektiv. Desuden beskrives potentialet i båd...

  7. Soft Legged Wheel-Based Robot with Terrestrial Locomotion Abilities

    Directory of Open Access Journals (Sweden)

    Ali Sadeghi

    2016-12-01

    Full Text Available In recent years robotics has been influenced by a new approach, soft-robotics, bringing the idea that safe interaction with user and more adaptation to the environment can be achieved by exploiting easily deformable materials and flexible components in the structure of robots. In 2016, the soft-robotics community has promoted a new robotics challenge, named RoboSoft Grand Challenge, with the aim of bringing together different opinions on the usefulness and applicability of softness and compliancy in robotics. In this paper we describe the design and implementation of a terrestrial robot based on two soft legged wheels. The tasks predefined by the challenge were set as targets in the robot design, which finally succeeded to accomplish all the tasks. The wheels of the robot can passively climb over stairs and adapt to slippery grounds using two soft legs embedded in their structure. The soft legs, fabricated by integration of soft and rigid materials and mounted on the circumference of a conventional wheel, succeed to enhance its functionality and easily adapt to unknown grounds. The robot has a semi stiff tail that helps in the stabilization and climbing of stairs. An active wheel is embedded at the extremity of the tail in order to increase the robot maneuverability in narrow environments. Moreover two parallelogram linkages let the robot to reconfigure and shrink its size allowing entering inside gates smaller than its initial dimensions.

  8. Movement of the sacroiliac joint during the Active Straight Leg Raise test in patients with long-lasting severe sacroiliac joint pain.

    Science.gov (United States)

    Kibsgård, Thomas J; Röhrl, Stephan M; Røise, Olav; Sturesson, Bengt; Stuge, Britt

    2017-08-01

    The Active Straight Leg Raise is a functional test used in the assessment of pelvic girdle pain, and has shown to have good validity, reliability and responsiveness. The Active Straight Leg Raise is considered to examine the patients' ability to transfer load through the pelvis. It has been hypothesized that patients with pelvic girdle pain lack the ability to stabilize the pelvic girdle, probably due to instability or increased movement of the sacroiliac joint. This study examines the movement of the sacroiliac joints during the Active Straight Leg Raise in patients with pelvic girdle pain. Tantalum markers were inserted in the dorsal sacrum and ilium of 12 patients with long-lasting pelvic girdle pain scheduled for sacroiliac joint fusion surgery. Two to three weeks later movement of the sacroiliac joints during the Active Straight Leg Raise was measured with radiostereometric analysis. Small movements were detected. There was larger movement of the sacroiliac joint of the rested leg's sacroiliac joint compared to the lifted leg's side. A mean backward rotation of 0.8° and inward tilt of 0.3° were seen in the rested leg's sacroiliac joint. The movements of the sacroiliac joints during the Active Straight Leg Raise are small. There was a small backward rotation of the innominate bone relative to sacrum on the rested leg's side. Our findings contradict an earlier understanding that a forward rotation of the lifted leg's innominate occur while performing the Active Straight Leg Raise. Copyright © 2017. Published by Elsevier Ltd.

  9. Non-Stationary Rician Noise Estimation in Parallel MRI Using a Single Image: A Variance-Stabilizing Approach.

    Science.gov (United States)

    Pieciak, Tomasz; Aja-Fernandez, Santiago; Vegas-Sanchez-Ferrero, Gonzalo

    2017-10-01

    Parallel magnetic resonance imaging (pMRI) techniques have gained a great importance both in research and clinical communities recently since they considerably accelerate the image acquisition process. However, the image reconstruction algorithms needed to correct the subsampling artifacts affect the nature of noise, i.e., it becomes non-stationary. Some methods have been proposed in the literature dealing with the non-stationary noise in pMRI. However, their performance depends on information not usually available such as multiple acquisitions, receiver noise matrices, sensitivity coil profiles, reconstruction coefficients, or even biophysical models of the data. Besides, some methods show an undesirable granular pattern on the estimates as a side effect of local estimation. Finally, some methods make strong assumptions that just hold in the case of high signal-to-noise ratio (SNR), which limits their usability in real scenarios. We propose a new automatic noise estimation technique for non-stationary Rician noise that overcomes the aforementioned drawbacks. Its effectiveness is due to the derivation of a variance-stabilizing transformation designed to deal with any SNR. The method was compared to the main state-of-the-art methods in synthetic and real scenarios. Numerical results confirm the robustness of the method and its better performance for the whole range of SNRs.

  10. Effect of leg length on ROM, VJ and leg dexterity in dance.

    Science.gov (United States)

    Wyon, M A; Nevill, A M; Dekker, K; Brown, D D; Clarke, F; Pelly, J; Koutedakis, Y

    2010-09-01

    We investigated the associations between leg length and specific ballet movements in different skill groups. Volunteers were from an undergraduate dance programme (n=18), a pre-professional school (n=43) and from an elite classical ballet company (n=45). Individual data were collected for anthropometry, vertical jump, leg dexterity, and leg active and passive ROM. ANCOVA identified both main effects as significant with regard to vertical jump (gender Peffects with gender, skill or leg length. Active and passive range of motion noted gender (P=0.001) and skill (Peffects of leg length on fundamental ballet skills. The longer legs that benefit vertical jump have a negative influence on range of motion and leg dexterity except for highly skilled dancers, who through skill, seem to have overcome the effects of some of these dichotomies. Georg Thieme Verlag KG Stuttgart . New York.

  11. Generation and Stability of the gem-Diol Forms in Imidazole Derivatives Containing Carbonyl Groups. Solid-State NMR and Single-Crystal X-ray Diffraction Studies.

    Science.gov (United States)

    Crespi, Ayelén Florencia; Byrne, Agustín Jesús; Vega, Daniel; Chattah, Ana Karina; Monti, Gustavo Alberto; Lázaro-Martínez, Juan Manuel

    2018-01-18

    The stability of gem-diol forms in imidazolecarboxaldehyde isomers was studied by solid-state nuclear magnetic resonance (ss-NMR) combined with single-crystal X-ray diffraction studies. These methodologies also allowed determining the factors governing the occurrence of such rare functionalization in carbonyl moieties. Results indicated that the position of the carbonyl group is the main factor that governs the generation of geminal diols, having a clear and direct effect on hydration, since, under the same experimental conditions, only 36% of 5-imidazolecarboxaldehydes and 5% of 4-imidazolecarboxaldehydes were hydrated, as compared to 2-imidazolecarboxaldehydes, with which a 100% hydration was achieved. Not only did trifluoroacetic acid favor the addition of water to the carbonyl group but also it allowed obtaining single crystals. Single crystals of the gem-diol and the hemiacetal forms 2-imidazolecarboxaldehyde and N-methyl-2-imidazolecarboxaldehyde, respectively, were isolated and studied through 1 H ss-NMR. Mass spectrometry and solution-state NMR experiments were also performed to study the hydration process.

  12. Steerable Hopping Six-Legged Robot

    Science.gov (United States)

    Younse, Paulo; Aghazarian, Hrand

    2010-01-01

    The figure depicts selected aspects of a six-legged robot that moves by hopping and that can be steered in the sense that it can be launched into a hop in a controllable direction. This is a prototype of hopping robots being developed for use in scientific exploration of rough terrain on remote planets that have surface gravitation less than that of Earth. Hopping robots could also be used on Earth, albeit at diminished hopping distances associated with the greater Earth gravitation. The upper end of each leg is connected through two universal joints to an upper and a lower hexagonal frame, such that the tilt of the leg depends on the relative position of the two frames. Two non-back-driveable worm-gear motor drives are used to control the relative position of the two frames along two axes 120 apart, thereby controlling the common tilt of all six legs and thereby, further, controlling the direction of hopping. Each leg includes an upper and a lower aluminum frame segment with a joint between them. A fiberglass spring, connected via hinges to both segments, is used to store hopping energy prior to launch into a hop and to cushion the landing at the end of the hop. A cable for loading the spring is run into each leg through the center of the universal joints and then down along the center lines of the segments to the lower end of the leg. A central spool actuated by a motor with a harmonic drive and an electromagnetic clutch winds in all six cables to compress all six springs (thereby also flexing all six legs) simultaneously. To ensure that all the legs push off and land in the same direction, timing- belt pulley drives are attached to the leg segments, restricting the flexing and extension of all six legs to a common linear motion. In preparation for a hop, the spool can be driven to load the spring legs by an amount corresponding to a desired hop distance within range. The amount of compression can be computed from the reading of a shaft-angle encoder that

  13. ACL rupture is a single leg injury but a double leg problem

    DEFF Research Database (Denmark)

    Benjaminse, Anne; Holden, Sinead; Myer, Gregory D.

    2018-01-01

    The authors present their thoughts on the focus on targeting asymmetry in rehabilitation after ACL reconstruction, which they think may not be rich enough to identify deficits.......The authors present their thoughts on the focus on targeting asymmetry in rehabilitation after ACL reconstruction, which they think may not be rich enough to identify deficits....

  14. Multiple Chaotic Central Pattern Generators with Learning for Legged Locomotion and Malfunction Compensation

    DEFF Research Database (Denmark)

    Ren, Guanjiao; Chen, Weihai; Dasgupta, Sakyasingha

    2015-01-01

    on a simulated annealing algorithm. In a normal situation, the CPGs synchronize and their dynamics are identical. With leg malfunction or disability, the CPGs lose synchronization leading to independent dynamics. In this case, the learning mechanism is applied to automatically adjust the remaining legs...... chaotic CPG controller has difficulties dealing with leg malfunction. Specifically, in the scenarios presented here, its movement permanently deviates from the desired trajectory. To address this problem, we extend the single chaotic CPG to multiple CPGs with learning. The learning mechanism is based...... in a physical simulation of a quadruped as well as a hexapod robot and finally in a real six-legged walking machine called AMOSII. The experimental results presented here reveal that using multiple CPGs with learning is an effective approach for adaptive locomotion generation where, for instance, different body...

  15. Design of Single-Atom Co-N5Catalytic Site: A Robust Electrocatalyst for CO2Reduction with Nearly 100% CO Selectivity and Remarkable Stability.

    Science.gov (United States)

    Pan, Yuan; Lin, Rui; Chen, Yinjuan; Liu, Shoujie; Zhu, Wei; Cao, Xing; Chen, Wenxing; Wu, Konglin; Cheong, Weng-Chon; Wang, Yu; Zheng, Lirong; Luo, Jun; Lin, Yan; Liu, Yunqi; Liu, Chenguang; Li, Jun; Lu, Qi; Chen, Xin; Wang, Dingsheng; Peng, Qing; Chen, Chen; Li, Yadong

    2018-03-14

    We develop an N-coordination strategy to design a robust CO 2 reduction reaction (CO 2 RR) electrocatalyst with atomically dispersed Co-N 5 site anchored on polymer-derived hollow N-doped porous carbon spheres. Our catalyst exhibits high selectivity for CO 2 RR with CO Faradaic efficiency (FE CO ) above 90% over a wide potential range from -0.57 to -0.88 V (the FE CO exceeded 99% at -0.73 and -0.79 V). The CO current density and FE CO remained nearly unchanged after electrolyzing 10 h, revealing remarkable stability. Experiments and density functional theory calculations demonstrate single-atom Co-N 5 site is the dominating active center simultaneously for CO 2 activation, the rapid formation of key intermediate COOH* as well as the desorption of CO.

  16. Hematopoietic Lineage Transcriptome Stability and Representation in PAXgeneTM Collected Peripheral Blood Utilising SPIA Single-Stranded cDNA Probes for Microarray

    Directory of Open Access Journals (Sweden)

    Laura Kennedy

    2008-01-01

    Full Text Available Peripheral blood as a surrogate tissue for transcriptome profiling holds great promise for the discovery of diagnostic and prognostic disease biomarkers, particularly when target tissues of disease are not readily available. To maximize the reliability of gene expression data generated from clinical blood samples, both the sample collection and the microarray probe generation methods should be optimized to provide stabilized, reproducible and representative gene expression profiles faithfully representing the transcriptional profiles of the constituent blood cell types present in the circulation. Given the increasing innovation in this field in recent years, we investigated a combination of methodological advances in both RNA stabilisation and microarray probe generation with the goal of achieving robust, reliable and representative transcriptional profiles from whole blood. To assess the whole blood profiles, the transcriptomes of purified blood cell types were measured and compared with the global transcriptomes measured in whole blood. The results demonstrate that a combination of PAXgeneTM RNA stabilising technology and single-stranded cDNA probe generation afforded by the NuGEN Ovation RNA amplification system V2TM enables an approach that yields faithful representation of specific hematopoietic cell lineage transcriptomes in whole blood without the necessity for prior sample fractionation, cell enrichment or globin reduction. Storage stability assessments of the PAXgeneTM blood samples also advocate a short, fixed room temperature storage time for all PAXgeneTM blood samples collected for the purposes of global transcriptional profiling in clinical studies.

  17. Hematopoietic Lineage Transcriptome Stability and Representation in PAXgene Collected Peripheral Blood Utilising SPIA Single-Stranded cDNA Probes for Microarray.

    Science.gov (United States)

    Kennedy, Laura; Vass, J Keith; Haggart, D Ross; Moore, Steve; Burczynski, Michael E; Crowther, Dan; Miele, Gino

    2008-08-25

    Peripheral blood as a surrogate tissue for transcriptome profiling holds great promise for the discovery of diagnostic and prognostic disease biomarkers, particularly when target tissues of disease are not readily available. To maximize the reliability of gene expression data generated from clinical blood samples, both the sample collection and the microarray probe generation methods should be optimized to provide stabilized, reproducible and representative gene expression profiles faithfully representing the transcriptional profiles of the constituent blood cell types present in the circulation. Given the increasing innovation in this field in recent years, we investigated a combination of methodological advances in both RNA stabilisation and microarray probe generation with the goal of achieving robust, reliable and representative transcriptional profiles from whole blood. To assess the whole blood profiles, the transcriptomes of purified blood cell types were measured and compared with the global transcriptomes measured in whole blood. The results demonstrate that a combination of PAXgene() RNA stabilising technology and single-stranded cDNA probe generation afforded by the NuGEN Ovation RNA amplification system V2() enables an approach that yields faithful representation of specific hematopoietic cell lineage transcriptomes in whole blood without the necessity for prior sample fractionation, cell enrichment or globin reduction. Storage stability assessments of the PAXgene() blood samples also advocate a short, fixed room temperature storage time for all PAXgene() blood samples collected for the purposes of global transcriptional profiling in clinical studies.

  18. Hematopoietic Lineage Transcriptome Stability and Representation in PAXgene™ Collected Peripheral Blood Utilising SPIA Single-Stranded cDNA Probes for Microarray

    Science.gov (United States)

    Kennedy, Laura; Vass, J. Keith; Haggart, D. Ross; Moore, Steve; Burczynski, Michael E.; Crowther, Dan; Miele, Gino

    2008-01-01

    Peripheral blood as a surrogate tissue for transcriptome profiling holds great promise for the discovery of diagnostic and prognostic disease biomarkers, particularly when target tissues of disease are not readily available. To maximize the reliability of gene expression data generated from clinical blood samples, both the sample collection and the microarray probe generation methods should be optimized to provide stabilized, reproducible and representative gene expression profiles faithfully representing the transcriptional profiles of the constituent blood cell types present in the circulation. Given the increasing innovation in this field in recent years, we investigated a combination of methodological advances in both RNA stabilisation and microarray probe generation with the goal of achieving robust, reliable and representative transcriptional profiles from whole blood. To assess the whole blood profiles, the transcriptomes of purified blood cell types were measured and compared with the global transcriptomes measured in whole blood. The results demonstrate that a combination of PAXgene™ RNA stabilising technology and single-stranded cDNA probe generation afforded by the NuGEN Ovation RNA amplification system V2™ enables an approach that yields faithful representation of specific hematopoietic cell lineage transcriptomes in whole blood without the necessity for prior sample fractionation, cell enrichment or globin reduction. Storage stability assessments of the PAXgene™ blood samples also advocate a short, fixed room temperature storage time for all PAXgene™ blood samples collected for the purposes of global transcriptional profiling in clinical studies. PMID:19578521

  19. Effects of different loading protocols on the secondary stability and peri-implant bone density of the single implants in the posterior maxilla.

