Cuchiara, Gustavo; Rappenglück, Bernhard
2016-04-01
The transition from the convective boundary layer during the daytime to the stable stratified boundary layer during nighttime after sunset plays an important role in the transport and dispersion of atmospheric pollutants. However, our knowledge regarding this transition and its feedback on the structure of the subsequent nocturnal boundary layer is still restricted. This also prevents forecast models from accurate prediction of the onset and development of the nighttime boundary layer, which determines the redistribution of pollutants within the nocturnal surface layer and the residual layer aloft. In the present study, the well-known case of day 33 of the Wangara experiment is resimulated using the Weather Research and Forecasting (WRF) model in an idealized single-column mode to assess the performance of a frequently used planetary boundary layer (PBL) scheme, the Yonsei University (YSU) PBL scheme. These results are compared with two large eddy simulations (LES) for the same case study imposing different surface fluxes: one using previous surface fluxes calculated for the Wangara experiment and a second one using output from the WRF model. The results show a reasonable agreement of the PBL scheme in WRF with the LES. Overall, all the simulations presented a cold bias of ~3 Kelvin for the potential temperature and underestimation of the wind speed, especially after the transition to nighttime conditions (biases were up to 4 ms-1). Finally, an alternative set of eddy diffusivity equations was tested to represent the transition characteristics of a sunset period, with a stable layer below and a new parameterization for the convective decay regime typically observed in the RL aloft. This set of equations led to a gradual decrease of the eddy diffusivity, which replaces the instantaneous collapse of traditional diagnostics for eddy diffusivities. More appreciable changes were observed in air temperature, wind speed and specific humidity (up to 0.5 K, 0.6 ms-1, and 0
Regularization modeling for large-eddy simulation
Geurts, Bernardus J.; Holm, D.D.
2003-01-01
A new modeling approach for large-eddy simulation (LES) is obtained by combining a "regularization principle" with an explicit filter and its inversion. This regularization approach allows a systematic derivation of the implied subgrid model, which resolves the closure problem. The central role of
Huang, J.; Bou-Zeid, E.; Golaz, J.
2011-12-01
Parameterization of the stably-stratified atmospheric boundary-layer is of crucial importance to different aspects of numerical weather prediction at regional scales and climate modeling at global scales, such as land-surface temperature forecasts, fog and frost prediction, and polar climate. It is well-known that most operational climate models require excessive turbulence mixing of the stable boundary-layer to prevent decoupling of the atmospheric component from the land component under strong stability, but the performance of such a model is unlikely to be satisfactory under weakly and moderately stable conditions. In this study we develop and test a general turbulence mixing model of the stable boundary-layer which works under different stabilities and for steady as well as unsteady conditions. A-priori large-eddy simulation (LES) tests are presented to motivate and verify the new parameterization. Subsequently, an assessment of this model using the GFDL single-column model (SCM) is performed. Idealized test cases including continuously varying stability, as well as stability discontinuity, are used to test the new SCM against LES results. A good match of mean and flux profiles is found when the new parameterization is used, while other traditional first-order turbulence models using the concept of stability function perform poorly. SCM spatial resolution is also found to have little impact on the performance of the new turbulence closure, but temporal resolution is important and a numerical stability criterion based on the model time step is presented.
Large-eddy simulation in hydraulics
Rodi, Wolfgang
2013-01-01
Complex turbulence phenomena are of great practical importance in hydraulics, including environmental flows, and require advanced methods for their successful computation. The Large Eddy Simulation (LES), in which the larger-scale turbulent motion is directly resolved and only the small-scale motion is modelled, is particularly suited for complex situations with dominant large-scale structures and unsteadiness. Due to the increasing computer power, LES is generally used more and more in Computational Fluid Dynamics. Also in hydraulics, it offers great potential, especially for near-field probl
Large Eddy Simulation of turbulent combustion processes
Jones, W. P.
2002-08-01
The application of Large Eddy Simulation to Turbulent Combusting flows is described and results are presented for a turbulent hydrogen-air jet flame and for a model can-type gas turbine Combustion chamber. In both cases the results are in good agreement with measurements. For the hydrogen flame and in contrast to the results of other approaches the profiles of all quantities and the rate of spread of the jet were all accurately reproduced by the computations without any modification to the model constants being necessary.
Large Eddy Simulation of Cirrus Clouds
Wu, Ting; Cotton, William R.
1999-01-01
The Regional Atmospheric Modeling System (RAMS) with mesoscale interactive nested-grids and a Large-Eddy Simulation (LES) version of RAMS, coupled to two-moment microphysics and a new two-stream radiative code were used to investigate the dynamic, microphysical, and radiative aspects of the November 26, 1991 cirrus event. Wu (1998) describes the results of that research in full detail and is enclosed as Appendix 1. The mesoscale nested grid simulation successfully reproduced the large scale circulation as compared to the Mesoscale Analysis and Prediction System's (MAPS) analyses and other observations. Three cloud bands which match nicely to the three cloud lines identified in an observational study (Mace et al., 1995) are predicted on Grid #2 of the nested grids, even though the mesoscale simulation predicts a larger west-east cloud width than what was observed. Large-eddy simulations (LES) were performed to study the dynamical, microphysical, and radiative processes in the 26 November 1991 FIRE 11 cirrus event. The LES model is based on the RAMS version 3b developed at Colorado State University. It includes a new radiation scheme developed by Harrington (1997) and a new subgrid scale model developed by Kosovic (1996). The LES model simulated a single cloud layer for Case 1 and a two-layer cloud structure for Case 2. The simulations demonstrated that latent heat release can play a significant role in the formation and development of cirrus clouds. For the thin cirrus in Case 1, the latent heat release was insufficient for the cirrus clouds to become positively buoyant. However, in some special cases such as Case 2, positively buoyant cells can be embedded within the cirrus layers. These cells were so active that the rising updraft induced its own pressure perturbations that affected the cloud evolution. Vertical profiles of the total radiative and latent heating rates indicated that for well developed, deep, and active cirrus clouds, radiative cooling and latent
Direct and large-eddy simulation IX
Kuerten, Hans; Geurts, Bernard; Armenio, Vincenzo
2015-01-01
This volume reflects the state of the art of numerical simulation of transitional and turbulent flows and provides an active forum for discussion of recent developments in simulation techniques and understanding of flow physics. Following the tradition of earlier DLES workshops, these papers address numerous theoretical and physical aspects of transitional and turbulent flows. At an applied level it contributes to the solution of problems related to energy production, transportation, magneto-hydrodynamics and the environment. A special session is devoted to quality issues of LES. The ninth Workshop on 'Direct and Large-Eddy Simulation' (DLES-9) was held in Dresden, April 3-5, 2013, organized by the Institute of Fluid Mechanics at Technische Universität Dresden. This book is of interest to scientists and engineers, both at an early level in their career and at more senior levels.
Large eddy simulation applications in gas turbines.
Menzies, Kevin
2009-07-28
The gas turbine presents significant challenges to any computational fluid dynamics techniques. The combination of a wide range of flow phenomena with complex geometry is difficult to model in the context of Reynolds-averaged Navier-Stokes (RANS) solvers. We review the potential for large eddy simulation (LES) in modelling the flow in the different components of the gas turbine during a practical engineering design cycle. We show that while LES has demonstrated considerable promise for reliable prediction of many flows in the engine that are difficult for RANS it is not a panacea and considerable application challenges remain. However, for many flows, especially those dominated by shear layer mixing such as in combustion chambers and exhausts, LES has demonstrated a clear superiority over RANS for moderately complex geometries although at significantly higher cost which will remain an issue in making the calculations relevant within the design cycle.
Large-eddy simulation of contrails
Energy Technology Data Exchange (ETDEWEB)
Chlond, A. [Max-Planck-Inst. fuer Meteorologie, Hamburg (Germany)
1997-12-31
A large eddy simulation (LES) model has been used to investigate the role of various external parameters and physical processes in the life-cycle of contrails. The model is applied to conditions that are typical for those under which contrails could be observed, i.e. in an atmosphere which is supersaturated with respect to ice and at a temperature of approximately 230 K or colder. The sensitivity runs indicate that the contrail evolution is controlled primarily by humidity, temperature and static stability of the ambient air and secondarily by the baroclinicity of the atmosphere. Moreover, it turns out that the initial ice particle concentration and radiative processes are of minor importance in the evolution of contrails at least during the 30 minutes simulation period. (author) 9 refs.
Toward large eddy simulation of turbulent flow over an airfoil
Choi, Haecheon
1993-01-01
The flow field over an airfoil contains several distinct flow characteristics, e.g. laminar, transitional, turbulent boundary layer flow, flow separation, unstable free shear layers, and a wake. This diversity of flow regimes taxes the presently available Reynolds averaged turbulence models. Such models are generally tuned to predict a particular flow regime, and adjustments are necessary for the prediction of a different flow regime. Similar difficulties are likely to emerge when the large eddy simulation technique is applied with the widely used Smagorinsky model. This model has not been successful in correctly representing different turbulent flow fields with a single universal constant and has an incorrect near-wall behavior. Germano et al. (1991) and Ghosal, Lund & Moin have developed a new subgrid-scale model, the dynamic model, which is very promising in alleviating many of the persistent inadequacies of the Smagorinsky model: the model coefficient is computed dynamically as the calculation progresses rather than input a priori. The model has been remarkably successful in prediction of several turbulent and transitional flows. We plan to simulate turbulent flow over a '2D' airfoil using the large eddy simulation technique. Our primary objective is to assess the performance of the newly developed dynamic subgrid-scale model for computation of complex flows about aircraft components and to compare the results with those obtained using the Reynolds average approach and experiments. The present computation represents the first application of large eddy simulation to a flow of aeronautical interest and a key demonstration of the capabilities of the large eddy simulation technique.
Regularization modeling for large-eddy simulation of diffusion flames
Geurts, Bernardus J.; Wesseling, P.; Oñate, E.; Périaux, J.
We analyze the evolution of a diffusion flame in a turbulent mixing layer using large-eddy simulation. The large-eddy simulation includes Leray regularization of the convective transport and approximate inverse filtering to represent the chemical source terms. The Leray model is compared to the more
Large eddy simulation of compartment fires
Trouvé, Arnaud; Wang, Yi
2010-12-01
This paper is aimed at illustrating the capabilities of contemporary large eddy simulation (LES) solvers for compartment fire applications. Compartment fires refer to fires occurring indoors and feature a variety of complex phenomena associated with smoke accumulation and restricted air ventilation. The article provides a brief presentation of the main features of compartment fire dynamics followed by a review of the modelling challenges found in a LES treatment of these dominant features. The discussion shows that in addition to a suitable model for the turbulent flow dynamics, simulations of compartment fires require a collection of physical sub-models in order to describe a large range of multi-physics phenomena, including pyrolysis processes, buoyancy-driven flow, combustion, soot formation and thermal radiation. Some examples of LES simulations of compartment fires are also presented, using two different solvers that represent the current state-of-the-art of compartment fire modelling: FDS developed by the National Institute of Standards and Technology, USA, and FireFOAM developed by FM Global, USA. Both solvers are available as free open-source software and are representative of ongoing efforts within the fire research and engineering community to self-organise and to promote the general area of LES-based fire modelling.
Large eddy simulation of stably stratified turbulence
International Nuclear Information System (INIS)
Shen Zhi; Zhang Zhaoshun; Cui Guixiang; Xu Chunxiao
2011-01-01
Stably stratified turbulence is a common phenomenon in atmosphere and ocean. In this paper the large eddy simulation is utilized for investigating homogeneous stably stratified turbulence numerically at Reynolds number Re = uL/v = 10 2 ∼10 3 and Froude number Fr = u/NL = 10 −2 ∼10 0 in which u is root mean square of velocity fluctuations, L is integral scale and N is Brunt-Vaïsälä frequency. Three sets of computation cases are designed with different initial conditions, namely isotropic turbulence, Taylor Green vortex and internal waves, to investigate the statistical properties from different origins. The computed horizontal and vertical energy spectra are consistent with observation in atmosphere and ocean when the composite parameter ReFr 2 is greater than O(1). It has also been found in this paper that the stratification turbulence can be developed under different initial velocity conditions and the internal wave energy is dominated in the developed stably stratified turbulence.
Large eddy simulation of ceiling jet behaviour
International Nuclear Information System (INIS)
Sharma, Pavan K.; Singh, R.K.
2014-01-01
Development of a ceiling jet is a primary feature of a compartment fire hydrogen transport in nuclear reactor containment. This phenomenon is caused by the buoyant fire/hydrogen plume hitting the ceiling of the compartment and spreading along it. In context of fire safety ceiling jets is of primary interest for the two main reasons. First, the rate of ceiling jet spread controls the smoke filling rate in a compartment, and eventually determines level of fire hazard to occupants. Second, activation of sprinklers and smoke detectors rely on temperature or smoke concentration rise in ceiling jets. Therefore, knowledge of fluid mechanics characteristics of ceiling jets is essential for design of fire control systems. In the present study, jet front propagation along the ceiling is predicted using the Large Eddy Simulation (LES) method. The predicted propagation rate is in good agreement with the available experimental data. Results of LES simulation are also compared with the conventional Reynolds-Averaged Navier- Stokes (RANS) predictions and correlations based on dimensional analysis. (author)
Large-eddy simulations for turbulent flows
International Nuclear Information System (INIS)
Husson, S.
2007-07-01
The aim of this work is to study the impact of thermal gradients on a turbulent channel flow with imposed wall temperatures and friction Reynolds numbers of 180 and 395. In this configuration, temperature variations can be strong and induce significant variations of the fluid properties. We consider the low Mach number equations and carry out large eddy simulations. We first validate our simulations thanks to comparisons of some of our LES results with DNS data. Then, we investigate the influence of the variations of the conductivity and the viscosity and show that we can assume these properties constant only for weak temperature gradients. We also study the thermal sub-grid-scale modelling and find no difference when the sub-grid-scale Prandtl number is taken constant or dynamically calculated. The analysis of the effects of strongly increasing the temperature ratio mainly shows a dissymmetry of the profiles. The physical mechanism responsible of these modifications is explained. Finally, we use semi-local scaling and the Van Driest transformation and we show that they lead to a better correspondence of the low and high temperature ratios profiles. (author)
Large-Eddy Simulation of a microburst
Directory of Open Access Journals (Sweden)
V. Anabor
2011-09-01
Full Text Available The three-dimensional structure and evolution of an isolated and stationary microburst are simulated using a time-dependent, high resolution Large-Eddy-Simulation (LES model. The microburst is initiated by specifying a simplified cooling source at the top of the domain around 2 km a.g.l. that leads to a strong downdraft. Surface winds of the order of 30 m s^{−1} were obtained over a region of 500 m radius around the central point of the impinging downdraft, with the simulated microburst lasting for a few minutes. These characteristic length and time scales are consistent with results obtained from numerical simulations of microbursts using cloud-resolving models. The simulated flow replicated some of the principal features of microbursts observed by Doppler radars: in particular, the horizontal spread of strong surface winds and a ring vortex at the leading edge of the cold outflow. In addition to the primary surface outflow, the simulation also generated a secondary surge of strong winds that appears to represent a pulsation in the microburst evolution.
These results highlight the capability of LES to reproduce complex phenomena like microbursts, indicating the potential usage of LES models to represent atmospheric phenomena of time and space scales between the convective scale and the microscale. These include short-lived convectively-generated damaging winds.
Large Eddy Simulation (LES for IC Engine Flows
Directory of Open Access Journals (Sweden)
Kuo Tang-Wei
2013-10-01
Full Text Available Numerical computations are carried out using an engineering-level Large Eddy Simulation (LES model that is provided by a commercial CFD code CONVERGE. The analytical framework and experimental setup consist of a single cylinder engine with Transparent Combustion Chamber (TCC under motored conditions. A rigorous working procedure for comparing and analyzing the results from simulation and high speed Particle Image Velocimetry (PIV experiments is documented in this work. The following aspects of LES are analyzed using this procedure: number of cycles required for convergence with adequate accuracy; effect of mesh size, time step, sub-grid-scale (SGS turbulence models and boundary condition treatments; application of the proper orthogonal decomposition (POD technique.
Directory of Open Access Journals (Sweden)
Pekka E Saarinen
Full Text Available The use of hospital isolation rooms has increased considerably in recent years due to the worldwide outbreaks of various emerging infectious diseases. However, the passage of staff through isolation room doors is suspected to be a cause of containment failure, especially in case of hinged doors. It is therefore important to minimize inadvertent contaminant airflow leakage across the doorway during such movements. To this end, it is essential to investigate the behavior of such airflows, especially the overall volume of air that can potentially leak across the doorway during door-opening and human passage. Experimental measurements using full-scale mock-ups are expensive and labour intensive. A useful alternative approach is the application of Computational Fluid Dynamics (CFD modelling using a time-resolved Large Eddy Simulation (LES method. In this study simulated air flow patterns are qualitatively compared with experimental ones, and the simulated total volume of air that escapes is compared with the experimentally measured volume. It is shown that the LES method is able to reproduce, at room scale, the complex transient airflows generated during door-opening/closing motions and the passage of a human figure through the doorway between two rooms. This was a basic test case that was performed in an isothermal environment without ventilation. However, the advantage of the CFD approach is that the addition of ventilation airflows and a temperature difference between the rooms is, in principle, a relatively simple task. A standard method to observe flow structures is dosing smoke into the flow. In this paper we introduce graphical methods to simulate smoke experiments by LES, making it very easy to compare the CFD simulation to the experiments. The results demonstrate that the transient CFD simulation is a promising tool to compare different isolation room scenarios without the need to construct full-scale experimental models. The CFD model is
Jiang, Zhou; Xia, Zhenhua; Shi, Yipeng; Chen, Shiyi
2018-04-01
A fully developed spanwise rotating turbulent channel flow has been numerically investigated utilizing large-eddy simulation. Our focus is to assess the performances of the dynamic variants of eddy viscosity models, including dynamic Vreman's model (DVM), dynamic wall adapting local eddy viscosity (DWALE) model, dynamic σ (Dσ ) model, and the dynamic volumetric strain-stretching (DVSS) model, in this canonical flow. The results with dynamic Smagorinsky model (DSM) and direct numerical simulations (DNS) are used as references. Our results show that the DVM has a wrong asymptotic behavior in the near wall region, while the other three models can correctly predict it. In the high rotation case, the DWALE can get reliable mean velocity profile, but the turbulence intensities in the wall-normal and spanwise directions show clear deviations from DNS data. DVSS exhibits poor predictions on both the mean velocity profile and turbulence intensities. In all three cases, Dσ performs the best.
Large-eddy simulation of an offshore Mediterranean area
DEFF Research Database (Denmark)
Rizza, Umberto; Miglietta, Mario M.; Sempreviva, Anna Maria
2014-01-01
in order to optimize the structural design of offshore large wind turbines that today reach heights up to 200 m. Large-eddy simulations (LESs) have been performed and compared with offshore experimental data collected during the LASIE campaign performed in the Mediterranean during summer 2007. Two...
Large Eddy Simulation of Sydney Swirl Non-Reaction Jets
DEFF Research Database (Denmark)
Yang, Yang; Kær, Søren Knudsen; Yin, Chungen
The Sydney swirl burner non-reaction case was studied using large eddy simulation. The two-point correlation method was introduced and used to estimate grid resolution. Energy spectra and instantaneous pressure and velocity plots were used to identify features in flow field. By using these method......, vortex breakdown and precessing vortex core are identified and different flow zones are shown....
Space-time multiscale methods for Large Eddy Simulation
Munts, E.A.
2006-01-01
The Variational Multiscale (VMS) method has appeared as a promising new approach to the Large Eddy Simulation (LES) of turbulent flows. The key advantage of the VMS approach is that it allows different subgrid-scale (SGS) modeling assumptions to be made at different ranges of the resolved scales.
Analysis of errors occurring in large eddy simulation
Geurts, Bernardus J.
We analyse the effect of second- and fourth-order accurate central finite-volume discretizations on the outcome of large eddy simulations of homogeneous, isotropic, decaying turbulence at an initial Taylor Reynolds number $Re_\\lambda=100.$ We determine the implicit filter that is induced by the
Large-eddy simulations of fluid and magnetohydrodynamic ...
Indian Academy of Sciences (India)
both computer time and memory, even in modern computers. For example, a pseudo-spectral simulation by ... memory space, an ingenious technique called large-eddy simulation (LES) has been developed (see review article by Métais [4] .... Hence our LES model is working very well. We solve Navier–Stokes equation in ...
Large-eddy simulations of fluid and magnetohydrodynamic ...
Indian Academy of Sciences (India)
In this paper a procedure for large-eddy simulation (LES) has been devised for fluid and magnetohydrodynamic turbulence in Fourier space using the renormalized parameters; The parameters calculated using field theory have been taken from recent papers by Verma [1, 2]. We have carried out LES on 643 grid.
Large eddy simulations of flow instabilities in a stirred tank generate by a Rushton turbine
DEFF Research Database (Denmark)
Fan, Jianhua; Wang, Yundong; Fei, Weiyang
2007-01-01
The aim of this paper is to investigate the flow instabilities in a baffled, stirred tank generated by a single Rushton turbine by means of large eddy simulation (LES) and simulation using the k-ε turbulent model. A sliding mesh method was used for the coupling between the rotating and the statio...
Quality and Reliability of Large-Eddy Simulations
Meyers, Johan; Sagaut, Pierre
2008-01-01
Computational resources have developed to the level that, for the first time, it is becoming possible to apply large-eddy simulation (LES) to turbulent flow problems of realistic complexity. Many examples can be found in technology and in a variety of natural flows. This puts issues related to assessing, assuring, and predicting the quality of LES into the spotlight. Several LES studies have been published in the past, demonstrating a high level of accuracy with which turbulent flow predictions can be attained, without having to resort to the excessive requirements on computational resources imposed by direct numerical simulations. However, the setup and use of turbulent flow simulations requires a profound knowledge of fluid mechanics, numerical techniques, and the application under consideration. The susceptibility of large-eddy simulations to errors in modelling, in numerics, and in the treatment of boundary conditions, can be quite large due to nonlinear accumulation of different contributions over time, ...
Large Eddy Simulations of Flow over Double-Ridge Orography
Goger, Brigitta; Serafin, Stefano; Stiperski, Ivana; Grubišić, Vanda
2014-05-01
Lee waves excited by a single mountain range have been studied extensively in the past. Flow over a single mountain range is often associated with downslope windstorms and turbulence, both of which may pose a hazard for aviation. A particularly turbulent phenomenon associated with large-amplitude lee waves or hydraulic jumps is an atmospheric rotor, characterized by a reversal of surface flow on the lee of the mountain range and turbulent internal structure. In reality, mountain ridges are rarely isolated. Flow over double or multiple ridges can lead to lee wave interference, either enhancing or diminishing the amplitude of lee waves downstream of the ridges. A similar effect can be expected on the flow field in between the individual ridges. To test the influence of secondary topography on lee wave amplitudes, wavelengths, steadiness, and the boundary layer separation point, water-flume experiments are planned with a double ridge setup. In preparation for these experiments, several possible laboratory setups have been simulated numerically with the CM1 model (Bryan Cloud Model 1, version 16) with two- and three-dimensional (2D and 3D) large-eddy simulations (LES). Non-dimensional parameters such as the Froude number (Fr) and the mountain/inversion height ratio (H/zi) are used for classifications of the simulation results. For the 2D simulations, both with a single and double-ridge topography, a series of sensitivity tests were conducted to examine the dependence of the flow field on a number of physical parameters, including the inversion height and strength, horizontal wind speed, and mountain shape. In the double-ridge simulations, a lee wave interference pattern is observed for setups including inversions, and the results mostly agree with previous findings by Stiperski and Grubišić (2011) for nonlinear flow regimes. From the 2D sensitivity tests, special cases were selected for the 3D LES simulations. In the analysis, a special focus was laid on the
A large eddy lattice Boltzmann simulation of magnetohydrodynamic turbulence
Flint, Christopher; Vahala, George
2018-02-01
Large eddy simulations (LES) of a lattice Boltzmann magnetohydrodynamic (LB-MHD) model are performed for the unstable magnetized Kelvin-Helmholtz jet instability. This algorithm is an extension of Ansumali et al. [1] to MHD in which one performs first an expansion in the filter width on the kinetic equations followed by the usual low Knudsen number expansion. These two perturbation operations do not commute. Closure is achieved by invoking the physical constraint that subgrid effects occur at transport time scales. The simulations are in very good agreement with direct numerical simulations.
Domain nesting for multi-scale large eddy simulation
Fuka, Vladimir; Xie, Zheng-Tong
2016-04-01
The need to simulate city scale areas (O(10 km)) with high resolution within street canyons in certain areas of interests necessitates different grid resolutions in different part of the simulated area. General purpose computational fluid dynamics codes typically employ unstructured refined grids while mesoscale meteorological models more often employ nesting of computational domains. ELMM is a large eddy simulation model for the atmospheric boundary layer. It employs orthogonal uniform grids and for this reason domain nesting was chosen as the approach for simulations in multiple scales. Domains are implemented as sets of MPI processes which communicate with each other as in a normal non-nested run, but also with processes from another (outer/inner) domain. It should stressed that the duration of solution of time-steps in the outer and in the inner domain must be synchronized, so that the processes do not have to wait for the completion of their boundary conditions. This can achieved by assigning an appropriate number of CPUs to each domain, and to gain high efficiency. When nesting is applied for large eddy simulation, the inner domain receives inflow boundary conditions which lack turbulent motions not represented by the outer grid. ELMM remedies this by optional adding of turbulent fluctuations to the inflow using the efficient method of Xie and Castro (2008). The spatial scale of these fluctuations is in the subgrid-scale of the outer grid and their intensity will be estimated from the subgrid turbulent kinetic energy in the outer grid.
Large Eddy Simulation of Flame Flashback in Swirling Premixed Flames
Lietz, Christopher; Raman, Venkatramanan
2014-11-01
In the design of high-hydrogen content gas turbines for power generation, flashback of the turbulent flame by propagation through the low velocity boundary layers in the premixing region is an operationally dangerous event. Predictive models that could accurately capture the onset and subsequent behavior of flashback would be indispensable in gas turbine design. The large eddy simulation (LES) approach is used here to model this process. The goal is to examine the validity of a probability distribution function (PDF) based model in the context of a lean premixed flame in a confined geometry. A turbulent swirling flow geometry and corresponding experimental data is used for validation. A suite of LES calculations are performed on a large unstructured mesh for varying fuel compositions operating at several equivalence ratios. It is shown that the PDF based method can predict some statistical properties of the flame front, with improvement over other models in the same application.
A Coherent vorticity preserving eddy-viscosity correction for Large-Eddy Simulation
Chapelier, J.-B.; Wasistho, B.; Scalo, C.
2018-04-01
This paper introduces a new approach to Large-Eddy Simulation (LES) where subgrid-scale (SGS) dissipation is applied proportionally to the degree of local spectral broadening, hence mitigated or deactivated in regions dominated by large-scale and/or laminar vortical motion. The proposed coherent-vorticity preserving (CvP) LES methodology is based on the evaluation of the ratio of the test-filtered to resolved (or grid-filtered) enstrophy, σ. Values of σ close to 1 indicate low sub-test-filter turbulent activity, justifying local deactivation of the SGS dissipation. The intensity of the SGS dissipation is progressively increased for σ vortex breakdown demonstrates that the CvP methodology improves the performance of traditional, non-dynamic dissipative SGS models, capturing the peak of total turbulent kinetic energy dissipation during transition. Similar accuracy is obtained by adopting Germano's dynamic procedure albeit at more than twice the computational overhead. A CvP-LES of a pair of unstable periodic helical vortices is shown to predict accurately the experimentally observed growth rate using coarse resolutions. The ability of the CvP methodology to dynamically sort the coherent, large-scale motion from the smaller, broadband scales during transition is demonstrated via flow visualizations. LES of compressible channel are carried out and show a good match with a reference DNS.
Large eddy simulation of turbulent mixing in a T-junction
International Nuclear Information System (INIS)
Kim, Jung Woo
2010-12-01
In this report, large eddy simulation was performed in order to further improve our understanding the physics of turbulent mixing in a T-junction, which is recently regarded as one of the most important problems in nuclear thermal-hydraulics safety. Large eddy simulation technique and the other numerical methods used in this study were presented in Sec. 2, and the numerical results obtained from large eddy simulation were described in Sec. 3. Finally, the summary was written in Sec. 4
Large-eddy simulation of turbulent circular jet flows
Energy Technology Data Exchange (ETDEWEB)
Jones, S. C. [Georgia Inst. of Technology, Atlanta, GA (United States); Sotiropoulos, F. [Georgia Inst. of Technology, Atlanta, GA (United States); Sale, M. J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2002-07-01
This report presents a numerical method for carrying out large-eddy simulations (LES) of turbulent free shear flows and an application of a method to simulate the flow generated by a nozzle discharging into a stagnant reservoir. The objective of the study was to elucidate the complex features of the instantaneous flow field to help interpret the results of recent biological experiments in which live fish were exposed to the jet shear zone. The fish-jet experiments were conducted at the Pacific Northwest National Laboratory (PNNL) under the auspices of the U.S. Department of Energy’s Advanced Hydropower Turbine Systems program. The experiments were designed to establish critical thresholds of shear and turbulence-induced loads to guide the development of innovative, fish-friendly hydropower turbine designs.
Large eddy simulation of vortex breakdown behind a delta wing
International Nuclear Information System (INIS)
Mary, I.
2003-01-01
A large eddy simulation (LES) of a turbulent flow past a 70 deg. sweep angle delta wing is performed and compared with wind tunnel experiments. The angle of attack and the Reynolds number based on the root chord are equal to 27 deg. and 1.6x10 6 , respectively. Due to the high value of the Reynolds number and the three-dimensional geometry, the mesh resolution usually required by LES cannot be reached. Therefore a local mesh refinement technique based on semi-structured grids is proposed, whereas different wall functions are assessed in this paper. The goal is to evaluate if these techniques are sufficient to provide an accurate solution of such flow on available supercomputers. An implicit Miles model is retained for the subgrid scale (SGS) modelling because the resolution is too coarse to take advantage of more sophisticated SGS models. The solution sensitivity to grid refinement in the streamwise and wall normal direction is investigated
Quality and Reliability of Large-Eddy Simulations II
Salvetti, Maria Vittoria; Meyers, Johan; Sagaut, Pierre
2011-01-01
The second Workshop on "Quality and Reliability of Large-Eddy Simulations", QLES2009, was held at the University of Pisa from September 9 to September 11, 2009. Its predecessor, QLES2007, was organized in 2007 in Leuven (Belgium). The focus of QLES2009 was on issues related to predicting, assessing and assuring the quality of LES. The main goal of QLES2009 was to enhance the knowledge on error sources and on their interaction in LES and to devise criteria for the prediction and optimization of simulation quality, by bringing together mathematicians, physicists and engineers and providing a platform specifically addressing these aspects for LES. Contributions were made by leading experts in the field. The present book contains the written contributions to QLES2009 and is divided into three parts, which reflect the main topics addressed at the workshop: (i) SGS modeling and discretization errors; (ii) Assessment and reduction of computational errors; (iii) Mathematical analysis and foundation for SGS modeling.
Generating wind fluctuations for Large Eddy Simulation inflow boundary condition
International Nuclear Information System (INIS)
Bekele, S.A.; Hangan, H.
2004-01-01
Large Eddy Simulation (LES) studies of flows over bluff bodies immersed in a boundary layer wind environment require instantaneous wind characteristics. The influences of the wind environment on the building pressure distribution are a well-established fact in the experimental study of wind engineering. Measured wind data of full or model scale are available only at a limited number of points. A method of obtaining instantaneous wind data at all mesh points of the inlet boundary for LES computation is necessary. Herein previous and new wind inflow generation techniques are presented. The generated wind data is then applied to a LES computation of a channel flow. The characteristics of the generated wind fluctuations in comparison to the measured data and the properties of the flow field computed from these two wind data are discussed. (author)
Large-eddy simulation of atmospheric flow over complex terrain
DEFF Research Database (Denmark)
Bechmann, Andreas
2007-01-01
The present report describes the development and validation of a turbulence model designed for atmospheric flows based on the concept of Large-Eddy Simulation (LES). The background for the work is the high Reynolds number k - #epsilon# model, which has been implemented on a finite-volume code...... of the incompressible Reynolds-averaged Navier-Stokes equations (RANS). The k - #epsilon# model is traditionally used for RANS computations, but is here developed to also enable LES. LES is able to provide detailed descriptions of a wide range of engineering flows at low Reynolds numbers. For atmospheric flows, however......, the high Reynolds numbers and the rough surface of the earth provide difficulties normally not compatible with LES. Since these issues are most severe near the surface they are addressed by handling the near surface region with RANS and only use LES above this region. Using this method, the developed...
Large Eddy Simulations of turbulent flows at supercritical pressure
Energy Technology Data Exchange (ETDEWEB)
Kunik, C.; Otic, I.; Schulenberg, T., E-mail: claus.kunik@kit.edu, E-mail: ivan.otic@kit.edu, E-mail: thomas.schulenberg@kit.edu [Karlsruhe Inst. of Tech. (KIT), Karlsruhe (Germany)
2011-07-01
A Large Eddy Simulation (LES) method is used to investigate turbulent heat transfer to CO{sub 2} at supercritical pressure for upward flows. At those pressure conditions the fluid undergoes strong variations of fluid properties in a certain temperature range, which can lead to a deterioration of heat transfer (DHT). In this analysis, the LES method is applied on turbulent forced convection conditions to investigate the influence of several subgrid scale models (SGS-model). At first, only velocity profiles of the so-called inflow generator are considered, whereas in the second part temperature profiles of the heated section are investigated in detail. The results are statistically analyzed and compared with DNS data from the literature. (author)
GPU Accelerated DG-FDF Large Eddy Simulator
Inkarbekov, Medet; Aitzhan, Aidyn; Sammak, Shervin; Givi, Peyman; Kaltayev, Aidarkhan
2017-11-01
A GPU accelerated simulator is developed and implemented for large eddy simulation (LES) of turbulent flows. The filtered density function (FDF) is utilized for modeling of the subgrid scale quantities. The filtered transport equations are solved via a discontinuous Galerkin (DG) and the FDF is simulated via particle based Lagrangian Monte-Carlo (MC) method. It is demonstrated that the GPUs simulations are of the order of 100 times faster than the CPU-based calculations. This brings LES of turbulent flows to a new level, facilitating efficient simulation of more complex problems. The work at Al-Faraby Kazakh National University is sponsored by MoES of RK under Grant 3298/GF-4.
Large Eddy Simulation for Incompressible Flows An Introduction
Sagaut, P
2005-01-01
The first and most exhaustive work of its kind devoted entirely to the subject, Large Eddy Simulation presents a comprehensive account and a unified view of this young but very rich discipline. LES is the only efficient technique for approaching high Reynolds numbers when simulating industrial, natural or experimental configurations. The author concentrates on incompressible fluids and chooses his topics in treating with care both the mathematical ideas and their applications. The book addresses researchers as well as graduate students and engineers. The second edition was a greatly enriched version motivated both by the increasing theoretical interest in LES and the increasing number of applications. Two entirely new chapters were devoted to the coupling of LES with multiresolution multidomain techniques and to the new hybrid approaches that relate the LES procedures to the classical statistical methods based on the Reynolds-Averaged Navier-Stokes equations. This 3rd edition adds various sections to the text...
Large Eddy Simulation of the ventilated wave boundary layer
DEFF Research Database (Denmark)
Lohmann, Iris P.; Fredsøe, Jørgen; Sumer, B. Mutlu
2006-01-01
A Large Eddy Simulation (LES) of (1) a fully developed turbulent wave boundary layer and (2) case 1 subject to ventilation (i.e., suction and injection varying alternately in phase) has been performed, using the Smagorinsky subgrid-scale model to express the subgrid viscosity. The model was found...... to reproduce experimental results well. However, in case 1, the near-bed ensemble averaged velocity is underestimated during the acceleration stage, probably due to the Smagorinsky subgrid-scale model not being able to capture the physics well in that region. Also, there is a general overestimation...... slows down the flow in the full vertical extent of the boundary layer, destabilizes the flow and decreases the mean bed shear stress significantly; whereas suction generally speeds up the flow in the full vertical extent of the boundary layer, stabilizes the flow and increases the mean bed shear stress...
Large Eddy Simulation of Turbulent Flows in Wind Energy
DEFF Research Database (Denmark)
Chivaee, Hamid Sarlak
Reynolds numbers, and thereafter, the fully-developed infinite wind farm boundary later simulations are performed. Sources of inaccuracy in the simulations are investigated and it is found that high Reynolds number flows are more sensitive to the choice of the SGS model than their low Reynolds number......This research is devoted to the Large Eddy Simulation (LES), and to lesser extent, wind tunnel measurements of turbulent flows in wind energy. It starts with an introduction to the LES technique associated with the solution of the incompressible Navier-Stokes equations, discretized using a finite...... volume method. The study is followed by a detailed investigation of the Sub-Grid Scale (SGS) modeling. New SGS models are implemented into the computing code, and the effect of SGS models are examined for different applications. Fully developed boundary layer flows are investigated at low and high...
Large Eddy Simulation for an inherent boron dilution transient
International Nuclear Information System (INIS)
Jayaraju, S.T.; Sathiah, P.; Komen, E.M.J.; Baglietto, E.
2013-01-01
Highlights: • Large Eddy Simulation is performed for a transient boron dilution scenario in the scaled experimental facility of ROCOM. • Fully conformal polyhedral grid of 14 million is created to capture all details of the domain. • Systematic multi-step validation methodology is followed to assess the accuracy of LES model. • For the presently simulated BDT scenario, the LES results lend support to its reliability in consistently predicting the slug transport in the RPV. -- Abstract: The present paper focuses on the validation and applicability of large eddy simulation (LES) to analyze the transport and mixing in the reactor pressure vessel (RPV) during an inherent boron dilution transient (BDT) scenario. Extensive validation data comes from relevant integral tests performed in the scaled ROCOM experimental facility. The modeling of sub-grid-scales is based on the WALE model. A fully conformal polyhedral grid of about 15 million cells is constructed to capture all details in the domain, including the complex structures of the lower-plenum. Detailed qualitative and quantitative validations are performed by following a systematic multi-step validation methodology. Qualitative comparisons to the experimental data in the cold legs, downcomer and the core inlet showed good predictions by the LES model. Minor deviations seen in the quantitative comparisons are rigorously quantified. A key parameter which is affecting the core neutron kinetics response is the value of highest deborated slug concentration that occurs at the core inlet during the transient. Detailed analyses are made at the core inlet to evaluate not only the value of the maximum slug concentration, but also the location and the time at which it occurs during the transient. The relative differences between the ensemble averaged experimental data and CFD predictions were within the range of relative differences seen within 10 different experimental realizations. For the studied scenario, the
Large-Eddy Simulation of Coherent Flow Structures within a Cubical Canopy
Inagaki, Atsushi; Castillo, Marieta Cristina L.; Yamashita, Yoshimi; Kanda, Manabu; Takimoto, Hiroshi
2012-02-01
Instantaneous flow structures "within" a cubical canopy are investigated via large-eddy simulation. The main topics of interest are, (1) large-scale coherent flow structures within a cubical canopy, (2) how the structures are coupled with the turbulent organized structures (TOS) above them, and (3) the classification and quantification of representative instantaneous flow patterns within a street canyon in relation to the coherent structures. We use a large numerical domain (2,560 m × 2,560 m × 1,710 m) with a fine spatial resolution (2.5 m), thereby simulating a complete daytime atmospheric boundary layer (ABL), as well as explicitly resolving a regular array of cubes (40 m in height) at the surface. A typical urban ABL is numerically modelled. In this situation, the constant heat supply from roof and floor surfaces sustains a convective mixed layer as a whole, but strong wind shear near the canopy top maintains the surface layer nearly neutral. The results reveal large coherent structures in both the velocity and temperature fields "within" the canopy layer. These structures are much larger than the cubes, and their shapes and locations are shown to be closely related to the TOS above them. We classify the instantaneous flow patterns in a cavity, specifically focusing on two characteristic flow patterns: flushing and cavity-eddy events. Flushing indicates a strong upward motion, while a cavity eddy is characterized by a dominant vortical motion within a single cavity. Flushing is clearly correlated with the TOS above, occurring frequently beneath low-momentum streaks. The instantaneous momentum and heat transport within and above a cavity due to flushing and cavity-eddy events are also quantified.
Realizability conditions for the turbulent stress tensor in large-eddy simulation
Vreman, A.W.; Geurts, Bernardus J.; Kuerten, Johannes G.M.
1994-01-01
The turbulent stress tensor in large-eddy simulation is examined from a theoretical point of view. Realizability conditions for the components of this tensor are derived, which hold if and only if the filter function is positive. The spectral cut-off, one of the filters frequently used in large-eddy
Xiangyang Zhou; Shankar Mahalingam; David Weise
2007-01-01
This paper presents a combined study of laboratory scale fire spread experiments and a three-dimensional large eddy simulation (LES) to analyze the effect of terrain slope on marginal burning behavior in live chaparral shrub fuel beds. Line fire was initiated in single species fuel beds of four common chaparral plants under various fuel bed configurations and ambient...
Large Eddy Simulation of Supercritical CO2 Through Bend Pipes
He, Xiaoliang; Apte, Sourabh; Dogan, Omer
2017-11-01
Supercritical Carbon Dioxide (sCO2) is investigated as working fluid for power generation in thermal solar, fossil energy and nuclear power plants at high pressures. Severe erosion has been observed in the sCO2 test loops, particularly in nozzles, turbine blades and pipe bends. It is hypothesized that complex flow features such as flow separation and property variations may lead to large oscillations in the wall shear stresses and result in material erosion. In this work, large eddy simulations are conducted at different Reynolds numbers (5000, 27,000 and 50,000) to investigate the effect of heat transfer in a 90 degree bend pipe with unit radius of curvature in order to identify the potential causes of the erosion. The simulation is first performed without heat transfer to validate the flow solver against available experimental and computational studies. Mean flow statistics, turbulent kinetic energy, shear stresses and wall force spectra are computed and compared with available experimental data. Formation of counter-rotating vortices, named Dean vortices, are observed. Secondary flow pattern and swirling-switching flow motions are identified and visualized. Effects of heat transfer on these flow phenomena are then investigated by applying a constant heat flux at the wall. DOE Fossil Energy Crosscutting Technology Research Program.
Large eddy simulation of flame flashback in a turbulent channel
Hassanaly, Malik; Lietz, Christopher; Raman, Venkat; Kolla, Hemanth; Chen, Jacqueline; Gruber, Andrea; Computational Flow Physics Group Team
2014-11-01
In high-hydrogen content gas turbines, the propagation of a premixed flame along with boundary layers on the combustor walls is a source of failure, whereby the flame could enter the fuel-air premixing region that is not designed to hold high-temperature fluid. In order to develop models for predicting this phenomenon, a large eddy simulation (LES) based study is carried out here. The flow configuration is based on a direct numerical simulation (DNS) of a turbulent channel, where an initial planar flame is allowed to propagate upstream in a non-periodic channel. The LES approach uses a flamelet-based combustion model along with standard models for the unresolved subfilter flux terms. It is found that the LES are very accurate in predicting the structure of the turbulent flame front. However, there was a large discrepancy for the transient evolution of the flame, indicating that the flame-boundary layer interaction modulates flame propagation significantly, and the near-wall flame behavior may be non-flamelet like due to the anisotropic of the flow in this region.
Large-Eddy Simulation of turbulent vortex shedding
International Nuclear Information System (INIS)
Archambeau, F.
1995-06-01
This thesis documents the development and application of a computational algorithm for Large-Eddy Simulation. Unusually, the method adopts a fully collocated variable storage arrangement and is applicable to complex, non-rectilinear geometries. A Reynolds-averaged Navier-Stokes algorithm has formed the starting point of the development, but has been modified substantially: the spatial approximation of convection is effected by an energy-conserving central-differencing scheme; a second-order time-marching Adams-Bashforth scheme has been introduced; the pressure field is determined by solving the pressure-Poisson equation; this equation is solved either by use of preconditioned Conjugate-Gradient methods or with the Generalised Minimum Residual method; two types of sub-grid scale models have been introduced and examined. The algorithm has been validated by reference to a hierarchy of unsteady flows of increasing complexity starting with unsteady lid-driven cavity flows and ending with 3-D turbulent vortex shedding behind a square prism. In the latter case, for which extensive experimental data are available, special emphasis has been put on examining the dependence of the results on mesh density, near-wall treatment and the nature of the sub-grid-scale model, one of which is an advanced dynamic model. The LES scheme is shown to return time-average and phase-averaged results which agree well with experimental data and which support the view that LES is a promising approach for unsteady flows dominated by large periodic structures. (author)
Large Eddy Simulation of Film-Cooling Jets
Iourokina, Ioulia
2005-11-01
Large Eddy Simulation of inclined jets issuing into a turbulent boundary layer crossflow has been performed. The simulation models film-cooling experiments of Pietrzyk et al. (J. of. Turb., 1989), consisting of a large plenum feeding an array of jets inclined at 35ÃÂ° to the flat surface with a pitch 3D and L/D=3.5. The blowing ratio is 0.5 with unity density ratio. The numerical method used is a hybrid combining external compressible solver with a low-Mach number code for the plenum and film holes. Vorticity dynamics pertinent to jet-in-crossflow interactions is analyzed and three-dimensional vortical structures are revealed. Turbulence statistics are compared to the experimental data. The turbulence production due to shearing in the crossflow is compared to that within the jet hole. The influence of three-dimensional coherent structures on the wall heat transfer is investigated and strategies to increase film- cooling performance are discussed.
Large Eddy Simulation of High-Speed, Premixed Ethylene Combustion
Ramesh, Kiran; Edwards, Jack R.; Chelliah, Harsha; Goyne, Christopher; McDaniel, James; Rockwell, Robert; Kirik, Justin; Cutler, Andrew; Danehy, Paul
2015-01-01
A large-eddy simulation / Reynolds-averaged Navier-Stokes (LES/RANS) methodology is used to simulate premixed ethylene-air combustion in a model scramjet designed for dual mode operation and equipped with a cavity for flameholding. A 22-species reduced mechanism for ethylene-air combustion is employed, and the calculations are performed on a mesh containing 93 million cells. Fuel plumes injected at the isolator entrance are processed by the isolator shock train, yielding a premixed fuel-air mixture at an equivalence ratio of 0.42 at the cavity entrance plane. A premixed flame is anchored within the cavity and propagates toward the opposite wall. Near complete combustion of ethylene is obtained. The combustor is highly dynamic, exhibiting a large-scale oscillation in global heat release and mass flow rate with a period of about 2.8 ms. Maximum heat release occurs when the flame front reaches its most downstream extent, as the flame surface area is larger. Minimum heat release is associated with flame propagation toward the cavity and occurs through a reduction in core flow velocity that is correlated with an upstream movement of the shock train. Reasonable agreement between simulation results and available wall pressure, particle image velocimetry, and OH-PLIF data is obtained, but it is not yet clear whether the system-level oscillations seen in the calculations are actually present in the experiment.
A survey of modelling methods for high-fidelity wind farm simulations using large eddy simulation
DEFF Research Database (Denmark)
Breton, Simon-Philippe; Sumner, J.; Sørensen, Jens Nørkær
2017-01-01
Large eddy simulations (LES) of wind farms have the capability to provide valuable and detailed information about the dynamics of wind turbine wakes. For this reason, their use within the wind energy research community is on the rise, spurring the development of new models and methods. This review...... surveys the most common schemes available to model the rotor, atmospheric conditions and terrain effects within current state-of-the-art LES codes, of which an overview is provided. A summary of the experimental research data available for validation of LES codes within the context of single and multiple...
LARGE EDDY SIMULATIONS OF THE TURBULENT FLOW IN A STIRRED TANK
DEFF Research Database (Denmark)
Fan, Jianhua; Wang, Yundong; Fei, Weiyang
more computational time and computer memory. The results of the present work help to give deep understanding to the mixing mechanisms of the mechanically agitated tank, and can be used as guidance for future development of engineering tools for the design and scale-up of the stirred tank.......Computational fluid dynamics (CFD) simulations of the fluid flow in a baffled, stirred tank with a single Rushton turbine are performed. The simulations are carried out on the “Shengcao-21C” supercomputer via commercial CFD software CFX5, using k-ε and large eddy simulation (LES) turbulence model...
LARGE EDDY SIMULATIONS OF THE TURBULENT FLOW IN A STIRRED TANK
DEFF Research Database (Denmark)
Fan, Jianhua; Wang, Yundong; Fei, Weiyang
2005-01-01
more computational time and computer memory. The results of the present work help to give deep understanding to the mixing mechanisms of the mechanically agitated tank, and can be used as guidance for future development of engineering tools for the design and scale-up of the stirred tank.......Computational fluid dynamics (CFD) simulations of the fluid flow in a baffled, stirred tank with a single Rushton turbine are performed. The simulations are carried out on the “Shengcao-21C” supercomputer via commercial CFD software CFX5, using k-ε and large eddy simulation (LES) turbulence model...
Large-eddy simulation of unidirectional turbulent flow over dunes
Omidyeganeh, Mohammad
We performed large eddy simulation of the flow over a series of two- and three-dimensional dune geometries at laboratory scale using the Lagrangian dynamic eddy-viscosity subgrid-scale model. First, we studied the flow over a standard 2D transverse dune geometry, then bedform three-dimensionality was imposed. Finally, we investigated the turbulent flow over barchan dunes. The results are validated by comparison with simulations and experiments for the 2D dune case, while the results of the 3D dunes are validated qualitatively against experiments. The flow over transverse dunes separates at the dune crest, generating a shear layer that plays a crucial role in the transport of momentum and energy, as well as the generation of coherent structures. Spanwise vortices are generated in the separated shear; as they are advected, they undergo lateral instabilities and develop into horseshoe-like structures and finally reach the surface. The ejection that occurs between the legs of the vortex creates the upwelling and downdrafting events on the free surface known as "boils". The three-dimensional separation of flow at the crestline alters the distribution of wall pressure, which may cause secondary flow across the stream. The mean flow is characterized by a pair of counter-rotating streamwise vortices, with core radii of the order of the flow depth. Staggering the crestlines alters the secondary motion; two pairs of streamwise vortices appear (a strong one, centred about the lobe, and a weaker one, coming from the previous dune, centred around the saddle). The flow over barchan dunes presents significant differences to that over transverse dunes. The flow near the bed, upstream of the dune, diverges from the centerline plane; the flow close to the centerline plane separates at the crest and reattaches on the bed. Away from the centerline plane and along the horns, flow separation occurs intermittently. The flow in the separation bubble is routed towards the horns and leaves
Estimation of turbulence dissipation rate by Large eddy PIV method in an agitated vessel
Directory of Open Access Journals (Sweden)
Kysela Bohuš
2015-01-01
Full Text Available The distribution of turbulent kinetic energy dissipation rate is important for design of mixing apparatuses in chemical industry. Generally used experimental methods of velocity measurements for measurement in complex geometries of an agitated vessel disallow measurement in resolution of small scales close to turbulence dissipation ones. Therefore, Particle image velocity (PIV measurement method improved by large eddy Ply approach was used. Large eddy PIV method is based on modeling of smallest eddies by a sub grid scale (SGS model. This method is similar to numerical calculations using Large Eddy Simulation (LES and the same SGS models are used. In this work the basic Smagorinsky model was employed and compared with power law approximation. Time resolved PIV data were processed by Large Eddy PIV approach and the obtained results of turbulent kinetic dissipation rate were compared in selected points for several operating conditions (impeller speed, operating liquid viscosity.
Possible modifications to implicit large-eddy simulation
McDonough, J. M.
2009-11-01
Implicit large-eddy simulation (ILES) provides an advantage over more usual LES approaches in that its construction does not involve filtering of the governing equations and, as a consequence, removal of the need to develop sub-grid scale (SGS) models to represent artificial stresses arising from this filtering. At the same time, it is clear that ILES is simply an under-resolved direct numerical simulation with advanced treatments of advection terms to better control numerical stability via dissipation that otherwise would have been provided by a SGS model. As such it cannot be expected to accurately predict interactions of fluid turbulence with other physical phenomena (e.g., heat and mass transfer, chemical kinetics) on subgrid scales---as is also true of usual forms of LES. In this talk we describe a straightforward technique, based on formal multi-scale methods, whereby SGS interactions can be introduced to enhance resolved-scale results computed as in ILES, and we discuss derivation of a class of efficient models based on the ``poor man's Navier--Stokes equation'' (McDonough, Phys.Rev. E 79, 2009; McDonough and Huang, Int.J.Numer. Meth. Fluids 44, 2004). Properties of these models will be presented for a moderate-Re 3-D lid-driven cavity problem.
Large eddy simulation of a fuel rod subchannel
International Nuclear Information System (INIS)
Mayer, Gusztav
2007-01-01
In a VVER-440 reactor the measured outlet temperature is related to fuel limit parameters and the power upgrading plans of VVER-440 reactors motivated us to obtain more information on the mixing process of the fuel assemblies. In a VVER-440 rod bundle the fuel rods are arranged in triangular array. Measurement shows (Krauss and Meyer, 1998) that the classical engineering approach, which tries to trace the characterization of such systems back to equivalent (hydraulic diameter) pipe flows, does not give reasonable results. Due to the different turbulence characteristics, the mixing is more intensive in rod bundles than it would be expected based on equivalent pipe flow correlations. As a possible explanation of the high mixing, secondary flow was deduced from measurements by several experimentalists (Trupp and Azad, 1975). Another candidate to explain the high mixing is the so-called flow pulsation phenomenon (Krauss and Meyer, 1998). In this paper we present subchannel simulations (Mayer et al. 2007) using large eddy simulation (LES) methodology and the lattice Boltzmann method (LBM) without the spacers at Reynolds number 21000. The simulation results are compared with the measurements of Trupp and Azad (1975). The mean axial velocity profile shows good agreement with the measurement data. Secondary flow has been observed directly in the simulation results. Reasonable agreement has been achieved for most Reynolds stresses. Nevertheless, the calculated normal stresses show small, but systematic deviation from the measurement data. (author)
Large eddy simulation for aerodynamics: status and perspectives.
Sagaut, Pierre; Deck, Sébastien
2009-07-28
The present paper provides an up-to-date survey of the use of large eddy simulation (LES) and sequels for engineering applications related to aerodynamics. Most recent landmark achievements are presented. Two categories of problem may be distinguished whether the location of separation is triggered by the geometry or not. In the first case, LES can be considered as a mature technique and recent hybrid Reynolds-averaged Navier-Stokes (RANS)-LES methods do not allow for a significant increase in terms of geometrical complexity and/or Reynolds number with respect to classical LES. When attached boundary layers have a significant impact on the global flow dynamics, the use of hybrid RANS-LES remains the principal strategy to reduce computational cost compared to LES. Another striking observation is that the level of validation is most of the time restricted to time-averaged global quantities, a detailed analysis of the flow unsteadiness being missing. Therefore, a clear need for detailed validation in the near future is identified. To this end, new issues, such as uncertainty and error quantification and modelling, will be of major importance. First results dealing with uncertainty modelling in unsteady turbulent flow simulation are presented.
A Renewed Approach for Large Eddy Simulation of Complex Geometries, Phase II
National Aeronautics and Space Administration — The potential benefits of Large Eddy Simulation (LES) for aerodynamics and combustion simulation hvae largely been missed, due to the complexity of generating grids...
Large-Eddy Simulation of turbulent vortex shedding
Energy Technology Data Exchange (ETDEWEB)
Archambeau, F
1995-06-01
This thesis documents the development and application of a computational algorithm for Large-Eddy Simulation. Unusually, the method adopts a fully collocated variable storage arrangement and is applicable to complex, non-rectilinear geometries. A Reynolds-averaged Navier-Stokes algorithm has formed the starting point of the development, but has been modified substantially: the spatial approximation of convection is effected by an energy-conserving central-differencing scheme; a second-order time-marching Adams-Bashforth scheme has been introduced; the pressure field is determined by solving the pressure-Poisson equation; this equation is solved either by use of preconditioned Conjugate-Gradient methods or with the Generalised Minimum Residual method; two types of sub-grid scale models have been introduced and examined. The algorithm has been validated by reference to a hierarchy of unsteady flows of increasing complexity starting with unsteady lid-driven cavity flows and ending with 3-D turbulent vortex shedding behind a square prism. In the latter case, for which extensive experimental data are available, special emphasis has been put on examining the dependence of the results on mesh density, near-wall treatment and the nature of the sub-grid-scale model, one of which is an advanced dynamic model. The LES scheme is shown to return time-average and phase-averaged results which agree well with experimental data and which support the view that LES is a promising approach for unsteady flows dominated by large periodic structures. (author) 87 refs.
Large-eddy simulation of maritime deep tropical convection
Directory of Open Access Journals (Sweden)
Peter A Bogenschutz
2009-12-01
Full Text Available This study represents an attempt to apply Large-Eddy Simulation (LES resolution to simulate deep tropical convection in near equilibrium for 24 hours over an area of about 205 x 205 km2, which is comparable to that of a typical horizontal grid cell in a global climate model. The simulation is driven by large-scale thermodynamic tendencies derived from mean conditions during the GATE Phase III field experiment. The LES uses 2048 x 2048 x 256 grid points with horizontal grid spacing of 100 m and vertical grid spacing ranging from 50 m in the boundary layer to 100 m in the free troposphere. The simulation reaches a near equilibrium deep convection regime in 12 hours. The simulated vertical cloud distribution exhibits a trimodal vertical distribution of deep, middle and shallow clouds similar to that often observed in Tropics. A sensitivity experiment in which cold pools are suppressed by switching off the evaporation of precipitation results in much lower amounts of shallow and congestus clouds. Unlike the benchmark LES where the new deep clouds tend to appear along the edges of spreading cold pools, the deep clouds in the no-cold-pool experiment tend to reappear at the sites of the previous deep clouds and tend to be surrounded by extensive areas of sporadic shallow clouds. The vertical velocity statistics of updraft and downdraft cores below 6 km height are compared to aircraft observations made during GATE. The comparison shows generally good agreement, and strongly suggests that the LES simulation can be used as a benchmark to represent the dynamics of tropical deep convection on scales ranging from large turbulent eddies to mesoscale convective systems. The effect of horizontal grid resolution is examined by running the same case with progressively larger grid sizes of 200, 400, 800, and 1600 m. These runs show a reasonable agreement with the benchmark LES in statistics such as convective available potential energy, convective inhibition
Large Eddy Simulation of Vertical Axis Wind Turbine Wakes
Directory of Open Access Journals (Sweden)
Sina Shamsoddin
2014-02-01
Full Text Available In this study, large eddy simulation (LES is combined with a turbine model to investigate the wake behind a vertical-axis wind turbine (VAWT in a three-dimensional turbulent flow. Two methods are used to model the subgrid-scale (SGS stresses: (a the Smagorinsky model; and (b the modulated gradient model. To parameterize the effects of the VAWT on the flow, two VAWT models are developed: (a the actuator swept-surface model (ASSM, in which the time-averaged turbine-induced forces are distributed on a surface swept by the turbine blades, i.e., the actuator swept surface; and (b the actuator line model (ALM, in which the instantaneous blade forces are only spatially distributed on lines representing the blades, i.e., the actuator lines. This is the first time that LES has been applied and validated for the simulation of VAWT wakes by using either the ASSM or the ALM techniques. In both models, blade-element theory is used to calculate the lift and drag forces on the blades. The results are compared with flow measurements in the wake of a model straight-bladed VAWT, carried out in the Institute de Méchanique et Statistique de la Turbulence (IMST water channel. Different combinations of SGS models with VAWT models are studied, and a fairly good overall agreement between simulation results and measurement data is observed. In general, the ALM is found to better capture the unsteady-periodic nature of the wake and shows a better agreement with the experimental data compared with the ASSM. The modulated gradient model is also found to be a more reliable SGS stress modeling technique, compared with the Smagorinsky model, and it yields reasonable predictions of the mean flow and turbulence characteristics of a VAWT wake using its theoretically-determined model coefficient.
Gao, Zhongming; Liu, Heping; Russell, Eric S.; Huang, Jianping; Foken, Thomas; Oncley, Steven P.
2016-02-01
The effects of large eddies on turbulence structures and flux transport were studied using data collected over a flat cotton field during the Energy Balance Experiment 2000 in the San Joaquin Valley of California in August 2000. Flux convergence (FC; larger fluxes at 8.7 m than 2.7 m) and divergence (FD) in latent heat flux (LE) were observed in a disturbed, unstable atmospheric surface layer, and their magnitudes largely departed from the prediction of Monin-Obukhov similarity theory. From our wavelet analysis, it was identified that large eddies affected turbulence structures, scalar distribution, and flux transport differently at 8.7 m and 2.7 m under the FC and FD conditions. Using the ensemble empirical mode decomposition, time series data were decomposed into large eddies and small-scale background turbulence, the time-domain characteristics of large eddies were examined, and the flux contribution by large eddies was also determined quantitatively. The results suggest that large eddies over the frequency range of 0.002 Hz < f < 0.02 Hz (predominantly 300-400 m) enhanced the vertical velocity spectra more significantly at 8.7 m than 2.7 m, leading to an increased magnitude of the cospectra and thus LE at 8.7 m. In the FD case, however, these large eddies were not present and even suppressed in the vertical velocity spectra at 8.7 m. Consequently, the cospectra divergence over the low-frequency ranges primarily caused the LE divergence. This work implies that large eddies may either improve or degrade the surface energy balance closure by increasing or decreasing turbulent fluxes, respectively.
Implementation of a Large Eddy Simulation Method Applied to Recirculating Flow in a Ventilated Room
DEFF Research Database (Denmark)
Davidson, Lars
In the present work Large Eddy Simulations are presented. The flow in a ventilated enclosure is studied. We use an explicit, two-steps time-advancement scheme where the pressure is solved from a Poisson equation.......In the present work Large Eddy Simulations are presented. The flow in a ventilated enclosure is studied. We use an explicit, two-steps time-advancement scheme where the pressure is solved from a Poisson equation....
Hughes, T.J.R.; Wells, G.N.; Wray, A.A.
2004-01-01
Energy transfers within large-eddy simulation (LES) and direct numerical simulation (DNS) grids are studied. The spectral eddy viscosity for conventional dynamic Smagorinsky and variational multiscale LES methods are compared with DNS results. Both models underestimate the DNS results for a very
Directory of Open Access Journals (Sweden)
Robert Pincus
2009-06-01
Full Text Available Large-eddy simulation (LES refers to a class of calculations in which the large energy-rich eddies are simulated directly and are insensitive to errors in the modeling of sub-grid scale processes. Flows represented by LES are often driven by radiative heating and therefore require the calculation of radiative transfer along with the fluid-dynamical simulation. Current methods for detailed radiation calculations, even those using simple one-dimensional radiative transfer, are far too expensive for routine use, while popular shortcuts are either of limited applicability or run the risk of introducing errors on time and space scales that might affect the overall simulation. A new approximate method is described that relies on Monte Carlo sampling of the spectral integration in the heating rate calculation and is applicable to any problem. The error introduced when using this method is substantial for individual samples (single columns at single times but is uncorrelated in time and space and so does not bias the statistics of scales that are well resolved by the LES. The method is evaluated through simulation of two test problems; these behave as expected. A scaling analysis shows that the errors introduced by the method diminish as flow features become well resolved. Errors introduced by the approximation increase with decreasing spatial scale but the spurious energy introduced by the approximation is less than the energy expected in the unperturbed flow, i.e. the energy associated with the spectral cascade from the large scale, even on the grid scale.
Large eddy simulation of a mechanically ventilated compartment fire for nuclear applications
Energy Technology Data Exchange (ETDEWEB)
Xu, Bao P. [Dalian Univ. of Technology (China). Faculty of Energy and Power Engineering; Wen, Jennifer X. [Warwick Univ. (United Kingdom). Warwick FIRE, School of Engineering
2015-12-15
This paper deals with the modelling of a mechanically ventilated compartment fire which is a commonplace in nuclear fire scenarios. An advanced Computational Fluid Dynamics (CFD) field model with a wall conjugate heat transfer treatment is proposed. It simultaneously solves the compartment fire flow and the wall heat conduction. The flow solver is based on the Large Eddy Simulation (LES) based fire simulation solver FireFOAM within the frame of open source CFD code OpenFOAM {sup registered}. An extended eddy dissipation model is used to calculate the chemical reaction rate. A soot model based on the concept of smoke point height is employed to model the soot formation and oxidation. A finite volume method is adopted to model the radiative heat transfer. The ventilation flow is modelled by a simplified Bernoulli equation neglecting the detailed information on the ventilation system. The proposed model is validated against a single room fire test with forced mechanical ventilations. The predictions are in reasonably good agreement with experimental data.
Bohrer, G.; Kenny, W.; Morin, T. H.
2015-12-01
We used the RAMS-based Forest Large Eddy Simulations (RAFLES) to evaluate the sensitivity of eddy covariance measurements to land-surface discontinuity. While the sensitivity of eddy covariance measurements to surface heterogeneity is well known, it is, in most cases, no feasible to restrict measurements only to sites where the surface include undisturbed and homogeneous land cover over vast distances around the observation tower. The common approach to handle surface heterogeneity is to use a footprint model and reject observations obtained while the source of observed signal is from a mixture of land-use types, and maintain only measurements where the signal originates mostly from the land-use type of interest. We simulated two scenarios - measurements of fluxes from a small forest-surrounded lake, and measurements near a forest edge. These are two very common scenarios where measurements are bound to be affected by heterogeneity - measurements in small lakes, will, by definition, be in some non-negligible proximity or the lake edge; forest edges are common in any forest, near the forest patch edge but also around disturbed patches and forest gaps. We identify regions where the surface heterogeneity is creating persistent updraft or downdraft. A non-zero mean vertical wind is typically neglected in eddy-covariance measurements. We find that these circulations lead to both vertical and horizontal advection that cannot be easily measured by a single eddy-covariance tower. We identify downwind effects, which are well known, but also quantify the upwind effects. We find that surface-induced circulations may affect the flux measured from a tower up to several canopy heights ahead of the discontinuity. We used the High-resolution Volatile Organic Compound Atmospheric Chemistry in Canopies (Hi-VACC) model to determine the actual measurement footprints throughout the RAFLES domain. We estimated the land-cover type distribution of the source signal at different virtual
Exploring the large-scale structure of Taylor–Couette turbulence through Large-Eddy Simulations
Ostilla-Mónico, Rodolfo; Zhu, Xiaojue; Verzicco, Roberto
2018-04-01
Large eddy simulations (LES) of Taylor-Couette (TC) flow, the flow between two co-axial and independently rotating cylinders are performed in an attempt to explore the large-scale axially-pinned structures seen in experiments and simulations. Both static and dynamic LES models are used. The Reynolds number is kept fixed at Re = 3.4 · 104, and the radius ratio η = ri /ro is set to η = 0.909, limiting the effects of curvature and resulting in frictional Reynolds numbers of around Re τ ≈ 500. Four rotation ratios from Rot = ‑0.0909 to Rot = 0.3 are simulated. First, the LES of TC is benchmarked for different rotation ratios. Both the Smagorinsky model with a constant of cs = 0.1 and the dynamic model are found to produce reasonable results for no mean rotation and cyclonic rotation, but deviations increase for increasing rotation. This is attributed to the increasing anisotropic character of the fluctuations. Second, “over-damped” LES, i.e. LES with a large Smagorinsky constant is performed and is shown to reproduce some features of the large-scale structures, even when the near-wall region is not adequately modeled. This shows the potential for using over-damped LES for fast explorations of the parameter space where large-scale structures are found.
High-Accuracy Near-Surface Large-Eddy Simulation with Planar Topography
2015-08-03
Planar Topography ” The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official...Simulation with Planar Topography ” Report Title Large-eddy simulation (LES) has been plagued by an inability to predict the law-of-the-wall (LOTW) in mean...Report July 2015 HIGH-ACCURACY NEAR-SURFACE LARGE-EDDY SIMULATION WITH PLANAR TOPOGRAPHY ARO Grant W911NF-04-1-0205 PI: James G. Brasseur
Rasthofer, U.; Wall, W. A.; Gravemeier, V.
2018-04-01
A novel and comprehensive computational method, referred to as the eXtended Algebraic Variational Multiscale-Multigrid-Multifractal Method (XAVM4), is proposed for large-eddy simulation of the particularly challenging problem of turbulent two-phase flow. The XAVM4 involves multifractal subgrid-scale modeling as well as a Nitsche-type extended finite element method as an approach for two-phase flow. The application of an advanced structural subgrid-scale modeling approach in conjunction with a sharp representation of the discontinuities at the interface between two bulk fluids promise high-fidelity large-eddy simulation of turbulent two-phase flow. The high potential of the XAVM4 is demonstrated for large-eddy simulation of turbulent two-phase bubbly channel flow, that is, turbulent channel flow carrying a single large bubble of the size of the channel half-width in this particular application.
Wind turbine large-eddy simulations on very coarse grid resolutions using an actuator line model
Martínez-Tossas, Luis A.; Stevens, Richard J.A.M.; Meneveau, Charles
2016-01-01
In this work the accuracy of the Actuator Line Model (ALM) in Large Eddy Simulations of wind turbine flow is studied under the specific conditions of very coarse spatial resolutions. For finely-resolved conditions, it is known that ALM provides better accuracy compared to the standard Actuator Disk
Wind Farm Large-Eddy Simulations on Very Coarse Grid Resolutions using an Actuator Line Model
Martinez, L.A.; Meneveau, C.; Stevens, Richard Johannes Antonius Maria
2016-01-01
In this work the accuracy of the Actuator Line Model (ALM) in Large Eddy Simula- tions of wind turbine flow is studied under the speci c conditions of very coarse spatial resolutions. For finely-resolved conditions, it is known that ALM provides better accuracy compared to the standard Actuator Disk
Overlap statistics of cumuliform boundary-layer cloud fields in large-eddy simulations
Neggers, R.A.J.; Heus, T.; Siebesma, A.P.
