WorldWideScience

Sample records for single layer counterparts

  1. Experience with single-layer rectal anastomosis.

    OpenAIRE

    Khubchandani, M; Upson, J

    1981-01-01

    Anastomotic dehiscence following resection of the large intestine is a serious complication. Satisfactory results of single-layer anastomosis depend upon meticulous technique and a scrupulously clean colon. Out of 65 single-layer anastomoses involving the rectum, significant leakage occurred in 4 patients. The results are reported in order to draw attention to the safety and efficacy of one-layer anastomosis.

  2. Single-Tailed Lipidoids Enhance the Transfection Activity of Their Double-Tailed Counterparts.

    Science.gov (United States)

    Wu, Yihang; Li, Linxian; Chen, Qing; Su, Yi; Levkin, Pavel A; Davidson, Gary

    2016-01-11

    Cationic lipid-like molecules (lipidoids) are widely used for in vitro and in vivo gene delivery. Nearly all lipidoids developed to date employ double-tail or multiple-tail structures for transfection. Single-tail lipidoids are seldom considered for transfection as they have low efficiency in gene delivery. So far, there is no detailed study on the contribution to transfection efficiency of single-tail lipidoids when combined with standard double-tail lipidoids. Here, we use combinatorial chemistry to synthesize 17 double-tail and 17 single-tail lipidoids using thiol-yne and thiol-ene click chemistry, respectively. HEK 293T cells were used to analyze transfection efficiency by fluorescence microscopy and calculated based on the percentage of cells transfected. The size and zeta potential of liposomes and lipoplexes were characterized by dynamic light scattering (DLS). Intracellular DNA delivery and trafficking was further examined using confocal microscopy. Our study shows that combining single with double-tail lipidoids increases uptake of lipoplexes, as well as cellular transfection efficiency.

  3. Automatic settlement analysis of single-layer armour layers

    NARCIS (Netherlands)

    Hofland, B.; van gent, Marcel

    2016-01-01

    A method to quantify, analyse, and present the settlement of single-layer concrete armour layers of coastal structures is presented. The use of the image processing technique for settlement analysis is discussed based on various modelling
    studies performed over the years. The accuracy of the

  4. Thermoelectric properties of single-layered SnSe sheet

    Science.gov (United States)

    Wang, Fancy Qian; Zhang, Shunhong; Yu, Jiabing; Wang, Qian

    2015-09-01

    Motivated by the recent study of inspiring thermoelectric properties in bulk SnSe [Zhao et al., Nature, 2014, 508, 373] and the experimental synthesis of SnSe sheets [Chen et al., J. Am. Chem. Soc., 2013, 135, 1213], we have carried out systematic calculations for a single-layered SnSe sheet focusing on its stability, electronic structure and thermoelectric properties by using density functional theory combined with Boltzmann transport theory. We have found that the sheet is dynamically and thermally stable with a band gap of 1.28 eV, and the figure of merit (ZT) reaches 3.27 (2.76) along the armchair (zigzag) direction with optimal n-type carrier concentration, which is enhanced nearly 7 times compared to its bulk counterpart at 700 K due to quantum confinement effect. Furthermore, we designed four types of thermoelectric couples by assembling single-layered SnSe sheets with different transport directions and doping types, and found that their efficiencies are all above 13%, which are higher than those of thermoelectric couples made of commercial bulk Bi2Te3 (7%-8%), suggesting the great potential of single-layered SnSe sheets for heat-electricity conversion.Motivated by the recent study of inspiring thermoelectric properties in bulk SnSe [Zhao et al., Nature, 2014, 508, 373] and the experimental synthesis of SnSe sheets [Chen et al., J. Am. Chem. Soc., 2013, 135, 1213], we have carried out systematic calculations for a single-layered SnSe sheet focusing on its stability, electronic structure and thermoelectric properties by using density functional theory combined with Boltzmann transport theory. We have found that the sheet is dynamically and thermally stable with a band gap of 1.28 eV, and the figure of merit (ZT) reaches 3.27 (2.76) along the armchair (zigzag) direction with optimal n-type carrier concentration, which is enhanced nearly 7 times compared to its bulk counterpart at 700 K due to quantum confinement effect. Furthermore, we designed four types of

  5. Nano-soldering to single atomic layer

    Science.gov (United States)

    Girit, Caglar O [Berkeley, CA; Zettl, Alexander K [Kensington, CA

    2011-10-11

    A simple technique to solder submicron sized, ohmic contacts to nanostructures has been disclosed. The technique has several advantages over standard electron beam lithography methods, which are complex, costly, and can contaminate samples. To demonstrate the soldering technique graphene, a single atomic layer of carbon, has been contacted, and low- and high-field electronic transport properties have been measured.

  6. Electrically Anisotropic Layered Perovskite Single Crystal

    KAUST Repository

    Li, Ting-You

    2016-04-01

    Organic-inorganic hybrid perovskites (OIHPs), which are promising materials for electronic and optoelectronic applications (1-10), have made into layered organic-inorganic hybrid perovskites (LOIHPs). These LOIHPs have been applied to thin-film transistors, solar cells and tunable wavelength phosphors (11-18). It is known that devices fabricated with single crystal exhibit the superior performance, which makes the growth of large-sized single crystals critical for future device applications (19-23). However, the difficulty in growing large-sized LOIHPs single crystal with superior electrical properties limits their practical applications. Here, we report a method to grow the centimeter-scaled LOIHP single crystal of [(HOC2H4NH3)2PbI4], demonstrating the potentials in mass production. After that, we reveal anisotropic electrical and optoelectronic properties which proved the carrier propagating along inorganic framework. The carrier mobility of in-inorganic-plane (in-plane) devices shows the average value of 45 cm2 V–1 s–1 which is about 100 times greater than the record of LOIHP devices (15), showing the importance of single crystal in device application. Moreover, the LOIHP single crystals show its ultra-short carrier lifetime of 42.7 ps and photoluminescence quantum efficiency (PLQE) of 25.4 %. We expect this report to be a start of LOIHPs for advanced applications in which the anisotropic properties are needed (24-25), and meets the demand of high-speed applications and fast-response applications.

  7. Tunneling spin injection into single layer graphene.

    Science.gov (United States)

    Han, Wei; Pi, K; McCreary, K M; Li, Yan; Wong, Jared J I; Swartz, A G; Kawakami, R K

    2010-10-15

    We achieve tunneling spin injection from Co into single layer graphene (SLG) using TiO₂ seeded MgO barriers. A nonlocal magnetoresistance (ΔR(NL)) of 130  Ω is observed at room temperature, which is the largest value observed in any material. Investigating ΔR(NL) vs SLG conductivity from the transparent to the tunneling contact regimes demonstrates the contrasting behaviors predicted by the drift-diffusion theory of spin transport. Furthermore, tunnel barriers reduce the contact-induced spin relaxation and are therefore important for future investigations of spin relaxation in graphene.

  8. Recent Advances in Polymer Organic Light-Emitting Diodes (PLED) Using Non-conjugated Polymers as the Emitting Layer and Contrasting Them with Conjugated Counterparts

    Science.gov (United States)

    Wong, Michael Y.

    2017-11-01

    Polymer organic light-emitting diodes (PLED) are one of the most studied subjects in flexible electronics thanks to their economical wet fabrication procedure for enhanced price advantage of the product device. In order to optimize PLED efficiency, correlating the polymer structure with the device performance is essential. An important question for the researchers in this field is whether the polymer backbone is conjugated or not as it affects the device performance. In this review, recent advances in non-conjugated polymers employed as the emitting layer in PLED devices are first discussed, followed by their contrast with the conjugated counterparts in terms of polymer synthesis, sample quality, physical properties and device performances. Such comparison between conjugated and non-conjugated polymers for PLED applications is rarely attempted, and; hence, this review shall provide a useful insight of emitting polymers employed in PLEDs.

  9. Experimental research on the stability of armour and secondary layer in a single layered Tetrapod breakwater

    NARCIS (Netherlands)

    De Jong, W.; Verhagen, H.J.; Olthof, J.

    2004-01-01

    Physical model tests were done on an armour of Tetrapods, placed in a single layer. The objective of the investigations was to study the stability of the secondary layer, and to see if the material of this secondary layer could be washed out through the single layer of Tetrapods. It was concluded

  10. Single-layer model for surface roughness.

    Science.gov (United States)

    Carniglia, C K; Jensen, D G

    2002-06-01

    Random roughness of an optical surface reduces its specular reflectance and transmittance by the scattering of light. The reduction in reflectance can be modeled by a homogeneous layer on the surface if the refractive index of the layer is intermediate to the indices of the media on either side of the surface. Such a layer predicts an increase in the transmittance of the surface and therefore does not provide a valid model for the effects of scatter on the transmittance. Adding a small amount of absorption to the layer provides a model that predicts a reduction in both reflectance and transmittance. The absorbing layer model agrees with the predictions of a scalar scattering theory for a layer with a thickness that is twice the rms roughness of the surface. The extinction coefficient k for the layer is proportional to the thickness of the layer.

  11. Hydraulic Stability of Single-Layer Dolos and Accropode Armour Layers

    DEFF Research Database (Denmark)

    Christensen, M.; Burcharth, H. F.

    1995-01-01

    A new design for Dolos breakwater armour layers is presented: Dolos armour units are placed in a selected geometric pattern in a single layer. A series of model tests have been performed in order to determine the stability of such single-layer Dolos armour layers. The test results are presented...... and compared to the stability formula for the traditional double-layer, randomly placed Dolos armour layer design presented by Burcharth (1992). The results of a series of stability tests performed with Accropode® armour layers is presented and compared to the test results obtained with single-layer Dolos...... armour layers. Run-up and reflection are presented for both single-layer Dolos armour and Accropode armour....

  12. Breakwater stability with damaged single layer armour units

    NARCIS (Netherlands)

    De Rover, R.; Verhagen, H.J.; Van den Berge, A.; Reedijk, B.

    2008-01-01

    The effect of single layer interlocking armour unit breakage on the hydraulic armour layer stability and potential damage progression is addressed in this paper. A 2-dimensional scale model of a rubble mound breakwater with an armour layer consisting of Xbloc armour units was tested. The residual

  13. Defect free single crystal thin layer

    KAUST Repository

    Elafandy, Rami Tarek Mahmoud

    2016-01-28

    A gallium nitride film can be a dislocation free single crystal, which can be prepared by irradiating a surface of a substrate and contacting the surface with an etching solution that can selectively etch at dislocations.

  14. LENA Conversion Foils Using Single-Layer Graphene, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Our key innovation will be the use of single-layer graphene as LENA conversion foils, with appropriate microgrids and nanogrids to support the foils. Phase I...

  15. Single-layer graphene on silicon nitride micromembrane resonators

    DEFF Research Database (Denmark)

    Schmid, Silvan; Bagci, Tolga; Zeuthen, Emil

    2014-01-01

    for exciting new devices, such as optoelectromechanical transducers. Here, we add a single-layer graphene on SiN micromembranes and compare electromechanical coupling and mechanical properties to bare dielectric membranes and to membranes metallized with an aluminium layer. The electrostatic coupling...

  16. Functionalization of Single Layer MoS$_2$ Honeycomb Structures

    OpenAIRE

    Ataca, C.; Ciraci, S.

    2010-01-01

    Based on the first-principles plane wave calculations, we studied the functionalization of the two-dimensional single layer MoS$_2$ structure via adatom adsorption and vacancy defect creation. Minimum energy adsorption sites are determined for sixteen different adatoms, each gives rise to diverse properties. Bare, single layer MoS$_2$, which is normally a nonmagnetic, direct band gap semiconductor, attains a net magnetic moment upon adsorption of specific transition metal atoms, as well as si...

  17. Synthesis of single-crystalline Al layers in sapphire

    International Nuclear Information System (INIS)

    Schlosser, W.; Lindner, J.K.N.; Zeitler, M.; Stritzker, B.

    1999-01-01

    Single-crystalline, buried aluminium layers were synthesized by 180 keV high-dose Al + ion implantation into sapphire at 500 deg. C. The approximately 70 nm thick Al layers exhibit in XTEM investigations locally abrupt interfaces to the single-crystalline Al 2 O 3 top layer and bulk, while thickness and depth position are subjected to variations. The layers grow by a ripening process of oriented Al precipitates, which at low doses exist at two different orientations. With increasing dose, precipitates with one out of the two orientations are observed to exist preferentially, finally leading to the formation of a single-crystalline layer. Al outdiffusion to the surface and the formation of spherical Al clusters at the surface are found to be competing processes to buried layer formation. The formation of Al layers is described by Rutherford Backscattering Spectroscopy (RBS), Cross-section transmission electron microscopy (XTEM) and Scanning electron microscopy (SEM) studies as a function of dose, temperature and substrate orientation

  18. Single Layered Versus Double Layered Intestinal Anastomosis: A Randomized Controlled Trial

    Science.gov (United States)

    Mohapatra, Vandana; Singh, Surendra; Rath, Pratap Kumar; Behera, Tapas Ranjan

    2017-01-01

    Introduction Gastrointestinal anastomosis is one of the most common procedures being performed in oesophagogastric, hepatobiliary, bariatric, small bowel and colorectal surgery; however, the safety and efficacy of single layer or double layer anastomotic technique is still unclear. Aim To assess and compare the efficacy, safety and cost effectiveness of single layered versus double layered intestinal anastomosis. Materials and Methods This prospective, double-blind, randomized controlled comparative study comprised of patients who underwent intestinal resection and anastomosis. They were randomly assigned to undergo either single layered extra-mucosal anastomosis (Group-A) or double layered intestinal anastomosis (Group-B). Primary outcome measures included average time taken for anastomosis, postoperative complications, mean duration of hospital stay and cost of suture material used; secondary outcome measures assessed the postoperative return of bowel function. Statistical analysis was done by Chi-square test and student t-test. Results A total of 97 participants were randomized. Fifty patients were allocated to single layered extramucosal continuous anastomosis (Group-A) and 47 patients to double layered anastomosis (Group-B). The patients in each group were well matched for age, sex and diagnosis. The mean time taken for anastomosis (15.12±2.27 minutes in Group-A versus 24.38±2.26 minutes in Group-B) and the length of hospital stay (5.90±1.43 days in Group-A versus 7.29±1.89 days in Group-B) was significantly shorter in Group-A {p-value anastomosis. However, there was no significant difference in the complication rates between the two groups. Conclusion It can be concluded that single layered extramucosal continuous intestinal anastomosis is equally safe and perhaps more cost effective than the conventional double layered method and may represent the optimal choice for routine surgical practice. PMID:28764239

  19. Bandgap tunability at single-layer molybdenum disulphide grain boundaries

    KAUST Repository

    Huang, Yu Li

    2015-02-17

    Two-dimensional transition metal dichalcogenides have emerged as a new class of semiconductor materials with novel electronic and optical properties of interest to future nanoelectronics technology. Single-layer molybdenum disulphide, which represents a prototype two-dimensional transition metal dichalcogenide, has an electronic bandgap that increases with decreasing layer thickness. Using high-resolution scanning tunnelling microscopy and spectroscopy, we measure the apparent quasiparticle energy gap to be 2.40±0.05 eV for single-layer, 2.10±0.05 eV for bilayer and 1.75±0.05 eV for trilayer molybdenum disulphide, which were directly grown on a graphite substrate by chemical vapour deposition method. More interestingly, we report an unexpected bandgap tunability (as large as 0.85±0.05 eV) with distance from the grain boundary in single-layer molybdenum disulphide, which also depends on the grain misorientation angle. This work opens up new possibilities for flexible electronic and optoelectronic devices with tunable bandgaps that utilize both the control of two-dimensional layer thickness and the grain boundary engineering.

  20. Single-layer closure of typhoid enteric perforation: Our experience ...

    African Journals Online (AJOL)

    Materials and Methods: We retrospectively studied the effects of single versus double layer intestinal closure after typhoid enteric perforation with peritonitis in 902 pediatric patients from September 2007 to April 2012. All the patients underwent laparotomy after resuscitation and antibiotic cover. The patients were divided ...

  1. Kernel Function Tuning for Single-Layer Neural Networks

    Czech Academy of Sciences Publication Activity Database

    Vidnerová, Petra; Neruda, Roman

    -, accepted 28.11. 2017 (2018) ISSN 2278-0149 R&D Projects: GA ČR GA15-18108S Institutional support: RVO:67985807 Keywords : single-layer neural networks * kernel methods * kernel function * optimisation Subject RIV: IN - Informatics, Computer Science http://www.ijmerr.com/

  2. Single-mode theory of diffusive layers in thermohaline convection

    Science.gov (United States)

    Gough, D. O.; Toomre, J.

    1982-01-01

    A two-layer configuration of thermohaline convection is studied, with the principal aim of explaining the observed independence of the buoyancy-flux ratio on the stability parameter when the latter is large. Temperature is destabilizing and salinity is stabilizing, so diffusive interfaces separate the convecting layers. The convection is treated in the single-mode approximation, with a prescribed horizontal planform and wavenumber. Surveys of numerical solutions are presented for a selection of Rayleigh numbers R, stability parameters lambda and horizontal wavenumbers. The solutions yield a buoyancy flux ratio chi that is insensitive to lambda, in accord with laboratory experiments. However chi increases with increasing R, in contradiction to laboratory observations.

  3. Thermoelectric Response in Single Quintuple Layer Bi2Te3

    KAUST Repository

    Sharma, S.

    2016-10-05

    Because Bi2Te3 belongs to the most important thermoelectric materials, the successful exfoliation of a single quintuple layer has opened access to an interesting two-dimensional material. For this reason, we study the thermoelectric properties of single quintuple layer Bi2Te3 by considering both the electron and phonon transport. On the basis of first-principles density functional theory, the electronic and phononic contributions are calculated by solving Boltzmann transport equations. The dependence of the lattice thermal conductivity on the phonon mean free path is evaluated along with the contributions of the acoustic and optical branches. We find that the thermoelectric response is significantly better for p- than for n-doping. By optimizing the carrier concentration, at 300 K, a ZT value of 0.77 is achieved, which increases to 2.42 at 700 K.

  4. Optofluidic lasers with a single molecular layer of gain

    Science.gov (United States)

    Chen, Qiushu; Ritt, Michael; Sivaramakrishnan, Sivaraj; Sun, Yuze; Fan, Xudong

    2014-01-01

    We achieve optofluidic lasers with a single molecular layer of gain, in which green fluorescent protein, dye-labeled bovine serum albumin, and dye-labeled DNA are respectively used as the gain medium and attached to the surface of a ring resonator via surface immobilization biochemical methods. It is estimated that the surface density of the gain molecules is on the order of 1012/cm2, sufficient for lasing under pulsed optical excitation. It is further shown that the optofluidic laser can be tuned by energy transfer mechanisms through biomolecular interactions. This work not only opens a door to novel photonic devices that can be controlled at the level of a single molecular layer, but also provides a promising sensing platform to analyze biochemical processes at the solid-liquid interface. PMID:25312306

  5. Numerical test for single concrete armour layer on breakwaters

    OpenAIRE

    Anastasaki, E; Latham, J-P; Xiang, J

    2016-01-01

    The ability of concrete armour units for breakwaters to interlock and form an integral single layer is important for withstanding severe wave conditions. In reality, displacements take place under wave loading, whether they are small and insignificant or large and representing serious structural damage. In this work, a code that combines finite- and discrete-element methods which can simulate motion and interaction among units was used to conduct a numerical investigation. Various concrete ar...

  6. Raman spectroscopy of boron-doped single-layer graphene.

    Science.gov (United States)

    Kim, Yoong Ahm; Fujisawa, Kazunori; Muramatsu, Hiroyuki; Hayashi, Takuya; Endo, Morinobu; Fujimori, Toshihiko; Kaneko, Katsumi; Terrones, Mauricio; Behrends, Jan; Eckmann, Axel; Casiraghi, Cinzia; Novoselov, Kostya S; Saito, Riichiro; Dresselhaus, Mildred S

    2012-07-24

    The introduction of foreign atoms, such as nitrogen, into the hexagonal network of an sp(2)-hybridized carbon atom monolayer has been demonstrated and constitutes an effective tool for tailoring the intrinsic properties of graphene. Here, we report that boron atoms can be efficiently substituted for carbon in graphene. Single-layer graphene substitutionally doped with boron was prepared by the mechanical exfoliation of boron-doped graphite. X-ray photoelectron spectroscopy demonstrated that the amount of substitutional boron in graphite was ~0.22 atom %. Raman spectroscopy demonstrated that the boron atoms were spaced 4.76 nm apart in single-layer graphene. The 7-fold higher intensity of the D-band when compared to the G-band was explained by the elastically scattered photoexcited electrons by boron atoms before emitting a phonon. The frequency of the G-band in single-layer substitutionally boron-doped graphene was unchanged, which could be explained by the p-type boron doping (stiffening) counteracting the tensile strain effect of the larger carbon-boron bond length (softening). Boron-doped graphene appears to be a useful tool for engineering the physical and chemical properties of graphene.

  7. Single-layer graphene on silicon nitride micromembrane resonators

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, Silvan; Guillermo Villanueva, Luis; Amato, Bartolo; Boisen, Anja [Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech, Building 345 East, 2800 Kongens Lyngby (Denmark); Bagci, Tolga; Zeuthen, Emil; Sørensen, Anders S.; Usami, Koji; Polzik, Eugene S. [QUANTOP, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen (Denmark); Taylor, Jacob M. [Joint Quantum Institute/NIST, College Park, Maryland 20899 (United States); Herring, Patrick K.; Cassidy, Maja C. [School of Engineering and Applied Science, Harvard University, Cambridge, Massachusetts 02138 (United States); Marcus, Charles M. [Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen (Denmark); Cheol Shin, Yong; Kong, Jing [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2014-02-07

    Due to their low mass, high quality factor, and good optical properties, silicon nitride (SiN) micromembrane resonators are widely used in force and mass sensing applications, particularly in optomechanics. The metallization of such membranes would enable an electronic integration with the prospect for exciting new devices, such as optoelectromechanical transducers. Here, we add a single-layer graphene on SiN micromembranes and compare electromechanical coupling and mechanical properties to bare dielectric membranes and to membranes metallized with an aluminium layer. The electrostatic coupling of graphene covered membranes is found to be equal to a perfectly conductive membrane, without significantly adding mass, decreasing the superior mechanical quality factor or affecting the optical properties of pure SiN micromembranes. The concept of graphene-SiN resonators allows a broad range of new experiments both in applied physics and fundamental basic research, e.g., for the mechanical, electrical, or optical characterization of graphene.

  8. Single-layer MoS2 transistors.

    Science.gov (United States)

    Radisavljevic, B; Radenovic, A; Brivio, J; Giacometti, V; Kis, A

    2011-03-01

    Two-dimensional materials are attractive for use in next-generation nanoelectronic devices because, compared to one-dimensional materials, it is relatively easy to fabricate complex structures from them. The most widely studied two-dimensional material is graphene, both because of its rich physics and its high mobility. However, pristine graphene does not have a bandgap, a property that is essential for many applications, including transistors. Engineering a graphene bandgap increases fabrication complexity and either reduces mobilities to the level of strained silicon films or requires high voltages. Although single layers of MoS(2) have a large intrinsic bandgap of 1.8 eV (ref. 16), previously reported mobilities in the 0.5-3 cm(2) V(-1) s(-1) range are too low for practical devices. Here, we use a halfnium oxide gate dielectric to demonstrate a room-temperature single-layer MoS(2) mobility of at least 200 cm(2) V(-1) s(-1), similar to that of graphene nanoribbons, and demonstrate transistors with room-temperature current on/off ratios of 1 × 10(8) and ultralow standby power dissipation. Because monolayer MoS(2) has a direct bandgap, it can be used to construct interband tunnel FETs, which offer lower power consumption than classical transistors. Monolayer MoS(2) could also complement graphene in applications that require thin transparent semiconductors, such as optoelectronics and energy harvesting.

  9. Single-layer and integrated YBCO gradiometer coupled SQUIDs

    Energy Technology Data Exchange (ETDEWEB)

    Baer, L.R.; Daalmans, G.M.; Barthel, K.H.; Ferchland, L.; Selent, M.; Kuehnl, M.; Uhl, D. [Siemens AG, Central Research and Development, Paul-Gossen-Strasse 100, D-91052 Erlangen (Germany)

    1996-04-01

    For many SQUID applications such as biomagnetism or non-destructive evaluation it is convenient or even necessary to work without the restrictions of a magnetically shielded room. This contribution deals with two sensors appropriate for this purpose. In the first concept we present a flip chip arrangement of a single-layer flux transformer and a single-layer SQUID, taking advantage of a simple technology. The SQUID was prepared on a 15x15 mm{sup 2} SrTiO{sub 3} 24 deg. bicrystal and located in the common line of two-parallel-loop arrangements. The flipped antenna was designed as a two-parallel-loop gradiometer with 26 mm baseline on a 10x40 mm{sup 2} LaAlO{sub 3} single-crystal substrate. A field gradient sensitivity of 1 nT cm{sup -1}{phi}{sub 0} was obtained. We could demonstrate a field gradient resolution of 20 fT cm{sup -1} Hz{sup 1/2} at 1 kHz in an unshielded environment. In the second concept we integrated both the flux antenna and the SQUID on a SrTiO{sub 3} bicrystal. The tighter coupling scheme results in smaller devices for similar field gradient sensitivities. The integrated SQUID is designed as a 3x8 mm{sup 2} device on a 10x10 mm{sup 2} bicrystal substrate. The remaining space is used for test structures and SQUIDs without antennae, in order to control the technology as well as the SQUID design. Parallel processed dummy substrates were used to monitor the quality of film growth by x-ray analysis. The quality of our SQUID design will be discussed on the basis of the measured field gradient sensitivity and noise. The reliability of the devices is demonstrated by an NDE type measurement. (author)

  10. Adsorption of metal adatoms on single-layer phosphorene.

    Science.gov (United States)

    Kulish, Vadym V; Malyi, Oleksandr I; Persson, Clas; Wu, Ping

    2015-01-14

    Single- or few-layer phosphorene is a novel two-dimensional direct-bandgap nanomaterial. Based on first-principles calculations, we present a systematic study on the binding energy, geometry, magnetic moment and electronic structure of 20 different adatoms adsorbed on phosphorene. The adatoms cover a wide range of valences, including s and p valence metals, 3d transition metals, noble metals, semiconductors, hydrogen and oxygen. We find that adsorbed adatoms produce a rich diversity of structural, electronic and magnetic properties. Our work demonstrates that phosphorene forms strong bonds with all studied adatoms while still preserving its structural integrity. The adsorption energies of adatoms on phosphorene are more than twice higher than on graphene, while the largest distortions of phosphorene are only ∼0.1-0.2 Å. The charge carrier type in phosphorene can be widely tuned by adatom adsorption. The unique combination of high reactivity with good structural stability is very promising for potential applications of phosphorene.

  11. Plasmon enhanced terahertz emission from single layer graphene.

    Science.gov (United States)

    Bahk, Young-Mi; Ramakrishnan, Gopakumar; Choi, Jongho; Song, Hyelynn; Choi, Geunchang; Kim, Yong Hyup; Ahn, Kwang Jun; Kim, Dai-Sik; Planken, Paul C M

    2014-09-23

    We show that surface plasmons, excited with femtosecond laser pulses on continuous or discontinuous gold substrates, strongly enhance the generation and emission of ultrashort, broadband terahertz pulses from single layer graphene. Without surface plasmon excitation, for graphene on glass, 'nonresonant laser-pulse-induced photon drag currents' appear to be responsible for the relatively weak emission of both s- and p-polarized terahertz pulses. For graphene on a discontinuous layer of gold, only the emission of the p-polarized terahertz electric field is enhanced, whereas the s-polarized component remains largely unaffected, suggesting the presence of an additional terahertz generation mechanism. We argue that in the latter case, 'surface-plasmon-enhanced optical rectification', made possible by the lack of inversion symmetry at the graphene on gold surface, is responsible for the strongly enhanced emission. The enhancement occurs because the electric field of surface plasmons is localized and enhanced where the graphene is located: at the surface of the metal. We believe that our results point the way to small, thin, and more efficient terahertz photonic devices.

  12. Intrinsic Charge Carrier Mobility in Single-Layer Black Phosphorus.

    Science.gov (United States)

    Rudenko, A N; Brener, S; Katsnelson, M I

    2016-06-17

    We present a theory for single- and two-phonon charge carrier scattering in anisotropic two-dimensional semiconductors applied to single-layer black phosphorus (BP). We show that in contrast to graphene, where two-phonon processes due to the scattering by flexural phonons dominate at any practically relevant temperatures and are independent of the carrier concentration n, two-phonon scattering in BP is less important and can be considered negligible at n≳10^{13}  cm^{-2}. At smaller n, however, phonons enter in the essentially anharmonic regime. Compared to the hole mobility, which does not exhibit strong anisotropy between the principal directions of BP (μ_{xx}/μ_{yy}∼1.4 at n=10^{13} cm^{-2} and T=300  K), the electron mobility is found to be significantly more anisotropic (μ_{xx}/μ_{yy}∼6.2). Absolute values of μ_{xx} do not exceed 250 (700)  cm^{2} V^{-1} s^{-1} for holes (electrons), which can be considered as an upper limit for the mobility in BP at room temperature.

  13. Synthesis of PbI(2) single-layered inorganic nanotubes encapsulated within carbon nanotubes.

    Science.gov (United States)

    Cabana, Laura; Ballesteros, Belén; Batista, Eudar; Magén, César; Arenal, Raúl; Oró-Solé, Judith; Rurali, Riccardo; Tobias, Gerard

    2014-04-02

    The template assisted growth of single-layered inorganic nanotubes is reported. Single-crystalline lead iodide single-layered nanotubes have been prepared using the inner cavities of carbon nanotubes as hosting templates. The diameter of the resulting inorganic nanotubes is merely dependent on the diameter of the host. This facile method is highly versatile opening up new horizons in the preparation of single-layered nanostructures. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Single layer centrifugation-selected boar spermatozoa are capable of fertilization in vitro

    Science.gov (United States)

    2013-01-01

    Background Good quality spermatozoa are important to achieve fertilization, viable embryos and offspring. Single Layer Centrifugation (SLC) through a colloid (Androcoll-P) selects good quality spermatozoa. However, it has not been established previously whether porcine spermatozoa selected by this method maintain their fertility. Methods The semen was prepared either by SLC or by standard centrifugation (control) and used for in vitro fertilization (IVF) at oocyte:spermatozoa ratios of 1:50; 1:100 and 1:300 (or 4 x 103, 8 x 103 and 24 x 103 spermatozoa/ml) to evaluate their subsequent ability to generate blastocysts. In addition, sperm motility was assessed by computer assisted sperm motility analysis. Results Total and progressive motility were significantly higher in sperm samples prepared by SLC compared to uncentrifuged samples. Sperm binding ability, polyspermy, cleavage and blastocyst rates were affected by the oocyte:sperm ratio, but not by sperm treatment. Conclusion The use of SLC does not adversely affect the in vitro fertilizing and embryo-generating ability of the selected spermatozoa compared to their unselected counterparts, but further modifications in the IVF conditions would be needed to improve the monospermy in IVF systems. Since SLC did not appear to have a negative effect on sperm fertilizing ability, and may in fact select for spermatozoa with a greater potential for fertilization, an in vivo trial to determine the usefulness of this sperm preparation technique prior to artificial insemination is warranted. PMID:23497680

  15. Touch stimulated pulse generation in biomimetic single-layer graphene

    Science.gov (United States)

    Sul, Onejae; Chun, Hyunsuk; Choi, Eunseok; Choi, Jungbong; Cho, Kyeongwon; Jang, Dongpyo; Chun, Sungwoo; Park, Wanjun; Lee, Seung-Beck

    2016-02-01

    Detecting variation in contact pressure is a separate sensing mode in the human somatosensory system that differs from the detection of pressure magnitude. If pressure magnitude and variation sensing can be achieved simultaneously, an advanced biomimetic tactile system that better emulates human senses may be developed. We report on a novel single-layer graphene based artificial mechanoreceptor that generates a resistance pulse as the contact stimulus passes a specific threshold pressure, mimicking the generation of action potentials in a biological fast-adapting mechanoreceptor. The electric field from a flexible membrane gate electrode placed above a graphene channel raises the Fermi level from the valence band as pressure deflects the membrane. The threshold pressure is reached when the Fermi level crosses the Dirac point in the graphene energy band, which generates a sharp peak in the measured resistance. We found that by changing the gate potential it was possible to modulate the threshold pressure and using a series of graphene channels, a train of pulses were generated during a transient pressurizing stimulus demonstrating biomimetic behaviour.Detecting variation in contact pressure is a separate sensing mode in the human somatosensory system that differs from the detection of pressure magnitude. If pressure magnitude and variation sensing can be achieved simultaneously, an advanced biomimetic tactile system that better emulates human senses may be developed. We report on a novel single-layer graphene based artificial mechanoreceptor that generates a resistance pulse as the contact stimulus passes a specific threshold pressure, mimicking the generation of action potentials in a biological fast-adapting mechanoreceptor. The electric field from a flexible membrane gate electrode placed above a graphene channel raises the Fermi level from the valence band as pressure deflects the membrane. The threshold pressure is reached when the Fermi level crosses the Dirac

  16. Counterpart synchronization of duplex networks with delayed nodes and noise perturbation

    International Nuclear Information System (INIS)

    Wei, Xiang; Wu, Xiaoqun; Lu, Jun-an; Zhao, Junchan

    2015-01-01

    In the real world, many complex systems are represented not by single networks but rather by sets of interdependent ones. In these specific networks, nodes in one network mutually interact with nodes in other networks. This paper focuses on a simple representative case of two-layer networks (the so-called duplex networks) with unidirectional inter-layer couplings. That is, each node in one network depends on a counterpart in the other network. Accordingly, the former network is called the response layer and the latter network is the drive layer. Specifically, synchronization between each node in the drive layer and its counterpart in the response layer (counterpart synchronization (CS)) in these kinds of duplex networks with delayed nodes and noise perturbation is investigated. Based on the LaSalle-type invariance principle, a control technique is proposed and a sufficient condition is developed for realizing CS of duplex networks. Furthermore, two corollaries are derived as special cases. In addition, node dynamics within each layer can be varied and topologies of the two layers are not necessarily identical. Therefore, the proposed synchronization method can be applied to a wide range of multiplex networks. Numerical examples are provided to illustrate the feasibility and effectiveness of the results. (paper)

  17. Electrical and optical transport properties of single layer WSe2

    Science.gov (United States)

    Tahir, M.

    2018-03-01

    The electronic properties of single layer WSe2 are distinct from the famous graphene due to strong spin orbit coupling, a huge band gap and an anisotropic lifting of the degeneracy of the valley degree of freedom under Zeeman field. In this work, band structure of the monolayer WSe2 is evaluated in the presence of spin and valley Zeeman fields to study the electrical and optical transport properties. Using Kubo formalism, an explicit expression for the electrical Hall conductivity is examined at finite temperatures. The electrical longitudinal conductivity is also evaluated. Further, the longitudinal and Hall optical conductivities are analyzed. It is observed that the contributions of the spin-up and spin-down states to the power absorption spectrum depend on the valley index. The numerical results exhibit absorption peaks as a function of photon energy, ℏ ω, in the range ∼ 1.5 -2 eV. Also, the optical response lies in the visible frequency range in contrast to the conventional two-dimensional electron gas or graphene where the response is limited to terahertz regime. This ability to isolate carriers in spin-valley coupled structures may make WSe2 a promising candidate for future spintronics, valleytronics and optical devices.

  18. Generalized single-hidden layer feedforward networks for regression problems.

    Science.gov (United States)

    Wang, Ning; Er, Meng Joo; Han, Min

    2015-06-01

    In this paper, traditional single-hidden layer feedforward network (SLFN) is extended to novel generalized SLFN (GSLFN) by employing polynomial functions of inputs as output weights connecting randomly generated hidden units with corresponding output nodes. The significant contributions of this paper are as follows: 1) a primal GSLFN (P-GSLFN) is implemented using randomly generated hidden nodes and polynomial output weights whereby the regression matrix is augmented by full or partial input variables and only polynomial coefficients are to be estimated; 2) a simplified GSLFN (S-GSLFN) is realized by decomposing the polynomial output weights of the P-GSLFN into randomly generated polynomial nodes and tunable output weights; 3) both P- and S-GSLFN are able to achieve universal approximation if the output weights are tuned by ridge regression estimators; and 4) by virtue of the developed batch and online sequential ridge ELM (BR-ELM and OSR-ELM) learning algorithms, high performance of the proposed GSLFNs in terms of generalization and learning speed is guaranteed. Comprehensive simulation studies and comparisons with standard SLFNs are carried out on real-world regression benchmark data sets. Simulation results demonstrate that the innovative GSLFNs using BR-ELM and OSR-ELM are superior to standard SLFNs in terms of accuracy, training speed, and structure compactness.

  19. [Single-layer colonic anastomoses using polyglyconate (Maxon) vs. two-layer anastomoses using chromic catgut and silk. Experimental study].

    Science.gov (United States)

    García-Osogobio, Sandra Minerva; Takahashi-Monroy, Takeshi; Velasco, Liliana; Gaxiola, Miguel; Sotres-Vega, Avelina; Santillán-Doherty, Patricio

    2006-01-01

    The safety of an intestinal anastomosis is usually measured by its complication rate, especially the incidence of anastomotic leakage. A wide variety of methods have been described to reestablish intestinal continuity including single-layer continuous or two-layer interrupted anastomosis. To evaluate if the single-layer continuous anastomosis using polygluconate is safer and reliable than two-layer interrupted anastomosis with chromic catgut and silk. A prospective, experimental, randomized and comparative analysis was conducted in 20 dogs. They were divided in two groups; group 1 underwent two-layer interrupted anastomosis and group 2 underwent sigle-layer continuous technique. Anastomoses were timed. Both groups were under observation. Anastomotic leakage, and other complications were evaluated. The animals were sacrified and the anastomosis was taken out together with 10 cm of colon on both sides of the anastomosis. Breaking strength, histologic evaluation and hydroxyproline determination were performed. Ten two-layer anastomosis and ten single-layer anastomosis were performed. A median of 25 minutes (range: 20-30 minutes) was required to construct the anastomoses in group 1 versus 20 minutes (range: 12-25 minutes) in group 2. All animals survived and no leakage was observed. Wound infection ocurred in four dogs (20%). Median breaking strength was 230 mm Hg in group 1 and 210 mm Hg in group 2. Hydroxyproline concentration was 8.94 mg/g in group 1 (range: 5.33-16.71) and 9.94 mg/g in group 2 (range: 2.96-21.87). There was no difference among groups about the inflammatory response evaluated by pathology. There was no statistical significance in any variable evaluated. CONCLUIONS: This study demonstrates that a single-layer continuous is similar in terms of safety to the two-layer technique, but because of its facility to perform, the single-layer technique could be superior.

  20. Plasma process-induced latent damage on gate oxide - demonstrated by single-layer and multi-layer antenna structures

    NARCIS (Netherlands)

    Wang, Zhichun; Ackaert, Jan; Salm, Cora; Kuper, F.G.

    2001-01-01

    In this paper, by using both single-layer (SL) and multi-layer (ML) or stacked antenna structures, a simple experimental method is proposed to directly demonstrate the pure plasma process-induced latent damage on gate oxide without any impact of additional defects generated by normal constant

  1. Single track and single layer formation in selective laser melting of niobium solid solution alloy

    Directory of Open Access Journals (Sweden)

    Yueling GUO

    2018-04-01

    Full Text Available Selective laser melting (SLM was employed to fabricate Nb-37Ti-13Cr-2Al-1Si (at% alloy, using pre-alloyed powders prepared by plasma rotating electrode processing (PREP. A series of single tracks and single layers under different processing parameters was manufactured to evaluate the processing feasibility by SLM, including laser power, scanning speed, and hatch distance. Results showed that continuous single tracks could be fabricated using proper laser powers and scanning velocities. Both the width of a single track and its penetration depth into a substrate increased with an increase of the linear laser beam energy density (LED, i.e., an increase of the laser power and a decrease of the scanning speed. Nb, Ti, Si, Cr, and Al elements distributed heterogeneously over the melt pool in the form of swirl-like patterns. An excess of the hatch distance was not able to interconnect neighboring tracks. Under improper processing parameters, a balling phenomenon occurred, but could be eliminated with an increased LED. This work testified the SLM-processing feasibility of Nb-based alloy and promoted the application of SLM to the manufacture of niobium-based alloys. Keywords: Additive manufacturing, Melt pool, Niobium alloy, Powder metallurgy, Selective laser melting

  2. Novel doping alternatives for single-layer transition metal dichalcogenides

    Science.gov (United States)

    Onofrio, Nicolas; Guzman, David; Strachan, Alejandro

    2017-11-01

    Successful doping of single-layer transition metal dichalcogenides (TMDs) remains a formidable barrier to their incorporation into a range of technologies. We use density functional theory to study doping of molybdenum and tungsten dichalcogenides with a large fraction of the periodic table. An automated analysis of the energetics, atomic and electronic structure of thousands of calculations results in insightful trends across the periodic table and points out promising dopants to be pursued experimentally. Beyond previously studied cases, our predictions suggest promising substitutional dopants that result in p-type transport and reveal interesting physics behind the substitution of the metal site. Doping with early transition metals (TMs) leads to tensile strain and a significant reduction in the bandgap. The bandgap increases and strain is reduced as the d-states are filled into the mid TMs; these trends reverse as we move into the late TMs. Additionally, the Fermi energy increases monotonously as the d-shell is filled from the early to mid TMs and we observe few to no gap states, indicating the possibility of both p- (early TMs) and n- (mid TMs) type doping. Quite surprisingly, the simulations indicate the possibility of interstitial doping of TMDs; the energetics reveal that a significant number of dopants, increasing in number from molybdenum disulfide to diselenide and to ditelluride, favor the interstitial sites over adsorbed ones. Furthermore, calculations of the activation energy associated with capturing the dopants into the interstitial site indicate that the process is kinetically possible. This suggests that interstitial impurities in TMDs are more common than thought to date and we propose a series of potential interstitial dopants for TMDs relevant for application in nanoelectronics based on a detailed analysis of the predicted electronic structures.

  3. Single-layer HDR video coding with SDR backward compatibility

    Science.gov (United States)

    Lasserre, S.; François, E.; Le Léannec, F.; Touzé, D.

    2016-09-01

    The migration from High Definition (HD) TV to Ultra High Definition (UHD) is already underway. In addition to an increase of picture spatial resolution, UHD will bring more color and higher contrast by introducing Wide Color Gamut (WCG) and High Dynamic Range (HDR) video. As both Standard Dynamic Range (SDR) and HDR devices will coexist in the ecosystem, the transition from Standard Dynamic Range (SDR) to HDR will require distribution solutions supporting some level of backward compatibility. This paper presents a new HDR content distribution scheme, named SL-HDR1, using a single layer codec design and providing SDR compatibility. The solution is based on a pre-encoding HDR-to-SDR conversion, generating a backward compatible SDR video, with side dynamic metadata. The resulting SDR video is then compressed, distributed and decoded using standard-compliant decoders (e.g. HEVC Main 10 compliant). The decoded SDR video can be directly rendered on SDR displays without adaptation. Dynamic metadata of limited size are generated by the pre-processing and used to reconstruct the HDR signal from the decoded SDR video, using a post-processing that is the functional inverse of the pre-processing. Both HDR quality and artistic intent are preserved. Pre- and post-processing are applied independently per picture, do not involve any inter-pixel dependency, and are codec agnostic. Compression performance, and SDR quality are shown to be solidly improved compared to the non-backward and backward-compatible approaches, respectively using the Perceptual Quantization (PQ) and Hybrid Log Gamma (HLG) Opto-Electronic Transfer Functions (OETF).

  4. Single layers and multilayers of GaN and AlN in square-octagon structure: Stability, electronic properties, and functionalization

    Science.gov (United States)

    Gürbüz, E.; Cahangirov, S.; Durgun, E.; Ciraci, S.

    2017-11-01

    Further to planar single-layer hexagonal structures, GaN and AlN can also form free-standing, single-layer structures constructed from squares and octagons. We performed an extensive analysis of dynamical and thermal stability of these structures in terms of ab initio finite-temperature molecular dynamics and phonon calculations together with the analysis of Raman and infrared active modes. These single-layer square-octagon structures of GaN and AlN display directional mechanical properties and have wide, indirect fundamental band gaps, which are smaller than their hexagonal counterparts. These density functional theory band gaps, however, increase and become wider upon correction. Under uniaxial and biaxial tensile strain, the fundamental band gaps decrease and can be closed. The electronic and magnetic properties of these single-layer structures can be modified by adsorption of various adatoms, or by creating neutral cation-anion vacancies. The single-layer structures attain magnetic moment by selected adatoms and neutral vacancies. In particular, localized gap states are strongly dependent on the type of vacancy. The energetics, binding, and resulting electronic structure of bilayer, trilayer, and three-dimensional (3D) layered structures constructed by stacking the single layers are affected by vertical chemical bonds between adjacent layers. In addition to van der Waals interaction, these weak vertical bonds induce buckling in planar geometry and enhance their binding, leading to the formation of stable 3D layered structures. In this respect, these multilayers are intermediate between van der Waals solids and wurtzite crystals, offering a wide range of tunability.

  5. Electrochemistry at the edge of a single graphene layer in a nanopore

    DEFF Research Database (Denmark)

    Banerjee, Sutanuka; Shim, Jeong; Rivera, J.

    2013-01-01

    We study the electrochemistry of single layer graphene edges using a nanopore-based structure consisting of stacked graphene and AlO dielectric layers. Nanopores, with diameters ranging from 5 to 20 nm, are formed by an electron beam sculpting process on the stacked layers. This leads to a unique...

  6. Single-particle thermal diffusion of charged colloids: Double-layer theory in a temperature gradient

    NARCIS (Netherlands)

    Dhont, J.K.G.; Briels, Willem J.

    2008-01-01

    The double-layer contribution to the single-particle thermal diffusion coefficient of charged, spherical colloids with arbitrary double-layer thickness is calculated and compared to experiments. The calculation is based on an extension of the Debye-Hückel theory for the double-layer structure that

  7. A theoretical study of pump–probe experiment in single-layer ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 82; Issue 6. A theoretical study of pump–probe experiment in single-layer, bilayer and multilayer graphene ... Here we use it as a tool to study the phenomenon of anomalous Rabi oscillations in graphene that was predicted recently in single-layer graphene.

  8. Novel single-layer gas diffusion layer based on PTFE/carbon black composite for proton exchange membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Chen-Yang, Y.W.; Hung, T.F.; Yang, F.L. [Department of Chemistry and Center for Nanotechnology, Chung Yuan Christian University, Chung-Li 32023 (China); Huang, J. [Yeu Ming Tai Chemical Industrial Co., Ltd, Taichung 40768 (China)

    2007-11-08

    A series of poly(tetrafluoroethylene)/carbon black composite-based single-layer gas diffusion layers (PTFE/CB-GDLs) for proton exchange membrane fuel cell (PEMFC) was successfully prepared from carbon black and un-sintered PTFE, which included powder resin and colloidal dispersion, by a simple inexpensive method. The scanning electron micrographs of PTFE/CB-GDLs indicated that the PTFE resins were homogeneously dispersed in the carbon black matrix and showed a microporous layer (MPL)-like structure. The as-prepared PTFE/CB-GDLs exhibited good mechanical property, high gas permeability, and sufficient water repellency. The best current density obtained from the PEMFC with the single-layer PTFE/CB-GDL was 1.27 and 0.42 A cm{sup -2} for H{sub 2}/O{sub 2} and H{sub 2}/air system, respectively. (author)

  9. A single hidden layer feedforward network with only one neuron in the hidden layer can approximate any univariate function

    OpenAIRE

    Guliyev, Namig; Ismailov, Vugar

    2016-01-01

    The possibility of approximating a continuous function on a compact subset of the real line by a feedforward single hidden layer neural network with a sigmoidal activation function has been studied in many papers. Such networks can approximate an arbitrary continuous function provided that an unlimited number of neurons in a hidden layer is permitted. In this paper, we consider constructive approximation on any finite interval of $\\mathbb{R}$ by neural networks with only one neuron in the hid...

  10. Modification of single-walled carbon nanotube electrodes by layer-by-layer assembly for electrochromic devices

    OpenAIRE

    Jain, Vaibhav; Yochum, Henry M.; Montazami, Reza; Heflin, James R.; Hu, Liangbing; Gruner, George

    2008-01-01

    We have studied the morphological properties and electrochromic (EC) performance of polythiophene multilayer films on single wall carbon nanotube (SWCNT) conductive electrodes. The morphology for different numbers of layer-by-layer (LbL) bilayer on the SWCNT electrode has been characterized with atomic force microscopy and scanning electron microscope, and it was found that the LbL multilayers significantly decrease the surface roughness of the nanoporous nanotube films. The controlled surfac...

  11. Design of a Single-Layer Microchannel for Continuous Sheathless Single-Stream Particle Inertial Focusing.

    Science.gov (United States)

    Zhang, Yan; Zhang, Jun; Tang, Fei; Li, Weihua; Wang, Xiaohao

    2018-02-06

    High-throughput, high-precision single-stream focusing of microparticles has a potentially wide range of applications in biochemical analysis and clinical diagnosis. In this work, we develop a sheathless three-dimensional (3D) particle-focusing method in a single-layer microchannel. This novel microchannel consists of periodic high-aspect-ratio curved channels and straight channels. The proposed method takes advantage of both the curved channels, which induce Dean flow to promote particle migration, and straight channels, which suppress the remaining stirring effects of Dean flow to stabilize the achieved particle focusing. The 3D particle focusing is demonstrated experimentally, and the mechanism is analyzed theoretically. The effects of flow rate, particle size, and cycle number on the focusing performance were also investigated. The experimental results demonstrate that polystyrene particles with diameters of 5-20 μm can be focused into a 3D single file within seven channel cycles, with the focusing accuracy up to 98.5% and focusing rate up to 98.97%. The focusing throughput could reach up to ∼10 5 counts/min. Furthermore, its applicability to biological cells is also demonstrated by 3D focusing of HeLa and melanoma cells and bovine blood cells in the proposed microchannel. The proposed sheathless passive focusing scheme, featuring a simple channel structure, small footprint (9 mm × 1.2 mm), compact layout, and uncomplicated fabrication procedure, holds great promise as an efficient 3D focusing unit for the development of next-generation on-chip flow cytometry.

  12. Droplet Measurement below Single-Layer Grid Fill

    Directory of Open Access Journals (Sweden)

    Vitkovic Pavol

    2016-01-01

    Full Text Available The main part of the heat transfer in a cooling tower is in a fill zone. This one is consist of a cooling fill. For the cooling tower is used a film fill or grid fill or splash fill in the generally. The grid fill has lower heat transfer performance like film fill usually. But their advantage is high resistance to blockage of the fill. The grid fill is consisted with independent layers made from plastic usually. The layers consist of several bars connected to the different shapes. For experiment was used the rhombus shape. The drops diameter was measured above and below the Grid fill.

  13. Quantum experiments without classical counterparts

    International Nuclear Information System (INIS)

    Pavicic, M.

    2005-01-01

    Full text: We present a generalized and exhaustive method of finding the directions of the quantization axes of the measured eigenstates within experiments which have no classical counterparts. The method relies on a constructive and exhaustive definition of sets of such directions (which we call Kochen-Specker vectors) in a Hilbert space of any dimension as well as of all the remaining vectors of the space. Kochen-Specker vectors are elements of any set of orthonormal states, i.e., vectors in n-dim Hilbert space, Hn, n > 2 to which it is impossible to assign 1s and 0s in such a way that no two mutually orthogonal vectors from the set are both assigned 1 and that not all mutually orthogonal vectors are assigned 0. Our constructive definition of such Kochen-Specker vectors is based on algorithms that generate MMP diagrams corresponding to blocks of orthogonal vectors in Rn, on algorithms that single out those diagrams on which algebraic to 0-1 states cannot be defined, and on algorithms that solve nonlinear equations describing the orthogonalities of the vectors by means of statistically polynomially complex interval analysis and self-teaching programs. The algorithms are limited neither by the number of dimensions nor by the number of vectors. To demonstrate the power of the algorithms, all 4-dim KS vector systems containing up to 24 vectors were generated and described, all 3-dim vector systems containing up to 30 vectors were scanned, and several general properties of KS vectors were found. (author)

  14. Single-layer versus double-layer laparoscopic intracorporeally sutured gastrointestinal anastomoses in the canine model.

    Science.gov (United States)

    Tavakoli, Azine; Bakhtiari, Jalal; Khalaj, Ali Reza; Gharagozlou, Mohammad Javad; Veshkini, Abbas

    2010-01-01

    The objective of this study was to compare the gross and histopathologic changes following 1- versus 2-layer hand-sewn suture techniques in laparoscopic gastrointestinal anastomosis in dogs. This was an experimental prospective study of 16 healthy mixed breed male and female dogs. Animals were randomly divided into 2 groups. Two-layer side-to-side hand-sewn laparoscopic gastrojejunostomies were performed in group A, so that simple interrupted sutures were placed in the outer layer and simple continuous suture was used in the inner layer. The 1-layer simple continuous anastomosis between the stomach and jejunum was done in group B precisely. Specimen were collected from the sites of anastomosis, and H&E statining was performed for light microscopic studies. All animals survived the surgery. There was no gross inflammation, ischemia, apparent granulation tissue, abscess or fistula formation, leakage or stricture formation, and all sites of anastomosis were patent. Several adhesion formations were found in the abdomen with the higher incidence in the control group. Mean scores of leukocyte infiltration and granulation tissue formation at the sites of anastomosis were statistically insignificant between groups (P>0.05). Gross and histopathologic findings revealed that hand-sewn laparoscopic gastrointestinal anastomosis with the 1-layer suture technique is comparable to the 2-layer suture technique.

  15. Ultra-thin, single-layer polarization rotator

    Energy Technology Data Exchange (ETDEWEB)

    Son, T. V.; Truong, V. V., E-mail: Truong.Vo-Van@Concordia.Ca [Department of Physics, Concordia University, Montreal, Quebec, H4B 1R6 (Canada); Do, P. A.; Haché, A. [Département de Physique et d’Astronomie, Université de Moncton, Moncton, New Brunswick, E1A 3E9 (Canada)

    2016-08-15

    We demonstrate light polarization control over a broad spectral range by a uniform layer of vanadium dioxide as it undergoes a phase transition from insulator to metal. Changes in refractive indices create unequal phase shifts on s- and p-polarization components of incident light, and rotation of linear polarization shows intensity modulation by a factor of 10{sup 3} when transmitted through polarizers. This makes possible polarization rotation devices as thin as 50 nm that would be activated thermally, optically or electrically.

  16. Lattice Vibration of Layered GaTe Single Crystals

    Directory of Open Access Journals (Sweden)

    Tao Wang

    2018-02-01

    Full Text Available The effect of interlayer interaction on in-layer structure of laminar GaTe crystals was studied according to the lattice vibration using micro-Raman analysis. The results were also confirmed by the first principle calculations. Accordingly, the relationship between lattice vibration and crystal structure was established. Ten peaks were observed in the micro-Raman spectra from 100 cm−1 to 300 cm−1. Eight of them fit Raman-active vibration modes and the corresponding displacement vectors were calculated, which proved that the two modes situated at 128.7 cm−1 and 145.7 cm−1 were related to the lattice vibration of GaTe, instead of impurities or defects. Davydov splitting in GaTe was identified and confirmed by the existence of the other two modes, conjugate modes, at 110.7 cm−1 (∆ω = 33.1 cm−1 and 172.5 cm−1 (∆ω = 49.5 cm−1, indicates that the weak interlayer coupling has a significant effect on lattice vibrations in the two-layer monoclinic unit cell. Our results further proved the existence of two layers in each GaTe unit cell.

  17. Plasmon resonance in single- and double-layer CVD graphene nanoribbons

    DEFF Research Database (Denmark)

    Wang, Di; Emani, Naresh K.; Chung, Ting Fung

    2015-01-01

    Dynamic tunability of the plasmonic resonance in graphene nanoribbons is desirable in the near-infrared. We demonstrated a constant blue shift of plasmonic resonances in double-layer graphene nanoribbons with respect to single-layer graphene nanoribbons. © OSA 2015.......Dynamic tunability of the plasmonic resonance in graphene nanoribbons is desirable in the near-infrared. We demonstrated a constant blue shift of plasmonic resonances in double-layer graphene nanoribbons with respect to single-layer graphene nanoribbons. © OSA 2015....

  18. Single layer of Ge quantum dots in HfO2for floating gate memory capacitors.

    Science.gov (United States)

    Lepadatu, A M; Palade, C; Slav, A; Maraloiu, A V; Lazanu, S; Stoica, T; Logofatu, C; Teodorescu, V S; Ciurea, M L

    2017-04-28

    High performance trilayer memory capacitors with a floating gate of a single layer of Ge quantum dots (QDs) in HfO 2 were fabricated using magnetron sputtering followed by rapid thermal annealing (RTA). The layer sequence of the capacitors is gate HfO 2 /floating gate of single layer of Ge QDs in HfO 2 /tunnel HfO 2 /p-Si wafers. Both Ge and HfO 2 are nanostructured by RTA at moderate temperatures of 600-700 °C. By nanostructuring at 600 °C, the formation of a single layer of well separated Ge QDs with diameters of 2-3 nm at a density of 4-5 × 10 15 m -2 is achieved in the floating gate (intermediate layer). The Ge QDs inside the intermediate layer are arranged in a single layer and are separated from each other by HfO 2 nanocrystals (NCs) about 8 nm in diameter with a tetragonal/orthorhombic structure. The Ge QDs in the single layer are located at the crossing of the HfO 2 NCs boundaries. In the intermediate layer, besides Ge QDs, a part of the Ge atoms is segregated by RTA at the HfO 2 NCs boundaries, while another part of the Ge atoms is present inside the HfO 2 lattice stabilizing the tetragonal/orthorhombic structure. The fabricated capacitors show a memory window of 3.8 ± 0.5 V and a capacitance-time characteristic with 14% capacitance decay in the first 3000-4000 s followed by a very slow capacitance decrease extrapolated to 50% after 10 years. This high performance is mainly due to the floating gate of a single layer of well separated Ge QDs in HfO 2 , distanced from the Si substrate by the tunnel oxide layer with a precise thickness.

  19. A COMPARATIVE STUDY OF SINGLE VERSUS DOUBLE LAYER CLOSURE ON LOWER SEGMENT CAESAREAN SCAR

    Directory of Open Access Journals (Sweden)

    Kirtirekha Mohapatra

    2016-10-01

    Full Text Available BACKGROUND There are few issues in modern obstetrics that have been as controversial as management of a woman with a prior caesarean delivery. Hence, it is required to have evidence based correct practice of this surgical procedure. Healing of the uterine incision and the strength of the scar should be the most important consideration. The aim of the study is to compare the effect of technique of uterine closure (Single Layer vs. Double Layer on subsequent pregnancies and to find out, which technique has a better maternal and neonatal outcome by strengthening the scar. MATERIALS AND METHODS 500 cases of previous caesarean section pregnancies were taken, 250 from single layer closure group and 250 from double layer closure group. The mode of delivery during present pregnancy was noted. Integrity of scar, thickness of scar, presence of adhesion were documented. The neonates were observed. Results were compared so as to draw an inference about the better method. RESULTS Mean age between the two groups were similar. Majority did not have history of premature rupture of membrane during previous pregnancy. Postoperative complications were more when double layer closure of uterine scar was done in index surgery. Interpregnancy gap of <3 years was more commonly present in double layer closure group (52.8% in double layer versus 34.8% in single layer. Single layer had more scar tenderness (21.2%, thinned out scars (34.6%, incomplete ruptures (7.1% and complete ruptures (2.8% than double layer closure group. Neonatal outcomes were not statistically different in both the groups. CONCLUSION Double layer uterine closure seems to have better impact on scar integrity as compared to single layer uterine closure.

  20. Single layer graphene electrodes for quantum dot-light emitting diodes

    Science.gov (United States)

    Yan, Long; Zhang, Yu; Zhang, Xiaoyu; Zhao, Jia; Wang, Yu; Zhang, Tieqiang; Jiang, Yongheng; Gao, Wenzhu; Yin, Jingzhi; Zhao, Jun; Yu, William W.

    2015-03-01

    Single layer graphene was employed as the electrode in quantum dot-light emitting diodes (QD-LEDs) to replace indium tin oxide (ITO). The graphene layer demonstrated low surface roughness, good hole injection ability, and proper work function matching with the poly (3,4-ethylenedioxythiophene):poly (styrenesulfonate) layer. Together with the hole transport layer and electron transport layer, the fabricated QD-LED showed good current efficiency and power efficiency, which were even higher than an ITO-based similar device under low current density. The result indicates that graphene can be used as anodes to replace ITO in QD-LEDs.

  1. Ultra-thin, single-layer polarization rotator

    Directory of Open Access Journals (Sweden)

    T. V. Son

    2016-08-01

    Full Text Available We demonstrate light polarization control over a broad spectral range by a uniform layer of vanadium dioxide as it undergoes a phase transition from insulator to metal. Changes in refractive indices create unequal phase shifts on s- and p-polarization components of incident light, and rotation of linear polarization shows intensity modulation by a factor of 103 when transmitted through polarizers. This makes possible polarization rotation devices as thin as 50 nm that would be activated thermally, optically or electrically.

  2. Fabrication of a single layer graphene by copper intercalation on a SiC(0001) surface

    International Nuclear Information System (INIS)

    Yagyu, Kazuma; Tochihara, Hiroshi; Tomokage, Hajime; Suzuki, Takayuki; Tajiri, Takayuki; Kohno, Atsushi; Takahashi, Kazutoshi

    2014-01-01

    Cu atoms deposited on a zero layer graphene grown on a SiC(0001) substrate, intercalate between the zero layer graphene and the SiC substrate after the thermal annealing above 600 °C, forming a Cu-intercalated single layer graphene. On the Cu-intercalated single layer graphene, a graphene lattice with superstructure due to moiré pattern is observed by scanning tunneling microscopy, and specific linear dispersion at the K ¯ point as well as a characteristic peak in a C 1s core level spectrum, which is originated from a free-standing graphene, is confirmed by photoemission spectroscopy. The Cu-intercalated single layer graphene is found to be n-doped

  3. Study of the mechanical properties of single- layer and multi-layer metallic coatings with protective-decorative applications

    Directory of Open Access Journals (Sweden)

    Cherneva Sabina

    2018-01-01

    Full Text Available Single thin coating of matt nickel (Nimat, a mirror bright copper (Cubright, a mirror bright nickel (Nibright and their combinations were electrochemically deposited on brass substrate with thickness 500 μm. The basic aim was electrodeposition of two-layer Cubright/Nimat and Nibright/Cubright systems, and three-layer Nibright Cubrigh/Nimat system, which are among the most widely applied protective and decorative systems in light and medium operating conditions of corrosion. The thicknesses of the obtained films varied from 1 μm to 3.25 μm. They were investigated via nanoindentation experiments, in order to characterize their basic physical and mechanical characteristics, related with their good adhesion and corrosion protective ability, as well as ensuring the integrity of the system “protective coating/substrate” to possible mechanical, dynamic and/or thermal stresses. As a result, load-displacement curves were obtained and indentation hardness and indentation modulus were calculated using the Oliver & Pharr approximation method. The dependence of the indentation modulus and the indentation hardness on the depth of the indentation, surface morphology and structure of the obtained coatings, their texture and surface roughness were investigated too. The obtained results showed that the three-layer Nibright/Cubright /Niimat/CuZn37 system has highest indentation modulus and indentation hardness, following by two-layer Nibright/Cubright system and single layer coatings.

  4. Single-layer Ultralight, Flexible, Shielding Tension Shell System for Extreme Heat and Radiation

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this project is to develop a flexible thermal protection system (FTPS) with a Boron Nitride Nanotube (BNNT)-based single-layer, lightweight,...

  5. Diverse and tunable electronic structures of single-layer metal phosphorus trichalcogenides for photocatalytic water splitting

    International Nuclear Information System (INIS)

    Liu, Jian; Li, Xi-Bo; Wang, Da; Liu, Li-Min; Lau, Woon-Ming; Peng, Ping

    2014-01-01

    The family of bulk metal phosphorus trichalcogenides (APX 3 , A = M II , M 0.5 I M 0.5 III ; X = S, Se; M I , M II , and M III represent Group-I, Group-II, and Group-III metals, respectively) has attracted great attentions because such materials not only own magnetic and ferroelectric properties, but also exhibit excellent properties in hydrogen storage and lithium battery because of the layered structures. Many layered materials have been exfoliated into two-dimensional (2D) materials, and they show distinct electronic properties compared with their bulks. Here we present a systematical study of single-layer metal phosphorus trichalcogenides by density functional theory calculations. The results show that the single layer metal phosphorus trichalcogenides have very low formation energies, which indicates that the exfoliation of single layer APX 3 should not be difficult. The family of single layer metal phosphorus trichalcogenides exhibits a large range of band gaps from 1.77 to 3.94 eV, and the electronic structures are greatly affected by the metal or the chalcogenide atoms. The calculated band edges of metal phosphorus trichalcogenides further reveal that single-layer ZnPSe 3 , CdPSe 3 , Ag 0.5 Sc 0.5 PSe 3 , and Ag 0.5 In 0.5 PX 3 (X = S and Se) have both suitable band gaps for visible-light driving and sufficient over-potentials for water splitting. More fascinatingly, single-layer Ag 0.5 Sc 0.5 PSe 3 is a direct band gap semiconductor, and the calculated optical absorption further convinces that such materials own outstanding properties for light absorption. Such results demonstrate that the single layer metal phosphorus trichalcogenides own high stability, versatile electronic properties, and high optical absorption, thus such materials have great chances to be high efficient photocatalysts for water-splitting

  6. Single-layer skull approximations perform well in transcranial direct current stimulation modeling

    NARCIS (Netherlands)

    Rampersad, S.M.; Stegeman, D.F.; Oostendorp, T.F.

    2013-01-01

    In modeling the effect of transcranial direct current stimulation, the representation of the skull is an important factor. In a spherical model, we compared a realistic skull modeling approach, in which the skull consisted of three isotropic layers, to anisotropic and isotropic single-layer

  7. Simulation study on single event burnout in linear doping buffer layer engineered power VDMOSFET

    International Nuclear Information System (INIS)

    Jia Yunpeng; Su Hongyuan; Hu Dongqing; Wu Yu; Jin Rui

    2016-01-01

    The addition of a buffer layer can improve the device's secondary breakdown voltage, thus, improving the single event burnout (SEB) threshold voltage. In this paper, an N type linear doping buffer layer is proposed. According to quasi-stationary avalanche simulation and heavy ion beam simulation, the results show that an optimized linear doping buffer layer is critical. As SEB is induced by heavy ions impacting, the electric field of an optimized linear doping buffer device is much lower than that with an optimized constant doping buffer layer at a given buffer layer thickness and the same biasing voltages. Secondary breakdown voltage and the parasitic bipolar turn-on current are much higher than those with the optimized constant doping buffer layer. So the linear buffer layer is more advantageous to improving the device's SEB performance. (paper)

  8. High power laser interaction with single and double layer targets

    Czech Academy of Sciences Publication Activity Database

    Borodziuk, S.; Demchenko, N. N.; Gus'kov, S. Yu.; Jungwirth, Karel; Kálal, M.; Kasperczuk, A.; Kondrashov, V. N.; Králiková, Božena; Krouský, Eduard; Limpouch, Jiří; Mašek, Karel; Pisarczyk, P.; Pisarczyk, T.; Pfeifer, Miroslav; Rohlena, Karel; Rozanov, V. B.; Skála, Jiří; Ullschmied, Jiří

    2005-01-01

    Roč. 35, č. 2 (2005), s. 241-262 ISSN 0078-5466 R&D Projects: GA MŠk(CZ) LN00A100; GA AV ČR(CZ) KSK2043105 Grant - others:EU(XE) HPRI-CT-1999-00053; RFBR(RU) 02-02-16966; IAEA(XE) 11655/RBF; INTAS(XX) 01-0572 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z20430508 Keywords : laser produced plasma * three-frame interferometry * macroparticle * single and double targets * crater * shock wave * laser energy absorption Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.459, year: 2005

  9. Device physics of single layer organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Crone, B.K.; Campbell, I.H.; Davids, P.S.; Smith, D.L. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Neef, C.J.; Ferraris, J.P. [The University of Texas at Dallas, Richardson, Texas 75080 (United States)

    1999-11-01

    We present experimental and device model results for electron only, hole only, and bipolar organic light-emitting diodes fabricated using a soluble poly ({ital p}-phenylene vinylene) based polymer. Current{endash}voltage (I{endash}V) characteristics were measured for a series of electron only devices in which the polymer thickness was varied. The I{endash}V curves were described using a device model from which the electron mobility parameters were extracted. Similarly, the hole mobility parameters were extracted using a device model description of I{endash}V characteristics for a series of hole only devices where the barrier to hole injection was varied by appropriate choices of hole injecting electrode. The electron and hole mobilities extracted from the single carrier devices are then used, without additional adjustable parameters, to describe the measured current{endash}voltage characteristics of a series of bipolar devices where both the device thickness and contacts were varied. The model successfully describes the I{endash}V characteristics of single carrier and bipolar devices as a function of polymer thickness and for structures that are contact limited, space charge limited, and for cases in between. We find qualitative agreement between the device model and measured external luminance for a thickness series of devices. We investigate the sensitivity of the device model calculations to the magnitude of the bimolecular recombination rate prefactor. {copyright} {ital 1999 American Institute of Physics.}

  10. Chemical etching of copper foils for single-layer graphene growth by chemical vapor deposition

    Science.gov (United States)

    Yoshihara, Naoki; Noda, Masaru

    2017-10-01

    Chemical etching on copper surface is essential as a pre-treatment for single-layer graphene growth by chemical vapor deposition (CVD). Here, we investigated the effect of chemical etching treatment on copper foils for single-layer graphene CVD growth. The chemical etching conditions, such as the type of chemical etchants and the treatment time, were found to strongly influence the graphene domain size. Moreover, a drastic change in the layer structure of graphene sheets, which was attributed to the surface morphology of the etched copper foil, was confirmed by graphene transmittance and Raman mapping measurements.

  11. Penetration of a Small Caliber Projectile into Single and Multi-layered Targets

    Directory of Open Access Journals (Sweden)

    Riad A.M.

    2010-06-01

    Full Text Available The normal penetration of armor-piercing projectiles into single and multi-layered steel plates has been investigated. An experimental program has been conducted to study the effect of spaced and in-contact layered targets on their ballistic resistance. Armor piercing projectiles with caliber of 7.62 mm were fired against a series of single and multi-layered steel targets. The projectile impact velocities were ranged from 300-600 m/s, whereas the total thicknesses of the tested single, spaced and in-contact layered steel targets were 3 mm. The penetration process of different tested target configurations has been simulated using Autodayn-2D hydrocode. The experimental measurements of the present work were used to discuss the effect of impact velocity, target configurations and number of layers of different spaced and in-contact layered steel targets on their ballistic resistance. In addition, the post-firing examination of the tested targets over the used impact velocity range showed that the single and each layer of spaced and in-contact laminated steel targets were failed by petalling. Finally, the obtained experimental measurements were compared with the corresponding numerical results of Autodyn-2D hydrocode, good agreement was generally obtained.

  12. Penetration of a Small Caliber Projectile into Single and Multi-layered Targets

    Science.gov (United States)

    Abdel-Wahed, M. A.; Salem, A. M.; Zidan, A. S.; Riad, A. M.

    2010-06-01

    The normal penetration of armor-piercing projectiles into single and multi-layered steel plates has been investigated. An experimental program has been conducted to study the effect of spaced and in-contact layered targets on their ballistic resistance. Armor piercing projectiles with caliber of 7.62 mm were fired against a series of single and multi-layered steel targets. The projectile impact velocities were ranged from 300-600 m/s, whereas the total thicknesses of the tested single, spaced and in-contact layered steel targets were 3 mm. The penetration process of different tested target configurations has been simulated using Autodayn-2D hydrocode. The experimental measurements of the present work were used to discuss the effect of impact velocity, target configurations and number of layers of different spaced and in-contact layered steel targets on their ballistic resistance. In addition, the post-firing examination of the tested targets over the used impact velocity range showed that the single and each layer of spaced and in-contact laminated steel targets were failed by petalling. Finally, the obtained experimental measurements were compared with the corresponding numerical results of Autodyn-2D hydrocode, good agreement was generally obtained.

  13. Selective exfoliation of single-layer graphene from non-uniform graphene grown on Cu

    International Nuclear Information System (INIS)

    Lim, Jae-Young; Lee, Jae-Hyun; Jang, Hyeon-Sik; Whang, Dongmok; Joo, Won-Jae; Hwang, SungWoo

    2015-01-01

    Graphene growth on a copper surface via metal-catalyzed chemical vapor deposition has several advantages in terms of providing high-quality graphene with the potential for scale-up, but the product is usually inhomogeneous due to the inability to control the graphene layer growth. The non-uniform regions strongly affect the reliability of the graphene in practical electronic applications. Herein, we report a novel graphene transfer method that allows for the selective exfoliation of single-layer graphene from non-uniform graphene grown on a Cu foil. Differences in the interlayer bonding energy are exploited to mechanically separate only the top single-layer graphene and transfer this to an arbitrary substrate. The dry-transferred single-layer graphene showed electrical characteristics that were more uniform than those of graphene transferred using conventional wet-etching transfer steps. (paper)

  14. White-light-emitting diode based on a single-layer polymer

    Science.gov (United States)

    Wang, B. Z.; Zhang, X. P.; Liu, H. M.

    2013-05-01

    A broad-band light-emitting diode was achieved in a single-layer device based on pure poly(9,9'-dioctylfluorene-co-bis-N,N'-(4-butylphenyl)-bis-N,N'-phenyl-1,4-phenylenediamine) (PFB). Electromer emission was observed in the red with a center wavelength of about 620 nm in electroluminescence (EL) spectrum. This kind of emission exhibits strong dependence on the thickness of the PFB layer, so that the shape of the EL spectrum may be adjusted through changing the thickness of the active polymer layer to balance between the intrinsic PFB emission in the blue and the electromer emission in the red. Thus, white light emission may be achieved from such a single-layer single-material diode.

  15. Modeling of 1-D nitrate transport in single layer soils | Dike | Journal ...

    African Journals Online (AJOL)

    The transport of nitrate in laboratory single soil columns of sand, laterite and clay were investigated after 21 days. The 1-D contaminant transport model by Notodarmojo et al (1991) for single layer soils were calibrated and verified using field data collected from a refuse dump site at avu, owerri, Imo state. The experimental ...

  16. Pressure estimation from single-snapshot tomographic PIV in a turbulent boundary layer

    NARCIS (Netherlands)

    Schneiders, J.F.G.; Pröbsting, S.; Dwight, R.P.; Van Oudheusden, B.W.; Scarano, F.

