Sample records for single laser pulse

  1. Pulsed Single Frequency MOPA Laser, Phase I (United States)

    National Aeronautics and Space Administration — Latest advances in semiconductor optoelectronics makes it possible to develop compact light weight robust sources of coherent optical pulses, demanded for numerous...

  2. 1540-nm single frequency single-mode pulsed all fiber laser for coherent Doppler lidar (United States)

    Zhang, Xin; Diao, Weifeng; Liu, Yuan; Liu, Jiqiao; Hou, Xia; Chen, Weibiao


    A single-mode single frequency eye-safe pulsed all fiber laser based on master oscillator power amplification structure is presented. This laser is composed of a narrow linewidth distributed laser diode seed laser and two-stage cascade amplifiers. 0.8 m longitudinally gradient strained erbium/ytterbium co-doped polarization-maintaining fiber with a core diameter of 10 μm is used as the gain fiber and two acoustic-optics modulators are adopted to enhance pulse extinction ratio. A peak power of 160 W and a pulse width of 200 ns at 10 kHz repetition rate are achieved with transform-limited linewidth and diffraction-limited beam quality. This laser will be employed in a compact short range coherent Doppler wind lidar.

  3. Impact of pulse duration on Ho:YAG laser lithotripsy: treatment aspects on the single-pulse level. (United States)

    Sroka, Ronald; Pongratz, Thomas; Scheib, Gabriel; Khoder, Wael; Stief, Christian G; Herrmann, Thomas; Nagele, Udo; Bader, Markus J


    Holmium-YAG (Ho:YAG) laser lithotripsy is a multi-pulse treatment modality with stochastic effects on the fragmentation. In vitro investigation on the single-pulse-induced effects on fiber, repulsion as well as fragmentation was performed to identify potential impacts of different Ho:YAG laser pulse durations. A Ho:YAG laser system (Swiss LaserClast, EMS S.A., Nyon, Switzerland) with selectable long- or short-pulse mode was tested with regard to fiber burn back, the repulsion capacity using an underwater pendulum setup and single-pulse-induced fragmentation capacity using artificial (BEGO) stones. The laser parameters were chosen in accordance with clinical application modes (laser fiber: 365 and 200 µm; output power: 4, 6 and 10 W in different combinations of energy per pulse and repetition rate). Evaluation parameters were reduction in fiber length, pendulum deviation and topology of the crater. Using the long-pulse mode, the fiber burn back was nearly negligible, while in short-pulse mode, an increased burn back could be observed. The results of the pendulum test showed that the deviation induced by the momentum of short pulses was by factor 1.5-2 higher compared to longer pulses at identical energy per pulse settings. The ablation volumes induced by single pulses either in short-pulse or long-pulse mode did not differ significantly although different crater shapes appeared. Reduced stone repulsion and reduced laser fiber burn back with longer laser pulses may result in a more convenient handling during clinical application and thus in an improved clinical outcome of laser lithotripsy.

  4. Single and double long pulse laser ablation of aluminum induced in air and water ambient

    Energy Technology Data Exchange (ETDEWEB)

    Akbari Jafarabadi, Marzieh; Mahdieh, Mohammad Hossein, E-mail:


    Highlights: • Laser ablation of aluminum target by single and double pulse (∼ 5 ns delay) in ambient air and distilled water • Comparing with air, in ambient water, plasma confinement results in higher crater depth. • In comparison with single pulse laser ablation, the absorption of the laser pulse energy is higher for double pulse regime. • As a result of ablated material expansion, the crater depth is decreased if the target is placed at lower depth. - Abstract: In this paper, single pulse and double pulse laser ablation of an aluminum target in two interaction ambient was investigated experimentally. The interaction was performed by nanosecond Nd:YAG laser beam in air and four depths (i.e. 9, 13, 17, and 21 mm) of distilled water ambient. The irradiation was carried out in single and collinear double pulse configurations in both air and liquid ambient. Crater geometry (depth and diameter) was measured by an optical microscope. The results indicated that the crater geometry strongly depends on both single pulse and double pulse configurations and interaction ambient. In single pulse regime, the crater diameter is higher for all water depths compared to that of air. However, the crater depth, depend on water depth, is higher or lower than the crater depth in air. In double pulse laser ablation, there are greater values for both crater diameters and crater depths in the water.

  5. Critical evaluation of the pulsed laser method for single event effects testing and fundamental studies

    International Nuclear Information System (INIS)

    Melinger, J.S.; Buchner, S.; McMorrow, D.; Stapor, W.J.; Weatherford, T.R.; Campbell, A.B.; Eisen, H.


    In this paper the authors present an evaluation of the pulsed laser as a technique for single events effects (SEE) testing. They explore in detail the important optical effects, such as laser beam propagation, surface reflection, and linear and nonlinear absorption, which determine the nature of laser-generated charge tracks in semiconductor materials. While there are differences in the structure of laser- and ion-generated charge tracks, they show that in many cases the pulsed laser remains an invaluable tool for SEE testing. Indeed, for several SEE applications, they show that the pulsed laser method represents a more practical approach than conventional accelerator-based methods

  6. Pulsed laser simulation of VLSI single-event effect testing study

    International Nuclear Information System (INIS)

    Xue Yuxiong; Cao Zhou Yang Shiyu; Tian Kai; Liu Shufen; Chu Nan; Cao Haining; Shang Zhi


    This paper describes a study aimed at investigating the pulsed laser simulation of Single-Event Effect (SEE) testing for VLSI Intel386EX CPU, using our laboratory LSS (laser simulation system). We have detailed SEE testing principle, testing method, testing system constituting, testing result. It validates that our laser pulses simulate may use SEE testing in VLSI, and Intel 386Ex have a large locking resistance to single event. (authors)

  7. Graphene based widely-tunable and singly-polarized pulse generation with random fiber lasers (United States)

    Yao, B. C.; Rao, Y. J.; Wang, Z. N.; Wu, Y.; Zhou, J. H.; Wu, H.; Fan, M. Q.; Cao, X. L.; Zhang, W. L.; Chen, Y. F.; Li, Y. R.; Churkin, D.; Turitsyn, S.; Wong, C. W.


    Pulse generation often requires a stabilized cavity and its corresponding mode structure for initial phase-locking. Contrastingly, modeless cavity-free random lasers provide new possibilities for high quantum efficiency lasing that could potentially be widely tunable spectrally and temporally. Pulse generation in random lasers, however, has remained elusive since the discovery of modeless gain lasing. Here we report coherent pulse generation with modeless random lasers based on the unique polarization selectivity and broadband saturable absorption of monolayer graphene. Simultaneous temporal compression of cavity-free pulses are observed with such a polarization modulation, along with a broadly-tunable pulsewidth across two orders of magnitude down to 900 ps, a broadly-tunable repetition rate across three orders of magnitude up to 3 MHz, and a singly-polarized pulse train at 41 dB extinction ratio, about an order of magnitude larger than conventional pulsed fiber lasers. Moreover, our graphene-based pulse formation also demonstrates robust pulse-to-pulse stability and wide-wavelength operation due to the cavity-less feature. Such a graphene-based architecture not only provides a tunable pulsed random laser for fiber-optic sensing, speckle-free imaging, and laser-material processing, but also a new way for the non-random CW fiber lasers to generate widely tunable and singly-polarized pulses.

  8. High energy nanosecond laser pulses delivered single-mode through hollow-core PBG fibers. (United States)

    Shephard, Jonathan; Jones, J; Hand, D; Bouwmans, G; Knight, J; Russell, P; Mangan, B


    We report on the development of hollow-core photonic bandgap fibers for the delivery of high energy pulses for precision micromachining applications. Short pulses of (65ns pulse width) and energies of the order of 0.37mJ have been delivered in a single spatial mode through hollow-core photonic bandgap fibers at 1064nm using a high repetition rate (15kHz) Nd:YAG laser. The ultimate laser-induced damage threshold and practical limitations of current hollow-core fibers for the delivery of short optical pulses are discussed.

  9. A pulsed single-frequency Nd:GGG/BaWO4 Raman laser (United States)

    Liu, Zhaojun; Men, Shaojie; Cong, Zhenhua; Qin, Zengguang; Zhang, Xingyu; Zhang, Huaijin


    A single-frequency pulsed laser at 1178.3 nm was demonstrated in a crystalline Raman laser. A crystal combination of Nd:GGG and BaWO4 was selected to realize Raman conversion from a 1062.5 nm fundamental wave to a 1178.3 nm Stokes wave. An entangled cavity was specially designed to form an intracavity Raman configuration. Single-longitudinal-mode operation was realized by introducing two Fabry–Perot etalons into the Raman laser cavity. This laser operated at a pulse repetition rate of 50 Hz with 2 ms long envelopes containing micro pulses at a 30 kHz repetition rate. The highest output power was 41 mW with the micro pulse duration of 15 ns. The linewidth was measured to be less than 130 MHz.

  10. All-normal-dispersion fiber laser with NALM: power scalability of the single-pulse regime (United States)

    Gao, Gan; Zhang, Haitao; Li, Yuhe; Deng, Decai


    We investigate the average power scalability of all-normal-dispersion fiber integrated lasers with a nonlinear amplifying loop. This laser generates 34 ps pulses at a repetition of 8 MHz and spectral width of 30 nm when increased to the highest power. The laser operates on a single-pulse train regime and can be de-chirped as short as 200 fs. The 60 mW output power which can be maintained while operating with low Raman effect is the highest average power achieved for this type of laser in the sub-200 fs regime. The laser becomes unstable due to the strengthening of the Raman–Stokes pulse. Output pulses show great stability in testing.

  11. Technology and engineering aspects of high power pulsed single longitudinal mode dye lasers (United States)

    Rawat, V. S.; Mukherjee, Jaya; Gantayet, L. M.


    Tunable single mode pulsed dye lasers are capable of generating optical radiations in the visible range having very small bandwidths (transform limited), high average power (a few kW) at a high pulse repetition rate (a few tens of kHz), small beam divergence and relatively higher efficiencies. These dye lasers are generally utilized laser dyes dissolved in solvents such as water, heavy water, ethanol, methanol, etc. to provide a rapidly flowing gain medium. The dye laser is a versatile tool, which can lase either in the continuous wave (CW) or in the pulsed mode with pulse duration as small as a few tens of femtoseconds. In this review, we have examined the several cavity designs, various types of gain mediums and numerous types of dye cell geometries for obtaining the single longitudinal mode pulsed dye laser. Different types of cavity configuration, such as very short cavity, short cavity with frequency selective element and relatively longer cavity with multiple frequency selective elements were reviewed. These single mode lasers have been pumped by all kinds of pumping sources such as flash lamps, Excimer, Nitrogen, Ruby, Nd:YAG, Copper Bromide and Copper Vapor Lasers. The single mode dye lasers are either pumped transversely or longitudinally to the resonator axis. The pulse repletion rate of these pump lasers were ranging from a few Hz to a few tens of kHz. Physics technology and engineering aspects of tuning mechanism, mode hop free scanning and dye cell designs are also presented in this review. Tuning of a single mode dye laser with a resolution of a few MHz per step is a technologically challenging task, which is discussed here.

  12. Performance characteristics of an excimer laser (XeCl) with single-stage magnetic pulse compression (United States)

    Varshnay, N. K.; Singh, A.; Benerji, N. S.


    Performance characteristics of an excimer laser (XeCl) with single-stage magnetic pulse compression suitable for material processing applications are presented here. The laser incorporates in-built compact gas circulation and gas cooling to ensure fresh gas mixture between the electrodes for repetitive operation. A magnetically coupled tangential blower is used for gas circulation inside the laser chamber for repetitive operation. The exciter consists of C-C energy transfer circuit and thyratron is used as a high-voltage main switch with single-stage magnetic pulse compression (MPC) between thyratron and the laser electrodes. Low inductance of the laser head and uniform and intense pre-ionization are the main features of the electric circuit used in the laser. A 250 ns rise time voltage pulse was compressed to 100 ns duration with a single-stage magnetic pulse compressor using Ni-Zn ferrite cores. The laser can generate about 150 mJ at ˜100 Hz rep-rate reliably from a discharge volume of 100 cm 3. 2D spatial laser beam profile generated is presented here. The profile shows that the laser beam is completely filled with flat-top which is suitable for material processing applications. The SEM image of the microhole generated on copper target is presented here.

  13. Two-color monochromatic x-ray imaging with a single short-pulse laser (United States)

    Sawada, H.; Daykin, T.; McLean, H. S.; Chen, H.; Patel, P. K.; Ping, Y.; Pérez, F.


    Simultaneous monochromatic crystal imaging at 4.5 and 8.0 keV with x-rays produced by a single short-pulse laser is presented. A layered target consisting of thin foils of titanium and copper glued together is irradiated by the 50 TW Leopard short-pulse laser housed at the Nevada Terawatt Facility. Laser-accelerated MeV fast electrons transmitting through the target induce Kα fluorescence from both foils. Two energy-selective curved crystals in the imaging diagnostic form separate monochromatic images on a single imaging detector. The experiment demonstrates simultaneous two-color monochromatic imaging of the foils on a single detector as well as Kα x-ray production at two different photon energies with a single laser beam. Application of the diagnostic technique to x-ray radiography of a high density plasma is also presented.

  14. Optimization And Single-Shot Characterization Of Ultrashort Thz Pulses From A Laser Wakefield Accelerator

    International Nuclear Information System (INIS)

    Plateau, G.R.; Matlis, N.H.; van Tilborg, J.; Geddes, C.G.R.; Toth, Cs.; Schroeder, C.B.; Leemans, W.P.


    We present spatiotemporal characterization of μJ-class ultrashort THz pulses generated from a laser wakefield accelerator (LWFA). Accelerated electrons, resulting from the interaction of a high-intensity laser pulse with a plasma, emit high-intensity THz pulses as coherent transition radiation. Such high peak-power THz pulses, suitable for high-field (MV/cm) pump-probe experiments, also provide a non-invasive bunch-length diagnostic and thus feedback for the accelerator. The characterization of the THz pulses includes energy measurement using a Golay cell, 2D sign-resolved electro-optic measurement and single-shot spatiotemporal electric-field distribution retrieval using a new technique, coined temporal electric-field cross-Correlation (TEX). All three techniques corroborate THz pulses of ∼ 5 μJ, with peak fields of 100's of kV/cm and ∼ 0.4 ps rms duration.

  15. Experimental study on the single event effects in pulse width modulators by laser testing

    International Nuclear Information System (INIS)

    Zhao Wen; Guo Xiaoqiang; Chen Wei; Guo Hongxia; Lin Dongsheng; Luo Yinhong; Ding Lili; Wang Yuanming; Wang Hanning


    This paper presents single event effect (SEE) characteristics of UC1845AJ pulse width modulators (PWMs) by laser testing. In combination with analysis to map PWM circuitry in the microchip dies, the typical SEE response waveforms for laser pulses located in different circuit blocks of UC1845AJ are obtained and the SEE mechanisms are analyzed. The laser SEE test results show that there are some differences in the SEE mechanisms of different circuit blocks, and phase shifts or changes in the duty cycles of few output pulses are the main SEE behaviors for UC1845AJ. In addition, a new SEE behavior which manifests as changes in the duty cycles of many output pulses is revealed. This means that an SEE hardened design should be considered. (paper)

  16. Catastrophic optical mirror damage in diode lasers monitored during single-pulse operation

    DEFF Research Database (Denmark)

    Zegler, M.; Tomm, J.W.; Reeber, D.


    Catastrophic optical mirror damage (COMD) is analyzed for 808 nm emitting diode lasers in single-pulse operation in order to separate facet degradation from subsequent degradation processes. During each pulse, nearfield and thermal images are monitored. A temporal resolution better than 7 µs...... is achieved. The thermal runaway process is unambiguously related to the occurrence of a “thermal flash.” A one-by-one correlation between nearfield, thermal flash, thermal runaway, and structural damage is observed. The single-pulse excitation technique allows for controlling the propagation...

  17. Diode-pumped, single frequency Nd:YLF laser for 60-beam OMEGA laser pulse-shaping system

    International Nuclear Information System (INIS)

    Okishev, A.V.; Seka, W.


    The operational conditions of the OMEGA pulse-shaping system require an extremely reliable and low-maintenance master oscillator. The authors have developed a diode-pumped, single-frequency, pulsed Nd:YLF laser for this application. The laser generates Q-switched pulses of ∼160-ns duration and ∼10-microJ energy content at the 1,053-nm wavelength with low amplitude fluctuations (<0.6% rms) and low temporal jitter (<7 ns rms). Amplitude and frequency feedback stabilization systems have been used for high long-term amplitude and frequency stability

  18. Linearly frequency-modulated pulsed single-frequency fiber laser at 1083 nm. (United States)

    Zhang, Yuanfei; Yang, Changsheng; Li, Can; Feng, Zhouming; Xu, Shanhui; Deng, Huaqiu; Yang, Zhongmin


    A linearly frequency-modulated, actively Q-switched, single-frequency ring fiber laser based on injection seeding from an ultra-short cavity is demonstrated at 1083 nm. A piezoelectric transducer is employed to obtain linearly frequency-modulating performance and over 1.05 GHz frequency-tuning range is achieved with a modulating frequency reaching tens of kilohertz. A maximum peak power of the stable output pulse is over 3.83 W during frequency-modulating process. This type of pulsed fiber laser provides a promising candidate for coherent LIDAR in the measurement of thermosphere.

  19. Cost-effective design of a concurrent photoacoustic-ultrasound microscope using single laser pulses (United States)

    Wu, Wen-Shao; Liu, Wei-Wen; Li, Pai-Chi


    A method for concurrent photoacoustic (PA) and ultrasound (US) imaging with single laser pulses was previously demonstrated. An optical-absorbing multilayer film that can generate a US pulse based on the thermoelastic effect is used. With such a film, the generated US can be adjusted so that it does not overlap with the spectrum of the PA signal generated by the light transmitting through the layer. Thus, the US signal and the PA signal can be generated and separated by using a single laser pulse with spectral filtering. In this study, we continue with the same concurrent imaging approach and propose a cost-effective and portable design. The design consists of a pulsed laser diode with the repetition rate up to 25 kHz and energy of 2 μJ/pulse. A multilayer film is employed to generate narrow band US signals under laser excitation for US imaging. With simple spectral filtering, the PA signals and the US signals can be separated. With optical resolution, the system has a theoretical lateral resolution of 2 μm in PA imaging and 200 μm in US imaging. One of the applications of the proposed microscope is for tumor biology, where angiogenesis is an essential topic for understanding tumor growth and tumor metastasis. We will demonstrate performance of the proposed system by imaging vasculature networks.

  20. Magnetic phases in Pt/Co/Pt films induced by single and multiple femtosecond laser pulses

    International Nuclear Information System (INIS)

    Kisielewski, J.; Kurant, Z.; Sveklo, I.; Tekielak, M.; Maziewski, A.; Wawro, A.


    Ultrathin Pt/Co/Pt trilayers with initial in-plane magnetization were irradiated with femtosecond laser pulses. In this way, an irreversible structural modification was introduced, which resulted in the creation of numerous pulse fluence-dependent magnetic phases. This was particularly true with the out-of-plane magnetization state, which exhibited a submicrometer domain structure. This effect was studied in a broad range of pulse fluences up to the point of ablation of the metallic films. In addition to this single-pulse experiment, multiple exposure spots were also investigated, which exhibited an extended area of out-of-plane magnetization phases and a decreased damage threshold. Using a double exposure with partially overlapped spots, a two-dimensional diagram of the magnetic phases as a function of the two energy densities was built, which showed a strong inequality between the first and second incoming pulses.

  1. Method for single-shot measurement of picosecond laser pulse-lengths without electronic time dispersion

    International Nuclear Information System (INIS)

    Kyrala, G.A.


    A two-source shear pattern recording is proposed as a method for single-shot measurement of the pulse shape from nearly monochromatic sources whose pulse lengths are shorter than their coherence times. The basis of this method relies on the assertion that if two identical electromagnetic pulses are recombined with a time delay greater than the sum of their pulse widths, the recordable spatial pattern has no fringes in it. At an arbitrary delay, translated into an actual spatial recording position, the recorded modulated intensity will sample the corresponding laser intensity at that delay time, but with a modulation due to the coherence function of the electromagnetic pulse. Two arrangements are proposed for recording the pattern. The principles, the design parameters, and the methodologies of these arrangements are presented. Resolutions of the configurations and their limitations are given as well

  2. Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses. (United States)

    Kim, Moosung; Hwang, David J; Jeon, Hojeong; Hiromatsu, Kuniaki; Grigoropoulos, Costas P


    We demonstrate the fabrication of integrated three-dimensional microchannel and optical waveguide structures inside fused silica for the interrogation and processing of single cells. The microchannels are fabricated by scanning femtosecond laser pulses (523 nm) and subsequent selective wet etching process. Optical waveguides are additionally integrated with the fabricated microchannels by scanning the laser pulse train inside the glass specimen. Single red blood cells (RBC) in diluted human blood inside of the manufactured microchannel were detected by two optical schemes. The first involved sensing the intensity change of waveguide-delivered He-Ne laser light (632.8 nm) induced by the refractive index difference of a cell flowing in the channel. The other approach was via detection of fluorescence emission from dyed RBC excited by Ar laser light (488 nm) delivered by the optical waveguide. The proposed device was tested to detect 23 fluorescent particles per second by increasing the flow rate up to 0.5 microl min(-1). The optical cell detection experiments support potential implementation of a new generation of glass-based optofluidic biochip devices in various single cell treatment processes including laser based cell processing and sensing.

  3. Surface microstructure and chemistry of polyimide by single pulse ablation of picosecond laser (United States)

    Du, Qifeng; Chen, Ting; Liu, Jianguo; Zeng, Xiaoyan


    Polyimide (PI) surface was ablated by the single pulse of picosecond laser, and the effects of laser wavelength (λ= 355 nm and 1064 nm) and fluence on surface microstructure and chemistry were explored. Scanning electron microscopy (SEM) analysis found that different surface microstructures, i.e., the concave of concentric ring and the convex of porous circular disk, were generated by 355 nm and 1064 nm picosecond laser ablation, respectively. X-ray photoelectron spectroscopy (XPS) characterization indicated that due to the high peak energy density of picosecond laser, oxygen and nitrogen from the ambient were incorporated into the PI surface mainly in the form of Cdbnd O and Csbnd Nsbnd C groups. Thus, both of the O/C and N/C atomic content ratios increased, but the increase caused by 1064 nm wavelength laser was larger. It inferred that the differences of PI surface microstructures and chemistry resulted from different laser parameters were related to different laser-matter interaction effects. For 355 nm picosecond laser, no obvious thermal features were observed and the probable ablation process of PI was mainly governed by photochemical effect; while for 1064 nm picosecond laser, obvious thermal feature appeared and photothermal effect was thought to be dominant.

  4. In vivo micro-lesion of single dendrite with femtosecond laser pulses (United States)

    Sacconi, L.; Masi, A.; Diana, G.; Buffelli, M.; Pavone, F. S.


    Recently, two-photon microscopy has been used for high spatial resolution imaging of the intact neocortex in living rodents. In this work we used near-IR femtosecond laser pulses for a combination of two-photon microscopy and microdissection on fluorescently-labeled neuronal structures in living mice. Three-dimensional reconstructions of dendrites expressing the green fluorescence protein were made in the cortex of GFP-M and YFP-H transgenic mice. Afterwards, single dendrites were laser-dissected irradiating the structure with a high femtosecond laser energy dose. We report that laser dissection can be performed with micrometric precision and without any visible collateral damage of the surrounding neuronal structures. After laser irradiation, one part of the severed dendrite underwent degeneration and disappeared within 5 hours. Using a chronically implanted glass window, we performed long-term imaging in the area of the dissected dendrite. Images of the long-term morphological changes in the neuronal network after dendritic lesioning will be provided. Laser microdissection of selected structures of the neuronal branching in vivo represents a promising tool for neurobiological research.

  5. Reaction-time-resolved measurements of laser-induced fluorescence in a shock tube with a single laser pulse (United States)

    Zabeti, S.; Fikri, M.; Schulz, C.


    Shock tubes allow for the study of ultra-fast gas-phase reactions on the microsecond time scale. Because the repetition rate of the experiments is low, it is crucial to gain as much information as possible from each individual measurement. While reaction-time-resolved species concentration and temperature measurements with fast absorption methods are established, conventional laser-induced fluorescence (LIF) measurements with pulsed lasers provide data only at a single reaction time. Therefore, fluorescence methods have rarely been used in shock-tube diagnostics. In this paper, a novel experimental concept is presented that allows reaction-time-resolved LIF measurements with one single laser pulse using a test section that is equipped with several optical ports. After the passage of the shock wave, the reactive mixture is excited along the center of the tube with a 266-nm laser beam directed through a window in the end wall of the shock tube. The emitted LIF signal is collected through elongated sidewall windows and focused onto the entrance slit of an imaging spectrometer coupled to an intensified CCD camera. The one-dimensional spatial resolution of the measurement translates into a reaction-time-resolved measurement while the species information can be gained from the spectral axis of the detected two-dimensional image. Anisole pyrolysis was selected as the benchmark reaction to demonstrate the new apparatus.

  6. High-aspect-ratio grooves fabricated in silicon by a single pass of femtosecond laser pulses

    International Nuclear Information System (INIS)

    Ma Yuncan; Shi Haitao; Si Jinhai; Ren Hai; Chen Tao; Chen Feng; Hou Xun


    High-aspect-ratio grooves have been fabricated in silicon by a single pass of femtosecond laser pulses in water and ambient air. Scanning electron microscopy and energy dispersive x-ray spectroscopy were employed to image for the morphology of the photoinduced grooves and analyze the chemical composition in the surrounding of the grooves. It was observed that the sidewall of the grooves fabricated in water was much smoother than that in ambient air, and there were homogeneous nano-scale protrusions on the sidewall of the grooves fabricated in water. Meanwhile, oxygen species, which was incorporated into the grooves fabricated in air, was not observed in those in water.

  7. Single- and dual-wavelength laser pulses induced modification in 10×(Al/Ti)/Si multilayer system

    Energy Technology Data Exchange (ETDEWEB)

    Salatić, B. [University of Belgrade, Institute of Physics Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); Petrović, S., E-mail: [University of Belgrade, Institute of Nuclear Science-Vinča, POB 522, 11001 Belgrade (Serbia); Peruško, D. [University of Belgrade, Institute of Nuclear Science-Vinča, POB 522, 11001 Belgrade (Serbia); Čekada, M.; Panjan, P. [Jožef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Pantelić, D.; Jelenković, B. [University of Belgrade, Institute of Physics Belgrade, Pregrevica 118, 11080 Belgrade (Serbia)


    Graphical abstract: - Highlights: • Experimental and numerical study of laser-induced ablation and micro-sized crater formation. • Dual-wavelength pulses induce creation of wider and deeper craters due to synergies of two processes. • Sunflower-like structure formed by dual-wavelength pulses at low irradiance. • Numerical model of nanosecond pulsed laser ablation for complex (Al/Ti)/Si system has been developed. - Abstract: The surface morphology of the ablation craters created in the multilayer 10×(Al/Ti)/Si system by nanosecond laser pulses at single- and dual wavelength has been studied experimentally and numerically. A complex multilayer thin film including ten (Al/Ti) bilayers deposited by ion sputtering on Si(1 0 0) substrate to a total thickness of 260 nm were illuminated at different laser irradiance in the range 0.25–3.5 × 10{sup 9} W cm{sup −2}. Single pulse laser irradiation was done at normal incidence in air, with the single wavelength, either at 532 nm or 1064 nm or with both laser light simultaneously in the ratio of 1:10 for energy per pulse between second harmonic and 1064 nm. Most of the absorbed laser energy was rapidly transformed into heat, producing intensive modifications of composition and morphology on the sample surface. The results show an increase in surface roughness, formation of specific nanostructures, appearance of hydrodynamic features and ablation of surface material with crater formation. Applying a small fraction (10%) of the second harmonic in dual-wavelength pulses, a modification of the 10×(Al/Ti)/Si system by a single laser pulse was reflected in the formation of wider and/or deeper craters. Numerical calculations show that the main physical mechanism in ablation process is normal evaporation without phase explosion. The calculated and experimental results agree relatively well for the whole irradiance range, what makes the model applicable to complex Al/Ti multilayer systems.

  8. Double pulse laser wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Changbum [Department of Physics, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of)], E-mail:; Kim, Jin-Cheol B. [Department of Physics, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Kim, Kukhee [National Fusion Reserch Center, Daejeon 305-333 (Korea, Republic of); Ko, In Soo [Department of Physics, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Suk, Hyyong [Center for Advanced Accelerators, Korea Electrotechnology Research Institute, Changwon 641-120 (Korea, Republic of)


    Two-dimensional simulation studies are performed for modified laser wakefield acceleration. After one laser pulse, another identical laser pulse is sent to the plasma to amplify the wake wave resonantly. The simulation results show that the number of injected electrons is bigger than that of the single pulse case and the beam energy is higher as well. In addition, increase of the transverse amplitude is noticed in the wake wave after the second laser pulse. This shows that the transverse motion of the wake wave enhances the wave breaking for strong injection and acceleration of electron beams.

  9. Resonant ablation of single-wall carbon nanotubes by femtosecond laser pulses

    International Nuclear Information System (INIS)

    Arutyunyan, N R; Komlenok, M S; Kononenko, V V; Pashinin, V P; Pozharov, A S; Konov, V I; Obraztsova, E D


    The thin 50 nm film of bundled arc-discharge single-wall carbon nanotubes was irradiated by femtosecond laser pulses with wavelengths 675, 1350 and 1745 nm corresponding to the absorption band of metallic nanotubes E 11 M , to the background absorption and to the absorption band of semiconducting nanotubes E 11 S , respectively. The aim was to induce a selective removal of nanotubes of specific type from the bundled material. Similar to conducted thermal heating experiments, the effect of laser irradiation results in suppression of all radial breathing modes in the Raman spectra, with preferential destruction of the metallic nanotubes with diameters less than 1.26 nm and of the semiconducting nanotubes with diameters 1.36 nm. However, the etching rate of different nanotubes depends on the wavelength of the laser irradiation. It is demonstrated that the relative content of nanotubes of different chiralities can be tuned by a resonant laser ablation of undesired nanotube fraction. The preferential etching of the resonant nanotubes has been shown for laser wavelengths 675 nm (E 11 M ) and 1745 nm (E 11 S ). (paper)

  10. Interaction of single-pulse laser energy with bow shock in hypersonic flow

    Directory of Open Access Journals (Sweden)

    Hong Yanji


    Full Text Available Pressure sensing and schlieren imaging with high resolution and sensitivity are applied to the study of the interaction of single-pulse laser energy with bow shock at Mach 5. An Nd:YAG laser operated at 1.06 μm, 100 mJ pulse energy is used to break down the hypersonic flow in a shock tunnel. Three-dimensional Navier–Stokes equations are solved with an upwind scheme to simulate the interaction. The pressure at the stagnation point on the blunt body is measured and calculated to examine the pressure variation during the interaction. Schlieren imaging is used in conjunction with the calculated density gradients to examine the process of the interaction. The results show that the experimental pressure at the stagnation point on the blunt body and schlieren imaging fit well with the simulation. The pressure at the stagnation point on the blunt body will increase when the transmission shock approaches the blunt body and decrease with the formation of the rarefied wave. Bow shock is deformed during the interaction. Quasi-stationary waves are formed by high rate laser energy deposition to control the bow shock. The pressure and temperature at the stagnation point on the blunt body and the wave drag are reduced to 50%, 75% and 81% respectively according to the simulation. Schlieren imaging has provided important information for the investigation of the mechanism of the interaction.

  11. ZnO thin films on single carbon fibres fabricated by Pulsed Laser Deposition (PLD)

    Energy Technology Data Exchange (ETDEWEB)

    Krämer, André; Engel, Sebastian [Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena (Germany); Sangiorgi, Nicola [Institute of Science and Technology for Ceramics – National Research Council of Italy (CNR-ISTEC), via Granarolo 64, 48018 Faenza, RA (Italy); Department of Chemical Science and Technologies, University of Rome Tor Vergata, via della Ricerca Scientifica, 00133 Rome (Italy); Sanson, Alessandra [Institute of Science and Technology for Ceramics – National Research Council of Italy (CNR-ISTEC), via Granarolo 64, 48018 Faenza, RA (Italy); Bartolomé, Jose F. [Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), C/Sor Juana Inés de la Cruz 3, 28049 Madrid (Spain); Gräf, Stephan, E-mail: [Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena (Germany); Müller, Frank A. [Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena (Germany); Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena (Germany)


    Highlights: • Carbon fibres were entirely coated with thin films consisting of aligned ZnO crystals. • A Q-switched CO2 laser was utilised as radiation source. • Suitability of ZnO thin films on carbon fibres as photo anodes for DSSC was studied. - Abstract: Single carbon fibres were 360° coated with zinc oxide (ZnO) thin films by pulsed laser deposition using a Q-switched CO{sub 2} laser with a pulse duration τ ≈ 300 ns, a wavelength λ = 10.59 μm, a repetition frequency f{sub rep} = 800 Hz and a peak power P{sub peak} = 15 kW in combination with a 3-step-deposition technique. In a first set of experiments, the deposition process was optimised by investigating the crystallinity of ZnO films on silicon and polished stainless steel substrates. Here, the influence of the substrate temperature and of the oxygen partial pressure of the background gas were characterised by scanning electron microscopy and X-ray diffraction analyses. ZnO coated carbon fibres and conductive glass sheets were used to prepare photo anodes for dye-sensitised solar cells in order to investigate their suitability for energy conversion devices. To obtain a deeper insight of the electronic behaviour at the interface between ZnO and substrate I–V measurements were performed.

  12. Single-frequency pulsed Brillouin-thulium fiber laser at 2 µm with nonlinear polarization rotation and active phase modulation (United States)

    Wang, Xiong; Lv, Haibin; Zhou, Pu; Wu, Weijun; Wang, Xiaolin; Xiao, Hu; Liu, Zejin


    We present a single-frequency (SF) pulsed fiber laser at 2 µm based on stimulated Brillouin scattering in a thulium-doped fiber laser. The effective feedback of the fiber laser is quite weak to induce pulse operation. Nonlinear polarization rotation and active phase modulation are employed to compress the pulse width and stabilize the pulse train. This SF pulsed Brillouin-thulium fiber laser (BTFL) can generate a stable pulse train with a repetition rate of ˜310 kHz and a pulse width of ˜200 ns. The repetition rate of the pulse train can be adjusted by controlling the cavity length, and the pulse width can be tuned between 200 and 500 ns. The central wavelength locates at 1971.58 nm with an optical signal-to-noise ratio of more than 40 dB, and the linewidth is about 6 MHz. This is the first demonstration of the SF pulsed BTFL as far as we know.

  13. Remote Raman spectra of benzene obtained from 217 meters using a single 532 nm laser pulse. (United States)

    Chen, Teng; Madey, John M J; Price, Frank M; Sharma, Shiv K; Lienert, Barry


    This report describes a mobile Raman lidar system that has been developed for spectral measurements of samples located remotely at ranges of hundreds of meters. The performance of this system has been quantitatively verified in a lidar calibration experiment using a hard target of standardized reflectance. A new record in detection range was achieved for remote Raman systems using 532 nm laser excitation. Specifically, Raman spectra of liquid benzene were measured with an integration time corresponding to a single 532 nm laser pulse at a distance of 217 meters. The single-shot Raman spectra at 217 meters demonstrated high signal-to-noise ratio and good resolution sufficient for the unambiguous identification of the samples of interest. The transmitter consists of a 20 Hz Nd:YAG laser emitting at 532 nm and 1064 nm and a 178 mm telescope through the use of which allows the system to produce a focused beam at the target location. The receiver consists of a large custom telescope (609 mm aperture) and a Czerny-Turner monochromator equipped with two fast photomultiplier tubes.

  14. Production and utilization of synchronized femtosecond electron and laser single pulses

    International Nuclear Information System (INIS)

    Uesaka, M.; Watanabe, T.; Ueda, T.; Nakajima, K.; Kotaki, H.; Ogata, A.


    A subpicosecond (700 fs at FWHM) electron pulse from the S-band (2.856 GHz) linear accelerator (linac) of the NERL (Nuclear Engineering Research Laboratory) was synchronized with a femtosecond (100 fs at FWHM) laser pulse from a T 3 (table-top terawatts) laser with a picosecond time whose standard deviation is 3.7 ps. Then we generated a picosecond characteristic X-ray pulse by irradiating through the electron pulse a Cu target (Kα, 8.1 keV, 1.54 A) and obstained the Bragg diffraction from a NaCl ionic monocrystal using a high sensitivity X-ray imaging plate. Further, we discuss its applications to observe lattice vibration of the monocrystal by using the synchronized laser (pump) and X-ray (probe). (orig.)

  15. Laser pulse stacking method (United States)

    Moses, E.I.


    A laser pulse stacking method is disclosed. A problem with the prior art has been the generation of a series of laser beam pulses where the outer and inner regions of the beams are generated so as to form radially non-synchronous pulses. Such pulses thus have a non-uniform cross-sectional area with respect to the outer and inner edges of the pulses. The present invention provides a solution by combining the temporally non-uniform pulses in a stacking effect to thus provide a more uniform temporal synchronism over the beam diameter. 2 figs.

  16. Surface modification of polymethylmethacrylate irradiated with 60 fs single laser pulses

    Czech Academy of Sciences Publication Activity Database

    Klinger, D.; Sobierajski, R.; Nietubyc, R.; Krzywinski, J.; Pelka, J.; Juha, Libor; Jurek, M.; Zymierska, D.; Guizard, S.; Merdji, H.


    Roč. 78, Suppl. 10 (2009), S71-S74 ISSN 0969-806X R&D Projects: GA AV ČR KAN300100702; GA MŠk LC510; GA MŠk(CZ) LC528; GA MŠk LA08024; GA AV ČR IAA400100701 Institutional research plan: CEZ:AV0Z10100523 Keywords : polymethylmethacrylate (PMMA) * IR laser ablation * femtosecond laser pulse Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.149, year: 2009

  17. Ultrashort Laser Pulse Phenomena

    CERN Document Server

    Diels, Jean-Claude


    Ultrashort Laser Pulse Phenomena, 2e serves as an introduction to the phenomena of ultra short laser pulses and describes how this technology can be used to examine problems in areas such as electromagnetism, optics, and quantum mechanics. Ultrashort Laser Pulse Phenomena combines theoretical backgrounds and experimental techniques and will serve as a manual on designing and constructing femtosecond (""faster than electronics"") systems or experiments from scratch. Beyond the simple optical system, the various sources of ultrashort pulses are presented, again with emphasis on the basic

  18. Single-shot spectro-temporal characterization of XUV pulses from a seeded free-electron laser (United States)

    de Ninno, Giovanni; Gauthier, David; Mahieu, Benoît; Ribič, Primož Rebernik; Allaria, Enrico; Cinquegrana, Paolo; Danailov, Miltcho Bojanov; Demidovich, Alexander; Ferrari, Eugenio; Giannessi, Luca; Penco, Giuseppe; Sigalotti, Paolo; Stupar, Matija


    Intense ultrashort X-ray pulses produced by modern free-electron lasers (FELs) allow one to probe biological systems, inorganic materials and molecular reaction dynamics with nanoscale spatial and femtoscale temporal resolution. These experiments require the knowledge, and possibly the control, of the spectro-temporal content of individual pulses. FELs relying on seeding have the potential to produce spatially and temporally fully coherent pulses. Here we propose and implement an interferometric method, which allows us to carry out the first complete single-shot spectro-temporal characterization of the pulses, generated by an FEL in the extreme ultraviolet spectral range. Moreover, we provide the first direct evidence of the temporal coherence of a seeded FEL working in the extreme ultraviolet spectral range and show the way to control the light generation process to produce Fourier-limited pulses. Experiments are carried out at the FERMI FEL in Trieste.

  19. Single mode operation in a pulsed Ti:sapphire laser oscillator with a grazing-incidence four-mirror cavity

    CERN Document Server

    Ko, D K; Binks, D J; Gloster, L A W; King, T A


    We demonstrate stable single mode operation in a pulsed Ti:sapphire laser oscillator with a novel grazing-incidence four-mirror coupled cavity. This cavity consists of a grating, a gain medium, and four mirrors and, therefore, has a four-arm interferometer configuration. Through the interferometric effect, we could suppress the adjacent modes and obtain stable single mode operation with a bandwidth of < 200 MHz. We also have developed a general analysis of the laser modes and the threshold conditions for configuration and the experimental results agree well with the theoretical predictions.

  20. Femtosecond laser ablation of silver foil with single and double pulses

    CSIR Research Space (South Africa)

    Roberts, DE


    Full Text Available /apsusc r ablation of silver foil with single and double pulses, Appl. Surf. D.E. Roberts et al. / Applied Surface Science xxx (2009) xxx–xxx2 G Model APSUSC-19322; No of Pages 9 pulses used for ablation. While there has been much overlap in the aims... value r ablation of silver foil with single and double pulses, Appl. Surf. ; lon D.E. Roberts et al. / Applied Surface Science xxx (2009) xxx–xxx 3 G Model APSUSC-19322; No of Pages 9 Fig. 1. Surface temperature versus time calculated for double...

  1. Gold nanoshell photomodification under a single-nanosecond laser pulse accompanied by color-shifting and bubble formation phenomena

    International Nuclear Information System (INIS)

    Akchurin, Garif; Khlebtsov, Boris; Akchurin, Georgy; Tuchin, Valery; Zharov, Vladimir; Khlebtsov, Nikolai


    Laser-nanoparticle interaction is crucial for biomedical applications of lasers and nanotechnology to the treatment of cancer or pathogenic microorganisms. We report on the first observation of laser-induced coloring of gold nanoshell solution after a one nanosecond pulse and an unprecedentedly low bubble formation (as the main mechanism of cancer cell killing) threshold at a laser fluence of about 4 mJ cm -2 , which is safe for normal tissue. Specifically, silica/gold nanoshell (140/15 nm) suspensions were irradiated with a single 4 ns (1064 nm) or 8 ns (900 nm) laser pulse at fluences ranging from 0.1 mJ cm -2 to 50 J cm -2 . Solution red coloring was observed by the naked eye confirmed by blue-shifting of the absorption spectrum maximum from the initial 900 nm for nanoshells to 530 nm for conventional colloidal gold nanospheres. TEM images revealed significant photomodification of nanoparticles including complete fragmentation of gold shells, changes in silica core structure, formation of small 20-30 nm isolated spherical gold nanoparticles, gold nanoshells with central holes, and large and small spherical gold particles attached to a silica core. The time-resolved monitoring of bubble formation phenomena with the photothermal (PT) thermolens technique demonstrated that after application of a single 8 ns pulse at fluences 5-10 mJ cm -2 and higher the next pulse did not produce any PT response, indicating a dramatic decrease in absorption because of gold shell modification. We also observed a dependence of the bubble expansion time on the laser energy with unusually very fast PT signal rising (∼3.5 ns scale at 0.2 J cm -2 ). Application of the observed phenomena to medical applications is discussed, including a simple visual color test for laser-nanoparticle interaction

  2. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Dynamics of splashing of molten metals during irradiation with single CO2 laser pulses (United States)

    Arutyunyan, R. V.; Baranov, V. Yu; Bol'shov, Leonid A.; Dolgov, V. A.; Malyuta, D. D.; Mezhevov, V. S.; Semak, V. V.


    An experimental investigation was made of the dynamics of the loss of the melt as a result of interaction with single-mode CO2 laser radiation pulses of 5-35 μs duration. The dynamics of splashing of the melt during irradiation with short pulses characterized by a Gaussian intensity distribution differed from that predicted by models in which the distribution of the vapor pressure was assumed to be radially homogeneous.

  3. A comparative study of the laser induce breakdown spectroscopy in single- and double-pulse laser geometry

    International Nuclear Information System (INIS)

    Sun Duixiong; Su Maogen; Dong Chenzhong; Wen Guanhong; Cao Xiangnian


    A time resolved laser induced breakdown spectroscopy technique (LIBS) was used for the investigation of emission signal enhancement on double-pulse LIBS. Two Q-switched Nd:YAG lasers at 1064 nm wavelength have been employed to generate laser-induced plasma on aluminium-based alloys. The plasma emission signals were recorded by spectrometer with ICCD detector. Spectral response calibration was performed by using deuterium and tungsten halogen lamps. Time evolution of the plasma temperature and electron density was investigated in SP and DP experiments. Based on the investigation of plasma parameters, the enhancements of emission line intensities were investigated, and the mechanisms of it were discussed. (author)

  4. Single pulse vibrational Raman scattering by a broadband KrF excimer laser in a hydrogen-air flame (United States)

    Pitz, Robert W.; Wehrmeyer, Joseph A.; Bowling, J. M.; Cheng, Tsarng-Sheng


    Spontaneous vibrational Raman scattering (VRS) is produced by a broadband excimer laser at 248 nm (KrF) in a H2-air flame, and VRS spectra are recorded for lean, stoichiometric, and rich flames. Except at very lean flame conditions, laser-induced fluorescence (LIF) processes interfere with VRS Stokes lines from H2, H2O, and O2. No interference is found for the N2 Stokes and N2 anti-Stokes lines. In a stoichiometric H2/air flame, single-pulse measurements of N2 concentration and temperature (by the VRS Stokes to anti-Stokes ratio) have a relative standard deviation of 7.7 and 10 percent, respectively. These single pulse measurement errors compare well with photon statistics calculations using measured Raman cross sections.

  5. Measurement of the single-shot pulse energy of a free electron laser using a cryogenic radiometer

    Energy Technology Data Exchange (ETDEWEB)

    Masahiro, Kato; Norio, Saito; Yuichiro, Morishita; Takahiro, Tanaka [National Institute of Advanced Industrial Science and Technology (AIST), NMIJ, Tsukuba (Japan); Masahiro, Kato; Norio, Saito; Kai, Tiedtke; Pavle N, Juranic; Sorokin, A.A.; Richter, M.; Takahiro, Tanaka; Mitsuru, Nagasono; Makina, Yabashi; Kensuke, Tono; Tadashi, Togashi; Tetsuya, Ishikawa [RIKEN, XFEL Project Head Office, Kouto, Sayo, Hyogo (Japan); Kai, Tiedtke; Pavle N, Juranic; Sorokin, A.A.; Jastrow, U. [Deutsches Elektronen-Synchrotron, DESY, Hamburg (Germany); Sorokin, A.A. [Ioffe Physico-Technical Institute, Polytekhnicheskaya 26, St Petersburg (Russian Federation); Richter, M.; Kroth, U.; Schoppe, H. [Physikalisch-Technische Bundesanstalt, PTB, Berlin (Germany); Tadashi, Togashi; Hiroaki, Kimura; Haruhiko, Ohashi [Japan Synchrotron Radiation Research Institute, Sayo, Hyogo (Japan)


    The absolute single-shot pulse energy of the SPring 8 extreme ultraviolet (EUV) free electron laser (FEL) was measured using a cryogenic radiometer with a relative standard uncertainty of 3%. The temperature change of the cavity in the cryogenic radiometer caused by an incident FEL pulse was determined using a lock-in amplifier and an ac Wheatstone bridge. The measured pulse energies were compared with a gas-monitor detector developed by Physikalisch-Technische Bundesanstalt/Deutsches Elektronen-Synchrotron/Ioffe Physico-Technical Institute (Ioffe) at a wavelength of 51.3 nm at the SPring-8 EUV-FEL in a shot-to-shot mode. The pulse energies measured using the two detectors agree within 2.0%. (authors)

  6. Low loss depressed cladding waveguide inscribed in YAG:Nd single crystal by femtosecond laser pulses. (United States)

    Okhrimchuk, Andrey; Mezentsev, Vladimir; Shestakov, Alexander; Bennion, Ian


    A depressed cladding waveguide with record low loss of 0.12 dB/cm is inscribed in YAG:Nd(0.3at.%) crystal by femtosecond laser pulses with an elliptical beam waist. The waveguide is formed by a set of parallel tracks which constitute the depressed cladding. It is a key element for compact and efficient CW waveguide laser operating at 1064 nm and pumped by a multimode laser diode. Special attention is paid to mechanical stress resulting from the inscription process. Numerical calculation of mode distribution and propagation loss with the elasto-optical effect taken into account leads to the conclusion that the depressed cladding is a dominating factor in waveguide mode formation, while the mechanical stress only slightly distorts waveguide modes.


    Directory of Open Access Journals (Sweden)

    S. Ayadi


    Full Text Available The simplest model of the laser is that of a single mode system homogenously broadened. The dynamical behavior of this laser is described by three differential equations, called Haken-Lorenz equations[1],  similar to the Lorenz model [1] already known to predict deterministic chaos. In previous recent work [5-7] we have proposed a simple harmonic expansion method to obtain a series of harmonics terms that yield analytical solutions to the laser equations. ¶This method allows us to derive an analytical expression of the laser field amplitude  when this last  undergoes a  periodic oscillations around zero mean value. We also obtain an analytical expression of the pulsing frequency.

  8. A Comparative Study of Single-pulse and Double-pulse Laser-Induced Breakdown Spectroscopy with Uranium-containing Samples. (United States)

    Skrodzki, Patrick J; Becker, Jason R; Diwakar, Prasoon K; Harilal, Sivanandan S; Hassanein, Ahmed


    Laser-induced breakdown spectroscopy (LIBS) holds potential advantages in special nuclear material (SNM) sensing and nuclear forensics, which require rapid analysis, minimal sample preparation, and stand-off distance capability. SNM, such as U, however, result in crowded emission spectra with LIBS, and characteristic emission lines are challenging to discern. It is well-known that double-pulse LIBS (DPLIBS) improves the signal intensity for analytes over conventional single-pulse LIBS (SPLIBS). This study investigates the U signal in a glass matrix using DPLIBS and compares it to signal obtained using SPLIBS. Double-pulse LIBS involves sequential firing of a 1.06 µm Nd:YAG pre-pulse and 10.6 µm TEA CO2 heating pulse in a near collinear geometry. Optimization of experimental parameters including inter-pulse delay and energy follows identification of characteristic lines for the bulk analyte Ca and the minor constituent analyte U for both DPLIBS and SPLIBS. Spatial and temporal coupling of the two pulses in the proposed DPLIBS technique yields improvements in analytical merits with a negligible increase in damage to the sample compared to SPLIBS. Subsequently, the study discusses optimum plasma emission conditions of U lines and relative figures of merit in both SPLIBS and DPLIBS. Investigation into plasma characteristics also addresses plausible mechanisms related to the observed U analyte signal variation between SPLIBS and DPLIBS. © The Author(s) 2016.

  9. Monolithic Ytterbium All-single-mode Fiber Laser with Direct Fiber-end Delivery of nJ-level Femtosecond Pulses

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry


    We demonstrate a monolithic, i.e. without any free-space coupling, all-single-mode passively modelocked Yb-fiber laser, with direct fiber-end delivery of 364−405 fs pulses of 4 nJ pulse energy using a low-loss hollow-core photonic crystal fiber compression.......We demonstrate a monolithic, i.e. without any free-space coupling, all-single-mode passively modelocked Yb-fiber laser, with direct fiber-end delivery of 364−405 fs pulses of 4 nJ pulse energy using a low-loss hollow-core photonic crystal fiber compression....

  10. Investigation of the particle size distribution of the ejected material generated during the single femtosecond laser pulse ablation of aluminium

    International Nuclear Information System (INIS)

    Wu, Han; Zhang, Nan; Zhu, Xiaonong


    Highlights: • Single 50 fs laser pulse ablation of an aluminium target in vacuum is investigated in our experiments. • Nanoparticles with large radii of several hundred nanometers are observed. • The nanoparticles are most likely from the mechanical tensile stress relaxation. - Abstract: Single femtosecond laser pulses are employed to ablate an aluminium target in vacuum, and the particle size distribution of the ablated material deposited on a mica substrate is examined with atomic force microscopy (AFM). The recorded AFM images show that these particles have a mean radius of several tens of nanometres. It is also determined that the mean radius of these deposited nanoparticles increases when the laser fluence at the aluminium target increases from 0.44 J/cm 2 to 0.63 J/cm 2 . The mechanism of the laser-induced nanoparticle generation is thought to be photomechanical tensile stress relaxation. Raman spectroscopy measurements confirm that the nanoparticles thus produced have the same structure as the bulk aluminium

  11. Polymer optical fiber Bragg grating inscription with a single UV laser pulse

    DEFF Research Database (Denmark)

    Pospori, Andreas; Marques, A.T.; Bang, Ole


    laser pulse with a duration of 15 ns, which provide energy density of 974 mJ/cm2, is adequate to introduce a refractive index change of 0.74×10-4 in the fiber core. After the exposure, the reflectivity of the grating increases for a few minutes following a second order exponential saturation...... of the grating structures. Optimizing the irradiation conditions and the material chemical composition, a higher refractive index change in the fiber core is feasible. This demonstration significantly improves the potential for commercial exploitation of the technology....

  12. Single attosecond pulse generation in an orthogonally polarized two-color laser field combined with a static electric field

    International Nuclear Information System (INIS)

    Xia Changlong; Zhang Gangtai; Wu Jie; Liu Xueshen


    We investigate theoretic high-order harmonic generation and single attosecond pulse generation in an orthogonally polarized two-color laser field, which is synthesized by a mid-infrared (IR) pulse (12.5 fs, 2000 nm) in the y component and a much weaker (12 fs, 800 nm) pulse in the x component. We find that the width of the harmonic plateau can be extended when a static electric field is added in the y component. We also investigate emission time of harmonics in terms of a time-frequency analysis to illustrate the physical mechanism of high-order harmonic generation. We calculate the ionization rate using the Ammosov-Delone-Krainov model and interpret the variation of harmonic intensity for different static electric field strengths. When the ratio of strengths of the static and the y-component laser fields is 0.1, a continuous harmonic spectrum is formed from 220 to 420 eV. By superposing a properly selected range of the harmonic spectrum from 300 to 350 eV, an isolated attosecond pulse with a duration of about 75 as is obtained, which is near linearly polarized.

  13. Effect of laser pulse energies in laser induced breakdown spectroscopy in double-pulse configuration

    International Nuclear Information System (INIS)

    Benedetti, P.A.; Cristoforetti, G.; Legnaioli, S.; Palleschi, V.; Pardini, L.; Salvetti, A.; Tognoni, E.


    In this paper, the effect of laser pulse energy on double-pulse laser induced breakdown spectroscopy signal is studied. In particular, the energy of the first pulse has been changed, while the second pulse energy is held fixed. A systematic study of the laser induced breakdown spectroscopy signal dependence on the interpulse delay is performed, and the results are compared with the ones obtained with a single laser pulse of energy corresponding to the sum of the two pulses. At the same time, the crater formed at the target surface is studied by video-confocal microscopy, and the variation in crater dimensions is correlated to the enhancement of the laser induced breakdown spectroscopy signal. The results obtained are consistent with the interpretation of the double-pulse laser induced breakdown spectroscopy signal enhancement in terms of the changes in ambient gas pressure produced by the shock wave induced by the first laser pulse

  14. Numerical simulations of single and double ionization of H2 in short intense laser pulses

    International Nuclear Information System (INIS)

    Baier, Silvio


    Rescattering is the dominant process leading to double ionization in atoms and molecules interacting with linearly polarized laser pulses with wavelengths around 800 nm and in an intensity regime of 10 14 to 10 15 W/cm 2 . Using numerical integrations of the two-electron Schroedinger equation of the Hydrogen molecule in appropriate reduced dimensions two mechanisms, namely correlated emission of the electrons and excitation followed by field ionization after rescattering, could be identified and characterized. With the help of a planar model in reduced dimensions these mechanisms were quantitatively compared by their dependence on the molecular alignment with respect to the polarization axis. Two additional mechanisms, which are also related to rescattering, could be identified as well. (orig.)

  15. Self-organized single crystal mixed magnetite/cobalt ferrite films grown by infrared pulsed-laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Figuera, Juan de la, E-mail: [Instituto de Química Física “Rocasolano”, CSIC, Madrid E-28006 (Spain); Quesada, Adrián [Instituto de Cerámica y Vidrio, CSIC, Madrid E-28049 (Spain); Martín-García, Laura; Sanz, Mikel; Oujja, Mohamed; Rebollar, Esther; Castillejo, Marta [Instituto de Química Física “Rocasolano”, CSIC, Madrid E-28006 (Spain); Prieto, Pilar; Muñoz-Martín, Ángel [Universidad Autónoma de Madrid, E-28049 (Spain); Aballe, Lucía [Alba Synchrotron Light Facility, CELLS, Barcelona (Spain); Marco, José F. [Instituto de Química Física “Rocasolano”, CSIC, Madrid E-28006 (Spain)


    Highlights: • Infrared pulsed deposition is used to grow single crystal mixed magnetite-cobalt ferrite films. • Distinct topography with two mound types on the surface of the film. • Suggested origin of segregation into two phases is oxygen deficiency during growth. • Mössbauer is required to quantify the two components. - Abstract: We have grown mixed magnetite/cobalt ferrite epitaxial films on SrTiO{sub 3} by infrared pulsed-laser deposition. Diffraction experiments indicate epitaxial growth with a relaxed lattice spacing. The films are flat with two distinct island types: nanometric rectangular mounds in two perpendicular orientations, and larger square islands, attributed to the two main components of the film as determined by Mössbauer spectroscopy. The origin of the segregation is suggested to be the oxygen-deficiency during growth.

  16. Relativistic electron beams driven by single-cycle laser pulses at kHz repetition rate (Conference Presentation) (United States)

    Faure, Jérôme; Guénot, Diego; Gustas, Dominykas; Vernier, Aline; Beaurepaire, Benoît; Böhle, Frederik; López-Martens, Rodrigo; Lifschitz, Agustin


    Laser-plasma accelerators are usually driven by 100-TW class laser systems with rather low repetition rates. However, recent years have seen the emergence of laser-plasma accelerators operating with kHz lasers and energies lower than 10 mJ. The high repetition-rate is particularly interesting for applications requiring high stability and high signal-to-noise ratio but lower energy electrons. For example, our group recently demonstrated that kHz laser-driven electron beams could be used to capture ultrafast structural dynamics in Silicon nano-membranes via electron diffraction with picosecond resolution. In these first experiments, electrons were injected in the density gradients located at the plasma exit, resulting in rather low energies in the 100 keV range. The electrons being nonrelativistic, the bunch duration quickly becomes picosecond long. Relativistic energies are required to mitigate space charge effects and maintain femtosecond bunches. In this paper, we will show very recent results where electrons are accelerated in laser-driven wakefields to relativistic energies, reaching up to 5 MeV at kHz repetition rate. The electron energy was increased by nearly two orders of magnitude by using single-cycle laser pulses of 3.5 fs, with only 2.5 mJ of energy. Using such short pulses of light allowed us to resonantly excite high amplitude and nonlinear plasma waves at high plasma density, ne=1.5-2×1020 cm-3, in a regime close to the blow-out regime. Electrons had a peaked distribution around 5 MeV, with a relative energy spread of 30 %. Charges in the 100's fC/shot and up to pC/shot where measured depending on plasma density. The electron beam was fairly collimated, 20 mrad divergence at Full Width Half Maximum. The results show remarkable stability of the beam parameters in terms of beam pointing and electron distribution. 3D PIC simulations reproduce the results very well and indicate that electrons are injected by the ionization of Nitrogen atoms, N5+ to N6

  17. Selective generation of two pulse modes in a single all normal dispersion fiber laser oscillator and analysis of their optical characteristics (United States)

    Kim, S.; Choi, M.; Song, J. Y.; Lee, J. H.; Kim, Y.