2011-01-01
Overlap statistics of cumuliform boundary-layer clouds are studied using large-eddy simulations at high resolutions. The cloud overlap is found to be highly inefficient, due to the typical irregularity of cumuliform clouds over a wide range of scales. The detection of such inefficient overlap is
Large-eddy simulations of the non-reactive flow in the Sydney swirl burner
DEFF Research Database (Denmark)
Yang, Yang; Kær, Søren Knudsen
2012-01-01
This paper presents a numerical investigation using large-eddy simulation. Two isothermal cases from the Sydney swirling flame database with different swirl numbers were tested. Rational grid system and mesh details were presented firstly. Validations showed overall good agreement in time average...
A simple atmospheric boundary layer model applied to large eddy simulations of wind turbine wakes
DEFF Research Database (Denmark)
Troldborg, Niels; Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming
2014-01-01
A simple model for including the influence of the atmospheric boundary layer in connection with large eddy simulations of wind turbine wakes is presented and validated by comparing computed results with measurements as well as with direct numerical simulations. The model is based on an immersed...
Large-Eddy Simulation of Flows Through a Novel Vascular Access Device for Hemodialysis Access
Obabko, Aleksandr; Tsyrulnykov, Eduard; Rainsberger, Robert; Torreira, Alvaro V.; Nagib, Hassan; Agarwal, Anil; Fischer, Paul F.
2017-11-01
The preferred vascular access in patients on hemodialysis (HD) is an arteriovenous (AV) fistula or graft. The majority of the HD patients in the US are dialyzed with an AV fistula where two needles are used for cannulation in most cases. However, this approach can be painfully invasive, extremely difficult to gain access in patients with challenging geometry of vascular access, and is often inadequate to provide optimal blood flow. This work attempts to address the shortcomings of the above procedure and introduces a novel cannulation device that allows less painful easy single access to difficult vessel geometries, and have a potential of improvement of overall increase in efficacy of HD and enhanced patient experience. We present the preliminary Nek5000 large-eddy simulations results of the flows through the device that employs a single 18-gauge needle for cannulation and is able to provide blood flow rates up to 600 ml/min. The range of flow rates and Reynolds numbers up to Re=2,600 are considered and blood recirculation rates are computed. This research used resources of the Argonne Leadership Computing Facility and was supported in part by the U.S. DOE Office of Science under Contract DE-AC02-06CH11357.
Fang, Jiannong; Porté-Agel, Fernando
2014-05-01
Large eddy simulation was used to investigate the very-large-scale motions (VLSM) in the neutrally stratified atmospheric boundary layer at a very high friction Reynolds number. The vertical height of the computational domain is Lz = 1000 m, which corresponds to the thickness of the boundary layer. The horizontal dimensions of the simulation domain are chosen to be Lx = 32Lz and Ly = 4Lz respectively, in order to contain a sufficient number of large-scale structures. The spatially coherent structures associated with VLSM are characterized through flow visualization and statistical analysis. The instantaneous velocity fields in streamwise/spanwise planes give evidence of streamwise-elongated zones of low speed fluid with negative streamwise velocity fluctuation, which is flanked on either side by similarly elongated high speed ones. The pre-multiplied power spectra and two-point correlations indicate that the scales of these streak-like structures are very large, up to 20Lz in the streamwise direction and Lz in the spanwise direction. These features are similar to what have been found in the logarithmic region of laboratory-scale boundary layers by direct numerical simulations and experiments conducted at low to moderate Reynolds numbers. The three dimensional correlation map and conditional average of the three components of velocity further indicate that the low-speed and high-speed regions possess the same elongated ellipsoid-like structure, which is inclined upward along the streamwise direction, and they are accompanied by counter-rotating roll modes in the cross section perpendicular to the streamwise direction. These findings are in agreement with recent observations made from field campaigns in the atmospheric boundary layer.
Large-Eddy-Simulation-based analysis of complex flow structures ...
Indian Academy of Sciences (India)
Further, in turbulence modelling within centrifugal pumps, it is also important to model the complete interaction amongst different variables rather than a simplistic single blade passage flow analysis. In the present work, the complex blade–tongue interactions and their consequent effects on the pressure fluctuations within ...
An application of eddy current damping effect on single point diamond turning of titanium alloys
Yip, W. S.; To, S.
2017-11-01
Titanium alloys Ti6Al4V (TC4) have been popularly applied in many industries. They have superior material properties including an excellent strength-to-weight ratio and corrosion resistance. However, they are regarded as difficult to cut materials; serious tool wear, a high level of cutting vibration and low surface integrity are always involved in machining processes especially in ultra-precision machining (UPM). In this paper, a novel hybrid machining technology using an eddy current damping effect is firstly introduced in UPM to suppress machining vibration and improve the machining performance of titanium alloys. A magnetic field was superimposed on samples during single point diamond turning (SPDT) by exposing the samples in between two permanent magnets. When the titanium alloys were rotated within a magnetic field in the SPDT, an eddy current was generated through a stationary magnetic field inside the titanium alloys. An eddy current generated its own magnetic field with the opposite direction of the external magnetic field leading a repulsive force, compensating for the machining vibration induced by the turning process. The experimental results showed a remarkable improvement in cutting force variation, a significant reduction in adhesive tool wear and an extreme long chip formation in comparison to normal SPDT of titanium alloys, suggesting the enhancement of the machinability of titanium alloys using an eddy current damping effect. An eddy current damping effect was firstly introduced in the area of UPM to deliver the results of outstanding machining performance.
An application of eddy current damping effect on single point diamond turning of titanium alloys
International Nuclear Information System (INIS)
Yip, W S; To, S
2017-01-01
Titanium alloys Ti6Al4V (TC4) have been popularly applied in many industries. They have superior material properties including an excellent strength-to-weight ratio and corrosion resistance. However, they are regarded as difficult to cut materials; serious tool wear, a high level of cutting vibration and low surface integrity are always involved in machining processes especially in ultra-precision machining (UPM). In this paper, a novel hybrid machining technology using an eddy current damping effect is firstly introduced in UPM to suppress machining vibration and improve the machining performance of titanium alloys. A magnetic field was superimposed on samples during single point diamond turning (SPDT) by exposing the samples in between two permanent magnets. When the titanium alloys were rotated within a magnetic field in the SPDT, an eddy current was generated through a stationary magnetic field inside the titanium alloys. An eddy current generated its own magnetic field with the opposite direction of the external magnetic field leading a repulsive force, compensating for the machining vibration induced by the turning process. The experimental results showed a remarkable improvement in cutting force variation, a significant reduction in adhesive tool wear and an extreme long chip formation in comparison to normal SPDT of titanium alloys, suggesting the enhancement of the machinability of titanium alloys using an eddy current damping effect. An eddy current damping effect was firstly introduced in the area of UPM to deliver the results of outstanding machining performance. (paper)
Hybrid Reynolds-Averaged/Large Eddy Simulation of the Flow in a Model SCRamjet Cavity Flameholder
Baurle, R. A.
2016-01-01
Steady-state and scale-resolving simulations have been performed for flow in and around a model scramjet combustor flameholder. Experimental data available for this configuration include velocity statistics obtained from particle image velocimetry. Several turbulence models were used for the steady-state Reynolds-averaged simulations which included both linear and non-linear eddy viscosity models. The scale-resolving simulations used a hybrid Reynolds-averaged/large eddy simulation strategy that is designed to be a large eddy simulation everywhere except in the inner portion (log layer and below) of the boundary layer. Hence, this formulation can be regarded as a wall-modeled large eddy simulation. This e ort was undertaken to not only assess the performance of the hybrid Reynolds-averaged / large eddy simulation modeling approach in a flowfield of interest to the scramjet research community, but to also begin to understand how this capability can best be used to augment standard Reynolds-averaged simulations. The numerical errors were quantified for the steady-state simulations, and at least qualitatively assessed for the scale-resolving simulations prior to making any claims of predictive accuracy relative to the measurements. The steady-state Reynolds-averaged results displayed a high degree of variability when comparing the flameholder fuel distributions obtained from each turbulence model. This prompted the consideration of applying the higher-fidelity scale-resolving simulations as a surrogate "truth" model to calibrate the Reynolds-averaged closures in a non-reacting setting prior to their use for the combusting simulations. In general, the Reynolds-averaged velocity profile predictions at the lowest fueling level matched the particle imaging measurements almost as well as was observed for the non-reacting condition. However, the velocity field predictions proved to be more sensitive to the flameholder fueling rate than was indicated in the measurements.
Large-eddy simulation of very-large-scale motions in atmospheric boundary-layer flows
Fang, Jiannong; Porté-Agel, Fernando
2015-04-01
In the last few decades, laboratory experiments and direct numerical simulations of turbulent boundary layers, performed at low to moderate Reynolds numbers, have found very-large-scale motions (VLSMs) in the logarithmic and outer regions. The size of VLSMs was found to be 10-20 times as large as the boundary-layer thickness. Recently, few studies based on field experiments examined the presence of VLSMs in neutral atmospheric boundary-layer flows, which are invariably at very high Reynolds numbers. Very large scale structures similar to those observed in laboratory-scale experiments have been found and characterized. However, it is known that field measurements are more challenging than laboratory-based measurements, and can lack resolution and statistical convergence. Such challenges have implications on the robustness of the analysis, which may be further adversely affected by the use of Taylor's hypothesis to convert time series to spatial data. We use large-eddy simulation (LES) to investigate VLSMs in atmospheric boundary-layer flows. In order to make sure that the largest flow structures are properly resolved, the horizontal domain size is chosen to be much larger than the standard domain size. It is shown that the contributions to the resolved turbulent kinetic energy and shear stress from VLSMs are significant. Therefore, the large computational domain adopted here is essential for the purpose of investigating VLSMs. The spatially coherent structures associated with VLSMs are characterized through flow visualization and statistical analysis. The instantaneous velocity fields in horizontal planes give evidence of streamwise-elongated flow structures of low-speed fluid with negative fluctuation of the streamwise velocity component, and which are flanked on either side by similarly elongated high-speed structures. The pre-multiplied power spectra and two-point correlations indicate that the scales of these streak-like structures are very large. These features
Bou-Zeid, Elie; Huang, Jing; Golaz, Jean-Christophe
2011-11-01
A disconnect remains between our improved physical understanding of boundary layers stabilized by buoyancy and how we parameterize them in coarse atmospheric models. Most operational climate models require excessive turbulence mixing in such conditions to prevent decoupling of the atmospheric component from the land component, but the performance of such a model is unlikely to be satisfactory under weakly and moderately stable conditions. Using Large-eddy simulation, we revisit some of the basic challenges in parameterizing stable atmospheric boundary layers: eddy-viscosity closure is found to be more reliable due to an improved alignment of vertical Reynolds stresses and mean strains under stable conditions, but the dependence of the magnitude of the eddy viscosity on stability is not well represented by several models tested here. Thus, we propose a new closure that reproduces the different stability regimes better. Subsequently, tests of this model in the GFDL's single-column model (SCM) are found to yield good agreement with LES results in idealized steady-stability cases, as well as in cases with gradual and sharp changes of stability with time.
Hot air impingement on a flat plate using Large Eddy Simulation (LES) technique
Plengsa-ard, C.; Kaewbumrung, M.
2018-01-01
Impinging hot gas jets to a flat plate generate very high heat transfer coefficients in the impingement zone. The magnitude of heat transfer prediction near the stagnation point is important and accurate heat flux distribution are needed. This research studies on heat transfer and flow field resulting from a single hot air impinging wall. The simulation is carried out using computational fluid dynamics (CFD) commercial code FLUENT. Large Eddy Simulation (LES) approach with a subgrid-scale Smagorinsky-Lilly model is present. The classical Werner-Wengle wall model is used to compute the predicted results of velocity and temperature near walls. The Smagorinsky constant in the turbulence model is set to 0.1 and is kept constant throughout the investigation. The hot gas jet impingement on the flat plate with a constant surface temperature is chosen to validate the predicted heat flux results with experimental data. The jet Reynolds number is equal to 20,000 and a fixed jet-to-plate spacing of H/D = 2.0. Nusselt number on the impingement surface is calculated. As predicted by the wall model, the instantaneous computed Nusselt number agree fairly well with experimental data. The largest values of calculated Nusselt number are near the stagnation point and decrease monotonically in the wall jet region. Also, the contour plots of instantaneous values of wall heat flux on a flat plate are captured by LES simulation.
Stochastic four-way coupling of gas-solid flows for Large Eddy Simulations
Curran, Thomas; Denner, Fabian; van Wachem, Berend
2017-11-01
The interaction of solid particles with turbulence has for long been a topic of interest for predicting the behavior of industrially relevant flows. For the turbulent fluid phase, Large Eddy Simulation (LES) methods are widely used for their low computational cost, leaving only the sub-grid scales (SGS) of turbulence to be modelled. Although LES has seen great success in predicting the behavior of turbulent single-phase flows, the development of LES for turbulent gas-solid flows is still in its infancy. This contribution aims at constructing a model to describe the four-way coupling of particles in an LES framework, by considering the role particles play in the transport of turbulent kinetic energy across the scales. Firstly, a stochastic model reconstructing the sub-grid velocities for the particle tracking is presented. Secondly, to solve particle-particle interaction, most models involve a deterministic treatment of the collisions. We finally introduce a stochastic model for estimating the collision probability. All results are validated against fully resolved DNS-DPS simulations. The final goal of this contribution is to propose a global stochastic method adapted to two-phase LES simulation where the number of particles considered can be significantly increased. Financial support from PetroBras is gratefully acknowledged.
Flow Asymmetry in Symmetric Multiple Impinging Jets: A Large Eddy Simulation Approach
Directory of Open Access Journals (Sweden)
N. Kharoua
2011-12-01
Full Text Available A numerical study on in-line arrays of multiple turbulent round impinging jets on a flat heated plate was conducted. The Large Eddy Simulation turbulence model was used to capture details of the instantaneous and mean flow fields. The Reynolds number, based on the jets diameter, was equal to 20,000. In addition to flow features known from single jets, the interaction between the neighboring jets was successfully elucidated. Symmetry boundary conditions were imposed to reduce the computational domain to only a quarter. In accordance with previous numerical and experimental works, the asymmetry in the velocity field near to the impingement plate was also found to exist. LES showed oval imprints of the Nusselt number similar to experiments but with some discrepancies on the symmetry boundaries. The asymmetry, observed in previous experimental and numerical results, in the horizontal planes, parallel and close to the impingement wall, was confirmed. The recirculation zone responsible for asymmetry, known to develop due to the wall jets interaction, was seen in only one side of the diagonal formed by the central and the farthest jets.
Spectral element filtering techniques for large eddy simulation with dynamic estimation
Blackburn, H M
2003-01-01
Spectral element methods have previously been successfully applied to direct numerical simulation of turbulent flows with moderate geometrical complexity and low to moderate Reynolds numbers. A natural extension of application is to large eddy simulation of turbulent flows, although there has been little published work in this area. One of the obstacles to such application is the ability to deal successfully with turbulence modelling in the presence of solid walls in arbitrary locations. An appropriate tool with which to tackle the problem is dynamic estimation of turbulence model parameters, but while this has been successfully applied to simulation of turbulent wall-bounded flows, typically in the context of spectral and finite volume methods, there have been no published applications with spectral element methods. Here, we describe approaches based on element-level spectral filtering, couple these with the dynamic procedure, and apply the techniques to large eddy simulation of a prototype wall-bounded turb...
Large eddy simulation of mixing between hot and cold sodium flows - comparison with experiments
Energy Technology Data Exchange (ETDEWEB)
Simoneau, J.P.; Noe, H.; Menant, B.
1995-09-01
The large eddy simulation is becoming a potential powerful tool for the calculation of turbulent flows. In nuclear liquid metal cooled fast reactors, the knowledge of the turbulence characteristics is of great interest for the prediction and the analysis of thermal stripping phenomena. The objective of this paper is to give a contribution in the evaluation of the large eddy simulation technique is an individual case. The problem chosen is the case of the mixing between hot and cold sodium flows. The computations are compared with available sodium tests. This study shows acceptable qualitative results but the simple model used is not able to predict the turbulence characteristics. More complex models including larger domains around the fluctuating zone and fluctuating boundary conditions could be necessary. Validation works are continuing.
Large Eddy Simulations of the Flow in a Three-Dimensional Ventilated Room
DEFF Research Database (Denmark)
Davidson, Lars; Nielsen, Peter V.
We have done Large Eddy Simulations (LES) of the flow in a three-dimensional ventilated room. A finite volume method is used with a collocated grid arrangement. The momentum equations are solved with an explicit method using central differencing for all terms. The pressure is obtained from a Pois...... a Poisson equation, which is solved with a conjugate gradient method. For the discretization in time we use the Adam-Bashfourth scheme, which is second-order accurate.......We have done Large Eddy Simulations (LES) of the flow in a three-dimensional ventilated room. A finite volume method is used with a collocated grid arrangement. The momentum equations are solved with an explicit method using central differencing for all terms. The pressure is obtained from...
Large eddy simulation of cross flow past bluff bodies using a stabilised finite element method
Sampaio, Paulo Augusto Berquó de Sampaio
2001-01-01
Nowadays, aerodynamic of the behavior of some slender structures in performed by means of computational flui dynamics (CFD), as a complementary tool for wind tunnel-tests. In this paper a Large Eddy Simulations (LES) procedure is proposed for the study of two-dimensional incompressible cross flow around stationary bluff bodies at high Reynolds number. Instead of adopting an explicit sub-grid stress model, the effect of the unresolvable scales is accounted for implicity through the use of a st...
Application of large-eddy simulation to pressurized thermal shock: Assessment of the accuracy
International Nuclear Information System (INIS)
Loginov, M.S.; Komen, E.M.J.; Hoehne, T.
2011-01-01
Highlights: → We compare large-eddy simulation with experiment on the single-phase pressurized thermal shock problem. → Three test cases are considered, they cover entire range of mixing patterns. → The accuracy of the flow mixing in the reactor pressure vessel is assessed qualitatively and quantitatively. - Abstract: Pressurized Thermal Shock (PTS) is identified as one of the safety issues where Computational Fluid Dynamics (CFD) can bring real benefits. The turbulence modeling may impact overall accuracy of the calculated thermal loads on the vessel walls, therefore advanced methods for turbulent flows are required. The feasibility and mesh resolution of LES for single-phase PTS are assessed earlier in a companion paper. The current investigation deals with the accuracy of LES approach with respect to the experiment. Experimental data from the Rossendorf Coolant Mixing (ROCOM) facility is used as a basis for validation. Three test cases with different flow rates are considered. They correspond to a buoyancy-driven, a momentum-driven, and a transitional coolant mixing pattern in the downcomer. Time- and frequency-domain analysis are employed for comparison of the numerical and experimental data. The investigation shows a good qualitative prediction of the bulk flow patterns. The fluctuations are modeled correctly. A conservative estimate of the temperature drop near the wall can be obtained from the numerical results with safety factor of 1.1-1.3. In general, the current LES gives a realistic and reliable description of the considered coolant mixing experiments. The accuracy of the prediction is definitely improved with respect to earlier CFD simulations.
Chatterjee, Tanmoy; Peet, Yulia T.
2018-03-01
Length scales of eddies involved in the power generation of infinite wind farms are studied by analyzing the spectra of the turbulent flux of mean kinetic energy (MKE) from large eddy simulations (LES). Large-scale structures with an order of magnitude bigger than the turbine rotor diameter (D ) are shown to have substantial contribution to wind power. Varying dynamics in the intermediate scales (D -10 D ) are also observed from a parametric study involving interturbine distances and hub height of the turbines. Further insight about the eddies responsible for the power generation have been provided from the scaling analysis of two-dimensional premultiplied spectra of MKE flux. The LES code is developed in a high Reynolds number near-wall modeling framework, using an open-source spectral element code Nek5000, and the wind turbines have been modelled using a state-of-the-art actuator line model. The LES of infinite wind farms have been validated against the statistical results from the previous literature. The study is expected to improve our understanding of the complex multiscale dynamics in the domain of large wind farms and identify the length scales that contribute to the power. This information can be useful for design of wind farm layout and turbine placement that take advantage of the large-scale structures contributing to wind turbine power.
Large-Eddy Simulation of Premixed Turbulent Combustion Using the G-Equation
Duchamp de Lageneste, Laurent; Pitsch, Heinz
2000-11-01
Large eddy simulation (LES) of premixed turbulent combustion is now considered to be a promising field. It has the potential to improve predictions of reacting flows over classical Reynolds-averaged Navier-Stokes (RANS) approaches which lack precision. The difficulties associated with large eddy simulations of such flows are related to the fact that the reaction zone is usually much smaller than the LES grid. In the present study, a level-set approach is used to describe turbulent flame propagation. In this method, the flame is represented by an iso-surface of a scalar field described by the G-equation. The main problem in this method is to specify the turbulent burning velocity which replaces the chemical source term appearing in progress variable approaches. An expression for this quantity, valid in both the corrugated flamelet and thin reaction zone regime has recently been proposed in the context of RANS by Peters (Journal of Fluid Mechanics 1999). In the present work a formulation of the G-equation and the subgrid part of the turbulent burning velocity will be given. In particular, the G-field is treated as a distance function in order to be able to define quantities as strain or curvature. Periodic reinitializations are performed to maintain this structure and avoid the use of an artificial diffusion term. To validate the model, computational results from the large eddy simulation of a bunsen-burner flame is compared with experimental data.
Numerics and subgrid-scale modeling in large eddy simulations of stratocumulus clouds.
Pressel, Kyle G; Mishra, Siddhartha; Schneider, Tapio; Kaul, Colleen M; Tan, Zhihong
2017-06-01
Stratocumulus clouds are the most common type of boundary layer cloud; their radiative effects strongly modulate climate. Large eddy simulations (LES) of stratocumulus clouds often struggle to maintain fidelity to observations because of the sharp gradients occurring at the entrainment interfacial layer at the cloud top. The challenge posed to LES by stratocumulus clouds is evident in the wide range of solutions found in the LES intercomparison based on the DYCOMS-II field campaign, where simulated liquid water paths for identical initial and boundary conditions varied by a factor of nearly 12. Here we revisit the DYCOMS-II RF01 case and show that the wide range of previous LES results can be realized in a single LES code by varying only the numerical treatment of the equations of motion and the nature of subgrid-scale (SGS) closures. The simulations that maintain the greatest fidelity to DYCOMS-II observations are identified. The results show that using weighted essentially non-oscillatory (WENO) numerics for all resolved advective terms and no explicit SGS closure consistently produces the highest-fidelity simulations. This suggests that the numerical dissipation inherent in WENO schemes functions as a high-quality, implicit SGS closure for this stratocumulus case. Conversely, using oscillatory centered difference numerical schemes for momentum advection, WENO numerics for scalars, and explicitly modeled SGS fluxes consistently produces the lowest-fidelity simulations. We attribute this to the production of anomalously large SGS fluxes near the cloud tops through the interaction of numerical error in the momentum field with the scalar SGS model.
Improving Large-Eddy Simulation of Neutral Atmospheric Boundary Layer Flow on Nested Grids
Goodfriend, L.; Chow, F. K.; Vanella, M.; Balaras, E.
2014-12-01
Increasing computational power has enabled grid resolutions that support large-eddy simulation (LES) of the atmospheric boundary layer (ABL). These simulations often use nested grids, which allow detailed simulation of a small subdomain of interest through a series of grid refinements. LES generates errors at grid refinement interfaces, such as resolved energy accumulation, that may compromise solution accuracy. In this talk, I will discuss using the LES turbulence closure to mitigate errors associated with the use of LES on nested grids for a neutral ABL simulation. Specifically, I compare explicit filtering of the advection term and the mixed model to implicit filtering and the eddy viscosity model. Explicitly filtering the advection term allows both mass and momentum to be conserved across grid refinement interfaces. The mixed model reduces unphysical perturbations due to wave reflection. These results demonstrate the strong effect of the turbulence closure on nested grid LES solutions.
An Eulerian two-phase model for steady sheet flow using large-eddy simulation methodology
Cheng, Zhen; Hsu, Tian-Jian; Chauchat, Julien
2018-01-01
A three-dimensional Eulerian two-phase flow model for sediment transport in sheet flow conditions is presented. To resolve turbulence and turbulence-sediment interactions, the large-eddy simulation approach is adopted. Specifically, a dynamic Smagorinsky closure is used for the subgrid fluid and sediment stresses, while the subgrid contribution to the drag force is included using a drift velocity model with a similar dynamic procedure. The contribution of sediment stresses due to intergranular interactions is modeled by the kinetic theory of granular flow at low to intermediate sediment concentration, while at high sediment concentration of enduring contact, a phenomenological closure for particle pressure and frictional viscosity is used. The model is validated with a comprehensive high-resolution dataset of unidirectional steady sheet flow (Revil-Baudard et al., 2015, Journal of Fluid Mechanics, 767, 1-30). At a particle Stokes number of about 10, simulation results indicate a reduced von Kármán coefficient of κ ≈ 0.215 obtained from the fluid velocity profile. A fluid turbulence kinetic energy budget analysis further indicates that the drag-induced turbulence dissipation rate is significant in the sheet flow layer, while in the dilute transport layer, the pressure work plays a similar role as the buoyancy dissipation, which is typically used in the single-phase stratified flow formulation. The present model also reproduces the sheet layer thickness and mobile bed roughness similar to measured data. However, the resulting mobile bed roughness is more than two times larger than that predicted by the empirical formulae. Further analysis suggests that through intermittent turbulent motions near the bed, the resolved sediment Reynolds stress plays a major role in the enhancement of mobile bed roughness. Our analysis on near-bed intermittency also suggests that the turbulent ejection motions are highly correlated with the upward sediment suspension flux, while
Implementation of an Online Chemistry Model to a Large Eddy Simulation Model (PALM-4U0
Mauder, M.; Khan, B.; Forkel, R.; Banzhaf, S.; Russo, E. E.; Sühring, M.; Kanani-Sühring, F.; Raasch, S.; Ketelsen, K.
2017-12-01
Large Eddy Simulation (LES) models permit to resolve relevant scales of turbulent motion, so that these models can capture the inherent unsteadiness of atmospheric turbulence. However, LES models are so far hardly applied for urban air quality studies, in particular chemical transformation of pollutants. In this context, BMBF (Bundesministerium für Bildung und Forschung) funded a joint project, MOSAIK (Modellbasierte Stadtplanung und Anwendung im Klimawandel / Model-based city planning and application in climate change) with the main goal to develop a new highly efficient urban climate model (UCM) that also includes atmospheric chemical processes. The state-of-the-art LES model PALM; Maronga et al, 2015, Geosci. Model Dev., 8, doi:10.5194/gmd-8-2515-2015), has been used as a core model for the new UCM named as PALM-4U. For the gas phase chemistry, a fully coupled 'online' chemistry model has been implemented into PALM. The latest version of the Kinetic PreProcessor (KPP) Version 2.3, has been utilized for the numerical integration of chemical species. Due to the high computational demands of the LES model, compromises in the description of chemical processes are required. Therefore, a reduced chemistry mechanism, which includes only major pollutants namely O3, NO, NO2, CO, a highly simplified VOC chemistry and a small number of products have been implemented. This work shows preliminary results of the advection, and chemical transformation of atmospheric pollutants. Non-cyclic boundaries have been used for inflow and outflow in east-west directions while periodic boundary conditions have been implemented to the south-north lateral boundaries. For practical applications, our approach is to go beyond the simulation of single street canyons to chemical transformation, advection and deposition of air pollutants in the larger urban canopy. Tests of chemistry schemes and initial studies of chemistry-turbulence, transport and transformations are presented.
Directory of Open Access Journals (Sweden)
Brian J. Gaudet
2017-10-01
Full Text Available The Indianapolis Flux Experiment (INFLUX aims to quantify and improve the effectiveness of inferring greenhouse gas (GHG source strengths from downstream concentration measurements in urban environments. Mesoscale models such as the Weather Research and Forecasting (WRF model can provide realistic depictions of planetary boundary layer (PBL structure and flow fields at horizontal grid lengths (Δ'x' down to a few km. Nevertheless, a number of potential sources of error exist in the use of mesoscale models for urban inversions, including accurate representation of the dispersion of GHGs by turbulence close to a point source. Here we evaluate the predictive skill of a 1-km chemistry-adapted WRF (WRF-Chem simulation of daytime CO2 transport from an Indianapolis power plant for a single INFLUX case (28 September 2013. We compare the simulated plume release on domains at different resolutions, as well as on a domain run in large eddy simulation (LES mode, enabling us to study the impact of both spatial resolution and parameterization of PBL turbulence on the transport of CO2. Sensitivity tests demonstrate that much of the difference between 1-km mesoscale and 111-m LES plumes, including substantially lower maximum concentrations in the mesoscale simulation, is due to the different horizontal resolutions. However, resolution is insufficient to account for the slower rate of ascent of the LES plume with downwind distance, which results in much higher surface concentrations for the LES plume in the near-field but a near absence of tracer aloft. Physics sensitivity experiments and theoretical analytical models demonstrate that this effect is an inherent problem with the parameterization of turbulent transport in the mesoscale PBL scheme. A simple transformation is proposed that may be applied to mesoscale model concentration footprints to correct for their near-field biases. Implications for longer-term source inversion are discussed.
Large-eddy simulation of Goertler instabilities in the turbulent flow
Energy Technology Data Exchange (ETDEWEB)
Gordeev, S. [Karlsruhe Institute of Technology (KIT), Karlsruhe (DE). Inst. for Nuclear Energy Technologies (IKET)
2010-05-15
Large-eddy simulation of the turbulent concave-wall flow has been performed. The simulation makes use of the WALE WSG model. Simulation results show a relatively good agreement with experimental data in the prediction of the mean flow parameters and reproducing of the unsteady large-scale structures under influence of TG instabilities. After the shown validation of the LES model related to the importance of capturing TG vortices in conventional liquids this modelling technique will be transferred to the application for liquid-metal operated nuclear target in order to assess their performance.
Large eddy simulation of the atmospheric boundary layer above a forest canopy
Alam, Jahrul
2017-11-01
A goal of this talk is to discuss large eddy simulation (LES) of atmospheric turbulence within and above a canopy/roughness sublayer, where coherent turbulence resembles a turbulent mixing layer. The proposed LES does not resolve the near wall region. Instead, a near surface canopy stress model has been combined with a wall adapting local eddy viscosity model. The canopy stress is represented as a three-dimensional time dependent momentum sink, where the total kinematic drag of the canopy is adjusted based on the measurements in a forest canopy. This LES has been employed to analyze turbulence structures in the canopy/roughness sublayer. Results indicate that turbulence is more efficient at transporting momentum and scalars in the roughness sublayer. The LES result has been compared with the turbulence profile measured over a forest canopy to predict the turbulence statistics in the inertial sublayer above the canopy. Turbulence statistics between the inertial sublayer, the canopy sublayer, and the rough-wall boundary layer have been compared to characterize whether turbulence in the canopy sublayer resembles a turbulent mixing layer or a boundary layer. The canopy turbulence is found dominated by energetic eddies much larger in scale than the individual roughness elements. Financial support from the National Science and Research Council (NSERC), Canada is acknowledged.
International Nuclear Information System (INIS)
Bogey, Christophe; Bailly, Christophe
2006-01-01
Large eddy simulations (LES) of round free jets at Mach number M = 0.9 with Reynolds numbers over the range 2.5 x 10 3 ≤ Re D ≤ 4 x 10 5 are performed using explicit selective/high-order filtering with or without dynamic Smagorinsky model (DSM). Features of the flows and of the turbulent kinetic energy budgets in the turbulent jets are reported. The contributions of molecular viscosity, filtering and DSM to energy dissipation are also presented. Using filtering alone, the results are independent of the filtering strength, and the effects of the Reynolds number on jet development are successfully calculated. Using DSM, the effective jet Reynolds number is found to be artificially decreased by the eddy viscosity. The results are also not appreciably modified when subgrid-scale kinetic energy is used. Moreover, unlike filtering which does not significantly affect the larger computed scales, the eddy viscosity is shown to dissipate energy through all the turbulent scales, in the same way as molecular viscosity at lower Reynolds numbers
Energy Technology Data Exchange (ETDEWEB)
Bogey, Christophe [Laboratoire de Mecanique des Fluides et d' Acoustique, UMR CNRS 5509, Ecole Centrale de Lyon, 69134 Ecully Cedex (France)]. E-mail: christophe.bogey@ec-lyon.fr; Bailly, Christophe [Laboratoire de Mecanique des Fluides et d' Acoustique, UMR CNRS 5509, Ecole Centrale de Lyon, 69134 Ecully Cedex (France)]. E-mail: christophe.baily@ec-lyon.fr
2006-08-15
Large eddy simulations (LES) of round free jets at Mach number M = 0.9 with Reynolds numbers over the range 2.5 x 10{sup 3} {<=} Re {sub D} {<=} 4 x 10{sup 5} are performed using explicit selective/high-order filtering with or without dynamic Smagorinsky model (DSM). Features of the flows and of the turbulent kinetic energy budgets in the turbulent jets are reported. The contributions of molecular viscosity, filtering and DSM to energy dissipation are also presented. Using filtering alone, the results are independent of the filtering strength, and the effects of the Reynolds number on jet development are successfully calculated. Using DSM, the effective jet Reynolds number is found to be artificially decreased by the eddy viscosity. The results are also not appreciably modified when subgrid-scale kinetic energy is used. Moreover, unlike filtering which does not significantly affect the larger computed scales, the eddy viscosity is shown to dissipate energy through all the turbulent scales, in the same way as molecular viscosity at lower Reynolds numbers.
Turbulence prediction in two-dimensional bundle flows using large eddy simulation
Energy Technology Data Exchange (ETDEWEB)
Ibrahim, W.A.; Hassan, Y.A. [Texas A& M Univ., College Station, TX (United States)
1995-09-01
Turbulent flow is characterized by random fluctuations in the fluid velocity and by intense mixing of the fluid. Due to velocity fluctuations, a wide range of eddies exists in the flow field. Because these eddies carry mass, momentum, and energy, this enhanced mixing can sometimes lead to serious problems, such as tube vibrations in many engineering systems that include fluid-tube bundle combinations. Nuclear fuel bundles and PWR steam generators are existing examples in nuclear power plants. Fluid-induced vibration problems are often discovered during the operation of such systems because some of the fluid-tube interaction characteristics are not fully understood. Large Eddy Simulation, incorporated in a three dimensional computer code, became one of the promising techniques to estimate flow turbulence, predict and prevent of long-term tube fretting affecting PWR steam generators. the present turbulence investigations is a step towards more understanding of fluid-tube interaction characteristics by comparing the tube bundles with various pitch-to-diameter ratios were performed. Power spectral densities were used for comparison with experimental data. Correlations, calculations of different length scales in the flow domain and other important turbulent-related parameters were calculated. Finally, important characteristics of turbulent flow field were presented with the aid of flow visualization with tracers impeded in the flow field.
Modeling and analysis of large-eddy simulations of particle-laden turbulent boundary layer flows
Rahman, Mustafa M.
2017-01-05
We describe a framework for the large-eddy simulation of solid particles suspended and transported within an incompressible turbulent boundary layer (TBL). For the fluid phase, the large-eddy simulation (LES) of incompressible turbulent boundary layer employs stretched spiral vortex subgrid-scale model and a virtual wall model similar to the work of Cheng, Pullin & Samtaney (J. Fluid Mech., 2015). This LES model is virtually parameter free and involves no active filtering of the computed velocity field. Furthermore, a recycling method to generate turbulent inflow is implemented. For the particle phase, the direct quadrature method of moments (DQMOM) is chosen in which the weights and abscissas of the quadrature approximation are tracked directly rather than the moments themselves. The numerical method in this framework is based on a fractional-step method with an energy-conservative fourth-order finite difference scheme on a staggered mesh. This code is parallelized based on standard message passing interface (MPI) protocol and is designed for distributed-memory machines. It is proposed to utilize this framework to examine transport of particles in very large-scale simulations. The solver is validated using the well know result of Taylor-Green vortex case. A large-scale sandstorm case is simulated and the altitude variations of number density along with its fluctuations are quantified.
Parameter studies on the energy balance closure problem using large-eddy simulation
De Roo, Frederik; Banerjee, Tirtha; Mauder, Matthias
2017-04-01
The imbalance of the surface energy budget in eddy-covariance measurements is still a pending problem. A possible cause is the presence of land surface heterogeneity. Heterogeneities of the boundary layer scale or larger are most effective in influencing the boundary layer turbulence, and large-eddy simulations have shown that secondary circulations within the boundary layer can affect the surface energy budget. However, the precise influence of the surface characteristics on the energy imbalance and its partitioning is still unknown. To investigate the influence of surface variables on all the components of the flux budget under convective conditions, we set up a systematic parameter study by means of large-eddy simulation. For the study we use a virtual control volume approach, and we focus on idealized heterogeneity by considering spatially variable surface fluxes. The surface fluxes vary locally in intensity and these patches have different length scales. The main focus lies on heterogeneities of length scales of the kilometer scale and one decade smaller. For each simulation, virtual measurement towers are positioned at functionally different positions. We discriminate between the locally homogeneous towers, located within land use patches, with respect to the more heterogeneous towers, and find, among others, that the flux-divergence and the advection are strongly linearly related within each class. Furthermore, we seek correlators for the energy balance ratio and the energy residual in the simulations. Besides the expected correlation with measurable atmospheric quantities such as the friction velocity, boundary-layer depth and temperature and moisture gradients, we have also found an unexpected correlation with the temperature difference between sonic temperature and surface temperature. In additional simulations with a large number of virtual towers, we investigate higher order correlations, which can be linked to secondary circulations. In a companion
Flow over Hills: A Large-Eddy Simulation of the Bolund Case
DEFF Research Database (Denmark)
Diebold, Marc; Higgins, Chad; Fang, Jiannong
2013-01-01
grid and permits a fast meshing of the topography. Here, we use the IBM in conjunction with a large-eddy simulation (LES) and test it against two unique datasets. In the first comparison, the LES is used to reproduce experimental results from a wind-tunnel study of a smooth three-dimensional hill....... In the second comparison, we simulate the wind field around the Bolund Hill, Denmark, and make direct comparisons with field measurements. Both cases show good agreement between the simulation results and the experimental data, with the largest disagreement observed near the surface. The source of error...
DEFF Research Database (Denmark)
Cavar, Dalibor; Meyer, Knud Erik
2011-01-01
A large eddy simulation (LES) study of turbulent non-equilibrium boundary layer flow over 2 D Bump, at comparatively low Reynolds number Reh = U∞h/ν = 1950, was conducted. A well-known LES issue of obtaining and sustaining turbulent flow inside the computational domain at such low Re, is addresse...... partially confirm a close interdependency between generation and evolution of internal layers and the abrupt changes in the skin friction, previously reported in the literature. © 2011 American Society of Mechanical Engineers....
Aeroelastic large eddy simulations using vortex methods: unfrozen turbulent and sheared inflow
DEFF Research Database (Denmark)
Branlard, Emmanuel Simon Pierre; Papadakis, G.; Gaunaa, Mac
2015-01-01
Vortex particles methods are applied to the aeroelastic simulation of a wind turbine in sheared and turbulent inflow. The possibility to perform large-eddy simulations of turbulence with the effect of the shear vorticity is demonstrated for the first time in vortex methods simulations. Most vortex...... methods formulation of shear, including segment formulations, assume a frozen shear. It is here shown that these formulations omit two source terms in the vorticity equation. The current paper also present unfrozen simulation of shear. The infinite support of the shear vorticity is accounted for using...
A regularized vortex-particle mesh method for large eddy simulation
DEFF Research Database (Denmark)
Spietz, Henrik Juul; Walther, Jens Honore; Hejlesen, Mads Mølholm
We present recent developments of the remeshed vortex particle-mesh method for simulating incompressible ﬂuid ﬂow. The presented method relies on a parallel higher-order FFT based solver for the Poisson equation. Arbitrary high order is achieved through regularization of singular Green’s function...... solutions to the Poisson equation and recently we have derived novel high order solutions for a mixture of open and periodic domains. With this approach the simulated variables may formally be viewed as the approximate solution to the ﬁltered Navier Stokes equations, hence we use the method for Large Eddy...
Energy Technology Data Exchange (ETDEWEB)
Lartigue, G.
2004-11-15
The new european laws on pollutants emission impose more and more constraints to motorists. This is particularly true for gas turbines manufacturers, that must design motors operating with very fuel-lean mixtures. Doing so, pollutants formation is significantly reduced but the problem of combustion stability arises. Actually, combustion regimes that have a large excess of air are naturally more sensitive to combustion instabilities. Numerical predictions of these instabilities is thus a key issue for many industrial involved in energy production. This thesis work tries to show that recent numerical tools are now able to predict these combustion instabilities. Particularly, the Large Eddy Simulation method, when implemented in a compressible CFD code, is able to take into account the main processes involved in combustion instabilities, such as acoustics and flame/vortex interaction. This work describes a new formulation of a Large Eddy Simulation numerical code that enables to take into account very precisely thermodynamics and chemistry, that are essential in combustion phenomena. A validation of this work will be presented in a complex geometry (the PRECCINSTA burner). Our numerical results will be successfully compared with experimental data gathered at DLR Stuttgart (Germany). Moreover, a detailed analysis of the acoustics in this configuration will be presented, as well as its interaction with the combustion. For this acoustics analysis, another CERFACS code has been extensively used, the Helmholtz solver AVSP. (author)
Large-eddy simulations of a Salt Lake Valley cold-air pool
Crosman, Erik T.; Horel, John D.
2017-09-01
Persistent cold-air pools are often poorly forecast by mesoscale numerical weather prediction models, in part due to inadequate parameterization of planetary boundary-layer physics in stable atmospheric conditions, and also because of errors in the initialization and treatment of the model surface state. In this study, an improved numerical simulation of the 27-30 January 2011 cold-air pool in Utah's Great Salt Lake Basin is obtained using a large-eddy simulation with more realistic surface state characterization. Compared to a Weather Research and Forecasting model configuration run as a mesoscale model with a planetary boundary-layer scheme where turbulence is highly parameterized, the large-eddy simulation more accurately captured turbulent interactions between the stable boundary-layer and flow aloft. The simulations were also found to be sensitive to variations in the Great Salt Lake temperature and Salt Lake Valley snow cover, illustrating the importance of land surface state in modelling cold-air pools.
Le, Trung; Khosronejad, Ali; Bartelt, Nicole; Woldeamlak, Solomon; Peterson, Bonnie; Dewall, Petronella; Sotiropoulos, Fotis; Saint Anthony Falls Laboratory, University of Minnesota Team; Minnesota Department of Transportation Team
2015-11-01
We study the dynamics of a river confluence on Mississippi River branch in the city of Minneapolis, Minnesota, United States. Field measurements by Acoustic Doppler Current Profiler using on-board GPS tracking were carried out for five campaigns in the summer of 2014 and 2015 to collect both river bed elevation data and flow fields. Large Eddy Simulation is carried out to simulate the flow field with the total of 100 million grid points for the domain length of 3.2 km. The simulation results agree well with field measurements at measured cross-sections. The results show the existence of wake mode on the mixing interface of two branches near the upstream junction corner. The mutual interaction between the shear layers emanating from the river banks leading to the formation of large scale energetic structures that leads to ``switching'' side of the flow coherent structures. Our result here is a feasibility study for the use of eddy-resolving simulations in predicting complex flow dynamics in medium-size natural rivers. This work is funded by Minnesota Dept. Transportation and Minnesota Institute of Supercomputing.
Large eddy simulation on the unsteady aerodynamic response of a road vehicle in transient crosswinds
International Nuclear Information System (INIS)
Tsubokura, Makoto; Nakashima, Takuji; Kitayama, Masashi; Ikawa, Yuki; Doh, Deog Hee; Kobayashi, Toshio
2010-01-01
A large eddy simulation method based on a fully unstructured finite volume method was developed, and the unsteady aerodynamic response of a road vehicle subjected to transient crosswinds was investigated. First, the method was validated for a 1/20-scale wind-tunnel model in a static aerodynamic condition; this showed that the surface pressure distributions as well as the aerodynamic forces and moments were in good agreement with wind-tunnel data. Second, the method was applied to two transient crosswind situations: a sinusoidal perturbation representing the typical length scale of atmospheric turbulence and a stepwise crosswind velocity corresponding to wind gusts. Typical transient responses of the aerodynamic forces and moments such as phase shifting and undershooting or overshooting were observed, and their dependence on the frequency and amplitude of the input perturbation is discussed. Thus, the utility and validity of the large eddy simulation was demonstrated in the context that such transient aerodynamic forces are difficult to measure using a conventional wind tunnel.
Large eddy simulations of isothermal confined swirling flow in an industrial gas-turbine
International Nuclear Information System (INIS)
Bulat, G.; Jones, W.P.; Navarro-Martinez, S.
2015-01-01
Highlights: • We conduct a large eddy simulation of an industrial gas turbine. • The results are compared with measurements obtained under isothermal conditions. • The method reproduces the observed precessing vortex and central vortex cores. • The profiles of mean and rms velocities are found to be captured to a good accuracy. - Abstract: The paper describes the results of a computational study of the strongly swirling isothermal flow in the combustion chamber of an industrial gas turbine. The flow field characteristics are computed using large eddy simulation in conjunction with a dynamic version of the Smagorinsky model for the sub-grid-scale stresses. Grid refinement studies demonstrate that the results are essentially grid independent. The LES results are compared with an extensive set of measurements and the agreement with these is overall good. The method is shown to be capable of reproducing the observed precessing vortex and central vortex cores and the profiles of mean and rms velocities are found to be captured to a good accuracy. The overall flow structure is shown to be virtually independent of Reynolds number
Large-eddy simulations of the non-reactive flow in the Sydney swirl burner
International Nuclear Information System (INIS)
Yang Yang; Kær, Søren Knudsen
2012-01-01
Highlights: ► Rational mesh and grid system for LES are discussed. ► Validated results are provided and discrepancy of mean radial velocity component is discussed. ► Flow structures are identified using vorticity field. ► We performed POD on cross sections to assist in understanding of coherent structures. - Abstract: This paper presents a numerical investigation using large-eddy simulation. Two isothermal cases from the Sydney swirling flame database with different swirl numbers were tested. Rational grid system and mesh details were presented firstly. Validations showed overall good agreement in time averaged results. In medium swirling case, there are two reverse-flow regions with a collar-like structure between them. The existence of strong unsteady structure, precessing vortex core, was proven. Coherent structures are detached from the instantaneous field. Q-criterion was used to visualize vorticity field with distinct clear structure of vortice tubes. Dominating spatial–temporal structures contained in different cross sections were extracted using proper orthogonal decomposition. In high swirling case, there is only one long reverse-flow region. In this paper, we proved the capability of a commercial CFD package in predicting complex flow field and presented the potential of large eddy simulation in understanding dynamics.
TCC-III Engine Benchmark for Large-Eddy Simulation of IC Engine Flows
Directory of Open Access Journals (Sweden)
Schiffmann P.
2016-01-01
Full Text Available A collaborative effort is described to benchmark the TCC-III engine, and to illustrate the application of this data for the evaluation of sub-grid scale models and valve simulation details on the fidelity of Large-Eddy Simulations (LES. The TCC-III is a spark ignition 4-stroke 2-valve engine with a flat head and piston and is equipped with a full quartz liner for maximum optical access that allows high-speed flow measurements with Particle Image Velocimetry (PIV; the TCC-III has new valve seats and a modified intake-system compared to previous configurations. This work is an extension of a previous study at an engine speed of 800 RPM and an intake manifold pressure (MAP of 95 kPa, where a one-equation eddy viscosity LES model yielded accurate qualitative and quantitative predictions of ensemble averaged mean and RMS velocities during the intake and compression stroke. Here, experimental data were acquired with parametric variation of engine speed and intake manifold absolute pressure to assess the capability of LES models over a range of operating conditions of practical relevance. This paper focuses on the repeatability and accuracy of the measured PIV data, acquired at 1 300 RPM, at two different MAP (95 kPa and 40 kPa, and imaged at multiple data planes and crank angles. Two examples are provided, illustrating the application of this data to LES model development. In one example, the experimental data are used to distinguish between the efficacies of a one-equation eddy viscosity model versus a dynamic structure one-equation model for the sub-grid stresses. The second example addresses the effects of numerical intake-valve opening strategy and local mesh refinement in the valve curtain.
Large-eddy simulation of turbulent flow in a street canyon
Cui, Zhiqiang; Cai, Xiaoming; Baker, J. Chris
2004-04-01
The turbulent flow inside an idealized urban street canyon with an aspect ratio of one is studied by means of large-eddy simulation. The Regional Atmospheric Modelling System is configured to simulate the turbulent flow in a neutrally stratified atmosphere with the initial wind perpendicular to the street canyon axis. The mean velocity components, resolved-scale turbulent kinetic energy (RS-TKE), the skewness and kurtosis of the resolved-scale velocity components (u along the canyon and w vertically) are compared with wind-tunnel measurements. The comparison indicates that a reasonable agreement is achieved. The simulation slightly underestimates the intensity of the primary eddy. It is found that distribution of the RS-TKE is very asymmetric: high in the vicinity of the downstream wall, and uniformly low in the vicinity of the upstream wall. The analyses of skewness and kurtosis indicate that there is a layer just below the rooftop in the canyon where ejection events dominate. Quadrant analysis of resolved-scale velocity fluctuations, u and w, under the rooftop at the centre of the canyon reveals that the exchange of momentum across the canyon top is contributed unevenly by different events. Weak ejection events dominate the frequency of occurrences, but fewer strong sweep events contribute the majority of the total momentum transfer. The features of momentum transfer are further investigated by analysing the spatial-temporal variations of u, w, and uw at the roof level. It is found that the variation of these variables is highly intermittent and is associated with multi-scale turbulent events. The period of eddies containing high RS-TKE is attributed to the Kelvin-Helmhotz instabilities. These results improve our understanding of the turbulent structure in street canyon flow.
Large-Eddy Simulation (LES of Spray Transients: Start and End of Injection Phenomena
Directory of Open Access Journals (Sweden)
Battistoni Michele
2016-01-01
Full Text Available This work reports investigations on Diesel spray transients, accounting for internal nozzle flow and needle motion, and demonstrates how seamless calculations of internal flow and external jet can be accomplished in a Large-Eddy Simulation (LES framework using an Eulerian mixture model. Sub-grid stresses are modeled with the Dynamic Structure (DS model, a non-viscosity based one-equation LES model. Two problems are studied with high level of spatial and temporal resolution. The first one concerns an End-Of-Injection (EOI case where gas ingestion, cavitation, and dribble formation are resolved. The second case is a Start-Of-Injection (SOI simulation that aims at analyzing the effect of residual gas trapped inside the injector sac on spray penetration and rate of fuel injection. Simulation results are compared against experiments carried out at Argonne National Laboratory (ANL using synchrotron X-ray. A mesh sensitivity analysis is conducted to assess the quality of the LES approach by evaluating the resolved turbulent kinetic energy budget and comparing the outcomes with a length-scale resolution index. LES of both EOI and SOI processes have been carried out on a single hole Diesel injector, providing insights in to the physics of the processes, with internal and external flow details, and linking the phenomena at the end of an injection event to those at the start of a new injection. Concerning the EOI, the model predicts ligament formation and gas ingestion, as observed experimentally, and the amount of residual gas in the nozzle sac matches with the available data. The fast dynamics of the process is described in detail. The simulation provides unique insights into the physics at the EOI. Similarly, the SOI simulation shows how gas is ejected first, and liquid fuel starts being injected with a delay. The simulation starts from a very low needle lift and is able to predict the actual Rate-Of-Injection (ROI and jet penetration, based only on the
Directory of Open Access Journals (Sweden)
Xu Rang-Shu
2015-01-01
Full Text Available Numerical simulation is the main method to solve turbulence problems. As one of the three methods which are commonly used in large-eddy simulation model (LES is the most effective and promising research method. The basic idea of large-eddy simulation is that the large scale turbulent motion is directly simulated and we use the sub-grid scale model to simulate small-scale turbulent motion. Continuing alternative load exists in aero-engine combustion chamber during operation. This coupling phenomenon is an important reason to the combustion chamber fatigue failure. In this paper, the large-eddy simulation methods are described and applied in researching aero-engine combustion chamber multi-physics field coupling analysis. By comparing with the experimental results we verify the feasibility of this method and there is great significance of actual project.
Coupled large-eddy simulation of thermal mixing in a T-junction
International Nuclear Information System (INIS)
Kloeren, D.; Laurien, E.
2011-01-01
Analyzing thermal fatigue due to thermal mixing in T-junctions is part of the safety assessment of nuclear power plants. Results of two large-eddy simulations of mixing flow in a T-junction with coupled and adiabatic boundary condition are presented and compared. The temperature difference is set to 100 K, which leads to strong stratification of the flow. The main and the branch pipe intersect horizontally in this simulation. The flow is characterized by steady wavy pattern of stratification and temperature distribution. The coupled solution approach shows highly reduced temperature fluctuations in the near wall region due to thermal inertia of the wall. A conjugate heat transfer approach is necessary in order to simulate unsteady heat transfer accurately for large inlet temperature differences. (author)
Large eddy simulation: a new tool in fluid mechanics for analysing nonstationary phenomena
International Nuclear Information System (INIS)
Barre, F.; Bieder, U.; Mercier, P.; Tenchine, D.; Moro, J.P.; Villand, M.; Roubin, P.
1999-01-01
Large Eddy Simulation (LES) is emerging as one of the most promising techniques for the calculation of turbulence within industrial flow components such as nuclear power plant pressure vessel and circuits, steam generator, heat exchanger, pollutant diffusion, etc. LES codes require to be assessed using experimental test facilities with high-level measurement techniques as in the Coppec experiment. At CEA, an effort is being made to develop computational code that would make industrial use of LES possible. LES has already been used to resolve the problem of thermal stripping in PWR or FBR circuits. The performance of new-generation computers allows calculation with a very large number of meshes (several millions), and investigation, for example, of the structure vibration problem or evaluation of the local heat transfer coefficient in heat exchangers. (authors)
A high-resolution code for large eddy simulation of incompressible turbulent boundary layer flows
Cheng, Wan
2014-03-01
We describe a framework for large eddy simulation (LES) of incompressible turbulent boundary layers over a flat plate. This framework uses a fractional-step method with fourth-order finite difference on a staggered mesh. We present several laminar examples to establish the fourth-order accuracy and energy conservation property of the code. Furthermore, we implement a recycling method to generate turbulent inflow. We use the stretched spiral vortex subgrid-scale model and virtual wall model to simulate the turbulent boundary layer flow. We find that the case with Reθ ≈ 2.5 × 105 agrees well with available experimental measurements of wall friction, streamwise velocity profiles and turbulent intensities. We demonstrate that for cases with extremely large Reynolds numbers (Reθ = 1012), the present LES can reasonably predict the flow with a coarse mesh. The parallel implementation of the LES code demonstrates reasonable scaling on O(103) cores. © 2013 Elsevier Ltd.
Scales of Langmuir circulation generated using a large-eddy simulation model
International Nuclear Information System (INIS)
Skyllingstad, Eric D.
2001-01-01
Sensitivity experiments were performed using a large-eddy simulation (LES) turbulence model of the ocean surface boundary layer. Parameters defining wind and wave forcing were varied to help understand how different forcing affects the formation and dispersive qualities of Langmuir circulation (LC). Comparison of the model with observed surface velocity variance shows a consistent linear increase in velocity scale with increasing wave Stokes drift, however, the model systematically under predicts the velocity scale for large Stokes drift. Results using particle trajectories show that in open-ocean conditions, wave forcing dominates the structure of near surface turbulence causing organized LC cells that actively collect surface material. With weak waves, surface particles display a more random pattern in comparison to strong wave cases. Analysis of the turbulence kinetic energy budget shows that the reduction in wave forcing is offset by shear production, which produces less organized patterns in surface material in comparison to LC. (Author)
Dosio, A.; Vilà-Guerau de Arellano, J.
2006-01-01
The influence of the different scales of turbulent motion on plume dispersion in the atmospheric convective boundary layer (CBL) is studied by means of a large-eddy simulation (LES). In particular, the large-scale (meandering) and small-scale (relative diffusion) contributions are separated by
Large Eddy/Reynolds-Averaged Navier-Stokes Simulations of CUBRC Base Heating Experiments
Salazar, Giovanni; Edwards, Jack R.; Amar, Adam J.
2012-01-01
ven with great advances in computational techniques and computing power during recent decades, the modeling of unsteady separated flows, such as those encountered in the wake of a re-entry vehicle, continues to be one of the most challenging problems in CFD. Of most interest to the aerothermodynamics community is accurately predicting transient heating loads on the base of a blunt body, which would result in reduced uncertainties and safety margins when designing a re-entry vehicle. However, the prediction of heat transfer can vary widely depending on the turbulence model employed. Therefore, selecting a turbulence model which realistically captures as much of the flow physics as possible will result in improved results. Reynolds Averaged Navier Stokes (RANS) models have become increasingly popular due to their good performance with attached flows, and the relatively quick turnaround time to obtain results. However, RANS methods cannot accurately simulate unsteady separated wake flows, and running direct numerical simulation (DNS) on such complex flows is currently too computationally expensive. Large Eddy Simulation (LES) techniques allow for the computation of the large eddies, which contain most of the Reynolds stress, while modeling the smaller (subgrid) eddies. This results in models which are more computationally expensive than RANS methods, but not as prohibitive as DNS. By complimenting an LES approach with a RANS model, a hybrid LES/RANS method resolves the larger turbulent scales away from surfaces with LES, and switches to a RANS model inside boundary layers. As pointed out by Bertin et al., this type of hybrid approach has shown a lot of promise for predicting turbulent flows, but work is needed to verify that these models work well in hypersonic flows. The very limited amounts of flight and experimental data available presents an additional challenge for researchers. Recently, a joint study by NASA and CUBRC has focused on collecting heat transfer data
Unstructured Large Eddy Simulation of the passive control of the flow in a weapon bay
Levasseur, V.; Sagaut, P.; Mallet, M.; Chalot, F.
2008-11-01
The control of cavity flows has been investigated by the means of Large Eddy Simulations. The computations have been carried out on unstructured meshes to assess the efficiency of two passive acoustic oscillation suppression devices: the rod-in-crossflow and the flat-top spoiler. Despite a sustained interest and many experiments, a clear explanation for observed reduction in the flow-induced structure load is still missing. This work explores different hypotheses: the modification of the mean field and its linear stability properties, a pure deflection effect of the separated shear layer, or scale coupling between the rod wake and the turbulent mixing layer over the cavity. The aim here is to enhance the experimental database and provide leads towards a better understanding of the phenomena. The selected test-case is a cavity of length/depth ratio equal to 5, at Mach and Reynolds number of M=0.85 and ReL=7.10, respectively.
Large eddy simulation on thermal fluid mixing in a T-junction piping system
Energy Technology Data Exchange (ETDEWEB)
Selvam, P. Karthick; Kulenovic, R.; Laurien, E. [Stuttgart Univ. (Germany). Inst fuer Kernenergie und Energiesysteme (IKE)
2014-11-15
High cycle thermal fatigue damage caused in piping systems is an important problem encountered in the context of nuclear safety and lifetime management of a Nuclear Power Plant (NPP). The T-junction piping system present in the Residual Heat Removal System (RHRS) is more vulnerable to thermal fatigue cracking. In this numerical study, thermal mixing of fluids at temperature difference (?T) of 117 K between the mixing fluids is analyzed. Large Eddy Simulation (LES) is performed with conjugate heat transfer between the fluid and structure. LES is performed based on the Fluid-Structure Interaction (FSI) test facility at University of Stuttgart. The results show an intense turbulent mixing of fluids downstream of T-junction. Amplitude of temperature fluctuations near the wall region and its corresponding frequency distribution is analyzed. LES is performed using commercial CFD software ANSYS CFX 14.0.
Wall-resolved Large Eddy Simulations of turbulent heat transfer in a T-junction
Georgiou, Michail; Papalexandris, Miltiadis V.
2017-11-01
In this talk we report on wall-resolved Large Eddy Simulations of turbulent heat transfer between a cold crossflow and a hot incoming jet in a T-junction. Due to their high efficiency in mixing and heat transfer, T-junctions are encountered in numerous industrial applications. Our study is motivated by the need to assess phenomena related to thermal fatigue that are often encountered at their walls. We first describe the important features of the flow with emphasis on the shear layers that are formed at the entry of the jet and the recirculation regions. We also show results for first- and second-order statistics of the flow and compare our predictions with previous experimental data. Lastly, we present results from the spectral analysis of the temperature signal that we performed in order to assess the oscillating mechanisms that dominate the flow and the risk of thermal fatigue at the walls of the T-junction.
Large eddy simulation of turbulent mixing by using 3D decomposition method
Energy Technology Data Exchange (ETDEWEB)
Issakhov, Alibek, E-mail: aliisahov@mail.ru [al-Farabi Kazakh National University, Almaty (Kazakhstan)
2011-12-22
Parallel implementation of algorithm of numerical solution of Navier-Stokes equations for large eddy simulation (LES) of turbulence is presented in this research. The dynamic Smagorinsky model is applied for sub-grid simulation of turbulence. The numerical algorithm was worked out using a scheme of splitting on physical parameters. At the first stage it is supposed that carrying over of movement amount takes place only due to convection and diffusion. Intermediate field of velocity is determined by method of fractional steps by using Thomas algorithm (tridiagonal matrix algorithm). At the second stage the determined intermediate field of velocity is used for determination of the field of pressure. Three dimensional Poisson equation for the field of pressure is solved using over relaxation method.
Large eddy simulation of the generation and breakdown of a tumbling flow
International Nuclear Information System (INIS)
Toledo, Mauricio S.; Le Penven, Lionel; Buffat, Marc; Cadiou, Anne; Padilla, Judith
2007-01-01
Large eddy simulations (LES) are performed in order to reproduce the generation and the breakdown of a tumbling motion in the simplified model engine [Boree, J., Maurel, S., Bazile, R., 2002. Disruption of a compressed vortex. Phys. Fluids, 14 (7) 2543-2556]. A second-order accurate numerical scheme is applied in conjunction with a mixed finite volume/finite element formulation adapted for unstructured deforming meshes. Subgrid terms are kept as simple as possible with a Smagorinsky model in order to build a methodology devoted to engine-like flows. The main statistical quantities, such as mean velocity and turbulent kinetic energy, are obtained from a set of independent cycles and compared to experiments. Important experimental features, such as oscillations of the intake jet, vortex precession and a turbulent kinetic energy peak near the vortex core, are well reproduced
Large Eddy Simulations and Experimental Investigation of Flow in a Swirl Stabilized Combustor
Kewlani, Gaurav
2012-01-09
Swirling flows are the preferred mode of flame stabilization in lean premixed gas turbine engine combustors. Developing a fundamental understanding of combustion dynamics and flame stability in such systems requires a detailed investigation of the complex interactions between fluid mechanics and combustion. The turbulent reacting flow in a sudden expansion swirl combustor is studied using compressible large eddy simulations (LES) and compared with experimental data measured using PIV. Different vortex breakdown structures are observed, as the mixture equivalence ratio is reduced, that progressively diminish the stability of the flame. Sub-grid scale combustion models such as the artificially thickened flame method and the partially stirred reactor approach, along with appropriate chemical schemes, are implemented to describe the flame. The numerical predictions for average velocity correspond well with experimental results, and higher accuracy is obtained using the more detailed reaction mechanism. Copyright © 2012 American Institute of Aeronautics and Astronautics, Inc.
Study of the blowing impact on a hot turbulent boundary layer using Thermal Large Eddy Simulation
International Nuclear Information System (INIS)
Brillant, G.; Husson, S.; Bataille, F.; Ducros, F.
2008-01-01
We investigate Thermal Large Eddy Simulation in a complex case using Trio U. We develop a thermal turbulent inflow condition based on parallel flows in order to simulate a turbulent thermal boundary layer. This inflow condition is tested with a turbulent channel flow. We show that it produces fine profiles for velocity and temperature. Later, this inlet condition is used in the case of blowing through a porous plate. Two different blowing regimes are studied: the classical turbulent boundary layer and the blown off boundary layer. Comparisons show that we obtain similar experimental and numerical profiles (Brillant, G., Husson, S., Bataille, F., 2008. Experimental study of the blowing impact on a hot turbulent boundary layer. International Journal of Heat and Mass Transfer 51 (7-8), 1996-2005.). We finish with additional results obtained only through numerical simulations
Study of the blowing impact on a hot turbulent boundary layer using Thermal Large Eddy Simulation
Energy Technology Data Exchange (ETDEWEB)
Brillant, G. [CEA/Grenoble DEN/DER/SSTH/LMDL, 17 rue des Martyrs 38054, Grenoble Cedex 9 (France); INSA/Centre de Thermique de Lyon (UMR CNRS 5008), Bat. Sadi Carnot 69621, Villeurbanne Cedex (France); Husson, S. [INSA/Centre de Thermique de Lyon (UMR CNRS 5008), Bat. Sadi Carnot 69621, Villeurbanne Cedex (France); Bataille, F. [INSA/Centre de Thermique de Lyon (UMR CNRS 5008), Bat. Sadi Carnot 69621, Villeurbanne Cedex (France)], E-mail: Francoise.Daumas-Bataille@univ-perp.fr; Ducros, F. [CEA/Grenoble DEN/DER/SSTH/LMDL, 17 rue des Martyrs 38054, Grenoble Cedex 9 (France)
2008-12-15
We investigate Thermal Large Eddy Simulation in a complex case using Trio U. We develop a thermal turbulent inflow condition based on parallel flows in order to simulate a turbulent thermal boundary layer. This inflow condition is tested with a turbulent channel flow. We show that it produces fine profiles for velocity and temperature. Later, this inlet condition is used in the case of blowing through a porous plate. Two different blowing regimes are studied: the classical turbulent boundary layer and the blown off boundary layer. Comparisons show that we obtain similar experimental and numerical profiles (Brillant, G., Husson, S., Bataille, F., 2008. Experimental study of the blowing impact on a hot turbulent boundary layer. International Journal of Heat and Mass Transfer 51 (7-8), 1996-2005.). We finish with additional results obtained only through numerical simulations.
Large Eddy Simulation of Turbulent Flow and Heat Transfer in a Ribbed Coolant Passage
Directory of Open Access Journals (Sweden)
Abhishek G. Ramgadia
2012-01-01
Full Text Available Numerical simulations of hydrodynamic and thermally fully developed turbulent flow are presented for flow through a stationary duct with periodic array of inline transverse rib turbulators. The rib height to hydraulic diameter ratio (/ℎ is 0.1 and the rib pitch to rib height ratio (/ is 10. The effect of secondary flow due to presence of rib turbulators on heat and mass transfer has been investigated. The present work reviews the use of a large eddy simulation (LES turbulence model, known as shear-improved Smagorinsky model (SISM, for predicting flow and heat transfer characteristics in the fully developed periodic flow region. The computations are performed for Reynolds number of 2,053 and the working fluid chosen to be air, the Prandtl number of which is 0.7. Instantaneous flow field, time-mean, and turbulent quantities are reported together with heat transfer and a close match with experiments has been observed.
Large Eddy and Interface Simulation (LEIS) of liquid entrainment in turbulent stratified flow
International Nuclear Information System (INIS)
Gulati, S.; Buongiorno, J.; Lakehal, D.
2011-01-01
Dryout of the liquid film on the fuel rods in BWR fuel assemblies leads to an abrupt decrease in heat transfer coefficient and can result in fuel failure. The process of mechanical mass transfer from the continuous liquid field into the continuous vapor field along the liquid-vapor interface is called entrainment and is the dominant depletion mechanism for the liquid film in annular flow. Using interface tracking methods combined with a Large Eddy Simulation approach, implemented in the Computational Multi-Fluid Dynamics (CMFD) code TransAT®, we are studying entrainment phenomena in BWR fuel assemblies. In this paper we report on the CMFD simulation approaches and the current validation effort for the code. (author)
One-Way Nested Large-Eddy Simulation over the Askervein Hill
Directory of Open Access Journals (Sweden)
James D. Doyle
2009-07-01
Full Text Available Large-eddy simulation (LES models have been used extensively to study atmospheric boundary layer turbulence over flat surfaces; however, LES applications over topography are less common. We evaluate the ability of an existing model – COAMPS^{®}-LES – to simulate flow over terrain using data from the Askervein Hill Project. A new approach is suggested for the treatment of the lateral boundaries using one-way grid nesting. LES wind profile and speed-up are compared with observations at various locations around the hill. The COAMPS-LES model performs generally well. This case could serve as a useful benchmark for evaluating LES models for applications over topography.
Large eddy simulation of the tidal power plant deep green using the actuator line method
Fredriksson, S. T.; Broström, G.; Jansson, M.; Nilsson, H.; Bergqvist, B.
2017-12-01
Tidal energy has the potential to provide a substantial part of the sustainable electric power generation. The tidal power plant developed by Minesto, called Deep Green, is a novel technology using a ‘flying’ kite with an attached turbine, moving at a speed several times higher than the mean flow. Multiple Deep Green power plants will eventually form arrays, which require knowledge of both flow interactions between individual devices and how the array influences the surrounding environment. The present study uses large eddy simulations (LES) and an actuator line model (ALM) to analyze the oscillating turbulent boundary layer flow in tidal currents without and with a Deep Green power plant. We present the modeling technique and preliminary results so far.
Spyropoulos, Evangelos T.; Holmes, Bayard S.