    2016-01-01

    A method is proposed to determine the instantaneous pressure field from a single tomographic PIV velocity snapshot and is applied to a flat-plate turbulent boundary layer. The main concept behind the single-snapshot pressure evaluation method is to approximate the flow acceleration using the

  17. Morphology and atomic-scale structure of single-layer WS2 nanoclusters.

    Science.gov (United States)

    Füchtbauer, Henrik G; Tuxen, Anders K; Moses, Poul G; Topsøe, Henrik; Besenbacher, Flemming; Lauritsen, Jeppe V

    2013-10-14

    Two-dimensional sheets of transition metal (Mo and W) sulfides are attracting strong attention due to the unique electronic and optical properties associated with the material in its single-layer form. The single-layer MoS2 and WS2 are already in widespread commercial use in catalytic applications as both hydrotreating and hydrocracking catalysts. Consequently, characterization of the morphology and atomic structure of such particles is of utmost importance for the understanding of the catalytic active phase. However, in comparison with the related MoS2 system only little is known about the fundamental properties of single-layer WS2 (tungstenite). Here, we use an interplay of atom-resolved Scanning Tunneling Microscopy (STM) studies of Au(111)-supported WS2 nanoparticles and calculated edge structures using Density Functional Theory (DFT) to reveal the equilibrium morphology and prevalent edge structures of single-layer WS2. The STM results reveal that the single layer S-W-S sheets adopt a triangular equilibrium shape under the sulfiding conditions of the synthesis, with fully sulfided edges. The predominant edge structures are determined to be the (101[combining macron]0) W-edge, but for the smallest nanoclusters also the (1[combining macron]010) S-edges become important. DFT calculations are used to construct phase diagrams of the WS2 edges, and describe their sulfur and hydrogen coordination under different conditions, and in this way shed light on the catalytic role of WS2 edges.

  18. On the approximation by single hidden layer feedforward neural networks with fixed weights

    OpenAIRE

    Guliyev, Namig J.; Ismailov, Vugar E.

    2017-01-01

    International audience; Feedforward neural networks have wide applicability in various disciplines of science due to their universal approximation property. Some authors have shown that single hidden layer feedforward neural networks (SLFNs) with fixed weights still possess the universal approximation property provided that approximated functions are univariate. But this phenomenon does not lay any restrictions on the number of neurons in the hidden layer. The more this number, the more the p...

  19. Exposure buildup factors for a cobalt-60 point isotropic source for single and two layer slabs

    International Nuclear Information System (INIS)

    Chakarova, R.

    1992-01-01

    Exposure buildup factors for point isotropic cobalt-60 sources are calculated by the Monte Carlo method with statistical errors ranging from 1.5 to 7% for 1-5 mean free paths (mfp) thick water and iron single slabs and for 1 and 2 mfp iron layers followed by water layers 1-5 mfp thick. The computations take into account Compton scattering. The Monte Carlo data for single slab geometries are approximated by Geometric Progression formula. Kalos's formula using the calculated single slab buildup factors may be applied to reproduce the data for two-layered slabs. The presented results and discussion may help when choosing the manner in which the radiation field gamma irradiation units will be described. (author)

  20. Synthesis of few layer single crystal graphene grains on platinum by chemical vapour deposition

    Directory of Open Access Journals (Sweden)

    S. Karamat

    2015-08-01

    Full Text Available The present competition of graphene electronics demands an efficient route which produces high quality and large area graphene. Chemical vapour deposition technique, where hydrocarbons dissociate in to active carbon species and form graphene layer on the desired metal catalyst via nucleation is considered as the most suitable method. In this study, single layer graphene with the presence of few layer single crystal graphene grains were grown on Pt foil via chemical vapour deposition. The higher growth temperature changes the surface morphology of the Pt foil so a delicate process of hydrogen bubbling was used to peel off graphene from Pt foil samples with the mechanical support of photoresist and further transferred to SiO2/Si substrates for analysis. Optical microscopy of the graphene transferred samples showed the regions of single layer along with different oriented graphene domains. Two type of interlayer stacking sequences, Bernal and twisted, were observed in the graphene grains. The presence of different stacking sequences in the graphene layers influence the electronic and optical properties; in Bernal stacking the band gap can be tunable and in twisted stacking the overall sheet resistance can be reduced. Grain boundaries of Pt provides low energy sites to the carbon species, therefore the nucleation of grains are more at the boundaries. The stacking order and the number of layers in grains were seen more clearly with scanning electron microscopy. Raman spectroscopy showed high quality graphene samples due to very small D peak. 2D Raman peak for single layer graphene showed full width half maximum (FWHM value of 30 cm−1. At points A, B and C, Bernal stacked grain showed FWHM values of 51.22, 58.45 and 64.72 cm−1, while twisted stacked grain showed the FWHM values of 27.26, 28.83 and 20.99 cm−1, respectively. FWHM values of 2D peak of Bernal stacked grain showed an increase of 20–30 cm−1 as compare to single layer graphene

  1. Thermal vibration of a rectangular single-layered graphene sheet with quantum effects

    International Nuclear Information System (INIS)

    Wang, Lifeng; Hu, Haiyan

    2014-01-01

    The thermal vibration of a rectangular single-layered graphene sheet is investigated by using a rectangular nonlocal elastic plate model with quantum effects taken into account when the law of energy equipartition is unreliable. The relation between the temperature and the Root of Mean Squared (RMS) amplitude of vibration at any point of the rectangular single-layered graphene sheet in simply supported case is derived first from the rectangular nonlocal elastic plate model with the strain gradient of the second order taken into consideration so as to characterize the effect of microstructure of the graphene sheet. Then, the RMS amplitude of thermal vibration of a rectangular single-layered graphene sheet simply supported on an elastic foundation is derived. The study shows that the RMS amplitude of the rectangular single-layered graphene sheet predicted from the quantum theory is lower than that predicted from the law of energy equipartition. The maximal relative difference of RMS amplitude of thermal vibration appears at the sheet corners. The microstructure of the graphene sheet has a little effect on the thermal vibrations of lower modes, but exhibits an obvious effect on the thermal vibrations of higher modes. The quantum effect is more important for the thermal vibration of higher modes in the case of smaller sides and lower temperature. The relative difference of maximal RMS amplitude of thermal vibration of a rectangular single-layered graphene sheet decreases monotonically with an increase of temperature. The absolute difference of maximal RMS amplitude of thermal vibration of a rectangular single-layered graphene sheet increases slowly with the rising of Winkler foundation modulus.

  2. Growth of high-crystalline, single-layer hexagonal boron nitride on recyclable platinum foil.

    Science.gov (United States)

    Kim, Gwangwoo; Jang, A-Rang; Jeong, Hu Young; Lee, Zonghoon; Kang, Dae Joon; Shin, Hyeon Suk

    2013-04-10

    Hexagonal boron nitride (h-BN) is gaining significant attention as a two-dimensional dielectric material, along with graphene and other such materials. Herein, we demonstrate the growth of highly crystalline, single-layer h-BN on Pt foil through a low-pressure chemical vapor deposition method that allowed h-BN to be grown over a wide area (8 × 25 mm(2)). An electrochemical bubbling-based method was used to transfer the grown h-BN layer from the Pt foil onto an arbitrary substrate. This allowed the Pt foil, which was not consumed during the process, to be recycled repeatedly. The UV-visible absorption spectrum of the single-layer h-BN suggested an optical band gap of 6.06 eV, while a high-resolution transmission electron microscopy image of the same showed the presence of distinct hexagonal arrays of B and N atoms, which were indicative of the highly crystalline nature and single-atom thickness of the h-BN layer. This method of growing single-layer h-BN over large areas was also compatible with use of a sapphire substrate.

  3. Double-layer versus single-layer bone-patellar tendon-bone anterior cruciate ligament reconstruction: a prospective randomized study with 3-year follow-up.

    Science.gov (United States)

    Mei, Xiaoliang; Zhang, Zhenxiang; Yang, Jingwen

    2016-12-01

    To evaluate the clinical results of a randomized controlled trial of single-layer versus double-layer bone-patellar tendon-bone (BPTB) anterior cruciate ligament (ACL) reconstruction. Fifty-eight subjects who underwent primary ACL reconstruction with a BPTB allograft were prospectively randomized into two groups: single-layer reconstruction (n = 31) and double-layer reconstruction (n = 27). The following evaluation methods were used: clinical examination, KT-1000 arthrometer measurement, muscle strength, Tegner activity score, Lysholm score, subjective rating scale regarding patient satisfaction and sports performance level, graft retear, contralateral ACL tear, and additional meniscus surgery. Forty-eight subjects (24 in single-layer group and 24 in double-layer group) who were followed up for 3 years were evaluated. Preoperatively, there were no differences between the groups. At 3-year follow-up, the Lachman and pivot-shift test results were better in the double-layer group (P = 0.019 and P reconstruction, double-layer BPTB reconstruction was significantly better than single-layer reconstruction regarding anterior and rotational stability at 3-year follow-up. The results of KT measurements and the Lachman and pivot-shift tests were significantly better in the double-layer group, whereas there was no difference in the anterior drawer test results. The Tegner score was also better in the double-layer group; however, there were no differences in the other subjective findings.

  4. Composite Beam Cross-Section Analysis by a Single High-Order Element Layer

    DEFF Research Database (Denmark)

    Couturier, Philippe; Krenk, Steen

    2015-01-01

    An analysis procedure of general cross-section properties is presented. The formulation is based on the stress-strain states in the classic six equilibrium modes of a beam by considering a finite thickness slice modelled by a single layer of 3D finite elements. The theory is illustrated by applic...

  5. Electronic spin transport and spin precession in single graphene layers at room temperature

    NARCIS (Netherlands)

    Tombros, Nikolaos; Jozsa, Csaba; Popinciuc, Mihaita; Jonkman, Harry T.; van Wees, Bart J.

    2007-01-01

    Electronic transport in single or a few layers of graphene is the subject of intense interest at present. The specific band structure of graphene, with its unique valley structure and Dirac neutrality point separating hole states from electron states, has led to the observation of new electronic

  6. Quantum Hall states of atomic Bose gases: Density profiles in single-layer and multilayer geometries

    International Nuclear Information System (INIS)

    Cooper, N. R.; Lankvelt, F. J. M. van; Reijnders, J. W.; Schoutens, K.

    2005-01-01

    We describe the density profiles of confined atomic Bose gases in the high-rotation limit, in single-layer and multilayer geometries. We show that, in a local-density approximation, the density in a single layer shows a landscape of quantized steps due to the formation of incompressible liquids, which are analogous to fractional quantum Hall liquids for a two-dimensional electron gas in a strong magnetic field. In a multilayered setup we find different phases, depending on the strength of the interlayer tunneling t. We discuss the situation where a vortex lattice in the three-dimensional condensate (at large tunneling) undergoes quantum melting at a critical tunneling t c 1 . For tunneling well below t c 1 one expects weakly coupled or isolated layers, each exhibiting a landscape of quantum Hall liquids. After expansion, this gives a radial density distribution with characteristic features (cusps) that provide experimental signatures of the quantum Hall liquids

  7. The Comparison of Engineering Properties Between Single and Double Layer Porous Asphalt made of Packing Gradation

    Directory of Open Access Journals (Sweden)

    Hardiman M. Y

    2008-01-01

    Full Text Available is paper presents the comparison of engineering properties between single and double layer porous asphalt (SLPA and DLPA made of packing gradation. Three nominal maximum aggregate sizes (NMAS were tested each made up of 10, 14, and 20 mm for SLPA. While for the DLPA with 30, 20, and 15 mm top layer are made of 10 and 14 mm NMAS, with a base layer of 20 mm NMAS. Total thickness of all mixes is 70 mm. Binders used are 60/70 penetration base bitumen and polymer binder styrene-butadiene-styrene (SBS. The result shows that the properties of SLPA mix namely permeability and resistance to abrasion loss decreases when the NMAS in SLPA decreases. The abrasion loss of DLPA mixes increases when the porous asphalt top layer thickness decreases, while drainage time value decreases. However, SLPA with 20 mm NMAS exhibits higher abrasion loss compared to all DLPA mixes.

  8. Diffusion of Supercritical Fluids through Single-Layer Nanoporous Solids: Theory and Molecular Simulations.

    Science.gov (United States)

    Oulebsir, Fouad; Vermorel, Romain; Galliero, Guillaume

    2018-01-16

    With the advent of graphene material, membranes based on single-layer nanoporous solids appear as promising devices for fluid separation, be it liquid or gaseous mixtures. The design of such architectured porous materials would greatly benefit from accurate models that can predict their transport and separation properties. More specifically, there is no universal understanding of how parameters such as temperature, fluid loading conditions, or the ratio of the pore size to the fluid molecular diameter influence the permeation process. In this study, we address the problem of pure supercritical fluids diffusing through simplified models of single-layer porous materials. Basically, we investigate a toy model that consists of a single-layer lattice of Lennard-Jones interaction sites with a slit gap of controllable width. We performed extensive equilibrium and biased molecular dynamics simulations to document the physical mechanisms involved at the molecular scale. We propose a general constitutive equation for the diffusional transport coefficient derived from classical statistical mechanics and kinetic theory, which can be further simplified in the ideal gas limit. This transport coefficient relates the molecular flux to the fluid density jump across the single-layer membrane. It is found to be proportional to the accessible surface porosity of the single-layer porous solid and to a thermodynamic factor accounting for the inhomogeneity of the fluid close to the pore entrance. Both quantities directly depend on the potential of mean force that results from molecular interactions between solid and fluid atoms. Comparisons with the simulations data show that the kinetic model captures how narrowing the pore size below the fluid molecular diameter lowers dramatically the value of the transport coefficient. Furthermore, we demonstrate that our general constitutive equation allows for a consistent interpretation of the intricate effects of temperature and fluid loading

  9. Strong piezoelectricity in single-layer graphene deposited on SiO2 grating substrates.

    Science.gov (United States)

    da Cunha Rodrigues, Gonçalo; Zelenovskiy, Pavel; Romanyuk, Konstantin; Luchkin, Sergey; Kopelevich, Yakov; Kholkin, Andrei

    2015-06-25

    Electromechanical response of materials is a key property for various applications ranging from actuators to sophisticated nanoelectromechanical systems. Here electromechanical properties of the single-layer graphene transferred onto SiO2 calibration grating substrates is studied via piezoresponse force microscopy and confocal Raman spectroscopy. The correlation of mechanical strains in graphene layer with the substrate morphology is established via Raman mapping. Apparent vertical piezoresponse from the single-layer graphene supported by underlying SiO2 structure is observed by piezoresponse force microscopy. The calculated vertical piezocoefficient is about 1.4 nm V(-1), that is, much higher than that of the conventional piezoelectric materials such as lead zirconate titanate and comparable to that of relaxor single crystals. The observed piezoresponse and achieved strain in graphene are associated with the chemical interaction of graphene's carbon atoms with the oxygen from underlying SiO2. The results provide a basis for future applications of graphene layers for sensing, actuating and energy harvesting.

  10. Growth and electronic structure of single-layered transition metal dichalcogenides

    DEFF Research Database (Denmark)

    Dendzik, Maciej

    2016-01-01

    The discovery of graphene has opened a novel research direction focused on the properties of 2D materials. Transition metal dichalcogenides (TMDCs) were quickly identified as important materials due to the great variety of electronic properties that they manifest – properties that are markedly...... different from graphene’s. For example, semiconducting TMDCs undergo an indirectdirect band gap transition when thinned to a single layer (SL); this results in greatly enhanced photoluminescence, making those materials attractive for applications in optoelectronics. Furthermore, metallic TMDCs can host...... TMDCs is directly studied with angle-resolved photoemission spectroscopy (ARPES) and x-ray photoelectron spectroscopy (XPS) techniques. Experimental results are compared with density-functional theory calculations (DFT), both for a free-standing layer and for a layer adsorbed on a metallic substrate...

  11. Towards single photon generation using NV centers in diamond coupled to thin layer optical waveguides

    International Nuclear Information System (INIS)

    Toshiyuki Tashima

    2014-01-01

    Single photon emitters like the nitrogen-vacancy (NV) center in diamond are important for quantum communication such as quantum cryptography and quantum metrology. In this context, e.g. tapered optical nano-fibers are a promising approach as they allow efficient coupling of single photons into a single spatial mode. Yet, integration of such fibers in a compact integrated quantum circuit is demanding. Here we propose a NV defect center in diamond as a single photon emitter coupled to a thin layer photonic waveguide. The benefit is to allow smaller size devices while having a similar strong evanescent field like tapered nano-optical fibers. We present numerical simulations and fabrication steps of such structures. (author)

  12. High Throughput Characterization of Epitaxially Grown Single-Layer MoS2

    Directory of Open Access Journals (Sweden)

    Foad Ghasemi

    2017-03-01

    Full Text Available The growth of single-layer MoS2 with chemical vapor deposition is an established method that can produce large-area and high quality samples. In this article, we investigate the geometrical and optical properties of hundreds of individual single-layer MoS2 crystallites grown on a highly-polished sapphire substrate. Most of the crystallites are oriented along the terraces of the sapphire substrate and have an area comprised between 10 µm2 and 60 µm2. Differential reflectance measurements performed on these crystallites show that the area of the MoS2 crystallites has an influence on the position and broadening of the B exciton while the orientation does not influence the A and B excitons of MoS2. These measurements demonstrate that differential reflectance measurements have the potential to be used to characterize the homogeneity of large-area chemical vapor deposition (CVD-grown samples.

  13. Edge structures and properties of triangular antidots in single-layer MoS2

    KAUST Repository

    Gan, Li Yong

    2016-08-30

    Density functional theory and experiments are employed to shed light on the edge structures of antidots in O etched single-layer MoS2. The equilibrium morphology is found to be the zigzag Mo edge with each Mo atom bonded to two O atoms, in a wide range of O chemical potentials. Scanning electron microscopy shows that the orientation of the created triangular antidots is opposite to the triangular shape of the single-layer MoS2 samples, in agreement with the theoretical predictions. Furthermore, edges induced by O etching turn out to be p-doped, suggesting an effective strategy to realize p-type MoS2 devices. Published by AIP Publishing.

  14. A visualization method for probing grain boundaries of single layer graphene via molecular beam epitaxy

    Science.gov (United States)

    Zhan, Linjie; Wan, Wen; Zhu, Zhenwei; Zhao, Zhijuan; Zhang, Zhenhan; Shih, Tien-Mo; Cai, Weiwei

    2017-07-01

    Graphene, a member of layered two-dimensional (2D) materials, possesses high carrier mobility, mechanical flexibility, and optical transparency, as well as enjoying a wide range of promising applications in electronics. Adopting the chemical vaporization deposition method, the majority of investigators have ubiquitously grown single layer graphene (SLG), which inevitably involves polycrystalline properties. Here we demonstrate a simple method for the direct visualization of arbitrarily large-size SLG domains by synthesizing one-hundred-nm-scale MoS2 single crystals via a high-vacuum molecular beam epitaxy process. The present study based on epitaxial growth provides a guide for probing the grain boundaries of various 2D materials and implements higher potentials for the next-generation electronic devices.

  15. Edge structures and properties of triangular antidots in single-layer MoS{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Li-Yong, E-mail: ganly@swjtu.edu.cn, E-mail: iamyccheng@njtech.edu.cn, E-mail: udo.schwingenschlogl@kaust.edu.sa [Key Laboratory of Advanced Technology of Materials (Ministry of Education), Superconductivity and New Energy R& D Center, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Cheng, Yingchun, E-mail: ganly@swjtu.edu.cn, E-mail: iamyccheng@njtech.edu.cn, E-mail: udo.schwingenschlogl@kaust.edu.sa; Huang, Wei [Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials - SICAM, Nanjing Tech University - NanjingTech, 30 South Puzhu Road, Nanjing 211816 (China); Schwingenschlögl, Udo, E-mail: ganly@swjtu.edu.cn, E-mail: iamyccheng@njtech.edu.cn, E-mail: udo.schwingenschlogl@kaust.edu.sa [Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 (Saudi Arabia); Yao, Yingbang [Advanced Nanofabrication and Imaging Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 (Saudi Arabia); School of Materials and Energy, Guangdong University of Technology, Guangdong 510006 (China); Zhao, Yong [Key Laboratory of Advanced Technology of Materials (Ministry of Education), Superconductivity and New Energy R& D Center, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); School of Physical Science and Technology, Southwest Jiaotong University, Chengdu, 610031 Sichuan (China); Zhang, Xi-xiang [Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 (Saudi Arabia); Advanced Nanofabrication and Imaging Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 (Saudi Arabia)

    2016-08-29

    Density functional theory and experiments are employed to shed light on the edge structures of antidots in O etched single-layer MoS{sub 2}. The equilibrium morphology is found to be the zigzag Mo edge with each Mo atom bonded to two O atoms, in a wide range of O chemical potentials. Scanning electron microscopy shows that the orientation of the created triangular antidots is opposite to the triangular shape of the single-layer MoS{sub 2} samples, in agreement with the theoretical predictions. Furthermore, edges induced by O etching turn out to be p-doped, suggesting an effective strategy to realize p-type MoS{sub 2} devices.

  16. Persistent Charge-Density-Wave Order in Single-Layer TaSe2.

    Science.gov (United States)

    Ryu, Hyejin; Chen, Yi; Kim, Heejung; Tsai, Hsin-Zon; Tang, Shujie; Jiang, Juan; Liou, Franklin; Kahn, Salman; Jia, Caihong; Omrani, Arash A; Shim, Ji Hoon; Hussain, Zahid; Shen, Zhi-Xun; Kim, Kyoo; Min, Byung Il; Hwang, Choongyu; Crommie, Michael F; Mo, Sung-Kwan

    2018-02-14

    We present the electronic characterization of single-layer 1H-TaSe 2 grown by molecular beam epitaxy using a combined angle-resolved photoemission spectroscopy, scanning tunneling microscopy/spectroscopy, and density functional theory calculations. We demonstrate that 3 × 3 charge-density-wave (CDW) order persists despite distinct changes in the low energy electronic structure highlighted by the reduction in the number of bands crossing the Fermi energy and the corresponding modification of Fermi surface topology. Enhanced spin-orbit coupling and lattice distortion in the single-layer play a crucial role in the formation of CDW order. Our findings provide a deeper understanding of the nature of CDW order in the two-dimensional limit.

  17. Interactions between C and Cu atoms in single-layer graphene: direct observation and modelling.

    Science.gov (United States)

    Kano, Emi; Hashimoto, Ayako; Kaneko, Tomoaki; Tajima, Nobuo; Ohno, Takahisa; Takeguchi, Masaki

    2016-01-07

    Metal doping into the graphene lattice has been studied recently to develop novel nanoelectronic devices and to gain an understanding of the catalytic activities of metals in nanocarbon structures. Here we report the direct observation of interactions between Cu atoms and single-layer graphene by transmission electron microscopy. We document stable configurations of Cu atoms in the graphene sheet and unique transformations of graphene promoted by Cu atoms. First-principles calculations based on density functional theory reveal a reduction of energy barrier that caused rotation of C-C bonds near Cu atoms. We discuss two driving forces, electron irradiation and in situ heating, and conclude that the observed transformations were mainly promoted by electron irradiation. Our results suggest that individual Cu atoms can promote reconstruction of single-layer graphene.

  18. Identification of excitons, trions and biexcitons in single-layer WS{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Plechinger, Gerd; Nagler, Philipp; Kraus, Julia; Paradiso, Nicola; Strunk, Christoph; Schueller, Christian; Korn, Tobias [Institut fuer Experimentelle und Angewandte Physik, Universitaet Regensburg, 93040, Regensburg (Germany)

    2015-08-15

    Single-layer WS{sub 2} is a direct-gap semiconductor showing strong excitonic photoluminescence features in the visible spectral range. Here, we present temperature-dependent photoluminescence measurements on mechanically exfoliated single-layer WS{sub 2}, revealing the existence of neutral and charged excitons at low temperatures as well as at room temperature. By applying a gate voltage, we can electrically control the ratio of excitons and trions and assert a residual n-type doping of our samples. At high excitation densities and low temperatures, an additional peak at energies below the trion dominates the photoluminescence, which we identify as biexciton emission. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Phonon-limited mobility in n-type single-layer MoS2 from first principles

    DEFF Research Database (Denmark)

    Kaasbjerg, Kristen; Thygesen, Kristian S.; Jacobsen, Karsten W.

    2012-01-01

    We study the phonon-limited mobility in intrinsic n-type single-layer MoS2 for temperatures T > 100 K. The materials properties including the electron-phonon interaction are calculated from first principles and the deformation potentials and Frohlich interaction in single-layer MoS2 are establish...

  20. Initial experience with application of single layer modified Kugel mesh for inguinal hernia repair: Case series of 72 consecutive patients

    Directory of Open Access Journals (Sweden)

    Pao-Hwa Chen

    2017-03-01

    Conclusion: The postoperative complication and recurrence rates of single-layer MK mesh herniorrhaphy was comparable with previously reported tension-free repair. Single-layer application is safe and feasible. A longer follow-up period and larger study group with a control group are needed to verify our method.

  1. Nonlinear Localization due to a Double Negative Defect Layer in a One-Dimensional Photonic Crystal Containing Single Negative Material Layers

    International Nuclear Information System (INIS)

    Ali, Munazza Zulfiqar; Abdullah, Tariq

    2008-01-01

    We investigate the effects of introducing a defect layer in a one-dimensional photonic crystal containing single negative material layers on the transmission properties. The width of the defect layer is taken to be the same or smaller than the period of the structure. Different cases of the defect layer being linear or nonlinear and double positive or double negative are discussed. It is found that only a nonlinear double negative layer gives rises to a localized mode within the zero-φ eff gap in this kind of structure. It is also shown that the important characteristics of the nonlinear defect mode such as its frequency, its FWHM and the threshold of the associated bistability can be controlled by changing the widths of the defect layer and the host layers

  2. Two-band induced superconductivity in single-layer graphene and topological insulator bismuth selenide

    Science.gov (United States)

    Talantsev, E. F.; Crump, W. P.; Tallon, J. L.

    2018-01-01

    Proximity-induced superconductivity in single-layer graphene (SLG) and in topological insulators represent almost ideal examples of superconductivity in two dimensions. Fundamental mechanisms governing superconductivity in the 2D limit are of central interest for modern condensed-matter physics. To deduce fundamental parameters of superconductor/graphene/superconductor and superconductor/bismuth selenide/superconductor junctions we investigate the self-field critical currents in these devices using the formalism of the Ambegaokar–Baratoff model. Our central finding is that the induced superconducting state in SLG and bismuth selenide each exhibits gapping on two superconducting bands. Based on recent results obtained on ultra-thin films of natural superconductors, including single-atomic layer of iron selenide, double and triple atomic layers of gallium, and several atomic layer tantalum disulphide, we conclude that a two-band induced superconducting state in SLG and bismuth selenide is part of a wider, more general multiple-band phenomenology of currently unknown origin.

  3. Antifuse with a single silicon-rich silicon nitride insulating layer

    Science.gov (United States)

    Habermehl, Scott D.; Apodaca, Roger T.

    2013-01-22

    An antifuse is disclosed which has an electrically-insulating region sandwiched between two electrodes. The electrically-insulating region has a single layer of a non-hydrogenated silicon-rich (i.e. non-stoichiometric) silicon nitride SiN.sub.X with a nitrogen content X which is generally in the range of 0silicon. Arrays of antifuses can also be formed.

  4. Model for a collimated spin wave beam generated by a single layer, spin torque nanocontact

    OpenAIRE

    Hoefer, M. A.; Silva, T. J.; Stiles, M. D.

    2007-01-01

    A model of spin torque induced magnetization dynamics based upon semi-classical spin diffusion theory for a single layer nanocontact is presented. The model incorporates effects due to the current induced Oersted field and predicts the generation of a variety of spatially dependent, coherent, precessional magnetic wave structures. Directionally controllable collimated spin wave beams, vortex spiral waves, and localized standing waves are found to be excited by the interplay of the Oersted fie...

  5. Doping-controlled phase transitions in single-layer MoS2

    Science.gov (United States)

    Zhuang, Houlong L.; Johannes, Michelle D.; Singh, Arunima K.; Hennig, Richard G.

    2017-10-01

    The electronic properties of single-layer MoS2 make it an ideal two-dimensional (2D) material for application in electronic devices. Experiments show that MoS2 can undergo structural phase transitions. Applications of single-layer MoS2 will require firm laboratory control over the phase formation. Here we compare the stability and electronic structure of the three experimentally observed single-layer MoS2 phases, 2 H ,1 T , and 1 T' , and an in-plane metal/semiconductor heterostructure. We reveal by density-functional theory calculations that charge doping can induce the phase transition of single-layer MoS2 from the 2 H to the 1 T structure. Further, the 1 T structure undergoes a second phase transition due to the occurrence of a charge-density wave (CDW). By comparing the energies of several possible resulting CDW structures, we find that the 1 T' orthorhombic structure is the most stable one, consistent with experimental observations and previous theoretical studies. We show that the underlying CDW transition mechanism is not due to Fermi surface nesting, but nonetheless, can be controlled by charge doping. In addition, the stability landscape is highly sensitive to charge doping, which can be used as a practical phase selector. We also provide a prescription for obtaining the 1 T' structure via growth or deposition of MoS2 on a Hf substrate, which transfers electrons uniformly and with minimal structural distortion. Finally, we show that lateral heterostructures formed by the 2 H and 1 T' structures exhibit a low interfacial energy of 0.17 eV/Å, a small Schottky barrier of 0.3 eV for holes, and a large barrier of 1.6 eV for electrons.

  6. Anisotropic carrier mobility in single- and bi-layer C3N sheets

    Science.gov (United States)

    Wang, Xueyan; Li, Qingfang; Wang, Haifeng; Gao, Yan; Hou, Juan; Shao, Jianxin

    2018-05-01

    Based on the density functional theory combined with the Boltzmann transport equation with relaxation time approximation, we investigate the electronic structure and predict the carrier mobility of single- and bi-layer newly fabricated 2D carbon nitrides C3N. Although C3N sheets possess graphene-like planar hexagonal structure, the calculated carrier mobility is remarkably anisotropic, which is found mainly induced by the anisotropic effective masses and deformation potential constants. Importantly, we find that both the electron and hole mobilities are considerable high, for example, the hole mobility along the armchair direction of single-layer C3N sheets can arrive as high as 1.08 ×104 cm2 V-1 s-1, greatly larger than that of C2N-h2D and many other typical 2D materials. Owing to the high and anisotropic carrier mobility and appropriate band gap, single- and bi-layer semiconducting C3N sheets may have great potential applications in high performance electronic and optoelectronic devices.

  7. Learning rate and attractor size of the single-layer perceptron

    International Nuclear Information System (INIS)

    Singleton, Martin S.; Huebler, Alfred W.

    2007-01-01

    We study the simplest possible order one single-layer perceptron with two inputs, using the delta rule with online learning, in order to derive closed form expressions for the mean convergence rates. We investigate the rate of convergence in weight space of the weight vectors corresponding to each of the 14 out of 16 linearly separable rules. These vectors follow zigzagging lines through the piecewise constant vector field to their respective attractors. Based on our studies, we conclude that a single-layer perceptron with N inputs will converge in an average number of steps given by an Nth order polynomial in (t/l), where t is the threshold, and l is the size of the initial weight distribution. Exact values for these averages are provided for the five linearly separable classes with N=2. We also demonstrate that the learning rate is determined by the attractor size, and that the attractors of a single-layer perceptron with N inputs partition R N +R N

  8. Laser-assisted fabrication of single-layer flexible touch sensor

    Science.gov (United States)

    Son, Seokwoo; Park, Jong Eun; Lee, Joohyung; Yang, Minyang; Kang, Bongchul

    2016-10-01

    Single-layer flexible touch sensor that is designed for the indium-tin-oxide (ITO)-free, bendable, durable, multi-sensible, and single layer transparent touch sensor was developed via a low-cost and one-step laser-induced fabrication technology. To this end, an entirely novel approach involving material, device structure, and even fabrication method was adopted. Conventional metal oxides based multilayer touch structure was substituted by the single layer structure composed of integrated silver wire networks of sensors and bezel interconnections. This structure is concurrently fabricated on a glass substitutive plastic film via the laser-induced fabrication method using the low-cost organometallic/nanoparticle hybrid complex. In addition, this study addresses practical solutions to heterochromia and interference problem with a color display unit. As a result, a practical touch sensor is successfully demonstrated through resolving the heterochromia and interference problems with color display unit. This study could provide the breakthrough for early realization of wearable device.

  9. Thermal conductivities of single- and multi-layer phosphorene: a molecular dynamics study.

    Science.gov (United States)

    Zhang, Ying-Yan; Pei, Qing-Xiang; Jiang, Jin-Wu; Wei, Ning; Zhang, Yong-Wei

    2016-01-07

    As a new two-dimensional (2D) material, phosphorene has drawn growing attention owing to its novel electronic properties, such as layer-dependent direct bandgaps and high carrier mobility. Herein we investigate the in-plane and cross-plane thermal conductivities of single- and multi-layer phosphorene, focusing on geometrical (sample size, orientation and layer number) and strain (compression and tension) effects. A strong anisotropy is found in the in-plane thermal conductivity with its value along the zigzag direction being much higher than that along the armchair direction. Interestingly, the in-plane thermal conductivity of multi-layer phosphorene is insensitive to the layer number, which is in strong contrast to that of graphene where the interlayer interactions strongly influence the thermal transport. Surprisingly, tensile strain leads to an anomalous increase in the in-plane thermal conductivity of phosphorene, in particular in the armchair direction. Both the in-plane and cross-plane thermal conductivities can be modulated by external strain; however, the strain modulation along the cross-plane direction is more effective and thus more tunable than that along the in-plane direction. Our findings here are of great importance for the thermal management in phosphorene-based nanoelectronic devices and for thermoelectric applications of phosphorene.

  10. Secretion of wound healing mediators by single and bi-layer skin substitutes.

    Science.gov (United States)

    Maarof, Manira; Law, Jia Xian; Chowdhury, Shiplu Roy; Khairoji, Khairul Anuar; Saim, Aminuddin Bin; Idrus, Ruszymah Bt Hj

    2016-10-01

    Limitations of current treatments for skin loss caused by major injuries leads to the use of skin substitutes. It is assumed that secretion of wound healing mediators by these skin substitutes plays a role in treating skin loss. In our previous study, single layer keratinocytes (SK), single layer fibroblast (SF) and bilayer (BL; containing keratinocytes and fibroblasts layers) skin substitutes were fabricated using fibrin that had shown potential to heal wounds in preclinical studies. This study aimed to quantify the secretion of wound healing mediators, and compare between single and bi-layer skin substitutes. Skin samples were digested to harvest fibroblasts and keratinocytes, and expanded to obtain sufficient cells for the construction of skin substitutes. Acellular fibrin (AF) construct was used as control. Substitutes i.e. AF, SK, SF and BL were cultured for 2 days, and culture supernatant was collected to analyze secretion of wound healing mediators via multiplex ELISA. Among 19 wound healing mediators tested, BL substitute secreted significantly higher amounts of CXCL1 and GCSF compared to SF and AF substitute but this was not significant with respect to SK substitute. The BL substitute also secreted significantly higher amounts of CXCL5 and IL-6 compared to other substitutes. In contrast, the SK substitute secreted significantly higher amounts of VCAM-1 compared to other substitutes. However, all three skin substitutes also secreted CCL2, CCL5, CCL11, GM-CSF, IL8, IL-1α, TNF-α, ICAM-1, FGF-β, TGF-β, HGF, VEGF-α and PDGF-BB factors, but no significant difference was seen. Secretion of these mediators after transplantation may play a significant role in promoting wound healing process for the treatment of skin loss.

  11. Improving the light-emitting properties of single-layered polyfluorene light-emitting devices by simple ionic liquid blending

    Science.gov (United States)

    Horike, Shohei; Nagaki, Hiroto; Misaki, Masahiro; Koshiba, Yasuko; Morimoto, Masahiro; Fukushima, Tatsuya; Ishida, Kenji

    2018-03-01

    This paper describes an evaluation of ionic liquids (ILs) as potential electrolytes for single-layered light-emitting devices with good emission performance. As optoelectronic devices continue to grow in abundance, high-performance light-emitting devices with a single emission layer are becoming increasingly important for low-cost production. We show that a simple technique of osmosing IL into the polymer layer can result in high luminous efficiency and good response times of single-layered light-emitting polymers, even without the additional stacking of charge carrier injection and transport layers. The IL contributions to the light-emission of the polymer are discussed from the perspectives of energy diagrams and of the electric double layers on the electrodes. Our findings enable a faster, cheaper, and lower-in-waste production of light-emitting devices.

  12. Single layered flexible photo-detector based on perylene/graphene composite through printed technology

    Science.gov (United States)

    Ali, Shawkat; Bae, Jinho; Lee, Chong Hyun

    2015-07-01

    In this paper, a single layered passive photo sensor based on perylene/graphene composite is proposed, which is deposited in comb type silver electrodes separated as 50 μm spacing. To increase an electrical conductivity of the proposed sensor, perylene and graphene are blended. Photo sensing layer (120nm thick) and Silver electrodes (50 μm width, 350 nm thick) are deposited on poly(ethylene terephthalate) (PET) substrate through electro-hydrodynamic (EHD) system. The proposed photo sensor detects a terminal resistance inversely varied by an incident light in the range between 78 GΩ in dark and 25 GΩ at light intensity of 400lux. The device response is maximum at 465 nm ~ 535 nm wavelength range at blue light. The device exhibited bendability up to 4mm diameter for 1000 endurance cycles. The surface morphology analysis is carried out with FE-SEM and microscope.

  13. Pattern formation in single-phase FAC. A stability analysis of an oxide layer

    Energy Technology Data Exchange (ETDEWEB)

    Zinemanas, Daniel [The Israel Electric Corp., Haifa (Israel). Dept. of Chemistry; Herszage, Amiel [The Israel Electric Corp., Haifa (Israel). Dept. of Energy Technologies Development

    2013-03-15

    Pattern formation is a salient characteristic of the flow-accelerated corrosion process, particularly in single-phase flow, where a typical ''orange peel'' surface texture is normally formed. The process of such pattern formation is, however, not well understood. In order to gain some insight into the role of the various processes and parameters involved in this process, a linear stability analysis of an oxide layer based on the Sanchez-Caldera model was performed. According to the results obtained in this study, it follows that the oxide layer is stable regarding perturbations of the oxide thickness or the reaction constant, but it is unstable in respect to perturbations of the mass transfer coefficient. These results suggest therefore that the flow, and not local surface in homogeneities, plays a central role in the pattern formation process. (orig.)

  14. Conceptual Design of a Single-Aisle Turboelectric Commercial Transport With Fuselage Boundary Layer Ingestion

    Science.gov (United States)

    Welstead, Jason R.; Felder, James L.

    2016-01-01

    A single-aisle commercial transport concept with a turboelectric propulsion system architecture was developed assuming entry into service in 2035 and compared to a similar technology conventional configuration. The turboelectric architecture consisted of two underwing turbofans with generators extracting power from the fan shaft and sending it to a rear fuselage, axisymmetric, boundary layer ingesting fan. Results indicate that the turbo- electric concept has an economic mission fuel burn reduction of 7%, and a design mission fuel burn reduction of 12% compared to the conventional configuration. An exploration of the design space was performed to better understand how the turboelectric architecture changes the design space, and system sensitivities were run to determine the sensitivity of thrust specific fuel consumption at top of climb and propulsion system weight to the motor power, fan pressure ratio, and electrical transmission efficiency of the aft boundary layer ingesting fan.

  15. An optical, electrical and ultrasonic layered single sensor for ingredient measurement in liquid

    International Nuclear Information System (INIS)

    Kimoto, A; Kitajima, T

    2010-01-01

    In this paper, an optical, electrical and ultrasonic layered single sensor is proposed as a new, non-invasive sensing method for the measurement of ingredients in liquid, particularly in the food industry. In the proposed sensor, the photo sensors and the PVDF films with the transparent conductive electrode are layered and the optical properties of the liquid are measured by a light emitting diode (LED) and a phototransistor (PT). In addition, the electrical properties are measured by indium tin oxide (ITO) film electrodes as the transparent conductive electrodes of PVDF films arranged on the surfaces of the LED and PT. Moreover, the ultrasonic properties are measured by PVDF films. Thus, the optical, electrical and ultrasonic properties in the same space of the liquid can be simultaneously measured at a single sensor. To test the sensor experimentally, three parameters of the liquid—such as concentrations of yellow color, sodium chloride (NaCl) and ethanol in distilled water—were estimated using the measurement values of the optical, electrical and ultrasonic properties obtained with the proposed sensor. The results suggested that it is possible to estimate the three ingredient concentrations in the same space of the liquid from the optical, electrical and ultrasonic properties measured by the proposed single sensor, although there are still some problems such as measurement accuracy that must be solved

  16. Anomalous photoluminescence thermal quenching of sandwiched single layer MoS_2

    KAUST Repository

    Tangi, Malleswararao

    2017-09-22

    We report an unusual thermal quenching of the micro-photoluminescence (µ-PL) intensity for a sandwiched single-layer (SL) MoS2. For this study, MoS2 layers were chemical vapor deposited on molecular beam epitaxial grown In0.15Al0.85N lattice matched templates. Later, to accomplish air-stable sandwiched SL-MoS2, a thin In0.15Al0.85N cap layer was deposited on the MoS2/In0.15Al0.85N heterostructure. We confirm that the sandwiched MoS2 is a single layer from optical and structural analyses using µ-Raman spectroscopy and scanning transmission electron microscopy, respectively. By using high-resolution X-ray photoelectron spectroscopy, no structural phase transition of MoS2 is noticed. The recombination processes of bound and free excitons were analyzed by the power-dependent µ-PL studies at 77 K and room temperature (RT). The temperature-dependent micro photoluminescence (TDPL) measurements were carried out in the temperature range of 77 – 400 K. As temperature increases, a significant red-shift is observed for the free-exciton PL peak, revealing the delocalization of carriers. Further, we observe unconventional negative thermal quenching behavior, the enhancement of the µ-PL intensity with increasing temperatures up to 300K, which is explained by carrier hopping transitions that take place between shallow localized states to the band-edges. Thus, this study renders a fundamental insight into understanding the anomalous thermal quenching of µ-PL intensity of sandwiched SL-MoS2.

  17. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics.

    Science.gov (United States)

    Wu, Wenzhuo; Wang, Lei; Li, Yilei; Zhang, Fan; Lin, Long; Niu, Simiao; Chenet, Daniel; Zhang, Xian; Hao, Yufeng; Heinz, Tony F; Hone, James; Wang, Zhong Lin

    2014-10-23

    The piezoelectric characteristics of nanowires, thin films and bulk crystals have been closely studied for potential applications in sensors, transducers, energy conversion and electronics. With their high crystallinity and ability to withstand enormous strain, two-dimensional materials are of great interest as high-performance piezoelectric materials. Monolayer MoS2 is predicted to be strongly piezoelectric, an effect that disappears in the bulk owing to the opposite orientations of adjacent atomic layers. Here we report the first experimental study of the piezoelectric properties of two-dimensional MoS2 and show that cyclic stretching and releasing of thin MoS2 flakes with an odd number of atomic layers produces oscillating piezoelectric voltage and current outputs, whereas no output is observed for flakes with an even number of layers. A single monolayer flake strained by 0.53% generates a peak output of 15 mV and 20 pA, corresponding to a power density of 2 mW m(-2) and a 5.08% mechanical-to-electrical energy conversion efficiency. In agreement with theoretical predictions, the output increases with decreasing thickness and reverses sign when the strain direction is rotated by 90°. Transport measurements show a strong piezotronic effect in single-layer MoS2, but not in bilayer and bulk MoS2. The coupling between piezoelectricity and semiconducting properties in two-dimensional nanomaterials may enable the development of applications in powering nanodevices, adaptive bioprobes and tunable/stretchable electronics/optoelectronics.

  18. On-Chip Waveguide Coupling of a Layered Semiconductor Single-Photon Source.

    Science.gov (United States)

    Tonndorf, Philipp; Del Pozo-Zamudio, Osvaldo; Gruhler, Nico; Kern, Johannes; Schmidt, Robert; Dmitriev, Alexander I; Bakhtinov, Anatoly P; Tartakovskii, Alexander I; Pernice, Wolfram; Michaelis de Vasconcellos, Steffen; Bratschitsch, Rudolf

    2017-09-13

    Fully integrated quantum technology based on photons is in the focus of current research, because of its immense potential concerning performance and scalability. Ideally, the single-photon sources, the processing units, and the photon detectors are all combined on a single chip. Impressive progress has been made for on-chip quantum circuits and on-chip single-photon detection. In contrast, nonclassical light is commonly coupled onto the photonic chip from the outside, because presently only few integrated single-photon sources exist. Here, we present waveguide-coupled single-photon emitters in the layered semiconductor gallium selenide as promising on-chip sources. GaSe crystals with a thickness below 100 nm are placed on Si 3 N 4 rib or slot waveguides, resulting in a modified mode structure efficient for light coupling. Using optical excitation from within the Si 3 N 4 waveguide, we find nonclassicality of generated photons routed on the photonic chip. Thus, our work provides an easy-to-implement and robust light source for integrated quantum technology.

  19. Single-layer centrifugation through colloid selects improved quality of epididymal cat sperm.

    Science.gov (United States)

    Chatdarong, K; Thuwanut, P; Morrell, J M

    2010-06-01

    The objectives were to determine the: 1) extent of epithelial and red blood cell contamination in epididymal cat sperm samples recovered by the cutting method; 2) efficacy of simple washing, single-layer centrifugation (SLC), and swim-up for selecting epididymal cat sperm; and 3) effects of freezing and thawing on cat sperm selected by various techniques. Ten unit samples were studied; each contained sperm from the cauda epididymides of four cats (total, approximately 200 x 10(6) sperm) and was equally allocated into four treatments: 1) simple washing, 2) single-layer centrifugation through colloid prior to cryopreservation (SLC-PC), 3) single-layer centrifugation through colloid after cryopreservation (SLC-AC), and 4) swim-up. Centrifugation (300 x g for 20 min) was done for all methods. The SLC-PC had a better recovery rate than the SLC-AC and swim-up methods (mean+/-SD of 16.4+/-8.7, 10.7+/-8.9, and 2.3+/-1.7%, respectively; Pblood cell contamination than simple washed samples (0.02+/-0.01, 0.02+/-0.04, 0.03+/-0.04, and 0.44+/-0.22 x 10(6) cells/mL, respectively; P0.05), SLC-PC yielded the highest percentage of sperm with normal midpieces and tails (P0.05). In conclusion, both SLC-PC and swim-up improved the quality of epididymal cat sperm, including better morphology, membrane and DNA integrity, and removal of cellular contamination. However, SLC had a better sperm recovery rate than swim-up. 2010 Elsevier Inc. All rights reserved.

  20. Spin effects in MoS{sub 2} and WS{sub 2} single layers

    Energy Technology Data Exchange (ETDEWEB)

    Kioseoglou, G. [Department of Materials Science and Technology, University of Crete, Heraklion (Greece); Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FORTH), Heraklion, Crete (Greece); Korkusinski, M. [Quantum Theory Group, Emerging Technologies Division, National Research Council, Ottawa, ON (Canada); Scrace, T. [University at Buffalo, SUNY, Buffalo, NY (United States); Hanbicki, A.T.; Currie, M.; Jonker, B.T.; Petrou, A. [Naval Research Laboratory, Washington, DC (United States); Hawrylak, P. [Quantum Theory Group, Emerging Technologies Division, National Research Council, Ottawa, ON (Canada); Department of Physics, University of Ottawa, ON (Canada)

    2016-01-15

    Replacing the two sublattices of carbon atoms in graphene with transition metal atoms and chalcogenide dimers results in single layers of transition metal dichalcogenides (TMDCs). TMDCs are promising new materials for light and energy harvesting, transistors, sensors and quantum information processing. One way to access the distinctive functionality of these materials is via their optical selection rules. In particular, light with positive or negative helicity is absorbed differently, therefore, understanding the interaction of circularly polarized light with various TMDCs should enable future applications. Using the examples of MoS{sub 2} and WS{sub 2} we summarize some recent results that illustrate the potential of these materials. First, when optically excited with circularly polarized light, single layers of MoS{sub 2} can emit light with an appreciable polarization. Depolarization mechanisms can be subsequently explored by monitoring the polarization of emitted photoluminescence as a function of the excess energy supplied to the system. As the energy of the pumping light increases further from the emission channel, the emission quickly becomes depolarized. The dominant relaxation mechanism is identified as phonon-assisted intervalley scattering. In single layers of WS{sub 2} containing electron gas, the main emission channel is from negatively charged excitons, or trions. In the presence of a two-dimensional electron gas this trion emission is circularly polarized at zero magnetic field, even when excited with linearly polarized light. This spontaneous circular polarization of the trion has a linear dependence on magnetic field and can be attributed to the existence of a valley polarized state of the two-dimensional electron gas. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Exploring single-layered SnSe honeycomb polymorphs for optoelectronic and photovoltaic applications

    Science.gov (United States)

    Ul Haq, Bakhtiar; AlFaify, S.; Ahmed, R.; Butt, Faheem K.; Laref, A.; Shkir, Mohd.

    2018-02-01

    Single-layered tin selenide that shares the same structure with phosphorene and possesses intriguing optoelectronic properties has received great interest as a two-dimensional material beyond graphene and phosphorene. Herein, we explore the optoelectronic response of the newly discovered stable honeycomb derivatives (such as α , β , γ , δ , and ɛ ) of single-layered SnSe in the framework of density functional theory. The α , β , γ , and δ derivatives of a SnSe monolayer have been found to exhibit an indirect band gap, however, the dispersion of their band-gap edges demonstrates multiple direct band gaps at a relatively high energy. The ɛ -SnSe, however, features an intrinsic direct band gap at the high-symmetry Γ point. Their energy band gaps (0.53, 2.32, 1.52, 1.56, and 1.76 eV for α -, β -, γ -, δ -, and ɛ -SnSe, respectively), calculated at the level of the Tran-Blaha modified Becke-Johnson approach, mostly fall right in the visible range of the electromagnetic spectrum and are in good agreement with the available literature. The optical spectra of these two-dimensional (2D) SnSe polymorphs (besides β -SnSe) are highly anisotropic and possess strictly different optical band gaps along independent diagonal components. They show high absorption in the visible and UV ranges. Similarly, the reflectivity, refraction, and optical conductivities inherit strong anisotropy from the dielectric functions as well and are highly visible-UV polarized along the cartesian coordinates, showing them to be suitable for optical filters, polarizers, and shields against UV radiation. Our investigations suggest these single-layered SnSe allotropes as a promising 2D material for next-generation nanoscale optoelectronic and photovoltaic applications beyond graphene and phosphorene.

  2. A learning rule for very simple universal approximators consisting of a single layer of perceptrons.

    Science.gov (United States)

    Auer, Peter; Burgsteiner, Harald; Maass, Wolfgang

    2008-06-01

    One may argue that the simplest type of neural networks beyond a single perceptron is an array of several perceptrons in parallel. In spite of their simplicity, such circuits can compute any Boolean function if one views the majority of the binary perceptron outputs as the binary output of the parallel perceptron, and they are universal approximators for arbitrary continuous functions with values in [0,1] if one views the fraction of perceptrons that output 1 as the analog output of the parallel perceptron. Note that in contrast to the familiar model of a "multi-layer perceptron" the parallel perceptron that we consider here has just binary values as outputs of gates on the hidden layer. For a long time one has thought that there exists no competitive learning algorithm for these extremely simple neural networks, which also came to be known as committee machines. It is commonly assumed that one has to replace the hard threshold gates on the hidden layer by sigmoidal gates (or RBF-gates) and that one has to tune the weights on at least two successive layers in order to achieve satisfactory learning results for any class of neural networks that yield universal approximators. We show that this assumption is not true, by exhibiting a simple learning algorithm for parallel perceptrons - the parallel delta rule (p-delta rule). In contrast to backprop for multi-layer perceptrons, the p-delta rule only has to tune a single layer of weights, and it does not require the computation and communication of analog values with high precision. Reduced communication also distinguishes our new learning rule from other learning rules for parallel perceptrons such as MADALINE. Obviously these features make the p-delta rule attractive as a biologically more realistic alternative to backprop in biological neural circuits, but also for implementations in special purpose hardware. We show that the p-delta rule also implements gradient descent-with regard to a suitable error measure

  3. Valley polarization in magnetically doped single-layer transition-metal dichalcogenides

    KAUST Repository

    Cheng, Yingchun

    2014-04-28

    We demonstrate that valley polarization can be induced and controlled in semiconducting single-layer transition-metal dichalcogenides by magnetic doping, which is important for spintronics, valleytronics, and photonics devices. As an example, we investigate Mn-doped MoS2 by first-principles calculations. We study how the valley polarization depends on the strength of the spin orbit coupling and the exchange interaction and discuss how it can be controlled by magnetic doping. Valley polarization by magnetic doping is also expected for other honeycomb materials with strong spin orbit coupling and the absence of inversion symmetry.

  4. Atomic-scale structure of single-layer MoS2 nanoclusters

    DEFF Research Database (Denmark)

    Helveg, S.; Lauritsen, J. V.; Lægsgaard, E.

    2000-01-01

    We have studied using scanning tunneling microscopy (STM) the atomic-scale realm of molybdenum disulfide (MoS2) nanoclusters, which are of interest as a model system in hydrodesulfurization catalysis. The STM gives the first real space images of the shape and edge structure of single-layer MoS2 n...... nanoparticles synthesized on Au(lll), and establishes a new picture of the active edge sires of the nanoclusters. The results demonstrate a way to get detailed atomic-scale information on catalysts in general....

  5. Subattoampere current induced by single ions in silicon oxide layers of nonvolatile memory cells

    International Nuclear Information System (INIS)

    Cellere, G.; Paccagnella, A.; Larcher, L.; Visconti, A.; Bonanomi, M.

    2006-01-01

    A single ion impinging on a thin silicon dioxide layer generates a number of electron/hole pairs proportional to its linear energy transfer coefficient. Defects generated by recombination can act as a conductive path for electrons that cross the oxide barrier, thanks to a multitrap-assisted mechanism. We present data on the dependence of this phenomenon on the oxide thickness by using floating gate memory arrays. The tiny number of excess electrons stored in these devices allows for extremely high sensitivity, impossible with any direct measurement of oxide leakage current. Results are of particular interest for next generation devices

  6. Highly simplified small molecular phosphorescent organic light emitting devices with a solution-processed single layer

    Directory of Open Access Journals (Sweden)

    Zhaokui Wang

    2011-09-01

    Full Text Available A highly simplified single layer solution-processed phosphorescent organic light emitting device (PHOLED with the maximum ηP 11.5 lm/W corresponding to EQE 9.6% has been demonstrated. The solution-processed device is shown having comparable even exceeding device performance to vacuum-processed PHOLED. The simplified device design strategy represents a pathway toward large area, low cost and high efficiency OLEDs in the future. The charge injection and conduction mechanisms in two solution- and vacuum-processed devices are also investigated by evaluating the temperature dependence of current density – voltage characteristics.

  7. Self-Assembly of Single-Layer CoAl-Layered Double Hydroxide Nanosheets on 3D Graphene Network Used as Highly Efficient Electrocatalyst for Oxygen Evolution Reaction.

    Science.gov (United States)

    Ping, Jianfeng; Wang, Yixian; Lu, Qipeng; Chen, Bo; Chen, Junze; Huang, Ying; Ma, Qinglang; Tan, Chaoliang; Yang, Jian; Cao, Xiehong; Wang, Zhijuan; Wu, Jian; Ying, Yibin; Zhang, Hua

    2016-09-01

    A non-noble metal based 3D porous electrocatalyst is prepared by self-assembly of the liquid-exfoliated single-layer CoAl-layered double hydroxide nanosheets (CoAl-NSs) onto 3D graphene network, which exhibits higher catalytic activity and better stability for electrochemical oxygen evolution reaction compared to the commercial IrO2 nanoparticle-based 3D porous electrocatalyst. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Effect of physicochemical factors on the microplasticity of the surface layer of molybdenum single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Savenko, V.I.; Kuchumova, V.M.; Kochanova, L.A.; Shchukin, E.D.

    1984-07-01

    The microplastic properties of the surface layer of molybdenum single crystals produced by electron-beam zone melting have been investigated experimentaly using ultramicrosclerometry and microindentation techniques. It is found that the 111 plane has the highest susceptibility to plastic damage, while the 100 plane is the hardest. An analysis of the stressed state of the material under an indenter shows that the dislocation density along the loading paths, which characterizes the microplasticity of the material, is largely determined by the crystallography of the lattice, i.e., by the arrangement and the number of effective slip systems in specimens of different orientations. The effect of a monolayer octadecylamine film on the microplastic behavior of molybdenum single crystals is discussed.

  9. A retrospective study comparing the outcome of horses undergoing small intestinal resection and anastomosis with a single layer (Lembert) or double layer (simple continuous and Cushing) technique.

    Science.gov (United States)

    Close, Kristyn; Epstein, Kira L; Sherlock, Ceri E

    2014-05-01

    To (1) compare postoperative complications and survival in horses after small intestinal resection and anastomosis using 2 anastomosis techniques (single layer Lembert; double layer simple continuous oversewn with Cushing), and (2) to compare outcome by anastomosis type (jejunoileostomy; jejunojejunostomy). Retrospective case series. Horses (n = 53). Medical records (July 2006-July 2010) of all horses that had small intestinal resection and anastomosis. Horses were divided into groups based on technique and type of anastomosis. Comparisons of pre- and intraoperative findings (disease severity), postoperative complications, and survival rates were made between groups. There were no differences in disease severity, postoperative complications, or survival between single layer (n = 23) or double layer (n = 31) anastomoses. There were no differences in disease severity or survival between jejunoileostomy (n = 16) or jejunojejunostomy (n = 38). There was a higher incidence of postoperative colic in hospital after jejunoileostomy (13/16) compared with jejunojejunostomy (18/38) (P = .0127). Postoperative complications and survival are comparable between horses undergoing single layer and double layer small intestinal end-to-end anastomoses. With the exception of increased postoperative colic in the hospital, postoperative complications and survival after jejunoileostomy and jejunojejunostomy are also comparable. © Copyright 2014 by The American College of Veterinary Surgeons.

  10. Strength Comparison of Flawed Single-Layer and Multilayer AISI 301 Stainless Steel Pressure Vessels at Cryogenic Temperatures

    National Research Council Canada - National Science Library

    Pierce, William

    1965-01-01

    An experimental investigation was conducted to determine the strengths of single-layer and multilayer scale model tanks of AISI 301 stainless steel containing sharp notches and having the same total wall thickness...

  11. Effect of Substrate Permittivity and Thickness on Performance of Single-Layer, Wideband, U-Slot Antennas on Microwave Substrates

    National Research Council Canada - National Science Library

    Natarajan, V; Chatterjee, D

    2004-01-01

    This paper presents effects of substrate permittivity and thickness on the performance characteristics like impedance bandwidth, radiation efficiency and gain of a single-layer, wideband, U-slot antenna...

  12. Determination of band offsets at GaN/single-layer MoS2 heterojunction

    KAUST Repository

    Tangi, Malleswararao

    2016-07-25

    We report the band alignment parameters of the GaN/single-layer (SL) MoS2 heterostructure where the GaN thin layer is grown by molecular beam epitaxy on CVD deposited SL-MoS2/c-sapphire. We confirm that the MoS2 is an SL by measuring the separation and position of room temperature micro-Raman E1 2g and A1 g modes, absorbance, and micro-photoluminescence bandgap studies. This is in good agreement with HRTEM cross-sectional analysis. The determination of band offset parameters at the GaN/SL-MoS2 heterojunction is carried out by high-resolution X-ray photoelectron spectroscopy accompanying with electronic bandgap values of SL-MoS2 and GaN. The valence band and conduction band offset values are, respectively, measured to be 1.86 ± 0.08 and 0.56 ± 0.1 eV with type II band alignment. The determination of these unprecedented band offset parameters opens up a way to integrate 3D group III nitride materials with 2D transition metal dichalcogenide layers for designing and modeling of their heterojunction based electronic and photonic devices.

  13. Electronic origin of high-temperature superconductivity in single-layer FeSe superconductor.

    Science.gov (United States)

    Liu, Defa; Zhang, Wenhao; Mou, Daixiang; He, Junfeng; Ou, Yun-Bo; Wang, Qing-Yan; Li, Zhi; Wang, Lili; Zhao, Lin; He, Shaolong; Peng, Yingying; Liu, Xu; Chen, Chaoyu; Yu, Li; Liu, Guodong; Dong, Xiaoli; Zhang, Jun; Chen, Chuangtian; Xu, Zuyan; Hu, Jiangping; Chen, Xi; Ma, Xucun; Xue, Qikun; Zhou, X J

    2012-07-03

    The recent discovery of high-temperature superconductivity in iron-based compounds has attracted much attention. How to further increase the superconducting transition temperature (T(c)) and how to understand the superconductivity mechanism are two prominent issues facing the current study of iron-based superconductors. The latest report of high-T(c) superconductivity in a single-layer FeSe is therefore both surprising and significant. Here we present investigations of the electronic structure and superconducting gap of the single-layer FeSe superconductor. Its Fermi surface is distinct from other iron-based superconductors, consisting only of electron-like pockets near the zone corner without indication of any Fermi surface around the zone centre. Nearly isotropic superconducting gap is observed in this strictly two-dimensional system. The temperature dependence of the superconducting gap gives a transition temperature T(c)~ 55 K. These results have established a clear case that such a simple electronic structure is compatible with high-T(c) superconductivity in iron-based superconductors.

  14. Retrieving 4-dimensional atmospheric boundary layer structure from surface observations and profiles over a single station

    Energy Technology Data Exchange (ETDEWEB)

    Pu, Zhaoxia [Univ. of Utah, Salt Lake City, UT (United States)

    2015-10-06

    Most routine measurements from climate study facilities, such as the Department of Energy’s ARM SGP site, come from individual sites over a long period of time. While single-station data are very useful for many studies, it is challenging to obtain 3-dimensional spatial structures of atmospheric boundary layers that include prominent signatures of deep convection from these data. The principal objective of this project is to create realistic estimates of high-resolution (~ 1km × 1km horizontal grids) atmospheric boundary layer structure and the characteristics of precipitating convection. These characteristics include updraft and downdraft cumulus mass fluxes and cold pool properties over a region the size of a GCM grid column from analyses that assimilate surface mesonet observations of wind, temperature, and water vapor mixing ratio and available profiling data from single or multiple surface stations. The ultimate goal of the project is to enhance our understanding of the properties of mesoscale convective systems and also to improve their representation in analysis and numerical simulations. During the proposed period (09/15/2011–09/14/2014) and the no-cost extension period (09/15/2014–09/14/2015), significant accomplishments have been achieved relating to the stated goals. Efforts have been extended to various research and applications. Results have been published in professional journals and presented in related science team meetings and conferences. These are summarized in the report.

  15. Single layer porous media with entrapped minerals for microscale studies of multiphase flow.

    Science.gov (United States)

    Liefferink, R W; Naillon, A; Bonn, D; Prat, M; Shahidzadeh, N

    2018-03-27

    The behaviour of minerals (i.e. salts) such as sodium chloride and calcite in porous media is very important in various applications such as weathering of artworks, oil recovery and CO2 sequestration. We report a novel method for manufacturing single layer porous media in which minerals can be entrapped in a controlled way in order to study their dissolution and recrystallization. In addition, our manufacturing method is a versatile tool for creating monomodal, bimodal or multimodal pore size microporous media with controlled porosity ranging from 25% to 50%. These micromodels allow multiphase flows to be quantitatively studied with different microscopy techniques and can serve to validate numerical models that can subsequently be extended to the 3D situation where visualization is experimentally difficult. As an example of their use, deliquescence (dissolution by moisture absorption) of entrapped NaCl crystals is studied; our results show that the invasion of the resulting salt solution is controlled by the capillary pressure within the porous network. For hydrophilic porous media, the liquid preferentially invades the small pores whereas in a hydrophobic network the large pores are filled. Consequently, after several deliquescence/drying cycles in the hydrophilic system, the salt is transported towards the outside of the porous network via small pores; in hydrophobic micromodels, no salt migration is observed. Numerical simulations based on the characteristics of our single layer pore network agree very well with the experimental results and give more insight into the dynamics of salt transport through porous media.

  16. Charge transferred doping of single layer graphene by mono-dispersed manganese-oxide nanoparticles adsorption

    Science.gov (United States)

    Phan, Thanh Luan; Kang, Myunggoo; Choi, Soo Ho; Kim, You Joong; Jung, Hyun; Yoon, Im Taek; Yang, Woochul

    2017-10-01

    We report an efficient and controllable method to introduce p-type doping in graphene by decoration with Mn3O4 nanoparticles (NPs) on mechanically exfoliated single layer graphene. A monolayer of Mn3O4 NPs, with a diameter in the range of 5-10 nm, was decorated on a graphene film using an ex-situ method, whereas by controlling the coverage of the NPs on the graphene surface, the carrier concentration could be continually adjusted. The p-type of the NP-decorated single layer graphene was confirmed by the Raman G-band. It was found that the carrier concentration could be gradually adjusted up to 26.09 × 1012 cm-2, with 90% coverage of Mn3O4 NPs. The Dirac point of the pristine graphene at the gate bias of 27 V shifted to 150 V for Mn3O4 NP decorated graphene. The p-type graphene doped with Mn3O4 NPs demonstrated significant high air-stability, even under an oxygen atmosphere for 60 days. This approach allows for the opportunity for simple, scalable, and highly stable doping of graphene for future high-performance electronic device applications.

  17. Epitaxial Single-Layer MoS2 on GaN with Enhanced Valley Helicity

    KAUST Repository

    Wan, Yi

    2017-12-19

    Engineering the substrate of 2D transition metal dichalcogenides can couple the quasiparticle interaction between the 2D material and substrate, providing an additional route to realize conceptual quantum phenomena and novel device functionalities, such as realization of a 12-time increased valley spitting in single-layer WSe2 through the interfacial magnetic exchange field from a ferromagnetic EuS substrate, and band-to-band tunnel field-effect transistors with a subthreshold swing below 60 mV dec−1 at room temperature based on bilayer n-MoS2 and heavily doped p-germanium, etc. Here, it is demonstrated that epitaxially grown single-layer MoS2 on a lattice-matched GaN substrate, possessing a type-I band alignment, exhibits strong substrate-induced interactions. The phonons in GaN quickly dissipate the energy of photogenerated carriers through electron–phonon interaction, resulting in a short exciton lifetime in the MoS2/GaN heterostructure. This interaction enables an enhanced valley helicity at room temperature (0.33 ± 0.05) observed in both steady-state and time-resolved circularly polarized photoluminescence measurements. The findings highlight the importance of substrate engineering for modulating the intrinsic valley carriers in ultrathin 2D materials and potentially open new paths for valleytronics and valley-optoelectronic device applications.

  18. Tuning the band structure and superconductivity in single-layer FeSe by interface engineering.

    Science.gov (United States)

    Peng, R; Xu, H C; Tan, S Y; Cao, H Y; Xia, M; Shen, X P; Huang, Z C; Wen, C H P; Song, Q; Zhang, T; Xie, B P; Gong, X G; Feng, D L

    2014-09-26

    The interface between transition metal compounds provides a rich playground for emergent phenomena. Recently, significantly enhanced superconductivity has been reported for single-layer FeSe on Nb-doped SrTiO3 substrate. Yet it remains mysterious how the interface affects the superconductivity. Here we use in situ angle-resolved photoemission spectroscopy to investigate various FeSe-based heterostructures grown by molecular beam epitaxy, and uncover that electronic correlations and superconducting gap-closing temperature (Tg) are tuned by interfacial effects. Tg up to 75 K is observed in extremely tensile-strained single-layer FeSe on Nb-doped BaTiO3, which sets a record high pairing temperature for both Fe-based superconductor and monolayer-thick films, providing a promising prospect on realizing more cost-effective superconducting device. Moreover, our results exclude the direct correlation between superconductivity and tensile strain or the energy of an interfacial phonon mode, and highlight the critical and non-trivial role of FeSe/oxide interface on the high Tg, which provides new clues for understanding its origin.

  19. Gold Dispersion and Activation on the Basal Plane of Single-Layer MoS2

    KAUST Repository

    Merida, Cindy S.

    2017-12-09

    Gold islands are typically associated with high binding affinity to adsorbates and catalytic activity. Here we present the growth of such dispersed nanoscale gold islands on single layer MoS2, prepared on an inert SiO2/Si support by chemical vapor deposition (CVD). This study offers a combination of growth process development, optical characterization, photoelectron spectroscopy at sub-micron spatial resolution, and advanced density functional theory modeling for detailed insight into the electronic interaction between gold and single-layer MoS2. In particular, we find the gold density of states in Au/MoS2/SiO2/Si to be far less well-defined than Au islands on other 2-dimensional materials such as graphene, for which we also provide data. We attribute this effect to the presence of heterogeneous Au adatom/MoS2-support interactions within the nanometer-scale gold cluster. As a consequence, theory predicts that CO will exhibit adsorption energies in excess of 1 eV at the Au cluster edges, where the local density of states is dominated by Au 5dz2 symmetry.

  20. Quality of bull spermatozoa after preparation by single-layer centrifugation.

    Science.gov (United States)

    Goodla, Lavanya; Morrell, Jane M; Yusnizar, Yulnawati; Stålhammar, Hans; Johannisson, Anders

    2014-01-01

    The present study aimed to evaluate the effect of single-layer centrifugation (SLC) through a species-specific colloid (Androcoll-B; patent pending, J. M. Morrell) on bull sperm quality. Computer-assisted sperm analysis of motility and flow cytometric analysis of sperm viability (SYBR-14/propidium iodide staining), chromatin integrity (acridine orange staining), reactive oxygen species production [Hoechst 33258-hydroethidine-2',7'-dichlorodihydrofluorescein diacetate (HO-HE-DCFDA) staining], mitochondrial membrane potential (staining with JC-1 probe), and protein tyrosine phosphorylation (specific antibody staining) were performed on unselected and SLC-selected sperm samples. Single-layer centrifugation of bull spermatozoa resulted in the selection of a sperm population that had high mitochondrial membrane potential, a higher content of phosphorylated protein, and more reactive oxygen species than control samples. Sperm chromatin damage was lower in the SLC samples although sperm viability and motility did not differ between SLC samples and controls. These observations suggest that SLC of bull semen in a soybean-containing extender improved some, but not all, parameters of sperm quality. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Single Layer Nanomaterials: The Chemical Vapor Deposition Synthesis and Atomic Scale Characterization of Hexagonal Boron Nitride and Graphene

    OpenAIRE

    Gibb, Ashley L

    2015-01-01

    The design of novel nanomaterials with tunable geometries and properties has transformed chemistry and physics in recent years. In particular, recent advances in the isolation of two-dimensional films have inspired the exploration and development of stable, self-supporting single layer systems. Most notably graphene, a single layer of hexagonal sp2 carbon, has attracted interest due to intriguing electronic, optical, and mechanical properties. Hexagonal boron nitride (h-BN) is a closely relat...

  2. Magneto-transport in the zero-energy Landau level of single-layer and bilayer graphene

    International Nuclear Information System (INIS)

    Zeitler, U; Giesbers, A J M; Elferen, H J van; Kurganova, E V; McCollam, A; Maan, J C

    2011-01-01

    We present recent low-temperature magnetotransport experiments on single-layer and bilayer graphene in high magnetic field up to 33 T. In single layer graphene the fourfold degeneracy of the zero-energy Landau level is lifted by a gap opening at filling factor ν = 0. In bilayer graphene, we observe a partial lifting of the degeneracy of the eightfold degenerate zero-energy Landau level.

  3. Electronic spin transport and spin precession in single graphene layers at room temperature.

    Science.gov (United States)

    Tombros, Nikolaos; Jozsa, Csaba; Popinciuc, Mihaita; Jonkman, Harry T; van Wees, Bart J

    2007-08-02

    Electronic transport in single or a few layers of graphene is the subject of intense interest at present. The specific band structure of graphene, with its unique valley structure and Dirac neutrality point separating hole states from electron states, has led to the observation of new electronic transport phenomena such as anomalously quantized Hall effects, absence of weak localization and the existence of a minimum conductivity. In addition to dissipative transport, supercurrent transport has also been observed. Graphene might also be a promising material for spintronics and related applications, such as the realization of spin qubits, owing to the low intrinsic spin orbit interaction, as well as the low hyperfine interaction of the electron spins with the carbon nuclei. Here we report the observation of spin transport, as well as Larmor spin precession, over micrometre-scale distances in single graphene layers. The 'non-local' spin valve geometry was used in these experiments, employing four-terminal contact geometries with ferromagnetic cobalt electrodes making contact with the graphene sheet through a thin oxide layer. We observe clear bipolar (changing from positive to negative sign) spin signals that reflect the magnetization direction of all four electrodes, indicating that spin coherence extends underneath all of the contacts. No significant changes in the spin signals occur between 4.2 K, 77 K and room temperature. We extract a spin relaxation length between 1.5 and 2 mum at room temperature, only weakly dependent on charge density. The spin polarization of the ferromagnetic contacts is calculated from the measurements to be around ten per cent.

  4. Single-Layer Plication for Repair of Diastasis Recti: The Most Rapid and Efficient Technique.

    Science.gov (United States)

    Gama, Luiz José Muaccad; Barbosa, Marcus Vinicius Jardini; Czapkowski, Adriano; Ajzen, Sergio; Ferreira, Lydia Masako; Nahas, Fábio Xerfan

    2017-06-01

    Plication of the anterior rectus sheath is the most commonly used technique for repair of diastasis recti, but is also a time-consuming procedure. The aim of this study was to compare the efficacy and time required to repair diastasis recti using different plication techniques. Thirty women with similar abdominal deformities, who had had at least one pregnancy, were randomized into three groups to undergo abdominoplasty. Plication of the anterior rectus sheath was performed in two layers with 2-0 monofilament nylon suture (control group) or in a single layer with either a continuous 2-0 monofilament nylon suture (group I) or using a continuous barbed suture (group II). Operative time was recorded. All patients underwent ultrasound examination preoperatively and at 3 weeks and 6 months postoperatively to monitor for diastasis recurrence. The force required to bring the anterior rectus sheath to the midline was measured at the supraumbilical and infraumbilical levels. Patient age ranged from 26 to 50 years and body mass index from 20.56 to 29.17 kg/m2. A significant difference in mean operative time was found between the control and study groups (control group, 35 min:22 s; group I, 14 min:22 s; group II, 15 min:23 s; P < 0.001). Three patients in group II had recurrence of diastasis. There were no significant within- and between-group differences in tensile force on the aponeurosis. Plication of the anterior rectus sheath in a single-layer with a continuous suture showed to be an efficient and rapid technique for repair of diastasis recti. © 2017 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com

  5. Single-Column Model Simulations of Subtropical Marine Boundary-Layer Cloud Transitions Under Weakening Inversions

    Science.gov (United States)

    Neggers, R. A. J.; Ackerman, A. S.; Angevine, W. M.; Bazile, E.; Beau, I.; Blossey, P. N.; Boutle, I. A.; de Bruijn, C.; Cheng, A.; van der Dussen, J.; Fletcher, J.; Dal Gesso, S.; Jam, A.; Kawai, H.; Cheedela, S. K.; Larson, V. E.; Lefebvre, M.-P.; Lock, A. P.; Meyer, N. R.; de Roode, S. R.; de Rooy, W.; Sandu, I.; Xiao, H.; Xu, K.-M.

    2017-10-01

    Results are presented of the GASS/EUCLIPSE single-column model intercomparison study on the subtropical marine low-level cloud transition. A central goal is to establish the performance of state-of-the-art boundary-layer schemes for weather and climate models for this cloud regime, using large-eddy simulations of the same scenes as a reference. A novelty is that the comparison covers four different cases instead of one, in order to broaden the covered parameter space. Three cases are situated in the North-Eastern Pacific, while one reflects conditions in the North-Eastern Atlantic. A set of variables is considered that reflects key aspects of the transition process, making use of simple metrics to establish the model performance. Using this method, some longstanding problems in low-level cloud representation are identified. Considerable spread exists among models concerning the cloud amount, its vertical structure, and the associated impact on radiative transfer. The sign and amplitude of these biases differ somewhat per case, depending on how far the transition has progressed. After cloud breakup the ensemble median exhibits the well-known "too few too bright" problem. The boundary-layer deepening rate and its state of decoupling are both underestimated, while the representation of the thin capping cloud layer appears complicated by a lack of vertical resolution. Encouragingly, some models are successful in representing the full set of variables, in particular, the vertical structure and diurnal cycle of the cloud layer in transition. An intriguing result is that the median of the model ensemble performs best, inspiring a new approach in subgrid parameterization.