    Fiber ultrafast pulses such as mode-locked and noise-like pulses have useful optical characteristics for high precision metrology applications. In this study, we develop an ytterbium doped fiber laser with all normal dispersion which can selectively generate two pulse modes, mode-locked and noise-like pulses, by a turn-key system including polarization control and selective detection parts. The spectral and temporal characteristics of two pulses generated from the single oscillator are analyzed and compared with each other through optical spectrum, RF spectrum and autocorrelation. Furthermore, spectral coherence characteristics are verified through interference signals generated by balanced and unbalanced arm interferometers.

  18. Formation of periodic mesoscale structures arranged in a circular symmetry at the silicon surface exposed to radiation of a single femtosecond laser pulse

    International Nuclear Information System (INIS)

    Romashevskiy, S.A.; Ashitkov, S.I.; Ovchinnikov, A.V.; Kondratenko, P.S.; Agranat, M.B.


    Graphical abstract: - Highlights: • Single pulse irradiation of silicon gave rise to the periodic mesoscale structures. • The number of the periodic structures depends on the incident laser fluence. • The theory of periodically modulated absorption of laser energy is proposed. - Abstract: The periodic mesoscale structures arranged in a circular symmetry were found at the silicon surface exposed to radiation of the single femtosecond laser pulse with a Gaussian intensity profile in the ambient air conditions. These peculiar structures have the appearance of the protrusions of ∼10 nm height and of ∼600 nm width (at a FWHM) separately located inside the ablated region with a period of the incident laser wavelength. It was found that their position at the surface corresponds to the specified laser intensity slightly above the ablation threshold. The number of the formed periodic structures varies with the fluence of the incident laser pulse and in our experiments it was found to have changed from one to eleven. We suppose that formation of these mesoscale structures is caused by heating of a microscale volume to the strongly defined temperature. The theoretical model was proposed to explain the obtained data. It assumes that the interference of incident laser radiation with laser-induced surface electromagnetic waves results in generation of periodic distribution of electron temperature. Thus formation of the periodic structures at the specified laser intensity is attributed to periodically modulated absorption of laser energy at a focal laser spot.

  19. Femtosecond laser ablation of silver foil with single and double pulses

    CSIR Research Space (South Africa)

    Roberts, DE


    Full Text Available ¼ v2 2 ln E Eth � � (7) so that the waist v at the focus and hence the peak F = 2E/pv2 could be found from the slope of r20 versus ln(E). Absolute values of F were estimated to have an uncertainty of �15%. A Michelson interferometer, with one... was used to check the pulse separation for the Dazzler and the zero crossing of the pulse separation from the Michelson interferometer. 4. Results and discussion The average ablation depth per pulse to penetrate a 50 mm thick Ag foil as a function...

  20. Single-pulse Conduction Limited Laser Welding Using A Diffractive Optical Element (United States)

    Kong, C. Y.; Bolut, M.; Sundqvist, J.; Kaplan, A. F. H.; Assunção, E.; Quintino, L.; Blackburn, J.

    Conduction limited laser welding is commonly used in electronic and battery applications, where a high width-to-depth ratio weld is desirable. A laser beam with Gaussian or top-hat distributions is often used to produce conduction limited spot welds. Both these energy distributions result in a higher proportion of the laser beam energy being introduced towards the centre of the welded spot and consequently, a reduced penetration weld towards the circumference of the beam spot. The use of diffractive optical elements to tailor the energy distribution of the laser beam has been evaluated. An incident laser beam with an energy distribution in the shape of a ring or C-shape was projected onto the material, which results in heat propagating towards the centre, producing a shallow weld with a consistent depth of penetration across the entire overlapped joint. The results confirmed a corresponding thermal model which predicted an even distribution of heat at the joint interface.

  1. Multidimensional spectroscopy with a single broadband phase-shaped laser pulse

    International Nuclear Information System (INIS)

    Glenn, Rachel; Mukamel, Shaul


    We calculate the frequency-dispersed nonlinear transmission signal of a phase-shaped visible pulse to fourth order in the field. Two phase profiles, a phase-step and phase-pulse, are considered. Two dimensional signals obtained by varying the detected frequency and phase parameters are presented for a three electronic band model system. We demonstrate how two-photon and stimulated Raman resonances can be manipulated by the phase profile and sign, and selected quantum pathways can be suppressed

  2. Double Pass 595?nm pulsed dye laser at a 6 minute interval for the treatment of port-wine stains is not more effective than single pass

    NARCIS (Netherlands)

    Peters, M. A. D.; van Drooge, A. M.; Wolkerstorfer, A.; van Gemert, M. J. C.; van der Veen, J. P. W.; Bos, J. D.; Beek, J. F.


    Background Pulsed dye laser (PDL) is the first choice for treatment of port wine stains (PWS). However, outcome is highly variable and only a few patients achieve complete clearance. The objective of the study was to compare efficacy and safety of single pass PDL with double pass PDL at a 6 minute

  3. Nanoplasma dynamics of single large xenon clusters irradiated with superintense x-ray pulses from the linac coherent light source free-electron laser. (United States)

    Gorkhover, T; Adolph, M; Rupp, D; Schorb, S; Epp, S W; Erk, B; Foucar, L; Hartmann, R; Kimmel, N; Kühnel, K-U; Rolles, D; Rudek, B; Rudenko, A; Andritschke, R; Aquila, A; Bozek, J D; Coppola, N; Erke, T; Filsinger, F; Gorke, H; Graafsma, H; Gumprecht, L; Hauser, G; Herrmann, S; Hirsemann, H; Hömke, A; Holl, P; Kaiser, C; Krasniqi, F; Meyer, J-H; Matysek, M; Messerschmidt, M; Miessner, D; Nilsson, B; Pietschner, D; Potdevin, G; Reich, C; Schaller, G; Schmidt, C; Schopper, F; Schröter, C D; Schulz, J; Soltau, H; Weidenspointner, G; Schlichting, I; Strüder, L; Ullrich, J; Möller, T; Bostedt, C


    The plasma dynamics of single mesoscopic Xe particles irradiated with intense femtosecond x-ray pulses exceeding 10(16)  W/cm2 from the Linac Coherent Light Source free-electron laser are investigated. Simultaneous recording of diffraction patterns and ion spectra allows eliminating the influence of the laser focal volume intensity and particle size distribution. The data show that for clusters illuminated with intense x-ray pulses, highly charged ionization fragments in a narrow distribution are created and that the nanoplasma recombination is efficiently suppressed.

  4. High power ultrashort pulse lasers

    International Nuclear Information System (INIS)

    Perry, M.D.


    Small scale terawatt and soon even petawatt (1000 terawatt) class laser systems are made possible by application of the chirped-pulse amplification technique to solid-state lasers combined with the availability of broad bandwidth materials. These lasers make possible a new class of high gradient accelerators based on the large electric fields associated with intense laser-plasma interactions or from the intense laser field directly. Here, we concentrate on the laser technology to produce these intense pulses. Application of the smallest of these systems to the production of high brightness electron sources is also introduced

  5. Modeling of time evolution of power and temperature in single-pulse and multi-pulses diode-pumped alkali vapor lasers. (United States)

    Shen, Binglin; Huang, Jinghua; Xu, Xingqi; Xia, Chunsheng; Pan, Bailiang


    A physical model combining rate, power propagation, and transient heat conduction equations for diode-pumped alkali vapor lasers (DPAL) is applied to a pulsed Rb-CH 4 DPAL, which agrees well with the time evolution of laser power and temperature measured by K absorption spectroscopy. The output feature and temperature rise of a multi-pulse DPAL are also calculated in the time domain, showing that if we energize the pump light when the temperature rise decays to 1/2, rather than 1/e of its maximum, we can increase the duty cycle and obtain more output energy. The repetition rate of >100Hz is high enough to achieve QCW (quasi-continuous-wave) laser pulses.

  6. Laser system using ultra-short laser pulses (United States)

    Dantus, Marcos [Okemos, MI; Lozovoy, Vadim V [Okemos, MI; Comstock, Matthew [Milford, MI


    A laser system using ultrashort laser pulses is provided. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and binary pulse shaping (BPS). Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and a SHG crystal.

  7. Role of the temperature dynamics in formation of nanopatterns upon single femtosecond laser pulses on gold

    Czech Academy of Sciences Publication Activity Database

    Gurevich, E.L.; Levy, Yoann; Gurevich, S.V.; Bulgakova, Nadezhda M.


    Roč. 95, č. 5 (2017), s. 1-12, č. článku 054305. ISSN 2469-9950 R&D Projects: GA MŠk LO1602; GA MŠk LM2015086; GA MŠk EF15_003/0000445 Grant - others:OP VVV - BIATRI(XE) CZ.02.1.01/0.0/0.0/15_003/0000445 Institutional support: RVO:68378271 Keywords : periodic surface-structures * pattern-formation * ablation * metals * irradiation * spallation Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 3.836, year: 2016

  8. Characterization of temporal coherence of hard X-ray free-electron laser pulses with single-shot interferograms

    Directory of Open Access Journals (Sweden)

    Taito Osaka


    Full Text Available Temporal coherence is one of the most fundamental characteristics of light, connecting to spectral information through the Fourier transform relationship between time and frequency. Interferometers with a variable path-length difference (PLD between the two branches have widely been employed to characterize temporal coherence properties for broad spectral regimes. Hard X-ray interferometers reported previously, however, have strict limitations in their operational photon energies, due to the specific optical layouts utilized to satisfy the stringent requirement for extreme stability of the PLD at sub-ångström scales. The work presented here characterizes the temporal coherence of hard X-ray free-electron laser (XFEL pulses by capturing single-shot interferograms. Since the stability requirement is drastically relieved with this approach, it was possible to build a versatile hard X-ray interferometer composed of six separate optical elements to cover a wide photon energy range from 6.5 to 11.5 keV while providing a large variable delay time of up to 47 ps at 10 keV. A high visibility of up to 0.55 was observed at a photon energy of 10 keV. The visibility measurement as a function of time delay reveals a mean coherence time of 5.9 ± 0.7 fs, which agrees with that expected from the single-shot spectral information. This is the first result of characterizing the temporal coherence of XFEL pulses in the hard X-ray regime and is an important milestone towards ultra-high energy resolutions at micro-electronvolt levels in time-domain X-ray spectroscopy, which will open up new opportunities for revealing dynamic properties in diverse systems on timescales from femtoseconds to nanoseconds, associated with fluctuations from ångström to nanometre spatial scales.

  9. Single-pulse measurement of density and temperature in a turbulent, supersonic flow using UV laser spectroscopy (United States)

    Fletcher, D. G.; Mckenzie, R. L.


    Nonintrusive measurements of density and temperature and their turbulent fluctuation levels have been obtained in the boundary layer of an unseeded, Mach 2 wind tunnel flow. The spectroscopic technique that was used to make the measurements is based on the combination of laser-induced oxygen fluorescence and Raman scattering by oxygen and nitrogen from the same laser pulse. Results from this demonstration experiment compare favorably with previous measurements obtained in the same facility from conventional probes and an earlier spectroscopic technique.

  10. Pulsed-laser-deposited, single-crystalline Cu2O films with low resistivity achieved through manipulating the oxygen pressure (United States)

    Liu, Xiaohui; Xu, Meng; Zhang, Xijian; Wang, Weiguang; Feng, Xianjin; Song, Aimin


    Low-resistivity, single-crystalline Cu2O films were realized on MgO (110) substrates through manipulating the oxygen pressure (PO2) of pulsed-laser deposition. X-ray diffraction and high resolution transmission electron microscopy measurements revealed that the films deposited at PO2 of 0.06 and 0.09 Pa were single phase Cu2O and the 0.09-Pa-deposited film exhibited the best crystallinity with an epitaxial relationship of Cu2O (110)∥MgO (110) with Cu2O (001)∥MgO (001). The pure phase Cu2O films exhibited higher transmittances and larger band gaps with an optical band gap of 2.56 eV obtained for the 0.09 Pa-deposited film. Hall-effect measurements demonstrated that the Cu2O film deposited at 0.09 Pa had the lowest resistivity of 6.67 Ω cm and highest Hall mobility of 23.75 cm2 v-1 s-1.

  11. Optical pulses, lasers, measuring techniques

    CERN Document Server

    Früngel, Frank B A


    High Speed Pulse Technology: Volume II: Optical Pulses - Lasers - Measuring Techniques focuses on the theoretical and engineering problems that result from the capacitor discharge technique.This book is organized into three main topics: light flash production from a capacitive energy storage; signal transmission and ranging systems by capacitor discharges and lasers; and impulse measuring technique. This text specifically discusses the air spark under atmospheric conditions, industrial equipment for laser flashing, and claims for light transmitting system. The application of light impulse sign

  12. Mechanism of single-pulse ablative generation of laser-induced periodic surface structures

    Czech Academy of Sciences Publication Activity Database

    Shugaev, M.V.; Gnilitskyi, I.; Bulgakova, Nadezhda M.; Zhigilei, L.


    Roč. 96, č. 20 (2017), s. 1-9, č. článku 205429. ISSN 2469-9950 R&D Projects: GA MŠk LO1602; GA ČR GA16-12960S; GA MŠk LM2015086 EU Projects: European Commission(XE) 739573 - HiLASE CoE Grant - others:OP VVV - HiLASE-CoE(XE) CZ.02.1.01/0.0/0.0/15_006/0000674 Institutional support: RVO:68378271 Keywords : molecular-dynamics simulations * metals * electron * spallation Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 3.836, year: 2016

  13. Pulsed laser-induced phase transformations in CdTe single crystals

    Czech Academy of Sciences Publication Activity Database

    Gatskevich, E.; Ivlev, G.; Přikryl, Petr; Černý, R.; Cháb, Vladimír; Cibulka, O.


    Roč. 248, - (2005), s. 259-263 ISSN 0169-4332. [International Conference on Photo-Exeited Processes and Applications 4 - ICPEPA /4./. Lecce, 05.09.2004-09.09.2004] R&D Projects: GA ČR(CZ) GA201/04/1503 Institutional research plan: CEZ:AV0Z10190503 Keywords : II-VI semiconductor * laser irradiation * phase change Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.263, year: 2005

  14. Homogenization optics to improve detectability of a fluorescence response to a single laser pulse: Detection of feces on apples (United States)

    Fecal contamination of produce is a known food safety risk. Measuring fluorescence responses to UV excitation is an established method for detecting such contamination. One measurement system utilizes a pulsed UV laser to induce a fluorescence response from fecal material and a gated intensified cam...

  15. Single-pass waveguide amplifiers in Er-Yb doped zinc polyphosphate glass fabricated with femtosecond laser pulses

    NARCIS (Netherlands)

    Fletcher, L.B.; Witcher, J.J.; Troy, N.; Brow, R.K.; Krol, D.M.


    We have investigated the direct fabrication of subsurface waveguide amplifiers in Er-Yb zinc polyphosphate glass by utilizing the relationship between the initial glass composition and the resulting changes to the network structure after modification by fs laser pulses. Waveguides, exhibiting

  16. Broadband single-transverse-mode fluorescence sources based on ribs fabricated in pulsed laser deposited Ti: sapphire waveguides

    NARCIS (Netherlands)

    Grivas, C.; May-Smith, T.C.; Shepherd, D.P.; Eason, R.W.; Pollnau, Markus; Jelinek, M.


    Active rib waveguides with depths and widths varying from 3 to 5 μm and from 9 to 24 μm, respectively, have been structured by $Ar^{+}$-beam etching in pulsed laser deposited Ti:sapphire layers. Losses in the channel structures were essentially at the same levels as the unstructured planar waveguide

  17. 175 fs-long pulses from a high-power single-mode Er-doped fiber laser at 1550 nm (United States)

    Elahi, Parviz; Kalaycıoğlu, Hamit; Li, Huihui; Akçaalan, Önder; Ilday, F. Ömer


    Development of Er-doped ultrafast lasers have lagged behind the corresponding developments in Yb- and Tm-doped lasers, in particular, fiber lasers. Various applications benefit from operation at a central wavelength of 1.5 μm and its second harmonic, including emerging applications such as 3D processing of silicon and 3D printing based on two-photon polymerization. We report a simple, robust fiber master oscillator power amplifier operating at 1.55 μm, implementing chirp pulse amplification using single-mode fibers for diffraction-limited beam quality. The laser generates 80 nJ pulses at a repetition rate of 43 MHz, corresponding to an average power of 3.5 W, which can be compressed down to 175 fs. The generation of short pulses was achieved using a design which is guided by numerical simulations of pulse propagation and amplification and manages to overturn gain narrowing with self-phase modulation, without invoking excessive Raman scattering processes. The seed source for the two-stage amplifier is a dispersion-managed passively mode-locked oscillator, which generates a ∼40 nm-wide spectrum and 1.7-ps linearly chirped pulses.

  18. Size dependent Raman and absorption studies of single walled carbon nanotubes synthesized by pulse laser deposition at room temperature (United States)

    Dixit, Saurabh; Singhal, Sonal; Vankar, V. D.; Shukla, A. K.


    In this article, size dependent correlation of acoustic states is established for radial breathing mode (RBM). Single walled carbon nanotubes (SWCNTs) are synthesized along with carbon encapsulated iron nanoparticles by pulse laser deposition at room temperature. Ferrocene is used as a catalyst for growth of SWCNTs. Various studies such as HR-TEM, X-Ray Diffraction (XRD), Raman spectroscopy and NIR-Absorption spectroscopy are utilized to confirm the presence of SWCNTs in the as-synthesized and purified samples. RBM of SWCNTs can be differentiated here from Raman modes of carbon encapsulated iron nanoparticles by comparing their line shape asymmetry as well as oscillator strength. Furthermore, a quantum confinement model is proposed for RBM. It is invoked here that RBM is manifestation of quantum confinement of acoustic phonons. Well reported analytical relation of RBM is utilized to explore the nature of phonons responsible for RBM on the basis of quantum confinement model. Diameters of SWCNTs estimated by Raman studies are found to be in reasonably good agreement with that of NIR-absorption studies.

  19. Dye laser spectrometer for the analysis of pulsed vacuum arcs

    International Nuclear Information System (INIS)

    Hargis, P.J. Jr.; Robertson, M.M.


    A pulsed dye laser spectrometer which is used to obtain detailed single shot spectroscopic measurements of the plasma in a pulsed vacuum arc was developed. The capabilities of this spectrometer are indicated by the detection of laser induced fluorescence signals from 10 6 neutral Ti atoms in the plasma of a pulsed vacuum arc with a Ti anode. (U.S.)

  20. Single-pass waveguide amplifiers in Er-Yb doped zinc polyphosphate glass fabricated with femtosecond laser pulses. (United States)

    Fletcher, Luke B; Witcher, Jon J; Troy, Neil; Brow, Richard K; Krol, Denise M


    We have investigated the direct fabrication of subsurface waveguide amplifiers in Er-Yb zinc polyphosphate glass by utilizing the relationship between the initial glass composition and the resulting changes to the network structure after modification by fs laser pulses. Waveguides, exhibiting internal gain of 1 dB/cm at 1.53 μm when pumped with 500 mW at 976 nm, were directly fabricated using a regenerative amplified Ti:sapphire 1 kHz, 180 fs laser system. Optical properties as well as insertion losses and internal gain are reported.

  1. Amorphization of silicon by femtosecond laser pulses

    International Nuclear Information System (INIS)

    Jia, Jimmy; Li Ming; Thompson, Carl V.


    We have used femtosecond laser pulses to drill submicron holes in single crystal silicon films in silicon-on-insulator structures. Cross-sectional transmission electron microscopy and energy dispersive x-ray analysis of material adjacent to the ablated holes indicates the formation of a layer of amorphous Si. This demonstrates that even when material is ablated using femtosecond pulses near the single pulse ablation threshold, sufficient heating of the surrounding material occurs to create a molten zone which solidifies so rapidly that crystallization is bypassed

  2. Ultrashort laser pulse driven inverse free electron laser accelerator experiment

    Directory of Open Access Journals (Sweden)

    J. T. Moody


    Full Text Available In this paper we discuss the ultrashort pulse high gradient inverse free electron laser accelerator experiment carried out at the Lawrence Livermore National Laboratory which demonstrated gradients exceeding 200  MV/m using a 4 TW 100 fs long 800 nm Ti:Sa laser pulse. Due to the short laser and electron pulse lengths, synchronization was determined to be one of the main challenges in this experiment. This made necessary the implementation of a single-shot, nondestructive, electro-optic sampling based diagnostics to enable time-stamping of each laser accelerator shot with <100  fs accuracy. The results of this experiment are expected to pave the way towards the development of future GeV-class IFEL accelerators.

  3. Pulsed laser deposition of aluminum nitride nanowires (United States)

    Yunusova, N. R.; Kargin, N. I.; Ryndya, S. M.; Gusev, A. S.; Antonenko, S. V.; Timofeev, A. A.


    The possibility of AlN nanowires deposition on single-crystal silicon substrates by pulsed laser deposition in vacuum is shown in this work. Experimental samples were investigated by scanning electron microscopy and infrared Fourier spectroscopy. It is shown that the possible mechanism for the AlN nanowires formation is the "vapor-liquid-crystal" mechanism.

  4. Coaxial short pulsed laser

    International Nuclear Information System (INIS)

    Nelson, M.A.; Davies, T.J.


    This invention relates to a laser system of rugged design suitable for use in a field environment. The laser itself is of coaxial design with a solid potting material filling the space between components. A reservoir is employed to provide a gas lasing medium between an electrode pair, each of which is connected to one of the coaxial conductors

  5. Ultrashort pulse laser deposition of thin films (United States)

    Perry, Michael D.; Banks, Paul S.; Stuart, Brent C.


    Short pulse PLD is a viable technique of producing high quality films with properties very close to that of crystalline diamond. The plasma generated using femtosecond lasers is composed of single atom ions with no clusters producing films with high Sp.sup.3 /Sp.sup.2 ratios. Using a high average power femtosecond laser system, the present invention dramatically increases deposition rates to up to 25 .mu.m/hr (which exceeds many CVD processes) while growing particulate-free films. In the present invention, deposition rates is a function of laser wavelength, laser fluence, laser spot size, and target/substrate separation. The relevant laser parameters are shown to ensure particulate-free growth, and characterizations of the films grown are made using several diagnostic techniques including electron energy loss spectroscopy (EELS) and Raman spectroscopy.

  6. Pulsed chemical laser

    International Nuclear Information System (INIS)

    Jacobson, T.V.; Kimbell, G.H.


    A hydrogen fluoride laser capable of operating super radiantly and at atmospheric pressure is described. A transverse electrical discharge is utilized to energize the reaction of a hydrogen donor to provide hydrogen fluoride in a metastable energy state which reverts to a stable state by laser action. A large range of hydrogen and fluorine donors is disclosed. A preferred pair of donors is sulphur hexafluoride and propane. Helium is frequently added to the gas mix to act as a buffer. (U.S.)

  7. Characterization and modulation of femtosecond laser pulse

    International Nuclear Information System (INIS)

    Dorrer, Christophe


    This work brings some solutions to the characterization and control of femtosecond laser pulses. Spectral interferometry has been extensively studied; whereas this is a rather old technique, it has found new specific applications to short pulses. Several important points concerning the experimental implementation of this technique are treated. Sources of errors have been tracked and simple solutions have been found to enhance its reliability. A recently demonstrated technique for the complete characterization of short pulses has been used to characterize short pulses from Chirped Pulse Amplification Systems. This transposition of shearing interferometry to the optical frequency domain, known as Spectral Phase Interferometry for Direct Electric-field Reconstruction (SPlDER), is conceptually very interesting: for example, the inversion from the experimental data to the electric field to be characterized is completely algebraic. A reliable tool for the characterization and optimization of Chirped pulse amplification systems has been built on this principle. This is the first single-shot real-time characterization implementation of this technique. An improvement of the method has also allowed the first single-shot real-time characterization of a short pulse using a single mono-dimensional integrative detector and an algebraic inversion of the experimental data. The control of these pulses is also of prior interest. Through a collaboration with Thomson CSF-LCR, the demonstration of the use of an optically addressed light valve at the Fourier plane of a zero-dispersion line for spectral phase modulation has been made. This device allows a high-resolution control of the spectral phase of a short pulse. It is a well-adapted tool for the correction of the residual spectral phase, at the output of Chirped Pulse Amplification systems and the temporal synthesis of shaped pulses for specific experiments. (author) [fr

  8. A Single-Pulse Integrator

    DEFF Research Database (Denmark)

    Miller, Arne


    A single-pulse integrator is described. It gives a relative measure of the integral of the output signal from a coil monitor on the Risø 10 MeV linear accelerator, and displays the value on a digital voltmeter. The reproduccibility is found to be better than ±1% for an accelerated pulse charge...

  9. Fundamentals of laser pulse irradiation of silicon

    International Nuclear Information System (INIS)

    Rimini, E.; Baeri, P.; Russo, G.


    A computer model has been developed to describe the space and time evolution of carrier concentration, carrier energy and lattice temperature during nanosecond and picosecond laser pulse irradiation of Si single crystals. In particular the dynamic response has been evaluated for energy density of the ps laser pulse below and above the density threshold for surface melting. The obtained data allow a comparison with time-resolved reflectivity measurements reported in the literature. The available data are fitted by the computer model assuming a relaxation time for the energy transfer from the carriers to the lattice of 1 ps. The validity of the thermal model used to describe laser annealing in the nanosecond regime is assessed. (author)

  10. Front-surface fabrication of moderate aspect ratio micro-channels in fused silica by single picosecond Gaussian-Bessel laser pulse (United States)

    Liu, Xin; Sanner, Nicolas; Sentis, Marc; Stoian, Razvan; Zhao, Wei; Cheng, Guanghua; Utéza, Olivier


    Single-shot Gaussian-Bessel laser beams of 1 ps pulse duration and of 0.9 μm core size and 60 μm depth of focus are used for drilling micro-channels on front side of fused silica in ambient condition. Channels ablated at different pulse energies are fully characterized by AFM and post-processing polishing procedures. We identify experimental energy conditions (typically 1.5 µJ) suitable to fabricate non-tapered channels with mean diameter of 1.2 µm and length of 40 μm while maintaining an utmost quality of the front opening of the channels. In addition, by further applying accurate post-polishing procedure, channels with high surface quality and moderate aspect ratio down to a few units are accessible, which would find interest in the surface micro-structuring of materials, with perspective of further scalability to meta-material specifications.

  11. Assessment of high-power kW-class single-diode bars for use in highly efficient pulsed solid state laser systems (United States)

    Lucianetti, Antonio; Pilar, Jan; Pranovich, Alina; Divoky, Martin; Mocek, Tomas; Ertel, K.; Jelinkova, Helena; Crump, P.; Frevert, C.; Staske, R.; Erbert, Götz; Traenkle, Günther


    In this work, we present measurements of efficiency-optimized 940 nm diode laser bars with long resonators that are constructed with robustly passivated output facets at the Ferdinand-Braun-Institut (FBH). The measurements were performed at room temperature on a test bench developed at HiLASE Centre, as a function of operating condition. The single-diode bars generated < 1.0 kW when tested with 1 ms pulses at 1-10Hz operating frequency, corresponding to < 1 J per pulse. The maximum electrical-to-optical efficiency was < 60 %, with operating efficiency at 1 kW of < 50%, limited by the ~ 200 μΩ resistance of the bar packaging. In addition, slow axis divergence at 1 kW was below 6° FWHM and spectral width at 1 kW was below 7 nm FWHM, as needed for pumping Yb-doped solid state amplifier crystals.

  12. Laser chirp effect on femtosecond laser filamentation generated for pulse compression. (United States)

    Park, Juyun; Lee, Jae-Hwan; Nam, Chang H


    The influence of laser chirp on the formation of femtosecond laser filamentation in Ar was investigated for the generation of few-cycle high-power laser pulses. The condition for the formation of a single filament has been carefully examined using 28-fs laser pulses with energy over 3 mJ. The filament formation and output spectrum changed very sensitively to the initial laser chirp and gas pressure. Much larger spectral broadening was obtained with positively chirped pulses, compared to the case of negatively chirped pulses that generated much longer filament, and compressed pulses of 5.5 fs with energy of 0.5 mJ were obtained from the filamentation of positively chirped 30-fs laser pulses in a single Ar cell.

  13. Single-Step Fabrication of Gd2O3@SiO2 Nanoparticles for use as MRI Contrast Agents by Pulsed Laser Ablation in Liquid (United States)

    Luo, Ning-Qi; Huang, Zhan-Yun; Li, Li; Shao, Yuan-Zhi; Chen, Di-Hu


    Gd2O3@SiO2 nanoparticles with a core-shell structure are synthesized by pulsed laser ablation in liquid (PLAL) in single steps. A Gd2O3 target immersed in tetraethyl orthosilicate (TEOS) is ablated by a microsecond Nd:YAG laser, which induces the generation of a Gd2O3 plasma plume and pyrolysis of the TEOS. We propose that the moment Gd2O3 nanoparticles are formed they will be coated immediately by SiO2 and directly synthesized Gd2O3@SiO2 core-shell nanoparticles. These particles obtain high r1 relaxivity of 5.26s-1mM-1 and are used as T1-weighted magnetic resonance imaging contrast agents. It is shown that the PLAL technique is promising for fabricating core-shell structure nanomaterial with potential medical applications.

  14. Effect of laser pulse parameters on the size and fluorescence of nanodiamonds formed upon pulsed-laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Peikang [School of Materials Science and Engineering, North University of China, Taiyuan 030051 (China); Hu, Shengliang, E-mail: [Key Laboratory of Instrumentation Science and Dynamic Measurement (North University of China), Ministry of Education, National Key Laboratory Science and Technology on Electronic Test and Measurement, Taiyuan 030051 (China); School of Materials Science and Engineering, North University of China, Taiyuan 030051 (China); Zhang, Taiping; Sun, Jing [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Cao, Shirui [School of Materials Science and Engineering, North University of China, Taiyuan 030051 (China)


    The size of nanodiamonds formed upon laser irradiation could be easily controlled over simply adjusting laser pulse parameters. The stable size and structure of nanodiamonds were mostly determined by laser power density and pulse width. Both large nanodiamonds with multiply twinning structure (MTS) and small nanodiamonds with single crystalline structure (SCS) emitted strong visible light after surface passivation, and their fluorescence quantum yield (QY) was 4.6% and 7.1%, respectively.

  15. Effect of laser pulse parameters on the size and fluorescence of nanodiamonds formed upon pulsed-laser irradiation

    International Nuclear Information System (INIS)

    Bai, Peikang; Hu, Shengliang; Zhang, Taiping; Sun, Jing; Cao, Shirui


    The size of nanodiamonds formed upon laser irradiation could be easily controlled over simply adjusting laser pulse parameters. The stable size and structure of nanodiamonds were mostly determined by laser power density and pulse width. Both large nanodiamonds with multiply twinning structure (MTS) and small nanodiamonds with single crystalline structure (SCS) emitted strong visible light after surface passivation, and their fluorescence quantum yield (QY) was 4.6% and 7.1%, respectively.

  16. Pulsed Power for Solid-State Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Gagnon, W; Albrecht, G; Trenholme, J; Newton, M


    Beginning in the early 1970s, a number of research and development efforts were undertaken at U.S. National Laboratories with a goal of developing high power lasers whose characteristics were suitable for investigating the feasibility of laser-driven fusion. A number of different laser systems were developed and tested at ever larger scale in pursuit of the optimum driver for laser fusion experiments. Each of these systems had associated with it a unique pulsed power option. A considerable amount of original and innovative engineering was carried out in support of these options. Ultimately, the Solid-state Laser approach was selected as the optimum driver for the application. Following this, the Laser Program at the Lawrence Livermore National Laboratory and the University of Rochester undertook aggressive efforts directed at developing the technology. In particular, at Lawrence Livermore National Laboratory, a series of laser systems beginning with the Cyclops laser and culminating in the present with the National Ignition Facility were developed and tested. As a result, a large amount of design information for solid-state laser pulsed power systems has been documented. Some of it is in the form of published papers, but most of it is buried in internal memoranda, engineering reports and LLNL annual reports. One of the goals of this book is to gather this information into a single useable format, such that it is easily accessed and understood by other engineers and physicists for use with future designs. It can also serve as a primer, which when seriously studied, makes the subsequent reading of original work and follow-up references considerably easier. While this book deals only with the solid-state laser pulsed power systems, in the bibliography we have included a representative cross section of papers and references from much of the very fine work carried out at other institutions in support of different laser approaches. Finally, in recent years, there has

  17. Laser-Induced Damage with Femtosecond Pulses (United States)

    Kafka, Kyle R. P.

    The strong electric fields of focused femtosecond laser pulses lead to non-equilibrium dynamics in materials, which, beyond a threshold intensity, causes laser-induced damage (LID). Such a strongly non-linear and non-perturbative process renders important LID observables like fluence and intensity thresholds and damage morphology (crater) extremely difficult to predict quantitatively. However, femtosecond LID carries a high degree of precision, which has been exploited in various micro/nano-machining and surface engineering applications, such as human eye surgery and super-hydrophobic surfaces. This dissertation presents an array of experimental studies which have measured the damage behavior of various materials under femtosecond irradiation. Precision experiments were performed to produce extreme spatio-temporal confinement of the femtosecond laser-solid damage interaction on monocrystalline Cu, which made possible the first successful direct-benchmarking of LID simulation with realistic damage craters. A technique was developed to produce laser-induced periodic surface structures (LIPSS) in a single pulse (typically a multi-pulse phenomenon), and was used to perform a pump-probe study which revealed asynchronous LIPSS formation on copper. Combined with 1-D calculations, this new experimental result suggests more drastic electron heating than expected. Few-cycle pulses were used to study the LID performance and morphology of commercial ultra-broadband optics, which had not been systematically studied before. With extensive surface analysis, various morphologies were observed, including LIPSS, swelling (blisters), simple craters, and even ring-shaped structures, which varied depending on the coating design, number of pulses, and air/vacuum test environment. Mechanisms leading to these morphologies are discussed, many of which are ultrafast in nature. The applied damage behavior of multi-layer dielectric mirrors was measured and compared between long pulse (150 ps

  18. Ultrashort Laser Pulses in Biology and Medicine

    CERN Document Server

    Braun, Markus; Zinth, Wolfgang


    Sources of ultrashort laser pulses are nowadays commercially available and have entered many areas of research and development. This book gives an overview of biological and medical applications of these laser pulses. The briefness of these laser pulses permits the tracing of the fastest processes in photo-active bio-systems, which is one focus of the book. The other focus is applications that rely on the high peak intensity of ultrashort laser pulses. Examples covered span non-linear imaging techniques, optical tomography, and laser surgery.

  19. Single frequency semiconductor lasers

    CERN Document Server

    Fang, Zujie; Chen, Gaoting; Qu, Ronghui


    This book systematically introduces the single frequency semiconductor laser, which is widely used in many vital advanced technologies, such as the laser cooling of atoms and atomic clock, high-precision measurements and spectroscopy, coherent optical communications, and advanced optical sensors. It presents both the fundamentals and characteristics of semiconductor lasers, including basic F-P structure and monolithic integrated structures; interprets laser noises and their measurements; and explains mechanisms and technologies relating to the main aspects of single frequency lasers, including external cavity lasers, frequency stabilization technologies, frequency sweeping, optical phase locked loops, and so on. It paints a clear, physical picture of related technologies and reviews new developments in the field as well. It will be a useful reference to graduate students, researchers, and engineers in the field.

  20. Pulsed laser deposition: metal versus oxide ablation

    NARCIS (Netherlands)

    Doeswijk, L.M.; Rijnders, Augustinus J.H.M.; Blank, David H.A.


    We present experimental results of pulsed laser interaction with metal (Ni, Fe, Nb) and oxide (TiO2, SrTiO3, BaTiO3) targets. The influence of the laser fluence and the number of laser pulses on the resulting target morphology are discussed. Although different responses for metal and oxide targets

  1. Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement

    International Nuclear Information System (INIS)

    Babushok, V.I.; DeLucia, F.C.; Gottfried, J.L.; Munson, C.A.; Miziolek, A.W.


    A review of recent results of the studies of double laser pulse plasma and ablation for laser induced breakdown spectroscopy applications is presented. The double pulse laser induced breakdown spectroscopy configuration was suggested with the aim of overcoming the sensitivity shortcomings of the conventional single pulse laser induced breakdown spectroscopy technique. Several configurations have been suggested for the realization of the double pulse laser induced breakdown spectroscopy technique: collinear, orthogonal pre-spark, orthogonal pre-heating and dual pulse crossed beam modes. In addition, combinations of laser pulses with different wavelengths, different energies and durations were studied, thus providing flexibility in the choice of wavelength, pulse width, energy and pulse sequence. The double pulse laser induced breakdown spectroscopy approach provides a significant enhancement in the intensity of laser induced breakdown spectroscopy emission lines up to two orders of magnitude greater than a conventional single pulse laser induced breakdown spectroscopy. The double pulse technique leads to a better coupling of the laser beam with the plasma plume and target material, thus providing a more temporally effective energy delivery to the plasma and target. The experimental results demonstrate that the maximum effect is obtained at some optimum separation delay time between pulses. The optimum value of the interpulse delay depends on several factors, such as the target material, the energy level of excited states responsible for the emission, and the type of enhancement process considered. Depending on the specified parameter, the enhancement effects were observed on different time scales ranging from the picosecond time level (e.g., ion yield, ablation mass) up to the hundred microsecond level (e.g., increased emission intensity for laser induced breakdown spectroscopy of submerged metal target in water). Several suggestions have been proposed to explain

  2. Laser ablation comparison by picosecond pulses train and nanosecond pulse (United States)

    Lednev, V. N.; Filippov, M. N.; Bunkin, A. F.; Pershin, S. M.


    A comparison of laser ablation by a train of picosecond pulses and nanosecond pulses revealed a difference in laser craters, ablation thresholds, plasma sizes and spectral line intensities. Laser ablation with a train of picosecond pulses resulted in improved crater quality while ablated mass decreased up to 30%. A reduction in laser plasma dimensions for picosecond train ablation was observed while the intensity of atomic/ionic lines in the plasma spectra was greater by a factor of 2-4 indicating an improved excitation and atomization in the plasma.

  3. Nanosecond pulsed laser ablation of silicon in liquids

    Energy Technology Data Exchange (ETDEWEB)

    Karimzadeh, R.; Anvari, J.Z.; Mansour, N. [Shahid Beheshti University, Department of Physics, Tehran (Iran)


    Laser fluence and laser shot number are important parameters for pulse laser based micromachining of silicon in liquids. This paper presents laser-induced ablation of silicon in liquids of the dimethyl sulfoxide (DMSO) and the water at different applied laser fluence levels and laser shot numbers. The experimental results are conducted using 15 ns pulsed laser irradiation at 532 nm. The silicon surface morphology of the irradiated spots has an appearance as one can see in porous formation. The surface morphology exhibits a large number of cavities which indicates as bubble nucleation sites. The observed surface morphology shows that the explosive melt expulsion could be a dominant process for the laser ablation of silicon in liquids using nanosecond pulsed laser irradiation at 532 nm. Silicon surface's ablated diameter growth was measured at different applied laser fluences and shot numbers in both liquid interfaces. A theoretical analysis suggested investigating silicon surface etching in liquid by intense multiple nanosecond laser pulses. It has been assumed that the nanosecond pulsed laser-induced silicon surface modification is due to the process of explosive melt expulsion under the action of the confined plasma-induced pressure or shock wave trapped between the silicon target and the overlying liquid. This analysis allows us to determine the effective lateral interaction zone of ablated solid target related to nanosecond pulsed laser illumination. The theoretical analysis is found in excellent agreement with the experimental measurements of silicon ablated diameter growth in the DMSO and the water interfaces. Multiple-shot laser ablation threshold of silicon is determined. Pulsed energy accumulation model is used to obtain the single-shot ablation threshold of silicon. The smaller ablation threshold value is found in the DMSO, and the incubation effect is also found to be absent. (orig.)

  4. Reactive pulsed laser deposition with gas jet

    International Nuclear Information System (INIS)

    Rakowski, R.; Bartnik, A.; Fiedorowicz, H.; Jarocki, R.; Kostecki, J.; Szczurek, M.


    Different metal (Sn, Al, steel, Cu, W) thin films were synthesized by reactive pulsed laser deposition on steel, copper and glass wafers. In our work pulsed Nd:glass (10 J, 800μs) laser system was used. Jet of gas was created by electromagnetic valve perpendicularly to the laser beam. Nitrogen, oxygen and argon were used. We used several to tens laser shots to obtain visible with the naked eye layers. Thin layers were observed under an optical microscope. (author)

  5. Analysis of Picosecond Pulsed Laser Melted Graphite (United States)

    Steinbeck, J.; Braunstein, G.; Speck, J.; Dresselhaus, M. S.; Huang, C. Y.; Malvezzi, A. M.; Bloembergen, N.


    A Raman microprobe and high resolution TEM have been used to analyze the resolidified region of liquid carbon generated by picosecond pulse laser radiation. From the relative intensities of the zone center Raman-allowed mode for graphite at 1582 cm{sup -1} and the disorder-induced mode at 1360 cm{sup -1}, the average graphite crystallite size in the resolidified region is determined as a function of position. By comparison with Rutherford backscattering spectra and Raman spectra from nanosecond pulsed laser melting experiments, the disorder depth for picosecond pulsed laser melted graphite is determined as a function of irradiating energy density. Comparisons of TEM micrographs for nanosecond and picosecond pulsed laser melting experiments show that the structure of the laser disordered regions in graphite are similar and exhibit similar behavior with increasing laser pulse fluence.

  6. Analysis of picosecond pulsed laser melted graphite

    Energy Technology Data Exchange (ETDEWEB)

    Steinbeck, J.; Braunstein, G.; Speck, J.; Dresselhaus, M.S.; Huang, C.Y.; Malvezzi, A.M.; Bloembergen, N.


    A Raman microprobe and high resolution TEM have been used to analyze the resolidified region of liquid carbon generated by picosecond pulse laser radiation. From the relative intensities of the zone center Raman-allowed mode for graphite at 1582 cm/sup -1/ and the disorder-induced mode at 1360 cm/sup -1/, the average graphite crystallite size in the resolidified region is determined as a function of position. By comparison with Rutherford backscattering spectra and Raman spectra from nonosecond pulsed laser melting experiments, the disorder depth for picosecond pulsed laser melted graphite is determined as a function of irradiating energy density. Comparisons of TEM micrographs for nanosecond and picosecond pulsed laser melting experiments show that the structure of the laser disordered regions in graphite are similar and exhibit similar behavior with increasing laser pulse fluence.

  7. Analysis of picosecond pulsed laser melted graphite

    International Nuclear Information System (INIS)

    Steinbeck, J.; Braunstein, G.; Speck, J.; Dresselhaus, M.S.; Huang, C.Y.; Malvezzi, A.M.; Bloembergen, N.


    A Raman microprobe and high resolution TEM have been used to analyze the resolidified region of liquid carbon generated by picosecond pulse laser radiation. From the relative intensities of the zone center Raman-allowed mode for graphite at 1582 cm -1 and the disorder-induced mode at 1360 cm -1 , the average graphite crystallite size in the resolidified region is determined as a function of position. By comparison with Rutherford backscattering spectra and Raman spectra from nonosecond pulsed laser melting experiments, the disorder depth for picosecond pulsed laser melted graphite is determined as a function of irradiating energy density. Comparisons of TEM micrographs for nanosecond and picosecond pulsed laser melting experiments show that the structure of the laser disordered regions in graphite are similar and exhibit similar behavior with increasing laser pulse fluence

  8. Laser-pulsed Plasma Chemistry: Laser-initiated Plasma Oxidation Of Niobium


    Marks R.F.; Pollak R.A.; Avouris Ph.; Lin C.T.; Thefaine Y.J.


    We report the first observation of the chemical modification of a solid surface exposed to an ambient gas plasma initiated by the interaction of laser radiation with the same surface. A new technique, which we designate laser-pulsed plasma chemistry (LPPC), is proposed for activating heterogeneous chemical reactions at solid surfaces in a gaseous ambient by means of a plasma initiated by laser radiation. Results for niobium metal in one atmosphere oxygen demonstrate single-pulse, self-limitin...

  9. LIBS using dual- and ultra-short laser pulses. (United States)

    Angel, S M; Stratis, D N; Eland, K L; Lai, T; Berg, M A; Gold, D M


    Pre-ablation dual-pulse LIBS enhancement data for copper, brass and steel using ns laser excitation are reported. Although large enhancements are observed for all samples, the magnitude of the enhancement is matrix dependent. Whereas all of the dual-pulse studies used ns laser excitation we see interesting effects when using ps and fs laser excitation for single-pulse LIBS. LIBS spectra of copper using 1.3 ps and 140 fs laser pulses show much lower background signals compared to ns pulse excitation. Also, the atomic emission decays much more rapidly with time. Because of relatively low backgrounds when using ps and fs pulses, non-gated detection of LIBS is shown to be very effective. The plasma dissipates quickly enough using ps and fs laser pulses, that high pulse rates, up to 1,000 Hz, are effective for increasing the LIBS signal, for a given measurement time. Finally, a simple near-collinear dual-pulse fiber-optic LIBS probe is shown to be useful for enhanced LIBS measurements.

  10. Measurement of flow fluctuations in single longitudinal mode pulsed ...

    Indian Academy of Sciences (India)


    Feb 12, 2014 ... A simple technique had been demonstrated for measuring flow-induced fluctuations in the single longitudinal mode (SLM) pulsed dye laser. Two prominent frequency components of 10.74 Hz and 48.83 Hz were present in the output of the Nd:YAG-pumped SLM dye laser. The flow-induced frequency ...

  11. Ultrashort pulse laser technology laser sources and applications

    CERN Document Server

    Schrempel, Frank; Dausinger, Friedrich


    Ultrashort laser pulses with durations in the femtosecond range up to a few picoseconds provide a unique method for precise materials processing or medical applications. Paired with the recent developments in ultrashort pulse lasers, this technology is finding its way into various application fields. The book gives a comprehensive overview of the principles and applications of ultrashort pulse lasers, especially applied to medicine and production technology. Recent advances in laser technology are discussed in detail. This covers the development of reliable and cheap low power laser sources as well as high average power ultrashort pulse lasers for large scale manufacturing. The fundamentals of laser-matter-interaction as well as processing strategies and the required system technology are discussed for these laser sources with respect to precise materials processing. Finally, different applications within medicine, measurement technology or materials processing are highlighted.

  12. Pulsed irradiation improves target selectivity of infrared laser-evoked gene operator for single-cell gene induction in the nematode C. elegans. (United States)

    Suzuki, Motoshi; Toyoda, Naoya; Takagi, Shin


    Methods for turning on/off gene expression at the experimenter's discretion would be useful for various biological studies. Recently, we reported on a novel microscope system utilizing an infrared laser-evoked gene operator (IR-LEGO) designed for inducing heat shock response efficiently in targeted single cells in living organisms without cell damage, thereby driving expression of a transgene under the control of a heat shock promoter. Although the original IR-LEGO can be successfully used for gene induction, several limitations hinder its wider application. Here, using the nematode Caenorhabditis elegans (C. elegans) as a subject, we have made improvements in IR-LEGO. For better spatial control of heating, a pulsed irradiation method using an optical chopper was introduced. As a result, single cells of C. elegans embryos as early as the 2-cell stage and single neurons in ganglia can be induced to express genes selectively. In addition, the introduction of site-specific recombination systems to IR-LEGO enables the induction of gene expression controlled by constitutive and cell type-specific promoters. The strategies adopted here will be useful for future applications of IR-LEGO to other organisms.

  13. Double Pass 595 nm Pulsed Dye Laser Does Not Enhance the Efficacy of Port Wine Stains Compared with Single Pass: A Randomized Comparison with Histological Examination. (United States)

    Yu, Wenxin; Zhu, Jiafang; Wang, Lizhen; Qiu, Yajing; Chen, Yijie; Yang, Xi; Chang, Lei; Ma, Gang; Lin, Xiaoxi


    To compare the efficacy and safety of double-pass pulsed dye laser (DWL) and single-pass PDL (SWL) in treating virgin port wine stain (PWS). The increase in the extent of vascular damage attributed to the use of double-pass techniques for PWS remains inconclusive. A prospective, side-by-side comparison with a histological study for virgin PWS is still lacking. Twenty-one patients (11 flat PWS, 10 hypertrophic PWS) with untreated PWS underwent 3 treatments at 2-month intervals. Each PWS was divided into three treatment sites: SWL, DWL, and untreated control. Chromametric and visual evaluation of the efficacy and evaluation of side effects were conducted 3 months after final treatment. Biopsies were taken at the treated sites immediately posttreatment. Chromametric and visual evaluation suggested that DWL sites showed no significant improvement compared with SWL (p > 0.05) in treating PWS. The mean depth of photothermal damage to the vessels was limited to a maximum of 0.36-0.41 mm in both SWL and DWL sides. Permanent side effects were not observed in any patients. Double-pass PDL does not enhance PWS clearance. To improve the clearance of PWS lesions, either the depth of laser penetration should be increased or greater photothermal damage to vessels should be generated.

  14. Pulsed Laser Annealing of Carbon (United States)

    Abrahamson, Joseph P.

    This dissertation investigates laser heating of carbon materials. The carbon industry has been annealing carbon via traditional furnace heating since at least 1800, when Sir Humphry Davy produced an electric arc with carbon electrodes made from carbonized wood. Much knowledge has been accumulated about carbon since then and carbon materials have become instrumental both scientifically and technologically. However, to this day the kinetics of annealing are not known due to the slow heating and cooling rates of furnaces. Additionally, consensus has yet to be reached on the cause of nongraphitizability. Annealing trajectories with respect to time at temperature are observed from a commercial carbon black (R250), model graphitizable carbon (anthracene coke) and a model nongraphitizable carbon (sucrose char) via rapid laser heating. Materials were heated with 1064 nm and 10.6 im laser radiation from a Q-switched Nd:YAG laser and a continuous wave CO2 laser, respectively. A pulse generator was used reduce the CO2 laser pulse width and provide high temporal control. Time-temperature-histories with nanosecond temporal resolution and temperature reproducibility within tens of degrees Celsius were determined by spectrally resolving the laser induced incandescence signal and applying multiwavelength pyrometry. The Nd:YAG laser fluences include: 25, 50, 100, 200, 300, and 550 mJ/cm2. The maximum observed temperature ranged from 2,400 °C to the C2 sublimation temperature of 4,180 °C. The CO2 laser was used to collect a series of isothermal (1,200 and 2,600 °C) heat treatments versus time (100 milliseconds to 30 seconds). Laser heated samples are compared to furnace annealing at 1,200 and 2,600 °C for 1 hour. The material transformation trajectory of Nd:YAG laser heated carbon is different than traditional furnace heating. The traditional furnace annealing pathway is followed for CO2 laser heating as based upon equivalent end structures. The nanostructure of sucrose char

  15. Femtosecond laser pulses principles and experiments

    CERN Document Server


    This smooth introduction for advanced undergraduate students starts with the fundamentals of lasers and pulsed optics Thus prepared, the student learns how to generate short and ultrashort laser pulses, how to manipulate them, and how to measure them Finally, spectroscopic implications are discussed This rounded text gives the student an up-to-date introduction to one of the most exciting fields in laser physics

  16. Short pulse laser systems for biomedical applications

    CERN Document Server

    Mitra, Kunal


    This book presents practical information on the clinical applications of short pulse laser systems and the techniques for optimizing these applications in a manner that will be relevant to a broad audience, including engineering and medical students as well as researchers, clinicians, and technicians. Short pulse laser systems are useful for both subsurface tissue imaging and laser induced thermal therapy (LITT), which hold great promise in cancer diagnostics and treatment. Such laser systems may be used alone or in combination with optically active nanoparticles specifically administered to the tissues of interest for enhanced contrast in imaging and precise heating during LITT. Mathematical and computational models of short pulse laser-tissue interactions that consider the transient radiative transport equation coupled with a bio-heat equation considering the initial transients of laser heating were developed to analyze the laser-tissue interaction during imaging and therapy. Experiments were first performe...

  17. Propagating Characteristics of Pulsed Laser in Rain

    Directory of Open Access Journals (Sweden)

    Jing Guo


    Full Text Available To understand the performance of laser ranging system under the rain weather condition, we need to know the propagating characteristics of laser pulse in rain. In this paper, the absorption and attenuation coefficients were calculated based on the scattering theories in discrete stochastic media, and the propagating characteristics of laser pulse in rain were simulated and analyzed using Monte-Carlo method. Some simulation results were verified by experiments, and the simulation results are well matched with the experimental data, with the maximal deviation not less than 7.5%. The results indicated that the propagating laser beam would be attenuated and distorted due to the scattering and absorption of raindrops, and the energy attenuation and pulse shape distortion strongly depended on the laser pulse widths.

  18. Light field driven streak-camera for single-shot measurements of the temporal profile of XUV-pulses from a free-electron laser; Lichtfeld getriebene Streak-Kamera zur Einzelschuss Zeitstrukturmessung der XUV-Pulse eines Freie-Elektronen Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Fruehling, Ulrike


    The Free Electron Laser in Hamburg (FLASH) is a source for highly intense ultra short extreme ultraviolet (XUV) light pulses with pulse durations of a few femtoseconds. Due to the stochastic nature of the light generation scheme based on self amplified spontaneous emission (SASE), the duration and temporal profile of the XUV pulses fluctuate from shot to shot. In this thesis, a THz-field driven streak-camera capable of single pulse measurements of the XUV pulse-profile has been realized. In a first XUV-THz pump-probe experiment at FLASH, the XUV-pulses are overlapped in a gas target with synchronized THz-pulses generated by a new THz-undulator. The electromagnetic field of the THz light accelerates photoelectrons produced by the XUV-pulses with the resulting change of the photoelectron momenta depending on the phase of the THz field at the time of ionisation. This technique is intensively used in attosecond metrology where near infrared streaking fields are employed for the temporal characterisation of attosecond XUV-Pulses. Here, it is adapted for the analysis of pulse durations in the few femtosecond range by choosing a hundred times longer far infrared streaking wavelengths. Thus, the gap between conventional streak cameras with typical resolutions of hundreds of femtoseconds and techniques with attosecond resolution is filled. Using the THz-streak camera, the time dependent electric field of the THz-pulses was sampled in great detail while on the other hand the duration and even details of the time structure of the XUV-pulses were characterized. (orig.)

  19. Concentrating laser pulses in space and time (United States)

    McAulay, Alastair D.


    Projecting high peak power laser pulses to a specific location in space and time can significantly improve laser weapons, secure optical communications, and remote spectroscopy. Current laser systems send a pulsed beam from laser to target causing collateral damage to objects in the path for a laser weapon system, opportunities for compromising security in communications, and averaging of measurements along the path for spectroscopy. We analyze and simulate a system that beamforms M mode-locked lasers, each having N modes, to achieve a peak power at a target in space and time that is NM times greater than that for M non-mode-locked non-beamformed lasers. In low atmospheric turbulence, a peak power of 10kW can be projected to a point in space and time by a 10 × 10 array of 2W laser diodes, each having 50 modes. Effects of atmospheric turbulence are discussed and were investigated in our previous papers.

  20. Pulse-analysis-pulse investigation of femtosecond laser-induced periodic surface structures on silicon in air

    NARCIS (Netherlands)

    Vincenc Obona, J.; Skolski, J.Z.P.; Römer, Gerardus Richardus, Bernardus, Engelina; Huis in 't Veld, Bert


    A new approach to experimentally investigate laser-induced periodic surface structures (LIPSSs) is introduced. Silicon was iteratively exposed to femtosecond laser pulses at λ = 800 nm and normal incidence in ambient air and at a fluence slightly over the single-pulse modification threshold. After

  1. Superluminous laser pulse in an active medium

    International Nuclear Information System (INIS)

    Fisher, D.L.; Tajima, T.


    Physical conditions are obtained to make the propagation velocity of a laser pulse and thus the phase velocity of the excited wake be at any desired value, including that equal to or greater than the speed of light. The provision of an active-plasma laser medium with an appropriately shaped pulse allows not only replenishment of laser energy loss to the wakefield but also acceleration of the group velocity of photons. A stationary solitary solution in the accelerated frame is obtained from the model equations and simulations thereof for the laser, plasma and atoms. This approach has applications in photonics and telecommunications as well as wakefield accelerators

  2. Pulsed Laser Cladding of Ni Based Powder (United States)

    Pascu, A.; Stanciu, E. M.; Croitoru, C.; Roata, I. C.; Tierean, M. H.


    The aim of this paper is to optimize the operational parameters and quality of one step Metco Inconel 718 atomized powder laser cladded tracks, deposited on AISI 316 stainless steel substrate by means of a 1064 nm high power pulsed laser, together with a Precitec cladding head manipulated by a CLOOS 7 axes robot. The optimization of parameters and cladding quality has been assessed through Taguchi interaction matrix and graphical output. The study demonstrates that very good cladded layers with low dilution and increased mechanical proprieties could be fabricated using low laser energy density by involving a pulsed laser.