1997-01-01
The dynamic subgrid-scale model is employed in large-eddy simulations of flow over a cylinder at a Reynolds number, based on the diameter of the cylinder, of 90,000. The Centric SPECTRUM(trademark) finite element solver is used for the analysis. The far field sound pressure is calculated from Lighthill-Curle's equation using the computed fluctuating pressure at the surface of the cylinder. The sound pressure level at a location 35 diameters away from the cylinder and at an angle of 90 deg with respect to the wake's downstream axis was found to have a peak value of approximately 110 db. Slightly smaller peak values were predicted at the 60 deg and 120 deg locations. A grid refinement study suggests that the dynamic model demands mesh refinement beyond that used here.
Explaining the convector effect in canopy turbulence by means of large-eddy simulation
Banerjee, Tirtha; De Roo, Frederik; Mauder, Matthias
2017-06-01
Semi-arid forests are found to sustain a massive sensible heat flux in spite of having a low surface to air temperature difference by lowering the aerodynamic resistance to heat transfer (rH) - a property called the canopy convector effect (CCE). In this work large-eddy simulations are used to demonstrate that the CCE appears more generally in canopy turbulence. It is indeed a generic feature of canopy turbulence: rH of a canopy is found to reduce with increasing unstable stratification, which effectively increases the aerodynamic roughness for the same physical roughness of the canopy. This relation offers a sufficient condition to construct a general description of the CCE. In addition, we review existing parameterizations for rH from the evapotranspiration literature and test to what extent they are able to capture the CCE, thereby exploring the possibility of an improved parameterization.
Role of subgrid-scale modeling in large eddy simulation of wind turbine wake interactions
DEFF Research Database (Denmark)
Sarlak, Hamid; Meneveau, C.; Sørensen, Jens Nørkær
2015-01-01
A series of simulations are carried out to evaluate specific features of the Large Eddy Simulation (LES) technique in wind turbine wake interactions. We aim to model wake interactions of two aligned model rotors. The effects of the rotor resolution, actuator line force filter size, and Reynolds...... number are investigated at certain tip speed ratios. The numerical results are validated against wind tunnel measurements in terms of the mean velocity, turbulence intensity and the power and thrust coefficients. Special emphasis is placed on the role played by subgrid scale (SGS) models in affecting...... the flow structures and turbine loading, as this has been studied less in prior investigations. It is found that, compared with the effects of rotor resolution and force kernel size, the SGS models have only a minor impact on the wake and predicted power performance. These observations confirm the usual...
DEFF Research Database (Denmark)
Chivaee, Hamid Sarlak; Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming
2012-01-01
Large eddy simulation (LES) of flow in a wind farm is studied in neutral as well as thermally stratified atmospheric boundary layer (ABL). An approach has been practiced to simulate the flow in a fully developed wind farm boundary layer. The approach is based on the Immersed Boundary Method (IBM......) and involves implementation of an arbitrary prescribed initial boundary layer (See [1]). A prescribed initial boundary layer profile is enforced through the computational domain using body forces to maintain a desired flow field. The body forces are then stored and applied on the domain through the simulation...... and the boundary layer shape will be modified due to the interaction of the turbine wakes and buoyancy contributions. The implemented method is capable of capturing the most important features of wakes of wind farms [1] while having the advantage of resolving the wall layer with a coarser grid than typically...
Large-eddy simulation of flow around an airfoil on a structured mesh
Kaltenbach, Hans-Jakob; Choi, Haecheon
1995-01-01
The diversity of flow characteristics encountered in a flow over an airfoil near maximum lift taxes the presently available statistical turbulence models. This work describes our first attempt to apply the technique of large-eddy simulation to a flow of aeronautical interest. The challenge for this simulation comes from the high Reynolds number of the flow as well as the variety of flow regimes encountered, including a thin laminar boundary layer at the nose, transition, boundary layer growth under adverse pressure gradient, incipient separation near the trailing edge, and merging of two shear layers at the trailing edge. The flow configuration chosen is a NACA 4412 airfoil near maximum lift. The corresponding angle of attack was determined independently by Wadcock (1987) and Hastings & Williams (1984, 1987) to be close to 12 deg. The simulation matches the chord Reynolds number U(sub infinity)c/v = 1.64 x 10(exp 6) of Wadcock's experiment.
Large-eddy simulation in a mixing tee junction: High-order turbulent statistics analysis
International Nuclear Information System (INIS)
Howard, Richard J.A.; Serre, Eric
2015-01-01
Highlights: • Mixing and thermal fluctuations in a junction are studied using large eddy simulation. • Adiabatic and conducting steel wall boundaries are tested. • Wall thermal fluctuations are not the same between the flow and the solid. • Solid thermal fluctuations cannot be predicted from the fluid thermal fluctuations. • High-order turbulent statistics show that the turbulent transport term is important. - Abstract: This study analyses the mixing and thermal fluctuations induced in a mixing tee junction with circular cross-sections when cold water flowing in a pipe is joined by hot water from a branch pipe. This configuration is representative of industrial piping systems in which temperature fluctuations in the fluid may cause thermal fatigue damage on the walls. Implicit large-eddy simulations (LES) are performed for equal inflow rates corresponding to a bulk Reynolds number Re = 39,080. Two different thermal boundary conditions are studied for the pipe walls; an insulating adiabatic boundary and a conducting steel wall boundary. The predicted flow structures show a satisfactory agreement with the literature. The velocity and thermal fields (including high-order statistics) are not affected by the heat transfer with the steel walls. However, predicted thermal fluctuations at the boundary are not the same between the flow and the solid, showing that solid thermal fluctuations cannot be predicted by the knowledge of the fluid thermal fluctuations alone. The analysis of high-order turbulent statistics provides a better understanding of the turbulence features. In particular, the budgets of the turbulent kinetic energy and temperature variance allows a comparative analysis of dissipation, production and transport terms. It is found that the turbulent transport term is an important term that acts to balance the production. We therefore use a priori tests to evaluate three different models for the triple correlation
Investigation of Numerical Dissipation in Classical and Implicit Large Eddy Simulations
Directory of Open Access Journals (Sweden)
Moutassem El Rafei
2017-12-01
Full Text Available The quantitative measure of dissipative properties of different numerical schemes is crucial to computational methods in the field of aerospace applications. Therefore, the objective of the present study is to examine the resolving power of Monotonic Upwind Scheme for Conservation Laws (MUSCL scheme with three different slope limiters: one second-order and two third-order used within the framework of Implicit Large Eddy Simulations (ILES. The performance of the dynamic Smagorinsky subgrid-scale model used in the classical Large Eddy Simulation (LES approach is examined. The assessment of these schemes is of significant importance to understand the numerical dissipation that could affect the accuracy of the numerical solution. A modified equation analysis has been employed to the convective term of the fully-compressible Navier–Stokes equations to formulate an analytical expression of truncation error for the second-order upwind scheme. The contribution of second-order partial derivatives in the expression of truncation error showed that the effect of this numerical error could not be neglected compared to the total kinetic energy dissipation rate. Transitions from laminar to turbulent flow are visualized considering the inviscid Taylor–Green Vortex (TGV test-case. The evolution in time of volumetrically-averaged kinetic energy and kinetic energy dissipation rate have been monitored for all numerical schemes and all grid levels. The dissipation mechanism has been compared to Direct Numerical Simulation (DNS data found in the literature at different Reynolds numbers. We found that the resolving power and the symmetry breaking property are enhanced with finer grid resolutions. The production of vorticity has been observed in terms of enstrophy and effective viscosity. The instantaneous kinetic energy spectrum has been computed using a three-dimensional Fast Fourier Transform (FFT. All combinations of numerical methods produce a k − 4 spectrum
Large eddy simulation of the subcritical flow over a V grooved circular cylinder
International Nuclear Information System (INIS)
Alonzo-García, A.; Gutiérrez-Torres, C. del C.; Jiménez-Bernal, J.A.
2015-01-01
Highlights: • We compared numerically the turbulent flow over a smooth circular cylinder and a V grooved cylinder in the subcritical regime. • Turbulence intensities in both streamwise and normal direction suffered attenuations. • The swirls structures on grooves peaks seemed to have a cyclic behavior. • The evolution of the flow inside grooves showed that swirls structures located in peaks suffered elongations in the normal direction. • The secondary vortex structures formed in the grooved cylinder near wake were smaller in comparison of the smooth cylinder flow. - Abstract: In this paper, a comparative numerical study of the subcritical flow over a smooth cylinder and a cylinder with V grooves (Re = 140,000) is presented. The implemented technique was the Large Eddy Simulation (LES), which according to Kolmogorov's theory, resolves directly the most energetic largest eddies and models the smallest and considered universal high frequency ones. The Navier-Stokes (N-S) equations were solved using the commercial software ANSYS FLUENT V.12.1, which applied the finite volume method (FVM) to discretize these equations in their unsteady and incompressible forms. The grid densities were 2.6 million cells and 13.5 million cells for the smooth and V grooved cylinder, respectively. Both meshes were composed of structured hexahedral cells and close to the wall of the cylinders, additional refinements were employed in order to obtain y +<5 values. All cases were simulated during at least 15 vortex shedding cycles with the aim of obtaining significant statistical data. Results: showed that for both cases (smooth and V grooved cylinder flow), the numerical code was capable of reproducing the most important physical quantities of the subcritical regime. Velocity distribution and turbulence intensity in the flow direction suffered a slight attenuation along the wake, as a consequence of grooves perturbation, which also caused an increase in the pressure coefficient
Directory of Open Access Journals (Sweden)
T. Aly Saandy
2015-08-01
Full Text Available Abstract This article presents to an analytical calculation methodology of the Steinmetz coefficient applied to the prediction of Eddy current loss in a single-phase transformer. Based on the electrical circuit theory the active power consumed by the core is expressed analytically in function of the electrical parameters as resistivity and the geometrical dimensions of the core. The proposed modeling approach is established with the duality parallel series. The required coefficient is identified from the empirical Steinmetz data based on the experimented active power expression. To verify the relevance of the model validations both by simulations with two in two different frequencies and measurements were carried out. The obtained results are in good agreement with the theoretical approach and the practical results.
Investigation of downstream and sideline subsonic jet noise using large Eddy simulation
Energy Technology Data Exchange (ETDEWEB)
Bogey, Christophe; Bailly, Christophe [Laboratoire de Mecanique des Fluides et d' Acoustique, UMR CNRS 5509, Ecully (France)
2006-02-15
The sound fields radiated by Mach number 0.6 and 0.9, circular jets with Reynolds numbers varying from 1.7 x 10{sup 3} to 4 x 10{sup 5} are investigated using Large Eddy Simulations. As the Reynolds number decreases, the properties of the sound radiation do not change significantly in the downstream direction, whereas they are modified in the sideline direction. At low Reynolds numbers, for large angles downstream from the jet axis, the acoustic levels are indeed remarkably lower and a large high-frequency part of the sound spectra vanishes. For all Reynolds numbers, the downstream and the sideline sound spectra both appear to scale in frequency with the Strouhal number. However their peak amplitudes vary following two different velocity exponents according to the radiation direction. The present observations suggest the presence of two sound sources: a Reynolds number-dependent source, predominant for large radiation angles, connected to the randomly-developing turbulence, and a deterministic source, radiating downstream, related to a mechanism intrinsic to the jet geometry, which is still to be comprehensively described. This view agrees well with the experimental results displaying two distinguishable components in turbulent mixing noise [1, 2]. (orig.)
Forecasting wildland fire behavior using high-resolution large-eddy simulations
Munoz-Esparza, D.; Kosovic, B.; Jimenez, P. A.; Anderson, A.; DeCastro, A.; Brown, B.
2017-12-01
Wildland fires are responsible for large socio-economic impacts. Fires affect the environment, damage structures, threaten lives, cause health issues, and involve large suppression costs. These impacts can be mitigated via accurate fire spread forecast to inform the incident management team. To this end, the state of Colorado is funding the development of the Colorado Fire Prediction System (CO-FPS). The system is based on the Weather Research and Forecasting (WRF) model enhanced with a fire behavior module (WRF-Fire). Realistic representation of wildland fire behavior requires explicit representation of small scale weather phenomena to properly account for coupled atmosphere-wildfire interactions. Moreover, transport and dispersion of biomass burning emissions from wildfires is controlled by turbulent processes in the atmospheric boundary layer, which are difficult to parameterize and typically lead to large errors when simplified source estimation and injection height methods are used. Therefore, we utilize turbulence-resolving large-eddy simulations at a resolution of 111 m to forecast fire spread and smoke distribution using a coupled atmosphere-wildfire model. This presentation will describe our improvements to the level-set based fire-spread algorithm in WRF-Fire and an evaluation of the operational system using 12 wildfire events that occurred in Colorado in 2016, as well as other historical fires. In addition, the benefits of explicit representation of turbulence for smoke transport and dispersion will be demonstrated.
Large Eddy Simulation of turbulent flow fields over three- dimensional alluvial dunes
Hardy, R. J.; Parsons, D. R.; Best, J.; Reesink, A. J. H.; Ockelford, A.
2016-12-01
Flow over fluvial dunes has been extensively studied and there is general understanding of the nature of the flow field over two dimensional dunes under equilibrium flow conditions. However, fluvial systems typically experience unsteady flow and therefore the sediment-water interface is constantly reorganizing to form complex three-dimensional morphologies (ripples, dunes and bar forms). Here we report on a numerical experiment which predicts flow over three dimensional dunes using Large Eddy Simulation (LES). Bed topography generated through flume experiments, where fine sand was water worked under a range of unsteady hydraulic conditions to generate quasi-equilibrium three dimensional bed forms, was measured with terrestrial LiDAR to create digital elevation models. This topography was then incorporated into a LES model, with a wall-adapting local eddy-viscosity turbulence model, through a Mass Flux Scaling algorithm, to generate three dimensional, high resolution space time prediction of flow over naturally formed dunes. The numerically predicted flows were analysed by standard Reynolds decomposition approaches, Eulerian and Lagrangian coherent flow structure identification methods and proper orthogonal decomposition. The results show that superimposed bed forms can cause changes in the nature of the classical separated flow regions and turbulence field. In particular, the number of locations where vortices are shed increase which causes coalescence of vortices. This increases the rate of transfer of turbulent kinetic energy into smaller scales. This has significant implications for the time dependent prediction of shear stress and as such for sediment transport dynamics which are required for an improved process understanding of three-dimensional bed form adjustment.
Shih, Tsan-Hsing; Liu, nan-Suey
2010-01-01
A brief introduction of the temporal filter based partially resolved numerical simulation/very large eddy simulation approach (PRNS/VLES) and its distinct features are presented. A nonlinear dynamic subscale model and its advantages over the linear subscale eddy viscosity model are described. In addition, a guideline for conducting a PRNS/VLES simulation is provided. Results are presented for three turbulent internal flows. The first one is the turbulent pipe flow at low and high Reynolds numbers to illustrate the basic features of PRNS/VLES; the second one is the swirling turbulent flow in a LM6000 single injector to further demonstrate the differences in the calculated flow fields resulting from the nonlinear model versus the pure eddy viscosity model; the third one is a more complex turbulent flow generated in a single-element lean direct injection (LDI) combustor, the calculated result has demonstrated that the current PRNS/VLES approach is capable of capturing the dynamically important, unsteady turbulent structures while using a relatively coarse grid.
Regional Bowen ratio controls on afternoon moist convection: A large eddy simulation study
Kang, Song-Lak
2016-12-01
This study examines the effect of the regional Bowen ratio β, the ratio of the domain-averaged surface sensible heat flux (SHF) to latent heat flux (LHF), on afternoon moist convection. With a temporally evolving but spatially uniform surface available energy over a mesoscale domain under a weak capping inversion, we run large eddy simulation of the afternoon convective boundary layer (CBL). We first prescribe a small β of 0.56 (a wet surface) and then the reversed large β of 1.80 (a dry surface) by switching the SHF and LHF fields. The perturbation fields of the fluxes are prescribed with the Fourier spectra of κ- 3 (κ is horizontal wave number; strong mesoscale heterogeneity) and κ0 (homogeneity). The large β cases have strong vertical buoyancy fluxes and produce more vigorous updrafts. In the heterogeneous, large β surface case, with the removal of convective inhibition over a mesoscale subdomain of large SHF, deep convection develops. In the heterogeneous, small β surface case, convective clouds develop but do not progress into precipitating convection. In the homogeneous surface cases, randomly distributed shallow clouds develop with significantly more and thicker clouds in the large β case. (Co)spectral analyses confirm the more vigorous turbulent thermals in the large β cases and reveal that the moisture advection by the surface heterogeneity-induced mesoscale flows makes the correlation between mesoscale temperature and moisture perturbations change from negative to positive, which facilitates the mesoscale pool of high relative humidity air just above the CBL top, a necessary condition for deep convection.
1st ERCOFTAC Workshop on Direct and Large-Eddy Simulation
Kleiser, Leonhard; Chollet, Jean-Pierre
1994-01-01
It is a truism that turbulence is an unsolved problem, whether in scientific, engin eering or geophysical terms. It is strange that this remains largely the case even though we now know how to solve directly, with the help of sufficiently large and powerful computers, accurate approximations to the equations that govern tur bulent flows. The problem lies not with our numerical approximations but with the size of the computational task and the complexity of the solutions we gen erate, which match the complexity of real turbulence precisely in so far as the computations mimic the real flows. The fact that we can now solve some turbu lence in this limited sense is nevertheless an enormous step towards the goal of full understanding. Direct and large-eddy simulations are these numerical solutions of turbulence. They reproduce with remarkable fidelity the statistical, structural and dynamical properties of physical turbulent and transitional flows, though since the simula tions are necessarily time-depen...
Large-eddy simulation of the high-Reynolds-number flow through a high-aspect-ratio cooling duct
Kaller, Thomas; Pasquariello, Vito; Hickel, S.; Adams, Nikolaus A.
2017-01-01
We present well-resolved large-eddy-simulations (LES) of a straight, high-aspect-ratio cooling duct (HARCD) at a bulk Reynolds number of Re = 110 • 10^{3} and an average Nusselt number of Nu = 371. The geometry and boundary conditions have been defined together with Rochlitz et al.
Palastanga, V.; van Leeuwen, P.J.; de Ruijter, W.P.M.
2006-01-01
A connection is shown to exist between the mesoscale eddy activity around Madagascar and the large-scale interannual variability in the Indian Ocean. We use the combined TOPEX/Poseidon-ERS sea surface height (SSH) data for the period 1993– 2003. The SSH-fields in the Mozambique Channel and east of
Large Eddy Simulation of an SD7003 Airfoil: Effects of Reynolds number and Subgrid-scale modeling
DEFF Research Database (Denmark)
Sarlak Chivaee, Hamid
2017-01-01
This paper presents results of a series of numerical simulations in order to study aerodynamic characteristics of the low Reynolds number Selig-Donovan airfoil, SD7003. Large Eddy Simulation (LES) technique is used for all computations at chord-based Reynolds numbers 10,000, 24,000 and 60...
DEFF Research Database (Denmark)
Yang, Yang; Kær, Søren Knudsen
2012-01-01
The flow structure of one isothermal swirling case in the Sydney swirl flame database was studied using two numerical methods. Results from the Reynolds-averaged Navier-Stokes (RANS) approach and large eddy simulation (LES) were compared with experimental measurements. The simulations were applied...
Kenjeres, S.
2009-01-01
We conducted a large eddy simulation (LES) of a locally applied electromagnetic control of turbulent thermal convection of an electrically conductive fluid (electrolyte solution) inside of a slender enclosure. Generic configurations, consisting of two or three magnets of opposite polarities located
DEFF Research Database (Denmark)
Pedersen, Jesper Grønnegaard; Gryning, Sven-Erik; Kelly, Mark C.
2014-01-01
A range of large-eddy simulations, with differing free atmosphere stratification and zero or slightly positive surface heat flux, is investigated to improve understanding of the neutral and near-neutral, inversion-capped, horizontally homogeneous, barotropic atmospheric boundary layer with emphas...
Error analysis of large-eddy simulation of the turbulent non-premixed sydney bluff-body flame
Kempf, A.M.; Geurts, Bernardus J.; Oefelein, J.C.
2011-01-01
A computational error analysis is applied to the large-eddy simulation of the turbulent non-premixed Sydney bluff-body flame, where the error is defined with respect to experimental data. The errorlandscape approach is extended to heterogeneous compressible turbulence, which is coupled to combustion
Shinn, Aaron F.
Computational Fluid Dynamics (CFD) simulations can be very computationally expensive, especially for Large Eddy Simulations (LES) and Direct Numerical Simulations (DNS) of turbulent ows. In LES the large, energy containing eddies are resolved by the computational mesh, but the smaller (sub-grid) scales are modeled. In DNS, all scales of turbulence are resolved, including the smallest dissipative (Kolmogorov) scales. Clusters of CPUs have been the standard approach for such simulations, but an emerging approach is the use of Graphics Processing Units (GPUs), which deliver impressive computing performance compared to CPUs. Recently there has been great interest in the scientific computing community to use GPUs for general-purpose computation (such as the numerical solution of PDEs) rather than graphics rendering. To explore the use of GPUs for CFD simulations, an incompressible Navier-Stokes solver was developed for a GPU. This solver is capable of simulating unsteady laminar flows or performing a LES or DNS of turbulent ows. The Navier-Stokes equations are solved via a fractional-step method and are spatially discretized using the finite volume method on a Cartesian mesh. An immersed boundary method based on a ghost cell treatment was developed to handle flow past complex geometries. The implementation of these numerical methods had to suit the architecture of the GPU, which is designed for massive multithreading. The details of this implementation will be described, along with strategies for performance optimization. Validation of the GPU-based solver was performed for fundamental bench-mark problems, and a performance assessment indicated that the solver was over an order-of-magnitude faster compared to a CPU. The GPU-based Navier-Stokes solver was used to study film-cooling flows via Large Eddy Simulation. In modern gas turbine engines, the film-cooling method is used to protect turbine blades from hot combustion gases. Therefore, understanding the physics of
Sudjai, W.; Juntasaro, V.; Juttijudata, V.
2018-01-01
The accuracy of predicting turbulence induced secondary flows is crucially important in many industrial applications such as turbine blade internal cooling passages in a gas turbine and fuel rod bundles in a nuclear reactor. A straight square duct is popularly used to reveal the characteristic of turbulence induced secondary flows which consists of two counter rotating vortices distributed in each corner of the duct. For a rotating duct, the flow can be divided into the pressure side and the suction side. The turbulence induced secondary flows are converted to the Coriolis force driven two large circulations with a pair of additional vortices on the pressure wall due to the rotational effect. In this paper, the Large Eddy Simulation (LES) of turbulence induced secondary flows in a straight square duct is performed using the ANSYS FLUENT CFD software. A dynamic kinetic energy subgrid-scale model is used to describe the three-dimensional incompressible turbulent flows in the stationary and the rotating straight square ducts. The Reynolds number based on the friction velocity and the hydraulic diameter is 300 with the various rotation numbers for the rotating cases. The flow is assumed fully developed by imposing the constant pressure gradient in the streamwise direction. For the rotating cases, the rotational axis is placed perpendicular to the streamwise direction. The simulation results on the secondary flows and the turbulent statistics are found to be in good agreement with the available Direct Numerical Simulation (DNS) data. Finally, the details of the Coriolis effects are discussed.
Large Eddy Simulation of the Diurnal Cycle in Southeast Pacific Stratocumulus
Energy Technology Data Exchange (ETDEWEB)
Caldwell, P; Bretherton, C
2008-03-03
This paper describes a series of 6 day large eddy simulations of a deep, sometimes drizzling stratocumulus-topped boundary layer based on forcings from the East Pacific Investigation of Climate (EPIC) 2001 field campaign. The base simulation was found to reproduce the observed mean boundary layer properties quite well. The diurnal cycle of liquid water path was also well captured, although good agreement appears to result partially from compensating errors in the diurnal cycles of cloud base and cloud top due to overentrainment around midday. At other times of the day, entrainment is found to be proportional to the vertically-integrated buoyancy flux. Model stratification matches observations well; turbulence profiles suggest that the boundary layer is always at least somewhat decoupled. Model drizzle appears to be too sensitive to liquid water path and subcloud evaporation appears to be too weak. Removing the diurnal cycle of subsidence had little effect on simulated cloud albedo. Simulations with changed droplet concentration and drizzle susceptibility showed large liquid water path differences at night, but differences were quite small at midday. Droplet concentration also had a significant impact on entrainment, primarily through droplet sedimentation feedback rather than through drizzle processes.
General-relativistic Large-eddy Simulations of Binary Neutron Star Mergers
Energy Technology Data Exchange (ETDEWEB)
Radice, David, E-mail: dradice@astro.princeton.edu [Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ 08540 (United States)
2017-03-20
The flow inside remnants of binary neutron star (NS) mergers is expected to be turbulent, because of magnetohydrodynamics instability activated at scales too small to be resolved in simulations. To study the large-scale impact of these instabilities, we develop a new formalism, based on the large-eddy simulation technique, for the modeling of subgrid-scale turbulent transport in general relativity. We apply it, for the first time, to the simulation of the late-inspiral and merger of two NSs. We find that turbulence can significantly affect the structure and survival time of the merger remnant, as well as its gravitational-wave (GW) and neutrino emissions. The former will be relevant for GW observation of merging NSs. The latter will affect the composition of the outflow driven by the merger and might influence its nucleosynthetic yields. The accretion rate after black hole formation is also affected. Nevertheless, we find that, for the most likely values of the turbulence mixing efficiency, these effects are relatively small and the GW signal will be affected only weakly by the turbulence. Thus, our simulations provide a first validation of all existing post-merger GW models.
Large Eddy Simulation of turbulent flow in wire wrapped fuel pin bundles cooled by sodium
International Nuclear Information System (INIS)
Saxena, Aakanksha; Cadiou, Thierry; Bieder, Ulrich; Viazzo, Stephane
2013-06-01
The objective of the study is to understand the thermal hydraulics in a core sub-assembly with liquid sodium as coolant by performing detailed numerical simulations. The passage for the coolant flow between the fuel rods is maintained by thin wires wrapped around the rods. The contact point between the fuel pin and the spacer wire is the region of creation of hot spots and a cyclic variation of temperature in hot spots can adversely affect the mechanical properties of the clad due to the phenomena like thermal stripping. The current status quo provides two different models to perform the numerical simulations, namely Reynolds Averaged Navier-Stokes (RANS) and Large Eddy Simulation (LES). The two models differ in the extent of modelling used to close the Navier-Stokes equations. LES is a filtered approach where the large scale of motions are explicitly resolved while the small scale motions are modelled whereas RANS is a time averaging approach where all scale of motions are modelled. Thus LES involves less modelling as compared to RANS and so the results are comparatively more accurate. An attempt has been made to use the LES model. The simulations have been performed using the code Trio-U (developed by CEA). The turbulent statistics of the flow and thermal quantities are calculated. Finally the goal is to obtain the frequency of temperature oscillations at the region of hot spots near the spacer wire. (authors)
Unsteady adjoint for large eddy simulation of a coupled turbine stator-rotor system
Talnikar, Chaitanya; Wang, Qiqi; Laskowski, Gregory
2016-11-01
Unsteady fluid flow simulations like large eddy simulation are crucial in capturing key physics in turbomachinery applications like separation and wake formation in flow over a turbine vane with a downstream blade. To determine how sensitive the design objectives of the coupled system are to control parameters, an unsteady adjoint is needed. It enables the computation of the gradient of an objective with respect to a large number of inputs in a computationally efficient manner. In this paper we present unsteady adjoint solutions for a coupled turbine stator-rotor system. As the transonic fluid flows over the stator vane, the boundary layer transitions to turbulence. The turbulent wake then impinges on the rotor blades, causing early separation. This coupled system exhibits chaotic dynamics which causes conventional adjoint solutions to diverge exponentially, resulting in the corruption of the sensitivities obtained from the adjoint solutions for long-time simulations. In this presentation, adjoint solutions for aerothermal objectives are obtained through a localized adjoint viscosity injection method which aims to stabilize the adjoint solution and maintain accurate sensitivities. Preliminary results obtained from the supercomputer Mira will be shown in the presentation.
Large Eddy Simulation of Vertical Axis Wind Turbine wakes; Part II: effects of inflow turbulence
Duponcheel, Matthieu; Chatelain, Philippe; Caprace, Denis-Gabriel; Winckelmans, Gregoire
2017-11-01
The aerodynamics of Vertical Axis Wind Turbines (VAWTs) is inherently unsteady, which leads to vorticity shedding mechanisms due to both the lift distribution along the blade and its time evolution. Large-scale, fine-resolution Large Eddy Simulations of the flow past Vertical Axis Wind Turbines have been performed using a state-of-the-art Vortex Particle-Mesh (VPM) method combined with immersed lifting lines. Inflow turbulence with a prescribed turbulence intensity (TI) is injected at the inlet of the simulation from a precomputed synthetic turbulence field obtained using the Mann algorithm. The wake of a standard, medium-solidity, H-shaped machine is simulated for several TI levels. The complex wake development is captured in details and over long distances: from the blades to the near wake coherent vortices, then through the transitional ones to the fully developed turbulent far wake. Mean flow and turbulence statistics are computed over more than 10 diameters downstream of the machine. The sensitivity of the wake topology and decay to the TI level is assessed.
Large eddy simulations of coal jet flame ignition using the direct quadrature method of moments
Pedel, Julien
The Direct Quadrature Method of Moments (DQMOM) was implemented in the Large Eddy Simulation (LES) tool ARCHES to model coal particles. LES coupled with DQMOM was first applied to nonreacting particle-laden turbulent jets. Simulation results were compared to experimental data and accurately modeled a wide range of particle behaviors, such as particle jet waviness, spreading, break up, particle clustering and segregation, in different configurations. Simulations also accurately predicted the mean axial velocity along the centerline for both the gas phase and the solid phase, thus demonstrating the validity of the approach to model particles in turbulent flows. LES was then applied to the prediction of pulverized coal flame ignition. The stability of an oxy-coal flame as a function of changing primary gas composition (CO2 and O2) was first investigated. Flame stability was measured using optical measurements of the flame standoff distance in a 40 kW pilot facility. Large Eddy Simulations (LES) of the facility provided valuable insight into the experimentally observed data and the importance of factors such as heterogeneous reactions, radiation or wall temperature. The effects of three parameters on the flame stand-off distance were studied and simulation predictions were compared to experimental data using the data collaboration method. An additional validation study of the ARCHES LES tool was then performed on an air-fired pulverized coal jet flame ignited by a preheated gas flow. The simulation results were compared qualitatively and quantitatively to experimental observations for different inlet stoichiometric ratios. LES simulations were able to capture the various combustion regimes observed during flame ignition and to accurately model the flame stand-off distance sensitivity to the stoichiometric ratio. Gas temperature and coal burnout predictions were also examined and showed good agreement with experimental data. Overall, this research shows that high
Sotiropoulos, Fotis; Khosronejad, Ali
2016-02-01
Sand waves arise in subaqueous and Aeolian environments as the result of the complex interaction between turbulent flows and mobile sand beds. They occur across a wide range of spatial scales, evolve at temporal scales much slower than the integral scale of the transporting turbulent flow, dominate river morphodynamics, undermine streambank stability and infrastructure during flooding, and sculpt terrestrial and extraterrestrial landscapes. In this paper, we present the vision for our work over the last ten years, which has sought to develop computational tools capable of simulating the coupled interactions of sand waves with turbulence across the broad range of relevant scales: from small-scale ripples in laboratory flumes to mega-dunes in large rivers. We review the computational advances that have enabled us to simulate the genesis and long-term evolution of arbitrarily large and complex sand dunes in turbulent flows using large-eddy simulation and summarize numerous novel physical insights derived from our simulations. Our findings explain the role of turbulent sweeps in the near-bed region as the primary mechanism for destabilizing the sand bed, show that the seeds of the emergent structure in dune fields lie in the heterogeneity of the turbulence and bed shear stress fluctuations over the initially flatbed, and elucidate how large dunes at equilibrium give rise to energetic coherent structures and modify the spectra of turbulence. We also discuss future challenges and our vision for advancing a data-driven simulation-based engineering science approach for site-specific simulations of river flooding.
Large eddy simulations of Taylor-Couette-Poiseuille flows in a narrow-gap system
Poncet, Sébastien; Viazzo, Stéphane; Oguic, Romain
2014-10-01
The present paper concerns Large-Eddy Simulations (LES) of turbulent Taylor-Couette-Poiseuille flows in a narrow-gap cavity for six different combinations of rotational and axial Reynolds numbers. The in-house numerical code has been first validated in a middle-gap cavity. Two sets of refined LES results, using the Wall-Adapting Local Eddy Viscosity (WALE) and the Dynamic Smagorinsky subgrid-scale models available within an in-house code based on high-order compact schemes, have been then compared with no noticeable difference on the mean flow field and the turbulent statistics. The WALE model enabling a saving of about 12% of computational effort has been finally used to investigate the influence on the hydrodynamics of the swirl parameter N within the range [1.49 - 6.71]. The swirl parameter N, which compares the effects of rotation of the inner cylinder and the axial flowrate, does not influence significantly the mean velocity profiles. Turbulence intensities are enhanced with increasing values of N with remarkably high peak values within the boundary layers. The inner rotating cylinder has a destabilizing effect inducing asymmetric profiles of the Reynolds stress tensor components. The rotor and stator boundary layers exhibit the main characteristics of two-dimensional boundary layers. Turbulence is also mainly at two-component there. Thin coherent structures appearing as negative (resp. positive) spiral rolls are observed along the rotor (resp. stator) side. Their inclination angle depends strongly on the value of the swirl parameter, which fixes the intensity of the crossflow. On the other hand, the intensity and the size of the coherent structures observed within the boundary layers are governed by the effective Reynolds number. For its highest value, they penetrate the whole gap. Finally, the results have been extended to the non-isothermal case in the forced convection regime. A correlation for the Nusselt number along the rotor has been provided showing a
Large eddy simulation of radiation fog: impact of dynamics on the fog life cycle
Directory of Open Access Journals (Sweden)
M. Mazoyer
2017-11-01
Full Text Available Large eddy simulations (LESs of a radiation fog event occurring during the ParisFog experiment are studied with a view to analyse the impact of the dynamics of the boundary layer on the fog life cycle. The LES, performed with the Meso-NH model at 5 m resolution horizontally and 1 m vertically, and with a 2-moment microphysical scheme, includes the drag effect of a tree barrier and the deposition of droplets on vegetation. The model shows good agreement with measurements of near-surface dynamic and thermodynamic parameters and liquid water path. The blocking effect of the trees induces elevated fog formation, as actually observed, and horizontal heterogeneities during the formation. It also limits cooling and cloud water production. Deposition is found to exert the most significant impact on fog prediction as it not only erodes the fog near the surface but also modifies the fog life cycle and induces vertical heterogeneities. A comparison with the 2 m horizontal resolution simulation reveals small differences, meaning that grid convergence is achieved. Conversely, increasing numerical diffusion through a wind advection operator of lower order leads to an increase in the liquid water path and has a very similar effect to removing the tree barrier. This study allows us to establish the major dynamical ingredients needed to accurately represent the fog life cycle at very high-resolution.
Large eddy simulation of radiation fog: impact of dynamics on the fog life cycle
Mazoyer, Marie; Lac, Christine; Thouron, Odile; Bergot, Thierry; Masson, Valery; Musson-Genon, Luc
2017-11-01
Large eddy simulations (LESs) of a radiation fog event occurring during the ParisFog experiment are studied with a view to analyse the impact of the dynamics of the boundary layer on the fog life cycle. The LES, performed with the Meso-NH model at 5 m resolution horizontally and 1 m vertically, and with a 2-moment microphysical scheme, includes the drag effect of a tree barrier and the deposition of droplets on vegetation. The model shows good agreement with measurements of near-surface dynamic and thermodynamic parameters and liquid water path. The blocking effect of the trees induces elevated fog formation, as actually observed, and horizontal heterogeneities during the formation. It also limits cooling and cloud water production. Deposition is found to exert the most significant impact on fog prediction as it not only erodes the fog near the surface but also modifies the fog life cycle and induces vertical heterogeneities. A comparison with the 2 m horizontal resolution simulation reveals small differences, meaning that grid convergence is achieved. Conversely, increasing numerical diffusion through a wind advection operator of lower order leads to an increase in the liquid water path and has a very similar effect to removing the tree barrier. This study allows us to establish the major dynamical ingredients needed to accurately represent the fog life cycle at very high-resolution.
Performance evaluation of Large Eddy Simulation for recirculating and swirling flows
International Nuclear Information System (INIS)
Hwang, Cheol Hong; Lee, Chang Eon
2006-01-01
The objective of this study is to evaluate the efficiency and the prediction accuracy of developed Large Eddy Simulation (LES) program for complex turbulent flows, such as recirculating and swirling flows. To save the computational cost, a Beowulf cluster system consisting 16 processors was constructed. The flows in backward-facing step and dump combustor were examined as representative recirculating and swirling flows. Firstly, a Direct Numerical Simulation (DNS) for laminar backward-facing step flows was previously conducted to validate the overall performance of program. Then LES was carried out for turbulent backward-facing step flows. The results of laminar flow showed a qualitative and quantitative agreement between simulations and experiments. The simulations of the turbulent flow also showed reasonable results. Secondly, LES results for non-swirling and swirling flows in a dump combustor were compared with the results of Reynolds-Averaged Navier-Stokes (RANS) using standard κ-ε model. The results show that LES has a better performance in predicting the mean axial and azimuthal velocities, Corner Recirculation Zone (CRZ) and Center Toroidal Recirculation Zone (CTRZ) than those of RANS. Finally, it was examined the capability of LES for the description of unsteady phenomena
Energy Technology Data Exchange (ETDEWEB)
Quon, Eliot; Churchfield, Matthew; Cheung, Lawrence; Kern, Stefan
2017-02-01
This paper details the development of an aeroelastic wind plant model with large-eddy simulation (LES). The chosen LES solver is the Simulator for Wind Farm Applications (SOWFA) based on the OpenFOAM framework, coupled to NREL's comprehensive aeroelastic analysis tool, FAST. An atmospheric boundary layer (ABL) precursor simulation was constructed based on assessments of meteorological tower, lidar, and radar data over a 3-hour window. This precursor was tuned to the specific atmospheric conditions that occurred both prior to and during the measurement campaign, enabling capture of a night-to-day transition in the turbulent ABL. In the absence of height-varying temperature measurements, spatially averaged radar data were sufficient to characterize the atmospheric stability of the wind plant in terms of the shear profile, and near-ground temperature sensors provided a reasonable estimate of the ground heating rate describing the morning transition. A full aeroelastic simulation was then performed for a subset of turbines within the wind plant, driven by the precursor. Analysis of two turbines within the array, one directly waked by the other, demonstrated good agreement with measured time-averaged loads.
Large-eddy simulation of shallow turbulent wakes behind a conical island
Ouro, Pablo; Wilson, Catherine A. M. E.; Evans, Paul; Angeloudis, Athanasios
2017-12-01
Large-Eddy Simulations (LESs) and experiments were employed to study the influence of water depth on the hydrodynamics in the wake of a conical island for emergent, shallow, and deeply submerged conditions. The Reynolds numbers based on the island's base diameter for these conditions range from 6500 to 8125. LES results from the two shallower conditions were validated against experimental measurements from an open channel flume and captured the characteristic flow structures around the cone, including the attached recirculation region, vortex shedding, and separated shear layers. The wake was impacted by the transition from emergent to shallow submerged flow conditions with more subtle changes in time-averaged velocity and instantaneous flow structures when the submergence increases further. Despite differences in the breakdown of the separated shear layers, vortex shedding, and the upward flow region on the leeward face (once the cone's apex is submerged), similar flow structures to cylinder flow were observed. These include an arch vortex tilted in the downstream direction and von Karman vortices in the far-wake. Spectra of velocity time series and the drag coefficient indicated that the vortex shedding was constrained by the overtopping flow layer, and thus the shedding frequency decreased as the cone's apex became submerged. Finally, the generalised flow structures in the wake of a submerged conical body are outlined.
Large Eddy Simulation of wind turbines using the actuator line model and immersed boundary method
Santoni, Christian; Carrasquillo-Solís, Kenneth; Leonardi, Stefano
2014-11-01
Despite the growth of the energy extracted from wind turbines, the flow physics is still not fully understood even under ideal operational conditions. Large Eddy Simulations of the turbulent flow past a wind turbine in a channel have been performed. The numerical setup reproduces the experiment performed in a wind tunnel at the Norwegian University of Science and Technology (NUST). The code is based on a finite difference scheme with a fractional step and Runge-Kutta, which couples the actuator line model (ALM) and the Immersed Boundary Method (IBM). Two simulations were performed, one neglecting the tower and nacelle resulting in the rotating blades only, the other modeling both the rotating blades as well as the tower and nacelle with IBM. Results relative to the simulation with tower and nacelle have a very good agreement with experiments. Profiles of turbulent kinetic energy shows that the effect of the tower and nacelle is not confined to the hub region but extend to the entire rotor. In addition we placed the wind turbine over an undulated topography to understand how it affects the performances and wake of a wind turbine. Comparison with the results obtained for the smooth wall show an interaction between the rough wall and the wake. The numerical simulations were performed on XSEDE TACC under Grant No. CTS070066. The present work is supported by the National Science Foundation (NSF), Grant IIA-1243482 (WINDINSPIRE).
White, Jeffrey A.; Baurle, Robert A.; Fisher, Travis C.; Quinlan, Jesse R.; Black, William S.
2012-01-01
The 2nd-order upwind inviscid flux scheme implemented in the multi-block, structured grid, cell centered, finite volume, high-speed reacting flow code VULCAN has been modified to reduce numerical dissipation. This modification was motivated by the desire to improve the codes ability to perform large eddy simulations. The reduction in dissipation was accomplished through a hybridization of non-dissipative and dissipative discontinuity-capturing advection schemes that reduces numerical dissipation while maintaining the ability to capture shocks. A methodology for constructing hybrid-advection schemes that blends nondissipative fluxes consisting of linear combinations of divergence and product rule forms discretized using 4th-order symmetric operators, with dissipative, 3rd or 4th-order reconstruction based upwind flux schemes was developed and implemented. A series of benchmark problems with increasing spatial and fluid dynamical complexity were utilized to examine the ability of the candidate schemes to resolve and propagate structures typical of turbulent flow, their discontinuity capturing capability and their robustness. A realistic geometry typical of a high-speed propulsion system flowpath was computed using the most promising of the examined schemes and was compared with available experimental data to demonstrate simulation fidelity.
Predicting viscous-range velocity gradient dynamics in large-eddy simulations of turbulence
Johnson, Perry; Meneveau, Charles
2017-11-01
The details of small-scale turbulence are not directly accessible in large-eddy simulations (LES), posing a modeling challenge because many important micro-physical processes depend strongly on the dynamics of turbulence in the viscous range. Here, we introduce a method for coupling existing stochastic models for the Lagrangian evolution of the velocity gradient tensor with LES to simulate unresolved dynamics. The proposed approach is implemented in LES of turbulent channel flow and detailed comparisons with DNS are carried out. An application to modeling the fate of deformable, small (sub-Kolmogorov) droplets at negligible Stokes number and low volume fraction with one-way coupling is carried out. These results illustrate the ability of the proposed model to predict the influence of small scale turbulence on droplet micro-physics in the context of LES. This research was made possible by a graduate Fellowship from the National Science Foundation and by a Grant from The Gulf of Mexico Research Initiative.
Liu, Zhongqiu; Li, Linmin; Li, Baokuan; Jiang, Maofa
2014-07-01
The current study developed a coupled computational model to simulate the transient fluid flow, solidification, and particle transport processes in a slab continuous-casting mold. Transient flow of molten steel in the mold is calculated using the large eddy simulation. An enthalpy-porosity approach is used for the analysis of solidification processes. The transport of bubble and non-metallic inclusion inside the liquid pool is calculated using the Lagrangian approach based on the transient flow field. A criterion of particle entrapment in the solidified shell is developed using the user-defined functions of FLUENT software (ANSYS, Inc., Canonsburg, PA). The predicted results of this model are compared with the measurements of the ultrasonic testing of the rolled steel plates and the water model experiments. The transient asymmetrical flow pattern inside the liquid pool exhibits quite satisfactory agreement with the corresponding measurements. The predicted complex instantaneous velocity field is composed of various small recirculation zones and multiple vortices. The transport of particles inside the liquid pool and the entrapment of particles in the solidified shell are not symmetric. The Magnus force can reduce the entrapment ratio of particles in the solidified shell, especially for smaller particles, but the effect is not obvious. The Marangoni force can play an important role in controlling the motion of particles, which increases the entrapment ratio of particles in the solidified shell obviously.
From large-eddy simulation to multi-UAVs sampling of shallow cumulus clouds
Lamraoui, Fayçal; Roberts, Greg; Burnet, Frédéric
2016-04-01
In-situ sampling of clouds that can provide simultaneous measurements at satisfying spatio-temporal resolutions to capture 3D small scale physical processes continues to present challenges. This project (SKYSCANNER) aims at bringing together cloud sampling strategies using a swarm of unmanned aerial vehicles (UAVs) based on Large-eddy simulation (LES). The multi-UAV-based field campaigns with a personalized sampling strategy for individual clouds and cloud fields will significantly improve the understanding of the unresolved cloud physical processes. An extensive set of LES experiments for case studies from ARM-SGP site have been performed using MesoNH model at high resolutions down to 10 m. The carried out simulations led to establishing a macroscopic model that quantifies the interrelationship between micro- and macrophysical properties of shallow convective clouds. Both the geometry and evolution of individual clouds are critical to multi-UAV cloud sampling and path planning. The preliminary findings of the current project reveal several linear relationships that associate many cloud geometric parameters to cloud related meteorological variables. In addition, the horizontal wind speed indicates a proportional impact on cloud number concentration as well as triggering and prolonging the occurrence of cumulus clouds. In the framework of the joint collaboration that involves a Multidisciplinary Team (including institutes specializing in aviation, robotics and atmospheric science), this model will be a reference point for multi-UAVs sampling strategies and path planning.
Analysis of flow over an axisymmetric hull-form using Large Eddy Simulation
Kumar, Praveen; Mahesh, Krishnan
2017-11-01
Large eddy simulations are performed for flow over an idealized axisymmetric hull at a Reynolds number of 1.1 million, based on hull length and freestream velocity. The domain is chosen to minimize confinement effects and the grid is designed to capture the near-wall physics as well as the evolution of turbulent wake. The entire hull is broken up into bow, mid and stern region and analyzed individually before merging them together, to ensure accurate solution on the final grid. The boundary layer is tripped on the bow region of the hull to make it turbulent as done in experiment. The turbulent boundary layer evolves on the mid region of the hull and eventually separates on the stern region due to the adverse pressure gradient, and forms the wake. Results are shown for the flow field and the pressure and skin-friction on the hull. The sensitivity of wake to the boundary layer characteristics on the stern is discussed. This work is supported by the Office of Naval Research.
Fernandez, P.; Nguyen, N. C.; Peraire, J.
2017-05-01
We present a high-order Implicit Large-Eddy Simulation (ILES) approach for transitional aerodynamic flows. The approach encompasses a hybridized Discontinuous Galerkin (DG) method for the discretization of the Navier-Stokes (NS) equations, and a parallel preconditioned Newton-GMRES solver for the resulting nonlinear system of equations. The combination of hybridized DG methods with an efficient solution procedure leads to a high-order accurate NS solver that is competitive to alternative approaches, such as finite volume and finite difference codes, in terms of computational cost. The proposed approach is applied to transitional flows over the NACA 65-(18)10 compressor cascade and the Eppler 387 wing at Reynolds numbers up to 460,000. Grid convergence studies are presented and the required resolution to capture transition at different Reynolds numbers is investigated. Numerical results show rapid convergence and excellent agreement with experimental data. In short, this work aims to demonstrate the potential of high-order ILES for simulating transitional aerodynamic flows. This is illustrated through numerical results and supported by theoretical considerations.
A regularized vortex-particle mesh method for large eddy simulation
Spietz, H. J.; Walther, J. H.; Hejlesen, M. M.
2017-11-01
We present recent developments of the remeshed vortex particle-mesh method for simulating incompressible fluid flow. The presented method relies on a parallel higher-order FFT based solver for the Poisson equation. Arbitrary high order is achieved through regularization of singular Green's function solutions to the Poisson equation and recently we have derived novel high order solutions for a mixture of open and periodic domains. With this approach the simulated variables may formally be viewed as the approximate solution to the filtered Navier Stokes equations, hence we use the method for Large Eddy Simulation by including a dynamic subfilter-scale model based on test-filters compatible with the aforementioned regularization functions. Further the subfilter-scale model uses Lagrangian averaging, which is a natural candidate in light of the Lagrangian nature of vortex particle methods. A multiresolution variation of the method is applied to simulate the benchmark problem of the flow past a square cylinder at Re = 22000 and the obtained results are compared to results from the literature.
Trailing-edge noise control using surrogate-based optimization and large-eddy simulation
Marsden, Alison; Wang, Meng; Dennis, John E., Jr.; Moin, Parviz
2004-11-01
Derivative-free shape optimization is applied to minimize aerodynamic noise in the flow over an airfoil trailing-edge. Optimization is performed using the surrogate management framework (SMF) with constraints (Audet and Dennis 2000, SIAM J. Optim, to appear). In this method, design space exploration is performed with an inexpensive surrogate function, and the use of a poll step guarantees convergence to a local minimum of the cost function on a mesh. Constraints on lift and drag are enforced using a filter, and as much as 70% reduction in laminar vortex-shedding noise has been achieved. For optimization in turbulent flow, large-eddy simulation (LES) is used to compute the acoustic cost function based on Lighthill stress source terms. By incorporating RANS into the optimization procedure, the constraint violation is determined pha priori, and unnecessary costly LES evaluations can be avoided. Additionally, mesh adaptive direct search (Audet and Dennis 2004, Rice TR04-02) is used for polling in the turbulent case, offering stronger convergence properties.
PEVC-FMDF for Large Eddy Simulation of Compressible Turbulent Flows
Nouri Gheimassi, Arash; Nik, Mehdi; Givi, Peyman; Livescu, Daniel; Pope, Stephen
2017-11-01
The filtered density function (FDF) closure is extended to a ``self-contained'' format to include the subgrid scale (SGS) statistics of all of the hydro-thermo-chemical variables in turbulent flows. These are the thermodynamic pressure, the specific internal energy, the velocity vector, and the composition field. In this format, the model is comprehensive and facilitates large eddy simulation (LES) of flows at both low and high compressibility levels. A transport equation is developed for the joint ``pressure-energy-velocity-composition filtered mass density function (PEVC-FMDF).'' In this equation, the effect of convection appears in closed form. The coupling of the hydrodynamics and thermochemistry is modeled via a set of stochastic differential equation (SDE) for each of the transport variables. This yields a self-contained SGS closure. For demonstration, LES is conducted of a turbulent shear flow with transport of a passive scalar. The consistency of the PEVC-FMDF formulation is established, and its overall predictive capability is appraised via comparison with direct numerical simulation (DNS) data.
Directory of Open Access Journals (Sweden)
Rohit Kulkarni
2012-01-01
Full Text Available The potential of a progress variable formulation for predicting autoignition and subsequent kernel development in a nonpremixed jet flame is explored in the LES (Large Eddy Simulation context. The chemistry is tabulated as a function of mixture fraction and a composite progress variable, which is defined as a combination of an intermediate and a product species. Transport equations are solved for mixture fraction and progress variable. The filtered mean source term for the progress variable is closed using a probability density function of presumed shape for the mixture fraction. Subgrid fluctuations of the progress variable conditioned on the mixture fraction are neglected. A diluted hydrogen jet issuing into a turbulent coflow of preheated air is chosen as a test case. The model predicts ignition lengths and subsequent kernel growth in good agreement with experiment without any adjustment of model parameters. The autoignition length predicted by the model depends noticeably on the chemical mechanism which the tabulated chemistry is based on. Compared to models using detailed chemistry, significant reduction in computational costs can be realized with the progress variable formulation.
Large Eddy Simulation of a Film Cooling Technique with a Plenum
Dharmarathne, Suranga; Sridhar, Narendran; Araya, Guillermo; Castillo, Luciano; Parameswaran, Sivapathasund
2012-11-01
Factors that affect the film cooling performance have been categorized into three main groups: (i) coolant & mainstream conditions, (ii) hole geometry & configuration, and (iii) airfoil geometry Bogard et al. (2006). The present study focuses on the second group of factors, namely, the modeling of coolant hole and the plenum. It is required to simulate correct physics of the problem to achieve more realistic numerical results. In this regard, modeling of cooling jet hole and the plenum chamber is highly important Iourokina et al. (2006). Substitution of artificial boundary conditions instead of correct plenum design would yield unrealistic results Iourokina et al. (2006). This study attempts to model film cooling technique with a plenum using a Large Eddy Simulation.Incompressible coolant jet ejects to the surface of the plate at an angle of 30° where it meets compressible turbulent boundary layer which simulates the turbine inflow conditions. Dynamic multi-scale approach Araya (2011) is introduced to prescribe turbulent inflow conditions. Simulations are carried out for two different blowing ratios and film cooling effectiveness is calculated for both cases. Results obtained from LES will be compared with experimental results.
Large-eddy simulation of nitrogen injection at trans- and supercritical conditions
Energy Technology Data Exchange (ETDEWEB)
Müller, Hagen; Pfitzner, Michael [Institute of Thermodynamics, Universität der Bundeswehr München, Werner-Heisenberg-Weg 39, 85577 Neubiberg (Germany); Niedermeier, Christoph A.; Matheis, Jan [Institute of Aerodynamics and Fluid Mechanics, Technische Universität München, Boltzmannstr. 15, 85748 Garching b. München (Germany); Hickel, Stefan, E-mail: S.Hickel@tudelft.nl [Institute of Aerodynamics and Fluid Mechanics, Technische Universität München, Boltzmannstr. 15, 85748 Garching b. München (Germany); Faculty of Aerospace Engineering, Technische Universiteit Delft, Kluyverweg 1, 2629 HS Delft (Netherlands)
2016-01-15
Large-eddy simulations (LESs) of cryogenic nitrogen injection into a warm environment at supercritical pressure are performed and real-gas thermodynamics models and subgrid-scale (SGS) turbulence models are evaluated. The comparison of different SGS models — the Smagorinsky model, the Vreman model, and the adaptive local deconvolution method — shows that the representation of turbulence on the resolved scales has a notable effect on the location of jet break-up, whereas the particular modeling of unresolved scales is less important for the overall mean flow field evolution. More important are the models for the fluid’s thermodynamic state. The injected fluid is either in a supercritical or in a transcritical state and undergoes a pseudo-boiling process during mixing. Such flows typically exhibit strong density gradients that delay the instability growth and can lead to a redistribution of turbulence kinetic energy from the radial to the axial flow direction. We evaluate novel volume-translation methods on the basis of the cubic Peng-Robinson equation of state in the framework of LES. At small extra computational cost, their application considerably improves the simulation results compared to the standard formulation. Furthermore, we found that the choice of inflow temperature is crucial for the reproduction of the experimental results and that heat addition within the injector can affect the mean flow field in comparison to results with an adiabatic injector.
Large Eddy simulation of turbulent hydrogen-fuelled supersonic combustion in an air cross-flow
Ingenito, A.; Cecere, D.; Giacomazzi, E.
2013-09-01
The main aim of this article is to provide a theoretical understanding of the physics of supersonic mixing and combustion. Research in advanced air-breathing propulsion systems able to push vehicles well beyond is of interest around the world. In a scramjet, the air stream flow captured by the inlet is decelerated but still maintains supersonic conditions. As the residence time is very short , the study of an efficient mixing and combustion is a key issue in the ongoing research on compressible flows. Due to experimental difficulties in measuring complex high-speed unsteady flowfields, the most convenient way to understand unsteady features of supersonic mixing and combustion is to use computational fluid dynamics. This work investigates supersonic combustion physics in the Hyshot II combustion chamber within the Large Eddy simulation framework. The resolution of this turbulent compressible reacting flow requires: (1) highly accurate non-dissipative numerical schemes to properly simulate strong gradients near shock waves and turbulent structures away from these discontinuities; (2) proper modelling of the small subgrid scales for supersonic combustion, including effects from compressibility on mixing and combustion; (3) highly detailed kinetic mechanisms (the Warnatz scheme including 9 species and 38 reactions is adopted) accounting for the formation and recombination of radicals to properly predict flame anchoring. Numerical results reveal the complex topology of the flow under investigation. The importance of baroclinic and dilatational effects on mixing and flame anchoring is evidenced. Moreover, their effects on turbulence-scale generation and the scaling law are analysed.
Sever, G.; Collis, S. M.; Ghate, V. P.
2017-12-01
Three-dimensional numerical experiments are performed to explore the mechanical and thermal impacts of Graciosa Island on the sampling of oceanic airflow and cloud evolution. Ideal and real configurations of flow and terrain are planned using high-resolution, large-eddy resolving (e.g., Δ cold-pool formation upstream of an ideal two-kilometer island, with von Kármán like vortices propagation downstream. Although the peak height of Graciosa is less than half kilometer, the Azores island chain has a mountain over 2 km, which may be leading to more complex flow patterns when simulations are extended to a larger domain. Preliminary idealized low-resolution moist simulations indicate that the cloud field is impacted due to the presence of the island. Longer simulations that are performed to capture diurnal evolution of island boundary layer show distinct land/sea breeze formations under quiescent flow conditions. Further numerical experiments are planned to extend moist simulations to include realistic atmospheric profiles and observations of surface fluxes coupled with radiative effects. This work is intended to produce a useful simulation framework coupled with instruments to guide airborne and ground sampling strategies during the ACE-ENA field campaign which is aimed to better characterize marine boundary layer clouds.
Investigation of Turbulent Tip Leakage Vortex in an Axial Water Jet Pump with Large Eddy Simulation
Hah, Chunill; Katz, Joseph
2012-01-01
Detailed steady and unsteady numerical studies were performed to investigate tip clearance flow in an axial water jet pump. The primary objective is to understand physics of unsteady tip clearance flow, unsteady tip leakage vortex, and cavitation inception in an axial water jet pump. Steady pressure field and resulting steady tip leakage vortex from a steady flow analysis do not seem to explain measured cavitation inception correctly. The measured flow field near the tip is unsteady and measured cavitation inception is highly transient. Flow visualization with cavitation bubbles shows that the leakage vortex is oscillating significantly and many intermittent vortex ropes are present between the suction side of the blade and the tip leakage core vortex. Although the flow field is highly transient, the overall flow structure is stable and a characteristic frequency seems to exist. To capture relevant flow physics as much as possible, a Reynolds-averaged Navier-Stokes (RANS) calculation and a Large Eddy Simulation (LES) were applied for the current investigation. The present study reveals that several vortices from the tip leakage vortex system cross the tip gap of the adjacent blade periodically. Sudden changes in local pressure field inside tip gap due to these vortices create vortex ropes. The instantaneous pressure filed inside the tip gap is drastically different from that of the steady flow simulation. Unsteady flow simulation which can calculate unsteady vortex motion is necessary to calculate cavitation inception accurately even at design flow condition in such a water jet pump.
Energy Technology Data Exchange (ETDEWEB)
Yuan, Haomin; Solberg, Jerome; Merzari, Elia; Kraus, Adam; Grindeanu, Iulian
2017-10-01
This paper describes a numerical study of flow-induced vibration in a helical coil steam generator experiment conducted at Argonne National Laboratory in the 1980s. In the experiment, a half-scale sector model of a steam generator helical coil tube bank was subjected to still and flowing air and water, and the vibrational characteristics were recorded. The research detailed in this document utilizes the multi-physics simulation toolkit SHARP developed at Argonne National Laboratory, in cooperation with Lawrence Livermore National Laboratory, to simulate the experiment. SHARP uses the spectral element code Nek5000 for fluid dynamics analysis and the finite element code DIABLO for structural analysis. The flow around the coil tubes is modeled in Nek5000 by using a large eddy simulation turbulence model. Transient pressure data on the tube surfaces is sampled and transferred to DIABLO for the structural simulation. The structural response is simulated in DIABLO via an implicit time-marching algorithm and a combination of continuum elements and structural shells. Tube vibration data (acceleration and frequency) are sampled and compared with the experimental data. Currently, only one-way coupling is used, which means that pressure loads from the fluid simulation are transferred to the structural simulation but the resulting structural displacements are not fed back to the fluid simulation
Large eddy simulation of flows in industrial compressors: a path from 2015 to 2035
Gourdain, N.; Sicot, F.; Duchaine, F.; Gicquel, L.
2014-01-01
A better understanding of turbulent unsteady flows is a necessary step towards a breakthrough in the design of modern compressors. Owing to high Reynolds numbers and very complex geometry, the flow that develops in such industrial machines is extremely hard to predict. At this time, the most popular method to simulate these flows is still based on a Reynolds-averaged Navier–Stokes approach. However, there is some evidence that this formalism is not accurate for these components, especially when a description of time-dependent turbulent flows is desired. With the increase in computing power, large eddy simulation (LES) emerges as a promising technique to improve both knowledge of complex physics and reliability of flow solver predictions. The objective of the paper is thus to give an overview of the current status of LES for industrial compressor flows as well as to propose future research axes regarding the use of LES for compressor design. While the use of wall-resolved LES for industrial multistage compressors at realistic Reynolds number should not be ready before 2035, some possibilities exist to reduce the cost of LES, such as wall modelling and the adaptation of the phase-lag condition. This paper also points out the necessity to combine LES to techniques able to tackle complex geometries. Indeed LES alone, i.e. without prior knowledge of such flows for grid construction or the prohibitive yet ideal use of fully homogeneous meshes to predict compressor flows, is quite limited today. PMID:25024422
Large-Eddy Simulations of Noise Generation in Supersonic Jets at Realistic Engine Temperatures
Liu, Junhui; Corrigan, Andrew; Kailasanath, K.; Taylor, Brian
2015-11-01
Large-eddy simulations (LES) have been carried out to investigate the noise generation in highly heated supersonic jets at temperatures similar to those observed in high-performance jet engine exhausts. It is found that the exhaust temperature of high-performance jet engines can range from 1000K at an intermediate power to above 2000K at a maximum afterburning power. In low-temperature jets, the effects of the variation of the specific heat ratio as well as the radial temperature profile near the nozzle exit are small and are ignored, but it is not clear whether those effects can be also ignored in highly heated jets. The impact of the variation of the specific heat ratio is assessed by comparing LES results using a variable specific heat ratio with those using a constant specific heat ratio. The impact on both the flow field and the noise distributions are investigated. Because the total temperature near the nozzle wall can be substantially lower than the nozzle total temperature either due to the heating loss through the nozzle wall or due to the cooling applied near the wall, this lower wall temperature may impact the temperature in the shear layer, and thus impact the noise generation. The impact of the radial temperature profile on the jet noise generation is investigated by comparing results of lower nozzle wall temperatures with those of the adiabatic wall condition.
Lozano-Durán, A.; Hack, M. J. P.; Moin, P.
2018-02-01
We examine the potential of the nonlinear parabolized stability equations (PSE) to provide an accurate yet computationally efficient treatment of the growth of disturbances in H-type transition to turbulence. The PSE capture the nonlinear interactions that eventually induce breakdown to turbulence and can as such identify the onset of transition without relying on empirical correlations. Since the local PSE solution at the onset of transition is a close approximation of the Navier-Stokes equations, it provides a natural inflow condition for direct numerical simulations (DNS) and large-eddy simulations (LES) by avoiding nonphysical transients. We show that a combined PSE-DNS approach, where the pretransitional region is modeled by the PSE, can reproduce the skin-friction distribution and downstream turbulent statistics from a DNS of the full domain. When the PSE are used in conjunction with wall-resolved and wall-modeled LES, the computational cost in both the laminar and turbulent regions is reduced by several orders of magnitude compared to DNS.
Large Eddy Simulation of a Swirl-Stabilized Pilot Combustor from Conventional to Flameless Mode
Directory of Open Access Journals (Sweden)
Ehsan Fooladgar
2016-01-01
Full Text Available This paper investigates flame and flow structure of a swirl-stabilized pilot combustor in conventional, high temperature, and flameless modes by means of a partially stirred reactor combustion model to provide a better insight into designing lean premixed combustion devices with preheating system. Finite rate chemistry combustion model with one step tuned mechanism and large eddy simulation is used to numerically simulate six cases in these modes. Results show that moving towards high temperature mode by increasing the preheating level, the combustor is prone to formation of thermal NOx with higher risks of flashback. In addition, the flame becomes shorter and thinner with higher turbulent kinetic energies. On the other hand, towards the flameless mode, leaning the preheated mixture leads to almost thermal NOx-free combustion with lower risk of flashback and thicker and longer flames. Simulations also show qualitative agreements with available experiments, indicating that the current combustion model with one step tuned mechanisms is capable of capturing main features of the turbulent flame in a wide range of mixture temperature and equivalence ratios.
Large Eddy Simulations of Two-phase Turbulent Reactive Flows in IC Engines
Banaeizadeh, Araz; Schock, Harold; Jaberi, Farhad
2008-11-01
The two-phase filtered mass density function (FMDF) subgrid-scale (SGS) model is used for large-eddy simulation (LES) of turbulent spray combustion in internal combustion (IC) engines. The LES/FMDF is implemented via an efficient, hybrid numerical method. In this method, the filtered compressible Navier-Stokes equations in curvilinear coordinate systems are solved with a generalized, high-order, multi-block, compact differencing scheme. The spray and the FMDF are implemented with Lagrangian methods. The reliability and the consistency of the numerical methods are established for different IC engines and the complex interactions among mean and turbulent velocity fields, fuel droplets and combustion are shown to be well captured with the LES/FMDF. In both spark-ignition/direct-injection and diesel engines, the droplet size and velocity distributions are found to be modified by the unsteady, vortical motions generated by the incoming air during the intake stroke. In turn, the droplets are found to change the in-cylinder flow structure. In the spark-ignition engine, flame propagation is similar to the experiment. In the diesel engine, the maximum evaporated fuel concentration is near the cylinder wall where the flame starts, which is again consistent with the experiment.
Large Eddy Simulation of a cooling impinging jet to a turbulent crossflow
Georgiou, Michail; Papalexandris, Miltiadis
2015-11-01
In this talk we report on Large Eddy Simulations of a cooling impinging jet to a turbulent channel flow. The impinging jet enters the turbulent stream in an oblique direction. This type of flow is relevant to the so-called ``Pressurized Thermal Shock'' phenomenon that can occur in pressurized water reactors. First we elaborate on issues related to the set-up of the simulations of the flow of interest such as, imposition of turbulent inflows, choice of subgrid-scale model and others. Also, the issue of the commutator error due to the anisotropy of the spatial cut-off filter induced by non-uniform grids is being discussed. In the second part of the talk we present results of our simulations. In particular, we focus on the high-shear and recirculation zones that are developed and on the characteristics of the temperature field. The budget for the mean kinetic energy of the resolved-scale turbulent velocity fluctuations is also discussed and analyzed. Financial support has been provided by Bel V, a subsidiary of the Federal Agency for Nuclear Control of Belgium.
Large-eddy simulation of a turbulent flow over the DrivAer fastback vehicle model
Ruettgers, Mario; Park, Junshin; You, Donghyun
2017-11-01
In 2012 the Technical University of Munich (TUM) made realistic generic car models called DrivAer available to the public. These detailed models allow a precise calculation of the flow around a lifelike car which was limited to simplified geometries in the past. In the present study, the turbulent flow around one of the models, the DrivAer Fastback model, is simulated using large-eddy simulation (LES). The goal of the study is to give a deeper physical understanding of highly turbulent regions around the car, like at the side mirror or at the rear end. For each region the contribution to the total drag is worked out. The results have shown that almost 35% of the drag is generated from the car wheels whereas the side mirror only contributes 4% of the total drag. Detailed frequency analysis on velocity signals in each wake region have also been conducted and found 3 dominant frequencies which correspond to the dominant frequency of the total drag. Furthermore, vortical structures are visualized and highly energetic points are identified. This work was supported by the National Research Foundation of Korea(NRF) Grant funded by the Korea government(Ministry of Science, ICT and Future Planning) (No. 2014R1A2A1A11049599, No. 2015R1A2A1A15056086, No. 2016R1E1A2A01939553).
Large eddy simulation of hydrogen/air scramjet combustion using tabulated thermo-chemistry approach
Directory of Open Access Journals (Sweden)
Cao Changmin
2015-10-01
Full Text Available Large eddy simulations (LES have been performed to investigate the flow and combustion fields in the scramjet of the German Aerospace Center (DLR. Turbulent combustion is modeled by the tabulated thermo-chemistry approach in combination with the presumed probability density function (PDF. A β-function is used to model the distribution of the mixture fraction, while two different PDFs, δ-function (Model I and β-function (Model II, are applied to model the reaction progress. Temperature is obtained by solving filtered energy transport equation and the reaction rate of the progress variable is rescaled by pressure to consider the effects of compressibility. The adaptive mesh refinement (AMR technique is used to properly capture shock waves, boundary layers, shear layers and flame structures. Statistical results of temperature and velocity predicted by Model II show better accuracy than that predicted by Model I. The results of scatter points and mixture fraction-conditional variables indicate the significant differences between Model I and Model II. It is concluded that second moment information in the presumed PDF of the reaction progress is very important in the simulation of supersonic combustion. It is also found that an unstable flame with extinction and ignition develops in the shear layers of bluff body and a fuel-rich partially premixed flame stabilizes in the central recirculation bubble.
