WorldWideScience

Sample records for single kernel characterization

  1. Development of nondestructive screening methods for single kernel characterization of wheat

    DEFF Research Database (Denmark)

    Nielsen, J.P.; Pedersen, D.K.; Munck, L.

    2003-01-01

    The development of nondestructive screening methods for single seed protein, vitreousness, density, and hardness index has been studied for single kernels of European wheat. A single kernel procedure was applied involving, image analysis, near-infrared transmittance (NIT) spectroscopy, laboratory...... predictability. However, by applying an averaging approach, in which single seed replicate measurements are mathematically simulated, a very good NIT prediction model was achieved. This suggests that the single seed NIT spectra contain hardness information, but that a single seed hardness method with higher...

  2. Kernel Function Tuning for Single-Layer Neural Networks

    Czech Academy of Sciences Publication Activity Database

    Vidnerová, Petra; Neruda, Roman

    -, accepted 28.11. 2017 (2018) ISSN 2278-0149 R&D Projects: GA ČR GA15-18108S Institutional support: RVO:67985807 Keywords : single-layer neural networks * kernel methods * kernel function * optimisation Subject RIV: IN - Informatics, Computer Science http://www.ijmerr.com/

  3. Magnetic resonance imaging of single rice kernels during cooking

    NARCIS (Netherlands)

    Mohoric, A.; Vergeldt, F.J.; Gerkema, E.; Jager, de P.A.; Duynhoven, van J.P.M.; Dalen, van G.; As, van H.

    2004-01-01

    The RARE imaging method was used to monitor the cooking of single rice kernels in real time and with high spatial resolution in three dimensions. The imaging sequence is optimized for rapid acquisition of signals with short relaxation times using centered out RARE. Short scan time and high spatial

  4. Single aflatoxin contaminated corn kernel analysis with fluorescence hyperspectral image

    Science.gov (United States)

    Yao, Haibo; Hruska, Zuzana; Kincaid, Russell; Ononye, Ambrose; Brown, Robert L.; Cleveland, Thomas E.

    2010-04-01

    Aflatoxins are toxic secondary metabolites of the fungi Aspergillus flavus and Aspergillus parasiticus, among others. Aflatoxin contaminated corn is toxic to domestic animals when ingested in feed and is a known carcinogen associated with liver and lung cancer in humans. Consequently, aflatoxin levels in food and feed are regulated by the Food and Drug Administration (FDA) in the US, allowing 20 ppb (parts per billion) limits in food and 100 ppb in feed for interstate commerce. Currently, aflatoxin detection and quantification methods are based on analytical tests including thin-layer chromatography (TCL) and high performance liquid chromatography (HPLC). These analytical tests require the destruction of samples, and are costly and time consuming. Thus, the ability to detect aflatoxin in a rapid, nondestructive way is crucial to the grain industry, particularly to corn industry. Hyperspectral imaging technology offers a non-invasive approach toward screening for food safety inspection and quality control based on its spectral signature. The focus of this paper is to classify aflatoxin contaminated single corn kernels using fluorescence hyperspectral imagery. Field inoculated corn kernels were used in the study. Contaminated and control kernels under long wavelength ultraviolet excitation were imaged using a visible near-infrared (VNIR) hyperspectral camera. The imaged kernels were chemically analyzed to provide reference information for image analysis. This paper describes a procedure to process corn kernels located in different images for statistical training and classification. Two classification algorithms, Maximum Likelihood and Binary Encoding, were used to classify each corn kernel into "control" or "contaminated" through pixel classification. The Binary Encoding approach had a slightly better performance with accuracy equals to 87% or 88% when 20 ppb or 100 ppb was used as classification threshold, respectively.

  5. Cowling–Price Theorem and Characterization of Heat Kernel on ...

    Indian Academy of Sciences (India)

    We extend the uncertainty principle, the Cowling–Price theorem, on non-compact Riemannian symmetric spaces . We establish a characterization of the heat kernel of the Laplace–Beltrami operator on from integral estimates of the Cowling–Price type.

  6. Purification and characterization of riproximin from Ximenia americana fruit kernels.

    Science.gov (United States)

    Bayer, Helene; Ey, Noreen; Wattenberg, Andreas; Voss, Cristina; Berger, Martin R

    2012-03-01

    Highly pure riproximin was isolated from the fruit kernels of Ximenia americana, a defined, seasonally available and potentially unlimited herbal source. The newly established purification procedure included an initial aqueous extraction, removal of lipids with chloroform and subsequent chromatographic purification steps on a strong anion exchange resin and lactosyl-Sepharose. Consistent purity and stable biological properties were shown over several purification batches. The purified, kernel-derived riproximin was characterized in comparison to the African plant material riproximin and revealed highly similar biochemical and biological properties but differences in the electrophoresis pattern and mass spectrometry peptide profile. Our results suggest that although the purified fruit kernel riproximin consists of a mixture of closely related isoforms, it provides a reliable basis for further research and development of this type II ribosome inactivating protein (RIP). Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Feasibility of detecting Aflatoxin B1 in single maize kernels using hyperspectral imaging

    Science.gov (United States)

    The feasibility of detecting Aflatoxin B1 (AFB1) in single maize kernel inoculated with Aspergillus flavus conidia in the field, as well as its spatial distribution in the kernels, was assessed using near-infrared hyperspectral imaging (HSI) technique. Firstly, an image mask was applied to a pixel-b...

  8. Characterization of myocardial motion patterns by unsupervised multiple kernel learning.

    Science.gov (United States)

    Sanchez-Martinez, Sergio; Duchateau, Nicolas; Erdei, Tamas; Fraser, Alan G; Bijnens, Bart H; Piella, Gemma

    2017-01-01

    We propose an independent objective method to characterize different patterns of functional responses to stress in the heart failure with preserved ejection fraction (HFPEF) syndrome by combining multiple temporally-aligned myocardial velocity traces at rest and during exercise, together with temporal information on the occurrence of cardiac events (valves openings/closures and atrial activation). The method builds upon multiple kernel learning, a machine learning technique that allows the combination of data of different nature and the reduction of their dimensionality towards a meaningful representation (output space). The learning process is kept unsupervised, to study the variability of the input traces without being conditioned by data labels. To enhance the physiological interpretation of the output space, the variability that it encodes is analyzed in the space of input signals after reconstructing the velocity traces via multiscale kernel regression. The methodology was applied to 2D sequences from a stress echocardiography protocol from 55 subjects (22 healthy, 19 HFPEF and 14 breathless subjects). The results confirm that characterization of the myocardial functional response to stress in the HFPEF syndrome may be improved by the joint analysis of multiple relevant features. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. The effect of STDP temporal kernel structure on the learning dynamics of single excitatory and inhibitory synapses.

    Directory of Open Access Journals (Sweden)

    Yotam Luz

    Full Text Available Spike-Timing Dependent Plasticity (STDP is characterized by a wide range of temporal kernels. However, much of the theoretical work has focused on a specific kernel - the "temporally asymmetric Hebbian" learning rules. Previous studies linked excitatory STDP to positive feedback that can account for the emergence of response selectivity. Inhibitory plasticity was associated with negative feedback that can balance the excitatory and inhibitory inputs. Here we study the possible computational role of the temporal structure of the STDP. We represent the STDP as a superposition of two processes: potentiation and depression. This allows us to model a wide range of experimentally observed STDP kernels, from Hebbian to anti-Hebbian, by varying a single parameter. We investigate STDP dynamics of a single excitatory or inhibitory synapse in purely feed-forward architecture. We derive a mean-field-Fokker-Planck dynamics for the synaptic weight and analyze the effect of STDP structure on the fixed points of the mean field dynamics. We find a phase transition along the Hebbian to anti-Hebbian parameter from a phase that is characterized by a unimodal distribution of the synaptic weight, in which the STDP dynamics is governed by negative feedback, to a phase with positive feedback characterized by a bimodal distribution. The critical point of this transition depends on general properties of the STDP dynamics and not on the fine details. Namely, the dynamics is affected by the pre-post correlations only via a single number that quantifies its overlap with the STDP kernel. We find that by manipulating the STDP temporal kernel, negative feedback can be induced in excitatory synapses and positive feedback in inhibitory. Moreover, there is an exact symmetry between inhibitory and excitatory plasticity, i.e., for every STDP rule of inhibitory synapse there exists an STDP rule for excitatory synapse, such that their dynamics is identical.

  10. Single pass kernel k-means clustering method

    Indian Academy of Sciences (India)

    In unsupervised classification, kernel -means clustering method has been shown to perform better than conventional -means clustering method in ... 518501, India; Department of Computer Science and Engineering, Jawaharlal Nehru Technological University, Anantapur College of Engineering, Anantapur 515002, India ...

  11. Single pass kernel k-means clustering method

    Indian Academy of Sciences (India)

    easily implemented and is suitable for large data sets, like those in data mining appli- cations. Experimental results show that, with a small loss of quality, the proposed method can significantly reduce the time taken than the conventional kernel k-means cluster- ing method. The proposed method is also compared with other ...

  12. Single pass kernel k-means clustering method

    Indian Academy of Sciences (India)

    This approach has reduced both time complexity and memory requirements. However, the clustering result of this method will be very much deviated form that obtained using the conventional kernel k-means method. This is because of the fact that pseudo cluster centers in the input space may not represent the exact cluster ...

  13. Biochemical and molecular characterization of Avena indolines and their role in kernel texture.

    Science.gov (United States)

    Gazza, Laura; Taddei, Federica; Conti, Salvatore; Gazzelloni, Gloria; Muccilli, Vera; Janni, Michela; D'Ovidio, Renato; Alfieri, Michela; Redaelli, Rita; Pogna, Norberto E

    2015-02-01

    Among cereals, Avena sativa is characterized by an extremely soft endosperm texture, which leads to some negative agronomic and technological traits. On the basis of the well-known softening effect of puroindolines in wheat kernel texture, in this study, indolines and their encoding genes are investigated in Avena species at different ploidy levels. Three novel 14 kDa proteins, showing a central hydrophobic domain with four tryptophan residues and here named vromindoline (VIN)-1,2 and 3, were identified. Each VIN protein in diploid oat species was found to be synthesized by a single Vin gene whereas, in hexaploid A. sativa, three Vin-1, three Vin-2 and two Vin-3 genes coding for VIN-1, VIN-2 and VIN-3, respectively, were described and assigned to the A, C or D genomes based on similarity to their counterparts in diploid species. Expression of oat vromindoline transgenes in the extra-hard durum wheat led to accumulation of vromindolines in the endosperm and caused an approximate 50 % reduction of grain hardness, suggesting a central role for vromindolines in causing the extra-soft texture of oat grain. Further, hexaploid oats showed three orthologous genes coding for avenoindolines A and B, with five or three tryptophan residues, respectively, but very low amounts of avenoindolines were found in mature kernels. The present results identify a novel protein family affecting cereal kernel texture and would further elucidate the phylogenetic evolution of Avena genus.

  14. CHARACTERIZATION OF BIO-OIL FROM PALM KERNEL SHELL PYROLYSIS

    Directory of Open Access Journals (Sweden)

    R. Ahmad

    2014-12-01

    Full Text Available Pyrolysis of palm kernel shell in a fixed-bed reactor was studied in this paper. The objectives were to investigate the effect of pyrolysis temperature and particle size on the products yield and to characterize the bio-oil product. In order to get the optimum pyrolysis parameters on bio-oil yield, temperatures of 350, 400, 450, 500 and 550 °C and particle sizes of 212–300 µm, 300–600 µm, 600µm–1.18 mm and 1.18–2.36 mm under a heating rate of 50 °C min-1 were investigated. The maximum bio-oil yield was 38.40% at 450 °C with a heating rate of 50 °C min-1 and a nitrogen sweep gas flow rate of 50 ml min-1. The bio-oil products were analysed by Fourier transform infra-red spectroscopy (FTIR and gas chromatography–mass spectroscopy (GCMS. The FTIR analysis showed that the bio-oil was dominated by oxygenated species. The phenol, phenol, 2-methoxy- and furfural that were identified by GCMS analysis are highly suitable for extraction from the bio-oil as value-added chemicals. The highly oxygenated oils need to be upgraded in order to be used in other applications such as transportation fuels.