  3. Laser glass marking: influence of pulse characteristics (United States)

    Rolo, Ana; Coelho, João; Pires, Margarida


    Laser glass marking is currently used in several glass materials for different purposes, such as bar codes for product tracking, brand logos or just decoration. Systems with a variety of different laser sources, with inherent power ranges, wavelengths and pulse regimes have been used, namely CO2, Nd:YAG, Excimer, Ti-Sapphire lasers. CO2 Lasers systems, although being a reliable tool for materials processing, and very compact in the case of sealed low power lasers, are usually associated with a localized thermal loading on the material, causing brittle materials like glass to crack around the irradiated area. In this experimental study a pulsed CO2 laser was used to direct marking the glass surface. The temporal characteristics of the laser pulse--pulse length, period and duty cycle were varied, and glass materials with different thermal properties were used in order to correlate the marking process--cracking or softening with or without material removal with the laser and material characteristics. Glass materials with major industrial application, such as soda-lima, borosilicate (PYREX) glasses and crystal have been investigated. Laser marked areas have been characterized in terms of surface optical properties, like diffuse and direct reflectance and transmittance for white light, directly related with marked surface quality.

  4. Pulsed laser deposition of chalcogenide sulfides from multi- and single-component targets: the non-stoichiometric material transfer

    DEFF Research Database (Denmark)

    Schou, Jørgen; Ganskukh, Mungunshagai; Ettlinger, Rebecca Bolt


    , and the Cu content is also very low at low fluence from a single-component target. Above this threshold, the Cu content in the films increases almost linearly up to a value above the stoichiometric value, while the ratio of the concentration of the other metals Zn to Sn (Zn/Sn) remains constant. Films...

  5. Single particle deformation and analysis of the same silica coated gold nanorods before and after fs-laser pulse excitation

    NARCIS (Netherlands)

    Albrecht, W.; Deng, Tian-Song; Goris, Bart; van Huis, M.A.; Bals, Sarah; van Blaaderen, Alfons


    We performed single particle deformation experiments on silicacoated gold nanorods under femtosecond (fs) illumination. Changes in the particle shape were analyzed by electron microscopy and associated changes in the plasmon resonance by electron energy loss spectroscopy. Silica-coated rods were

  6. Tunable CO2 laser system with subnanosecond-pulse-train output (United States)

    Kimura, W. D.


    A CO2 laser system has been demonstrated that generates a train of subnanosecond pulses tunable over the P and R branches of the CO2 laser spectrum at 9-11 μm. It utilizes optical free induction decay to generate a single 100-ps laser pulse from a tunable transverse-excited-atmospheric CO2 laser. This laser pulse is injection-seeded into a high-pressure CO2 oscillator whose output consists of a train of amplified 100-ps pulses with maximum pulse energy of 30 mJ, corresponding to a peak power of 300 MW. The 100-ps, tunable, infrared laser pulses are needed for a new technique to remotely detect atmospheric gaseous molecules, which relies on the train of CO2 laser pulses selectively exciting the target molecules whose presence is then revealed using a separate terahertz probe beam.

  7. Direct measurement of the pulse duration and frequency chirp of seeded XUV free electron laser pulses (United States)

    Azima, Armin; Bödewadt, Jörn; Becker, Oliver; Düsterer, Stefan; Ekanayake, Nagitha; Ivanov, Rosen; Kazemi, Mehdi M.; Lamberto Lazzarino, Leslie; Lechner, Christoph; Maltezopoulos, Theophilos; Manschwetus, Bastian; Miltchev, Velizar; Müller, Jost; Plath, Tim; Przystawik, Andreas; Wieland, Marek; Assmann, Ralph; Hartl, Ingmar; Laarmann, Tim; Rossbach, Jörg; Wurth, Wilfried; Drescher, Markus


    We report on a direct time-domain measurement of the temporal properties of a seeded free-electron laser pulse in the extreme ultraviolet spectral range. Utilizing the oscillating electromagnetic field of terahertz radiation, a single-shot THz streak-camera was applied for measuring the duration as well as spectral phase of the generated intense XUV pulses. The experiment was conducted at FLASH, the free electron laser user facility at DESY in Hamburg, Germany. In contrast to indirect methods, this approach directly resolves and visualizes the frequency chirp of a seeded free-electron laser (FEL) pulse. The reported diagnostic capability is a prerequisite to tailor amplitude, phase and frequency distributions of FEL beams on demand. In particular, it opens up a new window of opportunities for advanced coherent spectroscopic studies making use of the high degree of temporal coherence expected from a seeded FEL pulse.

  8. Quantum Computation with Ultrafast Laser Pulse Shaping

    Indian Academy of Sciences (India)

    Quantum Computation with Ultrafast. Laser Pulse Shaping. Debabrata Goswami is at the Department of. Chemistry, Indian. Institute of Technology,. Kanpur, where he explores the applications of ultrafast shaped pulses to bio-imaging, coherent control, high-speed communication and quantum computing. Keywords. Qubit ...

  9. Survey on modern pulsed high power lasers

    International Nuclear Information System (INIS)

    Witte, K.J.


    The requirements to be met by lasers for particle acceleration are partially similar to those already known for fusion lasers. The power level wanted in both caes is up to 100 TW or even more. The pulse durations favourable for laser accelerators are in the range from 1 ps to 1000 ps whereas fusion lasers require several ns. The energy range for laser accelerators is thus correspondingly smaller than that for fusion lasers: 1-100 kJ versus several 100 kJ. The design criteria of lasers meeting the requirements are discussed in the following. The CO 2 , iodine, Nd:glass and excimer lasers are treated in detail. The high repetition rate aspect will not be particularly addressed since for the present generation of lasers the wanted rates of far above 1 Hz are completely out of scope. Moreover, for the demonstration of principle these rates are not needed. (orig./HSI)

  10. Demonstration of a self-pulsing photonic crystal Fano laser

    DEFF Research Database (Denmark)

    Yu, Yi; Xue, Weiqi; Semenova, Elizaveta


    photonic and plasmonic systems(13,14). The Fano resonance leads to unique laser characteristics. In particular, because the Fano mirror is very narrowband compared to conventional laser mirrors, the laser is single mode and can be modulated via the mirror. We show, experimentally and theoretically......, that nonlinearities in the mirror may even promote the generation of a self-sustained train of pulses at gigahertz frequencies, an effect that has previously been observed only in macroscopic lasers(15-18). Such a source is of interest for a number of applications within integrated photonics....

  11. Controlled generation of a single Trichel pulse and a series of single Trichel pulses in air (United States)

    Mizeraczyk, Jerzy; Berendt, Artur; Akishev, Yuri


    In this paper, a simple method for the controlled generation of a single Trichel pulse or a series of single Trichel pulses of a regulated repetition frequency in air is proposed. The concept of triggering a single Trichel pulse or a series of such pulses is based on the precise controlling the voltage inception of the negative corona, which can be accomplished through the use of a ramp voltage pulse or a series of such pulses with properly chosen ramp voltage pulse parameters (rise and fall times, and ramp voltage pulse repetition frequency). The proposal has been tested in experiments using a needle-to-plate electrode arrangement in air, and reproducible Trichel pulses (single or in a series) were obtained by triggering them with an appropriately designed voltage waveform. The proposed method and results obtained have been qualitatively analysed. The analysis provides guidance for designing the voltage ramp pulse in respect of the generation of a single Trichel pulse or a series of single Trichel pulses. The controlled generation of a single Trichel pulse or a series of such pulses would be a helpful research tool for the refined studies of the fundamental processes in a negative corona discharge in a single- (air is an example) and multi-phase gaseous fluids. The controlled generation of a single Trichel pulse or a series of Trichel pulses can also be attractive for those corona treatments which need manipulation of the electric charge and heat portions delivered by the Trichel pulses to the object.

  12. Intrinsic chirp of single-cycle pulses

    International Nuclear Information System (INIS)

    Lin Qiang; Zheng Jian; Dai Jianming; Ho, I-Chen; Zhang, X.-C.


    The Fourier transform-limited electromagnetic pulse has been regarded to be free of chirps for a long time. This is no longer true if the pulse duration goes down to or less than one optical cycle. We report the experimental observation of intrinsic chirps in such pulses with the sub-single-cycle terahertz (THz) waveforms obtained with a standard THz time-domain spectroscopy system. The results confirm the break down of the carrier-envelope (CE) expression for single-cycle optical pulses, and may influence the experimental measurements and theoretical modeling with single-cycle pulses.

  13. Laser Ablation of Biological Tissue Using Pulsed CO2 Laser

    International Nuclear Information System (INIS)

    Hashishin, Yuichi; Sano, Shu; Nakayama, Takeyoshi


    Laser scalpels are currently used as a form of laser treatment. However, their ablation mechanism has not been clarified because laser excision of biological tissue occurs over a short time scale. Biological tissue ablation generates sound (laser-induced sound). This study seeks to clarify the ablation mechanism. The state of the gelatin ablation was determined using a high-speed video camera and the power reduction of a He-Ne laser beam. The aim of this study was to clarify the laser ablation mechanism by observing laser excision using the high-speed video camera and monitoring the power reduction of the He-Ne laser beam. We simulated laser excision of a biological tissue by irradiating gelatin (10 wt%) with radiation from a pulsed CO 2 laser (wavelength: 10.6 μm; pulse width: 80 ns). In addition, a microphone was used to measure the laser-induced sound. The first pulse caused ablation particles to be emitted in all directions; these particles were subsequently damped so that they formed a mushroom cloud. Furthermore, water was initially evaporated by laser irradiation and then tissue was ejected.

  14. Nonlinear Compton scattering in ultrashort laser pulses

    International Nuclear Information System (INIS)

    Mackenroth, F.; Di Piazza, A.


    A detailed analysis of the photon emission spectra of an electron scattered by a laser pulse containing only very few cycles of the carrying electromagnetic field is presented. The analysis is performed in the framework of strong-field quantum electrodynamics, with the laser field taken into account exactly in the calculations. We consider different emission regimes depending on the laser intensity, placing special emphasis on the regime of one-cycle beams and of high laser intensities, where the emission spectra depend nonperturbatively on the laser intensity. In this regime, we, in particular, present an accurate stationary phase analysis of the integrals that are shown to determine the computed emission spectra. The emission spectra show significant differences with respect to those in a long pulsed or monochromatic laser field: The emission lines obtained here are much broader, and more important, no dressing of the electron mass is observed.

  15. Computer control of pulsed tunable dye lasers

    International Nuclear Information System (INIS)

    Thattey, S.S.; Dongare, A.S.; Suri, B.M.; Nair, L.G.


    Pulsed tunable dye lasers are being used extensively for spectroscopic and photo-chemical experiments, and a system for acquisition and spectral analysis of a volume of data generated will be quite useful. The development of a system for wavelength tuning and control of tunable dye lasers and an acquisition system for spectral data generated in experiments with these lasers are described. With this system, it is possible to control the tuning of three lasers, and acquire data in four channels, simultaneously. It is possible to arrive at the desired dye laser wavelength with a reproducibility of ± 0.012 cm -1 , which is within the absorption width (atomic interaction) caused by pulsed dye lasers of linewidth 0.08 cm -1 . The spectroscopic data generated can be analyzed for spectral identification within absolute accuracy ± 0.012 cm -1 . (author). 6 refs., 11 figs

  16. Laser pulse shaping for high gradient accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Villa, F., E-mail: [INFN-Laboratori Nazionali di Frascati, via E. Fermi 40, 00044 Frascati (Italy); Anania, M.P.; Bellaveglia, M. [INFN-Laboratori Nazionali di Frascati, via E. Fermi 40, 00044 Frascati (Italy); Bisesto, F. [INFN-Laboratori Nazionali di Frascati, via E. Fermi 40, 00044 Frascati (Italy); Università La Sapienza di Roma, Via A. Scarpa 14, Rome (Italy); Chiadroni, E. [INFN-Laboratori Nazionali di Frascati, via E. Fermi 40, 00044 Frascati (Italy); Cianchi, A. [INFN-Roma Tor Vergata and Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome (Italy); Curcio, A.; Galletti, M.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Gatti, G. [INFN-Laboratori Nazionali di Frascati, via E. Fermi 40, 00044 Frascati (Italy); Moreno, M.; Petrarca, M. [Università La Sapienza di Roma, Via A. Scarpa 14, Rome (Italy); Pompili, R.; Vaccarezza, C. [INFN-Laboratori Nazionali di Frascati, via E. Fermi 40, 00044 Frascati (Italy)


    In many high gradient accelerator schemes, i.e. with plasma or dielectric wakefield induced by particles, many electron pulses are required to drive the acceleration of one of them. Those electron bunches, that generally should have very short duration and low emittance, can be generated in photoinjectors driven by a train of laser pulses coming inside the same RF bucket. We present the system used to shape and characterize the laser pulses used in multibunch operations at Sparc-lab. Our system gives us control over the main parameter useful to produce a train of up to five high brightness bunches with tailored intensity and time distribution.

  17. Hybrid Pulsed Nd:YAG Laser (United States)

    Miller, Sawyer; Trujillo, Skyler; Fort Lewis College Laser Group Team

    This work concerns the novel design of an inexpensive pulsed Nd:YAG laser, consisting of a hybrid Kerr Mode Lock (KLM) and Q-switch pulse. The two pulse generation systems work independently, non simultaneously of each other, thus generating the ability for the user to easily switch between ultra-short pulse widths or large energy density pulses. Traditionally, SF57 glass has been used as the Kerr medium. In this work, novel Kerr mode-locking mediums are being investigated including: tellurite compound glass (TeO2), carbon disulfide (CS2), and chalcogenide glass. These materials have a nonlinear index of refraction orders of magnitude,(n2), larger than SF57 glass. The Q-switched pulse will utilize a Pockels cell. As the two pulse generation systems cannot be operated simultaneously, the Pockels cell and Kerr medium are attached to kinematic mounts, allowing for quick interchange between systems. Pulse widths and repetition rates will vary between the two systems. A goal of 100 picosecond pulse widths are desired for the mode-locked system. A goal of 10 nanosecond pulse widths are desired for the Q-switch system, with a desired repetition rate of 50 Hz. As designed, the laser will be useful in imaging applications.

  18. Components for monolithic fiber chirped pulse amplification laser systems (United States)

    Swan, Michael Craig

    The first portion of this work develops techniques for generating femtosecond-pulses from conventional fabry-perot laser diodes using nonlinear-spectral-broadening techniques in Yb-doped positive dispersion fiber ampliers. The approach employed an injection-locked fabry-perot laser diode followed by two stages of nonlinear-spectral-broadening to generate sub-200fs pulses. This thesis demonstrated that a 60ps gain-switched fabry-perot laser-diode can be injection-locked to generate a single-longitudinal-mode pulse and compressed by nonlinear spectral broadening to 4ps. Two problems have been identified that must be resolved before moving forward with this approach. First, gain-switched pulses from a standard diode-laser have a number of characteristics not well suited for producing clean self-phase-modulation-broadened pulses, such as an asymmetric temporal shape, which has a long pulse tail. Second, though parabolic pulse formation occurs for any arbitrary temporal input pulse profile, deviation from the optimum parabolic input results in extensively spectrally modulated self-phase-modulation-broadened pulses. In conclusion, the approach of generating self-phase-modulation-broadened pulses from pulsed laser diodes has to be modified from the initial approach explored in this thesis. The first Yb-doped chirally-coupled-core ber based systems are demonstrated and characterized in the second portion of this work. Robust single-mode performance independent of excitation or any other external mode management techniques have been demonstrated in Yb-doped chirally-coupled-core fibers. Gain and power efficiency characteristics are not compromised in any way in this novel fiber structure up to the 87W maximum power achieved. Both the small signal gain at 1064nm of 30.3dB, and the wavelength dependence of the small signal gain were comparable to currently deployed large-mode-area-fiber technology. The efficiencies of the laser and amplifier were measured to be 75% and 54

  19. Plasma high-order-harmonic generation from ultraintense laser pulses (United States)

    Tang, Suo; Kumar, Naveen; Keitel, Christoph H.


    Plasma high-order-harmonic generation from an extremely intense short-pulse laser is explored by including the effects of ion motion, electron-ion collisions, and radiation reaction force in the plasma dynamics. The laser radiation pressure induces plasma ion motion through the hole-boring effect, resulting in frequency shifting and widening of the harmonic spectra. The classical radiation reaction force slightly mitigates the frequency broadening caused by the ion motion. Based on the results and physical considerations, parameter maps highlighting the optimum regions for generating a single intense attosecond pulse and coherent XUV radiation are presented.

  20. Plasma shape control by pulsed solenoid on laser ion source (United States)

    Sekine, M.; Ikeda, S.; Romanelli, M.; Kumaki, M.; Fuwa, Y.; Kanesue, T.; Hayashizaki, N.; Lambiase, R.; Okamura, M.


    A Laser ion source (LIS) provides high current heavy ion beams with a very simple mechanical structure. Plasma is produced by a pulsed laser ablation of a solid state target and ions are extracted by an electric field. However, it was difficult to manipulate the beam parameters of a LIS, since the plasma condition could only be adjusted by the laser irradiation condition. To enhance flexibility of LIS operation, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The experimentally obtained current profile was satisfactorily controlled by the pulsed magnetic field. This approach may also be useful to reduce beam emittance of a LIS.

  1. Plasma shape control by pulsed solenoid on laser ion source

    International Nuclear Information System (INIS)

    Sekine, M.; Ikeda, S.; Romanelli, M.; Kumaki, M.; Fuwa, Y.; Kanesue, T.; Hayashizaki, N.; Lambiase, R.; Okamura, M.


    A Laser ion source (LIS) provides high current heavy ion beams with a very simple mechanical structure. Plasma is produced by a pulsed laser ablation of a solid state target and ions are extracted by an electric field. However, it was difficult to manipulate the beam parameters of a LIS, since the plasma condition could only be adjusted by the laser irradiation condition. To enhance flexibility of LIS operation, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The experimentally obtained current profile was satisfactorily controlled by the pulsed magnetic field. This approach may also be useful to reduce beam emittance of a LIS

  2. The obtaining of giant laser pulses by optical pumping

    International Nuclear Information System (INIS)

    Briquet, Georges


    From coherent pumping studies a laser of short pulse duration was developed. Further study of laser effects in organic substances was envisaged. The first part of the work yielded awaited results, and led to the development of a single mode emitter (due to the small dimensions of the cavity). The principles of laser action were enumerated and the relative parameters defined. Various methods of obtaining pulses were discussed; the reasons behind the particular choice mode were given. A theoretical study was then made leading to the establishment of the fundamental equations defining the pulse formation process. An important part of the test deals with technical implications and the experimental results, which have arisen. The conclusion reviews possible applications. (author) [fr

  3. Dual-pulse laser-induced breakdown spectroscopy with combinations of femtosecond and nanosecond laser pulses. (United States)

    Scaffidi, Jon; Pender, Jack; Pearman, William; Goode, Scott R; Colston, Bill W; Carter, J Chance; Angel, S Michael


    Nanosecond and femtosecond laser pulses were combined in an orthogonal preablation spark dual-pulse laser-induced breakdown spectroscopy (LIBS) configuration. Even without full optimization of interpulse alignment, ablation focus, large signal, signal-to-noise ratio, and signal-to-background ratio enhancements were observed for both copper and aluminum targets. Despite the preliminary nature of this study, these results have significant implications in the attempt to explain the sources of dual-pulse LIBS enhancements.

  4. Bringing Pulsed Laser Welding into Production

    DEFF Research Database (Denmark)

    Olsen, Flemmming Ove


    performed and is currently in progress in collaboration with a major Danish company, who currently is applying laser welding in several production lines. Furthermore some case stories from development work on laser welding for industri-al production will be described. One case story describes a current...... production of hermetic weld seams produced on radiator thermostats applying pulsed laser welding. This application has now been running in several years. 2 laser systems are currently welding each serving two welding stations. Another case story is describing a high precision assembly technique of a product......-nationally the group is mostly known for its contri-butions to the development of the laser cutting process, but further it has been active within laser welding, both in assisting industry in bringing laser welding into production in several cases and in performing fundamental R & D. In this paper some research...

  5. Laser-pulsed plasma chemistry: Laser-initiated plasma oxidation of niobium (United States)

    Marks, R. F.; Pollak, R. A.; Avouris, Ph.; Lin, C. T.; Théfaine, Y. J.


    We report the first observation of the chemical modification of a solid surface exposed to an ambient gas plasma initiated by the interaction of laser radiation with the same surface. A new technique, which we designate laser-pulsed plasma chemistry (LPPC), is proposed for activating heterogeneous chemical reactions at solid surfaces in a gaseous ambient by means of a plasma initiated by laser radiation. Results for niobium metal in one atmosphere oxygen demonstrate single-pulse, self-limiting oxide growth induced by a pulsed CO2 laser. X-ray photoelectron spectroscopy (XPS or ESCA) was used to monitor surface chemical composition changes and thickness control of thin (1 to 5 nm) reaction product layers. The dependence of single-pulse oxide growth upon laser fluence is observed to be monotonic for oxide thicknesses up to 5 nm. Composition of the oxide Nb2O5-δ, formed by such an optically driven plasma, is similar to that formed by low-temperature oxidation processes such as rf plasma oxidation; however, the valence defect δ of the LPPC oxide is a least two to five times lower. Interdiffusion at the oxide/metal interface becomes important at higher irradiances and is activated by direct optical coupling with the solid or by plasma-mediated thermal coupling. Under ultrahigh vacuum, CO2 laser irradiances greater than 0.9 J cm-2 per pulse thin the surface oxide.

  6. Optical trapping with femtosecond laser pulses (United States)

    Devi, Anita; Dhamija, Shaina; De, Arijit K.


    Laser trapping of 100nm diameter polystyrene bead under high repetition rate ultrafast pulsed excitation is studied theoretically as well as experimentally. In our theoretical analysis, we explore the role of optical Kerr effect at 50mW average power under pulsed excitation. In our experiment, we use a CMOS camera to record two-photon fluorescence signal from the trapped particle which decays with time due to photo-bleaching.

  7. Investigation on the impact of pulse duration for laser induced lithotripsy (United States)

    Sroka, Ronald; Kiris, Tugba; Fiedler, Sebastian; Scheib, Gabriel; Kuznetsova, Julia; Pongratz, Thomas


    Objective: In-vitro investigation of Ho:YAG-laser induced stone fragmentation was performed to identify potential impacts of different pulse durations on stone fragmentation characteristics. Materials and Methods: An innovative Ho:YAG laser system (Swiss LaserClast, EMS S.A., Nyon, Switzerland) with selectable long- or short pulse mode was tested with regard to its fragmentation properties. The pulse duration depends on the specific laser parameter used. Fragmentation tests (hand held, hands free, single pulse induced crater) on artificial BEGO-Stones and fiber burn back tests were performed under reproducible experimental conditions. Additionally, the repulsion of long versus short laser pulses was compared using the pendulum set-up. Results: Differences in fragmentation rates between the two pulse duration regimes were seen. The difference was, however, not statistically significant. Using long pulse mode, the fiber burn back is nearly negligible while in short pulse mode an increased burn back was seen. The results of the pendulum test showed that the deviation induced by the momentum of shorter pulses is increased compared to longer pulses. Conclusion: Long pulse-mode showed reduced side effects like repulsion and fiber burn back in comparison to short pulse-mode while fragmentation rates remained at a comparable level. Lower push back and reduced burn back of longer laser pulses may results in better clinical outcome of laser lithotripsy and more convenient handling during clinical use.

  8. Nail psoriasis treated with pulsed dye laser* (United States)

    Peruzzo, Juliano; Garbin, Gabriela Czarnobay; Maldonado, Gabriela; Cestari, Tania Ferreira


    Nail changes are present in about 50% of psoriasis patients and tend to be refractory to conventional treatments. Pulsed dye laser has emerged as an alternative therapy. Our aim is to evaluate the efficacy of pulsed dye laser in nail psoriasis and the impact of treatment on quality of life. Fourteen patients were treated in monthly sessions for three months. The outcome assesment was made by the Nail Psoriasis Severity Index (NAPSI). The median improvement in the scores of the overall NAPSI, nail bed NAPSI, and nail matrix NAPSI were 44.2% (P = 0.002), 50% (P = 0.033) and 65.1% (P = 0.024), respectively. PMID:29364458

  9. Red Shift and Broadening of Backward Harmonic Radiation from Electron Oscillations Driven by Femtosecond Laser Pulse

    International Nuclear Information System (INIS)

    Tian Youwei; Yu Wei; Lu Peixiang; Senecha, Vinod K; Han, Xu; Deng Degang; Li Ruxin; Xu Zhizhan


    The characteristics of backward harmonic radiation due to electron oscillations driven by a linearly polarized fs laser pulse are analysed considering a single electron model. The spectral distributions of the electron's backward harmonic radiation are investigated in detail for different parameters of the driver laser pulse. Higher order harmonic radiations are possible for a sufficiently intense driving laser pulse. We have shown that for a realistic pulsed photon beam, the spectrum of the radiation is red shifted as well as broadened because of changes in the longitudinal velocity of the electrons during the laser pulse. These effects are more pronounced at higher laser intensities giving rise to higher order harmonics that eventually leads to a continuous spectrum. Numerical simulations have further shown that by increasing the laser pulse width the broadening of the high harmonic radiations can be controlled

  10. Temporal pulse precisely sculpted millijoule-level fiber laser injection system for high-power laser driver. (United States)

    Xu, Dangpeng; Tian, Xiaocheng; Zhou, Dandan; Zong, Zhaoyu; Fan, Mengqiu; Zhang, Rui; Zhu, Na; Xie, Lianghua; Li, Hongxun; Wang, Jianjun; Li, Mingzhong; Zhang, Xiaomin


    A fiber laser injection system used as a seeder for a high-power laser facility of inertial confinement fusion was designed to meet stringent requirements. Herein, we demonstrate the fiber laser injection system, whose output single-pulse energy reaches the millijoule class. With two-stage amplitude modulators, the system produces a pulse with a higher pulse shaping capability. In addition, amplifying the pulse with large-mode-area fiber and single polarization, large-mode-area photonic crystal fiber (PCF) ensures a good beam quality output. In this proof-of-principle experiment, the long-term stability of FM-to-AM modulation and pulse energy is demonstrated. The successful demonstration of this laser injection system holds great significance for future high-power laser drivers.

  11. Ionization of a multilevel atom by ultrashort laser pulses

    International Nuclear Information System (INIS)

    Andreev, A. V.; Stremoukhov, S. Yu.; Shutova, O. A.


    Specific features of ionization of single atoms by laser fields of a near-atomic strength are investigated. Calculations are performed for silver atoms interacting with femtosecond laser pulses with wavelengths λ = 800 nm (Ti:Sapphire) and λ = 1.064 μm (Nd:YAG). The dependences of the probability of ionization and of the form of the photoelectron energy spectra on the field of laser pulses for various values of their duration are considered. It is shown that the behavior of the probability of ionization in the range of subatomic laser pulse fields is in good agreement with the Keldysh formula. However, when the field strength attains values close to the atomic field strength, the discrepancies in these dependences manifested in a decrease in the ionization rate (ionization stabilization effect) or in its increase (accelerated ionization) are observed. These discrepancies are associated with the dependence of the population dynamics of excited discrete energy levels of the atom on the laser pulse field amplitude.

  12. Time-resolved temperature measurement and numerical simulation of superposed pulsed Nd:YAG laser irradiated silicon (United States)

    Lv, Xueming; Pan, Yunxiang; Jia, Zhichao; Shen, Zhonghua; Lu, Jian; Ni, Xiaowu


    Time-resolved surface temperature of single crystal silicon was measured by an infrared radiation pyrometer. The silicon sample was irradiated by two pulsed Nd:YAG lasers with pulse duration of 1ms superposed by 7ns pulses, referred to as combined pulse laser (CPL). The change of the damage radius with the millisecond (ms) laser energy density was studied, and then compared with that of single ms laser irradiation. An axisymmetric numerical model was established for calculation of the temperature field distribution while silicon was irradiated by single ms laser and CPL, respectively. Compared with experimental results, the CPL-silicon damage mechanism was discussed.

  13. Pulsed laser deposition: the road to hybrid nanocomposites coatings and novel pulsed laser adaptive technique. (United States)

    Serbezov, Valery


    The applications of Pulsed Laser Deposition (PLD) for producing nanoparticles, nanostructures and nanocomposites coatings based on recently developed laser ablating techniques and their convergence are being reviewed. The problems of in situ synthesis of hybrid inorganic-organic nanocomposites coatings by these techniques are being discussed. The novel modification of PLD called Pulsed Laser Adaptive Deposition (PLAD) technique is presented. The in situ synthesized inorganic/organic nanocomposites coatings from Magnesium (Mg) alloy/Rhodamine B and Mg alloy/ Desoximetasone by PLAD are described. The trends, applications and future development of discussed patented methods based on the laser ablating technologies for producing hybrid nanocomposite coatings have also been discussed in this review.

  14. Pulsed laser deposition of hydroxyapatite thin films

    Czech Academy of Sciences Publication Activity Database

    Koch, C.F.; Johnson, S.; Kumar, D.; Jelínek, Miroslav; Chrisey, D.B.; Doraiswamy, A.; Jin, C.; Narayan, R.J.; Mihailescu, I. N.


    Roč. 27, - (2007), s. 484-494 ISSN 0928-4931 Institutional research plan: CEZ:AV0Z10100522 Keywords : hydroxyapatite * pulsed laser deposition * bioactive ceramics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.486, year: 2007

  15. Quantum Computation with Ultrafast Laser Pulse Shaping

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 6. Quantum Computation with Ultrafast Laser Pulse Shaping. Debabrata Goswami. General Article Volume 10 Issue 6 June 2005 pp 8-14. Fulltext. Click here to view fulltext PDF. Permanent link:

  16. Laser surface and subsurface modification of sapphire using femtosecond pulses

    Energy Technology Data Exchange (ETDEWEB)

    Eberle, G., E-mail: [Institute of Machine Tools and Manufacturing, ETH Zurich, Leonhardstrasse 21, 8092 Zurich (Switzerland); Schmidt, M. [Chair of Photonic Technologies, University of Erlangen-Nuremberg, Konrad-Zuse-Strasse 3-5, 91052 Erlangen (Germany); Pude, F. [Inspire AG, Technoparkstrasse 1, 8005 Zurich (Switzerland); Wegener, K. [Institute of Machine Tools and Manufacturing, ETH Zurich, Leonhardstrasse 21, 8092 Zurich (Switzerland); Inspire AG, Technoparkstrasse 1, 8005 Zurich (Switzerland)


    Highlights: • Single and multipulse ablation threshold of aluminium oxide is determined. • Laser ablation, and in-volume modification followed by wet etching are demonstrated. • Quality following laser processing and laser-material interactions are studied. - Abstract: Two methods to process sapphire using femtosecond laser pulses are demonstrated, namely ablation (surface), and in-volume laser modification followed by wet etching (subsurface). Firstly, the single and multipulse ablation threshold is determined and compared with previous literature results. A unique application of ablation is demonstrated by modifying the entrance aperture of water jet orifices. Laser ablation exhibits advantages in terms of geometric flexibility and resolution, however, defects in the form of edge outbreaks and poor surface quality are evident. Secondly, the role of material transformation, polarisation state and formation of multi-focus structures after in-volume laser modification is investigated in order to explain their influence during the wet etching process. Laser scanning and electron microscopy as well as electron backscatter diffraction measurements supported by ion beam polishing are used to better understand quality and laser-material interactions of the two demonstrated methods of processing.

  17. Observation of enhanced field-free molecular alignment by two laser pulses

    DEFF Research Database (Denmark)

    Bisgaard, Christer; Poulsen, Mikael Dahlerup; Peronne, Emmanuel


    We show experimentally that field-free alignment of iodobenzene molecules, induced by a single, intense, linearly polarized 1.4-ps-long laser pulse, can be strongly enhanced by dividing the pulse into two optimally synchronized pulses of the same duration. For a given total energy of the two...

  18. Phase Noise Comparision of Short Pulse Laser Systems

    Energy Technology Data Exchange (ETDEWEB)

    S. Zhang; S. V. Benson; J. Hansknecht; D. Hardy; G. Neil; Michelle D. Shinn


    This paper describes the phase noise measurement on several different mode-locked laser systems that have completely different gain media and configurations including a multi-kW free-electron laser. We will focus on the state of the art short pulse lasers, especially the drive lasers for photocathode injectors. A comparison between the phase noise of the drive laser pulses, electron bunches and FEL pulses will also be presented.

  19. High precision laser direct microstructuring system based on bursts of picosecond pulses (United States)

    Mur, Jaka; Petelin, Jaka; Osterman, Natan; Petkovšek, Rok


    We have developed an efficient, high precision system for direct laser microstructuring using fiber laser generated bursts of picosecond pulses. An advanced opto-mechanical system for beam deflection and sample movement, precise pulse energy control, and a custom built fiber laser with the pulse duration of 65 ps have been combined in a compact setup. The setup allows structuring of single-micrometer sized objects with a nanometer resolution of the laser beam positioning due to a combination of acousto-optical laser beam deflection and tight focusing. The precise synchronization of the fiber laser with the pulse burst repetition frequency of up to 100 kHz allowed a wide range of working parameters, including a tuneable number of pulses in each burst with the intra-burst repetition frequency of 40 MHz and delivering exactly one burst of pulses to every chosen position. We have demonstrated that tightly focused bursts of pulses significantly increase the ablation efficiency during the microstructuring of a copper layer and shorten the typical processing time compared to the single pulse per spot regime. We have used a simple short-pulse ablation model to describe our single pulse ablation data and developed an upgrade to the model to describe the ablation with bursts. Bursts of pulses also contribute to a high quality definition of structure edges and sides. The increased ablation efficiency at lower pulse energies compared to the single pulse per spot regime opens a window to utilize compact fiber lasers designed to operate at lower pulse energies, reducing the overall system complexity and size.

  20. Laser-supported detonation waves and pulsed laser propulsion

    International Nuclear Information System (INIS)

    Kare, J.


    A laser thermal rocket uses the energy of a large remote laser, possibly ground-based, to heat an inert propellant and generate thrust. Use of a pulsed laser allows the design of extremely simple thrusters with very high performance compared to chemical rockets. The temperatures, pressures, and fluxes involved in such thrusters (10 4 K, 10 2 atmospheres, 10 7 w/cm 2 ) typically result in the creation of laser-supported detonation (LSD) waves. The thrust cycle thus involves a complex set of transient shock phenomena, including laser-surface interactions in the ignition of the LSD wave, laser-plasma interactions in the LSD wave itself, and high-temperature nonequilibrium chemistry behind the LSD wave. The SDIO Laser Propulsion Program is investigating these phenomena as part of an overall effort to develop the technology for a low-cost Earth-to-orbit laser launch system. We will summarize the Program's approach to developing a high performance thruster, the double-pulse planar thruster, and present an overview of some results obtained to date, along with a discussion of the many research question still outstanding in this area

  1. Laser Energy Monitor for Double-Pulsed 2-Micrometer IPDA Lidar Application (United States)

    Refaat, Tamer F.; Petros, Mulugeta; Remus, Ruben; Yu, Jirong; Singh, Upendra N.


    Integrated path differential absorption (IPDA) lidar is a remote sensing technique for monitoring different atmospheric species. The technique relies on wavelength differentiation between strong and weak absorbing features normalized to the transmitted energy. 2-micron double-pulsed IPDA lidar is best suited for atmospheric carbon dioxide measurements. In such case, the transmitter produces two successive laser pulses separated by short interval (200 microseconds), with low repetition rate (10Hz). Conventional laser energy monitors, based on thermal detectors, are suitable for low repetition rate single pulse lasers. Due to the short pulse interval in double-pulsed lasers, thermal energy monitors underestimate the total transmitted energy. This leads to measurement biases and errors in double-pulsed IPDA technique. The design and calibration of a 2-micron double-pulse laser energy monitor is presented. The design is based on a high-speed, extended range InGaAs pin quantum detectors suitable for separating the two pulse events. Pulse integration is applied for converting the detected pulse power into energy. Results are compared to a photo-electro-magnetic (PEM) detector for impulse response verification. Calibration included comparing the three detection technologies in single-pulsed mode, then comparing the pin and PEM detectors in double-pulsed mode. Energy monitor linearity will be addressed.

  2. Frequency conversion of high-intensity, femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Banks, P S


    Almost since the invention of the laser, frequency conversion of optical pulses via non- linear processes has been an area of active interest. However, third harmonic generation using ~(~1 (THG) in solids is an area that has not received much attention because of ma- terial damage limits. Recently, the short, high-intensity pulses possible with chirped-pulse amplification (CPA) laser systems allow the use of intensities on the order of 1 TW/cm2 in thin solids without damage. As a light source to examine single-crystal THG in solids and other high field inter- actions, the design and construction of a Ti:sapphire-based CPA laser system capable of ultimately producing peak powers of 100 TW is presented. Of special interest is a novel, all-reflective pulse stretcher design which can stretch a pulse temporally by a factor of 20,000. The stretcher design can also compensate for the added material dispersion due to propagation through the amplifier chain and produce transform-limited 45 fs pulses upon compression. A series of laser-pumped amplifiers brings the peak power up to the terawatt level at 10 Hz, and the design calls for additional amplifiers to bring the power level to the 100 TW level for single shot operation. The theory for frequency conversion of these short pulses is presented, focusing on conversion to the third harmonic in single crystals of BBO, KD*P, and d-LAP (deuterated I-arginine phosphate). Conversion efficiencies of up to 6% are obtained with 500 fs pulses at 1053 nm in a 3 mm thick BBO crystal at 200 GW/cm 2. Contributions to this process by unphasematched, cascaded second harmonic generation and sum frequency generation are shown to be very significant. The angular relationship between the two orders is used to measure the tensor elements of C = xt3)/4 with Crs = -1.8 x 1O-23 m2/V2 and .15Cri + .54Crs = 4.0 x 1O-23 m2/V2. Conversion efficiency in d-LAP is about 20% that in BBO and conversion efficiency in KD*P is 1% that of BBO. It is calculated

  3. Generation and patterning of Si nanoparticles by femtosecond laser pulses (United States)

    Zywietz, Urs; Reinhardt, Carsten; Evlyukhin, Andrey B.; Birr, Tobias; Chichkov, Boris N.


    The unique optical properties of nanoparticles are highly sensitive in respect to particle shapes, sizes, and localization on a sample. This demands for a fully controlled fabrication process. The use of femtosecond laser pulses to generate and transfer nanoparticles from a bulk target towards a collector substrate is a promising approach. This process allows a controlled fabrication of spherical nanoparticles with a very smooth surface. Several process parameters can be varied to achieve the desired nanoparticle characteristics. In this paper, the influence of two of these parameters, i.e. the applied pulse energy and the laser beam shape, on the generation of Si nanoparticles from a bulk Si target are studied in detail. By changing the laser intensity distribution on the target surface one can influence the dynamics of molten material inducing its flow to the edges or to the center of the focal spot. Due to this dynamics of molten material, a single femtosecond laser pulse with a Gaussian beam shape generates multiple spherical nanoparticles from a bulk Si target. The statistical properties of this process, with respect to number of generated nanoparticles and laser pulse energy are investigated. We demonstrate for the first time that a ring-shaped intensity distribution on the target surface results in the generation of a single silicon nanoparticle with a controllable size. Furthermore, the generated silicon nanoparticles presented in this paper show strong electric and magnetic dipole resonances in the visible and near-infrared spectral range. Theoretical simulations as well as optical scattering measurements of single silicon nanoparticles are discussed and compared.

  4. Study on damage of K9 glass under 248nm ultraviolet pulsed laser irradiation (United States)

    Wang, Xi; Fang, Xiaodong


    The damage of K9 glass under 248nm ultraviolet pulsed laser irradiation was studied. The laser pulse energy was kept within the range of 60mJ to 160mJ, and the repetition rate was adjusted within the range of 1Hz to 40Hz. The damage morphologies of single-pulse and multi-pulse laser irradiation were characterized by optical microscope, and the damage mechanism was discussed. The experimental results indicated that the damage of K9 glass irradiated by 248nm ultraviolet laser mainly followed the thermal-mechanical coupling mechanism and the damage threshold of K9 glass was 2.8J/cm2. The intensity of damage area increased gradually with the increase of the laser pulse number. It was shown that accumulation effect of laser induced damage to K9 glass was obvious.

  5. Mode-Locking in Broad-Area Semiconductor Lasers Enhanced by Picosecond-Pulse Injection


    Kaiser, J; Fischer, I; Elsasser, W; Gehrig, E; Hess, O


    We present combined experimental and theoretical investigations of the picosecond emission dynamics of broad-area semiconductor lasers (BALs). We enhance the weak longitudinal self-mode-locking that is inherent to BALs by injecting a single optical 50-ps pulse, which triggers the output of a distinct regular train of 13-ps pulses. Modeling based on multimode Maxwell-Bloch equations illustrates how the dynamic interaction of the injected pulse with the internal laser field efficiently couples ...

  6. Laser-driven hydrothermal process studied with excimer laser pulses (United States)

    Mariella, Raymond; Rubenchik, Alexander; Fong, Erika; Norton, Mary; Hollingsworth, William; Clarkson, James; Johnsen, Howard; Osborn, David L.


    Previously, we discovered [Mariella et al., J. Appl. Phys. 114, 014904 (2013)] that modest-fluence/modest-intensity 351-nm laser pulses, with insufficient fluence/intensity to ablate rock, mineral, or concrete samples via surface vaporization, still removed the surface material from water-submerged target samples with confinement of the removed material, and then dispersed at least some of the removed material into the water as a long-lived suspension of nanoparticles. We called this new process, which appears to include the generation of larger colorless particles, "laser-driven hydrothermal processing" (LDHP) [Mariella et al., J. Appl. Phys. 114, 014904 (2013)]. We, now, report that we have studied this process using 248-nm and 193-nm laser light on submerged concrete, quartzite, and obsidian, and, even though light at these wavelengths is more strongly absorbed than at 351 nm, we found that the overall efficiency of LDHP, in terms of the mass of the target removed per Joule of laser-pulse energy, is lower with 248-nm and 193-nm laser pulses than with 351-nm laser pulses. Given that stronger absorption creates higher peak surface temperatures for comparable laser fluence and intensity, it was surprising to observe reduced efficiencies for material removal. We also measured the nascent particle-size distributions that LDHP creates in the submerging water and found that they do not display the long tail towards larger particle sizes that we had observed when there had been a multi-week delay between experiments and the date of measuring the size distributions. This is consistent with transient dissolution of the solid surface, followed by diffusion-limited kinetics of nucleation and growth of particles from the resulting thin layer of supersaturated solution at the sample surface.

  7. Pulsed Raman fiber laser and multispectral imaging in three dimensions

    DEFF Research Database (Denmark)

    Andersen, Joachim F.; Busck, Jens; Heiselberg, Henning


    are then constructed with submillimeter accuracy for all visible colors. The generation of a series of Stokes peaks by Raman scattering in a Si fiber is discussed in detail and the laser radar technique is demonstrated. The data recording takes only a few seconds, and the high accuracy 3D color imaging works at ranges......Raman scattering in single-mode optical fibers is exploited to generate multispectral light from a green nanolaser with high pulse repetition rate. Each pulse triggers a picosecond camera and measures the distance by time-of-flight in each of the 0.5 Mpixels. Three-dimensional images...

  8. Pulsed laser radiation therapy of skin tumors

    International Nuclear Information System (INIS)

    Kozlov, A.P.; Moskalik, K.G.


    Radiation from a neodymium laser was used to treat 846 patients with 687 precancerous lesions or benign tumors of the skin, 516 cutaneous carcinomas, 33 recurrences of cancer, 51 melanomas, and 508 metastatic melanomas in the skin. The patients have been followed for three months to 6.5 years. No relapses have been observed during this period. Metastases to regional lymph nodes were found in five patients with skin melanoma. Pulsed laser radiation may be successfully used in the treatment of precancerous lesions and benign tumors as well as for skin carcinoma and its recurrences, and for skin melanoma. Laser radiation is more effective in the treatment of tumors inaccessible to radiation therapy and better in those cases in which surgery may have a bad cosmetic or even mutilating effect. Laser beams can be employed in conjunction with chemo- or immunotherapy

  9. Impact of pulse duration on Ho:YAG laser lithotripsy: fragmentation and dusting performance. (United States)

    Bader, Markus J; Pongratz, Thomas; Khoder, Wael; Stief, Christian G; Herrmann, Thomas; Nagele, Udo; Sroka, Ronald


    In vitro investigations of Ho:YAG laser-induced stone fragmentation were performed to identify potential impacts of different pulse durations on stone fragmentation characteristics. A Ho:YAG laser system (Swiss LaserClast, EMS S.A., Nyon, Switzerland) with selectable long or short pulse mode was tested with regard to its fragmentation and laser hardware compatibility properties. The pulse duration is depending on the specific laser parameters. Fragmentation tests (hand-held, hands-free, single-pulse-induced crater) on artificial BEGO stones were performed under reproducible experimental conditions (fibre sizes: 365 and 200 µm; laser settings: 10 W through combinations of 0.5, 1, 2 J/pulse and 20, 10, 5 Hz, respectively). Differences in fragmentation rates between the two pulse duration regimes were detected with statistical significance for defined settings. Hand-held and motivated Ho:YAG laser-assisted fragmentation of BEGO stones showed no significant difference between short pulse mode and long pulse mode, neither in fragmentation rates nor in number of fragments and fragment sizes. Similarly, the results of the hands-free fragmentation tests (with and without anti-repulsion device) showed no statistical differences between long pulse and short pulse modes. The study showed that fragmentation rates for long and short pulse durations at identical power settings remain at a comparable level. Longer holmium laser pulse duration reduces stone pushback. Therefore, longer laser pulses may result in better clinical outcome of laser lithotripsy and more convenient handling during clinical use without compromising fragmentation effectiveness.

  10. Selective laser melting of hypereutectic Al-Si40-powder using ultra-short laser pulses (United States)

    Ullsperger, T.; Matthäus, G.; Kaden, L.; Engelhardt, H.; Rettenmayr, M.; Risse, S.; Tünnermann, A.; Nolte, S.


    We investigate the use of ultra-short laser pulses for the selective melting of Al-Si40-powder to fabricate complex light-weight structures with wall sizes below 100 μ {m} combined with higher tensile strength and lower thermal expansion coefficient in comparison to standard Al-Si alloys. During the cooling process using conventional techniques, large primary silicon particles are formed which impairs the mechanical and thermal properties. We demonstrate that these limitations can be overcome using ultra-short laser pulses enabling the rapid heating and cooling in a non-thermal equilibrium process. We analyze the morphology characteristics and micro-structures of single tracks and thin-walled structures depending on pulse energy, repetition rate and scanning velocity utilizing pulses with a duration of 500 {fs} at a wavelength of 1030 {nm}. The possibility to specifically change and optimize the microstructure is shown.

  11. Atmospheric pressure nitrogen laser made by single block ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yuchuan; Wang Huaiming; Rao Deyi; Yan Zhicheng; Ge Qian; Li Yue; Zhang Yilu; Xie Yan


    This paper reports the experimental research for atmospheric pressure nitrogen laser of short tube design, with a single block ceramics as dielectric. With the laser discharge electrode 5.8 cm in length, we got pulse energy of 13 at 100 Hz, with a maximum average power of 1.3 mW, a pulse width of 0.8 ns, and a beam divergence of 1.3 x 3 mrad.

  12. Synthesis of single walled carbon nanotubes by dual laser vaporization

    CSIR Research Space (South Africa)

    Moodley, MK et al.


    Full Text Available Single-walled carbon nanotubes were synthesised by the laser vaporisation of graphite composite targets in a tube furnace. Two pulsed Nd:YAG lasers operating at fundamental (1 064 nm) and 2nd harmonic (532 nm) were combined, focused and evaporated...

  13. Brief review on pulse laser propulsion (United States)

    Yu, Haichao; Li, Hanyang; Wang, Yan; Cui, Lugui; Liu, Shuangqiang; Yang, Jun


    Pulse laser propulsion (PLP) is an advanced propulsion concept can be used across a variety of fields with a wide range of applications. PLP reflects superior payload as well as decreased launch costs in comparison with other conventional methods of producing thrust, such as chemical propulsion or electric propulsion. Numerous researchers have attempted to exploit the potential applications of PLP. This paper first reviews concepts relevant to PLP, including the propulsion modes, breakdown regimes, and propulsion efficiency; the propulsion targets for different materials with the pulse laser are then discussed in detail, including the propulsion of solid and liquid microspheres. PLP applications such as the driven microsatellite, target surface particle removal, and orbital debris removal are also discussed. Although the PLP has been applied to a variety of fields, further research is yet warranted to establish its application in the aerospace field.

  14. Laser Pulse Heating of Spherical Metal Particles

    Directory of Open Access Journals (Sweden)

    Michael I. Tribelsky


    Full Text Available We consider the general problem of laser pulse heating of spherical metal particles with the sizes ranging from nanometers to millimeters. We employ the exact Mie solution of the diffraction problem and solve the heat-transfer equation to determine the maximum temperature rise at the particle surface as a function of optical and thermometric parameters of the problem. Primary attention is paid to the case when the thermal diffusivity of the particle is much larger than that of the environment, as it is in the case of metal particles in fluids. We show that, in this case, for any given duration of the laser pulse, the maximum temperature rise as a function of the particle size reaches a maximum at a certain finite size of the particle. We suggest simple approximate analytical expressions for this dependence, which cover the entire parameter range of the problem and agree well with direct numerical simulations.

  15. Optical reprogramming with ultrashort femtosecond laser pulses (United States)

    Uchugonova, Aisada; Breunig, Hans G.; Batista, Ana; König, Karsten


    The use of sub-15 femtosecond laser pulses in stem cell research is explored with particular emphasis on the optical reprogramming of somatic cells. The reprogramming of somatic cells into induced pluripotent stem (iPS) cells can be evoked through the ectopic expression of defined transcription factors. Conventional approaches utilize retro/lenti-viruses to deliver genes/transcription factors as well as to facilitate the integration of transcription factors into that of the host genome. However, the use of viruses may result in insertional mutations caused by the random integration of genes and as a result, this may limit the use within clinical applications due to the risk of the formation of cancer. In this study, a new approach is demonstrated in realizing non-viral reprogramming through the use of ultrashort laser pulses, to introduce transcription factors into the cell so as to generate iPS cells.

  16. Layout of NALM fiber laser with adjustable peak power of generated pulses. (United States)

    Smirnov, Sergey; Kobtsev, Sergey; Ivanenko, Alexey; Kokhanovskiy, Alexey; Kemmer, Anna; Gervaziev, Mikhail


    The Letter proposes a new layout of a passively mode-locked fiber laser based on a nonlinear amplifying loop mirror (NALM) with two stretches of active fiber and two independently controlled pump modules. In contrast with conventional NALM configurations using a single piece of active fiber that yields virtually constant peak power, the proposed novel laser features larger than a factor of 2 adjustment range of peak power of generated pulses. The proposed layout also provides independent adjustment of duration and peak power of generated pulses as well as power-independent control of generated pulse spectral width impossible in NALM lasers with a single piece of active fiber.

  17. Pulsed-laser capabilities at the Laser-Hardened Materials Evaluation Laboratory (LHMEL) (United States)

    Royse, Robert W.; Seibert, Daniel B., II; Lander, Michael L.; Eric, John J.


    Pulsed laser capabilities at the Laser Hardened Material Evaluation Laboratory are described relevant to optical coupling, impulse generation and laser propulsion. Capabilities of the Nd:Glass laser are presented as well as supporting test systems.

  18. Influence of laser-supported detonation waves on metal drilling with pulsed CO2 lasers

    International Nuclear Information System (INIS)

    Stuermer, E.; von Allmen, M.


    Drilling of highly reflective metals in an ambient atmosphere with single TEA-CO 2 -laser pulses of fluences between 300 and 6000 J/cm 2 is reported. The drilling process was investigated by measuring the time-resolved laser power reflected specularly from the targets during the interaction and by analyzing the craters produced. Experiments were performed in ambient air, argon, and helium. Target damage was found to be strongly influenced by a laser-supported detonation (LSD) wave in the ambient gas. If the laser fluence exceeded a material-dependent damage threshold (copper: 300 J/cm 2 ), drilling occurred, but the efficiency was inversely related to the duration of the LSD wave. Efficient material removal is possible if the LSD wave can be dissipated within a small fraction of the laser pulse duration. This was achieved by small-F-number focusing of TEM 00 laser pulses of 5-μs duration. Replacing the ambient air at the target by a gas of lower density results in a further significant reduction of LSD-wave lifetime, and a correlated increase of the drilling yield. On copper targets a maximum drilling yield of 10 -5 cm 3 /J was observed in ambient helium at a laser fluence of 1 kJ/cm 2

  19. Pulsed, Single-Frequency, 2-um Seed Source for Coherent LIDAR Applications, Phase I (United States)

    National Aeronautics and Space Administration — The primary objective of the proposed Phase I effort is to develop and demonstrate a low-average power, pulsed, single-frequency, 2-um Ho-laser source for...

  20. Ablation experiment and threshold calculation of titanium alloy irradiated by ultra-fast pulse laser

    Directory of Open Access Journals (Sweden)

    Buxiang Zheng


    Full Text Available The interaction between an ultra-fast pulse laser and a material's surface has become a research hotspot in recent years. Micromachining of titanium alloy with an ultra-fast pulse laser is a very important research direction, and it has very important theoretical significance and application value in investigating the ablation threshold of titanium alloy irradiated by ultra-fast pulse lasers. Irradiated by a picosecond pulse laser with wavelengths of 1064 nm and 532 nm, the surface morphology and feature sizes, including ablation crater width (i.e. diameter, ablation depth, ablation area, ablation volume, single pulse ablation rate, and so forth, of the titanium alloy were studied, and their ablation distributions were obtained. The experimental results show that titanium alloy irradiated by a picosecond pulse infrared laser with a 1064 nm wavelength has better ablation morphology than that of the green picosecond pulse laser with a 532 nm wavelength. The feature sizes are approximately linearly dependent on the laser pulse energy density at low energy density and the monotonic increase in laser pulse energy density. With the increase in energy density, the ablation feature sizes are increased. The rate of increase in the feature sizes slows down gradually once the energy density reaches a certain value, and gradually saturated trends occur at a relatively high energy density. Based on the linear relation between the laser pulse energy density and the crater area of the titanium alloy surface, and the Gaussian distribution of the laser intensity on the cross section, the ablation threshold of titanium alloy irradiated by an ultra-fast pulse laser was calculated to be about 0.109 J/cm2.

  1. A 7 T Pulsed Magnetic Field Generator for Magnetized Laser Plasma Experiments (United States)

    Hu, Guangyue; Liang, Yihan; Song, Falun; Yuan, Peng; Wang, Yulin; Zhao, Bin; Zheng, Jian


    A pulsed magnetic field generator was developed to study the effect of a magnetic field on the evolution of a laser-generated plasma. A 40 kV pulsed power system delivered a fast (~230 ns), 55 kA current pulse into a single-turn coil surrounding the laser target, using a capacitor bank of 200 nF, a laser-triggered switch and a low-impedance strip transmission line. A one-dimensional uniform 7 T pulsed magnetic field was created using a Helmholtz coil pair with a 6 mm diameter. The pulsed magnetic field was controlled to take effect synchronously with a nanosecond heating laser beam, a femtosecond probing laser beam and an optical Intensified Charge Coupled Device (ICCD) detector. The preliminary experiments demonstrate bifurcation and focusing of plasma expansion in a transverse magnetic field.

  2. (Monitoring interfacial dynamics by pulsed laser techniques): (Annual report)

    Energy Technology Data Exchange (ETDEWEB)

    Richmond, G.L.


    Our approach in these studies is to use Second Harmonic Generation (SHG) to monitor the response of the system at a known time delay following a fast perturbation such as a voltage pulse or photoexcitation. In the first experiments of this kind, we reported the success in performing these experiments using a 10 ns, 10 Hz YAG laser. By monitoring the SH light generated by the IR laser pulse at numerous delays after a potential step, we captured the complete transient response of the charging of the double layer after the perturbation. One drawback to these studies was that it took several hours to capture a single decay curves since each delay point required signal averaging at a repetition rate of 0.03 Hz. We alleviated this problem by setting up a 76 Hz, 100 psec YAG laser with photon counting equipment which enabled us to continuously monitor the SHG response to the applied voltage step. The adsorption and desorption of specifically and nonspecifically adsorbed anions on polycrystalline Ag electrodes biased within the limits of the ideally polarizable region (/minus/1.2 V to /minus/0.1 V vs. Ag/AgCl) was begun. The results demonstrate the utility of fast pulsed laser light as a continuous monitor of surface dynamics on the millisecond timescale using this time resolved SHG method. 5 refs.

  3. A ns-Pulse Laser Microthruster

    International Nuclear Information System (INIS)

    Phipps, Claude R.; Luke, James R.; Helgeson, Wesley; Johnson, Richard


    We have developed a prototype device which demonstrates the feasibility of using ns-duration laser pulses in a laser microthruster. Relative to the ms-duration thrusters which we have demonstrated in the past, this change offers the use of any target material, the use of reflection-mode target illumination, and adjustable specific impulse. Specific impulse is adjusted by varying laser intensity on target. In this way, we were able to vary specific impulse from 200s to 3,200s on gold. We used a Concepts Research, Inc. microchip laser with 170mW average optical power, 8kHz repetition rate and 20μJ pulse energy for many of the measurements. Thrust was in the 100nN - 1μN range for all the work, requiring development of an extremely sensitive, low-noise thrust stand. We will discuss the design of metallic fuel delivery systems. Ablation efficiency near 100% was observed. Results obtained on metallic fuel systems agreed with simulations. We also report time-of-flight measurements on ejected metal ions, which gave velocities up to 80km/s

  4. Liquid Atomization Induced by Pulse Laser Reflection underneath Liquid Surface (United States)

    Utsunomiya, Yuji; Kajiwara, Takashi; Nishiyama, Takashi; Nagayama, Kunihito; Kubota, Shiro; Nakahara, Motonao


    We observed a novel effect of pulse laser reflection at the interface between transparent materials with different refractive indices. The electric field intensity doubles when a laser beam is completely reflected from a material with a higher refractive index to a material with a lower index. This effect appreciably reduces pulse laser ablation threshold of transparent materials. We performed experiments to observe the entire ablation process for laser incidence on the water-air interface using pulse laser shadowgraphy with high-resolution film; the minimum laser fluence for laser ablation at the water-air interface was approximately 12-16 J/cm2. We confirmed that this laser ablation occurs only when the laser beam is incident on the water-air interface from water. Many slender liquid ligaments extend like a milk crown and seem to be atomized at the tip. Their detailed structures can be resolved only by pulse laser photography using high-resolution film.