  6. Transparent Flash Memory using Single Ta2O5 Layer for both Charge Trapping and Tunneling Dielectrics

    KAUST Repository

    Hota, Mrinal Kanti

    2017-06-08

    We report reproducible multibit transparent flash memory in which a single solution-derived Ta2O5 layer is used simultaneously as charge trapping and tunneling layer. This is different from conventional flash cells, where two different dielectric layers are typically used. Under optimized programming/erasing operations, the memory device shows excellent programmable memory characteristics with a maximum memory window of ~10 V. Moreover, the flash memory device shows a stable 2-bit memory performance, good reliability, including data retention for more than 104 sec and endurance performance for more than 100 cycles. The use of a common charge trapping and tunneling layer can simplify advanced flash memory fabrication.

  7. Giant magnetoimpedance effect in sputtered single layered NiFe film and meander NiFe/Cu/NiFe film

    International Nuclear Information System (INIS)

    Chen, L.; Zhou, Y.; Lei, C.; Zhou, Z.M.; Ding, W.

    2010-01-01

    Giant magnetoimpedance (GMI) effect on NiFe thin film is very promising due to its application in developing the magnetic field sensors with highly sensitivity and low cost. In this paper, the single layered NiFe thin film and NiFe/Cu/NiFe thin film with a meander structure are prepared by the MEMS technology. The influences of sputtering parameters, film structure and conductor layer width on GMI effect in NiFe single layer and meander NiFe/Cu/NiFe film are investigated. Maximum of the GMI ratio in single layer and sandwich film is 5% and 64%, respectively. The results obtained are useful for developing the high-performance magnetic sensors based on NiFe thin film.

  8. Negative quantum capacitance induced by midgap states in single-layer graphene.

    Science.gov (United States)

    Wang, Lin; Wang, Yang; Chen, Xiaolong; Zhu, Wei; Zhu, Chao; Wu, Zefei; Han, Yu; Zhang, Mingwei; Li, Wei; He, Yuheng; Xiong, Wei; Law, Kam Tuen; Su, Dangsheng; Wang, Ning

    2013-01-01

    We demonstrate that single-layer graphene (SLG) decorated with a high density of Ag adatoms displays the unconventional phenomenon of negative quantum capacitance. The Ag adatoms act as resonant impurities and form nearly dispersionless resonant impurity bands near the charge neutrality point (CNP). Resonant impurities quench the kinetic energy and drive the electrons to the Coulomb energy dominated regime with negative compressibility. In the absence of a magnetic field, negative quantum capacitance is observed near the CNP. In the quantum Hall regime, negative quantum capacitance behavior at several Landau level positions is displayed, which is associated with the quenching of kinetic energy by the formation of Landau levels. The negative quantum capacitance effect near the CNP is further enhanced in the presence of Landau levels due to the magnetic-field-enhanced Coulomb interactions.

  9. Optical Properties and Band Gap of Single- and Few-Layer MoTe2 Crystals

    Science.gov (United States)

    Aslan, Ozgur Burak; Ruppert, Claudia; Heinz, Tony

    2015-03-01

    Single- and few-layer crystals of exfoliated MoTe2 have been characterized spectroscopically by photoluminescence, Raman scattering, and optical absorption measurements. We find that MoTe2 in the monolayer limit displays strong photoluminescence. On the basis of complementary optical absorption results, we conclude that monolayer MoTe2 is a direct-gap semiconductor with an optical band gap of 1.10 eV. This new monolayer material extends the spectral range of atomically thin direct-gap materials from the visible to the near-infrared. Supported by the NSF through Grant DMR-1124894 for sample preparation and characterization by the O?ce of Naval Research for analysis. C.R. acknowledges support from the Alexander von Humboldt Foundation.

  10. Effect of humid-thermal environment on wave dispersion characteristics of single-layered graphene sheets

    Science.gov (United States)

    Ebrahimi, Farzad; Dabbagh, Ali

    2018-04-01

    In the present article, the hygro-thermal wave propagation properties of single-layered graphene sheets (SLGSs) are investigated for the first time employing a nonlocal strain gradient theory. A refined higher-order two-variable plate theory is utilized to derive the kinematic relations of graphene sheets. Here, nonlocal strain gradient theory is used to achieve a more precise analysis of small-scale plates. In the framework of the Hamilton's principle, the final governing equations are developed. Moreover, these obtained equations are deemed to be solved analytically and the wave frequency values are achieved. Some parametric studies are organized to investigate the influence of different variants such as nonlocal parameter, length scale parameter, wave number, temperature gradient and moisture concentration on the wave frequency of graphene sheets.

  11. Large theoretical thermoelectric power factor of suspended single-layer MoS{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Babaei, Hasan, E-mail: babaei@illinois.edu, E-mail: babaei@auburn.edu [Mechanical Science and Engineering Department, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-2906 (United States); Mechanical Engineering Department, Auburn University, Auburn, Alabama 36849-5341 (United States); Khodadadi, J. M. [Mechanical Engineering Department, Auburn University, Auburn, Alabama 36849-5341 (United States); Sinha, Sanjiv [Mechanical Science and Engineering Department, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-2906 (United States)

    2014-11-10

    We have calculated the semi-classical thermoelectric power factor of suspended single-layer (SL)- MoS{sub 2} utilizing electron relaxation times derived from ab initio calculations. Measurements of the thermoelectric power factor of SL-MoS{sub 2} on substrates reveal poor power factors. In contrast, we find the thermoelectric power factor of suspended SL-MoS{sub 2} to peak at ∼2.8 × 10{sup 4} μW/m K{sup 2} at 300 K, at an electron concentration of 10{sup 12} cm{sup −2}. This figure is higher than that in bulk Bi{sub 2}Te{sub 3}, for example. Given its relatively high thermal conductivity, suspended SL-MoS{sub 2} may hold promise for in-plane thin-film Peltier coolers, provided reasonable mobilities can be realized.

  12. Moisture barrier properties of single-layer graphene deposited on Cu films for Cu metallization

    Science.gov (United States)

    Gomasang, Ploybussara; Abe, Takumi; Kawahara, Kenji; Wasai, Yoko; Nabatova-Gabain, Nataliya; Thanh Cuong, Nguyen; Ago, Hiroki; Okada, Susumu; Ueno, Kazuyoshi

    2018-04-01

    The moisture barrier properties of large-grain single-layer graphene (SLG) deposited on a Cu(111)/sapphire substrate are demonstrated by comparing with the bare Cu(111) surface under an accelerated degradation test (ADT) at 85 °C and 85% relative humidity (RH) for various durations. The change in surface color and the formation of Cu oxide are investigated by optical microscopy (OM) and X-ray photoelectron spectroscopy (XPS), respectively. First-principle simulation is performed to understand the mechanisms underlying the barrier properties of SLG against O diffusion. The correlation between Cu oxide thickness and SLG quality are also analyzed by spectroscopic ellipsometry (SE) measured on a non-uniform SLG film. SLG with large grains shows high performance in preventing the Cu oxidation due to moisture during ADT.

  13. Probing Critical Point Energies of Transition Metal Dichalcogenides: Surprising Indirect Gap of Single Layer WSe 2

    KAUST Repository

    Zhang, Chendong

    2015-09-21

    By using a comprehensive form of scanning tunneling spectroscopy, we have revealed detailed quasi-particle electronic structures in transition metal dichalcogenides, including the quasi-particle gaps, critical point energy locations, and their origins in the Brillouin zones. We show that single layer WSe surprisingly has an indirect quasi-particle gap with the conduction band minimum located at the Q-point (instead of K), albeit the two states are nearly degenerate. We have further observed rich quasi-particle electronic structures of transition metal dichalcogenides as a function of atomic structures and spin-orbit couplings. Such a local probe for detailed electronic structures in conduction and valence bands will be ideal to investigate how electronic structures of transition metal dichalcogenides are influenced by variations of local environment.

  14. Polarized dependence of nonlinear susceptibility in a single layer graphene system in infrared region

    Energy Technology Data Exchange (ETDEWEB)

    Solookinejad, G., E-mail: ghsolooki@gmail.com

    2016-09-15

    In this study, the linear and nonlinear susceptibility of a single-layer graphene nanostructure driven by a weak probe light and an elliptical polarized coupling field is discussed theoretically. The Landau levels of graphene can be separated in infrared or terahertz regions under the strong magnetic field. Therefore, by using the density matrix formalism in quantum optic, the linear and nonlinear susceptibility of the medium can be derived. It is demonstrated that by adjusting the elliptical parameter, one can manipulate the linear and nonlinear absorption as well as Kerr nonlinearity of the medium. It is realized that the enhanced Kerr nonlinearity can be possible with zero linear absorption and nonlinear amplification at some values of elliptical parameter. Our results may be having potential applications in quantum information science based on Nano scales devices.

  15. Tensile loading induced phase transition and rippling in single-layer MoS2

    Science.gov (United States)

    Bao, Hongwei; Huang, Yuhong; Yang, Zhi; Miao, Yaping; Chu, Paul K.; Xu, Kewei; Ma, Fei

    2017-05-01

    Molecular dynamics (MD) simulation is performed to study the structural evolution of single-layer MoS2 nanosheets under tensile loading and a phase transition from hexagonal structure to quadrilateral one is observed at a large strain when loaded along the zigzag direction but not along the armchair direction. Density functional theory (DFT) calculation illustrates that the newly generated quadrilateral phase is metallic. Further loading along the zigzag direction promotes an inhomogeneous distribution of lateral and shear stress around the phase boundaries due to local mechanical mismatch. As a result, periodic rippling parallel to the loading direction emerges and the wavelength and wave height change with strain according to λ∼ε-1/4 and h∼ε1/4. Accordingly, a graded distribution of strain can be produced or modulated by a simple tensile loading and the strategy might be utilized to enhance the photoelectrical properties of 2D materials and design strain-tunable nanodevices.

  16. Effect of quenched disorder on charge-orbital-spin ordering in single-layer manganites

    International Nuclear Information System (INIS)

    Uchida, Masaya; Mathieu, Roland; He, Jinping; Kaneko, Yoshio; Tokura, Yoshinori; Asamitsu, Atsushi; Kumai, Reiji; Tomioka, Yasuhide; Matsui, Yoshio

    2006-01-01

    Structural and magnetic properties have been investigated for half-doped single-layer manganites RE 0.5 Sr 1.5 MnO 4 [RE=La, (La, Pr), Pr, Nd, Sm, and Eu]. Analyses of electron diffraction and ac susceptibility measurements have revealed that the long-range charge-orbital ordering (CO-OO) state as observed in La 0.5 Sr 1.5 MnO 4 is suppressed for the other materials: the CO-OO transition temperature, as well as the correlation length decreases with a decrease in the cation size of RE. Such a short-range CO-OO state shows a spin-glass behavior at low temperatures. A new electronic phase diagram is established with quenched disorder as the control parameter. (author)

  17. Biomimetic plasmonic color generated by the single-layer coaxial honeycomb nanostructure arrays

    Science.gov (United States)

    Zhao, Jiancun; Gao, Bo; Li, Haoyong; Yu, Xiaochang; Yang, Xiaoming; Yu, Yiting

    2017-07-01

    We proposed a periodic coaxial honeycomb nanostructure array patterned in a silver film to realize the plasmonic structural color, which was inspired from natural honeybee hives. The spectral characteristics of the structure with variant geometrical parameters are investigated by employing a finite-difference time-domain method, and the corresponding colors are thus derived by calculating XYZ tristimulus values corresponding with the transmission spectra. The study demonstrates that the suggested structure with only a single layer has high transmission, narrow full-width at half-maximum, and wide color tunability by changing geometrical parameters. Therefore, the plasmonic colors realized possess a high color brightness, saturation, as well as a wide color gamut. In addition, the strong polarization independence makes it more attractive for practical applications. These results indicate that the recommended color-generating plasmonic structure has various potential applications in highly integrated optoelectronic devices, such as color filters and high-definition displays.

  18. Thermal vibration of rectangular single-layered black phosphorus predicted by orthotropic plate model

    Science.gov (United States)

    Zhang, Yiqing; Wang, Lifeng; Jiang, Jingnong

    2018-03-01

    Vibrational behavior is very important for nanostructure-based resonators. In this work, an orthotropic plate model together with a molecular dynamics (MD) simulation is used to investigate the thermal vibration of rectangular single-layered black phosphorus (SLBP). Two bending stiffness, two Poisson's ratios, and one shear modulus of SLBP are calculated using the MD simulation. The natural frequency of the SLBP predicted by the orthotropic plate model agrees with the one obtained from the MD simulation very well. The root of mean squared (RMS) amplitude of the SLBP is obtained by MD simulation and the orthotropic plate model considering the law of energy equipartition. The RMS amplitude of the thermal vibration of the SLBP is predicted well by the orthotropic plate model compared to the MD results. Furthermore, the thermal vibration of the SLBP with an initial stress is also well-described by the orthotropic plate model.

  19. Water desalination with a single-layer MoS2 nanopore

    Science.gov (United States)

    Heiranian, Mohammad; Farimani, Amir Barati; Aluru, Narayana R.

    2015-01-01

    Efficient desalination of water continues to be a problem facing the society. Advances in nanotechnology have led to the development of a variety of nanoporous membranes for water purification. Here we show, by performing molecular dynamics simulations, that a nanopore in a single-layer molybdenum disulfide can effectively reject ions and allow transport of water at a high rate. More than 88% of ions are rejected by membranes having pore areas ranging from 20 to 60 Å2. Water flux is found to be two to five orders of magnitude greater than that of other known nanoporous membranes. Pore chemistry is shown to play a significant role in modulating the water flux. Pores with only molybdenum atoms on their edges lead to higher fluxes, which are ∼70% greater than that of graphene nanopores. These observations are explained by permeation coefficients, energy barriers, water density and velocity distributions in the pores. PMID:26465062

  20. Large theoretical thermoelectric power factor of suspended single-layer MoS2

    International Nuclear Information System (INIS)

    Babaei, Hasan; Khodadadi, J. M.; Sinha, Sanjiv

    2014-01-01

    We have calculated the semi-classical thermoelectric power factor of suspended single-layer (SL)- MoS 2 utilizing electron relaxation times derived from ab initio calculations. Measurements of the thermoelectric power factor of SL-MoS 2 on substrates reveal poor power factors. In contrast, we find the thermoelectric power factor of suspended SL-MoS 2 to peak at ∼2.8 × 10 4 μW/m K 2 at 300 K, at an electron concentration of 10 12 cm −2 . This figure is higher than that in bulk Bi 2 Te 3 , for example. Given its relatively high thermal conductivity, suspended SL-MoS 2 may hold promise for in-plane thin-film Peltier coolers, provided reasonable mobilities can be realized

  1. The strain rate effect on the buckling of single-layer MoS2.

    Science.gov (United States)

    Jiang, Jin-Wu

    2015-01-15

    The Euler buckling theory states that the buckling critical strain is an inverse quadratic function of the length for a thin plate in the static compression process. However, the suitability of this theory in the dynamical process is unclear, so we perform molecular dynamics simulations to examine the applicability of the Euler buckling theory for the fast compression of the single-layer MoS2. We find that the Euler buckling theory is not applicable in such dynamical process, as the buckling critical strain becomes a length-independent constant in the buckled system with many ripples. However, the Euler buckling theory can be resumed in the dynamical process after restricting the theory to an individual ripple in the buckled structure.

  2. Field electron emission characteristics and physical mechanism of individual single-layer graphene.

    Science.gov (United States)

    Xiao, Zhiming; She, Juncong; Deng, Shaozhi; Tang, Zikang; Li, Zhibing; Lu, Jianming; Xu, Ningsheng

    2010-11-23

    Due to its difficulty, experimental measurement of field emission from a single-layer graphene has not been reported, although field emission from a two-dimensional (2D) regime has been an attractive topic. The open surface and sharp edge of graphene are beneficial for field electron emission. A 2D geometrical effect, such as massless Dirac fermion, can lead to new mechanisms in field emission. Here, we report our findings from in situ field electron emission characterization on an individual singe-layer graphene and the understanding of the related mechanism. The measurement of field emission from the edges was done using a microanode probe equipped in a scanning electron microscope. We show that repeatable stable field emission current can be obtained after a careful conditioning process. This enables us to examine experimentally the typical features of the field emission from a 2D regime. We plot current versus applied field data, respectively, in ln(I/E(3/2)) ∼ 1/E and ln(I/E(3)) ∼ 1/E(2) coordinates, which have recently been proposed for field emission from graphene in high- and low-field regimes. It is observed that the plots all exhibit an upward bending feature, revealing that the field emission processes undergo from a low- to high-field transition. We discuss with theoretical analysis the physical mechanism responsible for the new phenomena.

  3. Single Layer Bismuth Iodide: Computational Exploration of Structural, Electrical, Mechanical and Optical Properties

    Science.gov (United States)

    Ma, Fengxian; Zhou, Mei; Jiao, Yalong; Gao, Guoping; Gu, Yuantong; Bilic, Ante; Chen, Zhongfang; Du, Aijun

    2015-12-01

    Layered graphitic materials exhibit new intriguing electronic structure and the search for new types of two-dimensional (2D) monolayer is of importance for the fabrication of next generation miniature electronic and optoelectronic devices. By means of density functional theory (DFT) computations, we investigated in detail the structural, electronic, mechanical and optical properties of the single-layer bismuth iodide (BiI3) nanosheet. Monolayer BiI3 is dynamically stable as confirmed by the computed phonon spectrum. The cleavage energy (Ecl) and interlayer coupling strength of bulk BiI3 are comparable to the experimental values of graphite, which indicates that the exfoliation of BiI3 is highly feasible. The obtained stress-strain curve shows that the BiI3 nanosheet is a brittle material with a breaking strain of 13%. The BiI3 monolayer has an indirect band gap of 1.57 eV with spin orbit coupling (SOC), indicating its potential application for solar cells. Furthermore, the band gap of BiI3 monolayer can be modulated by biaxial strain. Most interestingly, interfacing electrically active graphene with monolayer BiI3 nanosheet leads to enhanced light absorption compared to that in pure monolayer BiI3 nanosheet, highlighting its great potential applications in photonics and photovoltaic solar cells.

  4. Band Alignment at GaN/Single-Layer WSe2 Interface

    KAUST Repository

    Tangi, Malleswararao

    2017-02-21

    We study the band discontinuity at the GaN/single-layer (SL) WSe2 heterointerface. The GaN thin layer is epitaxially grown by molecular beam epitaxy on chemically vapor deposited SL-WSe2/c-sapphire. We confirm that the WSe2 was formed as an SL from structural and optical analyses using atomic force microscopy, scanning transmission electron microscopy, micro-Raman, absorbance, and microphotoluminescence spectra. The determination of band offset parameters at the GaN/SL-WSe2 heterojunction is obtained by high-resolution X-ray photoelectron spectroscopy, electron affinities, and the electronic bandgap values of SL-WSe2 and GaN. The valence band and conduction band offset values are determined to be 2.25 ± 0.15 and 0.80 ± 0.15 eV, respectively, with type II band alignment. The band alignment parameters determined here provide a route toward the integration of group III nitride semiconducting materials with transition metal dichalcogenides (TMDs) for designing and modeling of their heterojunction-based electronic and optoelectronic devices.

  5. Unexpected strong magnetism of Cu doped single-layer MoS₂ and its origin.

    Science.gov (United States)

    Yun, Won Seok; Lee, J D

    2014-05-21

    The magnetism of the 3d transition-metal (TM) doped single-layer (1L) MoS2, where the Mo atom is partially replaced by the 3d TM atom, is investigated using the first-principles density functional calculations. In a series of 3d TM doped 1L-MoS2's, the induced spin polarizations are negligible for Sc, Ti, and Cr dopings, while the induced spin polarizations are confirmed for V, Mn, Fe, Co, Ni, Cu, and Zn dopings and the systems become magnetic. Especially, the Cu doped system shows unexpectedly strong magnetism although Cu is nonmagnetic in its bulk state. The driving force is found to be a strong hybridization between Cu 3d states and 3p states of neighboring S, which results in an extreme unbalanced spin-population in the spin-split impurity bands near the Fermi level. Finally, we also discuss further issues of the Cu induced magnetism of 1L-MoS2 such as investigation of additional charge states, the Cu doping at the S site instead of the Mo site, and the Cu adatom on the layer (i.e., 1L-MoS2).

  6. Engineering of electronic properties of single layer graphene by swift heavy ion irradiation

    Science.gov (United States)

    Kumar, Sunil; Kumar, Ashish; Tripathi, Ambuj; Tyagi, Chetna; Avasthi, D. K.

    2018-04-01

    In this work, swift heavy ion irradiation induced effects on the electrical properties of single layer graphene are reported. The modulation in minimum conductivity point in graphene with in-situ electrical measurement during ion irradiation was studied. It is found that the resistance of graphene layer decreases at lower fluences up to 3 × 1011 ions/cm2, which is accompanied by the five-fold increase in electron and hole mobilities. The ion irradiation induced increase in electron and hole mobilities at lower fluence up to 1 × 1011 ions/cm2 is verified by separate Hall measurements on another irradiated graphene sample at the selected fluence. In contrast to the adverse effects of irradiation on the electrical properties of materials, we have found improvement in electrical mobility after irradiation. The increment in mobility is explained by considering the defect annealing in graphene after irradiation at a lower fluence regime. The modification in carrier density after irradiation is also observed. Based on findings of the present work, we suggest ion beam irradiation as a useful tool for tuning of the electrical properties of graphene.

  7. Cold cathode emission studies on topographically modified few layer and single layer MoS2 films

    Science.gov (United States)

    Gaur, Anand P. S.; Sahoo, Satyaprakash; Mendoza, Frank; Rivera, Adriana M.; Kumar, Mohit; Dash, Saroj P.; Morell, Gerardo; Katiyar, Ram S.

    2016-01-01

    Nanostructured materials, such as carbon nanotubes, are excellent cold cathode emitters. Here, we report comparative field emission (FE) studies on topographically tailored few layer MoS2 films consisting of ⟨0001⟩ plane perpendicular (⊥) to c-axis (i.e., edge terminated vertically aligned) along with planar few layer and monolayer (1L) MoS2 films. FE measurements exhibited lower turn-on field Eto (defined as required applied electric field to emit current density of 10 μA/cm2) ˜4.5 V/μm and higher current density ˜1 mA/cm2, for edge terminated vertically aligned (ETVA) MoS2 films. However, Eto magnitude for planar few layer and 1L MoS2 films increased further to 5.7 and 11 V/μm, respectively, with one order decrease in emission current density. The observed differences in emission behavior, particularly for ETVA MoS2 is attributed to the high value of geometrical field enhancement factor (β), found to be ˜1064, resulting from the large confinement of localized electric field at edge exposed nanograins. Emission behavior of planar few layers and 1L MoS2 films are explained under a two step emission mechanism. Our studies suggest that with further tailoring the microstructure of ultra thin ETVA MoS2 films would result in elegant FE properties.

  8. Alveolar ridge preservation with an open-healing approach using single-layer or double-layer coverage with collagen membranes.

    Science.gov (United States)

    Choi, Ho-Keun; Cho, Hag-Yeon; Lee, Sung-Jo; Cho, In-Woo; Shin, Hyun-Seung; Koo, Ki-Tae; Lim, Hyun-Chang; Park, Jung-Chul

    2017-12-01

    The aim of this prospective pilot study was to compare alveolar ridge preservation (ARP) procedures with open-healing approach using a single-layer and a double-layer coverage with collagen membranes using radiographic and clinical analyses. Eleven molars from 9 healthy patients requiring extraction of the maxillary or mandibular posterior teeth were included and allocated into 2 groups. After tooth extraction, deproteinized bovine bone mineral mixed with 10% collagen was grafted into the socket and covered either with a double-layer of resorbable non-cross-linked collagen membranes (DL group, n=6) or with a single-layer (SL group, n=5). Primary closure was not obtained. Cone-beam computed tomography images were taken immediately after the ARP procedure and after a healing period of 4 months before implant placement. Radiographic measurements were made of the width and height changes of the alveolar ridge. All sites healed without any complications, and dental implants were placed at all operated sites with acceptable initial stability. The measurements showed that the reductions in width at the level 1 mm apical from the alveolar crest (including the bone graft) were -1.7±0.5 mm in the SL group and -1.8±0.4 mm in the DL group, and the horizontal changes in the other areas were also similar in the DL and SL groups. The reductions in height were also comparable between groups. Within the limitations of this study, single-layer and double-layer coverage with collagen membranes after ARP failed to show substantial differences in the preservation of horizontal or vertical dimensions or in clinical healing. Thus, both approaches seem to be suitable for open-healing ridge preservation procedures.

  9. Comparative study of hand sewn single layer anastomosis of dog's bowel Estudo comparativo das anastomoses manuais em plano único do intestino delgado de cães

    OpenAIRE

    João Luiz Moreira Coutinho Azevedo; Octávio Hypólito; Otávio Cansanção Azevedo; Otávio Monteiro Becker Jr.; Dalmer Faria Freire

    2008-01-01

    BACKGROUND: Two-layer intestinal anastomosis increases the inflammatory response while single-layer anastomosis results in a better wound healing. However the four main kinds of stitches which may be chosen in performing single layer intestinal sutures never before had been comparatively studied. AIM: To compare the four more commonly used types of single layer surgical anastomosis sutures of the digestive tract. METHODS: Six mongrel dogs were operated, each one receiving two anastomosis: one...

  10. A single-layer, planar, optofluidic Mach–Zehnder interferometer for label-free detection†

    Science.gov (United States)

    Lapsley, Michael Ian; Chiang, I.-Kao; Zheng, Yue Bing; Ding, Xiaoyun; Mao, Xiaole

    2014-01-01

    We have developed a planar, optofluidic Mach–Zehnder interferometer for the label-free detection of liquid samples. In contrast to most on-chip interferometers which require complex fabrication, our design was realized via a simple, single-layer soft lithography fabrication process. In addition, a single-wavelength laser source and a silicon photodetector were the only optical equipment used for data collection. The device was calibrated using published data for the refractive index of calcium chloride (CaCl2) in solution, and the biosensing capabilities of the device were tested by detecting bovine serum albumin (BSA). Our design enables a refractometer with a low limit of detection (1.24 × 10−4 refractive index units (RIU)), low variability (1 × 10−4 RIU), and high sensitivity (927.88 oscillations per RIU). This performance is comparable to state-of-the-art optofluidic refractometers that involve complex fabrication processes and/or expensive, bulky optics. The advantages of our device (i.e. simple fabrication process, straightforward optical equipment, low cost, and high detection sensitivity) make it a promising candidate for future mass-producible, inexpensive, highly sensitive, label-free optical detection systems. PMID:21479332

  11. A single-layer, planar, optofluidic Mach-Zehnder interferometer for label-free detection.

    Science.gov (United States)

    Lapsley, Michael Ian; Chiang, I-Kao; Zheng, Yue Bing; Ding, Xiaoyun; Mao, Xiaole; Huang, Tony Jun

    2011-05-21

    We have developed a planar, optofluidic Mach-Zehnder interferometer for the label-free detection of liquid samples. In contrast to most on-chip interferometers which require complex fabrication, our design was realized via a simple, single-layer soft lithography fabrication process. In addition, a single-wavelength laser source and a silicon photodetector were the only optical equipment used for data collection. The device was calibrated using published data for the refractive index of calcium chloride (CaCl(2)) in solution, and the biosensing capabilities of the device were tested by detecting bovine serum albumin (BSA). Our design enables a refractometer with a low limit of detection (1.24 × 10(-4) refractive index units (RIU)), low variability (1 × 10(-4) RIU), and high sensitivity (927.88 oscillations per RIU). This performance is comparable to state-of-the-art optofluidic refractometers that involve complex fabrication processes and/or expensive, bulky optics. The advantages of our device (i.e. simple fabrication process, straightforward optical equipment, low cost, and high detection sensitivity) make it a promising candidate for future mass-producible, inexpensive, highly sensitive, label-free optical detection systems. © The Royal Society of Chemistry 2011

  12. Adhesion and migration of CHO cells on micropatterned single layer graphene

    Science.gov (United States)

    Keshavan, S.; Oropesa-Nuñez, R.; Diaspro, A.; Canale, C.; Dante, S.

    2017-06-01

    Cell patterning technology on single layer graphene (SLG) is a fairly new field that can find applications in tissue engineering and biomaterial/biosensors development. Recently, we have developed a simple and effective approach for the fabrication of patterned SLG substrates by laser micromachining, and we have successfully applied it for the obtainment of geometrically ordered neural networks. Here, we exploit the same approach to investigate the generalization of the cell response to the surface cues of the fabricated substrates and, contextually, to quantify cell adhesion on the different areas of the patterns. To attain this goal, we tested Chinese hamster ovary (CHO) cells on PDL-coated micropatterned SLG substrates and quantified the adhesion by using single cell force spectroscopy (SCFS). Our results indicate higher cell adhesion on PDL-SLG, and, consequently, an initial CHO cell accumulation on the graphene areas, confirming the neuronal behaviour observed previously; interestingly, at later time point in culture, cell migration was observed towards the adjacent SLG ablated regions, which resulted more favourable for cell proliferation. Therefore, our findings indicate that the mechanism of interaction with the surface cues offered by the micropatterned substrates is strictly cell-type dependent.

  13. Breakthrough to Non-Vacuum Deposition of Single-Crystal, Ultra-Thin, Homogeneous Nanoparticle Layers: A Better Alternative to Chemical Bath Deposition and Atomic Layer Deposition

    Directory of Open Access Journals (Sweden)

    Yu-Kuang Liao

    2017-04-01

    Full Text Available Most thin-film techniques require a multiple vacuum process, and cannot produce high-coverage continuous thin films with the thickness of a few nanometers on rough surfaces. We present a new ”paradigm shift” non-vacuum process to deposit high-quality, ultra-thin, single-crystal layers of coalesced sulfide nanoparticles (NPs with controllable thickness down to a few nanometers, based on thermal decomposition. This provides high-coverage, homogeneous thickness, and large-area deposition over a rough surface, with little material loss or liquid chemical waste, and deposition rates of 10 nm/min. This technique can potentially replace conventional thin-film deposition methods, such as atomic layer deposition (ALD and chemical bath deposition (CBD as used by the Cu(In,GaSe2 (CIGS thin-film solar cell industry for decades. We demonstrate 32% improvement of CIGS thin-film solar cell efficiency in comparison to reference devices prepared by conventional CBD deposition method by depositing the ZnS NPs buffer layer using the new process. The new ZnS NPs layer allows reduction of an intrinsic ZnO layer, which can lead to severe shunt leakage in case of a CBD buffer layer. This leads to a 65% relative efficiency increase.

  14. Breakthrough to Non-Vacuum Deposition of Single-Crystal, Ultra-Thin, Homogeneous Nanoparticle Layers: A Better Alternative to Chemical Bath Deposition and Atomic Layer Deposition.

    Science.gov (United States)

    Liao, Yu-Kuang; Liu, Yung-Tsung; Hsieh, Dan-Hua; Shen, Tien-Lin; Hsieh, Ming-Yang; Tzou, An-Jye; Chen, Shih-Chen; Tsai, Yu-Lin; Lin, Wei-Sheng; Chan, Sheng-Wen; Shen, Yen-Ping; Cheng, Shun-Jen; Chen, Chyong-Hua; Wu, Kaung-Hsiung; Chen, Hao-Ming; Kuo, Shou-Yi; Charlton, Martin D B; Hsieh, Tung-Po; Kuo, Hao-Chung

    2017-04-06

    Most thin-film techniques require a multiple vacuum process, and cannot produce high-coverage continuous thin films with the thickness of a few nanometers on rough surfaces. We present a new "paradigm shift" non-vacuum process to deposit high-quality, ultra-thin, single-crystal layers of coalesced sulfide nanoparticles (NPs) with controllable thickness down to a few nanometers, based on thermal decomposition. This provides high-coverage, homogeneous thickness, and large-area deposition over a rough surface, with little material loss or liquid chemical waste, and deposition rates of 10 nm/min. This technique can potentially replace conventional thin-film deposition methods, such as atomic layer deposition (ALD) and chemical bath deposition (CBD) as used by the Cu(In,Ga)Se₂ (CIGS) thin-film solar cell industry for decades. We demonstrate 32% improvement of CIGS thin-film solar cell efficiency in comparison to reference devices prepared by conventional CBD deposition method by depositing the ZnS NPs buffer layer using the new process. The new ZnS NPs layer allows reduction of an intrinsic ZnO layer, which can lead to severe shunt leakage in case of a CBD buffer layer. This leads to a 65% relative efficiency increase.

  15. PropBase Query Layer: a single portal to UK subsurface physical property databases

    Science.gov (United States)

    Kingdon, Andrew; Nayembil, Martin L.; Richardson, Anne E.; Smith, A. Graham

    2013-04-01

    Until recently, the delivery of geological information for industry and public was achieved by geological mapping. Now pervasively available computers mean that 3D geological models can deliver realistic representations of the geometric location of geological units, represented as shells or volumes. The next phase of this process is to populate these with physical properties data that describe subsurface heterogeneity and its associated uncertainty. Achieving this requires capture and serving of physical, hydrological and other property information from diverse sources to populate these models. The British Geological Survey (BGS) holds large volumes of subsurface property data, derived both from their own research data collection and also other, often commercially derived data sources. This can be voxelated to incorporate this data into the models to demonstrate property variation within the subsurface geometry. All property data held by BGS has for many years been stored in relational databases to ensure their long-term continuity. However these have, by necessity, complex structures; each database contains positional reference data and model information, and also metadata such as sample identification information and attributes that define the source and processing. Whilst this is critical to assessing these analyses, it also hugely complicates the understanding of variability of the property under assessment and requires multiple queries to study related datasets making extracting physical properties from these databases difficult. Therefore the PropBase Query Layer has been created to allow simplified aggregation and extraction of all related data and its presentation of complex data in simple, mostly denormalized, tables which combine information from multiple databases into a single system. The structure from each relational database is denormalized in a generalised structure, so that each dataset can be viewed together in a common format using a simple

  16. Dependence of the structure of ion-modified NiTi single crystal layers on the orientation of irradiated surface

    Science.gov (United States)

    Poletika, T. M.; Meisner, L. L.; Girsova, S. L.; Tverdokhlebova, A. V.; Meisner, S. N.

    2017-07-01

    The composition and structure of Si layers implanted into titanium nickelide single crystals with different orientations relative to the ion beam propagation direction have been studied using Auger electron spectroscopy and transmission electron microscopy. The role of the "soft" [111]B2 and "hard" [001]B2 NiTi orientations in the formation of the structure of ion-modified surface layer, as well as the defect structure of the surface layers of the single crystals, has been revealed. Orientation effects of selective sputtering and channeling of ions, which control the composition and thickness of the oxide and amorphous layers being formed, ion and impurity penetration depth, as well as the concentration profile of the Ni distribution over the surface, have been detected.

  17. Remote N2 plasma treatment to deposit ultrathin high-k dielectric as tunneling contact layer for single-layer MoS2 MOSFET

    Science.gov (United States)

    Qian, Qingkai; Zhang, Zhaofu; Hua, Mengyuan; Wei, Jin; Lei, Jiacheng; Chen, Kevin J.

    2017-12-01

    Remote N2 plasma treatment is explored as a surface functionalization technique to deposit ultrathin high-k dielectric on single-layer MoS2. The ultrathin dielectric is used as a tunneling contact layer, which also serves as an interfacial layer below the gate region for fabricating top-gate MoS2 metal–oxide–semiconductor field-effect transistors (MOSFETs). The fabricated devices exhibited small hysteresis and mobility as high as 14 cm2·V‑1·s‑1. The contact resistance was significantly reduced, which resulted in the increase of drain current from 20 to 56 µA/µm. The contact resistance reduction can be attributed to the alleviated metal–MoS2 interface reaction and the preserved conductivity of MoS2 below the source/drain metal contact.

  18. Transparent Flash Memory Using Single Ta2O5Layer for Both Charge-Trapping and Tunneling Dielectrics.

    Science.gov (United States)

    Hota, Mrinal K; Alshammari, Fwzah H; Salama, Khaled N; Alshareef, Husam N

    2017-07-05

    We report reproducible multibit transparent flash memory in which a single solution-derived Ta 2 O 5 layer is used simultaneously as a charge-trapping layer and a tunneling layer. This is different from conventional flash memory cells where two different dielectric layers are typically used. Under optimized programming/erasing operations, the memory device shows excellent programmable memory characteristics with a maximum memory window of ∼10.7 V. Moreover, the flash memory device shows a stable 2-bit memory performance and good reliability, including data retention for more than 10 4 s and endurance performance for more than 100 cycles. The use of a common charge-trapping and tunneling layer can simplify the fabrication of advanced flash memories.

  19. Controlling single and few-layer graphene crystals growth in a solid carbon source based chemical vapor deposition

    International Nuclear Information System (INIS)

    Papon, Remi; Sharma, Subash; Shinde, Sachin M.; Vishwakarma, Riteshkumar; Tanemura, Masaki; Kalita, Golap

    2014-01-01

    Here, we reveal the growth process of single and few-layer graphene crystals in the solid carbon source based chemical vapor deposition (CVD) technique. Nucleation and growth of graphene crystals on a polycrystalline Cu foil are significantly affected by the injection of carbon atoms with pyrolysis rate of the carbon source. We observe micron length ribbons like growth front as well as saturated growth edges of graphene crystals depending on growth conditions. Controlling the pyrolysis rate of carbon source, monolayer and few-layer crystals and corresponding continuous films are obtained. In a controlled process, we observed growth of large monolayer graphene crystals, which interconnect and merge together to form a continuous film. On the other hand, adlayer growth is observed with an increased pyrolysis rate, resulting few-layer graphene crystal structure and merged continuous film. The understanding of monolayer and few-layer crystals growth in the developed CVD process can be significant to grow graphene with controlled layer numbers.

  20. ACCOUNTING TREATMENTS SPECIFIC TO COUNTERPART COMMERCIAL TRANSACTIONS

    Directory of Open Access Journals (Sweden)

    Lucia PALIU - POPA

    2010-12-01

    Full Text Available Given the lack of availability of funds in foreign currency, felt in many countries, especially in the developing and developed countries and the economic or financial crisis in the global foreign exchange, counterpart commercial transactions were imposed as a “disarming” condition of the international trade. In the counterpart a purchase transaction is combined with a sale transaction, an import with an export in order to ensure balanced trade between the partners, trade that involves eliminating or reducing the currency as a payment source and its replacement with trade of goods and services. Thus, in the context of an acute need to export of greatly industrialized countries, where the overproduction phenomenon tends to have a chronic character, the counterpart has become a highly complex and sustainable phenomenon, which has seen a steady increase in the volume of amounts, with a geographical area and large variety of forms and mechanisms of implementation. Based on the characteristics and structure of counterpart transactions, we shall describe in this paper the accounting models specific to international trade, as part of the combined foreign trade transactions without neglecting the tax treatments that influence the entry in the accounts

  1. Single layer and multilayer wear resistant coatings of (Ti,Al)N: a review

    International Nuclear Information System (INIS)

    PalDey, S.; Deevi, S.C.

    2003-01-01

    periodicity of 5-10 nm allow creation of coatings with different properties than PVD deposited single layered thick coatings with columnar grain structure. A range of (Ti,Al)N based multilayers containing layers of (Ti,Al)CN, (Ti,Nb)N, TiN, AlN/TiN, CrN, Mo and WC are also reviewed. It is now possible to design new wear resistant or functional coatings based on a multilayer or a multicomponent system to meet the demanding applications of advanced materials

  2. Tuning Electronic Structure of Single Layer MoS2through Defect and Interface Engineering.

    Science.gov (United States)

    Chen, Yan; Huang, Shengxi; Ji, Xiang; Adepalli, Kiran; Yin, Kedi; Ling, Xi; Wang, Xinwei; Xue, Jianmin; Dresselhaus, Mildred; Kong, Jing; Yildiz, Bilge

    2018-03-27

    Transition-metal dichalcogenides (TMDs) have emerged in recent years as a special group of two-dimensional materials and have attracted tremendous attention. Among these TMD materials, molybdenum disulfide (MoS 2 ) has shown promising applications in electronics, photonics, energy, and electrochemistry. In particular, the defects in MoS 2 play an essential role in altering the electronic, magnetic, optical, and catalytic properties of MoS 2 , presenting a useful way to engineer the performance of MoS 2 . The mechanisms by which lattice defects affect the MoS 2 properties are unsettled. In this work, we reveal systematically how lattice defects and substrate interface affect MoS 2 electronic structure. We fabricated single-layer MoS 2 by chemical vapor deposition and then transferred onto Au, single-layer graphene, hexagonal boron nitride, and CeO 2 as substrates and created defects in MoS 2 by ion irradiation. We assessed how these defects and substrates affect the electronic structure of MoS 2 by performing X-ray photoelectron spectroscopy, Raman and photoluminescence spectroscopies, and scanning tunneling microscopy/spectroscopy measurements. Molecular dynamics and first-principles based simulations allowed us to conclude the predominant lattice defects upon ion irradiation and associate those with the experimentally obtained electronic structure. We found that the substrates can tune the electronic energy levels in MoS 2 due to charge transfer at the interface. Furthermore, the reduction state of CeO 2 as an oxide substrate affects the interface charge transfer with MoS 2 . The irradiated MoS 2 had a faster hydrogen evolution kinetics compared to the as-prepared MoS 2 , demonstrating the concept of defect controlled reactivity in this phase. Our findings provide effective probes for energy band and defects in MoS 2 and show the importance of defect engineering in tuning the functionalities of MoS 2 and other TMDs in electronics, optoelectronics, and

  3. Monolithic-Structured Single-Layered Textile-Based Dye-Sensitized Solar Cells

    Science.gov (United States)

    Yun, Min Ju; Cha, Seung I.; Kim, Han Seong; Seo, Seon Hee; Lee, Dong Y.

    2016-10-01

    Textile-structured solar cells are frequently discussed in the literature due to their prospective applications in wearable devices and in building integrated solar cells that utilize their flexibility, mechanical robustness, and aesthetic appearance, but the current approaches for textile-based solar cells—including the preparation of fibre-type solar cells woven into textiles—face several difficulties from high friction and tension during the weaving process. This study proposes a new structural concept and fabrication process for monolithic-structured textile-based dye-sensitized solar cells that are fabricated by a process similar to the cloth-making process, including the preparation of wires and yarns that are woven for use in textiles, printed, dyed, and packaged. The fabricated single-layered textile-based dye-sensitized solar cells successfully act as solar cells in our study, even under bending conditions. By controlling the inter-weft spacing and the number of Ti wires for the photoelectrode conductor, we have found that the performance of this type of dye-sensitized solar cell was notably affected by the spacing between photoelectrodes and counter-electrodes, the exposed areas of Ti wires to photoelectrodes, and photoelectrodes’ surface morphology. We believe that this study provides a process and concept for improved textile-based solar cells that can form the basis for further research.

  4. Pregnancy rates after artificial insemination with cooled stallion spermatozoa either with or without single layer centrifugation.

    Science.gov (United States)

    Morrell, J M; Richter, J; Martinsson, G; Stuhtmann, G; Hoogewijs, M; Roels, K; Dalin, A-M

    2014-11-01

    A successful outcome after artificial insemination with cooled semen is dependent on many factors, the sperm quality of the ejaculate being one. Previous studies have shown that spermatozoa with good motility, normal morphology, and good chromatin integrity can be selected by means of colloid centrifugation, particularly single layer centrifugation (SLC) using species-specific colloids. The purpose of the present study was to conduct an insemination trial with spermatozoa from "normal" ejaculates, i.e., from stallions with no known fertility problem, to determine whether the improvements in sperm quality seen in SLC-selected sperm samples compared with uncentrifuged controls in laboratory tests are reflected in an increased pregnancy rate after artificial insemination. In a multicentre study, SLC-selected sperm samples and uncentrifuged controls from eight stallions were inseminated into approximately 10 mares per treatment per stallion. Ultrasound examination was carried out approximately 16 days after insemination to detect an embryonic vesicle. The pregnancy rates per cycle were 45% for controls and 69% for SLC-selected sperm samples, which is statistically significant (P < 0.0018). Thus, the improvement in sperm quality reported previously for SLC-selected sperm samples is associated with an increase in pregnancy rate, even for ejaculates from stallions with no known fertility problem. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Monolithic-Structured Single-Layered Textile-Based Dye-Sensitized Solar Cells

    Science.gov (United States)

    Yun, Min Ju; Cha, Seung I.; Kim, Han Seong; Seo, Seon Hee; Lee, Dong Y.

    2016-01-01

    Textile-structured solar cells are frequently discussed in the literature due to their prospective applications in wearable devices and in building integrated solar cells that utilize their flexibility, mechanical robustness, and aesthetic appearance, but the current approaches for textile-based solar cells—including the preparation of fibre-type solar cells woven into textiles—face several difficulties from high friction and tension during the weaving process. This study proposes a new structural concept and fabrication process for monolithic-structured textile-based dye-sensitized solar cells that are fabricated by a process similar to the cloth-making process, including the preparation of wires and yarns that are woven for use in textiles, printed, dyed, and packaged. The fabricated single-layered textile-based dye-sensitized solar cells successfully act as solar cells in our study, even under bending conditions. By controlling the inter-weft spacing and the number of Ti wires for the photoelectrode conductor, we have found that the performance of this type of dye-sensitized solar cell was notably affected by the spacing between photoelectrodes and counter-electrodes, the exposed areas of Ti wires to photoelectrodes, and photoelectrodes’ surface morphology. We believe that this study provides a process and concept for improved textile-based solar cells that can form the basis for further research. PMID:27708359

  6. Investigating change of properties in gallium ion irradiation patterned single-layer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Quan, E-mail: wangq@mail.ujs.edu.cn [School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China); Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (China); Dong, Jinyao; Bai, Bing [School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China); Xie, Guoxin [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China)

    2016-10-14

    Besides its excellent physical properties, graphene promises to play a significant role in electronics with superior properties, which requires patterning of graphene for device integration. Here, we presented the changes in properties of single-layer graphene before and after patterning using gallium ion beam. Combined with Raman spectra of graphene, the scanning capacitance microscopy (SCM) image confirmed that a metal–insulator transition occurred after large doses of gallium ion irradiation. The changes in work function and Raman spectra of graphene indicated that the defect density increased as increasing the dose and a structural transition occurred during gallium ion irradiation. The patterning width of graphene presented an increasing trend due to the scattering influence of the impurities and the substrate. - Highlights: • The scanning capacitance microscopy image confirmed a metal–insulator transition occurred after large doses of gallium ion irradiation. • The changes indicated the defect density increased as increasing the dose and a structural transition occurred during gallium ion irradiation. • The patterning width of graphene presented a increasing trend due to the scattering influence of the impurities and the substrate.

  7. First-principles study of single-layer C-terminated BN quantum dots

    Science.gov (United States)

    Qu, Li-Hua; Zhang, Jian-Min; Xu, Ke-Wei

    2013-09-01

    We present a first-principles study of the structural, electronic and magnetic properties of single-layer C-terminated BN quantum dots (QDs) under different hydrotreating conditions. The morphologies of QDs with fully hydrogenated edges change slightly. For the fully bared cases, the edged C-C bonds become short and protrudent edged C atoms relax inwards therefore edged zigzag C chain tends to a straight line. The cases of the partially passivated by hydrogen atom at apex, the apex C atom is not relaxed inwards and a new C-C bond is formed. The fully hydrogenated QDs especially N-rich cases are energetically more favorable than those with bared or partially hydrogenated ones. The C-terminated BN-QDs have no magnetic moment when their protrudent edged C atoms are fully passivated by hydrogen atoms, while those with bared or partially hydrogenated edges possess magnetic moments and especially for N-rich cases their magnetic moments increase with increasing QD size n for either bared or partially hydrogenated edges. The band gap of the fully hydrogenated QDs decreases oscillatorily with increasing QD size n. Moreover, for the same size n, the energy gap is wider under N-rich condition than under B-rich condition.

  8. Structure of a single whisker representation in layer 2 of mouse somatosensory cortex.

    Science.gov (United States)

    Clancy, Kelly B; Schnepel, Philipp; Rao, Antara T; Feldman, Daniel E

    2015-03-04

    Layer (L)2 is a major output of primary sensory cortex that exhibits very sparse spiking, but the structure of sensory representation in L2 is not well understood. We combined two-photon calcium imaging with deflection of many whiskers to map whisker receptive fields, characterize sparse coding, and quantitatively define the point representation in L2 of mouse somatosensory cortex. Neurons within a column-sized imaging field showed surprisingly heterogeneous, salt-and-pepper tuning to many different whiskers. Single whisker deflection elicited low-probability spikes in highly distributed, shifting neural ensembles spanning multiple cortical columns. Whisker-evoked response probability correlated strongly with spontaneous firing rate, but weakly with tuning properties, indicating a spectrum of inherent responsiveness across pyramidal cells. L2 neurons projecting to motor and secondary somatosensory cortex differed in whisker tuning and responsiveness, and carried different amounts of information about columnar whisker deflection. From these data, we derive a quantitative, fine-scale picture of the distributed point representation in L2. Copyright © 2015 the authors 0270-6474/15/353946-13$15.00/0.

  9. Broadband photodetector based on carbon nanotube thin film/single layer graphene Schottky junction

    Science.gov (United States)

    Zhang, Teng-Fei; Li, Zhi-Peng; Wang, Jiu-Zhen; Kong, Wei-Yu; Wu, Guo-An; Zheng, Yu-Zhen; Zhao, Yuan-Wei; Yao, En-Xu; Zhuang, Nai-Xi; Luo, Lin-Bao

    2016-12-01

    In this study, we present a broadband nano-photodetector based on single-layer graphene (SLG)-carbon nanotube thin film (CNTF) Schottky junction. It was found that the as-fabricated device exhibited obvious sensitivity to a wide range of illumination, with peak sensitivity at 600 and 920 nm. In addition, the SLG-CNTF device had a fast response speed (τr = 68 μs, τf = 78 μs) and good reproducibility in a wide range of switching frequencies (50-5400 Hz). The on-off ratio, responsivity, and detectivity of the device were estimated to be 1 × 102, 209 mAW-1 and 4.87 × 1010 cm Hz1/2 W-1, respectively. What is more, other device parameters including linear performance θ and linear dynamic range (LDR) were calculated to be 0.99 and 58.8 dB, respectively, which were relatively better than other carbon nanotube based devices. The totality of the above study signifies that the present SLG-CNTF Schottky junction broadband nano-photodetector may have promising application in future nano-optoelectronic devices and systems.

  10. Compact Single-Layer Traveling-Wave Antenna DesignUsing Metamaterial Transmission Lines

    Science.gov (United States)

    Alibakhshikenari, Mohammad; Virdee, Bal Singh; Limiti, Ernesto

    2017-12-01

    This paper presents a single-layer traveling-wave antenna (TWA) that is based on composite right/left-handed (CRLH)-metamaterial (MTM) transmission line (TL) structure, which is implemented by using a combination of interdigital capacitors and dual-spiral inductive slots. By embedding dual-spiral inductive slots inside the CRLH MTM-TL results in a compact TWA. Dimensions of the proposed CRLH MTM-TL TWA is 21.5 × 30.0 mm2 or 0.372λ0 × 0.520λ0 at 5.2 GHz (center frequency). The fabricated TWA operates over 1.8-8.6 GHz with a fractional bandwidth greater than 120%, and it exhibits a peak gain and radiation efficiency of 4.2 dBi and 81%, respectively, at 5 GHz. By avoiding the use of lumped components, via-holes or defected ground structures, the proposed TWA design is economic for mass production as well as easy to integrate with wireless communication systems.

  11. Substitutional impurity in single-layer graphene: The Koster–Slater and Anderson models

    Energy Technology Data Exchange (ETDEWEB)

    Davydov, S. Yu., E-mail: sergei-davydov@mail.ru [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation)

    2016-06-15

    The Koster–Slater and Anderson models are used to consider substitutional impurities in free-standing single-layer graphene. The density of states of graphene is described using a model (the M model). For the nitrogen and boron impurities, the occupation numbers and the parameter η which defines the fraction of delocalized electrons of the impurity are determined. In this case, experimental data are used for both determination of the model parameters and comparison with the results of theoretical estimations. The general features of the Koster–Slater and Anderson models and the differences between the two models are discussed. Specifically, it is shown that the band contributions to the occupation numbers of a nitrogen atom in both models are comparable, whereas the local contributions are substantially different: the local contributions are decisive in the Koster–Slater model and negligible in the Anderson model. The asymptotic behavior of the wave functions of a defect is considered in the Koster–Slater model, and the electron states of impurity dimers are considered in the Anderson model.

  12. Investigating change of properties in gallium ion irradiation patterned single-layer graphene

    International Nuclear Information System (INIS)

    Wang, Quan; Dong, Jinyao; Bai, Bing; Xie, Guoxin

    2016-01-01

    Besides its excellent physical properties, graphene promises to play a significant role in electronics with superior properties, which requires patterning of graphene for device integration. Here, we presented the changes in properties of single-layer graphene before and after patterning using gallium ion beam. Combined with Raman spectra of graphene, the scanning capacitance microscopy (SCM) image confirmed that a metal–insulator transition occurred after large doses of gallium ion irradiation. The changes in work function and Raman spectra of graphene indicated that the defect density increased as increasing the dose and a structural transition occurred during gallium ion irradiation. The patterning width of graphene presented an increasing trend due to the scattering influence of the impurities and the substrate. - Highlights: • The scanning capacitance microscopy image confirmed a metal–insulator transition occurred after large doses of gallium ion irradiation. • The changes indicated the defect density increased as increasing the dose and a structural transition occurred during gallium ion irradiation. • The patterning width of graphene presented a increasing trend due to the scattering influence of the impurities and the substrate.

  13. A single-layer tilting actuator with multiple close-gap electrodes

    International Nuclear Information System (INIS)

    Shmilovich, T; Krylov, S

    2009-01-01

    We report on the design, fabrication and characterization of a novel tilting electrostatic actuator, fabricated by using a single layer of a silicon on insulator (SOI) wafer and investigate, both theoretically and experimentally, the electromechanical behavior of the device. The actuator incorporates high aspect ratio comb-like electrodes oriented in the direction parallel to the rotation axis of the tilting element. An increase in the tilting angle is accompanied by a decrease in the distance between the electrodes and by an increase of the actuating torque. Simultaneously, the overlap area between electrodes located farther apart the axis shrinks, resulting in a 'restoring' torque in the opposite direction. The electromechanical behavior and stability of the device were investigated using a simplified model of the actuator and verified by a coupled three-dimensional simulation. Model results suggest that by changing the design parameters, the actuator characteristic can be tailored in a large range. Devices of three different configurations incorporating elastic torsion axes or bending flexures were fabricated and characterized and both static and resonant responses, typical for parametrically excited nonlinear oscillators, were registered. Theoretical and experimental results indicate that the suggested architecture can be efficiently used for the static and dynamic operation of electrostatic tilting devices

  14. Single-layer tungsten oxide as intelligent photo-responsive nanoagents for permanent male sterilization.

    Science.gov (United States)

    Liu, Zhen; Liu, Xianjun; Ran, Xiang; Ju, Enguo; Ren, Jinsong; Qu, Xiaogang

    2015-11-01

    Permanent male sterilization has been recognized as useful tools for the development of neuter experimental animals and fattening livestock, as well as efficient control of pet overpopulation. Traditional routes such as surgical ways, chemical injections, and anti-fertility vaccines have addressed these crucial problems with idea outcomes. However, these routes usually bring out serious pain and infection towards animals, as well as induce long-term adverse reaction and immune suppression. Thus, a convenient, but non-surgical strategy for male sterilization under a mild manner is highly desirable. Here, for the first time, we demonstrate a novel platform for male sterilization by using single-layer WO2.72 nanosheets as smart photo-responsive sterilants. Upon a 980 nm irradiation, these nanoagents can possess intrinsic NIR-induced hyperthermia and sensitize the formation of singlet oxygen due to the cooperation of photothermal and photodynamic effects. Mechanism of cellular injury can be attributed to the denaturation of protein and apoptosis-related death. Moreover, long-term toxicity and possible metabolism route after testicular injection are discussed, indicating the neglectable systemic toxicity and high bio-compatibility of our nanoagents. Overall, our strategy can extremely overcome the shortcomings in various routine routes and suggest the new biological application of nanomaterials. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Photocatalytic Stability of Single- and Few-Layer MoS₂.

    Science.gov (United States)

    Parzinger, Eric; Miller, Bastian; Blaschke, Benno; Garrido, Jose A; Ager, Joel W; Holleitner, Alexander; Wurstbauer, Ursula

    2015-11-24

    MoS2 crystals exhibit excellent catalytic properties and great potential for photocatalytic production of solar fuels such as hydrogen gas. In this regard, the photocatalytic stability of exfoliated single- and few-layer MoS2 immersed in water is investigated by μ-Raman spectroscopy. We find that while the basal plane of MoS2 can be treated as stable under photocatalytic conditions, the edge sites and presumably also defect sites are highly affected by a photoinduced corrosion process. The edge sites of MoS2 monolayers are significantly more resistant to photocatalytic degradation compared to MoS2 multilayer edge sites. The photostability of MoS2 edge sites depends on the photon energy with respect to the band gap in MoS2 and also on the presence of oxygen in the electrolyte. These findings are interpreted in the framework of an oxidation process converting MoS2 into MoOx in the presence of oxygen and photoinduced charge carriers. The high stability of the MoS2 basal plane under photocatalytic treatment under visible light irradiation of extreme light intensities on the order of P ≈ 10 mW/μm(2) substantiates MoS2's potential as photocatalyst for solar hydrogen production.

  16. Abrupt change of luminescence spectrum in single-layer phosphorescent polymer light emitting diode

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, X.; Lee, D.-H.; Chae, H. [School of Chemical Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Cho, S.M., E-mail: sungmcho@skku.edu [School of Chemical Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Advanced Materials and Process Research Center for IT, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2012-01-15

    PVK-based single-layer phosphorescent polymer OLEDs (organic light emitting diodes) with different rubrene concentrations were fabricated and examined for the Foerster energy transfer from phosphorescent FIrpic dye to rubrene. We found out that at a certain rubrene concentration the energy transfer occurs abruptly and the transfer shows an abnormal evolution of electroluminescence (EL) spectrum due to the coincidence of peak wavelengths of bis[(4,6-difluorophenyl)-pyridinato-N,C{sup 2'}](picolinate) iridium(III) (FIrpic) emission and 5,6,11,12-tetraphenylnaphthacene (rubrene) absorption. With the calculation of Foerster radius and average distance between FIrpic molecules, we have related the calculated ratio between the number of FIrpic molecules within to that out of Foerster radius with the degree of Foerster energy transfer from EL spectra measured in the experiment. Experimental results were found to fit well with the predicted results especially at low rubrene concentrations. - Highlights: > Foerster energy transfer between FIrpic and rubrene. > Energy transfer shows an abnormal evolution of emission spectrum. > Calculated Foerster radius and degree of energy transfer by a simple model.

  17. A single-layer peptide nanofiber for enhancing the cytotoxicity of trastuzumab (anti-HER)

    Energy Technology Data Exchange (ETDEWEB)

    Malik, Ruchi; Wagh, Anil; Qian, Steven; Law, Benedict, E-mail: Shek.law@ndsu.edu [College of Pharmacy, Nursing, and Allied Sciences, North Dakota State University, Department of Pharmaceutical Sciences (United States)

    2013-06-15

    A multivalent system is often employed to enhance the effectiveness of a targeted therapy. In the present study, we report a single-layer peptide nanofiber (NFP) as a multivalent targeting platform to improve the cytotoxicity of trastuzumab (anti-HER), a monoclonal antibody targeting the human epidermal growth factor receptor 2 (HER-2) in approximately 20 % of breast cancer patients. The trastuzumab-conjugated nanofiber (anti-HER/NFP) was 100 Multiplication-Sign 4 nm in size and was assembled from multiple peptide units (mPEG-BK(FITC)SGASNRA-kldlkldlkldl-CONH{sub 2}). The optimized preparation was attached with approximately 10 antibodies at the surface. Because of an increase in the multivalency, anti-HER/NFP was able to truncate more cell surface HER-2 and, thus, showed an enhanced cytotoxicity toward HER-2 positive SKBr-3 human breast cancer as compared to the free anti-HER. Western blot analysis and fluorescence microscopic studies confirmed that there was a significant downregulation of the HER-2 level and also inhibition of the cell survival cell signaling pathways including the phosphatidylinositol 3-kinase (PI3K) and the mitogen activated protein kinase (MAPK) pathway. Our data suggested that NFP can be useful as a multivalent platform for immunotherapy, especially in combination with other chemotherapeutic agents in the future.

  18. The Stability of New Single-Layer Combined Lattice Shell Based on Aluminum Alloy Honeycomb Panels

    Directory of Open Access Journals (Sweden)

    Caiqi Zhao

    2017-11-01

    Full Text Available This article proposes a new type of single-layer combined lattice shell (NSCLS; which is based on aluminum alloy honeycomb panels. Six models with initial geometric defect were designed and precision made using numerical control equipment. The stability of these models was tested. The results showed that the stable bearing capacity of NSCLS was approximately 16% higher than that of a lattice shell with the same span without a reinforcing plate. At the same time; the properties of the NSCLS were sensitive to defects. When defects were present; its stable bearing capacity was decreased by 12.3% when compared with the defect-free model. The model with random defects following a truncated Gaussian distribution could be used to simulate the distribution of defects in the NSCLS. The average difference between the results of the nonlinear analysis and the experimental results was 5.7%. By calculating and analyzing nearly 20,000 NSCLS; the suggested values of initial geometric defect were presented. The results of this paper could provide a theoretical basis for making and revising the design codes for this new combined lattice shell structure.

  19. Effect of cushioned or single layer semen centrifugation before sex sorting on frozen stallion semen quality.

    Science.gov (United States)

    Mari, G; Bucci, D; Love, C C; Mislei, B; Rizzato, G; Giaretta, E; Merlo, B; Spinaci, M

    2015-04-01

    The aim of this study was to compare the effect of presorting centrifugation (cushioned [CC] or single-layer colloid [SLC]), with simple dilution (SD), on the quality of sex-sorted stallion semen before and after sorting and after freezing and thawing. Four ejaculates from each of two fertile stallions were collected 1 week apart and evaluated for percent total sperm motility (TM), percent viable acrosome-intact sperm (VAI), and DNA quality (percentage of DNA fragmentation index). Freezing caused, independently from CC and SLC treatments, a significant decrease of TM (P < 0.05) and VAI (P < 0.05) in both unsorted and sorted semen. On the other hand, sorting did not impair TM and VAI and, interestingly, improved DNA quality in all treatments only before freezing (28 vs 13, 28 vs 10, 22 vs 7 in SD, CC, and SLC for unsorted vs sorted groups, respectively; P < 0.05); this positive effect was lost in the same samples after freezing and thawing, suggesting that the freezing process reduces the DNA quality of sex-sorted sperm. Our results suggest that CC and SLC are not able to select those spermatozoa that possess a better ability to withstand sperm processing associated with sperm sorting and freezing. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Local Electronic Structure of a Single-Layer Porphyrin-Containing Covalent Organic Framework

    KAUST Repository

    Chen, Chen

    2017-12-20

    We have characterized the local electronic structure of a porphyrin-containing single-layer covalent organic framework (COF) exhibiting a square lattice. The COF monolayer was obtained by the deposition of 2,5-dimethoxybenzene-1,4-dicarboxaldehyde (DMA) and 5,10,15,20-tetrakis(4-aminophenyl) porphyrin (TAPP) onto a Au(111) surface in ultrahigh vacuum followed by annealing to facilitate Schiff-base condensations between monomers. Scanning tunneling spectroscopy (STS) experiments conducted on isolated TAPP precursor molecules and the covalently linked COF networks yield similar transport (HOMO-LUMO) gaps of 1.85 ± 0.05 eV and 1.98 ± 0.04 eV, respectively. The COF orbital energy alignment, however, undergoes a significant downward shift compared to isolated TAPP molecules due to the electron-withdrawing nature of the imine bond formed during COF synthesis. Direct imaging of the COF local density of states (LDOS) via dI/dV mapping reveals that the COF HOMO and LUMO states are localized mainly on the porphyrin cores and that the HOMO displays reduced symmetry. DFT calculations reproduce the imine-induced negative shift in orbital energies and reveal that the origin of the reduced COF wave function symmetry is a saddle-like structure adopted by the porphyrin macrocycle due to its interactions with the Au(111) substrate.

  1. Fabrication of metallic single electron transistors featuring plasma enhanced atomic layer deposition of tunnel barriers

    Science.gov (United States)

    Karbasian, Golnaz

    The continuing increase of the device density in integrated circuits (ICs) gives rise to the high level of power that is dissipated per unit area and consequently a high temperature in the circuits. Since temperature affects the performance and reliability of the circuits, minimization of the energy consumption in logic devices is now the center of attention. According to the International Technology Roadmaps for Semiconductors (ITRS), single electron transistors (SETs) hold the promise of achieving the lowest power of any known logic device, as low as 1x10-18 J per switching event. Moreover, SETs are the most sensitive electrometers to date, and are capable of detecting a fraction of an electron charge. Despite their low power consumption and high sensitivity for charge detection, room temperature operation of these devices is quite challenging mainly due to lithographical constraints in fabricating structures with the required dimensions of less than 10 nm. Silicon based SETs have been reported to operate at room temperature. However, they all suffer from significant variation in batch-to-batch performance, low fabrication yield, and temperature-dependent tunnel barrier height. In this project, we explored the fabrication of SETs featuring metal-insulator-metal (MIM) tunnel junctions. While Si-based SETs suffer from undesirable effect of dopants that result in irregularities in the device behavior, in metal-based SETs the device components (tunnel barrier, island, and the leads) are well-defined. Therefore, metal SETs are potentially more predictable in behavior, making them easier to incorporate into circuits, and easier to check against theoretical models. Here, the proposed fabrication method takes advantage of unique properties of chemical mechanical polishing (CMP) and plasma enhanced atomic layer deposition (PEALD). Chemical mechanical polishing provides a path for tuning the dimensions of the tunnel junctions, surpassing the limits imposed by electron beam

  2. Growing vertical ZnO nanorod arrays within graphite: efficient isolation of large size and high quality single-layer graphene.

    Science.gov (United States)

    Ding, Ling; E, Yifeng; Fan, Louzhen; Yang, Shihe

    2013-07-18

    We report a unique strategy for efficiently exfoliating large size and high quality single-layer graphene directly from graphite into DMF dispersions by growing ZnO nanorod arrays between the graphene layers in graphite.

  3. Influence of cutting parameters on the depth of subsurface deformed layer in nano-cutting process of single crystal copper.

    Science.gov (United States)

    Wang, Quanlong; Bai, Qingshun; Chen, Jiaxuan; Su, Hao; Wang, Zhiguo; Xie, Wenkun

    2015-12-01

    Large-scale molecular dynamics simulation is performed to study the nano-cutting process of single crystal copper realized by single-point diamond cutting tool in this paper. The centro-symmetry parameter is adopted to characterize the subsurface deformed layers and the distribution and evolution of the subsurface defect structures. Three-dimensional visualization and measurement technology are used to measure the depth of the subsurface deformed layers. The influence of cutting speed, cutting depth, cutting direction, and crystallographic orientation on the depth of subsurface deformed layers is systematically investigated. The results show that a lot of defect structures are formed in the subsurface of workpiece during nano-cutting process, for instance, stair-rod dislocations, stacking fault tetrahedron, atomic clusters, vacancy defects, point defects. In the process of nano-cutting, the depth of subsurface deformed layers increases with the cutting distance at the beginning, then decreases at stable cutting process, and basically remains unchanged when the cutting distance reaches up to 24 nm. The depth of subsurface deformed layers decreases with the increase in cutting speed between 50 and 300 m/s. The depth of subsurface deformed layer increases with cutting depth, proportionally, and basically remains unchanged when the cutting depth reaches over 6 nm.

  4. Identification of the Viscous Superlayer on the Low-Speed Side of a Single-Stream Shear Layer

    Science.gov (United States)

    Foss, John; Peabody, Jason

    2010-11-01

    Image pairs (elevation/plan views) have been acquired of a smoke streakline originating in the irrotational region on the low-speed side of a high Re single-stream shear layer of Morris and Foss (2003). The viscous superlayer (VSL) is identified as the terminus of the streak; 1800 such images provide VSL position statistics. Hot-wire data acquired concurrently at the shear layer edge and interior are used to investigate the relationship between these velocity magnitudes and the large-scale motions. Distinctive features (plumes) along the streakline are tracked between images to provide discrete irrotational region velocity magnitudes and material trajectories. A non-diffusive marker, introduced in the separating (high speed) boundary layer and imaged at x/θo=352, has revealed an unexpected bias in the streak-defined VSL locations. The interpretation of this bias clarifies the induced flow patterns in the entrainment region. The observations are consistent with a conception of the large-scale shear layer motions as "billows" of vortical fluid separated by re-entrant "wedges" of irrotational fluid, per Phillips (1972). Morris, S.C. and Foss, J.F. (2003). "Turbulent Boundary Layer to Single Stream Shear Layer: The Transition Region." Journal of Fluid Mechanics. Vol. 494, pp. 187-221. Phillips, O. M. (1972). "The Entrainment Interface." Journal of Fluid Mechanics. Vol. 51, pp. 97-118.

  5. Electromagnetic Counterparts to Black Hole Mergers

    Science.gov (United States)

    Schnittman, Jeremy D.

    2011-01-01

    During the final moments of a binary black hole (BH) merger, the gravitational wave (GW) luminosity of the system is greater than the combined electromagnetic (EM) output of the entire observable universe. However, the extremely weak coupling between GWs and ordinary matter makes these waves very difficult to detect directly. Fortunately, the inspirating BH system will interact strongly-on a purely Newtonian level-with any surrounding material in the host galaxy, and this matter can in turn produce unique EM signals detectable at Earth. By identifying EM counterparts to GW sources, we will be able to study the host environments of the merging BHs, in turn greatly expanding the scientific yield of a mission like LISA. Here we present a comprehensive review of the recent literature on the subject of EM counterparts, as well as a discussion of the theoretical and observational advances required to fully realize the scientific potential of the field.

  6. Impact of adding a second-layer to a single unlocked closure of Cesarean uterine incision: a randomized controlled trial

    DEFF Research Database (Denmark)

    Rudnicki, Martin; Bennich, G; Wilken-Jensen, C

    2016-01-01

    The purpose of the present study was to investigate short- and long term effects on residual myometrial thickness (RMT) by adding a second-layer to a single unlocked closure of caesarean uterine incision. METHOD: he study was a randomized double-blind controlled trial. Healthy nulliparous scheduled...

  7. Thermal expansion, anharmonicity and temperature-dependent Raman spectra of single- and few-layer MoSe₂ and WSe₂.

    Science.gov (United States)

    Late, Dattatray J; Shirodkar, Sharmila N; Waghmare, Umesh V; Dravid, Vinayak P; Rao, C N R

    2014-06-06

    We report the temperature-dependent Raman spectra of single- and few-layer MoSe2 and WSe2 in the range 77-700 K. We observed linear variation in the peak positions and widths of the bands arising from contributions of anharmonicity and thermal expansion. After characterization using atomic force microscopy and high-resolution transmission electron microscopy, the temperature coefficients of the Raman modes were determined. Interestingly, the temperature coefficient of the A(2)(2u) mode is larger than that of the A(1g) mode, the latter being much smaller than the corresponding temperature coefficients of the same mode in single-layer MoS2 and of the G band of graphene. The temperature coefficients of the two modes in single-layer MoSe2 are larger than those of the same modes in single-layer WSe2. We have estimated thermal expansion coefficients and temperature dependence of the vibrational frequencies of MoS2 and MoSe2 within a quasi-harmonic approximation, with inputs from first-principles calculations based on density functional theory. We show that the contrasting temperature dependence of the Raman-active mode A(1g) in MoS2 and MoSe2 arises essentially from the difference in their strain-phonon coupling. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. One-step formation of a single atomic-layer transistor by the selective fluorination of a graphene film.

    Science.gov (United States)

    Ho, Kuan-I; Liao, Jia-Hong; Huang, Chi-Hsien; Hsu, Chang-Lung; Zhang, Wenjing; Lu, Ang-Yu; Li, Lain-Jong; Lai, Chao-Sung; Su, Ching-Yuan

    2014-03-12

    In this study, the scalable and one-step fabrication of single atomic-layer transistors is demonstrated by the selective fluorination of graphene using a low-damage CF4 plasma treatment, where the generated F-radicals preferentially fluorinated the graphene at low temperature (semiconductor/insulator can be directly formed in a single layer of graphene using a one-step fluorination process by introducing a Au thin-film as a buffer layer. With this heterojunction structure, it would be possible to fabricate transistors in a single graphene film via a one-step fluorination process, in which pristine graphene, partial F-graphene, and highly F-graphene serve as the source/drain contacts, the channel, and the channel isolation in a transistor, respectively. The demonstrated graphene transistor exhibits an on-off ratio above 10, which is 3-fold higher than that of devices made from pristine graphene. This efficient transistor fabrication method produces electrical heterojunctions of graphene over a large area and with selective patterning, providing the potential for the integration of electronics down to the single atomic-layer scale. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Spin-dependent electron-phonon coupling in the valence band of single-layer WS2

    DEFF Research Database (Denmark)

    Hinsche, Nicki Frank; Ngankeu, Arlette S.; Guilloy, Kevin

    2017-01-01

    The absence of inversion symmetry leads to a strong spin-orbit splitting of the upper valence band of semiconducting single-layer transition-metal dichalchogenides such as MoS2 or WS2. This permits a direct comparison of the electron-phonon coupling strength in states that only differ by their spin....... Here, the electron-phonon coupling in the valence band maximum of single-layer WS2 is studied by first-principles calculations and angle-resolved photoemission. The coupling strength is found to be drastically different for the two spin-split branches, with calculated values of λK=0.0021 and 0.......40 for the upper and lower spin-split valence band of the freestanding layer, respectively. This difference is somewhat reduced when including scattering processes involving the Au(111) substrate present in the experiment but it remains significant, in good agreement with the experimental results....

  10. Thickness-dependent electron mobility of single and few-layer MoS2 thin-film transistors

    Directory of Open Access Journals (Sweden)

    Ji Heon Kim

    2016-06-01

    Full Text Available We investigated the dependence of electron mobility on the thickness of MoS2 nanosheets by fabricating bottom-gate single and few-layer MoS2 thin-film transistors with SiO2 gate dielectrics and Au electrodes. All the fabricated MoS2 transistors showed on/off-current ratio of ∼107 and saturated output characteristics without high-k capping layers. As the MoS2 thickness increased from 1 to 6 layers, the field-effect mobility of the fabricated MoS2 transistors increased from ∼10 to ∼18 cm2V−1s−1. The increased subthreshold swing of the fabricated transistors with MoS2 thickness suggests that the increase of MoS2 mobility with thickness may be related to the dependence of the contact resistance and the dielectric constant of MoS2 layer on its thickness.