  15. Sterculia striata seed kernel oil: Characterization and thermal stability

    Directory of Open Access Journals (Sweden)

    Oliveira Cavalheiro, José Marcelino

    2008-06-01

    Full Text Available The objective of the present work was to characterize sterculia seed kernel oil. The chemical composition of the seeds, physicochemical properties as well as the fatty acid composition of the kernel oil was determined. The chemical composition of kernel flour presented about 25.8% lipid content. The physicochemical parameters such as acid, iodine, peroxide and saponification values were 0.82 (% as oleic acid, 69.2 (g iodine/100 g oil, 4.20 (m eq./kg and 136.1 (mg. KOH/g oil, respectively. With respect to fatty acid composition, the oil contained 36.2, 43.7 and 10.9% saturated, monounsaturated and polyunsaturated fatty acids, respectively. Palmitic acid (31.9%, oleic acid (41.7% and linoleic acid (10.73% were the principal saturated, monounsaturated and polyunsaturated fatty acids. Two cyclopropanoid fatty acids i.e. sterculic and malvalic acid were identified at a concentration of 5.3 and 2.3%, respectively. With regards to the thermal stability of the oil, a thermogravimetric analysis (TGA has shown that the oil was stable until about 284 °C, above that the oil started loosing mass, while a differential thermogravimetric analysis (DTGA revealed three stages of degradation with an increase in temperature. These stages corresponded to the degradation of polyunsaturated, monounsaturated and saturated fatty aids. The Differential Scanning Calorimetric (DSC analysis showed the existence of two exothermic events of energy transition, one of which is related to the oxidation reactions and another to the decomposition of the oil. Exothermic transitions in the oil were initiated at a temperature (Ti of 287.79 °C, and terminated at 347.81 °C, with an enthalpy variation of 11.69 joules.g–1 and at initial temperature (Ti of 384.87 °C, peak temperature (Tp 415.71 °C, final temperature (Tf 448.9 °C and an enthalpy of 200.83 Joules. G–1El objetivo de este trabajo fue la caracterización del aceite de almendra de la semilla de

  16. Preparation and characterization of active carbon using palm kernel ...

    African Journals Online (AJOL)

    Activated carbons were prepared from Palm kernel shells. Carbonization temperature was 6000C, at a residence time of 5 min for each process. Chemical activation was done by heating a mixture of carbonized material and the activating agents at a temperature of 700C to form a paste, followed by subsequent cooling and ...

  17. Cowling–Price theorem and characterization of heat kernel on ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Keywords. Hardy's theorem; spherical harmonics; symmetric space; Jacobi function; heat kernel. 1. Introduction. Our starting point in this paper is the classical Hardy's ... solutions of the heat equation of the Laplace–Beltrami operator. .... similar argument with the role of ˜z and zn reversed and the induction hypothesis for d =.

  18. Effect of different ripening stages on walnut kernel quality: antioxidant activities, lipid characterization and antibacterial properties.

    Science.gov (United States)

    Amin, Furheen; Masoodi, F A; Baba, Waqas N; Khan, Asma Ashraf; Ganie, Bashir Ahmad

    2017-11-01

    Packing tissue between and around the kernel halves just turning brown (PTB) is a phenological indicator of kernel ripening at harvest in walnuts. The effect of three ripening stages (Pre-PTB, PTB and Post-PTB) on kernel quality characteristics, mineral composition, lipid characterization, sensory analysis, antioxidant and antibacterial activity were investigated in fresh kernels of indigenous numbered walnut selection of Kashmir valley "SKAU-02". Proximate composition, physical properties and sensory analysis of walnut kernels showed better results for Pre-PTB and PTB while higher mineral content was seen for kernels at Post-PTB stage in comparison to other stages of ripening. Kernels showed significantly higher levels of Omega-3 PUFA (C18:3 n3 ) and low n6/n3 ratio when harvested at Pre-PTB and PTB stages. The highest phenolic content and antioxidant activity was observed at the first stage of ripening and a steady decrease was observed at later stages. TBARS values increased as ripening advanced but did not show any significant difference in malonaldehyde formation during early ripening stages whereas it showed marked increase in walnut kernels at post-PTB stage. Walnut extracts inhibited growth of Gram-positive bacteria ( B. cereus, B. subtilis, and S. aureus ) with respective MICs of 1, 1 and 5 mg/mL and gram negative bacteria ( E. coli, P. and K. pneumonia ) with MIC of 100 mg/mL. Zone of inhibition obtained against all the bacterial strains from walnut kernel extracts increased with increase in the stage of ripening. It is concluded that Pre-PTB harvest stage with higher antioxidant activities, better fatty acid profile and consumer acceptability could be preferred harvesting stage for obtaining functionally superior walnut kernels.

  19. Denoising of brain DW-MR data by single and multiple diffusion kernels Denoising of brain DW-MR data by single and multiple diffusion kernels

    Directory of Open Access Journals (Sweden)

    Manzar Ashtari

    2012-02-01

    Full Text Available Las imágenes por resonancia magnética pesadas en difusión son ampliamente utilizadaspara el estudio de las estructuras cerebrales dentro de la materia blanca del cerebro. Sinembargo, recuperar las orientaciones de los axones puede ser susceptible a errores por elruido dentro de la señal. Una regularización espacial puede mejorar la estimación, perodebe ser realizada cuidadosamente dado que puede remover información espacial ó introducirfalsas orientaciones. En este trabajo se investigaron las ventajas de aplicar un filtroanisotrópico basado en simples y múltiples kerneles de orientación de manojos de axones.Para esto, hemos calculado kerneles locales de difusión basados en modelos de tensoresde difusión y multi tensores de difusión. Mostraremos los beneficios de nuestra propuestaen 3 tipos diferentes de imágenes obtenidas por resonancia magnética pesada en difusión:Datos sintéticos, imágenes humanas tomadas en vivo, y datos obtenidos de un fantasmasimulador de difusión.Diffusion Weighted Magnetic Resonance Imaging is widely used to study the structure ofthe fiber pathways of white matter in the brain. However, the recovered axon orientationscan be prone to error because of the low signal to noise ratio. Spatial regularization canreduce the error, but it must be done carefully so that real spatial information is not removedand false orientations are not introduced. In this paper we investigate the advantagesof applying an anisotropic filter based on single and multiple axon bundle orientation kernels.To this end, we compute local diffusion kernels based on Diffusion Tensor and multiDiffusion Tensor models. We show the benefits of our approach to three different types ofDW-MRI data: synthetic, in vivo human, and acquired from a diffusion phantom.

  20. Single determinant N-representability and the kernel energy method applied to water clusters.

    Science.gov (United States)

    Polkosnik, Walter; Massa, Lou

    2017-10-24

    The Kernel energy method (KEM) is a quantum chemical calculation method that has been shown to provide accurate energies for large molecules. KEM performs calculations on subsets of a molecule (called kernels) and so the computational difficulty of KEM calculations scales more softly than full molecule methods. Although KEM provides accurate energies those energies are not required to satisfy the variational theorem. In this article, KEM is extended to provide a full molecule single-determinant N-representable one-body density matrix. A kernel expansion for the one-body density matrix analogous to the kernel expansion for energy is defined. This matrix is converted to a normalized projector by an algorithm due to Clinton. The resulting single-determinant N-representable density matrix maps to a quantum mechanically valid wavefunction which satisfies the variational theorem. The process is demonstrated on clusters of three to twenty water molecules. The resulting energies are more accurate than the straightforward KEM energy results and all violations of the variational theorem are resolved. The N-representability studied in this article is applicable to the study of quantum crystallography. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. An obstructive sleep apnea detection approach using kernel density classification based on single-lead electrocardiogram.

    Science.gov (United States)

    Chen, Lili; Zhang, Xi; Wang, Hui

    2015-05-01

    Obstructive sleep apnea (OSA) is a common sleep disorder that often remains undiagnosed, leading to an increased risk of developing cardiovascular diseases. Polysomnogram (PSG) is currently used as a golden standard for screening OSA. However, because it is time consuming, expensive and causes discomfort, alternative techniques based on a reduced set of physiological signals are proposed to solve this problem. This study proposes a convenient non-parametric kernel density-based approach for detection of OSA using single-lead electrocardiogram (ECG) recordings. Selected physiologically interpretable features are extracted from segmented RR intervals, which are obtained from ECG signals. These features are fed into the kernel density classifier to detect apnea event and bandwidths for density of each class (normal or apnea) are automatically chosen through an iterative bandwidth selection algorithm. To validate the proposed approach, RR intervals are extracted from ECG signals of 35 subjects obtained from a sleep apnea database ( http://physionet.org/cgi-bin/atm/ATM ). The results indicate that the kernel density classifier, with two features for apnea event detection, achieves a mean accuracy of 82.07 %, with mean sensitivity of 83.23 % and mean specificity of 80.24 %. Compared with other existing methods, the proposed kernel density approach achieves a comparably good performance but by using fewer features without significantly losing discriminant power, which indicates that it could be widely used for home-based screening or diagnosis of OSA.

  2. Analysis of ergosterol in single kernel and ground grain by gas chromatography-mass spectrometry.

    Science.gov (United States)

    Dong, Yanhong; Steffenson, Brian J; Mirocha, Chester J

    2006-06-14

    A method for analyzing ergosterol in a single kernel and ground barley and wheat was developed using gas chromatography-mass spectrometry (GC-MS). Samples were saponified in methanolic KOH. Ergosterol was extracted by "one step" hexane extraction and subsequently silylated by N-trimethylsilylimidazole/trimethylchlorosilane (TMSI/TMCS) reagent at room temperature. The recoveries of ergosterol from ground barley were 96.6, 97.1, 97.1, 88.5, and 90.3% at the levels of 0.2, 1, 5, 10, and 20 microg/g (ppm), respectively. The recoveries from a single kernel were between 93.0 and 95.9%. The precision (coefficient of variance) of the method was in the range 0.8-12.3%. The method detection limit (MDL) and the method quantification limit (MQL) were 18.5 and 55.6 ng/g (ppb), respectively. The ergosterol analysis method developed can be used to handle 80 samples daily by one person, making it suitable for screening cereal cultivars for resistance to fungal infection. The ability for detecting low levels of ergosterol in a single kernel provides a tool to investigate early fungal invasion and to study mechanisms of resistance to fungal diseases.

  3. Fabrication and Characterization of Surrogate TRISO Particles Using 800μm ZrO2 Kernels

    Energy Technology Data Exchange (ETDEWEB)

    Jolly, Brian C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Helmreich, Grant [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cooley, Kevin M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dyer, John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-07-01

    In support of fully ceramic microencapsulated (FCM) fuel development, coating development work is ongoing at Oak Ridge National Laboratory (ORNL) to produce tri-structural isotropic (TRISO) coated fuel particles with both UN kernels and surrogate (uranium-free) kernels. The nitride kernels are used to increase fissile density in these SiC-matrix fuel pellets with details described elsewhere. The surrogate TRISO particles are necessary for separate effects testing and for utilization in the consolidation process development. This report focuses on the fabrication and characterization of surrogate TRISO particles which use 800μm in diameter ZrO2 microspheres as the kernel.

  4. Racing to learn: statistical inference and learning in a single spiking neuron with adaptive kernels.

    Science.gov (United States)

    Afshar, Saeed; George, Libin; Tapson, Jonathan; van Schaik, André; Hamilton, Tara J

    2014-01-01

    This paper describes the Synapto-dendritic Kernel Adapting Neuron (SKAN), a simple spiking neuron model that performs statistical inference and unsupervised learning of spatiotemporal spike patterns. SKAN is the first proposed neuron model to investigate the effects of dynamic synapto-dendritic kernels and demonstrate their computational power even at the single neuron scale. The rule-set defining the neuron is simple: there are no complex mathematical operations such as normalization, exponentiation or even multiplication. The functionalities of SKAN emerge from the real-time interaction of simple additive and binary processes. Like a biological neuron, SKAN is robust to signal and parameter noise, and can utilize both in its operations. At the network scale neurons are locked in a race with each other with the fastest neuron to spike effectively "hiding" its learnt pattern from its neighbors. The robustness to noise, high speed, and simple building blocks not only make SKAN an interesting neuron model in computational neuroscience, but also make it ideal for implementation in digital and analog neuromorphic systems which is demonstrated through an implementation in a Field Programmable Gate Array (FPGA). Matlab, Python, and Verilog implementations of SKAN are available at: http://www.uws.edu.au/bioelectronics_neuroscience/bens/reproducible_research.

  5. Emotion Recognition from Single-Trial EEG Based on Kernel Fisher’s Emotion Pattern and Imbalanced Quasiconformal Kernel Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Yi-Hung Liu

    2014-07-01

    Full Text Available Electroencephalogram-based emotion recognition (EEG-ER has received increasing attention in the fields of health care, affective computing, and brain-computer interface (BCI. However, satisfactory ER performance within a bi-dimensional and non-discrete emotional space using single-trial EEG data remains a challenging task. To address this issue, we propose a three-layer scheme for single-trial EEG-ER. In the first layer, a set of spectral powers of different EEG frequency bands are extracted from multi-channel single-trial EEG signals. In the second layer, the kernel Fisher’s discriminant analysis method is applied to further extract features with better discrimination ability from the EEG spectral powers. The feature vector produced by layer 2 is called a kernel Fisher’s emotion pattern (KFEP, and is sent into layer 3 for further classification where the proposed imbalanced quasiconformal kernel support vector machine (IQK-SVM serves as the emotion classifier. The outputs of the three layer EEG-ER system include labels of emotional valence and arousal. Furthermore, to collect effective training and testing datasets for the current EEG-ER system, we also use an emotion-induction paradigm in which a set of pictures selected from the International Affective Picture System (IAPS are employed as emotion induction stimuli. The performance of the proposed three-layer solution is compared with that of other EEG spectral power-based features and emotion classifiers. Results on 10 healthy participants indicate that the proposed KFEP feature performs better than other spectral power features, and IQK-SVM outperforms traditional SVM in terms of the EEG-ER accuracy. Our findings also show that the proposed EEG-ER scheme achieves the highest classification accuracies of valence (82.68% and arousal (84.79% among all testing methods.