  5. Pulsed Nd-YAG laser in endodontics (United States)

    Ragot-Roy, Brigitte; Severin, Claude; Maquin, Michel


    The purpose of this study was to establish an operative method in endodontics. The effect of a pulsed Nd:YAG laser on root canal dentin has been examined with a scanning electron microscope. Our first experimentation was to observe the impacts carried out perpendicularly to root canal surface with a 200 micrometers fiber optic in the presence of dye. Secondarily, the optical fiber was used as an endodontic instrument with black dye. The irradiation was performed after root canal preparation (15/100 file or 40/100 file) or directly into the canal. Adverse effects are observed. The results show that laser irradiation on root canal dentin surfaces induces a nonhomogeneous modified dentin layer, melted and resolidified dentin closed partially dentinal tubules. The removal of debris is not efficient enough. The laser treatment seems to be indicated only for endodontic and periapical spaces sterilization after conventional root canal preparation.

  6. Pulsed-discharge carbon dioxide lasers (United States)

    Willetts, David V.


    The purpose is to attempt a general introduction to pulsed carbon dioxide lasers of the kind used or proposed for laser radar applications. Laser physics is an excellent example of a cross-disciplinary topic, and the molecular spectroscopy, energy transfer, and plasma kinetics of the devices are explored. The concept of stimulated emission and population inversions is introduced, leading on to the molecular spectroscopy of the CO2 molecule. This is followed by a consideration of electron-impact pumping, and the pertinent energy transfer and relaxation processes which go on. Since the devices are plasma pumped, it is necessary to introduce a complex subject, but this is restricted to appropriate physics of glow discharges. Examples of representative devices are shown. The implications of the foregoing to plasma chemistry and gas life are discussed.

  7. Picoseconds pulse generation and pulse width determination processes of a distributed feedback dye laser

    International Nuclear Information System (INIS)

    Abdul Ghani, B.; Hammadi, M.


    A mathematical model has been developed to describe the dynamic emission of Nd-glass, distributed feedback dye laser (DFDL), and periodical grating temperature. The suggested model allows the investigation of the time behavior of Nd-glass laser and DFDL pulsed. Moreover, it allows studying the effect of the laser input parameters of Nd-glass laser on the spectral characteristics of the output DFDL pulses such as pulse width, delay time, and time separation

  8. Calculations of population transfer during intense laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Schafer, K.J.; Kulander, K.C.


    Recent experiments by several groups have examined the question of population transfer to resonantly excited states during intense short laser pulses, in particular the amount of population that remains ``trapped`` in excited states at the end of a laser pulse. In this chapter we present calculations of population transfer and resonant ionization in xenon at both 660 and 620 nm. At the longer wavelength, the seven photon channel closes at 2.5{times}10{sup 13} W/cm{sup 2}. Pulses with peak intensities higher than this result in ``Rydberg trapping``, the resonant transfer of population to a broad range of high-lying states. The amount of population transferred depends on both the peak intensity and pulse duration. At 620 mm there are numerous possible six photon resonances to states with p or f angular momentum. We have done a large number of calculations for 40 fs pulses at different peak intensities and have examined the population transferred to these low-lying resonant states as a function of the peak laser intensity. We do not have room to comment upon the resonantly enhanced ionized electron energy spectra that we also determine in the same calculations. Our calculations involve the direct numerical integration of the time-dependent Schroedinger equation for an atom interacting with a strong laser field. The time-dependent wave function of a given valence electron is calculated on a spatial grid using a one-electron pseudo potential. This single active electron approximation (SAE) has been shown to be a good approximation for the rare gases at the intensities and wavelengths that we will consider. The SAE potential we use has an explicit angular momentum dependence which allows us to reproduce all of the excited state energies for xenon quite well.

  9. Theory of Self-pulsing in Photonic Crystal Fano Lasers

    DEFF Research Database (Denmark)

    Rasmussen, Thorsten Svend; Yu, Yi; Mørk, Jesper


    are characterised using phase diagrams, establishing the regime of self-pulsing numerically. Furthermore, the physics behind the self-pulsing mechanism are explained in detail and it is demonstrated how cavity absorption makes the Fano mirror function as a saturable absorber, leading to Q-switched pulse generation......Laser self-pulsing was a phenomenon exclusive to macroscopic lasers until recently, where self-starting laser pulsation in a microscopic photonic crystal Fano laser was reported. In this paper a theoretical model is developed to describe the Fano laser, including descriptions of the highly......-dispersive Fano mirror, the laser frequency and the threshold gain. The model is based upon a combination of conventional laser rate equations and coupled-mode theory. The dynamical model is used to demonstrate how the laser has two regimes of operation, continuous-wave output and self-pulsing, and these regimes...

  10. An improved three-dimensional two-temperature model for multi-pulse femtosecond laser ablation of aluminum

    International Nuclear Information System (INIS)

    Zhang, Jinping; Chen, Yuping; Hu, Mengning; Chen, Xianfeng


    In this paper, an improved three-dimensional two-temperature model for multi-pulse femtosecond laser ablation of aluminum was proposed and proved in our experiment. Aiming to achieve hole-drilling with a high ratio of depth/entrance diameter in vacuum, this model can predict the depth and radius of the drilled holes precisely when employing different laser parameters. Additionally, for multi-pulse laser ablation, we found that the laser fluence and number of pulses are the dominant parameters and the multi-pulse ablation threshold is much lower than the single-pulse one, which will help to obtain high-quality holes

  11. An improved three-dimensional two-temperature model for multi-pulse femtosecond laser ablation of aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jinping; Chen, Yuping, E-mail:; Hu, Mengning; Chen, Xianfeng [State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China)


    In this paper, an improved three-dimensional two-temperature model for multi-pulse femtosecond laser ablation of aluminum was proposed and proved in our experiment. Aiming to achieve hole-drilling with a high ratio of depth/entrance diameter in vacuum, this model can predict the depth and radius of the drilled holes precisely when employing different laser parameters. Additionally, for multi-pulse laser ablation, we found that the laser fluence and number of pulses are the dominant parameters and the multi-pulse ablation threshold is much lower than the single-pulse one, which will help to obtain high-quality holes.

  12. Ionization of molecular hydrogen in ultrashort intense laser pulses

    International Nuclear Information System (INIS)

    Vanne, Yulian V.


    A novel ab initio numerical approach is developed and applied that solves the time-dependent Schroedinger equation describing two-electron diatomic molecules (e.g. molecular hydrogen) exposed to an intense ultrashort laser pulse. The method is based on the fixed-nuclei and the non-relativistic dipole approximations and aims to accurately describe both correlated electrons in full dimensionality. The method is applicable for a wide range of the laser pulse parameters and is able to describe both few-photon and many-photon single ionization processes, also in a non-perturbative regime. A key advantage of the method is its ability to treat the strong-field response of the molecules with arbitrary orientation of the molecular axis with respect to the linear-polarized laser field. Thus, this work reports on the first successful orientation-dependent analysis of the multiphoton ionization of H 2 performed by means of a full-dimensional numerical treatment. Besides the investigation of few-photon regime, an extensive numerical study of the ionization by ultrashort frequency-doubled Ti:sapphire laser pulses (400 nm) is presented. Performing a series of calculations for different internuclear separations, the total ionization yields of H 2 and D 2 in their ground vibrational states are obtained for both parallel and perpendicular orientations. A series of calculations for 800 nm laser pulses are used to test a popular simple interference model. Besides the discussion of the ab initio numerical method, this work considers different aspects related to the application of the strong-field approximation (SFA) for investigation of a strong-field response of an atomic and molecular system. Thus, a deep analysis of the gauge problem of SFA is performed and the quasistatic limit of the velocity-gauge SFA ionization rates is derived. The applications of the length-gauge SFA are examined and a recently proposed generalized Keldysh theory is criticized. (orig.)

  13. Ionization of molecular hydrogen in ultrashort intense laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Vanne, Yulian V.


    A novel ab initio numerical approach is developed and applied that solves the time-dependent Schroedinger equation describing two-electron diatomic molecules (e.g. molecular hydrogen) exposed to an intense ultrashort laser pulse. The method is based on the fixed-nuclei and the non-relativistic dipole approximations and aims to accurately describe both correlated electrons in full dimensionality. The method is applicable for a wide range of the laser pulse parameters and is able to describe both few-photon and many-photon single ionization processes, also in a non-perturbative regime. A key advantage of the method is its ability to treat the strong-field response of the molecules with arbitrary orientation of the molecular axis with respect to the linear-polarized laser field. Thus, this work reports on the first successful orientation-dependent analysis of the multiphoton ionization of H{sub 2} performed by means of a full-dimensional numerical treatment. Besides the investigation of few-photon regime, an extensive numerical study of the ionization by ultrashort frequency-doubled Ti:sapphire laser pulses (400 nm) is presented. Performing a series of calculations for different internuclear separations, the total ionization yields of H{sub 2} and D{sub 2} in their ground vibrational states are obtained for both parallel and perpendicular orientations. A series of calculations for 800 nm laser pulses are used to test a popular simple interference model. Besides the discussion of the ab initio numerical method, this work considers different aspects related to the application of the strong-field approximation (SFA) for investigation of a strong-field response of an atomic and molecular system. Thus, a deep analysis of the gauge problem of SFA is performed and the quasistatic limit of the velocity-gauge SFA ionization rates is derived. The applications of the length-gauge SFA are examined and a recently proposed generalized Keldysh theory is criticized. (orig.)

  14. Ultrashort-pulse laser generated nanoparticles of energetic materials (United States)

    Welle, Eric J [Niceville, NM; Tappan, Alexander S [Albuquerque, NM; Palmer, Jeremy A [Albuquerque, NM


    A process for generating nanoscale particles of energetic materials, such as explosive materials, using ultrashort-pulse laser irradiation. The use of ultrashort laser pulses in embodiments of this invention enables one to generate particles by laser ablation that retain the chemical identity of the starting material while avoiding ignition, deflagration, and detonation of the explosive material.

  15. Single mode operation of a TEA CO2 laser

    International Nuclear Information System (INIS)

    Wada, Kazuhiro; Tunawaki, Yoshiaki; Yamanaka, Masanobu.


    Single mode operation of a TEA CO 2 laser was performed by using an optical system of Fox-Smith type. Laser beam was taken out from the cavity by using a beam splitter, and was reflected by a mirror back to the cavity. By inserting a Fabry-Perot etalon between the splitter and the mirror, beat of laser pulses can be removed completly. (author)

  16. Comparative study on Pulsed Laser Deposition and Matrix Assisted Pulsed Laser Evaporation of urease thin films

    International Nuclear Information System (INIS)

    Smausz, Tomi; Megyeri, Gabor; Kekesi, Renata; Vass, Csaba; Gyoergy, Eniko; Sima, Felix; Mihailescu, Ion N.; Hopp, Bela


    Urease thin films were produced by Matrix Assisted Pulsed Laser Evaporation (MAPLE) and Pulsed Laser Deposition from two types of targets: frozen water solutions of urease with different concentrations (1-10% m/v) and pure urease pellets. The fluence of the ablating KrF excimer laser was varied between 300 and 2200 mJ/cm 2 . Fourier transform infrared spectra of the deposited films showed no difference as compared to the original urease. Morphologic studies proved that the films consist of a smooth 'base' layer with embedded micrometer-sized droplets. Absorption-coefficient measurements contradicted the traditional 'absorptive matrix' model for MAPLE deposition. The laser energy was absorbed by urease clusters leading to a local heating-up and evaporation of the frozen matrix from the uppermost layer accompanied by the release of dissolved urease molecules. Significant enzymatic activity of urease was preserved only during matrix assisted transfer.

  17. Ge incorporated epitaxy of (110) rutile TiO{sub 2} on (100) Ge single crystal at low temperature by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, Takahiro, E-mail: [Nano-Electronics Materials Unit, International Center for Materials Nanoarchitectonics, National Institute for Materials Science (WPI-MANA), 1–1 Namiki, Tsukuba, Ibaraki 305–0044 (Japan); JST, PREST, 4-1-8 Honcho, Kawaguchi, Saitama 332–0012 (Japan); Kobashi, Kazuyoshi [Nano-Electronics Materials Unit, International Center for Materials Nanoarchitectonics, National Institute for Materials Science (WPI-MANA), 1–1 Namiki, Tsukuba, Ibaraki 305–0044 (Japan); Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214–8571 (Japan); Yamashita, Yoshiyuki [Nano-Electronics Materials Unit, International Center for Materials Nanoarchitectonics, National Institute for Materials Science (WPI-MANA), 1–1 Namiki, Tsukuba, Ibaraki 305–0044 (Japan); Synchrotron X-ray Station at SPring-8, NIMS, 1-1-1 Koto, Sayo-cho, Sayo, Hyogo 679–5148 (Japan); Yoshikawa, Hideki [Synchrotron X-ray Station at SPring-8, NIMS, 1-1-1 Koto, Sayo-cho, Sayo, Hyogo 679–5148 (Japan); Paulsamy, Chinnamuthu [Nano-Electronics Materials Unit, International Center for Materials Nanoarchitectonics, National Institute for Materials Science (WPI-MANA), 1–1 Namiki, Tsukuba, Ibaraki 305–0044 (Japan); Suzuki, Yoshihisa [Nano-Electronics Materials Unit, International Center for Materials Nanoarchitectonics, National Institute for Materials Science (WPI-MANA), 1–1 Namiki, Tsukuba, Ibaraki 305–0044 (Japan); Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214–8571 (Japan); Nabatame, Toshihide [Nano-Electronics Materials Unit, International Center for Materials Nanoarchitectonics, National Institute for Materials Science (WPI-MANA), 1–1 Namiki, Tsukuba, Ibaraki 305–0044 (Japan); Ogura, Atsushi [Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214–8571 (Japan); and others


    The thin film growth of (110) rutile TiO{sub 2} on a (100) Ge substrate at a substrate temperature of 450 °C, which is generally the growth temperature of anatase TiO{sub 2}, was demonstrated by using pulsed laser deposition. X-ray diffraction and X-ray photoelectron spectroscopy revealed that the incorporation of Ge into TiO{sub 2} enhances the rutile phase formation, and the ambient oxygen condition enhances the Ge oxide diffusion. Photoelectron spectroscopy also revealed that the valence band offset of rutile TiO{sub 2} and p-type Ge is approximately 2.5 ± 0.1 eV with a type II band alignment. - Highlights: • We grew (110) rutile TiO{sub 2} film on (100) Ge substrate. • Rutile TiO{sub 2} crystallizes at the crystallization temperature of anatase phase. • Ge diffusion enhances the crystallization of rutile TiO{sub 2}. • Band alignment between rutile TiO{sub 2} and p-type Ge is type II band alignment.

  18. Time-resolved beam profiler for pulsed lasers (United States)

    Klick, David I.; Knight, Frederick K.


    A high-speed imaging device based on a streak camera has been demonstrated, which provides multiple images from non-repeatable transient events of time scale >= 1 ns. It can be employed for pulsed laser beam diagnostics, measuring laser beam spatial and temporal structure on a single-pulse basis. The system currently has angular resolution of 16 X 16 pixels, with a time resolution of 250 ps. The laser beam width is sized to fill the input optic, and the image is dissected by a square array of optical fibers. At the other end of the fiber optic image converter, the 256 fibers form a line array, which is input to the slit of a streak camera. The streak camera sweeps the input line across the output phosphor screen so that position is directly proportional to time. The resulting 2-D image (fiber position vs. time) at the phosphor is read by an intensified (SIT) vidicon TV tube, and the image is digitized and stored. A computer subsequently decodes the image, unscrambling the linear pixels into an angle-angle image at each time. We are left with a series of snapshots, each one depicting the laser beam spatial profile (intensity cross-section) at succeeding moments in time. The system can currently record several hundred images over a span of 25 to 400 ns. This detector can study lasers of pulse width >= 1 ns and with a visible wavelength (200 - 900 nm). Candidate lasers include doubled Nd:YAG, excimer, ruby, nitrogen, metal vapor, and Ti:Sapphire. The system could also be simply configured as an 8 X 8 element wavefront sensor to record the cross-sectional distribution of phase, as well as amplitude. Finally, suggestions for system improvement are detailed, and the ultimate limitations of the method in terms of spatial and temporal resolution are discussed.

  19. Pulsed laser fluorometry for environmental monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Saunders, G. C.; Martin, J. C.; Jett, J. H.; Wilder, M. E.; Martinez, A.; Bentley, B. F.; Lopez, J.; Hutson, L.


    A compact pulsed laser fluorometer has been incorporated into a continuous flow system developed to detect acetylcholinesterase (AChE) inhibitors and/or primary amine compounds in air and water. A pulsed nitrogen laser pumped dye laser excites fluorescent reactants which flow continuously through a quartz flow cell. Data are collected, analyzed, and displayed using a Macintosh II personal computer. For detection of cholinesterase inhibitors the fluorogenic substrate N methylindoxyl acetate is used to monitor the activity of immobilized enzyme. Presence of inhibitors results in a decrease of steady state fluorescence. Detection of compounds containing primary amines is based on their reaction with fluorescamine to rapidly produce intensely fluorescent products. Compounds of interest to our research were amino acids, peptides, and proteins. An increase in steady state fluorescence could be cause to evaluate the reasons for the change. The detection limit of the protein, bovine serum albumin (BSA) in water is 10 ppT. Nebulized BSA concentrated by the LANL air sampler can be detected at sub ppT original air concentration. 16 refs., 14 figs., 3 tabs.

  20. Pulse Front Tilt and Laser Plasma Acceleration (United States)

    Mittelberger, Daniel; Thévenet, Maxence; Nakamura, Kei; Lehe, Remi; Gonsalves, Anthony; Benedetti, Carlo; Leemans, Wim


    Pulse front tilt (PFT) is potentially present in any CPA laser system, but its effects may be overlooked because spatiotemporal pulse characterization is considerably more involved than measuring only spatial or temporal profile. PFT is particularly important for laser plasma accelerators (LPA) because it influences electron beam injection and steering. In this work, experimental results from the BELLA Center will be presented that demonstrate the effect of optical grating misalignment and optical compression, resulting in PFT, on accelerator performance. Theoretical models of laser and electron beam steering will be introduced based on particle-in-cell simulations showing distortion of the plasma wake. Theoretical predictions will be compared with experiments and complimentary simulations, and tolerances on PFT and optical compressor alignment will be developed as a function of LPA performance requirements. This work was supported by the Office of High Energy Physics, Office of Science, US Department of Energy under Contract DE-AC02-05CH11231 and the National Science Foundation under Grant PHY-1415596.

  1. Generation of parabolic bound pulses from a Yb-fiber laser (United States)

    Ortaç, B.; Hideur, A.; Brunel, M.; Chédot, C.; Limpert, J.; Tünnermann, A.; Ilday, F. Ö.


    We report the observation of self-similar propagation of bound-state pulses in an ytterbium-doped double-clad fiber laser. A bound state of two positively chirped parabolic pulses with 5.4 ps duration separated by 14.9 ps is obtained, with 1.7 nJ of energy per pulse. These pulses are extra-cavity compressed to 100 fs. For higher pumping power and a different setting of the intra-cavity polarization controllers, the laser generates a bound state of three chirped parabolic pulses with different time separations and more than 1.5 nJ energy per pulse. Perturbation of this bound state by decreasing pump power results in the generation of a single pulse and a two-pulse bound state both structures traveling at the same velocity along the cavity. A possible explanation of the zero relative speed by a particular phase relation of the bound states is discussed.

  2. Single filament semiconductor laser

    International Nuclear Information System (INIS)

    Botez, D.


    A semiconductor laser comprising: a body of semiconductor material including a substrate having a surface and a pair of spaced, substantially parallel dove-tailed shaped grooves in said surface, said body having a pair of end surfaces between which said grooves extend, said end surfaces being reflective to light with at least one of said end surfaces being partially transparent to light a first epitaxial layer over said surface of the substrate and the surfaces of the grooves, said first epitaxial layer having a flat surface portion over the portion of the substrate surface between the grooves, a thin second epitaxial layer over said first epitaxial layer, a third epitaxial layer over said second epitaxial layer, said first and third epitaxial layers being of opposite conductivity types and the second epitaxial layer being the active recombination region of the laser with the light being generated therein in the vicinity of the portion which is over the flat surface portion of the first epitaxial layer, and a pair of contacts on said body with one contact being over said third epitaxial body and the other being on said substrate

  3. Optimizing chirped laser pulse parameters for electron acceleration in vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Akhyani, Mina; Jahangiri, Fazel; Niknam, Ali Reza; Massudi, Reza, E-mail: [Laser and Plasma Research Institute, Shahid Beheshti University, Tehran 1983969411 (Iran, Islamic Republic of)


    Electron dynamics in the field of a chirped linearly polarized laser pulse is investigated. Variations of electron energy gain versus chirp parameter, time duration, and initial phase of laser pulse are studied. Based on maximizing laser pulse asymmetry, a numerical optimization procedure is presented, which leads to the elimination of rapid fluctuations of gain versus the chirp parameter. Instead, a smooth variation is observed that considerably reduces the accuracy required for experimentally adjusting the chirp parameter.

  4. Single transverse mode protein laser (United States)

    Dogru, Itir Bakis; Min, Kyungtaek; Umar, Muhammad; Bahmani Jalali, Houman; Begar, Efe; Conkar, Deniz; Firat Karalar, Elif Nur; Kim, Sunghwan; Nizamoglu, Sedat


    Here, we report a single transverse mode distributed feedback (DFB) protein laser. The gain medium that is composed of enhanced green fluorescent protein in a silk fibroin matrix yields a waveguiding gain layer on a DFB resonator. The thin TiO2 layer on the quartz grating improves optical feedback due to the increased effective refractive index. The protein laser shows a single transverse mode lasing at the wavelength of 520 nm with the threshold level of 92.1 μJ/ mm2.

  5. Liquid-assisted pulsed laser cleaning with near-infrared and ultraviolet pulsed lasers (United States)

    Grigoropoulos, Constantine P.; Kim, Dongsik


    Liquid-assisted steam nanosecond pulsed laser irradiation is shown to be effective for cleaning contaminant particles as small as 0.3 micrometers in diameter from metallic substrates. The cleaning threshold and efficiency are investigated for the fundamental and frequency-tripled Nd:YAG laser harmonics (wavelengths (lambda) equals1064 and 355 nm). The rapid phase- change and thin liquid film ablation processes are examined in order to elucidate the cleaning mechanism. The pressure enhancement accompanying the explosive-vaporization process and the momentum supplied by the ablation plume are the main sources of the augmented cleaning efficiency at moderate laser energy densities.

  6. Dielectrophoretic focusing integrated pulsed laser activated cell sorting (United States)

    Zhu, Xiongfeng; Kung, Yu-Chun; Wu, Ting-Hsiang; Teitell, Michael A.; Chiou, Pei-Yu


    We present a pulsed laser activated cell sorter (PLACS) integrated with novel sheathless size-independent dielectrophoretic (DEP) focusing. Microfluidic fluorescence activated cell sorting (μFACS) systems aim to provide a fully enclosed environment for sterile cell sorting and integration with upstream and downstream microfluidic modules. Among them, PLACS has shown a great potential in achieving comparable performance to commercial aerosol-based FACS (>90% purity at 25,000 cells sec-1). However conventional sheath flow focusing method suffers a severe sample dilution issue. Here we demonstrate a novel dielectrophoresis-integrated pulsed laser activated cell sorter (DEP-PLACS). It consists of a microfluidic channel with 3D electrodes laid out to provide a tunnel-shaped electric field profile along a 4cmlong channel for sheathlessly focusing microparticles/cells into a single stream in high-speed microfluidic flows. All focused particles pass through the fluorescence detection zone along the same streamline regardless of their sizes and types. Upon detection of target fluorescent particles, a nanosecond laser pulse is triggered and focused in a neighboring channel to generate a rapidly expanding cavitation bubble for precise sorting. DEP-PLACS has achieved a sorting purity of 91% for polystyrene beads at a throughput of 1,500 particle/sec.

  7. Decoupling Electronic versus Nuclear Photoresponse of Isolated Green Fluorescent Protein Chromophores Using Short Laser Pulses (United States)

    Kiefer, Hjalte V.; Pedersen, Henrik B.; Bochenkova, Anastasia V.; Andersen, Lars H.


    The photophysics of a deprotonated model chromophore for the green fluorescent protein is studied by femtosecond laser pulses in an electrostatic ion-storage ring. The laser-pulse duration is much shorter than the time for internal conversion, and, hence, contributions from sequential multiphoton absorption, typically encountered with ns-laser pulses, are avoided. Following single-photon excitation, the action-absorption maximum is shown to be shifted within the S0 to S1 band from its origin at about 490 to 450 nm, which is explained by the different photophysics involved in the detected action.

  8. Single attosecond pulse from terahertz-assisted high-order harmonic generation (United States)

    Balogh, Emeric; Kovacs, Katalin; Dombi, Peter; Fulop, Jozsef A.; Farkas, Gyozo; Hebling, Janos; Tosa, Valer; Varju, Katalin


    High-order harmonic generation by few-cycle 800 nm laser pulses in neon gas in the presence of a strong terahertz (THz) field is investigated numerically with propagation effects taken into account. Our calculations show that the combination of THz fields with up to 12 fs laser pulses can be an effective gating technique to generate single attosecond pulses. We show that in the presence of the strong THz field only a single attosecond burst can be phase matched, whereas radiation emitted during other half cycles disappears during propagation. The cutoff is extended and a wide supercontinuum appears in the near-field spectra, extending the available spectral width for isolated attosecond pulse generation from 23 to 93 eV. We demonstrate that phase-matching effects are responsible for the generation of isolated attosecond pulses, even in conditions when single-atom response yields an attosecond pulse train.

  9. Single attosecond pulse from terahertz-assisted high-order harmonic generation

    International Nuclear Information System (INIS)

    Balogh, Emeric; Kovacs, Katalin; Dombi, Peter; Farkas, Gyozo; Fulop, Jozsef A.; Hebling, Janos; Tosa, Valer; Varju, Katalin


    High-order harmonic generation by few-cycle 800 nm laser pulses in neon gas in the presence of a strong terahertz (THz) field is investigated numerically with propagation effects taken into account. Our calculations show that the combination of THz fields with up to 12 fs laser pulses can be an effective gating technique to generate single attosecond pulses. We show that in the presence of the strong THz field only a single attosecond burst can be phase matched, whereas radiation emitted during other half cycles disappears during propagation. The cutoff is extended and a wide supercontinuum appears in the near-field spectra, extending the available spectral width for isolated attosecond pulse generation from 23 to 93 eV. We demonstrate that phase-matching effects are responsible for the generation of isolated attosecond pulses, even in conditions when single-atom response yields an attosecond pulse train.

  10. Single attosecond pulse from terahertz-assisted high-order harmonic generation

    Energy Technology Data Exchange (ETDEWEB)

    Balogh, Emeric [Department of Optics and Quantum Electronics, University of Szeged, H-6701 Szeged (Hungary); Kovacs, Katalin [Department of Optics and Quantum Electronics, University of Szeged, H-6701 Szeged (Hungary); National Institute for R and D of Isotopic and Molecular Technologies, RO-400293 Cluj-Napoca (Romania); Dombi, Peter; Farkas, Gyozo [Research Institute for Solid State Physics and Optics, H-1525 Budapest (Hungary); Fulop, Jozsef A.; Hebling, Janos [Department of Experimental Physics, University of Pecs, H-7624 Pecs (Hungary); Tosa, Valer [National Institute for R and D of Isotopic and Molecular Technologies, RO-400293 Cluj-Napoca (Romania); Varju, Katalin [HAS Research Group on Laser Physics, University of Szeged, H-6701 Szeged (Hungary)


    High-order harmonic generation by few-cycle 800 nm laser pulses in neon gas in the presence of a strong terahertz (THz) field is investigated numerically with propagation effects taken into account. Our calculations show that the combination of THz fields with up to 12 fs laser pulses can be an effective gating technique to generate single attosecond pulses. We show that in the presence of the strong THz field only a single attosecond burst can be phase matched, whereas radiation emitted during other half cycles disappears during propagation. The cutoff is extended and a wide supercontinuum appears in the near-field spectra, extending the available spectral width for isolated attosecond pulse generation from 23 to 93 eV. We demonstrate that phase-matching effects are responsible for the generation of isolated attosecond pulses, even in conditions when single-atom response yields an attosecond pulse train.

  11. Three-dimensional laser pulse intensity diagnostic for photoinjectors

    Directory of Open Access Journals (Sweden)

    Heng Li


    Full Text Available Minimizing the electron-beam emittance of photoinjectors is an important task for maximizing the brightness of the next-generation x-ray facilities, such as free-electron lasers and energy recovery linacs. Optimally shaped laser pulses can significantly reduce emittance. A reliable diagnostic for the laser pulse intensity is required for this purpose. We demonstrate measurement of three-dimensional spatiotemporal intensity profiles, with spatial resolution of 20  μm and temporal resolution of 130 fs. The capability is illustrated by measurements of stacked soliton pulses and pulses from a dissipative-soliton laser.

  12. Atmospheric Photo Ionization of Argon with a Short Pulse Laser

    National Research Council Canada - National Science Library

    Manheimer, Wallace


    One of the goals of the NRL laser-atmospheric propagation program is to produce a plasma spot, at a controlled range with a combination of longitudinal compression of a laser pulse over long distance...

  13. Channeling and stability of laser pulses in plasmas

    International Nuclear Information System (INIS)

    Sprangle, P.; Krall, J.; Esarey, E.


    A laser pulse propagating in a plasma is found to undergo a combination of hose and modulation instabilities. The coupled equations for the laser beam envelope and centroid are derived and solved for a laser pulse of finite length propagating through either a uniform plasma or preformed plasma density channel. The laser envelope equation describes the pulse self-focusing and optical guiding in plasmas and is used to analyze the self-modulation instability. The laser centroid equation describes the transverse motion of the laser pulse (hosing) in plasmas. Significant coupling between the centroid and envelope motion as well as harmonic generation in the envelope can occur. In addition, the transverse profile of the generated wake field is strongly affected by the laser hose instability. Methods to reduce the laser hose instability are demonstrated. copyright 1995 American Institute of Physics

  14. Cubic phase control of ultrashort laser pulses

    International Nuclear Information System (INIS)

    Mecseki, K.; Erdelyi, M.; Kovacs, A.P.; Szabo, G.


    Complete test of publication follows. The temporal shape of an ultrashort laser pulse may change upon propagating through a linear dispersive medium having a phase shift ψω. The change can be characterized by the Taylor-coefficients of the phase shift which are calculated around the central frequency ω 0 of the pulse. Measurements and independent control of the group delay dispersion (GDD, ψ'(ω 0 )) and the third order dispersion (TOD, ψ'(ω 0 )) are important in several research fields, particularly in the generation of ultrashort laser pulses by chirped pulse amplification (CPA) and pulse shaping for molecular control. The GDD and the TOD of an ideal pulse compressor are equal to the negative of the corresponding dispersion coefficients of the medium. However, in the case of prism-pair and grating-pair compressor is different from the ratio of the coefficients of the medium to be compensated for. Therefore it is necessary to develop so-called cubic compressors that are able to control the TOD of the pulse, yet, do not affect the GDD. In this paper a new cubic compressor setup is investigated theoretically and experimentally, which resembles the set-up proposed by White, however, we control the GDD and the TOD by the position of a birefringent, semi-cylinder crystal place around the focal point of an achromatic lens. For the evaluation of the phase shift introduced by the proposed cubic compressor, a ray tracing program was written. The program allows optimizing the compressor parameters, such as the radius of the crystal, magnification of the lens etc. Calcite was applied because it is a strong birefringent material. Calculations showed that there is a trajectory, along which shifting the crystal the TOD can be tuned independently of the GDD. The value of the TOD changed in a relatively wide range between -3.15 x 10 5 fs 3 and -1.67 x 10 5 fs 3 . Although the defocus also affects the angular dispersion of the pulse leaving the compressor, if does not exceed

  15. 25 years of pulsed laser deposition (United States)

    Lorenz, Michael; Ramachandra Rao, M. S.


    It is our pleasure to introduce this special issue appearing on the occasion of the 25th anniversary of pulsed laser deposition (PLD), which is today one of the most versatile growth techniques for oxide thin films and nanostructures. Ever since its invention, PLD has revolutionized the research on advanced functional oxides due to its ability to yield high-quality thin films, multilayers and heterostructures of a variety of multi-element material systems with rather simple technical means. We appreciate that the use of lasers to deposit films via ablation (now termed PLD) has been known since the 1960s after the invention of the first ruby laser. However, in the first two decades, PLD was something of a 'sleeping beauty' with only a few publications per year, as shown below. This state of hibernation ended abruptly with the advent of high T c superconductor research when scientists needed to grow high-quality thin films of multi-component high T c oxide systems. When most of the conventional growth techniques failed, the invention of PLD by T (Venky) Venkatesan clearly demonstrated that the newly discovered high-T c superconductor, YBa2Cu3O7-δ , could be stoichiometrically deposited as a high-quality nm-thin film with PLD [1]. As a remarkable highlight of this special issue, Venkatesan gives us his very personal reminiscence on these particularly innovative years of PLD beginning in 1986 [2]. After Venky's first paper [1], the importance of this invention was realized worldwide and the number of publications on PLD increased exponentially, as shown in figure 1. Figure 1. Figure 1. Published items per year with title or topic PLD. Data from Thomson Reuters Web of Knowledge in September 2013. After publication of Venky's famous paper in 1987 [1], the story of PLD's success began with a sudden jump in the number of publications, about 25 years ago. A first PLD textbook covering its basic understanding was soon published, in 1994, by Chrisey and Hubler [3]. Within a


    Energy Technology Data Exchange (ETDEWEB)

    Shukui Zhang; Stephen Benson; John Hansknecht; David Hardy; George Neil; Michelle D. Shinn


    This paper describes phase noise measurements of several different laser systems that have completely different gain media and configurations including a multi-kW free-electron laser. We will focus on state-of-the-art short pulse lasers, especially drive lasers for photocathode injectors. Phase noise comparison of the FEL drive laser, electron beam and FEL laser output also will be presented.

  17. Laser and intense pulsed light hair removal technologies

    DEFF Research Database (Denmark)

    Haedersdal, M; Beerwerth, F; Nash, J F


    Light-based hair removal (LHR) is one of the fastest growing, nonsurgical aesthetic cosmetic procedures in the United States and Europe. A variety of light sources including lasers, e.g. alexandrite laser (755 nm), pulsed diode lasers (800, 810 nm), Nd:YAG laser (1064 nm) and broad-spectrum intense...

  18. Demonstration of a self-pulsing photonic crystal Fano laser (United States)

    Yu, Yi; Xue, Weiqi; Semenova, Elizaveta; Yvind, Kresten; Mork, Jesper


    The semiconductor lasers in use today rely on various types of cavity, making use of Fresnel reflection at a cleaved facet, total internal reflection between two different media, Bragg reflection from a periodic stack of layers, mode coupling in a high contrast grating or random scattering in a disordered medium. Here, we demonstrate an ultrasmall laser with a mirror, which is based on Fano interference between a continuum of waveguide modes and the discrete resonance of a nanocavity. The rich physics of Fano resonances has recently been explored in a number of different photonic and plasmonic systems. The Fano resonance leads to unique laser characteristics. In particular, because the Fano mirror is very narrowband compared to conventional laser mirrors, the laser is single mode and can be modulated via the mirror. We show, experimentally and theoretically, that nonlinearities in the mirror may even promote the generation of a self-sustained train of pulses at gigahertz frequencies, an effect that has previously been observed only in macroscopic lasers. Such a source is of interest for a number of applications within integrated photonics.

  19. Dissociative Ionization of Argon Dimer by Intense Femtosecond Laser Pulses. (United States)

    Cheng, Qian; Xie, Xiguo; Yuan, Zongqiang; Zhong, Xunqi; Liu, Yunquan; Gong, Qihuang; Wu, Chengyin


    We experimentally and theoretically studied dissociative ionization of argon dimer driven by intense femtosecond laser pulses. In the experiment, we measured the ion yield and the angular distribution of fragmental ions generated from the dissociative ionization channels of (1,1) (Ar 2 2+ → Ar + + Ar + ) and (2,1) (Ar 2 3+ → Ar 2+ + Ar + ) using a cold target recoil ion momentum spectroscopy. The channel ratio of (2,1)/(1,1) is 4.5-7.5 times of the yield ratio of double ionization to single ionization of argon monomer depending on the laser intensity. The measurement verified that the ionization of Ar + is greatly enhanced if there exists a neighboring Ar + separated by a critical distance. In addition, the fragmental ions exhibit an anisotropic angular distribution with the peak along the laser polarization direction and the full width at half maximum becomes broader with increasing laser intensity. Using a full three-dimensional classical ensemble model, we calculated the angle-dependent multiple ionization probability of argon dimer in intense laser fields. The results show that the experimentally observed anisotropic angular distribution of fragmental ions can be attributed to the angle-dependent enhanced ionization of the argon dimer in intense laser fields.

  20. Pulsed laser deposition of yttria-stabilized zirconium dioxide with a high repetition rate picosecond fiber laser

    International Nuclear Information System (INIS)

    Salminen, Turkka; Hahtala, Mikko; Seppaelae, Ilkka; Niemi, Tapio; Pessa, Markus


    We report the use of a mode-locked fiber laser in pulsed laser deposition (PLD) of yttria-stabilized zirconium oxide. The fiber laser produces picosecond pulses with megahertz repetition rates at the wavelength of 1060 nm. We have investigated the effects of the time delay and the physical overlapping of the consecutive pulses on the ablation thresholds and the properties of the deposited films. Our results show existence of two distinct evaporation modes: (1) a single pulse evaporation mode observed for low overlapping and long time delays between the pulses and (2) a high repetition rate evaporation mode for high overlapping with short delays. The first mode is characterized by evaporation of nanoparticles and clusters and yields structured films with high surface area. The second mode yields smooth films, with evaporation characteristics closer to those of thermal evaporation than traditional PLD. (orig.)

  1. Combining Raman and laser induced breakdown spectroscopy by double pulse lasing. (United States)

    Lednev, Vasily N; Pershin, Sergey M; Sdvizhenskii, Pavel A; Grishin, Mikhail Ya; Fedorov, Alexander N; Bukin, Vladimir V; Oshurko, Vadim B; Shchegolikhin, Alexander N


    A new approach combining Raman spectrometry and laser induced breakdown spectrometry (LIBS) within a single laser event was suggested. A pulsed solid state Nd:YAG laser running in double pulse mode (two frequency-doubled sequential nanosecond laser pulses with dozens microseconds delay) was used to combine two spectrometry methods within a single instrument (Raman/LIBS spectrometer). First, a low-energy laser pulse (power density far below ablation threshold) was used for Raman measurements while a second powerful laser pulse created the plasma suitable for LIBS analysis. A short time delay between two successive pulses allows measuring LIBS and Raman spectra at different moments but within a single laser flash-lamp pumping. Principal advantages of the developed instrument include high quality Raman/LIBS spectra acquisition (due to optimal gating for Raman/LIBS independently) and absence of target thermal alteration during Raman measurements. A series of high quality Raman and LIBS spectra were acquired for inorganic salts (gypsum, anhydrite) as well as for pharmaceutical samples (acetylsalicylic acid). To the best of our knowledge, the quantitative analysis feasibility by combined Raman/LIBS instrument was demonstrated for the first time by calibration curves construction for acetylsalicylic acid (Raman) and copper (LIBS) in gypsum matrix. Combining ablation pulses and Raman measurements (LIBS/Raman measurements) within a single instrument makes it an efficient tool for identification of samples hidden by non-transparent covering or performing depth profiling analysis including remote sensing. Graphical abstract Combining Raman and laser induced breakdown spectroscopy by double pulse lasing.

  2. Demonstration of low pulse repetition frequency erbium-doped fiber lasers (United States)

    Ran, Yanli; Luo, Yiyang; Xia, Li; Yang, Chengliang; Liu, Deming


    We demonstrate a low pulse repetition frequency (LPRF) Q-switched erbium-doped fiber (EDF) lasers based on acoustic optical modulator (AOM). The single wavelength fiber laser has a stable output at 1553 nm. In Q-switched operation, a pulse train with 3.3μs width and a repetition rate of 1kHz is obtained. The dual wavelength fiber laser is based on fiber Bragg gratings (FBGs) and a Faraday rotator mirror (FRM) as the laser cavity, which has a stable output at 1545 nm and 1557 nm with similar peak power and same repetition rate.

  3. Ultrashort Laser Pulses and Electromagnetic Pulse Generation in Air and on Dielectric Surfaces

    National Research Council Canada - National Science Library

    Sprangle, Phillip


    ...). The purpose of this paper is to analyze EMP generation from the interaction of ultrashort laser pulses with air and with dielectric surfaces and to determine the efficiency of conversion of laser energy to EMP energy...

  4. Precision and resolution in laser direct microstructuring with bursts of picosecond pulses (United States)

    Mur, Jaka; Petkovšek, Rok


    Pulsed laser sources facilitate various applications, including efficient material removal in different scientific and industrial applications. Commercially available laser systems in the field typically use a focused laser beam of 10-20 μm in diameter. In line with the ongoing trends of miniaturization, we have developed a picosecond fiber laser-based system combining fast beam deflection and tight focusing for material processing and optical applications. We have predicted and verified the system's precision, resolution, and minimum achievable feature size for material processing applications. The analysis of the laser's performance requirements for the specific applications of high-precision laser processing is an important aspect for further development of the technique. We have predicted and experimentally verified that maximal edge roughness of single-micrometer-sized features was below 200 nm, including the laser's energy and positioning stability, beam deflection, the effect of spot spacing, and efficient isolation of mechanical vibrations. We have demonstrated that a novel fiber laser operating regime in bursts of pulses increases the laser energy stability. The results of our research improve the potential of fiber laser sources for material processing applications and facilitate their use through enabling the operation at lower pulse energies in bursts as opposed to single pulse regimes.

  5. Pulsed laser ablation of solids basics, theory and applications

    CERN Document Server

    Stafe, Mihai; Puscas, Niculae N


    The book introduces ‘the state of the art' of pulsed laser ablation and its applications. It is based on recent theoretical and experimental studies. The book reaches from the basics to advanced topics of pulsed laser ablation. Theoretical and experimental fundamental phenomena involved in pulsed laser ablation are discussed with respect to material properties, laser wavelength, fluence and intensity regime of the light absorbed linearly or non-linearly in the target material. The energy absorbed by the electrons leads to atom/molecule excitation, ionization and/or direct chemical bond breaking and is also transferred to the lattice leading to material heating and phase transitions. Experimental  non-invasive optical methods for analyzing these phenomena in real time are described. Theoretical models for pulsed laser ablation and phase transitions induced by laser beams and laser-vapour/plasma interaction during the plume expansion above the target are also presented. Calculations of the ablation speed and...

  6. Development of single frame X-ray framing camera for pulsed ...

    Indian Academy of Sciences (India)

    X-ray emission from a laser-produced copper plasma. A reduction factor of ∼6·5 is seen in the dark ... 30 J, 2 ns (FWHM) Nd:glass laser on a copper target. 2. System description. A schematic diagram of the .... using this construction, we can get clean single pulse width upto τ. Pulse amplitude can be changed by changing ...

  7. Nanospallation induced by a femtosecond laser pulse (United States)

    Agranat, M. B.; Anisimov, S. I.; Ashitkov, S. I.; Zhakhovskii, V. V.; Inogamov, N. A.; Nishihara, K.; Petrov, Yu. V.


    In the present work phenomena are considered related to the interaction of ultra-short laser pulses, τ L~0.1 ps, with metallic targets. The absorption of laser pulse results in formation of thin layer of hot electrons strongly superheated (T e>>T i) relative to the ion temperature, T i. Initial thickness of the layer d heat is small, d heat~δ, where δ~10 nm is the skin layer thickness. Subsequent developments include the following stages: (1) Propagation of electron thermal wave which expands the hot layer d heat; (2) Cooling of electrons due to energy transfer to cold ions; (3) Onset of hydrodynamic motion that constitutes the rarefaction wave with positive pressure; (4) Further expansion of target material leading to the appearance of negative pressure; and (5) Long separation process which begins with nucleation of voids and goes on to the total separation of spallation plate. The thickness of the plate is ~10 nm (we call it nanospallation). Theoretical model involves two-temperature hydrodynamic equations with semiempirical EOS for a metal, electron heat conduction and electron-ion energy exchange. The decay of metastable strongly stretched matter is described by molecular dynamics (MD) simulation with extremely large number of atoms. The experimental setup includes femtosecond chromium-forsterite laser operating in the pump-probe regime. The experiments are performed with gold target. Measured ablation threshold for gold is 1.35 J/cm2 of incident pump light at inclination 45°, p-polarization. Calorimeter measurements give for the absorbed fluence F abs=0.3F inc, therefore the threshold value of F abs is 0.4 J/cm2.

  8. Single-frequency injection-seeded Q-switched Ho:YAG laser (United States)

    Wang, Qing; Gao, Chunqing; Na, Quanxin; Zhang, Yixuan; Ye, Qing; Gao, Mingwei


    An injection-seeded Ho:YAG laser at 2090 nm with changeable pulse repetition frequency (PRF) is demonstrated. Containing a Ho:YAG nonplanar ring oscillator (NPRO) seed, a slave laser, and a single-pass amplifier, the laser delivered single-frequency pulses with energy ranging from 31.4 to 12.7 mJ. The corresponding pulse duration and PRF varied between 102-215 ns and 150-750 Hz, respectively. To the best of our knowledge, this is the highest PRF ever obtained from a single-frequency Ho:YAG laser.

  9. Pulse laser ablation at water-air interface (United States)

    Utsunomiya, Yuji; Kajiwara, Takashi; Nishiyama, Takashi; Nagayama, Kunihito; Kubota, Shiro


    We studied a new pulse laser ablation phenomenon on a liquid surface layer, which is caused by the difference between the refractive indices of the two materials involved. The present study was motivated by our previous study, which showed that laser ablation can occur at the interface between a transparent material and a gas or liquid medium when the laser pulse is focused through the transparent material. In this case, the ablation threshold fluence is reduced remarkably. In the present study, experiments were conducted in water and air in order to confirm this phenomenon for a combination of two fluid media with different refractive indices. This phenomenon was observed in detail by pulse laser shadowgraphy. A high-resolution film was used to record the phenomenon with a Nd:YAG pulse laser with 10-ns duration as a light source. The laser ablation phenomenon on the liquid surface layer caused by a focused Nd:YAG laser pulse with 1064-nm wavelength was found to be followed by the splashing of the liquid surface, inducing a liquid jet with many ligaments. The liquid jet extension velocity was around 1000 m/s in a typical case. The liquid jet decelerated drastically due to rapid atomization at the tips of the ligaments. The liquid jet phenomenon was found to depend on the pulse laser parameters such as the laser fluence on the liquid surface, laser energy, and laser beam pattern. The threshold laser fluence for the generation of a liquid jet was 20 J/cm2. By increasing the incident laser energy with a fixed laser fluence, the laser focused area increased, which eventually led to an increase in the size of the plasma column. The larger the laser energy, the larger the jet size and the longer the temporal behavior. The laser beam pattern was found to have significant effects on the liquid jet’s velocity, shape, and history.

  10. Pulsed power supplies for laser flashlamps. Final report

    International Nuclear Information System (INIS)

    Bird, W.L. Jr.; Driga, M.D.; Mayhall, D.J.T.; Brennan, M.


    A preliminary engineering design of a compensated pulse alternator for driving laser flashlamps is presented. The work performed by the Center for Electromechanics at The University of Texas at Austin also includes the optimization and revision of the prototype design for a compensated pulse alternator power supply for the NOVA laser system at Lawrence Livermore Laboratory

  11. Nonlinear interaction of ultraintense laser pulse with relativistic thin ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 87; Issue 5. Nonlinear interaction of ultraintense laser pulse ... In the RPD regime, the plasma foil is pushed by ultraintense laser pulse when the radiation cannot propagate through the foil, while the electron and ion layers move together. The nonlinear character of ...

  12. Effect of aging on copper nanoparticles synthesized by pulsed laser ...

    Indian Academy of Sciences (India)



    Jun 23, 2009 ... using 1064 nm wavelength of pulsed Nd : YAG laser. The present paper deals with synthesis of copper and copper oxide nanoparticles by pulsed laser ablation in water and effect of aging on these nanoparticles. 2. Experimental. To produce the copper nanoparticles, a piece of copper metal (99⋅99% ...

  13. Nickel silicide formation using multiple-pulsed laser annealing

    International Nuclear Information System (INIS)

    Setiawan, Y.; Lee, P. S.; Pey, K. L.; Wang, X. C.; Lim, G. C.; Chow, F. L.


    The effect of multiple-pulsed laser irradiation on Ni silicide formation in Ni(Ti)/Si system was studied. A layered structure consisting of both crystalline NiSi 2 and Ni-rich Ni-Si amorphous phases with a protective TiO x overlayer was formed after five-pulsed laser annealing at 0.4 J cm -2 . Different solidification velocities caused by a variation in the atomic concentration across the melt have led to the formation of this layered structure. On the other hand, by increasing the number of laser pulses, a continuous layer of polycrystalline NiSi was obtained after a 20-pulsed laser annealing at 0.3 J cm -2 laser fluence. Its formation is attributed to a better elemental mixing which occurred during subsequent pulses. Enhancement of surface absorption and remelting of the phases formed is proposed as the mechanism governing the continuous NiSi layer formation

  14. Active manipulation of the selective alignment by two laser pulses

    International Nuclear Information System (INIS)

    Zeng-Qiang, Yang; Zhi-Rong, Guo; Gui-Xian, Ge


    This paper solves numerically the full time-dependent Schrödinger equation based on the rigid rotor model, and proposes a novel strategy to determine the optimal time delay of the two laser pulses to manipulate the molecular selective alignment. The results illustrate that the molecular alignment generated by the first pulse can be suppressed or enhanced selectively, the relative populations of even and odd rotational states in the final rotational wave packet can be manipulated selectively by precisely inserting the peak of the second laser pulse at the time when the slope for the alignment parameter by the first laser locates a local maximum for the even rotational states and a local minimum for the odds, and vice versa. The selective alignment can be further optimised by selecting the intensity ratio of the two laser pulses on the condition that the total laser intensity and pulse duration are kept constant. (atomic and molecular physics)

  15. Ultrafast pulse lasers jump to macro applications (United States)

    Griebel, Martin; Lutze, Walter; Scheller, Torsten


    Ultrafast Lasers have been proven for several micro applications, e.g. stent cutting, for many years. Within its development of applications Jenoptik has started to use ultrafast lasers in macro applications in the automotive industry. The JenLas D2.fs-lasers with power output control via AOM is an ideal tool for closed loop controlled material processing. Jenoptik enhanced his well established sensor controlled laser weakening process for airbag covers to a new level. The patented process enables new materials using this kind of technology. One of the most sensitive cover materials is genuine leather. As a natural product it is extremely inhomogeneous and sensitive for any type of thermal load. The combination of femtosecond pulse ablation and closed loop control by multiple sensor array opens the door to a new quality level of defined weakening. Due to the fact, that the beam is directed by scanning equipment the process can be split in multiple cycles additionally reducing the local energy input. The development used the 5W model as well as the latest 10W release of JenLas D2.fs and achieved amazing processing speeds which directly fulfilled the requirements of the automotive industry. Having in mind that the average cycle time of automotive processes is about 60s, trials had been done of processing weakening lines in genuine leather of 1.2mm thickness. Parameters had been about 15 cycles with 300mm/s respectively resulting in an average speed of 20mm/s and a cycle time even below 60s. First samples had already given into functional and aging tests and passed successfully.

  16. Hose-Modulation Instability of Laser Pulses in Plasmas

    International Nuclear Information System (INIS)

    Sprangle, P.; Krall, J.; Esarey, E.


    A laser pulse propagating in a uniform plasma or a preformed plasma density channel is found to undergo a combination of hose and modulation instabilities, provided the pulse centroid has an initial tilt. Coupled equations for the laser centroid and envelope are derived and solved for a finite-length laser pulse. Significant coupling between the centroid and the envelope, harmonic generation in the envelope, and strong modification of the wake field can occur. Methods to reduce the growth rate of the laser hose instability are demonstrated

  17. Formation of laser-induced periodic surface structures (LIPSS) on tool steel by multiple picosecond laser pulses of different polarizations

    Energy Technology Data Exchange (ETDEWEB)

    Gregorčič, Peter, E-mail: [Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000 Ljubljana (Slovenia); Sedlaček, Marko; Podgornik, Bojan [Institute of Metals and Technology, Lepi pot 11, 1000 Ljubljana (Slovenia); Reif, Jürgen [Brandenburgische Technische Universitaet – BTU Cottbus-Senftenberg, Platz der Deutschen Einheit 1, 03046 Cottbus (Germany)


    Highlights: • Low number of differently polarized ps laser pulses is superimposed on tool steel. • Last pulses determine the ripples orientation for single spot and coherent traces. • Previously formed structures are overridden by later incident pulses. • Ripples contrast depends on total exposure, independent on pulses’ polarization. • Weak role of pre-formed structures makes interference scenarios questionable. - Abstract: Laser-induced periodic surface structures (LIPSS) are produced on cold work tool steel by irradiation with a low number of picosecond laser pulses. As expected, the ripples, with a period of about 90% of the laser wavelength, are oriented perpendicular to the laser polarization. Subsequent irradiation with the polarization rotated by 45° or 90° results in a corresponding rotation of the ripples. This is visible already with the first pulse and becomes almost complete – erasing the previous orientation – after as few as three pulses. The phenomenon is not only observed for single-spot irradiation but also for writing long coherent traces. The experimental results strongly defy the role of surface plasmon-polaritons as the predominant key to LIPSS formation.

  18. Surface morphological modification of crosslinked hydrophilic co-polymers by nanosecond pulsed laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Primo, Gastón A.; Alvarez Igarzabal, Cecilia I. [IMBIV (CONICET), Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Edificio de Ciencias II, Ciudad Universitaria, Córdoba X5000HUA (Argentina); Pino, Gustavo A.; Ferrero, Juan C. [INFIQC (CONICET), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, and Centro Láser de Ciencias Moleculares, Universidad Nacional de Córdoba, Córdoba X5000IUS (Argentina); Rossa, Maximiliano, E-mail: [INFIQC (CONICET), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, and Centro Láser de Ciencias Moleculares, Universidad Nacional de Córdoba, Córdoba X5000IUS (Argentina)


    Graphical abstract: - Highlights: • Laser-induced surface modification of crosslinked hydrophilic co-polymers by ns pulses. • Formation of ablation craters observed under most of the single-pulse experimental conditions. • UV laser foaming of dried hydrogel samples resulting from single- and multiple-pulse experiments. • Threshold values of the incident laser fluence reported for the observed surface modifications. • Lower threshold fluences for acrylate-based, compared to acrylamide-based hydrogels. - Abstract: This work reports an investigation of the surface modifications induced by irradiation with nanosecond laser pulses of ultraviolet and visible wavelengths on crosslinked hydrophilic co-polymeric materials, which have been functionalized with 1-vinylimidazole as a co-monomer. A comparison is made between hydrogels differing in the base co-monomer (N,N-dimethylaminoethyl methacrylate and N-[3-(dimethylamino)propyl] methacrylamide) and in hydration state (both swollen and dried states). Formation of craters is the dominant morphological change observed by ablation in the visible at 532 nm, whereas additional, less aggressive surface modifications, chiefly microfoams and roughness, are developed in the ultraviolet at 266 nm. At both irradiation wavelengths, threshold values of the incident laser fluence for the observation of the various surface modifications are determined under single-pulse laser irradiation conditions. It is shown that multiple-pulse irradiation at 266 nm with a limited number of laser shots can be used alternatively for generating a regular microfoam layer at the surface of dried hydrogels based on N,N-dimethylaminoethyl methacrylate. The observations are rationalized on the basis of currently accepted mechanisms for laser-induced polymer surface modification, with a significant contribution of the laser foaming mechanism. Prospective applications of the laser-foamed hydrogel matrices in biomolecule immobilization are suggested.

  19. Chirp of monolithic colliding pulse mode-locked diode lasers

    DEFF Research Database (Denmark)

    Hofmann, M.; Bischoff, S.; Franck, Thorkild


    Spectrally resolved streak camera measurements of picosecond pulses emitted by hybridly colliding pulse mode-locked (CPM) laser diodes are presented in this letter. Depending on the modulation frequency both blue-chirped (upchirped) and red-chirped (downchirped) pulses can be observed. The two...... different regimes and the transition between them are characterized experimentally and the behavior is explained on the basis of our model for the CPM laser dynamics. (C) 1997 American Institute of Physics....

  20. Detection of diamond in ore using pulsed laser Raman spectroscopy

    CSIR Research Space (South Africa)

    Lamprecht, GH


    Full Text Available characteristics of the signals, and the linearity of the signals with laser power. The relative signal to noise ratios expected with pulsed and cw systems was also investigated theoretically and experimentally. The measurements were done in order to arrive... suggests a distinct advantage of using pulsed rather than cw lasers in a detection apparatus. 4.3. Comparison of cw and pulsed signal detection The characteristics of a photomultiplier tube (PMT) as an amplifier of the primary electrons generated...

  1. Ultra-short pulsed laser engineered metal-glass nanocomposites

    CERN Document Server

    Stalmashonak, Andrei; Abdolvand, Amin


    Glasses containing metallic nanoparticles exhibit very promising linear and nonlinear optical properties, mainly due to the surface plasmon resonances (SPRs) of the nanoparticles. The spectral position in the visible and near-infrared range and polarization dependence of the SPR are characteristically determined by the nanoparticles’ shapes. The focus of Ultra-Short Pulsed Laser Engineered Metal-Glass Nanocomposites is the interaction of intense ultra-short laser pulses with glass containing silver nanoparticles embedded in soda-lime glass, and nanostructural modifications in metal-glass nanocomposites induced by such laser pulses. In order to provide a comprehensive physical picture of the processes leading to laser-induced persistent shape transformation of the nanoparticles, series of experimental results investigating the dependences of laser assisted shape modifications of nanoparticles with laser pulse intensity, excitation wavelength, temperature are considered. In addition, the resulting local opti...

  2. Modeling plasma heating by ns laser pulse (United States)

    Colonna, Gianpiero; Laricchiuta, Annarita; Pietanza, Lucia Daniela


    The transition to breakdown of a weakly ionized gas, considering inverse bremsstrahlung, has been investigated using a state-to-state self-consistent model for gas discharges, mimicking a ns laser pulse. The paper is focused on the role of the initial ionization on the plasma formation. The results give the hint that some anomalous behaviors, such as signal enhancement by metal nanoparticles, can be attributed to this feature. This approach has been applied to hydrogen gas regarded as a simplified model for LIBS plasmas, as a full kinetic scheme is available, including the collisional-radiative model for atoms and molecules. The model allows the influence of different parameters to be investigated, such as the initial electron molar fraction, on the ionization growth.