  11. Seamless lamination of a concave-convex architecture with single-layer graphene

    Science.gov (United States)

    Park, Ji-Hoon; Lim, Taekyung; Baik, Jaeyoon; Seo, Keumyoung; Moon, Youngkwon; Park, Noejung; Shin, Hyun-Joon; Kyu Kwak, Sang; Ju, Sanghyun; Real Ahn, Joung

    2015-10-01

    Graphene has been used as an electrode and channel material in electronic devices because of its superior physical properties. Recently, electronic devices have changed from a planar to a complicated three-dimensional (3D) geometry to overcome the limitations of planar devices. The evolution of electronic devices requires that graphene be adaptable to a 3D substrate. Here, we demonstrate that chemical-vapor-deposited single-layer graphene can be transferred onto a silicon dioxide substrate with a 3D geometry, such as a concave-convex architecture. A variety of silicon dioxide concave-convex architectures were uniformly and seamlessly laminated with graphene using a thermal treatment. The planar graphene was stretched to cover the concave-convex architecture, and the resulting strain on the curved graphene was spatially resolved by confocal Raman spectroscopy; molecular dynamic simulations were also conducted and supported the observations. Changes in electrical resistivity caused by the spatially varying strain induced as the graphene-silicon dioxide laminate varies dimensionally from 2D to 3D were measured by using a four-point probe. The resistivity measurements suggest that the electrical resistivity can be systematically controlled by the 3D geometry of the graphene-silicon dioxide laminate. This 3D graphene-insulator laminate will broaden the range of graphene applications beyond planar structures to 3D materials.Graphene has been used as an electrode and channel material in electronic devices because of its superior physical properties. Recently, electronic devices have changed from a planar to a complicated three-dimensional (3D) geometry to overcome the limitations of planar devices. The evolution of electronic devices requires that graphene be adaptable to a 3D substrate. Here, we demonstrate that chemical-vapor-deposited single-layer graphene can be transferred onto a silicon dioxide substrate with a 3D geometry, such as a concave-convex architecture. A

  12. Note: Laser ablation technique for electrically contacting a buried implant layer in single crystal diamond

    International Nuclear Information System (INIS)

    Ray, M. P.; Baldwin, J. W.; Butler, J. E.; Pate, B. B.; Feygelson, T. I.

    2011-01-01

    The creation of thin, buried, and electrically conducting layers within an otherwise insulating diamond by annealed ion implantation damage is well known. Establishing facile electrical contact to the shallow buried layer has been an unmet challenge. We demonstrate a new method, based on laser micro-machining (laser ablation), to make reliable electrical contact to a buried implant layer in diamond. Comparison is made to focused ion beam milling.

  13. Determination of the optimized single-layer ionospheric height for electron content measurements over China

    Science.gov (United States)

    Li, Min; Yuan, Yunbin; Zhang, Baocheng; Wang, Ningbo; Li, Zishen; Liu, Xifeng; Zhang, Xiao

    2018-02-01

    The ionosphere effective height (IEH) is a very important parameter in total electron content (TEC) measurements under the widely used single-layer model assumption. To overcome the requirement of a large amount of simultaneous vertical and slant ionospheric observations or dense "coinciding" pierce points data, a new approach comparing the converted vertical TEC (VTEC) value using mapping function based on a given IEH with the "ground truth" VTEC value provided by the combined International GNSS Service Global Ionospheric Maps is proposed for the determination of the optimal IEH. The optimal IEH in the Chinese region is determined using three different methods based on GNSS data. Based on the ionosonde data from three different locations in China, the altitude variation of the peak electron density (hmF2) is found to have clear diurnal, seasonal and latitudinal dependences, and the diurnal variation of hmF2 varies from approximately 210 to 520 km in Hainan. The determination of the optimal IEH employing the inverse method suggested by Birch et al. (Radio Sci 37, 2002. doi: 10.1029/2000rs002601) did not yield a consistent altitude in the Chinese region. Tests of the method minimizing the mapping function errors suggested by Nava et al. (Adv Space Res 39:1292-1297, 2007) indicate that the optimal IEH ranges from 400 to 600 km, and the height of 450 km is the most frequent IEH at both high and low solar activities. It is also confirmed that the IEH of 450-550 km is preferred for the Chinese region instead of the commonly adopted 350-450 km using the determination method of the optimal IEH proposed in this paper.

  14. Electronic and optical properties of vacancy defects in single-layer transition metal dichalcogenides

    Science.gov (United States)

    Khan, M. A.; Erementchouk, Mikhail; Hendrickson, Joshua; Leuenberger, Michael N.

    2017-06-01

    A detailed first-principles study has been performed to evaluate the electronic and optical properties of single-layer (SL) transition metal dichalcogenides (TMDCs) (M X 2 ; M = transition metal such as Mo, W, and X = S, Se, Te), in the presence of vacancy defects (VDs). Defects usually play an important role in tailoring electronic, optical, and magnetic properties of semiconductors. We consider three types of VDs in SL TMDCs: (i) X vacancy, (ii) X2 vacancy, and (iii) M vacancy. We show that VDs lead to localized defect states (LDS) in the band structure, which in turn gives rise to sharp transitions in in-plane and out-of-plane optical susceptibilities, χ∥ and χ⊥. The effects of spin-orbit coupling (SOC) are also considered. We find that SOC splitting in LDS is directly related to the atomic number of the transition metal atoms. Apart from electronic and optical properties we also find magnetic signatures (local magnetic moment of ˜μB ) in MoSe2 in the presence of the Mo vacancy, which breaks the time-reversal symmetry and therefore lifts the Kramers degeneracy. We show that a simple qualitative tight-binding model (TBM), involving only the hopping between atoms surrounding the vacancy with an on-site SOC term, is sufficient to capture the essential features of LDS. In addition, the existence of the LDS can be understood from the solution of the two-dimensional Dirac Hamiltonian by employing infinite mass boundary conditions. In order to provide a clear description of the optical absorption spectra, we use group theory to derive the optical selection rules between LDS for both χ∥ and χ⊥.

  15. Structure and Electronic Properties of In Situ Synthesized Single-Layer MoS2 on a Gold Surface

    DEFF Research Database (Denmark)

    Sørensen, Signe Grønborg; Füchtbauer, Henrik Gøbel; Tuxen, Anders Kyrme

    2014-01-01

    with scanning tunneling microscopy and X-ray photoelectron spectroscopy characterization of two-dimensional single-layer islands of MoS2 synthesized directly on a gold single crystal substrate. Thanks to a periodic modulation of the atom stacking induced by the lattice mismatch, we observe a structural buckling...... structure appears modified at the band gap edges. This electronic effect is further modulated by the moiré periodicity and leads to small substrate-induced electronic perturbations near the conduction band minimum in the band gap of MoS2. The results may be highly relevant in the context of nanopatterned......When transition metal sulfides such as MoS2 are present in the single-layer form, the electronic properties change in fundamental ways, enabling them to be used, e.g., in two-dimensional semiconductor electronics, optoelectronics, and light harvesting. The change is related to a subtle modification...

  16. Temporal and spatial evolution characteristics of disturbance wave in a hypersonic boundary layer due to single-frequency entropy disturbance.

    Science.gov (United States)

    Wang, Zhenqing; Tang, Xiaojun; Lv, Hongqing; Shi, Jianqiang

    2014-01-01

    By using a high-order accurate finite difference scheme, direct numerical simulation of hypersonic flow over an 8° half-wedge-angle blunt wedge under freestream single-frequency entropy disturbance is conducted; the generation and the temporal and spatial nonlinear evolution of boundary layer disturbance waves are investigated. Results show that, under the freestream single-frequency entropy disturbance, the entropy state of boundary layer is changed sharply and the disturbance waves within a certain frequency range are induced in the boundary layer. Furthermore, the amplitudes of disturbance waves in the period phase are larger than that in the response phase and ablation phase and the frequency range in the boundary layer in the period phase is narrower than that in these two phases. In addition, the mode competition, dominant mode transformation, and disturbance energy transfer exist among different modes both in temporal and in spatial evolution. The mode competition changes the characteristics of nonlinear evolution of the unstable waves in the boundary layer. The development of the most unstable mode along streamwise relies more on the motivation of disturbance waves in the upstream than that of other modes on this motivation.

  17. Hydrogen intercalation of single and multiple layer graphene synthesized on Si-terminated SiC(0001) surface

    Energy Technology Data Exchange (ETDEWEB)

    Sołtys, Jakub; Piechota, Jacek; Ptasinska, Maria [Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Pawińskiego 5a, 02-106 Warsaw (Poland); Krukowski, Stanisław, E-mail: stach@unipress.waw.pl [Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Pawińskiego 5a, 02-106 Warsaw (Poland); Institute of High Pressure Physics, Polish Academy of Sciences, Sokołowska 29/37, 01-142 Warsaw (Poland)

    2014-08-28

    Ab initio density functional theory simulations were used to investigate the influence of hydrogen intercalation on the electronic properties of single and multiple graphene layers deposited on the SiC(0001) surface (Si-face). It is shown that single carbon layer, known as a buffer layer, covalently bound to the SiC substrate, is liberated after hydrogen intercalation, showing characteristic Dirac cones in the band structure. This is in agreement with the results of angle resolved photoelectron spectroscopy measurements of hydrogen intercalation of SiC-graphene samples. In contrast to that hydrogen intercalation has limited impact on the multiple sheet graphene, deposited on Si-terminated SiC surface. The covalently bound buffer layer is liberated attaining its graphene like structure and dispersion relation typical for multilayer graphene. Nevertheless, before and after intercalation, the four layer graphene preserved the following dispersion relations in the vicinity of K point: linear for (AAAA) stacking, direct parabolic for Bernal (ABAB) stacking and “wizard hat” parabolic for rhombohedral (ABCA) stacking.

  18. Single-layer ZnS supported on Au(111): A combined XPS, LEED, STM and DFT study

    Science.gov (United States)

    Deng, Xingyi; Sorescu, Dan C.; Lee, Junseok

    2017-04-01

    Single-layer of ZnS, consisting of one atomic layer of ZnS(111) plane, has been grown on Au(111) and characterized using X-ray photoelectron spectroscopy (XPS), low energy electron diffraction (LEED) and scanning tunneling microscopy (STM). While the LEED measurement indicates a coincidence structure of ZnS-(3×3)/Au(111)-(4×4), high resolution STM images reveal hexagonal unit cells of 6.7×6.7 Å2 and 11.6×11.6 Å2, corresponding to √3 and 3 times the unit cell of the ideal zincblende ZnS-(1×1), respectively, depending on the tunneling conditions. Calculations based on density functional theory (DFT) indicate a significantly reconstructed non-planar structure of ZnS single-layer on Au(111) with 2/3 of the S anions being located nearly in the plane of the Zn cations and the rest 1/3 of the S anions protruding above the Zn plane. The calculated STM image shows similar characteristics to those of the experimental STM image. Additionally, the DFT calculations reveal the different bonding nature of the S anions in ZnS single-layer supported on Au(111).

  19. Self-assembly surface modified indium-tin oxide anodes for single-layer light-emitting diodes

    CERN Document Server

    Morgado, J; Charas, A; Matos, M; Alcacer, L; Cacialli, F

    2003-01-01

    We study the effect of indium-tin oxide surface modification by self assembling of highly polar molecules on the performance of single-layer light-emitting diodes (LEDs) fabricated with polyfluorene blends and aluminium cathodes. We find that the efficiency and light-output of such LEDs is comparable to, and sometimes better than, the values obtained for LEDs incorporating a hole injection layer of poly(3,4-ethylene dioxythiophene) doped with polystyrene sulphonic acid. This effect is attributed to the dipole-induced work function modification of indium-tin oxide.

  20. Thin film complementary metal oxide semiconductor (CMOS) device using a single-step deposition of the channel layer

    KAUST Repository

    Nayak, Pradipta K.

    2014-04-14

    We report, for the first time, the use of a single step deposition of semiconductor channel layer to simultaneously achieve both n-and p-type transport in transparent oxide thin film transistors (TFTs). This effect is achieved by controlling the concentration of hydroxyl groups (OH-groups) in the underlying gate dielectrics. The semiconducting tin oxide layer was deposited at room temperature, and the maximum device fabrication temperature was 350C. Both n and p-type TFTs showed fairly comparable performance. A functional CMOS inverter was fabricated using this novel scheme, indicating the potential use of our approach for various practical applications.

  1. Self-assembly surface modified indium-tin oxide anodes for single-layer light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Morgado, Jorge [Instituto de Telecomunicacoes and Departamento de Engenharia Quimica, Instituto Superior Tecnico, Avenida Rovisco Pais, P-1049-001 Lisbon (Portugal); Barbagallo, Nunzio [Instituto de Telecomunicacoes and Departamento de Engenharia Quimica, Instituto Superior Tecnico, Avenida Rovisco Pais, P-1049-001 Lisbon (Portugal); Charas, Ana [Instituto de Telecomunicacoes and Departamento de Engenharia Quimica, Instituto Superior Tecnico, Avenida Rovisco Pais, P-1049-001 Lisbon (Portugal); Matos, Manuel [Departamento de Engenharia Quimica, Instituto Superior de Engenharia de Lisboa, Rua Conselheiro Emidio Navarro-1, P-1949-001 Lisbon (Portugal); Alcacer, Luis [Instituto de Telecomunicacoes and Departamento de Engenharia Quimica, Instituto Superior Tecnico, Avenida Rovisco Pais, P-1049-001 Lisbon (Portugal); Cacialli, Franco [Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT (United Kingdom)

    2003-03-07

    We study the effect of indium-tin oxide surface modification by self assembling of highly polar molecules on the performance of single-layer light-emitting diodes (LEDs) fabricated with polyfluorene blends and aluminium cathodes. We find that the efficiency and light-output of such LEDs is comparable to, and sometimes better than, the values obtained for LEDs incorporating a hole injection layer of poly(3,4-ethylene dioxythiophene) doped with polystyrene sulphonic acid. This effect is attributed to the dipole-induced work function modification of indium-tin oxide.

  2. Reversible Single-Crystal-to-Single-Crystal Structural Transformation in a Mixed-Ligand 2D Layered Metal-Organic Framework: Structural Characterization and Sorption Study

    Directory of Open Access Journals (Sweden)

    Chih-Chieh Wang

    2017-12-01

    Full Text Available A 3D supramolecular network, [Cd(bipy(C4O4(H2O2]·3H2O (1 (bipy = 4,4′-bipyridine and C4O42− = dianion of H2C4O4, constructed by mixed-ligand two-dimensional (2D metal-organic frameworks (MOFs has been reported and structurally determined by the single-crystal X-ray diffraction method and characterized by other physicochemical methods. In 1, the C4O42− and bipy both act as bridging ligands connecting the Cd(II ions to form a 2D layered MOF, which are then extended to a 3D supramolecular network via the mutually parallel and interpenetrating arrangements among the 2D-layered MOFs. Compound 1 shows a two-step dehydration process with weight losses of 11.0% and 7.3%, corresponding to the weight-loss of three guest and two coordinated water molecules, respectively, and exhibits an interesting reversible single-crystal-to-single-crystal (SCSC structural transformation upon de-hydration and re-hydration for guest water molecules. The SCSC structural transformation have been demonstrated and monitored by single-crystal and X-ray powder diffraction, and thermogravimetic analysis studies.

  3. Comparison of Single-Layer and Double-Layer Anti-Reflection Coatings Using Laser-Induced Damage Threshold and Photothermal Common-Path Interferometry

    Directory of Open Access Journals (Sweden)

    Caspar Clark

    2016-05-01

    Full Text Available The dielectric thin-film coating on high-power optical components is often the weakest region and will fail at elevated optical fluences. A comparison of single-layer coatings of ZrO2, LiF, Ta2O5, SiN, and SiO2 along with anti-reflection (AR coatings optimized at 1064 nm comprised of ZrO2 and Ta2O5 was made, and the results of photothermal common-path interferometry (PCI and a laser-induced damage threshold (LIDT are presented here. The coatings were grown by radio frequency (RF sputtering, pulsed direct-current (DC sputtering, ion-assisted electron beam evaporation (IAD, and thermal evaporation. Test regimes for LIDT used pulse durations of 9.6 ns at 100 Hz for 1000-on-1 and 1-on-1 regimes at 1064 nm for single-layer and AR coatings, and 20 ns at 20 Hz for a 200-on-1 regime to compare the //ZrO2/SiO2 AR coating.

  4. Enhanced luminance of MEH-PPV based PLEDs using single walled carbon nanotube composite as an electron transporting layer

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Inderpreet, E-mail: inderpreetsingh_05@rediffmail.co [Materials Laboratory, Department of Electronic Science, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021 (India); Madhwal, Devinder; Verma, A.; Kumar, A.; Rait, S. [Materials Laboratory, Department of Electronic Science, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021 (India); Kaur, I.; Bharadwaj, L.M. [Central Scientific Instruments Organization, Sector-30, Chandigarh (India); Bhatia, C.S. [Department of Electrical and Computer Engineering, National University of Singapore (Singapore); Bhatnagar, P.K.; Mathur, P.C. [Materials Laboratory, Department of Electronic Science, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021 (India)

    2010-11-15

    An efficient electron transporting layer (ETL) based on single walled carbon nanotube (SWCNT) composites has been developed for poly [2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) based orange polymer light emitting diodes (PLEDs) and its effect on the performance of PLEDs has been examined. It is observed that with increase in SWCNT concentration, in ETL, the luminance and luminous efficiency of the PLEDs increase (about 5 times increase in luminance is observed at 5% w/w SWCNT concentration). The SWCNTs present in the MEH-PPV ETL boost the mobility of electrons injected from the cathode towards the emissive layer by establishing highly conducting percolation paths. This balances the concentration of holes and electrons in the emissive layer, which leads to enhanced emission from the PLEDs.

  5. Efficient polymer white-light-emitting diodes with a single-emission layer of fluorescent polymer blend

    International Nuclear Information System (INIS)

    Niu Qiaoli; Xu Yunhua; Jiang Jiaxing; Peng Junbiao; Cao Yong

    2007-01-01

    Efficient polymer white-light-emitting diodes (WPLEDs) have been fabricated with a single layer of fluorescent polymer blend. The device structure consists of ITO/PEDOT/PVK/emissive layer/Ba/Al. The emissive layer is a blend of poly(9,9-dioctylfluorene) (PFO), phenyl-substituted PPV derivative (P-PPV) and a copolymer of 9,9-dioctylfluorene and 4,7-di(4-hexylthien-2-yl)-2,1,3-benzothiadiazole (PFO-DHTBT), which, respectively, emits blue, green and red light. The emission of pure and efficient white light was implemented by tuning the blend weight ratio of PFO: P-PPV: PFO-DHTBT to 96:4:0.4. The maximum current efficiency and luminance are, respectively, 7.6 cd/A at 6.7 V and 11930 cd/m 2 at 11.2 V. The CIE coordinates of white-light emission were stable with the drive voltages

  6. Peculiarities of superconductivity in the single-layer FeSe /SrTi O3 interface

    Science.gov (United States)

    Gor'kov, Lev P.

    2016-02-01

    Observation of replica bands in the angle-resolved photoemission spectroscopy (ARPES) spectra of single-layer FeSe on a strontium titanate substrate revealed a phonon component contribution to mechanisms behind its high-Tc superconductivity. We study the interaction of the in-layer FeSe electrons with the electric potential of the longitudinal (LO) modes at the surface of bulk SrTi O3 . A two-dimensional system of charges at the FeSe /SrTi O3 interface includes both the itinerant and the immobile electrons. The latter significantly change the interface characteristics, increasing screening at the substrate surface and thereby reducing the strength of the electron-LO-phonon interaction. In what follows, the dielectric constant serves as a free parameter and is determined using the ARPES measurements of the replicas. Two-dimensional Coulomb screening is accounted for in the random-phase approximation. It is shown that the model is applicable over the entire range of the parameters typical for current experiments. The estimates from this model make possible the conclusion that the LO-phonon-mediated pairing alone cannot account for the temperatures of the superconducting transitions Tc in the single-layer FeSe /SrTi O3 reported in these experiments. This does not exclude that the LO-phonon mechanisms can become more significant in differently and better prepared single-layer FeSe films. Available experiments are briefly discussed. Thus far no measurements exist on the dependence of Tc on the concentration of electrons doped into the in-layer FeSe band.

  7. Single versus double-layer uterine closure at cesarean: impact on lower uterine segment thickness at next pregnancy.

    Science.gov (United States)

    Vachon-Marceau, Chantale; Demers, Suzanne; Bujold, Emmanuel; Roberge, Stephanie; Gauthier, Robert J; Pasquier, Jean-Charles; Girard, Mario; Chaillet, Nils; Boulvain, Michel; Jastrow, Nicole

    2017-07-01

    Uterine rupture is a potential life-threatening complication during a trial of labor after cesarean delivery. Single-layer closure of the uterus at cesarean delivery has been associated with an increased risk of uterine rupture compared with double-layer closure. Lower uterine segment thickness measurement by ultrasound has been used to evaluate the quality of the uterine scar after cesarean delivery and is associated with the risk of uterine rupture. To estimate the impact of previous uterine closure on lower uterine segment thickness. Women with a previous single low-transverse cesarean delivery were recruited at 34-38 weeks' gestation. Transabdominal and transvaginal ultrasound evaluation of the lower uterine segment thickness was performed by a sonographer blinded to clinical data. Previous operative reports were reviewed to obtain the type of previous uterine closure. Third-trimester lower uterine segment thickness at the next pregnancy was compared according to the number of layers sutured and according to the type of thread for uterine closure, using weighted mean differences and multivariate logistic regression analyses. Of 1613 women recruited, with operative reports available, 495 (31%) had a single-layer and 1118 (69%) had a double-layer closure. The mean third-trimester lower uterine segment thickness was 3.3 ± 1.3 mm and the proportion with lower uterine segment thickness cesarean delivery is associated with a thicker third-trimester lower uterine segment and a reduced risk of lower uterine segment thickness <2.0 mm in the next pregnancy. The type of thread for uterine closure has no significant impact on lower uterine segment thickness. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. The peculiar effect of forest dislocations on single twin layer development in zinc and beryllium single crystals

    International Nuclear Information System (INIS)

    Lavrentev, F.F.; Bosin, M.E.

    1978-01-01

    This is an investigation of the effect of different types of forest dislocation on the rate of twin layer broadening, Vsub(n), in zinc and beryllium crystals, and on the velocity of the twinning dislocation movement, Vsub(t), in zinc crystals under the action of a constant external shear stress. Increasing the forest basal dislocation density, rhosub(b), was found to result in increasing Vsub(n) and reducing Vsub(t), while increasing the forest pyramidal dislocation density, rhosub(p), causes Vsub(n) to decrease. An analysis in terms of crystal geometry shows that the dualism of the influence of the basal dislocations stems from the fact that they behave as twinning dislocation sources whose density, increasing with rhosub(b) leads to higher Vsub(n). The decrease in the effective stress, tausup(*), with increasing rhosub(b) is estimated. An analysis of the experimental data yielded the relation Vsub(t)(tausup(*)) and an estimate of the activation volume, which amounted to 6 x 10 -21 cm 3 . The close coincidence of the activation volumes as obtained from Vsub(t)(tausup(*)) and Vsub(n)(tau) suggests that the rate-controlling mechanism of the twin layer development in zinc crystals with large forest basal dislocation density is the twinning dislocation inhibition. In Be crystals, the increasing Vsub(n) effect is observed during untwinning. In Be twinned crystals, electron microscopy revealed twinning dislocations with a density of about 10 5 cm -1 at the twin boundaries and a large forest basal dislocation density inside the twin (ca. 10 8 cm -2 ). (Auth.)

  9. Magneto-electroluminescence effects in the single-layer organic light-emitting devices with macrocyclic aromatic hydrocarbons

    Directory of Open Access Journals (Sweden)

    S.-T. Pham

    2018-02-01

    Full Text Available Magneto-electroluminescence (MEL effects are observed in single-layer organic light-emitting devices (OLEDs comprising only macrocyclic aromatic hydrocarbons (MAHs. The fluorescence devices were prepared using synthesized MAHs, namely, [n]cyclo-meta-phenylene ([n]CMP, n = 5, 6. The MEL ratio of the resulting OLED is 1%–2% in the spectral wavelength range of 400-500 nm, whereas it becomes negative (−1.5% to −2% in the range from 650 to 700 nm. The possible physical origins of the sign change in the MEL are discussed. This wavelength-dependent sign change in the MEL ratio could be a unique function for future single-layer OLEDs capable of magnetic-field-induced color changes.

  10. A meta-analytic review of the effectiveness of single-layer clothing in preventing exposure from pesticide handling.

    Science.gov (United States)

    Miguelino, Eric S

    2014-01-01

    This review summarizes available information on the penetration of pesticides through single-layer clothing by pesticide handlers and introduces epidemiological and observational studies on pesticide exposure. The data for this report were taken from peer-reviewed articles, publicly available government reports, and publicly available government reviews of registrant-submitted data and information. The arithmetic mean of calculated clothing penetration was obtained for various parts of the body (upper arm, lower arm, chest/torso, back/torso, upper leg, and lower leg) that were exposed to pesticide. The range of pesticide penetration to the various parts of the body through single-layer clothing during mixing, loading, and application (MLA) activities was found to be 6.2% ± 5.7% to 21.4% ± 6.7%, which demonstrates a potential for increased and unintentional pesticide exposures. Based on this evaluation, some accepted default values for protection against pesticide exposure may be overestimated.

  11. Synchrotron Topographic and Diffractometer Studies of Buried Layered Structures Obtained by Implantation with Swift Heavy Ions in Silicon Single Crystals

    International Nuclear Information System (INIS)

    Wierzchowski, W.; Wieteska, K.; Zymierska, D.; Graeff, W.; Czosnyka, T.; Choinski, J.

    2006-01-01

    A distribution of crystallographic defects and deformation in silicon crystals subjected to deep implantation (20-50 μm) with ions of the energy of a few MeV/amu is studied. Three different buried layered structures (single layer, binary buried structure and triple buried structure) were obtained by implantation of silicon single crystals with 184 MeV argon ions, 29.7 MeV boron ions, and 140 MeV argon ions, each implantation at a fluency of 1x10 14 ions cm -2 . The implanted samples were examined by means of white beam X-ray section and projection topography, monochromatic beam topography and by recording local rocking curves with the beam restricted to 50 x 50 μm 2 . The experiment pointed to a very low level of implantation-induced strain (below 10 -5 ). The white beam Bragg case section experiment revealed a layer producing district black contrast located at a depth of the expected mean ion range. The presence of these buried layered structures in studied silicon crystals strongly affected the fringe pattern caused by curvature of the samples. In case of white beam projection and monochromatic beam topographs the implanted areas were revealed as darker regions with a very tiny grain like structure. One may interpret these results as the effect of considerable heating causing annihilation of point defects and formation of dislocation loops connected with point defect clusters. (author)

  12. Pulling back error to the hidden-node parameter technology: Single-hidden-layer feedforward network without output weight

    OpenAIRE

    Yang, Yimin; Wu, Q. M. Jonathan; Huang, Guangbin; Wang, Yaonan

    2014-01-01

    According to conventional neural network theories, the feature of single-hidden-layer feedforward neural networks(SLFNs) resorts to parameters of the weighted connections and hidden nodes. SLFNs are universal approximators when at least the parameters of the networks including hidden-node parameter and output weight are exist. Unlike above neural network theories, this paper indicates that in order to let SLFNs work as universal approximators, one may simply calculate the hidden node paramete...

  13. Design of Circular, Square, Single, and Multi-layer Induction Coils for Electromagnetic Priming Using Inductance Estimates

    Science.gov (United States)

    Fritzsch, Robert; Kennedy, Mark W.; Aune, Ragnhild E.

    2018-02-01

    Special induction coils used for electro magnetic priming of ceramic foam filters in liquid metal filtration have been designed using a combination of analytical and finite element modeling. Relatively simple empirical equations published by Wheeler in 1928 and 1982 have been used during the design process. The equations were found to accurately predict the z-component of the magnetic flux densities of both single- and multi-layer coils as verified both experimentally and by using COMSOL® 5.1 multiphysics simulations.

  14. Surface texture of single-crystal silicon oxidized under a thin V{sub 2}O{sub 5} layer

    Energy Technology Data Exchange (ETDEWEB)

    Nikitin, S. E., E-mail: nikitin@mail.ioffe.ru; Verbitskiy, V. N.; Nashchekin, A. V.; Trapeznikova, I. N.; Bobyl, A. V.; Terukova, E. E. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation)

    2017-01-15

    The process of surface texturing of single-crystal silicon oxidized under a V{sub 2}O{sub 5} layer is studied. Intense silicon oxidation at the Si–V{sub 2}O{sub 5} interface begins at a temperature of 903 K which is 200 K below than upon silicon thermal oxidation in an oxygen atmosphere. A silicon dioxide layer 30–50 nm thick with SiO{sub 2} inclusions in silicon depth up to 400 nm is formed at the V{sub 2}O{sub 5}–Si interface. The diffusion coefficient of atomic oxygen through the silicon-dioxide layer at 903 K is determined (D ≥ 2 × 10{sup –15} cm{sup 2} s{sup –1}). A model of low-temperature silicon oxidation, based on atomic oxygen diffusion from V{sub 2}O{sub 5} through the SiO{sub 2} layer to silicon, and SiO{sub x} precipitate formation in silicon is proposed. After removing the V{sub 2}O{sub 5} and silicon-dioxide layers, texture is formed on the silicon surface, which intensely scatters light in the wavelength range of 300–550 nm and is important in the texturing of the front and rear surfaces of solar cells.

  15. Kilonova Counterparts of Binary Neutron Star Mergers

    Science.gov (United States)

    Metzger, Brian

    2018-01-01

    The merger of a binary neutron star is accompanied by the ejection of neutron-rich matter into space at velocities up to several tenths that of light, which synthesizes rare heavy isotopes through the rapid neutron capture process (r-process). The radioactive decay of these nuclei was predicted by Metzger et al. (2010) to power an optical transient roughly 1000 times more luminous than a classical nova (a "kilonova"), which is among the most promising electromagnetic counterparts to accompany gravitational wave signal from the merger. I will describe how the luminosities, color, and spectra of the kilonova emission inform the properties of the merging binary (neutron star masses/radii and inclination angle) and the long sought origin of the heaviest elements in the Universe. Results will be discussed in the context of recent discoveries by Advanced LIGO/Virgo.

  16. Comparative investigation on high-speed grinding of TiCp/Ti–6Al–4V particulate reinforced titanium matrix composites with single-layer electroplated and brazed CBN wheels

    Directory of Open Access Journals (Sweden)

    Li Zheng

    2016-10-01

    Full Text Available In order to develop the high-efficiency and precision machining technique of TiCp/Ti–6Al–4V particulate reinforced titanium matrix composites (PTMCs, high-speed grinding experiments were conducted using the single-layer electroplated cubic boron nitride (CBN wheel and brazed CBN wheel, respectively. The comparative grinding performance was studied in terms of grinding force, grinding temperature, grinding-induced surface features and defects. The results display that the grinding forces and grinding temperature obtained with the brazed CBN wheel are always lower than those with the electroplated CBN wheel. Though the voids and microcracks are the dominant grinding-induced surface defects, the brazed CBN wheel produces less surface defects compared to the electroplated wheel according to the statistical analysis results. The maximum materials removal rate with the brazed CBN wheel is much higher than that with the electroplated one. All above indicate that the single-layer brazed CBN super-abrasive wheel is more suitable for high-speed grinding of PTMCs than the electroplated counterpart.

  17. Fracture resistance of single-tooth implant-supported zirconia-based indirect composite-layered molar restorations.

    Science.gov (United States)

    Taguchi, Kohei; Komine, Futoshi; Fushiki, Ryosuke; Blatz, Markus B; Kamio, Shingo; Matsumura, Hideo

    2014-08-01

    This study evaluated the fracture resistance of single-tooth implant-supported zirconia-based indirect composite-layered molar restorations. Forty-four titanium abutments (GingiHue Post) were placed on dental implants (Osseotite Implant). Standardized single-tooth cement-retained implant-supported mandibular molar restorations were fabricated for each of four test groups (n = 11) as follows: porcelain-fused-to-metal crowns (PFM), zirconia-based all-ceramic crowns (ZAC), zirconia-based indirect composite-layered crowns primed with Estenia Opaque Primer for zirconia frameworks (ZIC-E), and zirconia-based indirect composite-layered crowns (ZIC). The crowns were luted with a glass-ionomer cement (Ketac Cem Easymix). Fracture resistance (N) was determined by force application of a perpendicular load to the crowns with a universal testing machine. One-way analysis of variance (ANOVA) and the Tukey's HSD test were used to assess differences in fracture resistance values (α = 0.05). Mean fracture resistances (SD) were 3.09 (0.22) kN, 3.11 (0.34) kN, 2.84 (0.21) kN, and 2.50 (0.36) kN for the PFM, ZAC, ZIC-E, and ZIC groups, respectively. Fracture resistance in the ZIC specimens was significantly lower (P zirconia-based indirect composite-layered molar crowns primed with Estenia Opaque Primer for zirconia frameworks (ZIC-E) is comparable to that of porcelain-fused-to-metal (PFM) and zirconia-based all-ceramic (ZAC) restorations. Application of Estenia Opaque Primer to zirconia ceramic framework provides superior fracture resistance in implant-supported zirconia-based indirect composite-layered molar crowns. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Epitaxial layers of 2122 BCSCO superconductor thin films having single crystalline structure

    Science.gov (United States)

    Pandey, Raghvendra K. (Inventor); Raina, Kanwal K. (Inventor); Solayappan, Narayanan (Inventor)

    1995-01-01

    A substantially single phase, single crystalline, highly epitaxial film of Bi.sub.2 CaSr.sub.2 Cu.sub.2 O.sub.8 superconductor which has a T.sub.c (zero resistance) of 83K is provided on a lattice-matched substrate with no intergrowth. This film is produced by a Liquid Phase Epitaxy method which includes the steps of forming a dilute supercooled molten solution of a single phase superconducting mixture of oxides of Bi, Ca, Sr, and Cu having an atomic ratio of about 2:1:2:2 in a nonreactive flux such as KCl, introducing the substrate, e.g., NdGaO.sub.3, into the molten solution at 850.degree. C., cooling the solution from 850.degree. C. to 830.degree. C. to grow the film and rapidly cooling the substrate to room temperature to maintain the desired single phase, single crystalline film structure.

  19. Effect of Single or Combined Climatic and Hygienic Stress in Four Layer Lines: 1. Performance

    NARCIS (Netherlands)

    Star, L.; Kemp, B.; Anker, van den I.; Parmentier, H.K.

    2008-01-01

    Effects of long-term climatic stress (heat exposure), short-term hygienic stress [lipopolysaccharide (LPS)], or a combination of both challenges on performance of 4 layer lines were investigated. The lines were earlier characterized by natural humoral immune competence and survival rate. At 22 wk of

  20. Single-column model and large eddy simulation of the evening transition in the planetary boundary layer

    Science.gov (United States)

    Cuchiara, Gustavo; Rappenglück, Bernhard

    2016-04-01

    The transition from the convective boundary layer during the daytime to the stable stratified boundary layer during nighttime after sunset plays an important role in the transport and dispersion of atmospheric pollutants. However, our knowledge regarding this transition and its feedback on the structure of the subsequent nocturnal boundary layer is still restricted. This also prevents forecast models from accurate prediction of the onset and development of the nighttime boundary layer, which determines the redistribution of pollutants within the nocturnal surface layer and the residual layer aloft. In the present study, the well-known case of day 33 of the Wangara experiment is resimulated using the Weather Research and Forecasting (WRF) model in an idealized single-column mode to assess the performance of a frequently used planetary boundary layer (PBL) scheme, the Yonsei University (YSU) PBL scheme. These results are compared with two large eddy simulations (LES) for the same case study imposing different surface fluxes: one using previous surface fluxes calculated for the Wangara experiment and a second one using output from the WRF model. The results show a reasonable agreement of the PBL scheme in WRF with the LES. Overall, all the simulations presented a cold bias of ~3 Kelvin for the potential temperature and underestimation of the wind speed, especially after the transition to nighttime conditions (biases were up to 4 ms-1). Finally, an alternative set of eddy diffusivity equations was tested to represent the transition characteristics of a sunset period, with a stable layer below and a new parameterization for the convective decay regime typically observed in the RL aloft. This set of equations led to a gradual decrease of the eddy diffusivity, which replaces the instantaneous collapse of traditional diagnostics for eddy diffusivities. More appreciable changes were observed in air temperature, wind speed and specific humidity (up to 0.5 K, 0.6 ms-1, and 0

  1. The efficiency enhancement of single-layer solution-processed blue phosphorescent organic light emitting diodes by hole injection layer modification

    International Nuclear Information System (INIS)

    Yeoh, K H; Talik, N A; Whitcher, T J; Ng, C Y B; Woon, K L

    2014-01-01

    Poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) PEDOT : PSS is extensively used as a hole injection layer (HIL) in solution-processed organic light emitting diodes (OLEDs). The high work function of a HIL is crucial in improving OLED efficiency. The work function of PEDOT : PSS is usually around 5.1–5.3 eV. By adding perfluorinated ionomer (PFI), the work function of PEDOT : PSS has been reported to reach as high as 5.95 eV. We investigated the effects of PFI-modified PEDOT : PSS in a single-layer solution-processed blue phosphorescent OLED (PHOLED). We observed that high concentrations of a PFI in PEDOT : PSS has detrimental effects on the device efficiency due to the low conductivity of the PFI. Using this approach, blue PHOLEDs with efficiencies of 9.4 lm W −1 (18.2 cd A −1 ) and 7.9 lm W −1 (20.4 cd A −1 ) at 100 cd m −2 and 1000 cd m −2 , respectively, were demonstrated. (paper)

  2. A single α-cobalt hydroxide/sodium alginate bilayer layer-by-layer assembly for conferring flame retardancy to flexible polyurethane foams

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Xiaowei [State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026 (China); Yuan, Bihe [School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070 (China); Pan, Ying; Feng, Xiaming; Duan, Lijin [State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026 (China); Zong, Ruowen, E-mail: zongrw@ustc.edu.cn [State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026 (China); Hu, Yuan, E-mail: yuanhu@ustc.edu.cn [State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026 (China); National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026 (China)

    2017-04-15

    A layer-by-layer (LBL) assembly coating composed of α-cobalt hydroxide (α-Co(OH){sub 2}) and sodium alginate (SA) is deposited on flexible polyurethane (FPU) foam to reduce its flammability. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) are employed to prove the LBL assembly process. It is obvious from SEM results that a uniform and rough coating is deposited on FPU foam compared with that of untreated one. The peak intensity of methylene of SA in FITR spectra and typical (003) diffraction peak of α-Co(OH){sub 2} nanosheets at 11.0° in XRD patterns increases gradually with increment of bilayer number. Combustion behavior and toxicity suppression property of samples are characterized by cone calorimeter (under an irradiance of 35 kW m{sup −2}) and Thermogravimetry/Fourier transform infrared spectroscopy. The one and two bilayers (BL) coating on FPU foam can achieve excellent flame retardancy. Compared with untreated sample, the peak heat release rate of the coated FPU foam containing only one BL coating is reduced by 58.7%. The content of gaseous toxic substances during pyrolysis of FPU foam deposited with a single bilayer coating, such as CO and NCO-containing compounds, are reduced by 20.0% and 9.2%, respectively. Besides, the flame retardant mechanism of the coated FPU foam is also revealed. - Highlights: • The α-Co(OH){sub 2} nanosheets are firstly employed in LBL assembly. • A single α-cobalt hydroxide/sodium alginate bilayer LBL assembly for conferring excellent flame retardancy to FPU foam. • The flame retardant mechanism of LBL assembly FPU foam is displayed.

  3. Alkali (Li, K and Na) and alkali-earth (Be, Ca and Mg) adatoms on SiC single layer

    Science.gov (United States)

    Baierle, Rogério J.; Rupp, Caroline J.; Anversa, Jonas

    2018-03-01

    First-principles calculations within the density functional theory (DFT) have been addressed to study the energetic stability, and electronic properties of alkali and alkali-earth atoms adsorbed on a silicon carbide (SiC) single layer. We observe that all atoms are most stable (higher binding energy) on the top of a Si atom, which moves out of the plane (in the opposite direction to the adsorbed atom). Alkali atoms adsorbed give raise to two spin unpaired electronic levels inside the band gap leading the SiC single layer to exhibit n-type semiconductor properties. For alkaline atoms adsorbed there is a deep occupied spin paired electronic level inside the band gap. These finding suggest that the adsorption of alkaline and alkali-earth atoms on SiC layer is a powerful feature to functionalize two dimensional SiC structures, which can be used to produce new electronic, magnetic and optical devices as well for hydrogen and oxygen evolution reaction (HER and OER, respectively). Furthermore, we observe that the adsorption of H2 is ruled by dispersive forces (van der Waals interactions) while the O2 molecule is strongly adsorbed on the functionalized system.

  4. Study of Sequential Dexter Energy Transfer in High Efficient Phosphorescent White Organic Light-Emitting Diodes with Single Emissive Layer

    Science.gov (United States)

    Kim, Jin Wook; You, Seung Il; Kim, Nam Ho; Yoon, Ju-An; Cheah, Kok Wai; Zhu, Fu Rong; Kim, Woo Young

    2014-01-01

    In this study, we report our effort to realize high performance single emissive layer three color white phosphorescent organic light emitting diodes (PHOLEDs) through sequential Dexter energy transfer of blue, green and red dopants. The PHOLEDs had a structure of; ITO(1500 Å)/NPB(700 Å)/mCP:Firpic-x%:Ir(ppy)3-0.5%:Ir(piq)3-y%(300 Å)/TPBi(300 Å)/Liq(20 Å)/Al(1200 Å). The dopant concentrations of FIrpic, Ir(ppy)3 and Ir(piq)3 were adjusted and optimized to facilitate the preferred energy transfer processes attaining both the best luminous efficiency and CIE color coordinates. The presence of a deep trapping center for charge carriers in the emissive layer was confirmed by the observed red shift in electroluminescent spectra. White PHOLEDs, with phosphorescent dopant concentrations of FIrpic-8.0%:Ir(ppy)3-0.5%:Ir(piq)3-0.5% in the mCP host of the single emissive layer, had a maximum luminescence of 37,810 cd/m2 at 11 V and a luminous efficiency of 48.10 cd/A at 5 V with CIE color coordinates of (0.35, 0.41). PMID:25388087

  5. Junctionless Diode Enabled by Self-Bias Effect of Ion Gel in Single-Layer MoS2 Device.

    Science.gov (United States)

    Khan, Muhammad Atif; Rathi, Servin; Park, Jinwoo; Lim, Dongsuk; Lee, Yoontae; Yun, Sun Jin; Youn, Doo-Hyeb; Kim, Gil-Ho

    2017-08-16

    The self-biasing effects of ion gel from source and drain electrodes on electrical characteristics of single layer and few layer molybdenum disulfide (MoS 2 ) field-effect transistor (FET) have been studied. The self-biasing effect of ion gel is tested for two different configurations, covered and open, where ion gel is in contact with either one or both, source and drain electrodes, respectively. In open configuration, the linear output characteristics of the pristine device becomes nonlinear and on-off ratio drops by 3 orders of magnitude due to the increase in "off" current for both single and few layer MoS 2 FETs. However, the covered configuration results in a highly asymmetric output characteristics with a rectification of around 10 3 and an ideality factor of 1.9. This diode like behavior has been attributed to the reduction of Schottky barrier width by the electric field of self-biased ion gel, which enables an efficient injection of electrons by tunneling at metal-MoS 2 interface. Finally, finite element method based simulations are carried out and the simulated results matches well in principle with the experimental analysis. These self-biased diodes can perform a crucial role in the development of high-frequency optoelectronic and valleytronic devices.

  6. Assessment of mixed-layer height estimation from single-wavelength ceilometer profiles

    Science.gov (United States)

    Knepp, Travis N.; Szykman, James J.; Long, Russell; Duvall, Rachelle M.; Krug, Jonathan; Beaver, Melinda; Cavender, Kevin; Kronmiller, Keith; Wheeler, Michael; Delgado, Ruben; Hoff, Raymond; Berkoff, Timothy; Olson, Erik; Clark, Richard; Wolfe, Daniel; Van Gilst, David; Neil, Doreen

    2017-10-01

    Differing boundary/mixed-layer height measurement methods were assessed in moderately polluted and clean environments, with a focus on the Vaisala CL51 ceilometer. This intercomparison was performed as part of ongoing measurements at the Chemistry And Physics of the Atmospheric Boundary Layer Experiment (CAPABLE) site in Hampton, Virginia and during the 2014 Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) field campaign that took place in and around Denver, Colorado. We analyzed CL51 data that were collected via two different methods (BLView software, which applied correction factors, and simple terminal emulation logging) to determine the impact of data collection methodology. Further, we evaluated the STRucture of the ATmosphere (STRAT) algorithm as an open-source alternative to BLView (note that the current work presents an evaluation of the BLView and STRAT algorithms and does not intend to act as a validation of either). Filtering criteria were defined according to the change in mixed-layer height (MLH) distributions for each instrument and algorithm and were applied throughout the analysis to remove high-frequency fluctuations from the MLH retrievals. Of primary interest was determining how the different data-collection methodologies and algorithms compare to each other and to radiosonde-derived boundary-layer heights when deployed as part of a larger instrument network. We determined that data-collection methodology is not as important as the processing algorithm and that much of the algorithm differences might be driven by impacts of local meteorology and precipitation events that pose algorithm difficulties. The results of this study show that a common processing algorithm is necessary for light detection and ranging (lidar)-based MLH intercomparisons and ceilometer-network operation, and that sonde-derived boundary layer heights are higher (10-15 % at midday) than lidar

  7. Assessment of mixed-layer height estimation from single-wavelength ceilometer profiles

    Directory of Open Access Journals (Sweden)

    T. N. Knepp

    2017-10-01

    Full Text Available Differing boundary/mixed-layer height measurement methods were assessed in moderately polluted and clean environments, with a focus on the Vaisala CL51 ceilometer. This intercomparison was performed as part of ongoing measurements at the Chemistry And Physics of the Atmospheric Boundary Layer Experiment (CAPABLE site in Hampton, Virginia and during the 2014 Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ field campaign that took place in and around Denver, Colorado. We analyzed CL51 data that were collected via two different methods (BLView software, which applied correction factors, and simple terminal emulation logging to determine the impact of data collection methodology. Further, we evaluated the STRucture of the ATmosphere (STRAT algorithm as an open-source alternative to BLView (note that the current work presents an evaluation of the BLView and STRAT algorithms and does not intend to act as a validation of either. Filtering criteria were defined according to the change in mixed-layer height (MLH distributions for each instrument and algorithm and were applied throughout the analysis to remove high-frequency fluctuations from the MLH retrievals. Of primary interest was determining how the different data-collection methodologies and algorithms compare to each other and to radiosonde-derived boundary-layer heights when deployed as part of a larger instrument network. We determined that data-collection methodology is not as important as the processing algorithm and that much of the algorithm differences might be driven by impacts of local meteorology and precipitation events that pose algorithm difficulties. The results of this study show that a common processing algorithm is necessary for light detection and ranging (lidar-based MLH intercomparisons and ceilometer-network operation, and that sonde-derived boundary layer heights are higher (10–15 % at

  8. Synthesis of Freestanding Single-crystal Perovskite Films and Heterostructures by Etching of Sacrificial Water-soluble Layers

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Di; Baek, David J.; Hong, Seung Sae; Kourkoutis, Lena F.; Hikita, Yasuyuki; Hwang, Harold Y.

    2016-08-22

    The ability to create and manipulate materials in two-dimensional (2D) form has repeatedly had transformative impact on science and technology. In parallel with the exfoliation and stacking of intrinsically layered crystals, atomic-scale thin film growth of complex materials has enabled the creation of artificial 2D heterostructures with novel functionality and emergent phenomena, as seen in perovskite heterostructures. However, separation of these layers from the growth substrate has proven challenging, limiting the manipulation capabilities of these heterostructures with respect to exfoliated materials. Here we present a general method to create freestanding perovskite membranes. The key is the epitaxial growth of water-soluble Sr3Al2O6 on perovskite substrates, followed by in situ growth of films and heterostructures. Millimetre-size single-crystalline membranes are produced by etching the Sr3Al2O6 layer in water, providing the opportunity to transfer them to arbitrary substrates and integrate them with heterostructures of semiconductors and layered compounds.

  9. Control of a White Organic Light Emitting Diode emission parameters using a single doped RGB active layer

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, D. [Departamento de Ciência dos Materiais e i3N – Instituto de Nanoestruturas, Nanomodelação e Nanofabricação, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica (Portugal); Pinto, A.; Califórnia, A.; Gomes, J. [CeNTI – Centro de Nanotecnologia, Materiais Técnicos, Funcionais e Inteligentes, Rua Fernando Mesquita 2785, 4760-034 Vila Nova de Famalicão (Portugal); Pereira, L., E-mail: luiz@ua.pt [Departmento de Física e i3N – Instituto de Nanoestruturas, Nanomodelação e Nanofabricação, Universidade de Aveiro, 3810-193 Aveiro (Portugal)

    2016-09-15

    Highlights: • A simple WOLED for Solid State Lighting is proposed with high color stability. • Energy transfer and electroluminescence dynamics of a single RGB layer for WOLEDs. • White shade modulation and stability over large emitting areas and applied voltages. - Abstract: Solid State Lighting technologies based on Organic Light Emitting Diodes, became an interesting focus due to their unique properties. The use of a unique RGB active layer for white emission, although simple in theory, shows difficulty to stabilize both CIE coordinates and color modulation. In this work, a WOLED using a simple RGB layer, was developed achieving a high color stability and shade modulation. The RGB matrix comprises a blue host material NPB, doped with two guests, a green (Coumarin 153) and a red (DCM1) in low concentrations. The RGB layer carrier dynamics allows for the white emission in low device complexity and high stability. This was also shown independent of the white shade, obtained through small changes in the red dopant resulting in devices ranging from warm to cool white i.e. an easy color tuning. A detailed analysis of the opto-electrical behavior is made.

  10. Timing and Distribution of Single-Layered Ejecta Craters Imply Sporadic Preservation of Tropical Subsurface Ice on Mars

    Science.gov (United States)

    Kirchoff, Michelle R.; Grimm, Robert E.

    2018-01-01

    Determining the evolution of tropical subsurface ice is a key component to understanding Mars's climate and geologic history. Study of an intriguing crater type on Mars—layered ejecta craters, which likely form by tapping subsurface ice—may provide constraints on this evolution. Layered ejecta craters have a continuous ejecta deposit with a fluidized-flow appearance. Single-layered ejecta (SLE) craters are the most common and dominate at tropical latitudes and therefore offer the best opportunity to derive new constraints on the temporal evolution of low-latitude subsurface ice. We estimate model formation ages of 54 SLE craters with diameter (D) ≥ 5 km using the density of small, superposed craters with D D 1 km indicates that ice could be preserved as shallow as 100 m or less at those locations. Finally, there is a striking spatial mixing in an area of highlands near the equator of layered and radial (lunar-like ballistic) ejecta craters; the latter form where there are insufficient concentrations of subsurface ice. This implies strong spatial heterogeneity in the concentration of tropical subsurface ice.

  11. Control of a White Organic Light Emitting Diode emission parameters using a single doped RGB active layer

    International Nuclear Information System (INIS)

    Pereira, D.; Pinto, A.; Califórnia, A.; Gomes, J.; Pereira, L.

    2016-01-01

    Highlights: • A simple WOLED for Solid State Lighting is proposed with high color stability. • Energy transfer and electroluminescence dynamics of a single RGB layer for WOLEDs. • White shade modulation and stability over large emitting areas and applied voltages. - Abstract: Solid State Lighting technologies based on Organic Light Emitting Diodes, became an interesting focus due to their unique properties. The use of a unique RGB active layer for white emission, although simple in theory, shows difficulty to stabilize both CIE coordinates and color modulation. In this work, a WOLED using a simple RGB layer, was developed achieving a high color stability and shade modulation. The RGB matrix comprises a blue host material NPB, doped with two guests, a green (Coumarin 153) and a red (DCM1) in low concentrations. The RGB layer carrier dynamics allows for the white emission in low device complexity and high stability. This was also shown independent of the white shade, obtained through small changes in the red dopant resulting in devices ranging from warm to cool white i.e. an easy color tuning. A detailed analysis of the opto-electrical behavior is made.

  12. Atomically thin heterostructures based on single-layer tungsten diselenide and graphene.

    Science.gov (United States)

    Lin, Yu-Chuan; Chang, Chih-Yuan S; Ghosh, Ram Krishna; Li, Jie; Zhu, Hui; Addou, Rafik; Diaconescu, Bogdan; Ohta, Taisuke; Peng, Xin; Lu, Ning; Kim, Moon J; Robinson, Jeremy T; Wallace, Robert M; Mayer, Theresa S; Datta, Suman; Li, Lain-Jong; Robinson, Joshua A

    2014-12-10

    Heterogeneous engineering of two-dimensional layered materials, including metallic graphene and semiconducting transition metal dichalcogenides, presents an exciting opportunity to produce highly tunable electronic and optoelectronic systems. In order to engineer pristine layers and their interfaces, epitaxial growth of such heterostructures is required. We report the direct growth of crystalline, monolayer tungsten diselenide (WSe2) on epitaxial graphene (EG) grown from silicon carbide. Raman spectroscopy, photoluminescence, and scanning tunneling microscopy confirm high-quality WSe2 monolayers, whereas transmission electron microscopy shows an atomically sharp interface, and low energy electron diffraction confirms near perfect orientation between WSe2 and EG. Vertical transport measurements across the WSe2/EG heterostructure provides evidence that an additional barrier to carrier transport beyond the expected WSe2/EG band offset exists due to the interlayer gap, which is supported by theoretical local density of states (LDOS) calculations using self-consistent density functional theory (DFT) and nonequilibrium Green's function (NEGF).

  13. Atomically Thin Heterostructures Based on Single-Layer Tungsten Diselenide and Graphene

    KAUST Repository

    Lin, Yu-Chuan

    2014-11-10

    Heterogeneous engineering of two-dimensional layered materials, including metallic graphene and semiconducting transition metal dichalcogenides, presents an exciting opportunity to produce highly tunable electronic and optoelectronic systems. In order to engineer pristine layers and their interfaces, epitaxial growth of such heterostructures is required. We report the direct growth of crystalline, monolayer tungsten diselenide (WSe2) on epitaxial graphene (EG) grown from silicon carbide. Raman spectroscopy, photoluminescence, and scanning tunneling microscopy confirm high-quality WSe2 monolayers, whereas transmission electron microscopy shows an atomically sharp interface, and low energy electron diffraction confirms near perfect orientation between WSe2 and EG. Vertical transport measurements across the WSe2/EG heterostructure provides evidence that an additional barrier to carrier transport beyond the expected WSe2/EG band offset exists due to the interlayer gap, which is supported by theoretical local density of states (LDOS) calculations using self-consistent density functional theory (DFT) and nonequilibrium Green\\'s function (NEGF).

  14. UMCP MIST counter-part test

    International Nuclear Information System (INIS)

    di Marzo, M.; Almenas, K.; Hsu, Y.Y.; Pertmer, G.A.

    1990-01-01

    Two small break loss-of-coolant accident (LOCA) transients are compared to illustrate a scaling methodology for reduced pressure integral facilities. Mapping test 3004 is conducted in the Multiloop Integral System Test (MIST) full pressure, full height facility. The counter-part test MISO3l7 is scaled and performed in the reduced height, reduced pressure UMCP facility. Inventory is used as the chronological scale and pressure, normalized with the initial and system saturation pressures, is used as characteristic parameter to describe the system behavior. The appropriately normalized results conclusively demonstrate that: (a) the same phenomena are observed in the two facilities; (b) the sequence of events is analogous and (c) the trends described by the normalized pressure versus inventory traces are in good quantitative agreement. Each energy transport mode traversed by the two facilities is compared and the phenomena present are described in detail. The differences between the high and reduced pressure tests are outlined. The findings clearly indicate that pressure and height can be scaled for transient where limited boundary conditions are applied and where the break is subcooled. A statement on sensitivity to the initial conditions is also included to define the limitations of the quantitative results

  15. Slow-muon study of quaternary solar-cell materials: Single layers and p -n junctions

    Science.gov (United States)

    Alberto, H. V.; Vilão, R. C.; Vieira, R. B. L.; Gil, J. M.; Weidinger, A.; Sousa, M. G.; Teixeira, J. P.; da Cunha, A. F.; Leitão, J. P.; Salomé, P. M. P.; Fernandes, P. A.; Törndahl, T.; Prokscha, T.; Suter, A.; Salman, Z.

    2018-02-01

    Thin films and p -n junctions for solar cells based on the absorber materials Cu (In ,G a ) Se2 and Cu2ZnSnS4 were investigated as a function of depth using implanted low energy muons. The most significant result is a clear decrease of the formation probability of the Mu+ state at the heterojunction interface as well as at the surface of the Cu (In ,G a ) Se2 film. This reduction is attributed to a reduced bonding reaction of the muon in the absorber defect layer at its surface. In addition, the activation energies for the conversion from a muon in an atomiclike configuration to a anion-bound position are determined from temperature-dependence measurements. It is concluded that the muon probe provides a measurement of the effective surface defect layer width, both at the heterojunctions and at the films. The CIGS surface defect layer is crucial for solar-cell electrical performance and additional information can be used for further optimizations of the surface.

  16. Simultaneous shunt protection and back contact formation for CdTe solar cells with single wall carbon nanotube layers

    Science.gov (United States)

    Phillips, Adam B.; Khanal, Rajendra R.; Song, Zhaoning; Watthage, Suneth C.; Kormanyos, Kenneth R.; Heben, Michael J.

    2015-12-01

    Thin film photovoltaic (PV) devices and modules prepared by commercial processes can be severely compromised by through-device low resistance electrical pathways. The defects can be due to thin or missing semiconductor material, metal diffusion along grain boundaries, or areas containing diodes with low turn-on potentials. We report the use of single wall carbon nanotube (SWCNT) layers to enable both protection against these defects and back contact formation for CdTe PV devices. Samples prepared with a SWCNT back contact exhibited good efficiency and did not require shunt protection, while devices prepared without shunt protection using a standard metal back contact performed poorly. We describe the mechanism by which the SWCNT layer functions. In addition to avoiding the need for shunt protection by other means, the SWCNT film also provides a route to higher short circuit currents.

  17. [Observation of single-layered inverted internal limiting membrane flap technique for macular hole with retinal detachment in high myopia].

    Science.gov (United States)

    Xu, C Z; Wu, J H; He, J W; Feng, C

    2017-05-11

    Objective: To compare the outcome of pars plana vitrectomy (PPV) with a single-layered inverted internal limiting membrane (ILM) flap versus PPV with ILM peeling for the treatment of macular hole associated retinal detachment (MHRD) in high myopia. Methods: In a retrospective cohort study, PPV with 2 kinds of adjuvant surgical procedures were used in 35 moderately high myopia eyes with MHRD. These eyes were divided into 2 groups: group 1 (17 eyes) receiving PPV and ILM peeling and group 2 (18 eyes) receiving PPV with a single-layered inverted ILM flap. Anatomical reattachment of the retina, macular hole closure, and best-corrected visual acuity (BCVA) were measured at 6 months after surgery. Results: The retina was successfully reattached in all cases. The difference of the retinal reattachment rate between the two groups was not statistically significant (Fisher's exact test, P= 1.000). The rate of macular hole closure was 47.1% in group 1 (8 eyes) and 88.9% in group 2 (16 eyes). The difference of the macular hole closure rate between the two groups was statistically significant (Fisher's exact test, P= 0.012). Significant improvement in logarithm of minimal angle of resolution (logMAR) BCVA was achieved in both groups. There was no difference in the initial, final, or improved logMAR BCVA in the 2 groups. Conclusion: Single-layered inverted ILM flap technique effectively helps close the macular hole in moderately high myopia with MHRD. This may prevent the possible redetachment from the macular hole. (Chin J Ophthalmol, 2017, 53: 338 - 343) .

  18. The Electronic and Optical Properties of Au Doped Single-Layer Phosphorene

    Science.gov (United States)

    Zhu, Ziqing; Chen, Changpeng; Liu, Jiayi; Han, Lu

    2018-01-01

    The electronic properties and optical properties of single and double Au-doped phosphorene have been comparatively investigated using the first-principles plane-wave pseudopotential method based on density functional theory. The decrease from direct band gap 0.78 eV to indirect band gap 0.22 and 0.11 eV are observed in the single and double Au-doped phosphorene, respectively. The red shifts of absorbing edge occur in both doped systems, which consequently enhance the absorbing of infrared light in phosphorene. Band gap engineering can, therefore, be used to directly tune the optical absorption of phosphorene system by substitutional Au doping.

  19. Effects of a saturated layer and recirculation on nitrogen treatment performances of a single stage Vertical Flow Constructed Wetland (VFCW).

    Science.gov (United States)

    Prigent, S; Paing, J; Andres, Y; Chazarenc, F

    2013-01-01

    Upgrades to enhance nitrogen removal were tested in a 2 year old pilot vertical flow constructed wetland in spring and summer periods. The effects of a saturated layer and of recirculation were tested in particular. Two pilots (L = 2 m, W = 1.25 m, H = 1.2 m), filled with expanded schist (Mayennite(®)), were designed with hydraulic saturated layers of 20 and 40 cm at the bottom. Each pilot was fed with raw domestic wastewater under field conditions according to a hydraulic load of 15-38 cm d(-1) (i.e. 158-401 g COD (chemical oxygen demand) m(-2) d(-1)) and to recirculation rates ranging from 0% up to 150%. The initial load during the first 2 years of operation resulted in an incomplete mineralized accumulated sludge leading to total suspended solids (TSS), COD and biochemical oxygen demand (BOD5) release. A 40 cm hydraulic saturated layer enabled an increase of 5-10% total nitrogen (TN) removal compared to a 20 cm saturated layer. Recirculation allowed the dilution of raw wastewater and enhanced nitrification in a single stage. A design of 1.8 m² pe(-1) (48 cm d(-1), 191 g COD m(-2) d(-1)) with a 40 cm saturated layer and 100% recirculation enabled the French standard D4 (35 mg TSS L(-1), 125 mg COD L(-1), 25 mg BOD5 L(-1)), nitrogen concentrations below 20 mg TKN (total Kjeldahl nitrogen) L(-1) and 50 mg TN L(-1), to be met.

  20. Use of Single-Layer g-C3N4/Ag Hybrids for Surface-Enhanced Raman Scattering (SERS)

    OpenAIRE

    Jiang, Jizhou; Zou, Jing; Wee, Andrew Thye Shen; Zhang, Wenjing

    2016-01-01

    Surface-enhanced Raman scattering (SERS) substrates with high activity and stability are desirable for SERS sensing. Here, we report a new single atomic layer graphitic-C3N4 (S-g-C3N4) and Ag nanoparticles (NPs) hybrid as high-performance SERS substrates. The SERS mechanism of the highly stable S-g-C3N4/Ag substrates was systematically investigated by a combination of experiments and theoretical calculations. From the results of XPS and Raman spectroscopies, it was found that there was a stro...

  1. Effect of ethanethiolate spacer on morphology and optical responses of Ag nanoparticle array-single layer graphene hybrid systems

    Czech Academy of Sciences Publication Activity Database

    Sutrová, Veronika; Šloufová, I.; Melníková Komínková, Zuzana; Kalbáč, Martin; Pavlova, Ewa; Vlčková, B.

    2017-01-01

    Roč. 33, č. 50 (2017), s. 14414-14424 ISSN 0743-7463 R&D Projects: GA ČR(CZ) GA15-01953S; GA MŠk(CZ) LM2015073 Grant - others:GA MŠk(CZ) CZ.02.1.01/0.0/0.0/16_013/0001821 Institutional support: RVO:61389013 ; RVO:61388955 Keywords : Ag nanoparticle * single layer graphene * ethanethiol Subject RIV: JI - Composite Materials; CF - Physical ; Theoretical Chemistry (UFCH-W) OBOR OECD: Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics; Physical chemistry (UFCH-W) Impact factor: 3.833, year: 2016

  2. Model for a collimated spin-wave beam generated by a single-layer spin torque nanocontact

    Science.gov (United States)

    Hoefer, M. A.; Silva, T. J.; Stiles, M. D.

    2008-04-01

    A model of spin-torque-induced magnetization dynamics based on semiclassical spin diffusion theory for a single-layer nanocontact is presented. The model incorporates effects due to the current-induced Oersted field and predicts the generation of a variety of spatially dependent, coherent, precessional magnetic wave structures. Directionally controllable collimated spin-wave beams, vortex spiral waves, and localized standing waves are found to be excited by the interplay of the Oersted field and the orientation of an applied field. These fields act as a spin-wave “corral” around the nanocontact that controls the propagation of spin waves in certain directions.

  3. Anisotropic Young's Modulus for Single-Layer Black Phosphorus: The Third Principle Direction Besides Armchair and Zigzag

    OpenAIRE

    Jiang, Jin-Wu

    2015-01-01

    We derive an analytic formula for the Young's modulus in single-layer black phosphorus using the valence force field model. By analyzing the directional dependence for the Young's modulus, we explore the third principle direction with direction angle phi_tp = 0.268pi besides armchair and zigzag directions. The maximum Young's modulus value is in the third principle direction. More specifically, the Young's modulus is 52.2 N/m, 85.4 N/m, and 111.4 N/m in the armchair direction, zigzag directio...

  4. Defect characterization of Ga4Se3S layered single crystals by ...

    Indian Academy of Sciences (India)

    Experimental details. Ga4Se3S polycrystals were synthesized from high-purity elements prepared in stoi- chiometric proportions.Gallium (Aldrich cat. no. 263273), selenium (Aldrich cat.no. 204307) and sulphur (Fluka cat. no. 84680) were of 99.999% purity. Ga4Se3S single crystals were grown by Bridgman method from the ...

  5. Defect characterization of Ga4Se3S layered single crystals by ...

    Indian Academy of Sciences (India)

    Trapping centres in undoped Ga 4 Se 3 S single crystals grown by Bridgman method were characterized for the first time by thermoluminescence (TL) measurements carried out in the low temperature range of 15−300 K. After illuminating the sample with blue light (∼470 nm) at 15 K, TL glow curve exhibited one peak ...

  6. Radiative effect differences between multi-layered and single-layer clouds derived from CERES, CALIPSO, and CloudSat data

    International Nuclear Information System (INIS)

    Li Jiming; Yi Yuhong; Minnis, Patrick; Huang Jianping; Yan Hongru; Ma Yuejie; Wang Wencai; Kirk Ayers, J.

    2011-01-01

    Clouds alter general circulation through modification of the radiative heating profile within the atmosphere. Their effects are complex and depend on height, vertical structure, and phase. The instantaneous cloud radiative effect (CRE) induced by multi-layered (ML) and single-layer (SL) clouds is estimated by analyzing data collected by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), CloudSat, and Clouds and Earth's Radiation Energy Budget System (CERES) missions from March 2007 through February 2008. The CRE differences between ML and SL clouds at the top of the atmosphere (TOA) and at the surface were also examined. The zonal mean shortwave (SW) CRE differences between the ML and SL clouds at the TOA and surface were positive at most latitudes, peaking at 120 W m -2 in the tropics and dropping to -30 W m -2 at higher latitudes. This indicated that the ML clouds usually reflected less sunlight at the TOA and transmitted more to the surface than the SL clouds, due to their higher cloud top heights. The zonal mean longwave (LW) CRE differences between ML and SL clouds at the TOA and surface were relatively small, ranging from -30 to 30 W m -2 . This showed that the ML clouds only increased the amount of thermal radiation at the TOA relative to the SL clouds in the tropics, decreasing it elsewhere. In other words, ML clouds tended to cool the atmosphere in the tropics and warm it elsewhere when compared to SL clouds. The zonal mean net CRE differences were positive at most latitudes and dominated by the SW CRE differences.

  7. Single-unit-cell layer established Bi 2 WO 6 3D hierarchical architectures: Efficient adsorption, photocatalysis and dye-sensitized photoelectrochemical performance

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hongwei; Cao, Ranran; Yu, Shixin; Xu, Kang; Hao, Weichang; Wang, Yonggang; Dong, Fan; Zhang, Tierui; Zhang, Yihe

    2017-12-01

    Single-layer catalysis sparks huge interests and gains widespread attention owing to its high activity. Simultaneously, three-dimensional (3D) hierarchical structure can afford large surface area and abundant reactive sites, contributing to high efficiency. Herein, we report an absorbing single-unit-cell layer established Bi2WO6 3D hierarchical architecture fabricated by a sodium dodecyl benzene sulfonate (SDBS)-assisted assembled strategy. The DBS- long chains can adsorb on the (Bi2O2)2+ layers and hence impede stacking of the layers, resulting in the single-unit-cell layer. We also uncovered that SDS with a shorter chain is less effective than SDBS. Due to the sufficient exposure of surface O atoms, single-unit-cell layer 3D Bi2WO6 shows strong selectivity for adsorption on multiform organic dyes with different charges. Remarkably, the single-unit-cell layer 3D Bi2WO6 casts profoundly enhanced photodegradation activity and especially a superior photocatalytic H2 evolution rate, which is 14-fold increase in contrast to the bulk Bi2WO6. Systematic photoelectrochemical characterizations disclose that the substantially elevated carrier density and charge separation efficiency take responsibility for the strengthened photocatalytic performance. Additionally, the possibility of single-unit-cell layer 3D Bi2WO6 as dye-sensitized solar cells (DSSC) has also been attempted and it was manifested to be a promising dye-sensitized photoanode for oxygen evolution reaction (ORR). Our work not only furnish an insight into designing single-layer assembled 3D hierarchical architecture, but also offer a multi-functional material for environmental and energy applications.

  8. Quantum Monte Carlo Studies of Bulk and Few- or Single-Layer Black Phosphorus

    Science.gov (United States)

    Shulenburger, Luke; Baczewski, Andrew; Zhu, Zhen; Guan, Jie; Tomanek, David

    2015-03-01

    The electronic and optical properties of phosphorus depend strongly on the structural properties of the material. Given the limited experimental information on the structure of phosphorene, it is natural to turn to electronic structure calculations to provide this information. Unfortunately, given phosphorus' propensity to form layered structures bound by van der Waals interactions, standard density functional theory methods provide results of uncertain accuracy. Recently, it has been demonstrated that Quantum Monte Carlo (QMC) methods achieve high accuracy when applied to solids in which van der Waals forces play a significant role. In this talk, we will present QMC results from our recent calculations on black phosphorus, focusing on the structural and energetic properties of monolayers, bilayers and bulk structures. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  9. Determination of band alignment in the single-layer MoS2/WSe2 heterojunction

    KAUST Repository

    Chiu, Ming-Hui

    2015-07-16

    The emergence of two-dimensional electronic materials has stimulated proposals of novel electronic and photonic devices based on the heterostructures of transition metal dichalcogenides. Here we report the determination of band offsets in the heterostructures of transition metal dichalcogenides by using microbeam X-ray photoelectron spectroscopy and scanning tunnelling microscopy/spectroscopy. We determine a type-II alignment between MoS2 and WSe2 with a valence band offset value of 0.83 eV and a conduction band offset of 0.76 eV. First-principles calculations show that in this heterostructure with dissimilar chalcogen atoms, the electronic structures of WSe2 and MoS2 are well retained in their respective layers due to a weak interlayer coupling. Moreover, a valence band offset of 0.94 eV is obtained from density functional theory, consistent with the experimental determination.

  10. Exploring the boundary-layer cloud-climate feedback through Single-Column Model in Radiative-Advective Equilibrium

    Science.gov (United States)

    Dal Gesso, Sara; Neggers, Roel

    2017-04-01

    Boundary-layer clouds remain the major contributor to the inter-model spread in future climate predictions. Although light has been shed on the low-level cloud feedback, much remains to be understood about the physical mechanisms at the basis of the response of these clouds to climate warming. In the present study, EC-EARTH Single Column Model (SCM) is used to explore the boundary-layer cloud-climate feedback by imposing a Radiative-Advective Equilibrium, namely a balance between the radiative cooling and the advection of warm air. 30-year simulations are performed with the SCM forced by high-frequency cfSites outputs of the CMIP5 simulations of the host General Circulation Model (GCM) for both the AMIP and AMIP4K experiments. As this study exclusively focuses on marine low-level cloud regimes, the simulations are performed at the Barbados Cloud Observatory in the so-called "dry period", when the large-scale forcing are representative of subtropical marine trade-wind conditions. A first step is to assess how representative long-term SCM simulations are of their host GCM. Subsequently, the SCM is forced by different GCMs within the same framework. In this way, the contribution of the physical parameterization to the boundary-layer cloud feedback is isolated from the dynamics, and systematically evaluated. Finally, a procedure to integrate Large-Eddy Simulations and observations into this framework is discussed.

  11. Preparation and applications of mechanically exfoliated single-layer and multilayer MoS₂ and WSe₂ nanosheets.

    Science.gov (United States)

    Li, Hai; Wu, Jumiati; Yin, Zongyou; Zhang, Hua

    2014-04-15

    Although great progress has been achieved in the study of graphene, the small current ON/OFF ratio in graphene-based field-effect transistors (FETs) limits its application in the fields of conventional transistors or logic circuits for low-power electronic switching. Recently, layered transition metal dichalcogenide (TMD) materials, especially MoS2, have attracted increasing attention. In contrast to its bulk material with an indirect band gap, a single-layer (1L) MoS2 nanosheet is a semiconductor with a direct band gap of ~1.8 eV, which makes it a promising candidate for optoelectronic applications due to the enhancement of photoluminescence and high current ON/OFF ratio. Compared with TMD nanosheets prepared by chemical vapor deposition and liquid exfoliation, mechanically exfoliated ones possess pristine, clean, and high-quality structures, which are suitable for the fundamental study and potential applications based on their intrinsic thickness-dependent properties. In this Account, we summarize our recent research on the preparation, characterization, and applications of 1L and multilayer MoS2 and WSe2 nanosheets produced by mechanical exfoliation. During the preparation of nanosheets, we proposed a simple optical identification method to distinguish 1L and multilayer MoS2 and WSe2 nanosheets on a Si substrate coated with 90 and 300 nm SiO2. In addition, we used Raman spectroscopy to characterize mechanically exfoliated 1L and multilayer WSe2 nanosheets. For the first time, a new Raman peak at 308 cm(-1) was observed in the spectra of WSe2 nanosheets except for the 1L WSe2 nanosheet. Importantly, we found that the 1L WSe2 nanosheet is very sensitive to the laser power during characterization. The high power laser-induced local oxidation of WSe2 nanosheets and single crystals was monitored by Raman spectroscopy and atomic force microscopy (AFM). Hexagonal and monoclinic structured WO3 thin films were obtained from the local oxidization of single- to triple-layer

  12. Deep reactive ion etching of fused silica using a single-coated soft mask layer for bio-analytical applications

    International Nuclear Information System (INIS)

    Ray, Tathagata; Zhu, Haixin; Meldrum, Deirdre R

    2010-01-01

    In this note, we present our results from process development and characterization of reactive ion etching (RIE) of fused silica using a single-coated soft masking layer (KMPR® 1025, Microchem Corporation, Newton, MA). The effects of a number of fluorine-radical-based gaseous chemistries, the gas flow rate, RF power and chamber pressure on the etch rate and etching selectivity of fused silica were studied using factorial experimental designs. RF power and pressure were found to be the most important factors in determining the etch rate. The highest fused silica etch rate obtained was about 933 Å min −1 by using SF 6 -based gas chemistry, and the highest etching selectivity between the fused silica and KMPR® 1025 was up to 1.2 using a combination of CF 4 , CHF 3 and Ar. Up to 30 µm deep microstructures have been successfully fabricated using the developed processes. The average area roughness (R a ) of the etched surface was measured and results showed it is comparable to the roughness obtained using a wet etching technique. Additionally, near-vertical sidewalls (with a taper angle up to 85°) have been obtained for the etched microstructures. The processes developed here can be applied to any application requiring fabrication of deep microstructures in fused silica with near-vertical sidewalls. To our knowledge, this is the first note on deep RIE of fused silica using a single-coated KMPR® 1025 masking layer and a non-ICP-based reactive ion etcher. (technical note)

  13. Analytical and molecular dynamics studies on the impact loading of single-layered graphene sheet by fullerene

    Science.gov (United States)

    Hosseini-Hashemi, Shahrokh; Sepahi-Boroujeni, Amin; Sepahi-Boroujeni, Saeid

    2018-04-01

    Normal impact performance of a system including a fullerene molecule and a single-layered graphene sheet is studied in the present paper. Firstly, through a mathematical approach, a new contact law is derived to describe the overall non-bonding interaction forces of the "hollow indenter-target" system. Preliminary verifications show that the derived contact law gives a reliable picture of force field of the system which is in good agreements with the results of molecular dynamics (MD) simulations. Afterwards, equation of the transversal motion of graphene sheet is utilized on the basis of both the nonlocal theory of elasticity and the assumptions of classical plate theory. Then, to derive dynamic behavior of the system, a set including the proposed contact law and the equations of motion of both graphene sheet and fullerene molecule is solved numerically. In order to evaluate outcomes of this method, the problem is modeled by MD simulation. Despite intrinsic differences between analytical and MD methods as well as various errors arise due to transient nature of the problem, acceptable agreements are established between analytical and MD outcomes. As a result, the proposed analytical method can be reliably used to address similar impact problems. Furthermore, it is found that a single-layered graphene sheet is capable of trapping fullerenes approaching with low velocities. Otherwise, in case of rebound, the sheet effectively absorbs predominant portion of fullerene energy.