  6. Single image super-resolution via an iterative reproducing kernel Hilbert space method.

    Science.gov (United States)

    Deng, Liang-Jian; Guo, Weihong; Huang, Ting-Zhu

    2016-11-01

    Image super-resolution, a process to enhance image resolution, has important applications in satellite imaging, high definition television, medical imaging, etc. Many existing approaches use multiple low-resolution images to recover one high-resolution image. In this paper, we present an iterative scheme to solve single image super-resolution problems. It recovers a high quality high-resolution image from solely one low-resolution image without using a training data set. We solve the problem from image intensity function estimation perspective and assume the image contains smooth and edge components. We model the smooth components of an image using a thin-plate reproducing kernel Hilbert space (RKHS) and the edges using approximated Heaviside functions. The proposed method is applied to image patches, aiming to reduce computation and storage. Visual and quantitative comparisons with some competitive approaches show the effectiveness of the proposed method.

  7. FUSED KERNEL-SPLINE SMOOTHING FOR REPEATEDLY MEASURED OUTCOMES IN A GENERALIZED PARTIALLY LINEAR MODEL WITH FUNCTIONAL SINGLE INDEX.

    Science.gov (United States)

    Jiang, Fei; Ma, Yanyuan; Wang, Yuanjia

    We propose a generalized partially linear functional single index risk score model for repeatedly measured outcomes where the index itself is a function of time. We fuse the nonparametric kernel method and regression spline method, and modify the generalized estimating equation to facilitate estimation and inference. We use local smoothing kernel to estimate the unspecified coefficient functions of time, and use B-splines to estimate the unspecified function of the single index component. The covariance structure is taken into account via a working model, which provides valid estimation and inference procedure whether or not it captures the true covariance. The estimation method is applicable to both continuous and discrete outcomes. We derive large sample properties of the estimation procedure and show different convergence rate of each component of the model. The asymptotic properties when the kernel and regression spline methods are combined in a nested fashion has not been studied prior to this work even in the independent data case.

  8. Kernel PLS Estimation of Single-trial Event-related Potentials

    Science.gov (United States)

    Rosipal, Roman; Trejo, Leonard J.

    2004-01-01

    Nonlinear kernel partial least squaes (KPLS) regressior, is a novel smoothing approach to nonparametric regression curve fitting. We have developed a KPLS approach to the estimation of single-trial event related potentials (ERPs). For improved accuracy of estimation, we also developed a local KPLS method for situations in which there exists prior knowledge about the approximate latency of individual ERP components. To assess the utility of the KPLS approach, we compared non-local KPLS and local KPLS smoothing with other nonparametric signal processing and smoothing methods. In particular, we examined wavelet denoising, smoothing splines, and localized smoothing splines. We applied these methods to the estimation of simulated mixtures of human ERPs and ongoing electroencephalogram (EEG) activity using a dipole simulator (BESA). In this scenario we considered ongoing EEG to represent spatially and temporally correlated noise added to the ERPs. This simulation provided a reasonable but simplified model of real-world ERP measurements. For estimation of the simulated single-trial ERPs, local KPLS provided a level of accuracy that was comparable with or better than the other methods. We also applied the local KPLS method to the estimation of human ERPs recorded in an experiment on co,onitive fatigue. For these data, the local KPLS method provided a clear improvement in visualization of single-trial ERPs as well as their averages. The local KPLS method may serve as a new alternative to the estimation of single-trial ERPs and improvement of ERP averages.

  9. SCAP-82, Single Scattering, Albedo Scattering, Point-Kernel Analysis in Complex Geometry

    International Nuclear Information System (INIS)

    Disney, R.K.; Vogtman, S.E.

    1987-01-01

    1 - Description of problem or function: SCAP solves for radiation transport in complex geometries using the single or albedo scatter point kernel method. The program is designed to calculate the neutron or gamma ray radiation level at detector points located within or outside a complex radiation scatter source geometry or a user specified discrete scattering volume. Geometry is describable by zones bounded by intersecting quadratic surfaces within an arbitrary maximum number of boundary surfaces per zone. Anisotropic point sources are describable as pointwise energy dependent distributions of polar angles on a meridian; isotropic point sources may also be specified. The attenuation function for gamma rays is an exponential function on the primary source leg and the scatter leg with a build- up factor approximation to account for multiple scatter on the scat- ter leg. The neutron attenuation function is an exponential function using neutron removal cross sections on the primary source leg and scatter leg. Line or volumetric sources can be represented as a distribution of isotropic point sources, with un-collided line-of-sight attenuation and buildup calculated between each source point and the detector point. 2 - Method of solution: A point kernel method using an anisotropic or isotropic point source representation is used, line-of-sight material attenuation and inverse square spatial attenuation between the source point and scatter points and the scatter points and detector point is employed. A direct summation of individual point source results is obtained. 3 - Restrictions on the complexity of the problem: - The SCAP program is written in complete flexible dimensioning so that no restrictions are imposed on the number of energy groups or geometric zones. The geometric zone description is restricted to zones defined by boundary surfaces defined by the general quadratic equation or one of its degenerate forms. The only restriction in the program is that the total

  10. Characterization of yellow -, red-, and purple- kernel maize (zea mays L.) accessions in Ghana

    International Nuclear Information System (INIS)

    Ansah, G.

    2013-07-01

    Twenty yellow-, red-, and purple-kernel maize accessions were collected from three regions in Ghana for the study. The objectives were to characterize the yellow-, red- and purple-kernel maize accessions in Ghana using phenotypic traits in order to determine their identity, using molecular traits for confirmation of their identity and to determine the presence of the opaque-2 gene and β-carotene content of the grains as a way of assessing nutritional quality. A replicated field experiment was conducted to evaluate and characterize the accessions based on 16 quantitative and eleven qualitative traits. The same accessions were characterized based on 16 SSR markers. Variability in β-carotene content was determined by HPLC while presence of opaque 2-gene was determined by a light box. The results revealed that accessions GH4055 and GH4863 are extra early maturing and therefore can be very useful for urban farmers producing fresh maize and for cultivation in the coastal savanna ecological zone. However, they produce smaller cobs (Cob weight = 58.24g) as compared to other accessions. Significant variability in morphological traits was observed among the accessions with cob weight, number of kernels per row, plant height and 1000 seed weight having coefficient of variation of 42.7544, 20.5828, 11.4634, 13.0634 and 26.76 respectively. Few traits contributed to the variations observed as revealed by the principal components analysis and these include days to 50% anthesis, days to 50% of leaf senescence, plant height and cob weight. A dendrogram generated from morphological traits clustered the accessions based on kernel colour, physical structure of the plant and geographical location. Two duplicates were identified among the accessions and widest genetic distance was observe between NYRI and GH4055. Strong correlation exist between most of the morphological traits measured (r= 0.9193) but negative correlation was observed between most important yield parameters and

  11. Characterization of Confectionery Spreadable Creams Based on Roasted Sunflower Kernels and Cocoa or Carob Powder

    Directory of Open Access Journals (Sweden)

    Emil Racolta

    2014-05-01

    Full Text Available CSpreadable creams are solid-oil suspensions, a mix of fats represents the oil phase, the dispersed phase consisting usually of sugar, cocoa powder, milled and roasted nuts, dried milk and whey. For improving the viscosity of the final product emulsifiers are used, most common being lecithin and mono and diglycerides. The present paper refers to a spreadable confectionery product group, creamy, proper to be eaten as it is, as well as spread on a bread slice or as a filling for cookies or chocolate cream. According to this work, the following ingredients were used: roasted sunflower kernels, sugar, palm oil, cocoa or carob powder and lecithin. The obtained product can be consumed also by persons who suffer from allergies, due the fact that sunflower seeds were replacing the peanuts or almond, the ingredients known as allergens and which are usually used in the technological process of obtaining these creams. The purpose of this study was to characterize the obtaining confectionery spreadable creams based on sunflower kernels, cocoa or carob powder. It was determined the chemical composition of the prototypes obtained, a spreadable cream having no cocoa or carob, one with cocoa and one with carob powder. The antioxidant capacity and total phenolic content of the obtained samples were also assessed.

  12. Evaluation of the Single-precision Floatingpoint Vector Add Kernel Using the Intel FPGA SDK for OpenCL

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Zheming [Argonne National Lab. (ANL), Argonne, IL (United States); Yoshii, Kazutomo [Argonne National Lab. (ANL), Argonne, IL (United States); Finkel, Hal [Argonne National Lab. (ANL), Argonne, IL (United States); Cappello, Franck [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-04-20

    Open Computing Language (OpenCL) is a high-level language that enables software programmers to explore Field Programmable Gate Arrays (FPGAs) for application acceleration. The Intel FPGA software development kit (SDK) for OpenCL allows a user to specify applications at a high level and explore the performance of low-level hardware acceleration. In this report, we present the FPGA performance and power consumption results of the single-precision floating-point vector add OpenCL kernel using the Intel FPGA SDK for OpenCL on the Nallatech 385A FPGA board. The board features an Arria 10 FPGA. We evaluate the FPGA implementations using the compute unit duplication and kernel vectorization optimization techniques. On the Nallatech 385A FPGA board, the maximum compute kernel bandwidth we achieve is 25.8 GB/s, approximately 76% of the peak memory bandwidth. The power consumption of the FPGA device when running the kernels ranges from 29W to 42W.

  13. Characterizing kernels of operators related to thin-plate magnetizations via generalizations of Hodge decompositions

    International Nuclear Information System (INIS)

    Baratchart, L; Hardin, D P; Saff, E B; Lima, E A; Weiss, B P

    2013-01-01

    Recently developed scanning magnetic microscopes measure the magnetic field in a plane above a thin-plate magnetization distribution. These instruments have broad applications in geoscience and materials science, but are limited by the requirement that the sample magnetization must be retrieved from measured field data, which is a generically nonunique inverse problem. This problem leads to an analysis of the kernel of the related magnetization operators, which also has relevance to the ‘equivalent source problem’ in the case of measurements taken from just one side of the magnetization. We characterize the kernel of the operator relating planar magnetization distributions to planar magnetic field maps in various function and distribution spaces (e.g., sums of derivatives of L p (Lebesgue spaces) or bounded mean oscillation (BMO) functions). For this purpose, we present a generalization of the Hodge decomposition in terms of Riesz transforms and utilize it to characterize sources that do not produce a magnetic field either above or below the sample, or that are magnetically silent (i.e. no magnetic field anywhere outside the sample). For example, we show that a thin-plate magnetization is silent (i.e. in the kernel) when its normal component is zero and its tangential component is divergence free. In addition, we show that compactly supported magnetizations (i.e. magnetizations that are zero outside of a bounded set in the source plane) that do not produce magnetic fields either above or below the sample are necessarily silent. In particular, neither a nontrivial planar magnetization with fixed direction (unidimensional) compact support nor a bidimensional planar magnetization (i.e. a sum of two unidimensional magnetizations) that is nontangential can be silent. We prove that any planar magnetization distribution is equivalent to a unidimensional one. We also discuss the advantages of mapping the field on both sides of a magnetization, whenever experimentally

  14. Recovery and subsequent characterization of polyhydroxybutyrate from Rhodococcus equi cells grown on crude palm kernel oil

    Directory of Open Access Journals (Sweden)

    Nadia Altaee

    2016-07-01

    Full Text Available The gram-positive bacterium Rhodococcus equi was isolated from fertile soil, and mineral salt media (MM and trace elements were used to provide the necessary elements for its growth and PHB production in addition to using crude palm kernel oil (CPKO 1% as the carbon source. Gas chromatography (GC demonstrated that the composition of the recovered biopolymer was homopolymer polyhydroxybutyrate (PHB. The strain of the present study has a dry biomass of 1.43 (g/l with 38% PHB, as determined by GC. The recovered PHB was characterized by NMR to study the chemical structure. In addition, DSC and TGA were used to study the thermal properties of the recovered polymer, where the melting temperature (Tm was 173 °C, the glass transition temperature (Tg was 2.79 °C, and the decomposition temperature (Td was 276 °C. Gel permeation chromatography (GPC was used to study the molecular mass of the recovered PHB in addition to comparing the results with other studies using different bacteria and substrates, where the molecular weight was 642 kDa, to enable its usage in many applications. The present study demonstrated the use of an inexpensive substrate for PHB production, i.e., using gram-positive bacteria to produce PHB polymer with characterization.

  15. Exploring abiotic stress on asynchronous protein metabolism in single kernels of wheat studied by NMR spectroscopy and chemometrics

    DEFF Research Database (Denmark)

    Winning, H.; Viereck, N.; Wollenweber, B.

    2009-01-01

    at terminal spikelet, during grain-filling or at both stages. Principal component trajectories of the total protein content and the protein fractions of flour as well as the H-1 NMR spectra of single wheat kernels, wheat flour, and wheat methanol extracts were analysed to elucidate the metabolic development...... indicating that protein metabolism is influenced by multiple drought events, the H-1 NMR spectra of the methanol extracts of flour from mature grains revealed that the amount of fumaric acid is particularly sensitive to water deficits....