  3. Water spray assisted ultrashort laser pulse ablation

    International Nuclear Information System (INIS)

    Silvennoinen, M.; Kaakkunen, J.J.J.; Paivasaari, K.; Vahimaa, P.


    Highlights: ► We show the novel method to use multibeam processing with ultrashort pulses efficiently. ► Sprayed thin water layer on ablation zone enhances ablation rate and quality. ► In some cases this method also enables ablation of the deeper and straighter holes compared to ones made without the water layer. ► Method also makes possible to directly write features without the self-organizing structures. - Abstract: We have studied femtosecond ablation under sprayed thin water film and its influence and benefits compared with ablation in the air atmosphere. These have been studied in case of the hole and the groove ablation using IR femtosecond laser. Water enhances the ablation rate and in some situations it makes possible to ablate the holes with a higher aspect ratio. While ablating the grooves, the water spray allows using the high fluences without the generation of the self-organized structures.

  4. Elemental chemical analysis of submerged targets by double-pulse laser-induced breakdown spectroscopy. (United States)

    De Giacomo, A; Dell'Aglio, M; Casavola, A; Colonna, G; De Pascale, O; Capitelli, M


    Double-pulse laser-induced plasma spectroscopy (DP-LIPS) is applied to submerged targets to investigate its feasibility for elemental analysis. The role of experimental parameters, such as inter-pulse delay and detection time, has been discussed in terms of the dynamics of the laser-induced bubble produced by the first pulse and its confinement effect on the plasma produced by the second laser pulse. The analytical performance of this technique applied to targets in a water environment are discussed. The elemental analysis of submerged copper alloys by DP-LIPS has been compared with conventional (single-pulse) LIBS in air. Theoretical investigation of the plasma dynamics in water bubbles and open air has been performed.

  5. Flash evaporation of compounds with a pulsed-discharge CO(2) laser. (United States)

    Calí, C; Daneu, V; Orioli, A; Riva-Sanseverino, S


    Pulsed laser radiation at 10.6 microm has been used to evaporate a number of compounds chosen for their difficulty of evaporation with conventional techniques. An average laser power of 8 W, pulsed at 50 Hz with a 1-msec duration, has been found sufficient to obtain useful evaporation rates for Al(2)O(3) and other highly refractory materials. For easily decomposed materials such as CdS and ZnS, comparison of cw and pulsed evaporation through measurement of optical and photoconductive film properties consistently indicates higher stoichiometry in pulsed evaporation, as well as higher refractive index. The dynamics of film growth during a single laser pulse has been studied by means of a unique thickness monitor.

  6. Modification of transparent materials with ultrashort laser pulses: What is energetically and mechanically meaningful?

    Energy Technology Data Exchange (ETDEWEB)

    Bulgakova, Nadezhda M., E-mail: [HiLASE Centre, Institute of Physics ASCR, Za Radnicí 828, 25241 Dolní Břežany (Czech Republic); Institute of Thermophysics SB RAS, 1 Lavrentyev Ave., 630090 Novosibirsk (Russian Federation); Zhukov, Vladimir P. [Institute of Computational Technologies SB RAS, 6 Lavrentyev Ave., 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 20 Karl Marx Ave., 630073, Novosibirsk (Russian Federation); Sonina, Svetlana V. [Novosibirsk State University, 1 Koptuga Ave., 630090 Novosibirsk (Russian Federation); Meshcheryakov, Yuri P. [Design and Technology Branch of Lavrentyev Institute of Hydrodynamics SB RAS, Tereshkovoi street 29, 630090 Novosibirsk (Russian Federation)


    A comprehensive analysis of laser-induced modification of bulk glass by single ultrashort laser pulses is presented which is based on combination of optical Maxwell-based modeling with thermoelastoplastic simulations of post-irradiation behavior of matter. A controversial question on free electron density generated inside bulk glass by ultrashort laser pulses in modification regimes is addressed on energy balance grounds. Spatiotemporal dynamics of laser beam propagation in fused silica have been elucidated for the regimes used for direct laser writing in bulk glass. 3D thermoelastoplastic modeling of material relocation dynamics under laser-induced stresses has been performed up to the microsecond timescale when all motions in the material decay. The final modification structure is found to be imprinted into material matrix already at sub-nanosecond timescale. Modeling results agree well with available experimental data on laser light transmission through the sample and the final modification structure.

  7. Efficient delivery of 60 J pulse energy of long pulse Nd: YAG laser ...

    Indian Academy of Sciences (India)


    Feb 9, 2014 ... In this work, we have put efforts to efficiently deliver the laser output of 'ceramic reflector'-based long pulse Nd:YAG laser through a 200 m core diameter optical fibre and successfully delivered up to 60 J of pulse energy with 90% transmission efficiency, using a GRADIUM (axial gradient) plano-convex ...

  8. Characteristics and Applications of Spatiotemporally Focused Femtosecond Laser Pulses

    Directory of Open Access Journals (Sweden)

    Chenrui Jing


    Full Text Available Simultaneous spatial and temporal focusing (SSTF of femtosecond laser pulses gives rise to strong suppression of nonlinear self-focusing during the propagation of the femtosecond laser beam. In this paper, we begin with an introduction of the principle of SSTF, followed by a review of our recent experimental results on the characterization and application of the spatiotemporally focused pulses for femtosecond laser micromachining. Finally, we summarize all of the results and give a future perspective of this technique.

  9. Incubation behaviour in triazenepolymer thin films upon near-infrared femtosecond laser pulse irradiation

    International Nuclear Information System (INIS)

    Bonse, J; Wiggins, S M; Solis, J; Sturm, H; Urech, L; Wokaun, A; Lippert, T


    The effects of laser radiation induced by a sequence of ultrashort (130 fs), near-infrared (800 nm) Ti:sapphire laser pulses in ∼1 μm thick triazenepolymer films on glass substrates have been investigated by means of in-situ real-time reflectivity measurements featuring a ps-resolution streak camera and a ns-resolution photodiode set-up. The polymer films show incubation effects when each laser pulse in the sequence has a fluence below the single-pulse damage threshold. Non-damage conditions are maintained for several incubation pulses such that the reflectivity of the film shows a rapid decrease of up to 30% within 1 ns but subsequently recovers to its initial value on a ms timescale. Additional pulses lead to a permanent film damage. The critical number of laser pulses needed to generate a permanent damage of the film has been studied as a function of the laser fluence. Once damage is created, further laser pulses cause a partial removal of the film material from the glass substrate. Scanning force microscopy has been used to characterise ex-situ the irradiated surface areas. Based on these complementary measurements possible incubation mechanisms are discussed

  10. Multi-pulse scheme for laser-guided electrical breakdown of air (United States)

    Polynkin, Pavel


    Channeling an extended electrical breakdown of air by a laser beam is a long-standing challenge in applied laser science. Virtually all previously reported experiments on discharge channeling by femtosecond laser beams relied on the application of a single laser pulse and have been conducted with discharge gaps of less than one meter, in which case the direct ohmic heating of the laser-generated plasma by the applied DC electric field is the dominant channeling mechanism. We report a laboratory-scale demonstration of a channeling approach that makes use of concatenated plasma filaments produced by a sequence of multiple ultrashort laser pulses. Direct ohmic heating of the guiding channel is eliminated through the introduction of large temporal delays between the individual laser pulses in the pulse sequence. We propose an extension of this scheme to channeling kilometer-scale discharges, including natural lightning. Our proposed approach alleviates the fundamental range limitations inherent to the single-pulse schemes reported previously. It can channel discharges propagating in either direction and along curved paths.

  11. Laser Induced Breakdown Spectroscopy Based on Single Beam Splitting and Geometric Configuration for Effective Signal Enhancement


    Yang, Guang; Lin, Qingyu; Ding, Yu; Tian, Di; Duan, Yixiang


    A new laser induced breakdown spectroscopy (LIBS) based on single-beam-splitting (SBS) and proper optical geometric configuration has been initially explored in this work for effective signal enhancement. In order to improve the interaction efficiency of laser energy with the ablated material, a laser beam operated in pulse mode was divided into two streams to ablate/excite the target sample in different directions instead of the conventional one beam excitation in single pulse LIBS (SP-LIBS)...

  12. CTS and CZTS for solar cells made by pulsed laser deposition and pulsed electron deposition

    DEFF Research Database (Denmark)

    Ettlinger, Rebecca Bolt

    This thesis concerns the deposition of thin films for solar cells using pulsed laser deposition (PLD) and pulsed electron deposition (PED). The aim was to deposit copper tin sulfide (CTS) and zinc sulfide (ZnS) by pulsed laser deposition to learn about these materials in relation to copper zinc tin...... sulfide (CZTS), a new material for solar cells. We were the first research group to deposit CTS by pulsed laser deposition and since this is a potential solar cell material in its own right we experimented with CTS solar cells in parallel with CZTS. Both CTS and CZTS contain only Earth-abundant elements......, which make them promising alternatives to the commercially successful solar cell material copper indium gallium diselenide (CIGS). Complementing our group's work on pulsed laser deposition of CZTS, we collaborated with IMEM-CNR in Parma, Italy, to deposit CZTS by pulsed electron deposition for the first...

  13. New laser system for highly sensitive clinical pulse oximetry (United States)

    Hamza, Mostafa; Hamza, Mohammad


    This paper describes the theory and design of a new pulse oximeter in which laser diodes and other compact laser sources are used for the measurement of oxygen saturation in patients who are at risk of developing hypoxemia. The technique depends upon illuminating special sites of the skin of the patient with radiation from modulated laser sources at selected wavelengths. The specific laser wavelengths are chosen based on the absorption characteristics of oxyhemoglobin, reduced hemoglobin and other interfering sources for obtaining more accurate measurements. The laser radiation transmitted through the tissue is detected and signal processing based on differential absorption laser spectroscopy is done in such a way to overcome the primary performance limitations of the conventionally used pulse oximetry. The new laser pulse oximeter can detect weak signals and is not affected by other light sources such as surgical lamps, phototherapy units, etc. The detailed description and operating characteristics of this system are presented.

  14. LASERS: Periodic-pulse operation of holmium lasers using YAG and YSGG crystals (United States)

    Antipenko, B. M.; Zabaznov, A. M.; Nikitichev, A. A.; Pis'mennyĭ, V. A.; Stavrov, A. A.; Tipenko, Yu S.; Tsvetkov, V. B.; Shcherbakov, Ivan A.


    The generation characteristics of lasers using YAG and YSGG crystals doped with Cr, Tm, and Ho in periodic-pulse operation have been studied experimentally. The laser using the YAG crystal is preferable for achieving a high pulse repetition frequency at a relatively low pump energy. Ways to expand the range of working frequencies of holmium lasers based on scandium garnets are pointed out.

  15. Energy losses estimation during pulsed-laser seam welding

    Czech Academy of Sciences Publication Activity Database

    Šebestová, Hana; Havelková, M.; Chmelíčková, H.


    Roč. 45, č. 3 (2014), s. 1116-1121 ISSN 1073-5615 R&D Projects: GA MŠk(CZ) LG13007 Institutional support: RVO:68378271 Keywords : laser welding * pulsed-laser * Nd:YAG laser Subject RIV: JP - Industrial Processing Impact factor: 1.461, year: 2014

  16. Optical pulse generation using fiber lasers and integrated optics

    International Nuclear Information System (INIS)

    Wilcox, R.B.; Browning, D.F.; Burkhart, S.C.; VanWonterghem, B.W.


    We have demonstrated an optical pulse forming system using fiber and integrated optics, and have designed a multiple-output system for a proposed fusion laser facility. Our approach is an advancement over previous designs for fusion lasers, and an unusual application of fiber lasers and integrated optics

  17. Optimizing Atom Probe Analysis with Synchronous Laser Pulsing and Voltage Pulsing. (United States)

    Zhao, Lu; Normand, Antoine; Houard, Jonathan; Blum, Ivan; Delaroche, Fabien; Latry, Olivier; Ravelo, Blaise; Vurpillot, Francois


    Atom probe has been developed for investigating materials at the atomic scale and in three dimensions by using either high-voltage (HV) pulses or laser pulses to trigger the field evaporation of surface atoms. In this paper, we propose an atom probe setup with pulsed evaporation achieved by simultaneous application of both methods. This provides a simple way to improve mass resolution without degrading the intrinsic spatial resolution of the instrument. The basic principle of this setup is the combination of both modes, but with a precise control of the delay (at a femtosecond timescale) between voltage and laser pulses. A home-made voltage pulse generator and an air-to-vacuum transmission system are discussed. The shape of the HV pulse presented at the sample apex is experimentally measured. Optimizing the delay between the voltage and the laser pulse improves the mass spectrum quality.

  18. Explosive Nucleosynthesis Study Using Laser Driven γ-ray Pulses

    Directory of Open Access Journals (Sweden)

    Takehito Hayakawa


    Full Text Available We propose nuclear experiments using γ-ray pulses provided from high field plasma generated by high peak power laser. These γ-ray pulses have the excellent features of extremely short pulse, high intensity, and continuous energy distribution. These features are suitable for the study of explosive nucleosyntheses in novae and supernovae, such as the γ process and ν process. We discuss how to generate suitable γ-ray pulses and the nuclear astrophysics involved.

  19. Laser cleaning of pulsed laser deposited rhodium films for fusion diagnostic mirrors

    International Nuclear Information System (INIS)

    Uccello, A.; Maffini, A.; Dellasega, D.; Passoni, M.


    Highlights: ► Pulsed laser deposition is exploited to produce Rh films for first mirrors. ► Pulsed laser deposition is exploited to produce tokamak-like C contaminants. ► Rh laser damage threshold has been evaluated for infrared pulses. ► Laser cleaning of C contaminated Rh films gives promising results. -- Abstract: In this paper an experimental investigation on the laser cleaning process of rhodium films, potentially candidates to be used as tokamak first mirrors (FMs), from redeposited carbon contaminants is presented. A relevant issue that lowers mirror's performance during tokamak operations is the redeposition of sputtered material from the first wall on their surface. Among all the possible techniques, laser cleaning, in which a train of laser pulses is launched to the surface that has to be treated, is a method to potentially mitigate this problem. The same laser system (Q-switched Nd:YAG laser with a fundamental wavelength of 1064-nm and 7-ns pulses) has been employed with three aims: (i) production by pulsed laser deposition (PLD) of Rh film mirrors, (ii) production by PLD of C deposits with controlled morphology, and (iii) investigation of the laser cleaning method onto C contaminated Rh samples. The evaluation of Rh films laser damage threshold, as a function of fluence and number of pulses, is discussed. Then, the C/Rh films have been cleaned by the laser beam. The exposed zones have been characterized by visual inspection and scanning electron microscopy (SEM), showing promising results

  20. Performance characteristics of an excimer laser (XeCl) with single ...

    Indian Academy of Sciences (India) Keywords. XeCl excimer laser; magnetic pulse compressor; saturable inductor; micro-machining. Abstract. Performance characteristics of an excimer laser (XeCl) with single-stage magnetic pulse compression suitable for material processing applications are presented ...

  1. Pulse generation and preamplification for long pulse beamlines of Orion laser facility. (United States)

    Hillier, David I; Winter, David N; Hopps, Nicholas W


    We describe the pulse generation, shaping, and preamplification system for the nanosecond beamlines of the Orion laser facility. The system generates shaped laser pulses of up to approximately 1 J of 100 ps-5 ns duration with a programmable temporal profile. The laser has a 30th-power supergaussian spatial profile and is diffraction limited. The system is capable of imposing 2D smoothing by spectral dispersion upon the beam, which will produce a nonuniformity of 10% rms at the target.

  2. Complete elimination of nonlinear light-matter interactions with broadband ultrafast laser pulses

    DEFF Research Database (Denmark)

    Shu, Chuan-Cun; Dong, Daoyi; Petersen, Ian R.


    optical effects, however, the probability of pure single-photon absorption is usually very low, which is particularly pertinent in the case of strong ultrafast laser pulses with broad bandwidth. Here we demonstrate theoretically a counterintuitive coherent single-photon absorption scheme by eliminating...... nonlinear interactions of ultrafast laser pulses with quantum systems. That is, a completely linear response of the system with respect to the spectral energy density of the incident light at the transition frequency can be obtained for all transition probabilities between 0 and 100% in multilevel quantum...... systems. To that end, a multiobjective optimization algorithm is developed to find an optimal spectral phase of an ultrafast laser pulse, which is capable of eliminating all possible nonlinear optical responses while maximizing the probability of single-photon absorption between quantum states. This work...

  3. Physics and technology of tunable pulsed single longitudinal mode ...

    Indian Academy of Sciences (India)

    The single longitudinal mode (SLM) dye laser generates single-mode laser beams of ∼ 400 MHz (GIG configuration) and ∼ 600 MHz (Littrow configuration) bandwidth. Detailed performance studies of the Littrow and GIG dye laser resonators showed that GIG dye laser results in narrower linewidth and broad mode hop free ...

  4. Non-Contact Cardiac Activity Monitoring using Pulsed Laser Vibrometer

    Directory of Open Access Journals (Sweden)

    Chen Chia WANG


    Full Text Available We demonstrate experimentally the detection of detailed human cardiac mechanical activity in a remote, non-contacting, and non-ionizing manner using a pulsed laser vibrometer. The highly sensitive pulsed laser vibrometer allows the detection of the temporally-phased mechanical events occurring in individual cardiac cycles even from the surface of clothing-covered extremities of the subjects. Fine structures of the detected cardiac traces are identified with their meanings assigned and corroborated using accelerometer and electrocardiogram measurements obtained concurrently with the pulsed laser vibrometer studies.

  5. Epitaxial single-crystal thin films of MnxTi1-xO2-δ grown on (rutile)TiO2 substrates with pulsed laser deposition: Experiment and theory

    Energy Technology Data Exchange (ETDEWEB)

    Ilton, Eugene S.; Droubay, Timothy C.; Chaka, Anne M.; Kovarik, Libor; Varga, Tamas; Arey, Bruce W.; Kerisit, Sebastien N.


    Epitaxial rutile-structured single-crystal MnxTi1-xO2-δ films were synthesized on rutile- (110) and -(001) substrates using pulsed laser deposition. The films were characterized by reflection high-energy electron diffraction (RHEED), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and aberration-corrected transmission electron microscopy (ACTEM). Under the present conditions, 400oC and PO2 = 20 mTorr, single crystal epitaxial thin films were grown for x = 0.13, where x is the nominal average mole fraction of Mn. In fact, arbitrarily thick films could be grown with near invariant Mn/Ti concentration profiles from the substrate/film interface to the film surface. In contrast, at x = 0.25, Mn became enriched towards the surface and a secondary nano-scale phase formed which appeared to maintain the basic rutile structure but with enhanced z-contrast in the tunnels, or tetrahedral interstitial sites. Ab initio thermodynamic calculations provided quantitative estimates for the destabilizing effect of expanding the β-MnO2 lattice parameters to those of TiO2-rutile, the stabilizing effect of diluting Mn with increasing Ti concentration, and competing reaction pathways.

  6. Ultrashort x-ray pulse generation by nonlinear Thomson scattering of a relativistic electron with an intense circularly polarized laser pulse

    Directory of Open Access Journals (Sweden)

    F. Liu


    Full Text Available The nonlinear Thomson scattering of a relativistic electron with an intense laser pulse is calculated numerically. The results show that an ultrashort x-ray pulse can be generated by an electron with an initial energy of 5 MeV propagating across a circularly polarized laser pulse with a duration of 8 femtosecond and an intensity of about 1.1×10^{21}  W/cm^{2}, when the detection direction is perpendicular to the propagation directions of both the electron and the laser beam. The optimal values of the carrier-envelop phase and the intensity of the laser pulse for the generation of a single ultrashort x-ray pulse are obtained and verified by our calculations of the radiation characteristics.

  7. Hydroxyapatite thin films grown by pulsed laser deposition and matrix assisted pulsed laser evaporation: Comparative study (United States)

    Popescu-Pelin, G.; Sima, F.; Sima, L. E.; Mihailescu, C. N.; Luculescu, C.; Iordache, I.; Socol, M.; Socol, G.; Mihailescu, I. N.


    Pulsed Laser Deposition (PLD) and Matrix Assisted Pulsed Laser Evaporation (MAPLE) techniques were applied for growing hydroxyapatite (HA) thin films on titanium substrates. All experiments were conducted in a reaction chamber using a KrF* excimer laser source (λ = 248 nm, τFWHM ≈ 25 ns). Half of the samples were post-deposition thermally treated at 500 °C in a flux of water vapours in order to restore crystallinity and improve adherence. Coating surface morphologies and topographies specific to the deposition method were evidenced by scanning electron, atomic force microscopy investigations and profilometry. They were shown to depend on deposition technique and also on the post-deposition treatment. Crystalline structure of the coatings evaluated by X-ray diffraction was improved after thermal treatment. Biocompatibility of coatings, cellular adhesion, proliferation and differentiation tests were conducted using human mesenchymal stem cells (MSCs). Results showed that annealed MAPLE deposited HA coatings were supporting MSCs proliferation, while annealed PLD obtained films were stimulating osteogenic differentiation.

  8. Pulsed-laser atom-probe field-ion microscopy

    International Nuclear Information System (INIS)

    Kellogg, G.L.; Tsong, T.T.


    A time-of-flight atom-probe field-ion microscope has been developed which uses nanosecond laser pulses to field evaporate surface species. The ability to operate an atom-probe without using high-voltage pulses is advantageous for several reasons. The spread in energy arising from the desorption of surface species prior to the voltage pulse attaining its maximum amplitude is eliminated, resulting in increased mass resolution. Semiconductor and insulator samples, for which the electrical resistivity is too high to transmit a short-duration voltage pulse, can be examined using pulsed-laser assisted field desorption. Since the electric field at the surface can be significantly smaller, the dissociation of molecular adsorbates by the field can be reduced or eliminated, permitting well-defined studies of surface chemical reactions. In addition to atom-probe operation, pulsed-laser heating of field emitters can be used to study surface diffusion of adatoms and vacancies over a wide range of temperatures. Examples demonstrating each of these advantages are presented, including the first pulsed-laser atom-probe (PLAP) mass spectra for both metals (W, Mo, Rh) and semiconductors (Si). Molecular hydrogen, which desorbs exclusively as atomic hydrogen in the conventional atom probe, is shown to desorb undissociatively in the PLAP. Field-ion microscope observations of the diffusion and dissociation of atomic clusters, the migration of adatoms, and the formation of vacancies resulting from heating with a 7-ns laser pulse are also presented

  9. Transient thermal analysis of semiconductor diode lasers under pulsed operation (United States)

    Veerabathran, G. K.; Sprengel, S.; Karl, S.; Andrejew, A.; Schmeiduch, H.; Amann, M.-C.


    Self-heating in semiconductor lasers is often assumed negligible during pulsed operation, provided the pulses are `short'. However, there is no consensus on the upper limit of pulse width for a given device to avoid-self heating. In this paper, we present an experimental and theoretical analysis of the effect of pulse width on laser characteristics. First, a measurement method is introduced to study thermal transients of edge-emitting lasers during pulsed operation. This method can also be applied to lasers that do not operate in continuous-wave mode. Secondly, an analytical thermal model is presented which is used to fit the experimental data to extract important parameters for thermal analysis. Although commercial numerical tools are available for such transient analyses, this model is more suitable for parameter extraction due to its analytical nature. Thirdly, to validate this approach, it was used to study a GaSb-based inter-band laser and an InP-based quantum cascade laser (QCL). The maximum pulse-width for less than 5% error in the measured threshold currents was determined to be 200 and 25 ns for the GaSb-based laser and QCL, respectively.

  10. Single mode operation of a tea CO2 laser by a CW CO2 laser radiation injection

    International Nuclear Information System (INIS)

    Silakhori, K.; Soltanmoradi, F.; Behjat, A.; Montazerghaem, M.; Sadr, R.


    In this research work, single mode operation based on injection of a CW laser beam into TEA CO 2 laser cavity has been demonstrated. The technique has vast applications in research programs for laser spectroscopy and optical pumping. The observed smooth pulse shapes indicated that the system is operating in a single mode of operation, where no additional PZT mounted elements or other cavity stabilizing devices have been used. In addition, it have been observed that the output energy has not been reduced when the laser was operating in a single mode of operation, compared with the case when the laser is operating in the multi-mode regime

  11. Designing Laser Pulses to Control Molecular Motion (United States)

    Ren, Qinghua; Balint-Kurti, Gabriel; Manby, Frederick; Artamonov, Maxim; Ho, Tak-San; Rabitz, Herschel


    A new method for incorporating polarization effects of the strong electric field into optimal control calculations is presented. An Electric-Nuclear Born-Oppenheimer approximation is introduced in which both the nuclear motion and the fluctuations of the external electric field are assumed to be slow compared with the speed at which the electronic wavefunction responds to these changes, which permits the generation of a potential energy surface that depends not only on the geometry of the nuclei, but also on the electric field strength and on the orientation of the molecule with respect to the electric field. As an illustration, it is firstly applied to the optimal control of the vibrational excitation of a hydrogen molecule aligned along with the field direction.^ [1] And then it is extended to full three dimensions by allowing the H2 molecules to rotate as well as vibrate.^ [2] All calculation results show that it is possible to design shaped laser pulses that can excite H2 either vibrationally, rotationally or both with a probability higher than 90%. ^[1] G. G. Balint-kurti, F. R. Manby, Q. Ren, M. Artamonov, T. Ho, and H. Rabitz, J. Chem. Phys. 122, 084110 (2005). ^[2] Q. Ren, G. G. Balint-kurti, F. R. Manby, M. Artamonov, T. Ho, and H. Rabitz, J. Chem. Phys. (in press).

  12. Miniature, Rugged, Pulsed Laser Source for LIDAR Application Project (United States)

    National Aeronautics and Space Administration — Princeton Optronics proposes to develop a high energy pulsed laser source based on a novel approach. The approach consists of a technique to combine a large number...

  13. Alignment of symmetric top molecules by short laser pulses

    DEFF Research Database (Denmark)

    Hamilton, Edward; Seideman, Tamar; Ejdrup, Tine


    Nonadiabatic alignment of symmetric top molecules induced by a linearly polarized, moderately intense picosecond laser pulse is studied theoretically and experimentally. Our studies are based on the combination of a nonperturbative solution of the Schrodinger equation with femtosecond time...

  14. 20 W High Efficiency 1550 nm Pulsed Fiber Laser Project (United States)

    National Aeronautics and Space Administration — High peak power short pulsed lasers have been considered to be an enabling technology to build high power transmitters for future deep space high rate space...

  15. Patterning of silicon differences between nanosecond and femtosecond laser pulses (United States)

    Weingärtner, M.; Elschner, R.; Bostanjoglo, O.


    Si (100) surfaces were exposed to 8 ns and 100 fs laser pulses with fluences≤3 J/cm 2 and ≤0.5 J/cm 2, respectively. Transient stages and final patterns were investigated by pulsed photoelectron microscopy and scanning electron plus light interference microscopy. Though the pattern formation extends for both pulse lengths over the same time of some 10 ns, the patterns are different. Nanosecond pulses produce smooth craters and remove a covering oxide. Femtosecond pulses ablate an oxide-free Si surface and produce flat pits covered by nanodrops, whereas oxide-covered surfaces are converted to a foam, which solidifies to a blistered structure.

  16. High-energy, short-pulse, carbon-dioxide lasers

    International Nuclear Information System (INIS)

    Fenstermacher, C.A.


    Lasers for fusion application represent a special class of short-pulse generators; not only must they generate extremely short temporal pulses of high quality, but they must do this at ultra-high powers and satisfy other stringent requirements by this application. This paper presents the status of the research and development of carbon-dioxide laser systems at the Los Alamos Scientific Laboratory, vis-a-vis the fusion requirements

  17. Supression of laser breakdown by pulsed nonequilibrium ns discharge (United States)

    Starikovskiy, A. Y.; Semenov, I. E.; Shneider, M. N.


    The avalanche ionization induced by infrared laser pulses was investigated in a pre-ionized argon gas. Pre-ionization was created by a high-voltage pulsed nanosecond discharge developed in the form of a fast ionization wave. Then, behind the front of ionization wave additional avalanche ionization was initiated by the focused Nd-YAG laser pulse. It was shown that the gas pre-ionization inhibits the laser spark generation. It was demonstrated that the suppression of laser spark development in the case of strong gas pre-ionization is because of fast electron energy transfer from the laser beam focal region. The main mechanism of this energy transfer is free electrons diffusion.

  18. Ultrashort Laser Pulse Heating of Nanoparticles: Comparison of Theoretical Approaches

    Directory of Open Access Journals (Sweden)

    Renat R. Letfullin


    Full Text Available The interaction between nanoparticles and ultrashort laser pulses holds great interest in laser nanomedicine, introducing such possibilities as selective cell targeting to create highly localized cell damage. Two models are studied to describe the laser pulse interaction with nanoparticles in the femtosecond, picosecond, and nanosecond regimes. The first is a two-temperature model using two coupled diffusion equations: one describing the heat conduction of electrons, and the other that of the lattice. The second model is a one-temperature model utilizing a heat diffusion equation for the phonon subsystem and applying a uniform heating approximation throughout the particle volume. A comparison of the two modeling strategies shows that the two-temperature model gives a good approximation for the femtosecond mode, but fails to accurately describe the laser heating for longer pulses. On the contrary, the simpler one-temperature model provides an adequate description of the laser heating of nanoparticles in the femtosecond, picosecond, and nanosecond modes.

  19. A High-Power Laser-Driven Source of Sub-nanosecond Soft X-Ray Pulses for Single-Shot Radiobiology Experiments

    Czech Academy of Sciences Publication Activity Database

    Davídková, Marie; Juha, Libor; Bittner, Michal; Koptyaev, Sergey; Hájková, Věra; Krása, Josef; Pfeifer, Miroslav; Štísová, Viktorie; Bartnik, A.; Fiedorowicz, H.; Mikolajczyk, J.; Ryc, L.; Pína, L.; Horváth, M.; Babánková, Dagmar; Cihelka, Jaroslav; Civiš, Svatopluk


    Roč. 168, č. 3 (2007), s. 382-387 ISSN 0033-7587 R&D Projects: GA ČR GA202/05/2316; GA MŠk(CZ) LC528; GA MŠk 1P04LA235; GA MŠk LC510 Institutional research plan: CEZ:AV0Z10480505; CEZ:AV0Z10100523; CEZ:AV0Z20430508; CEZ:AV0Z40400503 Keywords : soft X-rays * radiation damage to DNA * laser-driven source Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.599, year: 2007

  20. Low-cost cavity-dumped femtosecond Cr:LiSAF laser producing >100 nJ pulses. (United States)

    Demirbas, Umit; Hong, Kyung-Han; Fujimoto, James G; Sennaroglu, Alphan; Kärtner, Franz X


    We report a low-cost cavity-dumped Cr:colquiriite laser for generating enhanced pulse energies. Four single-mode laser diodes were used to pump a Cr:LiSAF laser, which was mode locked with a semiconductor saturable absorber mirror. Cavity dumping at 10 kHz repetition rate, the laser generated approximately 120 fs pulses at approximately 825 nm, with 112 nJ pulse energies and approximately 0.93 MW of peak power, using only approximately 600 mW of incident pump power. At higher dumping rates of up to 1 MHz, reduced pulse energies of 62 nJ could be generated. Two-photon absorption in the saturable absorber mirror limits pulse durations, while Q-switching instabilities limit pulse energy extraction.

  1. Imposed layer by layer growth by pulsed laser interval deposition

    NARCIS (Netherlands)

    Koster, Gertjan; Rijnders, Augustinus J.H.M.; Blank, David H.A.; Rogalla, Horst


    Pulsed laser deposition has become an important technique to fabricate novel materials. Although there is the general impression that, due to the pulsed deposition, the growth mechanism differs partially from continuous physical and chemical deposition techniques, it has hardly been used. Here, we

  2. High Average Power, High Energy Short Pulse Fiber Laser System

    Energy Technology Data Exchange (ETDEWEB)

    Messerly, M J


    Recently continuous wave fiber laser systems with output powers in excess of 500W with good beam quality have been demonstrated [1]. High energy, ultrafast, chirped pulsed fiber laser systems have achieved record output energies of 1mJ [2]. However, these high-energy systems have not been scaled beyond a few watts of average output power. Fiber laser systems are attractive for many applications because they offer the promise of high efficiency, compact, robust systems that are turn key. Applications such as cutting, drilling and materials processing, front end systems for high energy pulsed lasers (such as petawatts) and laser based sources of high spatial coherence, high flux x-rays all require high energy short pulses and two of the three of these applications also require high average power. The challenge in creating a high energy chirped pulse fiber laser system is to find a way to scale the output energy while avoiding nonlinear effects and maintaining good beam quality in the amplifier fiber. To this end, our 3-year LDRD program sought to demonstrate a high energy, high average power fiber laser system. This work included exploring designs of large mode area optical fiber amplifiers for high energy systems as well as understanding the issues associated chirped pulse amplification in optical fiber amplifier systems.

  3. Advanced pulse generator and preamplifier for the HELEN laser (United States)

    Norman, Michael J.; Harvey, E. J.; Hopps, N. W.; Nolan, J. R.; Smith, W. F. E.


    A replacement for the HELEN laser has been proposed that would involve a considerable increase in performance up to 100 TW from 32 beams. The design for the new laser is to be based on the technology being developed for the US National Ignition Facility. The pulse generation and preamplification stages employ novel technologies and represent a significant departure from previous designs. As part of the laser replacement development program a pulse generator and preamplifier have been built and installed on the HELEN laser at AWE, based on those employed on the Beamlet laser physics demonstration facility at Lawrence Livermore National Laboratory. As well as providing experience of the technologies involved, this system represents a significant enhancement of the performance of HELEN. Initial pulses are generated by a diode-pumped Q-switched Neodymium-doped Yttrium Lithium Fluoride ring oscillator. These are then launched into optical fiber and transported to a series of two integrated optics amplitude modulators for pulse shaping. The resulting pulses are then transported by optical fibers to a ring regenerative preamplifier for amplification to a level suitable for input to the HELEN laser. We describe this system, its performance and the enhanced capabilities of the HELEN laser resulting from its installation.

  4. Structure of picosecond pulses of a Q-switched and mode-locked diode-pumped Nd:YAG laser

    Energy Technology Data Exchange (ETDEWEB)

    Donin, V I; Yakovin, D V; Gribanov, A V [Institute of Automation and Electrometry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk (Russian Federation)


    The pulse duration of a diode-pumped Nd:YAG laser, in which Q-switching with mode-locking (QML regime) is achieved using a spherical mirror and a travelling-wave acousto-optic modulator, is directly measured with a streak camera. It is found that the picosecond pulses can have a non-single-pulse structure, which is explained by excitation of several competing transverse modes in the Q-switching regime with a pulse repetition rate of 1 kHz. In the case of cw mode-locking (without Q-switching), a new (auto-QML) regime is observed, in which the pulse train repetition rate is determined by the frequency of the relaxation oscillations of the laser field while the train contains single picosecond pulses. (control of laser radiation parameters)

  5. Femtosecond and nanosecond pulsed laser deposition of silicon and germanium

    Energy Technology Data Exchange (ETDEWEB)

    Reenaas, Turid Worren [Department of Physics, Norwegian University of Science and Technology, 7491 Trondheim (Norway); Lee, Yen Sian [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Chowdhury, Fatema Rezwana; Gupta, Manisha; Tsui, Ying Yin [Department of Electrical and Computer Engineering, University of Alberta (Canada); Tou, Teck Yong [Faculty of Engineering, Multimedia University, 63100 Cyberjaya, Selangor (Malaysia); Yap, Seong Ling [Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Kok, Soon Yie [Faculty of Engineering, Multimedia University, 63100 Cyberjaya, Selangor (Malaysia); Yap, Seong Shan, E-mail: [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)


    Highlights: • Ge and Si were deposited by fs and ns laser at room temperature and at vacuum. • Ion of 10{sup 4} ms{sup −1} and 30–200 eV was obtained for ns ablation for Ge and Si. • Highly energetic ions of 10{sup 5} ms{sup −1} with 2–7 KeV were produced in fs laser ablation. • Nanocrystalline Si and Ge were deposited by using fs laser. • Nanoparticles < 10 nm haven been obtained by fs laser. - Abstract: 150 fs Ti:Sapphire laser pulsed laser deposition of Si and Ge were compared to a nanosecond KrF laser (25 ns). The ablation thresholds for ns lasers were about 2.5 J cm{sup −2} for Si and 2.1 J cm{sup −2} for Ge. The values were about 5–10 times lower when fs laser were used. The power densities were 10{sup 8}–10{sup 9} W cm{sup −2} for ns but 10{sup 12} W cm{sup −2} for fs. By using an ion probe, the ions emission at different fluence were measured where the emitting ions achieving the velocity in the range of 7–40 km s{sup −1} and kinetic energy in the range of 30–200 eV for ns laser. The ion produced by fs laser was measured to be highly energetic, 90–200 km s{sup −1}, 2–10 KeV. Two ion peaks were detected above specific laser fluence for both ns and fs laser ablation. Under fs laser ablation, the films were dominated by nano-sized crystalline particles, drastically different from nanosecond pulsed laser deposition where amorphous films were obtained. The ions characteristics and effects of pulse length on the properties of the deposited films were discussed.

  6. Pulsed laser processing of electronic materials in micro/nanoscale (United States)

    Hwang, David Jen


    Time-resolved pump-and-probe side-view imaging has been performed to investigate the energy coupling to the target specimen over a wide range of fluences. Plasmas generated during the laser ablation process are visualized and the decrease of the ablation efficiency in the high fluence regime (>10 J/cm2) is attributed to the strong interaction of the laser pulse with the laser-induced plasmas. The high intensity ultra-short laser pulses also trigger volumetric multi-photon absorption (MPA) processes that can be beneficial in applications such as three-dimensional bulk modification of transparent materials. Femtosecond laser pulses were used to fabricate straight and bent through-channels in the optical glass. Drilling was initiated from the rear surface to preserve consistent absorbing conditions of the laser pulse. Machining in the presence of a liquid solution assisted the debris ejection. Drilling process was further enhanced by introducing ultrasonic waves, thereby increasing the aspect ratio of drilled holes and improving the quality of the holes. In conventional lens focusing schemes, the minimum feature size is determined by the diffraction limit. Finer resolution is accomplished by combining pulsed laser radiation with Near-field Scanning Optical Microscopy (NSOM) probes. Short laser pulses are coupled to a fiber-based NSOM probes in order to ablate thin metal films. A detailed parametric study on the effects of probe aperture size, laser pulse energy, temporal width and environment gas is performed. The significance of lateral thermal diffusion is highlighted and the dependence of the ablation process on the imparted near-field distribution is revealed. As a promising application of laser ablation in nanoscale, laser induced breakdown spectroscopy (LIBS) system has been built up based on NSOM ablation configuration. NSOM-LIBS is demonstrated with nanosecond pulsed laser excitation on Cr sample. Far-field collecting scheme by top objective lens was chosen as

  7. Efficient delivery of 60 J pulse energy of long pulse Nd:YAG laser ...

    Indian Academy of Sciences (India)


    Feb 9, 2014 ... Efficient delivery of 60 J pulse energy of long pulse Nd:YAG laser. Figure 2. A schematic of focussing and launching of laser light into optical fibre. largest possible acceptance angle θmax. The sine of the acceptance angle is called the numerical aperture of the fibre [1], θmax = sin−1. (√ n2 core − n2.

  8. Theory and simulation of ultra-short pulse laser interactions

    Energy Technology Data Exchange (ETDEWEB)

    More, R.; Walling, R.; Price, D.; Guethlein, G.; Stewart, R.; Libby, S.; Graziani, F.; Levatin, J. [Lawrence Livermore National Lab., Livermore, CA (United States)


    This paper describes recent Livermore work aimed at building computational tools to describe ultra-short pulse laser plasmas. We discuss calculations of laser absorption, atomic data for high-charge ions, and a new idea for linear-response treatment of non-equilibrium phenomena near LTE. (author)

  9. Ion and neutral emission from pulsed laser irradiation of metals

    Czech Academy of Sciences Publication Activity Database

    Torrisi, L.; Andó, L.; Gammino, S.; Krása, Josef; Láska, Leoš


    Roč. 184, - (2001), s. 327-336 ISSN 0168-583X Institutional research plan: CEZ:AV0Z1010921 Keywords : pulse laser irradiation * ion neutral emission * plasma * time of flight Subject RIV: BH - Optics, Masers, Laser s Impact factor: 1.041, year: 2001

  10. Modelling colliding-pulse mode-locked semiconductor lasers

    DEFF Research Database (Denmark)

    Bischoff, Svend

    or to determine the optimum operation conditions. The purpose of this thesis is to elucidate some of the physics of interest in the field of semiconductor laser modelling, semiconductor optics and fiber optics. To be more specific we will investigate: The Colliding-Pulse Mode-Locked (CPM) Quantum Well (QW) laser...


    Directory of Open Access Journals (Sweden)

    A. P. Burmakov


    Full Text Available Various modifications of complex pulsed laser and magnetron deposition thin-film structures unit are presented. They include joint and separate variants of layer deposition. Unit realizes the plasma parameters control and enhances the possibility of laser-plasma and magnetron methods of coatings deposition.

  12. Multi Laser Pulse Investigation of the DEAS Concept in Hypersonic Flow

    International Nuclear Information System (INIS)

    Minucci, M.A.S.; Toro, P.G.P.; Oliveira, A.C.; Chanes, J.B. Jr.; Ramos, A.G.; Nagamatsu, H.T.; Myrabo, L.N.


    The present paper presents recent experimental results on the Laser-Supported Directed Energy 'Air Spike' - DEAS in hypersonic flow achieved by the Laboratory of Aerothermodynamics and Hypersonics - LAH, Brazil. Two CO2 TEA lasers, sharing the same optical cavity, have been used in conjunction with the IEAv 0.3m Hypersonic Shock Tunnel - HST to demonstrate the Laser-Supported DEAS concept. A single and double laser pulse, generated during the tunnel useful test time, were focused through a NaCl lens upstream of a Double Apollo Disc model fitted with seven piezoelectric pressure transducers and six platinum thin film heat transfer gauges. The objective being to corroborate previous results as well as to obtain additional pressure and heat flux distributions information when two laser pulses are used

  13. High power repetitive Blumlein pulse generators to drive lasers (United States)

    Bhawalkar, J. D.; Davanloo, F.; Collins, C. B.; Agee, F. J.; Kingsley, L.

    The stacked Blumlein pulse power sources developed at the University of Texas at Dallas consist of several triaxial Blumleins stacked in series at one end. The lines are charged in parallel and synchronously commuted with a single thyratron at the other end. In this way, relatively low charging voltages are multiplied to give the desired discharge voltage across an arbitrary load without the need for complex Marx bank circuitry. In this report, we review the characteristics of this novel pulser. Performances with different line configurations and extended Blumlein lengths are given. With only slight modifications, the pulsers described with different line configurations and extended Blumlein lengths are given. With only slight modifications, the pulsers described here can be used to produce intense transverse discharges across a wide range of loads including lasers.

  14. Precision machining of pig intestine using ultrafast laser pulses (United States)

    Beck, Rainer J.; Góra, Wojciech S.; Carter, Richard M.; Gunadi, Sonny; Jayne, David; Hand, Duncan P.; Shephard, Jonathan D.


    Endoluminal surgery for the treatment of early stage colorectal cancer is typically based on electrocautery tools which imply restrictions on precision and the risk of harm through collateral thermal damage to the healthy tissue. As a potential alternative to mitigate these drawbacks we present laser machining of pig intestine by means of picosecond laser pulses. The high intensities of an ultrafast laser enable nonlinear absorption processes and a predominantly nonthermal ablation regime. Laser ablation results of square cavities with comparable thickness to early stage colorectal cancers are presented for a wavelength of 1030 nm using an industrial picosecond laser. The corresponding histology sections exhibit only minimal collateral damage to the surrounding tissue. The depth of the ablation can be controlled precisely by means of the pulse energy. Overall, the application of ultrafast lasers to ablate pig intestine enables significantly improved precision and reduced thermal damage to the surrounding tissue compared to conventional techniques.

  15. Pulsed Gas Lasers Pumped by a Runaway Electron Initiated Discharge (United States)

    Panchenko, A. N.; Tarasenko, V. F.; Panchenko, N. A.


    The generation parameters are investigated in a runaway electron preionized diffuse discharge (REP DD). Laser generation is produced in different spectral bands from the IR to VUV range. New modes of the nitrogen laser operation are obtained. Ultimate efficiencies of N2- and nonchain HF(DF)-lasers are achieved. A possibility of increasing the pulse durations of XeF-, KrF-, ArF- and VUV F2- lasers (157 nm) in an oscillating REP DD is shown. The efficiencies of VUV- and UV-generation comparable with that of a laser pumped by a self-sustained volume discharge with preionization are gained.

  16. [Delivery of megawatts high energy laser pulse with large core diameter silica fiber and its application in dual-wavelength laser-ablation laser-induced breakdown spectroscopy]. (United States)

    Zhou, Qi; Peng, Fei-Fei; Li, Run-Hua; Chen, Yu-Qi; Yang, Xue-Jiao


    To resolve the contradiction between spatial resolution and analysis sensitivity in single pulse laser-induced breakdown spectroscopy (LIBS), a study on dual-wavelength laser-ablation laser-induced breakdown spectroscopy (LA-LIBS) was carried out by using one Nd : YAG laser which was capable of two laser beam outputs with different wavelengths, where, the second harmonic output, 532 nm laser beam, was used as laser-ablation source, and the fundamental output, 1064 nm laser beam, was delivered with a large core diameter silica fiber to realize nanoseconds time-delay and then used to breakdown the ablated samples. Two laser beams were orthogonally arranged to realize element analysis with high spatial resolution and high sensitivity. Some key techniques on the coupling of 1064 nm laser beam into fiber, the collimation of laser at the fiber end and re-focusing of the laser beam were studied. The energy delivery capabilities of four fibers of different types were studied and the maximum values were determined experimentally. A Q-switched laser pulse with 15 mJ pulse energy was successfully delivered by selecting a 50 meter long silica fiber with 800 microm core diameter and 0. 39 numerical aperture. And 250 ns time-delay was realized. A copper alloy was analyzed by spectra with current established LA-LIBS system and the possibility of realizing dual-wavelength LA-LIBS analysis based on one Nd : YAG laser was demonstrated experimentally. In this technique, only one Nd: YAG laser was required to carry out spectral analysis. It has a few advantages, such as simple equipment structure, and being convenient to miniaturize the whole system etc. This dual-wavelength LA-LIBS technique was suitable for in-situ elements microanalysis for different samples with both high spatial resolution and high sensitivity.

  17. Property change during nanosecond pulse laser annealing of ...

    Indian Academy of Sciences (India)

    temperature gradient perpendicular to the laser track (Chan. Figure 3. FESEM images of spots lasered at intensities of (a) 40 and (b) 55 mJ/mm2. Figure 2. Effect of PLA on optical microstructure of NiTi thin film: (a) as sputtered and (b to f) irradiated with pulse laser beam of 2, 20, 30, 40 and 50 mJ/mm2 respective intensities.

  18. Investigations of the damage mechanisms during ultrashort pulse laser ablation of dental tissue (United States)

    Domke, Matthias; Wick, Sebastian; Laible, Maike; Rapp, Stephan; Kuznetsova, Julia; Homann, Christian; Huber, Heinz P.; Sroka, Ronald


    Several investigations of dental tissue ablation with ultrashort pulsed lasers suggest that these lasers enable precise and selective material removal and reduce the formation of micro cracks and thermal effects, when compared to ns-pulses. In this study, two damage mechanisms are presented occurring during ablation of dentin using a laser emitting pulses of a duration of 380 fs at a wavelength of 1040 nm. First, it was found that nano cracks appear around the craters after single fs-pulse ablation. These cracks are directed to the crater and cross the dentinal tubules. Transient investigation of the single fs-pulse ablation process by pump-probe microscopy suggest that the driving mechanism could be a pressure wave that is released after stress confinement. Second, squared ablation holes were created by moving the laser focus at scan speeds between 0.5 mm/s and 2.0 m/s and fluences up to 14 J/cm2. It was found that deep cracks appear at the edges of the squared holes, if the scan speed is about 0.5 m/s. The fluence has only a minor impact on the crack formation. The crack propagation was investigated in the depth using x-ray micro tomography and optical coherence tomography. It was found that these cracks appear in the depth down to the dental pulp. These findings suggest that fast scanning of the laser beam is the key for damage free processing using ultrashort pulse lasers. Then, ablation rates of about 2.5 - 3.5 mm3/min/W can be achieved in dentine with pulse durations of 380 fs.

  19. Pulse characteristics in a doubly Q-switched Nd:GGG laser with an acousto-optic modulator and a monolayer graphene saturable absorber (United States)

    Wang, Di; Zhao, Jia; Yang, Kejian; Zhao, Shengzhi; Li, Tao; Li, Dechun; Li, Guiqiu; Qiao, Wenchao


    A doubly Q-switched Nd:GGG laser emitting 1064 nm wavelength with an acousto-optic modulator (AOM) and a monolayer graphene saturable absorber (SA) is presented to study the pulse characteristics. In comparison with singly passive Q-switched laser (SPQSL) with grapheme SA, the doubly Q-switched laser (DQSL) can effectively shorten the pulse width and improve the pulse peak power. The existence of the ramping behavior of pulse characteristics versus modulation frequency in DQSL is shown. The average output power, the pulse width, the pulse energy and the peak power are related to modulation frequency of AOM, and the point of inflection is dominated by pump power.

  20. Physics and technology of tunable pulsed single longitudinal mode ...

    Indian Academy of Sciences (India)

    Design and technology demonstration of compact, narrow bandwidth, high repetition rate, tunable SLM dye lasers in two different configurations, namely Littrow and grazing incidence grating (GIG), were carried out in our lab at BARC, India. The single longitudinal mode (SLM) dye laser generates single-mode laser beams ...

  1. Energy Losses Estimation During Pulsed-Laser Seam Welding (United States)

    Sebestova, Hana; Havelkova, Martina; Chmelickova, Hana


    The finite-element tool SYSWELD (ESI Group, Paris, France) was adapted to simulate pulsed-laser seam welding. Besides temperature field distribution, one of the possible outputs of the welding simulation is the amount of absorbed power necessary to melt the required material volume including energy losses. Comparing absorbed or melting energy with applied laser energy, welding efficiencies can be calculated. This article presents achieved results of welding efficiency estimation based on the assimilation both experimental and simulation output data of the pulsed Nd:YAG laser bead on plate welding of 0.6-mm-thick AISI 304 stainless steel sheets using different beam powers.

  2. Bremsstrahlung from the interaction of short laser pulses with dielectrics. (United States)

    Petrov, G M; Palastro, J P; Peñano, J


    An intense, short laser pulse incident on a transparent dielectric can excite electrons from the valence to the conduction band. As these electrons undergo scattering, both from phonons and ions, they emit bremsstrahlung. Here we present a theory of bremsstrahlung emission appropriate for the interaction of laser pulses with dielectrics. Simulations of the interaction, incorporating this theory, illustrate characteristics of the radiation (power, energy, and spectra) for arbitrary ratios of electron collision frequency to radiation frequency. The conversion efficiency of laser pulse energy into bremsstrahlung depends strongly on both the intensity and duration of the pulse, saturating at values of about 10^{-5}. Depending on whether the intensity is above or below the damage threshold of the material, the emission can originate either from the surface or the bulk of the dielectric, respectively. The bremsstrahlung emission may provide a broadband light source for diagnostics.

  3. Ablation of silicon with bursts of femtosecond laser pulses (United States)

    Gaudiuso, Caterina; Kämmer, Helena; Dreisow, Felix; Ancona, Antonio; Tünnermann, Andreas; Nolte, Stefan


    We report on an experimental investigation of ultrafast laser ablation of silicon with bursts of pulses. The pristine 1030nm-wavelength 200-fs pulses were split into bursts of up to 16 sub-pulses with time separation ranging from 0.5ps to 4080ps. The total ablation threshold fluence was measured depending on the burst features, finding that it strongly increases with the number of sub-pulses for longer sub-pulse delays, while a slowly increasing trend is observed for shorter separation time. The ablation depth per burst follows two different trends according to the time separation between the sub-pulses, as well as the total threshold fluence. For delays shorter than 4ps it decreases with the number of pulses, while for time separations longer than 510ps, deeper craters were achieved by increasing the number of subpulses in the burst, probably due to a change of the effective penetration depth.

  4. The interaction of intense subpicosecond laser pulses with underdense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Coverdale, Christine Ann [Univ. of California, Davis, CA (United States)


    Laser-plasma interactions have been of interest for many years not only from a basic physics standpoint, but also for their relevance to numerous applications. Advances in laser technology in recent years have resulted in compact laser systems capable of generating (psec), 1016 W/cm2 laser pulses. These lasers have provided a new regime in which to study laser-plasma interactions, a regime characterized by Lplasma ≥ 2LRayleigh > cτ. The goal of this dissertation is to experimentally characterize the interaction of a short pulse, high intensity laser with an underdense plasma (no ≤ 0.05ncr). Specifically, the parametric instability known as stimulated Raman scatter (SRS) is investigated to determine its behavior when driven by a short, intense laser pulse. Both the forward Raman scatter instability and backscattered Raman instability are studied. The coupled partial differential equations which describe the growth of SRS are reviewed and solved for typical experimental laser and plasma parameters. This solution shows the growth of the waves (electron plasma and scattered light) generated via stimulated Raman scatter. The dispersion relation is also derived and solved for experimentally accessible parameters. The solution of the dispersion relation is used to predict where (in k-space) and at what frequency (in ω-space) the instability will grow. Both the nonrelativistic and relativistic regimes of the instability are considered.

  5. Laser pulse shape design for laser-indirect-driven quasi-isentropic compression experiments (United States)

    Xue, Quanxi; Jiang, Shaoen; Wang, Zhebin; Wang, Feng; Zhao, Xueqing; Ding, Yongkun


    Laser pulse shape design is a key work in the design of indirect-laser-driven experiments, especially for long pulse laser driven quasi-isentropic compression experiments. A method for designing such a laser pulse shape is given here. What's more, application experiments were performed, and the results of a typical shot are presented. At last of this article, the details of the application of the method are discussed, such as the equation parameter choice, radiation ablation pressure expression, and approximations in the method. The application shows that the method can provide reliable descriptions of the energy distribution in a hohlraum target; thus, it can be used in the design of long-pulse laser driven quasi-isentropic compression experiments and even other indirect-laser-driven experiments.

  6. Segregation of impurities in pulsed-laser-melted carbon (United States)

    Steinbeck, J.; Braunstein, G.; Dresselhaus, G.; Dresselhaus, M. S.; Venkatesan, T.; Jacobson, D. C.


    The segregation of 73Ge and 75As in pulsed-laser-melted carbon has been investigated. Both 73Ge and 75As were implanted into highly oriented pyrolytic graphite at a fluence of 1.0×1015 cm-2 at several energies. The implanted graphite was subsequently irradiated with a 30-ns pulsed ruby laser with laser pulse energy densities above the melt threshold for graphite. The distribution of impurities was measured before and after laser irradiation using Rutherford backscattering spectrometry to determine the redistribution of impurities resulting from diffusion in liquid carbon and segregation at the liquid-solid interface. Numerical calculations were then used to determine the diffusivity of the impurities in liquid carbon and the nonequilibrium segregation coefficient of Ge and As in carbon.

  7. Photo-switch of pulsed Nd:YAG laser

    International Nuclear Information System (INIS)

    Ketta, W.W.J.


    In this work passive Q-switching and its effect on the output laser beam from a pulsed Nd:YAG laser was studied. This was achieved using the photochemically stable (BDNI) dye after dissolving it in dichloroethane. The absorption spectra of the dye solution and how suitable to use with Nd:YAG laser was also dealt with. Cooling unit for the laser system, a detector to detect the output pulse, and an electronic counter to measure the pulse duration were constructed. In the free-running regime, the divergence angle was measured. The form of the output, its energy, and how it is affected by the pumping energy were also studied. In the Q-switching regime, the relation between output and pumping energies was studied and compared to the same relation under the free-running regime. 5 tabs.; 33 figs.; 57 refs

  8. Envelope evolution of a laser pulse in an active medium

    International Nuclear Information System (INIS)

    Fisher, D.L.; Tajima, T.; Downer, M.C.; Siders, C.W.


    The authors show that the envelope velocity, v env , of a short laser pulse can, via propagation in an active medium, be made less than, equal to, or even greater than c, the vacuum phase velocity of light. Simulation results, based on moving frame propagation equations coupling the laser pulse, active medium and plasma, are presented, as well as equations that determines the design value of super- and sub-luminous v env . In this simulation the laser pulse evolves in time in a moving frame as opposed to their earlier work where the profile was fixed. The elimination of phase slippage and pump depletion effects in the laser wakefield accelerator is discussed as a particular application. Finally they discuss media properties necessary for an experimental realization of this technique

  9. Pulsed laser deposition-induced reduction of SrTiO3 crystals

    NARCIS (Netherlands)

    Scullin, Matthew L.; Ravichandran, Jayakanth; Yu, Choongho; Huijben, Mark; Seidel, Jan; Majumdar, Arun; Ramesh, R.; Ramesh, R.


    We report a generic method for fast and efficient reduction of strontium titanate (SrTiO3, STO) single crystals by pulsed laser deposition (PLD) of thin-films. The reduction was largely independent of the thin-film material deposited on the crystals. It is shown that thermodynamic conditions (450

  10. Imaging Pulsed Laser Deposition oxide growth by in-situ Atomic Force Microscopy

    NARCIS (Netherlands)

    Wessels, W. A.; Bollmann, T. R. J.; Post, D.; Koster, G.; Rijnders, G.


    To visualize the topography of thin oxide films during growth, thereby enabling to study its growth behavior quasi real-time, we have designed and integrated an atomic force microscope (AFM) in a pulsed laser deposition (PLD) vacuum setup. The AFM scanner and PLD target are integrated in a single

  11. Laser photoionization of triacetone triperoxide (TATP) by femtosecond and nanosecond laser pulses (United States)

    Mullen, Christopher; Huestis, David; Coggiola, Michael; Oser, Harald


    Laser ionization time-of-flight mass spectrometry has been applied to the study of triacetone triperoxide (TATP), an improvised explosive. Wavelength dependent mass spectra in two time regimes were acquired using nanosecond (5 ns) and femtosecond (130 fs) laser pulses. We find the major difference between the two time regimes to be the detection of the parent molecular ion when femtosecond laser pulses are employed.