    Science.gov (United States)

    Akoğlan, Mücahide; Tatli, Ufuk; Kurtoğlu, Cem; Salimov, Fariz; Kürkçü, Mehmet

    2017-08-01

    Immediate or early loading of dental implants becomes a clinically feasible concept. The aim was to evaluate the effects of different loading protocols (immediate, early, and delayed) on secondary stability and peri-implant bone density of single implants in the posterior maxilla. Thirty-nine implants (Dentium, South-Korea) were placed in 39 patients. After placement, implant stability values (ISQ) and baseline peri-implant bone density values derived from cone-beam computed tomography were recorded. Thirteen implants were included randomly in each loading groups. The secondary ISQ values were recorded during follow-up visits. Peri-implant bone density values were measured 1 year after placement again. Data was statistically analyzed. Immediate-loaded group showed the lowest ISQ values, 1 month after placement. During the next follow-up visits, delayed-loaded group showed the lowest ISQ values while other groups showed comparable results. Early loading increased the peri-implant bone density greater than the other groups. The peri-implant bone of early-loaded implants was significantly denser than that of immediate- and delayed-loaded implants, 1 year after placement. Density increment can be judged as the radiological findings of loaded-bone, which may also reduce the need for histomorphometric analysis of human biopsy to evaluate the bone reaction around the implants. © 2017 Wiley Periodicals, Inc.

  20. Ultrasonic characterization of Cu-Al-Ni single crystals lattice stability in the vicinity of the phase transition.

    Science.gov (United States)

    Landa, Michal; Novák, Václav; Sedlák, Petr; Sittner, Petr

    2004-04-01

    Measurements of elastic constants of the austenite phase when approaching the phase transformation either upon cooling or stressing is of the crucial interest for the shape memory alloy field. Acoustic properties (wave velocity and also attenuation changes) of the Cu-Al-Ni single crystal were investigated in situ during stress-induced martensitic transformation at constant (room) temperature. The parent austenite cubic lattice of the Cu-Al-Ni exhibits very high elastic anisotropy (anisotropy factor A approximately 12). The measurements were made using nine combinations of (i) applied uniaxial compression in a given crystal direction, (ii) the wave propagation and (iii) polarization vectors. The chosen configurations are sufficient for evaluation of all independent third order elastic constants (TOEC). The longitudinal modes were also measured by the immersion technique, using the transducer pair in a water tank installed on the testing machine. The device works as "a ultrasonic extensometer" measuring a transverse strain of the specimen. The dependencies of both natural and initial wave velocities on the applied stress may be evaluated. Three elastic constants of the stress-induced martensite were determined. The elastic properties were found to vary with the increasing stress above the Ms transformation temperature, which is interpreted as a precursor for the martensitic transformation. The onset of the transformation was additionally identified from the acoustic emission measurement.

  1. A Combination of Structural and Empirical Analyses Delineates the Key Contacts Mediating Stability and Affinity Increases in an Optimized Biotherapeutic Single-chain Fv (scFv).

    Science.gov (United States)

    Tu, Chao; Terraube, Virginie; Tam, Amy Sze Pui; Stochaj, Wayne; Fennell, Brian J; Lin, Laura; Stahl, Mark; LaVallie, Edward R; Somers, Will; Finlay, William J J; Mosyak, Lydia; Bard, Joel; Cunningham, Orla

    2016-01-15

    Fully-human single-chain Fv (scFv) proteins are key potential building blocks of bispecific therapeutic antibodies, but they often suffer from manufacturability and clinical development limitations such as instability and aggregation. The causes of these scFv instability problems, in proteins that should be theoretically stable, remains poorly understood. To inform the future development of such molecules, we carried out a comprehensive structural analysis of the highly stabilized anti-CXCL13 scFv E10. E10 was derived from the parental 3B4 using complementarity-determining region (CDR)-restricted mutagenesis and tailored selection and screening strategies, and carries four mutations in VL-CDR3. High-resolution crystal structures of parental 3B4 and optimized E10 scFvs were solved in the presence and absence of human CXCL13. In parallel, a series of scFv mutants was generated to interrogate the individual contribution of each of the four mutations to stability and affinity improvements. In combination, these analyses demonstrated that the optimization of E10 was primarily mediated by removing clashes between both the VL and the VH, and between the VL and CXCL13. Importantly, a single, germline-encoded VL-CDR3 residue mediated the key difference between the stable and unstable forms of the scFv. This work demonstrates that, aside from being the critical mediators of specificity and affinity, CDRs may also be the primary drivers of biotherapeutic developability. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. EFFECT OF CHICKEN BONE-MARROW ADDITION TO BREAST AND LEG MEAT SUBJECTED TO DIFFERENT GRINDING PROCESSES

    OpenAIRE

    POLLONIO, MAR; ANTUNES, AJ

    1993-01-01

    Mechanical deboning makes chicken meat highly suscetible to lipid oxidation. Tissue disruption and the incorporation of unknown amounts of bone marrow are among the main factors involved. This research was undertaken to evaluate the effect of chicken bone marrow addition to breast and leg meat, ground in a regular meat grinder and passed through a mechanical deboner on lipid stability during frozen storage at -18-degrees-C. Breast and leg meat were manually deboned: a portion was processed th...

  3. Stiffness characteristics of compliant three segment leg with the self-stable region in slow and fast running

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Oh Seok; Ha, Sung Mok; Lee, Dong Ha [Convergence Research Center for WellnessDaegu Gyeongbuk Institute of Science and TechnologyDaegu (Korea, Republic of)

    2016-12-15

    In this paper, we propose the stiffness characteristics of compliant three segment leg that can have a self-stable region in slow and fast running. This proposition can contribute to reducing the control effort and enhancing the locomotion energy efficiency for the compliant three segment legged robot in slow and fast running. Previous research indicated that the running self-stable region of the spring-mass system is located in a relatively fast running region and that of the two segment leg is located in a relatively slow running region. In this paper, we analyze the stiffness characteristics of the spring-mass system and the two segment leg to explain the previous research results. From this analysis, we propose the stiffness characteristics of the compliant three segment leg with a self-stable region in slow and fast running. We further design the compliant three segment leg based on this proposition and check its structural stability. We examine the running self-stable region of this compliant three segment leg to determine whether it has a self-stable region in slow and fast running. We also examine the walking self-stable region of this compliant three segment leg.

  4. Leg stiffness during phases of countermovement and take-off in vertical jump.

    Science.gov (United States)

    Struzik, Artur; Zawadzki, Jerzy

    2013-01-01

    With respect to cyclic movements such as human gait, running or hopping, leg stiffness is a little variable parameter. The aim of this study was to investigate changes in leg stiffness during the phase of countermovement and take-off when performing a single maximum counter-movement jump. Kistler force plates and a BTS SMART system for comprehensive motion analysis were employed in the study. The study covered a group of 12 athletes from university basketball teams. Leg stiffness was calculated in those parts of countermovement and take-off phases where its level is relatively constant and the relationship F(Δl) is similar to linear one. Mean total stiffness (±SD) in both legs in the countermovement phase amounted to 6.5 ± 1.5 kN/m, whereas during the take-off phase this value was 6.9 ± 1 kN/m. No statistically significant differences were found between leg stiffness during the countermovement phase and takeoff phase in the study group at the level of significance set at α = 0.05. This suggests that the leg stiffness in phase of countermovement and phase of take-off are much similar to each other, despite different function of both phases. Similar to cyclic movements, leg stiffness turned out relatively constant when performing a single vertical jump. There are also reported statistically significant correlations between body mass, body height, length of lower limbs and leg stiffness. The stiffness analysed by the authors should be understood as quasi-stiffness because the measurements of ΔF(Δl) were made during transient states where inertia and dumping forces are likely to affect the final result.

  5. Hot Leg Piping Materials Issues

    International Nuclear Information System (INIS)

    V. Munne

    2006-01-01

    With Naval Reactors (NR) approval of the Naval Reactors Prime Contractor Team (NRPCT) recommendation to develop a gas cooled reactor directly coupled to a Brayton power conversion system as the space nuclear power plant (SNPP) for Project Prometheus (References a and b) the reactor outlet piping was recognized to require a design that utilizes internal insulation (Reference c). The initial pipe design suggested ceramic fiber blanket as the insulation material based on requirements associated with service temperature capability within the expected range, very low thermal conductivity, and low density. Nevertheless, it was not considered to be well suited for internal insulation use because its very high surface area and proclivity for holding adsorbed gases, especially water, would make outgassing a source of contaminant gases in the He-Xe working fluid. Additionally, ceramic fiber blanket insulating materials become very friable after relatively short service periods at working temperatures and small pieces of fiber could be dislodged and contaminate the system. Consequently, alternative insulation materials were sought that would have comparable thermal properties and density but superior structural integrity and greatly reduced outgassing. This letter provides technical information regarding insulation and materials issues for the Hot Leg Piping preconceptual design developed for the Project Prometheus space nuclear power plant (SNPP)

  6. Stability of detectability over 17 years at a single site and other lizard detection comparisons from Guam

    Science.gov (United States)

    Rodda, Gordon H.; Dean-Bradley, Kathryn; Campbell, Earl W.; Fritts, Thomas H.; Lardner, Bjorn; Yackel Adams, Amy A.; Reed, Robert N.

    2015-01-01

    To obtain quantitative information about population dynamics from counts of animals, the per capita detectabilities of each species must remain constant over the course of monitoring. We characterized lizard detection constancy for four species over 17 yr from a single site in northern Guam, a relatively benign situation because detection was relatively easy and we were able to hold constant the site, habitat type, species, season, and sampling method. We monitored two species of diurnal terrestrial skinks (Carlia ailanpalai [Curious Skink], Emoia caeruleocauda [Pacific Bluetailed Skink]) using glueboards placed on the ground in the shade for 3 h on rainless mornings, yielding 10,286 skink captures. We additionally monitored two species of nocturnal arboreal geckos (Hemidactylus frenatus [Common House Gecko]; Lepidodactylus lugubris [Mourning Gecko]) on the basis of 15,212 sightings. We compared these count samples to a series of complete censuses we conducted from four or more total removal plots (everything removed to mineral soil) totaling 400 m2(about 1% of study site) in each of the years 1995, 1999, and 2012, providing time-stamped quantification of detectability for each species. Unfortunately, the actual population trajectories taken by the four species were masked by unexplained variation in detectability. This observation of debilitating latent variability in lizard detectability under nearly ideal conditions undercuts our trust in population estimation techniques that fail to quantify venue-specific detectability, rely on pooled detection probability estimates, or assume that modulation in predefined environmental covariates suffices for estimating detectability.

  7. Effect of Semi-Rigid and Soft Ankle Braces on Static and Dynamic Postural Stability in Young Male Adults

    Directory of Open Access Journals (Sweden)

    Noriaki Maeda, Yukio Urabe, Shogo Tsutsumi, Shuhei Numano, Miho Morita, Takuya Takeuchi, Shou Iwata, Toshiki Kobayashi

    2016-06-01

    Full Text Available Ankle braces have been suggested to protect ankle joints from a sprain by restricting inversion and improving proprioception. However, the difference in effects between a semi-rigid brace and a soft brace regarding dynamic postural control after landing is not known. The aim of the present study was to compare the effect of soft (SB and semi-rigid (SRB ankle braces on static and dynamic postural stability in healthy young men. Altogether, 21 male adults (mean age 24.0 ± 1.5 years were assessed for one leg while wearing non-brace (NB, SB or SRB. Balance in single-limb stance on a single-force platform with open eyes and closed eyes were assessed for the non-dominant leg under SB, SRB, and NB conditions. Locus length/second (mm/s and the enveloped area (mm·s-2 surrounded by the circumference of the wave pattern during postural sway were calculated. For assessing dynamic postural stability, the participant jumped and landed on one leg on a force platform, and the Dynamic Postural Stability Index (DPSI and the maximum vertical ground reaction force (vGRFmax were measured. The data were compared among the three conditions with repeated-measures analysis of variance. The correlations between locus length/second, enveloped area, DPSI values (DPSI, Anterior-Posterior Stability Index, Medial-Lateral Stability Index, and Vertical Stability Index, and vGRFmax were then calculated. The results indicated that locus length/second and enveloped area with open eyes and closed eyes were not significantly different for each condition. However, a significant lower in the DPSI and Vertical Stability Index were observed with the SRB in comparison to the SB and NB. A significant improvement in vGRFmax was also observed with the SRB in comparison to NB. SRB demonstrated a positive effect on dynamic postural stability after landing on a single leg and may improve balance by increasing dynamic postural stability.

  8. Leg muscles activities during hyperventilation following a cycling exercise.

    Science.gov (United States)

    David, P; Mora, I; Terrien, J; Lelard, T; Petitjean, M

    2010-01-01

    The goal of this study was to establish how increased ventilation modifies postural stability, as characterized by body sway and leg muscle activities. Twelve healthy subjects had to perform six 30-second postural tests: one pre-exercise test while breathing gently and then one test every minute for the five minutes immediately following a maximum-intensity, incremental cycling exercise test. Subjects were asked to maintain an upright stance on a force plate for 30 s, with their eyes open. Movement of the centre of pressure in the sagittal plane was monitored in the time and spectral domains. Myoelectric activities of the soleus and tibialis anterior muscles were recorded using surface electromyography. Ventilatory parameters were measured with a portable, telemetric device. Postural changes related to respiratory variations were quantified by coherence analysis. The results showed that hyperventilation induced by exercise was accompanied by a significant increase in postural parameters, indicating a reduction in postural stability following a change in ventilatory drive. Coherence analysis confirmed the ventilatory origin of the postural oscillations. The results suggest that ventilation may be an important factor in postural disturbance during physical activity. The observed increases in leg muscle activities were most likely related to musculo-articular stiffening.

  9. Leg ulcer in Werner syndrome (adult progeria): a case report.

    Science.gov (United States)

    Fumo, Giuseppe; Pau, Monica; Patta, Federico; Aste, Nicola; Atzori, Laura

    2013-03-15

    Werner syndrome (WS; MIM#277700) or adult progeria, is a rare disease, associated with mutations of a single gene (RECQL2 or WRN), located on chromosome 8 (8p12). It codes a DNA-helicase, whose defects cause genomic instability. The highest incidences are reported in Japan and Sardinia (Italy). On this major island of the Mediterranean Basin, the WS cases have been observed in the northern areas. The authors describe the apparently first case reported in southern Sardinia, a 51-year-old woman, who was born in and resides in the province of Cagliari. She presented with a 9-year history of an intractable leg ulcer and other characteristic symptoms, including "bird-like" face, high-pitched voice, premature greying, short stature, abdominal obesity in contrast with thin body type, scleroderma-like legs, decreased muscle mass, diabetes, atherosclerosis, and premature menopause. A specialized genetic Institute of Research (IRCCS-IDI, Rome) confirmed the clinical diagnosis. There is no cure or specific treatment and patients must be periodically screened for an increased risk of cardiovascular and cerebrovascular disease and malignancies. Among the many findings, leg ulcers significantly affect the patient's quality of life. This problem may send the patient to the dermatologist, who finally suspects the diagnosis. Poor response to medical treatment may require aggressive repeated surgery, with poor or temporary results.

  10. A legged anchoring mechanism for capsule endoscopes using micropatterned adhesives.

    Science.gov (United States)

    Glass, Paul; Cheung, Eugene; Sitti, Metin

    2008-12-01

    This paper presents a new concept for an anchoring mechanism to enhance existing capsule endoscopes. The mechanism consists of three actuated legs with compliant feet lined with micropillar adhesives to be pressed into the intestine wall to anchor the device at a fixed location. These adhesive systems are inspired by gecko and beetle foot hairs. Single-leg and full capsule mathematical models of the forces generated by the legs are analyzed to understand capsule performance. Empirical friction models for the interaction of the adhesives with an intestinal substrate were experimentally determined in vitro using dry and oil-coated elastomer micropillar arrays with 140 microm pillar diameter, 105 microm spacing between pillars, and an aspect ratio of 1:1 on fresh porcine small intestine specimens. Capsule prototypes were also tested in a simulated intestine environment and compared with predicted peristaltic loads to assess the viability of the proposed design. The experimental results showed that a deployed 10 gr capsule robot can withstand axial peristaltic loads and anchor reliably when actuation forces are greater than 0.27 N using dry micropillars. Required actuation forces may be reduced significantly by using micropillars coated with a thin silicone oil layer.