  16. Selection and Characterization of Carbon Black and Surfactants for Development of Small Scale Uranium Oxicarbide Kernels

    Energy Technology Data Exchange (ETDEWEB)

    Contescu, Cristian I [ORNL

    2006-01-01

    This report supports the effort for development of small scale fabrication of UCO (a mixture of UO{sub 2} and UC{sub 2}) fuel kernels for the generation IV high temperature gas reactor program. In particular, it is focused on optimization of dispersion conditions of carbon black in the broths from which carbon-containing (UO{sub 2} {center_dot} H{sub 2}O + C) gel spheres are prepared by internal gelation. The broth results from mixing a hexamethylenetetramine (HMTA) and urea solution with an acid-deficient uranyl nitrate (ADUN) solution. Carbon black, which is previously added to one or other of the components, must stay dispersed during gelation. The report provides a detailed description of characterization efforts and results, aimed at identification and testing carbon black and surfactant combinations that would produce stable dispersions, with carbon particle sizes below 1 {micro}m, in aqueous HMTA/urea and ADUN solutions. A battery of characterization methods was used to identify the properties affecting the water dispersability of carbon blacks, such as surface area, aggregate morphology, volatile content, and, most importantly, surface chemistry. The report introduces the basic principles for each physical or chemical method of carbon black characterization, lists the results obtained, and underlines cross-correlations between methods. Particular attention is given to a newly developed method for characterization of surface chemical groups on carbons in terms of their acid-base properties (pK{sub a} spectra) based on potentiometric titration. Fourier-transform infrared (FTIR) spectroscopy was used to confirm the identity of surfactants, both ionic and non-ionic. In addition, background information on carbon black properties and the mechanism by which surfactants disperse carbon black in water is also provided. A list of main physical and chemical properties characterized, samples analyzed, and results obtained, as well as information on the desired trend or

  17. Production and physico-chemical characterization of biochar from palm kernel shell

    Science.gov (United States)

    Kong, S. H.; Loh, S. K.; Bachmann, Robert T.; Choo, Y. M.; Salimon, J.; Rahim, S. Abdul

    2013-11-01

    As the world's second largest producer and exporter of palm oil, Malaysia's palm oil industry leaves behind huge amounts of biomass waste from its plantation and milling activities such as empty fruit bunch, palm kernel shell (PKS), palm frond and palm trunk. Generally, most of the waste generated is disposed of via open dumping, used as solid fuel in boilers, or used as fertilizers. To enhance the use of the abundant biomass generated by the oil palm industry in Malaysia, conversion of biomass to biochar could be a promising alternative. Biochar has the strength in improving long term soil productivity and capable of sequestering carbon in soils to reduce the emission of carbon dioxide to atmosphere. This research project aims to investigate and optimize the use of PKS for biochar production through slow pyrolysis by using the Biochar Experimenter's Kit (BEK) from All Power Labs, California. PKS was pyrolyzed at 400 °C for an hour. Biochar and the pyrolysis by-products were then collected. The biochar was then selectively characterized for its physicochemical properties such as proximate and ultimate analysis, pH, water holding capacity and BET surface area.

  18. Metronidazole loaded carboxymethyl tamarind kernel polysaccharide-polyvinyl alcohol cryogels: preparation and characterization.

    Science.gov (United States)

    Meenakshi; Ahuja, Munish

    2015-01-01

    The purpose of present study was to prepare composite hydrogels of carboxymethyl tamarind kernel polysaccharide and polyvinyl alcohol employing freeze thaw-treatment and evaluate them for release behavior. The effect of concentrations of carboxymethyl tamarind kernel polysaccharide, polyvinyl alcohol, and freeze-thaw cycles on the % release of metronidazole was studied employing central composite experimental design. The result of the study revealed that the concentration of carboxymethyl tamarind kernel polysaccharide and interaction effect of concentrations of carboxymethyl tamarind kernel polysaccharide and polyvinyl alcohol influenced the release of metronidazole significantly. The optimal calculated parameters were concentration of carboxymethyl tamarind kernel polysaccharide-6.0% (w/v), concentration of polyvinyl alcohol-8.53% (w/v) and freeze-thaw cycles-4, which provided cryogels with a release of 75.77% over a period of 6h. The formation of cryogels was confirmed by Fourier-transformed infrared spectroscopy and X-ray diffraction studies. Thermal studies revealed higher thermal stability of cryogel. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Characterization of Brazilian mango kernel fat before and after gamma irradiation

    International Nuclear Information System (INIS)

    Aquino, Fabiana da Silva; Ramos, Clecio Souza; Aquino, Katia Aparecida da Silva

    2013-01-01

    Mangifera indica Linn (family of Anacardiaceae) is a tree indigenous to India, whose both unripe and ripe fruits (mangoes) are widely used by the local population. After consumption or industrial processing of the fruits, considerable amounts of mango seeds are discarded as waste. The kernel inside the seed represents from 45% to 75% of the seed and about 20% of the whole fruit and lipid composition of mango seed kernels has attracted the attention of researches because of their unique physical and chemical characteristics. Our study showed that fat of the mango kernel obtained by Soxhlet extraction with hexane had a solid consistency at environmental temperature (27 deg C) because it is rich in saturated acid. The fat contents of the seed of Mangifera indica was calculated to 10% and are comparable to the ones for commercial vegetable oils like soybean (11-25%). One problem found in the storage of fast and oils is the attack by microorganisms and the sterilization process becomes necessary. Samples of kernel fat were irradiated with gamma radiation ( 60 Co) at room temperature and air atmosphere at 5 and 10 kGy (sterilization doses). The data of GC-MS analysis revealed the presence of four major fatty acids in the sample of mango kernel examined and that the chemical profile of the sample not altered after being irradiated. Moreover, analysis of Proton Nuclear Magnetic Resonance (NMR H 1 ) was used to obtain the mango kernel fat parameters before and after gamma irradiation. The data interpretation of RMN H 1 indicated that there are significant differences in the acidity and saponification indexes of fat. However, it was found an increase of 14% in iodine index of fat after irradiation. This result means that some double bonds were formed on the irradiation process of the fat. (author)

  20. Characterization of Brazilian mango kernel fat before and after gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Aquino, Fabiana da Silva; Ramos, Clecio Souza, E-mail: fasiaquino@yahoo.com.br, E-mail: clecio@dcm.ufrpe.br [Universidade Federal Rural de Pernambuco (UFRPE), Recife, PE (Brazil); Aquino, Katia Aparecida da Silva, E-mail: aquino@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil)

    2013-07-01

    Mangifera indica Linn (family of Anacardiaceae) is a tree indigenous to India, whose both unripe and ripe fruits (mangoes) are widely used by the local population. After consumption or industrial processing of the fruits, considerable amounts of mango seeds are discarded as waste. The kernel inside the seed represents from 45% to 75% of the seed and about 20% of the whole fruit and lipid composition of mango seed kernels has attracted the attention of researches because of their unique physical and chemical characteristics. Our study showed that fat of the mango kernel obtained by Soxhlet extraction with hexane had a solid consistency at environmental temperature (27 deg C) because it is rich in saturated acid. The fat contents of the seed of Mangifera indica was calculated to 10% and are comparable to the ones for commercial vegetable oils like soybean (11-25%). One problem found in the storage of fast and oils is the attack by microorganisms and the sterilization process becomes necessary. Samples of kernel fat were irradiated with gamma radiation ({sup 60}Co) at room temperature and air atmosphere at 5 and 10 kGy (sterilization doses). The data of GC-MS analysis revealed the presence of four major fatty acids in the sample of mango kernel examined and that the chemical profile of the sample not altered after being irradiated. Moreover, analysis of Proton Nuclear Magnetic Resonance (NMR H{sup 1}) was used to obtain the mango kernel fat parameters before and after gamma irradiation. The data interpretation of RMN H{sup 1} indicated that there are significant differences in the acidity and saponification indexes of fat. However, it was found an increase of 14% in iodine index of fat after irradiation. This result means that some double bonds were formed on the irradiation process of the fat. (author)

  1. Robust visual tracking via speedup multiple kernel ridge regression

    Science.gov (United States)

    Qian, Cheng; Breckon, Toby P.; Li, Hui

    2015-09-01

    Most of the tracking methods attempt to build up feature spaces to represent the appearance of a target. However, limited by the complex structure of the distribution of features, the feature spaces constructed in a linear manner cannot characterize the nonlinear structure well. We propose an appearance model based on kernel ridge regression for visual tracking. Dense sampling is fulfilled around the target image patches to collect the training samples. In order to obtain a kernel space in favor of describing the target appearance, multiple kernel learning is introduced into the selection of kernels. Under the framework, instead of a single kernel, a linear combination of kernels is learned from the training samples to create a kernel space. Resorting to the circulant property of a kernel matrix, a fast interpolate iterative algorithm is developed to seek coefficients that are assigned to these kernels so as to give an optimal combination. After the regression function is learned, all candidate image patches gathered are taken as the input of the function, and the candidate with the maximal response is regarded as the object image patch. Extensive experimental results demonstrate that the proposed method outperforms other state-of-the-art tracking methods.

  2. Characterization of gamma irradiated peanut kernels stored one year under ambient and frozen conditions

    International Nuclear Information System (INIS)

    Chiou, R.Y.Y.; Shyu, S.L.; Tsai, C.L.

    1991-01-01

    Peanut kernels were gamma irradiated at 0, 2.5, 5.0, 10, and 20 KGy, and stored 1 yr at ambient and frozen (-14 degrees C) conditions. Irradiated peanuts lost germination capabilities during storage. Molds were detected only on peanuts irradiated with 2.5 KGy and stored at ambient temperature. Peanut oil in kernels stored at -14 degrees C was comparatively more stable than that in peanuts stored at ambient temperature. Oxidation of oil was not significantly changed by irradiation. Changes in fatty acid content varied slightly with exception of linoleic and linolenic acids which decreased with increased radiation depending on storage temperature. The SDS-PAGE protein patterns of peanuts revealed no noticeable variation of protein subunits resulting from irradiation and storage

  3. Effect of mixing scanner types and reconstruction kernels on the characterization of lung parenchymal pathologies: emphysema, interstitial pulmonary fibrosis and normal non-smokers

    Science.gov (United States)

    Xu, Ye; van Beek, Edwin J.; McLennan, Geoffrey; Guo, Junfeng; Sonka, Milan; Hoffman, Eric

    2006-03-01

    In this study we utilize our texture characterization software (3-D AMFM) to characterize interstitial lung diseases (including emphysema) based on MDCT generated volumetric data using 3-dimensional texture features. We have sought to test whether the scanner and reconstruction filter (kernel) type affect the classification of lung diseases using the 3-D AMFM. We collected MDCT images in three subject groups: emphysema (n=9), interstitial pulmonary fibrosis (IPF) (n=10), and normal non-smokers (n=9). In each group, images were scanned either on a Siemens Sensation 16 or 64-slice scanner, (B50f or B30 recon. kernel) or a Philips 4-slice scanner (B recon. kernel). A total of 1516 volumes of interest (VOIs; 21x21 pixels in plane) were marked by two chest imaging experts using the Iowa Pulmonary Analysis Software Suite (PASS). We calculated 24 volumetric features. Bayesian methods were used for classification. Images from different scanners/kernels were combined in all possible combinations to test how robust the tissue classification was relative to the differences in image characteristics. We used 10-fold cross validation for testing the result. Sensitivity, specificity and accuracy were calculated. One-way Analysis of Variances (ANOVA) was used to compare the classification result between the various combinations of scanner and reconstruction kernel types. This study yielded a sensitivity of 94%, 91%, 97%, and 93% for emphysema, ground-glass, honeycombing, and normal non-smoker patterns respectively using a mixture of all three subject groups. The specificity for these characterizations was 97%, 99%, 99%, and 98%, respectively. The F test result of ANOVA shows there is no significant difference (p <0.05) between different combinations of data with respect to scanner and convolution kernel type. Since different MDCT and reconstruction kernel types did not show significant differences in regards to the classification result, this study suggests that the 3-D AMFM can

  4. Production and characterization of biodiesel using palm kernel oil; fresh and recovered from spent bleaching earth

    Directory of Open Access Journals (Sweden)

    Abiodun Aladetuyi

    2014-12-01

    Full Text Available Palm kernel oil (PKO was recovered from spent bleaching earth with a yield of 16 %, using n-hexane while the fresh oil was extracted from palm kernel with n-hexane and a yield of 40.23% was obtained. These oils were trans-esterified with methanol under the same reaction conditions: 100 oC, 2 h reaction time, and oil-methanol ratio of 5:1 (w/v. The cocoa pod ash (CPA was compared with potassium hydroxide (KOH as catalyst. The percentage yields of biodiesel obtained from PKO catalysed by CPA and KOH were 94 and 90%, respectively. While the yields achieved using the recovered oil catalysed by CPA and KOH were measured at 86 and 81.20 %. The physico-chemical properties of the biodiesel produced showed that the flash point, viscosity, density, ash content, percentage carbon content, specific gravity and the acid value fell within American Society for Testing and Materials (ASTM specifications for biodiesel. The findings of this study suggest that agricultural residues such as CPA used in this study could be explored as alternatives for KOH catalyst for biodiesel production.