  14. Whole field strain measurement in critical thin adhesive layer of single- and double-sided repaired CFRP panel using DIC

    Science.gov (United States)

    Kashfuddoja, Mohammad; Ramji, M.

    2015-03-01

    In the present work, the behavior of thin adhesively layer in patch repaired carbon fiber reinforced polymer (CFRP) panel under tensile load is investigated experimentally using digital image correlation (DIC) technique. The panel is made of Carbon/epoxy composite laminate and the stacking sequence in the panel is [0º]4. A circular hole of 10 mm diameter (d) is drilled at the center of the panel to mimic the case of low velocity impact damage removal. The panel with open hole is repaired with double sided (symmetrical) and single sided (unsymmetrical) rectangular patch made of same panel material having stacking sequence of [0º]3. Araldite 2011 is used for bonding the patch onto the panel over the damaged area. The global behavior of thin adhesive layer is examined by analyzing whole field strain distribution using DIC. Longitudinal, peel and shear strain field in both double and single sided repair configuration is studied and a compression is made between them. An estimate of shear transfer length which is an essential parameter in arriving at an appropriate overlap length in patch design is proposed from DIC and FEA. Damage development, failure mechanism and load displacement behavior is also investigated. The experimental results are compared with the numerical predictions.

  15. First-principles study of thermal expansion and thermomechanics of single-layer black and blue phosphorus

    International Nuclear Information System (INIS)

    Sun, Hongyi; Liu, Gang; Li, Qingfang; Wan, X.G.

    2016-01-01

    The linear thermal expansion coefficients (LTEC) and thermomechanics of single-layer black and blue phosphorus are systematically studied using first-principles based on quasiharmonic approximation. We find the thermal expansion of black phosphorus is very anisotropic. The LTEC along zigzag direction has a turning from negative to positive at around 138 K, while the LTEC along armchair direction is positive (except below 8 K) and about 2.5 times larger than that along zigzag direction at 300 K. For blue phosphorus, the LTEC is negative in the temperature range from 0 to 350 K. In addition, we find that the Young's modulus and Poisson's ratio of black phosphorus along zigzag direction are 4 to 5 times larger than those along armchair direction within considered temperature range, showing a remarkable anisotropic in-plane thermomechanics property. The mechanisms of these peculiar thermal properties are also explored. This work provides a theoretical understanding of the thermal expansion and thermomechanics of this single layer phosphorus family, which will be useful in nanodevices. - Highlights: • The thermal properties of black and blue phosphorus are studied. • Black phosphorus shows remarkable anisotropic thermal expansion and thermomechanics properties. • Blue phosphorus shows novel negative thermal expansion. • The thermal expansion properties are well analyzed by grüneisen theory.

  16. A development of simulation and analytical program for through-diffusion experiments for a single layer of diffusion media

    International Nuclear Information System (INIS)

    Sato, Haruo

    2001-01-01

    A program (TDROCK1. FOR) for simulation and analysis of through-diffusion experiments for a single layer of diffusion media was developed. This program was made by Pro-Fortran language, which was suitable for scientific and technical calculations, and relatively easy explicit difference method was adopted for an analysis. In the analysis, solute concentration in the tracer cell as a function of time that we could not treat to date can be input and the decrease in the solute concentration as a function of time by diffusion from the tracer cell to the measurement cell, the solute concentration distribution in the porewater of diffusion media and the solute concentration in the measurement cell as a function of time can be calculated. In addition, solution volume in both cells and diameter and thickness of the diffusion media are also variable as an input condition. This simulation program could well explain measured result by simulating solute concentration in the measurement cell as a function of time for case which apparent and effective diffusion coefficients were already known. Based on this, the availability and applicability of this program to actual analysis and simulation were confirmed. This report describes the theoretical treatment for the through-diffusion experiments for a single layer of diffusion media, analytical model, an example of source program and the manual. (author)

  17. 3D spin-flop transition in enhanced 2D layered structure single crystalline TlCo2Se2

    Science.gov (United States)

    Jin, Z.; Xia, Z.-C.; Wei, M.; Yang, J.-H.; Chen, B.; Huang, S.; Shang, C.; Wu, H.; Zhang, X.-X.; Huang, J.-W.; Ouyang, Z.-W.

    2016-10-01

    The enhanced 2D layered structure single crystalline TlCo2Se2 has been successfully fabricated, which exhibits field-induced 3D spin-flop phase transitions. In the case of the magnetic field parallel to the c-axis (B//c), the applied magnetic field induces the evolution of the noncollinear helical magnetic coupling into a ferromagnetic (FM) state with all the magnetization of the Co ion parallel to the c-axis. A striking variation of the field-induced strain within the ab-plane is noticed in the magnetic field region of 20-30 T. In the case of the magnetic field perpendicular to the c-axis (B  ⊥  c), the inter-layer helical antiferromagnetic (AFM) coupling may transform to an initial canted AFM coupling, and then part of it transforms to an intermediate metamagnetic phase with the alignment of two-up-one-down Co magnetic moments and finally to an ultimate FM coupling in higher magnetic fields. The robust noncollinear AFM magnetic coupling is completely destroyed above 30 T. In combination with the measurements of magnetization, magnetoresistance and field-induced strain, a complete magnetic phase diagram of the TlCo2Se2 single crystal has been depicted, demonstrating complex magnetic structures even though the crystal geometry itself gives no indication of the magnetic frustration.

  18. Design of single-layer high-efficiency transmitting phase-gradient metasurface and high gain antenna

    Science.gov (United States)

    Zhang, Di; Yang, Xiaoqing; Su, Piqiang; Luo, Jiefang; Chen, Huijie; Yuan, Jianping; Li, Lixin

    2017-12-01

    In this paper, based on rotation phase-gradient principle, a single-layer, high-efficiency transmitting metasurface is designed and applied to high-gain antenna. In the case of circularly polarized incident wave, the PCR (polarization conversions ratio) of the metasurface element is greater than 90% in the band of 9.11–10.48 GHz. The transmitting wave emerges an anomalous refraction when left-handed circularly polarized wave are incident perpendicularly to the 1D phase-gradient metasurface, which is composed of cycle arrangement of 6 units with step value of 30°. The simulated anomalous refraction angle is 40.1°, coincided with the theoretical design value (40.6°). For further application, the 2D focused metasurface is designed to enhance the antenna performance while the left-handed circularly polarized antenna is placed at the focus. The simulated max gain is increased by 12 dB (182%) and the half-power beamwidth is reduced by 74.6°. The measured results are coincided with the simulations, which indicates the antenna has high directivity. The designed single-layer transmission metasurface has advantages of thin thickness (only 1.5 mm), high efficiency and light weight, and will have important application prospects in polarization conversion and beam control.

  19. Creation of giant two-dimensional crystal of zinc oxide nanodisk by method of single-particle layer of organo-modified inorganic fine particles.

    Science.gov (United States)

    Meng, Qi; Honda, Nanami; Uchida, Saki; Hashimoto, Kazuaki; Shibata, Hirobumi; Fujimori, Atsuhiro

    2015-09-01

    In this study, the formation and structure of a single-particle layer of organo-zinc oxide are investigated using surface-pressure-area (π-A) isotherms, out-of-plane X-ray diffraction (XRD) analysis, and atomic force microscopy (AFM). Further, techniques for achieving the solubilization of inorganic fine particles in general solvents have been proposed, and a single-particle layer has been formed using such an inorganic solution as a "spreading solution" for an interfacial film. Surface modification of ZnO is performed using a long-chain carboxylic acid. Accordingly, a regular arrangement of ZnO can be easily achieved in order to overcome the relatively weak van der Walls interactions between inorganic materials. A condensed Langmuir monolayer of these particles is also formed. A multiparticle layered structure is constructed by the Langmuir-Blodgett (LB) technique. Out-of-plane XRD measurement results for a single-particle layer of organo-ZnO clearly show a sharp peak at 42 Å. This peak is attributed to the distance between ZnO layers. The AFM image of this single-particle layer of organo-ZnO shows a particle assembly with a uniform height of 60 nm. These aggregated particles form large two-dimensional crystals. In other words, a regular periodic structure along the c-axis and a condensed single-particle layer had been fabricated using Langmuir and LB techniques. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Aqueous Chemical Solution Deposition of Novel, Thick and Dense Lattice-Matched Single Buffer Layers Suitable for YBCO Coated Conductors: Preparation and Characterization

    Directory of Open Access Journals (Sweden)

    Isabel van Driessche

    2012-09-01

    Full Text Available In this work we present the preparation and characterization of cerium doped lanthanum zirconate (LCZO films and non-stoichiometric lanthanum zirconate (LZO buffer layers on metallic Ni-5% W substrates using chemical solution deposition (CSD, starting from aqueous precursor solutions. La2Zr2O7 films doped with varying percentages of Ce at constant La concentration (La0.5CexZr1−xOy were prepared as well as non-stoichiometric La0.5+xZr0.5−xOy buffer layers with different percentages of La and Zr ratios. The variation in the composition of these thin films enables the creation of novel buffer layers with tailored lattice parameters. This leads to different lattice mismatches with the YBa2Cu3O7−x (YBCO superconducting layer on top and with the buffer layers or substrate underneath. This possibility of minimized lattice mismatch should allow the use of one single buffer layer instead of the current complicated buffer architectures such as Ni-(5% W/LZO/LZO/CeO2. Here, single, crack-free LCZO and non-stoichiometric LZO layers with thicknesses of up to 140 nm could be obtained in one single CSD step. The crystallinity and microstructure of these layers were studied by XRD, and SEM and the effective buffer layer action was studied using XPS depth profiling.

  1. The importance of proper crystal-chemical and geometrical reasoning demonstrated using layered single and double hydroxides

    International Nuclear Information System (INIS)

    Richardson, Ian G.

    2013-01-01

    The importance and utility of proper crystal-chemical and geometrical reasoning in structural studies is demonstrated through the consideration of layered single and double hydroxides. New yet fundamental information is provided and it is evident that the crystal chemistry of the double hydroxide phases is much more straightforward than is apparent from the literature. Atomistic modelling techniques and Rietveld refinement of X-ray powder diffraction data are widely used but often result in crystal structures that are not realistic, presumably because the authors neglect to check the crystal-chemical plausibility of their structure. The purpose of this paper is to reinforce the importance and utility of proper crystal-chemical and geometrical reasoning in structural studies. It is achieved by using such reasoning to generate new yet fundamental information about layered double hydroxides (LDH), a large, much-studied family of compounds. LDH phases are derived from layered single hydroxides by the substitution of a fraction (x) of the divalent cations by trivalent. Equations are derived that enable calculation of x from the a parameter of the unit cell and vice versa, which can be expected to be of widespread utility as a sanity test for extant and future structure determinations and computer simulation studies. The phase at x = 0 is shown to be an α form of divalent metal hydroxide rather than the β polymorph. Crystal-chemically sensible model structures are provided for β-Zn(OH) 2 and Ni- and Mg-based carbonate LDH phases that have any trivalent cation and any value of x, including x = 0 [i.e. for α-M(OH) 2 ·mH 2 O phases

  2. White light emission from an exciplex interface with a single emitting layer (Conference Presentation)

    Science.gov (United States)

    Bernal, Wilson; Perez-Gutierrez, Enrique; Agular, Andres; Barbosa G, J. Oracio C.; Maldonado, Jose L.; Meneses-Nava, Marco Antonio; Rodriguez Rivera, Mario A.; Rodriguez, Braulio

    2017-02-01

    Efficient solid state lighting devices based in inorganic emissive materials are now available in the market meanwhile for organic emissive materials still a lot of research work is in its way. [1,2] In this work a new organic emissive material based on carbazole, N-(4-Ethynylphenyl) carba-zole-d4 (6-d4), is used as electron-acceptor and commercial PEDOT:PSS as the electron-donor to obtain white emission. Besides the HOMO-LUMO levels of materials the white emission showed dependence on the films thicknesses and applied voltages. In here it is reported that by diminishing the thickness of the PEDOT:PSS layer, from 60 to 35 nm, and by keeping the derivative carbazole layer constant at 100 nm the electro-luminescence (EL) changed from emissive exciton states to the mixture of emissive exciton and exciplex states. [3] For the former thicknesses no white light was obtained meanwhile for the later the EL spectra broadened due to the emission of exciplex states. Under this condition, the best-achieved CIE coordinate was (0.31,0.33) with a driving voltage of 8 V. To lower the driving voltage of the devices a thin film of LiF was added between the derivative of carbazol and cathode but the CIE coordinates changed. The best CIE coordinates for this case were (0.29, 0.34) and (0.32, 0.37) with driving voltage of about 6.5 V. Acknowledgments: CeMie-Sol/27 (Mexico) 207450 References [1] Timothy L Dawson, Society of Dyers and Colourists, Color. Technol., 126, 1-10 (2010), doi: 10.1111/j.1478-4408.2010.00220.x [2] G. M. Farinola, R. Ragni, Journal of Solid State Lighting, 2:9 (2015), doi: 10.1186/s40539-015-0028-7. [3] E. Angioni, et al, J. Mater. Chem. C, 2016, 4, 3851, doi: 10.1039/c6tc00750c.

  3. Single layer solar drying behaviour of Citrus aurantium leaves under forced convection

    Energy Technology Data Exchange (ETDEWEB)

    Ait Mohamed, L.; Lahsasni, S. [Ecole Normale Superieure, Marrakech (Morocco). Laboratoire d' Energie Solaire et des Plantes Aromatiques et Medicinales; Unite de Chimie Agroalimentaire, Marrakech (Morocco). Faculte des Sciences Semlalia; Kouhila, M.; Jamali, A. [Ecole Normale Superieure, Marrakech (Morocco). Laboratoire d' Energie Solaire et des Plantes Aromatiques et Medicinales; Kechaou, N. [Ecole Nationale d' Ingenieurs de Sfax (Tunisia); Mahrouz, M. [Unite de Chimie Agroalimentaire, Marrakech (Morocco). Faculte des Sciences Semlalia

    2005-06-01

    Convective solar drying experiments in thin layers of Citrus aurantium leaves grown in Marrakech, morocco, were conducted. An indirect forced convection solar dryer consisting of a solar air collector, an auxiliary heater, a circulation fan and a drying cabinet is used for the experiments. The air temperature was varied from 50 to 60{sup o}C; the relative humidity from 41% to 53%; and the drying air flow rate from 0.0277 to 0.0833 m{sup 3}/s. Thirteen statistical models, which are semi-theoretical and/or empirical, were tested for fitting the experimental data. A nonlinear regression analysis using a statistical computer program was used to evaluate the constants of the models. The Midilli-Kucuk drying model was found to be the most suitable for describing the solar drying curves of Citrus aurantium leaves with a correlation coefficient (r) of 0.99998, chi-square ({chi}{sup 2}) of 4.664 x 10{sup -6} and MBE of 4.8381 x 10{sup -4}. (author)

  4. Atomic-Layer Deposition of Single-Crystalline BeO Epitaxially Grown on GaN Substrates.

    Science.gov (United States)

    Lee, Seung Min; Yum, Jung Hwan; Yoon, Seonno; Larsen, Eric S; Lee, Woo Chul; Kim, Seong Keun; Shervin, Shahab; Wang, Weijie; Ryou, Jae-Hyun; Bielawski, Christopher W; Oh, Jungwoo

    2017-12-06

    We have grown a single-crystal beryllium oxide (BeO) thin film on a gallium nitride (GaN) substrate by atomic-layer deposition (ALD) for the first time. BeO has a higher thermal conductivity, bandgap energy, and dielectric constant than SiO 2 . As an electrical insulator, diamond is the only material on earth whose thermal conductivity exceeds that of BeO. Despite these advantages, there is no chemical-vapor-deposition technique for BeO-thin-film deposition, and thus, it is not used in nanoscale-semiconductor-device processing. In this study, the BeO thin films grown on a GaN substrate with a single crystal showed excellent interface and thermal stability. Transmission electron microscopy showed clear diffraction patterns, and the Raman shifts associated with soft phonon modes verified the high thermal conductivity. The X-ray scan confirmed the out-of-plane single-crystal growth direction and the in-plane, 6-fold, symmetrical wurtzite structure. Single-crystalline BeO was grown on GaN despite the large lattice mismatch, which suggested a model that accommodated the strain of hexagonal-on-hexagonal epitaxy with 5/6 and 6/7 domain matching. BeO has a good dielectric constant and good thermal conductivity, bandgap energy, and single-crystal characteristics, so it is suitable for the gate dielectric of power semiconductor devices. The capacitance-voltage (C-V) results of BeO on a GaN-metal-oxide semiconductor exhibited low frequency dispersion, hysteresis, and interface-defect density.

  5. Structural Differentiation between Layered Single (Ni) and Double Metal Hydroxides (Ni–Al LDHs) Using Wavelet Transformation

    Energy Technology Data Exchange (ETDEWEB)

    Siebecker, Matthew G. [University of Delaware, Delaware Environmental Institute; Sparks, Donald L. [University of Delaware, Delaware Environmental Institute

    2017-09-07

    Layered double hydroxides (LDHs) are anionic clays important in disciplines such as environmental chemistry, geochemistry, and materials science. Developments in signal processing of extended X-ray absorption fine structure (EXAFS) data, such as wavelet transformation (WT), have been used to identify transition metals and Al present in the hydroxide sheets of LDHs. The WT plots of LDHs should be distinct from those of isostructural single metal hydroxides. However, no direct comparison of these minerals appears in the literature using WT. This work systematically analyzes a suite of Ni-rich mineral standards, including Ni–Al LDHs, single metal Ni hydroxides, and Ni-rich silicates using WT. The results illustrate that the WT plots for α-Ni(OH)2 and Ni–Al LDHs are often indistinguishable from each other, with similar two-component plots for the different mineral types. This demonstrates that the WT of the first metal shell often cannot be used to differentiate an LDH from a single metal hydroxide. Interlayer anions adsorbed to the hydroxide sheet of α-Ni(OH)2 affect the EXAFS spectra and are not visible in the FT but are clearly resolved and discrete in the WT.

  6. Integrating chemical imaging of cationic trace metal solutes and pH into a single hydrogel layer

    Energy Technology Data Exchange (ETDEWEB)

    Hoefer, Christoph [Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, A-3430 Tulln (Austria); Santner, Jakob, E-mail: jakob.santner@boku.ac.at [Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, A-3430 Tulln (Austria); Department of Crop Sciences, Division of Agronomy, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, 3430 Tulln (Austria); Borisov, Sergey M. [Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010, Graz (Austria); Wenzel, Walter W.; Puschenreiter, Markus [Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, A-3430 Tulln (Austria)

    2017-01-15

    Gel-based, two-dimensional (2D) chemical imaging techniques are versatile methods for investigating biogeochemically active environments at high spatial resolution (sub-mm). State-of-the-art solute imaging techniques, such as diffusive gradients in thin films (DGT) and planar optodes (PO), employ passive solute sampling or sensing. Combining these methods will provide powerful tools for studying the biogeochemistry of biological niches in soils and sediments. In this study we aimed at developing a combined single-layer gel for direct pH imaging using PO and sampling of anionic and cationic solutes by DGT, with subsequent analysis of the bound solutes by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). We tested three ultra-thin (<100 μm) polyurethane-based gels, incorporating anion and cation binding materials and the fluorescent pH indicator DCIFODA (2′,7′-dichloro-5(6)-N-octadecyl-carboxamidofluorescein). Results showed that PO-based pH sensing using DCIFODA was impossible in the presence of the anion binding materials due to interferences with DCIFODA protonation. One gel, containing only a cation binding material and DCIFODA, was fully characterized and showed similar performance characteristics as comparable DGT-only gels (applicable pH range: pH 5–8, applicable ionic strength range: 1–20 mmol L{sup -1}, cation binding capacity ∼24 μg cm{sup −2}). The dynamic range for PO-based pH mapping was between pH 5.5 and 7.5 with t{sub 90} response time of ∼60 min. In a case study we demonstrated the gel's suitability for multi-analyte solute imaging and mapped pH gradients and concurrent metal solubility patterns in the rhizosphere of Salix smithiana. pH decreases in the rooted soil were co-localized with elevated solute fluxes of Al{sup 3+}, Co{sup 2+}, Cu{sup 2+}, Fe, Mn{sup 2+}, Ni{sup 2+} and Pb{sup 2+}, indicating pH-induced metal solubilisation. - Highlights: • Diffusive gradients in thin films (DGT) and planar

  7. Evaluation of cesarean scar after single- and double-layer hysterotomy closure: a prospective cross-sectional study.

    Science.gov (United States)

    Tekiner, Nur Betül; Çetin, Berna Aslan; Türkgeldi, Lale Susan; Yılmaz, Gökçe; Polat, İbrahim; Gedikbaşı, Ali

    2018-05-01

    We aimed to determine if there is a difference in the size of the cesarean scar defect using saline infusion sonography (SIS) performed on the postoperative third month in patients who underwent single- or double-layered unlocked closure of their uterine incision during their first cesarean delivery. This study was conducted as a prospective cross-sectional study between February 2015 and January 2016 in patients admitted to the labour ward of the Kanuni Sultan Suleyman Training and Research Hospital who subsequently underwent their first delivery by cesarean section. Patients with a previous history of cesarean delivery, preterm pregnancies less than 34 gestational weeks, patients lost to follow-up or those who had an IUD inserted after delivery were excluded from the study. Out of the 327 patients who underwent primary cesarean delivery, 280 were included into the study. Patients were divided into two groups according to the single- (n:126) or double-layered (n:156) closure of their uterine incision. The maternal age, height, weight, obstetric and gynecologic histories, medical histories, indications for their cesarean delivery, technique of uterine closure, birth weight of the baby, duration of the cesarean delivery, need for extra suturing and transfusion were recorded. A Saline infusion sonography (SIS) was performed 3 months postoperatively to determine the presence, depth and length of the cesarean scar. The residual myometrial thickness overlying the scar defect and the fundal myometrial thickness were recorded. No difference was detected between the groups with respect to patient characteristics, whether the operation was elective or emergent, the type of anesthesia used, need for extra suturing, incidence of bladder injuries or uterine atony, need for blood transfusions, duration of labour or cervical dilatation and effacement between the two groups. No statistically significant difference was detected between the two groups with respect to the length

  8. Phase manipulation of Goos–Hänchen shifts in a single-layer of graphene nanostructure under strong magnetic field

    Science.gov (United States)

    Solookinejad, Gh; Jabbari, M.; Panahi, M.; Ahmadi Sangachin, E.

    2017-11-01

    In this paper, we discuss the phase management of Goos–Hänchen (GH) shifts of a probe light through a cavity with a single-layer graphene nanostructure under a strong magnetic field. By using the quantum mechanical density matrix formalism we study the GH shifts of reflected and transmitted light beams. It is realized that negative or positive GH shifts can be achieved simultaneously by tuning some controllable parameters such as relative phase and the Rabi frequency of the applied fields. Moreover, the thickness effect of the cavity structure is considered as an effective parameter for adjusting the GH shifts of reflected and transmitted light beams. We find that by choosing suitable parameters, a maximum negative shift of 4.5 mm and positive shift of 5.4 mm are possible for GH shifts in reflected and transmitted light. Our proposed model may be useful for developing all-optical devices in the infrared region.

  9. Wet chemical synthesis and magnetic properties of single crystal Co nanochains with surface amorphous passivation Co layers

    Directory of Open Access Journals (Sweden)

    Zhou Shao-Min

    2011-01-01

    Full Text Available Abstract In this study, for the first time, high-yield chain-like one-dimensional (1D Co nanostructures without any impurity have been produced by means of a solution dispersion approach under permanent-magnet. Size, morphology, component, and structure of the as-made samples have been confirmed by several techniques, and nanochains (NCs with diameter of approximately 60 nm consisting of single-crystalline Co and amorphous Co-capped layer (about 3 nm have been materialized. The as-synthesized Co samples do not include any other adulterants. The high-quality NC growth mechanism is proposed to be driven by magnetostatic interaction because NC can be reorganized under a weak magnetic field. Room-temperature-enhanced coercivity of NCs was observed, which is considered to have potential applications in spin filtering, high density magnetic recording, and nanosensors. PACS: 61.46.Df; 75.50; 81.07.Vb; 81.07.

  10. Gate-tunable quantum dot in a high quality single layer MoS2 van der Waals heterostructure

    Science.gov (United States)

    Pisoni, Riccardo; Lei, Zijin; Back, Patrick; Eich, Marius; Overweg, Hiske; Lee, Yongjin; Watanabe, Kenji; Taniguchi, Takashi; Ihn, Thomas; Ensslin, Klaus

    2018-03-01

    We have fabricated an encapsulated monolayer MoS2 device with metallic ohmic contacts through a pre-patterned hexagonal boron nitride (hBN) layer. In the bulk, we observe an electron mobility as high as 3000 cm2/Vs at a density of 7 × 1012 cm-2 at a temperature of 1.7 K. Shubnikov-de Haas oscillations start at magnetic fields as low as 3.3 T. By realizing a single quantum dot gate structure on top of hBN, we are able to confine electrons in MoS2 and observe the Coulomb blockade effect. By tuning the middle gate voltage, we reach a double dot regime where we observe the standard honeycomb pattern in the charge stability diagram.

  11. p-wave triggered superconductivity in single-layer graphene on an electron-doped oxide superconductor.

    Science.gov (United States)

    Di Bernardo, A; Millo, O; Barbone, M; Alpern, H; Kalcheim, Y; Sassi, U; Ott, A K; De Fazio, D; Yoon, D; Amado, M; Ferrari, A C; Linder, J; Robinson, J W A

    2017-01-19

    Electron pairing in the vast majority of superconductors follows the Bardeen-Cooper-Schrieffer theory of superconductivity, which describes the condensation of electrons into pairs with antiparallel spins in a singlet state with an s-wave symmetry. Unconventional superconductivity was predicted in single-layer graphene (SLG), with the electrons pairing with a p-wave or chiral d-wave symmetry, depending on the position of the Fermi energy with respect to the Dirac point. By placing SLG on an electron-doped (non-chiral) d-wave superconductor and performing local scanning tunnelling microscopy and spectroscopy, here we show evidence for a p-wave triggered superconducting density of states in SLG. The realization of unconventional superconductivity in SLG offers an exciting new route for the development of p-wave superconductivity using two-dimensional materials with transition temperatures above 4.2 K.

  12. Improving Wind Predictions in the Marine Atmospheric Boundary Layer through Parameter Estimation in a Single-Column Model

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jared A.; Hacker, Joshua P.; Delle Monache, Luca; Kosović, Branko; Clifton, Andrew; Vandenberghe, Francois; Rodrigo, Javier Sanz

    2016-12-14

    A current barrier to greater deployment of offshore wind turbines is the poor quality of numerical weather prediction model wind and turbulence forecasts over open ocean. The bulk of development for atmospheric boundary layer (ABL) parameterization schemes has focused on land, partly due to a scarcity of observations over ocean. The 100-m FINO1 tower in the North Sea is one of the few sources worldwide of atmospheric profile observations from the sea surface to turbine hub height. These observations are crucial to developing a better understanding and modeling of physical processes in the marine ABL. In this study, we use the WRF single column model (SCM), coupled with an ensemble Kalman filter from the Data Assimilation Research Testbed (DART), to create 100-member ensembles at the FINO1 location. The goal of this study is to determine the extent to which model parameter estimation can improve offshore wind forecasts.

  13. Controlling the formation of wrinkles in a single layer graphene sheet subjected to in-plane shear

    KAUST Repository

    Duan, Wen Hui

    2011-08-01

    The initiation and development of wrinkles in a single layer graphene sheet subjected to in-plane shear displacements are investigated. The dependence of the wavelength and amplitude of wrinkles on the applied shear displacements is explicitly obtained with molecular mechanics simulations. A continuum model is developed for the characteristics of the wrinkles which show that the wrinkle wavelength decreases with an increase in shear loading, while the amplitude of the wrinkles is found to initially increase and then become stable. The propagation and growth process of the wrinkles in the sheet is elucidated. It is expected that the research could promote applications of graphenes in the transportation of biological systems, separation science, and the development of the fluidic electronics. © 2011 Elsevier Ltd. All rights reserved.

  14. Phase transitions and optical properties of the semiconducting and metallic phases of single-layer MoS₂.

    Science.gov (United States)

    Fair, K M; Ford, M J

    2015-10-30

    We report density functional theory calculations for single layer MoS2 in its 2H, semiconducting and 1T metallic phases in order to understand the relative stability of these two phases and transition between them in the presence of adsorbed lithium atoms and under compressive strain. We have determined the diffusion barriers between the two phases and demonstrate how the presence of Li adatoms or strain can significantly reduce these barriers. We show that the 2H and 1T structures have the same energy under 15% biaxial, compressive strain. This is the same strain value posited by Lin et al (2014 Nat. Nanotechnology 9 391-396) for their intermediate α phase. Calculations of the 1T and 2H permittivity and electron energy loss spectrum are also performed and characterized.

  15. 1617 nm emission control of an Er:YAG laser by a corrugated single-layer resonant grating mirror.

    Science.gov (United States)

    Aubourg, Adrien; Rumpel, Martin; Didierjean, Julien; Aubry, Nicolas; Graf, Thomas; Balembois, François; Georges, Patrick; Ahmed, Marwan Abdou

    2014-02-01

    A resonant grating mirror (RGM) that combines a single layer planar waveguide and a subwavelength grating is used to simultaneously control the beam quality, the spectral bandwidth, and the polarization state of an Er:YAG laser. This simple device is compared to classical methods using several intracavity components: an etalon for wavelength selection, a thin film polarizer for polarization selection, and an aperture for spatial filtering. It is demonstrated that the RGM provides the same polarization purity, an enhanced spectral filtering, and a significant improvement of the beam quality. In CW operation, the Er:YAG laser with a RGM emits an output power of 1.4 W at 1617 nm with a M2 of 1.4.

  16. Nonlinear digital out-of-plane waveguide coupler based on nonlinear scattering of a single graphene layer

    Science.gov (United States)

    Asadi, Reza; Ouyang, Zhengbiao

    2018-03-01

    A new mechanism for out-of-plane coupling into a waveguide is presented and numerically studied based on nonlinear scattering of a single nano-scale Graphene layer inside the waveguide. In this mechanism, the refractive index nonlinearity of Graphene and nonhomogeneous light intensity distribution occurred due to the interference between the out-of-plane incident pump light and the waveguide mode provide a virtual grating inside the waveguide, coupling the out-of-plane pump light into the waveguide. It has been shown that the coupling efficiency has two distinct values with high contrast around a threshold pump intensity, providing suitable condition for digital optical applications. The structure operates at a resonance mode due to band edge effect, which enhances the nonlinearity and decreases the required threshold intensity.

  17. Highly balanced single-layer high-temperature superconductor SQUID gradiometer freely movable within the Earth's magnetic field

    International Nuclear Information System (INIS)

    Schultze, Volkmar; IJsselsteijn, Rob; May, Torsten; Meyer, Hans-Georg

    2003-01-01

    We developed a gradiometer system based on a single-layer high-temperature superconductor dc superconducting quantum interference device (SQUID), which can be freely moved within the Earth's magnetic field during measurement. The problem of circumferential shielding currents in the parallel gradiometer pick-up loop is solved by the use of an appropriately designed magnetometer SQUID integrated on the gradiometer chip. The magnetometer's feedback coil of the flux-locked loop is laid out as a small Helmholtz coil pair, thus keeping the homogeneous magnetic field constant for both the magnetometer and the gradiometer. Therefore, the balance of the directly coupled gradiometer SQUID is enhanced from 100 up to 3800. The noise limited magnetic field gradient resolution of 45 pT m -1 Hz -1/2 is preserved down to frequencies of several Hz even after strong motion in the Earth's magnetic field

  18. Molecular Doping of the Hole-Transporting Layer for Efficient, Single-Step Deposited Colloidal Quantum Dot Photovoltaics

    KAUST Repository

    Kirmani, Ahmad R.

    2017-07-31

    Employment of thin perovskite shells and metal halides as surface-passivants for colloidal quantum dots (CQDs) have been important, recent developments in CQD optoelectronics. These have opened the route to single-step deposited high-performing CQD solar cells. These promising architectures employ a QD hole-transporting layer (HTL) whose intrinsically shallow Fermi level (EF) restricts band-bending at maximum power-point during solar cell operation limiting charge collection. Here, we demonstrate a generalized approach to effectively balance band-edge energy levels of the main CQD absorber and charge-transport layer for these high-performance solar cells. Briefly soaking the QD HTL in a solution of the metal-organic p-dopant, molybdenum tris(1-(trifluoroacetyl)-2-(trifluoromethyl)ethane-1,2-dithiolene), effectively deepens its Fermi level, resulting in enhanced band bending at the HTL:absorber junction. This blocks the back-flow of photo-generated electrons, leading to enhanced photocurrent and fill factor compared to undoped devices. We demonstrate 9.0% perovskite-shelled and 9.5% metal-halide-passivated CQD solar cells, both achieving ca. 10% relative enhancements over undoped baselines.

  19. High performance of low band gap polymer-based ambipolar transistor using single-layer graphene electrodes.

    Science.gov (United States)

    Choi, Jong Yong; Kang, Woonggi; Kang, Boseok; Cha, Wonsuk; Son, Seon Kyoung; Yoon, Youngwoon; Kim, Hyunjung; Kang, Youngjong; Ko, Min Jae; Son, Hae Jung; Cho, Kilwon; Cho, Jeong Ho; Kim, BongSoo

    2015-03-18

    Bottom-contact bottom-gate organic field-effect transistors (OFETs) are fabricated using a low band gap pDTTDPP-DT polymer as a channel material and single-layer graphene (SLG) or Au source/drain electrodes. The SLG-based ambipolar OFETs significantly outperform the Au-based ambipolar OFETs, and thermal annealing effectively improves the carrier mobilities of the pDTTDPP-DT films. The difference is attributed to the following facts: (i) the thermally annealed pDTTDPP-DT chains on the SLG assume more crystalline features with an edge-on orientation as compared to the polymer chains on the Au, (ii) the morphological features of the thermally annealed pDTTDPP-DT films on the SLG electrodes are closer to the features of those on the gate dielectric layer, and (iii) the SLG electrode provides a flatter, more hydrophobic surface that is favorable for the polymer crystallization than the Au. In addition, the preferred carrier transport in each electrode-based OFET is associated with the HOMO/LUMO alignment relative to the Fermi level of the employed electrode. All of these experimental results consistently explain why the carrier mobilities of the SLG-based OFET are more than 10 times higher than those of the Au-based OTFT. This work demonstrates the strong dependence of ambipolar carrier transport on the source/drain electrode and annealing temperature.

  20. Single-layer 2nd-order high-T{sub c} SQUID gradiometer for use in unshielded environments

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Soon-Gul; Park, Seung Moon; Kang, Chan Seok [Korea University, Chungnam (Korea, Republic of); Kim, In-Seon [Korea Research Institute of Standards and Science, Daejon (Korea, Republic of); Kim, Sang-Jae [Cheju National University, Cheju (Korea, Republic of)

    2006-05-15

    We have studied the fabrication of second-order SQUID gradiometers from single-layer high-T{sub c} film and the feasibility of using those gradiometers in magnetocardiography. The gradiometer contains three parallel-connected pickup loops that are directly coupled to a step-edge junction SQUID with the coupling polarity of the center loop opposite to those of the two side loops. For a well-balanced gradiometer with a balancing factor of 10{sup 3}, we achieved an unshielded gradient noise of 0.84 pT/cm{sup 2}/Hz{sup 1/2} at 1 Hz, which corresponds to an equivalent field noise of 280 fT/Hz{sup 1/2}. A gradiometer with a 5.8-mm baseline successfully recorded the magnetocardic signals of a human subject, demonstrating the feasibility of using the device in biomagnetism. We have also studied the use of submicron YBCO bridges as Josephson elements of long-baseline gradiometers. The bridges were fabricated from 3-{mu}m-wide, 300-nm-thick YBCO lines with a thin layer of Au on top by using a focused-ion-beam (FIB) patterning method. The temperature-dependent critical currents, I{sub c}(T), and the normal state resistances, R{sub N}(T), showed SIS-type behaviors, which are believed to be due to naturally formed grain boundaries.

  1. Dual functional porous anti-reflective coatings with a photocatalytic effect based on a single layer system

    Science.gov (United States)

    Jilavi, M. H.; Mousavi, S. H.; Müller, T. S.; de Oliveira, P. W.

    2018-05-01

    Anti-reflection and photocatalytic properties are desirable for improving the optical properties of electronic devices. We describe a method of fabrication a single-layer, anti-reflective (AR) thin film with an additional photocatalytic property. The layer is deposited on glass substrates by means of a low-cost dip-coating method using a SiO2-TiO2 solution. A comparative study was undertaken to investigate the effects of TiO2 concentrations on the photocatalytic properties of the film and to determine the optimal balance between transmittance and photocatalysis. The average transmittance increases from T = 90.51% to T = 95.46 ± 0.07% for the wavelengths between 380 and 1200 nm. The structural characterization indicated the formation of thin, porous SiO2-TiO2 films with a roughness of less than 7.5 nm. The quality of the samples was evaluated by a complete test program of the mechanical, chemical and accelerated weathering stability. This results open up new possibilities for cost-effective AR coatings for the glass and solar cell industries.

  2. Temperature characterization of a radiating gas layer using digital-single-lens-reflex-camera-based two-color ratio pyrometry.

    Science.gov (United States)

    Deep, Sneh; Krishna, Yedhu; Jagadeesh, Gopalan

    2017-10-20

    The two-color ratio pyrometry technique using a digital single-lens reflex camera has been used to measure the time-averaged and path-integrated temperature distribution in the radiating shock layer in a high-enthalpy flow. A 70 mm diameter cylindrical body with a 70 mm long spike was placed in a hypersonic shock tunnel, and the region behind the shock layer was investigated. The systematic error due to contributions from line emissions was corrected by monitoring the emission spectrum from this region using a spectrometer. The relative contributions due to line emissions on R, G, and B channels of the camera were 7.4%, 2.2%, and 0.4%, respectively. The temperature contours obtained clearly distinguished regions of highest temperature. The maximum absolute temperature obtained in the experiment was ∼2920  K±55  K, which was 20% lower than the stagnation temperature. This lower value is expected due to line-of-sight integration, time averaging, and losses in the flow. Strategies to overcome these limitations are also suggested in the paper.

  3. 1D layered velocity models and microseismic event locations: synthetic examples for a case with a single linear receiver array

    Science.gov (United States)

    Akram, Jubran; Eaton, David W.

    2017-10-01

    We discuss various aspects of 1D velocity-model building for application to microseismic data analysis. We generate simple synthetic example data using a widely used single linear array geometry. The synthetic data contain 30 sources with known locations for a reference model based on previous studies of the Barnett shale. We investigate several key factors that should be considered, including selection of the calibration technique, inclusion of a priori information such as lateral heterogeneity and parameter ranges, and choice of algorithm for travel time computations. For the source-receiver geometry considered here, hypocenter location errors (±6 m in X and ±12 m in Z) can result from differently calibrated models only and without including the errors in picked arrival times and polarization estimates. We find that the errors in hypocenter locations are reduced (±3 m in X and ±6 m in Z) when a model calibrated with multiple shots simultaneously is used. Using four different models (vertical fault, dipping layers, channels, and these effects combined), we demonstrate that systematic errors in hypocenter locations can result when a 1D layered model is used in lieu of a laterally heterogeneous subsurface. Finally, we show that event locations from a velocity model calibrated using direct-arrival times are more stable than from a model calibrated with first-arrival times.

  4. Single-layer 2nd-order high-Tc SQUID gradiometer for use in unshielded environments

    International Nuclear Information System (INIS)

    Lee, Soon-Gul; Park, Seung Moon; Kang, Chan Seok; Kim, In-Seon; Kim, Sang-Jae

    2006-01-01

    We have studied the fabrication of second-order SQUID gradiometers from single-layer high-T c film and the feasibility of using those gradiometers in magnetocardiography. The gradiometer contains three parallel-connected pickup loops that are directly coupled to a step-edge junction SQUID with the coupling polarity of the center loop opposite to those of the two side loops. For a well-balanced gradiometer with a balancing factor of 10 3 , we achieved an unshielded gradient noise of 0.84 pT/cm 2 /Hz 1/2 at 1 Hz, which corresponds to an equivalent field noise of 280 fT/Hz 1/2 . A gradiometer with a 5.8-mm baseline successfully recorded the magnetocardic signals of a human subject, demonstrating the feasibility of using the device in biomagnetism. We have also studied the use of submicron YBCO bridges as Josephson elements of long-baseline gradiometers. The bridges were fabricated from 3-μm-wide, 300-nm-thick YBCO lines with a thin layer of Au on top by using a focused-ion-beam (FIB) patterning method. The temperature-dependent critical currents, I c (T), and the normal state resistances, R N (T), showed SIS-type behaviors, which are believed to be due to naturally formed grain boundaries.

  5. Analysis of current-driven oscillatory dynamics of single-layer homoepitaxial islands on crystalline conducting substrates

    Science.gov (United States)

    Dasgupta, Dwaipayan; Kumar, Ashish; Maroudas, Dimitrios

    2018-03-01

    We report results of a systematic study on the complex oscillatory current-driven dynamics of single-layer homoepitaxial islands on crystalline substrate surfaces and the dependence of this driven dynamical behavior on important physical parameters, including island size, substrate surface orientation, and direction of externally applied electric field. The analysis is based on a nonlinear model of driven island edge morphological evolution that accounts for curvature-driven edge diffusion, edge electromigration, and edge diffusional anisotropy. Using a linear theory of island edge morphological stability, we calculate a critical island size at which the island's equilibrium edge shape becomes unstable, which sets a lower bound for the onset of time-periodic oscillatory dynamical response. Using direct dynamical simulations, we study the edge morphological dynamics of current-driven single-layer islands at larger-than-critical size, and determine the actual island size at which the migrating islands undergo a transition from steady to time-periodic asymptotic states through a subcritical Hopf bifurcation. At the highest symmetry of diffusional anisotropy examined, on {111} surfaces of face-centered cubic crystalline substrates, we find that more complex stable oscillatory states can be reached through period-doubling bifurcation at island sizes larger than those at the Hopf points. We characterize in detail the island morphology and dynamical response at the stable time-periodic asymptotic states, determine the range of stability of these oscillatory states terminated by island breakup, and explain the morphological features of the stable oscillating islands on the basis of linear stability theory.

  6. Effect of non-sperm cells removal with single-layer colloidal centrifugation on myeloperoxidase concentration in post-thaw equine semen.

    Science.gov (United States)

    Ponthier, Jérôme; Teague, Sheila R; Franck, Thierry Y; de la Rebière, Geoffroy; Serteyn, Didier D; Brinsko, Steven P; Love, Charles C; Blanchard, Terry L; Varner, Dickson D; Deleuze, Stéfan C

    2013-12-01

    Myeloperoxidase (MPO) is a pro-oxidant enzyme contained in and released by neutrophils during degranulation or after lysis. Post-thaw semen contains MPO and its concentration is associated with decreased sperm motility. Recently, MPO concentration in post-thaw semen was shown to be associated with the presence of non-sperm cells (NSC). The objective of this study was to evaluate the effect of a single-layer colloidal centrifugation before cryopreservation on NSC and MPO concentrations in equine semen. The experimental design consisted of freezing semen with or without previous centrifugation through two concentrations of single-layer colloid media. Non-sperm cells and MPO concentrations were assessed in pellet and upper layer at each step of the procedure and MPO was detected in cells by immunocytochemistry. Single-layer colloid centrifugation decreased NSC and MPO concentrations in post-thaw semen. The MPO concentration was correlated with concentration of NSC in the upper layer of the supernatant. In post-thaw semen, with or without previous single-layer colloid centrifugation, MPO concentration was correlated with concentration of NSC. Overall, neutrophils were rarely observed and NSC were mainly epithelial cells or cellular debris, as demonstrated by MPO immunocytochemistry. At all steps of the semen processing and cryopreservation, MPO immunostaining was clearly identified only on NSC. In conclusion, our study shows that NSC present in fresh semen release MPO during freezing. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Development of n-ZnO/p-Si single heterojunction solar cell with and without interfacial layer

    Science.gov (United States)

    Hussain, Babar

    The conversion efficiency of conventional silicon (Si) photovoltaic cells has not been improved significantly during last two decades but their cost decreased dramatically during this time. However, the higher price-per-watt of solar cells is still the main bottleneck in their widespread use for power generation. Therefore, new materials need to be explored for the fabrication of solar cells potentially with lower cost and higher efficiency. The n-type zinc oxide (n-ZnO) and p-type Si (p-Si) based single heterojunction solar cell (SHJSC) is one of the several attempts to replace conventional Si single homojunction solar cell technology. There are three inadequacies in the literature related to n-ZnO/p-Si SHJSC: (1) a detailed theoretical analysis to evaluate potential of the solar cell structure, (2) inconsistencies in the reported value of open circuit voltage (VOC) of the solar cell, and (3) lower value of experimentally achieved VOC as compared to theoretical prediction based on band-bending between n-ZnO and p-Si. Furthermore, the scientific community lacks consensus on the optimum growth parameters of ZnO. In this dissertation, I present simulation and experimental results related to n-ZnO/p-Si SHJSC to fill the gaps mentioned above. Modeling and simulation of the solar cell structure are performed using PC1D and AFORS-HET software taking practical constraints into account to explore the potential of the structure. Also, unnoticed benefits of ZnO in solar cells such as an additional antireflection (AR) effect and low temperature deposition are highlighted. The growth parameters of ZnO using metal organic chemical vapor deposition and sputtering are optimized. The structural, optical, and electrical characterization of ZnO thin films grown on sapphire and Si substrates is performed. Several n-ZnO/p-Si SHJSC devices are fabricated to confirm the repeatability of the VOC. Moreover, the AR effect of ZnO while working as an n-type layer is experimentally verified

  8. Single-Atom Au/NiFe Layered Double Hydroxide Electrocatalyst: Probing the Origin of Activity for Oxygen Evolution Reaction.

    Science.gov (United States)

    Zhang, Jingfang; Liu, Jieyu; Xi, Lifei; Yu, Yifu; Chen, Ning; Sun, Shuhui; Wang, Weichao; Lange, Kathrin M; Zhang, Bin

    2018-03-21

    A fundamental understanding of the origin of oxygen evolution reaction (OER) activity of transition-metal-based electrocatalysts, especially for single precious metal atoms supported on layered double hydroxides (LDHs), is highly required for the design of efficient electrocatalysts toward further energy conversion technologies. Here, we aim toward single-atom Au supported on NiFe LDH ( s Au/NiFe LDH) to clarify the activity origin of LDHs system and a 6-fold OER activity enhancement by 0.4 wt % s Au decoration. Combining with theoretical calculations, the active behavior of NiFe LDH results from the in situ generated NiFe oxyhydroxide from LDH during the OER process. With the presence of s Au, s Au/NiFe LDH possesses an overpotential of 0.21 V in contrast to the calculated result (0.18 V). We ascribe the excellent OER activity of s Au/NiFe LDH to the charge redistribution of active Fe as well as its surrounding atoms causing by the neighboring s Au on NiFe oxyhydroxide stabilized by interfacial CO 3 2- and H 2 O interfacing with LDH.

  9. Electrochemical characterization of single-walled carbon nanotubes for electrochemical double layer capacitors using non-aqueous electrolyte

    International Nuclear Information System (INIS)

    Ruch, P.W.; Koetz, R.; Wokaun, A.

    2009-01-01

    Single-walled carbon nanotubes (SWCNTs) were investigated by cyclic voltammetry and electrochemical impedance spectroscopy in a non-aqueous electrolyte, 1 M Et 4 NBF 4 in acetonitrile, suitable for supercapacitors. Further, in situ dilatometry and in situ conductance measurements were performed on single electrodes and the results compared to an activated carbon, YP17. Both materials show capacitive behavior characteristic of high surface area electrodes for supercapacitors, with the maximum full cell gravimetric capacitance being 34 F/g for YP17 and 20 F/g for SWCNTs at 2.5 V with respect to the total active electrode mass. The electronic resistance of SWCNTs and activated carbon decreases significantly during charging, showing similarities of the two materials during electrochemical doping. The SWCNT electrode expands irreversibly during the first electrochemical potential sweep as verified by in situ dilatometry, indicative of at least partial debundling of the SWCNTs. A reversible periodic swelling and shrinking during cycling is observed for both materials, with the magnitude of expansion depending on the type of ions forming the double layer.

  10. Room-temperature superparamagnetism due to giant magnetic anisotropy in Mo S defected single-layer MoS2

    Science.gov (United States)

    Khan, M. A.; Leuenberger, Michael N.

    2018-04-01

    Room-temperature superparamagnetism due to a large magnetic anisotropy energy (MAE) of a single atom magnet has always been a prerequisite for nanoscale magnetic devices. Realization of two dimensional (2D) materials such as single-layer (SL) MoS2, has provided new platforms for exploring magnetic effects, which is important for both fundamental research and for industrial applications. Here, we use density functional theory (DFT) to show that the antisite defect (Mo S ) in SL MoS2 is magnetic in nature with a magnetic moment μ of  ∼2 μB and, remarkably, exhibits an exceptionally large atomic scale MAE =\\varepsilon\\parallel-\\varepsilon\\perp of  ∼500 meV. Our calculations reveal that this giant anisotropy is the joint effect of strong crystal field and significant spin–orbit coupling (SOC). In addition, the magnetic moment μ can be tuned between 1 μB and 3 μB by varying the Fermi energy \\varepsilonF , which can be achieved either by changing the gate voltage or by chemical doping. We also show that MAE can be raised to  ∼1 eV with n-type doping of the MoS2:Mo S sample. Our systematic investigations deepen our understanding of spin-related phenomena in SL MoS2 and could provide a route to nanoscale spintronic devices.

  11. Multi-electrode double layer capacitor having single electrolyte seal and aluminum-impregnated carbon cloth electrodes

    Science.gov (United States)

    Farahmandi, C. Joseph; Dispennette, John M.; Blank, Edward; Kolb, Alan C.

    1999-01-19

    A single cell, multi-electrode high performance double layer capacitor includes first and second flat stacks of electrodes adapted to be housed in a closeable two-part capacitor case which includes only a single electrolyte seal. Each electrode stack has a plurality of electrodes connected in parallel, with the electrodes of one stack being interleaved with the electrodes of the other stack to form an interleaved stack, and with the electrodes of each stack being electrically connected to respective capacitor terminals. A porous separator sleeve is inserted over the electrodes of one stack before interleaving to prevent electrical shorts between the electrodes. The electrodes are made by folding a compressible, low resistance, aluminum-impregnated carbon cloth, made from activated carbon fibers, around a current collector foil, with a tab of the foils of each electrode of each stack being connected in parallel and connected to the respective capacitor terminal. The height of the interleaved stack is somewhat greater than the inside height of the closed capacitor case, thereby requiring compression of the interleaved electrode stack when placed inside of the case, and thereby maintaining the interleaved electrode stack under modest constant pressure. The closed capacitor case is filled with an electrolytic solution and sealed. A preferred electrolytic solution is made by dissolving an appropriate salt into acetonitrile (CH.sub.3 CN). In one embodiment, the two parts of the capacitor case are conductive and function as the capacitor terminals.

  12. Colloid single-layer centrifugation improves post-thaw donkey (Equus asinus) sperm quality and is related to ejaculate freezability.

    Science.gov (United States)

    Ortiz, I; Dorado, J; Acha, D; Gálvez, M J; Urbano, M; Hidalgo, M

    2015-01-01

    The aim of this study was to determine whether colloid single-layer centrifugation (SLC) improves post-thaw donkey sperm quality and if this potential enhancement is related to ejaculate freezability. Semen from Andalusian donkeys was frozen following a standard protocol. SLC was performed on frozen-thawed semen and post-thaw sperm parameters were compared with uncentrifuged samples. Sperm quality was estimated by integrating in a single value sperm motility (assessed by computer-assisted sperm analysis), morphology and viability (evaluated under brightfield or fluorescence microscopy). Sperm freezability was calculated as the relationship between sperm quality obtained before freezing and after thawing. Ejaculates were classified into low, medium and high freezability groups using the 25th and 75th percentiles as thresholds. All sperm parameters were significantly (P<0.01) higher in SLC-selected samples in comparison to uncentrifuged frozen-thawed semen and several kinematic parameters were even higher than those obtained in fresh semen. The increment of sperm parameters after SLC selection was correlated with ejaculate freezability, obtaining the highest values after SLC in semen samples with low freezability. We concluded that, based on the sperm-quality parameters evaluated, SLC can be a suitable procedure to improve post-thaw sperm quality of cryopreserved donkey semen, in particular for those ejaculates with low freezability.

  13. Predicting Single-Layer Technetium Dichalcogenides (TcX₂, X = S, Se) with Promising Applications in Photovoltaics and Photocatalysis.

    Science.gov (United States)

    Jiao, Yalong; Zhou, Liujiang; Ma, Fengxian; Gao, Guoping; Kou, Liangzhi; Bell, John; Sanvito, Stefano; Du, Aijun

    2016-03-02

    One of the least known compounds among transition metal dichalcogenides (TMDCs) is the layered triclinic technetium dichalcogenides (TcX2, X = S, Se). In this work, we systematically study the structural, mechanical, electronic, and optical properties of TcS2 and TcSe2 monolayers based on density functional theory (DFT). We find that TcS2 and TcSe2 can be easily exfoliated in a monolayer form because their formation and cleavage energy are analogous to those of other experimentally realized TMDCs monolayer. By using a hybrid DFT functional, the TcS2 and TcSe2 monolayers are calculated to be indirect semiconductors with band gaps of 1.91 and 1.69 eV, respectively. However, bilayer TcS2 exhibits direct-bandgap character, and both TcS2 and TcSe2 monolayers can be tuned from semiconductor to metal under effective tensile/compressive strains. Calculations of visible light absorption indicate that 2D TcS2 and TcSe2 generally possess better capability of harvesting sunlight compared to single-layer MoS2 and ReSe2, implying their potential as excellent light-absorbers. Most interestingly, we have discovered that the TcSe2 monolayer is an excellent photocatalyst for splitting water into hydrogen due to the perfect fit of band edge positions with respect to the water reduction and oxidation potentials. Our predictions expand the two-dimensional (2D) family of TMDCs, and the remarkable electronic/optical properties of monolayer TcS2 and TcSe2 will place them among the most promising 2D TMDCs for renewable energy application in the future.

  14. Role of crystallographic anisotropy in the formation of surface layers of single NiTi crystals after ion-plasma alloying

    Energy Technology Data Exchange (ETDEWEB)

    Poletika, T. M., E-mail: poletm@ispms.tsc.ru; Girsova, S. L., E-mail: llm@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Meisner, L. L., E-mail: girs@ispms.tsc.ru; Meisner, S. N., E-mail: msn@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Shulepov, I. A., E-mail: iashulepov@tpu.ru [National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation)

    2015-10-27

    The structure of the surface and near-surface layers of single crystals of NiTi, differently oriented relative to the direction of ion beam treatment was investigated. The role of the crystallographic orientation in formation of structure of surface layers after ion-plasma alloying was revealed. It was found that the orientation effects of selective sputtering and channeling determine the thickness of the oxide and amorphous layers, the depth of penetration of ions and impurities, the distribution of Ni with depth.

  15. Two-dimensional carbon crystals. Electrical transport in single- and double-layer graphene; Zweidimensionale Kohlenstoffkristalle. Elektrischer Transport in Einzel- und Doppellagen-Graphen

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Hennrik

    2012-02-03

    In his work atomically thin layers of carbon, socalled graphene, are investigated. These systems exhibit outstanding electronic properties which are analysed using magnetotransport measurements. For this purpose, different types of samples are prepared, analysed and discussed. In addition to conventional single layer and single crystal bilayer systems, folded flakes with twisted planes are examined. Since monolayer graphene is a two dimensional crystal in which every atom sits at the surface, it is very sensitive to any type of perturbation. Three different cases are investigated: Firstly, dopants are removed from the surface and the change in transport properties is monitored. Secondly, the regime of small carrier concentrations is used to observe field induced recharging of inhomogeneities. Thirdly, an atomic force microscope is used to alter the graphene itself in a defined region. The implications of this modification are again investigated using magnetotransport measurements. The influence of one layer on another one is studied in decoupled two layer samples. A folded sample with separatly contacted layers is used to show transport through the folded region. For jointly contacted layers parallel transport measurements are performed to analyse screening effects of an applied electric field and substrate influence. The interaction of the two layers is shown by a significant reduction of the Fermivelocity.

  16. Prototype pre-clinical PET scanner with depth-of-interaction measurements using single-layer crystal array and single-ended readout

    Science.gov (United States)

    Lee, Min Sun; Kim, Kyeong Yun; Ko, Guen Bae; Lee, Jae Sung

    2017-05-01

    In this study, we developed a proof-of-concept prototype PET system using a pair of depth-of-interaction (DOI) PET detectors based on the proposed DOI-encoding method and digital silicon photomultiplier (dSiPM). Our novel cost-effective DOI measurement method is based on a triangular-shaped reflector that requires only a single-layer pixelated crystal and single-ended signal readout. The DOI detector consisted of an 18  ×  18 array of unpolished LYSO crystal (1.47  ×  1.47  ×  15 mm3) wrapped with triangular-shaped reflectors. The DOI information was encoded by depth-dependent light distribution tailored by the reflector geometry and DOI correction was performed using four-step depth calibration data and maximum-likelihood (ML) estimation. The detector pair and the object were placed on two motorized rotation stages to demonstrate 12-block ring PET geometry with 11.15 cm diameter. Spatial resolution was measured and phantom and animal imaging studies were performed to investigate imaging performance. All images were reconstructed with and without the DOI correction to examine the impact of our DOI measurement. The pair of dSiPM-based DOI PET detectors showed good physical performances respectively: 2.82 and 3.09 peak-to-valley ratios, 14.30% and 18.95% energy resolution, and 4.28 and 4.24 mm DOI resolution averaged over all crystals and all depths. A sub-millimeter spatial resolution was achieved at the center of the field of view (FOV). After applying ML-based DOI correction, maximum 36.92% improvement was achieved in the radial spatial resolution and a uniform resolution was observed within 5 cm of transverse PET FOV. We successfully acquired phantom and animal images with improved spatial resolution and contrast by using the DOI measurement. The proposed DOI-encoding method was successfully demonstrated in the system level and exhibited good performance, showing its feasibility for animal PET applications with high spatial

  17. Use of Single-Layer g-C3N4/Ag Hybrids for Surface-Enhanced Raman Scattering (SERS).

    Science.gov (United States)

    Jiang, Jizhou; Zou, Jing; Wee, Andrew Thye Shen; Zhang, Wenjing

    2016-09-30

    Surface-enhanced Raman scattering (SERS) substrates with high activity and stability are desirable for SERS sensing. Here, we report a new single atomic layer graphitic-C 3 N 4 (S-g-C 3 N 4 ) and Ag nanoparticles (NPs) hybrid as high-performance SERS substrates. The SERS mechanism of the highly stable S-g-C 3 N 4 /Ag substrates was systematically investigated by a combination of experiments and theoretical calculations. From the results of XPS and Raman spectroscopies, it was found that there was a strong interaction between S-g-C 3 N 4 and Ag NPs, which facilitates the uniform distribution of Ag NPs over the edges and surfaces of S-g-C 3 N 4 nanosheets, and induces a charge transfer from S-g-C 3 N 4 to the oxidizing agent through the silver surface, ultimately protecting Ag NPs from oxidation. Based on the theoretical calculations, we found that the net surface charge of the Ag atoms on the S-g-C 3 N 4 /Ag substrates was positive and the Ag NPs presented high dispersibility, suggesting that the Ag atoms on the S-g-C 3 N 4 /Ag substrates were not likely to be oxidized, thereby ensuring the high stability of the S-g-C 3 N 4 /Ag substrate. An understanding of the stability mechanism in this system can be helpful for developing other effective SERS substrates with long-term stability.

  18. Density functional theory study of chemical sensing on surfaces of single-layer MoS2 and graphene

    International Nuclear Information System (INIS)

    Mehmood, F.; Pachter, R.

    2014-01-01

    In this work, density functional theory (DFT) calculations have been used to investigate chemical sensing on surfaces of single-layer MoS 2 and graphene, considering the adsorption of the chemical compounds triethylamine, acetone, tetrahydrofuran, methanol, 2,4,6-trinitrotoluene, o-nitrotoluene, o-dichlorobenzene, and 1,5-dicholoropentane. Physisorption of the adsorbates on free-standing surfaces was analyzed in detail for optimized material structures, considering various possible adsorption sites. Similar adsorption characteristics for the two surface types were demonstrated, where inclusion of a correction to the DFT functional for London dispersion was shown to be important to capture interactions at the interface of molecular adsorbate and surface. Charge transfer analyses for adsorbed free-standing surfaces generally demonstrated very small effects. However, charge transfer upon inclusion of the underlying SiO 2 substrate rationalized experimental observations for some of the adsorbates considered. A larger intrinsic response for the electron-donor triethylamine adsorbed on MoS 2 as compared to graphene was demonstrated, which may assist in devising chemical sensors for improved sensitivity

  19. Electronic evidence of an insulator-superconductor crossover in single-layer FeSe/SrTiO3 films.

    Science.gov (United States)

    He, Junfeng; Liu, Xu; Zhang, Wenhao; Zhao, Lin; Liu, Defa; He, Shaolong; Mou, Daixiang; Li, Fangsen; Tang, Chenjia; Li, Zhi; Wang, Lili; Peng, Yingying; Liu, Yan; Chen, Chaoyu; Yu, Li; Liu, Guodong; Dong, Xiaoli; Zhang, Jun; Chen, Chuangtian; Xu, Zuyan; Chen, Xi; Ma, Xucun; Xue, Qikun; Zhou, X J

    2014-12-30

    In high-temperature cuprate superconductors, it is now generally agreed that superconductivity is realized by doping an antiferromagnetic Mott (charge transfer) insulator. The doping-induced insulator-to-superconductor transition has been widely observed in cuprates, which provides important information for understanding the superconductivity mechanism. In the iron-based superconductors, however, the parent compound is mostly antiferromagnetic bad metal, raising a debate on whether an appropriate starting point should go with an itinerant picture or a localized picture. No evidence of doping-induced insulator-superconductor transition (or crossover) has been reported in the iron-based compounds so far. Here, we report an electronic evidence of an insulator-superconductor crossover observed in the single-layer FeSe film grown on a SrTiO3 substrate. By taking angle-resolved photoemission measurements on the electronic structure and energy gap, we have identified a clear evolution of an insulator to a superconductor with increasing carrier concentration. In particular, the insulator-superconductor crossover in FeSe/SrTiO3 film exhibits similar behaviors to that observed in the cuprate superconductors. Our results suggest that the observed insulator-superconductor crossover may be associated with the two-dimensionality that enhances electron localization or correlation. The reduced dimensionality and the interfacial effect provide a new pathway in searching for new phenomena and novel superconductors with a high transition temperature.

  20. Electronic evidence of an insulator–superconductor crossover in single-layer FeSe/SrTiO3 films

    Science.gov (United States)

    He, Junfeng; Liu, Xu; Zhang, Wenhao; Zhao, Lin; Liu, Defa; He, Shaolong; Mou, Daixiang; Li, Fangsen; Tang, Chenjia; Li, Zhi; Wang, Lili; Peng, Yingying; Liu, Yan; Chen, Chaoyu; Yu, Li; Liu, Guodong; Dong, Xiaoli; Zhang, Jun; Chen, Chuangtian; Xu, Zuyan; Chen, Xi; Ma, Xucun; Xue, Qikun; Zhou, X. J.

    2014-01-01

    In high-temperature cuprate superconductors, it is now generally agreed that superconductivity is realized by doping an antiferromagnetic Mott (charge transfer) insulator. The doping-induced insulator-to-superconductor transition has been widely observed in cuprates, which provides important information for understanding the superconductivity mechanism. In the iron-based superconductors, however, the parent compound is mostly antiferromagnetic bad metal, raising a debate on whether an appropriate starting point should go with an itinerant picture or a localized picture. No evidence of doping-induced insulator–superconductor transition (or crossover) has been reported in the iron-based compounds so far. Here, we report an electronic evidence of an insulator–superconductor crossover observed in the single-layer FeSe film grown on a SrTiO3 substrate. By taking angle-resolved photoemission measurements on the electronic structure and energy gap, we have identified a clear evolution of an insulator to a superconductor with increasing carrier concentration. In particular, the insulator–superconductor crossover in FeSe/SrTiO3 film exhibits similar behaviors to that observed in the cuprate superconductors. Our results suggest that the observed insulator–superconductor crossover may be associated with the two-dimensionality that enhances electron localization or correlation. The reduced dimensionality and the interfacial effect provide a new pathway in searching for new phenomena and novel superconductors with a high transition temperature. PMID:25502774

  1. Development and characterization of light-emitting diodes (LEDs) based on ruthenium complex single layer for transparent displays

    Energy Technology Data Exchange (ETDEWEB)

    Santos, G.; Fonseca, F.; Andrade, A.M. [Laboratorio de Microelectronica, Departamento de Engenharia de Sistemas Electronicos, Escola Politecnica da Universidade de Sao Paulo (Brazil); Patrocinio, A.O.T.; Mizoguchi, S.K.; Murakami Iha, N.Y. [Laboratorio de Fotoquimica Inorganica e Conversao de Energia, Instituto de Quimica da Universidade de Sao Paulo (Brazil); Peres, M.; Monteiro, T.; Pereira, L. [Departamento de Fisica e I3N, Universidade de Aveiro (Portugal)

    2008-08-15

    In this work, two ruthenium complexes,[Ru(bpy){sub 3}](PF{sub 6}){sub 2} and[Ru(ph2phen){sub 3}](PF{sub 6}){sub 2} in poly(methylmethacrylate) matrix were employed to build single-layer light-emitting electrochemical cells by spin coating on indium tin oxide substrate. In both cases the electroluminescence spectra exhibit a relatively broad band with maxima near to 625 nm and CIE (x,y) color coordinates of (0.64,0.36), which are comparable with the photoluminescence data in the same medium. The best result was obtained with the[Ru(bpy){sub 3}](PF{sub 6}){sub 2} device where the optical output power approaches 10{mu}W at the band maximum with a wall-plug efficiency higher than 0.03%. The lowest driving voltage is about 4 V for an electrical current of 20 mA. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Inhibition of microbial growth on air cathodes of single chamber microbial fuel cells by incorporating enrofloxacin into the catalyst layer.

    Science.gov (United States)

    Liu, Weifeng; Cheng, Shaoan; Sun, Dan; Huang, Haobin; Chen, Jie; Cen, Kefa

    2015-10-15

    The inevitable growth of aerobic bacteria on the surface of air cathodes is an important factor reducing the performance stability of air cathode single-chamber membrane-free microbial fuel cells (MFCs). Thus searching for effective methods to inhibit the cathodic microbial growth is critical for the practical application of MFCs. In this study, enrofloxacin (ENR), a broad spectrum fluoroquinolone antibiotic, was incorporated into the catalyst layer of activated carbon air cathodes (ACACs) to inhibit the cathodic microbial growth. The biomass content on ACACs was substantially reduced by 60.2% with ENR treatment after 91 days of MFCs operation. As a result of the inhibited microbial growth, the oxygen reduction catalytic performance of the ENR treated ACACs was much stable compared to the fast performance decline of the untreated control. Consequently, a quite stable electricity production was obtained for the MFCs with the ENR treated ACACs, in contrast with a 22.5% decrease in maximum power density of the MFCs with the untreated cathode. ENR treatment of ACACs showed minimal effects on the anode performance. These results indicate that incorporating antibiotics into ACACs should be a simple and effective strategy to inhibit the microbial growth and improve the long-term stability of the performance of air cathode and the electricity production of MFCs. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Single-layer centrifugation separates spermatozoa from diploid cells in epididymal samples from gray wolves, Canis lupus (L.).

    Science.gov (United States)

    Muñoz-Fuentes, Violeta; Linde Forsberg, Catharina; Vilà, Carles; Morrell, Jane M

    2014-09-15

    Sperm samples may be used for assisted reproductive technologies (e.g., farmed or endangered species) or as a source of haploid DNA or sperm-specific RNA. When ejaculated spermatozoa are not available or are very difficult to obtain, as is the case for most wild endangered species, the epididymides of dead animals (e.g., animals that have been found dead, shot by hunters or poachers, or that that require euthanasia in zoological collections) can be used as a source of sperm. Such epididymal sperm samples are usually contaminated with cellular debris, erythrocytes, leukocytes, and sometimes also bacteria. These contaminants may be sources of reactive oxygen species that damage spermatozoa during freezing or contribute undesired genetic material from diploid cells. We used single-layer centrifugation through a colloid formulation, Androcoll-C, to successfully separate wolf epididymal spermatozoa from contaminating cells and cellular debris in epididymal samples harvested from carcasses. Such a procedure may potentially be applied to epididymal sperm samples from other species. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Liver Tumor Segmentation from MR Images Using 3D Fast Marching Algorithm and Single Hidden Layer Feedforward Neural Network

    Directory of Open Access Journals (Sweden)

    Trong-Ngoc Le

    2016-01-01

    Full Text Available Objective. Our objective is to develop a computerized scheme for liver tumor segmentation in MR images. Materials and Methods. Our proposed scheme consists of four main stages. Firstly, the region of interest (ROI image which contains the liver tumor region in the T1-weighted MR image series was extracted by using seed points. The noise in this ROI image was reduced and the boundaries were enhanced. A 3D fast marching algorithm was applied to generate the initial labeled regions which are considered as teacher regions. A single hidden layer feedforward neural network (SLFN, which was trained by a noniterative algorithm, was employed to classify the unlabeled voxels. Finally, the postprocessing stage was applied to extract and refine the liver tumor boundaries. The liver tumors determined by our scheme were compared with those manually traced by a radiologist, used as the “ground truth.” Results. The study was evaluated on two datasets of 25 tumors from 16 patients. The proposed scheme obtained the mean volumetric overlap error of 27.43% and the mean percentage volume error of 15.73%. The mean of the average surface distance, the root mean square surface distance, and the maximal surface distance were 0.58 mm, 1.20 mm, and 6.29 mm, respectively.

  5. Planar heterostructures of single-layer transition metal dichalcogenides: Composite structures, Schottky junctions, tunneling barriers, and half metals

    Science.gov (United States)

    Aras, Mehmet; Kılıç, ćetin; Ciraci, S.

    2017-02-01

    Planar composite structures formed from the stripes of transition metal dichalcogenides joined commensurately along their zigzag or armchair edges can attain different states in a two-dimensional (2D), single-layer, such as a half metal, 2D or one-dimensional (1D) nonmagnetic metal and semiconductor. Widening of stripes induces metal-insulator transition through the confinements of electronic states to adjacent stripes, that results in the metal-semiconductor junction with a well-defined band lineup. Linear bending of the band edges of the semiconductor to form a Schottky barrier at the boundary between the metal and semiconductor is revealed. Unexpectedly, strictly 1D metallic states develop in a 2D system along the boundaries between stripes, which pins the Fermi level. Through the δ doping of a narrow metallic stripe one attains a nanowire in the 2D semiconducting sheet or narrow band semiconductor. A diverse combination of constituent stripes in either periodically repeating or finite-size heterostructures can acquire critical fundamental features and offer device capacities, such as Schottky junctions, nanocapacitors, resonant tunneling double barriers, and spin valves. These predictions are obtained from first-principles calculations performed in the framework of density functional theory.

  6. Single-layer ionic conduction on carboxyl-terminated silane monolayers patterned by constructive lithography.

    Science.gov (United States)

    Berson, Jonathan; Burshtain, Doron; Zeira, Assaf; Yoffe, Alexander; Maoz, Rivka; Sagiv, Jacob

    2015-06-01

    Ionic transport plays a central role in key technologies relevant to energy, and information processing and storage, as well as in the implementation of biological functions in living organisms. Here, we introduce a supramolecular strategy based on the non-destructive chemical patterning of a highly ordered self-assembled monolayer that allows the reproducible fabrication of ion-conducting surface patterns (ion-conducting channels) with top -COOH functional groups precisely definable over the full range of length scales from nanometre to centimetre. The transport of a single layer of selected metal ions and the electrochemical processes related to their motion may thus be confined to predefined surface paths. As a generic solid ionic conductor that can accommodate different mobile ions in the absence of any added electrolyte, these ion-conducting channels exhibit bias-induced competitive transport of different ionic species. This approach offers unprecedented opportunities for the realization of designed ion-conducting systems with nanoscale control, beyond the inherent limitations posed by available ionic materials.

  7. Efficient Nitrogen Doping of Single-Layer Graphene Accompanied by Negligible Defect Generation for Integration into Hybrid Semiconductor Heterostructures.

    Science.gov (United States)

    Sarau, George; Heilmann, Martin; Bashouti, Muhammad; Latzel, Michael; Tessarek, Christian; Christiansen, Silke

    2017-03-22

    While doping enables application-specific tailoring of graphene properties, it can also produce high defect densities that degrade the beneficial features. In this work, we report efficient nitrogen doping of ∼11 atom % without virtually inducing new structural defects in the initial, large-area, low defect, and transferred single-layer graphene. To shed light on this remarkable high-doping-low-disorder relationship, a unique experimental strategy consisting of analyzing the changes in doping, strain, and defect density after each important step during the doping procedure was employed. Complementary micro-Raman mapping, X-ray photoelectron spectroscopy, and optical microscopy revealed that effective cleaning of the graphene surface assists efficient nitrogen incorporation accompanied by mild compressive strain resulting in negligible defect formation in the doped graphene lattice. These original results are achieved by separating the growth of graphene from its doping. Moreover, the high doping level occurred simultaneously with the epitaxial growth of n-GaN micro- and nanorods on top of graphene, leading to the flow of higher currents through the graphene/n-GaN rod interface. Our approach can be extended toward integrating graphene into other technologically relevant hybrid semiconductor heterostructures and obtaining an ohmic contact at their interfaces by adjusting the doping level in graphene.