  11. Simvastatin-induced nocturnal leg pain disappears with pravastatin substitution

    Directory of Open Access Journals (Sweden)

    Stojaković Nataša

    2013-01-01

    Full Text Available Introduction. Statins have similar side effects that do not always occur at the same rate among the various statins. We present a case of simvastatin-induced muscle toxicity that disappeared when pravastatin was substituted for the original drug. Case Outline. A 74-year-old male, a nonsmoker, complained of severe nocturnal leg cramps. The patient also complained that similar painful cramping occurred when he walked rapidly or jogged. Because some components of his lipid panel exceeded the ‘desirable’ range, and as he had a history of myocardial infarction, his family physician prescribed simvastatin (40 mg/day. The patient had taken this medication for the past eight years. The painful nocturnal episodes started two years ago and affected either one or the other leg. Four months ago we discontinued his simvastatin and prescribed pravastatin (80 mg/day. At a follow-up visit six weeks later, the patient reported that his leg pains at night and the pain experienced after brisk walking had disappeared. Four months after the substitution of pravastatin for simvastatin, the patient reported that his complete lack of symptoms had continued. Conclusion. These painful muscle cramps were probably caused by an inadequate vascular supply to the calf and foot muscles. Perhaps a combination of advanced age and atherosclerotic changes created a predisposition for the simvastatin-induced leg cramps. Pravastatin differs from simvastatin in several ways. It is not metabolized by cytochrome P450 (CYP 3A4 oxidases, and thus is not influenced by CYP 3A4 inhibitors like simvastatin. Also, simvastatin is associated with single-nucleotide polymorphisms located within the SLCO1B1 gene on the chromosome 12 and established myopathy, while pravastatin lacks this association. These differences may contribute to increased tolerance to pravastatin in this particular case.

  12. Leg pain (Osgood-Schlatter) (image)

    Science.gov (United States)

    Leg pain in older children or young adolescents can occur for many reasons. An Osgood-Schlatter lesion results from continued trauma to the anterior tibial bone and causes a visible lump below the knee.

  13. Support Leg Loading in Punt Kicking

    Science.gov (United States)

    Kermond, John; Konz, Stephen

    1978-01-01

    Maximum distance in football punt kicking is associated with a maximum force transfer to the ball rather than a maximum force transfer through the ground via the support leg. For maximum distance, tred lightly. (Author)

  14. Sturge-Weber syndrome - legs (image)

    Science.gov (United States)

    ... nervous system (neurocutaneous) and is associated with Port Wine Stain, red vascular markings on the face and other parts of the body (shown here on the legs). This is an unusual case, due to the large size of the lesion ( ...

  15. Leg or foot amputation - dressing change

    Science.gov (United States)

    ... patientinstructions/000018.htm Leg or foot amputation - dressing change To use the sharing features on this page, please enable JavaScript. You will need to change the dressing on your limb. This will help ...

  16. Single-phase and two-phase anaerobic digestion of fruit and vegetable waste: Comparison of start-up, reactor stability and process performance

    Energy Technology Data Exchange (ETDEWEB)

    Ganesh, Rangaraj [INRA, UR50, Laboratoire de Biotechnologie de l’Environnement, Avenue des Etangs, Narbonne F-11100 (France); Torrijos, Michel, E-mail: michel.torrijos@supagro.inra.fr [INRA, UR50, Laboratoire de Biotechnologie de l’Environnement, Avenue des Etangs, Narbonne F-11100 (France); Sousbie, Philippe [INRA, UR50, Laboratoire de Biotechnologie de l’Environnement, Avenue des Etangs, Narbonne F-11100 (France); Lugardon, Aurelien [Naskeo Environnment, 52 rue Paul Vaillant Couturier, F-92240 Malakoff (France); Steyer, Jean Philippe; Delgenes, Jean Philippe [INRA, UR50, Laboratoire de Biotechnologie de l’Environnement, Avenue des Etangs, Narbonne F-11100 (France)

    2014-05-01

    Highlights: • Single-phase and two-phase systems were compared for fruit and vegetable waste digestion. • Single-phase digestion produced a methane yield of 0.45 m{sup 3} CH{sub 4}/kg VS and 83% VS removal. • Substrate solubilization was high in acidification conditions at 7.0 kg VS/m{sup 3} d and pH 5.5–6.2. • Energy yield was lower by 33% for two-phase system compared to the single-phase system. • Simple and straight-forward operation favored single phase process over two-phase process. - Abstract: Single-phase and two-phase digestion of fruit and vegetable waste were studied to compare reactor start-up, reactor stability and performance (methane yield, volatile solids reduction and energy yield). The single-phase reactor (SPR) was a conventional reactor operated at a low loading rate (maximum of 3.5 kg VS/m{sup 3} d), while the two-phase system consisted of an acidification reactor (TPAR) and a methanogenic reactor (TPMR). The TPAR was inoculated with methanogenic sludge similar to the SPR, but was operated with step-wise increase in the loading rate and with total recirculation of reactor solids to convert it into acidification sludge. Before each feeding, part of the sludge from TPAR was centrifuged, the centrifuge liquid (solubilized products) was fed to the TPMR and centrifuged solids were recycled back to the reactor. Single-phase digestion produced a methane yield of 0.45 m{sup 3} CH{sub 4}/kg VS fed and VS removal of 83%. The TPAR shifted to acidification mode at an OLR of 10.0 kg VS/m{sup 3} d and then achieved stable performance at 7.0 kg VS/m{sup 3} d and pH 5.5–6.2, with very high substrate solubilization rate and a methane yield of 0.30 m{sup 3} CH{sub 4}/kg COD fed. The two-phase process was capable of high VS reduction, but material and energy balance showed that the single-phase process was superior in terms of volumetric methane production and energy yield by 33%. The lower energy yield of the two-phase system was due to the loss of

  17. Efficiency and Speed in Legged Robots

    Science.gov (United States)

    2011-03-22

    which we substitute into (4.42) : ( -mv s J O=-km+ mvc -k __ c __ V v 2 c c 46 (4.43) (4.44) (4.45) (4.46) to fInd the switching curve m 3 s...Legged Mechanisms. IVSS. Traverse City, MI Muench, P., Alexander, J., Quinn, R., & Aschenbeck, K. (2005) Pneumatic Spring for Legged Walker. SPIE

  18. Flexural characteristics of a stack leg

    International Nuclear Information System (INIS)

    Cook, J.

    1979-06-01

    A 30 MV tandem Van de Graaff accelerator is at present under construction at Daresbury Laboratory. The insulating stack of the machine is of modular construction, each module being 860 mm in length. Each live section stack module contains 8 insulating legs mounted between bulkhead rings. The design, fabrication (from glass discs bonded to stainless steel discs using an epoxy film adhesive) and testing of the stack legs is described. (U.K.)

  19. Three cross leg flaps for lower leg reconstruction of Gustilo type III C open fracture

    Directory of Open Access Journals (Sweden)

    Kazufumi Sano

    2016-01-01

    Full Text Available A 60 year old male had Gustilo type III C open fracture of the right lower leg. After radical debridement, the large open defect including certain loss of the bone tissue was successfully augmented and covered, by consecutive three cross-leg flaps, which consisted of the free rectus abdominis musculocutaneous flap, the fibula osteocutaneous flap and the conventional sural flap. Although indication for amputation or preservation is decided with multiple factors in each case, a strategic combination of cross-leg flap, free flap, external fixation and vascular delay could increase the potential of preservation of the lower leg with even disastrous Gustilo type III C.

  20. Walk-Startup of a Two-Legged Walking Mechanism

    Science.gov (United States)

    Babković, Kalman; Nagy, László; Krklješ, Damir; Borovac, Branislav

    There is a growing interest towards humanoid robots. One of their most important characteristic is the two-legged motion - walk. Starting and stopping of humanoid robots introduce substantial delays. In this paper, the goal is to explore the possibility of using a short unbalanced state of the biped robot to quickly gain speed and achieve the steady state velocity during a period shorter than half of the single support phase. The proposed method is verified by simulation. Maintainig a steady state, balanced gait is not considered in this paper.

  1. Comparative Effectiveness of Straight Leg Raise and Slump Stretching in Subjects with Low Back Pain with Adverse Neural Tension

    Directory of Open Access Journals (Sweden)

    Neha Malik

    2016-03-01

    Full Text Available Background: Chronic low back pain is a common problem in the present time. It is commonly associated with altered mechanical tension in the peripheral nerves as tested by straight leg raising or slump tests. These maneuvers are used for treatment of such disorders. Both the straight leg raise and slump stretching techniques have been found to be beneficial in the treatment of low back pain with distal symptoms. A comparison of the two techniques will determine if one technique is better than the other. Also, it will add to the evidence for their effectiveness in managing symptoms in patients with low back pain. Objective: To evaluate the comparative effectiveness of straight leg raise and slump stretching on pain and range of passive straight leg raise in subjects with low back pain. Methods and measures: 50 patients with low back pain, satisfying the inclusion and exclusion criteria were randomly assigned to three groups. Group 1 was the straight leg raise group (n=15. Group 2 was the slump group (n=13. Group 3 was the control group (n=12. Baseline measurements of pain intensity as measured by the Numeric Pain Rating Scale (NPRS and range of passive straight leg raise (PSLR were taken. Group 1 received 6 sessions of straight leg raise stretching and lumbar stabilization exercises. Group 2 received 6 sessions of slump stretching and lumbar stabilization exercises. Group 3 received 6 sessions of lumbar stabilization exercises only. Statistical analysis: Paired t-test was used for within group analysis of NPRS and PSLR. ANOVA followed by post hoc analysis was employed for between group comparisons. Results: No significant difference was found in NPRS between straight leg raise and slump groups (p > 0.05 while they differed significantly in PSLR (p < 0.05. Both the groups showed significantly better results in PSLR when compared to the control group (P<0.05. Statistically significant improvements were found in all the 3 groups for both the outcome

  2. A common neural element receiving rhythmic arm and leg activity as assessed by reflex modulation in arm muscles.

    Science.gov (United States)

    Sasada, Syusaku; Tazoe, Toshiki; Nakajima, Tsuyoshi; Futatsubashi, Genki; Ohtsuka, Hiroyuki; Suzuki, Shinya; Zehr, E Paul; Komiyama, Tomoyoshi

    2016-04-01

    Neural interactions between regulatory systems for rhythmic arm and leg movements are an intriguing issue in locomotor neuroscience. Amplitudes of early latency cutaneous reflexes (ELCRs) in stationary arm muscles are modulated during rhythmic leg or arm cycling but not during limb positioning or voluntary contraction. This suggests that interneurons mediating ELCRs to arm muscles integrate outputs from neural systems controlling rhythmic limb movements. Alternatively, outputs could be integrated at the motoneuron and/or supraspinal levels. We examined whether a separate effect on the ELCR pathways and cortico-motoneuronal excitability during arm and leg cycling is integrated by neural elements common to the lumbo-sacral and cervical spinal cord. The subjects performed bilateral leg cycling (LEG), contralateral arm cycling (ARM), and simultaneous contralateral arm and bilateral leg cycling (A&L), while ELCRs in the wrist flexor and shoulder flexor muscles were evoked by superficial radial (SR) nerve stimulation. ELCR amplitudes were facilitated by cycling tasks and were larger during A&L than during ARM and LEG. A low stimulus intensity during ARM or LEG generated a larger ELCR during A&L than the sum of ELCRs during ARM and LEG. We confirmed this nonlinear increase in single motor unit firing probability following SR nerve stimulation during A&L. Furthermore, motor-evoked potentials following transcranial magnetic and electrical stimulation did not show nonlinear potentiation during A&L. These findings suggest the existence of a common neural element of the ELCR reflex pathway that is active only during rhythmic arm and leg movement and receives convergent input from contralateral arms and legs. Copyright © 2016 the American Physiological Society.

  3. Locomotor Adaptability Task Promotes Intense and Task-Appropriate Output From the Paretic Leg During Walking.

    Science.gov (United States)

    Clark, David J; Neptune, Richard R; Behrman, Andrea L; Kautz, Steven A

    2016-03-01

    To test the hypothesis that participants with stroke will exhibit appropriate increase in muscle activation of the paretic leg when taking a long step with the nonparetic leg compared to during steady-state walking, with a consequent increase in biomechanical output and symmetry during the stance phase of the modified gait cycle. Single-session observational study. Clinical research center in an outpatient hospital setting. Adults with chronic poststroke hemiparesis (N=15). Participants walked on an instrumented treadmill while kinetic, kinematic, and electromyogram data were recorded. Participants performed steady-state walking and a separate trial of the long-step adaptability task in which they were instructed to intermittently take a longer step with the nonparetic leg. Forward progression, propulsive force, and neuromuscular activation during walking. Participants performed the adaptability task successfully and demonstrated greater neuromuscular activation in appropriate paretic leg muscles, particularly increased activity in paretic plantarflexor muscles. Propulsion and forward progression by the paretic leg were also increased. These findings support the assertion that the nonparetic long-step task may be effective for use in poststroke locomotor rehabilitation to engage the paretic leg and promote recovery of walking. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  4. Stability-Diversity Tradeoffs Impose Fundamental Constraints on Selection of Synthetic Human VH/VL Single-Domain Antibodies from In Vitro Display Libraries

    Directory of Open Access Journals (Sweden)

    Kevin A. Henry

    2017-12-01

    Full Text Available Human autonomous VH/VL single-domain antibodies (sdAbs are attractive therapeutic molecules, but often suffer from suboptimal stability, solubility and affinity for cognate antigens. Most commonly, human sdAbs have been isolated from in vitro display libraries constructed via synthetic randomization of rearranged VH/VL domains. Here, we describe the design and characterization of three novel human VH/VL sdAb libraries through a process of: (i exhaustive biophysical characterization of 20 potential VH/VL sdAb library scaffolds, including assessment of expression yield, aggregation resistance, thermostability and tolerance to complementarity-determining region (CDR substitutions; (ii in vitro randomization of the CDRs of three VH/VL sdAb scaffolds, with tailored amino acid representation designed to promote solubility and expressibility; and (iii systematic benchmarking of the three VH/VL libraries by panning against five model antigens. We isolated ≥1 antigen-specific human sdAb against four of five targets (13 VHs and 7 VLs in total; these were predominantly monomeric, had antigen-binding affinities ranging from 5 nM to 12 µM (average: 2–3 µM, but had highly variable expression yields (range: 0.1–19 mg/L. Despite our efforts to identify the most stable VH/VL scaffolds, selection of antigen-specific binders from these libraries was unpredictable (overall success rate for all library-target screens: ~53% with a high attrition rate of sdAbs exhibiting false positive binding by ELISA. By analyzing VH/VL sdAb library sequence composition following selection for monomeric antibody expression (binding to protein A/L followed by amplification in bacterial cells, we found that some VH/VL sdAbs had marked growth advantages over others, and that the amino acid composition of the CDRs of this set of sdAbs was dramatically restricted (bias toward Asp and His and away from aromatic and hydrophobic residues. Thus, CDR sequence clearly

  5. Verification of RELAP5/MOD3 with theoretical and numerical stability results on single-phase, natural circulation in a simple loop

    International Nuclear Information System (INIS)

    Ferreri, Juan C.; Ambrosini, Walter

    1998-01-01

    The theoretical results given by Pierre Welander are used to test the capability of the RELAP5 series of codes to predict instabilities in single-phase flow. These results are related to the natural circulation in a loop formed by two parallel adiabatic tubes with a point heat sink at the top and a point heat source at the bottom. A stability curve may be defined for laminar flow and was extended to consider turbulent flow. By a suitable selection of the ratio of the total buoyancy force in the loop to the friction resistance, the flow may show instabilities. The solution was useful to test two basic numerical properties of the RELAP5 code, namely: a) convergence to steady state flow-rate using a 'lumped parameter' approximation to both the heat source and sink and; b) the effect of nodalization to numerically damp the instabilities. It was shown that, using a single volume to lump the heat source and sink, it was not possible to reach convergence to steady state flow rate when the heated (cooled) length was diminished and the heat transfer coefficient increased to keep constant the total heat transferred to (and removed from) the fluid. An algebraic justification of these results is presented, showing that it is a limitation inherent to the numerical scheme adopted. Concerning the effect of nodalization on the damping of instabilities, it was shown that a 'reasonably fine' discretization led, as expected, to the damping of the solution. However, the search for convergence of numerical and theoretical results was successful, showing the expected nearly chaotic behavior. This search lead to very refined nodalization. The results obtained have also been verified by the use of simple, ad hoc codes. A procedure to assess the effects of nodalization on the prediction of instabilities threshold is outlined in this report. It is based on the experience gained with aforementioned simpler codes. (author)

  6. Single particle ICP-MS as a tool for determining the stability of silver nanoparticles in aquatic matrixes under various environmental conditions, including treatment by ozonation.