Ventilation and Air Quality in City Blocks Using Large-Eddy Simulation—Urban Planning Perspective
Directory of Open Access Journals (Sweden)
Mona Kurppa
2018-02-01
Full Text Available Buildings and vegetation alter the wind and pollutant transport in urban environments. This comparative study investigates the role of orientation and shape of perimeter blocks on the dispersion and ventilation of traffic-related air pollutants, and the street-level concentrations along a planned city boulevard. A large-eddy simulation (LES model PALM is employed over a highly detailed representation of the urban domain including street trees and forested areas. Air pollutants are represented by massless and passive particles (non-reactive gases, which are released with traffic-related emission rates. High-resolution simulations for four different city-block-structures are conducted over a 8.2 km 2 domain under two contrasting inflow conditions with neutral and stable atmospheric stratification corresponding the general and wintry meteorological conditions. Variation in building height together with multiple cross streets along the boulevard improves ventilation, resulting in 7–9% lower mean concentrations at pedestrian level. The impact of smaller scale variability in building shape was negligible. Street trees further complicate the flow and dispersion. Notwithstanding the surface roughness, atmospheric stability controls the concentration levels with higher values under stably stratified inflow. Little traffic emissions are transported to courtyards. The results provide urban planners direct information to reduce air pollution by proper structural layout of perimeter blocks.
Large-eddy simulation of a fuel-lean premixed turbulent swirl-burner
Energy Technology Data Exchange (ETDEWEB)
Galpin, Jeremy [IFP, B.P. 311, 92506 Rueil-Malmaison Cedex (France); INSA - CORIA - CNRS, Institut National des Sciences Appliquees de Rouen (France); Naudin, Alexandre; Vervisch, Luc; Domingo, Pascale [INSA - CORIA - CNRS, Institut National des Sciences Appliquees de Rouen (France); Angelberger, Christian; Colin, Olivier [IFP, B.P. 311, 92506 Rueil-Malmaison Cedex (France)
2008-10-15
Large-eddy simulation (LES) of a fuel-lean premixed turbulent swirling flame is performed, in the configuration of a burner experimentally studied by Meier et al. [Combust. Flame 150 (1-2) (2007) 2-26]. Measurements of velocity field, temperature, and major species concentrations are compared against LES results. The unresolved sub-grid scale turbulent species and temperature fluctuations are accounted for using a presumed probability density function and flamelet tabulated detailed chemistry. Before the turbulent burner is simulated, various strategies to introduce tabulated detailed chemistry into a fully compressible Navier-Stokes solver are discussed and tested for laminar flames. The objective is to ensure a proper coupling between chemical tables and unsteady solutions of the Navier-Stokes equations in their fully compressible form, accounting for the inherent constraints of high-performance computing. Comparisons of LES results with experiments are discussed in terms of filtered quantities, leading to the introduction of an extra term to account for the difference in filter sizes used in experiment and LES. Velocity, temperature, and major species LES fields are then compared against measurements. Most of the turbulent flame features are reproduced, and observed discrepancies are analyzed to seek out possible improvements of the subgrid-scale modeling. (author)
A Parallel, Finite-Volume Algorithm for Large-Eddy Simulation of Turbulent Flows
Bui, Trong T.
1999-01-01
A parallel, finite-volume algorithm has been developed for large-eddy simulation (LES) of compressible turbulent flows. This algorithm includes piecewise linear least-square reconstruction, trilinear finite-element interpolation, Roe flux-difference splitting, and second-order MacCormack time marching. Parallel implementation is done using the message-passing programming model. In this paper, the numerical algorithm is described. To validate the numerical method for turbulence simulation, LES of fully developed turbulent flow in a square duct is performed for a Reynolds number of 320 based on the average friction velocity and the hydraulic diameter of the duct. Direct numerical simulation (DNS) results are available for this test case, and the accuracy of this algorithm for turbulence simulations can be ascertained by comparing the LES solutions with the DNS results. The effects of grid resolution, upwind numerical dissipation, and subgrid-scale dissipation on the accuracy of the LES are examined. Comparison with DNS results shows that the standard Roe flux-difference splitting dissipation adversely affects the accuracy of the turbulence simulation. For accurate turbulence simulations, only 3-5 percent of the standard Roe flux-difference splitting dissipation is needed.
Lagrangian stochastic modelling in Large-Eddy Simulation of turbulent particle-laden flows
Chibbaro, Sergio; Innocenti, Alessio; Marchioli, Cristian
2017-11-01
Large-Eddy Simulation (LES) in Eulerian-Lagrangian studies of particle-laden flows is one of the most promising and viable approaches when Direct Numerical Simulation (DNS) is not affordable. However applicability of LES to particle-laden flows is limited by the modeling of the Sub-Grid Scale (SGS) turbulence effects on particle dynamics. These effects may be taken into account through a stochastic SGS model for the Equations of Particle Motion (EPM) that extends the Velocity Filtered Density Function method originally developed for reactive flows, to two-phase flows. The underlying filtered density function is simulated through a Lagrangian Monte Carlo procedure, where a set of Stochastic Differential Equations (SDE) is solved along the trajectory of a particle. The resulting Lagrangian stochastic model has been tested for the reference case of turbulent channel flow. Tests with inertial particles have been performed focusing on particle preferential concentration and segregation in the near-wall region: upon comparison with DNS-based statistics, our results show improved accuracy with respect to LES with no SGS model in the EPM for different Stokes numbers. Furthermore, statistics of the particle velocity recover well DNS levels.
Ackerman, A. S.; Stevens, D. E.; Toon, O. B.; Coakley, J. A., Jr.; Gore, Warren J. (Technical Monitor)
2002-01-01
A number of observations and simulations have shown that increased droplet concentrations in ship tracks increase their total cross-sectional area, thereby enhancing cloud albedo and providing a negative (cooling) radiative forcing at the surface and the top of the atmosphere. In some cases cloud water has been found to be enhanced in ship tracks, which has been attributed to suppression of drizzle and implies an enhanced susceptibility of cloud albedo to droplet concentrations. However, observations from aircraft and satellite indicate that on average cloud water is instead reduced in daytime ship tracks. Such a reduction in liquid water may be attributable to cloud-burning caused by solar heating by soot within the ship exhaust, or by increased precipitation resulting from giant nuclei in the ship exhaust. We will summarize the observational evidence and present results from large-eddy simulations that evaluate these mechanisms. Along the way we will present our insights into the interpretation of satellite retrievals of cloud microphysical properties.
Reduction of Cloud Water in Ship Tracks: Observations and Large-Eddy Simulations
Ackerman, A. S.; Stevens, D. E.; Toon, O. B.; Coakley, J. A., Jr.; Gore, Warren J. (Technical Monitor)
2001-01-01
Ship tracks represent a natural laboratory to study the effects of aerosols on clouds. A number of observations and simulations have shown that increased droplet concentrations in ship tracks increase their total cross-sectional area, thereby enhancing cloud albedo and providing a negative radiative forcing at the surface and the top of the atmosphere. In some cases, cloud water has been found to be enhanced in ship tracks, which has been attributed to suppression of drizzle and implies an enhanced susceptibility of cloud albedo to droplet concentrations. However, more recently compiled observations indicate that cloud water is instead reduced in daytime ship tracks on average. Such a response is consistent with cloud-burning due to solar absorption by soot (the semi-direct radiative forcing of aerosols), recently suggested to be suppressing trade cumulus cloud coverage over the Indian Ocean. We will summarize observational evidence and present large-eddy simulations that consider these competing mechanisms in the effects of aerosols on cloud albedo.
Scalar Filtered Density Function for Large Eddy Simulation of a Bunsen Burner
Yilmaz, S. Levent; Givi, Peyman; Strakey, Peter
2008-11-01
The scalar filtered density function (SFDF) methodology is extended for large eddy simulation (LES) of a turbulent, stoichiometric premixed methane/air flame. The SFDF takes account of subgrid scales (SGS) by considering the mass weighted probability density function (PDF) of the SGS scalar quantities. A transport equation is derived for the SFDF in which the effects of chemical reactions appear in closed form. The SGS mixing is modeled via the linear mean square estimation (LMSE) model, and the convective fluxes are modeled via a SGS viscosity. The modeled SFDF transport equation is solved by a hybrid finite-difference/Monte Carlo scheme. A novel irregular domain decomposition procedure is employed for scalable parallelization which facilitates affordable simulations with realistic chemical reactions and flow parameters. Oxidation chemistry is modeled via a 5-step reduced, and a 15-step augmented reduced mechanism. Results are presented of the mean and rms values of the velocity, the temperature, and mass fractions of the major and the minor species. These results are assessed by comparison against laboratory data.
Hybrid Large-Eddy/Reynolds-Averaged Simulation of a Supersonic Cavity Using VULCAN
Quinlan, Jesse; McDaniel, James; Baurle, Robert A.
2013-01-01
Simulations of a supersonic recessed-cavity flow are performed using a hybrid large-eddy/Reynolds-averaged simulation approach utilizing an inflow turbulence recycling procedure and hybridized inviscid flux scheme. Calorically perfect air enters a three-dimensional domain at a free stream Mach number of 2.92. Simulations are performed to assess grid sensitivity of the solution, efficacy of the turbulence recycling, and the effect of the shock sensor used with the hybridized inviscid flux scheme. Analysis of the turbulent boundary layer upstream of the rearward-facing step for each case indicates excellent agreement with theoretical predictions. Mean velocity and pressure results are compared to Reynolds-averaged simulations and experimental data for each case and indicate good agreement on the finest grid. Simulations are repeated on a coarsened grid, and results indicate strong grid density sensitivity. Simulations are performed with and without inflow turbulence recycling on the coarse grid to isolate the effect of the recycling procedure, which is demonstrably critical to capturing the relevant shear layer dynamics. Shock sensor formulations of Ducros and Larsson are found to predict mean flow statistics equally well.
Large eddy simulation for predicting turbulent heat transfer in gas turbines.
Tafti, Danesh K; He, Long; Nagendra, K
2014-08-13
Blade cooling technology will play a critical role in the next generation of propulsion and power generation gas turbines. Accurate prediction of blade metal temperature can avoid the use of excessive compressed bypass air and allow higher turbine inlet temperature, increasing fuel efficiency and decreasing emissions. Large eddy simulation (LES) has been established to predict heat transfer coefficients with good accuracy under various non-canonical flows, but is still limited to relatively simple geometries and low Reynolds numbers. It is envisioned that the projected increase in computational power combined with a drop in price-to-performance ratio will make system-level simulations using LES in complex blade geometries at engine conditions accessible to the design process in the coming one to two decades. In making this possible, two key challenges are addressed in this paper: working with complex intricate blade geometries and simulating high-Reynolds-number (Re) flows. It is proposed to use the immersed boundary method (IBM) combined with LES wall functions. A ribbed duct at Re=20 000 is simulated using the IBM, and a two-pass ribbed duct is simulated at Re=100 000 with and without rotation (rotation number Ro=0.2) using LES with wall functions. The results validate that the IBM is a viable alternative to body-conforming grids and that LES with wall functions reproduces experimental results at a much lower computational cost. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Overdamped large-eddy simulations of turbulent pipe flow up to Reτ = 1500
Feldmann, Daniel; Avila, Marc
2018-04-01
We present results from large-eddy simulations (LES) of turbulent pipe flow in a computational domain of 42 radii in length. Wide ranges of shear the Reynolds number and Smagorinsky model parameter are covered, 180 ≤ Reτ ≤ 1500 and 0.05 ≤ Cs ≤ 1.2, respectively. The aim is to asses the effect of Cs on the resolved flow field and turbulence statistics as well as to test whether very large scale motions (VLSM) in pipe flow can be isolated from the near-wall cycle by enhancing the dissipative character of the static Smagorinsky model with elevated Cs values. We found that the optimal Cs to achieve best agreement with reference data varies with Reτ and further depends on the wall normal location and the quantity of interest. Furthermore, for increasing Reτ , the optimal Cs for pipe flow LES seems to approach the theoretically optimal value for LES of isotropic turbulence. In agreement with previous studies, we found that for increasing Cs small-scale streaks in simple flow field visualisations are gradually quenched and replaced by much larger smooth streaks. Our analysis of low-order turbulence statistics suggests, that these structures originate from an effective reduction of the Reynolds number and thus represent modified low-Reynolds number near-wall streaks rather than VLSM. We argue that overdamped LES with the static Smagorinsky model cannot be used to unambiguously determine the origin and the dynamics of VLSM in pipe flow. The approach might be salvaged by e.g. using more sophisticated LES models accounting for energy flux towards large scales or explicit anisotropic filter kernels.
Energy Technology Data Exchange (ETDEWEB)
Priere, C.
2005-01-15
Nowadays, environmental and economic constraints require considerable research efforts from the gas turbine industry. Objectives aim at lowering pollutants emissions and fuel consumption. These efforts take a primary importance to satisfy a continue growth of energy production and to obey to stringent environmental legislations. Recorded progresses are linked to mixing enhancement in combustors running at lean premixed operating point. Indeed, industry shows itself to be attentive in the mixing enhancement and during the last years, efforts are concentrated on fresh and burned gas dilution. The Jet In Cross Flow (JICF), which constitutes a representative case to further the research effort. It has been to be widely studied both in experimentally and numerically, and is particularly well suited for the evaluation of Large Eddy Simulations (LES). This approach, where large scale phenomena are naturally taken into account in the governing equation while the small scales are modelled, offers the means to well-predict such flows. The main objective of this work is to gauge and to enhance the quality of the LES predictions in JICF configurations by means of numerical tools developed in the compressible AVBP code. Physical and numerical parameters considered in the JICF modelization are taken into account and strategies that are able to enhance quality of LES results are proposed. Configurations studied in this work are the following: - Influences of the boundary conditions and jet injection system on a free JICF - Study of static mixing device in an industrial gas turbine chamber. - Study of a JICF configuration represented a dilution zone in low emissions combustors. (author)
Analysis of temperature influence on the informative parameters of single-coil eddy current sensors
Borovik, S. Yu.; Kuteynikova, M. M.; Sekisov, Yu. N.; Skobelev, O. P.
2017-07-01
This paper describes the study of temperature in the flowing part of a turbine on the informative parameters (equivalent inductances of primary windings of matching transformers) of single-coil eddy-current sensors with a sensitive element in the form of a conductor section, which are used as part of automation systems for testing gas-turbine engines. In this case, the objects of temperature influences are both sensors and controlled turbine blades. The existing model of electromagnetic interaction of a sensitive element with the end part of a controlled blade is used to obtain quantitative estimates of temperature changes of equivalent inductances of sensitive elements and primary windings of matching transformers. This model is also used to determine the corresponding changes of the informative parameter of the sensor in the process of experimental studies of temperature influences on it (in the absence of blades in the sensitive region). This paper also presents transformations in the form of relationships of informative parameters with radial and axial displacements at normal (20 °C) and nominal (1000 °C) temperatures, and their difference is used to determine the families of dominant functions of temperature, which characterize possible temperature errors for any radial and axial displacements in the ranges of their variation.
Senocak, I.; Ackerman, A. S.; Kirkpatrick, M. P.; Stevens, D. E.; Mansour, N. N.
2004-01-01
Large-eddy simulation (LES) is a widely used technique in armospheric modeling research. In LES, large, unsteady, three dimensional structures are resolved and small structures that are not resolved on the computational grid are modeled. A filtering operation is applied to distinguish between resolved and unresolved scales. We present two near-surface models that have found use in atmospheric modeling. We also suggest a simpler eddy viscosity model that adopts Prandtl's mixing length model (Prandtl 1925) in the vicinity of the surface and blends with the dynamic Smagotinsky model (Germano et al, 1991) away from the surface. We evaluate the performance of these surface models by simulating a neutraly stratified atmospheric boundary layer.
Sorbjan, Zbigniew
2017-06-01
Gradient-based similarity functions, evaluated based on data generated by a large-eddy simulation model of the stably stratified boundary layer, are compared with analogous similarity functions, derived from field observations in the surface layer during the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment in the Arctic. The comparison is performed in terms of explicit and implicit local scaling systems, for the temperature and momentum fluxes, standard deviations of the vertical velocity and of temperature, as well as dissipation rates for the turbulent kinetic energy and for the temperature variance. The comparison shows the best agreement of the SHEBA-based similarity functions with analogous functions evaluated using the large-eddy simulation data in the range of the Richardson number 0.01<{ Ri}< 0.1.
Investigation of natural gas plume dispersion using mobile observations and large eddy simulations
Caulton, Dana R.; Li, Qi; Golston, Levi; Pan, Da; Bou-Zeid, Elie; Fitts, Jeff; Lane, Haley; Lu, Jessica; Zondlo, Mark A.
2016-04-01
Recent work suggests the distribution of methane emissions from fracking operations is skewed with a small percentage of emitters contributing a large proportion of the total emissions. These sites are known as 'super-emitters.' The Marcellus shale, the most productive natural gas shale field in the United States, has received less intense focus for well-level emissions and is here used as a test site for targeted analysis between current standard trace-gas advection practices and possible improvements via advanced modeling techniques. The Marcellus shale is topographically complex, making traditional techniques difficult to implement and evaluate. For many ground based mobile studies, the inverse Gaussian plume method (IGM) is used to produce emission rates. This method is best applied to well-mixed plumes from strong point sources and may not currently be well-suited for use with disperse weak sources, short-time frame measurements or data collected in complex terrain. To assess the quality of IGM results and to improve source-strength estimations, a robust study that combines observational data with a hierarchy of models of increasing complexity will be presented. The field test sites were sampled with multiple passes using a mobile lab as well as a stationary tower. This mobile lab includes a Garmin GPS unit, Vaisala weather station (WTX520), LICOR 7700 CH4 open path sensor and LICOR 7500 CO2/H2O open path sensor. The sampling tower was constructed consisting of a Metek uSonic-3 Class A sonic anemometer, and an additional LICOR 7700 and 7500. Data were recorded for at least one hour at these sites. The modeling will focus on large eddy simulations (LES) of the wind and CH4 concentration fields for these test sites. The LES model used 2 m horizontal and 1 m vertical resolution and was integrated in time for 45 min for various test sites under stable, neutral and unstable conditions. It is here considered as the reference to which various IGM approaches can be
Energy Technology Data Exchange (ETDEWEB)
Van Roekel, Luke [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2018-01-30
We have conducted a suite of Large Eddy Simulation (LES) to form the basis of a multi-model comparison (left). The results have led to proposed model improvements. We have verified that Eulerian-Lagrangian effective diffusivity estimates of mesoscale mixing are consistent with traditional particle statistics metrics (right). LES and Lagrangian particles will be utilized to better represent the movement of water into and out of the mixed layer.
A large-eddy simulation based power estimation capability for wind farms over complex terrain
Senocak, I.; Sandusky, M.; Deleon, R.
2017-12-01
There has been an increasing interest in predicting wind fields over complex terrain at the micro-scale for resource assessment, turbine siting, and power forecasting. These capabilities are made possible by advancements in computational speed from a new generation of computing hardware, numerical methods and physics modelling. The micro-scale wind prediction model presented in this work is based on the large-eddy simulation paradigm with surface-stress parameterization. The complex terrain is represented using an immersed-boundary method that takes into account the parameterization of the surface stresses. Governing equations of incompressible fluid flow are solved using a projection method with second-order accurate schemes in space and time. We use actuator disk models with rotation to simulate the influence of turbines on the wind field. Data regarding power production from individual turbines are mostly restricted because of proprietary nature of the wind energy business. Most studies report percentage drop of power relative to power from the first row. There have been different approaches to predict power production. Some studies simply report available wind power in the upstream, some studies estimate power production using power curves available from turbine manufacturers, and some studies estimate power as torque multiplied by rotational speed. In the present work, we propose a black-box approach that considers a control volume around a turbine and estimate the power extracted from the turbine based on the conservation of energy principle. We applied our wind power prediction capability to wind farms over flat terrain such as the wind farm over Mower County, Minnesota and the Horns Rev offshore wind farm in Denmark. The results from these simulations are in good agreement with published data. We also estimate power production from a hypothetical wind farm in complex terrain region and identify potential zones suitable for wind power production.
Matsuda, K.; Onishi, R.; Takahashi, K.
2017-12-01
Urban high temperatures due to the combined influence of global warming and urban heat islands increase the risk of heat stroke. Greenery is one of possible countermeasures for mitigating the heat environments since the transpiration and shading effect of trees can reduce the air temperature and the radiative heat flux. In order to formulate effective measures, it is important to estimate the influence of the greenery on the heat stroke risk. In this study, we have developed a tree-crown-resolving large-eddy simulation (LES) model that is coupled with three-dimensional radiative transfer (3DRT) model. The Multi-Scale Simulator for the Geoenvironment (MSSG) is used for performing building- and tree-crown-resolving LES. The 3DRT model is implemented in the MSSG so that the 3DRT is calculated repeatedly during the time integration of the LES. We have confirmed that the computational time for the 3DRT model is negligibly small compared with that for the LES and the accuracy of the 3DRT model is sufficiently high to evaluate the radiative heat flux at the pedestrian level. The present model is applied to the analysis of the heat environment in an actual urban area around the Tokyo Bay area, covering 8 km × 8 km with 5-m grid mesh, in order to confirm its feasibility. The results show that the wet-bulb globe temperature (WBGT), which is an indicator of the heat stroke risk, is predicted in a sufficiently high accuracy to evaluate the influence of tree crowns on the heat environment. In addition, by comparing with a case without the greenery in the Tokyo Bay area, we have confirmed that the greenery increases the low WBGT areas in major pedestrian spaces by a factor of 3.4. This indicates that the present model can predict the greenery effect on the urban heat environment quantitatively.
Large-eddy simulation of 3D turbulent flow past a complete marine hydrokinetic turbine
Kang, S.; Sotiropoulos, F.
2011-12-01
A high-resolution computational framework was recently developed by Kang et al (Adv. Water Resour., submitted) for simulating three-dimensional (3D), turbulent flow past real-life, complete marine hydrokinetic (MHK) turbine configurations. In this model the complex turbine geometry is resolved by employing the curvilinear immersed boundary (CURVIB) method, which solves the 3D unsteady incompressible Navier-Stokes equations in generalized curvilinear domains with embedded arbitrarily complex, moving and/or stationary immersed boundaries (Ge and Sotiropoulos, 2007). Turbulence is simulated using the large-eddy simulation (LES) approach adapted in the context of the CURVIB method, with a wall model based on solving the simplified boundary layer equations used to reconstruct boundary conditions near all solid surfaces (Kang et al., 2011). The model can resolve the flow patterns generated by the rotor and all stationary components of the turbine as well as the interactions of the flow structures with the channel bed. We apply this model to carry out LES of the flow past the model-size hydrokinetic turbine deployed in the St. Anthony Falls Laboratory main channel. The mean velocities and second-order turbulence statistics measured in the downstream wake using acoustic Doppler velocimetry (ADV) are compared with the LES results. The comparisons show that the computed mean velocities and turbulent stresses are in good agreement with the measurements. The high-resolution LES data are used to explore physically important downstream flow characteristics such as the time-averaged wake structure, recovery of cross-sectionally averaged power potential, near-bed scour potential, etc. This work is supported by Verdant Power.
Parametric Study of Decay of Homogeneous Isotropic Turbulence Using Large Eddy Simulation
Swanson, R. C.; Rumsey, Christopher L.; Rubinstein, Robert; Balakumar, Ponnampalam; Zang, Thomas A.
2012-01-01
Numerical simulations of decaying homogeneous isotropic turbulence are performed with both low-order and high-order spatial discretization schemes. The turbulent Mach and Reynolds numbers for the simulations are 0.2 and 250, respectively. For the low-order schemes we use either second-order central or third-order upwind biased differencing. For higher order approximations we apply weighted essentially non-oscillatory (WENO) schemes, both with linear and nonlinear weights. There are two objectives in this preliminary effort to investigate possible schemes for large eddy simulation (LES). One is to explore the capability of a widely used low-order computational fluid dynamics (CFD) code to perform LES computations. The other is to determine the effect of higher order accuracy (fifth, seventh, and ninth order) achieved with high-order upwind biased WENO-based schemes. Turbulence statistics, such as kinetic energy, dissipation, and skewness, along with the energy spectra from simulations of the decaying turbulence problem are used to assess and compare the various numerical schemes. In addition, results from the best performing schemes are compared with those from a spectral scheme. The effects of grid density, ranging from 32 cubed to 192 cubed, on the computations are also examined. The fifth-order WENO-based scheme is found to be too dissipative, especially on the coarser grids. However, with the seventh-order and ninth-order WENO-based schemes we observe a significant improvement in accuracy relative to the lower order LES schemes, as revealed by the computed peak in the energy dissipation and by the energy spectrum.
Large-eddy simulation of street canyons and urban microclimate using Uintah:MPMICE
Nemati Hayati, A.; Stoll, R., II; Harman, T.; Pardyjak, E.
2014-12-01
Urban microclimate plays an important role in urban water use, energy use, pollutant transport, and the general comfort and well-being of urban inhabitants. The microclimate interacts locally with urban morphology, water levels, properties of urban surfaces, and vegetation cover all of which contribute significantly to the strong spatial variability observed in urban areas. Considerable parts of urban open spaces take the form of street canyons. These urban street canyons play a remarkable role in creating urban microclimates. Within street canyons themselves, a wide variety of phenomena contribute to complex flow patterns. These include various flow structures such as wake fields, circulation zones, isolated roughness flow, wake interference and skimming flows. In addition, heat fluxes from the buildings and the surrounding area enhance the complexity of the flow field inside the canyon. Here, we introduce Uintah:MPMICE for the simulation of fluid structure interactions in urban flows. Uintah:MPMICE has been developed in a massively parallel computational infrastructure, uses material points to represent buildings, and the large-eddy simulation (LES) technique to represent momentum and scalar transport. To validate Uintah:MPMICE, simulations of typical street canyons are compared against published wind tunnel particle imaging velocimetry (PIV) data for the cases of step-up and step-down street canyons. Our findings show promising results in capturing major flow features, namely wake fields, recirculation zones, wake interference, vortex structures, and flow separation in street canyons. LES results demonstrate the ability of the simulations to predict flow topology details such as secondary circulation zones and wall-originating elevated shear layers in step-up and step-down cases, respectively. Furthermore, mean flow and variance statistics indicate sensitivity to inlet boundary conditions; upstream turbulence generation method, in particular, has a significant
Influence of atmospheric stability on wind-turbine wakes: A large-eddy simulation study
Abkar, Mahdi; Porté-Agel, Fernando
2014-05-01
In this study, large-eddy simulation is combined with a turbine model to investigate the influence of atmospheric stability on wind-turbine wakes. In the simulations, subgrid-scale turbulent fluxes are parameterized using tuning-free Lagrangian scale-dependent dynamic models. These models optimize the local value of the model coefficients based on the dynamics of the resolved scales. The turbine-induced forces are parameterized with an actuator-disk model with rotation. In this technique, blade-element theory is used to calculate the lift and drag forces acting on the blades. Emphasis is placed on the structure and characteristics of wind-turbine wakes in the cases where the incident flows to the turbine have the same mean velocity at the hub height but different stability conditions. The simulation results show that atmospheric stability has a significant effect on the spatial distribution of the mean velocity deficit and turbulent fluxes in the wake region. In particular, the magnitude of the velocity deficit increases with increasing stability in the atmosphere. In addition, the locations of the maximum turbulence intensity and turbulent stresses are closer to the turbine in convective boundary layer compared with neutral and stable ones. Detailed analysis of the resolved turbulent kinetic energy (TKE) budget inside the wake reveals also that the thermal stratification of the incoming wind considerably affects the magnitude and spatial distribution of the turbulent production, transport term and dissipation rate (transfer of energy to the subgrid scales). It is also shown that the near-wake region can be extended to a farther distance downstream in stable condition compared with neutral and unstable counterparts. In order to isolate the effect of atmospheric stability, additional simulations of neutrally-stratified atmospheric boundary layers are performed with the same turbulence intensity at hub height as convective and stable ones. The results show that the
A dynamic subgrid scale model for Large Eddy Simulations based on the Mori-Zwanzig formalism
Parish, Eric J.; Duraisamy, Karthik
2017-11-01
The development of reduced models for complex multiscale problems remains one of the principal challenges in computational physics. The optimal prediction framework of Chorin et al. [1], which is a reformulation of the Mori-Zwanzig (M-Z) formalism of non-equilibrium statistical mechanics, provides a framework for the development of mathematically-derived reduced models of dynamical systems. Several promising models have emerged from the optimal prediction community and have found application in molecular dynamics and turbulent flows. In this work, a new M-Z-based closure model that addresses some of the deficiencies of existing methods is developed. The model is constructed by exploiting similarities between two levels of coarse-graining via the Germano identity of fluid mechanics and by assuming that memory effects have a finite temporal support. The appeal of the proposed model, which will be referred to as the 'dynamic-MZ-τ' model, is that it is parameter-free and has a structural form imposed by the mathematics of the coarse-graining process (rather than the phenomenological assumptions made by the modeler, such as in classical subgrid scale models). To promote the applicability of M-Z models in general, two procedures are presented to compute the resulting model form, helping to bypass the tedious error-prone algebra that has proven to be a hindrance to the construction of M-Z-based models for complex dynamical systems. While the new formulation is applicable to the solution of general partial differential equations, demonstrations are presented in the context of Large Eddy Simulation closures for the Burgers equation, decaying homogeneous turbulence, and turbulent channel flow. The performance of the model and validity of the underlying assumptions are investigated in detail.
Large eddy simulation of a two-phase reacting swirl flow inside a cement cyclone
International Nuclear Information System (INIS)
Mikulčić, Hrvoje; Vujanović, Milan; Ashhab, Moh'd Sami; Duić, Neven
2014-01-01
This work presents a numerical study of the highly swirled gas–solid flow inside a cement cyclone. The computational fluid dynamics – CFD simulation for continuum fluid flow and heat exchange was used for the investigation. The Eulearian–Lagrangian approach was used to describe the two-phase flow, and the large eddy simulation – LES method was used for correctly obtaining the turbulent fluctuations of the gas phase. A model describing the reaction of the solid phase, e.g. the calcination process, has been developed and implemented within the commercial finite volume CFD code FIRE. Due to the fact that the calcination process has a direct influence on the overall energy efficiency of the cement production, it is of great importance to have a certain degree of limestone degradation at the cyclone's outlet. The heat exchange between the gas and solid phase is of particular importance when studying cement cyclones, as it has a direct effect on the calcination process. In order to study the heat exchange phenomena and the flow characteristics, a three dimensional geometry of a real industrial scroll type cyclone was used for the CFD simulation. The gained numerical results, characteristic for cyclones, such as the pressure drop, and concentration of particles can thus be used for better understanding of the complex swirled two-phase flow inside the cement cyclone and also for improving the heat exchange phenomena. - Highlights: • CFD (computational fluid dynamics) is being increasingly used to enhance efficiency of reacting multi-phase flows. • Numerical model of calcination process was presented. • A detailed industrial geometry was used for the CFD simulation. • Presented model and measurement data are in good agreement
Second-moment budgets in cloud topped boundary layers: A large-eddy simulation study
Heinze, Rieke; Mironov, Dmitrii; Raasch, Siegfried
2015-06-01
A detailed analysis of second-order moment budgets for cloud topped boundary layers (CTBLs) is performed using high-resolution large-eddy simulation (LES). Two CTBLs are simulated—one with trade wind shallow cumuli, and the other with nocturnal marine stratocumuli. Approximations to the ensemble-mean budgets of the Reynolds-stress components, of the fluxes of two quasi-conservative scalars, and of the scalar variances and covariance are computed by averaging the LES data over horizontal planes and over several hundred time steps. Importantly, the subgrid scale contributions to the budget terms are accounted for. Analysis of the LES-based second-moment budgets reveals, among other things, a paramount importance of the pressure scrambling terms in the Reynolds-stress and scalar-flux budgets. The pressure-strain correlation tends to evenly redistribute kinetic energy between the components, leading to the growth of horizontal-velocity variances at the expense of the vertical-velocity variance which is produced by buoyancy over most of both CTBLs. The pressure gradient-scalar covariances are the major sink terms in the budgets of scalar fluxes. The third-order transport proves to be of secondary importance in the scalar-flux budgets. However, it plays a key role in maintaining budgets of TKE and of the scalar variances and covariance. Results from the second-moment budget analysis suggest that the accuracy of description of the CTBL structure within the second-order closure framework strongly depends on the fidelity of parameterizations of the pressure scrambling terms in the flux budgets and of the third-order transport terms in the variance budgets. This article was corrected on 26 JUN 2015. See the end of the full text for details.
Towards a Framework for the Stochastic Modelling of Subgrid Scale Fluxes for Large Eddy Simulation
Directory of Open Access Journals (Sweden)
Thomas von Larcher
2015-04-01
Full Text Available We focus on a mixed deterministic-stochastic subgrid scale modelling strategy currently under development for application in Finite Volume Large Eddy Simulation (LES codes. Our concept is based on the integral conservation laws for mass, momentum and energy of a flow field. We model the space-time structure of the flux correction terms to create a discrete formulation. Advanced methods of time series analysis for the data-based construction of stochastic models with inherently non-stationary statistical properties and concepts of information theory based on a modified Akaike information criterion and on the Bayesian information criterion for the model discrimination are used to construct surrogate models for the non-resolved flux fluctuations. Vector-valued auto-regressive models with external influences form the basis for the modelling approach. The reconstruction capabilities of the modelling ansatz are tested against fully 3D turbulent channel flow data computed by direct numerical simulation and, in addition, against a turbulent Taylor-Green vortex flow showing a transition from laminar to a turbulent flow state. The modelling approach for the LES closure is different in both test cases. In the channel flow we consider an implicit LES ansatz. In the Taylor-Green vortex flow, it follows an explicit closure approach. We present here the outcome of our reconstruction tests and show specific results of the non-trivial time series data analysis. Started with a generally stochastic ansatz we found, surprisingly, that the deterministic model part already yields small residuals and is, therefore, good enough to fit the flux correction terms well. In the Taylor-Green vortex flow, we found additionally time-dependent features confirming that our modelling approach is capable of detecting changes in the temporal structure of the flow. The results encourage us to launch a more ambitious attempt at dynamic LES closure along these lines.
A nested large-eddy simulation study of the Ora del Garda wind in the Alps
Giovannini, Lorenzo; Laiti, Lavinia; Zardi, Dino
2015-04-01
High-resolution numerical simulations performed with the Weather Research and Forecasting (WRF) model are analyzed to investigate the atmospheric boundary layer (ABL) structures associated with the development of a lake-breeze and valley-wind coupled system developing in the southeastern Italian Alps, the so-called "Ora del Garda" wind. Five domains were nested for the simulations: three mesoscale domains, forced by reanalysis data field, are used to drive the finest two domains, in which the large-eddy technique is used, achieving a final horizontal resolution of 80 m. Model results complement an existing dataset composed of a series of measurement flights and surface observations. The flights explored specific valley sections at key locations in the study area, namely over the lake's shore, at half valley and at the end of the valley where the breeze blows. Model results display a good agreement with the experimental dataset. In particular, the surface diurnal cycles of radiation, wind, air temperature and sensible heat flux are satisfactorily reproduced, despite some discrepancies in the timing of thermally-driven circulation onset and offset. The typical structure of the valley ABL, characterized by shallow or even absent mixed layers surmounted by slightly stable layers extending up to the lateral crest level, is also well reproduced in the simulated fields. Moreover, the simulations confirm characteristic local-scale features of the thermally-driven wind field suggested by the analysis of the airborne dataset as well as from previous observations in the area. For example, the model shows the development of inhomogeneities in the cross-valley thermal field, caused by the propagation of the lake breeze and by the different heating between the sidewalls of the valley, as well as the formation of a hydraulic jump in the area where the Ora del Garda flows down into an adjacent valley from an elevated saddle.
Fang, Jiannong; Porté-Agel, Fernando
2015-06-01
Large-eddy simulation is used to investigate very-large-scale motions (VLSMs) in the neutrally stratified atmospheric boundary layer at a very high friction Reynolds number, . The vertical height of the computational domain is m, which corresponds to the thickness of the boundary layer. In order to make sure that the largest flow structures are properly resolved, the horizontal domain size is chosen to be and , which is much larger than the standard domain size, especially in the streamwise direction (i.e., the direction of elongation of the flow structures). It is shown that the contributions to the resolved turbulent kinetic energy and the resolved shear stress from streamwise wavelengths larger than are up to 27 and 31 % respectively. Therefore, the large computational domain adopted here is essential for the purpose of investigating VLSMs. The spatially coherent structures associated with VLSMs are characterized through flow visualization and statistical analysis. The instantaneous velocity fields in horizontal planes give evidence of streamwise-elongated flow structures of low-speed fluid with negative fluctuation of the streamwise velocity component, and which are flanked on either side by similarly elongated high-speed structures. The pre-multiplied power spectra and two-point correlations indicate that the scales of these streak-like structures are very large, up to in the streamwise direction and in the spanwise direction. These features are similar to those found in the logarithmic and outer regions of laboratory-scale boundary layers by direct numerical simulation and experiments conducted at low to moderate Reynolds numbers. The three-dimensional correlation map and conditional average of the three components of velocity further indicate that the low-speed and high-speed regions possess the same elongated ellipsoid-like structure, which is inclined upward along the streamwise direction, and they are accompanied by counter-rotating roll modes in the
Large-eddy simulation of open channel flow with surface cooling
International Nuclear Information System (INIS)
Walker, R.; Tejada-Martínez, A.E.; Martinat, G.; Grosch, C.E.
2014-01-01
Highlights: • Open channel flow comparable to a shallow tidal ocean flow is simulated using LES. • Unstable stratification is imposed by a constant surface cooling flux. • Full-depth, convection-driven, rotating supercells develop when cooling is applied. • Strengthening of cells occurs corresponding to an increasing of the Rayleigh number. - Abstract: Results are presented from large-eddy simulations of an unstably stratified open channel flow, driven by a uniform pressure gradient and with zero surface shear stress and a no-slip lower boundary. The unstable stratification is applied by a constant cooling flux at the surface and an adiabatic bottom wall, with a constant source term present to ensure the temperature reaches a statistically steady state. The structure of the turbulence and the turbulence statistics are analyzed with respect to the Rayleigh number (Ra τ ) representative of the surface buoyancy relative to shear. The impact of the surface cooling-induced buoyancy on mean and root mean square of velocity and temperature, budgets of turbulent kinetic energy (and components), Reynolds shear stress and vertical turbulent heat flux will be investigated. Additionally, colormaps of velocity fluctuations will aid the visualization of turbulent structures on both vertical and horizontal planes in the flow. Under neutrally stratified conditions the flow is characterized by weak, full-depth, streamwise cells similar to but less coherent than Couette cells in plane Couette flow. Increased Ra τ and thus increased buoyancy effects due to surface cooling lead to full-depth convection cells of significantly greater spanwise size and coherence, thus termed convective supercells. Full-depth convective cell structures of this magnitude are seen for the first time in this open channel domain, and may have important implications for turbulence analysis in a comparable tidally-driven ocean boundary layer. As such, these results motivate further study of the
On the use of kinetic energy preserving DG-schemes for large eddy simulation
Flad, David; Gassner, Gregor
2017-12-01
Recently, element based high order methods such as Discontinuous Galerkin (DG) methods and the closely related flux reconstruction (FR) schemes have become popular for compressible large eddy simulation (LES). Element based high order methods with Riemann solver based interface numerical flux functions offer an interesting dispersion dissipation behavior for multi-scale problems: dispersion errors are very low for a broad range of scales, while dissipation errors are very low for well resolved scales and are very high for scales close to the Nyquist cutoff. In some sense, the inherent numerical dissipation caused by the interface Riemann solver acts as a filter of high frequency solution components. This observation motivates the trend that element based high order methods with Riemann solvers are used without an explicit LES model added. Only the high frequency type inherent dissipation caused by the Riemann solver at the element interfaces is used to account for the missing sub-grid scale dissipation. Due to under-resolution of vortical dominated structures typical for LES type setups, element based high order methods suffer from stability issues caused by aliasing errors of the non-linear flux terms. A very common strategy to fight these aliasing issues (and instabilities) is so-called polynomial de-aliasing, where interpolation is exchanged with projection based on an increased number of quadrature points. In this paper, we start with this common no-model or implicit LES (iLES) DG approach with polynomial de-aliasing and Riemann solver dissipation and review its capabilities and limitations. We find that the strategy gives excellent results, but only when the resolution is such, that about 40% of the dissipation is resolved. For more realistic, coarser resolutions used in classical LES e.g. of industrial applications, the iLES DG strategy becomes quite inaccurate. We show that there is no obvious fix to this strategy, as adding for instance a sub
Dynamic large eddy simulation of flow interactions due to segmented synthetic jets in a crossflow
McGlynn, Eugene Michael, Jr.
Flow control is a growing field of research with many potential applications in both commercial and military use. Many studies have demonstrated the ability of both passive and active flow mechanisms to alter the fluid flow behavior and yield desirable results. The use of passive mechanisms often creates additional drag, so active mechanisms are favorable for certain applications. However, for active mechanisms to be efficient, they must be easily implemented, use a low amount of input energy, and provide the required level of actuation. One such flow control device is the synthetic jet. In this study, dynamic large eddy simulations (LES) of flow interactions due to segmented synthetic jets in a crossflow are performed. A finite-span synthetic jet operating at a blowing ratio of 1.2 is placed on a NACA 4421 airfoil at 0 degree angle of attack and chord-based Reynolds number of 100,000. The orifice of the synthetic jet is varied such that it is segmented in two equal rectangular pieces (along the span) with two different gaps of 1h and 4h (where h is the slit width of the synthetic jet along the crossflow direction, i.e., short dimension). This segmentation is included to study secondary flow structures that are formed due to the ends or edges of the segmented slits, specifically their influence on the spanwise behavior of the resulting flow structures. LES results of a continuous or non-segmented rectangular slit (of the same area) are used as a reference case, and compared with experimental and direct numerical simulation datasets from a previous study. In all cases, "lobe"-like structures are shown to be present in the time-averaged speed contours. An independence is observed between these "lobe"-like structures as the gap widens between the two segments of the jet, where the 4h gap case shows nearly a complete independence. Furthermore, phase-averaged vorticity plots reveal a counter-rotating train of vortices from each segment. These vortices lift off the
Favorable Street Canyon Aspect Ratios for Pollutant Removal- a Large-Eddy Simulation Approach
Chung, T. N.; Liu, C.
2010-12-01
Given the limited land resource, urbanization is one of the solutions to the current rapid economic development and population growth. Narrow streets flanked by high-rise buildings, also known as street canyons, are commonly found in metropolises nowadays. In recent years, this issue has been aroused the public awareness that the air pollutants from domestic sources and vehicular emissions are unable to be removed but trapped inside the street canopy level threatening human health and our living environment. A thorough understanding of the pollutant removal mechanism is the key step to rectify the current poor urban air quality. This study is therefore conceived to examine how the pollutant removal is related to the street width and building height. Large-eddy simulation (LES) with the one-equation subgrid-scale (SGS) turbulence model is employed to investigate the characteristic ventilation and pollutant transport in idealized two-dimensional (2D) street canyons of different building-height-to-street-width (aspect) ratios (ARs) h/b. Model validation is performed by comparing the LES results with those of k-ɛ turbulence model and laboratory experiments. A consistent trend of the pollutant exchange rate (PCH) among the LES, k-ɛ turbulence model, and experimental results is obtained. While its drag is largest, the street canyon of AR = 0.5 is found to be most favorable in the pollutant removal perspective. This finding seems contradict with the presumption that the smaller the AR (wider the street), the more efficient the pollutants removal. In the isolated roughness regime the flows in (wider) street canyons, the entrainment from the prevailing flow aloft down into the ground level purging pollutant away. On the contrary in the skimming flow regime, in (narrower) street canyons, the recirculating flows inside the street canyon are isolated from the prevailing flow in which the (vertical) pollutant removal is governed by roof-level intermittency. Unexpectedly, in
Large eddy simulation and direct numerical simulation of high speed turbulent reacting flows
Adumitroaie, V.; Frankel, S. H.; Madnia, C. K.; Givi, P.
The objective of this research is to make use of Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS) for the computational analyses of high speed reacting flows. Our efforts in the first phase of this research conducted within the past three years have been directed in several issues pertaining to intricate physics of turbulent reacting flows. In our previous 5 semi-annual reports submitted to NASA LaRC, as well as several technical papers in archival journals, the results of our investigations have been fully described. In this progress report which is different in format as compared to our previous documents, we focus only on the issue of LES. The reason for doing so is that LES is the primary issue of interest to our Technical Monitor and that our other findings were needed to support the activities conducted under this prime issue. The outcomes of our related investigations, nevertheless, are included in the appendices accompanying this report. The relevance of the materials in these appendices are, therefore, discussed only briefly within the body of the report. Here, results are presented of a priori and a posterior analyses for validity assessments of assumed Probability Density Function (PDF) methods as potential subgrid scale (SGS) closures for LES of turbulent reacting flows. Simple non-premixed reacting systems involving an isothermal reaction of the type A + B yields Products under both chemical equilibrium and non-equilibrium conditions are considered. A priori analyses are conducted of a homogeneous box flow, and a spatially developing planar mixing layer to investigate the performance of the Pearson Family of PDF's as SGS models. A posteriori analyses are conducted of the mixing layer using a hybrid one-equation Smagorinsky/PDF SGS closure. The Smagorinsky closure augmented by the solution of the subgrid turbulent kinetic energy (TKE) equation is employed to account for hydrodynamic fluctuations, and the PDF is employed for modeling the
Large-eddy simulation of flows over idealized urban areas in thermal stratification
Chan, Mr.; Liu, Dr.
2012-04-01
Large-eddy simulation (LES) equipped with the one-equation subgrid-scale model was employed to investigate the mean wind and turbulence over idealized two-dimensional (2D) street canyons in various thermal stratifications. The prevailing wind is driven by a background pressure gradient above the roof level that is perpendicular to the axis of street canyons. The building-height-to-street-width (aspect) ratio is kept unity so the flows fall into the skimming flow regime. Cyclic boundary conditions are assigned to the domain inlet and outlet, simulating the infinite horizontally homogenous building structures. The buoyancy force is modeled by Boussinesq approximation. Building geometry is the key factor governing the wind flow behaviors aloft. Its effects on the flow structures in isothermal conditions are widely studied. Whereas, thermal stratification, which is caused by the temperature difference between the urban fabrics and the prevailing wind, plays another important role in the wind flow behaviors. The presence of buoyancy force drives/suppresses convective flows that substantially modify the vertical transport processes. In stable stratification, e.g. nighttime, a cooler urban surface favors subsidence that reduces turbulence intensities subsequently. While in unstable stratification, e.g. daytime, a hotter urban surface induces buoyancy and convective current that in turn promotes turbulence. In isothermal conditions, it is well known that the mean flows exhibit a log-law region over an aerodynamically smooth surface where the mean wind profile is in a logarithmic form (law of the wall). The logarithmic wind profile is also observed over homogenously rough surfaces, such as the idealized two-dimensional street canyons used in this study. However, in thermal stratification (both stable and unstable), the mean wind profile deviates from the isothermal one whose extent depends on the intensity of thermal stratification compared with the mean wind (measured by
Large Eddy Simulation of Dust Devils on Mars Using MarsWRF
Wu, Zhaopeng; Richardson, Mark I.; Newman, Claire E.; Zhang, Xi
2017-10-01
Large eddy simulations (LES) of convective cells and vortices in the Martian convective boundary layer are performed employing a Mars version of the Weather Research and Forecasting model (WRF), adapted to use periodic boundary conditions. A wind stress dust lifting scheme is used to determine dust lifting, and the lifted dust is entrained into the vortices to form dust devils. Several cases are run at various locations in 1 deg x 1 deg domains at horizontal resolutions of 100 to 300m. Surface albedo, thermal inertia and solar forcing are set uniform across the domain, using values obtained from the MarsWRF General Circulation Model (GCM) at the same locations. This is for greater realism, and to facilitate later comparison with planetary boundary layer (PBL) and dust devil predictions based on sub-grid scale parameterizations in the GCM.An initial case with passive dust (no radiative response to the dust lifted) enables the tracking of dust in the vortices during the evolution of dust devils. The wind stress threshold that controls dust particle lifting from the surface is tuned to make the column dust opacity match that of the MarsWRF GCM. The simulation is run from 5 am to 6 pm to cover the whole Martian daytime period. From 11 am, near-surface convection begins to grow intensively due to the rapidly increasing solar heating, and dust devils start to form. The dust height as well as the PBL height reach the highest level in the afternoon. Another case with radiatively active dust is performed to investigate the feedback of dust devils to the background atmosphere. Relationships between the size of convective cells, the number of dust devils, and the PBL height are also investigated. The LES results are then compared with those of the GCM at the same location to evaluate the existing PBL and dust devil parameterization schemes. The information obtained in this work can be used to improve our understanding of dust devils on Mars and to improve parameterizations
Vogelmann, A. M.; Zhang, D.; Kollias, P.; Endo, S.; Lamer, K.; Gustafson, W. I., Jr.; Romps, D. M.
2017-12-01
Continental boundary layer clouds are important to simulations of weather and climate because of their impact on surface budgets and vertical transports of energy and moisture; however, model-parameterized boundary layer clouds do not agree well with observations in part because small-scale turbulence and convection are not properly represented. To advance parameterization development and evaluation, observational constraints are needed on critical parameters such as cloud-base mass flux and its relationship to cloud cover and the sub-cloud boundary layer structure including vertical velocity variance and skewness. In this study, these constraints are derived from Doppler lidar observations and ensemble large-eddy simulations (LES) from the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) Facility Southern Great Plains (SGP) site in Oklahoma. The Doppler lidar analysis will extend the single-site, long-term analysis of Lamer and Kollias [2015] and augment this information with the short-term but unique 1-2 year period since five Doppler lidars began operation at the SGP, providing critical information on regional variability. These observations will be compared to the statistics obtained from ensemble, routine LES conducted by the LES ARM Symbiotic Simulation and Observation (LASSO) project (https://www.arm.gov/capabilities/modeling/lasso). An Observation System Simulation Experiment (OSSE) will be presented that uses the LASSO LES fields to determine criteria for which relationships from Doppler lidar observations are adequately sampled to yield convergence. Any systematic differences between the observed and simulated relationships will be examined to understand factors contributing to the differences. Lamer, K., and P. Kollias (2015), Observations of fair-weather cumuli over land: Dynamical factors controlling cloud size and cover, Geophys. Res. Lett., 42, 8693-8701, doi:10.1002/2015GL064534
Bogey , Christophe; Bailly , Christophe
2009-01-01
International audience; An axisymmetric jet at a diameter-based Reynolds number of 1.1 × 104 is computed by a large eddy simulation (LES) in order to investigate its self-similarity region. The LES combines low-dissipation numerical schemes and explicit filtering of the flow variables to relax energy through the smaller scales discretized. The computational domain extends up to 150 jet radii in the downstream direction, which is found to be large enough to discretize a part of this region. Tu...
Directory of Open Access Journals (Sweden)
Wojtas Krzysztof
2015-06-01
Full Text Available Simulations of turbulent mixing in two types of jet mixers were carried out using two CFD models, large eddy simulation and κ-ε model. Modelling approaches were compared with experimental data obtained by the application of particle image velocimetry and planar laser-induced fluorescence methods. Measured local microstructures of fluid velocity and inert tracer concentration can be used for direct validation of numerical simulations. Presented results show that for higher tested values of jet Reynolds number both models are in good agreement with the experiments. Differences between models were observed for lower Reynolds numbers when the effects of large scale inhomogeneity are important.
International Nuclear Information System (INIS)
Tamura, Akinori; Kawamura, Toshinori; Ishida, Naoyuki; Kitou, Kazuaki
2014-01-01
Learning from the lessons of the Fukushima Daiichi nuclear incident in which a long-term station black-out occurred, we have been developing an air-cooling system for boiling water reactors that can operate without electricity for a virtually indefinite time. Improvement in the heat transfer performance of air-cooling is key to the development of the air-cooling system. We developed air-cooling enhancing technologies for the air-cooling system by using heat transfer fins, turbulence-enhancing ribs and a micro-fabrication surface. In our previous study, the performance of these air-cooling enhancing technologies was evaluated by heat transfer tests using a single pipe of the air-cooling heat exchanger. To achieve further improvement of the heat transfer performance, it is important to understand the mechanism of the air-cooling enhancing technologies. In this study, we used the numerical analysis which is based on the filtered incompressible Navier-Stokes equation and the filtered energy equation with the large-eddy simulation in order to investigate the effects and the mechanism of the developed air-cooling enhancing technologies. We found that the analysis results agreed well with the experimental results and the empirical formula results. The heat transfer enhancement mechanism of the heat transfer fin is due to an increase in the heat transfer area. Due to a decrease in the flow velocity at the base of the fins, the increase in the Nusselt number was approximately 15% smaller than the estimated value from the area increase. In the heat transfer enhancement by the turbulence-enhancing ribs, the unsteady behavior of the large-scale vortex generated by the flow separation plays an important role. The enhancement ratio of the Nusselt number by the micro-fabrication surface can be explained by the apparent thermal conductivity. The Nusselt number was increased 4-8% by the micro-fabrication surface. The effect of the micro-fabrication surface is increased by applying
Bogey , Christophe; Bailly , Christophe
2006-01-01
International audience; Transitional round jets at Mach number M = 0.9, with identical initial conditions except for the diameter, yielding Reynolds numbers over the range 1.7×103 ⩽ ReD ⩽ 4×105, are computed by large eddy simulation (LES) using explicit selective/high-order filtering. The effects of the Reynolds number on the jet flows are first presented. As the Reynolds number decreases, the jets develop more slowly upstream from the end of the potential core, but more rapidly downstream. A...
Energy Technology Data Exchange (ETDEWEB)
Zhou, Ye [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Thornber, Ben [The Univ. of Sydney, Sydney, NSW (Australia)
2016-04-12
Here, the implicit large-eddy simulation (ILES) has been utilized as an effective approach for calculating many complex flows at high Reynolds number flows. Richtmyer–Meshkov instability (RMI) induced flow can be viewed as a homogeneous decaying turbulence (HDT) after the passage of the shock. In this article, a critical evaluation of three methods for estimating the effective Reynolds number and the effective kinematic viscosity is undertaken utilizing high-resolution ILES data. Effective Reynolds numbers based on the vorticity and dissipation rate, or the integral and inner-viscous length scales, are found to be the most self-consistent when compared to the expected phenomenology and wind tunnel experiments.
Large-eddy simulation of flow over a grooved cylinder up to transcritical Reynolds numbers
Cheng, W.
2017-11-27
We report wall-resolved large-eddy simulation (LES) of flow over a grooved cylinder up to the transcritical regime. The stretched-vortex subgrid-scale model is embedded in a general fourth-order finite-difference code discretization on a curvilinear mesh. In the present study grooves are equally distributed around the circumference of the cylinder, each of sinusoidal shape with height , invariant in the spanwise direction. Based on the two parameters, and the Reynolds number where is the free-stream velocity, the diameter of the cylinder and the kinematic viscosity, two main sets of simulations are described. The first set varies from to while fixing . We study the flow deviation from the smooth-cylinder case, with emphasis on several important statistics such as the length of the mean-flow recirculation bubble , the pressure coefficient , the skin-friction coefficient and the non-dimensional pressure gradient parameter . It is found that, with increasing at fixed , some properties of the mean flow behave somewhat similarly to changes in the smooth-cylinder flow when is increased. This includes shrinking and nearly constant minimum pressure coefficient. In contrast, while the non-dimensional pressure gradient parameter remains nearly constant for the front part of the smooth cylinder flow, shows an oscillatory variation for the grooved-cylinder case. The second main set of LES varies from to with fixed . It is found that this range spans the subcritical and supercritical regimes and reaches the beginning of the transcritical flow regime. Mean-flow properties are diagnosed and compared with available experimental data including and the drag coefficient . The timewise variation of the lift and drag coefficients are also studied to elucidate the transition among three regimes. Instantaneous images of the surface, skin-friction vector field and also of the three-dimensional Q-criterion field are utilized to further understand the dynamics of the near-surface flow
Large eddy simulation of flow across in-line tube bundles
International Nuclear Information System (INIS)
Sofiane Benhamadouche; Dominique Laurence; Nicolas Jarrin
2005-01-01
Previously, Benhamadouche and Laurence (2003) produced very good results for the flow in a staggered tube bundle, using Large Eddy Simulation with EDF in-house finite volume code code-Saturne (Archambeau et al. (2004)). The discretization is based on a collocated arrangement for unstructured grids. A second order scheme in space and time is used with a standard Smagorinsky model. All the wall boundary cells are in the viscous layer, thus, no wall function is applied. The same numerical scheme is tested on a square in-line tube bundle with P/D = 1,44 and Re = 70000 (P is the vertical and horizontal tube spacing, D is the diameter of a tube and the Reynolds number is based on the gap velocity). The tube bundle is assumed infinite; periodic conditions are used in the three directions with an imposed flow rate. The dimensions of the computational domain have to be chosen (the computational cell, see figure 1 and the 3D elevation L z ). Three computations are carried out (see table 1). Case 1 (1200000 cells) gives a non-symmetrical mean solution that impacts the tubes alternatively on the top and the bottom depending on the considered column (see figure 2). Case 2 gives the same behavior with fewer tubes. Case 3 gives a different solution in which the flow impacts the tubes on the same way whatever the column of the tubes (see figure 3). Note that the solution in also non-symmetrical in this case. A comparison of the total mean drag and lift coefficients and their rms values is given in table 2. The qualitative behavior is good for both cases; the rms value of the drag is between 30% to 50% lower than the rms value of the lift. However, Case 3 results are more realistic as the mean of the lift is almost zero and the other values are of the order of magnitude of the ones obtained for other tube bundles (P/D = 1,75 in Chen (1987)). One can conclude that the elevation in the third direction has a more important effect then the domain size and can impact seriously the
Large eddy simulation based fire modeling applications for Indian nuclear power plant
International Nuclear Information System (INIS)
Sharma, Pavan K.; Markandeya, S.G.; Ghosh, A.K.; Kushwaha, H.S.
2005-01-01
Full text of publication follows: The Nuclear Power Plants (NPPs) are always designed for the highest level of safety against postulated accidents which may be initiated due to internal or external causes. One of the external/internal causes, which may lead to accident in the reactor and its associated systems, is fire in certain vital areas of the plant. Conventionally, the fire containment approach and/or the fire confinement approach is used in designing the fire protection systems of NPPs. Indian NPPs (PHWRs) follow the combined approach to ensure plant safety and all newly designed plants are required to comply with the provisions of Atomic Energy Regulatory Board (AERB) fire safety Guide. In respect of older plants, the reassessment of adequacy of fire safety provisions in the light of current advances has becomes essential so as to decide upon the steps for retrofitting. Keeping this in mind the deterministic fire hazard analysis was carried out for the Madras Atomic Power Station (MAPS). As a part of this exercise, detailed fire consequences analysis was required to be carried out for various critical areas. The choice of CFD based code was considered appropriate for these studies. A dedicated fire hazard analysis code Fire Dynamics Simulator (FDS) from NIST was used to perform these case studies. The code has option to use advanced fire models based on Large Eddy Simulation (LES) technique/ Direct Numerical Simulation (DNS) to model the fire-generated conditions. The LES option has been extensively used in the present studies which were primarily aimed at estimating the damage time for important safety related cable. Present paper describes the salient features of the methodology and important results for one of the most critical areas i.e. cable bridge area of MAPS. The typical dimensions of the cable bridge area are (length x breadth x height) of 12 m x 6 m x 2.5 m with an opening on one side of the cable bridge area. With almost equal gap, six numbers
Lodato, Guido; Vervisch, Luc; Domingo, Pascale
2009-03-01
Wall-jet interaction is studied with large-eddy simulation (LES) in which a mixed-similarity subgrid scale (SGS) closure is combined with the wall-adapting local eddy-viscosity (WALE) model for the eddy-viscosity term. The macrotemperature and macropressure are introduced to deduce a weakly compressible form of the mixed-similarity model, and the relevant formulation for the energy equation is deduced accordingly. LES prediction capabilities are assessed by comparing flow statistical properties against experiment of an unconfined impinging round jet at Reynolds numbers of 23 000 and 70 000. To quantify the benefit of the proposed WALE-similarity mixed model, the lower Reynolds number simulations are also performed using the standard WALE and Lagrangian dynamic Smagorinsky approaches. The unsteady compressible Navier-Stokes equations are integrated over 2.9 M, 3.5 M, and 5.5 M node Cartesian grids with an explicit fourth-order finite volume solver. Nonreflecting boundary conditions are enforced using a methodology accounting for the three-dimensional character of the turbulent flow at boundaries. A correct wall scaling is achieved from the combination of similarity and WALE approaches; for this wall-jet interaction, the SGS closure terms can be computed in the near-wall region without the necessity of resorting to additional specific treatments. The possible impact of turbulent energy backscatter in such flow configurations is also addressed. It is found that, for the present configuration, the correct reproduction of reverse energy transfer plays a key role in the estimation of near-wall statistics, especially when the viscous sublayer is not properly resolved.
A Large-Eddy Simulation Study of Vertical Axis Wind Turbine Wakes in the Atmospheric Boundary Layer
Directory of Open Access Journals (Sweden)
Sina Shamsoddin
2016-05-01
Full Text Available In a future sustainable energy vision, in which diversified conversion of renewable energies is essential, vertical axis wind turbines (VAWTs exhibit some potential as a reliable means of wind energy extraction alongside conventional horizontal axis wind turbines (HAWTs. Nevertheless, there is currently a relative shortage of scientific, academic and technical investigations of VAWTs as compared to HAWTs. Having this in mind, in this work, we aim to, for the first time, study the wake of a single VAWT placed in the atmospheric boundary layer using large-eddy simulation (LES. To do this, we use a previously-validated LES framework in which an actuator line model (ALM is incorporated. First, for a typical three- and straight-bladed 1-MW VAWT design, the variation of the power coefficient with both the chord length of the blades and the tip-speed ratio is analyzed by performing 117 simulations using LES-ALM. The optimum combination of solidity (defined as N c / R , where N is the number of blades, c is the chord length and R is the rotor radius and tip-speed ratio is found to be 0.18 and 4.5, respectively. Subsequently, the wake of a VAWT with these optimum specifications is thoroughly examined by showing different relevant mean and turbulence wake flow statistics. It is found that for this case, the maximum velocity deficit at the equator height of the turbine occurs 2.7 rotor diameters downstream of the center of the turbine, and only after that point, the wake starts to recover. Moreover, it is observed that the maximum turbulence intensity (TI at the equator height of the turbine occurs at a distance of about 3.8 rotor diameters downstream of the turbine. As we move towards the upper and lower edges of the turbine, the maximum TI (at a certain height increases, and its location moves relatively closer to the turbine. Furthermore, whereas both TI and turbulent momentum flux fields show clear vertical asymmetries (with larger magnitudes at the
F-16XL Hybrid Reynolds-Averaged Navier-Stokes/Large Eddy Simulation on Unstructured Grids
Park, Michael A.; Abdol-Hamid, Khaled S.; Elmiligui, Alaa
2015-01-01
This study continues the Cranked Arrow Wing Aerodynamics Program, International (CAWAPI) investigation with the FUN3D and USM3D flow solvers. CAWAPI was established to study the F-16XL, because it provides a unique opportunity to fuse fight test, wind tunnel test, and simulation to understand the aerodynamic features of swept wings. The high-lift performance of the cranked-arrow wing planform is critical for recent and past supersonic transport design concepts. Simulations of the low speed high angle of attack Flight Condition 25 are compared: Detached Eddy Simulation (DES), Modi ed Delayed Detached Eddy Simulation (MDDES), and the Spalart-Allmaras (SA) RANS model. Iso- surfaces of Q criterion show the development of coherent primary and secondary vortices on the upper surface of the wing that spiral, burst, and commingle. SA produces higher pressure peaks nearer to the leading-edge of the wing than flight test measurements. Mean DES and MDDES pressures better predict the flight test measurements, especially on the outer wing section. Vorticies and vortex-vortex interaction impact unsteady surface pressures. USM3D showed many sharp tones in volume points spectra near the wing apex with low broadband noise and FUN3D showed more broadband noise with weaker tones. Spectra of the volume points near the outer wing leading-edge was primarily broadband for both codes. Without unsteady flight measurements, the flight pressure environment can not be used to validate the simulations containing tonal or broadband spectra. Mean forces and moment are very similar between FUN3D models and between USM3D models. Spectra of the unsteady forces and moment are broadband with a few sharp peaks for USM3D.
Chun, J.; Kang, S. L.
2015-12-01
We assess the performance of large eddy simulation (LES) embedded in a multi-nested mesoscale modeling framework with respect to observations at the Central Facility (CF) site of the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP). Specifically for three different fair-weather days, evaluated are the temporal evolutions of temperature and water vapor in the afternoon convective boundary layer (CBL). From the two aspects of local surface and background atmospheric conditions, the causes of the deviations of LES results from observations are sought. In particular, we focus on the factors that critically influence on the surface and atmospheric conditions for LES through the multi-nested domains from grid spacing of 12 km down to 50 m. Also we identify the domain at the resolution of the so called "terra incognita", where the effective resolution or the spatial filter is comparable to the length scale of energy-containing turbulent eddies. The behavior of the "terra-incognita" domain and its influence on LES are investigated.
Armenio, Vincenzo; Fröhlich, Jochen
2010-01-01
The seventh ERCOFTAC Workshop on "Direct and Large-Eddy Simulation" (DLES-7) was held at the University of Treste from September 8-10, 2008. Following the tradition of previous workshops in the DLES-series this edition reflects the state of the art of numerical simulation of traditional and turbulent flows and provided an active forum for discussion of recent developments in simulation techniques and understanding of flow physics. At a fundamental level this workshop addressed numerous theoretical and physical aspects of transitional and turbulent flows. At an applied level it contributes to the solution of problems related to energy production, transportation and the environment. This book is of interest to scientists and engineers both at an early level in their career as well as at more senior levels.
Large Eddy Simulation for round jet in cross-flow using Local Mesh Refinement
Cevheri, Mehtap; Stoesser, Thorsten
2013-11-01
The aim of this research is the simulation of near field multi-phase plumes in cross-flows to understand the physical processes of oil spill in Gulf of Mexico. Since this is a multi-phase and multi-scale problem, a local mesh refinement (LMR) technique has been coupled to the multi-grid method to solve the unsteady, incompressible Navier-Stokes problem on a Cartesian grid with staggered variable arrangement. Wall-Adapting Local Eddy Viscosity (WALE) subgrid model has been used to simulate the turbulent flow. In this current study, the verification of the developed code will be presented before the simulation of multi-phase plumes. The accuracy of local mesh refinement and the subgrid model are presented with two test cases: moderate Reynolds number turbulent channel flow and a round turbulent jet into a laminar cross-flow. For the first test case, turbulence statistics for the fully developed turbulent flow are compared with the DNS data. For the second test case, a simulation with a 3.3 velocity ratio and 6930 jet Reynolds number is tested and compared with the experimental and other computational data.
Directory of Open Access Journals (Sweden)
Bing Wang
2013-01-01
Full Text Available Large eddy simulation of inertial particle dispersion in a turbulent flow over a backward-facing step was performed. The numerical results of both instantaneous particle dispersion and two-phase velocity statistics were in good agreement with the experimental measurements. The analysis of preferential dispersion of inertial particles was then presented by a wavelets analysis method for decomposing the two-phase turbulence signal obtained by numerical simulations, showing that the inertial particle concentration is separation from the Gaussian random distribution with very strong intermittencies. The statistical PDF of vorticity seen by particles shows that the inertial particles tend to accumulate in low vorticity regions where ∇u: ∇u is larger than zero. The concentration distribution of particle preferential dispersion preserves the historical effects. The research conclusions are useful for further understanding the two-phase turbulence physics and establishing accurate engineering prediction models of particle dispersion.
Jin, Kai; Vanka, Surya P.; Thomas, Brian G.
2018-02-01
In continuous casting of steel, argon gas is often injected to prevent clogging of the nozzle, but the bubbles affect the flow pattern, and may become entrapped to form defects in the final product. Further, an electromagnetic field is frequently applied to induce a braking effect on the flow field and modify the inclusion transport. In this study, a previously validated GPU-based in-house code CUFLOW is used to investigate the effect of electromagnetic braking on turbulent flow, bubble transport, and capture. Well-resolved large eddy simulations are combined with two-way coupled Lagrangian computations of the bubbles. The drag coefficient on the bubbles is modified to account for the effects of the magnetic field. The distribution of the argon bubbles, capture, and escape rates, are presented and compared with and without the magnetic field. The bubble capture patterns are also compared with results of a previous RANS model as well as with plant measurements.
Directory of Open Access Journals (Sweden)
De-You Li
2016-06-01
Full Text Available For pump–turbines, most of the instabilities couple with high-level pressure fluctuations, which are harmful to pump–turbines, even the whole units. In order to understand the causes of pressure fluctuations and reduce their amplitudes, proper numerical methods should be chosen to obtain the accurate results. The method of large eddy simulation with wall-adapting local eddy-viscosity model was chosen to predict the pressure fluctuations in pump mode of a pump–turbine compared with the method of unsteady Reynolds-averaged Navier–Stokes with two-equation turbulence model shear stress transport k–ω. Partial load operating point (0.91QBEP under 15-mm guide vane opening was selected to make a comparison of performance and frequency characteristics between large eddy simulation and unsteady Reynolds-averaged Navier–Stokes based on the experimental validation. Good agreement indicates that the method of large eddy simulation could be applied in the simulation of pump–turbines. Then, a detailed comparison of variation for peak-to-peak value in the whole passage was presented. Both the methods show that the highest level pressure fluctuations occur in the vaneless space. In addition, the propagation of amplitudes of blade pass frequency, 2 times of blade pass frequency, and 3 times of blade pass frequency in the circumferential and flow directions was investigated. Although the difference exists between large eddy simulation and unsteady Reynolds-averaged Navier–Stokes, the trend of variation in different parts is almost the same. Based on the analysis, using the same mesh (8 million, large eddy simulation underestimates pressure characteristics and shows a better result compared with the experiments, while unsteady Reynolds-averaged Navier–Stokes overestimates them.