  8. A Heterojunction Design of Single Layer Hole Tunneling ZnO Passivation Wrapping around TiO2Nanowires for Superior Photocatalytic Performance

    Science.gov (United States)

    Ghobadi, Amir; Ulusoy, T. Gamze; Garifullin, Ruslan; Guler, Mustafa O.; Okyay, Ali K.

    2016-01-01

    Nanostructured hybrid heterojunctions have been studied widely for photocatalytic applications due to their superior optical and structural properties. In this work, the impact of angstrom thick atomic layer deposited (ALD) ZnO shell layer on photocatalytic activity (PCA) of hydrothermal grown single crystalline TiO2 nanowires (NWs) is systematically explored. We showed that a single cycle of ALD ZnO layer wrapped around TiO2 NWs, considerably boosts the PCA of the heterostructure. Subsequent cycles, however, gradually hinder the photocatalytic activity (PCA) of the TiO2 NWs. Various structural, optical, and transient characterizations are employed to scrutinize this unprecedented change. We show that a single atomic layer of ZnO shell not only increases light harvesting capability of the heterostructure via extension of the absorption toward visible wavelengths, but also mitigates recombination probability of carriers through reduction of surface defects density and introduction of proper charge separation along the core-shell interface. Furthermore, the ultrathin ZnO shell layer allows a strong contribution of the core (TiO2) valence band holes through tunneling across the ultrathin interface. All mechanisms responsible for this enhanced PCA of heterostructure are elucidated and corresponding models are proposed. PMID:27464476

  9. A comparison of statistically optimized near field acoustic holography using single layer pressure velocity measurements and using double layer pressure measurements

    DEFF Research Database (Denmark)

    Jacobsen, Finn; Chen, Xinyi; Jaud, Virginie

    2008-01-01

    recently been suggested. An alternative method uses a double layer array of pressure transducers. Both methods make it possible to distinguish between sources on the two sides of the array and thus suppress the influence of extraneous noise and reflections coming from the “wrong” side. This letter compares...

  10. Studies of Double-Layer Effects at Single-Crystal Gold Electrodes. 3. Reduction Kinetics of Fluoropentaamminecobalt(III) Cation in Aqueous Solutions

    Czech Academy of Sciences Publication Activity Database

    Hromadová, Magdaléna; Fawcett, W. R.

    2004-01-01

    Roč. 108, - (2004), s. 3277-3282 ISSN 1089-5647 R&D Projects: GA ČR GP203/02/P082 Institutional research plan: CEZ:AV0Z4040901 Keywords : double - layer * single crystal * reduction kinetics Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.679, year: 2003

  11. Single layers of WS2 nanoplates embedded in nitrogen-doped carbon nanofibers as anode materials for lithium-ion batteries

    Science.gov (United States)

    Yu, Sunmoon; Jung, Ji-Won; Kim, Il-Doo

    2015-07-01

    Single layers of WS2 nanoplates are uniformly embedded in nitrogen-doped carbon nanofibers (WS2@NCNFs) via a facile electrospinning method. Crystallization of the single-layered WS2 nanoplates and in situ nitrogen doping into the carbon nanofibers were simultaneously accomplished during a two-step heat treatment. The distinctive structure of the WS2@NCNFs enables outstanding electrochemical performances.Single layers of WS2 nanoplates are uniformly embedded in nitrogen-doped carbon nanofibers (WS2@NCNFs) via a facile electrospinning method. Crystallization of the single-layered WS2 nanoplates and in situ nitrogen doping into the carbon nanofibers were simultaneously accomplished during a two-step heat treatment. The distinctive structure of the WS2@NCNFs enables outstanding electrochemical performances. Electronic supplementary information (ESI) available: Experimental section, SEM images of WS2 powder and ground WS2 powder, TEM image and SAED pattern of the WS2 powder, Raman spectra of the WS2 powder, CV curves of the WS2 powder, voltage profiles of the WS2 powder, schematic diagram of WS2@NCNFs undergoing lithium storage reactions, electrochemical performance of NCNFs, morphologies and EDS mapping of WS2@NCNFs after cycling, and a table of contributions of NCNFs to the specific capacity. See DOI: 10.1039/c5nr02425k

  12. Aromatic structure degradation of single layer graphene on an amorphous silicon substrate in the presence of water, hydrogen and Extreme Ultraviolet light

    NARCIS (Netherlands)

    Mund, Baibhav Kumar; Sturm, J.M.; Lee, Christopher James; Bijkerk, Frederik

    2018-01-01

    In this paper we study the reaction of water and graphene under Extreme Ultraviolet (EUV) irradiation and in the presence of hydrogen. In this work, single layer graphene (SLG) on amorphous Si as an underlying substrate was dosed with water (0.75 ML) and exposed to EUV (λ = 13.5 nm, 92 eV) with

  13. The implementation of biofiltration systems, rainwater tanks and urban irrigation in a single-layer urban canopy model

    Science.gov (United States)

    Demuzere, Matthias; Coutts, Andrew; Goehler, Maren; Broadbent, Ashley; Wouters, Hendrik; van Lipzig, Nicole; Gebert, Luke

    2015-04-01

    Urban vegetation is generally considered as a key tool to modify the urban energy balance through enhanced evapotranspiration (ET). Given that vegetation is most effective when it is healthy, stormwater harvesting and retention strategies (such as water sensitive urban design) could be used to support vegetation and promote ET. This study presents the implementation of a vegetated lined bio-filtration system (BFS) combined with a rainwater tank (RWT) and urban irrigation system in the single-layer urban canopy model Community Land Model-Urban. Runoff from roof and impervious road surface fractions is harvested and used to support an adequate soil moisture level for vegetation in the BFS. In a first stage, modelled soil moisture dynamics are evaluated and found reliable compared to observed soil moisture levels from biofiltration pits in Smith Street, Melbourne (Australia). Secondly, the impact of BFS, RWT and urban irrigation on ET is illustrated for a two-month period in 2012 using varying characteristics for all components. Results indicate that (i) a large amount of stormwater is potentially available for indoor and outdoor water demands, including irrigation of urban vegetation, (ii) ET from the BFS is an order of magnitude larger compared to the contributions from the impervious surfaces, even though the former only covers 10% of the surface fraction and (iii) attention should be paid to the cover fraction and soil texture of the BFS, size of the RWT and the surface fractions contributing to the collection of water in the RWT. Overall, this study reveals that this model development can effectuate future research with state-of-the-art urban climate models to further explore the benefits of vegetated biofiltration systems as a water sensitive urban design tool optimised with an urban irrigation system to maintain healthy vegetation.

  14. Full-thickness skin wound healing using autologous keratinocytes and dermal fibroblasts with fibrin: bilayered versus single-layered substitute.

    Science.gov (United States)

    Idrus, Ruszymah Bt Hj; Rameli, Mohd Adha bin P; Low, Kiat Cheong; Law, Jia Xian; Chua, Kien Hui; Latiff, Mazlyzam Bin Abdul; Saim, Aminuddin Bin

    2014-04-01

    Split-skin grafting (SSG) is the gold standard treatment for full-thickness skin defects. For certain patients, however, an extensive skin lesion resulted in inadequacies of the donor site. Tissue engineering offers an alternative approach by using a very small portion of an individual's skin to harvest cells for propagation and biomaterials to support the cells for implantation. The objective of this study was to determine the effectiveness of autologous bilayered tissue-engineered skin (BTES) and single-layer tissue-engineered skin composed of only keratinocytes (SLTES-K) or fibroblasts (SLTES-F) as alternatives for full-thickness wound healing in a sheep model. Full-thickness skin biopsies were harvested from adult sheep. Isolated fibroblasts were cultured using medium Ham's F12: Dulbecco modified Eagle medium supplemented with 10% fetal bovine serum, whereas the keratinocytes were cultured using Define Keratinocytes Serum Free Medium. The BTES, SLTES-K, and SLTES-F were constructed using autologous fibrin as a biomaterial. Eight full-thickness wounds were created on the dorsum of the body of the sheep. On 4 wounds, polyvinyl chloride rings were used as chambers to prevent cell migration at the edge. The wounds were observed at days 7, 14, and 21. After 3 weeks of implantation, the sheep were euthanized and the skins were harvested. The excised tissues were fixed in formalin for histological examination via hematoxylin-eosin, Masson trichrome, and elastin van Gieson staining. The results showed that BTES, SLTES-K, and SLTES-F promote wound healing in nonchambered and chambered wounds, and BTES demonstrated the best healing potential. In conclusion, BTES proved to be an effective tissue-engineered construct that can promote the healing of full-thickness skin lesions. With the support of further clinical trials, this procedure could be an alternative to SSG for patients with partial- and full-thickness burns.

  15. Sperm yield after single layer centrifugation with Androcoll-E is related to the potential fertility of the original ejaculate.

    Science.gov (United States)

    Morrell, J M; Stuhtmann, G; Meurling, S; Lundgren, A; Winblad, C; Macias Garcia, B; Johannisson, A

    2014-05-01

    Many attempts have been made to identify laboratory tests that are predictive of sperm fertility, both to improve the quality of stallion semen doses for artificial insemination (AI) and to identify potential breeding sires if no fertility data are available. Sperm quality at the stud is mostly evaluated by assessing subjective motility, although this parameter can be poorly indicative of fertility. Sperm morphology and chromatin integrity in Swedish stallions are correlated to pregnancy rate after AI. Because single layer centrifugation (SLC) selects for spermatozoa with normal morphology and good chromatin, retrospective analysis was carried out to investigate whether sperm yield after SLC is linked to potential fertility. Commercial semen doses for AI from 24 stallions (five stallions with four ejaculates each, 19 stallions with three ejaculates each; n = 77) obtained during the breeding season were cooled, and sent overnight to the Swedish University of Agricultural Sciences in an insulated box for evaluation, with other doses being sent to studs for commercial AI. On arrival at Swedish University of Agricultural Sciences, the semen was used for SLC and also for evaluation of sperm motility, membrane integrity, chromatin integrity, and morphology. The seasonal pregnancy rates for each stallion were available. The yield of progressively motile spermatozoa after SLC (calculated as a proportion of the initial load) was found to be highly correlated with pregnancy rate (r = 0.75; P centrifugation is fast (30 minutes) and does not require expensive equipment, whereas other assays require a flow cytometer and/or specialist skills. An additional option could be to transport semen doses to a laboratory for SLC if the stud personnel do not want to perform the procedure themselves. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Immobilisation of barley aleurone layers enables parallelisation of assays and analysis of transient gene expression in single cells

    DEFF Research Database (Denmark)

    Zor, Kinga; Mark, Christina; Heiskanen, Arto

    2017-01-01

    The barley aleurone layer is an established model system for studying phytohormone signalling, enzyme secretion and programmed cell death during seed germination. Most analyses performed on the aleurone layer are end-point assays based on cell extracts, meaning each sample is only analysed at a s...

  17. A possible human counterpart of the principle of increasing entropy

    International Nuclear Information System (INIS)

    Liang, Y.; An, K.N.; Yang, G.; Huang, J.P.

    2014-01-01

    It is well-known that the principle of increasing entropy holds for isolated natural systems that contain non-adaptive molecules. Here we present, for the first time, an experimental evidence for a possible human counterpart of the principle in an isolated social system that involves adaptive humans. Our work shows that the human counterpart is valid even though interactions among humans in social systems are distinctly different from those among molecules in natural systems. Thus, it becomes possible to understand social systems from this natural principle, at least to some extent.

  18. Common electronic origin of superconductivity in (Li,Fe)OHFeSe bulk superconductor and single-layer FeSe/SrTiO3 films.

    Science.gov (United States)

    Zhao, Lin; Liang, Aiji; Yuan, Dongna; Hu, Yong; Liu, Defa; Huang, Jianwei; He, Shaolong; Shen, Bing; Xu, Yu; Liu, Xu; Yu, Li; Liu, Guodong; Zhou, Huaxue; Huang, Yulong; Dong, Xiaoli; Zhou, Fang; Liu, Kai; Lu, Zhongyi; Zhao, Zhongxian; Chen, Chuangtian; Xu, Zuyan; Zhou, X J

    2016-02-08

    The mechanism of high-temperature superconductivity in the iron-based superconductors remains an outstanding issue in condensed matter physics. The electronic structure plays an essential role in dictating superconductivity. Recent revelation of distinct electronic structure and high-temperature superconductivity in the single-layer FeSe/SrTiO3 films provides key information on the role of Fermi surface topology and interface in inducing or enhancing superconductivity. Here we report high-resolution angle-resolved photoemission measurements on the electronic structure and superconducting gap of an FeSe-based superconductor, (Li0.84Fe0.16)OHFe0.98Se, with a Tc at 41 K. We find that this single-phase bulk superconductor shows remarkably similar electronic behaviours to that of the superconducting single-layer FeSe/SrTiO3 films in terms of Fermi surface topology, band structure and the gap symmetry. These observations provide new insights in understanding high-temperature superconductivity in the single-layer FeSe/SrTiO3 films and the mechanism of superconductivity in the bulk iron-based superconductors.

  19. Single-Crystal Y2O3 Epitaxially on GaAs(001 and (111 Using Atomic Layer Deposition

    Directory of Open Access Journals (Sweden)

    Y. H. Lin

    2015-10-01

    Full Text Available Single-crystal atomic-layer-deposited (ALD Y\\(_{\\mathrm{2}}\\O\\(_{\\mathrm{3}}\\ films 2 nm thick were epitaxially grown on molecular beam epitaxy (MBE GaAs(001-4 \\(\\times\\ 6 and GaAs(111A-2 \\(\\times\\ 2 reconstructed surfaces. The in-plane epitaxy between the ALD-oxide films and GaAs was observed using \\textit{in-situ} reflection high-energy electron diffraction in our uniquely designed MBE/ALD multi-chamber system. More detailed studies on the crystallography of the hetero-structures were carried out using high-resolution synchrotron radiation X-ray diffraction. When deposited on GaAs(001, the Y\\(_{\\mathrm{2}}\\O\\(_{\\mathrm{3}}\\ films are of a cubic phase and have (110 as the film normal, with the orientation relationship being determined: Y\\(_{\\mathrm{2}}\\O\\(_{\\mathrm{3}}\\(\\(110\\[\\(001\\][\\(\\overline{1}10\\]//GaAs(\\(001\\[\\(110\\][\\(1\\overline{1}0\\]. On GaAs(\\(111\\A, the Y\\(_{\\mathrm{2}}\\O\\(_{\\mathrm{3}}\\ films are also of a cubic phase with (\\(111\\ as the film normal, having the orientation relationship of Y\\(_{\\mathrm{2}}\\O\\(_{\\mathrm{3}}\\(\\(111\\[\\(2\\overline{1}\\overline{1}\\] [\\(01\\overline{1}\\]//GaAs (\\(111\\ [\\(\\overline{2}11\\][\\(0\\overline{1}1\\]. The relevant orientation for the present/future integrated circuit platform is (\\(001\\. The ALD-Y\\(_{\\mathrm{2}}\\O\\(_{\\mathrm{3}}\\/GaAs(\\(001\\-4 \\(\\times\\ 6 has shown excellent electrical properties. These include small frequency dispersion in the capacitance-voltage CV curves at accumulation of ~7% and ~14% for the respective p- and n-type samples with the measured frequencies of 1 MHz to 100 Hz. The interfacial trap density (Dit is low of ~10\\(^{12}\\ cm\\(^{−2}\\eV\\(^{−1}\\ as extracted from measured quasi-static CVs. The frequency dispersion at accumulation and the D\\(_{it}\\ are the lowest ever achieved among all the ALD-oxides on GaAs(\\(001\\.

  20. Comparison between clinical and audiological results of tympanoplasty with double layer graft (modified sandwich fascia) technique and single layer graft (underlay fascia and underlay cartilage) technique.

    Science.gov (United States)

    Nemade, Sanjana Vijay; Shinde, Kiran Jaywant; Sampate, Pratibha Bharat

    2017-08-27

    Surgical repair of the tympanic membrane, termed a type one tympanoplasty is a tried and tested treatment modality. Overlay or underlay technique of tympanoplasty is common. Sandwich Tympanoplasty is the combined overlay and underlay grafting of tympanic membrane. To describe and evaluate the modified sandwich graft (mediolateral double layer graft) tympanoplasty using temporalis fascia and areolar fascia. To compare the clinical and audiological outcome of modified sandwich tympanoplasty with underlay tympanoplasty. A total of 88 patients of chronic otitis media were studied. 48 patients (Group A) underwent type one tympanoplasty with modified sandwich graft. Temporalis fascia was underlaid and the areolar fascia was overlaid. 48 patients (Group B) underwent type one tympanoplasty with underlay fascia technique. 48 patients (Group C) underwent type one tympanoplasty with underlay cartilage technique. We assessed the healing and hearing results. Successful graft take up was accomplished in 47 patients (97.9%) in Group A, in 40 patients (83.3%) Group B, and in 46 (95.8%) patients in Group C. The average Air-Bone gap closure achieved in Group A was 24.4±1.7dB, in Group B, it was 22.5±3.5dB and in group C, it was 19.8±2.6dB. Statistically significant difference was found in graft healing rate. Difference in hearing improvement was not statistically significant. Double layered graft with drum-malleus as a 'meat' of sandwich maintains a perfect balance between sufficient stability and adequate acoustic sensitivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. 76 FR 61090 - Endangered and Threatened Species; Counterpart Regulations

    Science.gov (United States)

    2011-10-03

    ..., National Fire Plan Counterpart Regulation Alternative Consultation Agreements (ACAs). DATES: This is effective on October 1, 2011. ADDRESSES: The final decision of revocation is available on the internet at http://www.nmfs.noaa.gov/pr/laws/esa/policies.htm#consultation and http://www.fws.gov/endangered/esa...

  2. Search for infrared counterparts of gamma-ray bursters

    International Nuclear Information System (INIS)

    Schaefer, B.E.; Cline, T.L.

    1985-01-01

    The result of two searches for infrared counterparts of Gamma-ray Bursters (GRB's) is reported. The first search was made using data from the Infrared Astronomy Satellite and covered 23 positions. The second search was made with the Kitt Peak 1.5 m telescope and covered 3 positions. In neither of these two searches was any infrared candidate detected

  3. Multilayered InGaN/GaN structure vs. single InGaN layer for solar cell applications: A comparative study

    International Nuclear Information System (INIS)

    El Gmili, Y.; Orsal, G.; Pantzas, K.; Moudakir, T.; Sundaram, S.; Patriarche, G.; Hester, J.; Ahaitouf, A.; Salvestrini, J.P.; Ougazzaden, A.

    2013-01-01

    We report a comparison of the morphological, structural and optical properties of both InGaN single-layer and multilayered structures, the latter consisting of periodic thin GaN interlayers inserted during InGaN growth. It is shown that such a structure suppresses the In concentration fluctuations and corresponding different states of strain relaxation with depth, both detrimental to solar cell applications. Measurements performed by X-ray diffraction, cathodoluminescence and photoluminescence demonstrate that this multilayer growth is a promising approach to increase both the InGaN layer total thickness and In content in InGaN epilayers. As an example, single-phase 120 nm thick InGaN with 14.3% In content is obtained and found to possess high structural quality

  4. Slater-Koster Tight-Binding parametrization of single and few-layer Black-Phosphorus from first-principles calculations

    Science.gov (United States)

    Menezes, Marcos; Capaz, Rodrigo

    Black Phosphorus (BP) is a promising material for applications in electronics, especially due to the tuning of its band gap by increasing the number of layers. In single-layer BP, also called Phosphorene, the P atoms form two staggered chains bonded by sp3 hybridization, while neighboring layers are bonded by Van-der-Waals interactions. In this work, we present a Tight-Binding (TB) parametrization of the electronic structure of single and few-layer BP, based on the Slater-Koster model within the two-center approximation. Our model includes all 3s and 3p orbitals, which makes this problem more complex than that of graphene, where only 2pz orbitals are needed for most purposes. The TB parameters are obtained from a least-squares fit of DFT calculations carried on the SIESTA code. We compare the results for different basis-sets used to expand the ab-initio wavefunctions and discuss their applicability. Our model can fit a larger number of bands than previously reported calculations based on Wannier functions. Moreover, our parameters have a clear physical interpretation based on chemical bonding. As such, we expect our results to be useful in a further understanding of multilayer BP and other 2D-materials characterized by strong sp3 hybridization. CNPq, FAPERJ, INCT-Nanomateriais de Carbono.

  5. Electromagnetic fields created by a beam in an axisymmetric infinitely thick single-layer resistive pipe: general formulas and low frequency approximations

    CERN Document Server

    Mounet, Nicolas Frank; CERN. Geneva. ATS Department

    2015-01-01

    This note provides general and approximate formulas for the electromagnetic fields created by a passing beam in an axisymmetric infinitely thick resistive pipe made of a single homogeneous layer. The full derivations and their resulting approximate expressions at low and intermediate frequencies are given here, as well as the conditions under which those approximations are valid. Beam-coupling impedances are also computed, and examples are shown.

  6. Raman excitation profiles of hybrid systems constituted by single-layer graphene and free base phthalocyanine: Manifestations of two mechanisms of graphene-enhanced Raman scattering

    Czech Academy of Sciences Publication Activity Database

    Uhlířová, T.; Mojzeš, P.; Melníková Komínková, Zuzana; Kalbáč, Martin; Sutrová, Veronika; Šloufová, I.; Vlčková, B.

    2017-01-01

    Roč. 48, č. 10 (2017), s. 1270-1281 ISSN 0377-0486 R&D Projects: GA ČR(CZ) GA15-01953S Institutional support: RVO:61388955 ; RVO:61389013 Keywords : graphene -enhanced Raman scattering * single-layer graphene * free base phthalocyanine * Raman excitation profiles * photoinduced charge transfer Subject RIV: CF - Physical ; Theoretical Chemistry; CD - Macromolecular Chemistry (UMCH-V) OBOR OECD: Physical chemistry; Polymer science (UMCH-V) Impact factor: 2.969, year: 2016

  7. TEM investigation of the surface layer structure [111]{sub B2} of the single NiTi crystal modified by the Si-ion beam implantation

    Energy Technology Data Exchange (ETDEWEB)

    Girsova, S. L., E-mail: girs@ispms.tsc.ru; Poletika, T. M., E-mail: poletm@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Meisner, S. N., E-mail: msn@ispms.tsc.ru; Meisner, L. L., E-mail: llm@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation)

    2015-10-27

    The study was carried on for the single NiTi crystals subjected to the Si-ion beam implantation. Using the transmission electron microscopy technique (TEM), the surface layer structure [111]{sub B2} was examined for the treated material. The modified near-surface sublayers were found to have different composition. Thus the uppermost sublayer contained mostly oxides; the lower-lying modified sublayer material was in an amorphous state and the thin underlying sublayer had a defect structure.

  8. Raman excitation profiles of hybrid systems constituted by single-layer graphene and free base phthalocyanine: Manifestations of two mechanisms of graphene-enhanced Raman scattering

    Czech Academy of Sciences Publication Activity Database

    Uhlířová, T.; Mojzeš, P.; Melníková Komínková, Zuzana; Kalbáč, Martin; Sutrová, Veronika; Šloufová, I.; Vlčková, B.

    2017-01-01

    Roč. 48, č. 10 (2017), s. 1270-1281 ISSN 0377-0486 R&D Projects: GA ČR(CZ) GA15-01953S Institutional support: RVO:61388955 ; RVO:61389013 Keywords : graphene-enhanced Raman scattering * single-layer graphene * free base phthalocyanine * Raman excitation profiles * photoinduced charge transfer Subject RIV: CF - Physical ; Theoretical Chemistry; CD - Macromolecular Chemistry (UMCH-V) OBOR OECD: Physical chemistry; Polymer science (UMCH-V) Impact factor: 2.969, year: 2016

  9. Sm-doped CeO{sub 2} single buffer layer for YBCO coated conductors by polymer assisted chemical solution deposition (PACSD) method

    Energy Technology Data Exchange (ETDEWEB)

    Li, G.; Pu, M.H.; Sun, R.P.; Wang, W.T.; Wu, W.; Zhang, X.; Yang, Y. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu 610031 (China); Cheng, C.H. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu 610031 (China); School of Materials Science and Engineering, University of New South Wales, Sydney, 2052 NSW (Australia); Zhao, Y. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu 610031 (China); School of Materials Science and Engineering, University of New South Wales, Sydney, 2052 NSW (Australia)], E-mail: yzhao@home.swjtu.edu.cn

    2008-10-20

    An over 150 nm thick Sm{sub 0.2}Ce{sub 0.8}O{sub 1.9-x} (SCO) single buffer layer has been deposited on bi-axially textured NiW (2 0 0) alloy substrate. Highly in-plane and out-of-plane oriented, dense, smooth and crack free SCO single layer has been obtained via a polymer-assisted chemical solution deposition (PACSD) approach. YBCO thin film has been deposited equally via a PACSD route on the SCO-buffered NiW, the as grown YBCO yielding a sharp transition at T{sub c0} = 87 K as well as J{sub c}(0 T, 77 K) {approx} 1 MA/cm{sup 2}. These results indicates that RE (lanthanides other than Ce) doping may be an effective approach to improve the critical thickness of solution derived CeO{sub 2} film, which renders it a promising candidate as single buffer layer for YBCO coated conductors.

  10. Forming a single layer of a composite powder based on the Ti-Nb system via selective laser melting (SLM)

    Science.gov (United States)

    Saprykin, A. A.; Sharkeev, Yu P.; Ibragimov, E. A.; Babakova, E. V.; Dudikhin, D. V.

    2016-07-01

    Alloys based on the titanium-niobium system are widely used in implant production. It is conditional, first of all, on the low modulus of elasticity and bio-inert properties of an alloy. These alloys are especially important for tooth replacement and orthopedic surgery. At present alloys based on the titanium-niobium system are produced mainly using conventional metallurgical methods. The further subtractive manufacturing an end product results in a lot of wastes, increasing, therefore, its cost. The alternative of these processes is additive manufacturing. Selective laser melting is a technology, which makes it possible to synthesize products of metal powders and their blends. The point of this technology is laser melting a layer of a powdered material; then a sintered layer is coated with the next layer of powder etc. Complex products and working prototypes are made on the base of this technology. The authors of this paper address to the issue of applying selective laser melting in order to synthesize a binary alloy of a composite powder based on the titanium-niobium system. A set of 10x10 mm samples is made in various process conditions. The samples are made by an experimental selective laser synthesis machine «VARISKAF-100MB». The machine provides adjustment of the following process variables: laser emission power, scanning rate and pitch, temperature of powder pre-heating, thickness of the layer to be sprinkled, and diameter of laser spot focusing. All samples are made in the preliminary vacuumized shielding atmosphere of argon. The porosity and thickness of the sintered layer related to the laser emission power are shown at various scanning rates. It is revealed that scanning rate and laser emission power are adjustable process variables, having the greatest effect on forming the sintered layer.

  11. Benzene and superior counterpart; Benzene et homologues superieurs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    A century ago, the first case of purpura and acute anemia provoked by benzene was described. Afterwards, others important toxic effects in relation with the exposure to this solvent were known: medullar aplasia, acute leukemia,carcinogenesis. The chronic intoxication by benzene is called benzenism, the term of benzolism is devoted to the intoxication provoked by the mixture of benzene and superior counterparts: toluene, xylenes. (N.C.)

  12. Electromagnetic counterparts to structured jets from gravitational wave detected mergers

    Science.gov (United States)

    Lamb, Gavin P.; Kobayashi, Shiho

    2017-12-01

    We show the peak magnitude for orphan afterglows from the jets of gravitational wave (GW) detected black hole/neutron star - neutron star (BH/NS-NS) mergers highly depend on the jet half-opening angle θj. Short γ-ray bursts (GRBs) with a homogeneous jet structure and θj > 10°, the orphan afterglow viewed at the typical inclination for a GW detected event, 38°, are brighter at optical frequencies than the comparable macronova emission. Structured jets, where the energetics and Lorentz factor Γ vary with angle from the central axis, may have low-Γ components where the prompt emission is suppressed; GW electromagnetic (EM) counterparts may reveal a population of failed-GRB orphan afterglows. Using a Monte Carlo method assuming an NS-NS detection limit we show the fraction of GW-EM counterparts from homogeneous, two-component, power-law structured and Gaussian jets where the variable structure models include a wide low energy and Γ component: for homogeneous jets, with a θj = 6° and typical short GRB parameters, we find r-band magnitude mr ≤ 21 counterparts for ∼13.6 per cent of GW detected mergers; where jet structure extends to a half-opening angle of 25°, two-component jets produce mr ≤ 21 counterparts in ∼30 per cent of GW detected mergers, power-law structured-jets result in ∼37 per cent and Gaussian jets with our parameters ∼13 per cent. We show the features in the light curves from orphan afterglows can be used to indicate the presence of extended structure.

  13. OPTICAL COUNTERPARTS OF THE NEAREST ULTRALUMINOUS X-RAY SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    Gladstone, Jeanette C.; Heinke, Craig O.; Cartwright, Taylor F. [Department of Physics, University of Alberta, 11322-89 Avenue, Edmonton, Alberta T6G 2G7 (Canada); Copperwheat, Chris [Department of Physics, Liverpool John Moores University, Wirral CH41 1LD (United Kingdom); Roberts, Timothy P. [Department of Physics, University of Durham, South Road, Durham DH1 3LE (United Kingdom); Levan, Andrew J. [Department of Physics, University of Warwick, Coventry CV4 7VL (United Kingdom); Goad, Mike R., E-mail: j.c.gladstone@ualberta.ca [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7AL (United Kingdom)

    2013-06-01

    We present a photometric survey of the optical counterparts of ultraluminous X-ray sources (ULXs) observed with the Hubble Space Telescope (HST) in nearby ({approx}<5 Mpc) galaxies. Of the 33 ULXs with HST and Chandra data, 9 have no visible counterpart, placing limits on their M{sub V} of {approx} -4 to -9, enabling us to rule out O-type companions in 4 cases. The refined positions of two ULXs place them in the nucleus of their host galaxy. They are removed from our sample. Of the 22 remaining ULXs, 13 have one possible optical counterpart, while multiple are visible within the error regions of other ULXs. By calculating the number of chance coincidences, we estimate that 13 {+-} 5 are the true counterparts. We attempt to constrain the nature of the companions by fitting the spectral energy distribution and M{sub V} to obtain candidate spectral types. We can rule out O-type companions in 20 cases, while we find that one ULX (NGC 253 ULX2) excludes all OB-type companions. Fitting with X-ray irradiated models provides constraints on the donor star mass and radius. For seven ULXs, we are able to impose inclination-dependent upper and/or lower limits on the black holes' mass, if the extinction to the assumed companion star is not larger than the Galactic column. These are NGC 55 ULX1, NGC 253 ULX1, NGC 253 ULX2, NGC 253 XMM6, Ho IX X-1, IC342 X-1, and NGC 5204 X-1. This suggests that 10 ULXs do not have O companions, while none of the 18 fitted rule out B-type companions.

  14. Search for Gravitational Wave Counterparts with Fermi GBM

    Science.gov (United States)

    Hui, C. M.

    2017-01-01

    The progenitor of short gamma-ray bursts (GRBs) is believed to be the merger of two compact objects. This type of events will also produce gravitational waves. Since the gravitational waves discovery by LIGO, the search for a joint detection with an electromagnetic counterpart has been ongoing. Fermi GBM detects approximately 40 short GRBs per year, and we have been expanding our search looking for faint events in the GBM data that did not trigger onboard.

  15. Effect of Single or Combined Climatic and Hygienic Stress in Four Layer Lines: 2. Endocrine and Oxidative Stress Responses

    NARCIS (Netherlands)

    Star, L.; Decuypere, E.; Parmentier, H.K.; Kemp, B.

    2008-01-01

    Effects of long-term climatic stress (heat exposure), short-term hygienic stress [lipopolysaccharide (LPS)], or combined exposure to these stressors on endocrine and oxidative stress parameters of 4 layer lines (B1, WA, WB, and WF) were investigated. The lines were earlier characterized for natural

  16. Piezophototronic Effect in Single-Atomic-Layer MoS 2 for Strain-Gated Flexible Optoelectronics

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wenzhuo [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta GA 30332-0245 USA; Wang, Lei [Department of Electrical Engineering, Columbia University, New York NY 10027 USA; Yu, Ruomeng [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta GA 30332-0245 USA; Liu, Yuanyue [National Renewable Energy Laboratory (NREL), Golden CO 80401 USA; Wei, Su-Huai [National Renewable Energy Laboratory (NREL), Golden CO 80401 USA; Hone, James [Department of Mechanical Engineering, Columbia University, New York NY 10027 USA; Wang, Zhong Lin [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta GA 30332-0245 USA; Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing China

    2016-08-03

    Strain-gated flexible optoelectronics are reported based on monolayer MoS2. Utilizing the piezoelectric polarization created at metal-MoS2 interface to modulate the separation/transport of photogenerated carriers, the piezophototronic effect is applied to implement atomic-layer-thick phototransistor. Coupling between piezoelectricity and photogenerated carriers may enable the development of novel optoelectronics.

  17. Single-Atom Pd₁/Graphene Catalyst Achieved by Atomic Layer Deposition: Remarkable Performance in Selective Hydrogenation of 1,3-Butadiene.

    Science.gov (United States)

    Yan, Huan; Cheng, Hao; Yi, Hong; Lin, Yue; Yao, Tao; Wang, Chunlei; Li, Junjie; Wei, Shiqiang; Lu, Junling

    2015-08-26

    We reported that atomically dispersed Pd on graphene can be fabricated using the atomic layer deposition technique. Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy and X-ray absorption fine structure spectroscopy both confirmed that isolated Pd single atoms dominantly existed on the graphene support. In selective hydrogenation of 1,3-butadiene, the single-atom Pd1/graphene catalyst showed about 100% butenes selectivity at 95% conversion at a mild reaction condition of about 50 °C, which is likely due to the changes of 1,3-butadiene adsorption mode and enhanced steric effect on the isolated Pd atoms. More importantly, excellent durability against deactivation via either aggregation of metal atoms or carbonaceous deposits during a total 100 h of reaction time on stream was achieved. Therefore, the single-atom catalysts may open up more opportunities to optimize the activity, selectivity, and durability in selective hydrogenation reactions.

  18. Reaching state-of-the art requirements for MIM capacitors with a single-layer anodic Al2O3 dielectric and imprinted electrodes

    Science.gov (United States)

    Hourdakis, Emmanouel; Nassiopoulou, Androula G.

    2017-07-01

    Metal-Insulator-Metal (MIM) capacitors with a high capacitance density and low non-linearity coefficient using a single-layer dielectric of barrier-type anodic alumina (Al2O3) and an imprinted bottom Al electrode are presented. Imprinting of the bottom electrode aimed at increasing the capacitor effective surface area by creating a three-dimensional MIM capacitor architecture. The bottom Al electrode was only partly nanopatterned so as to ensure low series resistance of the MIM capacitor. With a 3 nm thick anodic Al2O3 dielectric, the capacitor with the imprinted electrode showed a 280% increase in capacitance density compared to the flat electrode capacitor, reaching a value of 20.5 fF/μm2. On the other hand, with a 30 nm thick anodic Al2O3 layer, the capacitance density was 7.9 fF/μm2 and the non-linearity coefficient was as low as 196 ppm/V2. These values are very close to reaching all requirements of the last International Technology Roadmap for Semiconductors for MIM capacitors [ITRS, http://www.itrs2.net/2013-itrs.html for ITRS Roadmap (2013)], and they are achieved by a single-layer dielectric instead of the complicated dielectric stacks of the literature. The obtained results constitute a real progress compared to previously reported results by our group for MIM capacitors using imprinted electrodes.

  19. A Complete Reporting of MCNP6 Validation Results for Electron Energy Deposition in Single-Layer Extended Media for Source Energies <= 1-MeV

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, David A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hughes, Henry Grady [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-04

    In this paper, we expand on previous validation work by Dixon and Hughes. That is, we present a more complete suite of validation results with respect to to the well-known Lockwood energy deposition experiment. Lockwood et al. measured energy deposition in materials including beryllium, carbon, aluminum, iron, copper, molybdenum, tantalum, and uranium, for both single- and multi-layer 1-D geometries. Source configurations included mono-energetic, mono-directional electron beams with energies of 0.05-MeV, 0.1-MeV, 0.3- MeV, 0.5-MeV, and 1-MeV, in both normal and off-normal angles of incidence. These experiments are particularly valuable for validating electron transport codes, because they are closely represented by simulating pencil beams incident on 1-D semi-infinite slabs with and without material interfaces. Herein, we include total energy deposition and energy deposition profiles for the single-layer experiments reported by Lockwood et al. (a more complete multi-layer validation will follow in another report).

  20. Solute transport in a single fracture involving an arbitrary length decay chain with rock matrix comprising different geological layers.

    Science.gov (United States)

    Mahmoudzadeh, Batoul; Liu, Longcheng; Moreno, Luis; Neretnieks, Ivars

    2014-08-01

    A model is developed to describe solute transport and retention in fractured rocks. It accounts for advection along the fracture, molecular diffusion from the fracture to the rock matrix composed of several geological layers, adsorption on the fracture surface, adsorption in the rock matrix layers and radioactive decay-chains. The analytical solution, obtained for the Laplace-transformed concentration at the outlet of the flowing channel, can conveniently be transformed back to the time domain by the use of the de Hoog algorithm. This allows one to readily include it into a fracture network model or a channel network model to predict nuclide transport through channels in heterogeneous fractured media consisting of an arbitrary number of rock units with piecewise constant properties. More importantly, the simulations made in this study recommend that it is necessary to account for decay-chains and also rock matrix comprising at least two different geological layers, if justified, in safety and performance assessment of the repositories for spent nuclear fuel. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Double MgO-based Perpendicular Magnetic-Tunnel-Junction Spin-valve Structure with a Top Co2Fe6B2Free Layer using a Single SyAF [Co/Pt]nLayer.

    Science.gov (United States)

    Choi, Jin-Young; Lee, Dong-Gi; Baek, Jong-Ung; Park, Jea-Gun

    2018-02-01

    A new perpendicular spin-transfer-torque magnetic-tunnel-junction (p-MTJ) spin-valve was developed to achieve a high tunneling magnetoresistance (TMR) ratio. It had a double MgO-based spin-valve structure with a top Co 2 Fe 6 B 2 free layer and incorporated a single SyAF [Co(0.4 nm)/Pt(0.3 nm)] 3 layer and a new buffer layer of Co(0.6)/Pt(0.3)/Co(0.4). It had a TMR ratio of 180% and anisotropy exchange field (H ex ) of 3.44 kOe after ex-situ annealing of 350 °C for 30 min under a vacuum below 10 -6 torr and a perpendicular magnetic field of 3 tesla, thereby ensuring a memory margin and avoiding read disturbance failures. Its high level of performance was due to the face-center-cubic crystallinity of the MgO tunneling barrier being significantly improved by decreasing its surface roughness (i.e., peak-to-valley length of 1.4 nm).

  2. Low temperature pulsed direct current magnetron sputtering technique for single phase β-In2S3 buffer layers for solar cell applications

    Science.gov (United States)

    Karthikeyan, Sreejith; Hill, Arthur E.; Pilkington, Richard D.

    2017-10-01

    This work explores the possibilities of using the pulsed direct current (dc) magnetron sputtering (PDCMS) process to deposit an alternative to the cadmium sulphide buffer layer in copper indium gallium diselenide - based solar cells. The main problems with the CdS layer are its toxic nature and its deposition using a chemical bath technique. These factors make it difficult to incorporate into in-line production and significant effort has been expended to find a suitable alternative buffer layer with in-line manufacturing capability. Towards this aim, the material properties of an In2S3 film, sputtered from a powder target, have been investigated. Films were deposited at different substrate temperatures ranging from ;no additional substrate heating; to 250 °C. The deposition of a single phase β-In2S3 without substrate heating/annealing has not previously been reported. The films deposited by the ion-enhanced PdcMS technique without any additional heating were found to be single phase. The grain size increased with increase in substrate temperature. However, this led to a decrease in the sulphur content; as a result the band gap decreased. For solar cell applications, the CdS buffer layer (optical band gap ∼2.4 eV) needs to be replaced with a material which has a band gap wider than 2.4 eV for improved performance and reduction of absorption loss in the blue wavelength region. Ideally the band gap should be between 2.6 and 3.0 eV. Our PdcMS room temperature deposited In2S3 had a measured band gap of 2.77 eV.

  3. Seeking Counterparts to Advanced LIGO/Virgo Transients with Swift

    Science.gov (United States)

    Kanner, Jonah; Camp, Jordan; Racusin, Judith; Gehrels, Neil; White, Darren

    2012-01-01

    Binary neutron star (NS) mergers are among the most promising astrophysical sources of gravitational wave emission for Advanced LIGO and Advanced Virgo, expected to be operational in 2015 . Finding electromagnetic counterparts to these signals will be essential to placing them in an astronomical context. The Swift satellite carries a sensitive X-ray telescope (XRT), and can respond to target-of-opportunity requests within 1-2 hours, and so is uniquely poised to find the X-ray counterparts to LIGO / Virgo triggers. Assuming NS mergers are the progenitors of short gamma-ray bursts (GRBs), some percentage of LIGO/Virgo triggers will be accompanied by X-ray band afterglows that are brighter than 10(exp -12) ergs/s/sq cm in the XRT band one day after the trigger time. We find that a soft X-ray transient of this flux is bright enough to be extremely rare, and so could be confidently associated with even a moderately localized GW signal. We examine two possible search strategies with the Swift XRT to find bright transients in LIGO/Virgo error boxes. In the first strategy, XRT could search a volume of space with a approx.100 Mpc radius by observing approx 30 galaxies over the course of a day, with sufficient depth to observe the expected X-ray afterglow. For an extended LIGO / Virgo horizon distance, the XRT could employ very short 100 s exposures to cover an area of approx 35 square degrees in about a day, and still be sensitive enough to image GW discovered GRB afterglows. These strategies demonstrate that the high X-ray luminosity of short GRBs and the relatively low X-ray transient background combine to make high confidence discoveries of X-ray band counterparts to GW triggers possible, though challenging, with current satellite facilities.

  4. Comparison of light out-coupling enhancements in single-layer blue-phosphorescent organic light emitting diodes using small-molecule or polymer hosts

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yung-Ting [Institute of Chemistry, Academia Sinica, Taipei, Taiwan 11529, Taiwan (China); Department of Electrical Engineering, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan 10617, Taiwan (China); Liu, Shun-Wei [Department of Electronic Engineering, Mingchi University of Technology, New Taipei, Taiwan 24301, Taiwan (China); Yuan, Chih-Hsien; Lee, Chih-Chien [Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan 10607, Taiwan (China); Ho, Yu-Hsuan; Wei, Pei-Kuen [Research Center for Applied Science Academia Sinica, Taipei, Taiwan 11527, Taiwan (China); Chen, Kuan-Yu [Chilin Technology Co., LTD, Tainan City, Taiwan 71758, Taiwan (China); Lee, Yi-Ting; Wu, Min-Fei; Chen, Chin-Ti, E-mail: cchen@chem.sinica.edu.tw, E-mail: chihiwu@cc.ee.ntu.edu.tw [Institute of Chemistry, Academia Sinica, Taipei, Taiwan 11529, Taiwan (China); Wu, Chih-I, E-mail: cchen@chem.sinica.edu.tw, E-mail: chihiwu@cc.ee.ntu.edu.tw [Department of Electrical Engineering, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan 10617, Taiwan (China)

    2013-11-07

    Single-layer blue phosphorescence organic light emitting diodes (OLEDs) with either small-molecule or polymer hosts are fabricated using solution process and the performances of devices with different hosts are investigated. The small-molecule device exhibits luminous efficiency of 14.7 cd/A and maximum power efficiency of 8.39 lm/W, which is the highest among blue phosphorescence OLEDs with single-layer solution process and small molecular hosts. Using the same solution process for all devices, comparison of light out-coupling enhancement, with brightness enhancement film (BEF), between small-molecule and polymer based OLEDs is realized. Due to different dipole orientation and anisotropic refractive index, polymer-based OLEDs would trap less light than small molecule-based OLEDs internally, about 37% better based simulation results. In spite of better electrical and spectroscopic characteristics, including ambipolar characteristics, higher carrier mobility, higher photoluminescence quantum yield, and larger triplet state energy, the overall light out-coupling efficiency of small molecule-based devices is worse than that of polymer-based devices without BEF. However, with BEF for light out-coupling enhancement, the improved ratio in luminous flux and luminous efficiency for small molecule based device is 1.64 and 1.57, respectively, which are significantly better than those of PVK (poly-9-vinylcarbazole) devices. In addition to the theoretical optical simulation, the experimental data also confirm the origins of differential light-outcoupling enhancement. The maximum luminous efficiency and power efficiency are enhanced from 14.7 cd/A and 8.39 lm/W to 23 cd/A and 13.2 lm/W, respectively, with laminated BEF, which are both the highest so far for single-layer solution-process blue phosphorescence OLEDs with small molecule hosts.

  5. Development of a Highly Efficient Hybrid White Organic-Light-Emitting Diode with a Single Emission Layer by Solution Processing.

    Science.gov (United States)

    Wu, Jun-Yi; Chen, Show-An

    2018-02-07

    We use a mixed host, 2,6-bis[3-(carbazol-9-yl)phenyl]pyridine blended with 20 wt % tris(4-carbazoyl-9-ylphenyl)amine, to lower the hole-injection barrier, along with the bipolar and high-photoluminescence-quantum-yield (Φ p = 84%), blue thermally activated delay fluorescence (TADF) material of 9,9-dimethyl-9,10-dihydroacridine-2,4,6-triphenyl-1,3,5-triazine (DMAC-TRZ) as a blue dopant to compose the emission layer for the fabrication of a TADF blue organic-light-emitting diode (BOLED). The device is highly efficient with the following performance parameters: maximum brightness (B max ) = 57586 cd/m 2 , maximum current efficiency (CE max ) = 35.3 cd/A, maximum power efficiency (PE max ) = 21.4 lm/W, maximum external quantum efficiency (EQE max ) = 14.1%, and CIE coordinates (0.18, 0.42). This device has the best performance recorded among the reported solution-processed TADF BOLEDs and has a low efficiency roll-off: at brightness values of 1000 and 5000 cd/m 2 , its CEs are close, being 35.1 and 30.1 cd/A, respectively. Upon further doping of the red phosphor Ir(dpm)PQ 2 (emission peak λ max = 595 nm) into the blue emission layer, we obtained a TADF-phosphor hybrid white organic-light-emitting diode (T-P hybrid WOLED) with high performance: B max = 43594 cd/m 2 , CE max = 28.8 cd/A, PE max = 18.1 lm/W, and CIE coordinates (0.38, 0.44). This B max = 43594 cd/m 2 is better than that of the vacuum-deposited WOLED with a blue TADF emitter, 10000 cd/m 2 . This is also the first report on a T-P hybrid WOLED with a solution-processed emitting layer.

  6. Multiphonon absorption processes in layered structured TlGaS2, TlInS2 and TlGaSe2 single crystals

    Science.gov (United States)

    Isik, M.; Gasanly, N. M.; Korkmaz, F.

    2013-07-01

    The infrared transmittance and Raman scattering spectra in TlGaS2, TlInS2 and TlGaSe2 layered single crystals grown by Bridgman method were studied in the frequency ranges of 400-1500 and 10-400 cm-1, respectively. Three, three and five bands observed at room temperature in IR transmittance spectra of TlGaS2, TlInS2 and TlGaSe2, respectively, were interpreted in terms of multiphonon absorption processes.

  7. Multiphonon absorption processes in layered structured TlGaS2, TlInS2 and TlGaSe2 single crystals

    International Nuclear Information System (INIS)

    Isik, M.; Gasanly, N.M.; Korkmaz, F.

    2013-01-01

    The infrared transmittance and Raman scattering spectra in TlGaS 2 , TlInS 2 and TlGaSe 2 layered single crystals grown by Bridgman method were studied in the frequency ranges of 400–1500 and 10–400 cm −1 , respectively. Three, three and five bands observed at room temperature in IR transmittance spectra of TlGaS 2 , TlInS 2 and TlGaSe 2 , respectively, were interpreted in terms of multiphonon absorption processes

  8. Multiphonon absorption processes in layered structured TlGaS{sub 2}, TlInS{sub 2} and TlGaSe{sub 2} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Isik, M., E-mail: misik@atilim.edu.tr [Department of Electrical and Electronics Engineering, Atilim University, 06836 Ankara (Turkey); Gasanly, N.M. [Department of Physics, Middle East Technical University, 06800 Ankara (Turkey); Korkmaz, F. [Department of Electrical and Electronics Engineering, Atilim University, 06836 Ankara (Turkey)

    2013-07-15

    The infrared transmittance and Raman scattering spectra in TlGaS{sub 2}, TlInS{sub 2} and TlGaSe{sub 2} layered single crystals grown by Bridgman method were studied in the frequency ranges of 400–1500 and 10–400 cm{sup −1}, respectively. Three, three and five bands observed at room temperature in IR transmittance spectra of TlGaS{sub 2}, TlInS{sub 2} and TlGaSe{sub 2}, respectively, were interpreted in terms of multiphonon absorption processes.

  9. Capability of detecting ultraviolet counterparts of gravitational waves with GLUV

    Science.gov (United States)

    Ridden-Harper, Ryan; Tucker, B. E.; Sharp, R.; Gilbert, J.; Petkovic, M.

    2017-12-01

    With the discovery of gravitational waves (GWs), attention has turned towards detecting counterparts to these sources. In discussions on counterpart signatures and multimessenger follow-up strategies to the GW detections, ultraviolet (UV) signatures have largely been neglected, due to UV facilities being limited to SWIFT, which lacks high-cadence UV survey capabilities. In this paper, we examine the UV signatures from merger models for the major GW sources, highlighting the need for further modelling, while presenting requirements and a design for an effective UV survey telescope. Using the u΄-band models as an analogue, we find that a UV survey telescope requires a limiting magnitude of m_{u^' }}(AB)≈ 24 to fully complement the aLIGO range and sky localization. We show that a network of small, balloon-based UV telescopes with a primary mirror diameter of 30 cm could be capable of covering the aLIGO detection distance from ∼60 to 100 per cent for BNS events and ∼40 per cent for the black hole and a neutron star events. The sensitivity of UV emission to initial conditions suggests that a UV survey telescope would provide a unique data set, which can act as an effective diagnostic to discriminate between models.

  10. Driving protocol for a Floquet topological phase without static counterpart

    Science.gov (United States)

    Quelle, A.; Weitenberg, C.; Sengstock, K.; Morais Smith, C.

    2017-11-01

    Periodically driven systems play a prominent role in optical lattices. In these ultracold atomic systems, driving is used to create a variety of interesting behaviours, of which an important example is provided by topological states of matter. Such Floquet topological phases have a richer classification than their equilibrium counterparts. Although there exist analogues of the equilibrium topological phases that are characterised by a Chern number, the corresponding Hall conductivity, and protected edge states, there is an additional possibility. This is a phase that has a vanishing Chern number and no Hall conductivity, but nevertheless hosts anomalous topological edge states (Rudner et al (2013 Phys. Rev. X 3 031005)). Due to experimental difficulties associated with the observation of such a phase, it has not been experimentally realised in optical lattices so far. In this paper, we show that optical lattices prove to be a good candidate for its realisation and observation, because they can be driven in a controlled manner. Specifically, we present a simple shaking protocol that serves to realise this special Floquet phase, discuss the specific properties that it has, and propose a method to experimentally detect this fascinating topological phase that has no counterpart in equilibrium systems.

  11. Cat Mammary Tumors: Genetic Models for the Human Counterpart

    Directory of Open Access Journals (Sweden)

    Filomena Adega

    2016-08-01

    Full Text Available The records are not clear, but Man has been sheltering the cat inside his home for over 12,000 years. The close proximity of this companion animal, however, goes beyond sharing the same roof; it extends to the great similarity found at the cellular and molecular levels. Researchers have found a striking resemblance between subtypes of feline mammary tumors and their human counterparts that goes from the genes to the pathways involved in cancer initiation and progression. Spontaneous cat mammary pre-invasive intraepithelial lesions (hyperplasias and neoplasias and malignant lesions seem to share a wide repertoire of molecular features with their human counterparts. In the present review, we tried to compile all the genetics aspects published (i.e., chromosomal alterations, critical cancer genes and their expression regarding cat mammary tumors, which support the cat as a valuable alternative in vitro cell and animal model (i.e., cat mammary cell lines and the spontaneous tumors, respectively, but also to present a critical point of view of some of the issues that really need to be investigated in future research.

  12. Acute mixture toxicity of halogenated chemicals and their next generation counterparts on zebrafish embryos.

    Science.gov (United States)

    Godfrey, Amy; Abdel-Moneim, Ahmed; Sepúlveda, Maria S

    2017-08-01

    Perfluorinated chemicals and flame retardants are halogenated compounds commonly used in food packaging and in clothing and electronics, respectively. Due to the hazardous effects of many of these chemicals, manufacturers are developing next generation potential less toxic alternatives. The objective of this study was to assess the toxicity of potentially "safer" alternatives, singly and in mixtures, in relation to their first generation counterparts. We used zebrafish embryos as our model organism due to its high structural and functional homology to other vertebrates and its suitability for early developmental studies. We tested three well studied halogens, perfluorooctanoic acid (PFOA), tris (1,3-dichloro-2-propyl) phosphate (TDCPP) and tetrabromobisphenal A (TBBPA), and two less-studied next generation chemicals, 9,10-Dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (DOPO) and perfluorobutyric acid (PFBA). First, we identified their lethal concentration (LC 50 ) under 96 h exposures using zebrafish embryos; chemical LC50 values ranged from 1.3 to 13,795 ppm. Next, we tested the toxicity of tertiary mixtures containing the estimated LC 50 values for each chemical which ranged from 126 to 5,094 ppm. We found that chemicals within these mixtures displayed concentration addition suggesting a similar mode of toxic action. Importantly, next generation chemicals were less acutely toxic singly and in mixtures than their first generation counterpart. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Dielectric properties of layered FeGaInS{sub 4} single crystals in an alternating electric field

    Energy Technology Data Exchange (ETDEWEB)

    Mammadov, F. M. [Azerbaijan National Academy of Sciences, Nagiyev Institute of Catalysis and Inorganic Chemistry (Azerbaijan); Niftiyev, N. N., E-mail: namiq7@bk.ru [Azerbaijan State Pedagogical University (Azerbaijan)

    2016-09-15

    The results of investigations of the frequency and temperature dependences of dielectric losses and the imaginary part of the dielectric permittivity in FeGaInS{sub 4} single crystals are presented. Their experimental values are determined. It is established that the loss tangent and the imaginary part of the permittivity of FeGaInS{sub 4} single crystals in a field with frequencies of 10{sup 4}–10{sup 6} Hz decrease inversely proportional to the frequency (tanδ ~ 1/ω), and the conductivity is characterized by the band–hopping mechanism. For FeGaInS{sub 4}, the relaxation time is calculated, and it is established that there is a mechanism of electron polarization caused by thermal motion in this crystal.

  14. Correlation between (in)commensurate domains of multilayer epitaxial graphene grown on SiC(0 0 0 1-bar ) and single layer electronic behavior

    International Nuclear Information System (INIS)

    Mendes-de-Sa, T G; Goncalves, A M B; Matos, M J S; Coelho, P M; Magalhaes-Paniago, R; Lacerda, R G

    2012-01-01

    A systematic study of the evolution of the electronic behavior and atomic structure of multilayer epitaxial graphene (MEG) as a function of growth time was performed. MEG was obtained by sublimation of a 4H-SiC(0 0 0 1-bar ) substrate in an argon atmosphere. Raman spectroscopy and x-ray diffraction were carried out in samples grown for different times. For 30 min of growth the sample Raman signal is similar to that of graphite, while for 60 min the spectrum becomes equivalent to that of exfoliated graphene. Conventional x-ray diffraction reveals that all the samples have two different (0001) lattice spacings. Grazing incidence x-ray diffraction shows that thin films are composed of rotated (commensurate) structures formed by adjacent graphene layers. Thick films are almost completely disordered. This result can be directly correlated to the single layer electronic behavior of the films as observed by Raman spectroscopy. Finally, to understand the change in lattice spacings as a result of layer rotation, we have carried out first principles calculations (using density functional theory) of the observed commensurate structures. (paper)

  15. A new first-order turbulence mixing model for the stable atmospheric boundary-layer: development and testing in large-eddy and single column models

    Science.gov (United States)

    Huang, J.; Bou-Zeid, E.; Golaz, J.

    2011-12-01

    Parameterization of the stably-stratified atmospheric boundary-layer is of crucial importance to different aspects of numerical weather prediction at regional scales and climate modeling at global scales, such as land-surface temperature forecasts, fog and frost prediction, and polar climate. It is well-known that most operational climate models require excessive turbulence mixing of the stable boundary-layer to prevent decoupling of the atmospheric component from the land component under strong stability, but the performance of such a model is unlikely to be satisfactory under weakly and moderately stable conditions. In this study we develop and test a general turbulence mixing model of the stable boundary-layer which works under different stabilities and for steady as well as unsteady conditions. A-priori large-eddy simulation (LES) tests are presented to motivate and verify the new parameterization. Subsequently, an assessment of this model using the GFDL single-column model (SCM) is performed. Idealized test cases including continuously varying stability, as well as stability discontinuity, are used to test the new SCM against LES results. A good match of mean and flux profiles is found when the new parameterization is used, while other traditional first-order turbulence models using the concept of stability function perform poorly. SCM spatial resolution is also found to have little impact on the performance of the new turbulence closure, but temporal resolution is important and a numerical stability criterion based on the model time step is presented.

  16. Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO2 substrate.

    Science.gov (United States)

    Kim, Hyungki; Song, Intek; Park, Chibeom; Son, Minhyeok; Hong, Misun; Kim, Youngwook; Kim, Jun Sung; Shin, Hyun-Joon; Baik, Jaeyoon; Choi, Hee Cheul

    2013-08-27

    We report that high-quality single-layer graphene (SLG) has been successfully synthesized directly on various dielectric substrates including amorphous SiO2/Si by a Cu-vapor-assisted chemical vapor deposition (CVD) process. The Cu vapors produced by the sublimation of Cu foil that is suspended above target substrates without physical contact catalyze the pyrolysis of methane gas and assist nucleation of graphene on the substrates. Raman spectra and mapping images reveal that the graphene formed on a SiO2/Si substrate is almost defect-free and homogeneous single layer. The overall quality of graphene grown by Cu-vapor-assisted CVD is comparable to that of the graphene grown by regular metal-catalyzed CVD on a Cu foil. While Cu vapor induces the nucleation and growth of SLG on an amorphous substrate, the resulting SLG is confirmed to be Cu-free by synchrotron X-ray photoelectron spectroscopy. The SLG grown by Cu-vapor-assisted CVD is fabricated into field effect transistor devices without transfer steps that are generally required when SLG is grown by regular CVD process on metal catalyst substrates. This method has overcome two important hurdles previously present when the catalyst-free CVD process is used for the growth of SLG on fused quartz and hexagonal boron nitride substrates, that is, high degree of structural defects and limited size of resulting graphene, respectively.

  17. Phase diagram and electronic indication of high-temperature superconductivity at 65 K in single-layer FeSe films.

    Science.gov (United States)

    He, Shaolong; He, Junfeng; Zhang, Wenhao; Zhao, Lin; Liu, Defa; Liu, Xu; Mou, Daixiang; Ou, Yun-Bo; Wang, Qing-Yan; Li, Zhi; Wang, Lili; Peng, Yingying; Liu, Yan; Chen, Chaoyu; Yu, Li; Liu, Guodong; Dong, Xiaoli; Zhang, Jun; Chen, Chuangtian; Xu, Zuyan; Chen, Xi; Ma, Xucun; Xue, Qikun; Zhou, X J

    2013-07-01

    The recent discovery of possible high-temperature superconductivity in single-layer FeSe films has generated significant experimental and theoretical interest. In both the cuprate and the iron-based high-temperature superconductors, superconductivity is induced by doping charge carriers into the parent compound to suppress the antiferromagnetic state. It is therefore important to establish whether the superconductivity observed in the single-layer sheets of FeSe--the essential building blocks of the Fe-based superconductors--is realized by undergoing a similar transition. Here we report the phase diagram for an FeSe monolayer grown on a SrTiO3 substrate, by tuning the charge carrier concentration over a wide range through an extensive annealing procedure. We identify two distinct phases that compete during the annealing process: the electronic structure of the phase at low doping (N phase) bears a clear resemblance to the antiferromagnetic parent compound of the Fe-based superconductors, whereas the superconducting phase (S phase) emerges with the increase in doping and the suppression of the N phase. By optimizing the carrier concentration, we observe strong indications of superconductivity with a transition temperature of 65±5 K. The wide tunability of the system across different phases makes the FeSe monolayer ideal for investigating not only the physics of superconductivity, but also for studying novel quantum phenomena more generally.

  18. Investigation of the single layer model of GPS ionospheric data processing using IRI-90 and the attached diffusive equilibrium model of plasmaspheric electron density

    Directory of Open Access Journals (Sweden)

    L. Bànyai

    1997-06-01

    Full Text Available The single layer model of GPS ionospheric data processing is compared with the International Reference Ionosphere í 1990 and the attached Diffusive Equilibrium model of Plasmasphere (IRI-90+DEP which proved to be a good supplement to GPS data processing. These models can be used to estimate the single layer height and to improve the mapping function in day-time. The code delays estimated from IRI-90+DEP models are compared with GPS measurements carried out by TurboRogue receiver. These models can be used to estimate the preliminary receiver biases especially in the case of cross-correlation tracking mode. The practical drawback of the IRI-90 model is the sharp discontinuity of the ion components during sunset and sunrise at an elevation of 1000 km, because it also causes a sharp discontinuity in the TEC values computed from the DEP model. The GPS data may be a good source to improve the topside region of the IRI model estimating smooth TEC transition before and after sunrise in the plasmasphere.

  19. Single-Column Model Simulations of Subtropical Marine Boundary-Layer Cloud Transitions Under Weakening Inversions: SCM SIMULATIONS OF CLOUD TRANSITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Neggers, R. A. J. [Institute for Geophysics and Meteorology, Department of Geosciences, University of Cologne, Cologne Germany; Royal Netherlands Meteorological Institute, De Bilt The Netherlands; Ackerman, A. S. [NASA Goddard Institute for Space Studies, New York NY USA; Angevine, W. M. [CIRES, University of Colorado, Boulder CO USA; NOAA Earth System Research Laboratory, Boulder CO USA; Bazile, E. [Météo France/CNRM, Toulouse France; Beau, I. [Météo France/ENM, Toulouse France; Blossey, P. N. [Department of Atmospheric Sciences, University of Washington, Seattle WA USA; Boutle, I. A. [Met Office, Exeter UK; de Bruijn, C. [Royal Netherlands Meteorological Institute, De Bilt The Netherlands; Cheng, A. [NOAA Center for Weather and Climate Prediction, Environmental Modeling Center, College Park MD USA; van der Dussen, J. [Department of Geoscience and Remote Sensing, Delft University of Technology, Delft The Netherlands; Fletcher, J. [Department of Atmospheric Sciences, University of Washington, Seattle WA USA; University of Leeds, Leeds UK; Dal Gesso, S. [Institute for Geophysics and Meteorology, Department of Geosciences, University of Cologne, Cologne Germany; Royal Netherlands Meteorological Institute, De Bilt The Netherlands; Jam, A. [Météo-France/CNRM & CNRS/IPSL/LMD, Toulouse France; Kawai, H. [Meteorological Research Institute, Climate Research Department, Japan Meteorological Agency, Tsukuba Japan; Cheedela, S. K. [Department of Atmosphere in the Earth System, Max-Planck Institut für Meteorologie, Hamburg Germany; Larson, V. E. [Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee WI USA; Lefebvre, M. -P. [Météo-France/CNRM & CNRS/IPSL/LMD, Toulouse France; Lock, A. P. [Met Office, Exeter UK; Meyer, N. R. [Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee WI USA; de Roode, S. R. [Department of Geoscience and Remote Sensing, Delft University of Technology, Delft The Netherlands; de Rooy, W. [Royal Netherlands Meteorological Institute, De Bilt The Netherlands; Sandu, I. [Section of Physical Aspects, European Centre for Medium-Range Weather Forecasts, Reading UK; Xiao, H. [University of California at Los Angeles, Los Angeles CA USA; Pacific Northwest National Laboratory, Richland WA USA; Xu, K. -M. [NASA Langley Research Centre, Hampton VI USA

    2017-10-01

    Results are presented of the GASS/EUCLIPSE single-column model inter-comparison study on the subtropical marine low-level cloud transition. A central goal is to establish the performance of state-of-the-art boundary-layer schemes for weather and climate mod- els for this cloud regime, using large-eddy simulations of the same scenes as a reference. A novelty is that the comparison covers four different cases instead of one, in order to broaden the covered parameter space. Three cases are situated in the North-Eastern Pa- cific, while one reflects conditions in the North-Eastern Atlantic. A set of variables is considered that reflects key aspects of the transition process, making use of simple met- rics to establish the model performance. Using this method some longstanding problems in low level cloud representation are identified. Considerable spread exists among models concerning the cloud amount, its vertical structure and the associated impact on radia- tive transfer. The sign and amplitude of these biases differ somewhat per case, depending on how far the transition has progressed. After cloud breakup the ensemble median ex- hibits the well-known “too few too bright” problem. The boundary layer deepening rate and its state of decoupling are both underestimated, while the representation of the thin capping cloud layer appears complicated by a lack of vertical resolution. Encouragingly, some models are successful in representing the full set of variables, in particular the verti- cal structure and diurnal cycle of the cloud layer in transition. An intriguing result is that the median of the model ensemble performs best, inspiring a new approach in subgrid pa- rameterization.

  20. Identification of small-scale low and high permeability layers using single well forced-gradient tracer tests: fluorescent dye imaging and modelling at the laboratory-scale.

    Science.gov (United States)

    Barns, Gareth L; Thornton, Steven F; Wilson, Ryan D

    2015-01-01

    Heterogeneity in aquifer permeability, which creates paths of varying mass flux and spatially complex contaminant plumes, can complicate the interpretation of contaminant fate and transport in groundwater. Identifying the location of high mass flux paths is critical for the reliable estimation of solute transport parameters and design of groundwater remediation schemes. Dipole flow tracer tests (DFTTs) and push-pull tests (PPTs) are single well forced-gradient tests which have been used at field-scale to estimate aquifer hydraulic and transport properties. In this study, the potential for PPTs and DFTTs to resolve the location of layered high- and low-permeability layers in granular porous media was investigated with a pseudo 2-D bench-scale aquifer model. Finite element fate and transport modelling was also undertaken to identify appropriate set-ups for in situ tests to determine the type, magnitude, location and extent of such layered permeability contrasts at the field-scale. The characteristics of flow patterns created during experiments were evaluated using fluorescent dye imaging and compared with the breakthrough behaviour of an inorganic conservative tracer. The experimental results show that tracer breakthrough during PPTs is not sensitive to minor permeability contrasts for conditions where there is no hydraulic gradient. In contrast, DFTTs are sensitive to the type and location of permeability contrasts in the host media and could potentially be used to establish the presence and location of high or low mass flux paths. Numerical modelling shows that the tracer peak breakthrough time and concentration in a DFTT is sensitive to the magnitude of the permeability contrast (defined as the permeability of the layer over the permeability of the bulk media) between values of 0.01-20. DFTTs are shown to be more sensitive to deducing variations in the contrast, location and size of aquifer layered permeability contrasts when a shorter central packer is used

  1. Identification of small-scale low and high permeability layers using single well forced-gradient tracer tests: Fluorescent dye imaging and modelling at the laboratory-scale

    Science.gov (United States)

    Barns, Gareth L.; Thornton, Steven F.; Wilson, Ryan D.

    2015-01-01

    Heterogeneity in aquifer permeability, which creates paths of varying mass flux and spatially complex contaminant plumes, can complicate the interpretation of contaminant fate and transport in groundwater. Identifying the location of high mass flux paths is critical for the reliable estimation of solute transport parameters and design of groundwater remediation schemes. Dipole flow tracer tests (DFTTs) and push-pull tests (PPTs) are single well forced-gradient tests which have been used at field-scale to estimate aquifer hydraulic and transport properties. In this study, the potential for PPTs and DFTTs to resolve the location of layered high- and low-permeability layers in granular porous media was investigated with a pseudo 2-D bench-scale aquifer model. Finite element fate and transport modelling was also undertaken to identify appropriate set-ups for in situ tests to determine the type, magnitude, location and extent of such layered permeability contrasts at the field-scale. The characteristics of flow patterns created during experiments were evaluated using fluorescent dye imaging and compared with the breakthrough behaviour of an inorganic conservative tracer. The experimental results show that tracer breakthrough during PPTs is not sensitive to minor permeability contrasts for conditions where there is no hydraulic gradient. In contrast, DFTTs are sensitive to the type and location of permeability contrasts in the host media and could potentially be used to establish the presence and location of high or low mass flux paths. Numerical modelling shows that the tracer peak breakthrough time and concentration in a DFTT is sensitive to the magnitude of the permeability contrast (defined as the permeability of the layer over the permeability of the bulk media) between values of 0.01-20. DFTTs are shown to be more sensitive to deducing variations in the contrast, location and size of aquifer layered permeability contrasts when a shorter central packer is used

  2. Nanotubes oxidation temperature controls the height of single-walled carbon nanotube forests on gold micropatterned thin layers.

    Science.gov (United States)

    Lamberti, Francesco; Agnoli, Stefano; Meneghetti, Moreno; Elvassore, Nicola

    2010-07-06

    We developed a simple methodology for a direct control of the height of carboxylated single-walled carbon nanotube (SWNT) forests. We found that the important step is a good control of the oxidation temperature of the nanotubes. SWNTs oxidation at different temperature was followed by Raman and X-ray photoelectron spectroscopies. Atomic force microscopy images showed that micropatterned self-assembled monolayers forests have average height from 20 to 80 nm using SWNTs oxidized in the temperature ranging from 323 to 303 K, respectively.

  3. A radio counterpart to a neutron star merger.

    Science.gov (United States)

    Hallinan, G; Corsi, A; Mooley, K P; Hotokezaka, K; Nakar, E; Kasliwal, M M; Kaplan, D L; Frail, D A; Myers, S T; Murphy, T; De, K; Dobie, D; Allison, J R; Bannister, K W; Bhalerao, V; Chandra, P; Clarke, T E; Giacintucci, S; Ho, A Y Q; Horesh, A; Kassim, N E; Kulkarni, S R; Lenc, E; Lockman, F J; Lynch, C; Nichols, D; Nissanke, S; Palliyaguru, N; Peters, W M; Piran, T; Rana, J; Sadler, E M; Singer, L P

    2017-12-22

    Gravitational waves have been detected from a binary neutron star merger event, GW170817. The detection of electromagnetic radiation from the same source has shown that the merger occurred in the outskirts of the galaxy NGC 4993, at a distance of 40 megaparsecs from Earth. We report the detection of a counterpart radio source that appears 16 days after the event, allowing us to diagnose the energetics and environment of the merger. The observed radio emission can be explained by either a collimated ultrarelativistic jet, viewed off-axis, or a cocoon of mildly relativistic ejecta. Within 100 days of the merger, the radio light curves will enable observers to distinguish between these models, and the angular velocity and geometry of the debris will be directly measurable by very long baseline interferometry. Copyright © 2017, American Association for the Advancement of Science.

  4. X-ray Counterparts of Infrared Faint Radio Sources

    Science.gov (United States)

    Schartel, Norbert

    2011-10-01

    Infrared Faint Radio Sources (IFRS) are radio sources with extremely faint or even absent infrared emission in deep Spitzer Surveys. Models of their spectral energy distributions, the ratios of radio to infrared flux densities and their steep radio spectra strongly suggest that IFRS are AGN at high redshifts (2IFRS, but if confirmed, the increased AGN numbers at these redshifts will account for the unresolved part of the X-ray background. The identification of X-ray counterparts of IFRS is considered to be the smoking gun for this hypothesis. We propose to observe 8 IFRS using 30ks pointed observations. X-ray detections of IFRS with different ratios of radio-to-infrared fluxes, will constrain the class-specific SED.

  5. Nitro Stretch Probing of a Single Molecular Layer to Monitor Shock Compression with Picosecond Time-Resolution

    Science.gov (United States)

    Berg, Christopher; Lagutchev, Alexei; Fu, Yuanxi; Dlott, Dana

    2011-06-01

    To obtain maximum possible temporal resolution, laser-driven shock compression of a molecular monolayer was studied using vibrational spectroscopy. The stretching transitions of nitro groups bound to aromatic rings was monitored using a nonlinear coherent infrared spectroscopy termed sum-frequency generation, which produced high-quality signals from this very thin layer. To overcome the shock opacity problem, a novel polymer overcoat method allowed us to make the observation window (witness plate) a few micrometers thick. The high signal-to-noise ratios (>100:1) obtained via this spectroscopy allowed us to study detailed behavior of the shocked molecules. To help interpret these vibrational spectra, additional spectra were obtained under conditions of static pressures up to 10 GPa and static temperatures up to 1000 C. Consequently, this experiment represents a significant step in resolving molecular dynamics during shock compression and unloading with both high spatial and temporal resolution. Supported by the Stewardship Sciences Academic Alliance Program from the Carnegie-DOE Alliance Center under grant number DOE CIW 4-3253-13 and the US Air Force Office of Scientific Research under award number FAA9550-09-1-0163.

  6. Single-layer 1T‧-MoS2 under electron irradiation from ab initio molecular dynamics

    Science.gov (United States)

    Pizzochero, Michele; Yazyev, Oleg V.

    2018-04-01

    Irradiation with high-energy particles has recently emerged as an effective tool for tailoring the properties of two-dimensional transition metal dichalcogenides. In order to carry out an atomically-precise manipulation of the lattice, a detailed understanding of the beam-induced events occurring at the atomic scale is necessary. Here, we investigate the response of 1T' -MoS2 to the electron irradiation by ab initio molecular dynamics means. Our simulations suggest that an electron beam with energy smaller than 75 keV does not result in any knock-on damage. The displacement threshold energies are different for the two nonequivalent sulfur atoms in 1T' -MoS2 and strongly depend on whether the top or bottom chalcogen layer is considered. As a result, a careful tuning of the beam energy can promote the formation of ordered defects in the sample. We further discuss the effect of the electron irradiation in the neighborhood of a defective site, the mobility of the sulfur vacancies created and their tendency to aggregate. Overall, our work provides useful guidelines for the imaging and the defect engineering of 1T' -MoS2 using electron microscopy.

  7. Spontaneously formed high-performance charge-transport layers of organic single-crystal semiconductors on precisely synthesized insulating polymers

    Science.gov (United States)

    Makita, Tatsuyuki; Sasaki, Masayuki; Annaka, Tatsuro; Sasaki, Mari; Matsui, Hiroyuki; Mitsui, Chikahiko; Kumagai, Shohei; Watanabe, Shun; Hayakawa, Teruaki; Okamoto, Toshihiro; Takeya, Jun

    2017-04-01

    Charge-transporting semiconductor layers with high carrier mobility and low trap-density, desired for high-performance organic transistors, are spontaneously formed as a result of thermodynamic phase separation from a blend of π-conjugated small molecules and precisely synthesized insulating polymers dissolved in an aromatic solvent. A crystal film grows continuously to the size of centimeters, with the critical conditions of temperature, concentrations, and atmosphere. It turns out that the molecular weight of the insulating polymers plays an essential role in stable film growth and interfacial homogeneity at the phase separation boundary. Fabricating the transistor devices directly at the semiconductor-insulator boundaries, we demonstrate that the mixture of 3,11-didecyldinaphtho[2,3-d:2',3'-d']benzo[1,2-b:4,5-b']dithiophene and poly(methyl methacrylate) with the optimized weight-average molecular weight shows excellent device performances. The spontaneous phase separation with a one-step fabrication process leads to a high mobility up to 10 cm2 V-1 s-1 and a low subthreshold swing of 0.25 V dec-1 even without any surface treatment such as self-assembled monolayer modifications on oxide gate insulators.