  12. Simulation of laser-tattoo pigment interaction in a tissue-mimicking phantom using Q-switched and long-pulsed lasers. (United States)

    Ahn, K J; Kim, B J; Cho, S B


    Laser therapy is the treatment of choice in tattoo removal. However, the precise mechanisms of laser-tattoo pigment interactions remain to be evaluated. We evaluated the geometric patterns of laser-tattoo pigment particle interactions using a tattoo pigment-embedded tissue-mimicking (TM) phantom. A Q-switched (QS) neodymium-doped yttrium aluminum garnet laser was used at settings of 532-, 660-, and 1064-nm wavelengths, single-pulse and quick pulse-to-pulse treatment modes, and spot sizes of 4 and 7 mm. Most of the laser-tattoo interactions in the experimental conditions formed cocoon-shaped or oval photothermal and photoacoustic injury zones, which contained fragmented tattoo particles in various sizes depending on the conditions. In addition, a long-pulsed 755-nm alexandrite laser was used at a spot size of 6 mm and pulse widths of 3, 5, and 10 ms. The finer granular pattern of tattoo destruction was observed in TM phantoms treated with 3- and 5-ms pulse durations compared to those treated with a 10-ms pulse. We outlined various patterns of laser-tattoo pigment interactions in a tattoo-embedded TM phantom to predict macroscopic tattoo and surrounding tissue reactions after laser treatment for tattoo removal. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Pulse properties of external cavity mode locked semiconductor lasers

    DEFF Research Database (Denmark)

    Mulet, Josep; Kroh, Marcel; Mørk, Jesper


    The performance of an external-cavity mode-locked semiconductor laser is investigated both theoretically and experimentally. The optimization analysis focuses on the regimes of stable mode locking and the generation of sub-picosecond optical pulses. We demonstrate stable output pulses down to one...... picosecond duration with more than 30 dB trailing pulse suppression. The limiting factors to the device performance are investigated on the basis of a fully-distributed time-domain model.We find that ultrafast gain dynamics effectively reduce the pulse-shaping strength and inhibit the generation...

  14. Nonlinear guiding of picosecond CO2 laser pulses in atmosphere(Conference Presentation) (United States)

    Tochitsky, Sergei


    During the last 20 years much attention has been given to the study of propagation of short intense laser pulses for which the peak power exceeds the critical power of self-focusing, Pcr. For a laser power P laser-ionized plasma result in the production of a high intensity laser filament in air within which a variety of nonlinear optical phenomena are observed. However, research in the 0.8-1 μm range so far has shown a fundamental limitation of guided energy to a few mJ transported within an 100 μm single channel. A long-wavelength, 0 10 μm CO2 laser is a promising candidate for nonlinear guiding because expected high Pcr values according to the modeling should allow for the increase of energy (and therefore power) in a self-guided beam from mJ (GW) to few Joules (TW). During the last decade a significant progress has been achieved in amplification of picosecond pulses to terawatt and recently to lasers open possibility for nonlinear propagation studies in an atmospheric window with high transmission. As a natural first step in a our program on picosecond CO2 laser filamentation, we have made first measurements of Kerr coefficients of air and air constituents around 10 μm. We also undertook direct measurements of n2 of air by analyzing nonlinear self-focusing in air using a 3 ps, 600 GW pulses of the BNL CO2 laser.

  15. Towards shorter wavelength x-ray lasers using a high power, short pulse pump laser

    International Nuclear Information System (INIS)

    Tighe, W.; Krushelnick, K.; Valeo, E.; Suckewer, S.


    A near-terawatt, KrF* laser system, focussable to power densities >10 18 W/cm 2 has been constructed for use as a pump laser in various schemes aimed at the development of x-ray lasing below 5nm. The laser system along with output characteristics such as the pulse duration, the focal spot size, and the percentage of amplified spontaneous emission (ASE) emitted along with the laser pulse will be presented. Schemes intended to lead to shorter wavelength x-ray emission will be described. The resultant requirements on the pump laser characteristics and the target design will be outlined. Results from recent solid target experiments and two-laser experiments, showing the interaction of a high-power, short pulse laser with a preformed plasma, will be presented. 13 refs., 5 figs

  16. Study of laser die release by Q-switched Nd:YAG laser pulses

    NARCIS (Netherlands)

    Karlitskaya, N.; de Lange, D.F.; Meijer, J.; Sanders, Rene; Phipps, Claude R.


    A new laser-assisted process called "Laser Die Transfer" is developed for high speed assembling of miniature electronic components. Silicon dies, fabricated on an optically transparent carrier are released using a laser pulse. This process has the potential to offer major advantages compared to

  17. COMPLIS: COllinear spectroscopy Measurements using a Pulsed Laser Ion Source

    CERN Multimedia


    A Pulsed Laser spectroscopy experiment has been installed for the study of hyperfine structure and isotope shift of refractory and daughter elements from ISOLDE beams. It includes decelerated ion-implantation, element-selective laser ionization, magnetic and time-of-flight mass separation. The laser spectroscopy has been performed on the desorbed atoms in a set-up at ISOLDE-3 but later on high resolution laser collinear spectroscopy with the secondary pulsed ion beam is planned for the Booster ISOLDE set-up. During the first operation time of ISOLDE-3 we restricted our experiments to Doppler-limited resonant ionization laser and $\\gamma$-$\\gamma$ nuclear spectroscopy on neutron deficient platinum isotopes of even mass number down to A~=~186 and A~=~179 respectively. These isotopes have been produced by implantation of radioactive Hg and their subsequent $\\beta$-decay.

  18. Electromagnetic pulses generated by high-power laser experiments

    International Nuclear Information System (INIS)

    Lubrano-Lavaderci, F.; Dubois, J.L.; Gazave, J.; Raffestin, D.; Bazzoli, S.


    During high-power laser experiments, intense electromagnetic fields are produced. For future facilities, the field level is extrapolated from measurements performed on current experimental rooms. In the LMJ (Laser Mega Joule) target chamber with the high-power PETAL beam (Petawatt Aquitaine Laser), the expected field is about 1 MW/m for high laser intensity shots (higher than 10 19 W/cm 2 ). This is a harsh environment for electric equipments. For these short-pulse laser experiments, simulations show that electromagnetic pulses are due to charged particles emission during the shot, more exactly they are due to the resulting replacement currents that appear in the target chamber. This paper shows a simulation (with the numerical tool SOPHIE) of this phenomenon, in good agreement with experimental data from Titan and Omega-EP facilities. (authors)

  19. Short infrared (IR) laser pulses can induce nanoporation (United States)

    Roth, Caleb C.; Barnes, Ronald A.; Ibey, Bennett L.; Glickman, Randolph D.; Beier, Hope T.


    Short infrared (IR) laser pulses on the order of hundreds of microseconds to single milliseconds with typical wavelengths of 1800-2100 nm, have shown the capability to reversibly stimulate action potentials (AP) in neuronal cells. While the IR stimulation technique has proven successful for several applications, the exact mechanism(s) underlying the AP generation has remained elusive. To better understand how IR pulses cause AP stimulation, we determined the threshold for the formation of nanopores in the plasma membrane. Using a surrogate calcium ion, thallium, which is roughly the same shape and charge, but lacks the biological functionality of calcium, we recorded the flow of thallium ions into an exposed cell in the presence of a battery of channel antagonists. The entry of thallium into the cell indicated that the ions entered via nanopores. The data presented here demonstrate a basic understanding of the fundamental effects of IR stimulation and speculates that nanopores, formed in response to the IR exposure, play an upstream role in the generation of AP.

  20. Investigation of early plasma evolution induced by ultrashort laser pulses. (United States)

    Hu, Wenqian; Shin, Yung C; King, Galen B


    Early plasma is generated owing to high intensity laser irradiation of target and the subsequent target material ionization. Its dynamics plays a significant role in laser-material interaction, especially in the air environment(1-11). Early plasma evolution has been captured through pump-probe shadowgraphy(1-3) and interferometry(1,4-7). However, the studied time frames and applied laser parameter ranges are limited. For example, direct examinations of plasma front locations and electron number densities within a delay time of 100 picosecond (ps) with respect to the laser pulse peak are still very few, especially for the ultrashort pulse of a duration around 100 femtosecond (fs) and a low power density around 10(14) W/cm(2). Early plasma generated under these conditions has only been captured recently with high temporal and spatial resolutions(12). The detailed setup strategy and procedures of this high precision measurement will be illustrated in this paper. The rationale of the measurement is optical pump-probe shadowgraphy: one ultrashort laser pulse is split to a pump pulse and a probe pulse, while the delay time between them can be adjusted by changing their beam path lengths. The pump pulse ablates the target and generates the early plasma, and the probe pulse propagates through the plasma region and detects the non-uniformity of electron number density. In addition, animations are generated using the calculated results from the simulation model of Ref. (12) to illustrate the plasma formation and evolution with a very high resolution (0.04 ~ 1 ps). Both the experimental method and the simulation method can be applied to a broad range of time frames and laser parameters. These methods can be used to examine the early plasma generated not only from metals, but also from semiconductors and insulators.

  1. Generation, shaping, compression, characterization and application of intense ultrashort laser pulses

    CERN Document Server

    Cheng, Z


    Recently, the development of intense ultrashort laser pulses has attracted much interest because of their significant applications in many fields of science and technology. This thesis contributes to the generation, shaping, compression, characterization and application of intense ultrashort laser pulses as follows: 1. Laser pulses of 17.5-fs with a peak power of 0.1-TW at 1-kHz repetition rate have been generated by a compact single-stage ten-pass Ti:sapphire amplifier system with a high-order-dispersion-mirror compensator and a spectral shaping for the first time. The experimental results are in reasonable agreement with numerical calculations. 2. The first experimental study on arbitrary shaping of intense ultrashort pulses has been conducted in a kHz amplifier system capable of generating 27 fs pulses by using an acousto-optic programmable dispersive filter (AOPDF). 17-fs transform-limited pulses have been achieved and arbitrary shaping of these 17-fs pulses has been demonstrated both in the temporal and ...

  2. Development of high-power laser technology -Development of pulse modification technique of dye laser

    Energy Technology Data Exchange (ETDEWEB)

    Lee, In Won; Kim, Dong Ho; Han, Jae Won; Seo, Jung Chul [Korea Research Institute of Standards and Science, Taejon (Korea, Republic of)


    The pulsed dye laser beam obtained through the pulsed amplification of weak CW narrow bandwidth dye laser with four-pass amplifier has high power gain of 10{sup 7} and narrow bandwidth of 130 MHz. The use of grating in four-pass= amplifier reduced the intensity ratio of the amplified spontaneous emission v. total laser power to less than 1.5 %, and the technique improved output power by about 4 %. Also, the dye laser amplifier composed of three stage amplification system was fabricated to study time-resolved spectroscopy. We performed a pump-probe experiment with continuum pulses generated by high-power femtosecond pulses and study on a technique to generate femtosecond pulses in wide wavelength region. (Author) 69 refs., 1 tab., 16 figs.

  3. Generation of dual-wavelength, synchronized, tunable, high energy, femtosecond laser pulses with nearly perfect gaussian spatial profile (United States)

    Wang, J.-K.; Siegal, Y.; Lü, C.; Mazur, E.


    We use self-phase modulation in a single-mode fiber to produce broadband femtosecond laser pulses. Subsequent amplification through two Bethune cells yields high-energy, tunable, pulses synchronized with the output of an amplified colliding-pulse-modelocked (CPM) laser. We routinely obtain tunable 200 μJ pulses of 42 fs (fwhm) duration with a nearly perfect gaussian spatial profile. Although self-phase modulation in a single-mode fiber is widely used in femtosecond laser systems, amplification of a fiber-generated supercontinuum in a Bethune cell amplifier is a new feature which maintains the high-quality spatial profile while providing high gain. This laser system is particularly well suited for high energy dual-wavelength pump=probe experiments and time-resolved four-wave mixing spectroscopy.

  4. Laser scar revision: comparison of CO2 laser vaporization with and without simultaneous pulsed dye laser treatment. (United States)

    Alster, T S; Lewis, A B; Rosenbach, A


    Over the past decade, the 585-nm pulsed dye laser (PDL) has been used successfully to treat a variety of cutaneous vascular lesions as well as hypertrophic scars. Laser scar revision has been revolutionized by the recent development of high-energy, pulsed carbon dioxide (CO2) laser systems. These new CO2 lasers allow controlled vaporization of thin layers of skin while minimizing damage to surrounding dermal structures. To determine the effect of a high-energy, pulsed CO2 laser alone and in combination with a 585-nm PDL on nonerythematous hypertrophic scars. Twenty patients with nonerythematous hypertrophic scars were treated with a high-energy, pulsed CO2 laser. One-half of each scar was additionally treated with the 585-nm PDL laser. Sequential clinical and photographic analyses were performed independently by two blinded assessors. In addition, erythema reflectance spectrometry measurements were obtained from the scars before and at regular postoperative intervals. Global assessment scores and erythema spectrometry measurements were significantly improved after laser treatment. Combination CO2 and PDL laser treatment resulted in more significant improvement than CO2 laser irradiation alone. Concomitant use of the high-energy, pulsed CO2 and PDL laser systems was superior to CO2 laser vaporization alone for revision of nonerythematous hypertrophic scars. Once again, the vascular specificity of the 585-nm PDL has been linked to improvement in hypertrophic scar tissue.

  5. Pulsed Nd:YAG laser beam drilling: A review (United States)

    Gautam, Girish Dutt; Pandey, Arun Kumar


    Laser beam drilling (LBD) is one of non contact type unconventional machining process that are employed in machining of stiff and high-strength materials, high strength temperature resistance materials such as; metal alloys, ceramics, composites and superalloys. Most of these materials are difficult-to-machine by using conventional machining methods. Also, the complex and precise holes may not be obtained by using the conventional machining processes which may be obtained by using unconventional machining processes. The laser beam drilling in one of the most important unconventional machining process that may be used for the machining of these materials with satisfactorily. In this paper, the attention is focused on the experimental and theoretical investigations on the pulsed Nd:YAG laser drilling of different categories of materials such as ferrous materials, non-ferrous materials, superalloys, composites and Ceramics. Moreover, the review has been emphasized by the use of pulsed Nd:YAG laser drilling of different materials in order to enhance productivity of this process without adverse effects on the drilled holes quality characteristics. Finally, the review is concluded with the possible scope in the area of pulsed Nd:YAG laser drilling. This review work may be very useful to the subsequent researchers in order to give an insight in the area of pulsed Nd:YAG laser drilling of different materials and research gaps available in this area.

  6. Femtosecond pulsed laser deposition of cobalt ferrite thin films (United States)

    Dascalu, Georgiana; Pompilian, Gloria; Chazallon, Bertrand; Caltun, Ovidiu Florin; Gurlui, Silviu; Focsa, Cristian


    The insertion of different elements in the cobalt ferrite spinel structure can drastically change the electric and magnetic characteristics of CoFe2O4 bulks and thin films. Pulsed Laser Deposition (PLD) is a widely used technique that allows the growth of thin films with complex chemical formula. We present the results obtained for stoichiometric and Gadolinium-doped cobalt ferrite thin films deposited by PLD using a femtosecond laser with 1 kHz repetition rate. The structural properties of the as obtained samples were compared with other thin films deposited by ns-PLD. The structural characteristics and chemical composition of the samples were investigated using profilometry, Raman spectroscopy, X-Ray diffraction measurements and ToF-SIMS analysis. Cobalt ferrite thin films with a single spinel structure and a preferential growth direction have been obtained. The structural analysis results indicated the presence of internal stress for all the studied samples. By fs-PLD, uniform thin films were obtained in a short deposition time.

  7. Plasma wakefields driven by an incoherent combination of laser pulses: a path towards high-average power laser-plasma accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Benedetti, C.; Schroeder, C.B.; Esarey, E.; Leemans, W.P.


    he wakefield generated in a plasma by incoherently combining a large number of low energy laser pulses (i.e.,without constraining the pulse phases) is studied analytically and by means of fully-self-consistent particle-in-cell simulations. The structure of the wakefield has been characterized and its amplitude compared with the amplitude of the wake generated by a single (coherent) laser pulse. We show that, in spite of the incoherent nature of the wakefield within the volume occupied by the laser pulses, behind this region the structure of the wakefield can be regular with an amplitude comparable or equal to that obtained from a single pulse with the same energy. Wake generation requires that the incoherent structure in the laser energy density produced by the combined pulses exists on a time scale short compared to the plasma period. Incoherent combination of multiple laser pulses may enable a technologically simpler path to high-repetition rate, high-average power laser-plasma accelerators and associated applications.

  8. Interaction of solitary pulses in single mode optical fibres | Usman ...

    African Journals Online (AJOL)

    Two solitary waves launched, by way of incidence, into an optical fibre from a single pulse if the pulses are in-phase as understood from results of inverse scattering transform method applied to the cubic nonlinear Schrödinger equations, (CNLSE\\'s). The single CNLSE is then understood to describe evolution of coupled ...

  9. Influence of the laser pulse duration on laser-produced plasma properties

    International Nuclear Information System (INIS)

    Drogoff, B Le; Margot, J; Vidal, F; Laville, S; Chaker, M; Sabsabi, M; Johnston, T W; Barthelemy, O


    In the framework of laser-induced plasma spectroscopy (LIPS) applications, time-resolved characteristics of laser-produced aluminium plasmas in air at atmospheric pressure are investigated for laser pulse durations ranging from 100 fs to 270 ps. Measurements show that for delays after the laser pulse longer than ∼100 ns, the plasma temperature increases slightly with the laser pulse duration, while the electron density is independent of it. In addition, as the pulse duration increases, the plasma radiation emission lasts longer and the spectral lines arise later from the continuum emission. The time dependence of the continuum emission appears to be similar whatever the duration of the laser pulse is, while the temporal evolution of the line emission seems to be affected mainly by the plasma temperature. Finally, as far as spectrochemical applications (such as LIPS) of laser-produced plasmas are concerned, this study highlights the importance of the choice of appropriate temporal gating parameters for each laser pulse duration

  10. A comparative study of pulsed Nd:YAG and CO2 laser effect on cardiovascular tissue


    Yova, D.; Papadakis, E.; Kassis, K.; Agapitos, E.; Kavantzas, N.; Koutsouris, D.; Serafetinidis, A.


    Percutaneous laser angioplasty is receiving increasing attention, as laser ablation of atheromatous plaque presents advantages to direct surgery or balloon angioplasty. One of the main prerequisites of using powerful pulsed lasers in angioplasty is the optimum choice of the irradiation parameters (the wavelength, the pulse shape and duration, the energy parameters e.t.c.). Infrared lasers have numerous applications in surgery. Among them the pulsed CO2 laser emitting at 10.6 µm and the pulsed...

  11. Synchronized delivery of Er:YAG-laser pulses into water studied by a laser beam transmission probe for enhanced endodontic treatment (United States)

    Gregorčič, P.; Lukač, N.; Možina, J.; Jezeršek, M.


    We examine the effects of the synchronized delivery of multiple Er:YAG-laser pulses during vapor-bubble oscillations into water. For this purpose, we used a laser beam transmission probe that enables monitoring of the bubble's dynamics from a single shot. To overcome the main drawbacks of this technique, we propose and develop an appropriate and robust calibration by simultaneous employment of shadow photography. By using the developed experimental method, we show that the resonance effect is obtained when the second laser pulse is delivered at the end or slightly after the first bubble's collapse. In this case, the resonance effect increases the mechanical energy of the secondary bubble's oscillations and prolongs their duration. The presented laser method for synchronized delivery of Er:YAG-laser pulses during bubble oscillations has great potential for further improvement of laser endodontic treatment, especially upon their safety and efficiency.

  12. Obtaining attosecond x-ray pulses using a self-amplified spontaneous emission free electron laser

    Directory of Open Access Journals (Sweden)

    A. A. Zholents


    Full Text Available We describe a technique for the generation of a solitary attosecond x-ray pulse in a free-electron laser (FEL, via a process of self-amplified spontaneous emission. In this method, electrons experience an energy modulation upon interacting with laser pulses having a duration of a few cycles within single-period wiggler magnets. Two consecutive modulation sections, followed by compression in a dispersive section, are used to obtain a single, subfemtosecond spike in the electron peak current. This region of the electron beam experiences an enhanced growth rate for FEL amplification. After propagation through a long undulator, this current spike emits a ∼250   attosecond x-ray pulse whose intensity dominates the x-ray emission from the rest of the electron bunch.

  13. The effect of laser pulse width on laser-induced damage at K9 and UBK7 components surface (United States)

    Zhou, Xinda; Ba, Rongsheng; Zheng, Yinbo; Yuan, Jing; Li, Wenhong; Chen, Bo


    In this paper, we investigated the effects of laser pulse width on laser-induced damage. We measured the damage threshold of K9 glass and UBK7 glass optical components at different pulse width, then analysis pulse-width dependence of damage threshold. It is shown that damage threshold at different pulse width conforms to thermal restriction mechanism, Because of cm size laser beam, defect on the optical component surface leads to laser-induced threshold decreased.

  14. Time resolved studies of H{sub 2}{sup +} dissociation with phase-stabilized laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Bettina


    In the course of this thesis, experimental studies on the dissociation of H{sub 2}{sup +}(H{sub 2}{sup +}{yields}p+H) in ultrashort laser pulses with a stabilized carrier-envelope phase (CEP) were carried out. In single-pulse measurements, the ability to control the emission direction of low energetic protons, i.e. the localization of the bound electron at one of the nuclei after dissociation, by the CEP was demonstrated. The coincident detection of the emitted protons and electrons and the measurement of their three-dimensional momentum vectors with a reaction microscope allowed to clarify the localization mechanism. Further control was achieved by a pump-control scheme with two timedelayed CEP-stabilized laser pulses. Here the neutral H{sub 2} molecule was ionized in the first pulse and dissociation was induced by the second pulse. Electron localization was shown to depend on the properties of the bound nuclear wave packet in H{sub 2}{sup +} at the time the control pulse is applied, demonstrating the ability to use the shape and dynamics of the nuclear wave packet as control parameters. Wave packet simulations were performed reproducing qualitatively the experimental results of the single and the two-pulse measurements. For both control schemes, intuitive models are presented, which qualitatively explain the main features of the obtained results. (orig.)

  15. Interaction of high power ultrashort laser pulses with plasmas

    International Nuclear Information System (INIS)

    Geissler, M.


    The invention of short laser-pulses has opened a vast application range from testing ultra high-speed semiconductor devices to precision material processing, from triggering and tracing chemical reactions to sophisticated surgical applications in opthalmology and neurosurgery. In physical science, ultrashort light pulses enable researchers to follow ultrafast relaxation processes in the microcosm on time scale never before accessible and study light-matter-interactions at unprecedented intensity levels. The aim of this thesis is to investigate the interaction of ultrashort high power laser pulses with plasmas for a broad intensity range. First the ionization of atoms with intense laser fields is investigated. For sufficient strong and low frequent laser pulses, electrons can be removed from the core by a tunnel process through a potential barrier formed by the electric field of the laser. This mechanism is described by a well-established theory, but the interaction of few-cycle laser pulses with atoms can lead to regimes where the tunnel theory loses its validity. This regime is investigated and a new description of the ionization is found. Although the ionization plays a major role in many high-energy laser processes, there exist no simple and complete model for the evolution of laser pulses in field-ionizing media. A new propagation equation and the polarization response for field-ionizing media are presented and the results are compared with experimental data. Further the interaction of high power laser radiation with atoms result in nonlinear response of the electrons. The spectrum of this induced nonlinear dipole moment reaches beyond visible wavelengths into the x-ray regime. This effect is known as high harmonic generation (HHG) and is a promising tool for the generation of coherent shot wavelength radiation, but the conversions are still not efficient enough for most practical applications. Phase matching schemes to overcome the limitation are discussed

  16. LASER APPLICATIONS: Laser air-jet engine: the action of shock waves at low laser pulse repetition rates (United States)

    Apollonov, V. V.; Tishchenko, V. N.


    The impact and thermal action of laser sparks on the reflector of a laser engine in which the propulsion is produced by repetitively pulsed radiation is estimated. It is shown that for a low pulse repetition rate, the thermal contact of a plasma with the reflector and strong dynamic resonance loads are inevitable. These difficulties can be surmounted by using the method based on the merging of shock waves at a high pulse repetition rate.

  17. Microbunching and coherent acceleration of electrons by subcycle laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Rau, B.; Tajima, T. [Univ. of Texas, Austin, TX (United States). Physics Dept.; Hojo, H. [Univ. of Tsukuba (Japan). Plasma Research Center


    The pick up and acceleration of all plasma electrons irradiated by an intense, subcyclic laser pulse is demonstrated via analytical and numerical calculations. It is shown that the initial low emittance of the plasma electrons is conserved during the process of acceleration, leading to an extremely cold, bunched electron beam. Compression of the electron bunch along the longitudinal coordinate is naturally achieved due to the interaction of electrons and laser pulse. In this paper, the authors find the localized solutions to Maxwell`s equations of a subcyclic laser pulse and use these to determine the acceleration of charged particles and they suggest future application for this acceleration mechanism as low energy particle injector and as electron source for coherent x-ray generation.

  18. Absorption of femtosecond laser pulses by atomic clusters

    International Nuclear Information System (INIS)

    Lin Jingquan; Zhang Jie; Li Yingjun; Chen Liming; Lu Tiezheng; Teng Hao


    Energy absorption by Xe, Ar, He atomic clusters are investigated using laser pulses with 5 mJ energy in 150 fs duration. Experimental results show that the size of cluster and laser absorption efficiency are strongly dependent on several factors, such as the working pressure of pulse valve, atomic number Z of the gas. Absorption fraction of Xe clusters is as high as 45% at a laser intensity of 1 x 10 15 W/cm 2 with 20 x 10 5 Pa gas jet backing pressure. Absorption of the atomic clusters is greatly reduced by introducing pre-pulses. Ion energy measurements confirm that the efficient energy deposition results in a plasma with very high ion temperature

  19. Development of pulsed UV lasers and their application in laser spectroscopy

    International Nuclear Information System (INIS)

    De la Rosa, M I; Perez, C; Gruetzmacher, K; GarcIa, D; Bustillo, A


    The application of two-photon laser spectroscopy to plasma diagnostics requires tuneable UV-laser spectrometers providing: some mJ pulse energy at ns time scale with spectral quality close to Fourier Transform Limit, good pulse to pulse reproducibility and tuning linearity. We report about two different systems, a first laser specially optimized for the radiation at 243 nm, which is required for the 1S-2S two photon transition of atomic hydrogen, and a second one generating 205 nm suited for the transition 1S - 3S/3D.

  20. Resurfacing of pitted facial scars with a pulsed Er:YAG laser. (United States)

    Kye, Y C


    Laser resurfacing has beneficial effects for the treatment of several skin conditions. Recently, the pulsed Er:YAG laser has been shown to be a highly effective treatment for several kinds of pitted facial scars. The purpose of this study was to assess the efficacy and safety of pulsed Er:YAG laser skin resurfacing for pitted facial scars. Four patients with small pox scars, five patients with chicken pox scars, and 21 patients with acne scars were included in this study. All patients were skin type III and IV. All patients were instructed to use tretinoin cream 0.05% nightly for 2-4 weeks prior to the laser treatment. The pulsed Er:YAG laser with 2-mm handpiece at the setting of 500 mJ/pulse, 3.5-4.5 W was used. Two weeks after laser treatment, topical application of hydroquinone 4%, tretinoin 0.05%, and hydrocortisone 1% cream was recommended for 2-4 weeks. Facial photographs were obtained at baseline and 2-week intervals postoperatively with a 35-mm single lense reflex camera equipped with a lense mounted ring flash. The results of treatment were evaluated for the changes of skin texture and color at 2 weeks, 1 month, and 3 months. Three patients with acne scars agreed to skin biopsy. Three months after laser treatment, all patients with small pox and chicken pox scars were improved about 55%, and patients with acne scars were improved about 40% on average. Pulsed Er:YAG laser skin resurfacing is an effective and safe treatment for pitted facial scars.

  1. Spectrally Tailored Pulsed Thulium Fiber Laser System for Broadband Lidar CO2 Sensing (United States)

    Heaps, William S.; Georgieva, Elena M.; McComb, Timothy S.; Cheung, Eric C.; Hassell, Frank R.; Baldauf, Brian K.


    Thulium doped pulsed fiber lasers are capable of meeting the spectral, temporal, efficiency, size and weight demands of defense and civil applications for pulsed lasers in the eye-safe spectral regime due to inherent mechanical stability, compact "all-fiber" master oscillator power amplifier (MOPA) architectures, high beam quality and efficiency. Thulium fiber's longer operating wavelength allows use of larger fiber cores without compromising beam quality, increasing potential single aperture pulse energies. Applications of these lasers include eye-safe laser ranging, frequency conversion to longer or shorter wavelengths for IR countermeasures and sensing applications with otherwise tough to achieve wavelengths and detection of atmospheric species including CO2 and water vapor. Performance of a portable thulium fiber laser system developed for CO2 sensing via a broadband lidar technique with an etalon based sensor will be discussed. The fielded laser operates with approximately 280 J pulse energy in 90-150ns pulses over a tunable 110nm spectral range and has a uniquely tailored broadband spectral output allowing the sensing of multiple CO2 lines simultaneously, simplifying future potentially space based CO2 sensing instruments by reducing the number and complexity of lasers required to carry out high precision sensing missions. Power scaling and future "all fiber" system configurations for a number of ranging, sensing, countermeasures and other yet to be defined applications by use of flexible spectral and temporal performance master oscillators will be discussed. The compact, low mass, robust, efficient and readily power scalable nature of "all-fiber" thulium lasers makes them ideal candidates for use in future space based sensing applications.

  2. Imaging and electron energy-loss spectroscopy using single nanosecond electron pulses. (United States)

    Picher, Matthieu; Bücker, Kerstin; LaGrange, Thomas; Banhart, Florian


    We implement a parametric study with single electron pulses having a 7 ns duration to find the optimal conditions for imaging, diffraction, and electron energy-loss spectroscopy (EELS) in the single-shot approach. Photoelectron pulses are generated by illuminating a flat tantalum cathode with 213 nm nanosecond laser pulses in a 200 kV transmission electron microscope (TEM) with thermionic gun and Wehnelt electrode. For the first time, an EEL spectrometer is used to measure the energy distribution of single nanosecond electron pulses which is crucial for understanding the ideal imaging conditions of the single-shot approach. By varying the laser power, the Wehnelt bias, and the condenser lens settings, the optimum TEM operation conditions for the single-shot approach are revealed. Due to space charge and the Boersch effect, the energy width of the pulses under maximized emission conditions is far too high for imaging or spectroscopy. However, by using the Wehnelt electrode as an energy filter, the energy width of the pulses can be reduced to 2 eV, though at the expense of intensity. The first EEL spectra taken with nanosecond electron pulses are shown in this study. With 7 ns pulses, an image resolution of 25 nm is attained. It is shown how the spherical and chromatic aberrations of the objective lens as well as shot noise limit the resolution. We summarize by giving perspectives for improving the single-shot time-resolved approach by using aberration correction. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Numerical analysis of laser ablation and damage in glass with multiple picosecond laser pulses. (United States)

    Sun, Mingying; Eppelt, Urs; Russ, Simone; Hartmann, Claudia; Siebert, Christof; Zhu, Jianqiang; Schulz, Wolfgang


    This study presents a novel numerical model for laser ablation and laser damage in glass including beam propagation and nonlinear absorption of multiple incident ultrashort laser pulses. The laser ablation and damage in the glass cutting process with a picosecond pulsed laser was studied. The numerical results were in good agreement with our experimental observations, thereby revealing the damage mechanism induced by laser ablation. Beam propagation effects such as interference, diffraction and refraction, play a major role in the evolution of the crater structure and the damage region. There are three different damage regions, a thin layer and two different kinds of spikes. Moreover, the electronic damage mechanism was verified and distinguished from heat modification using the experimental results with different pulse spatial overlaps.

  4. Molecular photoelectron holography with circularly polarized laser pulses. (United States)

    Yang, Weifeng; Sheng, Zhihao; Feng, Xingpan; Wu, Miaoli; Chen, Zhangjin; Song, Xiaohong


    We investigate the photoelectron momentum distribution of molecular-ion H2+driven by ultrashort intense circularly polarized laser pulses. Both numerical solutions of the time-dependent Schrödinger equation (TDSE) and a quasiclassical model indicate that the photoelectron holography (PH) with circularly polarized pulses can occur in molecule. It is demonstrated that the interference between the direct electron wave and rescattered electron wave from one core to its neighboring core induces the PH. Moreover, the results of the TDSE predict that there is a tilt angle between the interference pattern of the PH and the direction perpendicular to the molecular axis. Furthermore, the tilt angle is sensitively dependent on the wavelength of the driven circularly polarized pulse, which is confirmed by the quasiclassical calculations. The PH induced by circularly polarized laser pulses provides a tool to resolve the electron dynamics and explore the spatial information of molecular structures.

  5. Electra: durable repetitively pulsed angularly multiplexed KrF laser system (United States)

    Wolford, Matthew F.; Myers, Matthew C.; Giuliani, John L.; Sethian, John D.; Burns, Patrick M.; Hegeler, Frank; Jaynes, Reginald


    Electra is a repetitively pulsed, electron beam pumped Krypton Fluoride (KrF) laser at the Naval Research Laboratory that is developing the technologies that can meet the Inertial Fusion Energy (IFE) requirements for durability, efficiency, and cost. The technologies developed on Electra should be directly scalable to a full size fusion power plant beam line. As in a full size fusion power plant beam line, Electra is a multistage laser amplifier system which, consists of a commercial discharge laser (LPX 305i, Lambda Physik), 175 keV electron beam pumped (40 ns flat-top) preamplifier, and 530 keV (100 ns flat-top) main amplifier. Angular multiplexing is used in the optical layout to provide pulse length control and to maximize laser extraction from the amplifiers. Single shot yield of 452 J has been extracted from the initial shots of the Electra laser system using a relatively low energy preamplifier laser beam. In rep-rate burst of 5 Hz for durations of one second a total energy of 1.585 kJ (average 317 J/pulse) has been attained. Total energy of 2.5 kJ has been attained over a two second period. For comparison, the main amplifier of Electra in oscillator mode has demonstrated at 2.5 Hz rep-rate average laser yield of 270 J over a 2 hour period.

  6. Kerr-lens mode-locked Ti:Sapphire laser pumped by a single laser diode (United States)

    Kopylov, D. A.; Esaulkov, M. N.; Kuritsyn, I. I.; Mavritskiy, A. O.; Perminov, B. E.; Konyashchenko, A. V.; Murzina, T. V.; Maydykovskiy, A. I.


    The performance of a Ti:sapphire laser pumped by a single 461 nm laser diode is presented for both the continuous-wave and the mode-locked regimes of operation. We introduce a simple astigmatism correction scheme for the laser diode beam consisting of two cylindrical lenses affecting the pump beam along the fast axis of the laser diode, which provides the mode-matching between the nearly square-shaped pump beam and the cavity mode. The resulting efficiency of the suggested Ti:Sapphire oscillator pumped by such a laser diode is analyzed for the Ti:sapphire crystals of 3 mm, 5 mm and 10 mm in length. We demonstrate that such a system provides the generation of ultrashort pulses up to 15 fs in duration with the repetition rate of 87 MHz, the average power being 170 mW.

  7. Structure of picosecond pulses of a Q-switched and mode-locked diode-pumped Nd:YAG laser (United States)

    Donin, V. I.; Yakovin, D. V.; Gribanov, A. V.


    The pulse duration of a diode-pumped Nd:YAG laser, in which Q-switching with mode-locking (QML regime) is achieved using a spherical mirror and a travelling-wave acousto-optic modulator, is directly measured with a streak camera. It is found that the picosecond pulses can have a non-single-pulse structure, which is explained by excitation of several competing transverse modes in the Q-switching regime with a pulse repetition rate of 1 kHz. In the case of cw mode-locking (without Q-switching), a new (auto-QML) regime is observed, in which the pulse train repetition rate is determined by the frequency of the relaxation oscillations of the laser field while the train contains single picosecond pulses.

  8. Picosecond chirped pulse compression in single-mode fibers

    International Nuclear Information System (INIS)

    Wenhua Cao; Youwei Zhang


    In this paper, the nonlinear propagation of picosecond chirped pulses in single mode fibers has been investigated both analytically and numerically. Results show that downchirped pulses can be compressed owing to normal group-velocity dispersion. The compression ratio depends both on the initial peak power and on the initial frequency chirp of the input pulse. While the compression ratio depends both on the initial peak power and on the initial frequency chirp of the input pulse. While the compression ratio increases with the negative frequency chirp, it decreases with the initial peak power of the input pulse. This means that the self-phase modulation induced nonlinear frequency chirp which is linear and positive (up-chirp) over a large central region of the pulse and tends to cancel the initial negative chirp of the pulse. It is also shown that, as the negative chirped pulse compresses temporally, it synchronously experiences a spectral narrowing

  9. Pulsed-Laser Irradiation Space Weathering Of A Carbonaceous Chondrite (United States)

    Thompson, M. S.; Keller, L. P.; Christoffersen, R.; Loeffler, M. J.; Morris, R. V.; Graff, T. G.; Rahman, Z.


    Grains on the surfaces of airless bodies experience irradiation from solar energetic particles and melting, vaporization and recondensation processes associated with micrometeorite impacts. Collectively, these processes are known as space weathering and they affect the spectral properties, composition, and microstructure of material on the surfaces of airless bodies, e.g. Recent efforts have focused on space weathering of carbonaceous materials which will be critical for interpreting results from the OSIRIS-REx and Hayabusa2 missions targeting primitive, organic-rich asteroids. In addition to returned sample analyses, space weathering processes are quantified through laboratory experiments. For example, the short-duration thermal pulse from hypervelocity micrometeorite impacts have been simulated using pulsed-laser irradiation of target material e.g. Recent work however, has shown that pulsed-laser irradiation has variable effects on the spectral properties and microstructure of carbonaceous chondrite samples. Here we investigate the spectral characteristics of pulsed-laser irradiated CM2 carbonaceous chondrite, Murchison, including the vaporized component. We also report the chemical and structural characteristics of specific mineral phases within the meteorite as a result of pulsed-laser irradiation.

  10. Measurement of flow fluctuations in single longitudinal mode pulsed ...

    Indian Academy of Sciences (India)


    Feb 12, 2014 ... The single mode dye laser is a very useful tool for high-resolution spectroscopy, resonance ionization spec- troscopy (RIS), coherent control etc. For many spectroscopic applications it is however necessary to have a control over the emission linewidth of the dye laser. The frequency- stabilized tunable laser ...

  11. Detection of early dental caries with short pulse laser

    Energy Technology Data Exchange (ETDEWEB)

    Okubo, Nahoko; Goto, Shigeru [Osada Research Inst., Ltd., Tokyo (Japan); Tanaka, Hiroshi; Ohzu, Akira; Arisawa, Takashi [Japan Atomic Energy Research Inst., Kansai Research Establishment, Advanced Photon Research Center, Kyoto (Japan)


    Differences in the optical properties of polarization and photoluminescence between caries lesion and noncaries (sound) enamel have been investigated by focusing a pulsed Nd:YAG laser of 532 nm on the surface of teeth. Significant difference in the polarization property of the scattered light from the surface can be observed with some carious samples. For photoluminescence spectral lines which appear at around 650 nm, the intensity of caries lesion has been approximately two times higher than that of sound one. A discussion is presented in which early are potentially detectable by the pulsed laser. (author)

  12. Interaction of nanosecond ultraviolet laser pulses with reactive dusty plasma (United States)

    van de Wetering, F. M. J. H.; Oosterbeek, W.; Beckers, J.; Nijdam, S.; Gibert, T.; Mikikian, M.; Rabat, H.; Kovačević, E.; Berndt, J.


    Even though UV laser pulses that irradiate a gas discharge are small compared to the plasma volume (≲3%) and plasma-on time (≲6 × 10-6%), they are found to dramatically change the discharge characteristics on a global scale. The reactive argon-acetylene plasma allows the growth of nanoparticles with diameters up to 1 μm, which are formed inside the discharge volume due to spontaneous polymerization reactions. It is found that the laser pulses predominantly accelerate and enhance the coagulation phase and are able to suppress the formation of a dust void.

  13. Phase selection during pulsed laser annealing of manganese

    International Nuclear Information System (INIS)

    Follstaedt, D.M.; Peercy, P.S.; Perepezko, J.H.


    Pulsed (25 ns) laser-induced heating of the α phase of Mn is found to be sufficiently rapid to bypass solid-state transformation to the high-temperature β, γ, and delta allotropes and thus produce melts that are calculated to be undercooled by approx. 120 K with respect to the equilibrium melting temperature of the delta phase. Nucleation of the γ phase in this highly undercooled melt is observed for sufficiently long melt durations. The experiments thus demonstrate that pulsed laser-induced melting of metals with allotropes permits the study of nucleation and growth in highly undercooled melts with calculable temperatures

  14. Interaction of nanosecond ultraviolet laser pulses with reactive dusty plasma

    International Nuclear Information System (INIS)

    Wetering, F. M. J. H. van de; Oosterbeek, W.; Beckers, J.; Nijdam, S.; Gibert, T.; Mikikian, M.; Rabat, H.; Kovačević, E.; Berndt, J.


    Even though UV laser pulses that irradiate a gas discharge are small compared to the plasma volume (≲3%) and plasma-on time (≲6 × 10 −6 %), they are found to dramatically change the discharge characteristics on a global scale. The reactive argon–acetylene plasma allows the growth of nanoparticles with diameters up to 1 μm, which are formed inside the discharge volume due to spontaneous polymerization reactions. It is found that the laser pulses predominantly accelerate and enhance the coagulation phase and are able to suppress the formation of a dust void.

  15. Pulse laser machining and particulate separation from high impact polystyrene

    Energy Technology Data Exchange (ETDEWEB)

    Arif, Saira; Kautek, Wolfgang, E-mail:


    Opaque high impact polystyrene (HIPS) contaminated with graphite particles and poly(styrene-co-divinyl benzene) spheres can only be removed efficiently with nanosecond-pulsed laser radiation of 532 nm while the substrate is preserved. The destruction thresholds are 1–2 orders of magnitude lower than that of other common technical polymers. The inhomogeneously distributed polybutadiene composite component led to enhanced light scattering in the polystyrene matrix so that increased light absorption and energy density causes a comparatively low ablation threshold. Due to this fact there is advantageous potential for pulse laser machining at comparatively low fluences.

  16. A model for pulsed laser melting of graphite (United States)

    Steinbeck, J.; Braunstein, G.; Dresselhaus, M. S.; Venkatesan, T.; Jacobson, D. C.


    A model for laser melting of carbon at high temperatures to form liquid carbon has been developed. This model is solved numerically using experimental data from laser irradiation studies in graphite consistent with a melting temperature for graphite of 4300 K. The parameters for high-temperature graphite are based on the extension of previously measured thermal properties into the high-temperature regime. A simple classical free electron gas model is used to calculate the properties of liquid carbon. There is very good agreement between the model calculation and experimental results for laser pulse fluences below 2.0 J/cm2. Modifications to the model for larger laser pulse fluences are discussed.

  17. Excimer laser with high pulse energy and typical applications

    International Nuclear Information System (INIS)

    Jetter, H.L.; Schmatjko, K.J.; Schroeder, M.


    This paper reports on a research program for scaling excimer lasers of high pulse energy (>2J) in output power. A XeCl laser operated with paralleled waterline capacitors and a hollow cathode type x-ray gun has yielded 225 W at a pulse energy of >2,25 J and a repetition rate of 100 Hz. A short laser of 15 cm gain length was designed as a flexible tool for quick modification of components and for having more reserve in electrical power and gas throughput for scaling. So far with the short gain length and XeCl 0,56 J pulse energy were achieved. Applications of high pulse energy lasers focus on material processing. A Siemens XP 2020 excimer laser was used for structured removal of different coating/substrate systems of metals, ceramics and polymers, e.g. metal coating on ceramics, ceramic protection on steel, superconducting ceramic films on ceramics, polyimide on copper and metals sputtered on copper

  18. Electron heating enhancement by frequency-chirped laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Yazdani, E.; Afarideh, H., E-mail: [Department of Energy Engineering and Physics, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Sadighi-Bonabi, R., E-mail: [Department of Physics, Sharif University of Technology, P.O. Box 11365-9567, Tehran (Iran, Islamic Republic of); Riazi, Z. [Physics and Accelerator School, Tehran (Iran, Islamic Republic of); Hora, H. [Department of Theoretical Physics, University of New South Wales, Sydney 2052 (Australia)


    Propagation of a chirped laser pulse with a circular polarization through an uprising plasma density profile is studied by using 1D-3V particle-in-cell simulation. The laser penetration depth is increased in an overdense plasma compared to an unchirped pulse. The induced transparency due to the laser frequency chirp results in an enhanced heating of hot electrons as well as increased maximum longitudinal electrostatic field at the back side of the solid target, which is very essential in target normal sheath acceleration regime of proton acceleration. For an applied chirp parameter between 0.008 and 0.01, the maximum amount of the electrostatic field is improved by a factor of 2. Furthermore, it is noticed that for a chirped laser pulse with a₀=5, because of increasing the plasma transparency length, the laser pulse can penetrate up to about n{sub e}≈6n{sub c}, where n{sub c} is plasma critical density. It shows 63% increase in the effective critical density compared to the relativistic induced transparency regime for an unchirped condition.


    DEFF Research Database (Denmark)

    Bagger, Claus; Olsen, Flemming Ove


    This paper describes how the laser cutting process can be optimised in such a way that the cut sheets can subsequently be used to laser weld tailored blanks. In a number of systematic laboratory experiments the effect of cutting speed, assist gas pressure, average laser power and pulse energy...... was analysed. For quality assessment the squareness, roughness and dross attachment of laser cut blanks were measured. In all tests, the medium strength steel GA 260 with a thickness of 1.8 mm was used. In this work it has been successfully demonstrated that the squareness of a cut can be used as a quality...... item for parameter optimisation of laser cut sheets used for tailored blanks. It was concluded that high quality cut edges with a squareness as small as 0.015 mm may be obtained. Such edges are well suited for subsequent laser welding....

  20. Evaluation of dynamic range for LLNL streak cameras using high contrast pulses and pulse podiatry'' on the Nova laser system

    Energy Technology Data Exchange (ETDEWEB)

    Richards, J.B.; Weiland, T.L.; Prior, J.A.


    A standard LLNL streak camera has been used to analyze high contrast pulses on the Nova laser facility. These pulses have a plateau at their leading edge (foot) with an amplitude which is approximately 1% of the maximum pulse height. Relying on other features of the pulses and on signal multiplexing, we were able to determine how accurately the foot amplitude was being represented by the camera. Results indicate that the useful single channel dynamic range of the instrument approaches 100:1. 1 ref., 4 figs., 1 tab.

  1. Optical fiber link for transmission of 1-nJ femtosecond laser pulses at 1550 nm

    DEFF Research Database (Denmark)

    Eichhorn, Finn; Olsson, Rasmus Kjelsmark; Buron, Jonas Christian Due


    a distance of 5.3 m. The fiber link consists of dispersion-compensating fiber (DCF) and standard single-mode fiber. The optical pulses at different positions in the fiber link are measured using frequency-resolved optical gating (FROG). The results are compared with numerical simulations of the pulse......We report on numerical and experimental characterization of the performance of a fiber link optimized for the delivery of sub-100-fs laser pulses at 1550 nm over several meters of fiber. We investigate the power handling capacity of the link, and demonstrate all-fiber delivery of 1-nJ pulses over...... propagation based on the generalized nonlinear Schrödinger equation. The high input power capacity of the fiber link allows the splitting and distribution of femtosecond pulses to an array of fibers with applications in multi-channel fiber-coupled terahertz time-domain spectroscopy and imaging systems. We...

  2. Determining the field emitter temperature during laser irradiation in the pulsed laser atom probe

    International Nuclear Information System (INIS)

    Kellogg, G.L.


    Three methods are discussed for determining the field emitter temperature during laser irradiation in the recently developed Pulsed Laser Atom Probe. A procedure based on the reduction of the lattice evaporation field with increasing emitter temperature is found to be the most convenient and reliable method between 60 and 500 K. Calibration curves (plots of the evaporation field versus temperature) are presented for dc and pulsed field evaporation of W, Mo, and Rh. These results show directly the important influence of the evaporation rate on the temperature dependence of the evaporation field. The possibility of a temperature calibration based on the ionic charge state distribution of field evaporated lattice atoms is also discussed. The shift in the charge state distributions which occurs when the emitter temperature is increased and the applied field strength is decreased at a constant rate of evaporation is shown to be due to the changing field and not the changing temperature. Nevertheless, the emitter temperature can be deduced from the charge state distribution for a specified evaporation rate. Charge state distributions as a function of field strength and temperature are presented for the same three materials. Finally, a preliminary experiment is reported which shows that the emitter temperature can be determined from field ion microscope observations of single atom surface diffusion over low index crystal planes. This last calibration procedure is shown to be very useful at higher temperatures (>600 K) where the other two methods become unreliable

  3. Quantitative analysis of arsenic in mine tailing soils using double pulse-laser induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Ji-hyun [Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712 (Korea, Republic of); Lenth, Christoph; Salb, Christian [Photonic Sensor Technology, Laser-Laboratorium Goettingen e.V., Hans-Adolf-Krebs-Weg 1 D-37077 Goettingen (Germany); Ko, Eun-Joung; Kim, Kyoung-Woong [Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712 (Korea, Republic of); Park, Kihong, E-mail: [Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712 (Korea, Republic of)


    A double pulse-laser induced breakdown spectroscopy (DP-LIBS) was used to determine arsenic (As) concentration in 16 soil samples collected from 5 different mine tailing sites in Korea. We showed that the use of double pulse laser led to enhancements of signal intensity (by 13% on average) and signal-to-noise ratio of As emission lines (by 165% on average) with smaller relative standard deviation compared to single pulse laser approach. We believe this occurred because the second laser pulse in the rarefied atmosphere produced by the first pulse led to the increase of plasma temperature and populations of exited levels. An internal standardization method using a Fe emission line provided a better correlation and sensitivity between As concentration and the DP-LIBS signal than any other elements used. The Fe was known as one of the major components in current soil samples, and its concentration varied not substantially. The As concentration determined by the DP-LIBS was compared with that obtained by atomic absorption spectrometry (AAS) to evaluate the current LIBS system. They are correlated with a correlation coefficient of 0.94. The As concentration by the DP-LIBS was underestimated in the high concentration range (>1000 mg-As/kg). The loss of sensitivity that occurred at high concentrations could be explained by self-absorption in the generated plasma.

  4. Flat pulse-amplitude rational-harmonic-mode-locking fiber lasers with GHz pulse repetition rates (United States)

    Wang, Tianhe; Yang, Tianxin; Jia, Dongfang; Wang, Zhaoying; Sang, Mei; Bai, Neng; Li, Guifang


    Rational harmonic mode locking (RHML) in an active mode-locked fiber laser can increase the output pulse repetition rate a number of times the modulation frequency of an optical modulator in a cavity when driven by gigahertz (GHz) RF. The amplitudes of the output optical pulse train in a high order RHML operation are not equalized and flat due to the GHz RF drive signals. A modified RHML technique using standard instrumentation that generates 1 GHz electrical square wave signals to accomplish up to 6th order RHML in fiber lasers is presented for improving the flatness of the amplitudes of the output optical pulse train at the pulse repetition rate of up to 12 GHz.

  5. Single-cycle Optical Pulses and Isolated Attosecond Pulse Generation (United States)


    A. H. Curtis, S. P. Meehan, and J . J . Rocca , “Demonstration of all-diode-pumped soft x-ray laser,” Opt. Lett. 34, 3352 (2009). 40. K.-H. Hong, J ...Feb. 2012): <Journal paper> 1) J . Moses, C. Manzoni, S-W Huang, G.Cerullo, and F. X. Kärtner, “Temporal Optimization of Ultrabroadband High-Energy...OPCPA,” Opt. Express 17, 5540 (Mar, 2009). 2) J . Moses, S.-W. Huang, K.-H. Hong, O. D. Mücke, E. L. Falcão-Filho, A. Benedick, F. Ö. Ilday, A

  6. Temporal laser pulse manipulation using multiple optical ring-cavities (United States)

    Nguyen, Quang-Viet (Inventor); Kojima, Jun (Inventor)


    An optical pulse stretcher and a mathematical algorithm for the detailed calculation of its design and performance is disclosed. The optical pulse stretcher has a plurality of optical cavities, having multiple optical reflectors such that an optical path length in each of the optical cavities is different. The optical pulse stretcher also has a plurality of beam splitters, each of which intercepts a portion of an input optical beam and diverts the portion into one of the plurality of optical cavities. The input optical beam is stretched and a power of an output beam is reduced after passing through the optical pulse stretcher and the placement of the plurality of optical cavities and beam splitters is optimized through a model that takes into account optical beam divergence and alignment in the pluralities of the optical cavities. The optical pulse stretcher system can also function as a high-repetition-rate (MHz) laser pulse generator, making it suitable for use as a stroboscopic light source for high speed ballistic projectile imaging studies, or it can be used for high speed flow diagnostics using a laser light sheet with digital particle imaging velocimetry. The optical pulse stretcher system can also be implemented using fiber optic components to realize a rugged and compact optical system that is alignment free and easy to use.

  7. Attosecond pulse trains from long laser-gas interaction targets

    International Nuclear Information System (INIS)

    Hauri, C.P.; Lopez-Martens, R.; Varju, K.; Ruchon, T.; Gustafsson, E.; L'Huillier, A.


    Complete test of publication follows. Many experiments in attosecond physics require high XUV photon flux as well as a clean attosecond pulse train (APT) temporal structure. Temporal characterization of high-order harmonic generation (HHG) in long interaction targets is thus of high interest. HHG being a very inefficient process, a large effort has been made to increase the amount of XUV photons emitted per infrared laser pulse. Besides quasi phase-matching in a modulated capillary, loose driving laser focusing conditions and subsequent self-channeling have shown to significantly increase the conversion efficiency. We characterized the temporal structure of APTs generated during the self-channeling of an intense IR driving laser pulse. Our first results indicate, however, that the temporal structure of the APT generated during the HHG process might be affected by quantum path interference and spectral phase distortion due to the self-channeling process itself. In particular, our measurements show that the relative spectral phase between consecutive harmonics can strongly vary depending on the target length and the position of the laser focus with respect to the target. In general for short gas targets, no clean APT structure can be expected since the individual attosecond pulses carry significant chirp. For longer targets, however, we observe a flattening of the harmonic spectral phase, resulting in near-transform-limited attosecond pulse trains. A complete analysis of the process is complex and involves detailed knowledge of the spatial and temporal evolution of the self-channeling driver laser pulse throughout the gas target.

  8. Laser fusion neutron source employing compression with short pulse lasers (United States)

    Sefcik, Joseph A; Wilks, Scott C


    A method and system for achieving fusion is provided. The method includes providing laser source that generates a laser beam and a target that includes a capsule embedded in the target and filled with DT gas. The laser beam is directed at the target. The laser beam helps create an electron beam within the target. The electron beam heats the capsule, the DT gas, and the area surrounding the capsule. At a certain point equilibrium is reached. At the equilibrium point, the capsule implodes and generates enough pressure on the DT gas to ignite the DT gas and fuse the DT gas nuclei.

  9. Pulse-to-pulse jitter measurement by photon correlation in high-β lasers

    International Nuclear Information System (INIS)

    Lebreton, Armand; Abram, Izo; Belabas, Nadia; Sagnes, Isabelle; Robert-Philip, Isabelle; Beveratos, Alexios; Braive, Rémy; Marsili, Francesco; Verma, Varun B.; Nam, Sae Woo; Gerrits, Thomas; Stevens, Martin J.


    The turn-on delay jitter in pulsed lasers in which a large fraction (β) of spontaneous emission is channeled into the lasing mode is measured by use of a photon correlation technique. This jitter is found to significantly increase with β, reaching values of the order of the pulse width at threshold. This is due to the increase in the relative value of the discretization noise when the number of photons at threshold becomes small, as is the case in high-β lasers

  10. Single-pulse electrons from a linear accelerator

    International Nuclear Information System (INIS)

    Antoku, Shigetoshi; Sunayashiki, Tadashi; Takeoka, Seiji; Kato, Kazushi


    The electronic circuits of a 35 MeV linear accelerator at Hiroshima University were modified to produce single-pulse electrons. Single-pulse electrons were obtained by synchronizing one of eight pulses from an electron gun modulator, 120 pps, to one of the micro-waves from a klystron, 15 pps. After single-pulse electrons were discharged, a signal was relayed to a stop-gate circuit from a binary scaler which was connected to the gun modulator. Although reproducibility of single-pulse electrons and stability of electron output per pulse were not completely satisfactory, it was possible to use for radiobiological studies. Biological effects of single-pulse electrons (energy: 25 MeV, dose rate: 10 10 rad/min) on cultured mammalian cells and on mice were nearly equal to those of multi-pulse electrons (25 MeV, 10 7 rad/min) and Co-60 γ-rays (dose rate: 100 rad/min). (auth.)