Large-eddy simulation of flow over a cylinder with from to : a skin-friction perspective
Cheng, Wan
2017-05-05
We present wall-resolved large-eddy simulations (LES) of flow over a smooth-wall circular cylinder up to , where is Reynolds number based on the cylinder diameter and the free-stream speed . The stretched-vortex subgrid-scale (SGS) model is used in the entire simulation domain. For the sub-critical regime, six cases are implemented with . Results are compared with experimental data for both the wall-pressure-coefficient distribution on the cylinder surface, which dominates the drag coefficient, and the skin-friction coefficient, which clearly correlates with the separation behaviour. In the super-critical regime, LES for three values of are carried out at different resolutions. The drag-crisis phenomenon is well captured. For lower resolution, numerical discretization fluctuations are sufficient to stimulate transition, while for higher resolution, an applied boundary-layer perturbation is found to be necessary to stimulate transition. Large-eddy simulation results at , with a mesh of , agree well with the classic experimental measurements of Achenbach (J. Fluid Mech., vol. 34, 1968, pp. 625-639) especially for the skin-friction coefficient, where a spike is produced by the laminar-turbulent transition on the top of a prior separation bubble. We document the properties of the attached-flow boundary layer on the cylinder surface as these vary with . Within the separated portion of the flow, mean-flow separation-reattachment bubbles are observed at some values of , with separation characteristics that are consistent with experimental observations. Time sequences of instantaneous surface portraits of vector skin-friction trajectory fields indicate that the unsteady counterpart of a mean-flow separation-reattachment bubble corresponds to the formation of local flow-reattachment cells, visible as coherent bundles of diverging surface streamlines.
Chang, Kyungsik
2012-09-01
We report on the isogeometric residual-based variational multiscale (VMS) large eddy simulation of a fully developed turbulent flow over a wavy wall. To assess the predictive capability of the VMS modeling framework, we compare its predictions against the results from direct numerical simulation (DNS) and large eddy simulation (LES) and, when available, against experimental measurements. We use C 1 quadratic B-spline basis functions to represent the smooth geometry of the sinusoidal lower wall and the solution variables. The Reynolds numbers of the flows considered are 6760 and 30,000 based on the bulk velocity and average channel height. The ratio of amplitude to wavelength (α/λ) of the sinusoidal wavy surface is set to 0.05. The computational domain is 2λ×1.05λ×λ in the streamwise, wall-normal and spanwise directions, respectively. For the Re=6760 case, mean averaged quantities, including velocity and pressure profiles, and the separation/reattachment points in the recirculation region, are compared with DNS and experimental data. The turbulent kinetic energy and Reynolds stress are in good agreement with benchmark data. Coherent structures over the wavy wall are observed in isosurfaces of the Q-criterion and show similar features to those previously reported in the literature. Comparable accuracy to DNS solutions is obtained with at least one order of magnitude fewer degrees of freedom. For the Re=30,000 case, good agreement was obtained for mean wall shear stress and velocity profiles compared with available LES results reported in the literature. © 2012 Elsevier Ltd.
Evaluation of subgrid-scale models in large-eddy simulation of flow past a two-dimensional block
International Nuclear Information System (INIS)
Cheng, Wai-Chi; Porté-Agel, Fernando
2013-01-01
Highlights: • Large-eddy simulations of flow past a 2D block were performed. • Four subgrid-scale models were evaluated against wind tunnel experimental data. • The recently-developed modulated gradient model (MGM) shows the best overall results. • This study is the first time to validate the MGM in recirculating flows. • Analysis of TKE budget in the flow shows strong TKE production above the block. -- Abstract: Large-eddy simulations of flow past a two-dimensional (2D) block were performed to evaluate four subgrid-scale (SGS) models: (i) the traditional Smagorinsky model, (ii) the Lagrangian dynamic model, (iii) the Lagrangian scale-dependent dynamic model, and (iv) the modulated gradient model. An immersed boundary method was employed to simulate the 2D block boundaries on a uniform Cartesian grid. The sensitivity of the simulation results to grid refinement was investigated by using four different grid resolutions. The velocity streamlines and the vertical profiles of the mean velocities and variances were compared with experimental results. The modulated gradient model shows the best overall agreement with the experimental results among the four SGS models. In particular, the flow recirculation, the reattachment position and the vertical profiles are accurately reproduced with a relative coarse grid resolution of (N x × N y × N z =) 160 × 40 × 160 (n x × n z = 13 × 16 covering the block). Besides the modulated gradient model, the Lagrangian scale-dependent dynamic model is also able to give reasonable prediction of the flow statistics with some discrepancies compared with the experimental results. Relatively poor performance by the Lagrangian dynamic model and the Smagorinsky model is observed, with simulated recirculating patterns that differ from the measured ones. Analysis of the turbulence kinetic energy (TKE) budget in this flow shows evidence of a strong production of TKE in the shear layer that forms as the flow is deflected around the
Hu, L H; Huo, R; Yang, D
2009-07-15
The dispersion of fire-induced buoyancy driven plume in and above an idealized street canyon of 18 m (width) x 18 m (height) x 40 m (length) with a wind flow perpendicular to its axis was investigated by Fire Dynamics Simulator (FDS), Large Eddy Simulation (LES). Former studies, such as that by Oka [T.R. Oke, Street design and urban canopy layer climate, Energy Build. 11 (1988) 103-113], Gayev and Savory [Y.A. Gayev, E. Savory, Influence of street obstructions on flow processes within street canyons. J. Wind Eng. Ind. Aerodyn. 82 (1999) 89-103], Xie et al. [S. Xie, Y. Zhang, L. Qi, X. Tang, Spatial distribution of traffic-related pollutant concentrations in street canyons. Atmos. Environ. 37 (2003) 3213-3224], Baker et al. [J. Baker, H. L. Walker, X. M. Cai, A study of the dispersion and transport of reactive pollutants in and above street canyons--a large eddy simulation, Atmos. Environ. 38 (2004) 6883-6892] and Baik et al. [J.-J. Baik, Y.-S. Kang, J.-J. Kim, Modeling reactive pollutant dispersion in an urban street canyon, Atmos. Environ. 41 (2007) 934-949], focus on the flow pattern and pollutant dispersion in the street canyon with no buoyancy effect. Results showed that with the increase of the wind flow velocity, the dispersion pattern of a buoyant plume fell into four regimes. When the wind flow velocity increased up to a certain critical level, the buoyancy driven upward rising plume was re-entrained back into the street canyon. This is a dangerous situation as the harmful fire smoke will accumulate to pollute the environment and thus threaten the safety of the people in the street canyon. This critical re-entrainment wind velocity, as an important parameter to be concerned, was further revealed to increase asymptotically with the heat/buoyancy release rate of the fire.
Hoffie, Andreas Frank
Large eddy simulation (LES) combined with the one-dimensional turbulence (ODT) model is used to simulate spatially developing turbulent reacting shear layers with high heat release and high Reynolds numbers. The LES-ODT results are compared to results from direct numerical simulations (DNS), for model development and validation purposes. The LES-ODT approach is based on LES solutions for momentum and pressure on a coarse grid and solutions for momentum and reactive scalars on a fine, one-dimensional, but three-dimensionally coupled ODT subgrid, which is embedded into the LES computational domain. Although one-dimensional, all three velocity components are transported along the ODT domain. The low-dimensional spatial and temporal resolution of the subgrid scales describe a new modeling paradigm, referred to as autonomous microstructure evolution (AME) models, which resolve the multiscale nature of turbulence down to the Kolmogorv scales. While this new concept aims to mimic the turbulent cascade and to reduce the number of input parameters, AME enables also regime-independent combustion modeling, capable to simulate multiphysics problems simultaneously. The LES as well as the one-dimensional transport equations are solved using an incompressible, low Mach number approximation, however the effects of heat release are accounted for through variable density computed by the ideal gas equation of state, based on temperature variations. The computations are carried out on a three-dimensional structured mesh, which is stretched in the transverse direction. While the LES momentum equation is integrated with a third-order Runge-Kutta time-integration, the time integration at the ODT level is accomplished with an explicit Forward-Euler method. Spatial finite-difference schemes of third (LES) and first (ODT) order are utilized and a fully consistent fractional-step method at the LES level is used. Turbulence closure at the LES level is achieved by utilizing the Smagorinsky
International Nuclear Information System (INIS)
Choi, Hyeon Kyeong; Park, Jong Woon
2013-01-01
In this work, behavior of unsteady and oscillating flow through a typical tube bundle array are analyzed by unsteady computations: 2D unsteady Reynolds averaged Navier-Stokes (URANS) and 3D Large Eddy Simulation (LES) and the results are compared with existing experimental data. In order to confirm appropriateness and limitations of CFD applications in the Korean VHTR design, two types of unsteady computations are performed such as 2D unsteady Reynolds averaged Navier-Stokes (URANS) and 3D Large Eddy Simulation (LES) for the existing tube bundle array. The velocity component profiles are compared with the experimental data and it is concluded that the URANS with the standard k-ω model is reasonably appropriate for cost-effective VHTR lower plenum analysis. Nevertheless, if more accurate results are needed, the LES-Smagorinsky computation is recommended considering limitations in the time averaged RANS in capturing small eddies
Baker, Jacob; Walker, Helen L.; Cai, Xiaoming
This study extends a large eddy simulation model used to simulate turbulent flow in an urban street canyon to the dispersion and transport of reactive pollutants (NO, NO 2 and O 3). The original model, based on the regional atmospheric modelling system, has previously been validated against wind tunnel experiments for wind flow and turbulence. A real scale street canyon with an aspect ratio of one was studied with a neutrally stratified atmosphere and initial wind perpendicular to the street axis. After initialising and running the model to generate a stationary turbulent flow a constant discharge source of NO x was specified to imitate steady traffic flow through the street canyon. Line and area emissions sources for low and medium emissions of NO x were considered. A background concentration of ozone was specified and the gases were allowed to mix and react. Spatial variation of pollutants within the canyon was calculated to be significant. The photostationary state defect, (δ=k[NO][O]/J[NO]-1), was found to be a sensitive indicator of reactive mixing within the canyon, the greater the defect the greater the local state of chemical instability. Low values for δ were found at the centre of the street canyon, within the primary vortex, and at the ground level corner of the windward wall, where a secondary eddy was predicted. High values were found above ground level along the windward wall, where air was entrained into the canyon along the outer edge of the primary vortex, and downstream of, and close to the NO x emission. Above the canyon a region of high δ corresponds to the edge of the escaping canyon plume.
Alvarez, Laura V.; Schmeeckle, Mark W.; Grams, Paul E.
2017-01-01
Lateral ﬂow separation occurs in rivers where banks exhibit strong curvature. In canyon-boundrivers, lateral recirculation zones are the principal storage of ﬁne-sediment deposits. A parallelized,three-dimensional, turbulence-resolving model was developed to study the ﬂow structures along lateralseparation zones located in two pools along the Colorado River in Marble Canyon. The model employs thedetached eddy simulation (DES) technique, which resolves turbulence structures larger than the grid spacingin the interior of the ﬂow. The DES-3D model is validated using Acoustic Doppler Current Proﬁler ﬂowmeasurements taken during the 2008 controlled ﬂood release from Glen Canyon Dam. A point-to-pointvalidation using a number of skill metrics, often employed in hydrological research, is proposed here forﬂuvial modeling. The validation results show predictive capabilities of the DES model. The model reproducesthe pattern and magnitude of the velocity in the lateral recirculation zone, including the size and position ofthe primary and secondary eddy cells, and return current. The lateral recirculation zone is open, havingcontinuous import of ﬂuid upstream of the point of reattachment and export by the recirculation returncurrent downstream of the point of separation. Differences in magnitude and direction of near-bed andnear-surface velocity vectors are found, resulting in an inward vertical spiral. Interaction between therecirculation return current and the main ﬂow is dynamic, with large temporal changes in ﬂow direction andmagnitude. Turbulence structures with a predominately vertical axis of vorticity are observed in the shearlayer becoming three-dimensional without preferred orientation downstream.
Chatterjee, Tanmoy; Peet, Yulia T.
2017-07-01
A large eddy simulation (LES) methodology coupled with near-wall modeling has been implemented in the current study for high Re neutral atmospheric boundary layer flows using an exponentially accurate spectral element method in an open-source research code Nek 5000. The effect of artificial length scales due to subgrid scale (SGS) and near wall modeling (NWM) on the scaling laws and structure of the inner and outer layer eddies is studied using varying SGS and NWM parameters in the spectral element framework. The study provides an understanding of the various length scales and dynamics of the eddies affected by the LES model and also the fundamental physics behind the inner and outer layer eddies which are responsible for the correct behavior of the mean statistics in accordance with the definition of equilibrium layers by Townsend. An economical and accurate LES model based on capturing the near wall coherent eddies has been designed, which is successful in eliminating the artificial length scale effects like the log-layer mismatch or the secondary peak generation in the streamwise variance.
Nastac, Gabriel; Labahn, Jeffrey W.; Magri, Luca; Ihme, Matthias
2017-09-01
Metrics used to assess the quality of large-eddy simulations commonly rely on a statistical assessment of the solution. While these metrics are valuable, a dynamic measure is desirable to further characterize the ability of a numerical simulation for capturing dynamic processes inherent in turbulent flows. To address this issue, a dynamic metric based on the Lyapunov exponent is proposed which assesses the growth rate of the solution separation. This metric is applied to two turbulent flow configurations: forced homogeneous isotropic turbulence and a turbulent jet diffusion flame. First, it is shown that, despite the direct numerical simulation (DNS) and large-eddy simulation (LES) being high-dimensional dynamical systems with O (107) degrees of freedom, the separation growth rate qualitatively behaves like a lower-dimensional dynamical system, in which the dimension of the Lyapunov system is substantially smaller than the discretized dynamical system. Second, a grid refinement analysis of each configuration demonstrates that as the LES filter width approaches the smallest scales of the system the Lyapunov exponent asymptotically approaches a plateau. Third, a small perturbation is superimposed onto the initial conditions of each configuration, and the Lyapunov exponent is used to estimate the time required for divergence, thereby providing a direct assessment of the predictability time of simulations. By comparing inert and reacting flows, it is shown that combustion increases the predictability of the turbulent simulation as a result of the dilatation and increased viscosity by heat release. The predictability time is found to scale with the integral time scale in both the reacting and inert jet flows. Fourth, an analysis of the local Lyapunov exponent is performed to demonstrate that this metric can also determine flow-dependent properties, such as regions that are sensitive to small perturbations or conditions of large turbulence within the flow field. Finally
DEFF Research Database (Denmark)
Pedersen, Jesper Grønnegaard; Kelly, Mark C.; Gryning, Sven-Erik
2013-01-01
and in relevant atmospheric fields (e.g. temperature) that occur at larger scales must be imposed through boundary conditions or as external forcing. In this work we study the influence of such variations on the wind profile in Large Eddy Simulations of daytime atmospheric boundary layers, by comparing...
Czech Academy of Sciences Publication Activity Database
Nakayama, H.; Jurčáková, Klára; Nagai, H.
2013-01-01
Roč. 50, č. 5 (2013), s. 503-519 ISSN 0022-3131 Institutional support: RVO:61388998 Keywords : local-scale high-resolution dispersion model * nuclear emergency response system * large-eddy simulation * spatially developing turbulent boundary layer flow Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.452, year: 2013
Graf, Alexander; van de Boer, Anneke; Schüttemeyer, Dirk; Moene, Arnold; Vereecken, Harry
2013-04-01
The displacement height d and roughness length z0 are parameters of the logarithmic wind profile and as such these are characteristics of the surface, that are required in a multitude of meteorological modeling applications. Classically, both parameters are estimated from multi-level measurements of wind speed over a terrain sufficiently homogeneous to avoid footprint-induced differences between the levels. As a rule-of thumb, d of a dense, uniform crop or forest canopy is 2/3 to 3/4 of the canopy height h, and z0 about 10% of canopy height in absence of any d. However, the uncertainty of this rule-of-thumb becomes larger if the surface of interest is not "dense and uniform", in which case a site-specific determination is required again. By means of the eddy covariance method, alternative possibilities to determine z0 and d have become available. Various authors report robust results if either several levels of sonic anemometer measurements, or one such level combined with a classic wind profile is used to introduce direct knowledge on the friction velocity into the estimation procedure. At the same time, however, the eddy covariance method to measure various fluxes has superseded the profile method, leaving many current stations without a wind speed profile with enough levels sufficiently far above the canopy to enable the classic estimation of z0 and d. From single-level eddy covariance measurements at one point in time, only one parameter can be estimated, usually z0 while d is assumed to be known. Even so, results tend to scatter considerably. However, it has been pointed out, that the use of multiple points in time providing different stability conditions can enable the estimation of both parameters, if they are assumed constant over the time period regarded. These methods either rely on flux-variance similarity (Weaver 1990 and others following), or on the integrated universal function for momentum (Martano 2000 and others following). In both cases
Prasad, K.
2017-12-01
Atmospheric transport is usually performed with weather models, e.g., the Weather Research and Forecasting (WRF) model that employs a parameterized turbulence model and does not resolve the fine scale dynamics generated by the flow around buildings and features comprising a large city. The NIST Fire Dynamics Simulator (FDS) is a computational fluid dynamics model that utilizes large eddy simulation methods to model flow around buildings at length scales much smaller than is practical with models like WRF. FDS has the potential to evaluate the impact of complex topography on near-field dispersion and mixing that is difficult to simulate with a mesoscale atmospheric model. A methodology has been developed to couple the FDS model with WRF mesoscale transport models. The coupling is based on nudging the FDS flow field towards that computed by WRF, and is currently limited to one way coupling performed in an off-line mode. This approach allows the FDS model to operate as a sub-grid scale model with in a WRF simulation. To test and validate the coupled FDS - WRF model, the methane leak from the Aliso Canyon underground storage facility was simulated. Large eddy simulations were performed over the complex topography of various natural gas storage facilities including Aliso Canyon, Honor Rancho and MacDonald Island at 10 m horizontal and vertical resolution. The goal of these simulations included improving and validating transport models as well as testing leak hypotheses. Forward simulation results were compared with aircraft and tower based in-situ measurements as well as methane plumes observed using the NASA Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) and the next generation instrument AVIRIS-NG. Comparison of simulation results with measurement data demonstrate the capability of the coupled FDS-WRF models to accurately simulate the transport and dispersion of methane plumes over urban domains. Simulated integrated methane enhancements will be presented and
Energy Technology Data Exchange (ETDEWEB)
Zhang, Yunyan [Lawrence Livermore National Laboratory, Livermore, California; Klein, Stephen A. [Lawrence Livermore National Laboratory, Livermore, California; Fan, Jiwen [Pacific Northwest National Laboratory, Richland, Washington; Chandra, Arunchandra S. [Division of Meteorology and Physical Oceanography, University of Miami, Miami, Florida; Kollias, Pavlos [School of Marine and Atmospheric Sciences, Stony Brook University, State University of New York, Stony Brook, New York; Xie, Shaocheng [Lawrence Livermore National Laboratory, Livermore, California; Tang, Shuaiqi [Lawrence Livermore National Laboratory, Livermore, California
2017-10-01
Based on long-term observations by the Atmospheric Radiation Measurement program at its Southern Great Plains site, a new composite case of continental shallow cumulus (ShCu) convection is constructed for large-eddy simulations (LES) and single-column models. The case represents a typical daytime nonprecipitating ShCu whose formation and dissipation are driven by the local atmospheric conditions and land surface forcing and are not influenced by synoptic weather events. The case includes early morning initial profiles of temperature and moisture with a residual layer; diurnally varying sensible and latent heat fluxes, which represent a domain average over different land surface types; simplified large-scale horizontal advective tendencies and subsidence; and horizontal winds with prevailing direction and average speed. Observed composite cloud statistics are provided for model evaluation. The observed diurnal cycle is well reproduced by LES; however, the cloud amount, liquid water path, and shortwave radiative effect are generally underestimated. LES are compared between simulations with an all-or-nothing bulk microphysics and a spectral bin microphysics. The latter shows improved agreement with observations in the total cloud cover and the amount of clouds with depths greater than 300 m. When compared with radar retrievals of in-cloud air motion, LES produce comparable downdraft vertical velocities, but a larger updraft area, velocity, and updraft mass flux. Both observations and LES show a significantly larger in-cloud downdraft fraction and downdraft mass flux than marine ShCu.
Wolf-Grosse, Tobias; Esau, Igor; Reuder, Joachim
2017-06-01
Street-level urban air pollution is a challenging concern for modern urban societies. Pollution dispersion models assume that the concentrations decrease monotonically with raising wind speed. This convenient assumption breaks down when applied to flows with local recirculations such as those found in topographically complex coastal areas. This study looks at a practically important and sufficiently common case of air pollution in a coastal valley city. Here, the observed concentrations are determined by the interaction between large-scale topographically forced and local-scale breeze-like recirculations. Analysis of a long observational dataset in Bergen, Norway, revealed that the most extreme cases of recurring wintertime air pollution episodes were accompanied by increased large-scale wind speeds above the valley. Contrary to the theoretical assumption and intuitive expectations, the maximum NO2 concentrations were not found for the lowest 10 m ERA-Interim wind speeds but in situations with wind speeds of 3 m s-1. To explain this phenomenon, we investigated empirical relationships between the large-scale forcing and the local wind and air quality parameters. We conducted 16 large-eddy simulation (LES) experiments with the Parallelised Large-Eddy Simulation Model (PALM) for atmospheric and oceanic flows. The LES accounted for the realistic relief and coastal configuration as well as for the large-scale forcing and local surface condition heterogeneity in Bergen. They revealed that emerging local breeze-like circulations strongly enhance the urban ventilation and dispersion of the air pollutants in situations with weak large-scale winds. Slightly stronger large-scale winds, however, can counteract these local recirculations, leading to enhanced surface air stagnation. Furthermore, this study looks at the concrete impact of the relative configuration of warmer water bodies in the city and the major transport corridor. We found that a relatively small local water
Directory of Open Access Journals (Sweden)
T. Wolf-Grosse
2017-06-01
Full Text Available Street-level urban air pollution is a challenging concern for modern urban societies. Pollution dispersion models assume that the concentrations decrease monotonically with raising wind speed. This convenient assumption breaks down when applied to flows with local recirculations such as those found in topographically complex coastal areas. This study looks at a practically important and sufficiently common case of air pollution in a coastal valley city. Here, the observed concentrations are determined by the interaction between large-scale topographically forced and local-scale breeze-like recirculations. Analysis of a long observational dataset in Bergen, Norway, revealed that the most extreme cases of recurring wintertime air pollution episodes were accompanied by increased large-scale wind speeds above the valley. Contrary to the theoretical assumption and intuitive expectations, the maximum NO2 concentrations were not found for the lowest 10 m ERA-Interim wind speeds but in situations with wind speeds of 3 m s−1. To explain this phenomenon, we investigated empirical relationships between the large-scale forcing and the local wind and air quality parameters. We conducted 16 large-eddy simulation (LES experiments with the Parallelised Large-Eddy Simulation Model (PALM for atmospheric and oceanic flows. The LES accounted for the realistic relief and coastal configuration as well as for the large-scale forcing and local surface condition heterogeneity in Bergen. They revealed that emerging local breeze-like circulations strongly enhance the urban ventilation and dispersion of the air pollutants in situations with weak large-scale winds. Slightly stronger large-scale winds, however, can counteract these local recirculations, leading to enhanced surface air stagnation. Furthermore, this study looks at the concrete impact of the relative configuration of warmer water bodies in the city and the major transport corridor. We found that a
Large-eddy simulation analysis of turbulent flow over a two-blade horizontal wind turbine rotor
Energy Technology Data Exchange (ETDEWEB)
Kim, Tae Young [Dept. of Mechanical Engineering, Carnegie Mellon University, Pittsburgh (United States); You, Dong Hyun [Dept. of Mechanical Engineering, Pohang University of Science and Technology, Pohang (Korea, Republic of)
2016-11-15
Unsteady turbulent flow characteristics over a two-blade horizontal wind turbine rotor is analyzed using a large-eddy simulation technique. The wind turbine rotor corresponds to the configuration of the U.S. National Renewable Energy Laboratory (NREL) phase VI campaign. The filtered incompressible Navier-Stokes equations in a non-inertial reference frame fixed at the centroid of the rotor, are solved with centrifugal and Coriolis forces using an unstructured-grid finite-volume method. A systematic analysis of effects of grid resolution, computational domain size, and time-step size on simulation results, is carried out. Simulation results such as the surface pressure coefficient, thrust coefficient, torque coefficient, and normal and tangential force coefficients are found to agree favorably with experimental data. The simulation showed that pressure fluctuations, which produce broadband flow-induced noise and vibration of the blades, are especially significant in the mid-chord area of the suction side at around 70 to 95 percent spanwise locations. Large-scale vortices are found to be generated at the blade tip and the location connecting the blade with an airfoil cross section and the circular hub rod. These vortices propagate downstream with helical motions and are found to persist far downstream from the rotor.
Directory of Open Access Journals (Sweden)
Suozhu Wang
2015-02-01
Full Text Available Reducing friction resistance and aerodynamic heating has important engineering significance to improve the performances of super/hypersonic aircraft, so the purpose of transition control and turbulent drag reduction becomes one of the cutting edges in turbulence research. In order to investigate the influences of wall cooling and suction on the transition process and fully developed turbulence, the large eddy simulation of spatially evolving supersonic boundary layer transition over a flat-plate with freestream Mach number 4.5 at different wall temperature and suction intensity is performed in the present work. It is found that the wall cooling and suction are capable of changing the mean velocity profile within the boundary layer and improving the stability of the flow field, thus delaying the onset of the spatial transition process. The transition control will become more effective as the wall temperature decreases, while there is an optimal wall suction intensity under the given conditions. Moreover, the development of large-scale coherent structures can be suppressed effectively via wall cooling, but wall suction has no influence.
Power-law versus log-law in wall-bounded turbulence: A large-eddy simulation perspective
Cheng, W.
2014-01-29
The debate whether the mean streamwise velocity in wall-bounded turbulent flows obeys a log-law or a power-law scaling originated over two decades ago, and continues to ferment in recent years. As experiments and direct numerical simulation can not provide sufficient clues, in this study we present an insight into this debate from a large-eddy simulation (LES) viewpoint. The LES organically combines state-of-the-art models (the stretched-vortex model and inflow rescaling method) with a virtual-wall model derived under different scaling law assumptions (the log-law or the power-law by George and Castillo [“Zero-pressure-gradient turbulent boundary layer,” Appl. Mech. Rev.50, 689 (1997)]). Comparison of LES results for Re θ ranging from 105 to 1011 for zero-pressure-gradient turbulent boundary layer flows are carried out for the mean streamwise velocity, its gradient and its scaled gradient. Our results provide strong evidence that for both sets of modeling assumption (log law or power law), the turbulence gravitates naturally towards the log-law scaling at extremely large Reynolds numbers.
Temporal structure of aggregate power fluctuations in large-eddy simulations of extended wind-farms
Stevens, Richard Johannes Antonius Maria; Meneveau, Charles
2014-01-01
Fluctuations represent a major challenge for the incorporation of electric power from large wind-farms into power grids. Wind-farm power output fluctuates strongly in time, over various time scales. Understanding these fluctuations, especially their spatio-temporal characteristics, is particularly
Large-Eddy Simulations of Tropical Convective Systems, the Boundary Layer, and Upper Ocean Coupling
2013-09-30
ship observations of SST, solar radiation , and zonal wind in situ, from rawinsonde atmospheric profiles, and radar precipitation statistics. Large...Figure 1. SST warms and cools on intraseasonal time scales, forced by variations in solar flux and evaporation related to convective anomalies...resolution case. Figure 4. Horizontally averaged cloud water content from the low resolution simulation (top) and surface shortwave
Large-eddy simulation of separation and reattachment of a flat plate turbulent boundary layer
Cheng, W.
2015-11-11
© 2015 Cambridge University Press. We present large-eddy simulations (LES) of separation and reattachment of a flat-plate turbulent boundary-layer flow. Instead of resolving the near wall region, we develop a two-dimensional virtual wall model which can calculate the time- and space-dependent skin-friction vector field at the wall, at the resolved scale. By combining the virtual-wall model with the stretched-vortex subgrid-scale (SGS) model, we construct a self-consistent framework for the LES of separating and reattaching turbulent wall-bounded flows at large Reynolds numbers. The present LES methodology is applied to two different experimental flows designed to produce separation/reattachment of a flat-plate turbulent boundary layer at medium Reynolds number Reθ based on the momentum boundary-layer thickness θ. Comparison with data from the first case at demonstrates the present capability for accurate calculation of the variation, with the streamwise co-ordinate up to separation, of the skin friction coefficient, Reθ, the boundary-layer shape factor and a non-dimensional pressure-gradient parameter. Additionally the main large-scale features of the separation bubble, including the mean streamwise velocity profiles, show good agreement with experiment. At the larger Reθ = 11000 of the second case, the LES provides good postdiction of the measured skin-friction variation along the whole streamwise extent of the experiment, consisting of a very strong adverse pressure gradient leading to separation within the separation bubble itself, and in the recovering or reattachment region of strongly-favourable pressure gradient. Overall, the present two-dimensional wall model used in LES appears to be capable of capturing the quantitative features of a separation-reattachment turbulent boundary-layer flow at low to moderately large Reynolds numbers.
Large-Eddy / Reynolds-Averaged Navier-Stokes Simulations of a Dual-Mode Scramjet Combustor
Fulton, Jesse A.; Edwards, Jack R.; Hassan, Hassan A.; Rockwell, Robert; Goyne, Christopher; McDaniel, James; Smith, Chad; Cutler, Andrew; Johansen, Craig; Danehy, Paul M.;
2012-01-01
Numerical simulations of reacting and non-reacting flows within a scramjet combustor configuration experimentally mapped at the University of Virginia s Scramjet Combustion Facility (operating with Configuration A ) are described in this paper. Reynolds-Averaged Navier-Stokes (RANS) and hybrid Large Eddy Simulation / Reynolds-Averaged Navier-Stokes (LES / RANS) methods are utilized, with the intent of comparing essentially blind predictions with results from non-intrusive flow-field measurement methods including coherent anti-Stokes Raman spectroscopy (CARS), hydroxyl radical planar laser-induced fluorescence (OH-PLIF), stereoscopic particle image velocimetry (SPIV), wavelength modulation spectroscopy (WMS), and focusing Schlieren. NC State's REACTMB solver was used both for RANS and LES / RANS, along with a 9-species, 19- reaction H2-air kinetics mechanism by Jachimowski. Inviscid fluxes were evaluated using Edwards LDFSS flux-splitting scheme, and the Menter BSL turbulence model was utilized in both full-domain RANS simulations and as the unsteady RANS portion of the LES / RANS closure. Simulations were executed and compared with experiment at two equivalence ratios, PHI = 0.17 and PHI = 0.34. Results show that the PHI = 0.17 flame is hotter near the injector while the PHI = 0.34 flame is displaced further downstream in the combustor, though it is still anchored to the injector. Reactant mixing was predicted to be much better at the lower equivalence ratio. The LES / RANS model appears to predict lower overall heat release compared to RANS (at least for PHI = 0.17), and its capability to capture the direct effects of larger turbulent eddies leads to much better predictions of reactant mixing and combustion in the flame stabilization region downstream of the fuel injector. Numerical results from the LES/RANS model also show very good agreement with OH-PLIF and SPIV measurements. An un-damped long-wave oscillation of the pre-combustion shock train, which caused
Large eddy simulation of the flow pattern in an idealized mouth-throat under unsteady inspiration flow conditions.
Cui, Xinguang; Gutheil, Eva
2018-03-05
An excellent understanding of the airflow properties is critical to improve the drug delivery efficiency via the extrathoracic airway. The present numerical study focuses on the investigation the characteristics of important airflow structures such as the secondary vortices, the impinging jet and the recirculation zone under unsteady inspiration flow conditions in a circular idealized mouth-throat model using large eddy simulation (LES). Five inhalation cycles are simulated, the last one of which is analyzed in detail at five different times. Two times are chosen during the accelerating branch, one at the peak and two within the decelerating inhalation wave. The flow exhibits an extinct process of the flow transiting from laminar to turbulent during the accelerating phase and transiting back from turbulent to laminar in the decelerating phase. It is found that the flow is much more turbulent during the decelerating phase compared to the accelerating phase of the inspiration wave, which is associated with more smaller secondary vortices, a shorter and more unsteady laryngeal jet, a smaller and more unsteady recirculation zone, as well as an enlarged mixing zone. These differences during the unsteady inspiration require more attention in particular if particle transport and deposition in the upper airway are to be investigated. Copyright © 2018 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Tunstall, R.; Laurence, D.; Prosser, R.; Skillen, A.
2016-01-01
Highlights: • A T-Junction with an upstream bend is studied using wall-resolved LES and POD. • The bend generates Dean vortices which remain prominent downstream of the junction. • Dean vortex swirl-switching results in an unsteady secondary flow about the pipe axis. • This provides a further mechanism for near-wall temperature fluctuations. • Upstream bends can have a crucial role in T-Junction thermal fatigue problems. - Abstract: Turbulent mixing of fluids in a T-Junction can generate oscillating thermal stresses in pipe walls, which may lead to high cycle thermal fatigue. This thermal stripping problem is an important safety issue in nuclear plant thermal-hydraulic systems, since it can lead to unexpected failure of the pipe material. Here, we carry out a large eddy simulation (LES) of a T-Junction with an upstream bend and use proper orthogonal decomposition (POD) to identify the dominant structures in the flow. The bend generates an unsteady secondary flow about the pipe axis, known as Dean vortex swirl-switching. This provides an additional mechanism for low-frequency near-wall temperature fluctuations downstream of the T-Junction, over those that would be produced by mixing in the same T-Junction with straight inlets. The paper highlights the important role of neighbouring pipe bends in T-Junction thermal fatigue problems and the need to include them when using CFD as a predictive tool.
Energy Technology Data Exchange (ETDEWEB)
Kim, Jong Chan; Yoo, Kwang Hee; Sung, Hong Gye [Korea Aerospace University, Goyang (Korea, Republic of)
2011-10-15
To conduct a comprehensive study on the flow characteristics and acoustic oscillation in a gas turbine combustor, a 3D large-eddy simulation (LES) was implemented. The formulation consists of the Favre-filtered conservation equations of mass, momentum, and energy. The subgrid-scale dynamics are modeled using a compressible flow version of the Smagorinsky model. To investigate the dominant coherent structure, the proper orthogonal decomposition (POD) method was used for post-processing. The combustor of concern is the LM6000, lean-premixed dry low-NOx annular combustor, developed by General Electric Aircraft Engines (GEAE). Four important characteristics of swirl flow are visualized: vortex breakdown, procession and dissipation of vortical structures, recirculation zones, and helical waves immediately downstream of the swirl injector. It is shown that the turbulent motion of swirl flow directly affects acoustic oscillation through the cycle and spectral analysis. The four most dominant acoustic modes are extracted from the flow field by the POD analysis. The transverse modes in the y and z directions are dominant in all four modes, since the pressure fields are significantly affected by swirl flow.
Energy Technology Data Exchange (ETDEWEB)
Wang, Wei; Nicolleau, Franck C G A; Qin, Ning, E-mail: n.qin@sheffield.ac.uk [Department of Mechanical Engineering, The University of Sheffield, Sheffield, S1 3JD (United Kingdom)
2016-04-15
Characteristics of turbulent flow through a circular, a hexagon and a hexagram orifice with the same flow area in circular pipes are investigated using wall-modelled large-eddy simulation. Good agreements to available experimental data were obtained in both the mean velocity and turbulent kinetic energy. The hexagram orifice with alternating convex and concave corners introduces outwards radial velocity around the concave corners downstream of the orifice plate stronger than the hexagon orifice. The stronger outwards radial velocity transfers high momentum from the pipe centre towards the pipe wall to energize the orifice-forced vortex sheet rolling-up and leads to a delayed vortex break-down. Correspondingly, the hexagram has a more gradual flow recovery to a pipe flow and a reduced pressure drop than the hexagon orifice. Both the hexagon and hexagram orifices show an axis-switching phenomenon, which is observed from both the streamwise velocity and turbulent kinetic energy contours. To the best knowledge of the authors, this is the first comparison of orifice-forced turbulence development, mixing and flow dynamics between a regular and a fractal-based polygonal orifice. (paper)
Directory of Open Access Journals (Sweden)
Wim Munters
2018-01-01
Full Text Available In wind farms, wakes originating from upstream turbines cause reduced energy extraction and increased loading variability in downstream rows. The prospect of mitigating these detrimental effects through coordinated controllers at the wind-farm level has fueled a multitude of research efforts in wind-farm control. The main strategies in wind-farm control are to influence the velocity deficits in the wake by deviating from locally optimal axial induction setpoints on the one hand, and steering wakes away from downstream rows through yaw misalignment on the other hand. The current work investigates dynamic induction and yaw control of individual turbines for wind-farm power maximization in large-eddy simulations. To this end, receding-horizon optimal control techniques combined with continuous adjoint gradient evaluations are used. We study a 4 × 4 aligned wind farm, and find that for this farm layout yaw control is more effective than induction control, both for uniform and turbulent inflow conditions. Analysis of optimal yaw controls leads to the definition of two simplified yaw control strategies, in which wake meandering and wake redirection are exploited respectively. Furthermore it is found that dynamic yawing provides significant benefits over static yaw control in turbulent flow environments, whereas this is not the case for uniform inflow. Finally, the potential of combining overinductive axial induction control with yaw control is shown, with power gains that approximate the sum of those achieved by each control strategy separately.
Du, Junping; Timmermans, Wim J.; Ma, Yaoming; Su, Bob; Pema, Tsering
2017-04-01
Urbanization leads to modifications of surface energy balance which governs the momentum, heat and mass transfer between urban canopy layer and the atmosphere, thus impacts dynamic processes in the urban ABL and ultimately influence the local, regional and even global climate. It is essential to obtain accurate urban ABL observations to enhance our understanding of land-atmosphere interaction process over the urban area and help to improve the prediction ability of numerical model. However, up to now, there are rarely observations in high latitude cities. In one of the highest cities in the world, Lhasa, Eddy Covariance (EC) measurements have been ongoing since 10 August 2016 and a Large Aperture Scintillometer (LAS) started to work on 12 November 2016, in addition to a UHI network which has been running since 2012. Taking advantage of these observations, this poster will estimate and analyze the surface energy balance in the winter of 2016 in Lhasa, with an emphasis on sensible heat flux. An analytical footprint model and the radiative surface temperature retrieved from Landsat 8 will be employed to compare EC and LAS measurements.
Delorme, Yann; Hassan, Syed Harris; Socha, Jake; Vlachos, Pavlos; Frankel, Steven
2014-11-01
Chrysopelea paradisi are snakes that are able to glide over long distances by morphing the cross section of their bodies from circular to a triangular airfoil, and undulating through the air. Snake glide is characterized by relatively low Reynolds number and high angle of attack as well as three dimensional and unsteady flow. Here we study the 3D dynamics of the flow using an in-house high-order large eddy simulation code. The code features a novel multi block immersed boundary method to accurately and efficiently represent the complex snake geometry. We investigate the steady state 3-dimensionality of the flow, especially the wake flow induced by the presence of the snake's body, as well as the vortex-body interaction thought to be responsible for part of the lift enhancement. Numerical predictions of global lift and drag will be compared to experimental measurements, as well as the lift distribution along the body of the snake due to cross sectional variations. Comparisons with previously published 2D results are made to highlight the importance of 3-dimensional effects. Additional efforts are made to quantify properties of the vortex shedding and Dynamic Mode Decomposition (DMD) is used to analyse the main modes responsible for the lift and drag forces.
Goodfriend, Lauren; Katopodes Chow, Fotini; Vanella, Marcos; Balaras, Elias
2013-11-01
Many realistic flows, such as the urban boundary layer, are too expensive to simulate directly. Large-eddy simulation (LES) and adaptive mesh refinement (AMR) reduce the computational cost of turbulence modeling by restricting resolved length scales, but combining these techniques generates additional errors. The grid refinement interfaces in AMR grids can reflect resolved energy and create interpolation errors. This study investigates the use of explicit filtering and reconstruction to mitigate grid interface errors in LES of a pressure gradient forced boundary layer. The domain is split in the streamwise direction into two equally sized structured grids, one fine and one coarse, with periodic boundaries in the streamwise and spanwise directions. This simple test case allows observation of the effects of the grid interfaces. Explicit filtering is found to reduce accumulation of resolved energy at the fine-to-coarse interface and improve the shape of coherent structures, compared to basic LES. Reconstruction of the subfilter velocity is shown to further the improvements of explicit filtering. These results inform the use of LES on block-structured non-uniform grids, such as nested grids in local atmospheric models or on more complex Cartesian AMR grids.
Goodfriend, L.; Chow, F. K.; Vanella, M.; Balaras, E.
2013-12-01
Large-eddy simulation (LES) is a popular technique for studying the atmospheric boundary layer (ABL) on small domains. ABL simulations often use structured nested grids to scale the solution from the mesoscale to local scales, but using LES on non-uniform grids generates additional errors. The grid refinement interfaces in nested grids can reflect resolved energy and create interpolation errors. This study investigates the use of explicit filtering and reconstruction to mitigate grid interface errors in LES of a neutral boundary layer. The domain is split in the streamwise direction into two equally sized structured grids, one fine and one coarse, with periodic boundaries in the streamwise and spanwise directions. This simply nested, idealized test case allows observation of the effects of the grid interfaces. Explicit filtering is found to reduce accumulation of resolved energy at the fine-to-coarse interface and improve the shape of coherent structures, compared to basic LES. Additional reconstruction of the subfilter velocity is shown to further the improvements of explicit filtering. These results inform the use of LES to simulate the ABL on block-structured non-uniform grids, from typical nested grids to more complex cartesian AMR grids for urban boundary layers.
Chatelain, Philippe; Duponcheel, Matthieu; Caprace, Denis-Gabriel; Marichal, Yves; Winckelmans, Gregoire
2017-11-01
A vortex particle-mesh (VPM) method with immersed lifting lines has been developed and validated. Based on the vorticity-velocity formulation of the Navier-Stokes equations, it combines the advantages of a particle method and of a mesh-based approach. The immersed lifting lines handle the creation of vorticity from the blade elements and its early development. Large-eddy simulation (LES) of vertical axis wind turbine (VAWT) flows is performed. The complex wake development is captured in detail and over up to 15 diameters downstream: from the blades to the near-wake coherent vortices and then through the transitional ones to the fully developed turbulent far wake (beyond 10 rotor diameters). The statistics and topology of the mean flow are studied with respect to the VAWT geometry and its operating point. The computational sizes also allow insights into the detailed unsteady vortex dynamics and topological flow features, such as a recirculation region influenced by the tip speed ratio and the rotor geometry.
Li, Xian-Xiang; Liu, Chun-Ho; Leung, Dennis Y. C.
2008-11-01
A large-eddy simulation (LES) with a one-equation subgrid-scale (SGS) model was developed to investigate the flow field and pollutant dispersion inside street canyons of high aspect ratio (AR). A 1/7th power-law wall model was implemented near rigid walls to mitigate the demanding near-wall resolution requirements in LES. This LES model had been extensively validated against experimental results for street canyons of AR = 1 and 2 before it was applied to the cases of AR = 3 and 5. A ground-level passive pollutant line source, located in the middle of the street, was used to simulate vehicular emissions. Three and five vertically aligned primary recirculations were developed in the street canyons of AR 3 and 5, respectively. The ground-level mean wind speed was less than 0.5% of the free stream value, which makes it difficult for the pollutant to be transported upward for removal. High pollutant concentration and variance were found near the buildings where the air flow is upwards. It was found that the velocity fluctuation, pollutant concentration and variance were all closely related to the interactions between the primary recirculations and/or the free surface layer. Several quantities, which are non-linear functions of AR, were introduced to quantify the air quality in street canyons of different configurations.
Tuan, L.; Abd Razak, A.; Zaki, S. A.; Mohammad, A. F.; Hassan, M. K.
2015-09-01
Similar to most tropical countries, Malaysia have low wind speed and airflow characteristics to provide an effective natural ventilation system for comfortable living especially in terrace houses. Even so, by designing them with suitable threshold height/width, H/W, ratio may help reduce heat sink, or even the accumulation of contaminants within the setback distance. Through this study, the downstream building of these terrace houses will be investigated due to the effects from an upstream building. With the use of Large-Eddy Simulation (LES) method, the formation of the vortex within the threshold H/W ratio will be clearly simulated and allow the observation of flow regimes developed by each model. With increasing threshold H/W ratios the models will exhibit some wake interference flow and skimming flow which will determine the negative or positive effect of ventilation from the upstream building towards the downstream building. The airflow characteristics of the downstream house will also be analysed and the most effective layout in providing a better air circulation may be determined. Improving the natural ventilation of such houses could significantly reduce these negative effects such as the accumulation of dust, smoke or bacteria. In turn, with the alarming rate of depletion in natural resources and its effects to the environment, this study can significantly reduce energy usage for ventilation and space cooling.
International Nuclear Information System (INIS)
Li Feng-Chen; Wang Lu; Cai Wei-Hua
2015-01-01
A mixed subgrid-scale (SGS) model based on coherent structures and temporal approximate deconvolution (MCT) is proposed for turbulent drag-reducing flows of viscoelastic fluids. The main idea of the MCT SGS model is to perform spatial filtering for the momentum equation and temporal filtering for the conformation tensor transport equation of turbulent flow of viscoelastic fluid, respectively. The MCT model is suitable for large eddy simulation (LES) of turbulent drag-reducing flows of viscoelastic fluids in engineering applications since the model parameters can be easily obtained. The LES of forced homogeneous isotropic turbulence (FHIT) with polymer additives and turbulent channel flow with surfactant additives based on MCT SGS model shows excellent agreements with direct numerical simulation (DNS) results. Compared with the LES results using the temporal approximate deconvolution model (TADM) for FHIT with polymer additives, this mixed SGS model MCT behaves better, regarding the enhancement of calculating parameters such as the Reynolds number. For scientific and engineering research, turbulent flows at high Reynolds numbers are expected, so the MCT model can be a more suitable model for the LES of turbulent drag-reducing flows of viscoelastic fluid with polymer or surfactant additives. (paper)
Directory of Open Access Journals (Sweden)
Zhi-Feng Yao
2016-01-01
Full Text Available The turbulent flow in a centrifugal pump impeller is bounded by complex surfaces, including blades, a hub and a shroud. The primary challenge of the flow simulation arises from the generation of a boundary layer between the surface of the impeller and the moving fluid. The principal objective is to evaluate the near-wall solution approaches that are typically used to deal with the flow in the boundary layer for the large-eddy simulation (LES of a centrifugal pump impeller. Three near-wall solution approaches –the wall-function approach, the wall-resolved approach and the hybrid Reynolds averaged Navier–Stoke (RANS and LES approach – are tested. The simulation results are compared with experimental results conducted through particle imaging velocimetry (PIV and laser Doppler velocimetry (LDV. It is found that the wall-function approach is more sparing of computational resources, while the other two approaches have the important advantage of providing highly accurate boundary layer flow prediction. The hybrid RANS/LES approach is suitable for predicting steady-flow features, such as time-averaged velocities and hydraulic losses. Despite the fact that the wall-resolved approach is expensive in terms of computing resources, it exhibits a strong ability to capture a small-scale vortex and predict instantaneous velocity in the near-wall region in the impeller. The wall-resolved approach is thus recommended for the transient simulation of flows in centrifugal pump impellers.
Directory of Open Access Journals (Sweden)
J. Picot
2015-07-01
Full Text Available In this work, the evolution of contrails in the vortex and dissipation regimes is studied by means of fully three-dimensional large-eddy simulation (LES coupled to a Lagrangian particle tracking method to treat the ice phase. In this paper, fine-scale atmospheric turbulence is generated and sustained by means of a stochastic forcing that mimics the properties of stably stratified turbulent flows as those occurring in the upper troposphere and lower stratosphere. The initial flow field is composed of the turbulent background flow and a wake flow obtained from separate LES of the jet regime. Atmospheric turbulence is the main driver of the wake instability and the structure of the resulting wake is sensitive to the intensity of the perturbations, primarily in the vertical direction. A stronger turbulence accelerates the onset of the instability, which results in shorter contrail descent and more effective mixing in the interior of the plume. However, the self-induced turbulence that is produced in the wake after the vortex breakup dominates over background turbulence until the end of the vortex regime and controls the mixing with ambient air. This results in mean microphysical characteristics such as ice mass and optical depth that are slightly affected by the intensity of atmospheric turbulence. However, the background humidity and temperature have a first-order effect on the survival of ice crystals and particle size distribution, which is in line with recent studies.
International Nuclear Information System (INIS)
Afgan, Imran; Moulinec, Charles; Prosser, Robert; Laurence, Dominique
2007-01-01
The flow structure around wall mounted circular cylinders of finite heights is numerically investigated via large eddy simulation (LES). The cylinder aspect ratios (AR) are 6 and 10 and the Reynolds number (Re) based on cylinder diameter and free stream velocity is 20,000 for both cases. The cantilever cylinder mounted on a flat plate is chosen since it gives insight into two entirely different flow phenomena; the tip effects of the free end (which show strong three-dimensional wake structures) and the base or junction effects (due to interaction of flow between the cylinder and the flat plate). Regular vortex shedding is found in the wake of the higher aspect ratio case as was anticipated, along with a strong downwash originating from the flow over the free end of the cylinder, whereas irregular and intermittent vortex shedding occurs in the lower aspect ratio case. Pressure distributions are computed along the length of the cylinder and compared to experimental results. Lift and drag values are also computed, along with Strouhal numbers
Churchfield, Matthew J; Li, Ye; Moriarty, Patrick J
2013-02-28
This paper presents our initial work in performing large-eddy simulations of tidal turbine array flows. First, a horizontally periodic precursor simulation is performed to create turbulent flow data. Then those data are used as inflow into a tidal turbine array two rows deep and infinitely wide. The turbines are modelled using rotating actuator lines, and the finite-volume method is used to solve the governing equations. In studying the wakes created by the turbines, we observed that the vertical shear of the inflow combined with wake rotation causes lateral wake asymmetry. Also, various turbine configurations are simulated, and the total power production relative to isolated turbines is examined. We found that staggering consecutive rows of turbines in the simulated configurations allows the greatest efficiency using the least downstream row spacing. Counter-rotating consecutive downstream turbines in a non-staggered array shows a small benefit. This work has identified areas for improvement. For example, using a larger precursor domain would better capture elongated turbulent structures, and including salinity and temperature equations would account for density stratification and its effect on turbulence. Additionally, the wall shear stress modelling could be improved, and more array configurations could be examined.
Undapalli, Satish
A new combustor referred to as Stagnation Point Reverse Flow (SPRF) combustor has been developed at Georgia Tech to meet the increasingly stringent emission regulations. The combustor incorporates a novel design to meet the conflicting requirements of low pollution and high stability in both premixed and non-premixed modes. The objective of this thesis work is to perform Large Eddy Simulations (LES) on this lab-scale combustor and elucidate the underlying physics that has resulted in its excellent performance. To achieve this, numerical simulations have been performed in both the premixed and non-premixed combustion modes, and velocity field, species field, entrainment characteristics, flame structure, emissions, and mixing characteristics have been analyzed. Simulations have been carried out first for a non-reactive case to resolve relevant fluid mechanics without heat release by the computational grid. The computed mean and RMS quantities in the non-reacting case compared well with the experimental data. Next, the simulations were extended for the premixed reactive case by employing different sub-grid scale combustion chemistry closures: Eddy Break Up (EBU), Artificially Thickened Flame (TF) and Linear Eddy Mixing (LEM) models. Results from the EBU and TF models exhibit reasonable agreement with the experimental velocity field. However, the computed thermal and species fields have noticeable discrepancies. Only LEM with LES (LEMLES), which is an advanced scalar approach, has been able to accurately predict both the velocity and species fields. Scalar mixing plays an important role in combustion, and this is solved directly at the sub-grid scales in LEM. As a result, LEM accurately predicts the scalar fields. Due to the two way coupling between the super-grid and sub-grid quantities, the velocity predictions also compare very well with the experiments. In other approaches, the sub-grid effects have been either modeled using conventional approaches (EBU) or need
van Heerwaarden, Chiel C.; van Stratum, Bart J. H.; Heus, Thijs; Gibbs, Jeremy A.; Fedorovich, Evgeni; Mellado, Juan Pedro
2017-08-01
This paper describes MicroHH 1.0, a new and open-source (www.microhh.org) computational fluid dynamics code for the simulation of turbulent flows in the atmosphere. It is primarily made for direct numerical simulation but also supports large-eddy simulation (LES). The paper covers the description of the governing equations, their numerical implementation, and the parameterizations included in the code. Furthermore, the paper presents the validation of the dynamical core in the form of convergence and conservation tests, and comparison of simulations of channel flows and slope flows against well-established test cases. The full numerical model, including the associated parameterizations for LES, has been tested for a set of cases under stable and unstable conditions, under the Boussinesq and anelastic approximations, and with dry and moist convection under stationary and time-varying boundary conditions. The paper presents performance tests showing good scaling from 256 to 32 768 processes. The graphical processing unit (GPU)-enabled version of the code can reach a speedup of more than an order of magnitude for simulations that fit in the memory of a single GPU.
Wu, Hao; Ihme, Matthias
2017-11-01
The modeling of turbulent combustion requires the consideration of different physico-chemical processes, involving a vast range of time and length scales as well as a large number of scalar quantities. To reduce the computational complexity, various combustion models are developed. Many of them can be abstracted using a lower-dimensional manifold representation. A key issue in using such lower-dimensional combustion models is the assessment as to whether a particular combustion model is adequate in representing a certain flame configuration. The Pareto-efficient combustion (PEC) modeling framework was developed to perform dynamic combustion model adaptation based on various existing manifold models. In this work, the PEC model is applied to a turbulent flame simulation, in which a computationally efficient flamelet-based combustion model is used in together with a high-fidelity finite-rate chemistry model. The combination of these two models achieves high accuracy in predicting pollutant species at a relatively low computational cost. The relevant numerical methods and parallelization techniques are also discussed in this work.
Effect Sizes in Single Case Research: How Large is Large?
Parker, Richard I.; Brossart, Daniel F.; Vannest, Kimberly J.; Long, James R.; De-Alba, Roman Garcia; Baugh, Frank G.; Sullivan, Jeremy R.
2005-01-01
This study examined the problem of interpreting effect sizes in single case research. Nine single case analytic techniques were applied to a convenience sample of 77 published interrupted time series (AB) datasets, and the results were compared by technique across the datasets. Reanalysis of the published data helped answer questions about the…
Murdoch, Naomi; Kenda, Balthasar; Kawamura, Taichi; Spiga, Aymeric; Lognonné, Philippe; Mimoun, David; Banerdt, William B.
2017-01-01
International audience; The atmospheric pressure fluctuations on Mars induce an elastic response in the ground that creates a ground tilt, detectable as a seismic signal on the InSight seismometer SEIS. The seismic pressure noise is modeled using Large Eddy Simulations (LES) of the wind and surface pressure at the InSight landing site and a Green’s function ground deformation approach that is subsequently validated via a detailed comparison with two other methods: a spectral approach, and an ...
Large-Eddy Simulations of Motored Flow and Combustion in a Homogeneous-Charge Spark-Ignition Engine
Shekhawat, Yajuvendra Singh
Cycle-to-cycle variations (CCV) of flow and combustion in internal combustion engines (ICE) limit their fuel efficiency and emissions potential. Large-eddy simulation (LES) is the most practical simulation tool to understand the nature of these CCV. In this research, multi-cycle LES of a two-valve, four-stroke, spark-ignition optical engine has been performed for motored and fired operations. The LES mesh quality is assessed using a length scale resolution parameter and a energy resolution parameter. For the motored operation, two 50-consecutive-cycle LES with different turbulence models (Smagorinsky model and dynamic structure model) are compared with the experiment. The pressure comparison shows that the LES is able to capture the wave-dynamics in the intake and exhaust ports. The LES velocity fields are compared with particle-image velocimetry (PIV) measurements at three cutting planes. Based on the structure and magnitude indices, the dynamic structure model is somewhat better than the Smagorinsky model as far as the ensemble-averaged velocity fields are concerned. The CCV in the velocity fields is assessed by proper-orthogonal decomposition (POD). The POD analysis shows that LES is able to capture the level of CCV seen in the experiment. For the fired operation, two 60-cycle LES with different combustion models (thickened frame model and coherent frame model) are compared with experiment. The in-cylinder pressure and the apparent heat release rate comparison shows higher CCV for LES compared to the experiment, with the thickened frame model showing higher CCV than the coherent frame model. The correlation analysis for the LES using thickened frame model shows that the CCV in combustion/pressure is correlated with: the tumble at the intake valve closing, the resolved and subfilter-scale kinetic energy just before spark time, and the second POD mode (shear flow near spark gap) of the velocity fields just before spark time.
Energy Technology Data Exchange (ETDEWEB)
Lacaze, Guilhem [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Oefelein, Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-03-01
Large-eddy-simulation (LES) is quickly becoming a method of choice for studying complex thermo-physics in a wide range of propulsion and power systems. It provides a means to study coupled turbulent combustion and flow processes in parameter spaces that are unattainable using direct-numerical-simulation (DNS), with a degree of fidelity that can be far more accurate than conventional engineering methods such as the Reynolds-averaged Navier-Stokes (RANS) approx- imation. However, development of predictive LES is complicated by the complex interdependence of different type of errors coming from numerical methods, algorithms, models and boundary con- ditions. On the other hand, control of accuracy has become a critical aspect in the development of predictive LES for design. The objective of this project is to create a framework of metrics aimed at quantifying the quality and accuracy of state-of-the-art LES in a manner that addresses the myriad of competing interdependencies. In a typical simulation cycle, only 20% of the computational time is actually usable. The rest is spent in case preparation, assessment, and validation, because of the lack of guidelines. This work increases confidence in the accuracy of a given solution while min- imizing the time obtaining the solution. The approach facilitates control of the tradeoffs between cost, accuracy, and uncertainties as a function of fidelity and methods employed. The analysis is coupled with advanced Uncertainty Quantification techniques employed to estimate confidence in model predictions and calibrate model's parameters. This work has provided positive conse- quences on the accuracy of the results delivered by LES and will soon have a broad impact on research supported both by the DOE and elsewhere.
O'Neill, J. J.; Cai, X.-M.; Kinnersley, R.
2016-10-01
The large-eddy simulation (LES) approach has recently exhibited its appealing capability of capturing turbulent processes inside street canyons and the urban boundary layer aloft, and its potential for deriving the bulk parameters adopted in low-cost operational urban dispersion models. However, the thin roof-level shear layer may be under-resolved in most LES set-ups and thus sophisticated subgrid-scale (SGS) parameterisations may be required. In this paper, we consider the important case of pollutant removal from an urban street canyon of unit aspect ratio (i.e. building height equal to street width) with the external flow perpendicular to the street. We show that by employing a stochastic SGS model that explicitly accounts for backscatter (energy transfer from unresolved to resolved scales), the pollutant removal process is better simulated compared with the use of a simpler (fully dissipative) but widely-used SGS model. The backscatter induces additional mixing within the shear layer which acts to increase the rate of pollutant removal from the street canyon, giving better agreement with a recent wind-tunnel experiment. The exchange velocity, an important parameter in many operational models that determines the mass transfer between the urban canopy and the external flow, is predicted to be around 15% larger with the backscatter SGS model; consequently, the steady-state mean pollutant concentration within the street canyon is around 15% lower. A database of exchange velocities for various other urban configurations could be generated and used as improved input for operational street canyon models.
Zhang, Jiangshan; Li, Jingshe; Yan, Yi; Chen, Zhixin; Yang, Shufeng; Zhao, Jingwei; Jiang, Zhengyi
2016-02-01
The advantages of trumpet-shaped ladle shrouds (TLS) have been frequently demonstrated over conventional straight-bore ladle shrouds (CLS) with respect to production efficiency and molten steel quality in continuous casting practices. The present study is to shed some lights on why the TLS are better than the CLS design by examining the fluid dynamics and mass transfer using large eddy simulation. The obtained numerical results were validated with particle imaging velocimetry experiments. Flow velocity, deformation, turbulent energy dissipation, and mixing kinetics of tracer were discussed. The results showed that the entering jet of the CLS flowed straight down into the tundish with a relatively high speed (average at 0.710 to 0.815 m/s) and turbulent kinetic energy. However, the trumpet section of a TLS intensified velocity differences, strain rates, and vortices, and promoted an increase on turbulence dissipation rate in the interior of the ladle shroud. The average speed of the entering jet to the tundish was decreased to 0.270 to 0.410 m/s from the 0.708 m/s of the inlet speed. The entering jet from the TLS swung, twisted and well mixed with surrounding fluid in the tundish, and dissipated its kinetic energy. Consequently, the turbulence of the whole flow field as well as the mean skin friction coefficient of tundish wall and the velocity of free liquid surface were reduced. A tracer experiment was carried out to study mass transfer and flow mixing behavior, and the results demonstrated that the use of the TLS increased the plug volume and decreased the dead zone, thereby enhancing inclusion flotation.
Large Eddy Simulation of the flow in 90r angled open-channel confluences with discordant beds
Ramos, Pedro; Schindfessel, Laurent; De Mulder, Tom
2017-04-01
The aim of the present contribution is to investigate the effect of difference in bed elevations of the tributary and main channel in a 90˚ angled open-channel confluence onto the hydrodynamics. Large Eddy Simulations (LES) are used to investigate the three-dimensional complex flow patterns for four different discordance ratios (ΔzT/hd = 0, 0.1, 0.25 and 0.4), with geometries previously studied by other authors, whose data will be used for comparison purposes. The values of the ratio between the upstream main channel discharge and the total combined discharge varies between 0.083 and 0.917. With LES, it is possible to resolve a portion of the turbulent motions, which is beneficial to the accuracy of the simulations. This contribution develops further analysis on some findings of the aforementioned studies, mostly regarding the role of the bed discordance on the recirculation zone dimensions and on the influence of the tributary flow on the main stream. Points of interest are the orientation of the tributary's inflow angle and the dimensions of the separation zone. These parameters are important for the longitudinal momentum balance, which determines the head losses occurring at the confluence. Additionally, the distribution of Turbulent Kinetic Energy (TKE) and bed shear stresses are studied. Previous studied indicated that the presence of a bed discordance has a pronounced effect on these points of interest. The present contribution elaborates these findings and adds knowledge from time-resolved simulations. Since in a LES the flow and turbulence are for the most part resolved, it enables a thorough study of the hydrodynamics in an open-channel confluence, of which the understanding of the physical phenomena occurring in natural confluences will benefit.
Zhang, Yangyue; Hu, Ruifeng; Zheng, Xiaojing
2018-04-01
Dust particles can remain suspended in the atmospheric boundary layer, motions of which are primarily determined by turbulent diffusion and gravitational settling. Little is known about the spatial organizations of suspended dust concentration and how turbulent coherent motions contribute to the vertical transport of dust particles. Numerous studies in recent years have revealed that large- and very-large-scale motions in the logarithmic region of laboratory-scale turbulent boundary layers also exist in the high Reynolds number atmospheric boundary layer, but their influence on dust transport is still unclear. In this study, numerical simulations of dust transport in a neutral atmospheric boundary layer based on an Eulerian modeling approach and large-eddy simulation technique are performed to investigate the coherent structures of dust concentration. The instantaneous fields confirm the existence of very long meandering streaks of dust concentration, with alternating high- and low-concentration regions. A strong negative correlation between the streamwise velocity and concentration and a mild positive correlation between the vertical velocity and concentration are observed. The spatial length scales and inclination angles of concentration structures are determined, compared with their flow counterparts. The conditionally averaged fields vividly depict that high- and low-concentration events are accompanied by a pair of counter-rotating quasi-streamwise vortices, with a downwash inside the low-concentration region and an upwash inside the high-concentration region. Through the quadrant analysis, it is indicated that the vertical dust transport is closely related to the large-scale roll modes, and ejections in high-concentration regions are the major mechanisms for the upward motions of dust particles.
Energy Technology Data Exchange (ETDEWEB)
Jeon, Sang Hyeon; Kim, Bum Suk; Huh, Jong Chul [Jeju National Univ., Jeju (Korea, Republic of); Go, Young Jun [Hanjin Ind, Co., Ltd., Yangsan (Korea, Republic of)
2016-01-15
The wake effects behind wind turbines were investigated by using data from a Met Mast tower and the SCADA (Supervisory Control and Data Acquisition) system for a wind turbine. The results of the wake investigations and predicted values for the velocity deficit based on the eddy viscosity model were compared with the turbulence intensity from the Lange model. As a result, the velocity deficit and turbulence intensity of the wake increased as the free stream wind speed decreased. In addition, the magnitude of the velocity deficit for the center of the wake using the eddy viscosity model was overestimated while the turbulence intensity from the Lange model showed similarities with measured values.
Energy Technology Data Exchange (ETDEWEB)
Churchfield, M. J.; Moriarty, P. J.; Hao, Y.; Lackner, M. A.; Barthelmie, R.; Lundquist, J.; Oxley, G. S.
2014-12-01
The focus of this work is the comparison of the dynamic wake meandering model and large-eddy simulation with field data from the Egmond aan Zee offshore wind plant composed of 36 3-MW turbines. The field data includes meteorological mast measurements, SCADA information from all turbines, and strain-gauge data from two turbines. The dynamic wake meandering model and large-eddy simulation are means of computing unsteady wind plant aerodynamics, including the important unsteady meandering of wakes as they convect downstream and interact with other turbines and wakes. Both of these models are coupled to a turbine model such that power and mechanical loads of each turbine in the wind plant are computed. We are interested in how accurately different types of waking (e.g., direct versus partial waking), can be modeled, and how background turbulence level affects these loads. We show that both the dynamic wake meandering model and large-eddy simulation appear to underpredict power and overpredict fatigue loads because of wake effects, but it is unclear that they are really in error. This discrepancy may be caused by wind-direction uncertainty in the field data, which tends to make wake effects appear less pronounced.
Dipankar, A.; Stevens, B. B.; Zängl, G.; Pondkule, M.; Brdar, S.
2014-12-01
The effect of clouds on large scale dynamics is represented in climate models through parameterization of various processes, of which the parameterization of shallow and deep convection are particularly uncertain. The atmospheric boundary layer, which controls the coupling to the surface, and which defines the scale of shallow convection, is typically 1 km in depth. Thus, simulations on a O(100 m) grid largely obviate the need for such parameterizations. By crossing this threshold of O(100m) grid resolution one can begin thinking of large-eddy simulation (LES), wherein the sub-grid scale parameterization have a sounder theoretical foundation. Substantial initiatives have been taken internationally to approach this threshold. For example, Miura et al., 2007 and Mirakawa et al., 2014 approach this threshold by doing global simulations, with (gradually) decreasing grid resolution, to understand the effect of cloud-resolving scales on the general circulation. Our strategy, on the other hand, is to take a big leap forward by fixing the resolution at O(100 m), and gradually increasing the domain size. We believe that breaking this threshold would greatly help in improving the parameterization schemes and reducing the uncertainty in climate predictions. To take this forward, the German Federal Ministry of Education and Research has initiated a project on HD(CP)2 that aims for a limited area LES at resolution O(100 m) using the new unified modeling system ICON (Zängl et al., 2014). In the talk, results from the HD(CP)2 evaluation simulation will be shown that targets high resolution simulation over a small domain around Jülich, Germany. This site is chosen because high resolution HD(CP)2 Observational Prototype Experiment took place in this region from 1.04.2013 to 31.05.2013, in order to critically evaluate the model. Nesting capabilities of ICON is used to gradually increase the resolution from the outermost domain, which is forced from the COSMO-DE data, to the
Lee, J.; Zhang, Y.; Klein, S. A.
2017-12-01
The triggering of the land breeze, and hence the development of deep convection over heterogeneous land should be understood as a consequence of the complex processes involving various factors from land surface and atmosphere simultaneously. That is a sub-grid scale process that many large-scale models have difficulty incorporating it into the parameterization scheme partly due to lack of our understanding. Thus, it is imperative that we approach the problem using a high-resolution modeling framework. In this study, we use SAM-SLM (Lee and Khairoutdinov, 2015), a large-eddy simulation model coupled to a land model, to explore the cloud effect such as cold pool, the cloud shading and the soil moisture memory on the land breeze structure and the further development of cloud and precipitation over a heterogeneous land surface. The atmospheric large scale forcing and the initial sounding are taken from the new composite case study of the fair-weather, non-precipitating shallow cumuli at ARM SGP (Zhang et al., 2017). We model the land surface as a chess board pattern with alternating leaf area index (LAI). The patch contrast of the LAI is adjusted to encompass the weak to strong heterogeneity amplitude. The surface sensible- and latent heat fluxes are computed according to the given LAI representing the differential surface heating over a heterogeneous land surface. Separate from the surface forcing imposed from the originally modeled surface, the cases that transition into the moist convection can induce another layer of the surface heterogeneity from the 1) radiation shading by clouds, 2) adjusted soil moisture pattern by the rain, 3) spreading cold pool. First, we assess and quantifies the individual cloud effect on the land breeze and the moist convection under the weak wind to simplify the feedback processes. And then, the same set of experiments is repeated under sheared background wind with low level jet, a typical summer time wind pattern at ARM SGP site, to
Large eddy simulations of flow and mixing in jets and swirl flows: application to a gas turbine
Energy Technology Data Exchange (ETDEWEB)
Schluter, J.U.