    Science.gov (United States)

    Telgmann, Lena; Nguyen, Michael Thanh Khoa; Shen, Li; Yargeau, Viviane; Hintelmann, Holger; Metcalfe, Chris D

    2016-07-01

    Silver nanoparticles (AgNPs) are used in a large number of consumer products due to their antimicrobial and antifungal properties, and these materials may be discharged into municipal wastewater. Wastewater treatment, including advanced oxidation processes (AOPs), may modify the forms of silver in wastewater before they are discharged into surface waters. In addition, little is known about the changes in AgNPs that occur in natural waters under different environmental conditions. In this project, we utilized single particle ICP-MS (spICP-MS) and dynamic light scattering (DLS) analytical techniques to evaluate changes in the number and size of AgNPs in laboratory experiments with milliQ water under different environmental conditions, as well as during ozonation. Changes in the number and size of AgNPs determined by spICP-MS were evidence of altered stability of the nanoparticles. Increased rates of dissolution occurred under extremes of pH. Lower temperature decreased the rate of dissolution of AgNP relative to the dissolution in treatments at room temperature. The addition of chloride resulted in the loss of AgNPs from suspension due to agglomeration and precipitation. Ozonation led to a rapid decline in the number and size of AgNPs, as indicated by both spICP-MS and DLS analysis. An increase in the concentration of dissolved silver in the ozone treatments was evidence that changes in particle size were a result of oxidative dissolution of AgNPs to silver ion. Graphical abstract Single particle ICP-MS is used to evaluate dissolution of silver nanoparticles under different environmental conditions, including water treatment by ozonation.

  7. Genetic parameters for claw and leg health, foot and leg conformation, and locomotion in Danish Holsteins

    DEFF Research Database (Denmark)

    Laursen, M. V.; Boelling, D.; Mark, Thomas

    2009-01-01

    The purpose of this study was to estimate the genetic correlations among claw and leg health and potential indicator traits. Claw health was defined as absence of heel horn erosion, interdigital dermatitis, interdigital phlegmon, interdigital hyperplasia, laminitis, and sole ulcer. Leg health...

  8. Bilateral and unilateral vertical ground reaction forces and leg asymmetries in soccer players

    Directory of Open Access Journals (Sweden)

    J Yanci

    2016-04-01

    Full Text Available The purposes of this study were to assess unilateral and bilateral vertical jump performance characteristics, and to compare the vertical ground reaction force characteristics of the impulse and landing phase of a vertical jump between the dominant and non-dominant leg in soccer players. The sample consisted of 20 male soccer players (22.80 ± 2.71 years, 1.88 ± 0.06 m, 76.47 ± 8.80 kg who competed in the third division of the Spanish football league. Vertical jump performance was determined by testing the impulse and landing phase of a bilateral vertical jump, dominant leg vertical jump and non-dominant leg vertical jump. Significant differences (p < 0.05 between dominant and non-dominant legs were found in counter movement jump (CMJ flight time (LA = -2.38%, d = 0.33, CMJ flight height (LA = -4.55%, d = 0.33 and CMJ speed take-off (LA = -2.91%, d = 0.42. No significant differences were found between the dominant and non-dominant leg in the F1 and F2 magnitudes during the landing phase, the time from the first contact of the foot with the ground to the production of F1, the time from the second contact of the foot with the ground to the production of F2, and the time to stabilization of the landing phase. Although differences were found between the dominant and non-dominant leg in the impulse phase of the jump, no significant differences were found between dominant and non-dominant legs in the landing phase of vertical jump variables.

  9. Motor control patterns during an active straight leg raise in pain-free subjects.

    Science.gov (United States)

    Beales, Darren John; O'Sullivan, Peter Bruce; Briffa, N Kathryn

    2009-01-01

    Repeated measures. To investigate motor control (MC) patterns of normal subjects during the low level physical load of the active straight leg raise (ASLR). Aberrant MC patterns, as observed with the ASLR test, are considered to be a mechanism for ongoing pain and disability in subjects with chronic musculoskeletal pelvic girdle pain. These patterns may not only affect the provision of lumbopelvic stability, but also respiration and the control of continence. Greater understanding of MC patterns in pain-free subjects may improve the management of pelvic girdle pain. METHODS.: Fourteen pain-free nulliparous women were examined during the ASLR. Electromyography of the anterior abdominal wall, right chest wall and the anterior scaleni, intraabdominal pressure (IAP), intrathoracic pressure (ITP), respiratory rate, pelvic floor kinematics, and downward leg pressure of the nonlifted leg were compared between a left and right ASLR. There was greater activation of obliquus internus abdominis and obliquus externus abdominis on the side of the ASLR. The predominant pattern of activation for the chest wall was tonic activation during an ipsilateral ASLR, and phasic respiratory activation lifting the contralateral leg. Respiratory fluctuation of both IAP and ITP did not differ lifting either leg. The baseline shifts of these pressure variables in response to the physical demand of lifting the leg was also the same either side. There was no difference in respiratory rate, pelvic floor kinematics, or downward leg pressure. Pain-free subjects demonstrate a predominant pattern of greater ipsilateral tonic activation of the abdominal wall and chest wall on the side of the ASLR. This was achieved with minimal apparent disruption to IAP and ITP. The findings of this study demonstrate the plastic nature of the abdominal cylinder and the flexibility of the neuromuscular system in controlling load transference during an ASLR.

  10. Association between Thigh Muscle Volume and Leg Muscle Power in Older Women.

    Directory of Open Access Journals (Sweden)

    Ulrich Lindemann

    Full Text Available The construct of sarcopenia is still discussed with regard to best appropriate measures of muscle volume and muscle function. The aim of this post-hoc analysis of a cross-sectional experimental study was to investigate and describe the hierarchy of the association between thigh muscle volume and measurements of functional performance in older women. Thigh muscle volume of 68 independently living older women (mean age 77.6 years was measured via magnetic resonance imaging. Isometric strength was assessed for leg extension in a movement laboratory in sitting position with the knee flexed at 90° and for hand grip. Maximum and habitual gait speed was measured on an electronic walk way. Leg muscle power was measured during single leg push and during sit-to-stand performance. Thigh muscle volume was associated with sit-to-stand performance power (r = 0.628, leg push power (r = 0.550, isometric quadriceps strength (r = 0.442, hand grip strength (r = 0.367, fast gait speed (r = 0.291, habitual gait speed (r = 0.256, body mass index (r = 0.411 and age (r = -0.392. Muscle power showed the highest association with thigh muscle volume in healthy older women. Sit-to-stand performance power showed an even higher association with thigh muscle volume compared to single leg push power.

  11. Two Pilot Studies of the Effect of Bicycling on Balance and Leg Strength among Older Adults

    Directory of Open Access Journals (Sweden)

    Chris Rissel

    2013-01-01

    Full Text Available Objectives. Study 1 examines whether age-related declines in balance are moderated by bicycling. Study 2 tests whether regular cycling can increase leg strength and improve balance. Methods. Study 1: a cross-sectional survey of 43 adults aged 44–79 was conducted. Leg strength was measured, and Balance was measured using the choice stepping reaction time (CSRT test (decision time and response time, leg strength and timed single leg standing. Study 2: 18 older adults aged 49–72 were recruited into a 12-week cycling program. The same pre- and postmeasures as used in Study 1 were collected. Results. Study 1: participants who had cycled in the last month performed significantly better on measures of decision time and response time. Study 2: cycling at least one hour a week was associated with significant improvements in balance (decision time and response time and timed single leg standing. Conclusions. Cycling by healthy older adults appears promising for improving risk factors for falls.

  12. Hop performance and leg muscle power in athletes: Reliability of a test battery.

    Science.gov (United States)

    Kockum, Britta; Heijne, Annette I-L M

    2015-08-01

    To measure the absolute and relative reliability and the smallest real difference (SRD) in three commonly used hop tests, two leg-power tests and the single-leg squat jump. Methodological study. Clinical setting. Fourteen healthy athletes (seven women and seven men) were evaluated in a standardized test-retest design. The Intra-class correlation coefficient (ICC2.1), Standard Error of Measurement (SEM) and SRD were calculated for the vertical jump, one-leg hop for distance, side-hop, single-leg squat jump and knee-flexion and knee-extension power tests. All tests showed good to excellent ICC (0.84-0.98). The SEM (%) ranged between 3.4 and 11.1 for the four hop tests and between 8.1 and 12.4 for the leg-power tests. The SRD (%) for the hop tests ranged between 9.3 and 30.7 and for the three power tests between 22.4 and 34.3. The absolute reliability of this test protocol showed good to excellent ICC values and measurement errors of approximately 10%. This instrument can be recommended for determining function in terms of power in healthy athletes or late in the rehabilitation process. The tests' methodological errors must be considered and caution should be taken regarding the standardization procedure during testing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. One-legged endurance training: leg blood flow and oxygen extraction during cycling exercise

    DEFF Research Database (Denmark)

    Rud, B; Foss, O; Krustrup, Peter

    2012-01-01

    Aim: As a consequence of enhanced local vascular conductance, perfusion of muscles increases with exercise intensity to suffice the oxygen demand. However, when maximal oxygen uptake (VO(2) max) and cardiac output are approached, the increase in conductance is blunted. Endurance training increases...... muscle metabolic capacity, but to what extent that affects the regulation of muscle vascular conductance during exercise is unknown. Methods: Seven weeks of one-legged endurance training was carried out by twelve subjects. Pulmonary VO(2) during cycling and one-legged cycling was tested before and after...... training, while VO(2) of the trained leg (TL) and control leg (CL) during cycling was determined after training. Results: VO(2) max for cycling was unaffected by training, although one-legged VO(2) max became 6.7 (2.3)% (mean ± SE) larger with TL than with CL. Also TL citrate synthase activity was higher...

  14. Long-term safety and stability of angiogenesis induced by balanced single-vector co-expression of PDGF-BB and VEGF164 in skeletal muscle

    Science.gov (United States)

    Gianni-Barrera, Roberto; Burger, Maximilian; Wolff, Thomas; Heberer, Michael; Schaefer, Dirk J.; Gürke, Lorenz; Mujagic, Edin; Banfi, Andrea

    2016-01-01

    Therapeutic angiogenesis by growth factor delivery is an attractive treatment strategy for ischemic diseases, yet clinical efficacy has been elusive. The angiogenic master regulator VEGF-A can induce aberrant angiogenesis if expressed above a threshold level. Since VEGF remains localized in the matrix around expressing cells, homogeneous dose distribution in target tissues is required, which is challenging. We found that co-expression of the pericyte-recruiting factor PDGF-BB at a fixed ratio with VEGF from a single bicistronic vector ensured normal angiogenesis despite heterogeneous high VEGF levels. Taking advantage of a highly controlled gene delivery platform, based on monoclonal populations of transduced myoblasts, in which every cell stably produces the same amount of each factor, here we rigorously investigated a) the dose-dependent effects, and b) the long-term safety and stability of VEGF and PDGF-BB co-expression in skeletal muscle. PDGF-BB co-expression did not affect the normal angiogenesis by low and medium VEGF doses, but specifically prevented vascular tumors by high VEGF, yielding instead normal and mature capillary networks, accompanied by robust arteriole formation. Induced angiogenesis persisted unchanged up to 4 months, while no tumors appeared. Therefore, PDGF-BB co-expression is an attractive strategy to improve safety and efficacy of therapeutic angiogenesis by VEGF gene delivery. PMID:26882992

  15. Knee Viscosupplementation: Cost-Effectiveness Analysis between Stabilized Hyaluronic Acid in a Single Injection versus Five Injections of Standard Hyaluronic Acid

    Directory of Open Access Journals (Sweden)

    Francisco J. Estades-Rubio

    2017-03-01

    Full Text Available Given the wide difference in price per vial between various presentations of hyaluronic acid, this study seeks to compare the effectiveness and treatment cost of stabilized hyaluronic acid (NASHA in a single injection with standard preparations of hyaluronic acid (HA in five injections in osteoarthritis (OA of the knee. Fifty-four patients with knee osteoarthritis (Kellgren–Lawrence Grade II and III and the Western Ontario and McMaster Universities Arthritis Index (WOMAC pain score greater than 7, with a homogeneous distribution of age, sex, BMI, and duration of disease, were included in this study. Patients were randomized into two groups: Group I was treated with NASHA (Durolane® and Group II with HA (Go-ON®. Patient’s evolution was followed up at the 1st, 2nd, 4th, 8th, 12th, and 26th week after treatment. A statistically significant improvement in WOMAC score was observed for patients treated with NASHA versus those who received HA at Week 26. In addition, the need for analgesia was significantly reduced at Week 26 in the NASHA-treated group. Finally, the economic analysis showed an increased cost of overall treatment with HA injections. Our data support the use of the NASHA class of products in the treatment of knee OA.

  16. Knee Viscosupplementation: Cost-Effectiveness Analysis between Stabilized Hyaluronic Acid in a Single Injection versus Five Injections of Standard Hyaluronic Acid.

    Science.gov (United States)

    Estades-Rubio, Francisco J; Reyes-Martín, Alvaro; Morales-Marcos, Victor; García-Piriz, Mercedes; García-Vera, Juan J; Perán, Macarena; Marchal, Juan A; Montañez-Heredia, Elvira

    2017-03-17

    Given the wide difference in price per vial between various presentations of hyaluronic acid, this study seeks to compare the effectiveness and treatment cost of stabilized hyaluronic acid (NASHA) in a single injection with standard preparations of hyaluronic acid (HA) in five injections in osteoarthritis (OA) of the knee. Fifty-four patients with knee osteoarthritis (Kellgren-Lawrence Grade II and III) and the Western Ontario and McMaster Universities Arthritis Index (WOMAC) pain score greater than 7, with a homogeneous distribution of age, sex, BMI, and duration of disease, were included in this study. Patients were randomized into two groups: Group I was treated with NASHA (Durolane ® ) and Group II with HA (Go-ON ® ). Patient's evolution was followed up at the 1st, 2nd, 4th, 8th, 12th, and 26th week after treatment. A statistically significant improvement in WOMAC score was observed for patients treated with NASHA versus those who received HA at Week 26. In addition, the need for analgesia was significantly reduced at Week 26 in the NASHA-treated group. Finally, the economic analysis showed an increased cost of overall treatment with HA injections. Our data support the use of the NASHA class of products in the treatment of knee OA.

  17. Template model inspired leg force feedback based control can assist human walking.

    Science.gov (United States)

    Zhao, Guoping; Sharbafi, Maziar; Vlutters, Mark; van Asseldonk, Edwin; Seyfarth, Andre

    2017-07-01

    We present a novel control approach for assistive lower-extremity exoskeletons. In particular, we implement a virtual pivot point (VPP) template model inspired leg force feedback based controller on a lower-extremity powered exoskeleton (LOPES II) and demonstrate that it can effectively assist humans during walking. It has been shown that the VPP template model is capable of stabilizing the trunk and reproduce a human-like hip torque during the stance phase of walking. With leg force and joint angle feedback inspired by the VPP template model, our controller provides hip and knee torque assistance during the stance phase. A pilot experiment was conducted with four healthy subjects. Joint kinematics, leg muscle electromyography (EMG), and metabolic cost were measured during walking with and without assistance. Results show that, for 0.6 m/s walking, our controller can reduce leg muscle activations, especially for the medial gastrocnemius (about 16.0%), while hip and knee joint kinematics remain similar to the condition without the controller. Besides, the controller also reduces 10% of the net metabolic cost during walking. This paper demonstrates walking assistance benefits of the VPP template model for the first time. The support of human walking is achieved by a force feedback of leg force applied to the control of hip and knee joints. It can help us to provide a framework for investigating walking assistance control in the future.