  8. AB stacked few layer graphene growth by chemical vapor deposition on single crystal Rh(1 1 1) and electronic structure characterization

    Energy Technology Data Exchange (ETDEWEB)

    Kordatos, Apostolis [National Center for Scientific Research “Demokritos”, Athens, 15310 (Greece); Kelaidis, Nikolaos, E-mail: n.kelaidis@inn.demokritos.gr [National Center for Scientific Research “Demokritos”, Athens, 15310 (Greece); Giamini, Sigiava Aminalragia [National Center for Scientific Research “Demokritos”, Athens, 15310 (Greece); University of Athens, Department of Physics, Section of Solid State Physics, Athens, 15684 Greece (Greece); Marquez-Velasco, Jose [National Center for Scientific Research “Demokritos”, Athens, 15310 (Greece); National Technical University of Athens, Department of Physics, Athens, 15784 Greece (Greece); Xenogiannopoulou, Evangelia; Tsipas, Polychronis; Kordas, George; Dimoulas, Athanasios [National Center for Scientific Research “Demokritos”, Athens, 15310 (Greece)

    2016-04-30

    Highlights: • Growth of non-defective few layer graphene on Rh(1 1 1) substrates using an ambient- pressure CVD method. • Control of graphene stacking order via the cool-down rate. • Graphene is grown with a mainly AB-stacking geometry on single-crystalline Rhodium for a slow cool-down rate and non-AB for a very fast cool-down. • Good epitaxial orientation of the surface is presented through the RHEED data and confirmed with ARPES characterization for the lower cool-down rate, where graphene's ΓK direction a perfectly aligned with the ΓK direction of the Rh(1 1 1) single crystal. - Abstract: Graphene synthesis on single crystal Rh(1 1 1) catalytic substrates is performed by Chemical Vapor Deposition (CVD) at 1000 °C and atmospheric pressure. Raman analysis shows full substrate coverage with few layer graphene. It is found that the cool-down rate strongly affects the graphene stacking order. When lowered, the percentage of AB (Bernal) -stacked regions increases, leading to an almost full AB stacking order. When increased, the percentage of AB-stacked graphene regions decreases to a point where almost a full non AB-stacked graphene is grown. For a slow cool-down rate, graphene with AB stacking order and good epitaxial orientation with the substrate is achieved. This is indicated mainly by Raman characterization and confirmed by Reflection high-energy electron diffraction (RHEED) imaging. Additional Scanning Tunneling Microscopy (STM) topography data confirm that the grown graphene is mainly an AB-stacked structure. The electronic structure of the graphene/Rh(1 1 1) system is examined by Angle resolved Photo-Emission Spectroscopy (ARPES), where σ and π bands of graphene, are observed. Graphene's ΓK direction is aligned with the ΓK direction of the substrate, indicating no significant contribution from rotated domains.

  9. AB stacked few layer graphene growth by chemical vapor deposition on single crystal Rh(1 1 1) and electronic structure characterization

    International Nuclear Information System (INIS)

    Kordatos, Apostolis; Kelaidis, Nikolaos; Giamini, Sigiava Aminalragia; Marquez-Velasco, Jose; Xenogiannopoulou, Evangelia; Tsipas, Polychronis; Kordas, George; Dimoulas, Athanasios

    2016-01-01

    Highlights: • Growth of non-defective few layer graphene on Rh(1 1 1) substrates using an ambient- pressure CVD method. • Control of graphene stacking order via the cool-down rate. • Graphene is grown with a mainly AB-stacking geometry on single-crystalline Rhodium for a slow cool-down rate and non-AB for a very fast cool-down. • Good epitaxial orientation of the surface is presented through the RHEED data and confirmed with ARPES characterization for the lower cool-down rate, where graphene's ΓK direction a perfectly aligned with the ΓK direction of the Rh(1 1 1) single crystal. - Abstract: Graphene synthesis on single crystal Rh(1 1 1) catalytic substrates is performed by Chemical Vapor Deposition (CVD) at 1000 °C and atmospheric pressure. Raman analysis shows full substrate coverage with few layer graphene. It is found that the cool-down rate strongly affects the graphene stacking order. When lowered, the percentage of AB (Bernal) -stacked regions increases, leading to an almost full AB stacking order. When increased, the percentage of AB-stacked graphene regions decreases to a point where almost a full non AB-stacked graphene is grown. For a slow cool-down rate, graphene with AB stacking order and good epitaxial orientation with the substrate is achieved. This is indicated mainly by Raman characterization and confirmed by Reflection high-energy electron diffraction (RHEED) imaging. Additional Scanning Tunneling Microscopy (STM) topography data confirm that the grown graphene is mainly an AB-stacked structure. The electronic structure of the graphene/Rh(1 1 1) system is examined by Angle resolved Photo-Emission Spectroscopy (ARPES), where σ and π bands of graphene, are observed. Graphene's ΓK direction is aligned with the ΓK direction of the substrate, indicating no significant contribution from rotated domains.

  10. Single component Mn-doped perovskite-related CsPb2ClxBr5-x nanoplatelets with a record white light quantum yield of 49%: a new single layer color conversion material for light-emitting diodes.

    Science.gov (United States)

    Wu, Hao; Xu, Shuhong; Shao, Haibao; Li, Lang; Cui, Yiping; Wang, Chunlei

    2017-11-09

    Single component nanocrystals (NCs) with white fluorescence are promising single layer color conversion media for white light-emitting diodes (LED) because the undesirable changes of chromaticity coordinates for the mixture of blue, green and red emitting NCs can be avoided. However, their practical applications have been hindered by the relative low photoluminescence (PL) quantum yield (QY) for traditional semiconductor NCs. Though Mn-doped perovskite nanocube is a potential candidate, it has been unable to realize a white-light emission to date. In this work, the synthesis of Mn-doped 2D perovskite-related CsPb 2 Cl x Br 5-x nanoplatelets with a pure white emission from a single component is reported. Unlike Mn-doped perovskite nanocubes with insufficient energy transfer efficiency, the current reported Mn-doped 2D perovskite-related CsPb 2 Cl x Br 5-x nanoplatelets show a 10 times higher energy transfer efficiency from perovskite to Mn impurities at the required emission wavelengths (about 450 nm for perovskite emission and 580 nm for Mn emission). As a result, the Mn/perovskite dual emission intensity ratio surprisingly elevates from less than 0.25 in case of Mn-doped nanocubes to 0.99 in the current Mn-doped CsPb 2 Cl x Br 5-x nanoplatelets, giving rise to a pure white light emission with Commission Internationale de l'Eclairage (CIE) color coordinates of (0.35, 0.32). More importantly, the highest PL QY for Mn-doped perovskite-related CsPb 2 Cl x Br 5-x nanoplatelets is up to 49%, which is a new record for white-emitting nanocrystals with single component. These highly luminescent nanoplatelets can be blended with polystyrene (PS) without changing the white light emission but dramatically improving perovskite stability. The perovskite-PS composites are available not only as a good solution processable coating material for assembling LED, but also as a superior conversion material for achieving white light LED with a single conversion layer.

  11. R&D for a single-layer $Nb_{3}Sn$ common coil dipole using the react-and-wind fabrication technique

    CERN Document Server

    Ambrosio, G; Barzi, E; Bauer, P; Chichili, D R; Ewald, K D; Fehér, S; Imbasciati, L; Kashikhin, V V; Limon, P J; Litvinenko, L; Novitski, I; Rey, J M; Scanlan, R M; Yadav, S; Yamada, R; Zlobin, A V

    2002-01-01

    A dipole magnet based on the common coil design, using prereacted Nb /sub 3/Sn superconductor, is under development at Fermilab, for a future Very Large Hadron Collider. This magnet has some innovative design and technological features such as single layer coils, a 22 mm wide 60-strand Rutherford type cable and stainless steel collars reinforced by horizontal bridges inserted between coil blocks. Both left and right coils are wound simultaneously into the collar structure and then impregnated with epoxy. In order to optimize the design and fabrication techniques an R&D program is underway. The production of cables with the required characteristics was shown possible. Collar laminations were produced, assembled and tested in order to check the effectiveness of the bridges and the validity of the mechanical design. A mechanical model consisting in a 165 mm long section of the magnet straight section was assembled and tested. This paper summarizes the status of the program, and reports the results of fabrica...

  12. NMR studies of Borrelia burgdorferi OspA, a 28 kDa protein containing a single-layer {beta}-sheet

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Thuy-Nga; Koide, Shohei

    1998-05-15

    The crystal structure of outer surface protein A (OspA) from Borrelia burgdorferi contains a single-layer {beta}-sheet connecting the N- and C-terminal globular domains. The central {beta}-sheet consists largely of polar amino acids and it is solvent-exposed on both faces, which so far appears to be unique among known protein structures. We have accomplished nearly complete backbone H, C and N and C{sup ;}/H{sup {beta}} assignments of OspA (28 kDa) using standard triple resonance techniques without perdeuteration. This was made possible by recording spectra at a high temperature (45 {sup o}C ). The chemical shift index and {sup 15}N T{sub 1}/T{sub 2} ratios show that both the secondary structure and the global conformation of OspA in solution are similar to the crystal structure, suggesting that the unique central {beta}-sheet is fairly rigid.

  13. Saturated evanescent-wave absorption of few-layer graphene-covered side-polished single-mode fiber for all-optical switching

    Science.gov (United States)

    Peng, Kaung-Jay; Wu, Chun-Lung; Lin, Yung-Hsiang; Wang, Hwai-Yung; Cheng, Chih-Hsien; Chi, Yu-Chieh; Lin, Gong-Ru

    2018-01-01

    Using the evanescent-wave saturation effect of hydrogen-free low-temperature synthesized few-layer graphene covered on the cladding region of a side-polished single-mode fiber, a blue pump/infrared probe-based all-optical switch is demonstrated with specific wavelength-dependent probe modulation efficiency. Under the illumination of a blue laser diode at 405 nm, the few-layer graphene exhibits cross-gain modulation at different wavelengths covering the C- and L-bands. At a probe power of 0.5 mW, the L-band switching throughput power variant of 16 μW results in a probe modulation depth of 3.2%. Blue shifting the probe wavelength from 1580 to 1520 nm further enlarges the switching throughput power variant to 24 mW and enhances the probe modulation depth to 5%. Enlarging the probe power from 0.5 to 1 mW further enlarges the switching throughput power variant from 25 to 58 μW to promote its probe modulation depth of up to 5.8% at 1520 nm. In contrast, the probe modulation depth degrades from 5.1% to 1.2% as the pumping power reduces from 85 to 24 mW, which is attributed to the saturable absorption of the few-layer graphene-based evanescent-wave absorber. The modulation depth at wavelength of 1550 nm under a probe power of 1 mW increases from 1.2% to 5.1%, as more carriers can be excited when increasing the blue laser power from 24 to 85 mW, whereas it decreases from 5.1% to 3.3% by increasing the input probe power from 1 to 2 mW to show an easier saturated condition at longer wavelength.

  14. Imaging the Structure of Grains, Grain Boundaries, and Stacking Sequences in Single and Multi-Layer Graphene

    Science.gov (United States)

    Muller, David

    2012-02-01

    Graphene can be produced by chemical vapor deposition (CVD) on copper substrates on up to meter scales [1, 2], making their polycrystallinity [3,4] almost unavoidable. By combining aberration-corrected scanning transmission electron microscopy and dark-field transmission electron microscopy, we image graphene grains and grain boundaries across six orders of magnitude. Atomic-resolution images of graphene grain boundaries reveal that different grains can stitch together via pentagon-heptagon pairs. We use diffraction-filtered electron imaging to map the shape and orientation of several hundred grains and boundaries over fields of view of a hundred microns. Single, double and multilayer graphene can be differentiated, and the stacking sequence and relative abundance of sequences can be directly imaged. These images reveal an intricate patchwork of grains with structural details depending strongly on growth conditions. The imaging techniques enabled studies of the structure, properties, and control of graphene grains and grain boundaries [5]. [4pt] [1] X. Li et al., Science 324, 1312 (2009).[0pt] [2] S. Bae et al., Nature Nanotechnol. 5, 574 (2010).[0pt] [3] J. M. Wofford, et al., Nano Lett., (2010).[0pt] [4] P. Y. Huang, et al., Nature 469, 389--392 (2011); arXiv:1009.4714, (2010)[0pt] [5] In collaboration with Pinshane Y. Huang, C. S. Ruiz-Vargas, A. M. van der Zande, A. W. Tsen, L. Brown, R. Hovden, F. Ghahari, W. S. Whitney, M.P. Levendorf, J. W. Kevek, S. Garg, J. S. Alden, C. J. Hustedt, Y. Zhu, N. Petrone, J. Hone, J. Park, P. L. McEuen

  15. Atomic-scale measurement of structure and chemistry of a single-unit-cell layer of LaAlO3 embedded in SrTiO3.

    Science.gov (United States)

    Jia, Chun-Lin; Barthel, Juri; Gunkel, Felix; Dittmann, Regina; Hoffmann-Eifert, Susanne; Houben, Lothar; Lentzen, Markus; Thust, Andreas

    2013-04-01

    A single layer of LaAlO3 with a nominal thickness of one unit cell, which is sandwiched between a SrTiO3 substrate and a SrTiO3 capping layer, is quantitatively investigated by high-resolution transmission electron microscopy. By the use of an aberration-corrected electron microscope and by employing sophisticated numerical image simulation procedures, significant progress is made in two aspects. First, the structural as well as the chemical features of the interface are determined simultaneously on an atomic scale from the same specimen area. Second, the evaluation of the structural and chemical data is carried out in a fully quantitative way on the basis of the absolute image contrast, which has not been achieved so far in materials science investigations using high-resolution electron microscopy. Considering the strong influence of even subtle structural details on the electronic properties of interfaces in oxide materials, a fully quantitative interface analysis, which makes positional data available with picometer precision together with the related chemical information, can contribute to a better understanding of the functionality of such interfaces.

  16. A compact, all-optical, THz wave generator based on self-modulation in a slab photonic crystal waveguide with a single sub-nanometer graphene layer.

    Science.gov (United States)

    Asadi, R; Ouyang, Z; Mohammd, M M

    2015-07-14

    We design a compact, all-optical THz wave generator based on self-modulation in a 1-D slab photonic crystal (PhC) waveguide with a single sub-nanometer graphene layer by using enhanced nonlinearity of graphene. It has been shown that at the bandgap edge of higher bands of a 1-D slab PhC, through only one sub-nanometer graphene layer we can obtain a compact, high modulation factor (about 0.98 percent), self-intensity modulator at a high frequency (about 0.6 THz) and low threshold intensity (about 15 MW per square centimeter), and further a compact, all-optical THz wave generator by integrating the self-modulator with a THz photodiode or photonic mixer. Such a THz source is expected to have a relatively high efficiency compared with conventional sources based on optical methods. The proposed THz source can find wide applications in THz science and technology, e.g., in THz imaging, THz sensors and detectors, THz communication systems, and THz optical integrated logic circuits.

  17. Ultradispersed and Single-Layered MoS2 Nanoflakes Strongly Coupled with Graphene: An Optimized Structure with High Kinetics for the Hydrogen Evolution Reaction.

    Science.gov (United States)

    Huang, Haoliang; Huang, Junying; Liu, Weipeng; Fang, Yueping; Liu, Yingju

    2017-11-15

    As one of the most promising Pt alternatives for cost-effective hydrogen production, molybdenum disulfide (MoS 2 ), although has been studied extensively to improve its electrocatalytic activity, suffers from scarce active sites, low conductivity, and lack of interaction with substrates. To this end, we anchor ultradispersed and single-layered MoS 2 nanoflakes on graphene sheets via a hybrid intermediate (MoO x -cysteine-graphene oxide), which not only confines the subsequent growth of MoS 2 on the graphene surface but also ensures the intimate interaction between Mo species and graphene at the initial stage. Mo-O-C bond and a possible residual MoO 3-x layer are proposed to comprise the interface bridging the two inherent incompatible phases, MoS 2 and graphene. This strongly coupled structure together with the highly exposed MoS 2 morphology accelerates the electron injection from graphene to the active sites of MoS 2 , and thus the hydrogen evolution reaction (HER) can achieve an overpotential of ∼275 mV at ∼-740 mA cm -2 , and a Pt-like Tafel slope of ∼35 mV dec -1 . Our results shed light on the indispensable role of interfacial interaction within semiconducting material-nanocarbon composites and provide a new insight into the actual activity of MoS 2 toward the HER.

  18. Capacitance characteristics of metal-oxide-semiconductor capacitors with a single layer of embedded nickel nanoparticles for the application of nonvolatile memory

    International Nuclear Information System (INIS)

    Wei, Li; Ling, Xu; Wei-Ming, Zhao; Hong-Lin, Ding; Zhong-Yuan, Ma; Jun, Xu; Kun-Ji, Chen

    2010-01-01

    This paper reports that metal-oxide-semiconductor (MOS) capacitors with a single layer of Ni nanoparticles were successfully fabricated by using electron-beam evaporation and rapid thermal annealing for application to nonvolatile memory. Experimental scanning electron microscopy images showed that Ni nanoparticles of about 5 nm in diameter were clearly embedded in the SiO 2 layer on p-type Si (100). Capacitance–voltage measurements of the MOS capacitor show large flat-band voltage shifts of 1.8 V, which indicate the presence of charge storage in the nickel nanoparticles. In addition, the charge-retention characteristics of MOS capacitors with Ni nanoparticles were investigated by using capacitance–time measurements. The results showed that there was a decay of the capacitance embedded with Ni nanoparticles for an electron charge after 10 4 s. But only a slight decay of the capacitance originating from hole charging was observed. The present results indicate that this technique is promising for the efficient formation or insertion of metal nanoparticles inside MOS structures. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  19. Ultrasensitive electrochemical detection of microRNA-21 combining layered nanostructure of oxidized single-walled carbon nanotubes and nanodiamonds by hybridization chain reaction.

    Science.gov (United States)

    Liu, Lingzhi; Song, Chao; Zhang, Zhang; Yang, Juan; Zhou, Lili; Zhang, Xing; Xie, Guoming

    2015-08-15

    Measurement of microRNA (miRNA) levels in body fluids is a crucial tool for the early diagnosis and prognosis of cancers. In this study, we developed an electrochemical assay to detect miRNA-21 by fabricating the electrode with layer-by-layer assembly of oxidized single-walled carbon nanotubes and nanodiamonds. Tetrahedron-structured probes with free-standing probe on the top served as receptors to hybridize with target miRNA directly. The probes were immobilized on the deposited gold nanoparticles through a well-established strong Au-S bond. The electrochemical signal was mainly derived from an ultrasensitive pattern by combining hybridization chain reaction with DNA-functionalized AuNPs, which provided DNAzyme to catalyze H2O2 reduction. Differential pulse voltammetry was applied to record the electrochemical signals, which was increased linearly with the target miRNA-21, and the linear detection range was 10 fM to 1.0 nM. The limit of detection reached 1.95 fM (S/N=3), and the proposed biosensor exhibited good reproducibility and stability, as well as high sensitivity. Hence, this biosensor has a promising potential in clinical application. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. High-Performance PEDOT:PSS/Single-Walled Carbon Nanotube/Ionic Liquid Actuators Combining Electrostatic Double-Layer and Faradaic Capacitors.

    Science.gov (United States)

    Terasawa, Naohiro; Asaka, Kinji

    2016-07-19

    New hybrid-type poly(3,4-ethylenedioxythiophene) (PEDOT) actuators produced by the film-casting method, in which both electrostatic double-layer (EDLC) and faradaic capacitors (FCs) occur simultaneously, have been developed. The electrochemical and electromechanical properties of poly(4-styrenesulfonate) (PSS), PEDOT:PSS/ionic liquid (IL), and PSS/single-walled carbon nanotubes (SWCNTs)/IL actuators are compared with those of a conventional poly(vinylidene fluoride)-co-hexafluoropropylene (PVdF(HFP))/SWCNT/IL actuator. It is found that the PSS/SWCNT/IL actuator provides a better actuation strain performance than a conventional (PVdF(HFP))/SWCNT/IL actuator, as its electrode is an electrochemical capacitor (EC) composed of an EDLC and FC. The PSS polymer helps produce a high specific capacitance, actuation strain, and maximum generated stress that surpass the performance of a conventional PVdF(HFP) actuator. The flexible and robust films created by the synergistic combination of PEDOT and SWCNT may therefore have significant potential as actuator materials for wearable energy-conversion devices. A double-layer charging kinetic model was successfully used to simulate the frequency dependence of the displacement responses of the PSS/IL and PSS/SWCNT/IL actuators.

  1. High-Performance Solution-Processed Single-Junction Polymer Solar Cell Achievable by Post-Treatment of PEDOT:PSS Layer with Water-Containing Methanol.

    Science.gov (United States)

    Li, Weiping; Zhang, Xinliang; Zhang, Xin; Yao, Jiannian; Zhan, Chuanlang

    2017-01-18

    PSS (poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)) is widely used as the hole-transporting layer for fabrication of new-generation solar cells. Herein, we utilize water-containing methanol to post-treat the PEDOT:PSS surface, by which the insulating PSS component is partially washed out with the PEDOT-to-PSS weight ratio increasing from 1:6.79 to 1:2.93. As a result, the surface becomes more covered with the electrically conductive PEDOT nanodomains, and again the mean current of the conductive nanodomains increases slightly from 6.68 to 7.28 pA, as demonstrated with conductive atomic force microscopy images. The electrical conductivity of the bulk PEDOT:PSS layer increases from 5.51 × 10 -4 to 4.04 × 10 -2 S/cm. The improvement in the surface conductivity allows for more efficient collection of mobile holes with a bit higher value of the hole mobility (5.56 vs 6.78 × 10 -4 cm 2 V -1 s -1 ). The solution-processed single-junction polymer solar cell fabricated on the treated PEDOT:PSS surface shows a higher mean short-circuit current-density (14.46 vs 16.48 mA cm -2 ) and, hence, a higher mean power conversion efficiency (8.23% vs 9.28%) than that on the untreated surface, as calculated from over 200 cells.

  2. First principles analysis of the CDW instability of single-layer 1T-TiSe2 and its evolution with charge carrier density

    Science.gov (United States)

    Guster, Bogdan; Canadell, Enric; Pruneda, Miguel; Ordejón, Pablo

    2018-04-01

    We present a density functional theory study of the electronic structure of single-layer TiSe2, and focus on the charge density wave (CDW) instability present on this 2D material. We explain the 2× 2 periodicity of the CDW from the phonon band structure of the undistorted crystal, which is unstable under one of the phonon modes at the M point. This can be understood in terms of a partial band gap opening at the Fermi level, which we describe on the basis of the symmetry of the involved crystal orbitals, leading to an energy gain upon the displacement of the atoms following the phonon mode in a 2  ×  1 structure. Furthermore, the combination of the corresponding phonons for the three inequivalent M points of the Brillouin zone leads to the 2  ×  2 distortion characteristic of the CDW state. This leads to a further opening of a full gap, which reduces the energy of the 2  ×  2 structure compared to the 2  ×  1 one of a single M point phonon, and makes the CDW structure the most stable one. We also analyze the effect of charge injection into the layer on the structural instability. We predict that the 2  ×  2 structure only survives for a certain range of doping levels, both for electrons and for holes, as doping reduces the energy gain due to the gap opening. We predict the transition from the commensurate 2  ×  2 distortion to an incommensurate one with increasing wavelength upon increasing the doping level, followed by the appearance of the undistorted 1  ×  1 structure for larger carrier concentrations.

  3. A dynamic counterpart of Lamb vector in viscous compressible aerodynamics

    International Nuclear Information System (INIS)

    Liu, L Q; Wu, J Z; Shi, Y P; Zhu, J Y

    2014-01-01

    The Lamb vector is known to play a key role in incompressible fluid dynamics and vortex dynamics. In particular, in low-speed steady aerodynamics it is solely responsible for the total force acting on a moving body, known as the vortex force, with the classic two-dimensional (exact) Kutta–Joukowski theorem and three-dimensional (linearized) lifting-line theory as the most famous special applications. In this paper we identify an innovative dynamic counterpart of the Lamb vector in viscous compressible aerodynamics, which we call the compressible Lamb vector. Mathematically, we present a theorem on the dynamic far-field decay law of the vorticity and dilatation fields, and thereby prove that the generalized Lamb vector enjoys exactly the same integral properties as the Lamb vector does in incompressible flow, and hence the vortex-force theory can be generalized to compressible flow with exactly the same general formulation. Moreover, for steady flow of polytropic gas, we show that physically the force exerted on a moving body by the gas consists of a transverse force produced by the original Lamb vector and a new longitudinal force that reflects the effects of compression and irreversible thermodynamics. (paper)

  4. The Hunt for a Counterpart to GW150914

    Science.gov (United States)

    Kohler, Susanna

    2016-07-01

    On 14 September 2015, the Laser Interferometer Gravitational-wave Observatory (LIGO) in a pre-operative testing state at the time detected its first sign of gravitational-waves. The LIGO team sprang into action, performing data-quality checks on this unexpected signal. Within two days, they had sent a notification to 63 observing teams at observatories representing the entire electromagnetic spectrum, from radio to gamma-ray wavelengths.Illustration of a binary neutron star merger. The neutron stars 1) inspiral, 2) can produce a short gamma-ray burst, 3) can fling out hot, radioactive material in the form of a kilonova, and 4) form a massive neutron star or black hole with a possible remnant debris disk around it. [NASA/ESA/A. Feild (STScI)]Thus began the very first hunt for an electromagnetic counterpart to a detected gravitational wave signal.What were they looking for?As two compact objects in a binary system merge, the system is expected to emit energy in the form of gravitational waves. If both of the compact objects are black holes, were unlikely to see any electromagnetic radiation in the process, unless the merger is occurring in an (improbable) environment filled with gas and dust.But if one or both of the two compact objects is a neutron star, then there are a number of electromagnetic signatures that could occur due to energetic outflows. If a relativistic jet forms, we could see a short gamma-ray burst and X-ray, optical, and radio afterglows. Sub-relativistic outflows could produce optical and near-infrared signals, or a radio blast wave.Timeline of observations of GW150914, separated by wavelength band, and relative to the time of the gravitational-wave trigger. The top row shows LIGO information releases. The bottom four rows show high-energy, optical, near-infrared, and radio observations, respectively. Click for a closer look! [Abbott et al. 2016]Surprise SignalSince LIGO and Virgo (LIGOs European counterpart), wereprimarily expecting to detect

  5. ELECTROMAGNETIC COUNTERPARTS TO BLACK HOLE MERGERS DETECTED BY LIGO

    Energy Technology Data Exchange (ETDEWEB)

    Loeb, Abraham, E-mail: aloeb@cfa.harvard.edu [Department of Astronomy, Harvard University, 60 Garden St., Cambridge, MA 02138 (United States)

    2016-03-10

    Mergers of stellar-mass black holes (BHs), such as GW150914 observed by Laser Interferometer Gravitational Wave Observatory (LIGO), are not expected to have electromagnetic counterparts. However, the Fermi GBM detector identified a γ-ray transient 0.4 s after the gravitational wave (GW) signal GW150914 with consistent sky localization. I show that the two signals might be related if the BH binary detected by LIGO originated from two clumps in a dumbbell configuration that formed when the core of a rapidly rotating massive star collapsed. In that case, the BH binary merger was followed by a γ-ray burst (GRB) from a jet that originated in the accretion flow around the remnant BH. A future detection of a GRB afterglow could be used to determine the redshift and precise localization of the source. A population of standard GW sirens with GRB redshifts would provide a new approach for precise measurements of cosmological distances as a function of redshift.

  6. Unidentified EGRET sources and their possible Fermi counterparts

    International Nuclear Information System (INIS)

    Lyapin, A R; Arkhangelskaja, I V; Larin, D S

    2017-01-01

    Unidentified EGRET sources from 3EG catalog have been analyzed. Preliminary data analysis has shown at least 23 of these sources coincide with those in 3FGL Fermi catalogue within 1, 2 and 3 sigma error intervals of the coordinates and fluxes. Their properties are discussed in the presented work. Even 3-sigma difference allows supposing sources similarity because of more than 3-sigma distinctions in values of fluxes between identified EGRET sources and their Fermi counterparts. For instance, the coincidence between 3EG J1255-0549 and 3FGL J1256.1-0547 was reported in Fermi catalogues 1FGL, 2FGL, 3FGL. However, these sources fluxes (in units of 10 −8 photons × cm −2 × s −1 ) in the energy band E > 100 MeV were 179.7 ± 6.7 (3EG), 44.711 ± 0.724 (3FGL), 53.611 ± 0.997 (2FGL) and 67.939 ± 1.861 (1FGL). Such effect was observed for sufficient portion of identified EGRET sources. It could cause by troubles of particles identification by Fermi/LAT trigger system. Very often charged particles recognized as gamma-quanta because of wrong backsplash analysis. Nevertheless, gammas counts as charged particles due analogous reason and rejected during ground data processing. For example, it appears as geomagnetic modulation presence on gamma-quanta count rate latitudinal profiles in energy band E > 20 MeV. (paper)

  7. Energy partitioning in single-electron transfer events between gaseous dications and their neutral counterparts

    Czech Academy of Sciences Publication Activity Database

    Schröder, Detlef

    2012-01-01

    Roč. 18, č. 2 (2012), s. 139-148 ISSN 1469-0667 R&D Projects: GA ČR GA203/09/1223 Institutional research plan: CEZ:AV0Z40550506 Keywords : coincidence techniques * dications * electron transfer * energy partitioning * synchrotron radiation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.259, year: 2012

  8. Theoretical analysis of the combined effects of sulfur vacancies and analyte adsorption on the electronic properties of single-layer MoS2

    Science.gov (United States)

    Akdim, Brahim; Pachter, Ruth; Mou, Shin

    2016-05-01

    We report a first-principles theoretical investigation on the electronic structure and electron transport of defective single-layer (SL) MoS2, as well as of corresponding structures adsorbed with benzyl viologen (BV), which was shown to provide improved performance of a field effect transistor. O2 adsorption was included to gain an understanding of the response upon air-exposure. Following analysis of the structure and stability of sulfur single vacancy and line defects in SL MoS2, we investigated the local transport at the adsorbed sites via a transport model that mimics a scanning tunneling spectroscopy experiment. Distinct current-voltage characteristics were indicated for adsorbed oxygen species at a sulfur vacancy. The electronic structures of defective MoS2 indicated the emergence of impurity states in the bandgap due to sulfur defects and oxygen adsorption. Electron transport calculations for the MoS2 surface with an extended defect in a device setting demonstrated that physisorption of BV enhances the output current, while facile chemisorption by O2 upon air-exposure causes degradation of electron transport.

  9. Method of making a multi-electrode double layer capacitor having single electrolyte seal and aluminum-impregnated carbon cloth electrodes

    Science.gov (United States)

    Farahmandi, C. Joseph; Dispennette, John M.; Blank, Edward; Kolb, Alan C.

    2002-09-17

    A single cell, multi-electrode high performance double layer capacitor includes first and second flat stacks of electrodes adapted to be housed in a closeable two-part capacitor case which includes only a single electrolyte seal. Each electrode stack has a plurality of electrodes connected in parallel, with the electrodes of one stack being interleaved with the electrodes of the other stack to form an interleaved stack, and with the electrodes of each stack being electrically connected to respective capacitor terminals. A porous separator is positioned against the electrodes of one stack before interleaving to prevent electrical shorts between the electrodes. The electrodes are made by folding a compressible, low resistance, aluminum-impregnated carbon cloth, made from activated carbon fibers, around a current collector foil, with a tab of the foils of each electrode of each stack being connected in parallel and connected to the respective capacitor terminal. The height of the interleaved stack is somewhat greater than the inside height of the closed capacitor case, thereby requiring compression of the interleaved electrode stack when placed inside of the case, and thereby maintaining the interleaved electrode stack under modest constant pressure. The closed capacitor case is filled with an electrolytic solution and sealed. A preferred electrolytic solution is made by dissolving an appropriate salt into acetonitrile (CH.sub.3 CN). In one embodiment, the two parts of the capacitor case are conductive and function as the capacitor terminals.

  10. Effect of single-layer centrifugation or washing on frozen-thawed donkey semen quality: Do they have the same effect regardless of the quality of the sample?

    Science.gov (United States)

    Ortiz, I; Dorado, J; Morrell, J M; Crespo, F; Gosálvez, J; Gálvez, M J; Acha, D; Hidalgo, M

    2015-07-15

    The aims of this study were to determine the sperm quality of frozen-thawed donkey sperm samples after single-layer centrifugation (SLC) using Androcoll-E in comparison to sperm washing or no centrifugation and to determine if the effect on the sperm quality after SLC or sperm washing depends on the quality of the sample. Frozen-thawed sperm samples from Andalusian donkeys were divided into three aliquots, and they were processed using three different techniques after thawing: uncentrifuged diluted control (UDC), sperm washing (SW), and SLC. Afterward, sperm quality index was estimated by integrating all parameters (total and progressive sperm motility, membrane integrity, and DNA fragmentation) in a single value. The relationship between the sperm quality of thawed UDC samples and the effect on sperm parameters in SW and SLC-selected samples was assessed. Sperm quality index was significantly higher (P < 0.001) in SLC (0.8 ± 0.0) samples than that in UDC (0.6 ± 0.0) and SW (0.6 ± 0.0) samples, regardless of the sperm quality index after thawing of the sperm sample. In conclusion, SLC of frozen-thawed donkey spermatozoa using Androcoll-E-Small can be a suitable procedure for selecting frozen-thawed donkey sperm with better quality, in particular in those samples where an improvement in motility is needed. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. Part I: Single layer cloud

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Stephen A.; McCoy, Renata B.; Morrison, Hugh; Ackerman, Andrew S.; Avramov, Alexander; de Boer, Gijs; Chen, Mingxuan; Cole, Jason N.S.; Del Genio, Anthony D.; Falk, Michael; Foster, Michael J.; Fridlind, Ann; Golaz, Jean-Christophe; Hashino, Tempei; Harrington, Jerry Y.; Hoose, Corinna; Khairoutdinov, Marat F.; Larson, Vincent E.; Liu, Xiaohong; Luo, Yali; McFarquhar, Greg M.; Menon, Surabi; Neggers, Roel A. J.; Park, Sungsu; Poellot, Michael R.; Schmidt, Jerome M.; Sednev, Igor; Shipway, Ben J.; Shupe, Matthew D.; Spangenberg, Douglas A.; Sud, Yogesh C.; Turner, David D.; Veron, Dana E.; von Salzen, Knut; Walker, Gregory K.; Wang, Zhien; Wolf, Audrey B.; Xie, Shaocheng; Xu, Kuan-Man; Yang, Fanglin; Zhang, Gong

    2009-02-02

    Results are presented from an intercomparison of single-column and cloud-resolving model simulations of a cold-air outbreak mixed-phase stratocumulus cloud observed during the Atmospheric Radiation Measurement (ARM) program's Mixed-Phase Arctic Cloud Experiment. The observed cloud occurred in a well-mixed boundary layer with a cloud top temperature of -15 C. The observed average liquid water path of around 160 g m{sup -2} was about two-thirds of the adiabatic value and much greater than the average mass of ice crystal precipitation which when integrated from the surface to cloud top was around 15 g m{sup -2}. The simulations were performed by seventeen single-column models (SCMs) and nine cloud-resolving models (CRMs). While the simulated ice water path is generally consistent with the observed values, the median SCM and CRM liquid water path is a factor of three smaller than observed. Results from a sensitivity study in which models removed ice microphysics suggest that in many models the interaction between liquid and ice-phase microphysics is responsible for the large model underestimate of liquid water path. Despite this general underestimate, the simulated liquid and ice water paths of several models are consistent with the observed values. Furthermore, there is evidence that models with more sophisticated microphysics simulate liquid and ice water paths that are in better agreement with the observed values, although considerable scatter is also present. Although no single factor guarantees a good simulation, these results emphasize the need for improvement in the model representation of mixed-phase microphysics.

  12. Structural effects on charge order in single-layered manganites R{sub 1-x}A{sub 1+x}MnO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Engelmayer, Johannes; Ulbrich, Holger; Weber, Lisa; Braden, Markus; Lorenz, Thomas [II. Physikalisches Institut, Universitaet zu Koeln (Germany)

    2015-07-01

    Single-layered manganites show a complex interplay between charge, orbital, and magnetic degrees of freedom. For half-doped (x=1/2) R{sub 1-x}A{sub 1+x}MnO{sub 4} (R=Pr,La; A=Ca,Sr) the so-called Goodenough model is well established. This model proposes a site-centered charge order with a checkerboard pattern of Mn{sup 3+} and Mn{sup 4+} ions accompanied by an orbital order. Furthermore a magnetic order develops with ferromagnetic three-spin zig-zag chains and antiferromagnetic interchain coupling. For x=2/3 the charge order appears as stripe pattern with two adjacent stripes of Mn{sup 4+} ions alternating with a single stripe of Mn{sup 3+} ions, while in the magnetically ordered state four-spin zig-zag chains arise. For a deeper understanding of the emergence of charge order, it is appropriate to vary on the one hand the elements R and A while keeping the doping level x constant - involving structural changes at fixed charge carrier density - and on the other hand change the doping level with the same R and A. Therefore various single crystals of R{sub 1-x}A{sub 1+x}MnO{sub 4} with R=(Pr, Nd, Sm, Tb), A=(Ca, Sr) and 0.5 ≤ x ≤ 0.7 were grown and their structural parameters were determined by X-ray diffraction. Based on measurements of resistivity, magnetization, specific heat, and crystal structure we discuss the influence of structural variations on the ordering temperature.

  13. Do Asian women do as well as their Caucasian counterparts in IVF treatment: Cohort study.

    Science.gov (United States)

    Kan, Andrew; Leung, Peter; Luo, Kehui; Fay, Louise; Tan, Chunyan Leeann

    2015-06-01

    To evaluate if there is a difference in pregnancy rate between Asian and Caucasian women when they undergo in vitro fertilization (IVF). This was a retrospective cohort study set in a private reproductive medicine clinic. The study consisted of a total of 2594 patients (Asian, n = 522; Caucasian, n = 2072) undergoing IVF managed by a single doctor over a 10 year period. The main outcome measures were clinical pregnancy rate and live birth rate. Logistic regression was used to control for confounding factors. Asian women achieved a significantly lower clinical pregnancy and live birth rate than their Caucasian counterparts, despite replacement of more embryos. This difference was not significant after controlling for age and duration of infertility. Despite higher doses of gonadotrophin, they achieved fewer oocytes and had resultant fewer embryos for transfer or cryopreservation. In a study designed to reduce the effect of confounding factors by looking at a large number of patients from a single IVF unit under the care of a single doctor, there does not appear to be a difference in IVF pregnancy rate as a result of race. Asian women tend to present for IVF treatment at a later age after having tried for a longer period of time and this contributes significantly to their lower pregnancy rate. © 2014 The Authors. Journal of Obstetrics and Gynaecology Research © 2014 Japan Society of Obstetrics and Gynecology.

  14. Nonvolatile ferroelectric memory based on PbTiO3 gated single-layer MoS2 field-effect transistor

    Science.gov (United States)

    Shin, Hyun Wook; Son, Jong Yeog

    2018-01-01

    We fabricated ferroelectric non-volatile random access memory (FeRAM) based on a field effect transistor (FET) consisting of a monolayer MoS2 channel and a ferroelectric PbTiO3 (PTO) thin film of gate insulator. An epitaxial PTO thin film was deposited on a Nb-doped SrTiO3 (Nb:STO) substrate via pulsed laser deposition. A monolayer MoS2 sheet was exfoliated from a bulk crystal and transferred to the surface of the PTO/Nb:STO. Structural and surface properties of the PTO thin film were characterized by X-ray diffraction and atomic force microscopy, respectively. Raman spectroscopy analysis was performed to identify the single-layer MoS2 sheet on the PTO/Nb:STO. We obtained mobility value (327 cm2/V·s) of the MoS2 channel at room temperature. The MoS2-PTO FeRAM FET showed a wide memory window with 17 kΩ of resistance variation which was attributed to high remnant polarization of the epitaxially grown PTO thin film. According to the fatigue resistance test for the FeRAM FET, however, the resistance states gradually varied during the switching cycles of 109. [Figure not available: see fulltext.

  15. Current induced annealing and electrical characterization of single layer graphene grown by chemical vapor deposition for future interconnects in VLSI circuits

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Neetu, E-mail: neetu.prasad@south.du.ac.in, E-mail: neetu23686@gmail.com; Kumari, Anita; Bhatnagar, P. K.; Mathur, P. C. [Department of Electronic Science, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021 (India); Bhatia, C. S. [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore)

    2014-09-15

    Single layer graphene (SLG) grown by chemical vapor deposition (CVD) has been investigated for its prospective application as horizontal interconnects in very large scale integrated circuits. However, the major bottleneck for its successful application is its degraded electronic transport properties due to the resist residual trapped in the grain boundaries and on the surface of the polycrystalline CVD graphene during multi-step lithographic processes, leading to increase in its sheet resistance up to 5 MΩ/sq. To overcome this problem, current induced annealing has been employed, which helps to bring down the sheet resistance to 10 kΩ/sq (of the order of its initial value). Moreover, the maximum current density of ∼1.2 × 10{sup 7 }A/cm{sup 2} has been obtained for SLG (1 × 2.5 μm{sup 2}) on SiO{sub 2}/Si substrate, which is about an order higher than that of conventionally used copper interconnects.

  16. Electron paramagnetic resonance investigations of Fe3+ doped layered TiInS2 and TiGaSe2 single crystals

    International Nuclear Information System (INIS)

    Faik, Mikailov; Bulat, Rameev; Sinan, Kazan; Bekir, Aktash; Faik, Mikailov; Bulat, Rameev

    2005-01-01

    Full text : TiInS 2 and TiGaSe 2 single crystals doped by paramagnetic Fe ions have been studied at room temperature by Electron Paramagnetic Resonance (EPR) technique. A fine structure of EPR spectra of paramagnetic Fe 3 + ions was observed. The spectra were interpreted to correspond to the transitions among spin multiplet which are splitted by the local ligand crystal field (CF) of orthorhombic symmetry. Four equivalent Fe 3 + centers have been observed in the EPR spectra and the local symmetry of crystal field at the Fe 3 + site and CF parameters were determined. It was established that symmetry axis of the axial component in the CF is making an angle of about 48 and 43 degree with the plane of layers of TiInS 2 and TiGaSe 2 crystals respectively. Experimental results indicate that the Fe ions substitute In (GA) at the center of InS 4 (GaSe 4 ) tetrahedrons, and the rhombic distortion of the CF is caused by the TI ions located in the trigonal cavities between the tethedral complexes

  17. R and D for a single-layer Nb3Sn common coil dipole using the react-and-wind fabrication technique

    International Nuclear Information System (INIS)

    Ambrosio, Giorgio

    2002-01-01

    A dipole magnet based on the common coil design, using prereacted Nb 3 Sn superconductor, is under development at Fermilab, for a future Very Large Hadron Collider. This magnet has some innovative design and technological features such as single layer coils, a 22 mm wide 60-strand Rutherford type cable and stainless steel collars reinforced by horizontal bridges inserted between coil blocks. Both left and right coils are wound simultaneously into the collar structure and then impregnated with epoxy. In order to optimize the design and fabrication techniques an R and D program is underway. The production of cables with the required characteristics was shown possible. Collar laminations were produced, assembled and tested in order to check the effectiveness of the bridges and the validity of the mechanical design. A mechanical model consisting of a 165 mm long section of the magnet straight section was assembled and tested. This paper summarizes the status of the program, and reports the results of fabrication and test of cable, collars and the mechanical model

  18. Morphology of Diamond Layers Grown on Different Facets of Single Crystal Diamond Substrates by a Microwave Plasma CVD in CH4-H2-N2 Gas Mixtures

    Directory of Open Access Journals (Sweden)

    Evgeny E. Ashkinazi

    2017-06-01

    Full Text Available Epitaxial growth of diamond films on different facets of synthetic IIa-type single crystal (SC high-pressure high temperature (HPHT diamond substrate by a microwave plasma CVD in CH4-H2-N2 gas mixture with the high concentration (4% of nitrogen is studied. A beveled SC diamond embraced with low-index {100}, {110}, {111}, {211}, and {311} faces was used as the substrate. Only the {100} face is found to sustain homoepitaxial growth at the present experimental parameters, while nanocrystalline diamond (NCD films are produced on other planes. This observation is important for the choice of appropriate growth parameters, in particular, for the production of bi-layer or multilayer NCD-on-microcrystalline diamond (MCD superhard coatings on tools when the deposition of continuous conformal NCD film on all facet is required. The development of the film morphology with growth time is examined with SEM. The structure of hillocks, with or without polycrystalline aggregates, that appear on {100} face is analyzed, and the stress field (up to 0.4 GPa within the hillocks is evaluated based on high-resolution mapping of photoluminescence spectra of nitrogen-vacancy NV optical centers in the film.

  19. Fabrication of single walled carbon nanotubes/poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) layers under enhanced gravity drying

    International Nuclear Information System (INIS)

    Rincón, M.E.; Alvarado-Tenorio, G.; Vargas, M.G.; Ramos, E.; Sánchez-Tizapa, M.

    2015-01-01

    In this contribution, we explore the use of enhanced gravity in order to achieve composite films of single walled carbon nanotubes (SWCNTs)/poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) with improved properties. The samples were characterized by atomic force microscopy, scanning electron microscopy, and electrochemical impedance spectroscopy, in order to determine the differences caused by the enhanced gravity. Impedance spectroscopy results show that there is an improvement of the electrical properties of the SWCNT/PEDOT:PSS junction, manifested as lower contact resistance, modified chemical capacitance, and induced p-type doping. A force-induced interpenetration of the polymer into the SWCNT network and the efficient removal of water and PSS are proposed to explain the results. The transparency and electrical properties of these films forecast their application as a buffer layer in organic solar cell heterojunctions, or as hole transporting materials in perovskite-based solar cells. - Highlights: • A technique to fabricate conductive films of SWCNT/PEDOT:PSS is presented. • The technique is based on enhanced gravity drying. • Improved interpenetration of the bilayer SWCNT/PEDOT:PSS system • Enhanced gravity increases the p-type conductivity of the film. • Impedance spectroscopy confirms the improvement on the electrical properties.

  20. Tuning the properties of metal–organic framework nodes as supports of single-site iridium catalysts: node modification by atomic layer deposition of aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Dong [Department of Chemical Engineering; University of California; Davis; USA; Momeni, Mohammad R. [Department of Chemistry; Chemical Theory Center; Supercomputing Institute; University of Minnesota; Minneapolis; Demir, Hakan [Department of Chemistry; Chemical Theory Center; Supercomputing Institute; University of Minnesota; Minneapolis; Pahls, Dale R. [Department of Chemistry; Chemical Theory Center; Supercomputing Institute; University of Minnesota; Minneapolis; Rimoldi, Martino [Department of Chemistry; Northwestern University; Evanston; USA; Wang, Timothy C. [Department of Chemistry; Northwestern University; Evanston; USA; Farha, Omar K. [Department of Chemistry; Northwestern University; Evanston; USA; Department of Chemistry; Hupp, Joseph T. [Department of Chemistry; Northwestern University; Evanston; USA; Cramer, Christopher J. [Department of Chemistry; Chemical Theory Center; Supercomputing Institute; University of Minnesota; Minneapolis; Gates, Bruce C. [Department of Chemical Engineering; University of California; Davis; USA; Gagliardi, Laura [Department of Chemistry; Chemical Theory Center; Supercomputing Institute; University of Minnesota; Minneapolis

    2017-01-01

    The metal–organic framework NU-1000, with Zr6-oxo, hydroxo, and aqua nodes, was modified by incorporation of hydroxylated Al(iii) ions by ALD-like chemistry with [Al(CH3)2(iso-propoxide)]2followed by steam (ALD = atomic layer deposition). Al ions were installed to the extent of approximately 7 per node. Single-site iridium diethylene complexes were anchored to the nodes of the modified and unmodified MOFs by reaction with Ir(C2H4)2(acac) (acac = acetylacetonate) and converted to Ir(CO)2complexes by treatment with CO. Infrared spectra of these supported complexes show that incorporation of Al weakened the electron donor tendency of the MOF. Correspondingly, the catalytic activity of the initial supported iridium complexes for ethylene hydrogenation increased, as did the selectivity for ethylene dimerization. The results of density functional theory calculations with a simplified model of the nodes incorporating Al(iii) ions are in qualitative agreement with some catalyst performance data.

  1. The effect of two pre-cryopreservation single layer colloidal centrifugation protocols in combination with different freezing extenders on the fragmentation dynamics of thawed equine sperm DNA.

    Science.gov (United States)

    Gutiérrez-Cepeda, Luna; Fernández, Alvaro; Crespo, Francisco; Ramírez, Miguel Ángel; Gosálvez, Jaime; Serres, Consuelo

    2012-12-05

    Variability among stallions in terms of semen cryopreservation quality renders it difficult to arrive at a standardized cryopreservation method. Different extenders and processing techniques (such us colloidal centrifugation) are used in order to optimize post-thaw sperm quality. Sperm chromatin integrity analysis is an effective tool for assessing such quality. The aim of the present study was to compare the effect of two single layer colloidal centrifugation protocols (prior to cryopreservation) in combination with three commercial freezing extenders on the post-thaw chromatin integrity of equine sperm samples at different post-thaw incubation (37°C) times (i.e., their DNA fragmentation dynamics). Post-thaw DNA fragmentation levels in semen samples subjected to either of the colloidal centrifugation protocols were significantly lower (pcentrifugation. The use of InraFreeze® extender was associated with significantly less DNA fragmentation than the use of Botu-Crio® extender at 6 h of incubation, and than the use of either Botu-Crio® or Gent® extender at 24 h of incubation (pcentrifugation performed with extended or raw semen prior to cryopreservation reduces DNA fragmentation during the first four hours after thawing. Further studies are needed to determine the influence of freezing extenders on equine sperm DNA fragmentation dynamics.

  2. Fabrication of single walled carbon nanotubes/poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) layers under enhanced gravity drying

    Energy Technology Data Exchange (ETDEWEB)

    Rincón, M.E.; Alvarado-Tenorio, G. [Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Apartado Postal 34, 62580 Temixco, Mor. (Mexico); Vargas, M.G. [Instituto Tecnológico de Zacatepec, Calzada Tecnológico 27, 62780 Zacatepec, Mor. (Mexico); Ramos, E. [Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Apartado Postal 34, 62580 Temixco, Mor. (Mexico); Sánchez-Tizapa, M., E-mail: msanchez@valles.udg.mx [Centro Universitario de los Valles, Universidad de Guadalajara, Carretera Guadalajara-Ameca, Km 45.5, C.P. 46600, Ameca, Jalisco (Mexico)

    2015-12-31

    In this contribution, we explore the use of enhanced gravity in order to achieve composite films of single walled carbon nanotubes (SWCNTs)/poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) with improved properties. The samples were characterized by atomic force microscopy, scanning electron microscopy, and electrochemical impedance spectroscopy, in order to determine the differences caused by the enhanced gravity. Impedance spectroscopy results show that there is an improvement of the electrical properties of the SWCNT/PEDOT:PSS junction, manifested as lower contact resistance, modified chemical capacitance, and induced p-type doping. A force-induced interpenetration of the polymer into the SWCNT network and the efficient removal of water and PSS are proposed to explain the results. The transparency and electrical properties of these films forecast their application as a buffer layer in organic solar cell heterojunctions, or as hole transporting materials in perovskite-based solar cells. - Highlights: • A technique to fabricate conductive films of SWCNT/PEDOT:PSS is presented. • The technique is based on enhanced gravity drying. • Improved interpenetration of the bilayer SWCNT/PEDOT:PSS system • Enhanced gravity increases the p-type conductivity of the film. • Impedance spectroscopy confirms the improvement on the electrical properties.

  3. Narrow ridge waveguide high power single mode 1.3-μm InAs/InGaAs ten-layer quantum dot lasers

    Directory of Open Access Journals (Sweden)

    Cao Q

    2007-01-01

    Full Text Available AbstractTen-layer InAs/In0.15Ga0.85As quantum dot (QD laser structures have been grown using molecular beam epitaxy (MBE on GaAs (001 substrate. Using the pulsed anodic oxidation technique, narrow (2 μm ridge waveguide (RWG InAs QD lasers have been fabricated. Under continuous wave operation, the InAs QD laser (2 × 2,000 μm2 delivered total output power of up to 272.6 mW at 10 °C at 1.3 μm. Under pulsed operation, where the device heating is greatly minimized, the InAs QD laser (2 × 2,000 μm2 delivered extremely high output power (both facets of up to 1.22 W at 20 °C, at high external differential quantum efficiency of 96%. Far field pattern measurement of the 2-μm RWG InAs QD lasers showed single lateral mode operation.

  4. An analytical solution for the estimation of the critical available soil water fraction for a single layer water balance model under growing crops

    Directory of Open Access Journals (Sweden)

    N. Brisson

    1998-01-01

    . The atmospheric demand together with the rooting depth appear as the most important factors. However, when assuming predictable climatic and crop evolution, compensation occurs between those two effects leading to a relative stability of F when the crop is fully developed. Though relying on well-known physical laws, the present approach remains in the framework of single layer models with the same limitations.

  5. Corrosion Resistance Behavior of Single-Layer Cathodic Arc PVD Nitride-Base Coatings in 1M HCl and 3.5 pct NaCl Solutions

    Science.gov (United States)

    Adesina, Akeem Yusuf; Gasem, Zuhair M.; Madhan Kumar, Arumugam

    2017-04-01

    The electrochemical behavior of single-layer TiN, CrN, CrAlN, and TiAlN coatings on 304 stainless steel substrate, deposited using state-of-the-art and industrial size cathodic arc PVD machine, were evaluated in 1M HCl and 3.5 pct NaCl solutions. The corrosion behavior of the blank and coated substrates was analyzed by electrochemical impedance spectroscopy (EIS), linear polarization resistance, and potentiodynamic polarization. Bond-coat layers of pure-Ti, pure-Cr, alloyed-CrAl, and alloyed-TiAl for TiN, CrN, CrAlN, and TiAlN coatings were, respectively, first deposited for improved coating adhesion before the actual coating. The average coating thickness was about 1.80 µm. Results showed that the corrosion potentials ( E corr) of the coated substrates were shifted to more noble values which indicated improvement of the coated substrate resistance to corrosion susceptibility. The corrosion current densities were lower for all coated substrates as compared to the blank substrate. Similarly, EIS parameters showed that these coatings possessed improved resistance to defects and pores in similar solution compared to the same nitride coatings developed by magnetron sputtering. The charge transfer resistance ( R ct) can be ranked in the following order: TiAlN > CrN > TiN > CrAlN in both media except in NaCl solution where R ct of TiN is lowest. While the pore resistance ( R po) followed the order: CrAlN > CrN > TiAlN > TiN in HCl solution and TiAlN > CrN > CrAlN > TiN in NaCl solution. It is found that TiAlN coating has the highest protective efficiencies of 79 and 99 pct in 1M HCl and 3.5 pct NaCl, respectively. SEM analysis of the corroded substrates in both media was also presented.

  6. Single-Particle Measurements of Midlatitude Black Carbon and Light-Scattering Aerosols from the Boundary Layer to the Lower Stratosphere

    Science.gov (United States)

    Schwartz, J. P.; Gao, R. S.; Fahey, D. W.; Thomson, D. S.; Watts, L. A.; Wilson, J. C.; Reeves, J. M.; Darbeheshti, M.; Baumgardner, D. G.; Kok, G. L.; hide

    2006-01-01

    A single-particle soot photometer (SP2) was flown on a NASA WB-57F high-altitude research aircraft in November 2004 from Houston, Texas. The SP2 uses laser-induced incandescence to detect individual black carbon (BC) particles in an air sample in the mass range of approx.3-300 fg (approx.0.15-0.7 microns volume equivalent diameter). Scattered light is used to size the remaining non-BC aerosols in the range of approx.0.17-0.7 microns diameter. We present profiles of both aerosol types from the boundary layer to the lower stratosphere from two midlatitude flights. Results for total aerosol amounts in the size range detected by the SP2 are in good agreement with typical particle spectrometer measurements in the same region. All ambient incandescing particles were identified as BC because their incandescence properties matched those of laboratory-generated BC aerosol. Approximately 40% of these BC particles showed evidence of internal mixing (e.g., coating). Throughout profiles between 5 and 18.7 km, BC particles were less than a few percent of total aerosol number, and black carbon aerosol (BCA) mass mixing ratio showed a constant gradient with altitude above 5 km. SP2 data was compared to results from the ECHAM4/MADE and LmDzT-INCA global aerosol models. The comparison will help resolve the important systematic differences in model aerosol processes that determine BCA loadings. Further intercomparisons of models and measurements as presented here will improve the accuracy of the radiative forcing contribution from BCA.

  7. Adsorption of DNA/RNA nucleobases onto single-layer MoS2 and Li-Doped MoS2: A dispersion-corrected DFT study

    Science.gov (United States)

    Sadeghi, Meisam; Jahanshahi, Mohsen; Ghorbanzadeh, Morteza; Najafpour, Ghasem

    2018-03-01

    The kind of sensing platform in nano biosensor plays an important role in nucleic acid sequence detection. It has been demonstrated that graphene does not have an intrinsic band gap; therefore, transition metal dichalcogenides (TMDs) are desirable materials for electronic base detection. In the present work, a comparative study of the adsorption of the DNA/RNA nucleobases [Adenine (A), Cytosine (C) Guanine (G), Thymine (T) and Uracil (U)] onto the single-layer molybdenum disulfide (MoS2) and Li-doped MoS2 (Li-MoS2) as a sensing surfaces was investigated by using Dispersion-corrected Density Functional Theory (D-DFT) calculations and different measure of equilibrium distances, charge transfers and binding energies for the various nucleobases were calculated. The results revealed that the interactions between the nucleobases and the MoS2 can be strongly enhanced by introducing metal atom, due to significant charge transfer from the Li atom to the MoS2 when Lithium is placed on top of the MoS2. Furthermore, the binding energies of the five nucleobases were in the range of -0.734 to -0.816 eV for MoS2 and -1.47 to -1.80 eV for the Li-MoS2. Also, nucleobases were adsorbed onto MoS2 sheets via the van der Waals (vdW) force. This high affinity and the renewable properties of the biosensing platform demonstrated that Li-MoS2 nanosheet is biocompatible and suitable for nucleic acid analysis.

  8. Performance assessment of a single-layer moisture store-and-release cover system at a mine waste rock pile in a seasonally humid region (Nova Scotia, Canada).

    Science.gov (United States)

    Power, Christopher; Ramasamy, Murugan; Mkandawire, Martin

    2018-03-03

    Cover systems are commonly applied to mine waste rock piles (WRPs) to control acid mine drainage (AMD). Single-layer covers utilize the moisture "store-and-release" concept to first store and then release moisture back to the atmosphere via evapotranspiration. Although more commonly used in semi-arid and arid climates, store-and-release covers remain an attractive option in humid climates due to the low cost and relative simplicity of installation. However, knowledge of their performance in these climates is limited. The objective of this study was to assess the performance of moisture store-and-release covers at full-scale WRPs located in humid climates. This cover type was installed at a WRP in Nova Scotia, Canada, alongside state-of-the-art monitoring instrumentation. Field monitoring was conducted over 5 years to assess key components such as meteorological conditions, cover material water dynamics, net percolation, surface runoff, pore-gas, environmental receptor water quality, landform stability and vegetation. Water balances indicate small reductions in water influx to the waste rock (i.e., 34 to 28% of precipitation) with the diminished AMD release also apparent by small improvements in groundwater quality (increase in pH, decrease in sulfate/metals). Surface water quality analysis and field observations of vegetative/aquatic life demonstrate significant improvements in the surface water receptor. The WRP landform is stable and the vegetative cover is thriving. This study has shown that while a simple store-and-release cover may not be a highly effective barrier to water infiltration in humid climates, it can be used to (i) eliminate contaminated surface water runoff, (ii) minimize AMD impacts to surface water receptor(s), (iii) maintain a stable landform, and (iv) provide a sustainable vegetative canopy.

  9. Metaphors are Embodied, and so are Their Literal Counterparts.

    Science.gov (United States)

    Santana, Eduardo; de Vega, Manuel

    2011-01-01

    This study investigates whether understanding up/down metaphors as well as semantically homologous literal sentences activates embodied representations online. Participants read orientational literal sentences (e.g., she climbed up the hill), metaphors (e.g., she climbed up in the company), and abstract sentences with similar meaning to the metaphors (e.g., she succeeded in the company). In Experiments 1 and 2, participants were asked to perform a speeded upward or downward hand motion while they were reading the sentence verb. The hand motion either matched or mismatched the direction connoted by the sentence. The results showed a meaning-action effect for metaphors and literals, that is, faster hand motion responses in the matching conditions. Notably, the matching advantage was also found for homologous abstract sentences, indicating that some abstract ideas are conceptually organized in the vertical dimension, even when they are expressed by means of literal sentences. In Experiment 3, participants responded to an upward or downward visual motion associated with the sentence verb by pressing a single key. In this case, the facilitation effect for matching visual motion-sentence meaning faded, indicating that the visual motion component is less important than the action component in conceptual metaphors. Most up and down metaphors convey emotionally positive and negative information, respectively. We suggest that metaphorical meaning elicits upward/downward movements because they are grounded on the bodily expression of the corresponding emotions.

  10. Study in electron microscopy the formation of the hybrid layer using adhesive systems One Coat and Single Bond Universal, at the Facultad de Medicina of the Universidad de Costa Rica

    International Nuclear Information System (INIS)

    Parra Barillas, Adriana; Montoya, Michael

    2013-01-01

    The formation of the hybrid layer is observed in dental pieces in vitro, using systems of conventional adhesives (Single Bond 2 of 3M and One Coat of Coltene), with different times of acid etching, through the use of atomic force microscopy (AFM). The images of the hybrid layer obtained from samples prepared with adhesive systems are analyzed by AFM. Samples collected have been of dental pieces (molars and premolars) recently extracted and later placed in water. The pieces used have provided more surface to be observed under the microscope, greater accessibility to the be cut for its study, and to the great pieces have facilitated their placement on the Isomet low speed saw. The differences are evaluated between hybrid layers according the adhesive system used and the mode of application of the images obtained in the atomic force microscope. The adhesive system that has allowed the formation of a hybrid layer more appropriate between the adhesive system One Coat and the adhesive system Single Bond Universal is determined. The time of acid etching as variable of procedure is determined and has interfered with the formation of a hybrid layer more stable. The images evaluated that were provided by the atomic force microscope and compared with the images of electron microscopy of other studies, have determined that the AFM is without providing detailed information, as well as the appropriate images to evaluate the hybrid layer of the adhesive systems Single Bond 2 and One Coat of Coltene, or the different times of acid etching. Therefore, for this type of study, the image of choice must be of an electron microscope [es

  11. A new partial SOI-LDMOSFET with a modified buried oxide layer for improving self-heating and breakdown voltage

    International Nuclear Information System (INIS)

    Jamali Mahabadi, S E; Orouji, Ali A; Keshavarzi, P; Moghadam, Hamid Amini

    2011-01-01

    In this paper, for the first time, we propose a partial silicon-on-insulator (P-SOI) lateral double-diffused metal-oxide-semiconductor-field-effect-transistor (LDMOSFET) with a modified buried layer in order to improve breakdown voltage (BV) and self-heating effects (SHEs). The main idea of this work is to control the electric field by shaping the buried layer. With two steps introduced in the buried layer, the electric field distribution is modified. Also a P-type window introduced makes the substrate share the vertical voltage drop, leading to a high vertical BV. Moreover, four interface electric field peaks are introduced by the buried P-layer, the Si window and two steps, which modulate the electric field in the SOI layer and the substrate. Hence, a more uniform electric field is obtained; consequently, a high BV is achieved. Furthermore, the Si window creates a conduction path between the active layer and substrate and alleviates the SHE. Two-dimensional simulations show that the BV of double step partial silicon on insulator is nearly 69% higher and alleviates SHEs 17% in comparison with its single step partial SOI counterpart and nearly 265% higher and alleviate SHEs 18% in comparison with its conventional SOI counterpart

  12. Single-layer and double-layer microwave absorbers based on Co{sub 67}Ni{sub 33} microspheres and Ni{sub 0.6}Zn{sub 0.4}Fe{sub 2}O{sub 4} nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Min [Engineering Technology Research Center of Magnetic Materials of Anhui Province, School of Physics & Materials Science, Anhui University, Hefei 230601 (China); Wang, Zhongzhu, E-mail: wangzz@ahu.edu.cn [Engineering Technology Research Center of Magnetic Materials of Anhui Province, School of Physics & Materials Science, Anhui University, Hefei 230601 (China); Wang, Peihong; Liao, Yanlin [Engineering Technology Research Center of Magnetic Materials of Anhui Province, School of Physics & Materials Science, Anhui University, Hefei 230601 (China); Bi, Hong [School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601 (China)

    2017-03-01

    Co{sub 67}Ni{sub 33} microspheres and Ni{sub 0.6}Zn{sub 0.4}Fe{sub 2}O{sub 4} nanocrystals were synthesized by hydrothermal method. The complex permeability and complex permittivity of the as-prepared powders dispersing in wax (60 wt% powder) were measured using a vector network analyzer in 2–18 GHz frequency range. The calculated microwave absorption of single-layer and double-layer absorbers based on Co{sub 67}Ni{sub 33} microspheres and Ni{sub 0.6}Zn{sub 0.4}Fe{sub 2}O{sub 4} nanocrystals were analyzed in 2–18 GHz frequency range. The results show that the Ni{sub 0.6}Zn{sub 0.4}Fe{sub 2}O{sub 4}nanocrystals with the relatively low permittivity and Co{sub 67}Ni{sub 33} microspheres with the relatively high dielectric loss and magnetic loss can be used as proper matching layer and excellent absorption layer, respectively. The double-layer absorber with a coating thickness of 2.1 mm exhibits a maximum reflection loss of −43.8 dB as well as a bandwidth (reflection loss less than −10 dB) of 5 GHz. Moreover, their absorption peak and the absorption intensity can be adjusted easily through changing the stacking order and each layer thickness. - Highlights: • Ni-Zn ferrite nanocrystals can use as matching layer in double-layer absorbers. • Co{sub 67}Ni{sub 33} microspheres with high dielectric loss can use as absorption layer. • Double-layer absorbers exhibits an excellent microwave absorption in 2–18 GHz.

  13. VizieR Online Data Catalog: Selecting IRAC counterparts to SMGs (Alberts+, 2013)

    Science.gov (United States)

    Alberts, S.; Wilson, G. W.; Lu, Y.; Johnson, S.; Yun, M. S.; Scott, K. S.; Pope, A.; Aretxaga, I.; Ezawa, H.; Hughes, D. H.; Kawabe, R.; Kim, S.; Kohno, K.; Oshima, T.

    2014-05-01

    We present a new submm/mm galaxy counterpart identification technique which builds on the use of Spitzer Infrared Array Camera (IRAC) colours as discriminators between likely counterparts and the general IRAC galaxy population. Using 102 radio- and Submillimeter Array-confirmed counterparts to AzTEC sources across three fields [Great Observatories Origins Deep Survey-North, -South and Cosmic Evolution Survey (COSMOS)], we develop a non-parametric IRAC colour-colour characteristic density distribution, which, when combined with positional uncertainty information via likelihood ratios, allows us to rank all potential IRAC counterparts around submillimetre galaxies (SMGs) and calculate the significance of each ranking via the reliability factor. We report all robust and tentative radio counterparts to SMGs, the first such list available for AzTEC/COSMOS, as well as the highest ranked IRAC counterparts for all AzTEC SMGs in these fields as determined by our technique. We demonstrate that the technique is free of radio bias and thus applicable regardless of radio detections. For observations made with a moderate beam size (~18"), this technique identifies ~85% of SMG counterparts. For much larger beam sizes (>~30"), we report identification rates of 33-49%. Using simulations, we demonstrate that this technique is an improvement over using positional information alone for observations with facilities such as AzTEC on the Large Millimeter Telescope and Submillimeter Common User Bolometer Array 2 on the James Clerk Maxwell Telescope. (3 data files).

  14. Natural melanin composites by layer-by-layer assembly

    Science.gov (United States)

    Eom, Taesik; Shim, Bong Sub

    2015-04-01

    Melanin is an electrically conductive and biocompatible material, because their conjugated backbone structures provide conducting pathways from human skin, eyes, brain, and beyond. So there is a potential of using as materials for the neural interfaces and the implantable devices. Extracted from Sepia officinalis ink, our natural melanin was uniformly dispersed in mostly polar solvents such as water and alcohols. Then, the dispersed melanin was further fabricated to nano-thin layered composites by the layer-by-layer (LBL) assembly technique. Combined with polyvinyl alcohol (PVA), the melanin nanoparticles behave as an LBL counterpart to from finely tuned nanostructured films. The LBL process can adjust the smart performances of the composites by varying the layering conditions and sandwich thickness. We further demonstrated the melanin loading degree of stacked layers, combination nanostructures, electrical properties, and biocompatibility of the resulting composites by UV-vis spectrophotometer, scanning electron microscope (SEM), multimeter, and in-vitro cell test of PC12, respectively.

  15. Strong visible and near infrared photoluminescence from ZnO nanorods/nanowires grown on single layer graphene studied using sub-band gap excitation

    Science.gov (United States)

    Biroju, Ravi K.; Giri, P. K.

    2017-07-01

    Fabrication and optoelectronic applications of graphene based hybrid 2D-1D semiconductor nanostructures have gained tremendous research interest in recent times. Herein, we present a systematic study on the origin and evolution of strong broad band visible and near infrared (NIR) photoluminescence (PL) from vertical ZnO nanorods (NRs) and nanowires (NWs) grown on single layer graphene using both above band gap and sub-band gap optical excitations. High resolution field emission scanning electron microscopy and X-ray diffraction studies are carried out to reveal the morphology and crystalline quality of as-grown and annealed ZnO NRs/NWs on graphene. Room temperature PL studies reveal that besides the UV and visible PL bands, a new near-infrared (NIR) PL emission band appears in the range between 815 nm and 886 nm (1.40-1.52 eV). X-ray photoelectron spectroscopy studies revealed excess oxygen content and unreacted metallic Zn in the as-grown ZnO nanostructures, owing to the low temperature growth by a physical vapor deposition method. Post-growth annealing at 700 °C in the Ar gas ambient results in the enhanced intensity of both visible and NIR PL bands. On the other hand, subsequent high vacuum annealing at 700 °C results in a drastic reduction in the visible PL band and complete suppression of the NIR PL band. PL decay dynamics of green emission in Ar annealed samples show tri-exponential decay on the nanosecond timescale including a very slow decay component (time constant ˜604.5 ns). Based on these results, the NIR PL band comprising two peaks centered at ˜820 nm and ˜860 nm is tentatively assigned to neutral and negatively charged oxygen interstitial (Oi) defects in ZnO, detected experimentally for the first time. The evidence for oxygen induced trap states on the ZnO NW surface is further substantiated by the slow photocurrent response of graphene-ZnO NRs/NWs. These results are important for tunable light emission, photodetection, and other cutting edge

  16. The enhancement of photo-thermo-electric conversion in tilted Bi2Sr2Co2O(y) thin films through coating a layer of single-wall carbon nanotubes light absorber.

    Science.gov (United States)

    Wang, Shufang; Bai, Zilong; Yan, Guoying; Zhang, Hongrui; Wang, Jianglong; Yu, Wei; Fu, Guangsheng

    2013-07-29

    Light-induced transverse thermoelectric effect has been investigated in c-axis tilted Bi(2)Sr(2)Co(2)O(y) thin films coated with a single-wall carbon nanotubes light absorption layer. Open-circuit voltage signals were detected when the sample surface was irradiated by different lasers with wavelengths ranging from ultraviolet to near-infrared and the voltage sensitivity was enhanced as a result of the increased light absorption at the carbon nanotubes layer. Moreover, the enhancement degree was found to be dependent on the laser wavelength as well as the absorption coating size. This work opens up new strategy toward the practical applications of layered cobaltites in photo-thermo-electric conversion devices.

  17. Sub-second photonic processing of solution-deposited single layer and heterojunction metal oxide thin-film transistors using a high-power xenon flash lamp

    KAUST Repository

    Tetzner, Kornelius

    2017-11-01

    We report the fabrication of solution-processed In2O3 and In2O3/ZnO heterojunction thin-film transistors (TFTs) where the precursor materials were converted to their semiconducting state using high power light pulses generated by a xenon flash lamp. In2O3 TFTs prepared on glass substrates exhibited low-voltage operation (≤2 V) and a high electron mobility of ∼6 cm2 V−1 s−1. By replacing the In2O3 layer with a photonically processed In2O3/ZnO heterojunction, we were able to increase the electron mobility to 36 cm2 V−1 s−1, while maintaining the low-voltage operation. Although the level of performance achieved in these devices is comparable to control TFTs fabricated via thermal annealing at 250 °C for 1 h, the photonic treatment approach adopted here is extremely rapid with a processing time of less than 18 s per layer. With the aid of a numerical model we were able to analyse the temperature profile within the metal oxide layer(s) upon flashing revealing a remarkable increase of the layer\\'s surface temperature to ∼1000 °C within ∼1 ms. Despite this, the backside of the glass substrate remains unchanged and close to room temperature. Our results highlight the applicability of the method for the facile manufacturing of high performance metal oxide transistors on inexpensive large-area substrates.

  18. Orthogonal Simulation Experiment for Flow Characteristics of Ore in Ore Drawing and Influencing Factors in a Single Funnel Under a Flexible Isolation Layer

    Science.gov (United States)

    Chen, Qingfa; Zhao, Fuyu; Chen, Qinglin; Wang, Yuding; Zhong, Yu; Niu, Wenjing

    2017-12-01

    A study on the flow characteristics of ore and factors that influence these characteristics is important to master ore flow laws. An orthogonal ore-drawing numerical model was established and the flow characteristics were explored. A weight matrix was obtained and the effect of the factors was determined. It was found that (1) the entire isolation-layer interface presents a Gaussian curve morphology and marked particles in each layer show a funnel morphology; (2) the drawing amount, Q, and the isolation layer half-width, W, are correlated positively with the fall depth, H, of the isolation layer; (3) factors that affect the characteristics sequentially include the particle friction coefficient, the interface friction coefficient, the isolation layer thickness, and the particle radius, and (4) the optimal combination is an isolation layer thickness of 0.005 m, an interface friction coefficient of 0.8, a particle friction coefficient of 0.2, and a particle radius of 0.007 m.