  5. Characterization of Bacterial Mannanase for Hydrolyzing Palm Kernel Cake to Produce Manno-oligosaccharides Prebiotics

    Directory of Open Access Journals (Sweden)

    W. Utami

    2013-12-01

    Full Text Available Palm kernel cake (PKC is a promising source of prebiotics, since it contains high amount of β-mannan which can be further hydrolyzed to manno-oligasaccharides (MOS, a prebiotic. Therefore, this research was carried out to analyze the capability of a bacterial isolate (A2 isolates previously isolated from soils sample from around IPB campus to hydrolyze PKC. Based on 16S-DNA analysis, isolate A2 was identified as Brevibacillus borstelensis. Mannanase of A2 isolate had an optimum condition at 90 oC and pH 7. Mannanase activity of crude extracts using Locust Bean Gum (LBG and PKC as substrates were 0.37U/mL and 0.032U/mL, respectively. However, the most favorable production of oligosaccharides based on the degree of polymerization was obtained after 72-h of incubation with the ratio of substrate:enzyme, 1.2:1, on 1.5% PKC as substrate. The manno-oligosaccharides prebio-tic obtained was found to interfere the growth of both lactic acid bacteria (Lactobacillus casei and pathogenic microflora (Escherichia coli. E. coli apparently could not use this prebiotic as the carbon sources, in contrast to L. casei. Substitution of carbon source in medium with prebiotics reduced the capability of L. casei to produce organic acids. It is concluded that local A2 isolate (B. borstelensis produces mannanase which can be used to produce prebiotics from PKC.

  6. MW-assisted synthesis of carboxymethyl tamarind kernel polysaccharide-g-polyacrylonitrile: optimization and characterization.

    Science.gov (United States)

    Meenkashi; Ahuja, Munish; Verma, Purnima

    2014-11-26

    Microwave-assisted synthesis of graft copolymer of carboxymethyl tamarind seed polysaccharide and polyacrylonitrile was carried out. The effect of formulation and process variables on grafting efficiency of carboxymethyl tamarind kernel polysaccharide-g-poly(acrylonitrile) was studied using response surface methodology. The results revealed that the significant factors affecting grafting efficiency were concentrations of ammonium persulphate, acrylonitrile and interaction effects of ammonium persulphate and acrylonitrile concentrations. The optimal calculated parameters were found to be microwave exposure time-99.48 s, microwave exposure power-160 W, concentration of acrylonitrile-0.10% (w/v), concentration of ammonium persulphate--40 mmol/l, which provided graft copolymer with grafting efficiency of 96%. The formation of graft copolymer was confirmed by FT-IR studies and validated by scanning electron micrographs. Thermogravimetric analysis indicated higher thermal stability of graft copolymer and X-ray diffraction study revealed increase in crystallinity on graft polymerization. Further, the graft copolymer showed pH dependant swelling. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Single-Kernel FT-NIR Spectroscopy for Detecting Supersweet Corn (Zea mays L. Saccharata Sturt Seed Viability with Multivariate Data Analysis

    Directory of Open Access Journals (Sweden)

    Guangjun Qiu

    2018-03-01

    Full Text Available The viability and vigor of crop seeds are crucial indicators for evaluating seed quality, and high-quality seeds can increase agricultural yield. The conventional methods for assessing seed viability are time consuming, destructive, and labor intensive. Therefore, a rapid and nondestructive technique for testing seed viability has great potential benefits for agriculture. In this study, single-kernel Fourier transform near-infrared (FT-NIR spectroscopy with a wavelength range of 1000–2500 nm was used to distinguish viable and nonviable supersweet corn seeds. Various preprocessing algorithms coupled with partial least squares discriminant analysis (PLS-DA were implemented to test the performance of classification models. The FT-NIR spectroscopy technique successfully differentiated viable seeds from seeds that were nonviable due to overheating or artificial aging. Correct classification rates for both heat-damaged kernels and artificially aged kernels reached 98.0%. The comprehensive model could also attain an accuracy of 98.7% when combining heat-damaged samples and artificially aged samples into one category. Overall, the FT-NIR technique with multivariate data analysis methods showed great potential capacity in rapidly and nondestructively detecting seed viability in supersweet corn.

  8. Single-Kernel FT-NIR Spectroscopy for Detecting Supersweet Corn (Zea mays L. Saccharata Sturt) Seed Viability with Multivariate Data Analysis.

    Science.gov (United States)

    Qiu, Guangjun; Lü, Enli; Lu, Huazhong; Xu, Sai; Zeng, Fanguo; Shui, Qin

    2018-03-28

    The viability and vigor of crop seeds are crucial indicators for evaluating seed quality, and high-quality seeds can increase agricultural yield. The conventional methods for assessing seed viability are time consuming, destructive, and labor intensive. Therefore, a rapid and nondestructive technique for testing seed viability has great potential benefits for agriculture. In this study, single-kernel Fourier transform near-infrared (FT-NIR) spectroscopy with a wavelength range of 1000-2500 nm was used to distinguish viable and nonviable supersweet corn seeds. Various preprocessing algorithms coupled with partial least squares discriminant analysis (PLS-DA) were implemented to test the performance of classification models. The FT-NIR spectroscopy technique successfully differentiated viable seeds from seeds that were nonviable due to overheating or artificial aging. Correct classification rates for both heat-damaged kernels and artificially aged kernels reached 98.0%. The comprehensive model could also attain an accuracy of 98.7% when combining heat-damaged samples and artificially aged samples into one category. Overall, the FT-NIR technique with multivariate data analysis methods showed great potential capacity in rapidly and nondestructively detecting seed viability in supersweet corn.

  9. Flame kernel characterization of laser ignition of natural gas-air mixture in a constant volume combustion chamber

    Science.gov (United States)

    Srivastava, Dhananjay Kumar; Dharamshi, Kewal; Agarwal, Avinash Kumar

    2011-09-01

    In this paper, laser-induced ignition was investigated for compressed natural gas-air mixtures. Experiments were performed in a constant volume combustion chamber, which simulate end of the compression stroke conditions of a SI engine. This chamber simulates the engine combustion chamber conditions except turbulence of air-fuel mixture. It has four optical windows at diametrically opposite locations, which are used for laser ignition and optical diagnostics simultaneously. All experiments were conducted at 10 bar chamber pressure and 373 K chamber temperature. Initial stage of combustion phenomena was visualized by employing Shadowgraphy technique using a high speed CMOS camera. Flame kernel development of the combustible fuel-air mixture was investigated under different relative air-fuel ratios ( λ=1.2-1.7) and the images were interrogated for temporal propagation of flame front. Pressure-time history inside the combustion chamber was recorded and analyzed. This data is useful in characterizing the laser ignition of natural gas-air mixture and can be used in developing an appropriate laser ignition system for commercial use in SI engines.

  10. Caracterização sensorial de amêndoas de castanha-de-caju fritas e salgadas Sensory characterization of cashew nut kernels

    Directory of Open Access Journals (Sweden)

    Janice R. LIMA

    1999-01-01

    Full Text Available Amêndoas de castanha-de-caju fritas e salgadas foram acondicionadas em três embalagens flexíveis (PP/PE=polipropileno/polietileno; PETmet/PE= polietileno tereftalato metalizado/polietileno; PET/Al/PEBD= polietileno tereftalato/alumínio/polietileno de baixa densidade com diferentes propriedades de barreira ao vapor de água e ao oxigênio. As amêndoas foram armazenadas durante 1 ano, a 30° C e 80% de umidade relativa. No final do período de 1 ano de armazenamento, realizou-se análise sensorial descritiva quantitativa (ADQ. Os termos descritivos levantados para caracterização sensorial das amêndoas foram, para aparência: cor torrada, uniformidade de cor e rugosidade; para aroma: castanha torrada, doce, ranço e velho; para sabor: castanha torrada, doce, ranço, velho, sal e amargo; para textura: crocância. Observou-se que os fatores mais diretamente responsáveis pela perda de qualidade sensorial das amêndoas de castanha-de-caju foram desenvolvimento de aroma e sabor de velho e de ranço, perda de sabor e aroma de castanha torrada e perda de crocância. Após o período de armazenamento, estes fatores foram observados com maior intensidade nas amêndoas embaladas em PP/PE.Shelled, roasted and salted cashew nut kernels were packaged in three different flexible materials (PP/PE= polypropylene / polyethylene; PETmet/PE= metallized polyethylene terephthalate / polyethylene; PET/Al/LDPE= polyethylene terephthalate / aluminum foil / low density polyethylene , with different barrier properties. Kernels were stored for one year at 30° C and 80% relative humidity. Quantitative descriptive sensory analysis (QDA were performed at the end of storage time. Descriptive terms obtained for kernels characterization were brown color, color uniformity and rugosity for appearance; toasted kernel, sweet, old and rancidity for odor; toasted kernel, sweet, old rancidity, salt and bitter for taste, crispness for texture. QDA showed that factors responsible

  11. Ultrasonic characterization of single drops of liquids

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Dipen N. (Los Alamos, NM)

    1998-01-01

    Ultrasonic characterization of single drops of liquids. The present invention includes the use of two closely spaced transducers, or one transducer and a closely spaced reflector plate, to form an interferometer suitable for ultrasonic characterization of droplet-size and smaller samples without the need for a container. The droplet is held between the interferometer elements, whose distance apart may be adjusted, by surface tension. The surfaces of the interferometer elements may be readily cleansed by a stream of solvent followed by purified air when it is desired to change samples. A single drop of liquid is sufficient for high-quality measurement. Examples of samples which may be investigated using the apparatus and method of the present invention include biological specimens (tear drops; blood and other body fluid samples; samples from tumors, tissues, and organs; secretions from tissues and organs; snake and bee venom, etc.) for diagnostic evaluation, samples in forensic investigations, and detection of drugs in small quantities.

  12. Ultra-Fine Friction Grinding of Sunflower Kernels – Thereof Tahini and Halva Production and Rheological Characterization

    OpenAIRE

    Emil RACOLŢA; Elena Andruța MUREȘAN; Andrei BORȘA; Romina Alina VLAIC; Vlad MUREȘAN

    2016-01-01

    Tahini is a paste obtained by milling the roasted sunflower kernel. Usually, a time and energy consuming two-steps process is involved, a three-roll refiner and a beating machine. The aim of this work was to identify and test a milling process for roasted sunflower kernels with lower time and energy consumption. Different particle size sunflower tahini and halva samples were produced by Ultra-Fine Friction Grinding machine Masuko Sangyo “Supermasscolloider” MKCA6-2 and compared to standard te...

  13. On the Inclusion Relation of Reproducing Kernel Hilbert Spaces

    OpenAIRE

    Zhang, Haizhang; Zhao, Liang

    2011-01-01

    To help understand various reproducing kernels used in applied sciences, we investigate the inclusion relation of two reproducing kernel Hilbert spaces. Characterizations in terms of feature maps of the corresponding reproducing kernels are established. A full table of inclusion relations among widely-used translation invariant kernels is given. Concrete examples for Hilbert-Schmidt kernels are presented as well. We also discuss the preservation of such a relation under various operations of ...

  14. Molecular and cytogenetic characterization of the 5DS-5BS chromosome translocation conditioning soft kernel texture in durum wheat

    Science.gov (United States)

    Cultivar ‘Soft Svevo’, a new non-GMO soft durum cultivar with soft kernel texture, was developed through a 5DS(5BS) chromosomal translocation from event. cv. Chinese Spring, and subsequently used to create new soft durum germplasm. The development of Soft Svevo featured the Ph1b-mediated homoeologou...

  15. Ultrasonic characterization of single drops of liquids

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, D.N.

    1998-04-14

    Ultrasonic characterization of single drops of liquids is disclosed. The present invention includes the use of two closely spaced transducers, or one transducer and a closely spaced reflector plate, to form an interferometer suitable for ultrasonic characterization of droplet-size and smaller samples without the need for a container. The droplet is held between the interferometer elements, whose distance apart may be adjusted, by surface tension. The surfaces of the interferometer elements may be readily cleansed by a stream of solvent followed by purified air when it is desired to change samples. A single drop of liquid is sufficient for high-quality measurement. Examples of samples which may be investigated using the apparatus and method of the present invention include biological specimens (tear drops; blood and other body fluid samples; samples from tumors, tissues, and organs; secretions from tissues and organs; snake and bee venom, etc.) for diagnostic evaluation, samples in forensic investigations, and detection of drugs in small quantities. 5 figs.

  16. The Classification of Diabetes Mellitus Using Kernel k-means

    Science.gov (United States)

    Alamsyah, M.; Nafisah, Z.; Prayitno, E.; Afida, A. M.; Imah, E. M.

    2018-01-01

    Diabetes Mellitus is a metabolic disorder which is characterized by chronicle hypertensive glucose. Automatics detection of diabetes mellitus is still challenging. This study detected diabetes mellitus by using kernel k-Means algorithm. Kernel k-means is an algorithm which was developed from k-means algorithm. Kernel k-means used kernel learning that is able to handle non linear separable data; where it differs with a common k-means. The performance of kernel k-means in detecting diabetes mellitus is also compared with SOM algorithms. The experiment result shows that kernel k-means has good performance and a way much better than SOM.