  11. Submicrometre periodic surface structures in InP induced by nanosecond UV laser pulses

    International Nuclear Information System (INIS)

    Kumar, Brijesh; Soni, R K


    We report fabrication of submicrometre size laser-induced periodic surface structures (ripples) on single crystalline InP by nanosecond (ns) pulsed Nd : YAG laser beam irradiation of fourth harmonic wavelength (266 nm) in HF electrolyte. The ripples are orientated parallel to the laser polarization direction and power spectral density analysis reveals reduction in the spatial period of the ripples with increasing number of laser shots. The formation of periodic structures in the presence of electrolyte is empirically explained on the basis of photoelectrochemical etching and variation of periodicity with refractive index change on laser energy and number of laser pulses. From the analysis of energy dispersive x-ray, photoluminescence (PL) and micro-Raman spectroscopy measurements on the rippled surface we conclude that the ripple structures are capped with a thin layer of In 2 O 3 . Further, a blue shift of 0.328 eV compared with the band-edge luminescence of InP is estimated from the PL spectrum of the structure fabricated with 200 laser shots. The blue shift of the PL peak is attributed to the quantum confinement effect in the nanometre size structures in the rippled surface. Micro-Raman spectra show good crystalline quality of the surface at lower number of laser shots and its degradation caused by oxidation at the higher number of shots

  12. High Repetition Rate Pulsed 2-Micron Laser Transmitter for Coherent CO2 DIAL Measurement (United States)

    Singh, Uprendra N.; Bai, Yingxin; Yu, Jirong; Petros, Mulugeta; Petzar, Paul J.; Trieu, Bo C.; Lee, Hyung


    A high repetition rate, highly efficient, Q-switched 2-micron laser system as the transmitter of a coherent differential absorption lidar for CO2 measurement has been developed at NASA Langley Research Center. Such a laser transmitter is a master-slave laser system. The master laser operates in a single frequency, either on-line or off-line of a selected CO2 absorption line. The slave laser is a Q-switched ring-cavity Ho:YLF laser which is pumped by a Tm:fiber laser. The repetition rate can be adjusted from a few hundred Hz to 10 kHz. The injection seeding success rate is from 99.4% to 99.95%. For 1 kHz operation, the output pulse energy is 5.5mJ with the pulse length of approximately 50 ns. The optical-to-optical efficiency is 39% when the pump power is 14.5W. The measured standard deviation of the laser frequency jitter is about 3 MHz.

  13. Diode-end-pumped single-longitudinal-mode passively Q-switched Nd:GGG laser (United States)

    Xue, Feng; Zhang, Sasa; Cong, Zhenhua; Huang, Qingjie; Guan, Chen; Wu, Qianwen; Chen, Hui; Bai, Fen; Liu, Zhaojun


    Diode-end-pumped passively Q-switched Nd:GGG laser in a ring cavity at 1062 nm was demonstrated. Single-longitudinal-mode laser linewidth less than 0.5 pm was accomplished by unidirectional operation. The maximum output pulse energy was 437 µJ and the pulse width was 43 ns when Cr4+:YAG with an initial transmission of 61% was used.

  14. CO2 laser pulse switching by optically excited semiconductors

    International Nuclear Information System (INIS)

    Silva, V.L. da.


    The construction and the study of a semi-conductor optical switch used for generating short infrared pulses and to analyse the semiconductor characteristics, are presented. The switch response time depends on semiconductor and control laser characteristics. The results obtained using a Ge switch controlled by N 2 , NdYag and Dye lasers are presented. The response time was 50 ns limited by Ge recombination time. The reflectivity increased from 7% to 59% using N 2 laser to control the switch. A simple model for semiconductor optical properties that explain very well the experimental results, is also presented. (author) [pt

  15. Electron rescattering at metal nanotips induced by ultrashort laser pulses


    Wachter, Georg; Lemell, Christoph; Burgdörfer, Joachim; Schenk, Markus; Krüger, Michael; Hommelhoff, Peter


    We report on the first investigation of plateau and cut-off structures in photoelectron spectra from nano-scale metal tips interacting with few-cycle near-infrared laser pulses. These hallmarks of electron rescattering, well-known from atom-laser interaction in the strong-field regime, appear at remarkably low laser intensities with nominal Keldysh parameters of the order of $\\gtrsim 10$. Quantum and quasi-classical simulations reveal that a large field enhancement near the tip and the increa...

  16. Ablation of polymers by ultraviolet pulsed laser

    International Nuclear Information System (INIS)

    Brezini, A.; Benharrats, N.


    The surface modifications of different polymers treated by far UV-Excimer laser (λ = 193mn, 248, 308nm) are analysed by X-Ray Photoelectrons Spectroscopy. The main feature observed depends strongly on the absorption coefficients. For the high absorbing polymers such (PVC, PS, PI,...) the mechanism of the UV-Excimer Laser interaction appears to be governed by an ablative photodecomposition process (APD) with an APD threshold. In the other limit, i.e. low absorbing polymer the interaction leads to a photothermal process. (author). 51 refs, 24 figs, 7 tabs

  17. High-resolution three-dimensional compositional imaging by double-pulse laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Schiavo, C.; Grifoni, E.; Legnaioli, S.; Lorenzetti, G.; Poggialini, F.; Pagnotta, S.; Palleschi, V.; Menichetti, L.


    In this paper we present a new instrument specifically realized for high-resolution three-dimensional compositional analysis and mapping of materials. The instrument is based on the coupling of a Double-Pulse Laser-Induced Breakdown Spectroscopy (LIBS) instrument with an optical microscope. The compositional mapping of the samples is obtained by scanning the laser beam across the surface of the sample, while the in depth analysis is performed by sending multiple laser pulses on the same point. Depths of analysis of several tens of microns can be obtained. The instrument presented has definite advantages with respect to Laser Ablation-ICP Mass Spectrometry in many applications related to material analysis, biomedicine and environmental diagnostics. An application to the diagnostics of industrial ceramics is presented, demonstrating the feasibility of Double-Pulse LIBS Imaging and its advantages with respect to conventional single-pulse LIBS imaging.

  18. Performance characteristics of an excimer laser (XeCl) with single ...

    Indian Academy of Sciences (India)


    Jan 10, 2017 ... Abstract. Performance characteristics of an excimer laser (XeCl) with single-stage magnetic pulse compres- sion suitable for material processing applications are presented here. The laser incorporates in-built compact gas circulation and gas cooling to ensure fresh gas mixture between the electrodes for ...

  19. Laser-induced down-conversion parameters of singly and doubly ...

    Indian Academy of Sciences (India)

    Singly and doubly doped ZnS phosphors have been synthesized using flux method. Laser-induced photoluminescence has been observed in ZnS-doped phosphors when these were excited by the pulsed UV N2 laser radiation. Due to down-conversion phenomenon, fast phosphorescence emission in the visible region is ...

  20. Passive Fe2+ : ZnSe single-crystal Q switch for 3-mu m lasers

    NARCIS (Netherlands)

    Voronov, AA; Kozlovskii, [No Value; Korostelin, YV; Podmar'kov, YP; Polushkin, VG; Frolov, MP

    Passive Q-switching of 3-mu m lasers with the help of a Fe2+ : ZnSe single crystal is demonstrated. The 6-mJ, 50-ns giant pulses are obtained from a 2.9364-mu m Er : YAG laser by using this passive Q switch.

  1. Pulsed-laser deposited ZnO for device applications

    NARCIS (Netherlands)

    King, S.L.; Gardeniers, Johannes G.E.; Boyd, I.W.


    The study investigates the growth by pulsed-laser deposition (PLD) of ZnO thin films for the eventual incorporation into piezo-electric actuators and other sensors being developed at the University of Twente. All films are purely c-axis oriented, and results are presented which suggest the

  2. Filamentation of ultrashort laser pulses of different wavelengths in ...

    Indian Academy of Sciences (India)


    Jan 17, 2017 ... Hence, many researchers choose a noble gas such as argon as the propagating medium [21–25]. In this paper, we adopt incident laser pulses hav- ing three different wavelengths to study the filament in argon. The content is organized as follows: Section 2 introduces the nonlinear Schrödinger equation for.

  3. Pulsed laser stereophotography of plasmas and dynamically moving surfaces

    International Nuclear Information System (INIS)

    Paisley, D.L.


    A pulsed laser is used as a light source for illuminating the surface of a dynamic event of 3 mm//μs. At a predetermined time during the dynamic action, a stereo camera is used to record a pair of images of the dynamically moving surface. The stereoimage pair can be quantified for surface contour

  4. Surface melting of copper by ultrashort laser pulses

    NARCIS (Netherlands)

    Vincenc Obona, J.; Ocelik, V.; De Hosson, J.T.M; Skolski, J.Z.P.; Mitko, S.; Mitko, V.S.; Römer, Gerardus Richardus, Bernardus, Engelina; Huis in 't Veld, Bert; De Hosson, J.T.M; Brebbia, C.A


    The main advantage of ultrashort laser pulses in manufacturing technology is their very high removal rate of material and high quality of microstructures with the smallest dimensions at 1 μm level. The accuracy is mainly due to almost absence of thermal diffusion into bulk material. In this paper we

  5. Melting of copper surface by ultrashort laser pulses

    NARCIS (Netherlands)

    Oboňa, J.V.; Ocelík, V.; Hosson, J.T.M. de; Skolski, J.Z.P.; Mitko, V.S.; Römer, G.R.B.E.; Huis in 't Veld, A.J.


    The main advantage of ultrashort laser pulses in manufacturing technology is their very high removal rate of material and high quality of microstructures with the smallest dimensions at 1 μm level. The accuracy is mainly due to an almost absence of thermal diffusion into bulk material. In this paper

  6. Surface melting of copper by ultrashort laser pulses

    NARCIS (Netherlands)

    Oboňa, J.V.; Ocelík, V.; De Hosson, J.T.M.; Skolski, J.Z.P.; Mitko, V.S.; Römer, G.R.B.E.; Huis in 't Veld, A.J.


    The main advantage of ultrashort laser pulses in manufacturing technology is their very high removal rate of material and high quality of microstructures with the smallest dimensions at 1 μm level. The accuracy is mainly due to an almost absence of thermal diffusion into bulk material. In this paper

  7. Laser-evaporated pulsed atomic beam and its application

    International Nuclear Information System (INIS)

    Zhang Yanping; Hu Qiquan; Su Haizheng; Lin Fucheng


    For the purpose of obtaining an atomic beam, laser-evaporated atomic vapor was studied experimentally. The signals of multiphoton ionization of refractory metal atoms obtained with the pulsed atomic beam were observed, and the problem associated with the detection of these signals was discussed

  8. Tracking Femtosecond Laser Pulses in Space and Time

    NARCIS (Netherlands)

    Balistreri, M.L.M.; Gersen, H.; Korterik, Jeroen P.; Kuipers, L.; van Hulst, N.F.


    We show that the propagation of a femtosecond laser pulse inside a photonic structure can be directly visualized and tracked as it propagates using a time-resolved photon scanning tunneling microscope. From the time-dependent and phase- sensitive measurements, both the group velocity and the phase

  9. Tracing the phase of focused broadband laser pulses (United States)

    Hoff, Dominik; Krüger, Michael; Maisenbacher, Lothar; Sayler, A. M.; Paulus, Gerhard G.; Hommelhoff, Peter


    Precise knowledge of the behaviour of the phase of light in a focused beam is fundamental to understanding and controlling laser-driven processes. More than a hundred years ago, an axial phase anomaly for focused monochromatic light beams was discovered and is now commonly known as the Gouy phase. Recent theoretical work has brought into question the validity of applying this monochromatic phase formulation to the broadband pulses becoming ubiquitous today. Based on electron backscattering at sharp nanometre-scale metal tips, a method is available to measure light fields with sub-wavelength spatial resolution and sub-optical-cycle time resolution. Here we report such a direct, three-dimensional measurement of the spatial dependence of the optical phase of a focused, 4-fs, near-infrared pulsed laser beam. The observed optical phase deviates substantially from the monochromatic Gouy phase--exhibiting a much more complex spatial dependence, both along the propagation axis and in the radial direction. In our measurements, these significant deviations are the rule and not the exception for focused, broadband laser pulses. Therefore, we expect wide ramifications for all broadband laser-matter interactions, such as in high-harmonic and attosecond pulse generation, femtochemistry, ophthalmological optical coherence tomography and light-wave electronics.

  10. Stoichiometry control in oxide thin films by pulsed laser deposition

    NARCIS (Netherlands)

    Groenen, R.


    A general challenge in the synthesis of complex oxide nanostructures and thin films is the control of the stoichiometry and herewith control of thin film properties. Pulsed Laser Deposition (PLD) is widely known for its potential for growing near stoichiometric highly crystalline complex metal oxide

  11. Pulsed laser excitation of phosphate stabilised silver nanoparticles

    Indian Academy of Sciences (India)

    Pulsed laser excitation; silver nanoparticles; surface plasmon band; sodium polyphosphate stabilizer. 1. ... are one of the most widely studied and well characterised metal systems due to the high stability of the silver ... processes occur by electron–phonon interactions and phonon cooling mechanism via phonon–solvent ...

  12. Design of optimal laser pulses to control molecular rovibrational ...

    Indian Academy of Sciences (India)

    Abstract. Optimal control theory in combination with time-dependent quantum dynamics is employed to design laser pulses which can perform selective vibrational and rotational excitations in a heteronuclear diatomic system. We have applied the conjugate gradient method for the constrained optimization of a suit-.

  13. RHEED study of titanium dioxide with pulsed laser deposition

    DEFF Research Database (Denmark)

    Rasmussen, Inge Lise; Pryds, Nini; Schou, Jørgen


    Reflection high-energy electron diffraction (RHEED) operated at high pressure has been used to monitor the growth of thin films of titanium dioxide (TiO2) on (1 0 0) magnesium oxide (MgO) substrates by pulsed laser deposition (PLD). The deposition is performed with a synthetic rutile TiO2 target...

  14. Property change during nanosecond pulse laser annealing of ...

    Indian Academy of Sciences (India)

    ... Refresher Courses · Symposia · Live Streaming. Home; Journals; Bulletin of Materials Science; Volume 35; Issue 3. Property change during nanosecond pulse laser annealing of amorphous NiTi thin film. S K Sadrnezhaad Noushin Yasavol Mansoureh Ganjali Sohrab Sanjabi. Volume 35 Issue 3 June 2012 pp 357-364 ...

  15. Transparent conducting oxides on polymeric substrates by pulsed laser deposition

    NARCIS (Netherlands)

    Dekkers, Jan M.


    This thesis describes the research on thin films of transparent conducting oxides (TCOs) on polymeric substrates manufactured by pulsed laser deposition (PLD). TCOs are an indispensable part in optoelectronic applications such as displays, solar cells, light-emitting diodes, etc. At present, in many

  16. Property change during nanosecond pulse laser annealing of ...

    Indian Academy of Sciences (India)

    Property change during nanosecond pulse laser annealing of amorphous. NiTi thin film ... near equiatomic Ni/Ti composition to produce partially crystallized highly sensitive R-phase spots surrounded by amorphous regions. Scanning ... ratio, shape recovery, damping capacity, chemical resistance, biocompatibility and ...

  17. Influence of SOD on THG for femtosecond laser pulse (United States)

    Trofimov, Vyacheslav A.; Sidorov, Pavel S.


    THG is used nowadays in many practical applications such as a substance diagnostics, and biological objects imaging, and etc. Therefore, THG features understanding are urgent problem and this problem attracts an attention of many researchers. In this paper we analyze THG efficiency of a femtosecond laser pulse. Consideration is based on computer simulation of the laser pulse propagation with taking into account a selfand cross- modulation of the interacting waves, and their SOD, and phase mismatching. Moreover, we analyze an influence of the non-homogeneous phase mismatching along laser pulse propagation coordinate. In this case, a phase matching occurs only in narrow area of longitudinal coordinate. Due to strong self- and crossmodulation of interacting waves it is possible to manage effective THG. Using the frame-work of long pulse duration approximation and plane wave approximation as well as an original approach we write the explicit solution of Schrödinger equations describing the frequency tripling of femtosecond pulse. It should be stressed, that the main feature of our approach consists in conservation laws using corresponding to wave interaction process.

  18. Periodic dark pulse emission induced by delayed feedback in a quantum well semiconductor laser

    Directory of Open Access Journals (Sweden)

    L. Li


    Full Text Available We report the experimental observation of periodic dark pulse emission in a quantum-well semiconductor laser with delayed optical feedback. We found that under appropriate operation conditions the laser can also emit a stable train of dark pulses. The repetition frequency of the dark pulse is determined by the external cavity length. Splitting of the dark pulse was also observed. We speculate that the observed dark pulse is a kind of temporal cavity soliton formed in the laser.

  19. Efficient self-sustained pulsed CO laser

    NARCIS (Netherlands)

    Peters, P.J.M.


    In this paper a simple sealed-off TEA CO laser is described with a self-sustained discharge without an external UV preionization source. At 77 K this system yields more than 600 mJ from a lasing volume of about 60 cm3 CO-N2-He mixture (45 J/ℓ atm. with 15.6% efficiency).

  20. Short-pulse lasers for weather control (United States)

    Wolf, J. P.


    Filamentation of ultra-short TW-class lasers recently opened new perspectives in atmospheric research. Laser filaments are self-sustained light structures of 0.1–1 mm in diameter, spanning over hundreds of meters in length, and producing a low density plasma (1015–1017 cm‑3) along their path. They stem from the dynamic balance between Kerr self-focusing and defocusing by the self-generated plasma and/or non-linear polarization saturation. While non-linearly propagating in air, these filamentary structures produce a coherent supercontinuum (from 230 nm to 4 µm, for a 800 nm laser wavelength) by self-phase modulation (SPM), which can be used for remote 3D-monitoring of atmospheric components by Lidar (Light Detection and Ranging). However, due to their high intensity (1013–1014 W cm‑2), they also modify the chemical composition of the air via photo-ionization and photo-dissociation of the molecules and aerosols present in the laser path. These unique properties were recently exploited for investigating the capability of modulating some key atmospheric processes, like lightning from thunderclouds, water vapor condensation, fog formation and dissipation, and light scattering (albedo) from high altitude clouds for radiative forcing management. Here we review recent spectacular advances in this context, achieved both in the laboratory and in the field, reveal their underlying mechanisms, and discuss the applicability of using these new non-linear photonic catalysts for real scale weather control.

  1. Dropout dynamics in pulsed quantum dot lasers due to mode jumping

    Energy Technology Data Exchange (ETDEWEB)

    Sokolovskii, G. S.; Dudelev, V. V.; Deryagin, A. G.; Novikov, I. I.; Maximov, M. V.; Ustinov, V. M.; Kuchinskii, V. I. [Ioffe Physical-Technical Institute, St. Petersburg (Russian Federation); Viktorov, E. A. [National Research University of Information Technologies, Mechanics and Optics, Saint Petersburg (Russian Federation); Optique Nonlinéaire Théorique, Campus Plaine CP 231, 1050 Bruxelles (Belgium); Applied Physics Research Group (APHY), Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels (Belgium); Abusaa, M. [Applied Physics Research Group (APHY), Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels (Belgium); Arab American University, Jenin, Palestine (Country Unknown); Danckaert, J. [Applied Physics Research Group (APHY), Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels (Belgium); Kolykhalova, E. D. [St. Petersburg State Electrotechnical University “LETI,” St. Petersburg (Russian Federation); Soboleva, K. K. [St. Petersburg State Polytechnical University, St. Petersburg (Russian Federation); Zhukov, A. E. [Academic University, St. Petersburg (Russian Federation); Sibbett, W. [University of St. Andrews, St. Andrews (United Kingdom); Rafailov, E. U. [Aston Institute of Photonic Technologies, Aston University, Birmingham (United Kingdom); Erneux, T. [Optique Nonlinéaire Théorique, Campus Plaine CP 231, 1050 Bruxelles (Belgium)


    We examine the response of a pulse pumped quantum dot laser both experimentally and numerically. As the maximum of the pump pulse comes closer to the excited-state threshold, the output pulse shape becomes unstable and leads to dropouts. We conjecture that these instabilities result from an increase of the linewidth enhancement factor α as the pump parameter comes close to the excitated state threshold. In order to analyze the dynamical mechanism of the dropout, we consider two cases for which the laser exhibits either a jump to a different single mode or a jump to fast intensity oscillations. The origin of these two instabilities is clarified by a combined analytical and numerical bifurcation diagram of the steady state intensity modes.

  2. Pulsed laser deposition of anatase thin films on textile substrates

    Energy Technology Data Exchange (ETDEWEB)

    Krämer, André; Kunz, Clemens; Gräf, Stephan; Müller, Frank A.


    Highlights: • Anatase thin films were grown on carbon fibre fabrics by pulsed laser deposition. • A novel Q-switched CO{sub 2} laser was utilised as radiation source. • Coated fibres exhibit photocatalytic activity and are resistant against bending. - Abstract: Pulsed laser deposition (PLD) is a highly versatile tool to prepare functional thin film coatings. In our study we utilised a Q-switched CO{sub 2} laser with a pulse duration τ ≈ 300 ns, a laser wavelength λ = 10.59 μm, a repetition frequency f{sub rep} = 800 Hz and a peak power P{sub peak} = 15 kW to deposit crystalline anatase thin films on carbon fibre fabrics. For this purpose, preparatory experiments were performed on silicon substrates to optimise the anatase deposition conditions including the influence of different substrate temperatures and oxygen partial pressures. Processing parameters were then transferred to deposit anatase on carbon fibres. Scanning electron microscopy, X-ray diffraction analyses, Raman spectroscopy and tactile profilometry were used to characterise the samples and to reveal the formation of phase pure anatase without the occurrence of a secondary rutile phase. Methanol conversion test were used to prove the photocatalytic activity of the coated carbon fibres.

  3. Diode-pumped solid state laser. (Part V). ; Short pulse laser oscillation. Handotai laser reiki kotai laser. 5. ; Tan pulse hasshin

    Energy Technology Data Exchange (ETDEWEB)

    Kuwabara, M.; Bando, N. (Asahi Glass Co. Ltd., Tokyo (Japan))


    A semiconductor laser (LD) excited solid state laser using an LD as an excited light source is under discussion for its practical applications to measurements, processing, communications, office automation, and medical areas. This paper describes the discussions given on the short pulse transmission using AOQ switching elements in the LD excited solid state laser with a long wave length band (1.3{mu}m), which is expected of its application in the communications and measurements area. Based on a possibility of raising a measurements resolution by making the pluses in the LD excited solid state laser, and experiments were performed using Nd:YLF as a laser host. as a results, it was found that the smaller the effective mode volume V {sub eff},the smaller the pulse width, and that the ratio of number of initial inversion distribution (N{sub i}/N{sub t}), an important parameter to determine pulse widths, can be obtained from the ratio of the LD exciting light to the input power (P{sub in}/P{sub t}). 7 refs., 14 figs., 2 tabs.

  4. Single and Multi-Pulse Low-Energy Conical Theta Pinch Inductive Pulsed Plasma Thruster Performance (United States)

    Hallock, A. K.; Martin, A. K.; Polzin, K. A.; Kimberlin, A. C.; Eskridge, R. H.


    Impulse bits produced by conical theta-pinch inductive pulsed plasma thrusters possessing cone angles of 20deg, 38deg, and 60deg, were quantified for 500J/pulse operation by direct measurement using a hanging-pendulum thrust stand. All three cone angles were tested in single-pulse mode, with the 38deg model producing the highest impulse bits at roughly 1 mN-s operating on both argon and xenon propellants. A capacitor charging system, assembled to support repetitively-pulsed thruster operation, permitted testing of the 38deg thruster at a repetition-rate of 5 Hz at power levels of 0.9, 1.6, and 2.5 kW. The average thrust measured during multiple-pulse operation exceeded the value obtained when the single-pulse impulse bit is multiplied by the repetition rate.

  5. Long lifetime air plasma channel generated by femtosecond laser pulse sequence. (United States)

    Liu, Xiao-Long; Lu, Xin; Ma, Jing-Long; Feng, Liu-Bin; Ge, Xu-Lei; Zheng, Yi; Li, Yu-Tong; Chen, Li-Ming; Dong, Quan-Li; Wang, Wei-Min; Wang, Zhao-Hua; Teng, Hao; Wei, Zhi-Yi; Zhang, Jie


    Lifetime of laser plasma channel is significantly prolonged using femtosecond laser pulse sequence, which is generated from a chirped pulse amplification laser system with pure multi-pass amplification chain. Time-resolved fluorescence images and electrical conductivity measurement are used to characterize the lifetime of the plasma channel. Prolongation of plasma channel lifetime up to microsecond level is observed using the pulse sequence.

  6. Laser pulse detection method and apparatus (United States)

    Goss, Willis C. (Inventor); Janesick, James R. (Inventor)


    A sensor is described for detecting the difference in phase of a pair of returned light pulse components, such as the two components of a light pulse of an optical gyro. In an optic gyro, the two light components have passed in opposite directions through a coil of optical fiber, with the difference in phase of the returned light components determining the intensity of light shining on the sensor. The sensor includes a CCD (charge coupled device) that receives the pair of returned light components to generate a charge proportional to the number of photons in the received light. The amount of the charge represents the phase difference between the two light components. At a time after the transmission of the light pulse and before the expected time of arrival of the interfering light components, charge accumulating in the CCD as a result of reflections from optical components in the system, are repeatedly removed from the CCD, by transferring out charges in the CCD and dumping these charges.

  7. Propagation of an asymmetric relativistic laser pulse in plasma

    International Nuclear Information System (INIS)

    Garuchava, D.P.; Murusidze, I.G.; Suramlishvili, G.I.; Tsintsadze, N.L.; Tskhakaya, D.D.


    The interaction of a relativistically intense asymmetric laser pulse with a plasma has been studied. The asymmetric shape of the pulse implies that the rise time of the leading edge of the pulse is much greater than the fall time of the trailing edge. The numerical simulation of the propagation of such a pulse through an underdense plasma has shown that relativistic self-focusing enhances the effect of ponderomotive self-channeling. The radial ponderomotive force totally expels the electrons from the axis creating a density channel, that is, cavitation occurs. A very short fall time of the trailing edge (τ l ω p <1) causes a rapid increase in the amplitude of a laser driven longitudinal electric field to values of a few GV/cm at the back of the pulse. The numerical simulation also has shown that the channel as well as the large-amplitude longitudinal field can be sustained in the range immediately behind the pulse, thus creating favorable conditions to accelerate a trailing bunch of electrons to extremely high energies. According to our model, the accelerating electric field can reach the value 10 GV/cm. copyright 1997 The American Physical Society

  8. Electron Acceleration by a Laser Pulse in a Plasma (United States)

    Startsev, E. A.; McKinstrie, C. J.


    The motion of a charged particle in an electromagnetic field is a well-known paradigm of physics. Suppose that the field is associated with a laser pulse of finite extent propagating in a vacuum. As the pulse overtakes the particle, the particle gains energy and momentum. However, the oscillatory energy of the particle is wasted, and it is difficult to extract the particle from the pulse. We have found an exact analytic solution for the motion of an electron under the influence of a circularly polarized laser pulse in a plasma. This solution shows that a pre-accelerated electron can be accelerated efficiently and extracted easily. Although the pulse tends to generate a plasma wake, to which it loses energy, one can eliminate the wake by choosing the duration of the pulse judiciously. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460.

  9. 486nm blue laser operating at 500 kHz pulse repetition frequency (United States)

    Creeden, Daniel; Blanchard, Jon; Pretorius, Herman; Limongelli, Julia; Setzler, Scott D.


    Compact, high power blue light in the 470-490nm region is difficult to generate due to the lack of laser sources which are easily convertible (through parametric processes) to those wavelengths. By using a pulsed Tm-doped fiber laser as a pump source for a 2-stage second harmonic generation (SHG) scheme, we have generated ~2W of 486.5nm light at 500kHz pulse repetition frequency (PRF). To our knowledge, this is the highest PRF and output power achieved in the blue region based on a frequency converted, monolithic fiber laser. This pump laser is a pulsed Tm-doped fiber laser/amplifier which generates 12.8W of 1946nm power at 500kHz PRF with diffraction-limited output from a purely single-mode fiber. The output from this laser is converted to 973nm through second harmonic generation (SHG). The 973nm is then converted to 486.5nm via another SHG stage. This architecture operates with very low peak power, which can be challenging from a nonlinear conversion standpoint. However, the low peak power enables the use of a single-mode monolithic fiber amplifier without undergoing nonlinear effects in the fiber. This also eliminates the need for novel fiber designs, large-mode area fiber, or free-space coupling to rod-type amplifiers, improving reliability and robustness of the laser source. Higher power and conversion efficiency are possible through the addition of Tm-doped fiber amplification stages as well as optimization of the nonlinear conversion process and nonlinear materials. In this paper, we discuss the laser layout, results, and challenges with generating blue light using a low peak power approach.

  10. Selective photoionization of isotopic atoms with pulsed lasers

    International Nuclear Information System (INIS)

    Dai Changjian


    The dynamics of isotopically selective interactions between the radiation of three pulsed lasers and atoms with a four-levels scheme has been studied. Starting from the time-dependent Schroedinger equation with the rotating-wave approximation, authors applied Sylvester theorem to the dynamic equations associated with near-and off-resonant excitations, respectively. Authors obtained the explicit expressions for the four-levels occupation probabilities. The analytic treatment explored the properties of coherent oscillations occurred in the atomic excitation processes with intense monochromatic lasers. The conditions under which the population inversion takes place are derived from near-resonant excitations. The criteria to select the basic parameters of pulsed lasers involved in the process are also provided

  11. Interaction of Repetitively Pulsed High Energy Laser Radiation With Matter (United States)

    Hugenschmidt, Manfred


    The paper is concerned with laser target interaction processes involving new methods of improving the overall energy balance. As expected theoretically, this can be achieved with high repetition rate pulsed lasers even for initially highly reflecting materials, such as metals. Experiments were performed by using a pulsed CO2 laser at mean powers up to 2 kW and repetition rates up to 100 Hz. The rates of temperature rise of aluminium for example were thereby increased by lore than a factor of 3 as compared to cw-radiation of comparable power density. Similar improvements were found for the overall absorptivities that were increased by this method by more than an order of magnitude.

  12. Mode-locked semiconductor laser for long and absolute distance measurement based on laser pulse repetition frequency sweeping: a comparative study between three types of lasers (United States)

    Castro Alves, D.; Abreu, Manuel; Cabral, Alexandre; Rebordão, J. M.


    In this work we present a study on three types of semiconductor mode-locked lasers as possible sources for a high precision absolute distance metrology measurement concept based on pulse repetition frequency (PRF) sweep. In this work, we evaluated one vertical emission laser and two transversal emission sources. The topology of the gain element is quantum-well, quantum-dot and quantum-dash, respectively. Only the vertical emission laser has optical pump, whilst the others operate with electric pumping. The quantum-dash laser does not have a saturable absorber in its configuration but relies on a dispersion compensating fiber for generating pulses. The bottleneck of vertical emission laser is his high power density pump (4.5W/165μm), increasing the vulnerability of damaging the gain element. The other lasers, i.e., the single (quantum-dash) and double section (quantum-dot) lasers present good results either in terms of applicability to the metrology system or in terms of robustness. Using RF injection on the gain element, both lasers show good PRF stabilization results (better than σy(10ms) = 10-9 ) which is a requirement for the mentioned metrology technique.

  13. Ultra-thin Cu2ZnSnS4 solar cell by pulsed laser deposition

    DEFF Research Database (Denmark)

    Cazzaniga, Andrea Carlo; Crovetto, Andrea; Yan, Chang


    We report on the fabrication of a 5.2% efficiency Cu2ZnSnS4 (CZTS) solar cell made by pulsed laser deposition (PLD) featuring an ultra-thin absorber layer (less than 450 nm). Solutions to the issues of reproducibility and micro-particulate ejection often encountered with PLD are proposed. At the ......We report on the fabrication of a 5.2% efficiency Cu2ZnSnS4 (CZTS) solar cell made by pulsed laser deposition (PLD) featuring an ultra-thin absorber layer (less than 450 nm). Solutions to the issues of reproducibility and micro-particulate ejection often encountered with PLD are proposed....... At the optimal laser fluence, amorphous CZTS precursors with optimal stoichiometry for solar cells are deposited from a single target. Such precursors do not result in detectable segregation of secondary phases after the subsequent annealing step. In the analysis of the solar cell device, we focus on the effects...

  14. Laser direct micro-machining with top-hat-converted single mode lasers (United States)

    Homburg, O.; Toennissen, F.; Mitra, T.; Lissotschenko, V.


    Laser direct micro-machining processes are used in a variety of industries like inkjet printing, semiconductor processing, solar technology, flat-panel display production and medicine. Various kinds of materials, e.g. ceramics, metals, isolators, oxides, organics and semiconductors are being structured. In most cases pulsed single mode solid state lasers with an inhomogeneous Gaussian beam profile are employed, like YAG lasers and their harmonics. However, the quality and functionality of the generated structures and micro-systems as well as the speed of the process can be improved by the utilization of homogeneous top hat profiles. The beam shaping principle of refractive Gaussian-to-top-hat converters is shown. Compact beam shaper modules based on this principle have been developed - supporting most direct laser micro-machining applications. The resulting process advantages are demonstrated by selected application results, namely the drilling of holes and patterning of trenches for different kinds of materials.

  15. The Argonne Wakefield Accelerator (AWA) laser system and its laser pulse shaper

    International Nuclear Information System (INIS)

    Gai, W.; Hill, N.; Ho, C.; Schoessow, P.; Simpson, J.


    Generating a 100 nC, 20 ps (FWHM) pulse length electron beam at the AWA requires a stable laser system capable of producing 1--3 ps, 1 mJ pulses at 248 nm and the capability of shaping the wave front. A wave front shaping device has been designed and built. It consists of nine concentric cylindrical mirrors. Each cylinder's position can be adjusted relative to the others by a system of computer controlled stepping motors. The reflecting surfaces were optically polished and dielectric coated. Detailed characterizations of the laser pulse shaper's performance using a streak camera and its associated optics are presented

  16. Extending ultra-short pulse laser texturing over large area

    Energy Technology Data Exchange (ETDEWEB)

    Mincuzzi, G., E-mail:; Gemini, L.; Faucon, M.; Kling, R.


    Highlights: • We carried out metal surface texturing (Ripples, micro grooves, Spikes) using a high power, high repetition rate, industrial, Ultra-short pulses laser. • Extremely Fast processing is shown (Laser Scan speed as high as 90 m/s) with a polygon scanner head. • Stainless steel surface blackening with Ultra-short pulses laser has been obtained with unprecedented scanspeed. • Full SEM surface characterization was carried out for all the different structures obtained. • Reflectance measurements were carried out to characterize surface reflectance. - Abstract: Surface texturing by Ultra-Short Pulses Laser (UPL) for industrial applications passes through the use of both fast beam scanning systems and high repetition rate, high average power P, UPL. Nevertheless unwanted thermal effects are expected when P exceeds some tens of W. An interesting strategy for a reliable heat management would consists in texturing with a low fluence values (slightly higher than the ablation threshold) and utilising a Polygon Scanner Heads delivering laser pulses with unrepeated speed. Here we show for the first time that with relatively low fluence it is possible over stainless steel, to obtain surface texturing by utilising a 2 MHz femtosecond laser jointly with a polygonal scanner head in a relatively low fluence regime (0.11 J cm{sup −2}). Different surface textures (Ripples, micro grooves and spikes) can be obtained varying the scan speed from 90 m s{sup −1} to 25 m s{sup −1}. In particular, spikes formation process has been shown and optimised at 25 m s{sup −1} and a full morphology characterization by SEM has been carried out. Reflectance measurements with integrating sphere are presented to compare reference surface with high scan rate textures. In the best case we show a black surface with reflectance value < 5%.

  17. FLASH free-electron laser single-shot temporal diagnostic: terahertz-field-driven streaking. (United States)

    Ivanov, Rosen; Liu, Jia; Brenner, Günter; Brachmanski, Maciej; Düsterer, Stefan


    The commissioning of a terahertz-field-driven streak camera installed at the free-electron laser (FEL) FLASH at DESY in Hamburg, being able to deliver photon pulse duration as well as arrival time information with ∼10 fs resolution for each single XUV FEL pulse, is reported. Pulse durations between 300 fs and terahertz-streaking setup was operated simultaneously to an alternative method to determine the FEL pulse duration based on spectral analysis. FLASH pulse duration derived from simple spectral analysis is in good agreement with that from terahertz-streaking measurement.

  18. Coherence limits and chirp control in long pulse free electron laser oscillator

    Directory of Open Access Journals (Sweden)

    Y. Socol


    Full Text Available We report experimental studies of the spectral linewidth and chirp characteristics of the mm-wave rf radiation of the Israeli Electrostatic-Accelerator free electron laser (EA-FEL, along with theory and numerical simulations. The simulations, matching the experimental data, were carried out using a space-frequency-domain model. EA-FELs have the capacity to generate long pulses of tens microseconds and more, that in principle can be elongated indefinitely (cw operation. Since a cold beam FEL is by nature a “homogeneously broadened laser,” EA-FEL can operate, unlike other kinds of FELs, at a single longitudinal mode (single frequency. This allows the generation of very coherent radiation. The current status of the Israeli Tandem Electrostatic-Accelerator FEL, which is based on an electrostatic Van de Graaff accelerator, allows the generation of pulses of tens microseconds duration. It has been operated recently past saturation, and produced single-mode coherent radiation of record narrow inherent relative linewidth ∼Δf/f=10^{-6} at frequencies near 100 GHz. A frequency chirp was observed during the pulses of tens of microseconds (0.3–0.5  MHz/ms. This is essentially a drifting “frequency-pulling effect,” associated with the accelerator voltage drop during the pulse. Additionally, damped relaxation of the FEL oscillator was experimentally measured at the beginning and the end of the lasing pulse, in good correspondence to our theory and numerical simulations. We propose using the chirped signal of the pulsed EA-FEL for single pulse sweep spectroscopy of very fine resolution. The characteristics of this application are analyzed based on the experimental data.

  19. Design challenges for matrix assisted pulsed laser evaporation and infrared resonant laser evaporation equipment (United States)

    Greer, James A.


    , and evaporation equipment as well. This multilayer feature would certainly benefit the MAPLE process for the growth of multilayer organic materials. Another more recent advancement in thin-film laser deposition is that of Resonant Infra Red Pulsed Laser Deposition (RIRPLD) of polymer materials. This process is more akin to standard PLD but uses tunable lasers with which to select the proper wavelength to couple to vibration bands of a solid polymer, or in some cases a polymer/solvent MAPLE mixture. This technique was developed under a collaboration of researchers at the Naval Research Labs and the Free Electron Laser (FEL) at Vanderbilt University. The wide tuning range of the FEL and its relatively high power make it a very attractive source for RIRPLD. However, the price of such lasers—of order several million dollars in capital costs alone—is very high and well beyond the budgets of most research institutions. Advances in RIRPLD are currently limited due to the scarcity of tunable lasers with sufficient power in the IR range of interest to obtain reasonable deposition rates. Over the past nine years commercial equipment for MAPLE has been on the market and new lasers are being developed that may significantly improve MAPLE and RIRPLD capabilities. Examples of basic single-target MAPLE equipment, as well as multiple target MAPLE systems are described. Discussion of current lasers for MAPLE and RIRPLD are given. Finally, even though these processes have been around for a significant amount of time there are still many unknowns associated with these techniques that still should be explored before these processes can be used for production of useful products. Some of these issues which need to be addressed will be discussed.

  20. Diode-Pumped Long-Pulse-Length Ho:Tm:YLiF4 Laser at 10 Hz (United States)

    Jani, Mahendra G.; Naranjo, Felipe L.; Barnes, Norman P.; Murray, Keith E.; Lockard, George E.


    An optical efficiency of 0.052 under normal mode operation for diode-pumped Ho:Tm:YLiF4 at a pulse repetition frequency of 10 Hz has been achieved. Laser output energy of 30 mJ in single Q-switched pulses with 600-ns pulse length were obtained for an input energy of 3 J. A diffusion-bonded birefringent laser rod consisting of Ho:Tm-doped and undoped pieces of YLF was utilized for 10-Hz operation.

  1. Peculiarities of laser phase behavior associated with the accelerated electron in a chirped laser pulse

    International Nuclear Information System (INIS)

    Song, Q.; Wu, X. Y.; Wang, J. X.; Kawata, S.; Wang, P. X.


    In this paper, we qualitatively analyzed peculiarities of laser phase behavior associated with the accelerated electron in a chirped laser pulse. We unveiled the relationship between the changes in the orientation of the electron trajectory and the cusps in magnitude of the phase velocity of the optical field along the electron trajectory in a chirped laser pulse. We also explained how the chirp effect induced the singular point of the phase velocity. Finally, we discussed the phase velocity and phase witnessed by the electron in the particle's moving instantaneous frame

  2. Splash plasma channels produced by picosecond laser pulses in argon gas for laser wakefield acceleration

    Directory of Open Access Journals (Sweden)

    Y. Mizuta


    Full Text Available Short-lived, ∼10  ps, deep plasma channels, with their lengths of ∼1  mm and diameters of ∼20  μm, are observed and characterized in Ar gas jets irradiated by moderate intensity, ∼10^{15–16}  W/cm^{2}, laser pulses with a duration from subpicosecond to several picoseconds. The channels, upon 2D particle-in-cell simulations including ionization, fit well in the guiding of high intensity femtosecond laser pulses and, therefore, in laser wakefield acceleration with a controllable electron self-injection.

  3. Pulsed laser deposition of ZnSe N epilayers

    CERN Document Server

    Boo, B H; Xu, N


    A high-quality epitaxial film of nitrogen-doped ZsSe has been grown on a GaAs(100) substrate by using pulsed laser deposition assisted by an atomic nitrogen beam produced by a supersonic nozzle beam source. Atomic force microscopy shows that the surface of the ZnSe epilayer grown on GaAs(100) at 2 x 10 sup - sup 3 Torr is flat and dense. It also shows that its roughness is approx = 1.6 nm, less than that of epilayers grown by using metalorganic vapor phase epitaxy. X-ray diffraction results show that this ZnSe epilayer is a single crystalline epitaxial film. X-ray photoelectron spectroscopy (XPS) indicates that the epilayer is composed of 84 % Zn and Se, 10 % N, and 6 % O; other impurities are rare. The XPS spectra involving the Zn(2p sub 3 sub / sub 2) and the N(1s) core levels also indicate that the concentration of doped nitrogen atoms is above 10 sup 2 sup 1 /cm sup 3.

  4. Acceleration of Charged Particles by High Intensity Few-Cycle Laser Pulses

    CERN Document Server

    Schramm, Ulrich; Geissler, Michael; Grüner, Florian; Habs, Dietrich; Karsch, Stefan; Krausz, Ferenc; Meyer-ter-Vehn, J; Schmid, K; Schreiber, J; Tsakiris, George; Veisz, Laszlo; Witte, Klaus


    Only recently a breakthrough in laser plasma acceleration has been achieved with the observation of intense (nC) mono-energetic (10% relative width) electron beams in the 100MeV energy range.* Above the wave-breaking threshold the electrons are trapped and accelerated in a single wake of the laser pulse, called bubble, according to PIC simulations.** However, pulse energis varied from shot-to-shot in the experiments. At the MPQ Garching we prepare the stable acceleration of electrons by this bubble regime by the use of 10TW few-cycle laser pulse. As the pulse lenght of 5-10fs remains below the plasma period also at higher plama densities, we expect the scheme to be more stable and efficient. The status of the experiment will be reported. Further, we exploit a colliding beam setup existing at the Jena multi TW laser system for the investigation of the positron generation in the electron-electron collision or in the collision of hard X-rays resulting from Thomson backscattering. The presentation of results on h...

  5. Picosecond laser pulse-driven crystallization behavior of SiSb phase change memory thin films

    International Nuclear Information System (INIS)

    Huang Huan; Li Simian; Zhai Fengxiao; Wang Yang; Lai Tianshu; Wu Yiqun; Gan Fuxi


    Highlights: → We reported crystallization dynamics of a novel SiSb phase change material. → We measured optical constants of as-deposited and irradiated SiSb areas. → Optical properties of as-deposited and irradiated SiSb thin film were compared. → Crystallization of irradiated SiSb was confirmed by using AFM and micro-Raman spectra. → The heat conduction effect of lower metal layer of multi-layer films was studied. - Abstract: Transient phase change crystallization process of SiSb phase change thin films under the irradiation of picosecond (ps) laser pulse was studied using time-resolved reflectivity measurements. The ps laser pulse-crystallized domains were characterized by atomic force microscope, Raman spectra and ellipsometrical spectra measurements. A reflectivity contrast of about 15% can be achieved by ps laser pulse-induced crystallization. A minimum crystallization time of 11 ns was achieved by a low-fluence single ps laser pulse after pre-irradiation. SiSb was shown to be very promising for fast phase change memory applications.

  6. Pulsed photothermal depth profiling of tattoos undergoing laser removal treatment (United States)

    Milanic, Matija; Majaron, Boris


    Pulsed photothermal radiometry (PPTR) allows noninvasive determination of temperature depth profiles induced by pulsed laser irradiation of strongly scattering biological tissues and organs, including human skin. In present study, we evaluate the potential of this technique for investigational characterization and possibly quantitative evaluation of laser tattoo removal. The study involved 5 healthy volunteers (3 males, 2 females), age 20-30 years, undergoing tattoo removal treatment using a Q-switched Nd:YAG laser. There were four measurement and treatment sessions in total, separated by 2-3 months. Prior to each treatment, PPTR measurements were performed on several tattoo sites and one nearby healthy site in each patient, using a 5 ms Nd:YAG laser at low radiant exposure values and a dedicated radiometric setup. The laser-induced temperature profiles were then reconstructed by applying a custom numerical code. In addition, each tatoo site was documented with a digital camera and measured with a custom colorimetric system (in tristimulus color space), providing an objective evaluation of the therapeutic efficacy to be correlated with our PPTR results. The results show that the laser-induced temperature profile in untreated tattoos is invariably located at a subsurface depth of 300 μm. In tattoo sites that responded well to laser therapy, a significant drop of the temperature peak was observed in the profiles obtained from PPTR record. In several sites that appeared less responsive, as evidenced by colorimetric data, a progressive shift of the temperature profile deeper into the dermis was observed over the course of consecutive laser treatments, indicating that the laser tattoo removal was efficient.

  7. Dynamic imaging of molecular motion ultrashort intense laser pulses (United States)

    Bandrauk, Andre D.


    The nonlinear nonperturbative response of atoms in intense laser fields has been extensively studied both experimentally and theoretically in the past twenty years leading to new unexpected effects such as Above Threshold Ionization, ATI, high order frequency generation etc. and these are documented in recent book The similar studies of molecules is a new chapter in the pursuit of laser control and manipulation of molecules. The nonlinear nonperturbative response of molecules to intense (Icm2 ) and ultrashort (V10 fs) laser pulses [2] is expected to yield new effects due to the extra degrees of freedom nuclear motion as compared to atoms [3], such as creation of Laser Induced Molecular Potentials, LIMP' s, Charge Resonance Enhanced Ionization, CREI [4] and molecular High Order Harmonic Generation [5]. These nonlinear nonperturbative in effects were seen in experiments [6] and were predicted and confirmed by high-level numerical simulations of appropriate time-dependent Schrodinger equations [3-5,7], TDSE's, of molecules in laser fields. Our recent supercomputer simulations of H2+ molecule dynamics in intense laser fields, [7-9] based on TDSE, also allowed us to propose two new molecular imaging techniques: a) LCEI, Laser Coulomb Explosion Imaging [8] and b) LPEI, Laser Photoelectron Imaging [9]. The first is based on the analysis of the kinetic energy of molecular fragments after Coulomb Explosion, CE, whereas the latter imaging uses the shape of ATI electron peaks, produced by an intense laser pulse. We describe summarily in the present communication these two imaging methods which were developed using high level supercomputer simulations

  8. Optical design and studies of a tiled single grating pulse compressor for enhanced parametric space and compensation of tiling errors (United States)

    Daiya, D.; Patidar, R. K.; Sharma, J.; Joshi, A. S.; Naik, P. A.; Gupta, P. D.


    A new optical design of tiled single grating pulse compressor has been proposed, set-up and studied. The parametric space, i.e. the laser beam diameters that can be accommodated in the pulse compressor for the given range of compression lengths, has been calculated and shown to have up to two fold enhancement in comparison to our earlier proposed optical designs. The new optical design of the tiled single grating pulse compressor has an additional advantage of self compensation of various tiling errors like longitudinal and lateral piston, tip and groove density mismatch, compared to the earlier designs. Experiments have been carried out for temporal compression of 650 ps positively chirped laser pulses, at central wavelength 1054 nm, down to 235 fs in the tiled grating pulse compressor set up with the proposed design. Further, far field studies have been performed to show the desired compensation of the tiling errors takes place in the new compressor.

  9. Large area crystallization of amorphous Si with overlapping high repetition rate laser pulses

    KAUST Repository

    Ryu, Sang-Gil


    This paper presents a pulsed laser crystallization technique, enabling large area crystallization of amorphous Si to produce grains having well-defined size and orientation. The method is developed by first determining the parameters influencing crystallization induced by single laser pulses of circular cross-sectional profile. In a second step, crystallization by overlapping round spots is examined. The experiments reveal three zones characterized by distinctly different crystallized morphologies following the laser irradiation. One of these zones corresponds to the regime of lateral crystal growth, wherein grains are driven towards the center of the spot by the radial temperature gradient. These findings are then applied to processing via line beam profiles that facilitate large area crystallization upon rapid translation of the specimen. Crystallization of extended areas hinges on the determination of the crystal growth length for a single spot. The pitch between successive pulses is then set on the basis of this information. It is shown that the pulse energy has only a weak effect on the crystal growth length. © 2012 Elsevier B.V.

  10. Damage to dry plasmid DNA induced by nanosecond XUV-laser pulses (United States)

    Nováková, Eva; Davídková, Marie; Vyšín, Ludék; Burian, Tomáš; Grisham, Michael E.; Heinbuch, Scott; Rocca, Jorge J.; Juha, Libor


    Ionizing radiation induces a variety of DNA damages including single-strand breaks (SSBs), double-strand breaks (DSBs), abasic sites, modified sugar and bases. Most theoretical and experimental studies have been focused on DNA strand scissions, in particular production of DNA double-strand breaks. DSBs have been proven to be a key damage at a molecular level responsible for the formation of chromosomal aberrations, leading often to cell death. The complexity of lesions produced in DNA by ionizing radiations is thought to depend on the amount of energy deposited at the site of each lesion. We have studied the nature of DNA damage induced directly by the pulsed 46.9 nm radiation provided by a capillary-discharge Ne-like Ar laser (CDL). Different surface doses were delivered with a repetition rate of a few Hz and an average pulse energy ~ 1 μJ. A simple model DNA molecule, i.e., dried closed-circular plasmid DNA (pBR322), was irradiated. The agarose gel electrophoresis method was used for determination of both SSB and DSB yields. Results are compared with a previous study of plasmid DNA irradiated with a single sub-nanosecond 1-keV X-ray pulse produced by a large-scale, double-stream gas puff target, illuminated by sub-kJ, near-infrared (NIR) focused laser pulses at the PALS facility (Prague Asterix Laser System).

  11. Review of progress in pulsed laser deposition and using Nd:YAG laser in processing of high Tc superconductors

    International Nuclear Information System (INIS)

    Chen, C.W.; Mukherjee, K.


    The current progress in pulsed laser ablation of high-temperature superconductors is reviewed with emphasis on the effect of pulse-width and wavelength, nature of the plasma plume, post-annealing and methods to improve quality of films grown at low temperature. An ion beam assisted millisecond pulsed laser vapor deposition process has been developed to fabricate YBa 2 Cu 3 O x high T. superconductor thin films. Solution to target overheating problem, effects of oxygen ion beam, properties of deposited films, and effect of silver buffer layer on YSZ substrate are presented. A new laser calcining process has been used to produce near single phase high T c superconductors of Bi-Pb-Sr-Ca-Cu-0 system. The total processing time was reduced to about 100 hours which is about half of that for conventional sintering. For this compound both resistance and magnetic susceptibility data showed an onset of superconducting transition at about 110K. A sharp susceptibility drop was observed above 106K. The zero resistance temperature was about 98K. High T c phase was formed via a different kinetic path in laser calcined sample compare with the conventionally processed sample

  12. Pulsed laser planarization of metal films for multilevel interconnects

    International Nuclear Information System (INIS)

    Tuckerman, D.B.; Schmitt, R.L.


    Multilevel interconnect schemes for integrated circuits generally require one or more planarization steps, in order to maintain an acceptably flat topography for lithography and thin-film step coverage on the higher levels. Traditional approaches have involved planarization of the interlevel insulation (dielectric) layers, either by spin-on application (e.g., polyimide), or by reflow (e.g., phosphosilicate glass). We have pursued an alternative approach, in which each metal level is melted (hence planarized) using a pulsed laser prior to patterning. Short (approx.1 μs) pulses are used to preclude undesirable metallurgical reactions between the film, adhesion or barrier layer, and dielectric layer. Laser planarization of metals is particularly well suited to multilevel systems which include ground or power planes. Results are presented for planarization of gold films on SiO 2 dielectric layers using a flashlamp-pumped dye laser. The pulse duration is approx.1 μs, which allows the heat pulse to uniformly penetrate the gold while not penetrating substantially through the underlying SiO 2 (hence not perturbing the lower levels of metal). Excellent planarization of the gold films is achieved (less than 0.1 μm surface roughness, even starting with extreme topographic variations), as well as improved conductivity. To demonstrate the process, numerous planarized two-layer structures (transmission lines under a ground plane) were fabricated and characterized. 9 refs., 2 figs

  13. Interaction of Rydberg atoms with two contrapropagating ultrashort laser pulses

    International Nuclear Information System (INIS)

    Lugovskoy, A. V.; Bray, I.


    In this paper we investigate how Rydberg atoms respond to perturbation by two contrapropagating ultrashort laser pulses. We consider the case where the durations of both pulses τ 1 and τ 2 are shorter than the inverse of the initial-state energy ε i -1 . When acting alone such a pulse passes through the atom without noticeable alteration in the atomic state. The situation is different if two such pulses interfere in the region of atom localization. In this case the atomic response is significantly enhanced. This is due to the nonzero momentum transferred to the electron by the interplay of the electric field of one pulse and the magnetic field of the other. The sudden perturbation approximation is used to evaluate the transition probabilities. They are shown to depend on the atom position with respect to the pulse interference region. This dependence is determined by the relationship between the atomic diameter d i and the interference-region size l=c(τ 1 +τ 2 ) (c is the speed of light). If d i i >>l the transition probabilities are sensitive to the electron density distribution along the propagation direction. The probabilities of the initial-state destruction and atom ionization drop as l/d i irrespective of the characteristics of the pulses

  14. Picosecond lasers: the next generation of short-pulsed lasers. (United States)

    Freedman, Joshua R; Kaufman, Joely; Metelitsa, Andrea I; Green, Jeremy B


    Selective photothermolysis, first discussed in the context of targeted microsurgery in 1983, proposed that the optimal parameters for specific thermal damage rely critically on the duration over which energy is delivered to the tissue. At that time, nonspecific thermal damage had been an intrinsic limitation of all commercially available lasers, despite efforts to mitigate this by a variety of compensatory cooling mechanisms. Fifteen years later, experimental picosecond lasers were first reported in the dermatological literature to demonstrate greater efficacy over their nanosecond predecessors in the context of targeted destruction of tattoo ink. Within the last 4 years, more than a decade after those experiments, the first commercially available cutaneous picosecond laser unit became available (Cynosure, Westford, Massachusetts), and several pilot studies have demonstrated its utility in tattoo removal. An experimental picosecond infrared laser has also recently demonstrated a nonthermal tissue ablative capability in soft tissue, bone, and dentin. In this article, we review the published data pertaining to dermatology on picosecond lasers from their initial reports to the present as well as discuss forthcoming technology.

  15. Longitudinally excited CO2 laser with short laser pulse operating at high repetition rate (United States)

    Li, Jianhui; Uno, Kazuyuki; Akitsu, Tetsuya; Jitsuno, Takahisa


    A short-pulse longitudinally excited CO2 laser operating at a high repetition rate was developed. The discharge tube was made of a 45 cm-long or 60 cm-long dielectric tube with an inner diameter of 16 mm and two metallic electrodes at the ends of the tube. The optical cavity was formed by a ZnSe output coupler with a reflectivity of 85% and a high-reflection mirror. Mixed gas (CO2:N2:He = 1:1:2) was flowed into the discharge tube. A high voltage of about 33 kV with a rise time of about 200 ns was applied to the discharge tube. At a repetition rate of 300 Hz and a gas pressure of 3.4 kPa, the 45 cm-long discharge tube produced a short laser pulse with a laser pulse energy of 17.5 mJ, a spike pulse energy of 0.2 mJ, a spike width of 153 ns, and a pulse tail length of 90 μs. The output power was 5.3 W. The laser pulse waveform did not depend on the repetition rate, but the laser beam profile did. At a low repetition rate of less than 50 Hz, the laser beam had a doughnut-like shape. However, at a high repetition rate of more than 150 Hz, the discharge concentrated at the center of the discharge tube, and the intensity at the center of the laser beam was higher. The laser beam profile depended on the distribution of the discharge. An output power of 7.0 W was achieved by using the 60 cm-long tube.

  16. High-power Yb-doped continuous-wave and pulsed fibre lasers

    Indian Academy of Sciences (India)


    wave fibre laser; Q-switched fibre laser; nonlinearity; thermal effects; selfpulsing; Yb-doped fibre; nanosecond pulse ... Solid State Laser Division, Raja Ramanna Centre for Advanced Technology, Indore 452 013, India ...


    Directory of Open Access Journals (Sweden)

    Dmitry S. Ivanov


    Full Text Available We have completed modeling of a laser pulse influence on a gold target. We have applied a hybrid atomistic-continuum model to analyze the physical mechanisms responsible for the process of nanostructuring. The model combines the advantages of Molecular Dynamics and Two Temperature Model. We have carried out a direct comparison of the modeling results and experimental data on nano-modification due to a single ps laser pulse at the energy densities significantly exceeding the melting threshold. The experimental data is obtained due to a laser pulse irradiation at the wavelength of 248 nm and duration of 1.6 ps. The mask projection (diffraction grating creates the sinusoidal intensity distribution on a gold surface with periods of 270 nm, 350 nm, and 500 nm. The experimental data and modeling results have demonstrated a good match subject to complex interrelations between a fast material response to the laser excitation, generation of crystal defects, phase transitions and hydrodynamic motion of matter under condition of strong laser-induced non-equilibrium. The performed work confirms the proposed approach as a powerful tool for revealing the physical mechanisms underlying the process of nanostructuring of metal surfaces. Detailed understanding of the dynamics of these processes gives the possibility for designing the topology of functional surfaces on nano- and micro-scales.