  18. Analysis of the body mass index and leg profiles of Asian women after total leg sculpture.

    Science.gov (United States)

    Tsai, Feng-Chou; Chen, Chien-Hao; Lin, Chan-Yi; Ho, Li-Yung

    2009-08-01

    In addition to the conventional methods used to improve leg contours, total leg sculpture, including liposuction, selective neurectomy, and transilluminated powered phlebectomy, provides a one-time solution of leg contour problems, which is a major aesthetic concern among Asian women. The authors present the postoperative results of total leg sculpture and determine any significance and correlation between the leg variables and body mass index by statistical analysis. Thirty female patients who underwent total leg sculpture between 2005 and 2008 were included in the study, and prospective analysis of the patients' data was performed during a follow-up period of 1 year. Local measurement variables and body mass index were recorded, and the correlation between them was determined by Pearson's correlation and regression analysis. A paired t test was used to compare the postoperative outcomes. Subjectively, all patient results were satisfactory. There were significant differences between preoperative and postoperative measurements for all variables for total leg sculpture. Body mass index was strongly correlated with all leg indexes, and there was a significant positive correlation between the index and variables related to the buttocks and upper thigh. The satisfactory postoperative leg variables were buttocks circumference (87.85 cm), thigh circumference (T60, 44.20 cm), maximal calf circumference (32.24 cm), and calf ratio (0.78). Each preoperative body mass index increment represents a 0.3 percent circumference improvement around the buttocks after surgery. No obvious morbidities or long-term hospital stays were noted. Total leg sculpture provides a combined aesthetic solution for improving limb contours with minimal morbidity. Patients with larger body mass index values exhibit better aesthetic improvement than those with smaller values.

  19. The pathophysiology of restless legs syndrome

    International Nuclear Information System (INIS)

    Miyamoto, Masayuki; Miyamoto, Tomoyuki; Iwanami, Masaoki; Suzuki, Keisuke; Hirata, Koichi

    2009-01-01

    Restless legs syndrome (RLS) is a sensorimotor disorder that is frequently associated with periodic leg movements (PLMS). RLS is generally considered to be a central nervous system (CNS)-related disorder although no specific lesion has been found to be associated with the syndrome. Reduced intracortical inhibition has been demonstrated in RLS by transcranial magnetic stimulation. Some MRI studies have revealed the presence of morphologic changes in the somatosensory cortex, motor cortex and thalamic gray matter. The results of single photon emission computed tomography (SPECT) and positron emission tomography (PET) studies showed that the limbic and opioid systems also play important roles in the pathophysiology of RLS. A functional MRI study revealed abnormal bilateral cerebellar and thalamic activation during the manifestation of sensory symptoms, with additional red nucleus and reticular formation activity during PLMS. PLMS is likely to occur in patients with spinal cord lesions, and some patients with sensory polyneuropathy may exhibit RLS symptoms. RLS symptoms seem to depend on abnormal spinal sensorimotor integration at the spinal cord level and abnormal central somatosensory processing. PLMS appears to depend on increased excitability of the spinal cord and a decreased supraspinal inhibitory mechanism from the A11 diencephalic dopaminergic system. RLS symptoms respond very dramatically to dopaminergic therapy. The results of analysis by PET and SPECT studies of striatal D2 receptor binding in humans are inconclusive. However, studies in animal models suggest that the participation of the A11 dopaminergic system and the D3 receptor in RLS symptoms. The symptoms of RLS are aggravated in those with iron deficiency, and iron treatment ameliorates the symptoms in some patients. Neuroimaging studies, analysis of the cerebrospinal fluid, and studies on postmortem tissue and use of animal models have indicated that low brain iron concentrations and dysfunction of

  20. Staying in dynamic balance on a prosthetic limb : A leg to stand on?

    NARCIS (Netherlands)

    Curtze, Carolin; Hof, At L; Postema, Klaas; Otten, Bert

    With the loss of a lower limb, amputees lack the active muscle empowered control of the ankle that is important for balance control. We examined single-leg stance on prosthesis vs. sound limb balancing on narrow ridges in transtibial amputees. When balancing on the prosthetic limb, the lateral

  1. Therapeutic advances in restless legs syndrome (RLS).

    Science.gov (United States)

    Högl, Birgit; Comella, Cynthia

    2015-09-15

    Levodopa and dopamine agonists have been the main treatment for restless legs syndrome during the past decades. Although their efficacy has been well documented over the short term, long-term dopaminergic treatment is often complicated by augmentation, loss of efficacy, and other side effects. Recent large randomized controlled trials provide new evidence for the efficacy of high-potency opioids and α2δ ligands, and several post hoc analyses, meta-analyses, algorithms, and guidelines have been published, often with a specific focus, for example, on augmentation, or on management of restless legs syndrome during pregnancy. Several new contributions to understanding the pathophysiology of restless legs syndrome have been published, but at this time, whether they will have an impact on treatment possibilities in the future cannot be estimated. © 2015 International Parkinson and Movement Disorder Society.

  2. Postural stability in subjects with anterior cruciate ligament injury

    OpenAIRE

    Kolář, Miroslav

    2011-01-01

    6 Abstract Title: Postural stability in subjects with anterior cruciate ligament injury. Objectives: The aim of this thesis was to find out if the postural stability is differed in subjects with anterior cruciate ligament injury and in the control group after the "4 steps - one leg stance" test had been performed. Methods: This study compared a group with anterior cruciate ligament injury and a control group on the basis of the "4 steps - one leg stance" test. Methods of comparison and analys...

  3. The effects of carrying extra weight on ankle stability in adolescent basketball players.

    Science.gov (United States)

    Ozunlu, Nihan; Basari, Gul Oznur; Baltaci, Gul

    2010-01-01

    The purpose of this study was to investigate the effects of weight on ankle stability in adolescent basketball players. 20 non-injured subjects (age=11.05+/-1.5 years) were included in this study. Each subject performed a 15min warm-up by running or riding a stationary bike. The Star Excursion Balance Test (SEBT), single-leg balance test (performed with eyes open and eyes closed) and vertical jump test were performed with dominant lower extremity. 1 week later, same tests were performed with a schoolbag. The schoolbag contained weight bars as 20% of the players own body weight. Only posteromedial component of SEBT had significant difference between non-weight measurement and weighted measurement (p=0.004). Single-leg stance test performed with eyes open (p=0.006) and closed (p=0.001) had significant difference between non-weight measurement and weighted measurement. Also the vertical jump test had significant difference between non-weight measurement and weighted measurement (p=0.001). These findings indicate that 20% weight of their own body weight does not affect dynamic ankle stability and postural limitations, which are magnified by advancing weight. We are confident in our conclusions because of the three-way interaction noted with posterior/medial with weight in SEBT. Furthermore, Star Excursion Balance test is more effective both weight and non-weight in measuring functional stability of the ankle. Copyright 2010 Elsevier Ltd. All rights reserved.

  4. Study on the annular leakage-flow-induced vibrations. 1st Report. Stability for translational and rotational single-degree-of-freedom systems; Kanjo sukimaryu reiki shindo ni kansuru kenkyu. 1. Heishin oyobi kaiten 1 jiyudokei no anteise

    Energy Technology Data Exchange (ETDEWEB)

    Li, D.W. [Hitachi, Ltd., Tokyo (Japan); Kaneko, S. [The University of Tokyo, Tokyo (Japan); Hayama, S. [Toyama Prefectural University, Toyama (Japan)

    1999-07-25

    This study reports the stability of annular leakage-flow-induced vibrations. The pressure distribution of fluid between a fixed outer cylinder and a vibrating inner cylinder was obtained in the case of a translationally and rotationally coupled motion of the inner cylinder. The unsteady fluid force acting on the inner cylinder in the case of translational and rotational single-degree-of-freedom vibrations was then expressed in terms proportional to the acceleration, velocity, and displacement. Then the critical flow rate (at which stability was lost) was determined for an annular leakage-flow-induced vibration. Finally, the stability was investigated theoretically. It is known that instability will occur in the case of a divergent passage, but the critical flow rate depends on the passage increment in a limited range: the eccentricity of the passage and the pressure loss factor at the inlet of the passage lower the stability. (author)

  5. Leg Spasticity and Ambulation in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Swathi Balantrapu

    2014-01-01

    Full Text Available Background. Spasticity of the legs is common in multiple sclerosis (MS, but there has been limited research examining its association with ambulatory outcomes. Objective. This study examined spasticity of the legs and its association with multiple measures of ambulation in persons with MS. Methods. The sample included 84 patients with MS. Spasticity of the legs was measured using a 5-point rating scale ranging between 0 (normal and 4 (contracted. Patients completed the 6-minute walk (6 MW, timed 25 foot walk (T25FW, and timed up-and-go (TUG, and O2 cost of walking was measured during the 6 MW. The patients undertook two walking trials on a GAITRite (CIR systems, Inc. for measuring spatial and temporal parameters of gait. The patients completed the Multiple Sclerosis Walking Scale-12 (MSWS-12 and wore an accelerometer over a seven-day period. Results. 52% (n=44 of the sample presented with spasticity of the legs. Those with leg spasticity had significantly worse ambulation as measured by 6 MW (P=0.0001, d=-0.86, T25FW (P=0.003,d=0.72, TUG (P=0.001, d=0.84, MSWS-12 (P=0.0001,d=1.09, O2 cost of walking (P=0.001, d=0.75, average steps/day (P<0.05, d=-0.45, and walking velocity (P<0.05, d=-0.53 and cadence (P<0.05, d=-0.46. Conclusion. Leg spasticity was associated with impairments in ambulation, including alterations in spatiotemporal parameters and free-living walking.

  6. The Molecular Genetics of Restless Legs Syndrome.

    Science.gov (United States)

    Rye, David B

    2015-09-01

    Restless legs syndrome (RLS) is a common sensorimotor trait defined by symptoms that interfere with sleep onset and maintenance in a clinically meaningful way. Nonvolitional myoclonus while awake and asleep is a sign of the disorder and an informative endophenotype. The genetic contributions to RLS/periodic leg movements are substantial, are among the most robust defined to date for a common disease, and account for much of the variance in disease expressivity. The disorder is polygenic, as revealed by recent genome-wide association studies. Experimental studies are revealing mechanistic details of how these common variants might influence RLS expressivity. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Nocturnal leg cramps in older people

    Science.gov (United States)

    Butler, J; Mulkerrin, E; O'Keeffe, S

    2002-01-01

    Nocturnal leg cramps are common in older people. Such cramps are associated with many common diseases and medications. Physiological methods may be useful for preventing cramps in some people, but there have been no controlled trials of these approaches. Quinine is moderately effective in preventing nocturnal leg cramps. However, there are concerns about the risk/benefit ratio with this drug. In patients with severe symptoms, a trial of 4–6 weeks' treatment with quinine is probably still justified, but the efficacy of treatment should be monitored, for example using a sleep and cramp diary. PMID:12415081

  8. Symptom Severity of Restless Legs Syndrome Predicts Its Clinical Course.

    Science.gov (United States)

    Lee, Chung Suk; Kim, Tae; Lee, Sumin; Jeon, Hong Jun; Bang, Young Rong; Yoon, In-Young

    2016-04-01

    This study examines the clinical course of restless legs syndrome according to its severity and factors associated with the remission of restless legs syndrome symptoms. The remission or persistence of restless legs syndrome symptoms was investigated by considering patients with restless legs syndrome at the sleep clinic of Seoul National University Bundang Hospital. All subjects were observed for at least 18 months, and an incidence of remission was defined as having no restless legs syndrome symptoms for at least 1 year. Restless legs syndrome severity was evaluated by the International Restless Legs Syndrome Study Group Rating Scale. A total of 306 patients participated in this study. Over the observation periods of 4.1 ± 1.6 years, the cumulative incidence of remission is 32.5% (95% confidence interval [CI], 27.0-38.0) and decreased with baseline restless legs syndrome severity (P restless legs syndrome cases, respectively. Most cases of remission (82/96) were observed within 1 year, and the remission occurred sooner for mild restless legs syndrome. The hazard ratios of remission by Cox proportional hazards model were lower for moderate (0.556; 95% CI, 0.340-0.909) and severe to very severe (0.193; 95% CI, 0.108-0.343) restless legs syndrome than for mild restless legs syndrome. The remission incidence was lower for those patients who had a family history of restless legs syndrome and were older at restless legs syndrome diagnosis. Mild restless legs syndrome severity, no family history, and young age at restless legs syndrome diagnosis were significant predictors of restless legs syndrome remission. More than 80% of patients with severe restless legs syndrome showed a chronic clinical course. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Clinical characteristics of leg restlessness in Parkinson's disease compared with idiopathic Restless Legs Syndrome.

    Science.gov (United States)

    Zhu, Xiao-Ying; Liu, Ye; Zhang, Xiao-Jin; Yang, Wen-Hao; Feng, Ya; Ondo, William G; Tan, Eng-King; Wu, Yun-Cheng

    2015-10-15

    There is limited data on motor restlessness in Parkinson's disease (PD). Here we evaluate for clinical differences between cohorts of idiopathic Restless Legs Syndrome (iRLS), PD patients with leg restlessness, and PD with RLS. We examined 276 consecutive PD patients for leg restlessness symptoms, we compared clinical features of PD patients with RLS, PD patients with leg restlessness but not meeting RLS criteria, PD patient without RLS and iRLS. A total of 262 PD patients who satisfied the inclusion criteria were analyzed. After excluding 23 possible secondary RLS or mimics, 28 were diagnosed with RLS and 18 with leg motor restlessness (LMR). Compared with iRLS patients, PD patients with RLS or LMR had older age of RLS/LMR onset, shorter duration of leg restlessness, less positive family history, different seasonal trends and more unilaterality of leg restlessness symptom (Pleg restlessness. PD with LMR had less severe Parkinsonism (Pleg restlessness (P<0.01) symptoms than PD with RLS. Clinical characteristics of PD patients with RLS and LMR were different from iRLS, differentiating these various subtypes can facilitate optimal treatment. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. A kneeless leg prothesis for the elderly amputee, advanced version.

    Science.gov (United States)

    Seliktar, R; Kenedi, R M

    1976-01-01

    The work described in this paper is part of a development and evaluation program, the aim of which was to bring a telescopic kneeless leg prosthesis to a reliable, commercially viable, and easily manufacturable stage. It is considered that these aims have been almost achieved, as the prosthesis appears to improve the gait characteristics significantly, compared with its first prototypes and compared with the conventional National Health Service (N.H.S.) above-knee prostheses. The clinical evaluation was carried out with three patients and its results were found satisfactory. The specific advantages of this prosthesis compared with the conventional prostheses are: improved proprioception and stability, and improvements of certain kinematic characteristics. The paper describes briefly the modified version of the prosthesis an the investigations undertaken, and also discusses the results obtained.

  11. Influence of Different Tibial Fixation Techniques on Initial Stability in Single-Stage Anterior Cruciate Ligament Revision With Confluent Tibial Tunnels: A Biomechanical Laboratory Study.