  17. Ultra-Fine Friction Grinding of Sunflower Kernels – Thereof Tahini and Halva Production and Rheological Characterization

    Directory of Open Access Journals (Sweden)

    Emil RACOLŢA

    2016-11-01

    Full Text Available Tahini is a paste obtained by milling the roasted sunflower kernel. Usually, a time and energy consuming two-steps process is involved, a three-roll refiner and a beating machine. The aim of this work was to identify and test a milling process for roasted sunflower kernels with lower time and energy consumption. Different particle size sunflower tahini and halva samples were produced by Ultra-Fine Friction Grinding machine Masuko Sangyo “Supermasscolloider” MKCA6-2 and compared to standard technology. The rheological properties of tahini and textural parameters of halva were assessed. Rheological analysis revealed that all tahini samples produced by “Supermasscolloider” showed a different viscosity profile, as compared to control, the sample milled with the gap set at 100µm being the most viscous and the one at 200µm being the most fluid. When testing the halva samples texture, the sample obtained from the tahini milled at 200µm was clearly highlighted as having the lowest hardness values, while the other samples showed similar texture profiles. The feasibility of using an Ultra-Fine Friction Grinding machine for obtaining sunflower tahini and thereof halva with improved textural properties, was assessed successfully.

  18. Two axiomatizations of the kernel of TU games: bilateral and converse reduced game properties

    NARCIS (Netherlands)

    Driessen, Theo; Hu, C.-C.

    We provide two axiomatic characterizations of the kernel of TU games by means of both bilateral consistency and converse consistency with respect to two types of two-person reduced games. According to the first type, the worth of any single player in the two-person reduced game is derived from the

  19. Chemical characterization and thermal properties of kernel oils from Tunisian peach and nectarine varieties of Prunus persica

    Directory of Open Access Journals (Sweden)

    D. Chamli

    2017-09-01

    Full Text Available A comparative study was conducted to determine the fatty acids, triacylglycerol compositions and thermal properties of Tunisian kernel oils from the Prunus persica varieties, peach and nectarine, grown in two areas of Tunisia, Gabes and Morneg. Qualitatively, the fatty acids composition and triacylglycerol species were identical for all samples. Oleic acid (67.7-75.0% was the main fatty acid, followed by linoleic (15.7-22.1% and palmitic (5.6-6.3% acids. The major triacylglycerol species were triolein, OOO (38.4-50.5%, followed by OOL (18.2-23.2%, POO (8.3-9.7% and OLL (6.3-10.1%. The thermal profiles were highly influenced by the high content of triolein due to the importance of oleic acid in these oils. Moreover, the fatty acids distribution in TAG external positions was determined as corresponding to an α asymmetry coefficient that was between 0.10 and 0.12, indicating a high asymmetry in the distribution of saturated fatty acids in the position sn-1 and sn-3 in the TAG species of all samples.

  20. Microorganism characterization by single particle mass spectrometry.

    Science.gov (United States)

    Russell, Scott C

    2009-01-01

    In recent years a major effort by several groups has been undertaken to identify bacteria by mass spectrometry at the single cell level. The intent of this review is to highlight the recent progress made in the application of single particle mass spectrometry to the analysis of microorganisms. A large portion of the review highlights improvements in the ionization and mass analysis of bio-aerosols, or particles that contain biologically relevant molecules such as peptides or proteins. While these are not direct applications to bacteria, the results have been central to a progression toward single cell mass spectrometry. Developments in single particle matrix-assisted laser desorption/ionization (MALDI) are summarized. Recent applications of aerosol laser desorption/ionization (LDI) to the analysis of single microorganisms are highlighted. Successful applications of off-line and on-the-fly aerosol MALDI to microorganism detection are discussed. Limitations to current approaches and necessary future achievements are also addressed. (c) 2009 Wiley Periodicals, Inc.

  1. Assessing Model Characterization of Single Source ...

    Science.gov (United States)

    Aircraft measurements made downwind from specific coal fired power plants during the 2013 Southeast Nexus field campaign provide a unique opportunity to evaluate single source photochemical model predictions of both O3 and secondary PM2.5 species. The model did well at predicting downwind plume placement. The model shows similar patterns of an increasing fraction of PM2.5 sulfate ion to the sum of SO2 and PM2.5 sulfate ion by distance from the source compared with ambient based estimates. The model was less consistent in capturing downwind ambient based trends in conversion of NOX to NOY from these sources. Source sensitivity approaches capture near-source O3 titration by fresh NO emissions, in particular subgrid plume treatment. However, capturing this near-source chemical feature did not translate into better downwind peak estimates of single source O3 impacts. The model estimated O3 production from these sources but often was lower than ambient based source production. The downwind transect ambient measurements, in particular secondary PM2.5 and O3, have some level of contribution from other sources which makes direct comparison with model source contribution challenging. Model source attribution results suggest contribution to secondary pollutants from multiple sources even where primary pollutants indicate the presence of a single source. The National Exposure Research Laboratory (NERL) Computational Exposure Division (CED) develops and evaluates data, deci

  2. Iterative software kernels

    Energy Technology Data Exchange (ETDEWEB)

    Duff, I.

    1994-12-31

    This workshop focuses on kernels for iterative software packages. Specifically, the three speakers discuss various aspects of sparse BLAS kernels. Their topics are: `Current status of user lever sparse BLAS`; Current status of the sparse BLAS toolkit`; and `Adding matrix-matrix and matrix-matrix-matrix multiply to the sparse BLAS toolkit`.

  3. Characterizing Intimate Mixtures of Materials in Hyperspectral Imagery with Albedo-based and Kernel-based Approaches

    Science.gov (United States)

    2015-09-01

    Approved for Public Release: 15-2513. Copyright has been transferred to another party. Characterizing intimate mixtures of materials in...ABSTRACT Linear mixtures of materials in a scene often occur because the pixel size of a sensor is relatively large and consequently they...contain patches of different materials within them. This type of mixing can be thought of as areal mixing and modeled by a linear mixture model with

  4. Dissecting the frog inner ear with Gaussian noise .1. Application of high-order Wiener-kernel analysis

    NARCIS (Netherlands)

    vanDijk, P; Wit, HP; Segenhout, JM

    1997-01-01

    Wiener kernel analysis was used to characterize the auditory pathway from tympanic membrane to single primary auditory nerve fibers in the European edible frog, Rana esculenta. Nerve fiber signals were recorded in response to white Gaussian noise. By cross-correlating the noise stimulus and the

  5. Kernels for structured data

    CERN Document Server

    Gärtner, Thomas

    2009-01-01

    This book provides a unique treatment of an important area of machine learning and answers the question of how kernel methods can be applied to structured data. Kernel methods are a class of state-of-the-art learning algorithms that exhibit excellent learning results in several application domains. Originally, kernel methods were developed with data in mind that can easily be embedded in a Euclidean vector space. Much real-world data does not have this property but is inherently structured. An example of such data, often consulted in the book, is the (2D) graph structure of molecules formed by

  6. Linux Kernel in a Nutshell

    CERN Document Server

    Kroah-Hartman, Greg

    2009-01-01

    Linux Kernel in a Nutshell covers the entire range of kernel tasks, starting with downloading the source and making sure that the kernel is in sync with the versions of the tools you need. In addition to configuration and installation steps, the book offers reference material and discussions of related topics such as control of kernel options at runtime.

  7. Data-variant kernel analysis

    CERN Document Server

    Motai, Yuichi

    2015-01-01

    Describes and discusses the variants of kernel analysis methods for data types that have been intensely studied in recent years This book covers kernel analysis topics ranging from the fundamental theory of kernel functions to its applications. The book surveys the current status, popular trends, and developments in kernel analysis studies. The author discusses multiple kernel learning algorithms and how to choose the appropriate kernels during the learning phase. Data-Variant Kernel Analysis is a new pattern analysis framework for different types of data configurations. The chapters include

  8. [Study of genetic models of maize kernel traits].

    Science.gov (United States)

    Zhang, H W; Kong, F L

    2000-01-01

    Two sets of NCII mating design including 21 different maize inbreds were used to study the genetic models of five maize kernel traits--kernel length, width, ratio of kernel length and width, kernel thickness and weight per 100 kernels. Ten generations including P1, P2, F1, F2, B1, B2 and their reciprocal crosses RF1, RF2, RB1, RB2 were obtained. Three years' data were obtained and analyzed using mainly two methods: (1) precision identification for single cross and (2) mixed liner model MINQUE approach for diallel design. Method 1 showed that kernel traits were primarily controlled by maternal dominance, endosperm additive and dominance effect (maternal dominance > endosperm additive > endosperm dominance). Cytoplasmic effect was detected in one of the two crosses studied. Method 2 revealed that in the total variance of kernel traits, maternal genotypic effect contributed more than 60%, endosperm genotypic effect contributed less than 40%. Cytoplasmic effect only existed in kernel length and 100 kernel weight, with the range of 10% to 30%. The results indicated that kernel genetic performance was quite largely controlled by maternal genotypic effect.

  9. Analog forecasting with dynamics-adapted kernels

    Science.gov (United States)

    Zhao, Zhizhen; Giannakis, Dimitrios

    2016-09-01

    Analog forecasting is a nonparametric technique introduced by Lorenz in 1969 which predicts the evolution of states of a dynamical system (or observables defined on the states) by following the evolution of the sample in a historical record of observations which most closely resembles the current initial data. Here, we introduce a suite of forecasting methods which improve traditional analog forecasting by combining ideas from kernel methods developed in harmonic analysis and machine learning and state-space reconstruction for dynamical systems. A key ingredient of our approach is to replace single-analog forecasting with weighted ensembles of analogs constructed using local similarity kernels. The kernels used here employ a number of dynamics-dependent features designed to improve forecast skill, including Takens’ delay-coordinate maps (to recover information in the initial data lost through partial observations) and a directional dependence on the dynamical vector field generating the data. Mathematically, our approach is closely related to kernel methods for out-of-sample extension of functions, and we discuss alternative strategies based on the Nyström method and the multiscale Laplacian pyramids technique. We illustrate these techniques in applications to forecasting in a low-order deterministic model for atmospheric dynamics with chaotic metastability, and interannual-scale forecasting in the North Pacific sector of a comprehensive climate model. We find that forecasts based on kernel-weighted ensembles have significantly higher skill than the conventional approach following a single analog.

  10. Zero-mode waveguide nanophotonic structures for single molecule characterization

    Science.gov (United States)

    Crouch, Garrison M.; Han, Donghoon; Bohn, Paul W.

    2018-05-01

    Single-molecule characterization has become a crucial research tool in the chemical and life sciences, but limitations, such as limited concentration range, inability to control molecular distributions in space, and intrinsic phenomena, such as photobleaching, present significant challenges. Recent developments in non-classical optics and nanophotonics offer promising routes to mitigating these restrictions, such that even low affinity (K D ~ mM) biomolecular interactions can be studied. Here we introduce and review specific nanophotonic devices used to support single molecule studies. Optical nanostructures, such as zero-mode waveguides (ZMWs), are usually fabricated in thin gold or aluminum films and serve to confine the observation volume of optical microspectroscopy to attoliter to zeptoliter volumes. These simple nanostructures allow individual molecules to be isolated for optical and electrochemical analysis, even when the molecules of interest are present at high concentration (µM–mM) in bulk solution. Arrays of ZMWs may be combined with optical probes such as single molecule fluorescence, single molecule fluorescence resonance energy transfer, and fluorescence correlation spectroscopy for distributed analysis of large numbers of single-molecule reactions or binding events in parallel. Furthermore, ZMWs may be used as multifunctional devices, for example by combining optical and electrochemical functions in a single discrete architecture to achieve electrochemical ZMWs. In this review, we will describe the optical properties, fabrication, and applications of ZMWs for single-molecule studies, as well as the integration of ZMWs into systems for chemical and biochemical analysis.

  11. Small kernel2

    Science.gov (United States)

    Yang, Yan-Zhuo; Ding, Shuo; Wang, Yong; Li, Cui-Ling; Shen, Yun; Meeley, Robert; McCarty, Donald R; Tan, Bao-Cai

    2017-06-01

    Vitamin B 6 , an essential cofactor for a range of biochemical reactions and a potent antioxidant, plays important roles in plant growth, development, and stress tolerance. Vitamin B 6 deficiency causes embryo lethality in Arabidopsis ( Arabidopsis thaliana ), but the specific role of vitamin B 6 biosynthesis in endosperm development has not been fully addressed, especially in monocot crops, where endosperm constitutes the major portion of the grain. Through molecular characterization of a small kernel2 ( smk2 ) mutant in maize, we reveal that vitamin B 6 has differential effects on embryogenesis and endosperm development in maize. The B 6 vitamer pyridoxal 5'-phosphate (PLP) is drastically reduced in both the smk2 embryo and the endosperm. However, whereas embryogenesis of the smk2 mutant is arrested at the transition stage, endosperm formation is nearly normal. Cloning reveals that Smk2 encodes the glutaminase subunit of the PLP synthase complex involved in vitamin B 6 biosynthesis de novo. Smk2 partially complements the Arabidopsis vitamin B 6 -deficient mutant pdx2.1 and Saccharomyces cerevisiae pyridoxine auxotrophic mutant MML21. Smk2 is constitutively expressed in the maize plant, including developing embryos. Analysis of B 6 vitamers indicates that the endosperm accumulates a large amount of pyridoxamine 5'-phosphate (PMP). These results indicate that vitamin B 6 is essential to embryogenesis but has a reduced role in endosperm development in maize. The vitamin B 6 required for seed development is synthesized in the seed, and the endosperm accumulates PMP probably as a storage form of vitamin B 6 . © 2017 American Society of Plant Biologists. All Rights Reserved.