  18. Development of short pulse laser driven micro-hohlraums as a source of EUV radiation (United States)

    Krushelnick, Karl; Batson, Thomas; McKelvey, Andrew; Raymond, Anthony; Thomas, Alec; Yanovsky, Victor; Nees, John; Maksimchuk, Anatoly


    Experiments at large scale laser facilities such as NIF allow the radiativ properties of dens, high-temperature matter to be studied at previously unreachable regime, but are limited by cost and system availability. A scaled system using a short laser pulses and delivering energy to much smaller hohlraum could be capable of reaching comparable energy densities by depositing the energy in a much smaller volume before ablation of the wall material closes the cavit. The laser is tightl focused through the cavity and then expands to illuminate the wall. Experiments were performe using the Hercules Ti:Sapphire laser system at Michiga. Targets include cavities machined in bulk material using low laser power, and then shot in situ with a single full power pulse as well as micron scale pre-fabricate target. Spectral characteristics were measured using a soft X-ray spectromete, K-alpha x-ray imaging system and a filtered photo cathode array. Scalings of the radiation temperature were made for variations in the hohlraum cavit, the pulse duration as well as the focusing conditions. Proof of principle time resolved absorption spectroscopy experiments were also performe. These sources may allow opacity and atomic physics measurements with plasma an radiation temperatures comparable to much larger hohlraums, but with much higher repetition rate and in a university scale laboratory. We acknowledge funding from DTRA grant HDTRA1-11-1-0066.

  19. Colorizing metals with femtosecond laser pulses

    International Nuclear Information System (INIS)

    Vorobyev, A. Y.; Guo Chunlei


    For centuries, it had been the dream of alchemists to turn inexpensive metals into gold. Certainly, it is not enough from an alchemist's point of view to transfer only the appearance of a metal to gold. However, the possibility of rendering a certain metal to a completely different color without coating can be very interesting in its own right. In this work, we demonstrate a femtosecond laser processing technique that allows us to create a variety of colors on a metal that ultimately leads us to control its optical properties from UV to terahertz

  20. Pulsed power for angular multiplexed laser fusion drivers

    International Nuclear Information System (INIS)

    Eninger, J.E.


    The feasibility of using rare gas-halide lasers, in particular the KrF laser, as inertial confinement fusion (ICF) drivers has been assessed. These lasers are scalable to the required high energy (approx. =1-5 MJ) in a short pulse (approx. =10 ns) by optical angular multiplexing, and integration of the output from approx. =100 kJ laser amplifier subsystems. The e-beam current density (approx. =50A/cm 2 ) and voltage (approx. =800 kV) required for these power amplifiers lead to an e-beam impedance of approx. =0.2Ω for approx. =300 ns pump time. This impedance level requires modularization of the large area e-gun, a) to achieve a diode inductance consistent with fast current risetime, b) to circumvent dielectric breakdown constraints in the pulse forming lines, and c) to reduce the requirement for guide magnetic fields. Pulsed power systems requirements, design concepts, scalability, tradeoffs, and performance projections are discussed in this paper

  1. Pulsed laser manipulation of an optically trapped bead: Averaging thermal noise and measuring the pulsed force amplitude

    DEFF Research Database (Denmark)

    Lindballe, Thue Bjerring; Kristensen, Martin V. G.; Keiding, Søren Rud


    -bead interaction is repeated hundreds of times. Traces with the bead position following the prompt displacement from equilibrium, induced by each laser pulse, are averaged and reveal the underlying deterministic motion of the bead, which is not visible in a single trace due to thermal noise. The motion of the bead...... is analyzed from the direct time-dependent position measurements and from the power spectrum. The results show that the bead is on average displaced 208 nm from the trap center and exposed to a force amplitude of 71 nanoNewton, more than five orders of magnitude larger than the trapping forces. Our...

  2. Nanosecond pulsed laser ablation of Ge investigated by employing photoacoustic deflection technique and SEM analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yaseen, Nazish; Bashir, Shazia; Shabbir, Muhammad Kaif; Jalil, Sohail Abdul; Akram, Mahreen; Hayat, Asma; Mahmood, Khaliq; Haq, Faizan-ul; Ahmad, Riaz; Hussain, Tousif


    Nanosecond pulsed laser ablation phenomena of single crystal Ge (100) has been investigated by employing photoacoustic deflection as well as SEM analysis techniques. Nd: YAG laser (1064 nm, 10 ns, 1–10 Hz) at various laser fluences ranging from 0.2 to 11 J cm{sup −2} is employed as pump beam to ablate Ge targets. In order to evaluate in-situe ablation threshold fluence of Ge by photoacoustic deflection technique, Continuous Wave (CW) He–Ne laser (632 nm, power 10 mW) is employed as a probe beam. It travels parallel to the target surface at a distance of 3 mm and after passing through Ge plasma it causes deflection due to density gradient of acoustic waves. The deflected signal is detected by photodiode and is recorded by oscilloscope. The threshold fluence of Ge, the velocity of ablated species and the amplitude of the deflected signal are evaluated. The threshold fluence of Ge comes out to be 0.5 J cm{sup −2} and is comparable with the analytical value. In order to compare the estimated value of threshold with ex-situe measurements, the quantitative analysis of laser irradiated Ge is performed by using SEM analysis. For this purpose Ge is exposed to single and multiple shots of 5, 10, 50 and 100 at various laser fluences ranging from 0.2 to 11 J cm{sup −2}. The threshold fluence for single and multiple shots as well as incubation coefficients are evaluated. It is observed that the value of incubation co-efficient decreases with increasing number of pulses and is therefore responsible for lowering the threshold fluence of Ge. SEM analysis also reveals the growth of various features such as porous structures, non-uniform ripples and blisters on the laser irradiated Ge. It is observed that both the fluence as well as number of laser shots plays a significant role for the growth of these structures.

  3. Nanosecond pulsed laser ablation of Ge investigated by employing photoacoustic deflection technique and SEM analysis

    International Nuclear Information System (INIS)

    Yaseen, Nazish; Bashir, Shazia; Shabbir, Muhammad Kaif; Jalil, Sohail Abdul; Akram, Mahreen; Hayat, Asma; Mahmood, Khaliq; Haq, Faizan-ul; Ahmad, Riaz; Hussain, Tousif


    Nanosecond pulsed laser ablation phenomena of single crystal Ge (100) has been investigated by employing photoacoustic deflection as well as SEM analysis techniques. Nd: YAG laser (1064 nm, 10 ns, 1–10 Hz) at various laser fluences ranging from 0.2 to 11 J cm −2 is employed as pump beam to ablate Ge targets. In order to evaluate in-situe ablation threshold fluence of Ge by photoacoustic deflection technique, Continuous Wave (CW) He–Ne laser (632 nm, power 10 mW) is employed as a probe beam. It travels parallel to the target surface at a distance of 3 mm and after passing through Ge plasma it causes deflection due to density gradient of acoustic waves. The deflected signal is detected by photodiode and is recorded by oscilloscope. The threshold fluence of Ge, the velocity of ablated species and the amplitude of the deflected signal are evaluated. The threshold fluence of Ge comes out to be 0.5 J cm −2 and is comparable with the analytical value. In order to compare the estimated value of threshold with ex-situe measurements, the quantitative analysis of laser irradiated Ge is performed by using SEM analysis. For this purpose Ge is exposed to single and multiple shots of 5, 10, 50 and 100 at various laser fluences ranging from 0.2 to 11 J cm −2 . The threshold fluence for single and multiple shots as well as incubation coefficients are evaluated. It is observed that the value of incubation co-efficient decreases with increasing number of pulses and is therefore responsible for lowering the threshold fluence of Ge. SEM analysis also reveals the growth of various features such as porous structures, non-uniform ripples and blisters on the laser irradiated Ge. It is observed that both the fluence as well as number of laser shots plays a significant role for the growth of these structures.

  4. Relativistic Channeling of a Picosecond Laser Pulse in a Near-Critical Preformed Plasma

    International Nuclear Information System (INIS)

    Borghesi, M.; MacKinnon, A.J.; Barringer, L.; Gaillard, R.; Gizzi, L.; Meyer, C.; Willi, O.; Pukhov, A.; Meyer-ter-Vehn, J.


    Relativistic self-channeling of a picosecond laser pulse in a preformed plasma near critical density has been observed both experimentally and in 3D particle-in-cell simulations. Optical probing measurements indicate the formation of a single pulsating propagation channel, typically of about 5μm in diameter. The computational results reveal the importance in the channel formation of relativistic electrons traveling with the light pulse and of the corresponding self-generated magnetic field. copyright 1997 The American Physical Society

  5. Microencapsulation of silicon cavities using a pulsed excimer laser

    KAUST Repository

    Sedky, Sherif M.


    This work presents a novel low thermal-budget technique for sealing micromachined cavities in silicon. Cavities are sealed without deposition, similar to the silicon surface-migration sealing process. In contrast to the 1100°C furnace anneal required for the migration process, the proposed technique uses short excimer laser pulses (24ns), focused onto an area of 23mm 2, to locally heat the top few microns of the substrate, while the bulk substrate remains near ambient temperature. The treatment can be applied to selected regions of the substrate, without the need for special surface treatments or a controlled environment. This work investigates the effect of varying the laser pulse energy from 400 mJ cm 2to 800 mJ cm 2, the pulse rate from 1Hz to 50Hz and the pulse count from 200 to 3000 pulses on sealing microfabricated cavities in silicon. An analytical model for the effect of holes on the surface temperature distribution is derived, which shows that much higher temperatures can be achieved by increasing the hole density. A mechanism for sealing the cavities is proposed, which indicates how complete sealing is feasible. © 2012 IOP Publishing Ltd.

  6. Electron detachment from negative ions in a short laser pulse

    International Nuclear Information System (INIS)

    Shearer, S. F. C.; Smyth, M. C.; Gribakin, G. F.


    We present an efficient and accurate method to study electron detachment from negative ions by a few-cycle linearly polarized laser pulse. The adiabatic saddle-point method of Gribakin and Kuchiev [Phys. Rev. A 55, 3760 (1997)] is adapted to calculate the transition amplitude for a short laser pulse. Its application to a pulse with N optical cycles produces 2(N+1) saddle points in complex time, which form a characteristic 'smile.' Numerical calculations are performed for H - in a 5-cycle pulse with frequency 0.0043 a.u. and intensities of 10 10 , 5x10 10 , and 10 11 W/cm 2 , and for various carrier-envelope phases. We determine the spectrum of the photoelectrons as a function of both energy and emission angle, as well as the angle-integrated energy spectra and total detachment probabilities. Our calculations show that the dominant contribution to the transition amplitude is given by 5-6 central saddle points, which correspond to the strongest part of the pulse. We examine the dependence of the photoelectron angular distributions on the carrier-envelope phase and show that measuring such distributions can provide a way of determining this phase.

  7. Plasma dynamics during pulsed laser evaporation of high Tc superconductors

    International Nuclear Information System (INIS)

    Singh, R.K.; Narayan, J.


    The authors of this paper theoretically and experimentally investigated the dynamics of the evaporated material generated by nanosecond excimer laser irradiation of YBa 2 Cu 3 O 7 targets in vacuum. The velocity distribution and the ionization of the plasma were determined by the ion time of flight measurements. The excimer laser ablated species possessed very high velocities (>120 6 cm/sec) which increased non-linearly with energy density. The ionization/volume of the evaporated material exhibited a weak dependency on energy density, thereby suggesting the role of non-thermal mechanisms in the ionization process. These experimental results have been correlated with the theoretical model analyzing the plasma dynamics during pulsed laser evaporation of materials. A new modification to the earlier theoretical model is developed which accurately predicts the terminal velocities and the effect of ionization on these velocities. Various factors including, evaporation rates, degree of ionization, and laser wavelength which affect the plasma velocities will also be discussed

  8. Coaxial monitoring of temperature field in selective pulsed laser melting (United States)

    Liu, Che; Chen, Zhongyun; Cao, Hongzhong; Zhou, Jianhong


    Selective Laser Melting is a rapid manufacturing technology which produces complex parts layer by layer. The presence of thermal stress and thermal strain in the forming process often leads to defects in the formed parts. In order to detect fabricate errors and avoid failure which caused by thermal gradient in time. An infrared thermal imager and a high speed CCD camera were applied to build a coaxial optical system for real-time monitoring the temperature distribution and changing trend of laser affected zone in SLM forming process. Molten tracks were fabricated by SLM under different laser parameters such as frequency, pulse width. And the relationship between the laser parameters and the temperature distribution were all obtained and analyzed.

  9. Optofluidic lasers with a single molecular layer of gain (United States)

    Chen, Qiushu; Ritt, Michael; Sivaramakrishnan, Sivaraj; Sun, Yuze; Fan, Xudong


    We achieve optofluidic lasers with a single molecular layer of gain, in which green fluorescent protein, dye-labeled bovine serum albumin, and dye-labeled DNA are respectively used as the gain medium and attached to the surface of a ring resonator via surface immobilization biochemical methods. It is estimated that the surface density of the gain molecules is on the order of 1012/cm2, sufficient for lasing under pulsed optical excitation. It is further shown that the optofluidic laser can be tuned by energy transfer mechanisms through biomolecular interactions. This work not only opens a door to novel photonic devices that can be controlled at the level of a single molecular layer, but also provides a promising sensing platform to analyze biochemical processes at the solid-liquid interface. PMID:25312306

  10. Pulsed Laser Deposition of BaTiO3 Thin Films on Different Substrates

    Directory of Open Access Journals (Sweden)

    Yaodong Yang


    Full Text Available We have studied the deposition of BaTiO3 (BTO thin films on various substrates. Three representative substrates were selected from different types of material systems: (i SrTiO3 single crystals as a typical oxide, (ii Si wafers as a semiconductor, and (iii Ni foils as a magnetostrictive metal. We have compared the ferroelectric properties of BTO thin films obtained by pulsed laser deposition on these diverse substrates.

  11. The influence of wavelength, temporal sequencing, and pulse duration on resonant infrared matrix-assisted laser processing of polymer films (United States)

    O'Malley, S. M.; Schoeffling, Jonathan; Jimenez, Richard; Zinderman, Brian; Yi, SunYong; Bubb, D. M.


    We have carried out a systematic investigation of laser ablation plume interactions in resonant infrared matrix-assisted pulsed laser evaporation. The laser source utilized in this study was a mid-infrared OPO capable of dual sequential ns pulses with adjustable delay ranging from 1 to 100 μs. This unique capability enabled us both to probe the ablation plume with a second laser pulse, and to effectively double the laser fluence. The primary ablation target used for this study consisted of poly(methyl methacrylate) dissolved in a binary mixture of methanol and toluene. Both the critical thermodynamic and optical properties of the binary mixture were determined and used to interpret our results. We found that deposition rates associated with single pulse irradiation tracks with the optical absorption coefficient in the spectral range from 2,700 to 3,800 nm. In the case of dual sequential pulses, discrepancies in this trend have been linked to the rate of change in the optical absorption coefficient with temperature. The influence of fluence on deposition rate was found to follow a sigmoidal dependence. Surface roughness was observed to have a diametrically opposed trend with pulse delay depending on whether the OH or CH vibrational mode was excited. In the case of CH excitation, we suggest that the rougher films are due to the absorbance of the second pulse by droplets within the plume containing residual solvent which leads to the formation of molecular balloons and hence irregularly shaped features on the substrate.

  12. Impact of ultrafast demagnetization process on magnetization reversal in L10 FePt revealed using double laser pulse excitation (United States)

    Shi, J. Y.; Tang, M.; Zhang, Z.; Ma, L.; Sun, L.; Zhou, C.; Hu, X. F.; Zheng, Z.; Shen, L. Q.; Zhou, S. M.; Wu, Y. Z.; Chen, L. Y.; Zhao, H. B.


    Ultrafast laser induced magnetization reversal in L10 FePt films with high perpendicular magnetic anisotropy was investigated using single- and double-pulse excitations. Single-pulse excitation beyond 10 mJ cm-2 caused magnetization (M) reversal at the applied fields much smaller than the static coercivity of the films. For double-pulse excitation, both coercivity reduction and reversal percentage showed a rapid and large decrease with the increasing time interval (Δt) of the two pulses in the range of 0-2 ps. In this Δt range, the maximum demagnetization (ΔMp) was also strongly attenuated, whereas the integrated demagnetization signals over more than 10 ps, corresponding to the average lattice heat effect, showed little change. These results indicate that laser induced M reversal in FePt films critically relies on ΔMp. Because ΔMp is determined by spin temperature, which is higher than lattice temperature, utilizing an ultrafast laser instead of a continuous-wave laser in laser-assisted M reversal may reduce the overall deposited energy and increase the speed of recording. The effective control of M reversal by slightly tuning the time delay of two laser pulses may also be useful for ultrafast spin manipulation.

  13. Nonlinear Theory of Nonparaxial Laser Pulse Propagation in Plasma Channels

    International Nuclear Information System (INIS)

    Esarey, E.; Schroeder, C. B.; Shadwick, B. A.; Wurtele, J. S.; Leemans, W. P.


    Nonparaxial propagation of ultrashort, high-power laser pulses in plasma channels is examined. In the adiabatic limit, pulse energy conservation, nonlinear group velocity, damped betatron oscillations, self-steepening, self-phase modulation, and shock formation are analyzed. In the nonadiabatic limit, the coupling of forward Raman scattering (FRS) and the self-modulation instability (SMI) is analyzed and growth rates are derived, including regimes of reduced growth. The SMI is found to dominate FRS in most regimes of interest. (c) 2000 The American Physical Society

  14. Femtosecond few-cycle mid-infrared laser pulses

    DEFF Research Database (Denmark)

    Liu, Xing

    The few-cycle pulses of mid-infrared (mid-IR, wavelength 2-10 microns) have attracted increasing attention owing to their great potentials for high order harmonic generation, time-resolved spectroscopy, precision of cutting and biomedical science.In this thesis, mid-IR frequency conversion.......2 - 5.5 μm with only one fixed pump wavelength, a feature absent in Kerr media. Finally, we experimentally observe supercontinuum generation spanning 1.5 octaves, generated in a 10 mm long silicon-rich nitride waveguide pumped by 100 pJ femtosecond pulses from an erbium fiber laser. The waveguide has...

  15. Multiple pulse nanosecond laser induced damage threshold on hybrid mirrors (United States)

    Vanda, Jan; Muresan, Mihai-George; Bilek, Vojtech; Sebek, Matej; Hanus, Martin; Lucianetti, Antonio; Rostohar, Danijela; Mocek, Tomas; Škoda, Václav


    So-called hybrid mirrors, consisting of broadband metallic surface coated with dielectric reflector designed for specific wavelength, becoming more important with progressing development of broadband mid-IR sources realized using parametric down conversion system. Multiple pulse nanosecond laser induced damage on such mirrors was tested by method s-on-1, where s stands for various numbers of pulses. We show difference in damage threshold between common protected silver mirrors and hybrid silver mirrors prepared by PVD technique and their variants prepared by IAD. Keywords: LIDT,

  16. Energy effective dual-pulse bispectral laser for EUV lithography (United States)

    Zhevlakov, A. P.; Seisyan, R. P.; Bespalov, V. G.; Elizarov, V. V.; Grishkanich, A. S.; Kascheev, S. V.; Sidorov, I. S.


    The power consumption in the two-pulse bispectral primary source could be substantially decreased by replacing the SRS converters from 1.06 μm into 10.6 μm wavelength as the preamplifier cascades in CO2 laser channel at the same efficiency radiation of EUV source. The creation of high volume manufacturing lithography facilities with the technological standard of 10-20 nm is related to the implementation of resist exposure modes with pulse repetition rate of 100 kHz. Low power consumption of the proposed scheme makes it promising for the creation of LPP EUV sources.

  17. Investigation of Ag nanoparticles produced by nanosecond pulsed laser ablation in water

    Energy Technology Data Exchange (ETDEWEB)

    Nikolov, A.S.; Nedyalkov, N.N.; Nikov, R.G.; Atanasov, P.A. [Bulgarian Academy of Sciences, Institute of Electronics, Sofia (Bulgaria); Alexandrov, M.T. [Bulgarian Academy of Sciences, Institute of Experimental Pathology and Parasitology, Sofia (Bulgaria); Karashanova, D.B. [Bulgarian Academy of Sciences, Institute of Optical Materials and Technologies, Sofia (Bulgaria)


    A study is presented of the properties of Ag nanoparticles produced by nanosecond pulsed laser ablation in twice-distilled water. An Ag target was immersed in the liquid and irradiated by the fundamental, second, third and fourth harmonics of a Nd:YAG laser system to create different colloids. Two specific boundary values of the laser fluence were applied for each wavelength. The properties of the nanoparticles at different wavelengths of the laser radiation were examined. The characterization of the colloids was performed immediately after their fabrication. Spherical and spherical-like shapes of the nanoparticles created were established. The formation of nanowires was observed when the second and the third harmonics of the laser were used. It is connected with self-absorption of the incident laser light from the already-created nanoparticles and depends also on the laser fluence. The size distribution of the nanoparticles is estimated by transmission electron microscopy. Generally, their mean size and standard deviation decreased as the wavelength of the incident laser light was increased and increased with the increase of the laser fluence. The substantial discrepancy between the results already commented on for both characteristics considered and others, obtained by dynamic light scattering, is discussed. The structure of the nanoparticles was established to be single and polycrystalline, and the phase composition in both cases is identified as consisting of cubic silver. The nanoparticles are slightly oxidized. (orig.)

  18. Laboratory transferability of optimally shaped laser pulses for quantum control

    International Nuclear Information System (INIS)

    Moore Tibbetts, Katharine; Xing, Xi; Rabitz, Herschel


    Optimal control experiments can readily identify effective shaped laser pulses, or “photonic reagents,” that achieve a wide variety of objectives. An important additional practical desire is for photonic reagent prescriptions to produce good, if not optimal, objective yields when transferred to a different system or laboratory. Building on general experience in chemistry, the hope is that transferred photonic reagent prescriptions may remain functional even though all features of a shaped pulse profile at the sample typically cannot be reproduced exactly. As a specific example, we assess the potential for transferring optimal photonic reagents for the objective of optimizing a ratio of photoproduct ions from a family of halomethanes through three related experiments. First, applying the same set of photonic reagents with systematically varying second- and third-order chirp on both laser systems generated similar shapes of the associated control landscape (i.e., relation between the objective yield and the variables describing the photonic reagents). Second, optimal photonic reagents obtained from the first laser system were found to still produce near optimal yields on the second laser system. Third, transferring a collection of photonic reagents optimized on the first laser system to the second laser system reproduced systematic trends in photoproduct yields upon interaction with the homologous chemical family. These three transfers of photonic reagents are demonstrated to be successful upon paying reasonable attention to overall laser system characteristics. The ability to transfer photonic reagents from one laser system to another is analogous to well-established utilitarian operating procedures with traditional chemical reagents. The practical implications of the present results for experimental quantum control are discussed

  19. Gain dynamics of a free-space nitrogen laser pumped by circularly polarized femtosecond laser pulses. (United States)

    Yao, Jinping; Xie, Hongqiang; Zeng, Bin; Chu, Wei; Li, Guihua; Ni, Jielei; Zhang, Haisu; Jing, Chenrui; Zhang, Chaojin; Xu, Huailiang; Cheng, Ya; Xu, Zhizhan


    We experimentally demonstrate ultrafast dynamic of generation of the 337-nm nitrogen laser by injecting an external seed pulse into a femtosecond laser filament pumped by a circularly polarized laser pulse. In the pump-probe scheme, it is revealed that the population inversion between the C(3)Π(u) and B(3)Π(g) states of N(2) for the free-space 337-nm laser is firstly built up on the timescale of several picoseconds, followed by a relatively slow decay on the timescale of tens of picoseconds, depending on the nitrogen gas pressure. By measuring the intensities of 337-nm signal from nitrogen gas mixed with different concentrations of oxygen gas, it is also found that oxygen molecules have a significant quenching effect on the nitrogen laser signal. Our experimental observations agree with the picture of electron-impact excitation.

  20. Pulsed Laser Ablation and Deposition with the Thomas Jefferson National Accelerator Facility Free Electron Laser (United States)

    Reilly, Anne; Allmond, Chris; Shinn, Michelle


    We have been conducting some of the first experiments in pulsed laser ablation and deposition with the Thomas Jefferson National Accelerator Facility Free Electron Laser (TJNAF-FEL). The wavelength tunability, high average power (up to 1.72 kW), very high repetition rate (cw rate up to 74 MHz) and ultrafast pulses ( 650 fs) of the TJNAF-FEL present a combination of parameters unmatched by any laser, which has marked benefits for ablation and deposition. We will be presenting results on ablation of metals (Co,NiFe,Ti,Nb). Comparison with thin films deposited with a standard nanosecond laser source and an ultrafast low-repetition rate laser system show the advantage of using the FEL to produce high quality films at high deposition rates. Preliminary optical spectroscopy studies of the ablation plume and electron/ion emission studies during ablation will also be presented.

  1. Compact laser radar based on a subnanosecond laser diode transmitter and a two-dimensional CMOS single-photon receiver (United States)

    Huikari, Jaakko; Jahromi, Sahba; Jansson, Jussi-Pekka; Kostamovaara, Juha


    A pulsed TOF laser radar utilizing the single-photon detection mode has been implemented, and its performance is characterized. The transmitter employs a QW double-heterostructure laser diode producing 0.6 nJ/100 ps laser pulses at a central wavelength of ˜810 nm. The detector is a single-chip IC manufactured in the standard 0.35-μm HV CMOS process, including a 9×9 single-photon avalanche diode (SPAD) array and a 10-channel time-to-digital converter (TDC) circuit. Both the SPAD array and the TDC circuit support a time gating feature allowing photon detection to occur only within a predefined time window. The SPAD array also supports a 3×3 SPADs subarray selection feature to respond to the laser spot wandering effect due to the paraxial optics and to reduce background radiation-induced detections. The characterization results demonstrate a distance measurement accuracy of +/-0.5 mm to a target at 34 m having 11% reflectivity. The signal detection rate is 28% at a laser pulsing rate of 100 kHz. The single-shot precision of the laser radar is ˜20 mm (FWHM). The deteriorating impact of high-level background radiation conditions on the SNR is demonstrated, as also is a scheme to improve this by means of detector time gating.

  2. CO2-laser ablation of Bi-Sr-Ca-Cu oxide by millisecond pulse lengths (United States)

    Meskoob, M.; Honda, T.; Safari, A.; Wachtman, J. B.; Danforth, S.; Wilkens, B. J.


    We have achieved ablation of Bi-Sr-Ca-Cu oxide from single targets of superconducting pellets by CO2-laser pulses of l ms length to grow superconducting thin films. Upon annealing, the 6000-Å thin films have a Tc (onset) of 90 K and zero resistance at 78 K. X-ray diffraction patterns indicate the growth of single-phase thin films. This technique allows growth of uniform single-phase superconducting thin films of lateral area greater than 1 cm2.

  3. INTERACTION OF LASER RADIATION WITH MATTER: Influence of a target on operation of a pulsed CO2 laser emitting microsecond pulses (United States)

    Baranov, V. Yu; Dolgov, V. A.; Malyuta, D. D.; Mezhevov, V. S.; Semak, V. V.


    The profile of pulses emitted by a TEA CO2 laser with an unstable resonator changed as a result of interaction of laser radiation with the surface of a metal in the presence of a breakdown plasma. This influence of a target on laser operation and its possible applications in laser processing of materials are analyzed.

  4. Energy shift between two relativistic laser pulses copropagating in plasmas (United States)

    Yang, S. L.; Zhou, C. T.; Huang, T. W.; Ju, L. B.; He, X. T.


    The interactive dynamics of two relativistic laser beams copropagating in underdense plasmas is studied using a coupled model equation for the relativistic laser propagation. It is shown that the relative phase difference between the two laser pulses plays a significant role in their interaction processes. When the relative phase varies, the two laser beams display different features, such as attraction, repulsion, and energy shift. In particular, energy flow from the phase-advanced beam to the spot domain of the phase-delayed beam is observed when the relative phase difference is between zero and π . When the relative phase is larger than π /2 , repulsion is dominant and the interaction gradually becomes weak. When the relative phase difference is smaller than π /2 , attraction becomes dominant and, as the phase difference decreases, the phase-advanced beam shifts most of its energy into the spot domain of the phase-delayed beam. These conclusions are verified by our three-dimensional particle-in-cell simulations. This provides an efficient way to manipulate the energy distribution of relativistically intense laser pulses in plasmas by adjusting their relative phase.

  5. Hybrid micromachining using a nanosecond pulsed laser and micro EDM

    International Nuclear Information System (INIS)

    Kim, Sanha; Chung, Do Kwan; Shin, Hong Shik; Chu, Chong Nam; Kim, Bo Hyun


    Micro electrical discharge machining (micro EDM) is a well-known precise machining process that achieves micro structures of excellent quality for any conductive material. However, the slow machining speed and high tool wear are main drawbacks of this process. Though the use of deionized water instead of kerosene as a dielectric fluid can reduce the tool wear and increase the machine speed, the material removal rate (MRR) is still low. In contrast, laser ablation using a nanosecond pulsed laser is a fast and non-wear machining process but achieves micro figures of rather low quality. Therefore, the integration of these two processes can overcome the respective disadvantages. This paper reports a hybrid process of a nanosecond pulsed laser and micro EDM for micromachining. A novel hybrid micromachining system that combines the two discrete machining processes is introduced. Then, the feasibility and characteristics of the hybrid machining process are investigated compared to conventional EDM and laser ablation. It is verified experimentally that the machining time can be effectively reduced in both EDM drilling and milling by rapid laser pre-machining prior to micro EDM. Finally, some examples of complicated 3D micro structures fabricated by the hybrid process are shown

  6. Ultrafast laser pulse chirp effects on laser-generated nanoacoustic strains in Silicon. (United States)

    Bakarezos, M; Tzianaki, E; Petrakis, S; Tsibidis, G; Loukakos, P A; Dimitriou, V; Kosmidis, C; Tatarakis, M; Papadogiannis, N A


    Nanoacoustic strains are generated in Silicon by chirped femtosecond laser pulses using thin Titanium films as transducers. We investigate the effect that the generating laser pulse chirp has on the amplitude of the induced strains, manifested as Brillouin oscillations observed in degenerate femtosecond pump-probe transient reflectivity measurements. The strain amplitude is larger when negatively chirped pulses are used, which is attributed to the more efficient conversion of laser pulse light into acoustic strain in the Titanium transducer. Our present studies clearly show that the dependence of the Brillouin amplitude and the lattice strain is a non-monotonous function of the laser chirp parameter. An optimum negative laser pulse chirp is found for which the strain amplitude is maximized. A detailed thermomechanical model satisfactorily supports the experimental findings. In such a way, it is possible to suppress or enhance the induced nanoacoustic strain amplitude, thus all-optically controlling it by at least a factor of two. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Generation of dark and bright pulses in an SOA-based Q-switched fiber laser (United States)

    Pan, Honggang; Zhang, Ailing; Tong, Zhengrong


    Bright and dark pulses in a Q-switched optical fiber laser based on a semiconductor optical amplifier were demonstrated. By changing the setting of the polarization controllers, bright or dark pulses with differing pulse widths and frequency repetition rates can be obtained. The bright pulse and dark pulse are formed mainly by the effect of gain dispersion of the semiconductor optical amplifier.

  8. Fundamental Mechanisms of Pulsed Laser Ablation of Biological Tissue (United States)

    Albagli, Douglas

    The ability to cut and remove biological tissue with short pulsed laser light, a process called laser ablation, has the potential to revolutionize many surgical procedures. Ablation procedures using short pulsed lasers are currently being developed or used in many fields of medicine, including cardiology, ophthalmology, dermatology, dentistry, orthopedics, and urology. Despite this, the underlying physics of the ablation process is not well understood. In fact, there is wide disagreement over whether the fundamental mechanism is primarily photothermal, photomechanical, or photochemical. In this thesis, both experimental and theoretical techniques are developed to explore this issue. The photothermal model postulates that ablation proceeds through vaporization of the target material. The photomechanical model asserts that ablation is initiated when the laser-induced tensile stress exceeds the ultimate tensile strength of the target. I have developed a three dimensional model of the thermoelastic response of tissue to short pulsed laser irradiation which allows the time dependent stress distribution to be calculated given the optical, thermal and mechanical properties of the target. A complimentary experimental technique has been developed to verify this model, measure the needed physical properties of the tissue, and record the thermoelastic response of the tissue at the onset of ablation. The results of this work have been widely disseminated to the international research community and have led to significant findings which support the photomechanical model of ablation of tissue. First, the energy deposited in tissue is an order of magnitude less than that required for vaporization. Second, unlike the one-dimensional thermoelastic model of laser-induced stress generation that has appeared in the literature, the full three-dimensional model predicts the development of significant tensile stresses on the surface of the target, precisely where ablation is observed to

  9. Model of pulse extraction from a copper laser amplifier

    International Nuclear Information System (INIS)

    Boley, C.D.; Warner, B.E.


    A computational model of pulse propagation through a copper laser amplifier has been developed. The model contains a system of 1-D (in the axial direction), time-dependent equations for the laser intensity and amplified spontaneous emission (ASE), coupled to rate equations for the atomic levels. Detailed calculations are presented for a high-power amplifier at Lawrence Livermore National Laboratory. The extracted power agrees with experiment near saturation. At lower input power the calculation overestimates experiment, probably because of increased ASE effects. 6 refs., 6 figs

  10. Resonant infrared pulsed laser deposition of thin biodegradable polymer films

    DEFF Research Database (Denmark)

    Bubb, D.M.; Toftmann, B.; Haglund Jr., R.F.


    Thin films of the biodegradable polymer poly(DL-lactide-co-glycolide) (PLGA) were deposited using resonant infrared pulsed laser deposition (RIR-PLD). The output of a free-electron laser was focused onto a solid target of the polymer, and the films were deposited using 2.90 (resonant with O...... absorbance spectrum of the films is nearly identical with that of the native polymer, the average molecular weight of the films is a little less than half that of the starting material. Potential strategies for defeating this mass change are discussed....

  11. Two-pulse laser control of bond-selective fragmentation

    DEFF Research Database (Denmark)

    Amstrup, Bjarne; Henriksen, Niels Engholm


    We elaborate on a two-pulse (pump-pump) laser control scheme for selective bond-breaking in molecules [Amstrup and Henriksen, J. Chem. Phys. 97, 8285 (1992)]. We show, in particular, that with this scheme one can overcome the obstacle of intramolecular vibrational relaxation. As an example, we...... consider an ozone molecule with isotopic substitution, that is, (OOO)-O-16-O-16-O-18. It is shown that asymmetric bond stretching can be created in simple (intense) laser fields. We predict that an alternating high selectivity between the channels O-16+(OO)-O-16-O-18 and (OO)-O-16-O-16+ O-18 can...

  12. Laser induced fluorescence in a pulsed argon plasma

    International Nuclear Information System (INIS)

    Scime, Earl; Biloiu, Costel; Compton, Christopher; Doss, Forrest; Venture, Daniel; Heard, John; Choueiri, Edgar; Spektor, Rostislav


    A time-resolved laser induced fluorescence (LIF) technique for pulsed argon plasmas is described. A low power, tunable diode laser pumps a three level Ar II transition sequence at a wavelength of 668.6138 nm. With a standard LIF system designed for steady-state plasmas (e.g., 4 kHz optical chopper, 20 kHz band-width detector, and a lock-in amplifier), we demonstrate that the evolution of the ion velocity distribution can be resolved with a time resolution of 1 ms through a combination of time-series averaging and post-acquisition digital signal processing

  13. Pulse-power circuit diagnostics for the Nova laser

    International Nuclear Information System (INIS)

    Christie, D.J.; Dallum, G.E.; Gritton, D.G.; Merritt, B.T.; Whitham, K.; Berkbigler, L.W.


    The Nova laser will have a large pulse power system for driving laser amplifiers, incorporating approximately 1600 flashlamp circuits. An automated system has been designed for diagnosing the condition of these flashlamp circuits. It records digitized circuit current waveforms and detects current excursions above a given threshold. In addition, it is able to fire flashlamps at a low energy to ascertain the health of the system. Data from this system can be ploted for inspection by the operator, analyzed by the computer system and archived for future reference

  14. Crystallization dynamics of as-deposited amorphous AgInSbTe thin film induced by picosecond laser pulses (United States)

    Huang, Huan; Zuo, Fangyuan; Zhai, Fengxiao; Wang, Yang; Lai, Tianshu; Wu, Yiqun; Gan, Fuxi


    The time-resolved crystallization dynamics of as-deposited amorphous AgInSbTe thin films induced by single picosecond laser pulses has been studied. The crystallization process was shown to be a threshold-dependent multi-stage process. For the same film structure, the total crystallization time does not change significantly with different fluences in a broad fluence range. The total crystallization time can be effectively shortened by an additional thermally conductive silver underlayer. After the film has been primed with a low-fluence single ~30 ps laser pulse, the crystallization process can be simplified to be a monotonic process with a markedly reduced crystallization time.

  15. Pulsed Nd:YAG laser welding of Cu54Ni6Zr22Ti18 bulk metallic glass

    International Nuclear Information System (INIS)

    Kim, Jong Hyun; Lee, Changhee; Lee, D.M.; Sun, J.H.; Shin, S.Y.; Bae, J.C.


    Pulsed Nd:YAG laser was used to weld Cu 54 Ni 6 Zr 22 Ti 18 (numbers indicate at.%) metallic glass with glass forming ability of 6 mm. Through a single pulse irradiation on the glassy plate, the pulse condition for welding without crystallization was investigated. Under the selected pulse condition, the Cu 54 Ni 6 Zr 22 Ti 18 plate was periodically welded with different welding speeds. For the welding speed of 60 mm/min, no crystallization was observed in both weldment and heat-affected zone. For the 20 mm/min, the crystallized areas with a band shape were observed along the welding direction

  16. All Solid State Optical Pulse Shaper for the OMEGA Laser Fusion Facility

    Energy Technology Data Exchange (ETDEWEB)



    OAK-B135 All Solid State Optical Pulse Shaper for the OMEGA Laser Fusion Facility. The authors have developed an all-solid-state, compact, computer-controlled, flexible optical pulse shaper for the OMEGA laser facility. This pulse shaper produces high bandwidth, temporally shaped laser pulses that meet OMEGA requirements. The design is a significant simplification over existing technology with improved performance capabilities.

  17. All Solid State Optical Pulse Shaper for the OMEGA Laser Fusion Facility

    International Nuclear Information System (INIS)

    Okishev, A.V.; Skeldon, M.D.; Keck, R.L.; Seka, W.


    OAK-B135 All Solid State Optical Pulse Shaper for the OMEGA Laser Fusion Facility. The authors have developed an all-solid-state, compact, computer-controlled, flexible optical pulse shaper for the OMEGA laser facility. This pulse shaper produces high bandwidth, temporally shaped laser pulses that meet OMEGA requirements. The design is a significant simplification over existing technology with improved performance capabilities

  18. Shielding of optical pulses on hydrodynamical time scales in laser-induced breakdown of saline water


    Conti, Daniel; Marino, Francesco; Roati, Giacomo; Orfila, Alejandro; Javaloyes, Julien; Piro, Oreste; Balle, Salvador


    Pulse shielding in Laser-Induced Breakdown of saline water on hydrodynamic time scales is experimentally characterized. Pairs of pulses from a Nd:YAG laser are focused into saline water with a controlled time delay between them. The Laser-Induced Breakdown produced by the first pulse creates a cavitation bubble that later collapses generating a plume of bubbles that evolves on hydrodynamic time scales. When the second pulse arrives, the light is scattered by this plume with a consequent reduc...

  19. Spectral investigation of highly ionized bismuth plasmas produced by subnanosecond Nd:YAG laser pulses (United States)

    Wu, Tao; Higashiguchi, Takeshi; Li, Bowen; Arai, Goki; Hara, Hiroyuki; Kondo, Yoshiki; Miyazaki, Takanori; Dinh, Thanh-Hung; Dunne, Padraig; O'Reilly, Fergal; Sokell, Emma; O'Sullivan, Gerry


    The unresolved transition arrays (UTAs) emitted from laser produced bismuth (Bi) plasma sources show potential for single-shot live cell imaging. We have measured extreme ultraviolet spectra from bismuth laser produced plasmas in the 1-7 nm region using a λ = 1064 nm Nd:YAG laser with a pulse duration of 150 ps. Comparison of spectra obtained under different laser power densities with calculations using the Hartree-Fock with configuration interaction Cowan suite of codes and the UTA formalism, as well as consideration of previous predictions of isoelectronic trends, are employed to identify lines and a number of new features in spectra from Bi XXIII to Bi XLVII. The results show that Δn = 0, n = 4-4 emission from highly charged ions merges to form intense UTAs in the 4 nm region and Δn = 1, n = 4-5 resonance transitions UTAs dominate the 1-3 nm region of the Bi spectrum.

  20. Spectral investigation of highly ionized bismuth plasmas produced by subnanosecond Nd:YAG laser pulses

    International Nuclear Information System (INIS)

    Wu, Tao; Higashiguchi, Takeshi; Arai, Goki; Hara, Hiroyuki; Kondo, Yoshiki; Miyazaki, Takanori; Dinh, Thanh-Hung; Li, Bowen; Dunne, Padraig; O’Reilly, Fergal; Sokell, Emma; O’Sullivan, Gerry


    The unresolved transition arrays (UTAs) emitted from laser produced bismuth (Bi) plasma sources show potential for single-shot live cell imaging. We have measured extreme ultraviolet spectra from bismuth laser produced plasmas in the 1–7 nm region using a λ = 1064 nm Nd:YAG laser with a pulse duration of 150 ps. Comparison of spectra obtained under different laser power densities with calculations using the Hartree–Fock with configuration interaction Cowan suite of codes and the UTA formalism, as well as consideration of previous predictions of isoelectronic trends, are employed to identify lines and a number of new features in spectra from Bi XXIII to Bi XLVII. The results show that Δn = 0, n = 4–4 emission from highly charged ions merges to form intense UTAs in the 4 nm region and Δn = 1, n = 4–5 resonance transitions UTAs dominate the 1–3 nm region of the Bi spectrum. (paper)

  1. The free-electron laser - Maxwell's equations driven by single-particle currents (United States)

    Colson, W. B.; Ride, S. K.


    It is shown that if single particle currents are coupled to Maxwell's equations, the resulting set of self-consistent nonlinear equations describes the evolution of the electron beam and the amplitude and phase of the free-electron-laser field. The formulation is based on the slowly varying amplitude and phase approximation, and the distinction between microscopic and macroscopic scales, which distinguishes the microscopic bunching from the macroscopic pulse propagation. The capabilities of this new theoretical approach become apparent when its predictions for the ultrashort pulse free-electron laser are compared to experimental data; the optical pulse evolution, determined simply and accurately, agrees well with observations.

  2. Rapid microfabrication of transparent materials using filamented femtosecond laser pulses (United States)

    Butkus, S.; Gaižauskas, E.; Paipulas, D.; Viburys, Ž.; Kaškelyė, D.; Barkauskas, M.; Alesenkov, A.; Sirutkaitis, V.


    Microfabrication of transparent materials using femtosecond laser pulses has showed good potential towards industrial application. Maintaining pulse energies exceeding the critical self-focusing threshold by more than 100-fold produced filaments that were used for micromachining purposes. This article demonstrates two different micromachining techniques using femtosecond filaments generated in different transparent media (water and glass). The stated micromachining techniques are cutting and welding of transparent samples. In addition, cutting and drilling experiments were backed by theoretical modelling giving a deeper insight into the whole process. We demonstrate cut-out holes in soda-lime glass having thickness up to 1 mm and aspect ratios close to 20, moreover, the fabrication time is of the order of tens of seconds, in addition, grooves and holes were fabricated in hardened 1.1 mm thick glass (Corning Gorilla glass). Glass welding was made possible and welded samples were achieved after several seconds of laser fabrication.

  3. Nonlinear scattering in hard tissue studied with ultrashort laser pulses

    International Nuclear Information System (INIS)

    Eichler, J.; Kim, B.M.


    The back-scattered spectrum of ultrashort laser pulses (800 nm, 0.2 ps) was studied in human dental and other hard tissues in vitro below the ablation threshold. Frequency doubled radiation (SHG), frequency tripled radiation and two-photon fluorescence were detected. The relative yield for these processes was measured for various pulse energies. The dependence of the SHG signal on probe thickness was determined in forward and back scattering geometry. SHG is sensitive to linear polarization of the incident laser radiation. SHG in human teeth was studied in vitro showing larger signals in dentin than in cementum and enamel. In carious areas no SHG signal could be detected. Possible applications of higher harmonic radiation for diagnostics and microscopy are discussed. (orig.)

  4. Photoconductive Semiconductor Switch Technology for Short Pulse Electromagnetics and Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Denison, Gary J.; Helgeson, Wesley D.; Hjalmarson, Harold P.; Loubriel, Guillermo M.; Mar, Alan; O' Malley, Martin W.; Zutavern, Fred J.


    High gain photoconductive semiconductor switches (PCSS) are being used to produce high power electromagnetic pulses foc (1) compact, repetitive accelerators, (2) ultra-wide band impulse sources, (3) precision gas switch triggers, (4) optically-activated firesets, and (5) high power optical pulse generation and control. High power, sub-nanosecond optical pulses are used for active optical sensors such as compact optical radars and range-gated hallistic imaging systems. Following a brief introduction to high gain PCSS and its general applications, this paper will focus on PCSS for optical pulse generation and control. PCSS technology can be employed in three distinct approaches to optical pulse generation and control: (1) short pulse carrier injection to induce gain-switching in semiconductor lasers, (2) electro-optical Q-switching, and (3) optically activated Q-switching. The most significant PCSS issues for these applications are switch rise time, jitter, and longevity. This paper will describe both the requirements of these applications and the most recent results from PCSS technology. Experiments to understand and expand the limitations of high gain PCSS will also be described.

  5. Ultrafast geometric control of a single qubit using chirped pulses

    International Nuclear Information System (INIS)

    Hawkins, Patrick E; Malinovskaya, Svetlana A; Malinovsky, Vladimir S


    We propose a control strategy to perform arbitrary unitary operations on a single qubit based solely on the geometrical phase that the qubit state acquires after cyclic evolution in the parameter space. The scheme uses ultrafast linearly chirped pulses and provides the possibility of reducing the duration of a single-qubit operation to a few picoseconds.

  6. Temporal measurement of MeV pulsed gamma-ray using a diode laser (United States)

    Liu, Jun; Ouyang, Xiaoping; Weng, Xiufeng; Zhang, Zhongbing; Xie, Haoyu; Li, Chunhua; Ruan, Jinlu; Xu, Qing


    A single-shot temporal measurement of pulsed gamma ray using a diode laser has been carried out with the MeV gamma beams at "Qiangguang-I" facility. The gamma-ray temporal profile is encoded to the power of a diode laser by the carrier variation in laser cavity. We analyze the dynamic process of carriers induced by gamma rays and derive a sensitivity expression for the detector based on a diode laser. It shows that the sensitivity is determined by both the gain of resonant cavity and the efficiency of gamma-ray deposition in the diode laser. And the efficiency of depositing gamma-ray is estimated with Monte Carlo methods. The experimental results demonstrate that the detection method with diode lasers can be used for the temporal profile measurement of a MeV pulsed gamma ray source. The relative gamma-ray sensitivity of the detector is estimated at about 1 . 27 × 10-22 Ccm2 from the experimental results, which agrees with the theoretical predictions.

  7. Effects of pulsed Nd:YAG laser irradiation on root canal wall dentin with different laser initiators. (United States)

    Zhang, C; Kimura, Y; Matsumoto, K; Harashima, T; Zhou, H


    The effects of pulsed Nd:YAG laser irradiation with different laser initiators on the permeability and ultrastructure of the root canal wall dentin were investigated in vitro. Forty extracted human single-rooted teeth were randomly assigned to four groups. Group 1 teeth were not lased as a control. Group 2 specimens received four 10-s duration laser exposures for a total exposure of 40 s/canal. In group 3 specimens, the root canals were painted with black ink and then lased by the same method as group 2 teeth. In group 4 specimens, root canals were treated with 38% Ag(NH3)2F and then lased by the same method as group 2 teeth. Laser parameters were set at 2 W, 20 pps. After being placed in 0.6% rhodamine B solution for 48 h, the teeth were sectioned for study by stereoscope and scanning electron microscopy. Statistical analysis showed there were significant differences (p permeability in the apical areas between groups 3 and 1, 4 and 1, and 4 and 2. Scanning electron microscopic examination showed that laser treatment alone had no obvious effects on the root canal wall. The root canal surfaces prepared for by laser irradiation with black ink or 38% Ag(NH3)2F revealed melting, smear layer evaporation, and open dentinal tubules. Black ink was more effective than 38% Ag(NH3)2F as a Nd:YAG laser initiator.

  8. Desorption by Femtosecond Laser Pulses : An Electron-Hole Effect?


    D. M., NEWNS; T. F., HEINZ; J. A., MISEWICH; IBM Research Division, T. J. Watson Research Center; IBM Research Division, T. J. Watson Research Center; IBM Research Division, T. J. Watson Research Center


    Desorption of molecules from metal surfaces induced by femtosecond visible laser pulses has been reported. Since the lattice temperature rise is insufficient to explain desorption, an electronic mechanism is clearly responsible. It is shown that a theory based on direct coupling between the center-of-mass degree of freedom of the adsorbate and the electron-hole excitations of the substrate provides a satisfactory explanation of the various experimental findings.

  9. Growth of epitaxial thin films by pulsed laser ablation

    International Nuclear Information System (INIS)

    Lowndes, D.H.


    High-quality, high-temperature superconductor (HTSc) films can be grown by the pulsed laser ablation (PLA) process. This article provides a detailed introduction to the advantages and curent limitations of PLA for epitaxial film growth. Emphasis is placed on experimental methods and on exploitation of PLA to control epitaxial growth at either the unit cell or the atomic-layer level. Examples are taken from recent HTSc film growth. 33 figs, 127 refs

  10. Conical Double Frequency Emission by Femtosecond Laser Pulses from DKDP

    International Nuclear Information System (INIS)

    Xi-Peng, Zhang; Hong-Bing, Jiang; Shan-Chun, Tang; Qi-Huang, Gong


    Conical double frequency emission is investigated by femtosecond laser pulses at a wavelength of 800 nm in a DKDP crystal. It is demonstrated that the sum frequency of incident wave and its scattering wave accounts for the conical double frequency emission. The gaps on the conical rings are observed and they are very sensitive to the propagation direction, and thus could be used to detect the small angle deviation of surface direction. (fundamental areas of phenomenology (including applications))

  11. Electron rescattering at metal nanotips induced by ultrashort laser pulses


    Wachter, Georg; Lemell, Christoph; Burgdoerfer, Joachim


    We theoretically investigate the interaction of moderate intensity near-infrared few cycle laser pulses with nano-scale metal tips. Local field enhancement in a nanometric region around the tip apex triggers coherent electron emission on the nanometer length and femtosecond time scale. The quantum dynamics at the surface are simulated with time-dependent density functional theory (TDDFT) and interpreted based on the simple man's model. We investigate the dependence of the emitted electron spe...

  12. Pulsed laser deposition and characterisation of thin superconducting films

    Energy Technology Data Exchange (ETDEWEB)

    Morone, A. [CNR, zona industriale di Tito Scalo, Potenza (Italy). Istituto per i Materiali Speciali


    Same concepts on pulsed laser deposition of thin films will be discussed and same examples of high transition temperature (HTc) BiSrCaCuO (BISCO) and low transition temperature NbN/MgO/NbN multilayers will be presented. X-ray and others characterizations of these films will be reported and discussed. Electrical properties of superconducting thin films will be realized as a function of structural and morphological aspect.

  13. Beta dosimetry using pulsed laser heating of TLD materials

    International Nuclear Information System (INIS)

    Quam, W.


    Use of a pulsed CO 2 laser to heat the surface of hot-pressed LiF chips has been investigated. The thermoluminescent traps in the first 10 to 20 μm of depth may be read out with good efficiency, which will allow entrance dose and exit dose to be determined using a standard chip. These dose data can be used to calculate beta dose and gamma dose separately. Readout speed is estimated to be a few milliseconds per chip

  14. Ultrashort-pulse laser machining system employing a parametric amplifier (United States)

    Perry, Michael D.


    A method and apparatus are provided for increasing the energy of chirped laser pulses to an output in the range 0.001 to over 10 millijoules at a repetition rate 0.010 to 100 kHz by using a two stage optical parametric amplifier utilizing a bulk nonlinear crystal wherein the pump and signal beam size can be independently adjusted in each stage.

  15. Photoionization in combined ultra short XUV and infrared laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Rottke, H; Boettcher, M; Zhavoronkov, N; Ansari, Z; Sandner, W [Max-Born-Institut, Max-Born-Str. 2A, 12489 Berlin (Germany); Guyetand, O; Gisselbrecht, M; Huetz, A; Agostini, P [CNRS-University Paris Sud, UMR8624, Laboratoire d' interaction du rayonnement X avec la matiere, Bat. 350, Centre d' Orsay, 91405 Orsay (France); Carre, B; Breger, P; Gobert, O; Garzella, D; Hergott, J-F; Tcherbakor, O; Merdji, H; Bougeard, M [Service des Photons, Atomes et Molecules, CEA-Saclay, 91191 Gif-sur-Yvette (France); Antoine, P [Unite de Physique Atomique, Moleculaire et Optique, University Catholique de Louvain, 2 Chemin du Cyclotron, 1348 Louvain-la-Neuve (Belgium); DiMauro, L F [Department of Physics, Ohio State University, Columbus, OH 43210 (United States)], E-mail:


    Multi-photon-double ionization of xenon by Ti:Sapphire laser pulses combined with their 25th harmonic has been studied by means of a momentum imaging spectrometer. The determination of the momenta of the emitted photoelectron pair and of its energy and angular correlation gives insight into the various mechanisms leading to double ionization. Although the conditions for non sequential direct multi-photon double ionization are met in the experiment, it is found that two-step sequential processes prevail.

  16. Systematic study of high-order harmonic optimal control by temporal pulse shaping of laser pulses

    International Nuclear Information System (INIS)

    Boyko, O.; Valentin, C.; Mercier, B.; Coquelet, Ch.; Pascal, V.; Papalazarou, E.; Rey, G.; Balcou, Ph.


    We explore experimentally and numerically the physics underlying the optimization of high-order harmonic generation by intense laser pulses, whose temporal profile is tailored by a learning genetic algorithm. Based on a large set of optimization data obtained under different generation parameters, we show that the algorithm converges toward a class of very special profiles on the leading edge of the pulse. The behavior of the harmonic signal is then compared with theoretical simulations based on the time-dependent Schroedinger equation, allowing one to identify separately the role of microscopic and macroscopic phenomena in the temporal dynamics of high-harmonic generation and optimization

  17. Numerical simulations of single and double ionization of H{sub 2} in short intense laser pulses; Numerische Simulation zur Einfach- und Doppelionisation von H{sub 2} in kurzen intensiven Laserpulsen

    Energy Technology Data Exchange (ETDEWEB)

    Baier, Silvio


    Rescattering is the dominant process leading to double ionization in atoms and molecules interacting with linearly polarized laser pulses with wavelengths around 800 nm and in an intensity regime of 10{sup 14} to 10{sup 15} W/cm{sup 2}. Using numerical integrations of the two-electron Schroedinger equation of the Hydrogen molecule in appropriate reduced dimensions two mechanisms, namely correlated emission of the electrons and excitation followed by field ionization after rescattering, could be identified and characterized. With the help of a planar model in reduced dimensions these mechanisms were quantitatively compared by their dependence on the molecular alignment with respect to the polarization axis. Two additional mechanisms, which are also related to rescattering, could be identified as well. (orig.)

  18. Silver jewelry microanalysis with dual-pulse laser-induced breakdown spectroscopy: 266 + 1064 nm wavelength combination. (United States)

    Mo, Junyu; Chen, Yuqi; Li, Runhua


    Orthogonal dual-wavelength dual-pulse laser-induced breakdown spectroscopy (ODWDP-LIBS) with 266+1064  nm wavelength combination was applied to realize silver jewelry microanalysis with enhanced sensitivity and minimal sample ablation. In this technique, the 266 nm laser with low pulse energy was selected as ablation laser and the time-delayed 1064 nm laser with moderate pulse energy was selected as reheating laser to enhance plasma emission. Significant signal enhancement was achieved under the excitation of the reheating laser without increasing mass ablation which was only determined by the ablation laser. Internal standard method was applied to realize quantitative analysis of copper impurity in silver jewelry samples. The calibration curve was built, and the limit of detection of copper in silver matrix was determined to be 37.4 ppm when the crater diameter was controlled at 6.5 μm. This technique is especially useful for microanalysis of precious samples due to the property of less sample ablation in comparison with single-pulse laser-induced breakdown spectroscopy (SP-LIBS) under the same analytical sensitivity.

  19. Laser Pulse Shaping for Ultrahigh Intensity Compton Scattering* (United States)

    Troha, A. L.; Le Sage, G. P.; Bennett, C.; Kolner, B. H.; Heritage, J. P.; Hartemann, F. V.; Luhmann, N. C., Jr.


    At ultrahigh intensities, where the normalized vector potential associated with the laser wave exceeds unity, the electron axial velocity modulation due to radiation pressure yields nonlinear Compton backscattered spectra. For applications requiring a narrow Doppler upshifted linewidth, such as the future g-g collider or focused X-ray generation, this poses a serious problem. It is shown that temporal laser pulse shaping using holographic (spectral) filtering at the Fourier plane of a chirped pulse laser amplifier, or similar approaches, can alleviate this problem, and that this technique can be scaled to the required multi-TW range. In particular, Compton backscattered spectra are calculated in the case of the optical square pulses similar to those experimentally observed by Weiner et al. Issues such as nonlinear effects, higher-order dispersion, 3D effects and optical noise are also discussed. *Work supported in part by DoD/AFOSR (MURI) F49620-95-1-0253, AFOSR (ATRI) F30602-94-2-001, ARO DAAHO4-95-1-0336 and LLNL/LDRD DoE W-7405-ENG-48

  20. Design of pulsed laser diode drive power for ZY3(02) laser altimeter (United States)

    Feng, Wen; Li, Mingshan; Meng, Peibei; Yan, Fanjiang; Li, Xu; Wang, Chunhui


    Solid laser pumped by semiconductor laser has the large value in the area of space laser technology, because of the advantages of high efficiency, small volume and long life. As the indispensable component of laser, laser power is also very important. Combined with ZY3(02) laser altimeter project, a high voltage(0-300V), high current(0-80A), long pulse width(0-230us) and high precision temperature semiconductor laser power is developed. IGBT is applied in the driving circuit as the switch to provide a current pulse for LD. The heating or cooling capacity of TEC is controlled by PID compensation circuit quickly adjusts the duty cycle of the UC1637 PWM signal, to realize the high accuracy controlling of LD working temperature. The tests in the external ambient temperature of 5°C, 20°C, 30°C show that the LD current pulse is stable and the stability of LD working temperature up to +/-0.1°C around the set point temperature, which ensure the highly stable operation of DPL.