2000-07-01
Large Eddy Simulations (LES) are an accepted tool in turbulence research. Most LES investigations deal with low Reynolds-number flows and have a high spatial discretization, which results in high computational costs. To make LES applicable to industrial purposes, the possibilities of LES to deliver results with low computational costs on high Reynolds-number flows have to be investigated. As an example, the cold flow through the Siemens V64.3A.HR gas turbine burner shall be examined. It is a gas turbine burner of swirl type, where the fuel is injected on the surface of vanes perpendicular to the main air flow. The flow regime of an industrial gas turbine is governed by several flow phenomena. The most important are the fuel injection in form of a jet in cross flow (JICF) and the swirl flow issuing into a combustion chamber. In order to prove the ability of LES to deal with these flow phenomena, two numerical investigations were made in order to reproduce the results of experimental studies. The first one deals with JICF. It will be shown that the reproduction of three different JICF is possible with LES on meshes with a low number of mesh points. The results are used to investigate the flow physics of the JICF, especially the merging of two adjacent JICFs. The second fundamental investigation deals with swirl flows. Here, the accuracy of an axisymmetric assumption is examined in detail by comparing it to full 3D LES computations and experimental data. Having demonstrated the ability of LES and the flow solver to deal with such complex flows with low computational efforts, the LES approach is used to examine some details of the burner. First, the investigation of the fuel injection on a vane reveals that the vane flow tends to separate. Furthermore the tendency of the fuel jets to merge is shown. Second, the swirl flow in the combustion chamber is computed. For this investigation the vanes are removed from the burner and swirl is imposed as a boundary condition. As
International Nuclear Information System (INIS)
Banerjee, Tirtha; De Roo, Frederik; Mauder, Matthias
2017-01-01
Parameterizations of biosphere-atmosphere interaction processes in climate models and other hydrological applications require characterization of turbulent transport of momentum and scalars between vegetation canopies and the atmosphere, which is often modeled using a turbulent analogy to molecular diffusion processes. However, simple flux-gradient approaches (K-theory) fail for canopy turbulence. One cause is turbulent transport by large coherent eddies at the canopy scale, which can be linked to sweep-ejection events, and bear signatures of non-local organized eddy motions. K-theory, that parameterizes the turbulent flux or stress proportional to the local concentration or velocity gradient, fails to account for these non-local organized motions. The connection to sweep-ejection cycles and the local turbulent flux can be traced back to the turbulence triple moment (C ′ W ′ W ′ )-bar. In this work, we use large-eddy simulation to investigate the diagnostic connection between the failure of K-theory and sweep-ejection motions. Analyzed schemes are quadrant analysis (QA) and a complete and incomplete cumulant expansion (CEM and ICEM) method. The latter approaches introduce a turbulence timescale in the modeling. Furthermore, we find that the momentum flux needs a different formulation for the turbulence timescale than the sensible heat flux. In conclusion, accounting for buoyancy in stratified conditions is also deemed to be important in addition to accounting for non-local events to predict the correct momentum or scalar fluxes.
Overview of ESO Large Single Dish Study
Testi, Leonardo
2018-01-01
In this talk I will briefly summarize the motivation, methodology and outcome of the ESO Submm Single Dish Strategy WG. The WG was established by the ESO Director for Science and completed its work at the end of 2015. I will summarize the status of the report recommendations, which, among other things, led to the organization of the AtLAST workshop.
Large eddy simulation on thermal mixing of fluids in a T-junction with conjugate heat transfer
Energy Technology Data Exchange (ETDEWEB)
Selvam, P. Karthick, E-mail: karthick.selvam@ike.uni-stuttgart.de; Kulenovic, Rudi, E-mail: rudi.kulenovic@ike.uni-stuttgart.de; Laurien, Eckart, E-mail: eckart.laurien@ike.uni-stuttgart.de
2015-04-01
Highlights: • LES of fluid mixing in a T-junction at ΔT = 117 K and 123 K is performed. • Dynamical thermal stratification flow behavior downstream of T-junction. • Temperature fluctuations have maximum amplitudes of about 3.4–5.6% of ΔT. • High amplitude fluctuations occur near stratification layer in the mixing region. • Energy of temperature fluctuations mainly contained in the range 0.1–3 Hz. - Abstract: High cycle thermal fatigue failure in a nuclear power plant T-junction piping system may be caused by near-wall temperature fluctuations due to thermal mixing of hot and cold fluid streams. In the present study, thermal mixing at temperature differences (ΔT) of 117 K and 123 K between the mixing fluids is numerically investigated using Large Eddy Simulation (LES) method with the commercial Computational Fluid Dynamics (CFD) software ANSYS CFX 14.0. LES results from the study are validated with experimental data obtained from Fluid–Structure Interaction (FSI) test facility at the Materials Testing Institute (MPA), University of Stuttgart. Mass flow rate ratios (main/branch) in both cases are 4 and 6, respectively. LES results in both cases show that there is incomplete mixing of fluids and within three diameters downstream of T-junction, the mixing results in a dynamical thermal stratification flow behavior, which is maintained throughout the computational domain. Mean temperature predictions by LES show good agreement with the experimental data, whereas the root mean square (RMS) temperature fluctuations are over or understated at a few positions. The temperature fluctuations have amplitudes ranging from 0.09 to 5.6% of ΔT between the mixing fluids. Incomplete mixing of fluids and relatively lower amplitude of temperature fluctuations are mainly due to lower Reynolds number of 3670 in the cold fluid coming from the branch pipe along with buoyancy effects in the flow due to higher inflow temperature in the main pipe.
Berner, A. H.; Bretherton, C. S.; Wood, R.; Blossey, P. N.
2009-12-01
The VAMOS Ocean-Land-Atmosphere Study (VOCALS) REx field campaign sampled several excellent cases of pockets of open cells (POCS) embedded in a fully cloud-covered stratocumulus layer, most notably NSF C-130 flight RF06, which sampled across the boundary of a well defined POC between 0500 and 1000 local time on October 26th, 2008. We present the initial results of Large Eddy Simulation (LES) modeling of RF06 and examine the fidelity of the simulation in reproducing the effects of the observed gradients of cloud droplet concentration, most visibly the difference in cloud characteristics inside vs. outside the POC . The LES simulations were initialized with soundings constructed from aircraft data and NCEP reanalysis. Observations indicated a sharp transition in cloud droplet number concentration across the POC boundary. The SAM LES of Marat Khairoutdinov was run using CAM radiation and Morrison (2005) microphysics, with cloud droplet concentration Nc treated as an advected scalar without microphysical sources and sinks as a first step toward a realistic treatment of aerosols. The simulations were initialized with a step function change in Nc from 60 within the overcast region to 10 within the POC region, and with Nc equal to 10 above the inversion. A doubly periodic ‘bowling alley’ domain with horizontal dimensions of 192km x 24km is used to simulate a transect across the POC. The horizontal resolution is 125m and vertical resolution varies from 20m near the surface to 5m around the inversion, and then stretching to the domain top at 30km. The runs start at 0300 local time and continue for 18 hours across the diurnal cycle of insolation. Mesoscale circulations rapidly develop within the domain, with low level outflow from the POC to overcast regions and inflow near the top of the boundary layer from the overcast region into the POC. Drizzle cells develop within the POC and along its boundaries, consistent with observations, though actual precipitation amounts
Eriksson, O.; Baltscheffsky, M.; Breton, S.-P.; Söderberg, S.; Ivanell, S.
2017-05-01
The aim of the present paper is to obtain a better understanding of long distance wakes generated by wind farms as a first step towards a better understanding of farm to farm interaction. The Horns Rev I (HR) wind farm is considered for this purpose, where comparisons are performed between microscale Large Eddy Simulations (LES) using an Actuator Disc model (ACD), mesoscale simulations in the Weather Research and Forecasting Model (WRF) using a wind turbine parameterization, production data as well as wind measurements in the wind farm wake. The LES is manually set up according to the wind conditions obtained from the mesoscale simulation as a first step towards a meso/microscale coupling. The LES using an ACD are performed in the EllipSys3D code. A forced boundary layer (FBL) approach is used to introduce the desired wind shear and the atmospheric turbulence field from the Mann model. The WRF uses a wind turbine parameterization based on momentum sink. To make comparisons with the LESs and the site data possible an idealized setup of WRF is used in this study. The case studied here considers a westerly wind direction sector (at hub height) of 270 ± 2.5 degrees and a wind speed of 8 ± 0.5 m/s. For both the simulations and the site data a neutral atmosphere is considered. The simulation results for the relative production as well as the wind speed 2 km and 6 km downstream from the wind farm are compared to site data. Further comparisons between LES and WRF are also performed regarding the wake recovery and expansion. The results are also compared to an earlier study of HR using LES as well as an earlier comparison of LES and WRF. Overall the results in this study show a better agreement between LES and WRF as well as better agreement between simulations and site data. The procedure of using the profile from WRF as inlet to LES can be seen as a simplified coupling of the models that could be developed further to combine the methods for cases of farm to farm
Sueishi, T.; Yucel, M.; Ashie, Y.; Varquez, A. C. G.; Inagaki, A.; Darmanto, N. S.; Nakayoshi, M.; Kanda, M.
2017-12-01
Recently, temperature in urban areas continue to rise as an effect of climate change and urbanization. Specifically, Asian megacities are projected to expand rapidly resulting to serious in the future atmospheric environment. Thus, detailed analysis of urban meteorology for Asian megacities is needed to prescribe optimum against these negative climate modifications. A building-resolving large eddy simulation (LES) coupled with an energy balance model is conducted for a highly urbanized district in central Jakarta on typical daytime hours. Five cases were considered; case 1 utilizes present urban scenario and four cases representing different urban configurations in 2050. The future configurations were based on representative concentration pathways (RCP) and shared socio-economic pathways (SSP). Building height maps and land use maps of simulation domains are shown in the attached figure (top). Case 1 3 focuses on the difference of future scenarios. Case 1 represents current climatic and urban conditions, case 2 and 3 was an idealized future represented by RCP2.6/SSP1 and RCP8.5/SSP3, respectively. More complex urban morphology was applied in case 4, vegetation and building area were changed in case 5. Meteorological inputs and anthropogenic heat emission (AHE) were calculated using Weather Research and Forecasting (WRF) model (Varquez et al [2017]). Sensible and latent heat flux from surfaces were calculated using an energy balance model (Ashie et al [2011]), with considers multi-reflection, evapotranspiration and evaporation. The results of energy balance model (shown in the middle line of figure), in addition to WRF outputs, were used as input into the PArallelized LES Model (PALM) (Raasch et al [2001]). From standard new effective temperature (SET*) which included the effects of temperature, wind speed, humidity and radiation, thermal comfort in urban area was evaluated. SET* contours at 1 m height are shown in the bottom line of the figure. Extreme climate
DEFF Research Database (Denmark)
Obeidat, Anas Hassan MohD; Schnipper, Teis; Ingvorsen, Kristian Mark
2014-01-01
Purpose – The purpose of this paper is to study the effect of piston position on the in-cylinder swirling flow in a simplified model of a large two-stroke marine diesel engine. Design/methodology/approach – Large eddy simulations with four different models for the turbulent flow are used: a one...... engine model, the setup allows studies of fundamental aspects of swirling flow in a uniform scavenged engine. Comparing the four turbulence models, the local dynamic one-equation model is found to give the best agreement with the experimental results....
Murdoch, Naomi; Kenda, Balthasar; Kawamura, Taichi; Spiga, Aymeric; Lognonné, Philippe; Mimoun, David; Banerdt, William B.
2017-10-01
The atmospheric pressure fluctuations on Mars induce an elastic response in the ground that creates a ground tilt, detectable as a seismic signal on the InSight seismometer SEIS. The seismic pressure noise is modeled using Large Eddy Simulations (LES) of the wind and surface pressure at the InSight landing site and a Green's function ground deformation approach that is subsequently validated via a detailed comparison with two other methods: a spectral approach, and an approach based on Sorrells' theory (Sorrells, Geophys. J. Int. 26:71-82, 1971; Sorrells et al., Nat. Phys. Sci. 229:14-16, 1971). The horizontal accelerations as a result of the ground tilt due to the LES turbulence-induced pressure fluctuations are found to be typically ˜ 2 - 40 nm/s2 in amplitude, whereas the direct horizontal acceleration is two orders of magnitude smaller and is thus negligible in comparison. The vertical accelerations are found to be ˜ 0.1-6 nm/s2 in amplitude. These are expected to be worst-case estimates for the seismic noise as we use a half-space approximation; the presence at some (shallow) depth of a harder layer would significantly reduce quasi-static displacement and tilt effects. We show that under calm conditions, a single-pressure measurement is representative of the large-scale pressure field (to a distance of several kilometers), particularly in the prevailing wind direction. However, during windy conditions, small-scale turbulence results in a reduced correlation between the pressure signals, and the single-pressure measurement becomes less representative of the pressure field. The correlation between the seismic signal and the pressure signal is found to be higher for the windiest period because the seismic pressure noise reflects the atmospheric structure close to the seismometer. In the same way that we reduce the atmospheric seismic signal by making use of a pressure sensor that is part of the InSight Auxiliary Payload Sensor Suite, we also the use the
An eddy viscosity model for flow in a tube bundle
International Nuclear Information System (INIS)
Soussan, D.; Grandotto, M.
1998-01-01
The work described in this paper is part of the development of GENEPI a 3-dimensional finite element code, designed for the thermalhydraulic analysis of steam generators. It focuses on the implementation of two-phase flow turbulence-induced viscosity in a tube bundle. The GENEPI code, as other industrial codes, uses the eddy viscosity concept introduced by Boussinesq for single phase flow. The concept assumes that the turbulent momentum transfer is similar to the viscous shear stresses. Eddy viscosity formulation is reasonably well known for single phase flows, especially in simple geometries (i.e., in smooth tube, around a single body, or behind a row of bars/tubes), but there exists very little information on it for two-phase flows. An analogy between single and two-phases is used to set up a model for eddy viscosity. The eddy viscosity model examined in this paper is used for a tube bundle geometry and, therefore, is extended to include anisotropy to the classic model. Each of the main flow directions (cross flow inline, cross flow staggered, and parallel flows) gives rise to a specific eddy viscosity formula. The results from a parametric study indicate that the eddy viscosity in the staggered flow is roughly 1.5 times as large as that for the inline cross flow, 60 times as large as that for the parallel flow, and 105 as large as that for the molecular viscosity. Then, the different terms are combined with each other to result in a global eddy viscosity model for a steam generator tube bundle flow. (author)
Shrestha, Manoj; Hok, Pavel; Nöth, Ulrike; Lienerth, Bianca; Deichmann, Ralf
2018-03-30
The purpose of this work was to optimize the acquisition of diffusion-weighted (DW) single-refocused spin-echo (srSE) data without intrinsic eddy-current compensation (ECC) for an improved performance of ECC postprocessing. The rationale is that srSE sequences without ECC may yield shorter echo times (TE) and thus higher signal-to-noise ratios (SNR) than srSE or twice-refocused spin-echo (trSE) schemes with intrinsic ECC. The proposed method employs dummy scans with DW gradients to drive eddy currents into a steady state before data acquisition. Parameters of the ECC postprocessing algorithm were also optimized. Simulations were performed to obtain minimum TE values for the proposed sequence and sequences with intrinsic ECC. Experimentally, the proposed method was compared with standard DW-trSE imaging, both in vitro and in vivo. Simulations showed substantially shorter TE for the proposed method than for methods with intrinsic ECC when using shortened echo readouts. Data of the proposed method showed a marked increase in SNR. A dummy scan duration of at least 1.5 s improved performance of the ECC postprocessing algorithm. Changes proposed for the DW-srSE sequence and for the parameter setting of the postprocessing ECC algorithm considerably reduced eddy-current artifacts and provided a higher SNR.
Lee, Hyun-Soo; Choi, Seung Hong; Park, Sung-Hong
2017-07-01
To develop single and double acquisition methods to compensate for artifacts from eddy currents and transient oscillations in balanced steady-state free precession (bSSFP) with centric phase-encoding (PE) order for magnetization-prepared bSSFP imaging. A single and four different double acquisition methods were developed and evaluated with Bloch equation simulations, phantom/in vivo experiments, and quantitative analyses. For the single acquisition method, multiple PE groups, each of which was composed of N linearly changing PE lines, were ordered in a pseudocentric manner for optimal contrast and minimal signal fluctuations. Double acquisition methods used complex averaging of two images that had opposite artifact patterns from different acquisition orders or from different numbers of dummy scans. Simulation results showed high sensitivity of eddy-current and transient-oscillation artifacts to off-resonance frequency and PE schemes. The artifacts were reduced with the PE-grouping with N values from 3 to 8, similar to or better than the conventional pairing scheme of N = 2. The proposed double acquisition methods removed the remaining artifacts significantly. The proposed methods conserved detailed structures in magnetization transfer imaging well, compared with the conventional methods. The proposed single and double acquisition methods can be useful for artifact-free magnetization-prepared bSSFP imaging with desired contrast and minimized dummy scans. Magn Reson Med 78:254-263, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Berner, A. H.; Bretherton, C. S.; Wood, R.
2011-01-01
Large-eddy simulations of a pocket of open cells (POC) based on VOCALS Regional Experiment (REx) NSF C-130 Research Flight 06 are analyzed and compared with aircraft observations. A doubly-periodic domain 192 km × 24 km with 125 m horizontal and 5 m vertical grid spacing near the capping inversion is used. The POC is realized in the model as a fixed 96 km wide region of reduced cloud droplet number concentration (N_{c}) based on observed values; initiali...
International Nuclear Information System (INIS)
Zhou, Lei; Luo, Kai Hong; Qin, Wenjin; Jia, Ming; Shuai, Shi Jin
2015-01-01
Highlights: • MUSCL differencing scheme in LES method is used to investigate liquid fuel spray and combustion process. • Using MUSCL can accurately capture the gas phase velocity distribution and liquid spray features. • Detailed chemistry mechanism with a parallel algorithm was used to calculate combustion process. • Increasing oxygen concentration can decrease ignition delay time and flame LOL. - Abstract: The accuracy of large eddy simulation (LES) for turbulent combustion depends on suitably implemented numerical schemes and chemical mechanisms. In the original KIVA3V code, finite difference schemes such as QSOU (Quasi-second-order upwind) and PDC (Partial Donor Cell Differencing) cannot achieve good results or even computational stability when using coarse grids due to large numerical diffusion. In this paper, the MUSCL (Monotone Upstream-centered Schemes for Conservation Laws) differencing scheme is implemented into KIVA3V-LES code to calculate the convective term. In the meantime, Lu’s n-heptane reduced 58-species mechanisms (Lu, 2011) is used to calculate chemistry with a parallel algorithm. Finally, improved models for spray injection are also employed. With these improvements, the KIVA3V-LES code is renamed as KIVALES-CP (Chemistry with Parallel algorithm) in this study. The resulting code was used to study the gas–liquid two phase jet and combustion under various diesel engine-like conditions in a constant volume vessel. The results show that using the MUSCL scheme can accurately capture the spray shape and fuel vapor penetration using even a coarse grid, in comparison with the Sandia experimental data. Similarly good results are obtained for three single-component fuels, i-Octane (C8H18), n-Dodecanese (C12H26), and n-Hexadecane (C16H34) with very different physical properties. Meanwhile the improved methodology is able to accurately predict ignition delay and flame lift-off length (LOL) under different oxygen concentrations from 10% to 21
Denaro, Filippo Maria; de Stefano, Giuliano
2011-10-01
A Finite Volume-based large-eddy simulation method is proposed along with a suitable extension of the dynamic modelling procedure that takes into account for the integral formulation of the governing filtered equations. Discussion about the misleading interpretation of FV in some literature is addressed. Then, the classical Germano identity is congruently rewritten in such a way that the determination of the modelling parameters does not require any arbitrary averaging procedure and thus retains a fully local character. The numerical modelling of stratified turbulence is the specific problem considered in this study, as an archetypal of simple geophysical flows. The original scaling formulation of the dynamic sub-grid scale model proposed by Wong and Lilly (Phys. Fluids 6(6), 1994) is suitably extended to the present integral formulation. This approach is preferred with respect to traditional ones since the eddy coefficients can be independently computed by avoiding the addition of unjustified buoyancy production terms in the constitutive equations. Simple scaling arguments allow us not to use the equilibrium hypothesis according to which the dissipation rate should equal the sub-grid scale energy production. A careful a priori analysis of the relevance of the test filter shape as well as the filter-to-grid ratio is reported. Large-eddy simulation results are a posteriori compared with a reference pseudo-spectral direct numerical solution that is suitably post-filtered in order to have a meaningful comparison. In particular, the spectral distribution of kinetic and thermal energy as well as the viscosity and diffusivity sub-grid scale profiles are illustrated. The good performances of the proposed method, in terms of both evolutions of global quantities and statistics, are very promising for the future development and application of the method.
Garcia, M. H.
2016-12-01
Modeling Sediment Transport Using a Lagrangian Particle Tracking Algorithm Coupled with High-Resolution Large Eddy Simulations: a Critical Analysis of Model Limits and Sensitivity Som Dutta1, Paul Fischer2, Marcelo H. Garcia11Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Il, 61801 2Department of Computer Science and Department of MechSE, University of Illinois at Urbana-Champaign, Urbana, Il, 61801 Since the seminal work of Niño and Garcia [1994], one-way coupled Lagrangian particle tracking has been used extensively for modeling sediment transport. Over time, the Lagrangian particle tracking method has been coupled with Eulerian flow simulations, ranging from Reynolds Averaged Navier-Stokes (RANS) based models to Detached Eddy Simulations (DES) [Escauriaza and Sotiropoulos, 2011]. Advent of high performance computing (HPC) platforms and faster algorithms have resulted in the work of Dutta et al. [2016], where Lagrangian particle tracking was coupled with high-resolution Large Eddy Simulations (LES) to model the complex and highly non-linear phenomenon of Bulle-Effect at diversions. Despite all the advancements in using Lagrangian particle tracking, there has not been a study that looks in detail at the limits of the model in the context of sediment transport, and also analyzes the sensitivity of the various force formulation in the force balance equation of the particles. Niño and Garcia [1994] did a similar analysis, but the vertical flow velocity distribution was modeled as the log-law. The current study extends the analysis by modeling the flow using high-resolution LES at a Reynolds number comparable to experiments of Niño et al. [1994]. Dutta et al., (2016), Large Eddy Simulation (LES) of flow and bedload transport at an idealized 90-degree diversion: insight into Bulle-Effect, River Flow 2016 - Constantinescu, Garcia & Hanes (Eds), Taylor & Francis Group, London, 101-109. Escauriaza and Sotiropoulos
Baya Toda, Hubert; Cabrit, Olivier; Truffin, Karine; Bruneaux, Gilles; Nicoud, Franck
2014-07-01
Large-Eddy Simulation (LES) in complex geometries and industrial applications like piston engines, gas turbines, or aircraft engines requires the use of advanced subgrid-scale (SGS) models able to take into account the main flow features and the turbulence anisotropy. Keeping this goal in mind, this paper reports a LES-dedicated experiment of a pulsatile hot-jet impinging a flat-plate in the presence of a cold turbulent cross-flow. Unlike commonly used academic test cases, this configuration involves different flow features encountered in complex configurations: shear/rotating regions, stagnation point, wall-turbulence, and the propagation of a vortex ring along the wall. This experiment was also designed with the aim to use quantitative and nonintrusive optical diagnostics such as Particle Image Velocimetry, and to easily perform a LES involving a relatively simple geometry and well-controlled boundary conditions. Hence, two eddy-viscosity-based SGS models are investigated: the dynamic Smagorinsky model [M. Germano, U. Piomelli, P. Moin, and W. Cabot, "A dynamic subgrid-scale eddy viscosity model," Phys. Fluids A 3(7), 1760-1765 (1991)] and the σ-model [F. Nicoud, H. B. Toda, O. Cabrit, S. Bose, and J. Lee, "Using singular values to build a subgrid-scale model for large eddy simulations," Phys. Fluids 23(8), 085106 (2011)]. Both models give similar results during the first phase of the experiment. However, it was found that the dynamic Smagorinsky model could not accurately predict the vortex-ring propagation, while the σ-model provides a better agreement with the experimental measurements. Setting aside the implementation of the dynamic procedure (implemented here in its simplest form, i.e., without averaging over homogeneous directions and with clipping of negative values to ensure numerical stability), it is suggested that the mitigated predictions of the dynamic Smagorinsky model are due to the dynamic constant, which strongly depends on the mesh resolution
International Nuclear Information System (INIS)
Zhen, Xudong; Wang, Yang
2013-01-01
Methanol has been recently used as an alternative to conventional fuels for internal combustion engines in order to satisfy some environmental and economical concerns. In this paper, the ignition in a high compression ratio SI (spark ignition) methanol engine was studied by using LES (large eddy simulation) with detailed chemical kinetics. A 21-species, 84-reaction methanol mechanism was adopted to simulate the auto-ignition process of the methanol/air mixture. The MIT (minimum ignition temperature) and MIE (minimum ignition energy) are two important properties for designing safety standards and understanding the ignition process of combustible mixtures. The effects of the flame kernel size, flame kernel temperature and equivalence ratio were also examined on MIT, MIE and IDP (ignition delay period). The methanol mechanism was validated by experimental test. The simulated results showed that the flame kernel size, temperature and energy dramatically affected the values of the MIT, MIE and IDP for a methanol/air mixture, the value of the ignition delay period was not only related to the flame kernel energy, but also to the flame kernel temperature. - Highlights: • We used LES (large eddy simulation) coupled with detailed chemical kinetics to simulate methanol ignition. • The flame kernel size and temperature affected the minimum ignition temperature. • The flame kernel temperature and energy affected the ignition delay period. • The equivalence ratio of methanol–air mixture affected the ignition delay period
Salkhordeh, Sasan; Kimber, Mark
2017-11-01
In order to develop an experimentally validated computational model, turbulent round jets have been studied extensively under both isothermal and non-isothermal conditions using Large Eddy Simulation (LES) methodology. Capturing the near-field physics of a turbulent jet has been a challenge when utilizing LES. To address this concern, the effect of inlet flow profile and turbulent fluctuations on the evolution of both type of jets has been analyzed in detail by performing separate large eddy simulations of the flow in the nozzle upstream of the jet inlet to accurately determine the inlet turbulent spectra. From the precursor simulations, the accurate turbulence fluctuations at the jet nozzle can be sampled and then implement to the inlet boundary of the main jet simulation. Properly specifying the turbulent fluctuations at the jet inlet was found to play a vital role in order to accurately predict key characteristics throughout the computational domain. For isothermal jets, the experimental measurements of Hussein et al. (Journal of Fluid Mechanics. 1994 Jan;258:31-75) has been simulated computationally using LES. The experimental measurement of Mi et al. (Journal of Fluid Mechanics. 2001 Apr;432:91-125) has been chosen for performing LES for a non-isothermal jet at the same Reynolds number and identical temperature difference. The LES results show good agreement for first and higher order statistics of velocities and temperatures in both near field and far-field data.
Energy Technology Data Exchange (ETDEWEB)
Smith, P.J.; Eddings, E.G.; Ring, T.; Thornock, J.; Draper, T.; Isaac, B.; Rezeai, D.; Toth, P.; Wu, Y.; Kelly, K.
2014-08-01
The objective of this task is to produce predictive capability with quantified uncertainty bounds for the heat flux in commercial-scale, tangentially fired, oxy-coal boilers. Validation data came from the Alstom Boiler Simulation Facility (BSF) for tangentially fired, oxy-coal operation. This task brings together experimental data collected under Alstom’s DOE project for measuring oxy-firing performance parameters in the BSF with this University of Utah project for large eddy simulation (LES) and validation/uncertainty quantification (V/UQ). The Utah work includes V/UQ with measurements in the single-burner facility where advanced strategies for O2 injection can be more easily controlled and data more easily obtained. Highlights of the work include: • Simulations of Alstom’s 15 megawatt (MW) BSF, exploring the uncertainty in thermal boundary conditions. A V/UQ analysis showed consistency between experimental results and simulation results, identifying uncertainty bounds on the quantities of interest for this system (Subtask 9.1) • A simulation study of the University of Utah’s oxy-fuel combustor (OFC) focused on heat flux (Subtask 9.2). A V/UQ analysis was used to show consistency between experimental and simulation results. • Measurement of heat flux and temperature with new optical diagnostic techniques and comparison with conventional measurements (Subtask 9.3). Various optical diagnostics systems were created to provide experimental data to the simulation team. The final configuration utilized a mid-wave infrared (MWIR) camera to measure heat flux and temperature, which was synchronized with a high-speed, visible camera to utilize two-color pyrometry to measure temperature and soot concentration. • Collection of heat flux and temperature measurements in the University of Utah’s OFC for use is subtasks 9.2 and 9.3 (Subtask 9.4). Several replicates were carried to better assess the experimental error. Experiments were specifically designed for the
Sullivan, Peter P.; McWilliams, James C.; Melville, W. Kendall
The wind-driven stably stratified mid-latitude oceanic surface turbulent boundary layer is computationally simulated in the presence of a specified surface gravity-wave field. The gravity waves have broad wavenumber and frequency spectra typical of measured conditions in near-equilibrium with the mean wind speed. The simulation model is based on (i) an asymptotic theory for the conservative dynamical effects of waves on the wave-averaged boundary-layer currents and (ii) a boundary-layer forcing by a stochastic representation of the impulses and energy fluxes in a field of breaking waves. The wave influences are shown to be profound on both the mean current profile and turbulent statistics compared to a simulation without these wave influences and forced by an equivalent mean surface stress. As expected from previous studies with partial combinations of these wave influences, Langmuir circulations due to the wave-averaged vortex force make vertical eddy fluxes of momentum and material concentration much more efficient and non-local (i.e. with negative eddy viscosity near the surface), and they combine with the breakers to increase the turbulent energy and dissipation rate. They also combine in an unexpected positive feedback in which breaker-generated vorticity seeds the creation of a new Langmuir circulation and instigates a deep strong intermittent downwelling jet that penetrates through the boundary layer and increases the material entrainment rate at the base of the layer. These wave effects on the boundary layer are greater for smaller wave ages and higher mean wind speeds.
Prospects for the synthesis of large single-crystal diamonds
International Nuclear Information System (INIS)
Khmelnitskiy, R A
2015-01-01
The unique properties of diamond have stimulated the study of and search for its applications in many fields, including optics, optoelectronics, electronics, biology, and electrochemistry. Whereas chemical vapor deposition allows the growth of polycrystalline diamond plates more than 200 mm in diameter, most current diamond application technologies require large-size (25 mm and more) single-crystal diamond substrates or films suitable for the photolithography process. This is quite a challenge, because the largest diamond crystals currently available are 10 mm or less in size. This review examines three promising approaches to fabricating large-size diamond single crystals: growing large-size single crystals, the deposition of heteroepitaxial diamond films on single-crystal substrates, and the preparation of composite diamond substrates. (reviews of topical problems)
Ultra-large single crystals by abnormal grain growth.
Kusama, Tomoe; Omori, Toshihiro; Saito, Takashi; Kise, Sumio; Tanaka, Toyonobu; Araki, Yoshikazu; Kainuma, Ryosuke
2017-08-25
Producing a single crystal is expensive because of low mass productivity. Therefore, many metallic materials are being used in polycrystalline form, even though material properties are superior in a single crystal. Here we show that an extraordinarily large Cu-Al-Mn single crystal can be obtained by abnormal grain growth (AGG) induced by simple heat treatment with high mass productivity. In AGG, the sub-boundary energy introduced by cyclic heat treatment (CHT) is dominant in the driving pressure, and the grain boundary migration rate is accelerated by repeating the low-temperature CHT due to the increase of the sub-boundary energy. With such treatment, fabrication of single crystal bars 70 cm in length is achieved. This result ensures that the range of applications of shape memory alloys will spread beyond small-sized devices to large-scale components and may enable new applications of single crystals in other metallic and ceramics materials having similar microstructural features.Growing large single crystals cheaply and reliably for structural applications remains challenging. Here, the authors combine accelerated abnormal grain growth and cyclic heat treatments to grow a superelastic shape memory alloy single crystal to 70 cm.
Energy Technology Data Exchange (ETDEWEB)
Duchaine, F., E-mail: florent.duchaine@cerfacs.f [CERFACS, 42 av. Coriolis, 31 057 Toulouse Cedex 01 (France); Corpron, A.; Pons, L. [Turbomeca (Safran Group), BP17, 64 511 Bordes Cedex (France); Moureau, V. [Turbomeca (Safran Group), BP17, 64 511 Bordes Cedex (France); CORIA, Site universitaire du Madrillet, BP8, 76 801 Saint Etienne du Rouvray Cedex (France); Nicoud, F. [Unviservite Montpellier II, Place Bataillon, 34 095 Montpellier Cedex 5 (France); Poinsot, T. [IMFT, Avenue Camille Soula, 31 400 Toulouse Cedex (France)
2009-12-15
Although Large Eddy Simulation (LES) is identified today as the most promising method for turbulent flow problems, few applications of LES coupled to heat transfer solvers in solids have been published. This paper describes a coupling strategy of a LES solver and a heat transfer code within solids on parallel architectures. The numerical methods used in both solvers are briefly recalled before discussing the coupling strategy in terms of physical quantities to exchange (fluxes and temperatures), stability and parallel efficiency. The stability study is performed using an amplification matrix analysis on a one-dimensional case and allows the determination and optimization of coupling parameters. The coupled tool is then applied to a cooled turbine blade model where results demonstrate both the efficiency of the parallel implementation and the quality of the results. Coupled and non-coupled simulations are compared to experimental results and discussed in terms of cooling efficiency and flow structures.
Cheng, Wan
2015-06-30
We describe large-eddy simulations of turbulent boundary-layer flow over a flat plate at high Reynolds number in the presence of an unsteady, three-dimensional flow separation/reattachment bubble. The stretched-vortex subgrid-scale model is used in the main flow domain combined with a wall-model that is a two-dimensional extension of that developed by Chung & Pullin (2009). Flow separation and re-attachment of the incoming boundary layer is induced by prescribing wall-normal velocity distribution on the upper boundary of the flow domain that produces an adverse-favorable stream-wise pressure distribution at the wall. The LES predicts the distribution of mean shear stress along the wall including the interior of the separation bubble. Several properties of the separation/reattachment flow are discussed.
Directory of Open Access Journals (Sweden)
B. Maronga
2015-08-01
Full Text Available In this paper we present the current version of the Parallelized Large-Eddy Simulation Model (PALM whose core has been developed at the Institute of Meteorology and Climatology at Leibniz Universität Hannover (Germany. PALM is a Fortran 95-based code with some Fortran 2003 extensions and has been applied for the simulation of a variety of atmospheric and oceanic boundary layers for more than 15 years. PALM is optimized for use on massively parallel computer architectures and was recently ported to general-purpose graphics processing units. In the present paper we give a detailed description of the current version of the model and its features, such as an embedded Lagrangian cloud model and the possibility to use Cartesian topography. Moreover, we discuss recent model developments and future perspectives for LES applications.
Maronga, B.; Gryschka, M.; Heinze, R.; Hoffmann, F.; Kanani-Sühring, F.; Keck, M.; Ketelsen, K.; Letzel, M. O.; Sühring, M.; Raasch, S.
2015-08-01
In this paper we present the current version of the Parallelized Large-Eddy Simulation Model (PALM) whose core has been developed at the Institute of Meteorology and Climatology at Leibniz Universität Hannover (Germany). PALM is a Fortran 95-based code with some Fortran 2003 extensions and has been applied for the simulation of a variety of atmospheric and oceanic boundary layers for more than 15 years. PALM is optimized for use on massively parallel computer architectures and was recently ported to general-purpose graphics processing units. In the present paper we give a detailed description of the current version of the model and its features, such as an embedded Lagrangian cloud model and the possibility to use Cartesian topography. Moreover, we discuss recent model developments and future perspectives for LES applications.
Guda, Venkata Subba Sai Satish
There have been several advancements in the aerospace industry in areas of design such as aerodynamics, designs, controls and propulsion; all aimed at one common goal i.e. increasing efficiency --range and scope of operation with lesser fuel consumption. Several methods of flow control have been tried. Some were successful, some failed and many were termed as impractical. The low Reynolds number regime of 104 - 105 is a very interesting range. Flow physics in this range are quite different than those of higher Reynolds number range. Mid and high altitude UAV's, MAV's, sailplanes, jet engine fan blades, inboard helicopter rotor blades and wind turbine rotors are some of the aerodynamic applications that fall in this range. The current study deals with using dynamic roughness as a means of flow control over a NACA 0012 airfoil at low Reynolds numbers. Dynamic 3-D surface roughness elements on an airfoil placed near the leading edge aim at increasing the efficiency by suppressing the effects of leading edge separation like leading edge stall by delaying or totally eliminating flow separation. A numerical study of the above method has been carried out by means of a Large Eddy Simulation, a mathematical model for turbulence in Computational Fluid Dynamics, owing to the highly unsteady nature of the flow. A user defined function has been developed for the 3-D dynamic roughness element motion. Results from simulations have been compared to those from experimental PIV data. Large eddy simulations have relatively well captured the leading edge stall. For the clean cases, i.e. with the DR not actuated, the LES was able to reproduce experimental results in a reasonable fashion. However DR simulation results show that it fails to reattach the flow and suppress flow separation compared to experiments. Several novel techniques of grid design and hump creation are introduced through this study.
Energy Technology Data Exchange (ETDEWEB)
Lee, Tae Hun; Jee, Dong Hyun; Cho, Chan Hee; Kim, In Chul [KHNP Central Research Institute, Daejeon (Korea, Republic of)
2017-02-15
Eddy current array (ECA) technology provides the ability to electronically scan without mechanical scanning for a footprint of probe that consists of several eddy current coils arranged side-by-side and two dimensionally. Compared to single-coil eddy current technology, the ECA technology has a higher inspection speed and reliability because a large area can be covered in a single-probe pass and the obtained images can facilitate data interpretation. In this study, we developed an eddy current array probe with 2×16 coil arrays and a multiplexer that can select transmit-receive coils sequentially and operate in transmit-receive mode. Surface inspection was performed using this probe for specimens that had various flaws and the characteristics of transmit-receive mode ECA technology was studied through an analysis of the obtained eddy current signals and C-scan images.
Pedersen, J. G.; Malinowski, S. P.
2015-12-01
Improved understanding of processes related to the evolution of stratocumulus clouds is needed, e.g. for more accurate prediction of weather and climate. As a supplement to measurements, numerical simulation is a widely used and valuable tool in stratocumulus studies. However, due to limited computational resources, simulations are often run at resolutions too coarse to account for the smallest eddies involved in e.g. the entrainment process, and possibly in computational domains too small to contain the largest relevant flow structures in the boundary layer. Here we investigate how changes in domain size and spatial resolution affect key parameters such as cloud cover and liquid water path in large-eddy simulations of the stratocumulus-topped boundary layer (STBL). Details of the entrainment process and subsequent mixing within the STBL is studied by adding a passive scalar to the flow. We use a modified version of the 3D nonhydrostatic anelastic Eulerian-semi-Lagrangian (EULAG) model, and perform both simulations including an explicit sub-grid scale turbulence model and simulations in which the effect of unresolved turbulence is accounted for implicitly by the applied numerical scheme. The simulations are based on measurements from the second Dynamics and Chemistry of Marine Stratocumulus (DYCOMS-II) and Physics of Stratocumulus Top (POST) field campaigns. We show how refining the horizontal resolution facilitate development of small-scale turbulence in the cloud-top region, which enhance entrainment and tends to dissolve the cloud. Refining the vertical grid spacing, on the other hand, allows for stronger vertical temperature gradients which tend to strengthen the capping inversion and inhibit entrainment. The statistics of the flow and the evolution of the cloud is found to be more sensitive to changes in resolution than to changes in domain size. We do however observe still larger flow structures as the horizontal extent of the computational domain is
Khani, Sina; Porté-Agel, Fernando
2017-12-01
The performance of the modulated-gradient subgrid-scale (SGS) model is investigated using large-eddy simulation (LES) of the neutral atmospheric boundary layer within the weather research and forecasting model. Since the model includes a finite-difference scheme for spatial derivatives, the discretization errors may affect the simulation results. We focus here on understanding the effects of finite-difference schemes on the momentum balance and the mean velocity distribution, and the requirement (or not) of the ad hoc canopy model. We find that, unlike the Smagorinsky and turbulent kinetic energy (TKE) models, the calculated mean velocity and vertical shear using the modulated-gradient model, are in good agreement with Monin-Obukhov similarity theory, without the need for an extra near-wall canopy model. The structure of the near-wall turbulent eddies is better resolved using the modulated-gradient model in comparison with the classical Smagorinsky and TKE models, which are too dissipative and yield unrealistic smoothing of the smallest resolved scales. Moreover, the SGS fluxes obtained from the modulated-gradient model are much smaller near the wall in comparison with those obtained from the regular Smagorinsky and TKE models. The apparent inability of the LES model in reproducing the mean streamwise component of the momentum balance using the total (resolved plus SGS) stress near the surface is probably due to the effect of the discretization errors, which can be calculated a posteriori using the Taylor-series expansion of the resolved velocity field. Overall, we demonstrate that the modulated-gradient model is less dissipative and yields more accurate results in comparison with the classical Smagorinsky model, with similar computational costs.
Yucel, M.; Sueishi, T.; Inagaki, A.; Kanda, M.
2017-12-01
`Great Garuda' project is an eagle-shaped offshore structure with 17 artificial islands. This project has been designed for the coastal protection and land reclamation of Jakarta due to catastrophic flooding in the city. It offers an urban generation for 300.000 inhabitants and 600.000 workers in addition to its water safety goal. A broad coalition of Indonesian scientists has criticized the project for being negative impacts on the surrounding environment. Despite the vast research by Indonesian scientist on maritime environment, studies on wind and thermal environment over built-up area are still lacking. However, the construction of the various islands off the coast may result changes in wind patterns and thermal environment due to the alteration of the coastline and urbanization in the Jakarta Bay. Therefore, it is important to understand the airflow within the urban canopy in case of unpredictable gust events. These gust events may occur through the closely-packed high-rise buildings and pedestrians may be harmed from such gusts. Accordingly, we used numerical simulations to investigate the impact of the sea wall and the artificial islands over built-up area and, the intensity of wind gusts at the pedestrian level. Considering the fact that the size of turbulence organized structure sufficiently large computational domain is required. Therefore, a 19.2km×4.8km×1.0 km simulation domain with 2-m resolution in all directions was created to explicitly resolve the detailed shapes of buildings and the flow at the pedestrian level. This complex computation was accomplished by implementing a large-eddy simulation (LES) model. Two case studies were conducted considering the effect of realistic surface roughness and upward heat flux. Case_1 was conducted based on the current built environment and Case_2 for investigating the effect of the project on the chosen coastal region of the city. Fig.1 illustrates the schematic of the large-eddy simulation domains of two cases
Automated single particle detection and tracking for large microscopy datasets.
Wilson, Rhodri S; Yang, Lei; Dun, Alison; Smyth, Annya M; Duncan, Rory R; Rickman, Colin; Lu, Weiping
2016-05-01
Recent advances in optical microscopy have enabled the acquisition of very large datasets from living cells with unprecedented spatial and temporal resolutions. Our ability to process these datasets now plays an essential role in order to understand many biological processes. In this paper, we present an automated particle detection algorithm capable of operating in low signal-to-noise fluorescence microscopy environments and handling large datasets. When combined with our particle linking framework, it can provide hitherto intractable quantitative measurements describing the dynamics of large cohorts of cellular components from organelles to single molecules. We begin with validating the performance of our method on synthetic image data, and then extend the validation to include experiment images with ground truth. Finally, we apply the algorithm to two single-particle-tracking photo-activated localization microscopy biological datasets, acquired from living primary cells with very high temporal rates. Our analysis of the dynamics of very large cohorts of 10 000 s of membrane-associated protein molecules show that they behave as if caged in nanodomains. We show that the robustness and efficiency of our method provides a tool for the examination of single-molecule behaviour with unprecedented spatial detail and high acquisition rates.
Energy Technology Data Exchange (ETDEWEB)
Selle, L.
2004-01-15
Swirl flows exhibit a large variety of topologies, depending on the ratio of the flux axial momentum to the axial flux of tangential momentum: this ratio is called swirl number. Above a given critical value for the swirl number, the pressure gradient reverses the flow on the axis of rotation. This central recirculation zone is used in turbines for flame stabilization. And yet, reacting-swirled flows can exhibit combustion instabilities resulting from the coupling between acoustics and unsteady heat release. Combustion instabilities can lead to loss of control or even complete destruction of the system. Their prediction is impossible with standard engineering tools. The work presented here investigates the capabilities of numerical research tools for the prediction of combustion instabilities. Large-Eddy Simulation (LES) is implemented in a code solving the Navier-Stokes equations for compressible-multi-components fluids (code AVBP developed at CERFACS). This method takes into account for the major ingredients of combustion instabilities such as acoustics and flame / vortex interaction. The LES methodology is validated in the swirled flow from a complex industrial burner (SIEMENS PG). Both reactive and non-reactive regimes are successfully compared with experimental data in terms of mean temperature and mean and RMS velocities. Experimental measurements were performed at the university of Karlsruhe (Germany). A detailed analysis of the acoustics and its interaction with the flame front is performed with the code AVSP, also developed at CERFACS. (author)
Dominguez, Anthony; Kleissl, Jan P.; Luvall, Jeffrey C.
2011-01-01
Large-eddy Simulation (LES) was used to study convective boundary layer (CBL) flow through suburban regions with both large and small scale heterogeneities in surface temperature. Constant remotely sensed surface temperatures were applied at the surface boundary at resolutions of 10 m, 90 m, 200 m, and 1 km. Increasing the surface resolution from 1 km to 200 m had the most significant impact on the mean and turbulent flow characteristics as the larger scale heterogeneities became resolved. While previous studies concluded that scales of heterogeneity much smaller than the CBL inversion height have little impact on the CBL characteristics, we found that further increasing the surface resolution (resolving smaller scale heterogeneities) results in an increase in mean surface heat flux, thermal blending height, and potential temperature profile. The results of this study will help to better inform sub-grid parameterization for meso-scale meteorological models. The simulation tool developed through this study (combining LES and high resolution remotely sensed surface conditions) is a significant step towards future studies on the micro-scale meteorology in urban areas.
Ma, Yulong; Liu, Heping
2017-12-01
Atmospheric flow over complex terrain, particularly recirculation flows, greatly influences wind-turbine siting, forest-fire behaviour, and trace-gas and pollutant dispersion. However, there is a large uncertainty in the simulation of flow over complex topography, which is attributable to the type of turbulence model, the subgrid-scale (SGS) turbulence parametrization, terrain-following coordinates, and numerical errors in finite-difference methods. Here, we upgrade the large-eddy simulation module within the Weather Research and Forecasting model by incorporating the immersed-boundary method into the module to improve simulations of the flow and recirculation over complex terrain. Simulations over the Bolund Hill indicate improved mean absolute speed-up errors with respect to previous studies, as well an improved simulation of the recirculation zone behind the escarpment of the hill. With regard to the SGS parametrization, the Lagrangian-averaged scale-dependent Smagorinsky model performs better than the classic Smagorinsky model in reproducing both velocity and turbulent kinetic energy. A finer grid resolution also improves the strength of the recirculation in flow simulations, with a higher horizontal grid resolution improving simulations just behind the escarpment, and a higher vertical grid resolution improving results on the lee side of the hill. Our modelling approach has broad applications for the simulation of atmospheric flows over complex topography.
Mihaescu, Mihai; Murugappan, Shanmugam; Kalra, Maninder; Khosla, Sid; Gutmark, Ephraim
2008-07-19
Computational fluid dynamics techniques employing primarily steady Reynolds-Averaged Navier-Stokes (RANS) methodology have been recently used to characterize the transitional/turbulent flow field in human airways. The use of RANS implies that flow phenomena are averaged over time, the flow dynamics not being captured. Further, RANS uses two-equation turbulence models that are not adequate for predicting anisotropic flows, flows with high streamline curvature, or flows where separation occurs. A more accurate approach for such flow situations that occur in the human airway is Large Eddy Simulation (LES). The paper considers flow modeling in a pharyngeal airway model reconstructed from cross-sectional magnetic resonance scans of a patient with obstructive sleep apnea. The airway model is characterized by a maximum narrowing at the site of retropalatal pharynx. Two flow-modeling strategies are employed: steady RANS and the LES approach. In the RANS modeling framework both k-epsilon and k-omega turbulence models are used. The paper discusses the differences between the airflow characteristics obtained from the RANS and LES calculations. The largest discrepancies were found in the axial velocity distributions downstream of the minimum cross-sectional area. This region is characterized by flow separation and large radial velocity gradients across the developed shear layers. The largest difference in static pressure distributions on the airway walls was found between the LES and the k-epsilon data at the site of maximum narrowing in the retropalatal pharynx.
Energy Technology Data Exchange (ETDEWEB)
Han, Wang [Technical Univ. of Darmstadt (Germany); Wang, Haiou [Univ. of New South Wales, Sydney, NSW (Australia); Kuenne, Guido [Technical Univ. of Darmstadt (Germany); Hawkes, Evatt R. [Univ. of New South Wales, Sydney, NSW (Australia); Chen, Jacqueline H. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Janicka, Johannes [Technical Univ. of Darmstadt (Germany); Hasse, Christian [Technical Univ. of Darmstadt (Germany)
2017-12-01
This supplementary material complements the article and provides additional information to the chemical mechanism used in this work, boundary conditions for the LES con guration and table generation, comparisons of axial velocities, results from a LES/ nite-rate chemistry (FRC) approach, and results from the LES/DTF/SPF approach with a particular chemistry table that is generated using a single strained premixed amelet solution.
2011-09-01
region is the locus of large turbulent kinetic energy production and Reynolds stresses. Günther and Rohr [2] studied streamwise structures and...Reynolds stress occur due to the calculation of this term in a Cartesian frame rather than in a boundary fitted frame. Günther and Rohr [2...production in flow over a wavy wall, Experiments in Fluids, 20, (1996), 257-265. [2] A. Günther and P.R. von Rohr , Large-scale structures in a developed
Energy Technology Data Exchange (ETDEWEB)
Boivin, M.
1996-12-31
An investigation of dilute dispersed turbulent two-way coupling two-phase flows has been undertaken with the hemp of Direct Numerical Simulations (DNS) on stationary-forced homogeneous isotropic turbulence. The particle relaxation times range from the Kolmogorov to the Eulerian time scales and the load goes up to 1. The analyses is made within the Eulerian-model framework, enhanced by the National Hydraulics Laboratory Lagrangian approach, which is extended here to include inverse coupling and Reynolds effects. Particles are found to dissipate on average turbulence energy. The spectra of the fluid-particle exchange energy rate show that small particles drag the fluid at high wavenumbers, which explains the observed relative increase of small scale energy. A spectral analysis points as responsible mechanism the transfer of fluid-particle covariance by fluid turbulence. Regarding the modeling, he Reynolds dependency and the load contribution are found crucial for good predictions of the dispersed phase moments. A study for practical applications with Large Eddy Simulations (LES) has yielded: LES can be used two-way coupling two-phase flows provided that a dynamic mixed sub-grid scale model is adopted and the particle relaxation time is larger than the cutoff filter one; the inverse coupling should depend more on the position of this relaxation time with respect to the Eulerian one than to the Kolmogorov one. (author) 67 refs.
Yang, Jianzhi; Anderson, William
2017-11-01
Modeling of turbulent flow over complex topography is of great interest in many engineering applications. However, accurate modeling of turbulent flow over complex topography still presents major technical challenges. The immersed boundary method (IBM) has been widely used to deal with the arbitrary domain geometry, due to its advantage of keeping the computation grid and, thus, preservation of the original numerical formulation. But IBM can introduce wall-modeling errors since the terrain and computational mesh points are not collocated. Terrain-following coordinate transformation, however, obviates wall-modeling errors. In this study, an existing large-eddy simulation (LES) code has been generalized for coordination transformation in the wall-normal direction, and applied to flow over a series of topographic configurations (flat surface, as a baseline for comparison, spanwise ridge, and an aeolian dune digital elevation map). Validation of simulation data has, firstly, been performed via comparison with first- and second-order data experimental data. Secondly, for the three-dimensional hill and dune cases, an LES simulation with IBM will be also performed. The implications of these results for physics-based, aeolian morphodynamic modeling will be discussed.
Directory of Open Access Journals (Sweden)
Xin Li
2017-06-01
Full Text Available The sensible heat is an important component in surface energy partitioning over the land surface. This paper compared the sensible heat fluxes measured by a large aperture scintillometer system (LAS and an eddy covariance system (EC over a rice paddy with a patch of mulberry seedlings in the east China coastal region during the period from 13 September–11 October 2015. During the observation period, easterlies and northerlies prevailed, and 96% easterlies and northerlies had a speed of 0–6 m s−1. The sensible heat fluxes measured by the two systems reflected that the value of HLAS generally was inclined to be larger than HEC with the average difference of 20.30 W m−2, and the uncertainty for two instruments was less than 17 W m−2. Analysis of the average footprint resulted that the mulberry seedling field always had a higher contribution to LAS than that to EC, which could be the reason that HLAS was always larger than HEC. During the days when the contributions of the mulberry seedling field to the two systems were close to each other, the sensible heat flux measurements of the two instruments were similar. The case analysis on typical sunny days showed that there would be larger sensible heat fluxes over the mulberry seedling field than in the rice paddy field especially under larger net radiation conditions.
Energy Technology Data Exchange (ETDEWEB)
Xiao, Heng [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland Wash.; Endo, Satoshi [Brookhaven National Laboratory, Upton N. Y.; Wong, May [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland Wash.; Skamarock, William C. [National Center for Atmospheric Research, Boulder Colo.; Klemp, Joseph B. [National Center for Atmospheric Research, Boulder Colo.; Fast, Jerome D. [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland Wash.; Gustafson, William I. [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland Wash.; Vogelmann, Andrew M. [Brookhaven National Laboratory, Upton N. Y.; Wang, Hailong [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland Wash.; Liu, Yangang [Brookhaven National Laboratory, Upton N. Y.; Lin, Wuyin [Brookhaven National Laboratory, Upton N. Y.
2015-10-29
Yamaguchi and Feingold (2012) note that the cloud fields in their Weather Research and Forecasting (WRF) large-eddy simulations (LESs) of marine stratocumulus exhibit a strong sensitivity to time stepping choices. In this study, we reproduce and analyze this sensitivity issue using two stratocumulus cases, one marine and one continental. Results show that (1) the sensitivity is associated with spurious motions near the moisture jump between the boundary layer and the free atmosphere, and (2) these spurious motions appear to arise from neglecting small variations in water vapor mixing ratio (qv) in the pressure gradient calculation in the acoustic substepping portion of the integration procedure. We show that this issue is remedied in the WRF dynamical core by replacing the prognostic equation for the potential temperature θ with one for the moist potential temperature θm=θ(1+1.61qv), which allows consistent treatment of moisture in the calculation of pressure during the acoustic substeps. With this modification, the spurious motions and the sensitivity to the time stepping settings (i.e., the dynamic time step length and number of acoustic substeps) are eliminated in both of the example stratocumulus cases. This modification improves the applicability of WRF for LES applications, and possibly other models using similar dynamical core formulations, and also permits the use of longer time steps than in the original code.
Hernandez Perez, Francisco E.; Im, Hong G.; Lee, Bok Jik; Fancello, Alessio; Donini, Andrea; van Oijen, Jeroen A.; de Goey, L. Philip H.
2017-11-01
Large eddy simulations (LES) of a turbulent premixed jet flame in a confined chamber are performed employing the flamelet-generated manifold (FGM) method for tabulation of chemical kinetics and thermochemical properties, as well as the OpenFOAM framework for computational fluid dynamics. The burner has been experimentally studied by Lammel et al. (2011) and features an off-center nozzle, feeding a preheated lean methane-air mixture with an equivalence ratio of 0.71 and mean velocity of 90 m/s, at 573 K and atmospheric pressure. Conductive heat loss is accounted for in the FGM tabulation via burner-stabilized flamelets and the subgrid-scale (SGS) turbulence-chemistry interaction is modeled via presumed filtered density functions. The impact of heat loss inclusion as well as SGS modeling for both the SGS stresses and SGS variance of progress variable on the numerical results is investigated. Comparisons of the LES results against measurements show a significant improvement in the prediction of temperature when heat losses are incorporated into FGM. While further enhancements in the LES results are accomplished by using SGS models based on transported quantities and/or dynamically computed coefficients as compared to the Smagorinsky model, heat loss inclusion is more relevant. This research was sponsored by King Abdullah University of Science and Technology (KAUST) and made use of computational resources at KAUST Supercomputing Laboratory.
Hernandez Perez, Francisco E.
2017-01-05
Large eddy simulations of a turbulent premixed jet flame in a confined chamber were conducted using the flamelet-generated manifold technique for chemistry tabulation. The configuration is characterized by an off-center nozzle having an inner diameter of 10 mm, supplying a lean methane-air mixture with an equivalence ratio of 0.71 and a mean velocity of 90 m/s, at 573 K and atmospheric pressure. Conductive heat loss is accounted for in the manifold via burner-stabilized flamelets and the subgrid-scale (SGS) turbulencechemistry interaction is modeled via presumed probability density functions. Comparisons between numerical results and measured data show that a considerable improvement in the prediction of temperature is achieved when heat losses are included in the manifold, as compared to the adiabatic one. Additional improvement in the temperature predictions is obtained by incorporating radiative heat losses. Moreover, further enhancements in the LES predictions are achieved by employing SGS models based on transport equations, such as the SGS turbulence kinetic energy equation with dynamic coefficients. While the numerical results display good agreement up to a distance of 4 nozzle diameters downstream of the nozzle exit, the results become less satisfactory along the downstream, suggesting that further improvements in the modeling are required, among which a more accurate model for the SGS variance of progress variable can be relevant.
Directory of Open Access Journals (Sweden)
S. Ghosh
Full Text Available Many Large Eddy Simulation (LES models use the classic Kessler parameterisation either as it is or in a modified form to model the process of cloud water autoconversion into precipitation. The Kessler scheme, being linear, is particularly useful and is computationally straightforward to implement. However, a major limitation with this scheme lies in its inability to predict different autoconversion rates for maritime and continental clouds. In contrast, the Berry formulation overcomes this difficulty, although it is cubic. Due to their different forms, it is difficult to match the two solutions to each other. In this paper we single out the processes of cloud conversion and accretion operating in a deep model cloud and neglect the advection terms for simplicity. This facilitates exact analytical integration and we are able to derive new expressions for the time of onset of precipitation using both the Kessler and Berry formulations. We then discuss the conditions when the two schemes are equivalent. Finally, we also critically examine the process of droplet evaporation within the framework of the classic Kessler scheme. We improve the existing parameterisation with an accurate estimation of the diffusional mass transport of water vapour. We then demonstrate the overall robustness of our calculations by comparing our results with the experimental observations of Beard and Pruppacher, and find excellent agreement.
Key words. Atmospheric composition and structure · Cloud physics and chemistry · Pollution · Meteorology and atmospheric dynamics · Precipitation
International Nuclear Information System (INIS)
Han, Hui; Balcom, Bruce J
2011-01-01
Magnetic resonance imaging (MRI) measurements inside cylindrical metal structures have recently been proposed and form the basis for new high-pressure MRI studies. The critical problem for MRI inside cylindrical metal structures is significant eddy currents induced by the switched magnetic field gradients, which usually corrupt spatial and motion encoding without appropriate correction. In this work a so-called standard SPRITE (single point ramped imaging with T 1 enhancement) technique is applied for imaging inside cylindrical metal structures. We show that the standard SPRITE technique is fundamentally immune to large-scale eddy current effects and yields artifact-free high-quality images with no eddy current correction required. Standard SPRITE image acquisition avoids the complications involved in the measurement and compensation of eddy current effects for MRI with cylindrical metal structures. This work is a substantial advance toward the extension of MRI to new challenging systems, which are of practical importance
Research status of large mode area single polarization active fiber
Xiao, Chun; Zhang, Ge; Yang, Bin-hua; Cheng, Wei-feng; Gu, Shao-yi
2018-03-01
As high power fiber laser used more and more widely, to increase the output power of fiber laser and beam quality improvement have become an important goal for the development of high power fiber lasers. The use of large mode fiber is the most direct and effective way to solve the nonlinear effect and fiber damage in the fiber laser power lifting process. In order to reduce the effect of polarization of the fiber laser system, the study found that when introduces a birefringence in the single-mode fiber, the polarization state changes caused by the birefringence is far greater than the random polarization state changes, then the external disturbance is completely submerged, finally the polarization can be controlled and stabilized. Through the fine design of the fiber structure, if the birefringence is high enough to achieve the separation of the two polarization states, the fiber will have a different cut-off mechanism to eliminate polarization which is not need, which will realize single mode single polarization transmission in a band. In this paper, different types of single polarization fiber design are presented and the application of these fibers are also discussed.
Energy Technology Data Exchange (ETDEWEB)
Bauer, Georg; Gamnitzer, Peter [Institute for Computational Mechanics, Technische Universität München, Boltzmannstr. 15, 85747 Garching (Germany); Gravemeier, Volker, E-mail: vgravem@lnm.mw.tum.de [Institute for Computational Mechanics, Technische Universität München, Boltzmannstr. 15, 85747 Garching (Germany); Emmy Noether Research Group “Computational Multiscale Methods for Turbulent Combustion”, Technische Universität München, Boltzmannstr. 15, 85747 Garching (Germany); Wall, Wolfgang A. [Institute for Computational Mechanics, Technische Universität München, Boltzmannstr. 15, 85747 Garching (Germany)
2013-10-15
Highlights: •We present a computational method for coupled multi-ion transport in turbulent flow. •The underlying formulation is a variational multiscale finite element method. •It is combined with the isogeometric concept for electrochemical systems. •Coupled multi-ion transport in fully turbulent Taylor–Couette flow is simulated. •This example is an important model problem for rotating cylinder electrodes. -- Abstract: Electrochemical processes, such as electroplating of large items in galvanic baths, are often coupled to turbulent flow. In this study, we propose an isogeometric residual-based variational multiscale finite element method for multi-ion transport in dilute electrolyte solutions under turbulent flow conditions. In other words, this means that the concepts of isogeometric discretization and variational multiscale methods are successfully combined for developing a method capable of simulating the challenging problem of coupled multi-ion transport in turbulent flow. We present a comprehensive three-dimensional computational method taking into account, among others, coupled convection–diffusion-migration equations subject to an electroneutrality constraint in combination with phenomenological electrode-kinetics modeling. The electrochemical subproblem is one-way coupled to turbulent incompressible flow via convection. Ionic mass transfer in turbulent Taylor–Couette flow is investigated, representing an important model problem for rotating-cylinder-electrode configurations. Multi-ion transport as considered here is an example for mass transport at high Schmidt number (Sc=1389). An isogeometric discretization is especially advantageous for the present problem, since (i) curved boundaries can be represented exactly, and (ii) it has been proven to provide very accurate solutions for flow quantities when being applied in combination with residual-based variational multiscale modeling. We demonstrate that the method is robust and provides
Hellsten, Antti; Luukkonen, Sofia-M.; Steinfeld, Gerald; Kanani-Sühring, Farah; Markkanen, Tiina; Järvi, Leena; Lento, Juha; Vesala, Timo; Raasch, Siegfried
2015-11-01
A footprint algorithm, based on a Lagrangian stochastic (LS) model embedded into a parallelized large-eddy simulation (LES) model, is used for the evaluation of flux and concentration footprints of passive scalars in flow in and above an urban-like canopy layer of a neutrally stratified 440 m deep boundary layer. The urban-like canopy layer is realized by an aligned array of cuboids whose height H is 40 m. The canopy flow involves strong small-scale inhomogeneities although it is homogeneous at the large scale. The source height is 1 m (0.025 H) above the ground in the street canyons, roughly mimicking traffic emissions. Footprints are evaluated for four heights from 0.25 H to 2.5 H, and for up to eight different horizontal sensor positions per measurement height, comprising sensor positions inside as well as outside of the street canyon that extend perpendicular to the mean wind direction. The LES-LS footprints are compared with footprints estimated by a conventional model (Kormann and Meixner, in Boundary-Layer Meteorol 99:207-224, 2001). It becomes evident that the local heterogeneity of the flow has a considerable impact on flux and concentration footprints. As expected, footprints for measurements within and right above the canopy layer show complex and completely different footprint shapes compared to the ellipsoidal shape obtained from conventional footprint models that assume horizontal homogeneity of the turbulent flow as well as the sources of passive scalars. Our results show the importance of street-canyon flow and turbulence for the vertical mixing of scalar concentration.
Directory of Open Access Journals (Sweden)
A. H. Berner
2011-10-01
Full Text Available Large-eddy simulations of a pocket of open cells (POC based on VOCALS Regional Experiment (REx NSF C-130 Research Flight 06 are analyzed and compared with aircraft observations. A doubly-periodic domain 192 km × 24 km with 125 m horizontal and 5 m vertical grid spacing near the capping inversion is used. The POC is realized in the model as a fixed 96 km wide region of reduced cloud droplet number concentration (N_{c} based on observed values; initialization and forcing are otherwise uniform across the domain. The model reproduces aircraft-observed differences in boundary-layer structure and precipitation organization between a well-mixed overcast region and a decoupled POC with open-cell precipitating cumuli, although the simulated cloud cover is too large in the POC. A sensitivity study in which N_{c} is allowed to advect following the turbulent flow gives nearly identical results over the 16 h length of the simulation (which starts at night and goes into the next afternoon.
The simulated entrainment rate is nearly a factor of two smaller in the less turbulent POC than in the more turbulent overcast region. However, the inversion rises at a nearly uniform rate across the domain because powerful buoyancy restoring forces counteract horizontal inversion height gradients. A secondary circulation develops in the model that diverts subsiding free-tropospheric air away from the POC into the surrounding overcast region, counterbalancing the weaker entrainment in the POC with locally weaker subsidence.
Visualization and analysis of eddies in a global ocean simulation
Energy Technology Data Exchange (ETDEWEB)
Williams, Sean J [Los Alamos National Laboratory; Hecht, Matthew W [Los Alamos National Laboratory; Petersen, Mark [Los Alamos National Laboratory; Strelitz, Richard [Los Alamos National Laboratory; Maltrud, Mathew E [Los Alamos National Laboratory; Ahrens, James P [Los Alamos National Laboratory; Hlawitschka, Mario [UC DAVIS; Hamann, Bernd [UC DAVIS
2010-10-15
Eddies at a scale of approximately one hundred kilometers have been shown to be surprisingly important to understanding large-scale transport of heat and nutrients in the ocean. Due to difficulties in observing the ocean directly, the behavior of eddies below the surface is not very well understood. To fill this gap, we employ a high-resolution simulation of the ocean developed at Los Alamos National Laboratory. Using large-scale parallel visualization and analysis tools, we produce three-dimensional images of ocean eddies, and also generate a census of eddy distribution and shape averaged over multiple simulation time steps, resulting in a world map of eddy characteristics. As expected from observational studies, our census reveals a higher concentration of eddies at the mid-latitudes than the equator. Our analysis further shows that mid-latitude eddies are thicker, within a range of 1000-2000m, while equatorial eddies are less than 100m thick.
Single incision pediatric endoscopic surgery: advantages of relatively large incision
International Nuclear Information System (INIS)
Yilmaz, E.; Afsarlar, E.; Karaman, I.
2015-01-01
To describe Single Incision Pediatric Endoscopic Surgery (SIPES) performed on children with various diagnoses, emphasizing its advantages. Study Design: An observational case series. Place and Duration of Study: Department of Pediatric Surgery, Dr. Sami Ulus Maternity and Child Health Hospital, Ankara, Turkey, from January 2011 to November 2014. Methodology: A review of patient charts was conducted in which SIPES was preferred as the surgical procedure. Patient demographics, operative details, operative time, clinical outcomes, postoperative pain and cosmesis were analyzed. Results: SIPES was performed on 45 patients (21 girls, 24 boys). Thirty-three appendectomies, 5 varicocelectomies, 3 oophorectomies, 2 ovarian and one paratubal cyst excision, and one fallopian tube excision were performed. All except one procedures were performed through our standard 2cm umbilical vertical or smile incision. In 18 cases, abdominal irrigation/aspiration was easily performed through the existing larger incision, as is done with open surgical technique. None of the patients had early postoperative shoulder/back pain since complete disinflation of CO/sub 2/ could be ensured. All of the patients/parents were satisfied with the cosmesis. Conclusion: SIPES has the advantages of limiting the surgical scar to within the umbilicus and providing easy disinflation of CO/sub 2/, allowing intraabdominal cleaning and extraction of large volume tissue samples through a single large umbilical incision. (author)
Imaging large cohorts of single ion channels and their activity
Directory of Open Access Journals (Sweden)
Katia eHiersemenzel
2013-09-01
Full Text Available As calcium is the most important signaling molecule in neurons and secretory cells, amongst many other cell types, it follows that an understanding of calcium channels and their regulation of exocytosis is of vital importance. Calcium imaging using calcium dyes such as Fluo3, or FRET-based dyes that have been used widely has provided invaluable information, which combined with modeling has estimated the sub-types of channels responsible for triggering the exocytotic machinery as well as inferences about the relative distances away from vesicle fusion sites these molecules adopt. Importantly, new super-resolution microscopy techniques, combined with novel Ca2+ indicators and imaginative imaging approaches can now define directly the nanoscale locations of very large cohorts of single channel molecules in relation to single vesicles. With combinations of these techniques the activity of individual channels can be visualized and quantified using novel Ca2+ indicators. Fluorescently labeled specific channel toxins can also be used to localize endogenous assembled channel tetramers. Fluorescence lifetime imaging microscopy and other single-photon-resolution spectroscopic approaches offer the possibility to quantify protein-protein interactions between populations of channels and the SNARE protein machinery for the first time. Together with simultaneous electrophysiology, this battery of quantitative imaging techniques has the potential to provide unprecedented detail describing the locations, dynamic behaviours, interactions and conductance activities of many thousands of channel molecules and vesicles in living cells.