    Science.gov (United States)

    Schliemann, Benedikt; Treder, Maximilian; Schulze, Martin; Müller, Viktoria; Vasta, Sebastiano; Zampogna, Biaggio; Herbort, Mirco; Kösters, Clemens; Raschke, Michael J; Lenschow, Simon

    2016-01-01

    To kinematically and biomechanically compare 4 different types of tibial tunnel management in single-stage anterior cruciate ligament (ACL) revision reconstruction with the control: primary ACL reconstruction using a robotic-based knee testing setup. Porcine knees and flexor tendons were used. One hundred specimens were randomly assigned to 5 testing groups: (1) open tibial tunnel, (2) bone plug technique, (3) biodegradable interference screw, (4) dilatation technique, and (5) primary ACL reconstruction. A robotic/universal force-moment sensor testing system was used to simulate the KT-1000 (MEDmetric, San Diego, CA) and pivot-shift tests. Cyclic loading and load-to-failure testing were performed. Anterior tibial translation increased significantly with all of the techniques compared with the intact ACL (P .05). The open tunnel and dilated tunnel techniques showed significantly greater anterior tibial translation (P < .05). The results of the simulated pivot-shift test were in accordance with those of the KT-1000 test. No significant differences could be observed regarding stiffness or maximum load to failure. However, elongation was significantly lower in the primary ACL reconstruction group compared with groups 1 and 3 (P = .02 and P = .03, respectively). Filling an incomplete and incorrect tibial tunnel with a press-fit bone plug or a biodegradable interference screw in a standardized laboratory situation provided initial biomechanical properties and knee stability comparable with those of primary ACL reconstruction. In contrast, the dilatation technique or leaving the malplaced tunnel open did not restore knee kinematics adequately in this model. Backup extracortical fixation should be considered because the load to failure depends on the extracortical fixation when an undersized interference screw is used for aperture fixation. Our biomechanical results could help orthopaedic surgeons to optimize the results of primary ACL revision with incomplete, incorrect

  12. Oral antioxidants improve leg blood flow during exercise in patients with chronic obstructive pulmonary disease.

    Science.gov (United States)

    Rossman, Matthew J; Trinity, Joel D; Garten, Ryan S; Ives, Stephen J; Conklin, Jamie D; Barrett-O'Keefe, Zachary; Witman, Melissa A H; Bledsoe, Amber D; Morgan, David E; Runnels, Sean; Reese, Van R; Zhao, Jia; Amann, Markus; Wray, D Walter; Richardson, Russell S

    2015-09-01

    The consequence of elevated oxidative stress on exercising skeletal muscle blood flow as well as the transport and utilization of O2 in patients with chronic obstructive pulmonary disease (COPD) is not well understood. The present study examined the impact of an oral antioxidant cocktail (AOC) on leg blood flow (LBF) and O2 consumption during dynamic exercise in 16 patients with COPD and 16 healthy subjects. Subjects performed submaximal (3, 6, and 9 W) single-leg knee extensor exercise while LBF (Doppler ultrasound), mean arterial blood pressure, leg vascular conductance, arterial O2 saturation, leg arterial-venous O2 difference, and leg O2 consumption (direct Fick) were evaluated under control conditions and after AOC administration. AOC administration increased LBF (3 W: 1,604 ± 100 vs. 1,798 ± 128 ml/min, 6 W: 1,832 ± 109 vs. 1,992 ± 120 ml/min, and 9W: 2,035 ± 114 vs. 2,187 ± 136 ml/min, P leg vascular conductance, and leg O2 consumption (3 W: 173 ± 12 vs. 210 ± 15 ml O2/min, 6 W: 217 ± 14 vs. 237 ± 15 ml O2/min, and 9 W: 244 ± 16 vs 260 ± 18 ml O2/min, P < 0.05, control vs. AOC, respectively) during exercise in COPD, whereas no effect was observed in healthy subjects. In addition, the AOC afforded a small, but significant, improvement in arterial O2 saturation only in patients with COPD. Thus, these data demonstrate a novel beneficial role of AOC administration on exercising LBF, O2 consumption, and arterial O2 saturation in patients with COPD, implicating oxidative stress as a potential therapeutic target for impaired exercise capacity in this population. Copyright © 2015 the American Physiological Society.

  13. Application of force-length curve for determination of leg stiffness during a vertical jump.

    Science.gov (United States)

    Struzik, Artur; Zawadzki, Jerzy

    2016-01-01

    The aim of this study was to present the methodology for estimation of a leg stiffness during a countermovement jump. The question was asked whether leg stiffness in the countermovement and take-off phases are similar to each other as demonstrated in previous reports. It was also examined whether the stiffness in left lower limb is similar to the one in right lower limb. The research was conducted on 35 basketball players. Each participant performed three countermovement jumps with arm swing to the maximum height. Measurements employed a Kistlerforce plate and a BTS SMART system for motion analysis. Leg stiffness (understood as an inclination of the curve of ground reaction forces vs. length) was computed for these parts of countermovement and take-off phases where its value was relatively constant and F(Δl) relationship was similar to linear. Mean value (±SD) of total stiffness of both lower limbs in the countermovement phase was 7.1 ± 2.3 kN/m, whereas this value in the take-off phase was 7.5 ± 1 kN/m. No statistically significant differences were found between the leg stiffness in the countermovement and the take-off phases. No statistically significant differences were found during the comparison of the stiffness in the right and left lower limb. The calculation methodology allows us to estimate the value of leg stiffness based on the actual shape of F(Δl) curve rather than on extreme values of ΔF and Δl. Despite different tasks of the countermovement and the take-off phases, leg stiffness in these phases is very similar. Leg stiffness during a single vertical jump maintains a relatively constant value in the parts with a small value of acceleration.

  14. [The influence of the leg load and the support mobility under leg on the anticipatory postural adjustment].

    Science.gov (United States)

    Kazennikov, O V; Kireeva, T B; Shlykov, V Iu

    2015-01-01

    Anticipatory postural adjustment is an essential part of equilibrium maintainance during standing in human. So changes in stance condition could affect both control of equilibrium and anticipatory adjustment. Anticipatory changes in the stabilogram of each leg were studied in standing subject during the early stage of quick right arm lifting while legs were on two separated supports. The center of pressure (CP) movement was analyzed in three variants of experiment: both legs on immovable support, with only right leg on the movable support and with only left leg on the moveable support. In each standing condition subject stood with symmetrical load on two legs or with the load voluntary transferred to one leg. The anticipatory CP shift depended on the mobility of the support under the leg and on loading of the leg. While standing on unmovable supports with symmetrical load on the legs before lifting of the right arm CP of right leg shifted backward and CP of left leg--forward. While standing with one leg on movable support the anticipatory CP shift of this leg was small and did not depend on the load on the leg. However the shift of CP of the leg that was placed on the unmovable support depended on the load in the same way as in the case when both legs were on unmovable supports. Results suggested that since on movable support the support and proprioceptive afferent flow from distal part of the leg that was did not supply unambiguous information about body position, the role of distal joints in posture control is reduced.

  15. Chronic leg ulcer caused by Mycobacterium immunogenum

    NARCIS (Netherlands)

    Loots, Miriam A. M.; de Jong, Menno D.; van Soolingen, Dick; Wetsteyn, José C. F. M.; Faber, William R.

    2005-01-01

    Rare tropical skin diseases are seen more frequently in Western countries because of the increased popularity of visiting tropical regions. A 55-year-old white man developed a painless leg ulcer after traveling in Guatemala and Belize. A mycobacterium was cultured from a biopsy specimen and was

  16. X-Ray Exam: Femur (Upper Leg)

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Femur (Upper Leg) KidsHealth / For Parents / X- ... Muscles, and Joints Broken Bones Getting an X-ray (Video) X-Ray (Video) View more Partner Message About Us ...

  17. The restless legs syndrome (Ekbom's syndrome)

    African Journals Online (AJOL)

    1983-04-30

    Apr 30, 1983 ... same distribution as the paraesthesiae; and (v) anxiety, tension or mild depression. Paraesthesiae or creeping sensations are usually confined to the calves. They are extremely unpleasant and deep-seated in muscles or bones rather than in the skin, mostly affecting the legs between the knee and ankle.

  18. Leg og læring

    DEFF Research Database (Denmark)

    Pedersen, Annette

    2008-01-01

    Leg synes at have et potentiale som metode til at fremme læring. Men hvordan? Legen har en vis grad af parallelitet med den virkelige verden i dens interaktive og relationelle strukturer. Det bliver muligt at finde nye meninger i interaktioner, som refererer til vante interaktionsformer, men...

  19. Functional scoliosis caused by leg length discrepancy

    Science.gov (United States)

    Daniszewska, Barbara; Zolynski, Krystian

    2010-01-01

    Introduction Leg length discrepancy (LLD) causes pelvic obliquity in the frontal plane and lumbar scoliosis with convexity towards the shorter extremity. Leg length discrepancy is observed in 3-15% of the population. Unequalized lower limb length discrepancy leads to posture deformation, gait asymmetry, low back pain and discopathy. Material and methods In the years 1998-2006, 369 children, aged 5 to 17 years (209 girls, 160 boys) with LLD-related functional scoliosis were treated. An external or internal shoe lift was applied. Results Among 369 children the discrepancy of 0.5 cm was observed in 27, 1 cm in 329, 1.5 cm in 9 and 2 cm in 4 children. During the first follow-up examination, within 2 weeks, the adjustment of the spine to new static conditions was noted and correction of the curve in 316 examined children (83.7%). In 53 children (14.7%) the correction was observed later and was accompanied by slight low back pain. The time needed for real equalization of limbs was 3 to 24 months. The time needed for real equalization of the discrepancy was 11.3 months. Conclusions Leg length discrepancy equalization results in elimination of scoliosis. Leg length discrepancy < 2 cm is a static disorder; that is why measurements should be performed in a standing position using blocks of adequate thickness and the position of the posterior superior iliac spine should be estimated. PMID:22371777

  20. Omnidirectional Wheel-Legged Hybrid Mobile Robot

    Directory of Open Access Journals (Sweden)

    István Vilikó

    2015-06-01

    Full Text Available The purpose of developing hybrid locomotion systems is to merge the advantages and to eliminate the disadvantages of different type of locomotion. The proposed solution combines wheeled and legged locomotion methods. This paper presents the mechatronic design approach and the development stages of the prototype.

  1. Parallel kinematics robot with five legs

    NARCIS (Netherlands)

    Lambert, P.

    2011-01-01

    Robot with multiple degrees of freedom comprising five legs (2) linked at a first of their ends to a base ( 3), and at a second of their ends opposite to the first ends to a mobile platform (4), which platform carries at least one tool (5, 6, 121, 12 "), and wherein the robot further comprises an

  2. Theory Analysis and Experiment Research of the Leg Mechanism for the Human-Carrying Walking Chair Robot

    Directory of Open Access Journals (Sweden)

    Lingfeng Sang

    2014-01-01

    Full Text Available For the high carrying capacity of the human-carrying walking chair robot, in this paper, 2-UPS+UP parallel mechanism is selected as the leg mechanism; then kinematics, workspace, control, and experiment of the leg mechanism are researched in detail. Firstly, design of the whole mechanism is described and degrees of freedom of the leg mechanism are analyzed. Second, the forward position, inverse position, and velocity of leg mechanism are studied. Third, based on the kinematics analysis and the structural constraints, the reachable workspace of 2-UPS+UP parallel mechanism is solved, and then the optimal motion workspace is searched in the reachable workspace by choosing the condition number as the evaluation index. Fourth, according to the theory analysis of the parallel leg mechanism, its control system is designed and the compound position control strategy is studied. Finally, in optimal motion workspace, the compound position control strategy is verified by using circular track with the radius 100 mm; the experiment results show that the leg mechanism moves smoothly and does not tremble obviously. Theory analysis and experiment research of the single leg mechanism provide a theoretical foundation for the control of the quadruped human-carrying walking chair robot.

  3. Light touch cue through a cane improves pelvic stability during walking in stroke.

    Science.gov (United States)

    Boonsinsukh, Rumpa; Panichareon, Lawan; Phansuwan-Pujito, Pansiri

    2009-06-01

    To examine the effect of a light touch cue provided through a cane on mediolateral (ML) pelvic stability during walking in subjects poststroke. Crossover trial examining ML pelvic stability during walking using a cane with the force contact and touch contact methods. Physical therapy clinic, tertiary care center. Subacute patients (N=40) with stroke with a mean age of 59.6 years and mean stroke duration of 46.8 days. The average gait speed with a cane was .13 m/s (.05-.29 m/s). Using a cane with the force contact and touch contact methods during walking. ML pelvic stability as measured by averaged peak-to-peak pelvic acceleration, muscle activation of bilateral tensor fascia latae (TFL), semitendinosus (ST), and vastus medialis (VM) using an electromyography system, and vertical cane force. The average amount of cane force during touch contact and force contact cane use conditions was 2.3N and 49.3N, respectively. A light touch cue through a cane was required only when the paretic leg accepted the body weight, and this cue can provide ML pelvic stability (.16 g of average pelvic acceleration) during walking to the same degree as the force contact method of cane use. However, significant increases in single-limb support duration with higher activations of TFL, VM, and ST muscles on the paretic leg were found during the paretic stance phase when using a cane in the touch contact fashion (Pstability during walking for subjects with stroke by facilitating the activations of weight-bearing muscles on the paretic leg during the stance phase.

  4. Interventions for leg cramps in pregnancy.

    Science.gov (United States)

    Zhou, Kunyan; West, Helen M; Zhang, Jing; Xu, Liangzhi; Li, Wenjuan

    2015-08-11

    Leg cramps are a common problem in pregnancy. Various interventions have been used to treat them, including drug, electrolyte and vitamin therapies, and non-drug therapies. To assess the effectiveness and safety of different interventions for treating leg cramps in pregnancy. We searched the Cochrane Pregnancy and Childbirth Group's Register (31 March 2015) and reference lists of retrieved studies. Randomised controlled trials (RCTs) of any intervention (drug, electrolyte, vitamin or non-drug therapies) for treatment of leg cramps in pregnancy compared with placebo, no treatment or other treatment. Quinine was excluded for its known adverse effects (teratogenicity). Cluster-RCTS were considered for inclusion. Quasi-RCTs and cross-over studies were excluded. Two review authors independently assessed trials for inclusion and risk of bias, extracted data and checked them for accuracy. We included six studies (390 women). Four trials compared oral magnesium with placebo/no treatment, two compared oral calcium with no treatment, one compared oral vitamin B versus no treatment, and one compared oral calcium with oral vitamin C. Two of the trials were well-conducted and reported, the other four had design limitations. The process of random allocation was sub-optimal in three studies, and blinding was not attempted in two. Outcomes were reported in different ways, precluding the use of meta-analysis and limiting the strength of our conclusions.The 'no treatment' group in one four-arm trial has been used as the comparison group for the composite outcome (intensity and frequency of leg cramps) in magnesium, calcium, and vitamin B versus no treatment. This gives it disproportionate weight in the overall analysis, thus interpretation of these results should be cautious. Oral magnesium versus placebo/no treatmentMagnesium (taken orally for two to four weeks) did not consistently reduce the frequency of leg cramps compared with placebo or no treatment. Outcomes that showed

  5. High performance p-type segmented leg of misfit-layered cobaltite and half-Heusler alloy

    DEFF Research Database (Denmark)

    Le, Thanh Hung; Van Nong, Ngo; Snyder, Gerald Jeffrey

    2015-01-01

    %, which is about 65% of that expected from the materials without parasitic losses. The long-term stability investigation for two weeks at the hot and cold side temperatures of 1153/397 K shows that the segmented leg has good durability as a result of stable and low electrical resistance contacts. 2015...

  6. Chiropractic management of patients with bilateral congenital hip dislocation with chronic low back and leg pain.

    Science.gov (United States)

    Diez, Francisco

    2004-05-01

    To discuss conservative methods for treating patients with chronic low back and leg pain associated with the biomechanical and postural alterations related to bilateral congenital hip dislocation. This report describes the cases of 2 adult female subjects with bilateral congenital hip dislocation without acetabula formation who suffered from chronic low back and leg pain managed conservatively by chiropractic methods. The first subject is a 45-year-old woman with a 9-month history of right buttock pain and radiating right leg pain and paresthesia down to the first 2 toes, with a diagnosis of a herniated L4 intervertebral disk. The second subject is a 53-year-old woman who complained of chronic intermittent low back pain and constant unremitting pain on her right leg for the last 3 years. Chiropractic manipulation utilizing Logan Basic apex and double notch contacts, as well as sacroiliac manipulation on a drop table with a sacrum contact and with a posterior to anterior and superior to inferior (PA-SI) rocking thrust, together with a spinal stabilization exercise program, were used on these 2 patients. Both patients had significant clinical improvement, with reduction on the Visual Analogue Scale (VAS) of 67% and 84%, Oswestry Disability Index improvement of 73% and 81%, and an improvement on the Harris hip score of 71% and 44%, respectively. A conservative management approach, including specific chiropractic manipulation and a spinal stabilization exercise program, can help manage the treatment of adult patients with chronic low back and leg pain related to bilateral congenital dislocation of the hips.

  7. Leg power among malaysian netball players | Geok | African Journal ...

    African Journals Online (AJOL)

    The purpose of the study was to compare the leg power among Malaysian national netball players according to their age and playing position. The Vertical Jump Test was chosen to measure the leg power by using “Digital Indication Jump Meter” device. The results of the Vertical Jump Test were used to compare the leg ...

  8. Protection against high intravascular pressure in giraffe legs

    DEFF Research Database (Denmark)

    Petersen, Karin K; Hørlyck, Arne; Østergaard, Kristine Hovkjær

    2013-01-01

    The high blood pressure in giraffe leg arteries renders giraffes vulnerable to edema. We investigated in 11 giraffes whether large and small arteries in the legs and the tight fascia protect leg capillaries. Ultrasound imaging of foreleg arteries in anesthetized giraffes and ex vivo examination...