  12. Dose point kernels for beta-emitting radioisotopes

    International Nuclear Information System (INIS)

    Prestwich, W.V.; Chan, L.B.; Kwok, C.S.; Wilson, B.

    1986-01-01

    Knowledge of the dose point kernel corresponding to a specific radionuclide is required to calculate the spatial dose distribution produced in a homogeneous medium by a distributed source. Dose point kernels for commonly used radionuclides have been calculated previously using as a basis monoenergetic dose point kernels derived by numerical integration of a model transport equation. The treatment neglects fluctuations in energy deposition, an effect which has been later incorporated in dose point kernels calculated using Monte Carlo methods. This work describes new calculations of dose point kernels using the Monte Carlo results as a basis. An analytic representation of the monoenergetic dose point kernels has been developed. This provides a convenient method both for calculating the dose point kernel associated with a given beta spectrum and for incorporating the effect of internal conversion. An algebraic expression for allowed beta spectra has been accomplished through an extension of the Bethe-Bacher approximation, and tested against the exact expression. Simplified expression for first-forbidden shape factors have also been developed. A comparison of the calculated dose point kernel for 32 P with experimental data indicates good agreement with a significant improvement over the earlier results in this respect. An analytic representation of the dose point kernel associated with the spectrum of a single beta group has been formulated. 9 references, 16 figures, 3 tables

  13. Multidimensional kernel estimation

    CERN Document Server

    Milosevic, Vukasin

    2015-01-01

    Kernel estimation is one of the non-parametric methods used for estimation of probability density function. Its first ROOT implementation, as part of RooFit package, has one major issue, its evaluation time is extremely slow making in almost unusable. The goal of this project was to create a new class (TKNDTree) which will follow the original idea of kernel estimation, greatly improve the evaluation time (using the TKTree class for storing the data and creating different user-controlled modes of evaluation) and add the interpolation option, for 2D case, with the help of the new Delaunnay2D class.

  14. Adaptive metric kernel regression

    DEFF Research Database (Denmark)

    Goutte, Cyril; Larsen, Jan

    2000-01-01

    Kernel smoothing is a widely used non-parametric pattern recognition technique. By nature, it suffers from the curse of dimensionality and is usually difficult to apply to high input dimensions. In this contribution, we propose an algorithm that adapts the input metric used in multivariate...... regression by minimising a cross-validation estimate of the generalisation error. This allows to automatically adjust the importance of different dimensions. The improvement in terms of modelling performance is illustrated on a variable selection task where the adaptive metric kernel clearly outperforms...

  15. Adaptive Metric Kernel Regression

    DEFF Research Database (Denmark)

    Goutte, Cyril; Larsen, Jan

    1998-01-01

    Kernel smoothing is a widely used nonparametric pattern recognition technique. By nature, it suffers from the curse of dimensionality and is usually difficult to apply to high input dimensions. In this paper, we propose an algorithm that adapts the input metric used in multivariate regression...... by minimising a cross-validation estimate of the generalisation error. This allows one to automatically adjust the importance of different dimensions. The improvement in terms of modelling performance is illustrated on a variable selection task where the adaptive metric kernel clearly outperforms the standard...

  16. Realized kernels in practice

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Hansen, P. Reinhard; Lunde, Asger

    2009-01-01

    Realized kernels use high-frequency data to estimate daily volatility of individual stock prices. They can be applied to either trade or quote data. Here we provide the details of how we suggest implementing them in practice. We compare the estimates based on trade and quote data for the same stock...

  17. Automated Characterization of Single-Photon Avalanche Photodiode

    Directory of Open Access Journals (Sweden)

    Aina Mardhiyah M. Ghazali

    2012-01-01

    Full Text Available We report an automated characterization of a single-photon detector based on commercial silicon avalanche photodiode (PerkinElmer C30902SH. The photodiode is characterized by I-V curves at different illumination levels (darkness, 10 pW and 10 µW, dark count rate and photon detection efficiency at different bias voltages. The automated characterization routine is implemented in C++ running on a Linux computer. ABSTRAK: Kami melaporkan pencirian pengesan foton tunggal secara automatik berdasarkan kepada diod foto runtuhan silikon (silicon avalanche photodiode (PerkinElmer C30902SH komersial. Pencirian  diod foto adalah berdasarkan kepada plot arus-voltan (I-V pada tahap pencahayaan yang berbeza (kelam - tanpa cahaya, 10pW, dan 10µW, kadar bacaan latar belakang, kecekapan pengesanan foton pada voltan picuan yang berbeza. Pengaturcaraan C++ digunakan di dalam rutin pencirian automatik melalui komputer dengan sistem pengendalian LINUX.KEYWORDS: avalanche photodiode (APD; single photon detector; photon counting; experiment automation

  18. Parameter Selection Method for Support Vector Regression Based on Adaptive Fusion of the Mixed Kernel Function

    Directory of Open Access Journals (Sweden)

    Hailun Wang

    2017-01-01

    Full Text Available Support vector regression algorithm is widely used in fault diagnosis of rolling bearing. A new model parameter selection method for support vector regression based on adaptive fusion of the mixed kernel function is proposed in this paper. We choose the mixed kernel function as the kernel function of support vector regression. The mixed kernel function of the fusion coefficients, kernel function parameters, and regression parameters are combined together as the parameters of the state vector. Thus, the model selection problem is transformed into a nonlinear system state estimation problem. We use a 5th-degree cubature Kalman filter to estimate the parameters. In this way, we realize the adaptive selection of mixed kernel function weighted coefficients and the kernel parameters, the regression parameters. Compared with a single kernel function, unscented Kalman filter (UKF support vector regression algorithms, and genetic algorithms, the decision regression function obtained by the proposed method has better generalization ability and higher prediction accuracy.

  19. Characterization of parallel superconducting nanowire single photon detectors

    International Nuclear Information System (INIS)

    Ejrnaes, M; Casaburi, A; Pagano, S; Cristiano, R; Quaranta, O; Marchetti, S; Gaggero, A; Mattioli, F; Leoni, R

    2009-01-01

    Superconducting nanowire single photon detectors (SNSPDs) have been realized using an innovative parallel wire configuration. This configuration allows, at the same time, a large detection area and a fast response, with the additional advantage of large signal amplitudes. The detectors have been thoroughly characterized in terms of signal properties (amplitude, risetime and falltime), detector operation (latching and not latching) and quantum efficiency (at 850 nm). It has been shown that the parallel SNSPD is able to provide significantly higher maximum count rates for large area SNSPDs than meandered SNSPDs. Through a proper parallel wire configuration the increase in maximum count rate can be obtained without latching problems.

  20. Characterization of parallel superconducting nanowire single photon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Ejrnaes, M; Casaburi, A; Pagano, S; Cristiano, R [CNR-Istituto di Cibernetica ' E Caianiello' , 80078 Pozzuoli (Namibia) (Italy); Quaranta, O; Marchetti, S [Dipartimento di Fisica ' E R Caianiello' , Universita di Salerno, 84081 Baronissi (Italy); Gaggero, A; Mattioli, F; Leoni, R [CNR-Istituto di Fotonica e Nanotecnologie, 00156 Roma (Italy)

    2009-05-15

    Superconducting nanowire single photon detectors (SNSPDs) have been realized using an innovative parallel wire configuration. This configuration allows, at the same time, a large detection area and a fast response, with the additional advantage of large signal amplitudes. The detectors have been thoroughly characterized in terms of signal properties (amplitude, risetime and falltime), detector operation (latching and not latching) and quantum efficiency (at 850 nm). It has been shown that the parallel SNSPD is able to provide significantly higher maximum count rates for large area SNSPDs than meandered SNSPDs. Through a proper parallel wire configuration the increase in maximum count rate can be obtained without latching problems.

  1. Interferometric characterization of a microaxicon with a single fringe pattern

    International Nuclear Information System (INIS)

    Kuang, Dengfeng; Han, Meirui; Gao, Hui; Du, Zhongxun; Fang, Zhiliang

    2011-01-01

    The height and opening angle of a microaxicon are two important factors for the working distance and the field profile of the beam generated by the microaxicon. A simple approach for the characterization of a microaxicon is proposed and demonstrated with the single fringe pattern obtained from a modified Mach–Zehnder interferometer. The geometrical profile, height and opening angle are retrieved from the interference fringe pattern for a quartz microaxicon fabricated by direct laser writing and inductively coupled plasma etching, which are comparably consistent with that measured by an atomic force microscope

  2. A Tensor-Product-Kernel Framework for Multiscale Neural Activity Decoding and Control

    Science.gov (United States)

    Li, Lin; Brockmeier, Austin J.; Choi, John S.; Francis, Joseph T.; Sanchez, Justin C.; Príncipe, José C.

    2014-01-01

    Brain machine interfaces (BMIs) have attracted intense attention as a promising technology for directly interfacing computers or prostheses with the brain's motor and sensory areas, thereby bypassing the body. The availability of multiscale neural recordings including spike trains and local field potentials (LFPs) brings potential opportunities to enhance computational modeling by enriching the characterization of the neural system state. However, heterogeneity on data type (spike timing versus continuous amplitude signals) and spatiotemporal scale complicates the model integration of multiscale neural activity. In this paper, we propose a tensor-product-kernel-based framework to integrate the multiscale activity and exploit the complementary information available in multiscale neural activity. This provides a common mathematical framework for incorporating signals from different domains. The approach is applied to the problem of neural decoding and control. For neural decoding, the framework is able to identify the nonlinear functional relationship between the multiscale neural responses and the stimuli using general purpose kernel adaptive filtering. In a sensory stimulation experiment, the tensor-product-kernel decoder outperforms decoders that use only a single neural data type. In addition, an adaptive inverse controller for delivering electrical microstimulation patterns that utilizes the tensor-product kernel achieves promising results in emulating the responses to natural stimulation. PMID:24829569

  3. Multivariate realised kernels

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole; Hansen, Peter Reinhard; Lunde, Asger

    We propose a multivariate realised kernel to estimate the ex-post covariation of log-prices. We show this new consistent estimator is guaranteed to be positive semi-definite and is robust to measurement noise of certain types and can also handle non-synchronous trading. It is the first estimator...... returns measured over 5 or 10 minutes intervals. We show the new estimator is substantially more precise....

  4. Multivariate realised kernels

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Hansen, Peter Reinhard; Lunde, Asger

    2011-01-01

    We propose a multivariate realised kernel to estimate the ex-post covariation of log-prices. We show this new consistent estimator is guaranteed to be positive semi-definite and is robust to measurement error of certain types and can also handle non-synchronous trading. It is the first estimator...... returns measured over 5 or 10 min intervals. We show that the new estimator is substantially more precise....

  5. Steerability of Hermite Kernel

    Czech Academy of Sciences Publication Activity Database

    Yang, Bo; Flusser, Jan; Suk, Tomáš

    2013-01-01

    Roč. 27, č. 4 (2013), 1354006-1-1354006-25 ISSN 0218-0014 R&D Projects: GA ČR GAP103/11/1552 Institutional support: RVO:67985556 Keywords : Hermite polynomials * Hermite kernel * steerability * adaptive filtering Subject RIV: JD - Computer Applications, Robotics Impact factor: 0.558, year: 2013 http://library.utia.cas.cz/separaty/2013/ZOI/yang-0394387.pdf

  6. Advanced optical measurements for characterizing photophysical properties of single nanoparticles.

    Energy Technology Data Exchange (ETDEWEB)

    Polsky, Ronen; Davis, Ryan W.; Arango, Dulce C.; Brozik, Susan Marie; Wheeler, David Roger

    2009-09-01

    Formation of complex nanomaterials would ideally involve single-pot reaction conditions with one reactive site per nanoparticle, resulting in a high yield of incrementally modified or oriented structures. Many studies in nanoparticle functionalization have sought to generate highly uniform nanoparticles with tailorable surface chemistry necessary to produce such conjugates, with limited success. In order to overcome these limitations, we have modified commercially available nanoparticles with multiple potential reaction sites for conjugation with single ssDNAs, proteins, and small unilamellar vesicles. These approaches combined heterobifunctional and biochemical template chemistries with single molecule optical methods for improved control of nanomaterial functionalization. Several interesting analytical results have been achieved by leveraging techniques unique to SNL, and provide multiple paths for future improvements for multiplex nanoparticle synthesis and characterization. Hyperspectral imaging has proven especially useful for assaying substrate immobilized fluorescent particles. In dynamic environments, temporal correlation spectroscopies have been employed for tracking changes in diffusion/hydrodynamic radii, particle size distributions, and identifying mobile versus immobile sample fractions at unbounded dilution. Finally, Raman fingerprinting of biological conjugates has been enabled by resonant signal enhancement provided by intimate interactions with nanoparticles and composite nanoshells.