Ideas for future large single dish radio telescopes
Kärcher, Hans J.; Baars, Jacob W. M.
2014-07-01
The existing large single dish radio telescopes of the 100m class (Effelsberg, Green Bank) were built in the 1970s and 1990s. With some active optics they work now down to 3 millimeter wavelength where the atmospheric quality of the site is also a limiting factor. Other smaller single dish telescopes (50m LMT Mexico, 30m IRAM Spain) are located higher and reach sub-millimeter quality, and the much smaller 12m antennas of the ALMA array reach at a very high site the Terahertz region. They use advanced technologies as carbon fiber structures and flexible body control. We review natural limits to telescope design and use the examples of a number of telescopes for an overview of the available state-of-the-art in design, engineering and technologies. Without considering the scientific justification we then offer suggestions to realize ultimate performance of huge single dish telescopes (up to 160m). We provide an outlook on design options, technological frontiers and cost estimates.
Single sided tomography of extremely large dense objects
Energy Technology Data Exchange (ETDEWEB)
Thoe, R.S.
1993-03-24
One can envision many circumstances where radiography could be valuable but is frustrated by the geometry of the object to be radiographed. For example, extremely large objects, the separation of rocket propellants from the skin of solid fuel rocket motor, the structural integrity of an underground tank or hull of a ship, the location of buried objects, inspection of large castings etc. The author has been investigating ways to do this type of radiography and as a result has developed a technique which can be used to obtain three dimensional radiographs using Compton scattered radiation from a monochromatic source and a high efficiency, high resolution germanium spectrometer. This paper gives specific details of the reconstruction technique and presents the results of numerous numerical simulations and compares these simulations to spectra obtained in the laboratory. In addition the author presents the results of calculations made for the development of an alternative single sided radiography technique which will permit inspection of the interior of large objects. As a benchmark the author seeks to obtain three dimensional images with a resolution of about one cubic centimeter in a concrete cube 30 centimeters on a side. Such a device must use photons of very high energy. For example 30 cm of concrete represents about 15 mean free paths for photons of 100 keV, whereas at 1 MeV the attenuation is down to about five mean free paths. At these higher energies Compton scattering becomes much more probable. Although this would appear to be advantageous for single sided imaging techniques, such techniques are hampered by two side effects. In this paper the results are given of numerous Monte Carlo calculations detailing the extent of the multiple scattering and the feasibility of a variety of imaging schemes is explored.
Energy Technology Data Exchange (ETDEWEB)
Mirocha, J. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kosovic, B. [National Center for Atmospheric Research, Boulder, CO (United States); Aitken, M. L. [Univ. of Colorado, Boulder, CO (United States); Lundquist, J. K. [Univ. of Colorado, Boulder, CO (United States); National Renewable Energy Lab., Golden, CO (United States)
2014-01-10
A generalized actuator disk (GAD) wind turbine parameterization designed for large-eddy simulation (LES) applications was implemented into the Weather Research and Forecasting (WRF) model. WRF-LES with the GAD model enables numerical investigation of the effects of an operating wind turbine on and interactions with a broad range of atmospheric boundary layer phenomena. Numerical simulations using WRF-LES with the GAD model were compared with measurements obtained from the Turbine Wake and Inflow Characterization Study (TWICS-2011), the goal of which was to measure both the inflow to and wake from a 2.3-MW wind turbine. Data from a meteorological tower and two light-detection and ranging (lidar) systems, one vertically profiling and another operated over a variety of scanning modes, were utilized to obtain forcing for the simulations, and to evaluate characteristics of the simulated wakes. Simulations produced wakes with physically consistent rotation and velocity deficits. Two surface heat flux values of 20 W m^{–2} and 100 W m^{–2} were used to examine the sensitivity of the simulated wakes to convective instability. Simulations using the smaller heat flux values showed good agreement with wake deficits observed during TWICS-2011, whereas those using the larger value showed enhanced spreading and more-rapid attenuation. This study demonstrates the utility of actuator models implemented within atmospheric LES to address a range of atmospheric science and engineering applications. In conclusion, validated implementation of the GAD in a numerical weather prediction code such as WRF will enable a wide range of studies related to the interaction of wind turbines with the atmosphere and surface.
Cui, Xinguang; Wu, Wenwang; Gutheil, Eva
2018-01-01
An excellent understanding of the airflow structures is critical to enhance the efficiency of drug delivery via the human oral airway. The present paper investigates the characteristics of both steady and unsteady airflow structures in an idealized mouth-throat using large eddy simulation (LES). Representative inhalation flow rates of 15L/min at rest and 60L/min in exercise are considered. The study shows that there are more secondary vortices in the pharynx and the laryngeal jet is much longer and more concave in the steady flow field at 15L/min compared to the higher inspiration rate, which decreases the possibility of drug impinging on the wall. In contrast, the laryngeal jet is much more unsteady at heavy breathing and its strong interaction with the recirculation zone in the trachea leads to a enlarged mixing zone, increasing the possibility for carrying the particles from the laryngeal jet into the recirculation zone, which will lead to a longer residence time of the particles in the trachea and this increases the possibility of drug deposition in this area. In addition, the recirculation zone size is larger, the separation region is far away from glottis, and the reversed flow is slower at light compared to heavy breathing. In conclusion, these airflow structures show distinct properties at light and heavy breathing conditions, particularly in the unsteady flow field. The study provides evidence about the physical processes leading to both enlarged mixing zones and recirculation zones. It is known that stronger secondary vortices, a stronger laryngeal jet and enlarged recirculation zones definitely increase the particle deposition in the upper airway. The present paper aims to uncover the physical properties of the airflow for different breathing conditions, and their detailed effect on particle deposition will be studied in future. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhong, Jian; Cai, Xiao-Ming; Bloss, William James
2017-05-01
A large eddy simulation (LES) model coupled with O 3 -NO x -VOC chemistry is implemented to simulate the coupled effects of emissions, mixing and chemical pre-processing within an idealised deep (aspect ratio = 2) urban street canyon under a weak wind condition. Reactive pollutants exhibit significant spatial variations in the presence of two vertically aligned unsteady vortices formed in the canyon. Comparison of the LES results from two chemical schemes (simple NO x -O 3 chemistry and a more comprehensive Reduced Chemical Scheme (RCS) chemical mechanism) shows that the concentrations of NO 2 and O x inside the street canyon are enhanced by approximately 30-40% via OH/HO 2 chemistry. NO, NO x , O 3 , OH and HO 2 are chemically consumed, while NO 2 and O x (total oxidant) are chemically produced within the canyon environment. Within-canyon pre-processing increases oxidant fluxes from the canyon to the overlying boundary layer, and this effect is greater for deeper street canyons (as found in many traditional European urban centres) than shallower (lower aspect ratio) streets. There is clear evidence of distinct behaviours for emitted chemical species and entrained chemical species, and positive (or negative) values of intensities of segregations are found between pairs of species with similar (or opposite) behaviour. The simplified two-box model underestimated NO and O 3 levels, but overestimated NO 2 levels for both the lower and upper canyon compared with the more realistic LES-chemistry model. This suggests that the segregation effect due to incomplete mixing reduces the chemical conversion rate of NO to NO 2 . This study reveals the impacts of nonlinear O 3 -NO x -VOC photochemical processes in the incomplete mixing environment and provides a better understanding of the pre-processing of emissions within canyons, prior to their release to the urban boundary layer, through the coupling of street canyon dynamics and chemistry. Copyright © 2017 Elsevier Ltd
International Nuclear Information System (INIS)
Lu, T.; Attinger, D.; Liu, S.M.
2013-01-01
Highlights: • Temperature and velocity fluctuations in a tee junction are predicted using LES. • The numerical results are in good agreement with the experimental data. • Upstream elbow pipe has significant influence on those fluctuations. -- Abstract: Thermal striping resulting in thermal fatigue is an important safety issue for nuclear power plants. In this work, temperature and velocity fluctuations in hot and cold fluids mixing in a tee junction with the main pipe connected either to an upstream straight or elbow pipe have been numerically predicted using large-eddy simulations (LES) on the FLUENT platform with the assumption of fully-developed velocity at both main and branch pipe inlets. The numerical results for the case with an upstream straight pipe were found to be in reasonable agreement with the available experimental data. The reason for the small discrepancy between the numerical results and experimental data can be attributed to the turbulence velocity being 10% of the fully-developed velocity at the main and branch pipe inlets in the LES calculations, while in the experiments the turbulence velocity was about 10% of the average velocity upstream of the tee junction. The simulated normalized mean and root-mean square (RMS) temperatures and the velocities at both straight and elbow tees were then compared, as well as the power spectrum densities (PSD) of the temperature fluctuations. The elbow pipe upstream of the main pipe has a significant influence on the mixing, resulting in increased temperature and velocity fluctuations. The flow pattern of the elbow tee deviates from the wall jet due to the secondary flow in the upstream elbow pipe
Gallagher, J.; Gill, L. W.; McNabola, A.
2011-03-01
An investigation was carried out to establish the effectiveness of parked cars in urban street canyons as passive controls on pedestrian pollutant exposure. A numerical model of a generic street canyon was developed using a large eddy simulation (LES) model to compare personal exposure on the footpath with and without the presence of parked cars. Three configurations of car parking systems were investigated (parallel, perpendicular and 45° parking) in addition to the influence of wind speed, wind direction and car parking occupancy. A tracer gas (CO 2) was used as a representative pollutant from vehicular sources within the street canyon models. The results indicated that parked cars may act as a temporary baffle plate between traffic emissions and pedestrians on the footpath. Reductions in exposure of up to 35% and 49% were attained on the leeward and windward footpaths in perpendicular wind conditions, with parallel winds allowing up to 33% pollutant reduction on both footpaths for parallel parking. The perpendicular and 45° car parking configurations investigated proved less successful as passive controls on air pollution exposure and an increase in pollutant concentration occurred in some models. An investigation of parking space occupancy rates was carried out for parallel parked cars. The fraction of parked cars influenced the level of reduction of pollutants on the footpaths with steady reductions in perpendicular winds, yet reductions were only evident for occupancy rates greater than approximately 45% in parallel wind conditions. One negative impact associated with the parked cars study was the increase of pollutant levels on the roadway as the parked cars acted as a baffle wall, which trapped pollutants in the road. The paper underlines the potential of on-street car parking for reducing the personal exposure of pollutants by pedestrians and the optimum parking layout to achieve maximum health protection.
Sauter, Tobias; Galos, Stephan
2016-04-01
While the large-scale climate conditions play an important role in shaping the environment in which glaciers exist, the mass and energy balance of each individual glacier are dictated by local conditions. Given the complex mountain topography around alpine glaciers, it is not trivial to find a direct link between the large-scale atmospheric motions and the local-scale weather conditions at an individual glacier. Non-local dynamic effects due to the surrounding complex topography can significantly modify the spatial variability of exchange processes, either by small scale circulations or episodic entrainment of heat and momentum by burst events. Motivated by the fact that distributed glacier models strongly rely on the quality of high resolution forcing data to adequately represent the glacier wide ablation and accumulation processes, the present study investigates (i) whether non-local topographic effects have a significant impact on the spatial distribution of turbulent sensible heat fluxes (local microclimates) over alpine glaciers, and (ii) how much variability is smoothed out when using linearly interpolated fields together with the commonly used bulk approach. To answer these questions, we perform highly resolved and properly designed case experiments by Large-Eddy Simulations with real topography to determine the impact of topographic flow features on the spatial variability of the surface sensible heat flux and compare the fields with those derived with the bulk approach. The analysis shows that there is a significant spatial variability of the mean fluxes with values ranging from -10 Wm-2 to -120 Wm-2. Since the sensible heat flux can make up to 40% of the total melting on mid-latitude alpine valley glaciers, the heterogeneity of the fluxes can substantially dictate the local melting rates. When estimating the glacier-wide surface heat fluxes on the basis of point-measurements and the bulk approach, a considerable amount of spatial information is lost. All
Hematological changes after single large dose half-body irradiation
International Nuclear Information System (INIS)
Herrmann, T.; Friedrich, S.; Jochem, I.; Eberhardt, H.J.; Koch, R.; Knorr, A.
1981-01-01
The determination of different peripheral blood parameters aimed at the study of side effects on the hematological cellular system following a 5 - 8 Gy single large dose half-body irradiation in 20 patients. Compared to the initial values the leukocytes between the 6. and 14., the thrombocytes between the 14. and 21. postirradiation day as well as the lymphocytes between 3 hours and 4 weeks postirradiation were significantly decreased without exhibiting complications such as hemorrhages or infections. The hemoglobin, hematocrit and reticulocyte values revealed but a slight decrease normalized within a 28 days postirradiation period. Transfusions were necessary when a tumor-caused anemia was present prior to irradiation. Changes in serum activity of aminotransferases and lactate dehydrogenase occured during the first hours after irradiation and were due to enzyme release from destroyed tumor cells
Energy Technology Data Exchange (ETDEWEB)
Brillant, G
2004-06-15
The aim of this work is to study thermal large-eddy simulations and to determine the nonisothermal blowing impact on a turbulent boundary layer. An experimental study is also carried out in order to complete and validate simulation results. In a first time, we developed a turbulent inlet condition for the velocity and the temperature, which is necessary for the blowing simulations.We studied the asymptotic behavior of the velocity, the temperature and the thermal turbulent fluxes in a large-eddy simulation point of view. We then considered dynamics models for the eddy-diffusivity and we simulated a turbulent channel flow with imposed temperature, imposed flux and adiabatic walls. The numerical and experimental study of blowing permitted to obtain to the modifications of a thermal turbulent boundary layer with the blowing rate. We observed the consequences of the blowing on mean and rms profiles of velocity and temperature but also on velocity-velocity and velocity-temperature correlations. Moreover, we noticed an increase of the turbulent structures in the boundary layer with blowing. (author)
Eddy Current Model of Ball Lightning
Shelton, J. D.
2011-01-01
Eddy Current Model of Ball Lightning Calculations show that high-energy ball lightning may consist of a ball of plasma containing a large circular electric current arising as an eddy current generated by lightning. Synthetic ball lightning might serve as a method of plasma confinement for purposes of nuclear fusion. In this paper, three articles concerning ball lightning and the related phenomenon of large ball lightning are combined to provide insight into this rarely glimpsed occurrence.
Directory of Open Access Journals (Sweden)
Haworth D. C.
2006-12-01
Full Text Available Advances in physical models, numerical methods, and computational power together have brought large-eddy simulation (LES to the point where it warrants serious consideration for computing in-cylinder turbulent flows. This article includes: a discussion of LES and how it differs from Reynolds-averaged Navier Stokes (RANS modeling; motivation for transitioning to LES for in-cylinder flow in IC engines; and quantitative results for two motored engine configurations. Dynamicsubgrid-scale stress models are emphasized, and results from two different numerical approaches are discussed. Compared to RANS, LES requires a low level of empirical input, provides more complete information on in-cylinder flow structure, and makes previously inaccessible phenomena (e. g. , cycle-to-cycle variability amenable to analysis. Les progrès des modèles physiques, des méthodes numériques et de la puissance de calcul permettent qu'on puisse prendre en considération les simulations à grande échelle (LES pour le calcul des écoulements turbulents dans les moteurs. La synthèse présentée comprend : une discussion sur la LES montrant ses différences avec la modélisation aux moyennes de Reynolds (RANS ; les motivations pour passer à la LES pour les écoulements internes aux moteurs ; des résultats quantitatifs pour deux configurations de moteur entraîné. Des modèles de sous-maille dynamiquedes tenseurs sont développés, par ailleurs, nous discutons des résultats donnés par deux approches numériques différentes. En comparaison avec la méthodologie RANS, la LES requiert peu d'apports empiriques, donne plus de détails sur la structure de l'écoulement dans le cylindre et permet l'analyse de phénomènes jusqu'alors inaccessibles, comme les variations cycliques.
PALM-USM v1.0: A new urban surface model integrated into the PALM large-eddy simulation model
Directory of Open Access Journals (Sweden)
J. Resler
2017-10-01
Full Text Available Urban areas are an important part of the climate system and many aspects of urban climate have direct effects on human health and living conditions. This implies that reliable tools for local urban climate studies supporting sustainable urban planning are needed. However, a realistic implementation of urban canopy processes still poses a serious challenge for weather and climate modelling for the current generation of numerical models. To address this demand, a new urban surface model (USM, describing the surface energy processes for urban environments, was developed and integrated as a module into the PALM large-eddy simulation model. The development of the presented first version of the USM originated from modelling the urban heat island during summer heat wave episodes and thus implements primarily processes important in such conditions. The USM contains a multi-reflection radiation model for shortwave and longwave radiation with an integrated model of absorption of radiation by resolved plant canopy (i.e. trees, shrubs. Furthermore, it consists of an energy balance solver for horizontal and vertical impervious surfaces, and thermal diffusion in ground, wall, and roof materials, and it includes a simple model for the consideration of anthropogenic heat sources. The USM was parallelized using the standard Message Passing Interface and performance testing demonstrates that the computational costs of the USM are reasonable on typical clusters for the tested configurations. The module was fully integrated into PALM and is available via its online repository under the GNU General Public License (GPL. The USM was tested on a summer heat-wave episode for a selected Prague crossroads. The general representation of the urban boundary layer and patterns of surface temperatures of various surface types (walls, pavement are in good agreement with in situ observations made in Prague. Additional simulations were performed in order to assess the
PALM-USM v1.0: A new urban surface model integrated into the PALM large-eddy simulation model
Resler, Jaroslav; Krč, Pavel; Belda, Michal; Juruš, Pavel; Benešová, Nina; Lopata, Jan; Vlček, Ondřej; Damašková, Daša; Eben, Kryštof; Derbek, Přemysl; Maronga, Björn; Kanani-Sühring, Farah
2017-10-01
Urban areas are an important part of the climate system and many aspects of urban climate have direct effects on human health and living conditions. This implies that reliable tools for local urban climate studies supporting sustainable urban planning are needed. However, a realistic implementation of urban canopy processes still poses a serious challenge for weather and climate modelling for the current generation of numerical models. To address this demand, a new urban surface model (USM), describing the surface energy processes for urban environments, was developed and integrated as a module into the PALM large-eddy simulation model. The development of the presented first version of the USM originated from modelling the urban heat island during summer heat wave episodes and thus implements primarily processes important in such conditions. The USM contains a multi-reflection radiation model for shortwave and longwave radiation with an integrated model of absorption of radiation by resolved plant canopy (i.e. trees, shrubs). Furthermore, it consists of an energy balance solver for horizontal and vertical impervious surfaces, and thermal diffusion in ground, wall, and roof materials, and it includes a simple model for the consideration of anthropogenic heat sources. The USM was parallelized using the standard Message Passing Interface and performance testing demonstrates that the computational costs of the USM are reasonable on typical clusters for the tested configurations. The module was fully integrated into PALM and is available via its online repository under the GNU General Public License (GPL). The USM was tested on a summer heat-wave episode for a selected Prague crossroads. The general representation of the urban boundary layer and patterns of surface temperatures of various surface types (walls, pavement) are in good agreement with in situ observations made in Prague. Additional simulations were performed in order to assess the sensitivity of the results
Aircraft Noise Assessment—From Single Components to Large Scenarios
Directory of Open Access Journals (Sweden)
Jan Delfs
2018-02-01
Full Text Available The strategic European paper “Flightpath 2050” claims dramatic reductions of noise for aviation transport scenarios in 2050: “...The perceived noise emission of flying aircraft is reduced by 65%. These are relative to the capabilities of typical new aircraft in 2000...”. There is a consensus among experts that these far reaching objectives cannot be accomplished by application of noise reduction technologies at the level of aircraft components only. Comparably drastic claims simultaneously expressed in Flightpath 2050 for carbon dioxide and NOX reduction underline the need for step changes in aircraft technologies and aircraft configurations. New aircraft concepts with entirely different propulsion concepts will emerge, including unconventional power supplies from renewable energy sources, ranging from electric over hybrid to synthetic fuels. Given this foreseen revolution in aircraft technology the question arises, how the noise impact of these new aircraft may be assessed. Within the present contribution, a multi-level, multi-fidelity approach is proposed which enables aircraft noise assessment. It is composed by coupling noise prediction methods at three different levels of detail. On the first level, high fidelity methods for predicting the aeroacoustic behavior of aircraft components (and installations are required since in the early stages of the development of innovative noise reduction technology test data is not available. The results are transferred to the second level, where radiation patterns of entire conventional and future aircraft concepts are assembled and noise emissions for single aircraft are computed. In the third level, large scale scenarios with many aircraft are considered to accurately predict the noise exposure for receivers on the ground. It is shown that reasonable predictions of the ground noise exposure level may be obtained. Furthermore, even though simplifications and omissions are introduced, it is shown
Large negative differential conductance in single-molecule break junctions
Perrin, Mickael L.; Frisenda, Riccardo; Koole, Max; Seldenthuis, Johannes S.; Gil, Jose A. Celis; Valkenier, Hennie; Hummelen, Jan C.; Renaud, Nicolas; Grozema, Ferdinand C.; Thijssen, Joseph M.; Dulic, Diana; van der Zant, Herre S. J.
2014-01-01
Molecular electronics aims at exploiting the internal structure and electronic orbitals of molecules to construct functional building blocks(1). To date, however, the overwhelming majority of experimentally realized single-molecule junctions can be described as single quantum dots, where transport
Chan, Ming-Chung; Liu, Chun-Ho
2013-04-01
Recently, with the ever increasing urban areas in developing countries, the problem of air pollution due to vehicular exhaust arouses the concern of different groups of people. Understanding how different factors, such as urban morphology, meteorological conditions and human activities, affect the characteristics of street canyon ventilation, pollutant dispersion above urban areas and pollutant re-entrainment from the shear layer can help us improve air pollution control strategies. Among the factors mentioned above, thermal stratification is a significant one determining the pollutant transport behaviors in certain situation, e.g. when the urban surface is heated by strong solar radiation, which, however, is still not widely explored. The objective of this study is to gain an in-depth understanding of the effects of unstable thermal stratification on the flows and pollutant dispersion within and above urban street canyons through numerical modeling using large-eddy simulation (LES). In this study, LES equipped with one-equation subgrid-scale (SGS) model is employed to model the flows and pollutant dispersion within and above two-dimensional (2D) urban street canyons (flanked by idealized buildings, which are square solid bars in these models) under different intensities of unstable thermal stratifications. Three building-height-to-street-width (aspect) ratios, 0.5, 1 and 2, are included in this study as a representation of different building densities. The prevailing wind flow above the urban canopy is driven by background pressure gradient, which is perpendicular to the street axis, while the condition of unstable thermal stratification is induced by applying a higher uniform temperature on the no-slip urban surface. The relative importance between stratification and background wind is characterized by the Richardson number, with zero value as a neutral case and negative value as an unstable case. The buoyancy force is modeled by Boussinesq approximation and the
Quantitative pulsed eddy current analysis
International Nuclear Information System (INIS)
Morris, R.A.
1975-01-01
The potential of pulsed eddy current testing for furnishing more information than conventional single-frequency eddy current methods has been known for some time. However, a fundamental problem has been analyzing the pulse shape with sufficient precision to produce accurate quantitative results. Accordingly, the primary goal of this investigation was to: demonstrate ways of digitizing the short pulses encountered in PEC testing, and to develop empirical analysis techniques that would predict some of the parameters (e.g., depth) of simple types of defect. This report describes a digitizing technique using a computer and either a conventional nuclear ADC or a fast transient analyzer; the computer software used to collect and analyze pulses; and some of the results obtained. (U.S.)
Single Photon Avalanche Diodes: Towards the Large Bidimensional Arrays
Directory of Open Access Journals (Sweden)
Emilio Sciacca
2008-08-01
Full Text Available Single photon detection is one of the most challenging goals of photonics. In recent years, the study of ultra-fast and/or low-intensity phenomena has received renewed attention from the academic and industrial communities. Intense research activity has been focused on bio-imaging applications, bio-luminescence, bio-scattering methods, and, more in general, on several applications requiring high speed operation and high timing resolution. In this paper we present design and characterization of bi-dimensional arrays of a next generation of single photon avalanche diodes (SPADs. Single photon sensitivity, dark noise, afterpulsing and timing resolution of the single SPAD have been examined in several experimental conditions. Moreover, the effects arising from their integration and the readout mode have also been deeply investigated.
Single SQUID frequency-domain multiplexer for large bolometer arrays
International Nuclear Information System (INIS)
Yoon, Jongsoo; Clarke, John; Gildemeister, J.M.; Lee, Adrian T.; Myers, M.J.; Skidmore, J.T.; Richards, P.L.; Spieler, H.G.
2001-01-01
We describe the development of a frequency-domain superconducting quantum interference device (SQUID) multiplexer which monitors a row of low-temperature sensors simultaneously with a single SQUID. Each sensor is ac biased with a unique frequency and all the sensor currents are added in a superconducting summing loop. A single SQUID measures the current in the summing loop, and the individual signals are lock-in detected after the room temperature SQUID electronics. The current in the summing loop is nulled by feedback to eliminate direct crosstalk. We have built an eight-channel prototype and demonstrated channel separation and signal recovery
Anatomy of a subtropical intrathermocline eddy
Barceló-Llull, Bàrbara; Sangrà, Pablo; Pallàs-Sanz, Enric; Barton, Eric D.; Estrada-Allis, Sheila N.; Martínez-Marrero, Antonio; Aguiar-González, Borja; Grisolía, Diana; Gordo, Carmen; Rodríguez-Santana, Ángel; Marrero-Díaz, Ángeles; Arístegui, Javier
2017-06-01
An interdisciplinary survey of a subtropical intrathermocline eddy was conducted within the Canary Eddy Corridor in September 2014. The anatomy of the eddy is investigated using near submesoscale fine resolution two-dimensional data and coarser resolution three-dimensional data. The eddy was four months old, with a vertical extension of 500 m and 46 km radius. It may be viewed as a propagating negative anomaly of potential vorticity (PV), 95% below ambient PV. We observed two cores of low PV, one in the upper layers centered at 85 m, and another broader anomaly located between 175 m and the maximum sampled depth in the three-dimensional dataset (325 m). The upper core was where the maximum absolute values of normalized relative vorticity (or Rossby number), |Ro| =0.6, and azimuthal velocity, U=0.5 m s-1, were reached and was defined as the eddy dynamical core. The typical biconvex isopleth shape for intrathermocline eddies induces a decrease of static stability, which causes the low PV of the upper core. The deeper low PV core was related to the occurrence of a pycnostad layer of subtropical mode water that was embedded within the eddy. The eddy core, of 30 km radius, was in near solid body rotation with period of 4 days. It was encircled by a thin outer ring that was rotating more slowly. The kinetic energy (KE) content exceeded that of available potential energy (APE), KE/APE=1.58; this was associated with a low aspect ratio and a relatively intense rate of spin as indicated by the relatively high value of Ro. Inferred available heat and salt content anomalies were AHA=2.9×1018 J and ASA=14.3×1010 kg, respectively. The eddy AHA and ASA contents per unit volume largely exceed those corresponding to Pacific Ocean intrathermocline eddies. This suggests that intrathermocline eddies may play a significant role in the zonal conduit of heat and salt along the Canary Eddy Corridor.
Single Incision Laparoscopic Surgery for a Large Endometriotic Cyst
African Journals Online (AJOL)
In the last decade, laparoscopy has become the standard treatment for many gynecological conditions.[1,2] Today, laparoscopy is hailed as the standard approach in the surgical treatment of benign adnexal pathology.[1,2] Attempts to minimize access-related injuries and complications resulted in development of single port ...
Flexible eddy current coil arrays
International Nuclear Information System (INIS)
Krampfner, Y.; Johnson, D.P.
1987-01-01
A novel approach was devised to overcome certain limitations of conventional eddy current testing. The typical single-element hand-wound probe was replaced with a two dimensional array of spirally wound probe elements deposited on a thin, flexible polyimide substrate. This provides full and reliable coverage of the test area and eliminates the need for scanning. The flexible substrate construction of the array allows the probes to conform to irregular part geometries, such as turbine blades and tubing, thereby eliminating the need for specialized probes for each geometry. Additionally, the batch manufacturing process of the array can yield highly uniform and reproducible coil geometries. The array is driven by a portable computer-based eddy current instrument, smartEDDY/sup TM/, capable of two-frequency operation, and offers a great deal of versatility and flexibility due to its software-based architecture. The array is coupled to the instrument via an 80-switch multiplexer that can be configured to address up to 1600 probes. The individual array elements may be addressed in any desired sequence, as defined by the software
Energy Technology Data Exchange (ETDEWEB)
Peter Kneisel
2008-02-12
Large grain and single crystal niobium has been proposed several years ago as an alternative material to poly-crystalline niobium for superconducting cavities, exhibiting potential advantages such as ¿stream-lined¿ procedures, reduced costs and better reproducibility in performance. Several major laboratories have investigated the use of large grain and single crystal material in the past years and the niobium producing industry has responded in providing ingot material with enlarged grain sizes. Besides a large number of single cell and multi-cell cavities from large grain niobium, several single crystal cavities have been fabricated and tested with good performances. This contribution will review the progress since the SRF workshop in 2005 in material processing and handling and in cavity performances.
Large Silver Halide Single Crystals as Charged Particle Track Detectors
Kusmiss, J. H.
1972-01-01
The trajectory of the particle is made visible under a microscope by the accumulation of metallic silver at regions of the lattice damaged by the particle. This decoration of the particle track is accomplished by exposure of the crystal to light. The decoration of normally present lattice imperfections such as dislocations can be suppressed by the addition to the crystal of less than ten parts per million of a suitable polyvalent metal impurity. An account of some preliminary attempts to grow thin single crystals of AgCl is given also, and suggestions for a more refined technique are offered.
Nonlinear Eddy Viscosity Models applied to Wind Turbine Wakes
DEFF Research Database (Denmark)
Laan, van der, Paul Maarten; Sørensen, Niels N.; Réthoré, Pierre-Elouan
2013-01-01
The linear k−ε eddy viscosity model and modified versions of two existing nonlinear eddy viscosity models are applied to single wind turbine wake simulations using a Reynolds Averaged Navier-Stokes code. Results are compared with field wake measurements. The nonlinear models give better results...
Vision for single flux quantum very large scale integrated technology
Silver, Arnold; Bunyk, Paul; Kleinsasser, Alan; Spargo, John
2006-05-01
Single flux quantum (SFQ) electronics is extremely fast and has very low on-chip power dissipation. SFQ VLSI is an excellent candidate for high-performance computing and other applications requiring extremely high-speed signal processing. Despite this, SFQ technology has generally not been accepted for system implementation. We argue that this is due, at least in part, to the use of outdated tools to produce SFQ circuits and chips. Assuming the use of tools equivalent to those employed in the semiconductor industry, we estimate the density of Josephson junctions, circuit speed, and power dissipation that could be achieved with SFQ technology. Today, CMOS lithography is at 90-65 nm with about 20 layers. Assuming equivalent technology, aggressively increasing the current density above 100 kA cm-2 to achieve junction speeds approximately 1000 GHz, and reducing device footprints by converting device profiles from planar to vertical, one could expect to integrate about 250 M Josephson junctions cm-2 into SFQ digital circuits. This should enable circuit operation with clock frequencies above 200 GHz and place approximately 20 K gates within a radius of one clock period. As a result, complete microprocessors, including integrated memory registers, could be fabricated on a single chip. This technology was exported from the United States in accordance with the US Department of Commerce Export Administration Regulations (EAR) for ultimate destination in the United Kingdom. Diversion contrary to US law prohibited.
Vision for single flux quantum very large scale integrated technology
International Nuclear Information System (INIS)
Silver, Arnold; Bunyk, Paul; Kleinsasser, Alan; Spargo, John
2006-01-01
Single flux quantum (SFQ) electronics is extremely fast and has very low on-chip power dissipation. SFQ VLSI is an excellent candidate for high-performance computing and other applications requiring extremely high-speed signal processing. Despite this, SFQ technology has generally not been accepted for system implementation. We argue that this is due, at least in part, to the use of outdated tools to produce SFQ circuits and chips. Assuming the use of tools equivalent to those employed in the semiconductor industry, we estimate the density of Josephson junctions, circuit speed, and power dissipation that could be achieved with SFQ technology. Today, CMOS lithography is at 90-65 nm with about 20 layers. Assuming equivalent technology, aggressively increasing the current density above 100 kA cm -2 to achieve junction speeds approximately 1000 GHz, and reducing device footprints by converting device profiles from planar to vertical, one could expect to integrate about 250 M Josephson junctions cm -2 into SFQ digital circuits. This should enable circuit operation with clock frequencies above 200 GHz and place approximately 20 K gates within a radius of one clock period. As a result, complete microprocessors, including integrated memory registers, could be fabricated on a single chip
Energy Technology Data Exchange (ETDEWEB)
Song, Sung Jin; Lee, Hyang Beom; Kim, Young Hwan [Soongsil Univ., Seoul (Korea, Republic of); Shin, Young Kil [Kunsan Univ., Gunsan (Korea, Republic of)
2004-02-15
Eddy current testing has been widely used for non destructive testing of steam generator tubes. In order to retain reliability in ECT, the following subjects were carried out in this study: numerical modeling and analysis of defects by using BC and RPC probes in SG tube, preparation of absolute coil impedance plane diagram by FEM. Signal interpretation of the eddy current signals obtained from nuclear power plants.
Energy Technology Data Exchange (ETDEWEB)
Yanagida, Y.; Yamazaki, K.; Ishiyama, A. (Waseda Univ., Tokyo (Japan))
1991-09-20
In non-invasive hyperthermia, it is difficult to heat only deep and selected region with carcinosarcoma. To solve the problem, an RF inductive heating method was so designed to use a large ferrite core in troidal shape and bolus. This method can cause the eddy current concentrated on the deep region. A characteristics of the heating method was analyzed by a finite element method to study a possibility of deep and selective heating with experiments. The body is inserted through the ferrite core in troidal shape and the core is surrounded by the bolus, filled with a saline solution. The eddy current, generated around the core by AC, partially passes from the bolus to the body and is cut to avoid heating of the undesired location by an insulating film or by cutting away a part of the bolus. An effect of selective heating can be expected with appropriate adjustment of the current path. The result is based on the comparison between the experiment using phantom for axially symmetric model and the 3-D analysis, the result analyzed by a simple human body model. 9 refs., 11 figs., 2 tabs.
Prey Selection of Scandinavian Wolves: Single Large or Several Small?
Sand, Håkan; Eklund, Ann; Zimmermann, Barbara; Wikenros, Camilla; Wabakken, Petter
2016-01-01
Research on large predator-prey interactions are often limited to the predators' primary prey, with the potential for prey switching in systems with multiple ungulate species rarely investigated. We evaluated wolf (Canis lupus) prey selection at two different spatial scales, i.e., inter- and intra-territorial, using data from 409 ungulate wolf-kills in an expanding wolf population in Scandinavia. This expansion includes a change from a one-prey into a two-prey system with variable densities of one large-sized ungulate; moose (Alces alces) and one small-sized ungulate; roe deer (Capreolus capreolus). Among wolf territories, the proportion of roe deer in wolf kills was related to both pack size and roe deer density, but not to moose density. Pairs of wolves killed a higher proportion of roe deer than did packs, and wolves switched to kill more roe deer as their density increased above a 1:1 ratio in relation to the availability of the two species. At the intra-territorial level, wolves again responded to changes in roe deer density in their prey selection whereas we found no effect of snow depth, time during winter, or other predator-related factors on the wolves' choice to kill moose or roe deer. Moose population density was only weakly related to intra-territorial prey selection. Our results show that the functional response of wolves on moose, the species hitherto considered as the main prey, was strongly dependent on the density of a smaller, alternative, ungulate prey. The impact of wolf predation on the prey species community is therefore likely to change with the composition of the multi-prey species community along with the geographical expansion of the wolf population.
Prey Selection of Scandinavian Wolves: Single Large or Several Small?
Eklund, Ann; Zimmermann, Barbara; Wikenros, Camilla; Wabakken, Petter
2016-01-01
Research on large predator-prey interactions are often limited to the predators’ primary prey, with the potential for prey switching in systems with multiple ungulate species rarely investigated. We evaluated wolf (Canis lupus) prey selection at two different spatial scales, i.e., inter- and intra-territorial, using data from 409 ungulate wolf-kills in an expanding wolf population in Scandinavia. This expansion includes a change from a one-prey into a two-prey system with variable densities of one large-sized ungulate; moose (Alces alces) and one small-sized ungulate; roe deer (Capreolus capreolus). Among wolf territories, the proportion of roe deer in wolf kills was related to both pack size and roe deer density, but not to moose density. Pairs of wolves killed a higher proportion of roe deer than did packs, and wolves switched to kill more roe deer as their density increased above a 1:1 ratio in relation to the availability of the two species. At the intra-territorial level, wolves again responded to changes in roe deer density in their prey selection whereas we found no effect of snow depth, time during winter, or other predator-related factors on the wolves’ choice to kill moose or roe deer. Moose population density was only weakly related to intra-territorial prey selection. Our results show that the functional response of wolves on moose, the species hitherto considered as the main prey, was strongly dependent on the density of a smaller, alternative, ungulate prey. The impact of wolf predation on the prey species community is therefore likely to change with the composition of the multi-prey species community along with the geographical expansion of the wolf population. PMID:28030549
Transmit-receive eddy current probes
International Nuclear Information System (INIS)
Obrutsky, L.S.; Sullivan, S.P.; Cecco, V.S.
1997-01-01
In the last two decades, due to increased inspection demands, eddy current instrumentation has advanced from single-frequency, single-output instruments to multifrequency, computer-aided systems. This has significantly increased the scope of eddy current testing, but, unfortunately, it has also increased the cost and complexity of inspections. In addition, this approach has not always improved defect detectability or signal-to-noise. Most eddy current testing applications are still performed with impedance probes, which have well known limitations. However, recent research at AECL has led to improved eddy current inspections through the design and development of transmit-receive (T/R) probes. T/R eddy current probes, with laterally displaced transmit and receive coils, present a number of advantages over impedance probes. They have improved signal-to-noise ratio in the presence of variable lift-off compared to impedance probes. They have strong directional properties, permitting probe optimization for circumferential or axial crack detection, and possess good phase discrimination to surface defects. They can significantly increase the scope of eddy current testing permitting reliable detection and sizing of cracks in heat exchanger tubing as well as in welded areas of both ferritic and non-ferromagnetic components. This presentation will describe the operating principles of T/R probes with the help of computer-derived normalized voltage diagrams. We will discuss their directional properties and analyze the advantages of using single and multiple T/R probes over impedance probes for specific inspection cases. Current applications to surface and tube testing and some typical inspection results will be described. (author)
Nondestructive examination of PHWR pressure tube using eddy current technique
Energy Technology Data Exchange (ETDEWEB)
Lee, Hee Jong; Choi, Sung Nam; Cho, Chan Hee; Yoo, Hyun Joo; Moon, Gyoon Young [KHNP Central Research Institute, Daejeon (Korea, Republic of)
2014-06-15
A pressurized heavy water reactor (PHWR) core has 380 fuel channels contained and supported by a horizontal cylindrical vessel known as the calandria, whereas a pressurized water reactor (PWR) has only a single reactor vessel. The pressure tube, which is a pressure-retaining component, has a 103.4 mm inside diameter x 4.19 mm wall thickness, and is 6.36 m long, made of a zirconium alloy (Zr-2.5 wt% Nb). This provides support for the fuel while transporting the D2O heat-transfer fluid. The simple tubular geometry invites highly automated inspection, and good approach for all inspection. Similar to all nuclear heat-transfer pressure boundaries, the PHWR pressure tube requires a rigorous, periodic inspection to assess the reactor integrity in accordance with the Korea Nuclear Safety Committee law. Volumetric-based nondestructive evaluation (NDE) techniques utilizing ultrasonic and eddy current testing have been adopted for use in the periodic inspection of the fuel channel. The eddy current testing, as a supplemental NDE method to ultrasonic testing, is used to confirm the flaws primarily detected through ultrasonic testing, however, eddy current testing offers a significant advantage in that its ability to detect surface flaws is superior to that of ultrasonic testing. In this paper, effectiveness of flaw detection and the depth sizing capability by eddy current testing for the inside surface of a pressure tube, will be introduced. As a result of this examination, the ET technique is found to be useful only as a detection technique for defects because it can detect fine defects on the surface with high resolution. However, the ET technique is not recommended for use as a depth sizing method because it has a large degree of error for depth sizing.
The dynamical impact of mesoscale eddies on migration of Japanese eel larvae.
Directory of Open Access Journals (Sweden)
Yu-Lin Chang
Full Text Available In this study, we explore the dynamical role of mesoscale eddies on fish larvae migration using the example of Subtropical Counter Current eddies and the migration of Japanese eel larvae in the western North Pacific Ocean. An idealized experiment is conducted to isolate the effects of eddies, and use a three-dimensional particle-tracking method to simulate virtual eel larvae (v-larvae migration, including both horizontal and vertical swimming behaviors. The impact of eddies strongly depends on the swimming speed of v-larvae relative to the eddy speed. Eddies accelerate the movement of v-larvae that swim slower than the propagation speed of the eddy, whereas faster-swimming v-larvae are dragged by eddies. A modified stream function that incorporates biological swimming ability explains the non-uniform trapping of v-larvae in mesoscale eddies. A high swimming speed and/or a small eddy rotation speed results in a weak trapping capacity. Simulations of v-larvae migration in realistic cases of eddy fields indicate that the abundance of eddies significantly affects the duration of larval migration, with the effects being largely dependent on the larvae swimming speed. We noted a negative relationship between the observed annual eel recruitment index in Taiwan and the eddy index subtropical countercurrent (STCC region, which suggests a potentially important role of mesoscale eddies in eel larvae migration.
The statistical behaviour of attached eddies
Woodcock, J. D.; Marusic, I.
2015-01-01
Townsend's attached eddy hypothesis forms the basis of an established model of the logarithmic layer in wall-bounded turbulent flows in which this inertially dominated region is characterised by a hierarchy of geometrically self-similar eddying motions that scale with their distance to the wall. The hypothesis has gained considerable support from high Reynolds number measurements of the second-order moments of the fluctuating velocities. Recently, Meneveau and Marusic ["Generalized logarithmic law for high-order moments in turbulent boundary layers," J. Fluid Mech. 719, R1 (2013)] presented experimental evidence that all even-ordered moments of the streamwise velocity will exhibit a logarithmic dependence on the distance from the wall. They demonstrated that this was consistent with the attached eddy hypothesis, so long as the velocity distribution is assumed to be Gaussian (which allows the use of the central limit theorem). In this paper, we derive this result from the attached eddy model without assuming a Gaussian velocity distribution, and find that such logarithmic behaviours are valid in the large Reynolds number limit. We also revisit the physical and mathematical basis of the attached eddy hypothesis, in order to increase rigour and minimise the assumptions required to apply the hypothesis. To this end, we have extended the proof of Campbell's theorem to apply to the velocity field corresponding to a forest of variously sized eddies that are randomly placed on the wall. This enables us to derive all moments of the velocity in the logarithmic region, including cross-correlations between different components of the velocity. By contrast, previous studies of the attached eddy hypothesis have considered only the mean velocity and its second order moments. From this, we obtain qualitatively correct skewnesses and flatnesses for the spanwise and wall-normal fluctuations. The issue of the Reynolds number dependence of von Kármán's constant is also addressed.
Owen, Hazel
2013-01-01
Eddie Reisch is currently working as a policy advisor for Te Reo Maori Operational Policy within the Student Achievement group with the Ministry of Education in New Zealand, where he has implemented and led a range of e-learning initiatives and developments, particularly the Virtual Learning Network (VLN). He is regarded as one of the leading…
Schaefer, Claire
1989-01-01
Presents a lesson that introduces students in grades K-three to sources of design inspiration in contemporary urban settings. Using Don Eddy's painting of a jewelry store window display, asks students to describe and analyze the interplay of shape, pattern, and color. Suggests studio activities, including an activity in which students build a…
National Aeronautics and Space Administration — Single crystal piezoelectric deformable mirrors with high actuator density, fine pitch, large stroke and no floating wires will be developed for future NASA science...
Single Crystal Piezomotor for Large Stroke, High Precision and Cryogenic Actuations, Phase I
National Aeronautics and Space Administration — TRS Technologies proposes a novel single crystal piezomotor for large stroke, high precision, and cryogenic actuations with capability of position set-hold with...
Feng, S.; Li, Z.; Liu, Y.; Lin, W.; Toto, T.; Vogelmann, A. M.; Fridlind, A. M.
2013-12-01
We present an approach to derive large-scale forcing that is used to drive single-column models (SCMs) and cloud resolving models (CRMs)/large eddy simulation (LES) for evaluating fast physics parameterizations in climate models. The forcing fields are derived by use of a newly developed multi-scale data assimilation (MS-DA) system. This DA system is developed on top of the NCEP Gridpoint Statistical Interpolation (GSI) System and is implemented in the Weather Research and Forecasting (WRF) model at a cloud resolving resolution of 2 km. This approach has been applied to the generation of large scale forcing for a set of Intensive Operation Periods (IOPs) over the Atmospheric Radiation Measurement (ARM) Climate Research Facility's Southern Great Plains (SGP) site. The dense ARM in-situ observations and high-resolution satellite data effectively constrain the WRF model. The evaluation shows that the derived forcing displays accuracies comparable to the existing continuous forcing product and, overall, a better dynamic consistency with observed cloud and precipitation. One important application of this approach is to derive large-scale hydrometeor forcing and multiscale forcing, which is not provided in the existing continuous forcing product. It is shown that the hydrometeor forcing poses an appreciable impact on cloud and precipitation fields in the single-column model simulations. The large-scale forcing exhibits a significant dependency on domain-size that represents SCM grid-sizes. Subgrid processes often contribute a significant component to the large-scale forcing, and this contribution is sensitive to the grid-size and cloud-regime.
Chen, Juhui; Yin, Weijie; Wang, Shuai; Meng, Cheng; Li, Jiuru; Qin, Bai; Yu, Guangbin
2016-07-01
Large-eddy simulation (LES) approach is used for gas turbulence, and eddy dissipation concept (EDC)-sub-grid scale (SGS) reaction model is employed for reactions in small eddies. The simulated gas molar fractions are in better agreement with experimental data with EDC-SGS reaction model. The effect of reactions in small eddies on biomass gasification is emphatically analyzed with EDC-SGS reaction model. The distributions of the SGS reaction rates which represent the reactions in small eddies with particles concentration and temperature are analyzed. The distributions of SGS reaction rates have the similar trend with those of total reactions rates and the values account for about 15% of the total reactions rates. The heterogeneous reaction rates with EDC-SGS reaction model are also improved during the biomass gasification process in bubbling fluidized bed. Copyright © 2016 Elsevier Ltd. All rights reserved.
African Journals Online (AJOL)
Sokolua-Mvika, Eddy. Vol 23, No 1 (2016) - Articles Carence en fer, anémie et anémie ferriprive chez les donneurs de sang à Kinshasa, République Démocratique du Congo Abstract PDF. ISSN: 1937-8688. AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More ...
Energy Technology Data Exchange (ETDEWEB)
Mukhutdinov, R.Kh.; Prokopov, O.I.
1982-01-01
An eddy energy separator is proposed which contains a chamber with nozzle input of compressed air and sleeves for cold and hot streams. In order to increase productivity, the chamber is cylindrical and the nozzle input is arranged along its axis. Coaxially to the input, there is an adaptor forming an annular channel with its end arranged in an angle to the axis of the chamber. The nozzle input and the adaptor are installed with the possibility of relative movement.
2003-01-01
We were saddened to learn that Eddy Powell had passed away on Saturday 26 July after a long illness. Eddy had so many friends at CERN and made such a contribution to the Organisation that it is impossible that his passing goes without comment. Eddy was born in England on 4 August 1939 and, after serving his apprenticeship with the U.K. Ministry of Defence, he joined CERN in September 1965. As an electrical design draftsman with the Synchro-cyclotron Division he played an important role in the upgrades of that machine in the early 1970's, particularly on the RF systems and later on the development of the ISOLDE facility. This brought him into close contact with many of the technical support services in CERN and, unlike many of his compatriots, he acquired a remarkably good fluency in French. Always inquisitive on the physics carried out at CERN, he spent a great deal of time learning from physicists and engineers at all levels. When he felt sufficiently confident he became a CERN Guide for general public visit...
Eddy-induced carbon transport across the Antarctic Circumpolar Current
Moreau, Sébastien; Penna, Alice Della; Llort, Joan; Patel, Ramkrushnbhai; Langlais, Clothilde; Boyd, Philip W.; Matear, Richard J.; Phillips, Helen E.; Trull, Thomas W.; Tilbrook, Bronte; Lenton, Andrew; Strutton, Peter G.
2017-09-01
The implications of a mesoscale eddy for relevant properties of the Southern Ocean carbon cycle are examined with in situ observations. We explored carbon properties inside a large ( 190 km diameter) cyclonic eddy that detached from the Subantarctic Front (SAF) south of Tasmania in March 2016. Based on remote sensing, the eddy was present for 2 months in the Subantarctic Zone (SAZ), an important region of oceanic carbon dioxide (CO2) uptake throughout the annual cycle and carbon subduction (i.e., where mode and intermediate waters form), before it was reabsorbed into the SAF. The eddy was sampled during the middle of its life, 1 month after it spawned. Comparatively, the eddy was 3°C colder, 0.5 practical salinity unit fresher, and less biologically productive than surrounding SAZ waters. The eddy was also richer in dissolved inorganic carbon (DIC) and had lower saturation states of aragonite and calcite than the surrounding SAZ waters. As a consequence, it was a strong source of CO2 to the atmosphere (with fluxes up to +25 mmol C m-2 d-1). Compared to the SAF waters, from which it originated, DIC concentration in the eddy was 20 μmol kg-1 lower, indicating lateral mixing, small-scale recirculation, or eddy stirring with lower-DIC SAZ waters by the time the eddy was observed. As they are commonly spawned from the Antarctic Circumpolar Current, and as 50% of them decay in the SAZ (the rest being reabsorbed by the SAF-N), these types of eddies may represent a significant south-north transport pathway for carbon across the ACC and may alter the carbon properties of SAZ waters.
Conformable eddy current array delivery
Summan, Rahul; Pierce, Gareth; Macleod, Charles; Mineo, Carmelo; Riise, Jonathan; Morozov, Maxim; Dobie, Gordon; Bolton, Gary; Raude, Angélique; Dalpé, Colombe; Braumann, Johannes
2016-02-01
The external surface of stainless steel containers used for the interim storage of nuclear material may be subject to Atmospherically Induced Stress Corrosion Cracking (AISCC). The inspection of such containers poses a significant challenge due to the large quantities involved; therefore, automating the inspection process is of considerable interest. This paper reports upon a proof-of-concept project concerning the automated NDT of a set of test containers containing artificially generated AISCCs. An Eddy current array probe with a conformable padded surface from Eddyfi was used as the NDT sensor and end effector on a KUKA KR5 arc HW robot. A kinematically valid cylindrical raster scan path was designed using the KUKA|PRC path planning software. Custom software was then written to interface measurement acquisition from the Eddyfi hardware with the motion control of the robot. Preliminary results and analysis are presented from scanning two canisters.
Kewlani, Gaurav
2016-03-24
Turbulent premixed combustion is studied using experiments and numerical simulations in an acoustically uncoupled cylindrical sudden-expansion swirl combustor, and the impact of the equivalence ratio on the flame–flow characteristics is analyzed. In order to numerically capture the inherent unsteadiness exhibited in the flow, the large eddy simulation (LES) technique based on the artificial flame thickening combustion model is employed. The experimental data are obtained using particle image velocimetry. It is observed that changes in heat loading, in the presence of wall confinement, significantly influence the flow field in the wake region, the stabilization location of the flame, and the flame intensity. Specifically, increasing the equivalence ratio drastically reduces the average inner recirculation zone size and causes transition of the flame macrostructure from the “V” configuration to the “M” configuration. In other words, while the flame stabilizes along the inner shear layer for the V flame, a persistent diffuse reaction zone is also manifested along the outer shear layer for the M flame. The average chemiluminescence intensity increases in the case of the M flame macrostructure, while the axial span of the reaction zone within the combustion chamber decreases. The predictions of the numerical approach resemble the experimental observations, suggesting that the LES framework can be an effective tool for examining the effect of heat loading on flame–flow interactions and the mechanism of transition of the flame macrostructure with a corresponding change in the equivalence ratio.
International Nuclear Information System (INIS)
Javadi, Ardalan; Nilsson, Håkan
2014-01-01
The strongly swirling turbulent flow through an abrupt expansion is investigated using highly resolved LES and SAS, to shed more light on the stagnation region and the helical vortex breakdown. The vortex breakdown in an abrupt expansion resembles the so-called vortex rope occurring in hydro power draft tubes. It is known that the large-scale helical vortex structures can be captured by regular RANS turbulence models. However, the spurious suppression of the small-scale structures should be avoided using less diffusive methods. The present work compares LES and SAS results with the experimental measurement of Dellenback et al. (1988). The computations are conducted using a general non-orthogonal finite-volume method with a fully collocated storage available in the OpenFOAM-2.1.x CFD code. The dynamics of the flow is studied at two Reynolds numbers, Re=6.0×10 4 and Re=10 5 , at the almost constant high swirl numbers of Sr=1.16 and Sr=1.23, respectively. The time-averaged velocity and pressure fields and the root mean square of the velocity fluctuations, are captured and investigated qualitatively. The flow with the lower Reynolds number gives a much weaker outburst although the frequency of the structures seems to be constant for the plateau swirl number
Garcia Cartagena, Edgardo Javier; Santoni, Christian; Ciri, Umberto; Iungo, Giacomo Valerio; Leonardi, Stefano
2015-11-01
A large-scale wind farm operating under realistic atmospheric conditions is studied by coupling a meso-scale and micro-scale models. For this purpose, the Weather Research and Forecasting model (WRF) is coupled with an in-house LES solver for wind farms. The code is based on a finite difference scheme, with a Runge-Kutta, fractional step and the Actuator Disk Model. The WRF model has been configured using seven one-way nested domains where the child domain has a mesh size one third of its parent domain. A horizontal resolution of 70 m is used in the innermost domain. A section from the smallest and finest nested domain, 7.5 diameters upwind of the wind farm is used as inlet boundary condition for the LES code. The wind farm consists in six-turbines aligned with the mean wind direction and streamwise spacing of 10 rotor diameters, (D), and 2.75D in the spanwise direction. Three simulations were performed by varying the velocity fluctuations at the inlet: random perturbations, precursor simulation, and recycling perturbation method. Results are compared with a simulation on the same wind farm with an ideal uniform wind speed to assess the importance of the time varying incoming wind velocity. Numerical simulations were performed at TACC (Grant CTS070066). This work was supported by NSF, (Grant IIA-1243482 WINDINSPIRE).
EDDIE RICKENBACKER: RACETRACK ENTREPRENEUR
Directory of Open Access Journals (Sweden)
W. David Lewis
2000-01-01
Full Text Available Edward V. (Eddie Rickenbacker (1890-1973 is best remembered for hisrecord as a combat pilot in World War I, in which he shot down 26 Germa naircraft and won fame as America’s "Ace of Aces." From 1934 until 1963 he was general manager, president, and board chairman of Eastern Air Lines, which was for a time the most profitable air carrier in the United States. This paper shows how Rickenbacker’s fiercely entrepreneurial style of management was born in his early involvement in the automobile industry, and particularly in his career as an automobile racing driver from 1909 through 1916.
Advances in Large Grain/Single Crystal SC Resonators at DESY
International Nuclear Information System (INIS)
W. Singer; A. Brinkmann; A. Ermakov; J. Iversen; G. Kreps; A. Matheisen; D. Proch; D. Reschke; X. Singer; M. Spiwek; H. We; P. Kneisel; M. Pekeler
2007-01-01
The main aim of the DESY large grain R and D program is to check whether this option is reasonable to apply for fabrication of ca. 1000 XFEL cavities. Two aspects are being pursued. On one hand the basic material investigation, on the other hand the material availability, fabrication and preparation procedure. Several single cell large grain cavities of TESLA shape have been fabricated and tested. The best accelerating gradients of 41 MV/m was measured on electropolished cavity. First large grain nine-cell cavities worldwide have been produced under contract of DESY with ACCEL Instruments Co. All three cavities fulfill the XFEL specification already in first RF test after only BCP (Buffered Chemical Polishing) treatment and 800 degrees C annealing. Accelerating gradient of 27-29 MV/m was reached. A fabrication method of single crystal cavity of ILC like shape was proposed. A single cell single crystal cavity was build at the company ACCEL. Accelerating gradient of 37.5 MV/m reached after only 112 microns BCP and in situ baking 120 degrees C for 6 hrs with the quality factor higher as 2x1010. The developed method can be extended on fabrication of multi cell single crystal cavities
Lupus-related single nucleotide polymorphisms and risk of diffuse large B-cell lymphoma
Bernatsky, Sasha; Velásquez García, Héctor A; Spinelli, John; Gaffney, Patrick; Smedby, Karin E; Ramsey-Goldman, Rosalind; Wang, Sophia S.; Adami, Hans-Olov; Albanes, Demetrius; Angelucci, Emanuele; Ansell, Stephen M.; Asmann, Yan W.; Becker, Nikolaus; Benavente, Yolanda; Berndt, Sonja I.; Bertrand, Kimberly A.; Birmann, Brenda M.; Boeing, Heiner; Boffetta, Paolo; Bracci, Paige M.; Brennan, Paul; Brooks-Wilson, Angela R.; Cerhan, James R.; Chanock, Stephen J.; Clavel, Jacqueline; Conde, Lucia; Cotenbader, Karen H; Cox, David G; Cozen, Wendy; Crouch, Simon; De Roos, Anneclaire J.; De Sanjose, Silvia; Di Lollo, Simonetta; Diver, W. Ryan; Dogan, Ahmet; Foretova, Lenka; Ghesquières, Hervé; Giles, Graham G.; Glimelius, Bengt; Habermann, Thomas M.; Haioun, Corinne; Hartge, Patricia; Hjalgrim, Henrik; Holford, Theodore R.; Holly, Elizabeth A.; Jackson, Rebecca D.; Kaaks, Rudolph; Kane, Eleanor; Kelly, Rachel S.; Klein, Robert J.; Kraft, Peter; Kricker, Anne; Lan, Qing; Lawrence, Charles; Liebow, Mark; Lightfoot, Tracy; Link, Brian K.; Maynadie, Marc; McKay, James; Melbye, Mads; Molina, Thierry Jo; Monnereau, Alain; Morton, Lindsay M.; Nieters, Alexandra; North, Kari E.; Novak, Anne J.; Offit, Kenneth; Purdue, Mark P.; Rais, Marco; Riby, Jacques; Roman, Eve; Rothman, Nathaniel; Salles, Gilles; Severi, Gianluca; Severson, Richard K.; Skibola, Christine F.; Slager, Susan L.; Smith, Alex; Smith, Martyn T.; Southey, Melissa C.; Staines, Anthony; Teras, Lauren R.; Thompson, Carrie A.; Tilly, Hervé; Tinker, Lesley F.; Tjonneland, Anne; Turner, Jenny; Vajdic, Claire M.; Vermeulen, Roel C H; Vijai, Joseph; Vineis, Paolo; Virtamo, Jarmo; Wang, Zhaoming; Weinstein, Stephanie; Witzig, Thomas E.; Zelenetz, Andrew; Zeleniuch-Jacquotte, Anne; Zhang, Yawei; Zheng, Tongzhang; Zucca, Mariagrazia; Clarke, Ann E
2017-01-01
Objective: Determinants of the increased risk of diffuse large B-cell lymphoma (DLBCL) in SLE are unclear. Using data from a recent lymphoma genome-wide association study (GWAS), we assessed whether certain lupus-related single nucleotide polymorphisms (SNPs) were also associated with DLBCL.
Recognition of handwritten numerical fields in a large single-writer historical collection
Bulacu, Marius; Brink, Axel; Zant, Tijn Van Der; Schomaker, Lambertus
2009-01-01
This paper presents a segmentation-based handwriting recognizer and the performance that it achieves on the numerical fields extracted from a large single-writer historical collection. Our recognizer has the particularity that it uses morphing during training: random elastic deformations are applied
International Nuclear Information System (INIS)
Cecco, V.S.; Van Drunen, G.; Sharp, F.L.
1984-09-01
This report on eddy current testing is divided into three sections: (a) Demonstration of Basic Principles, (b) Practical (Laboratory) Tests and, (c) Typical Certification Questions. It is intended to be used as a supplement to ΣEddy Current Manual, Volume 1Σ (AECL-7523) during CSNDT Foundation Level II and III courses
Conditional Eddies in Plasma Turbulence
DEFF Research Database (Denmark)
Johnsen, Helene; Pécseli, Hans; Trulsen, J.
1986-01-01
Conditional structures, or eddies, in turbulent flows are discussed with special attention to electrostatic turbulence in plasmas. The potential variation of these eddies is obtained by sampling the fluctuations only when a certain condition is satisfied in a reference point. The resulting...
Study on the temperature field of large-sized sapphire single crystal furnace
Zhai, J. P.; Jiang, J. W.; Liu, K. G.; Peng, X. B.; Jian, D. L.; Li, I. L.
2018-01-01
In this paper, the temperature field of large-sized (120kg, 200kg and 300kg grade) sapphire single crystal furnace was simulated. By keeping the crucible diameter ratio and the insulation system unchanged, the power consumption, axial and radial temperature gradient, solid-liquid surface shape, stress distribution and melt flow were studied. The simulation results showed that with the increase of the single crystal furnace size, the power consumption increased, the temperature field insulation effect became worse, the growth stress value increased and the stress concentration phenomenon occurred. To solve these problems, the middle and bottom insulation system should be enhanced during designing the large-sized sapphire single crystal furnace. The appropriate radial and axial temperature gradient was favorable to reduce the crystal stress and prevent the occurrence of cracking. Expanding the interface between the seed and crystal was propitious to avoid the stress accumulation phenomenon.
Large Mode Area Single Trench Fiber for 2 mu m Operation
DEFF Research Database (Denmark)
Jain, Deepak; Sahu, Jayanta K.
2016-01-01
to 25 cm bend radius, respectively, by exploiting high delocalization of the higher order modes. Achievement of a large effective-area can be very useful to address nonlinear effects. Moreover, single trench fiber offers certain advantages such as low-cost fabrication and easy postprocessing (such......Performance of single trench fibers has been investigated using finite-element method at 2 mu m wavelength. Numerical investigations show that an effective single mode operation for large effective area between 3000-4000 mu m(2) and 2000-3000 mu m(2) can be achieved at similar to 40 and similar...... as cleaving and splicing) thanks to the all-solid fiber design....
Digital Repository Service at National Institute of Oceanography (India)
Vidya, P.J.; PrasannaKumar, S.
-square analysis of SSHA confirmed the role of eddies in the observed higher biogenic fluxes. During the eddy events, enhanced opal flux suggested eddy-driven new production, while lower carbonate to opal ratio along with high organic carbon indicated large export...
The Use of Mesoscale Eddies and Gulf Stream Meanders by White Sharks Carcharodon carcharias
Gaube, P.; Thorrold, S.; Braun, C.; McGillicuddy, D. J., Jr.; Lawson, G. L.; Skomal, G. B.
2016-02-01
Large pelagic fishes like sharks, tuna, swordfish, and billfish spend a portion of their lives in the open ocean, yet their spatial distribution in this vast habitat remains relatively unknown. Mesoscale ocean eddies, rotating vortices with radius scales of approximately 100 km, structure open ocean ecosystems from primary producers to apex predators by influencing nutrient distributions and transporting large trapped parcels of water over long distances. Recent advances in both the tagging and tracking of marine animals combined with improved detection and tracking of mesoscale eddies has shed some light on the oceanographic features influencing their migrations. Here we show that white sharks use the interiors of anticyclonic and cyclonic eddies differently, a previously undocumented behavior. While swimming in warm, subtropical water, white sharks preferentially inhabit anticyclonic eddies compared to cyclonic eddies. In the vicinity of the Gulf Stream, the depth and duration of dives recorded by an archival temperature- and depth-recording tag affixed to a large female are shown to be significantly deeper and longer in anticyclonic eddies compared to those in cyclonic eddies. This asymmetry is linked to positive subsurface temperature anomalies generated by anticyclonic eddies that are more than 7 degrees C warmer than cyclonic eddies, thus reducing the need for these animals to expend as much energy regulating their internal temperature. In addition, anticyclonic eddies may be regions of enhance foraging success, as suggested by a series of acoustics surveys in the North Atlantic which indicated elevated mesopelagic fish biomass in anticyclones compared to cyclones.
Eddy energy sources and flux in the Red Sea
Zhan, Peng
2015-04-01
In the Red Sea, eddies are reported to be one of the key features of hydrodynamics in the basin. They play a significant role in converting the energy among the large-scale circulation, the available potential energy (APE) and the eddy kinetic energy (EKE). Not only do eddies affect the horizontal circulation, deep-water formation and overturning circulation in the basin, but they also have a strong impact on the marine ecosystem by efficiently transporting heat, nutrients and carbon across the basin and by pumping the nutrient-enriched subsurface water to sustain the primary production. Previous observations and modeling work suggest that the Red Sea is rich of eddy activities. In this study, the eddy energy sources and sinks have been studied based on a high-resolution MITgcm. We have also investigated the possible mechanisms of eddy generation in the Red Sea. Eddies with high EKE are found more likely to appear in the central and northern Red Sea, with a significant seasonal variability. They are more inclined to occur during winter when they acquire their energy mainly from the conversion of APE. In winter, the central and especially the northern Red Sea are subject to important heat loss and extensive evaporation. The resultant densified upper-layer water tends to sink and release the APE through baroclinic instability, which is about one order larger than the barotropic instability contribution and is the largest source term for the EKE in the Red Sea. As a consequence, the eddy energy is confined to the upper layer but with a slope deepening from south to north. In summer, the positive surface heat flux helps maintain the stratification and impedes the gain of APE. The EKE is, therefore, much lower than that in winter despite a higher wind power input. Unlike many other seas, the wind energy is not the main source of energy to the eddies in the Red Sea.
Directory of Open Access Journals (Sweden)
José Eduardo Alamy Filho
2012-12-01
Full Text Available The Immerse Boundary Method (IBM was used to evaluate the sediment transport over deformable beds. Large Eddy Simulation (LES procedures were used for the mathematical treatment of turbulence, and the advection-diffusion equation was used to calculate sediment concentration. The Finite Differences Method with staggered grid was applied for the numerical solution of the governing equations (filtered Navier-Stokes, Continuity and advection-diffusion equations. Spatial derivatives were discretized using second order centered differences. A second order explicit Adams-Bashforth scheme was used for the time evolution in the advection-diffusion equation, while a fourth order Adams-Bashforth scheme was used for the filtered Navier-Stokes equations. The numerical simulation reproduced flow structures like large eddies after the dune crests and counter-rotative vortices, which are important in sediment transport. Resuspension fluxes and sedimentation (dependent on particle concentration were calculated using equations proposed in this study. The deformations of the bed caused by erosion and deposition may be well followed through the present procedures, showing that this methodology is adequate to evaluate bed modifications and sediment transport in alluvial flows.Se utilizó el método de fronteras inmersas para evaluar el transporte de sedimentos en lechos deformables. Los procedimientos de la simulación de gran escala fueron utilizados para el tratamiento matemático de la turbulencia, y se utilizó la ecuación de advección-difusión para calcular la concentración de sedimentos. Se aplicó el método de diferencias finitas con malla desplazada para la solución numérica de las ecuaciones básicas (Navier-Stokes filtrado, continuidad y las ecuaciones de advección-difusión. Las derivadas espaciales fueron discretizadas mediante diferencias de segundo orden centrado. Se utilizó un esquema explícito de Adams-Bashforth de segundo orden para la
Miller, Daniel J; Zhang, Zhibo; Ackerman, Andrew S; Platnick, Steven; Baum, Bryan A
2016-04-27
Passive optical retrievals of cloud liquid water path (LWP), like those implemented for Moderate Resolution Imaging Spectroradiometer (MODIS), rely on cloud vertical profile assumptions to relate optical thickness ( τ ) and effective radius ( r e ) retrievals to LWP. These techniques typically assume that shallow clouds are vertically homogeneous; however, an adiabatic cloud model is plausibly more realistic for shallow marine boundary layer cloud regimes. In this study a satellite retrieval simulator is used to perform MODIS-like satellite retrievals, which in turn are compared directly to the large-eddy simulation (LES) output. This satellite simulator creates a framework for rigorous quantification of the impact that vertical profile features have on LWP retrievals, and it accomplishes this while also avoiding sources of bias present in previous observational studies. The cloud vertical profiles from the LES are often more complex than either of the two standard assumptions, and the favored assumption was found to be sensitive to cloud regime (cumuliform/stratiform). Confirming previous studies, drizzle and cloud top entrainment of dry air are identified as physical features that bias LWP retrievals away from adiabatic and toward homogeneous assumptions. The mean bias induced by drizzle-influenced profiles was shown to be on the order of 5-10 g/m 2 . In contrast, the influence of cloud top entrainment was found to be smaller by about a factor of 2. A theoretical framework is developed to explain variability in LWP retrievals by introducing modifications to the adiabatic r e profile. In addition to analyzing bispectral retrievals, we also compare results with the vertical profile sensitivity of passive polarimetric retrieval techniques.