  9. Posterior Femoral Single Limb Osteotomy for the Removal of Well-Fixed Modular Femoral Neck Components

    Directory of Open Access Journals (Sweden)

    Keith A Fehring

    2017-07-01

    Full Text Available Modular neck femoral components were introduced to optimize femoral neck anteversion, leg length, offset, and stability in total hip arthroplasty. However, concerns have been raised in recent years regarding early failure of these implants due to corrosion, pseudotumor, as well as fracture of the modular neck. Removing modular neck femoral implants is challenging as removal of the modular femoral neck leaves a proximally coated femoral stem level with the proximal bone of the femoral neck. We describe a posterior femoral single limb osteotomy  (posterior cut of an extended trochanteric osteotomy for the removal of a modular neck femoral component.

  10. Crystal Structure Analysis of the First Discovered Stability-Enhanced Solid State of Tenofovir Disoproxil Free Base Using Single Crystal X-ray Diffraction.

    Science.gov (United States)

    An, Ji-Hun; Kiyonga, Alice Nguvoko; Yoon, Woojin; Ryu, Hyung Chul; Kim, Jae-Sun; Kang, Chaeri; Park, Minho; Yun, Hoseop; Jung, Kiwon

    2017-07-14

    Tenofovir disoproxil (TD), an anti-virus drug, is currently marketed under its most stable form, Form-I of Tenofovir disoproxil fumarate (TDF). However, studies regarding the properties of TD free base crystal as a promising drug as well as its crystal structure have not yet been reported. This assumption was made because TD free base is not directly produced in a solid form during the manufacturing process. TD free base is first obtained in an oil form, and is then synthesized into TDF crystal. In this regard, the present study was conducted to investigate both the potentiality of TD free base to be an active pharmaceutical ingredient (API) and its crystal structure. Here, TD free base solid was produced by means of drowning-out crystallization. Next, single crystal X-ray diffraction (SXD) was employed to determine the crystal structure. Powder X-ray diffraction (PXRD) and a differential scanning calorimetry (DSC) analysis were performed to evaluate the crystal's properties. Furthermore, experiments were carried out at 15%, 35%, 55%, 75%, and 95% relative humidity (RH) for 12 h using a hygroscopic tester to determine and to compare the hygroscopicity and stability of TD free base with TDF crystal. Additionally, experiments were conducted under accelerated (40 °C, RH 75%) and stress storage (60 °C, RH 75%) conditions for 30 days to investigate the changes in purity and the formation of dimer. In this work, we report that TD free base possesses lower hygroscopicity, and thus does not generate dimer impurity from hydrolysis. Primarily, this is attributed to the fact that TD free base is not an easily ionized salt but comprises neutral hydrophobic molecules. According to the structural properties, the improved hygroscopic property of the TD free base crystal was due to the decrease of crystal polarity owing to the intermolecular H-bonds present in TD free base rings. In addition, the solubility investigation study carried out in aqueous solution and at

  11. Quality-controlled dose reduction of full-leg radiography in patients with knee malalignment

    International Nuclear Information System (INIS)

    Kloth, Jost Karsten; Neumann, Regina; Stiller, Wolfram; Kauczor, Hans-Ulrich; Weber, Marc-Andre; Stillfried, Eva von; Ewerbeck, Volker

    2015-01-01

    Digital plain radiographs of the full leg are frequently performed examinations of children and young adults. Thus, the objective of this work was to reduce the radiation exposure dependent on specific indications, and to determine objective quality-control criteria to ensure accurate assessment. Institutional review board approval and informed consent of all participants were obtained. In this prospective, randomized controlled, blinded, two-armed single-center study, 288 evaluable patients underwent plain radiography of the full leg with standard and reduced doses. The evaluation of the plain radiographs was conducted using the following criteria: mechanical axis, leg length, and maturation of the epiphyseal plate. Two blinded radiologists evaluated these criteria using a score ranging from 1 (definitely assessable) to 4 (not assessable). If a single criterion had been evaluated with a score of 3 or more points or all criteria with 2 points, the radiograph was scored as ''not assessable''. The study was designed as a non-inferiority trial. Eleven (3.8 %) examined X-rays were scored as not assessable. The rate of non-assessable radiographs with 33 % reduced dose was significantly not inferior to the rate of non-assessable radiographs with standard dose. The evaluation of the quality criteria was dose independent. Full-leg plain radiography in patients with knee malalignment can be performed at 33 % reduced dose without loss of relevant diagnostic information. (orig.)

  12. Quality-controlled dose reduction of full-leg radiography in patients with knee malalignment

    Energy Technology Data Exchange (ETDEWEB)

    Kloth, Jost Karsten; Neumann, Regina; Stiller, Wolfram; Kauczor, Hans-Ulrich; Weber, Marc-Andre [University Hospital Heidelberg, Department of Diagnostic and Interventional Radiology, Heidelberg (Germany); Stillfried, Eva von; Ewerbeck, Volker [University Hospital Heidelberg, Department of Orthopedic and Trauma Surgery, Heidelberg (Germany)

    2014-12-05

    Digital plain radiographs of the full leg are frequently performed examinations of children and young adults. Thus, the objective of this work was to reduce the radiation exposure dependent on specific indications, and to determine objective quality-control criteria to ensure accurate assessment. Institutional review board approval and informed consent of all participants were obtained. In this prospective, randomized controlled, blinded, two-armed single-center study, 288 evaluable patients underwent plain radiography of the full leg with standard and reduced doses. The evaluation of the plain radiographs was conducted using the following criteria: mechanical axis, leg length, and maturation of the epiphyseal plate. Two blinded radiologists evaluated these criteria using a score ranging from 1 (definitely assessable) to 4 (not assessable). If a single criterion had been evaluated with a score of 3 or more points or all criteria with 2 points, the radiograph was scored as ''not assessable''. The study was designed as a non-inferiority trial. Eleven (3.8 %) examined X-rays were scored as not assessable. The rate of non-assessable radiographs with 33 % reduced dose was significantly not inferior to the rate of non-assessable radiographs with standard dose. The evaluation of the quality criteria was dose independent. Full-leg plain radiography in patients with knee malalignment can be performed at 33 % reduced dose without loss of relevant diagnostic information. (orig.)

  13. Clinical quality indicators of venous leg ulcers

    DEFF Research Database (Denmark)

    Kjaer, Monica L; Mainz, Jan; Soernsen, Lars T

    2005-01-01

    and reliable evidence-based quality indicators of venous leg ulcer care. A Scandinavian multidisciplinary, cross-sectional panel of wound healing experts developed clinical quality indicators on the basis of scientific evidence from the literature and subsequent group nominal consensus of the panel......; an independent medical doctor tested the feasibility and reliability of these clinical indicators, assessing the quality of medical technical care on 100 consecutive venous leg ulcer patients. Main outcome measures were healing, recurrence, pain, venous disease diagnosis, differential diagnosis and treatment......%) were assessed for venous surgery. Distal arterial pressure was measured following initial examination in 33 of the patients (34%). All patients (100%) were prescribed compression therapy. Of the 98 patients, 11 (11%) had ulcers recur in 3 months and 72 (73%) healed in 12 months, which is in line...

  14. Long-distance singularities in multi-leg scattering amplitudes

    CERN Document Server

    Gardi, Einan; Duhr, Claude

    2016-01-01

    We report on the recent completion of the three-loop calculation of the soft anomalous dimension in massless gauge-theory scattering amplitudes. This brings the state-of-the-art knowledge of long-distance singularities in multi-leg QCD amplitudes with any number of massless particles to three loops. The result displays some novel features: this is the first time non-dipole corrections appear, which directly correlate the colour and kinematic degrees of freedom of four coloured partons. We find that non-dipole corrections appear at three loops also for three coloured partons, but these are independent of the kinematics. The final result is remarkably simple when expressed in terms of single-valued harmonic polylogarithms, and it satisfies several non-trivial constraints. In particular, it is consistent with the high-energy limit behaviour and it satisfies the expected factorization properties in two-particle collinear limits.

  15. Dynamics of underwater legged locomotion: modeling and experiments on an octopus-inspired robot.

    Science.gov (United States)

    Calisti, M; Corucci, F; Arienti, A; Laschi, C

    2015-07-30

    This paper studies underwater legged locomotion (ULL) by means of a robotic octopus-inspired prototype and its associated model. Two different types of propulsive actions are embedded into the robot model: reaction forces due to leg contact with the ground and hydrodynamic forces such as the drag arising from the sculling motion of the legs. Dynamic parameters of the model are estimated by means of evolutionary techniques and subsequently the model is exploited to highlight some distinctive features of ULL. Specifically, the separation between the center of buoyancy (CoB)/center of mass and density affect the stability and speed of the robot, whereas the sculling movements contribute to propelling the robot even when its legs are detached from the ground. The relevance of these effects is demonstrated through robotic experiments and model simulations; moreover, by slightly changing the position of the CoB in the presence of the same feed-forward activation, a number of different behaviors (i.e. forward and backward locomotion at different speeds) are achieved.

  16. Is preeclampsia associated with restless legs syndrome?

    OpenAIRE

    Ramirez, J O; Cabrera, S A S; Hidalgo, H; Cabrera, S G; Linnebank, M; Bassetti, C L; Kallweit, U

    2013-01-01

    OBJECTIVE: Restless legs syndrome (RLS) is a common neurologic disorder. Secondary RLS includes pregnancy and iron deficiency. Prevalence of RLS in pregnancy ranges from 11% to 27%. We aimed to assess the frequency and characteristics of RLS in pregnancy in a Peruvian population and to evaluate the possible pregnancy or delivery complications due to RLS. METHODS: We assessed 218 consecutive expectant mothers at the inpatient clinic of the Hospital San Bartolome in Lima, Peru. Assessment wa...

  17. Genetic aspects of restless legs syndrome

    OpenAIRE

    Dhawan, V; Ali, M; Chaudhuri, K R

    2006-01-01

    Restless legs syndrome (RLS), also known as Ekbom syndrome, is a common movement disorder with sensorimotor symptoms occurring during sleep and quiet wakefulness. The underlying cause for RLS is unknown but genetic influences play a strong part in the pathogenesis of RLS, particularly when the condition starts at a young age. This review explores the genetic basis of RLS and related phenotypic variations. Recently, three loci showing vulnerability to RLS have been described in French‐Canadian...

  18. Restless legs syndrome and pregnancy: A review

    OpenAIRE

    Srivanitchapoom, Prachaya; Pandey, Sanjay; Hallett, Mark

    2014-01-01

    Restless legs syndrome (RLS) is a common sensorimotor neurological disorder that is diagnosed according to the revised criteria of the International RLS Study Group (IRLSSG). The pathophysiology of RLS is still unknown and its prevalence is influenced by ethnicity, age, and gender. RLS is divided into two types by etiology: primary or idiopathic and secondary. Primary RLS is strongly influenced by a genetic component while secondary RLS is caused by other associated conditions such as end-sta...

  19. Response of the muscles in the pelvic floor and the lower lateral abdominal wall during the Active Straight Leg Raise in women with and without pelvic girdle pain: An experimental study.

    Science.gov (United States)

    Sjödahl, Jenny; Gutke, Annelie; Ghaffari, Ghazaleh; Strömberg, Tomas; Öberg, Birgitta

    2016-06-01

    The relationship between activation of the stabilizing muscles of the lumbopelvic region during the Active Straight Leg Raise test and pelvic girdle pain remains unknown. Therefore, the aim was to examine automatic contractions in relation to pre-activation in the muscles of the pelvic floor and the lower lateral abdominal wall during leg lifts, performed as the Active Straight Leg Raise test, in women with and without persistent postpartum pelvic girdle pain. Sixteen women with pelvic girdle pain and eleven pain-free women performed contralateral and ipsilateral leg lifts, while surface electromyographic activity was recorded from the pelvic floor and unilaterally from the lower lateral abdominal wall. As participants performed leg lifts onset time was calculated as the time from increased muscle activity to leg lift initiation. No significant differences were observed between the groups during the contralateral leg lift. During the subsequent ipsilateral leg lift, pre-activation in the pelvic floor muscles was observed in 36% of women with pelvic girdle pain and in 91% of pain-free women (P=0.01). Compared to pain-free women, women with pelvic girdle pain also showed significantly later onset time in both the pelvic floor muscles (P=0.01) and the muscles of the lower lateral abdominal wall (Pactivation patterns influence women's ability to stabilize the pelvis during leg lifts. This could be linked to provocation of pain during repeated movements. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Proprioceptive Actuation Design for Dynamic Legged locomotion

    Science.gov (United States)

    Kim, Sangbae; Wensing, Patrick; Biomimetic Robotics Lab Team

    Designing an actuator system for highly-dynamic legged locomotion exhibited by animals has been one of the grand challenges in robotics research. Conventional actuators designed for manufacturing applications have difficulty satisfying challenging requirements for high-speed locomotion, such as the need for high torque density and the ability to manage dynamic physical interactions. It is critical to introduce a new actuator design paradigm and provide guidelines for its incorporation in future mobile robots for research and industry. To this end, we suggest a paradigm called proprioceptive actuation, which enables highly- dynamic operation in legged machines. Proprioceptive actuation uses collocated force control at the joints to effectively control contact interactions at the feet under dynamic conditions. In the realm of legged machines, this paradigm provides a unique combination of high torque density, high-bandwidth force control, and the ability to mitigate impacts through backdrivability. Results show that the proposed design provides an impact mitigation factor that is comparable to other quadruped designs with series springs to handle impact. The paradigm is shown to enable the MIT Cheetah to manage the application of contact forces during dynamic bounding, with results given down to contact times of 85ms and peak forces over 450N. As a result, the MIT Cheetah achieves high-speed 3D running up to 13mph and jumping over an 18-inch high obstacle. The project is sponsored by DARPA M3 program.

  1. Sleep board review question: restless legs

    Directory of Open Access Journals (Sweden)

    Omobomi O

    2018-02-01

    Full Text Available No abstract available. Article truncated after 150 words. Ms. Jones (not her real name is a 63-year-old woman who states that she gets very fidgety when sitting in a theater, watching a movie or when flying long distances on a plane. She is unable to find words to describe the sensation but she states that moving her legs make them feel better. Lately, she has been getting this feeling almost every night. She reports no leg discomfort in the daytime. She denies muscle cramps her legs. She had some recent investigations done by her primary care physician because of complaints of fatigue. Which of the following will be helpful in the diagnosis and management in this patient? 1. An overnight polysomnogram showing apnea hypopnea index of 1.6 events per hour and no periodic limb movements (PLMs 2. Ferritin level of 18 ng/ml (normal range 20-200 ng/ml 3. Serum Bicarbonate of 29 mEq/L (normal range 23-29 mEq/L 4. Thyroid …

  2. Restless Legs Syndrome Among the Elderly

    Directory of Open Access Journals (Sweden)

    Pei-Hao Chen

    2009-12-01

    Full Text Available Restless legs syndrome is a sleep and movement disorder that affects 5–15% of the general population, with an increased prevalence among the elderly population. It not only affects quality of life but also increases risk of mortality among older adults. The diagnosis is based on clinical symptoms of the patient by four minimal essential criteria. Restless legs syndrome can be divided into primary or secondary causes. Examination should be performed to rule out potentially treatable illnesses, such as iron deficiency, renal failure or peripheral neuropathy, especially among elderly patients. The initial approach to restless legs syndrome should be nonpharmacologic management, such as good sleep hygiene, regular exercise, cognitive behavioral therapy and avoidance of certain aggravating drugs. An algorithm based on scientific evidence and expert opinion was developed for guidance of treatment. Combination or change of medication can be applied to resistant or difficult cases. Since elderly patients are prone to treatment-related side effects, the best strategy is to start medication cautiously and at the lowest recommended dosage.

  3. Can't Curb the Urge to Move? Living with Restless Legs Syndrome

    Science.gov (United States)

    ... Sleep? Wise Choices Recognizing Restless Legs Restless legs syndrome brings all 4 of these characteristics: A strong urge to move your legs, often with unpleasant feelings like tingling, burning or throbbing in the legs. Symptoms that get better ... Legs Syndrome Fact Sheet What Is Restless Legs Syndrome? Brain ...