  19. The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. I. Discovery of the Optical Counterpart Using the Dark Energy Camera

    Science.gov (United States)

    Soares-Santos, M.; Holz, D. E.; Annis, J.; Chornock, R.; Herner, K.; Berger, E.; Brout, D.; Chen, H.-Y.; Kessler, R.; Sako, M.; Allam, S.; Tucker, D. L.; Butler, R. E.; Palmese, A.; Doctor, Z.; Diehl, H. T.; Frieman, J.; Yanny, B.; Lin, H.; Scolnic, D.; Cowperthwaite, P.; Neilsen, E.; Marriner, J.; Kuropatkin, N.; Hartley, W. G.; Paz-Chinchón, F.; Alexander, K. D.; Balbinot, E.; Blanchard, P.; Brown, D. A.; Carlin, J. L.; Conselice, C.; Cook, E. R.; Drlica-Wagner, A.; Drout, M. R.; Durret, F.; Eftekhari, T.; Farr, B.; Finley, D. A.; Foley, R. J.; Fong, W.; Fryer, C. L.; García-Bellido, J.; Gill, M. S. S.; Gruendl, R. A.; Hanna, C.; Kasen, D.; Li, T. S.; Lopes, P. A. A.; Lourenço, A. C. C.; Margutti, R.; Marshall, J. L.; Matheson, T.; Medina, G. E.; Metzger, B. D.; Muñoz, R. R.; Muir, J.; Nicholl, M.; Quataert, E.; Rest, A.; Sauseda, M.; Schlegel, D. J.; Secco, L. F.; Sobreira, F.; Stebbins, A.; Villar, V. A.; Vivas, K.; Walker, A. R.; Wester, W.; Williams, P. K. G.; Zenteno, A.; Zhang, Y.; Abbott, T. M. C.; Abdalla, F. B.; Banerji, M.; Bechtol, K.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Davis, C.; Desai, S.; Dietrich, J. P.; Doel, P.; Eifler, T. F.; Fernandez, E.; Flaugher, B.; Fosalba, P.; Gaztanaga, E.; Gerdes, D. W.; Giannantonio, T.; Goldstein, D. A.; Gruen, D.; Gschwend, J.; Gutierrez, G.; Honscheid, K.; Jain, B.; James, D. J.; Jeltema, T.; Johnson, M. W. G.; Johnson, M. D.; Kent, S.; Krause, E.; Kron, R.; Kuehn, K.; Kuhlmann, S.; Lahav, O.; Lima, M.; Maia, M. A. G.; March, M.; McMahon, R. G.; Menanteau, F.; Miquel, R.; Mohr, J. J.; Nichol, R. C.; Nord, B.; Ogando, R. L. C.; Petravick, D.; Plazas, A. A.; Romer, A. K.; Roodman, A.; Rykoff, E. S.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, M.; Smith, R. C.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Thomas, R. C.; Troxel, M. A.; Vikram, V.; Wechsler, R. H.; Weller, J.; Dark Energy Survey; Dark Energy Camera GW-EM Collaboration

    2017-10-01

    We present the Dark Energy Camera (DECam) discovery of the optical counterpart of the first binary neutron star merger detected through gravitational-wave emission, GW170817. Our observations commenced 10.5 hr post-merger, as soon as the localization region became accessible from Chile. We imaged 70 deg2 in the I and z bands, covering 93% of the initial integrated localization probability, to a depth necessary to identify likely optical counterparts (e.g., a kilonova). At 11.4 hr post-merger we detected a bright optical transient located 10\\buildrel{\\prime\\prime}\\over{.} 6 from the nucleus of NGC 4993 at redshift z = 0.0098, consistent (for {H}0=70 km s-1 Mpc-1) with the distance of 40 ± 8 Mpc reported by the LIGO Scientific Collaboration and the Virgo Collaboration (LVC). At detection the transient had magnitudes of I=17.3 and z=17.4, and thus an absolute magnitude of {M}I=-15.7, in the luminosity range expected for a kilonova. We identified 1500 potential transient candidates. Applying simple selection criteria aimed at rejecting background events such as supernovae, we find the transient associated with NGC 4993 as the only remaining plausible counterpart, and reject chance coincidence at the 99.5% confidence level. We therefore conclude that the optical counterpart we have identified near NGC 4993 is associated with GW170817. This discovery ushers in the era of multi-messenger astronomy with gravitational waves and demonstrates the power of DECam to identify the optical counterparts of gravitational-wave sources.

  20. Developments of the Physical and Electrical Properties of NiCr and NiCrSi Single-Layer and Bi-Layer Nano-Scale Thin-Film Resistors.

    Science.gov (United States)

    Cheng, Huan-Yi; Chen, Ying-Chung; Li, Chi-Lun; Li, Pei-Jou; Houng, Mau-Phon; Yang, Cheng-Fu

    2016-02-25

    In this study, commercial-grade NiCr (80 wt % Ni, 20 wt % Cr) and NiCrSi (55 wt % Ni, 40 wt % Cr, 5 wt % Si) were used as targets and the sputtering method was used to deposit NiCr and NiCrSi thin films on Al₂O₃ and Si substrates at room temperature under different deposition time. X-ray diffraction patterns showed that the NiCr and NiCrSi thin films were amorphous phase, and the field-effect scanning electronic microscope observations showed that only nano-crystalline grains were revealed on the surfaces of the NiCr and NiCrSi thin films. The log (resistivity) values of the NiCr and NiCrSi thin-film resistors decreased approximately linearly as their thicknesses increased. We found that the value of temperature coefficient of resistance (TCR value) of the NiCr thin-film resistors was positive and that of the NiCrSi thin-film resistors was negative. To investigate these thin-film resistors with a low TCR value, we designed a novel bi-layer structure to fabricate the thin-film resistors via two different stacking methods. The bi-layer structures were created by depositing NiCr for 10 min as the upper (or lower) layer and depositing NiCrSi for 10, 30, or 60 min as the lower (or upper) layer. We aim to show that the stacking method had no apparent effect on the resistivity of the NiCr-NiCrSi bi-layer thin-film resistors but had large effect on the TCR value.

  1. Search for Electromagnetic Counterparts to LIGO-Virgo Candidates: Expanded Very Large Array Observations

    Science.gov (United States)

    Lazio, Joseph; Keating, Katie; Jenet, F. A.; Kassim, N. E.

    2011-01-01

    This paper summarizes a search for radio wavelength counterparts to candidate gravitational wave events. The identification of an electromagnetic counterpart could provide a more complete understanding of a gravitational wave event, including such characteristics as the location and the nature of the progenitor. We used the Expanded Very Large Array (EVLA) to search six galaxies which were identified as potential hosts for two candidate gravitational wave events. We summarize our procedures and discuss preliminary results.

  2. An Instructor’s Guide for the Building and Sustaining Foreign Counterpart Organizations Curriculum

    Science.gov (United States)

    2016-02-01

    Collectivist values and perspectives may differ from ours, thus advisors should take time to understand the viewpoint( s) of counterparts. • A counterpart-led...2003). Levels of organizational trust in individualist versus collectivist societies: A seven-nation study. Organizational Science, 14, 81-90. Keller...strategies that work in collectivist cultures where U.S. military advisors and other senior U.S. government leaders are likely to be assigned. Based on the

  3. Modeling Spike-Train Processing in the Cerebellum Granular Layer and Changes in Plasticity Reveal Single Neuron Effects in Neural Ensembles

    Directory of Open Access Journals (Sweden)

    Chaitanya Medini

    2012-01-01

    Full Text Available The cerebellum input stage has been known to perform combinatorial operations on input signals. In this paper, two types of mathematical models were used to reproduce the role of feed-forward inhibition and computation in the granular layer microcircuitry to investigate spike train processing. A simple spiking model and a biophysically-detailed model of the network were used to study signal recoding in the granular layer and to test observations like center-surround organization and time-window hypothesis in addition to effects of induced plasticity. Simulations suggest that simple neuron models may be used to abstract timing phenomenon in large networks, however detailed models were needed to reconstruct population coding via evoked local field potentials (LFP and for simulating changes in synaptic plasticity. Our results also indicated that spatio-temporal code of the granular network is mainly controlled by the feed-forward inhibition from the Golgi cell synapses. Spike amplitude and total number of spikes were modulated by LTP and LTD. Reconstructing granular layer evoked-LFP suggests that granular layer propagates the nonlinearities of individual neurons. Simulations indicate that granular layer network operates a robust population code for a wide range of intervals, controlled by the Golgi cell inhibition and is regulated by the post-synaptic excitability.

  4. QUEST FOR COSMOS SUBMILLIMETER GALAXY COUNTERPARTS USING CARMA AND VLA: IDENTIFYING THREE HIGH-REDSHIFT STARBURST GALAXIES

    International Nuclear Information System (INIS)

    Smolčić, V.; Navarrete, F.; Bertoldi, F.; Aravena, M.; Sheth, K.; Ilbert, O.; Yun, M. S.; Salvato, M.; Finoguenov, A.; McCracken, H. J.; Diener, C.; Aretxaga, I.; Hughes, D.; Wilson, G.; Riechers, D. A.; Capak, P.; Scoville, N. Z.; Karim, A.; Schinnerer, E.

    2012-01-01

    We report on interferometric observations at 1.3 mm at 2''-3'' resolution using the Combined Array for Research in Millimeter-wave Astronomy. We identify multi-wavelength counterparts of three submillimeter galaxies (SMGs; F 1m > 5.5 mJy) in the COSMOS field, initially detected with MAMBO and AzTEC bolometers at low, ∼10''-30'', resolution. All three sources—AzTEC/C1, Cosbo-3, and Cosbo-8—are identified to coincide with positions of 20 cm radio sources. Cosbo-3, however, is not associated with the most likely radio counterpart, closest to the MAMBO source position, but with that farther away from it. This illustrates the need for intermediate-resolution (∼2'') mm-observations to identify the correct counterparts of single-dish-detected SMGs. All of our three sources become prominent only at NIR wavelengths, and their mm-to-radio flux based redshifts suggest that they lie at redshifts z ∼> 2. As a proof of concept, we show that photometric redshifts can be well determined for SMGs, and we find photometric redshifts of 5.6 ± 1.2, 1.9 +0.9 –0.5 , and ∼4 for AzTEC/C1, Cosbo-3, and Cosbo-8, respectively. Using these we infer that these galaxies have radio-based star formation rates of ∼> 1000 M ☉ yr –1 and IR luminosities of ∼10 13 L ☉ consistent with properties of high-redshift SMGs. In summary, our sources reflect a variety of SMG properties in terms of redshift and clustering, consistent with the framework that SMGs are progenitors of z ∼ 2 and today's passive galaxies.

  5. Synthesis Alq3and effect of concentration iton optical and electrical performance of Organic Light Emitting Diodes withtwo single-layer mixture and multilayer structures

    Directory of Open Access Journals (Sweden)

    Mohammadreza Jafari

    2017-05-01

    Full Text Available In this article, organic light emitting diode with the two structures of ITO / PEDOT: PSS /PVK/Alq3/PBD/Al and ITO/PEDOT: PSS/PVK: Alq3: PBD/Alwith different concentrations were fabricated. The effects of concentration of Alq3 complex on the characteristics of diodes, which were made, were studied. Layers with the same weight percentages PVK, PBD and different wt. %Alq3 by spin coating on PEDOT: PSS layer was deposited. Current - voltage characteristic curve - and luminescence (El were studied. Experimental results showed that by increasing the concentration of the Alq3complexin both structure, luminescence increased and the operating voltage is reduced.

  6. Single- and multi-layered all-dielectric ENG, MNG, and DNG material parameter extraction by use of the S-parameter method

    DEFF Research Database (Denmark)

    Wu, Yunqiu; Arslanagic, Samel

    2016-01-01

    The multi-layer two-dimensional(2-D) epsilon-negative (ENG), mu-negative (MNG) and double-negative (DNG) materials are investigated in this work. The unit cells consist of infinite dielectric cylinders of which the size and permittivity are chosen to excite the dominant electric and magnetic dipole...... modes inside the structure. This enables the ENG, MNG, and DNG behaviors. The material parameters are obtained from the simulated S-parameters by use of the Nicholson-Ross-Weir method. For the 2-layer structure in particular, the results show a possibility of DNG realization with a negative refractive...

  7. An Enhanced Method for Scheduling Observations of Large Sky Error Regions for Finding Optical Counterparts to Transients

    Energy Technology Data Exchange (ETDEWEB)

    Rana, Javed; Singhal, Akshat; Gadre, Bhooshan; Bhalerao, Varun; Bose, Sukanta, E-mail: javed@iucaa.in [Inter-University Centre for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind, Pune 411 007 (India)

    2017-04-01

    The discovery and subsequent study of optical counterparts to transient sources is crucial for their complete astrophysical understanding. Various gamma-ray burst (GRB) detectors, and more notably the ground-based gravitational wave detectors, typically have large uncertainties in the sky positions of detected sources. Searching these large sky regions spanning hundreds of square degrees is a formidable challenge for most ground-based optical telescopes, which can usually image less than tens of square degrees of the sky in a single night. We present algorithms for better scheduling of such follow-up observations in order to maximize the probability of imaging the optical counterpart, based on the all-sky probability distribution of the source position. We incorporate realistic observing constraints such as the diurnal cycle, telescope pointing limitations, available observing time, and the rising/setting of the target at the observatory’s location. We use simulations to demonstrate that our proposed algorithms outperform the default greedy observing schedule used by many observatories. Our algorithms are applicable for follow-up of other transient sources with large positional uncertainties, such as Fermi -detected GRBs, and can easily be adapted for scheduling radio or space-based X-ray follow-up.

  8. Influence of single-walled carbon nanotubes (< 0.001 wt %) and/or zwitter-ionic phospholipid (SOPC) surface layer on the behaviour of the gradient flexoelectric and surface induced polarization domains arising in a homeotropic E7 (a mixture of 5CB, 7CB, 8OCB and 5CT) nematic layer

    International Nuclear Information System (INIS)

    Hinov, H P; Pavlic, J I; Marinov, Y G; Petrov, A G; Sridevi, S; Rafailov, P M; Dettlaff-Weglikowska, U

    2010-01-01

    The influence has been studied of single-walled carbon nanotubes with a concentration between 0.0001 and 0.001 wt % and a dried zwitter-ionic phospholipid (SOPC: l-stearoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine) layer of thickness, smaller than 0.5 μm, deposited only on a half of one of the two glass plates, on the behaviour of the gradient flexoelectric and surface polarization induced domains arising in a homeotropic nematic E7 (a mixture of 5CB, 7CB, 8OCB and 5CT) layer. We have observed for the first time different polar on/off formation of the surface polarization induced domains in the region of the liquid crystal cell without surface deposited lipid SOPC layer. On the other hand, the SOPC layer strongly decreases the gradient of the electric field thus leading to less-pronounced flexoelectric domains. However, the SOPC layer does not influence the creation of surface polarization induced domains and of injection induced domains arising at voltages above 4V. Appropriate dynamic light transmitted curves have been recorded and typical microphotographs have been taken.

  9. Evaluating the performance of land surface model ORCHIDEE-CAN v1.0 on water and energy flux estimation with a single- and multi-layer energy budget scheme

    Science.gov (United States)

    Chen, Yiying; Ryder, James; Bastrikov, Vladislav; McGrath, Matthew J.; Naudts, Kim; Otto, Juliane; Ottlé, Catherine; Peylin, Philippe; Polcher, Jan; Valade, Aude; Black, Andrew; Elbers, Jan A.; Moors, Eddy; Foken, Thomas; van Gorsel, Eva; Haverd, Vanessa; Heinesch, Bernard; Tiedemann, Frank; Knohl, Alexander; Launiainen, Samuli; Loustau, Denis; Ogée, Jérôme; Vessala, Timo; Luyssaert, Sebastiaan

    2016-09-01

    Canopy structure is one of the most important vegetation characteristics for land-atmosphere interactions, as it determines the energy and scalar exchanges between the land surface and the overlying air mass. In this study we evaluated the performance of a newly developed multi-layer energy budget in the ORCHIDEE-CAN v1.0 land surface model (Organising Carbon and Hydrology In Dynamic Ecosystems - CANopy), which simulates canopy structure and can be coupled to an atmospheric model using an implicit coupling procedure. We aim to provide a set of acceptable parameter values for a range of forest types. Top-canopy and sub-canopy flux observations from eight sites were collected in order to conduct this evaluation. The sites crossed climate zones from temperate to boreal and the vegetation types included deciduous, evergreen broad-leaved and evergreen needle-leaved forest with a maximum leaf area index (LAI; all-sided) ranging from 3.5 to 7.0. The parametrization approach proposed in this study was based on three selected physical processes - namely the diffusion, advection, and turbulent mixing within the canopy. Short-term sub-canopy observations and long-term surface fluxes were used to calibrate the parameters in the sub-canopy radiation, turbulence, and resistance modules with an automatic tuning process. The multi-layer model was found to capture the dynamics of sub-canopy turbulence, temperature, and energy fluxes. The performance of the new multi-layer model was further compared against the existing single-layer model. Although the multi-layer model simulation results showed few or no improvements to both the nighttime energy balance and energy partitioning during winter compared with a single-layer model simulation, the increased model complexity does provide a more detailed description of the canopy micrometeorology of various forest types. The multi-layer model links to potential future environmental and ecological studies such as the assessment of in

  10. Massive scalar counterpart of gravitational waves in scalarized neutron star binaries

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing [Sun Yat-sen University, School of Physics and Astronomy, Guangzhou (China)

    2017-09-15

    In analogy with spontaneous magnetization of ferromagnets below the Curie temperature, a neutron star (NS), with a compactness above a certain critical value, may undergo spontaneous scalarization and exhibit an interior nontrivial scalar configuration. Consequently, the exterior spacetime is changed, and an external scalar field appears, which subsequently triggers a scalarization of its companion. The dynamical interplay produces a gravitational scalar counterpart of tensor gravitational waves. In this paper, we resort to scalar-tensor theory and demonstrate that the gravitational scalar counterpart from a double neutron star (DNS) and a neutron star-white dwarf (NS-WD) system become massive. We report that (1) a gravitational scalar background field, arising from convergence of external scalar fields, plays the role of gravitational scalar counterpart in scalarized DNS binary, and the appearance of a mass-dimensional constant in a Higgs-like gravitational scalar potential is responsible for a massive gravitational scalar counterpart with a mass of the order of the Planck scale; (2) a dipolar gravitational scalar radiated field, resulting from differing binding energies of NS and WD, plays the role of a gravitational scalar counterpart in scalarized orbital shrinking NS-WDs, which oscillates around a local and scalar-energy-density-dependent minimum of the gravitational scalar potential and obtains a mass of the order of about 10{sup -21} eV/c{sup 2}. (orig.)

  11. Contact stresses modeling at the Panda-type fiber single-layer winding and evaluation of their impact on the fiber optic properties

    Science.gov (United States)

    Lesnikova, Yu I.; Smetannikov, O. Yu; Trufanov, A. N.; Trufanov, N. A.

    2017-02-01

    The impact of contact transverse forces on the birefringence of the single-mode polarization-maintaining Panda-type fiber is numerically modeled. It has been established that with a single-row power winding on a cylindrical mandrel, the fiber tension at winding is the principal factor that influences birefringence. When coiling the fiber based on the local defect microbending, the birefringence at the microbending point differs from that of the free fiber by 1.3%.

  12. Solid-state dewetting of single- and bilayer Au-W thin films: Unraveling the role of individual layer thickness, stacking sequence and oxidation on morphology evolution

    Directory of Open Access Journals (Sweden)

    A. Herz

    2016-03-01

    Full Text Available Self-assembly of ultrathin Au, W, and Au-W bilayer thin films is investigated using a rapid thermal annealing technique in an inert ambient. The solid-state dewetting of Au films is briefly revisited in order to emphasize the role of initial film thickness. W films deposited onto SiO2 evolve into needle-like nanocrystals rather than forming particle-like agglomerates upon annealing at elevated temperatures. Transmission electron microscopy reveals that such nanocrystals actually consist of tungsten (VI oxide (WO3 which is related to an anisotropic oxide crystal growth out of the thin film. The evolution of W films is highly sensitive to the presence of any residual oxygen. Combination of both the dewetting of Au and the oxide crystal growth of WO3 is realized by using various bilayer film configurations of the immiscible Au and W. At low temperature, Au dewetting is initiated while oxide crystal growth is still suppressed. Depending on the stacking sequence of the Au-W bilayer thin film, W acts either as a substrate or as a passivation layer for the dewetting of Au. Being the ground layer, W changes the wettability of Au which clearly modifies its initial state for the dewetting. Being the top layer, W prevents Au from dewetting regardless of Au film thickness. Moreover, regular pattern formation of Au-WO3 nanoparticles is observed at high temperature demonstrating how bilayer thin film dewetting can create unique nanostructure arrangements.

  13. Observations of the First Electromagnetic Counterpart to a Gravitational-wave Source by the TOROS Collaboration

    Science.gov (United States)

    Díaz, M. C.; Macri, L. M.; Garcia Lambas, D.; Mendes de Oliveira, C.; Nilo Castellón, J. L.; Ribeiro, T.; Sánchez, B.; Schoenell, W.; Abramo, L. R.; Akras, S.; Alcaniz, J. S.; Artola, R.; Beroiz, M.; Bonoli, S.; Cabral, J.; Camuccio, R.; Castillo, M.; Chavushyan, V.; Coelho, P.; Colazo, C.; Costa-Duarte, M. V.; Cuevas Larenas, H.; DePoy, D. L.; Domínguez Romero, M.; Dultzin, D.; Fernández, D.; García, J.; Girardini, C.; Gonçalves, D. R.; Gonçalves, T. S.; Gurovich, S.; Jiménez-Teja, Y.; Kanaan, A.; Lares, M.; Lopes de Oliveira, R.; López-Cruz, O.; Marshall, J. L.; Melia, R.; Molino, A.; Padilla, N.; Peñuela, T.; Placco, V. M.; Quiñones, C.; Ramírez Rivera, A.; Renzi, V.; Riguccini, L.; Ríos-López, E.; Rodriguez, H.; Sampedro, L.; Schneiter, M.; Sodré, L.; Starck, M.; Torres-Flores, S.; Tornatore, M.; Zadrożny, A.

    2017-10-01

    We present the results of prompt optical follow-up of the electromagnetic counterpart of the gravitational-wave event GW170817 by the Transient Optical Robotic Observatory of the South Collaboration. We detected highly significant dimming in the light curves of the counterpart ({{Δ }}g=0.17+/- 0.03 mag, {{Δ }}r=0.14+/- 0.02 mag, {{Δ }}I=0.10+/- 0.03 mag) over the course of only 80 minutes of observations obtained ˜35 hr after the trigger with the T80-South telescope. A second epoch of observations, obtained ˜59 hr after the event with the EABA 1.5 m telescope, confirms the fast fading nature of the transient. The observed colors of the counterpart suggest that this event was a “blue kilonova” relatively free of lanthanides.

  14. Chronic Lymphocytic Leukemia B-Cell Normal Cellular Counterpart: Clues From a Functional Perspective.

    Science.gov (United States)

    Darwiche, Walaa; Gubler, Brigitte; Marolleau, Jean-Pierre; Ghamlouch, Hussein

    2018-01-01

    Chronic lymphocytic leukemia (CLL) is characterized by the clonal expansion of small mature-looking CD19+ CD23+ CD5+ B-cells that accumulate in the blood, bone marrow, and lymphoid organs. To date, no consensus has been reached concerning the normal cellular counterpart of CLL B-cells and several B-cell types have been proposed. CLL B-cells have remarkable phenotypic and gene expression profile homogeneity. In recent years, the molecular and cellular biology of CLL has been enriched by seminal insights that are leading to a better understanding of the natural history of the disease. Immunophenotypic and molecular approaches (including immunoglobulin heavy-chain variable gene mutational status, transcriptional and epigenetic profiling) comparing the normal B-cell subset and CLL B-cells provide some new insights into the normal cellular counterpart. Functional characteristics (including activation requirements and propensity for plasma cell differentiation) of CLL B-cells have now been investigated for 50 years. B-cell subsets differ substantially in terms of their functional features. Analysis of shared functional characteristics may reveal similarities between normal B-cell subsets and CLL B-cells, allowing speculative assignment of a normal cellular counterpart for CLL B-cells. In this review, we summarize current data regarding peripheral B-cell differentiation and human B-cell subsets and suggest possibilities for a normal cellular counterpart based on the functional characteristics of CLL B-cells. However, a definitive normal cellular counterpart cannot be attributed on the basis of the available data. We discuss the functional characteristics required for a cell to be logically considered to be the normal counterpart of CLL B-cells.

  15. Precise localizations and counterpart searches of GRBs from the 2nd interplanetary network

    International Nuclear Information System (INIS)

    Hack, F.; Hurley, K.; Atteia, J.; Barat, C.; Niel, M.; Cline, T.; Dennis, B.; Kouveliotou, C.; Klebesadel, R.; Laros, J.; Kurt, V.; Kuznetsov, A.; Zenchenko, V.

    1994-01-01

    The second interplanetary network of GRB detectors operated between 1981 and 1984. It consisted of the Venera 13 and V14 spacecraft (SIGNE detectors), PVO, ICE, and SMM (HXRBS detector). Many of the approximately 90 cosmic GRBs it detected can be localized to a high accuracy. Such localizations will make a better estimate of the burster recurrence time possible and contribute to the search for quiescent counterparts. We will present a number of localizations to illustrate the potential of this network, discuss the techniques we use to perform multi-wavelength counterpart searches, and compare present and promising future localization techniques

  16. Discovery of the optical counterpart and early optical observations of GRB 990712

    DEFF Research Database (Denmark)

    Sahu, K.C.; Vreesvijk, P.; Bakos, G.

    2000-01-01

    We present the discovery observations of the optical counterpart of the gamma-ray burst GRB 990712 taken 4.16 hr after the outburst and discuss its light curve observed in the V, R, and I bands during the first similar to 35 days after the outburst. The observed light curves were fitted with a po......We present the discovery observations of the optical counterpart of the gamma-ray burst GRB 990712 taken 4.16 hr after the outburst and discuss its light curve observed in the V, R, and I bands during the first similar to 35 days after the outburst. The observed light curves were fitted...

  17. Initial clinical experience with dual-layer detector spectral CT in patients with acute intracerebral haemorrhage: A single-centre pilot study.

    Directory of Open Access Journals (Sweden)

    Soo Buem Cho

    Full Text Available The purpose of this study was to investigate the clinical feasibility of spectral analyses using dual-layer detector spectral computed tomography (CT in acute intracerebral haemorrhage (ICH.We retrospectively reviewed patients with acute ICH who underwent CT angiography on a dual-layer detector spectral CT scanner. A spectral data analysis was performed to detect contrast enhancement in or adjacent to acute ICH by using spectral image reconstructions including monoenergetic (MonoE, virtual noncontrast (VNC, and iodine overlay fusion images. We also acquired a spectral plot to assess material differentiation within lesions.Among the 30 patients, the most common cause of acute ICH was chronic hypertension (18/30, 60% followed by trauma (5/30, 16.7%, brain tumour (3/30, 10%, Moyamoya disease (2/30, 6.7%, and haemorrhagic diathesis from anticoagulation therapy (2/30, 6.7%. Of 30 patients, 13 showed suboptimal iodine suppression in the subcalvarial spaces on VNC images compared with true noncontrast images. The CT angiographic spot sign within the acute ICH was detected in four patients (4/30, 13.3%. All three tumours were metastatic and included lung cancer (n = 2 and hepatocellular carcinoma (n = 1 which showed conspicuous delineation of an enhancing tumour portion in the spectral analysis. Spectral analyses allowed the discrimination of acute haemorrhage and iodine with enhanced lesion visualization on the MonoE images obtained at lower keVs (less than 70 keV and spectral plot.Even though the image quality of VNC is perceived to be inferior, it is feasible to evaluate acute ICH in clinical settings using dual-layer detector spectral CT. The MonoE images taken at lower keVs were useful for depicting contrast enhancing lesion, and spectral plot might be helpful for material differentiation in patients with acute ICH.

  18. New methods of statistical processing of single-molecule spectromicroscopy data for mapping of local fields and effective indices of refraction in the layer of a host matrix

    International Nuclear Information System (INIS)

    Golovanova, A.V.; Anikushina, T.A.; Gorshelev, A.A.; Korotaev, O.N.; Naumov, A.V.

    2017-01-01

    We describe the specific algorithms for statistical processing of the data on fluorescence excitation spectra and images for large number of single dye molecules in thin solid film. Analysis of the data allowed mapping of the local fields and the effective refractive index in a frozen solid film. An estimation of the volume attributed to the effective local values is given.

  19. Surface coating for flame-retardant behavior of cotton fabric using a continuous layer-by-layer process

    Science.gov (United States)

    Cotton’s exceptional softness, breathability, and absorbency have made it America’s best selling textile fiber; however, cotton textiles are generally more combustible than their synthetic counterparts. In this study, a continuous layer-by-layer self-assembly technique was used to deposit polymer-cl...

  20. Counterpart experimental study of ISP-42 PANDA tests on PUMA facility

    International Nuclear Information System (INIS)

    Yang, Jun; Choi, Sung-Won; Lim, Jaehyok; Lee, Doo-Yong; Rassame, Somboon; Hibiki, Takashi; Ishii, Mamoru

    2013-01-01

    Highlights: ► Counterpart tests were performed on two large-scale BWR integral facilities. ► Similarity of post-LOCA system behaviors observed between two tests. ► Passive core and containment cooling systems work as design in both tests. -- Abstract: A counterpart test to the Passive Nachwärmeabfuhr und Druckabbau Test Anlage (Passive Decay Heat Removal and Depressurization Test Facility, PANDA) International Standard Problem (ISP)-42 test was conducted at the Purdue University Multi-Dimensional Integral Test Assembly (PUMA) facility. Aimed to support code validation on a range of light water reactor (LWR) containment issues, the ISP-42 test consists of six sequential phases (Phases A–F) with separately defined initial and boundary conditions, addressing different stages of anticipated accident scenario and system responses. The counterpart test was performed from Phases A to D, which are within the scope of the normal integral tests performed on the PUMA facility. A scaling methodology was developed by using the PANDA facility as prototype and PUMA facility as test model, and an engineering scaling has been applied to the PUMA facility. The counterpart test results indicated that functions of passive safety systems, such as passive containment cooling system (PCCS) start-up, gravity-driven cooling system (GDCS) discharge, PCCS normal operation and overload function were confirmed in both the PANDA and PUMA facilities with qualitative similarities

  1. Epataxial growth of the high-temperature superconductors YBa2Cu3O7-x on silicon single crystals with buffer layers

    International Nuclear Information System (INIS)

    Lubig, A.

    1991-09-01

    In this work the growth of thin films of the high-temperature superconductor YBa 2 Cu 3 O 7-x on Si(001) substrates has been investigated by Rutherford backscattering, channeling, X-ray diffraction, high resolution transmission electron microscopy, and electrical measurements. Epitaxial buffer layers of electrically insulating, pure and yttria-stabilized ZrO 2 ([Y 2 O 3 ] 0.06 [ZrO 2 ] 0.94 = YSZ) as well as of metallic CoSi 2 were employed to largely prevent the interdiffusion and chemical reaction between the superconductor film and the substrate in spite of the high deposition temperatures of the YBa 2 Cu 3 O 7-x in the range of 600 to 800deg C. (orig.)

  2. New Layered Materials and Functional Nanoelectronic Devices

    Science.gov (United States)

    Yu, Jaeeun

    This thesis introduces functional nanomaterials including superatoms and carbon nanotubes (CNTs) for new layered solids and molecular devices. Chapters 1-3 present how we incorporate superatoms into two-dimensional (2D) materials. Chapter 1 describes a new and simple approach to dope transition metal dichalcogenides (TMDCs) using the superatom Co6Se8(PEt3)6 as the electron dopant. Doping is an effective method to modulate the electrical properties of materials, and we demonstrate an electron-rich cluster can be used as a tunable and controllable surface dopant for semiconducting TMDCs via charge transfer. As a demonstration of the concept, we make a p-n junction by patterning on specific areas of TMDC films. Chapter 2 and Chapter 3 introduce new 2D materials by molecular design of superatoms. Traditional atomic van der Waals materials such as graphene, hexagonal boron-nitride, and TMDCs have received widespread attention due to the wealth of unusual physical and chemical behaviors that arise when charges, spins, and vibrations are confined to a plane. Though not as widespread as their atomic counterparts, molecule-based layered solids offer significant benefits; their structural flexibility will enable the development of materials with tunable properties. Chapter 2 describes a layered van der Waals solid self-assembled from a structure-directing building block and C60 fullerene. The resulting crystalline solid contains a corrugated monolayer of neutral fullerenes and can be mechanically exfoliated. Chapter 3 describes a new method to functionalize electroactive superatoms with groups that can direct their assembly into covalent and non-covalent multi-dimensional frameworks. We synthesized Co6Se8[PEt2(4-C6H4COOH)]6 and found that it forms two types of crystalline assemblies with Zn(NO3)2, one is a three-dimensional solid and the other consists of stacked layers of two-dimensional sheets. The dimensionality is controlled by subtle changes in reaction conditions. CNT

  3. Biological characteristics and clinical outcome of triple negative primary breast cancer in older women - comparison with their younger counterparts.

    Directory of Open Access Journals (Sweden)

    Binafsha M Syed

    Full Text Available Triple negative (ER, PgR and HER2 negative breast cancers (TNBCs are often considered as a poor prognostic phenotype. There is dearth of evidence showing the prevalence and biological behaviour of TNBCs in older women. This study aimed to analyse their biological characteristics in comparison with a well characterised younger series from a single centre with long term clinical follow-up. Over 37 years (1973-2010, 1,758 older (≥70 years women with early operable (<5 cm primary breast cancer were managed in a dedicated clinic and have complete clinical information available. Of these 813 patients underwent primary surgery and 575 had good quality tumour samples available for tissue microarray analysis using indirect immunohistochemistry. A total of 127 patients (22.1% had TNBCs and full biological analysis of 15 biomarkers was performed. The results were compared with those of their younger (<70 years counterparts 342 (18.9% from a previously characterised, consecutive series of primary breast cancer treated in the same unit (1986-1998. The 127 older patients with TNBCs showed lower rates of Ki67 and CK 7/8 positivity and high rates of bcl2 and CK18 positivity when compared with their younger counterparts (p<0.05. There was no significant difference in the long term clinical outcome between the two age groups, despite the fact that 47% of the younger patients had adjuvant chemotherapy, while none in the older cohort received such treatment. EGFR, axillary stage and pathological size showed prognostic significance in older women with TNBCs on univariate analysis. Despite not having received adjuvant chemotherapy, the older series had clinical outcome similar to the younger patients almost half of whom had chemotherapy. This appears to be related to other biomarkers (in addition to ER/PgR/HER2 eg Ki67, bcl2 and cytokeratins which have different expression patterns influencing prognosis.

  4. IDENTIFYING ELUSIVE ELECTROMAGNETIC COUNTERPARTS TO GRAVITATIONAL WAVE MERGERS: AN END-TO-END SIMULATION

    International Nuclear Information System (INIS)

    Nissanke, Samaya; Georgieva, Alexandra; Kasliwal, Mansi

    2013-01-01

    Combined gravitational wave (GW) and electromagnetic (EM) observations of compact binary mergers should enable detailed studies of astrophysical processes in the strong-field gravity regime. This decade, ground-based GW interferometers promise to routinely detect compact binary mergers. Unfortunately, networks of GW interferometers have poor angular resolution on the sky and their EM signatures are predicted to be faint. Therefore, a challenging goal will be to unambiguously pinpoint the EM counterparts of GW mergers. We perform the first comprehensive end-to-end simulation that focuses on: (1) GW sky localization, distance measures, and volume errors with two compact binary populations and four different GW networks; (2) subsequent EM detectability by a slew of multiwavelength telescopes; and (3) final identification of the merger counterpart amidst a sea of possible astrophysical false positives. First, we find that double neutron star binary mergers can be detected out to a maximum distance of 400 Mpc (or 750 Mpc) by three (or five) detector GW networks, respectively. Neutron-star-black-hole binary mergers can be detected a factor of 1.5 further out; their median to maximum sky localizations are 50-170 deg 2 (or 6-65 deg 2 ) for a three (or five) detector GW network. Second, by optimizing depth, cadence, and sky area, we quantify relative fractions of optical counterparts that are detectable by a suite of different aperture-size telescopes across the globe. Third, we present five case studies to illustrate the diversity of scenarios in secure identification of the EM counterpart. We discuss the case of a typical binary, neither beamed nor nearby, and the challenges associated with identifying an EM counterpart at both low and high Galactic latitudes. For the first time, we demonstrate how construction of low-latency GW volumes in conjunction with local universe galaxy catalogs can help solve the problem of false positives. We conclude with strategies that would

  5. Diverse Functionalities of Vertically Stacked Graphene/Single layer n-MoS2/SiO2/p-GaN Heterostructures.

    Science.gov (United States)

    Perumal, Packiyaraj; Karuppiah, Chelladurai; Liao, Wei-Cheng; Liou, Yi-Rou; Liao, Yu-Ming; Chen, Yang-Fang

    2017-08-30

    Integrating different dimentional materials on vertically stacked p-n hetero-junctions have facinated a considerable scrunity and can open up excellent feasibility with various functionalities in opto-electronic devices. Here, we demonstrate that vertically stacked p-GaN/SiO 2 /n-MoS 2 /Graphene heterostructures enable to exhibit prominent dual opto-electronic characteristics, including efficient photo-detection and light emission, which represents the emergence of a new class of devices. The photoresponsivity was found to achieve as high as ~10.4 AW -1 and the detectivity and external quantum efficiency were estimated to be 1.1 × 10 10 Jones and ~30%, respectively. These values are superier than most reported hererojunction devices. In addition, this device exhibits as a self-powered photodetector, showing a high responsivity and fast response speed. Moreover, the device demonstrates the light emission with low turn-on voltage (~1.0 V) which can be realized by electron injection from graphene electrode and holes from GaN film into monolayer MoS 2 layer. These results indicate that with a suitable choice of band alignment, the vertical stacking of materials with different dimentionalities could be significant potential for integration of highly efficient heterostructures and open up feasible pathways towards integrated nanoscale multi-functional optoelectronic devices for a variety of applications.

  6. Discovery, Follow-up, and Implications of the Optical/Infrared Counterpart to GW170817

    Science.gov (United States)

    Drout, Maria

    2018-01-01

    On August 17th, 2017, the field of multi-messenger, gravitational-wave, astronomy was born. On this date, Advanced LIGO and Advanced Virgo observed gravitational waves from the coalescence of a neutron star binary with a false alarm probability of 1 per 10000 years and electromagnetic counterparts were subsequently identified across the entire electromagnetic spectrum. In this talk, I will give a broad review of the optical and infrared emission associated with the binary neutron star merger, GW170817. I will describe the process of the discovery and localization of the optical counterpart, and review the extensive follow-up observations obtained over the following three weeks. Finally, I will place these results in context. I will discuss the implications of these observations on our understanding of the ejecta from neutron star mergers, the origin of r-process elements, and the prospects for the identification of similar transients in upcoming surveys.

  7. The prompt acquisition of gamma ray optical counterparts with the Bradford Robotic Telescope

    Science.gov (United States)

    Baruch, J. E. F.; Bennett, C.; Cox, M. J.; Davis, R.

    1996-08-01

    The Bradford Robotic Telescope was conceived as an instrument to work with observers in other wavebands and specifically to monitor gamma sources and acquire optical counterparts to gamma-bursters. Its main line of support has been to provide an automated robotic photometry service on the Internet. Its first light was in the autumn of 1993. The telescope and its development are described (http://www.telescope.org/rti). The development of instrumentation for astronomy in an engineering department is discussed and the evolution of the networking and communications is described to the point where a fast link to the Internet BACODINE system can be achieved. The current performance is detailed with estimates of its efficiency. Images of BATSE error boxes are discussed. Current plans are to better match the field of the telescope to the BATSE error boxes and to monitor optical counterparts on a fractional second time scale.

  8. HST/ACS Imaging of Omega Centauri: Optical Counterparts of Chandra X-Ray Sources

    Science.gov (United States)

    Cool, Adrienne M.; Haggard, Daryl; Arias, Tersi; Brochmann, Michelle; Dorfman, Jason; Gafford, April; White, Vivian; Anderson, Jay

    2013-02-01

    We present results of a search for optical counterparts of X-ray sources in and toward the globular cluster Omega Centauri (NGC 5139) using the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope. The ACS data consist of a mosaic of Wide Field Channel images obtained using F625W, F435W, and F658N filters; with nine pointings we cover the central ~10' × 10' of the cluster and encompass 109 known Chandra sources. We find promising optical counterparts for 59 of the sources, ~40 of which are likely to be associated with the cluster. These include 27 candidate cataclysmic variables (CVs), 24 of which are reported here for the first time. Fourteen of the CV candidates are very faint, with absolute magnitudes in the range M 625 =10.4-12.6, making them comparable in brightness to field CVs near the period minimum discovered in the Sloan Digital Sky Survey. Additional optical counterparts include three BY Dra candidates, a possible blue straggler, and a previously reported quiescent low-mass X-ray binary. We also identify 3 foreground stars and 11 probable active galactic nuclei. Finally, we report the discovery of a group of seven stars whose X-ray properties are suggestive of magnetically active binaries, and whose optical counterparts lie on or very near the metal-rich anomalous giant and subgiant branches in ω Cen. If the apparent association between these seven stars and the RGB/SGB-a stars is real, then the frequency of X-ray sources in this metal-rich population is enhanced by a factor of at least five relative to the other giant and subgiant populations in the cluster. If these stars are not members of the metal-rich population, then they bring the total number of red stragglers (also known as sub-subgiants) that have been identified in ω to Cen 20, the largest number yet known in any globular cluster.

  9. Finding X-ray counterparts for unidentified sources in the 105 months BAT survey - 1

    Science.gov (United States)

    Stephen, J. B.; Bassani, L.; Malizia, A.; Masetti, N.; Ubertini, P.

    2018-02-01

    We provide X-ray counterparts for the unidentified Swift/BAT sources listed in the 105 month catalogue (Oh et al. 2018, ApJS in press). These associations were found by cross-correlating the list of U1,U2 and U3 sources with the ROSAT Bright (RASSBSC, Voges et al. 1999, A & A, 349, 389) and the XMM-Newton Slew (XMMSlew, Saxton et al. 2008, A & A, 480, 611) catalogues.

  10. Finding X-ray counterparts for unidentified sources in the 105 months BAT survey - 2

    Science.gov (United States)

    Stephen, J. B.; Bassani, L.; Malizia, A.; Masetti, N.; Ubertini, P.

    2018-02-01

    We provide X-ray counterparts for unidentified Swift/BAT sources in the 105 month catalogue (Oh et al. 2018, ApJS in press). They were found by cross-correlating the list of U1,U2 and U3 sources with the ROSAT Bright (RASSBSC, Voges et al. 1999, A & A, 349, 389) and XMM-Newton Slew (XMMSlew, Saxton et al. 2008, A & A, 480, 611) catalogues and optically identified as reported in Atel #11340.

  11. Strategic Wholesale Pricing for an Incumbent Supplier Facing with a Competitive Counterpart

    OpenAIRE

    Sun, Jianwu

    2014-01-01

    We introduce a wholesale pricing strategy for an incumbent supplier facing with a competitive counterpart. We propose a profit function which considers both the present loss and future loss from a wholesale price and then study the optimal wholesale prices for different objectives about this profit function for the incumbent supplier. First, we achieve an optimal wholesale price for the incumbent supplier to maximize his expected profit. Then, to reduce the risk originating from the fluctuati...

  12. Layered tin dioxide microrods

    International Nuclear Information System (INIS)

    Duan Junhong; Huang Hongbo; Gong Jiangfeng; Zhao Xiaoning; Cheng Guangxu; Yang Shaoguang

    2007-01-01

    Single-crystalline layered SnO 2 microrods were synthesized by a simple tin-water reaction at 900 deg. C. The structural and optical properties of the sample were characterized by x-ray powder diffraction, energy-dispersive x-ray spectroscopy, scanning electron microscopy, high resolution transmission electron microscopy, Raman scattering and photoluminescence (PL) spectroscopy. High resolution transmission electron microscopy studies and selected area electron diffraction patterns revealed that the layered SnO 2 microrods are single crystalline and their growth direction is along [1 1 0]. The growth mechanism of the microrods was proposed based on SEM, TEM characterization and thermodynamic analysis. It is deduced that the layered microrods grow by the stacking of SnO 2 sheets with a (1 1 0) surface in a vapour-liquid-solid process. Three emission peaks at 523, 569 and 626 nm were detected in room-temperature PL measurements

  13. Nanostructure Neutron Converter Layer Development

    Science.gov (United States)

    Park, Cheol (Inventor); Sauti, Godfrey (Inventor); Kang, Jin Ho (Inventor); Lowther, Sharon E. (Inventor); Thibeault, Sheila A. (Inventor); Bryant, Robert G. (Inventor)

    2016-01-01

    Methods for making a neutron converter layer are provided. The various embodiment methods enable the formation of a single layer neutron converter material. The single layer neutron converter material formed according to the various embodiments may have a high neutron absorption cross section, tailored resistivity providing a good electric field penetration with submicron particles, and a high secondary electron emission coefficient. In an embodiment method a neutron converter layer may be formed by sequential supercritical fluid metallization of a porous nanostructure aerogel or polyimide film. In another embodiment method a neutron converter layer may be formed by simultaneous supercritical fluid metallization of a porous nanostructure aerogel or polyimide film. In a further embodiment method a neutron converter layer may be formed by in-situ metalized aerogel nanostructure development.

  14. Stallion spermatozoa selected by single layer centrifugation are capable of fertilization after storage for up to 96 h at 6°C prior to artificial insemination

    Science.gov (United States)

    2012-01-01

    Background One of the challenges faced by equine breeders is ensuring delivery of good quality semen doses for artificial insemination when the mare is due to ovulate. Single Layer Centrifugation (SLC) has been shown to select morphologically normal spermatozoa with intact chromatin and good progressive motility from the rest of the ejaculate, and to prolong the life of these selected spermatozoa in vitro. The objective of the present study was a proof of concept, to determine whether fertilizing ability was retained in SLC-selected spermatozoa during prolonged storage. Findings Sixteen mares were inseminated with SLC-selected sperm doses that had been cooled and stored at 6°C for 48 h, 72 h or 96 h. Embryos were identified in 11 mares by ultrasound examination 16–18 days after presumed ovulation. Conclusion SLC-selected stallion spermatozoa stored for up to 96 h are capable of fertilization. PMID:22788670

  15. Urbach Tail and Optical Absorption in Layered Semiconductor TlGaSe2(1-x)S2x Single Crystals

    Science.gov (United States)

    Duman, S.; Gürbulak, B.

    2005-01-01

    TlGaSe2(1 - x)S2x single crystals were grown by the modified Bridgman-Stockbarger method. None of the grown crystals had cracks and voids on the surface. The freshly cleaved crystals had mirror-like surfaces and there was no need for mechanical or chemical polishing treatments. The measurements were performed in steps of 10 K if changes were small, and with steps of 3 and 5 K if changes were large in the direct and indirect band gaps energies. The direct and indirect band gaps for TlGaSe2(1 - x)S2x (x = 0, 0.2, 0.4, 0.6, 0.8, 1) samples were calculated as a function of temperature. There is an abrupt change in the energy spectrum of TlGaSe2(1 - x)S2x in the temperature ranges 90 100, 100, 100 120, 160 180, 220 240, and 240 250 K. The values obtained from the energy peak change may be phase transition temperatures. It is the first time that Urbach's rule and steepness parameters of TlGaSe2(1 - x)S2x samples have been investigated. The steepness parameters and Urbach energies for TlGaSe2(1 - x)S2x samples increased with increasing sample temperature in the range 10 320 K. We have concluded that the compositions x are determined without using the other techniques during crystal growth considering band gaps energies.

  16. The Effect of Single, Binary and Ternary Anions of Chloride, Carbonate and Phosphate on the Release of 2,4-Dichlorophenoxyacetate Intercalated into the Zn-Al-layered Double Hydroxide Nanohybrid.

    Science.gov (United States)

    Hussein, Mohd Zobir; Jaafar, Adila Mohamad; Yahaya, Asmah Hj; Zainal, Zulkarnain

    2009-08-04

    Intercalation of beneficial anion into inorganic host has lead to an opportunity to synthesize various combinations of new organic-inorganic nanohybrids with various potential applications; especially, for the controlled release formulation and storage purposes. Investigation on the release behavior of 2,4-dichlorophenoxyacetate (2,4-D) intercalated into the interlayer of Zn-Al-layered double hydroxide (ZAN) have been carried out using single, binary and ternary aqueous systems of chloride, carbonate and phosphate. The release behavior of the active agent 2,4-D from its double-layered hydroxide nanohybrid ZANDI was found to be of controlled manner governed by pseudo-second order kinetics. It was found that carbonate medium yielded the highest accumulated release of 2,4-D, while phosphate in combination with carbonate and/or nitrate speeds up the release rate of 2,4-D. These results indicate that it is possible to design and develop new delivery system of latex stimulant compound with controlled release property based on 2,4-D that is known as a substance to increase latex production of rubber tree, Hevea brasiliensis.

  17. The Effect of Single, Binary and Ternary Anions of Chloride, Carbonate and Phosphate on the Release of 2,4-Dichlorophenoxyacetate Intercalated into the Zn–Al-layered Double Hydroxide Nanohybrid

    Directory of Open Access Journals (Sweden)

    Zainal Zulkarnain

    2009-01-01

    Full Text Available Abstract Intercalation of beneficial anion into inorganic host has lead to an opportunity to synthesize various combinations of new organic–inorganic nanohybrids with various potential applications; especially, for the controlled release formulation and storage purposes. Investigation on the release behavior of 2,4-dichlorophenoxyacetate (2,4-D intercalated into the interlayer of Zn–Al-layered double hydroxide (ZAN have been carried out using single, binary and ternary aqueous systems of chloride, carbonate and phosphate. The release behavior of the active agent 2,4-D from its double-layered hydroxide nanohybrid ZANDI was found to be of controlled manner governed by pseudo-second order kinetics. It was found that carbonate medium yielded the highest accumulated release of 2,4-D, while phosphate in combination with carbonate and/or nitrate speeds up the release rate of 2,4-D. These results indicate that it is possible to design and develop new delivery system of latex stimulant compound with controlled release property based on 2,4-D that is known as a substance to increase latex production of rubber tree,Hevea brasiliensis.

  18. Hunting Electromagnetic Counterparts of Gravitational-wave Events Using the Zwicky Transient Facility

    Science.gov (United States)

    Ghosh, Shaon; Chatterjee, Deep; Kaplan, David L.; Brady, Patrick R.; Van Sistine, Angela

    2017-11-01

    Detections of coalescing binary black holes by LIGO have opened a new window of transient astronomy. With increasing sensitivity of LIGO and participation of the Virgo detector in Cascina, Italy, we expect to soon detect coalescence of compact binary systems with one or more neutron stars. These are the prime targets for electromagnetic follow-up of gravitational wave triggers, which holds enormous promise of rich science. However, hunting for electromagnetic counterparts of gravitational wave events is a non-trivial task due to the sheer size of the error regions, which could span hundreds of square degrees. This may require deep observation with large field-of-view telescopes and/or use of galaxy catalogs. The Zwicky Transient facility (ZTF), scheduled to begin operation in 2017, is designed to cover such large sky-localization areas. In this work, we present the strategies of efficiently tiling the sky to facilitate the observation of the gravitational wave error regions using ZTF. To do this, we used simulations consisting of 475 binary neutron star coalescences detected using a mix of two- and three-detector networks. Our studies reveal that, using two overlapping sets of ZTF tiles and a (modified) ranked-tiling algorithm, we can cover the gravitational-wave sky-localization regions with half as many pointings as a simple contour-covering algorithm. We then incorporated the ranked-tiling strategy to study our ability to observe the counterparts. This requires optimization of observation depth and localization area coverage. Our results show that observation in r-band with ˜600 seconds of integration time per pointing seems to be optimum for typical assumed brightnesses of electromagnetic counterparts, if we plan to spend equal amount of time per pointing. However, our results also reveal that we can gain by as much as 50% in detection efficiency if we linearly scale our integration time per pointing based on the tile probability.

  19. DISCOVERY OF A TRANSIENT GAMMA-RAY COUNTERPART TO FRB 131104

    Energy Technology Data Exchange (ETDEWEB)

    DeLaunay, J. J.; Murase, K.; Mészáros, P.; Keivani, A.; Messick, C.; Mostafá, M. A.; Oikonomou, F.; Tešić, G.; Turley, C. F. [Department of Physics, Pennsylvania State University, University Park, PA 16802 (United States); Fox, D. B., E-mail: jjd330@psu.edu [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States)

    2016-11-20

    We report our discovery in Swift satellite data of a transient gamma-ray counterpart (3.2 σ confidence) to the fast radio burst (FRB) FRB 131104, the first such counterpart to any FRB. The transient has a duration T {sub 90} ≳ 100 s and a fluence S{sub γ} ≈ 4 × 10{sup −6} erg cm{sup −2}, increasing the energy budget for this event by more than a billion times; at the nominal z ≈ 0.55 redshift implied by its dispersion measure, the burst’s gamma-ray energy output is E{sub γ} ≈ 5 × 10{sup 51} erg. The observed radio to gamma-ray fluence ratio for FRB 131104 is consistent with a lower limit we derive from Swift observations of another FRB, which is not detected in gamma-rays, and with an upper limit previously derived for the brightest gamma-ray flare from SGR 1806−20, which was not detected in the radio. X-ray, ultraviolet, and optical observations beginning two days after the FRB do not reveal any associated afterglow, supernova, or transient; Swift observations exclude association with the brightest 65% of Swift gamma-ray burst (GRB) X-ray afterglows, while leaving the possibility of an associated supernova at much more than 10% the FRB’s nominal distance, D ≳ 320 Mpc, largely unconstrained. Transient high-luminosity gamma-ray emission arises most naturally in a relativistic outflow or shock breakout, such as, for example, from magnetar flares, GRBs, relativistic supernovae, and some types of galactic nuclear activity. Our discovery thus bolsters the case for an extragalactic origin for some FRBs and suggests that future rapid-response observations might identify long-lived counterparts, resolving the nature of these mysterious phenomena and realizing their promise as probes of cosmology and fundamental physics.

  20. Energy metabolism in human pluripotent stem cells and their differentiated counterparts.

    Directory of Open Access Journals (Sweden)

    Sandra Varum

    Full Text Available Human pluripotent stem cells have the ability to generate all cell types present in the adult organism, therefore harboring great potential for the in vitro study of differentiation and for the development of cell-based therapies. Nonetheless their use may prove challenging as incomplete differentiation of these cells might lead to tumoregenicity. Interestingly, many cancer types have been reported to display metabolic modifications with features that might be similar to stem cells. Understanding the metabolic properties of human pluripotent stem cells when compared to their differentiated counterparts can thus be of crucial importance. Furthermore recent data has stressed distinct features of different human pluripotent cells lines, namely when comparing embryo-derived human embryonic stem cells (hESCs and induced pluripotent stem cells (IPSCs reprogrammed from somatic cells.We compared the energy metabolism of hESCs, IPSCs, and their somatic counterparts. Focusing on mitochondria, we tracked organelle localization and morphology. Furthermore we performed gene expression analysis of several pathways related to the glucose metabolism, including glycolysis, the pentose phosphate pathway and the tricarboxylic acid (TCA cycle. In addition we determined oxygen consumption rates (OCR using a metabolic extracellular flux analyzer, as well as total intracellular ATP levels by high performance liquid chromatography (HPLC. Finally we explored the expression of key proteins involved in the regulation of glucose metabolism.Our results demonstrate that, although the metabolic signature of IPSCs is not identical to that of hESCs, nonetheless they cluster with hESCs rather than with their somatic counterparts. ATP levels, lactate production and OCR revealed that human pluripotent cells rely mostly on glycolysis to meet their energy demands. Furthermore, our work points to some of the strategies which human pluripotent stem cells may use to maintain high

  1. HST/ACS IMAGING OF OMEGA CENTAURI: OPTICAL COUNTERPARTS OF CHANDRA X-RAY SOURCES

    International Nuclear Information System (INIS)

    Cool, Adrienne M.; Arias, Tersi; Brochmann, Michelle; Dorfman, Jason; Gafford, April; White, Vivian; Haggard, Daryl; Anderson, Jay

    2013-01-01

    We present results of a search for optical counterparts of X-ray sources in and toward the globular cluster Omega Centauri (NGC 5139) using the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope. The ACS data consist of a mosaic of Wide Field Channel images obtained using F625W, F435W, and F658N filters; with nine pointings we cover the central ∼10' × 10' of the cluster and encompass 109 known Chandra sources. We find promising optical counterparts for 59 of the sources, ∼40 of which are likely to be associated with the cluster. These include 27 candidate cataclysmic variables (CVs), 24 of which are reported here for the first time. Fourteen of the CV candidates are very faint, with absolute magnitudes in the range M 625 =10.4-12.6, making them comparable in brightness to field CVs near the period minimum discovered in the Sloan Digital Sky Survey. Additional optical counterparts include three BY Dra candidates, a possible blue straggler, and a previously reported quiescent low-mass X-ray binary. We also identify 3 foreground stars and 11 probable active galactic nuclei. Finally, we report the discovery of a group of seven stars whose X-ray properties are suggestive of magnetically active binaries, and whose optical counterparts lie on or very near the metal-rich anomalous giant and subgiant branches in ω Cen. If the apparent association between these seven stars and the RGB/SGB-a stars is real, then the frequency of X-ray sources in this metal-rich population is enhanced by a factor of at least five relative to the other giant and subgiant populations in the cluster. If these stars are not members of the metal-rich population, then they bring the total number of red stragglers (also known as sub-subgiants) that have been identified in ω to Cen 20, the largest number yet known in any globular cluster.

  2. Understanding possible electromagnetic counterparts to loud gravitational wave events: Binary black hole effects on electromagnetic fields

    International Nuclear Information System (INIS)

    Palenzuela, Carlos; Lehner, Luis; Yoshida, Shin

    2010-01-01

    In addition to producing loud gravitational waves, the dynamics of a binary black hole system could induce emission of electromagnetic radiation by affecting the behavior of plasmas and electromagnetic fields in their vicinity. We study how the electromagnetic fields are affected by a pair of orbiting black holes through the merger. In particular, we show how the binary's dynamics induce a variability in possible electromagnetically induced emissions as well as an enhancement of electromagnetic fields during the late-merge and merger epochs. These time dependent features will likely leave their imprint in processes generating detectable emissions and can be exploited in the detection of electromagnetic counterparts of gravitational waves.

  3. Observations of optical counterparts of high-energy sources with ESA Gaia

    Czech Academy of Sciences Publication Activity Database

    Hudec, René; Šimon, Vojtěch; Hudec, L.

    2008-01-01

    Roč. 8, spec. iss. (2008), s. 386-392 ISSN 1009-9271. [International workshop on multifrequency behaviour of high energy cosmic sources. Vulcano, 28.05.2007-02.06.2007] R&D Projects: GA AV ČR IAA3003206; GA ČR GA205/05/2167 Grant - others:ESA(XE) ESA-PECS project No. 98023; ESA(CZ) ESA-PECS project No. 98058 Institutional research plan: CEZ:AV0Z10030501 Keywords : high-energy sources * optical counterparts Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.689, year: 2008

  4. Layered microporous polymers by solvent knitting method

    OpenAIRE

    Wang, Shaolei; Zhang, Chengxin; Shu, Yu; Jiang, Shulan; Xia, Qi; Chen, Linjiang; Jin, Shangbin; Hussain, Irshad; Cooper, Andrew I.; Tan, Bien

    2017-01-01

    Two-dimensional (2D) nanomaterials, especially 2D organic nanomaterials with unprecedentedly diverse and controlled structure, have attracted decent scientific interest. Among the preparation strategies, the top-down approach is one of the considered low-cost and scalable strategies to obtain 2D organic nanomaterials. However, some factors of their layered counterparts limited the development and potential applications of 2D organic nanomaterials, such as type, stability, and strict synthetic...

  5. Layered microporous polymers by solvent knitting method.

    Science.gov (United States)

    Wang, Shaolei; Zhang, Chengxin; Shu, Yu; Jiang, Shulan; Xia, Qi; Chen, Linjiang; Jin, Shangbin; Hussain, Irshad; Cooper, Andrew I; Tan, Bien

    2017-03-01

    Two-dimensional (2D) nanomaterials, especially 2D organic nanomaterials with unprecedentedly diverse and controlled structure, have attracted decent scientific interest. Among the preparation strategies, the top-down approach is one of the considered low-cost and scalable strategies to obtain 2D organic nanomaterials. However, some factors of their layered counterparts limited the development and potential applications of 2D organic nanomaterials, such as type, stability, and strict synthetic conditions of layered counterparts. We report a class of layered solvent knitting hyper-cross-linked microporous polymers (SHCPs) prepared by improving Friedel-Crafts reaction and using dichloroalkane as an economical solvent, stable electrophilic reagent, and external cross-linker at low temperature, which could be used as layered counterparts to obtain previously unknown 2D SHCP nanosheets by method of ultrasonic-assisted solvent exfoliation. This efficient and low-cost strategy can produce previously unreported microporous organic polymers with layered structure and high surface area and gas storage capacity. The pore structure and surface area of these polymers can be controlled by tuning the chain length of the solvent, the molar ratio of AlCl 3 , and the size of monomers. Furthermore, we successfully obtain an unprecedentedly high-surface area HCP material (3002 m 2 g -1 ), which shows decent gas storage capacity (4.82 mmol g -1 at 273 K and 1.00 bar for CO 2 ; 12.40 mmol g -1 at 77.3 K and 1.13 bar for H 2 ). This finding provides an opportunity for breaking the constraint of former knitting methods and opening up avenues for the design and synthesis of previously unknown layered HCP materials.

  6. Do Lower Calorie or Lower Fat Foods Have More Sodium Than Their Regular Counterparts?

    Directory of Open Access Journals (Sweden)

    Katherine A. John

    2016-08-01

    Full Text Available The objective of this study was to compare the sodium content of a regular food and its lower calorie/fat counterpart. Four food categories, among the top 20 contributing the most sodium to the US diet, met the criteria of having the most matches between regular foods and their lower calorie/fat counterparts. A protocol was used to search websites to create a list of “matches”, a regular and comparable lower calorie/fat food(s under each brand. Nutrient information was recorded and analyzed for matches. In total, 283 matches were identified across four food categories: savory snacks (N = 44, cheese (N = 105, salad dressings (N = 90, and soups (N = 44. As expected, foods modified from their regular versions had significantly reduced average fat (total fat and saturated fat and caloric profiles. Mean sodium content among modified salad dressings and cheeses was on average 8%–12% higher, while sodium content did not change with modification of savory snacks. Modified soups had significantly lower mean sodium content than their regular versions (28%–38%. Consumers trying to maintain a healthy diet should consider that sodium content may vary in foods modified to be lower in calories/fat.

  7. Probing extra dimension through gravitational wave observations of compact binaries and their electromagnetic counterparts

    Science.gov (United States)

    Yu, Hao; Gu, Bao-Min; Huang, Fa Peng; Wang, Yong-Qiang; Meng, Xin-He; Liu, Yu-Xiao

    2017-02-01

    The future gravitational wave (GW) observations of compact binaries and their possible electromagnetic counterparts may be used to probe the nature of the extra dimension. It is widely accepted that gravitons and photons are the only two completely confirmed objects that can travel along null geodesics in our four-dimensional space-time. However, if there exist extra dimensions and only GWs can propagate freely in the bulk, the causal propagations of GWs and electromagnetic waves (EMWs) are in general different. In this paper, we study null geodesics of GWs and EMWs in a five-dimensional anti-de Sitter space-time in the presence of the curvature of the universe. We show that for general cases the horizon radius of GW is longer than EMW within equal time. Taking the GW150914 event detected by the Advanced Laser Interferometer Gravitational-Wave Observatory and the X-ray event detected by the Fermi Gamma-ray Burst Monitor as an example, we study how the curvature k and the constant curvature radius l affect the horizon radii of GW and EMW in the de Sitter and Einstein-de Sitter models of the universe. This provides an alternative method for probing extra dimension through future GW observations of compact binaries and their electromagnetic counterparts.

  8. Off-axis short GRBs from structured jets as counterparts to GW events

    Science.gov (United States)

    Kathirgamaraju, Adithan; Barniol Duran, Rodolfo; Giannios, Dimitrios

    2018-01-01

    Binary neutron star mergers are considered to be the most favourable sources that produce electromagnetic (EM) signals associated with gravitational waves (GWs). These mergers are the likely progenitors of short duration gamma-ray bursts (GRBs). The brief gamma-ray emission (the 'prompt' GRB emission) is produced by ultrarelativistic jets, as a result, this emission is strongly beamed over a small solid angle along the jet. It is estimated to be a decade or more before a short GRB jet within the Laser Interferometer Gravitational-Wave observatory (LIGO) volume points along our line of sight. For this reason, the study of the prompt signal as an EM counterpart to GW events has been sparse. We argue that for a realistic jet model, one whose luminosity and Lorentz factor vary smoothly with angle, the prompt signal can be detected for a significantly broader range of viewing angles. This can lead to an 'off-axis' short GRB as an EM counterpart. Our estimates and simulations show that it is feasible to detect these signals with the aid of the temporal coincidence from a LIGO trigger, even if the observer is substantially misaligned with respect to the jet.

  9. A CANDIDATE OPTICAL COUNTERPART TO THE MIDDLE AGED γ -RAY PULSAR PSR J1741–2054

    Energy Technology Data Exchange (ETDEWEB)

    Mignani, R. P.; Marelli, M.; Luca, A. De; Salvetti, D.; Belfiore, A. [INAF—Istituto di Astrofisica Spaziale e Fisica Cosmica Milano, via E. Bassini 15, I-20133, Milano (Italy); Testa, V. [INAF—Osservatorio Astronomico di Roma, via Frascati 33, I-00040, Monteporzio (Italy); Pierbattista, M. [Department of Astrophysics and Theory of Gravity, Maria Curie-Sklodowska University, ul. Radziszewskiego 10, 20-031 Lublin (Poland); Razzano, M. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Shearer, A.; Moran, P. [Centre for Astronomy, National University of Ireland, Newcastle Road, Galway (Ireland)

    2016-07-10

    We carried out deep optical observations of the middle aged γ -ray pulsar PSR J1741−2054 with the Very Large Telescope (VLT). We identified two objects, of magnitudes m {sub v} = 23.10 ± 0.05 and m {sub v} = 25.32 ± 0.08, at positions consistent with the very accurate Chandra coordinates of the pulsar, the faintest of which is more likely to be its counterpart. From the VLT images we also detected the known bow-shock nebula around PSR J1741−2054. The nebula is displaced by ∼0.″9 (at the 3 σ confidence level) with respect to its position measured in archival data, showing that the shock propagates in the interstellar medium consistently with the pulsar proper motion. Finally, we could not find evidence of large-scale extended optical emission associated with the pulsar wind nebula detected by Chandra , down to a surface brightness limit of ∼28.1 mag arcsec{sup −2}. Future observations are needed to confirm the optical identification of PSR J1741−2054 and characterize the spectrum of its counterpart.

  10. Characterization of maize allergens - MON810 vs. its non-transgenic counterpart.

    Science.gov (United States)

    Fonseca, Cátia; Planchon, Sébastien; Renaut, Jenny; Oliveira, Maria Margarida; Batista, Rita

    2012-04-03

    One of the main concerns about genetically modified foods and their potential impacts on human health is that the introduction of a new/ altered gene may putatively alter the expression of others, namely endogenous allergens. We intended to evaluate, and to compare, using quantitative real time RT-PCR technique, the expression of 5 already known maize allergens (Zea m14, Zea m25, Zea m27kD, 50kD Zein and trypsin inhibitor) in MON 810 vs. its non-transgenic counterpart, throughout seed development (10, 16 and 23days after pollination). We have shown that none of the tested allergen genes presented differential expression, with statistic significance, along all tested seed development stages, in MON810 vs. its conventional counterpart. We have also used bidimensional gel electrophoresis followed by Western blotting with plasma from two maize allergic subjects to characterize their immunologic responses against MON 810 vs. its non-transgenic control. Immunoreactive spots were characterized by MS. We have identified fourteen new IgE-binding proteins present in both transgenic and non-transgenic maize. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Tribological Response of Heat Treated AISI 52100 Steels Against Steel and Ceramic Counterparts

    Directory of Open Access Journals (Sweden)

    Türedi E.

    2017-09-01

    Full Text Available AISI 52100 bearing steels are commonly used in applications requiring high hardness and abrasion resistance. The bearing steels are working under dynamic loads in service conditions and their toughness properties become important. In order to provide the desired mechanical properties, various heat treatments (austenizing, quenching and tempering are usually applied. In this study, AISI 52100 bearing steel samples were austenized at 900°C for ½ h and water quenched to room temperature. Then tempering was carried out at 795°C, 400°C and 200°C for ½ h. In order to investigate the effect of heat treatment conditions on wear behavior, dry friction tests were performed according to ASTM G99-05 Standard with a ‘ball-on-disk’ type tribometer. The samples were tested against steel and ceramic counterparts using the parameters of 100 m distance and 30 N load and 0.063 m/s rotational speed. After wear test, the surface characterization was carried out using microscopy. Wear loss values were calculated using a novel optical method on both flat and counterpart specimens.

  12. THE VARIABLE NEAR-INFRARED COUNTERPART OF THE MICROQUASAR GRS 1758–258

    Energy Technology Data Exchange (ETDEWEB)

    Luque-Escamilla, Pedro L. [Departamento de Ingeniería Mecánica y Minera, EPSJ, Universidad de Jaén, Campus Las Lagunillas s/n, A3-008, 23071 Jaén (Spain); Martí, Josep [Departamento de Física, EPSJ, Universidad de Jaén, Campus Las Lagunillas s/n, A3-420, 23071 Jaén (Spain); Muñoz-Arjonilla, Álvaro J., E-mail: peter@ujaen.es, E-mail: jmarti@ujaen.es, E-mail: ajmunoz@ujaen.es [Grupo de Investigación FQM-322, Universidad de Jaén, Campus Las Lagunillas s/n, A3-065, 23071 Jaén (Spain)

    2014-12-10

    We present a new study of the microquasar system GRS 1758–258 in the near-infrared domain based on archival observations with the Hubble Space Telescope and the NICMOS camera. In addition to confirming the near-infrared counterpart pointed out by Muñoz-Arjonilla et al., we show that this object displays significant photometric variability. From its average magnitudes, we also find that GRS 1758–258 fits well within the correlation between the optical/near-infrared and X-ray luminosity known to exist for low-mass, black-hole candidate X-ray binaries in a hard state. Moreover, the spectral energy distribution built using all radio, near-infrared, and X-ray data available closest in time to the NICMOS observations can be reasonably interpreted in terms of a self-absorbed radio jet and an irradiated accretion disk model around a stellar-mass black hole. All these facts match the expected behavior of a compact binary system and strengthen our confidence in the counterpart identification.

  13. Compression Behavior of Single-Layer Graphenes

    Czech Academy of Sciences Publication Activity Database

    Frank, Otakar; Tsoukleri, G.; Parthenios, J.; Papagelis, K.; Riaz, I.; Jalil, R.; Novoselov, K. S.; Galiotis, C.

    2010-01-01

    Roč. 4, č. 6 (2010), s. 3131-3138 ISSN 1936-0851 Institutional research plan: CEZ:AV0Z40400503 Keywords : buckling * compression * graphene Subject RIV: CG - Electrochemistry Impact factor: 9.855, year: 2010

  14. Optimization of Single-Layer Braced Domes

    Directory of Open Access Journals (Sweden)

    Grzywiński Maksym

    2017-06-01

    Full Text Available The paper deals with discussion of optimization problem in civil engineering structural space design. Minimization of mass should satisfy the limit state capacity and serviceability conditions. The cross-sectional areas of bars and structural dimensions are taken as design variables. Variables are used in the form of continuous and discrete. The analysis is done using the Structural and Design of Experiments modules of Ansys Workbench v17.2. As result of the method a mass reduction of 46,6 % is achieved.

  15. Single-layer transition metal sulfide catalysts

    Science.gov (United States)

    Thoma, Steven G [Albuquerque, NM

    2011-05-31

    Transition Metal Sulfides (TMS), such as molybdenum disulfide (MoS.sub.2), are the petroleum industry's "workhorse" catalysts for upgrading heavy petroleum feedstocks and removing sulfur, nitrogen and other pollutants from fuels. We have developed an improved synthesis technique to produce SLTMS catalysts, such as molybdenum disulfide, with potentially greater activity and specificity than those currently available. Applications for this technology include heavy feed upgrading, in-situ catalysis, bio-fuel conversion and coal liquefaction.

  16. Single-layer Molybdenum disulfide photodetectors

    OpenAIRE

    López Sánchez, Oriol

    2012-01-01

    Projecte realitzat mitjançant programa de mobilitat. École polytechnique fédérale de Lausanne [ANGLÈS] Two-dimensional (2D) materials are very attractive candidates for use in next-generation nanoelectronic devices. Compared to one-dimensional materials, with 2D materials is relatively easy to fabricate complex structures. 2D materials, such as molybdenum disulfide (MoS2), have attracted increasing attention for their electronic and optoelectronic particular properties and size. MoS2 is a...

  17. Method for manufacturing a single crystal nanowire

    NARCIS (Netherlands)

    van den Berg, Albert; Bomer, Johan G.; Carlen, Edwin; Chen, S.; Kraaijenhagen, Roderik Adriaan; Pinedo, Herbert Michael

    2013-01-01

    A method for manufacturing a single crystal nano-structure is provided comprising the steps of providing a device layer with a 100 structure on a substrate; providing a stress layer onto the device layer; patterning the stress layer along the 110 direction of the device layer; selectively removing

  18. Method for manufacturing a single crystal nanowire

    NARCIS (Netherlands)

    van den Berg, Albert; Bomer, Johan G.; Carlen, Edwin; Chen, S.; Kraaijenhagen, R.A.; Pinedo, Herbert Michael

    2010-01-01

    A method for manufacturing a single crystal nano-structure is provided comprising the steps of providing a device layer with a 100 structure on a substrate; providing a stress layer onto the device layer; patterning the stress layer along the 110 direction of the device layer; selectively removing

  19. Experiment data report for semiscale Mod-1 Test S-06-2 (LOFT counterpart test). [PWR

    Energy Technology Data Exchange (ETDEWEB)

    Patton, Jr., M. L.; Collins, B. L.; Sackett, K. E.

    1977-08-01

    Recorded test data are presented for Test S-06-2 of the Semiscale Mod-1 LOFT counterpart test series. These tests are among several Semiscale Mod-1 experiments conducted to investigate the thermal and hydraulic phenomena accompanying an hypothesized loss-of-coolant accident in a pressurized water reactor (PWR) system. Test S-06-2 was conducted from initial conditions of 15 513 kPa and 563 K to investigate the response of the Semiscale Mod-1 system to a depressurization and reflood transient following a simulated double-ended offset shear of the broken loop cold leg piping. During the test, cooling water was injected into the cold leg of the intact loop to simulate emergency core coolant injection in a PWR. The heater rods in the electrically heated core were operated at an axial peak power density which was 50% of the maximum peak power density (52.5 kW/m).

  20. Experiment data report for semiscale Mod-1 test S-06-1 (LOFT counterpart test). [PWR

    Energy Technology Data Exchange (ETDEWEB)

    Collins, B. L.; Patton, Jr., M. L.; Sackett, K. E.

    1977-07-01

    Recorded test data are presented for Test S-06-1 of the Semiscale Mod-1 LOFT counterpart test series. These tests are among several Semiscale Mod-1 experiments conducted to investigate the thermal and hydraulic phenomena accompanying an hypothesized loss-of-coolant accident in a pressurized water reactor (PWR) system. Test S-06-1 was conducted from initial conditions of 15 568 kPa and 564 K to investigate the response of the Semiscale Mod-1 system to a depressurization and reflood transient following a simulated double-ended offset shear of the broken loop cold leg piping. During the test, cooling water was injected into the cold leg of the intact loop to simulate emergency core coolant injection in a PWR. The heater rods in the electrically heated core were operated at an axial peak power density which was 30% of the maximum peak power density (52.5 kW/m).