Large-eddy simulations of turbulence
National Research Council Canada - National Science Library
Lesieur, Marcel; Métais, O; Comte, P
2005-01-01
... physical-space models are generally more readily applied, spectral models give insight into the requirements and limitations in subgrid-scale modeling and backscattering. A third special feature ...
Large Eddy Simulations using oodlesDST
2016-01-01
separation and reattachment of a turbulent boundary layer on a three-dimensional curved ramp. The behaviour of each of the subgrid scale models is...Division of the Defence Science and Technology Organisation . His main role was to lead the submarine manoeuvring research within the Hydrodynamics...Technology Organisation in 2009. He completed a Ph.D. in 2009 at RMIT University in the area of methods to accelerate grid generation and computational fluid
Obituary: John Allen Eddy (1931-2009)
Gingerich, Owen
2011-12-01
bin HAD," which has been passed on to every subsequent division president. At the IAU meeting in New Delhi, Eddy became president of the IAU Commission 41 on the history of astronomy (1985-88). While at the CfA Eddy received a tenure offer from the director, George Field. But Eddy's wife, Marjorie Bratt Eddy, and four children had remained behind, and Jack felt obliged to return to Colorado. With the offer from the Smithsonian Observatory and his considerable fame, HAO and NCAR were eager to rehire him. Eddy soon became increasingly interested in interdisciplinary sciences, turning away from his earlier enthusiasm for the history of astronomy. He became the first chairman of a National Academy of Sciences committee for an International Geosphere-Biosphere Program, which later became the U.S. Global Change Program. Early in 1986, UCAR (the University Corporation for Atmospheric research, which managed NCAR) formalized its response to the challenge of global change with a new Office for Interdisciplinary Earth Studies, which Eddy founded and directed. The office focused efforts to bring the atmospheric sciences and other relevant disciplines together to study the earth's living and inanimate elements as a single system. In 1987 Eddy received the Arctowski medal from the National Academy of Science, an honor awarded triennially for studies in solar physics and solar terrestrial relationships. In 1992 Eddy found a new opportunity as chief scientist and vice president of the Center for International Earth Science Information Network, which he described as a federally funded pork barrel project in Michigan. Meanwhile Eddy had divorced; he remarried in 1992 to a fellow worker at UCAR, and he and his new wife, Barbara, relocated to Saginaw, Michigan. After two years he was "extremely frustrated" by the bureaucracy, so he and Barbara struck out on their own, founding the newsletter Consequences (with support from five federal agencies) to explain in popular terms the nature
Assessing the Validity of Single-item Life Satisfaction Measures: Results from Three Large Samples
Cheung, Felix; Lucas, Richard E.
2014-01-01
Purpose The present paper assessed the validity of single-item life satisfaction measures by comparing single-item measures to the Satisfaction with Life Scale (SWLS) - a more psychometrically established measure. Methods Two large samples from Washington (N=13,064) and Oregon (N=2,277) recruited by the Behavioral Risk Factor Surveillance System (BRFSS) and a representative German sample (N=1,312) recruited by the Germany Socio-Economic Panel (GSOEP) were included in the present analyses. Single-item life satisfaction measures and the SWLS were correlated with theoretically relevant variables, such as demographics, subjective health, domain satisfaction, and affect. The correlations between the two life satisfaction measures and these variables were examined to assess the construct validity of single-item life satisfaction measures. Results Consistent across three samples, single-item life satisfaction measures demonstrated substantial degree of criterion validity with the SWLS (zero-order r = 0.62 – 0.64; disattenuated r = 0.78 – 0.80). Patterns of statistical significance for correlations with theoretically relevant variables were the same across single-item measures and the SWLS. Single-item measures did not produce systematically different correlations compared to the SWLS (average difference = 0.001 – 0.005). The average absolute difference in the magnitudes of the correlations produced by single-item measures and the SWLS were very small (average absolute difference = 0.015 −0.042). Conclusions Single-item life satisfaction measures performed very similarly compared to the multiple-item SWLS. Social scientists would get virtually identical answer to substantive questions regardless of which measure they use. PMID:24890827
Assessing the validity of single-item life satisfaction measures: results from three large samples.
Cheung, Felix; Lucas, Richard E
2014-12-01
The present paper assessed the validity of single-item life satisfaction measures by comparing single-item measures to the Satisfaction with Life Scale (SWLS)-a more psychometrically established measure. Two large samples from Washington (N = 13,064) and Oregon (N = 2,277) recruited by the Behavioral Risk Factor Surveillance System and a representative German sample (N = 1,312) recruited by the Germany Socio-Economic Panel were included in the present analyses. Single-item life satisfaction measures and the SWLS were correlated with theoretically relevant variables, such as demographics, subjective health, domain satisfaction, and affect. The correlations between the two life satisfaction measures and these variables were examined to assess the construct validity of single-item life satisfaction measures. Consistent across three samples, single-item life satisfaction measures demonstrated substantial degree of criterion validity with the SWLS (zero-order r = 0.62-0.64; disattenuated r = 0.78-0.80). Patterns of statistical significance for correlations with theoretically relevant variables were the same across single-item measures and the SWLS. Single-item measures did not produce systematically different correlations compared to the SWLS (average difference = 0.001-0.005). The average absolute difference in the magnitudes of the correlations produced by single-item measures and the SWLS was very small (average absolute difference = 0.015-0.042). Single-item life satisfaction measures performed very similarly compared to the multiple-item SWLS. Social scientists would get virtually identical answer to substantive questions regardless of which measure they use.
The role of eddy transports in climate change
International Nuclear Information System (INIS)
Stone, P.H.
1994-01-01
Large-scale atmospheric eddies are the dominant transport mechanisms in mid and high latitudes. Thus, climate models must simulate these eddies, their effects, and their feedbacks accurately. Getting the feedbacks right is particularly important since it is the feedbacks which affect climate sensitivity. Observational studies of these feedbacks are hindered by the lack of actual climate changes for which good data is available, and by the lack of data on vertical heat fluxes. General circulation model (GCM) studies are hindered by errors in GCM simulations of transports in the current climate; the dependence of GCM results on uncertain subgrid scale parameterizations; and large computational requirements. A more promising approach for learning about eddy feedbacks and how they can be modelled is process model studies. So far these studies have only looked at the feedback between eddy sensible heat fluxes arising from baroclinic instability and the temperature structure. The results indicate that there is a very strong negative feedback between eddy fluxes and temperature structure, both meridional and vertical, with the fluxes themselves being sensitive to small changes in temperature structure. These studies need to be extended to higher vertical resolution, and to include the effects of moisture, stationary eddies, and coupling to the oceans
Oceanic mass transport by mesoscale eddies.
Zhang, Zhengguang; Wang, Wei; Qiu, Bo
2014-07-18
Oceanic transports of heat, salt, fresh water, dissolved CO2, and other tracers regulate global climate change and the distribution of natural marine resources. The time-mean ocean circulation transports fluid as a conveyor belt, but fluid parcels can also be trapped and transported discretely by migrating mesoscale eddies. By combining available satellite altimetry and Argo profiling float data, we showed that the eddy-induced zonal mass transport can reach a total meridionally integrated value of up to 30 to 40 sverdrups (Sv) (1 Sv = 10(6) cubic meters per second), and it occurs mainly in subtropical regions, where the background flows are weak. This transport is comparable in magnitude to that of the large-scale wind- and thermohaline-driven circulation. Copyright © 2014, American Association for the Advancement of Science.
The method of arbitrarily large moments to calculate single scale processes in quantum field theory
Directory of Open Access Journals (Sweden)
Johannes Blümlein
2017-08-01
Full Text Available We devise a new method to calculate a large number of Mellin moments of single scale quantities using the systems of differential and/or difference equations obtained by integration-by-parts identities between the corresponding Feynman integrals of loop corrections to physical quantities. These scalar quantities have a much simpler mathematical structure than the complete quantity. A sufficiently large set of moments may even allow the analytic reconstruction of the whole quantity considered, holding in case of first order factorizing systems. In any case, one may derive highly precise numerical representations in general using this method, which is otherwise completely analytic.
The method of arbitrarily large moments to calculate single scale processes in quantum field theory
Energy Technology Data Exchange (ETDEWEB)
Bluemlein, Johannes [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Schneider, Carsten [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation (RISC)
2017-01-15
We device a new method to calculate a large number of Mellin moments of single scale quantities using the systems of differential and/or difference equations obtained by integration-by-parts identities between the corresponding Feynman integrals of loop corrections to physical quantities. These scalar quantities have a much simpler mathematical structure than the complete quantity. A sufficiently large set of moments may even allow the analytic reconstruction of the whole quantity considered, holding in case of first order factorizing systems. In any case, one may derive highly precise numerical representations in general using this method, which is otherwise completely analytic.
Large rotating magnetocaloric effect in ErAlO3 single crystal
Directory of Open Access Journals (Sweden)
X. Q. Zhang
2017-05-01
Full Text Available Magnetic and magnetocaloric properties of ErAlO3 single crystal were investigated. Magnetization of ErAlO3 shows obvious anisotropy when magnetic field is applied along the a, b and c axes, which leads to large anisotropic magnetic entropy change. In particular, large rotating field entropy change from the b to c axis within the bc plane is obtained and reaches 9.7 J/kg K at 14 K in a field of 5 T. This suggests the possibility of using ErAlO3 single crystal for magnetic refrigerators by rotating its magnetization vector rather than moving it in and out of the magnet.
Burba, George; Madsen, Rod; Feese, Kristin
2013-04-01
The Eddy Covariance method is a micrometeorological technique for direct high-speed measurements of the transport of gases, heat, and momentum between the earth's surface and the atmosphere. Gas fluxes, emission and exchange rates are carefully characterized from single-point in-situ measurements using permanent or mobile towers, or moving platforms such as automobiles, helicopters, airplanes, etc. Since the early 1990s, this technique has been widely used by micrometeorologists across the globe for quantifying CO2 emission rates from various natural, urban and agricultural ecosystems [1,2], including areas of agricultural carbon sequestration. Presently, over 600 eddy covariance stations are in operation in over 120 countries. In the last 3-5 years, advancements in instrumentation and software have reached the point when they can be effectively used outside the area of micrometeorology, and can prove valuable for geological carbon capture and sequestration, landfill emission measurements, high-precision agriculture and other non-micrometeorological industrial and regulatory applications. In the field of geological carbon capture and sequestration, the magnitude of CO2 seepage fluxes depends on a variety of factors. Emerging projects utilize eddy covariance measurement to monitor large areas where CO2 may escape from the subsurface, to detect and quantify CO2 leakage, and to assure the efficiency of CO2 geological storage [3,4,5,6,7,8]. Although Eddy Covariance is one of the most direct and defensible ways to measure and calculate turbulent fluxes, the method is mathematically complex, and requires careful setup, execution and data processing tailor-fit to a specific site and a project. With this in mind, step-by-step instructions were created to introduce a novice to the conventional Eddy Covariance technique [9], and to assist in further understanding the method through more advanced references such as graduate-level textbooks, flux networks guidelines, journals
Development of large Grain/Single Crystal Niobium Cavity Technology at Jefferson Lab
Energy Technology Data Exchange (ETDEWEB)
Peter Kneisel; J. Sekutowicz; T. Carneiro; G. Ciovati
2006-10-31
Approximately two years ago we started to develop high performance niobium accelerating cavities based on large grain or single crystal high purity niobium. We have fabricated and tested 15 single cell cavities of various shapes and frequencies between 1300 MHz and 2300 MHz using material from a total of 9 different very large grain niobium ingots from four niobium suppliers. The materials differed not only in grain sizes, but also in RRR ? value and in the amount of Ta contained in the material. In one ingot supplied by CBMM the central grain exceeded 7 inches in diameter and this was used to fabricate two 2.2 GHz cavities. A single crystal 1300 MHz mono-cell cavity was also produced at DESY by rolling out a single crystal to the size required for this cavity. It was sent to Jlab for surface treatment and testing. In addition, we have fabricated three 7-cell cavities: two of the Jlab high gradient (HG) shape and one of the ILC Low Loss shape. Two 9-cell TESLA shape cavities are presently in fabrication at Jlab and are close to completion.
Energy Technology Data Exchange (ETDEWEB)
Wiggenraad, R.; Verbeek-de Kanter, A.; Mast, M. [Radiotherapy Centre West, The Hague (Netherlands); Molenaar, R. [Diaconessenhuis, Leiden (Netherlands). Dept. of Neurology; Lycklama a Nijeholt, G. [Medical Centre Haagladen, The Hague (Netherlands). Dept. of Radiology; Vecht, C. [Medical Centre Haagladen, The Hague (Netherlands). Dept. of Neurology; Struikmans, H. [Radiotherapy Centre West, The Hague (Netherlands); Leiden Univ. Medical Centre (Netherlands). Dept. of Radiotherapy; Kal, H.B.
2012-08-15
Purpose: The 1-year local control rates after single-fraction stereotactic radiotherapy (SRT) for brain metastases > 3 cm diameter are less than 70%, but with fractionated SRT (FSRT) higher local control rates have been reported. The purpose of this study was to compare our treatment results with SRT and FSRT for large brain metastases. Materials and methods: In two consecutive periods, 41 patients with 46 brain metastases received SRT with 1 fraction of 15 Gy, while 51 patients with 65 brain metastases received FSRT with 3 fractions of 8 Gy. We included patients with brain metastases with a planning target volume of > 13 cm{sup 3} or metastases in the brainstem. Results: The minimum follow-up of patients still alive was 22 months. Comparing 1 fraction of 15 Gy with 3 fractions of 8 Gy, the 1-year rates of freedom from any local progression (54% and 61%, p = 0.93) and pseudo progression (85% and 75%, p = 0.25) were not significantly different. Overall survival rates were also not different. Conclusion: The 1-year local progression and pseudo progression rates after 1 fraction of 15 Gy or 3 fractions of 8 Gy for large brain metastases and metastases in the brainstem are similar. For better local control rates, FSRT schemes with a higher biological equivalent dose may be necessary. (orig.)
Large-Scale Mixed Temperate Forest Mapping at the Single Tree Level using Airborne Laser Scanning
Scholl, V.; Morsdorf, F.; Ginzler, C.; Schaepman, M. E.
2017-12-01
Monitoring vegetation on a single tree level is critical to understand and model a variety of processes, functions, and changes in forest systems. Remote sensing technologies are increasingly utilized to complement and upscale the field-based measurements of forest inventories. Airborne laser scanning (ALS) systems provide valuable information in the vertical dimension for effective vegetation structure mapping. Although many algorithms exist to extract single tree segments from forest scans, they are often tuned to perform well in homogeneous coniferous or deciduous areas and are not successful in mixed forests. Other methods are too computationally expensive to apply operationally. The aim of this study was to develop a single tree detection workflow using leaf-off ALS data for the canton of Aargau in Switzerland. Aargau covers an area of over 1,400km2 and features mixed forests with various development stages and topography. Forest type was classified using random forests to guide local parameter selection. Canopy height model-based treetop maxima were detected and maintained based on the relationship between tree height and window size, used as a proxy to crown diameter. Watershed segmentation was used to generate crown polygons surrounding each maximum. The location, height, and crown dimensions of single trees were derived from the ALS returns within each polygon. Validation was performed through comparison with field measurements and extrapolated estimates from long-term monitoring plots of the Swiss National Forest Inventory within the framework of the Swiss Federal Institute for Forest, Snow, and Landscape Research. This method shows promise for robust, large-scale single tree detection in mixed forests. The single tree data will aid ecological studies as well as forest management practices. Figure description: Height-normalized ALS point cloud data (top) and resulting single tree segments (bottom) on the Laegeren mountain in Switzerland.
Tang, Shuaiqi
Atmospheric vertical velocities and advective tendencies are essential as large-scale forcing data to drive single-column models (SCM), cloud-resolving models (CRM) and large-eddy simulations (LES). They cannot be directly measured or easily calculated with great accuracy from field measurements. In the Atmospheric Radiation Measurement (ARM) program, a constrained variational algorithm (1DCVA) has been used to derive large-scale forcing data over a sounding network domain with the aid of flux measurements at the surface and top of the atmosphere (TOA). We extend the 1DCVA algorithm into three dimensions (3DCVA) along with other improvements to calculate gridded large-scale forcing data. We also introduce an ensemble framework using different background data, error covariance matrices and constraint variables to quantify the uncertainties of the large-scale forcing data. The results of sensitivity study show that the derived forcing data and SCM simulated clouds are more sensitive to the background data than to the error covariance matrices and constraint variables, while horizontal moisture advection has relatively large sensitivities to the precipitation, the dominate constraint variable. Using a mid-latitude cyclone case study in March 3rd, 2000 at the ARM Southern Great Plains (SGP) site, we investigate the spatial distribution of diabatic heating sources (Q1) and moisture sinks (Q2), and show that they are consistent with the satellite clouds and intuitive structure of the mid-latitude cyclone. We also evaluate the Q1 and Q2 in analysis/reanalysis, finding that the regional analysis/reanalysis all tend to underestimate the sub-grid scale upward transport of moist static energy in the lower troposphere. With the uncertainties from large-scale forcing data and observation specified, we compare SCM results and observations and find that models have large biases on cloud properties which could not be fully explained by the uncertainty from the large-scale forcing
Diao, Ying
2013-06-02
Solution coating of organic semiconductors offers great potential for achieving low-cost manufacturing of large-area and flexible electronics. However, the rapid coating speed needed for industrial-scale production poses challenges to the control of thin-film morphology. Here, we report an approach - termed fluid-enhanced crystal engineering (FLUENCE) - that allows for a high degree of morphological control of solution-printed thin films. We designed a micropillar-patterned printing blade to induce recirculation in the ink for enhancing crystal growth, and engineered the curvature of the ink meniscus to control crystal nucleation. Using FLUENCE, we demonstrate the fast coating and patterning of millimetre-wide, centimetre-long, highly aligned single-crystalline organic semiconductor thin films. In particular, we fabricated thin films of 6,13-bis(triisopropylsilylethynyl) pentacene having non-equilibrium single-crystalline domains and an unprecedented average and maximum mobilities of 8.1±1.2 cm2 V-1 s -1 and 11 cm2 V-1 s-1. FLUENCE of organic semiconductors with non-equilibrium single-crystalline domains may find use in the fabrication of high-performance, large-area printed electronics. © 2013 Macmillan Publishers Limited. All rights reserved.
Jiang, Qianqing; Li, Wuxia; Tang, Chengchun; Chang, Yanchun; Hao, Tingting; Pan, Xinyu; Ye, Haitao; Li, Junjie; Gu, Changzhi
2016-11-01
Some color centers in diamond can serve as quantum bits which can be manipulated with microwave pulses and read out with laser, even at room temperature. However, the photon collection efficiency of bulk diamond is greatly reduced by refraction at the diamond/air interface. To address this issue, we fabricated arrays of diamond nanostructures, differing in both diameter and top end shape, with HSQ and Cr as the etching mask materials, aiming toward large scale fabrication of single-photon sources with enhanced collection efficiency made of nitrogen vacancy (NV) embedded diamond. With a mixture of O2 and CHF3 gas plasma, diamond pillars with diameters down to 45 nm were obtained. The top end shape evolution has been represented with a simple model. The tests of size dependent single-photon properties confirmed an improved single-photon collection efficiency enhancement, larger than tenfold, and a mild decrease of decoherence time with decreasing pillar diameter was observed as expected. These results provide useful information for future applications of nanostructured diamond as a single-photon source. Project supported by the National Key Research and Development Plan of China (Grant No. 2016YFA0200402), the National Natural Science Foundation of China (Grants Nos. 11574369, 11574368, 91323304, 11174362, and 51272278), and the FP7 Marie Curie Action (project No. 295208) sponsored by the European Commission.
Xie, Hongbo; Mao, Chensheng; Ren, Yongjie; Zhu, Jigui; Wang, Chao; Yang, Lei
2017-10-01
In high precision and large-scale coordinate measurement, one commonly used approach to determine the coordinate of a target point is utilizing the spatial trigonometric relationships between multiple laser transmitter stations and the target point. A light receiving device at the target point is the key element in large-scale coordinate measurement systems. To ensure high-resolution and highly sensitive spatial coordinate measurement, a high-performance and miniaturized omnidirectional single-point photodetector (OSPD) is greatly desired. We report one design of OSPD using an aspheric lens, which achieves an enhanced reception angle of -5 deg to 45 deg in vertical and 360 deg in horizontal. As the heart of our OSPD, the aspheric lens is designed in a geometric model and optimized by LightTools Software, which enables the reflection of a wide-angle incident light beam into the single-point photodiode. The performance of home-made OSPD is characterized with working distances from 1 to 13 m and further analyzed utilizing developed a geometric model. The experimental and analytic results verify that our device is highly suitable for large-scale coordinate metrology. The developed device also holds great potential in various applications such as omnidirectional vision sensor, indoor global positioning system, and optical wireless communication systems.
GraMi: Generalized Frequent Pattern Mining in a Single Large Graph
Saeedy, Mohammed El
2011-11-01
Mining frequent subgraphs is an important operation on graphs. Most existing work assumes a database of many small graphs, but modern applications, such as social networks, citation graphs or protein-protein interaction in bioinformatics, are modeled as a single large graph. Interesting interactions in such applications may be transitive (e.g., friend of a friend). Existing methods, however, search for frequent isomorphic (i.e., exact match) subgraphs and cannot discover many useful patterns. In this paper the authors propose GRAMI, a framework that generalizes frequent subgraph mining in a large single graph. GRAMI discovers frequent patterns. A pattern is a graph where edges are generalized to distance-constrained paths. Depending on the definition of the distance function, many instantiations of the framework are possible. Both directed and undirected graphs, as well as multiple labels per vertex, are supported. The authors developed an efficient implementation of the framework that models the frequency resolution phase as a constraint satisfaction problem, in order to avoid the costly enumeration of all instances of each pattern in the graph. The authors also implemented CGRAMI, a version that supports structural and semantic constraints; and AGRAMI, an approximate version that supports very large graphs. The experiments on real data demonstrate that the authors framework is up to 3 orders of magnitude faster and discovers more interesting patterns than existing approaches.
Murgha, Yusuf E; Rouillard, Jean-Marie; Gulari, Erdogan
2014-01-01
Custom-defined oligonucleotide collections have a broad range of applications in fields of synthetic biology, targeted sequencing, and cytogenetics. Also, they are used to encode information for technologies like RNA interference, protein engineering and DNA-encoded libraries. High-throughput parallel DNA synthesis technologies developed for the manufacture of DNA microarrays can produce libraries of large numbers of different oligonucleotides, but in very limited amounts. Here, we compare three approaches to prepare large quantities of single-stranded oligonucleotide libraries derived from microarray synthesized collections. The first approach, alkaline melting of double-stranded PCR amplified libraries with a biotinylated strand captured on streptavidin coated magnetic beads results in little or no non-biotinylated ssDNA. The second method wherein the phosphorylated strand of PCR amplified libraries is nucleolyticaly hydrolyzed is recommended when small amounts of libraries are needed. The third method combining in vitro transcription of PCR amplified libraries to reverse transcription of the RNA product into single-stranded cDNA is our recommended method to produce large amounts of oligonucleotide libraries. Finally, we propose a method to remove any primer binding sequences introduced during library amplification.
Single Crystal and Large Grain Niobium Research at Michigan State University
Energy Technology Data Exchange (ETDEWEB)
Compton, Chris; Aizaz, Ahmad; Baars, Derek; Bieler, Tom; Bierwagen, John; Bricker, Steve; Grimm, Terry; Hartung, Walter; Jiang, Hairong; Johnson, Matt; Popielarski, John; Saxton, Laura; Antoine, Claire; Wagner, Bob; Kneisel, Peter
2007-09-01
As Superconducting Radio Frequency (SRF) technology is used in more accelerator designs, research has focused on increasing the efficiency of these accelerators by pushing gradients and investigating cast reduction options. Today, most SRF structures are fabricated from high purity niobium. Over years of research, a material specification has been derived that defines a uniaxial, fine gain structure for SRF cavity fabrication. Most recently a push has been made to investigate the merits of using single or large grain niobium as a possible alternative to fine grain niobium. Michigan State University (MSU), in collaboration with Fermi National Accelerator Laboratory (FNAL) and Thomas Jefferson National Accelerator Facility (JLAB), is researching large grain niobium via cavity fabrication processes end testing, as well as exploring materials science issues associated with recrystallization and heat transfer. Single-cell 1.3 GHz (Beta=0.081) cavities made from both fine end large grain niobium were compared both in terms of fabrication procedures and performance. Two 7-cell cavities are currently being fabricated.
Design of a Large Single-Aperture Dipole Magnet for HL-LHC Upgrade
Qingjin, Xu; Iio, Masami; Ogitsu, Toru; Sasaki, Kenichi; Yamamoto, Akira; Todesco, Ezio
2013-01-01
An upgrade of the low-beta insertion system for the ATLAS and Compact Muon Solenoid experiments is proposed in the high luminosity Large Hadron Collider upgrade project. It includes final beam focusing quadrupoles, beam separation and recombination dipoles, and larger aperture matching section quadrupoles. KEK is in charge of the conceptual design of the large aperture separation dipole D1. The latest design parameters are a main field of ~ 5 T at 1.9 K with Nb-Ti superconducting technology, a coil aperture of 160 mm, and a cos-theta one-layer coil with Large Hadron Collider dipole cable. Because the new D1 is expected to be operated in a very high radiation environment, radiation resistance and a cooling scheme are being carefully considered. The collaring-yoke structure is adopted to provide the mechanical support for the single-layer Nb-Ti coil. We summarize the design study of this magnet, including i) the very large iron saturation effect on field quality due to the large aperture and limited size of the...
Carcinoma of the large bowel after a single massive dose of radiation in healthy teenagers
Energy Technology Data Exchange (ETDEWEB)
Rotmensch, S.; Avigad, I.; Soffer, E.E.; Horowitz, A.; Bar-Meir, S.; Confino, R.; Czerniak, A.; Wolfstein, I.
1986-02-15
Three healthy teenagers were exposed to a single pelvic x-ray irradiation as part of sterilization experiments performed in the Auschwitz concentration camp in 1943. Single and multiple carcinomas of the colon and rectum developed 40 years later in the radiation field. Histologic examination of surgical specimens revealed severe radiation-induced changes in all layers of tumor-adjacent areas. In contrast to previous reports of radiation-induced large bowel cancers, these women had not undergone repeated courses of radiation, had no known co-existing disease that might raise the risk for colonic and rectal malignancies, and had an extremely long and remarkably similar latency period. These cases emphasize the need for long-term surveillance in previously radiated patients. Since thousands of teenagers were subjected to similar sterilization experiments, awareness of this association might help in the early diagnosis of additional cases.
Controlling Fundamental Fluctuations for Reproducible Growth of Large Single-Crystal Graphene.
Guo, Wei; Wu, Bin; Wang, Shuai; Liu, Yunqi
2018-02-27
The controlled growth of graphene by the chemical vapor deposition method is vital for its various applications; however, the reproducibility remains a great challenge. Here, using single-crystal graphene growth on a Cu surface as a model system, we demonstrate that a trace amount of H 2 O and O 2 impurity gases in the reaction chamber is key for the large fluctuation of graphene growth. By precisely controlling their parts per million level concentrations, centimeter-sized single-crystal graphene is obtained in a reliable manner with a maximum growth rate up to 190 μm min -1 . The roles of oxidants are elucidated as an effective modulator for both graphene nucleation density and growth rate. This control is more fundamental for reliable growth of graphene beyond previous findings and is expected to be useful for the growth of various 2D materials that are also sensitive to trace oxidant impurities.
Large single crystals of graphene on melted copper using chemical vapor deposition.
Wu, Yimin A; Fan, Ye; Speller, Susannah; Creeth, Graham L; Sadowski, Jerzy T; He, Kuang; Robertson, Alex W; Allen, Christopher S; Warner, Jamie H
2012-06-26
A simple method is presented for synthesizing large single crystal graphene domains on melted copper using atmospheric pressure chemical vapor deposition (CVD). This is achieved by performing the reaction above the melting point of copper (1090 °C) and using a molybdenum or tungsten support to prevent balling of the copper from dewetting. By controlling the amount of hydrogen during growth, individual single crystal domains of monolayer graphene greater than 200 μm are produced within a continuous film. Stopping growth before a complete film is formed reveals individual hexagonal domains of graphene that are epitaxially aligned in their orientation. Angular resolved photoemission spectroscopy is used to show that the graphene grown on copper exhibits a linear dispersion relationship and no sign of doping. HRTEM and electron diffraction reveal a uniform high quality crystalline atomic structure of monolayer graphene.
A Parallel Approach for Frequent Subgraph Mining in a Single Large Graph Using Spark
Directory of Open Access Journals (Sweden)
Fengcai Qiao
2018-02-01
Full Text Available Frequent subgraph mining (FSM plays an important role in graph mining, attracting a great deal of attention in many areas, such as bioinformatics, web data mining and social networks. In this paper, we propose SSiGraM (Spark based Single Graph Mining, a Spark based parallel frequent subgraph mining algorithm in a single large graph. Aiming to approach the two computational challenges of FSM, we conduct the subgraph extension and support evaluation parallel across all the distributed cluster worker nodes. In addition, we also employ a heuristic search strategy and three novel optimizations: load balancing, pre-search pruning and top-down pruning in the support evaluation process, which significantly improve the performance. Extensive experiments with four different real-world datasets demonstrate that the proposed algorithm outperforms the existing GraMi (Graph Mining algorithm by an order of magnitude for all datasets and can work with a lower support threshold.
Carcinoma of the large bowel after a single massive dose of radiation in healthy teenagers
International Nuclear Information System (INIS)
Rotmensch, S.; Avigad, I.; Soffer, E.E.; Horowitz, A.; Bar-Meir, S.; Confino, R.; Czerniak, A.; Wolfstein, I.
1986-01-01
Three healthy teenagers were exposed to a single pelvic x-ray irradiation as part of sterilization experiments performed in the Auschwitz concentration camp in 1943. Single and multiple carcinomas of the colon and rectum developed 40 years later in the radiation field. Histologic examination of surgical specimens revealed severe radiation-induced changes in all layers of tumor-adjacent areas. In contrast to previous reports of radiation-induced large bowel cancers, these women had not undergone repeated courses of radiation, had no known co-existing disease that might raise the risk for colonic and rectal malignancies, and had an extremely long and remarkably similar latency period. These cases emphasize the need for long-term surveillance in previously radiated patients. Since thousands of teenagers were subjected to similar sterilization experiments, awareness of this association might help in the early diagnosis of additional cases
International Nuclear Information System (INIS)
Ermakov, A; Jelezov, I; Singer, X; Singer, W; Wen, H; Spiwek, M; Viswanathan, G B; Levit, V; Fraser, H L
2008-01-01
The R and D program on superconducting cavities fabricated from electron beam melted large grain/single crystal (LG/SC) niobium discs explores it's potential for production of approximately 1000 cavities for the European XFEL. Thermal, electrical, mechanical properties, crystal orientation and structure are investigated with the aim to make the fabrication procedure more efficient. In opposite to fine grain niobium the thermal conductivity of LG/SC has a pronounced maximum at 2K. Calculation found a correlation between thermal conductivity enhancement and phonon scattering at the grain boundaries. Detected enhancement is very susceptible to plastic deformation that can cause the complete elimination of the low temperature peak. The final annealing at 800 deg. C of cavities made from large grain niobium is necessary for hydrogen outgassing, as well as for the thermal conductivity enhancement due to stress relaxation and recovery of crystal defects introduced at the cavity fabrication. The effects of annealing temperature up to 1200 deg. C, heating rate, and holding time on the structure recovery after rolling are also established. Total elongation at the uniaxial tensile tests for LG is very high (50-110%) and depends significantly on the load direction, because only very few grains are in the gage length. The elongation after fracture by bi-axial testing (bulging test) for LG is lower (<15%) yet sufficient for deep drawing of half-cells. Metallographic investigation of and electron beam welding tests on, niobium single crystals show that an appropriate disc enlargement and annealing can be done without destruction of the single crystal. These tests showed that a cavity can be produced without grain boundaries even in the welding area. On base of the results a fabrication method of single crystal cavities is proposed
Single-mode ytterbium-doped large-mode-area photonic bandgap rod fiber amplifier
DEFF Research Database (Denmark)
Alkeskjold, Thomas Tanggaard; Scolari, Lara; Broeng, Jes
2011-01-01
Enabling Single-Mode (SM) operation in Large-Mode-Area (LMA) fiber amplifiers and lasers is critical, since a SM output ensures high beam quality and excellent pointing stability. In this paper, we demonstrate and test a new design approach for achieving SM LMA rod fibers by using a photonic...... bandgap structure. The structure allows resonant coupling of higher-order modes from the core and acts as a spatially Distributed Mode Filter (DMF). With this approach, we demonstrate passive SM performance in an only ~50cm long and straight ytterbium-doped rod fiber. The amplifier has a mode field...
Laparoendoscopic Single-Site Surgery (LESS for a Large Ovarian Tumour: First Clinical Case Report
Directory of Open Access Journals (Sweden)
Yao Dong Chua
2011-01-01
Main Outcome Measure(s. Conversion to standard laparoscopic technique or laparotomy, estimated blood loss, operative time , extent of scarring, occurrence of intra- and perioperative surgical complications, technical adequacy, and clinical outcome. Result(s. No conversion to standard laparoscopic technique or laparotomy, and no intraoperative or postoperative complications were observed. Total operative time was 99 minutes. The patient was discharged home on postoperative day one. Conclusion(s. Laparoendoscopic single-site bilateral salpingo-oophorectomy of a large ovarian tumour is feasible with standard laparoscopic instruments. It is safe and effective, with good results in terms of excellent cosmesis and minimal postoperative pain.
Control Algorithms for Large-scale Single-axis Photovoltaic Trackers
Directory of Open Access Journals (Sweden)
Dorian Schneider
2012-01-01
Full Text Available The electrical yield of large-scale photovoltaic power plants can be greatly improved by employing solar trackers. While fixed-tilt superstructures are stationary and immobile, trackers move the PV-module plane in order to optimize its alignment to the sun. This paper introduces control algorithms for single-axis trackers (SAT, including a discussion for optimal alignment and backtracking. The results are used to simulate and compare the electrical yield of fixed-tilt and SAT systems. The proposed algorithms have been field tested, and are in operation in solar parks worldwide.
Universal large deviations for the tagged particle in single-file motion.
Hegde, Chaitra; Sabhapandit, Sanjib; Dhar, Abhishek
2014-09-19
We consider a gas of point particles moving in a one-dimensional channel with a hard-core interparticle interaction that prevents particle crossings--this is called single-file motion. Starting from equilibrium initial conditions we observe the motion of a tagged particle. It is well known that if the individual particle dynamics is diffusive, then the tagged particle motion is subdiffusive, while for ballistic particle dynamics, the tagged particle motion is diffusive. Here we compute the exact large deviation function for the tagged particle displacement and show that this is universal, independent of the individual dynamics.
Large Out-of-Plane Displacement Bistable Electromagnetic Microswitch on a Single Wafer.
Miao, Xiaodan; Dai, Xuhan; Huang, Yi; Ding, Guifu; Zhao, Xiaolin
2016-05-05
This paper presents a bistable microswitch fully batch-fabricated on a single glass wafer, comprising of a microactuator, a signal transformer, a microspring and a permanent magnet. The bistable mechanism of the microswitch with large displacement of 160 μm depends on the balance of the magnetic force and elastic force. Both the magnetic force and elastic force were optimized by finite-element simulation to predict the reliable of the device. The prototype was fabricated and characterized. By utilizing thick laminated photoresist sacrificial layer, the large displacement was obtained to ensure the insulation of the microswitch. The testing results show that the microswitch realized the bistable mechanism at a 3-5 V input voltage and closed in 0.96 ms, which verified the simulation.
Energy Technology Data Exchange (ETDEWEB)
Morris, Tim R. [STAG Research Centre & Department of Physics and Astronomy, University of Southampton,Highfield, Southampton, SO17 1BJ (United Kingdom)
2016-11-25
In single-metric approximations to the exact renormalization group (RG) for quantum gravity, it has been not been clear how to treat the large curvature domain beyond the point where the effective cutoff scale k is less than the lowest eigenvalue of the appropriate modified Laplacian. We explain why this puzzle arises from background dependence, resulting in Wilsonian RG concepts being inapplicable. We show that when properly formulated over an ensemble of backgrounds, the Wilsonian RG can be restored. This in turn implies that solutions should be smooth and well defined no matter how large the curvature is taken. Even for the standard single-metric type approximation schemes, this construction can be rigorously derived by imposing a modified Ward identity (mWI) corresponding to rescaling the background metric by a constant factor. However compatibility in this approximation requires the space-time dimension to be six. Solving the mWI and flow equation simultaneously, new variables are then derived that are independent of overall background scale.
Synthesis and characterization of p-type boron-doped IIb diamond large single crystals
International Nuclear Information System (INIS)
Li Shang-Sheng; Li Xiao-Lei; Su Tai-Chao; Jia Xiao-Peng; Ma Hong-An; Huang Guo-Feng; Li Yong
2011-01-01
High-quality p-type boron-doped IIb diamond large single crystals are successfully synthesized by the temperature gradient method in a china-type cubic anvil high-pressure apparatus at about 5.5 GPa and 1600 K. The morphologies and surface textures of the synthetic diamond crystals with different boron additive quantities are characterized by using an optical microscope and a scanning electron microscope respectively. The impurities of nitrogen and boron in diamonds are detected by micro Fourier transform infrared technique. The electrical properties including resistivities, Hall coefficients, Hall mobilities and carrier densities of the synthesized samples are measured by a four-point probe and the Hall effect method. The results show that large p-type boron-doped diamond single crystals with few nitrogen impurities have been synthesized. With the increase of quantity of additive boron, some high-index crystal faces such as {113} gradually disappear, and some stripes and triangle pits occur on the crystal surface. This work is helpful for the further research and application of boron-doped semiconductor diamond. (cross-disciplinary physics and related areas of science and technology)
GRAMI: Frequent subgraph and pattern mining in a single large graph
Elseidy, M.
2014-01-01
Mining frequent subgraphs is an important operation on graphs; it is defined as finding all subgraphs that appear frequently in a database according to a given frequency threshold. Most existing work assumes a database of many small graphs, but modern applications, such as social networks, citation graphs, or proteinprotein interactions in bioinformatics, are modeled as a single large graph. In this paper we present GRAMI, a novel framework for frequent subgraph mining in a single large graph. GRAMI undertakes a novel approach that only finds the minimal set of instances to satisfy the frequency threshold and avoids the costly enumeration of all instances required by previous approaches. We accompany our approach with a heuristic and optimizations that significantly improve performance. Additionally, we present an extension of GRAMI that mines frequent patterns. Compared to subgraphs, patterns offer a more powerful version of matching that captures transitive interactions between graph nodes (like friend of a friend) which are very common in modern applications. Finally, we present CGRAMI, a version supporting structural and semantic constraints, and AGRAMI, an approximate version producing results with no false positives. Our experiments on real data demonstrate that our framework is up to 2 orders of magnitude faster and discovers more interesting patterns than existing approaches. 2014 VLDB Endowment.
Techniques for extracting single-trial activity patterns from large-scale neural recordings
Churchland, Mark M; Yu, Byron M; Sahani, Maneesh; Shenoy, Krishna V
2008-01-01
Summary Large, chronically-implanted arrays of microelectrodes are an increasingly common tool for recording from primate cortex, and can provide extracellular recordings from many (order of 100) neurons. While the desire for cortically-based motor prostheses has helped drive their development, such arrays also offer great potential to advance basic neuroscience research. Here we discuss the utility of array recording for the study of neural dynamics. Neural activity often has dynamics beyond that driven directly by the stimulus. While governed by those dynamics, neural responses may nevertheless unfold differently for nominally identical trials, rendering many traditional analysis methods ineffective. We review recent studies – some employing simultaneous recording, some not – indicating that such variability is indeed present both during movement generation, and during the preceding premotor computations. In such cases, large-scale simultaneous recordings have the potential to provide an unprecedented view of neural dynamics at the level of single trials. However, this enterprise will depend not only on techniques for simultaneous recording, but also on the use and further development of analysis techniques that can appropriately reduce the dimensionality of the data, and allow visualization of single-trial neural behavior. PMID:18093826
Effect of a single large impact on the coupled atmosphere-interior evolution of Venus
Gillmann, Cédric; Golabek, Gregor J.; Tackley, Paul J.
2016-04-01
We investigate the effect of a single large impact either during the Late Veneer or Late Heavy Bombardment on the evolution of the mantle and atmosphere of Venus. We use a coupled interior/exterior numerical code based on StagYY developed in Gillmann and Tackley (Gillmann, C., Tackley, P.J. [2014]. J. Geophys. Res. 119, 1189-1217). Single vertical impacts are simulated as instantaneous events affecting both the atmosphere and mantle of the planet by (i) eroding the atmosphere, causing atmospheric escape and (ii) depositing energy in the crust and mantle of the planet. The main impactor parameters include timing, size/mass, velocity and efficiency of energy deposition. We observe that impact erosion of the atmosphere is a minor effect compared to melting and degassing triggered by energy deposition in the mantle and crust. We are able to produce viable pathways that are consistent with present-day Venus, especially considering large Late Veneer Impacts. Small collisions (global event and can be responsible for volcanic events focused at the impact location and near the antipode. Depending on the timing of the impact, it can also have major consequences for the long-term evolution of the planet and its surface conditions by either (i) efficiently depleting the upper mantle of the planet, leading to the early loss of its water or (ii) imposing a volatile-rich and hot atmosphere for billions of years.
Large-Area WS2 Film with Big Single Domains Grown by Chemical Vapor Deposition
Liu, Pengyu; Luo, Tao; Xing, Jie; Xu, Hong; Hao, Huiying; Liu, Hao; Dong, Jingjing
2017-10-01
High-quality WS2 film with the single domain size up to 400 μm was grown on Si/SiO2 wafer by atmospheric pressure chemical vapor deposition. The effects of some important fabrication parameters on the controlled growth of WS2 film have been investigated in detail, including the choice of precursors, tube pressure, growing temperature, holding time, the amount of sulfur powder, and gas flow rate. By optimizing the growth conditions at one atmospheric pressure, we obtained tungsten disulfide single domains with an average size over 100 μm. Raman spectra, atomic force microscopy, and transmission electron microscopy provided direct evidence that the WS2 film had an atomic layer thickness and a single-domain hexagonal structure with a high crystal quality. And the photoluminescence spectra indicated that the tungsten disulfide films showed an evident layer-number-dependent fluorescence efficiency, depending on their energy band structure. Our study provides an important experimental basis for large-area, controllable preparation of atom-thick tungsten disulfide thin film and can also expedite the development of scalable high-performance optoelectronic devices based on WS2 film.
A large collapsed-state RNA can exhibit simple exponential single-molecule dynamics.
Smith, Glenna J; Lee, Kang Taek; Qu, Xiaohui; Xie, Zheng; Pesic, Jelena; Sosnick, Tobin R; Pan, Tao; Scherer, Norbert F
2008-05-09
The process of large RNA folding is believed to proceed from many collapsed structures to a unique functional structure requiring precise organization of nucleotides. The diversity of possible structures and stabilities of large RNAs could result in non-exponential folding kinetics (e.g. stretched exponential) under conditions where the molecules have not achieved their native state. We describe a single-molecule fluorescence resonance energy transfer (FRET) study of the collapsed-state region of the free energy landscape of the catalytic domain of RNase P RNA from Bacillus stearothermophilus (C(thermo)). Ensemble measurements have shown that this 260 residue RNA folds cooperatively to its native state at >or=1 mM Mg(2+), but little is known about the conformational dynamics at lower ionic strength. Our measurements of equilibrium conformational fluctuations reveal simple exponential kinetics that reflect a small number of discrete states instead of the expected inhomogeneous dynamics. The distribution of discrete dwell times, collected from an "ensemble" of 300 single molecules at each of a series of Mg(2+) concentrations, fit well to a double exponential, which indicates that the RNA conformational changes can be described as a four-state system. This finding is somewhat unexpected under [Mg(2+)] conditions in which this RNA does not achieve its native state. Observation of discrete well-defined conformations in this large RNA that are stable on the seconds timescale at low [Mg(2+)] (<0.1 mM) suggests that even at low ionic strength, with a tremendous number of possible (weak) interactions, a few critical interactions may produce deep energy wells that allow for rapid averaging of motions within each well, and yield kinetics that are relatively simple.
Remote field eddy current testing
International Nuclear Information System (INIS)
Cheong, Y. M.; Jung, H. K.; Huh, H.; Lee, Y. S.; Shim, C. M.
2001-03-01
The state-of-art technology of the remote field eddy current, which is actively developed as an electromagnetic non-destructive testing tool for ferromagnetic tubes, is described. The historical background and recent R and D activities of remote-field eddy current technology are explained including the theoretical development of remote field eddy current, such as analytical and numerical approach, and the results of finite element analysis. The influencing factors for actual applications, such as the effect of frequency, magnetic permeability, receiving sensitivity, and difficulties of detection and classification of defects are also described. Finally, two examples of actual application, 1) the gap measurement between pressure tubes and calandria tube in CANDU reactor and, 2) the detection of defects in the ferromagnetic heat exchanger tubes, are described. The future research efforts are also included
Eddy current inspection of tubing
International Nuclear Information System (INIS)
Bauza, J. L. R.; Herrero, J.; Diaz, J.
1966-01-01
The Experimental research work carried out to develop a Eddy current testing equipment is described. Search coils with ferrite or air cores were used and the obtained results are discussed. Valuable information was gained from a improved channel in which a direct measure of the defect and the reference signal phase difference is obtained. Artificial defect used to evaluate resolution and sensitivity were produced by electro-machining and mechanical means. Finned SAP tubing was tested in a routine basis with the described equipment and the results plotted. Basic and theoretical considerations on the Eddy current testing technique are given in the last section of this report. (Author)
Zhang, Chi; Hu, Xinhua
2016-12-01
Metamaterials are engineered materials which exhibit fascinating properties unreachable by traditional materials. Here, we report on the design, fabrication, and experimental characterization of a three-dimensional single-port labyrinthine acoustic metamaterial. By using curled perforations with one end closed and with appropriate loss inside, the metamaterial can perfectly absorb airborne sounds in a low-frequency band. Both the position and the relative width of the band can be tuned flexibly. A trade-off is uncovered between the relative absorption bandwidth and thickness of the metamaterial. When the relative absorption bandwidth is as high as 51%, the requirement of deep-subwavelength thickness (0.07 λ ) can still be satisfied. We emphasize that the perfect absorption with large tunability in relative bandwidth (from 9% to >180 % ) was not attainable previously and may find applications ranging from noise reduction to sound imaging.
Directory of Open Access Journals (Sweden)
Assaf Ya'akobovitz
2011-01-01
Full Text Available Following the recent progress in integrating single-wall carbon nanotubes (SWCNTs into silicon-based micro-electromechanical systems (MEMS, new modeling tools are needed to predict their behavior under different loads, including thermal, electrical and mechanical. In the present study, the mechanical behavior of SWCNTs under thermoelectrical loading is analyzed using a large deflection geometrically nonlinear string model. The effect of the resistive heating was found to have a substantial influence on the SWCNTs behavior, including significant enhancement of the strain (up to the millistrains range and buckling due to the thermal expansion. The effect of local buckling sites was also studied and was found to enhance the local strain. The theoretical and numerical results obtained in the present study demonstrate the importance of resistive heating in the analysis of SWCNTs and provide an additional insight into the unique mechanics of suspended SWCNTs.
International Nuclear Information System (INIS)
Mikuriya, Shuichi; Konoeda, Koichi; Mikami, Akihiko
1981-01-01
A single irradiation with a large electron dose was applied on 26 cases of advanced breast cancer in National Medical Center Hospital. Pertinent voltage from 6 to 20 MeV betatron electron was selected in accordance with tumor sizes. In eight patients, 30 Gy were given at once and other patients were irradiated with fractionated dose from 10 to 20 Gy, two or three times within 2 or 3 weeks (total 28 - 38 Gy). The radioresponse in primary and metastatic lesions was macroscopically, histopathologically and immunologically examined. Direct effects of preoperative irradiation of the primary lesions in 18 out of 24 cases (75%) were relatively remarkable by histopathological examinations. Remarkable cellular infiltrations into tumor nests of primary lesions were observed in 14 out of 24 cases (58%). Abscopal effects on metastatic lymph nodes were observed macroscopically in 7 of 20 cases (35%) and microscopic abscopal effects were seen in 10 of 20 cases (50%). In 6 cases among these ten cases macroscopic abscopal effects were associated with microscopic ones. In tests for cellular immunity, blastoid formation rates of lymphocytes induced by PHA in vitro, lymphocytes and absolute numbers of T-cells in peripheral blood slightly decreased after the irradiation. However, in four kinds of skin tests, enhancements of the response were confirmed. The crude survival rate for 3 years of Stage III cases revealed 83.3% and relative survival rate of these cases was 85.5%. A single large electron dose for the treatment of advanced breast cancer may inhibit the depression of immunoreaction in hosts. (J.P.N.)
Disease progression in patients with single, large-scale mitochondrial DNA deletions
Grady, John P.; Campbell, Georgia; Ratnaike, Thiloka; Blakely, Emma L.; Falkous, Gavin; Nesbitt, Victoria; Schaefer, Andrew M.; McNally, Richard J.; Gorman, Grainne S.; Taylor, Robert W.
2014-01-01
Single, large-scale deletions of mitochondrial DNA are a common cause of mitochondrial disease and cause a broad phenotypic spectrum ranging from mild myopathy to devastating multi-system syndromes such as Kearns-Sayre syndrome. Studies to date have been inconsistent on the value of putative predictors of clinical phenotype and disease progression such as mutation load and the size or location of the deletion. Using a cohort of 87 patients with single, large-scale mitochondrial DNA deletions we demonstrate that a variety of outcome measures such as COX-deficient fibre density, age-at-onset of symptoms and progression of disease burden, as measured by the Newcastle Mitochondrial Disease Adult Scale, are significantly (P < 0.05) correlated with the size of the deletion, the deletion heteroplasmy level in skeletal muscle, and the location of the deletion within the genome. We validate these findings with re-analysis of 256 cases from published data and clarify the previously conflicting information of the value of these predictors, identifying that multiple regression analysis is necessary to understand the effect of these interrelated predictors. Furthermore, we have used mixed modelling techniques to model the progression of disease according to these predictors, allowing a better understanding of the progression over time of this strikingly variable disease. In this way we have developed a new paradigm in clinical mitochondrial disease assessment and management that sidesteps the perennial difficulty of ascribing a discrete clinical phenotype to a broad multi-dimensional and progressive spectrum of disease, establishing a framework to allow better understanding of disease progression. PMID:24277717
Directory of Open Access Journals (Sweden)
John J. Degnan
2016-11-01
Full Text Available Several scanning, single photon sensitive, 3D imaging lidars are herein described that operate at aircraft above ground levels (AGLs between 1 and 11 km, and speeds in excess of 200 knots. With 100 beamlets and laser fire rates up to 60 kHz, we, at the Sigma Space Corporation (Lanham, MD, USA, have interrogated up to 6 million ground pixels per second, all of which can record multiple returns from volumetric scatterers such as tree canopies. High range resolution has been achieved through the use of subnanosecond laser pulsewidths, detectors and timing receivers. The systems are presently being deployed on a variety of aircraft to demonstrate their utility in multiple applications including large scale surveying, bathymetry, forestry, etc. Efficient noise filters, suitable for near realtime imaging, have been shown to effectively eliminate the solar background during daytime operations. Geolocation elevation errors measured to date are at the subdecimeter level. Key differences between our Single Photon Lidars, and competing Geiger Mode lidars are also discussed.
BEND-INDUCED LOSSES IN A SINGLE-MODE MICROSTRUCTURED FIBER WITH A LARGE CORE
Directory of Open Access Journals (Sweden)
Y. A. Gatchin
2015-03-01
Full Text Available A study of bend-induced losses in a silica-based single-mode microstructured fiber with a core diameter ranging from 20 to 35 microns and increased relative air content in the holey cladding has been conducted. With the use of the equivalent step-index profile method in approximation of waveguide parameters of microstructured fiber (normalized frequency and normalized transverse attenuation constant the effect of bending on the spectral position of the fundamentalmode short-wavelength leakage boundary has been analyzed. Upon measurement of spectral characteristics of attenuation in the considered fibers good accordance of numerical and experimental data has been found out. It is shown that increase of the air content in the holey cladding leads to expansion of the mentioned boundary to lower wavelengths for the value from 150 to 800 nm depending on the core size and bending conditions. A single-transverse-mode propagation is achieved on fiber length of 5-10 meters due to a substantial difference in losses of fundamental and higher-order guided modes attained by bending. Optical losses in all studied samples are less than 10 dB/km at the wavelength λ = 1550 nm. The results of the study can be applied in the design of high-power laser systems having such basic requirements as a relatively large mode spot and high beam quality.
Mesoscale eddies in the Subantarctic Front-Southwest Atlantic
Directory of Open Access Journals (Sweden)
Pablo D. Glorioso
2005-12-01
Full Text Available Satellite and ship observations in the southern southwest Atlantic (SSWA reveal an intense eddy field and highlight the potential for using continuous real-time satellite altimetry to detect and monitor mesoscale phenomena with a view to understanding the regional circulation. The examples presented suggest that mesoscale eddies are a dominant feature of the circulation and play a fundamental role in the transport of properties along and across the Antarctic Circumpolar Current (ACC. The main ocean current in the SSWA, the Falkland-Malvinas Current (FMC, exhibits numerous embedded eddies south of 50°S which may contribute to the patchiness, transport and mixing of passive scalars by this strong, turbulent current. Large eddies associated with meanders are observed in the ACC fronts, some of them remaining stationary for long periods. Two particular cases are examined using a satellite altimeter in combination with in situ observations, suggesting that cross-frontal eddy transport and strong meandering occur where the ACC flow intensifies along the sub-Antarctic Front (SAF and the Southern ACC Front (SACCF.
Oceanic eddies in synthetic aperture radar images
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
features in the ocean detected in remote sensing images (visible, infrared, and SAR) is presented as well as available information on their spatial and temporal scales. Examples of the Almaz-1 and. ERS-1/2 SAR images showing different eddy types, such as rings, spiral eddies of the open ocean, eddies behind islands and ...
When Does Eddy Viscosity Damp Subfilter Scales Sufficiently?
Verstappen, Roel
2011-01-01
Large eddy simulation (LES) seeks to predict the dynamics of spatially filtered turbulent flows. The very essence is that the LES-solution contains only scales of size >=Delta, where Delta denotes some user-chosen length scale. This property enables us to perform a LES when it is not feasible to
Energy Technology Data Exchange (ETDEWEB)
Vinkovic, I.
2005-07-15
In order to study atmospheric pollution and the dispersion of industrial stack emissions, a large eddy simulation with the dynamic Smagorinsky-Germano sub-grid-scale model is coupled with Lagrangian tracking of fluid particles containing scalar, solid particles and droplets. The movement of fluid particles at a sub-grid level is given by a three-dimensional Langevin model. The stochastic model is written in terms of sub-grid-scale statistics at a mesh level. By introducing a diffusion model, the coupling between the large-eddy simulation and the modified three-dimensional Langevin model is applied to passive scalar dispersion. The results are validated by comparison with the wind-tunnel experiments of Fackrell and Robins (1982). The equation of motion of a small rigid sphere in a turbulent flow is introduced. Solid particles and droplets are tracked in a Lagrangian way. The velocity of solid particles and droplets is considered to have a large scale component (directly computed by the large-eddy simulation) and a sub-grid scale part. Because of inertia and gravity effects, solid particles and droplets, deviate from the trajectories of the surrounding fluid particles. Therefore, a modified Lagrangian correlation timescale is introduced into the Langevin model previously developed for the sub-grid velocity of fluid particles. Two-way coupling and collisions are taken into account. The results of the large-eddy simulation with solid particles are compared with the wind-tunnel experiments of Nalpanis et al. (1993) and of Taniere et al. (1997) on sand particles in saltation and in modified saltation, respectively. A model for droplet coalescence and breakup is implemented which allows to predict droplet interactions under turbulent flow conditions in the frame of the Euler/Lagrange approach. Coalescence and breakup are considered as a stochastic process with simple scaling symmetry assumption for the droplet radius, initially proposed by Kolmogorov (1941). At high
Lemeer, Simone; Pinkse, Martijn W H; Mohammed, Shabaz; van Breukelen, Bas; den Hertog, Jeroen; Slijper, Monique; Heck, Albert J R
2008-04-01
In the developing embryo, as in many other biological processes, complex signaling pathways are under tight control of reversible phosphorylation, guiding cell proliferation, differentiation, and growth. Therefore the large-scale identification of signaling proteins and their post-translational modifications is crucial to understand the proteome biology of the developing zebrafish embryo. Here, we used an automated, robust, and sensitive online TiO 2-based LC-MS/MS setup to enrich for phosphorylated peptides from 1 day old zebrafish embryos. We identified, with high confidence, 1067 endogenous phosphorylation sites in a sample taken from 60 embryos (approximately 180 microg), 321 from 10 embryos, and 47 phosphorylation sites from a single embryo, illustrating the sensitivity of the method. This data set, representing by far the largest for zebrafish, was further exploited by searching for serine/threonine or tyrosine kinase motifs using Scansite. For one-third of the identified phosphopeptides a potential kinase motif could be predicted, where it appeared that Cdk5 kinase, p38MAPK, PKA, and Casein Kinase 2 substrates were the most predominant motifs present, underpinning the importance of these kinases in signaling pathways in embryonic development. The phosphopeptide data set was further interrogated using alignments with phosphopeptides identified in recent large-scale phosphoproteomics screens in human and mouse samples. These alignments revealed conservation of phosphorylation sites in several proteins suggesting preserved function in embryonic development.
Mangalore, Sandhya; Aryan, Saritha; Prasad, Chandrajit; Santosh, Vani
2015-01-01
Supratentorial ependymoma (STE) is a tumor whose unique clinical and imaging characteristics have not been studied. Histopathologically, they resemble ependymoma elsewhere. We retrospectively reviewed the imaging findings with clinicopathological correlation in a large number of patients with STE to identify these characteristics. Computed tomography (CT) magnetic resonance images (MRI), pathology reports, and clinical information from 41 patients with pathology-confirmed STE from a single institution were retrospectively reviewed. CT and MRI findings including location, size, signal intensity, hemorrhage, and enhancement pattern were tabulated and described separately in intraventricular and intraparenchymal forms. STE was more common in pediatric age group and intraparenchymal was more common than intraventricular form. The most common presentation was features of raised intracranial tension. There were equal numbers of Grade II and Grade III tumors. The imaging characteristics in adult and pediatric age group were similar. The tumor was large and had both solid and cystic components. Advanced imaging such as diffusion, perfusion, and spectroscopy were suggestive of high-grade tumor. Only differentiating factor between Grade II and Grade III was the presence of calcification. 1234 rule and periwinkle sign which we have described in this article may help characterize this tumor on imaging. This series expands the clinical and imaging spectrum of STE and identifies characteristics that should suggest consideration of this uncommon diagnosis.
Eddy current flaw detecting probe
International Nuclear Information System (INIS)
Hashimoto, Mitsuo; Harada, Yutaka; Shimone, Junri; Maeda, Kotaro
1998-01-01
The present invention provides an eddy current-flaw detection probe facilitating quantitative evaluation, which is used for maintenance and inspection of metal fine tubes of a heat exchanger of a nuclear power plant. Namely, the probe comprises a substantially cylindrical or columnar flow detection main body to be inserted to a metal tube. Wires are wound on the circumferential surface of the flaw detection main body substantially uniformly and in parallel to form a solenoid portion having a predetermined width. Magnetic sensors are disposed on the lateral center of the solenoid portion. With such a constitution, the solenoid portion forms eddy current in the circumferential direction. The eddy current is substantially in parallel having the same intensity at the lateral central portion of the solenoid. Accordingly, the quantitative evaluation for the shape and the size of cracks in the axial direction of the tube can be conducted by the magnetic sensors disposed to the portion. In addition, since the eddy current is substantially uniform, parameters upon reverse analysis can be reduced upon determination of the shape of flaws. (I.S.)
Eddy current testing, volume 1
International Nuclear Information System (INIS)
Cecco, V.S.; Van Drunen, G.; Sharp, F.L.
1981-11-01
This training and reference manual was assembled to provide those involved in eddy current testing with both the fundamental principles of the technique as well as the knowledge to deal with often complicated test results. A non-rigorous approach is used to simplify complex physical phenomena. Emphasis is placed on proper choice of test frequency and interpretation. Defect detection and diagnosis receive particular attention. Design and construction of probes are covered extensively since probes play a key role in eddy current testing. The advantages and limitations of various probe types are discussed. Electromagnetic theory, instrumentation, test methods and signal analysis are covered. Simplified derivations of probe response to test parameters are presented to develop a basic understanding of eddy current behaviour. Eddy current signals are presented on impedance plane diagrams throughout the manual since this is the most common display on modern, general purpose instruments. The use of 'phase leg' in signal analysis is covered in detail. To supplement theory, practical examples are presented to develop proficiency in performing inspections, and to illustrate how basic principles are applied to diagnose real signals
International Nuclear Information System (INIS)
Cecco, V.S.; Van Drunen, G.; Sharp, F.L.
1983-09-01
This training and reference manual was assembled to provide those involved in eddy current testing with both the fundamental principles of the technique as well as the knowledge to deal with often complicated test results. A non-rigorous approach is used to simplify complex physical phenomena. Emphasis is placed on proper choice of test frequency and signal interpretation. Defect detection and diagnosis receive particular attention. Design and construction of probes are covered extensively since probes play a key role in eddy current testing. The advantages and limitations of various probe types are discussed. Electromagnetic theory, instrumentation, test methods and signal analysis are covered. Simplified derivations of probe response to test parameters are presented to develop a basic understanding of eddy current behaviour. Eddy current signals are presented on impedance plane diagrams throughout the manual since this is the most common display on modern, general purpose instruments. The use of Σphase lagΣ in signal analysis is covered in detail. To supplement theory, practical examples are presented to develop proficiency in performing inspections, and to illustrate how basic principles are applied to diagnose real signals
Space Situational Awareness of Large Numbers of Payloads From a Single Deployment
Segerman, A.; Byers, J.; Emmert, J.; Nicholas, A.
2014-09-01
The nearly simultaneous deployment of a large number of payloads from a single vehicle presents a new challenge for space object catalog maintenance and space situational awareness (SSA). Following two cubesat deployments last November, it took five weeks to catalog the resulting 64 orbits. The upcoming Kicksat mission will present an even greater SSA challenge, with its deployment of 128 chip-sized picosats. Although all of these deployments are in short-lived orbits, future deployments will inevitably occur at higher altitudes, with a longer term threat of collision with active spacecraft. With such deployments, individual scientific payload operators require rapid precise knowledge of their satellites' locations. Following the first November launch, the cataloguing did not initially associate a payload with each orbit, leaving this to the satellite operators. For short duration missions, the time required to identify an experiment's specific orbit may easily be a large fraction of the spacecraft's lifetime. For a Kicksat-type deployment, present tracking cannot collect enough observations to catalog each small object. The current approach is to treat the chip cloud as a single catalog object. However, the cloud dissipates into multiple subclouds and, ultimately, tiny groups of untrackable chips. One response to this challenge may be to mandate installation of a transponder on each spacecraft. Directional transponder transmission detections could be used as angle observations for orbit cataloguing. Of course, such an approach would only be employable with cooperative spacecraft. In other cases, a probabilistic association approach may be useful, with the goal being to establish the probability of an element being at a given point in space. This would permit more reliable assessment of the probability of collision of active spacecraft with any cloud element. This paper surveys the cataloguing challenges presented by large scale deployments of small spacecraft
Eddy-Kuroshio Interactions: Local and Remote Effects
Jan, Sen; Mensah, Vigan; Andres, Magdalena; Chang, Ming-Huei; Yang, Yiing Jang
2017-12-01
western North Pacific, is important in redistributing ocean energy and, in turn, shaping the large scale ocean circulation. This study focuses on the processes underlying the interaction of nonlinear mesoscale eddies with the Kuroshio, which have not yet been thoroughly investigated in the literature. Using pressure-sensor equipped echo sounder and satellite observations interpreted in the context of semi-idealized numerical simulations, this study find (1) locally, eddy arrivals modify velocity structure in the Kuroshio first, followed by changes in sea level and isopycnal depths leading to seesaw-like variations of the sea level and density slopes across the Kuroshio, and (2) modeled remote effects, i.e., Kuroshio intrusions, manifest in the Luzon Strait and on the East China Sea shelf and depend on the eddies' impingement latitude, strength, and polarity.
Recurrence in Benign Paroxysmal Positional Vertigo: A Large, Single-Institution Study.
Luryi, Alexander L; Lawrence, Juliana; Bojrab, Dennis I; LaRouere, Michael; Babu, Seilesh; Zappia, John; Sargent, Eric W; Chan, Eleanor; Naumann, Ilka; Hong, Robert S; Schutt, Christopher A
2018-04-11
To report rates of recurrence in benign paroxysmal positional vertigo (BPPV) and associated patient and disease factors. Retrospective chart review. Single high-volume otology practice. Patients diagnosed with BPPV from 2007 to 2016 with documented resolution of symptoms. Diagnostic and particle repositioning maneuvers for BPPV. BPPV recurrence, time to recurrence, and ear(s) affected at recurrence. A total of 1,105 patients meeting criteria were identified. Of this population, 37% had recurrence of BPPV in either ear or both ears. Overall same-ear recurrence rate was 28%; 76% of recurrences involved the same ear(s) as initial presentation. Recurrences that occurred after longer disease-free intervals were more likely to involve the opposite ear than early recurrences (p = 0.02). Female sex (40.4% versus 32.7%, p = 0.01) and history of previous BPPV (57.5% versus 32.4%, p diabetes mellitus, and traumatic etiology were not. Approximately, half (56%) of recurrences occurred within 1 year of resolution. A large single-institution study of recurrence in BPPV is presented along with Kaplan-Meier disease-free survival curves. Female sex and history of previous BPPV were associated with increased recurrence, while previously suspected risk factors for recurrence including history of Menière's disease, diabetes, and trauma were not. Remote recurrence is more likely to involve the contralateral ear than early recurrence. These data solidify the expected course of treated BPPV allowing for improved clinical care and patient counseling.
PFAPA syndrome: clinical characteristics and treatment outcomes in a large single-centre cohort.
Król, Petra; Böhm, Marek; Sula, Viktor; Dytrych, Petra; Katra, Rami; Nemcová, Dana; Dolezalová, Pavla
2013-01-01
This paper aims to describe clinical and laboratory features and disease outcome in a single-centre cohort of patients with PFAPA syndrome (Periodic Fever, Aphtous stomatitis, Pharyngitis, and Adenitis) and to test performance of diagnostic and therapeutic algorithms. Patients fulfilling criteria were selected from the fever clinic population. Prospective follow-up together with recruitment of newly diagnosed patients followed pre-defined guidelines. Diagnostic and therapeutic algorithms and definitions of outcome and therapy response were formulated. Paired blood samples during febrile and afebrile periods were compared. Out of 176 patients referred for suspected periodic fever 125 children fulfilled criteria. Their age at onset was 23 months, median episode duration 3.5 days at 4-week intervals. Fever was associated with pharyngitis (91%), cervical adenitis (78%) and aphtae (41%). Among therapeutic options, episodic prednisone proved to be the most common first-line treatment. Administered to 77 patients, it reduced symptoms in 94%. Tonsillectomy led to the full symptom resolution in all 18 patients. Forty-six patients reached disease remission. Distribution of typical symptoms, response to therapies and disease outcome in a large patient cohort were documented. We offer diagnostic and therapeutic algorithms that have proven effective during this prospective trial. Our findings support the general belief of benign nature of this aetiologically unclear condition, despite proportion of patients having persistent disease for years. Maintenance of normal findings in afebrile intervals, striking response to a single dose of prednisone and normal growth and development together with spontaneous tendency towards prolongation of afebrile intervals are important confirmatory features of PFAPA syndrome.
High-Accuracy Elevation Data at Large Scales from Airborne Single-Pass SAR Interferometry
Directory of Open Access Journals (Sweden)
Guy Jean-Pierre Schumann
2016-01-01
Full Text Available Digital elevation models (DEMs are essential data sets for disaster risk management and humanitarian relief services as well as many environmental process models. At present, on the hand, globally available DEMs only meet the basic requirements and for many services and modeling studies are not of high enough spatial resolution and lack accuracy in the vertical. On the other hand, LiDAR-DEMs are of very high spatial resolution and great vertical accuracy but acquisition operations can be very costly for spatial scales larger than a couple of hundred square km and also have severe limitations in wetland areas and under cloudy and rainy conditions. The ideal situation would thus be to have a DEM technology that allows larger spatial coverage than LiDAR but without compromising resolution and vertical accuracy and still performing under some adverse weather conditions and at a reasonable cost. In this paper, we present a novel single pass In-SAR technology for airborne vehicles that is cost-effective and can generate DEMs with a vertical error of around 0.3 m for an average spatial resolution of 3 m. To demonstrate this capability, we compare a sample single-pass In-SAR Ka-band DEM of the California Central Valley from the NASA/JPL airborne GLISTIN-A to a high-resolution LiDAR DEM. We also perform a simple sensitivity analysis to floodplain inundation. Based on the findings of our analysis, we argue that this type of technology can and should be used to replace large regions of globally available lower resolution DEMs, particularly in coastal, delta and floodplain areas where a high number of assets, habitats and lives are at risk from natural disasters. We conclude with a discussion on requirements, advantages and caveats in terms of instrument and data processing.
Genetics of single-cell protein abundance variation in large yeast populations