  4. Restless Legs Syndrome and Leg Motor Restlessness in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Keisuke Suzuki

    2015-01-01

    Full Text Available Sleep disturbances are important nonmotor symptoms in Parkinson’s disease (PD that are associated with a negative impact on quality of life. Restless legs syndrome (RLS, which is characterized by an urge to move the legs accompanied by abnormal leg sensations, can coexist with PD, although the pathophysiology of these disorders appears to be different. RLS and PD both respond favorably to dopaminergic treatment, and several investigators have reported a significant relationship between RLS and PD. Sensory symptoms, pain, motor restlessness, akathisia, and the wearing-off phenomenon observed in PD should be differentiated from RLS. RLS in PD may be confounded by chronic dopaminergic treatment; thus, more studies are needed to investigate RLS in drug-naïve patients with PD. Recently, leg motor restlessness (LMR, which is characterized by an urge to move the legs that does not fulfill the diagnostic criteria for RLS, has been reported to be observed more frequently in de novo patients with PD than in age-matched healthy controls, suggesting that LMR may be a part of sensorimotor symptoms intrinsic to PD. In this paper, we provide an overview of RLS, LMR, and PD and of the relationships among these disorders.

  5. Effect of Renal Transplantation in Restless Legs Syndrome.

    Science.gov (United States)

    Kahvecioglu, Serdar; Yildiz, Demet; Buyukkoyuncu, Nilufer; Celik, Huseyin; Tufan, Fatih; Kılıç, Ahmet Kasım; Gul, Bulent; Yildiz, Abdulmecid

    2016-02-01

    Restless legs syndrome is a disorder in which patients have irresistible urge to move legs during rest. Restless legs syndrome seems to be common in end-stage renal disease. After a successful renal transplant, symptoms ameliorate with renal function improvement and restless legs syndrome is seen less in this population. Here, we aimed to investigate restless legs syndrome frequency and associated factors in renal transplant patients. In a cross-sectional study with 193 patients (116 hemodialysis patients, 45 transplant patients, and 32 controls), the presence of restless legs syndrome was assessed using the Restless Legs Syndrome Questionnaire. Medical history, demographic, and laboratory data were collected from the patients' medical records. Patients were questioned about the presence of restless legs syndrome using the Restless Legs Syndrome Questionnaire. Patients were evaluated with Beck Depression Scale for depression and Pittsburgh tests for sleep disturbances. While the rate of restless legs syndrome was similar between transplants and controls, it was significantly greater in hemodialysis patients. Hemodialysis patients and controls had similar depression scores that were higher compared with transplant patients. Pittsburgh score was similar in transplant patients and controls and significantly increased in the hemodialysis patients. The rate of insomnia was significantly higher in the hemodialysis patients compared with the other 2 groups. Logistic regression analysis revealed independent correlates of restless legs syndrome as insomnia, Beck depression score, and being on hemodialysis. Linear regression analysis showed that independent correlates of higher Pittsburgh score were higher depression score, higher age, and presence of restless legs syndrome. The prevalence of restless legs syndrome is significantly lower in transplant patients than it is in patients on maintenance dialysis. In renal transplant patients, restless legs syndrome frequency was

  6. Aerodynamic Characteristics of a Feathered Dinosaur Measured Using Physical Models. Effects of Form on Static Stability and Control Effectiveness

    Science.gov (United States)

    Evangelista, Dennis; Cardona, Griselda; Guenther-Gleason, Eric; Huynh, Tony; Kwong, Austin; Marks, Dylan; Ray, Neil; Tisbe, Adrian; Tse, Kyle; Koehl, Mimi

    2014-01-01

    We report the effects of posture and morphology on the static aerodynamic stability and control effectiveness of physical models based on the feathered dinosaur, Microraptor gui, from the Cretaceous of China. Postures had similar lift and drag coefficients and were broadly similar when simplified metrics of gliding were considered, but they exhibited different stability characteristics depending on the position of the legs and the presence of feathers on the legs and the tail. Both stability and the function of appendages in generating maneuvering forces and torques changed as the glide angle or angle of attack were changed. These are significant because they represent an aerial environment that may have shifted during the evolution of directed aerial descent and other aerial behaviors. Certain movements were particularly effective (symmetric movements of the wings and tail in pitch, asymmetric wing movements, some tail movements). Other appendages altered their function from creating yaws at high angle of attack to rolls at low angle of attack, or reversed their function entirely. While M. gui lived after Archaeopteryx and likely represents a side experiment with feathered morphology, the general patterns of stability and control effectiveness suggested from the manipulations of forelimb, hindlimb and tail morphology here may help understand the evolution of flight control aerodynamics in vertebrates. Though these results rest on a single specimen, as further fossils with different morphologies are tested, the findings here could be applied in a phylogenetic context to reveal biomechanical constraints on extinct flyers arising from the need to maneuver. PMID:24454820

  7. Additivity of the Stabilization Effect of Single Amino Acid Substitutions in Triple Mutants of Recombinant Formate Dehydrogenase from the Soybean Glycine max.

    Science.gov (United States)

    Alekseeva, A A; Kargov, I S; Kleimenov, S Yu; Savin, S S; Tishkov, V I

    2015-01-01

    Recently, we demonstrated that the amino acid substitutions Ala267Met and Ala267Met/Ile272Val (Alekseeva et al., Biochemistry, 2012), Phe290Asp, Phe290Asn and Phe290Ser (Alekseeva et al., Prot. Eng. Des. Select, 2012) in recombinant formate dehydrogenase from soya Glycine max (SoyFDH) lead to a significant (up to 30-100 times) increase in the thermal stability of the enzyme. The substitutions Phe290Asp, Phe290Asn and Phe290Ser were introduced into double mutant SoyFDH Ala267Met/Ile272Val by site-directed mutagenesis. Combinations of three substitutions did not lead to a noticeable change in the catalytic properties of the mutant enzymes. The stability of the resultant triple mutants was studied through thermal inactivation kinetics and differential scanning calorimetry. The thermal stability of the new mutant SoyFDHs was shown to be much higher than that of their precursors. The stability of the best mutant SoyFDH Ala267Met/Ile272Val/Phe290Asp turned out to be comparable to that of the most stable wild-type formate dehydrogenases from other sources. The results obtained with both methods indicate a great synergistic contribution of individual amino acid substitutions to the common stabilization effect.

  8. Relationship between core stability, functional movement, and performance.

    Science.gov (United States)

    Okada, Tomoko; Huxel, Kellie C; Nesser, Thomas W

    2011-01-01

    The purpose of this study was to determine the relationship between core stability, functional movement, and performance. Twenty-eight healthy individuals (age = 24.4 ± 3.9 yr, height = 168.8 ± 12.5 cm, mass = 70.2 ± 14.9 kg) performed several tests in 3 categories: core stability (flexion [FLEX], extension [EXT], right and left lateral [LATr/LATl]), functional movement screen (FMS) (deep squat [DS], trunk-stability push-up [PU], right and left hurdle step [HSr/HSl], in-line lunge [ILLr/ILLl], shoulder mobility [SMr/SMl], active straight leg raise [ASLRr/ASLRl], and rotary stability [RSr/RSl]), and performance tests (backward medicine ball throw [BOMB], T-run [TR], and single leg squat [SLS]). Statistical significance was set at p ≤ 0.05. There were significant correlations between SLS and FLEX (r = 0.500), LATr (r = 0.495), and LATl (r = 0.498). The TR correlated significantly with both LATr (r = 0.383) and LATl (r = 0.448). Of the FMS, BOMB was significantly correlated with HSr (r = 0.415), SMr (r = 0.388), PU (r = 0.407), and RSr (r = 0.391). The TR was significantly related with HSr (r = 0.518), ILLl (r = 0.462) and SMr (r = 0.392). The SLS only correlated significantly with SMr (r = 0.446). There were no significant correlations between core stability and FMS. Moderate to weak correlations identified suggest core stability and FMS are not strong predictors of performance. In addition, existent assessments do not satisfactorily confirm the importance of core stability on functional movement. Despite the emphasis fitness professionals have placed on functional movement and core training for increased performance, our results suggest otherwise. Although training for core and functional movement are important to include in a fitness program, especially for injury prevention, they should not be the primary emphasis of any training program.

  9. Effect of acute leg cycling on the soleus H-reflex and modified Ashworth scale scores in individuals with multiple sclerosis.

    Science.gov (United States)

    Motl, Robert W; Snook, Erin M; Hinkle, Marcus L; McAuley, Edward

    2006-10-09

    This study examined the effect of a single bout of unloaded leg cycling on the soleus H-reflex and modified Ashworth scale (MAS) in 27 individuals with multiple sclerosis (MS) who had spasticity of the leg muscles, but were not currently taking anti-spastic medications. The soleus H-reflex and MAS data were collected before and 10, 30, and 60 min after 20 min of unloaded leg cycling and a control condition. The acute bout of unloaded leg cycling resulted in concomitant and prolonged reductions in the soleus H-reflex and MAS scores compared with the control condition. This provides converging evidence for the anti-spastic potential of acute unloaded leg cycling in individuals with MS.

  10. Conformational stability of calreticulin

    DEFF Research Database (Denmark)

    Jørgensen, C.S.; Trandum, C.; Larsen, N.

    2005-01-01

    The conformational stability of calreticulin was investigated. Apparent unfolding temperatures (T-m) increased from 31 degrees C at pH 5 to 51 degrees C at pH 9, but electrophoretic analysis revealed that calreticulin oligomerized instead of unfolding. Structural analyses showed that the single C......-terminal a-helix was of major importance to the conformational stability of calreticulin....

  11. Conformational stability of calreticulin

    DEFF Research Database (Denmark)

    Jørgensen, Charlotte S; Trandum, Christa; Larsen, Nanna Brink

    2005-01-01

    The conformational stability of calreticulin was investigated. Apparent unfolding temperatures (Tm) increased from 31 degrees C at pH 5 to 51 degrees C at pH 9, but electrophoretic analysis revealed that calreticulin oligomerized instead of unfolding. Structural analyses showed that the single C......-terminal alpha-helix was of major importance to the conformational stability of calreticulin....

  12. Leg movements during wakefulness in restless legs syndrome: time structure and relationships with periodic leg movements during sleep.

    Science.gov (United States)

    Ferri, Raffaele; Manconi, Mauro; Plazzi, Giuseppe; Bruni, Oliviero; Cosentino, Filomena I I; Ferini-Strambi, Luigi; Zucconi, Marco

    2012-05-01

    Approximately one third of patients with restless legs syndrome (RLS) also show periodic leg movements (PLM) during relaxed wake fulness (PLMW). In contrast with the large amount of data published on periodic leg movements during sleep (PLMS), PLMW have received less attention from the scientific community. The objective of this study was to evaluate the correlations/differences of time-structure and response to a dopamine-agonist between PLMW and PLMS in patients with RLS. Ninety idiopathic RLS patients and 28 controls were recruited. Subjects underwent clinical and neurophysiological evaluation, hematological screening, and one or two consecutive full-night polysomnographic studies. A subset of patients received 0.25mg of pramipexole or placebo before the second recording. Polysomnographic recordings were scored and LM activity was analyzed during sleep and during the epochs of wakefulness occurring during the first recording hour. RLS patients had higher LM activity during wakefulness than controls, but with a similar periodicity. Even if correlated, the ability of the PLMW index to predict the PLMS index decreased with increasing LM activity. Intermovement intervals during wakefulness showed one peak only at approximately 4s, gradually decreasing with increasing interval in both patients and controls. The effect of pramipexole was very limited and involved the small periodic portion of LM activity during wakefulness. PLMW index and PLMS index were correlated; however, the magnitude of this correlation was not sufficient to suggest that PLMW can be good predictors of PLMS. Short-interval LM activity during wakefulness and sleep might be linked to the severity of sleep disruption in RLS patients and the differences between their features obtained during wakefulness or sleep might be relevant for the diagnosis of sleep disturbances in RLS. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Restless legs syndrome and nocturnal leg cramps: a review and guide to diagnosis and treatment.

    Science.gov (United States)

    Tipton, Philip W; Wszołek, Zbigniew K

    2017-12-22

    Restless legs syndrome (RLS) and nocturnal leg cramps (NLCs) are common disorders affecting 7.0% and 24.1% of the population in some European countries, respectively. Patients suffering from RLS experience uncomfortable nocturnal sensations in the legs with the urge to move that dissipates while moving. NLC is characterized by abrupt muscle contraction, most often in the gastrocnemius or foot muscles, which occurs at night and may result in significant sleep disturbances. The diagnosis of these disorders has presented a challenge to health care providers because of symptom overlap with other sensory and motor disturbances with nocturnal predominance. Treatment options and approaches are lacking, partially because of our currently incomplete understanding of the pathophysiological mechanisms underlying these conditions. We reviewed the medical literature to provide a comprehensive assessment of RLS and NLC with a focus on improved diagnostic accuracy and treatment approaches.

  14. Actigraphic assessment of periodic leg movements in patients with restless legs syndrome.

    Science.gov (United States)

    Cippà, Maria A T; Baumann, Christian R; Siccoli, Massimiliano M; Bassetti, Claudio L; Poryazova, Rositsa; Werth, Esther

    2013-10-01

    The diagnosis of restless legs syndrome (RLS) relies upon diagnostic criteria which are based on history only, and dopaminergic treatment is not normally the first choice of treatment for all patients. It would be worthwhile to identify patients non-responsive to dopaminergic treatment beforehand, because they may suffer from a restless legs-like syndrome and may require alternative treatment. We included retrospectively 24 adult patients fulfilling the four essential criteria for restless legs and 12 age-matched healthy controls. They were investigated by ambulatory actigraphy from both legs over three nights, and patients started treatment with dopamine agonists after this diagnostic work-up. We examined 12 responders to dopaminergic treatment and 12 non-responders and studied the association between response to dopaminergic treatment and the periodic limb movement index (PLMI) as assessed with actigraphy. Demographic characteristics, excessive daytime sleepiness and fatigue at baseline were similar in all three groups. Baseline RLS severity was similar between responders and non-responders [International Restless Legs Severity Scale (IRLS): 25 ± 9 and 24 ± 8]. Group comparisons of PLMI before treatment initiation showed significant differences between the three groups. Post-hoc pairwise comparisons revealed that healthy controls had significantly lower PLMI (4.9 ± 4.5) than responders (29.3 ± 22.7) and non-responders (13.3 ± 11.2). Similarly, the PLMI in responders was lower than in non-responders. PLMI day-to-day variability did not differ between responders and non-responders and there was no correlation between treatment effect, as assessed by the decrease of the IRLS and baseline PLMI. Our retrospective study indicates that actigraphy to assess periodic limb movements may contribute to a better diagnosis of dopamine-responsive restless legs syndrome. © 2013 European Sleep Research Society.

  15. Immobilization tests and periodic leg movements in sleep for the diagnosis of restless leg syndrome.

    Science.gov (United States)

    Montplaisir, J; Boucher, S; Nicolas, A; Lesperance, P; Gosselin, A; Rompré, P; Lavigne, G

    1998-03-01

    Patients with restless leg syndrome (RLS) complain of motor restlessness, usually occurring while they rest in the evening. Two immobilization tests have been described to assess leg restlessness in these patients. In the first test, the patient sits in bed with his or her legs outstretched while electromyograms are recorded from right and left anterior tibialis muscles for an hour (Suggested Immobilization Test [SIT]); in the second test, the legs are immobilized in a stretcher (Forced Immobilization Test [FIT]). In the current study, the SIT and the FIT were compared in patients with RLS and normal control subjects matched for age and sex. More leg movements were seen in patients than in controls during immobilization tests, especially the SIT. These movements were periodic, occurring at a frequency of approximately one every 12 seconds. The SIT (index > 40) was found to discriminate between RLS and control subjects better than the FIT (index > 25). Patients were also recorded during two consecutive nights to measure periodic leg movements in sleep (PLMS). A SIT index greater than 40 and a PLMS index greater than 11 (highest PLMS index of 2 consecutive nights) were found to discriminate patients with RLS from control subjects with similar power. With each of these two measures, the clinical diagnosis was correctly predicted in 81% of patients and 81% of the control subjects. The SIT has several advantages over the measure of the PLMS index; it does not require an all-night polygraphic recording and can be administered several times a day to measure circadian fluctuation of motor restlessness.