  7. A Novel Extreme Learning Machine Classification Model for e-Nose Application Based on the Multiple Kernel Approach

    Directory of Open Access Journals (Sweden)

    Yulin Jian

    2017-06-01

    Full Text Available A novel classification model, named the quantum-behaved particle swarm optimization (QPSO-based weighted multiple kernel extreme learning machine (QWMK-ELM, is proposed in this paper. Experimental validation is carried out with two different electronic nose (e-nose datasets. Being different from the existing multiple kernel extreme learning machine (MK-ELM algorithms, the combination coefficients of base kernels are regarded as external parameters of single-hidden layer feedforward neural networks (SLFNs. The combination coefficients of base kernels, the model parameters of each base kernel, and the regularization parameter are optimized by QPSO simultaneously before implementing the kernel extreme learning machine (KELM with the composite kernel function. Four types of common single kernel functions (Gaussian kernel, polynomial kernel, sigmoid kernel, and wavelet kernel are utilized to constitute different composite kernel functions. Moreover, the method is also compared with other existing classification methods: extreme learning machine (ELM, kernel extreme learning machine (KELM, k-nearest neighbors (KNN, support vector machine (SVM, multi-layer perceptron (MLP, radical basis function neural network (RBFNN, and probabilistic neural network (PNN. The results have demonstrated that the proposed QWMK-ELM outperforms the aforementioned methods, not only in precision, but also in efficiency for gas classification.

  8. A Novel Extreme Learning Machine Classification Model for e-Nose Application Based on the Multiple Kernel Approach.

    Science.gov (United States)

    Jian, Yulin; Huang, Daoyu; Yan, Jia; Lu, Kun; Huang, Ying; Wen, Tailai; Zeng, Tanyue; Zhong, Shijie; Xie, Qilong

    2017-06-19

    A novel classification model, named the quantum-behaved particle swarm optimization (QPSO)-based weighted multiple kernel extreme learning machine (QWMK-ELM), is proposed in this paper. Experimental validation is carried out with two different electronic nose (e-nose) datasets. Being different from the existing multiple kernel extreme learning machine (MK-ELM) algorithms, the combination coefficients of base kernels are regarded as external parameters of single-hidden layer feedforward neural networks (SLFNs). The combination coefficients of base kernels, the model parameters of each base kernel, and the regularization parameter are optimized by QPSO simultaneously before implementing the kernel extreme learning machine (KELM) with the composite kernel function. Four types of common single kernel functions (Gaussian kernel, polynomial kernel, sigmoid kernel, and wavelet kernel) are utilized to constitute different composite kernel functions. Moreover, the method is also compared with other existing classification methods: extreme learning machine (ELM), kernel extreme learning machine (KELM), k-nearest neighbors (KNN), support vector machine (SVM), multi-layer perceptron (MLP), radical basis function neural network (RBFNN), and probabilistic neural network (PNN). The results have demonstrated that the proposed QWMK-ELM outperforms the aforementioned methods, not only in precision, but also in efficiency for gas classification.

  9. Deep Restricted Kernel Machines Using Conjugate Feature Duality.

    Science.gov (United States)

    Suykens, Johan A K

    2017-08-01

    The aim of this letter is to propose a theory of deep restricted kernel machines offering new foundations for deep learning with kernel machines. From the viewpoint of deep learning, it is partially related to restricted Boltzmann machines, which are characterized by visible and hidden units in a bipartite graph without hidden-to-hidden connections and deep learning extensions as deep belief networks and deep Boltzmann machines. From the viewpoint of kernel machines, it includes least squares support vector machines for classification and regression, kernel principal component analysis (PCA), matrix singular value decomposition, and Parzen-type models. A key element is to first characterize these kernel machines in terms of so-called conjugate feature duality, yielding a representation with visible and hidden units. It is shown how this is related to the energy form in restricted Boltzmann machines, with continuous variables in a nonprobabilistic setting. In this new framework of so-called restricted kernel machine (RKM) representations, the dual variables correspond to hidden features. Deep RKM are obtained by coupling the RKMs. The method is illustrated for deep RKM, consisting of three levels with a least squares support vector machine regression level and two kernel PCA levels. In its primal form also deep feedforward neural networks can be trained within this framework.

  10. Acquisition of Single Crystal Growth and Characterization Equipment. Final report

    International Nuclear Information System (INIS)

    Maple, M. Brian; Zocco, Diego A.

    2008-01-01

    Final Report for DOE Grant No. DE-FG02-04ER46178 'Acquisition of Single Crystal Growth and Characterization Equipment'. There is growing concern in the condensed matter community that the need for quality crystal growth and materials preparation laboratories is not being met in the United States. It has been suggested that there are too many researchers performing measurements on too few materials. As a result, many user facilities are not being used optimally. The number of proficient crystal growers is too small. In addition, insufficient attention is being paid to the enterprise of finding new and interesting materials, which is the driving force behind much of condensed matter research and, ultimately, technology. While a detailed assessment of this situation is clearly needed, enough evidence of a problem already exists to compel a general consensus that the situation must be addressed promptly. This final report describes the work carried out during the last four years in our group, in which a state-of-the-art single crystal growth and characterization facility was established for the study of novel oxides and intermetallic compounds of rare earth, actinide and transition metal elements. Research emphasis is on the physics of superconducting (SC), magnetic, heavy fermion (HF), non-Fermi liquid (NFL) and other types of strongly correlated electron phenomena in bulk single crystals. Properties of these materials are being studied as a function of concentration of chemical constituents, temperature, pressure, and magnetic field, which provide information about the electronic, lattice, and magnetic excitations at the root of various strongly correlated electron phenomena. Most importantly, the facility makes possible the investigation of material properties that can only be achieved in high quality bulk single crystals, including magnetic and transport phenomena, studies of the effects of disorder, properties in the clean limit, and spectroscopic and scattering

  11. Acquisition of Single Crystal Growth and Characterization Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Maple, M. Brian; Zocco, Diego A.

    2008-12-09

    Final Report for DOE Grant No. DE-FG02-04ER46178 'Acquisition of Single Crystal Growth and Characterization Equipment'. There is growing concern in the condensed matter community that the need for quality crystal growth and materials preparation laboratories is not being met in the United States. It has been suggested that there are too many researchers performing measurements on too few materials. As a result, many user facilities are not being used optimally. The number of proficient crystal growers is too small. In addition, insufficient attention is being paid to the enterprise of finding new and interesting materials, which is the driving force behind much of condensed matter research and, ultimately, technology. While a detailed assessment of this situation is clearly needed, enough evidence of a problem already exists to compel a general consensus that the situation must be addressed promptly. This final report describes the work carried out during the last four years in our group, in which a state-of-the-art single crystal growth and characterization facility was established for the study of novel oxides and intermetallic compounds of rare earth, actinide and transition metal elements. Research emphasis is on the physics of superconducting (SC), magnetic, heavy fermion (HF), non-Fermi liquid (NFL) and other types of strongly correlated electron phenomena in bulk single crystals. Properties of these materials are being studied as a function of concentration of chemical constituents, temperature, pressure, and magnetic field, which provide information about the electronic, lattice, and magnetic excitations at the root of various strongly correlated electron phenomena. Most importantly, the facility makes possible the investigation of material properties that can only be achieved in high quality bulk single crystals, including magnetic and transport phenomena, studies of the effects of disorder, properties in the clean limit, and spectroscopic and

  12. A weighted string kernel for protein fold recognition.

    Science.gov (United States)

    Nojoomi, Saghi; Koehl, Patrice

    2017-08-25

    Alignment-free methods for comparing protein sequences have proved to be viable alternatives to approaches that first rely on an alignment of the sequences to be compared. Much work however need to be done before those methods provide reliable fold recognition for proteins whose sequences share little similarity. We have recently proposed an alignment-free method based on the concept of string kernels, SeqKernel (Nojoomi and Koehl, BMC Bioinformatics, 2017, 18:137). In this previous study, we have shown that while Seqkernel performs better than standard alignment-based methods, its applications are potentially limited, because of biases due mostly to sequence length effects. In this study, we propose improvements to SeqKernel that follows two directions. First, we developed a weighted version of the kernel, WSeqKernel. Second, we expand the concept of string kernels into a novel framework for deriving information on amino acids from protein sequences. Using a dataset that only contains remote homologs, we have shown that WSeqKernel performs remarkably well in fold recognition experiments. We have shown that with the appropriate weighting scheme, we can remove the length effects on the kernel values. WSeqKernel, just like any alignment-based sequence comparison method, depends on a substitution matrix. We have shown that this matrix can be optimized so that sequence similarity scores correlate well with structure similarity scores. Starting from no information on amino acid similarity, we have shown that we can derive a scoring matrix that echoes the physico-chemical properties of amino acids. We have made progress in characterizing and parametrizing string kernels as alignment-based methods for comparing protein sequences, and we have shown that they provide a framework for extracting sequence information from structure.

  13. Performance characterization of pneumatic single pellet injection system

    International Nuclear Information System (INIS)

    Schuresko, D.D.; Milora, S.L.; Hogan, J.T.; Foster, C.A.; Combs, S.K.

    1982-01-01

    The Oak Ridge National Laboratory single-shot pellet injector, which has been used in plasma fueling experiments on ISX and PDX, has been upgraded and extensively instrumented in order to study the gas dynamics of pneumatic pellet injection. An improved pellet transport line was developed which utilizes a 0.3-cm-diam by 100-cm-long guide tube. Pellet gun performance was characterized by measurements of breech and muzzle dynamic pressures and by pellet velocity and mass determinations. Velocities up to 1.4 km/s were achieved for intact hydrogen pellets using hydrogen propellant at 5-MPa breech pressure. These data have been compared with new pellet acceleration calculations which include the effects of propellant friction, heat transfer, time-dependent boundary conditions, and finite gun geometry. These results provide a basis for the extrapolation of present-day pneumatic injection system performance to velocities in excess of 2 km/s

  14. The definition of kernel Oz

    OpenAIRE

    Smolka, Gert

    1994-01-01

    Oz is a concurrent language providing for functional, object-oriented, and constraint programming. This paper defines Kernel Oz, a semantically complete sublanguage of Oz. It was an important design requirement that Oz be definable by reduction to a lean kernel language. The definition of Kernel Oz introduces three essential abstractions: the Oz universe, the Oz calculus, and the actor model. The Oz universe is a first-order structure defining the values and constraints Oz computes with. The ...

  15. Composition Kernel: A Software Solution for Constructing a Multi-OS Embedded System

    Directory of Open Access Journals (Sweden)

    Kinebuchi Yuki

    2010-01-01

    Full Text Available Abstract Modern high-end embedded systems require both predictable real-time scheduling and high-level abstraction interface to their OS kernels. Since these features are difficult to be balanced by a single OS, some methods that accommodate multiple different versions of OS kernels, typically real-time OS and general purpose OS, into a single device have been proposed. The hybrid kernel, one of those methods, executes a general purpose OS kernel as a task of real-time OS which can support those features with reasonable engineering effort. However when adapting the approach to various combinations of OS kernels, which is required in the real-world embedded system design, the engineering effort of modifying the kernel becomes not negligible. This article introduce a method called a composition kernel which uses a thin abstraction layer for accommodating kernels without making direct dependencies between them. The authors developed the abstraction layer on an SH-4A processor and executed kernels on top of it. The amount of modifications to the kernels was significantly smaller than that in related work, while introducing only negligible verhead to the performance of the kernels.

  16. Kernel bundle EPDiff

    DEFF Research Database (Denmark)

    Sommer, Stefan Horst; Lauze, Francois Bernard; Nielsen, Mads

    2011-01-01

    In the LDDMM framework, optimal warps for image registration are found as end-points of critical paths for an energy functional, and the EPDiff equations describe the evolution along such paths. The Large Deformation Diffeomorphic Kernel Bundle Mapping (LDDKBM) extension of LDDMM allows scale space...... information to be automatically incorporated in registrations and promises to improve the standard framework in several aspects. We present the mathematical foundations of LDDKBM and derive the KB-EPDiff evolution equations, which provide optimal warps in this new framework. To illustrate the resulting...

  17. Clustering via Kernel Decomposition

    DEFF Research Database (Denmark)

    Have, Anna Szynkowiak; Girolami, Mark A.; Larsen, Jan

    2006-01-01

    Methods for spectral clustering have been proposed recently which rely on the eigenvalue decomposition of an affinity matrix. In this work it is proposed that the affinity matrix is created based on the elements of a non-parametric density estimator. This matrix is then decomposed to obtain...... posterior probabilities of class membership using an appropriate form of nonnegative matrix factorization. The troublesome selection of hyperparameters such as kernel width and number of clusters can be obtained using standard cross-validation methods as is demonstrated on a number of diverse data sets....

  18. Optical Characterization and Applications of Single Walled Carbon Nanotubes

    Science.gov (United States)

    Strano, Michael S.

    2005-03-01

    Recent advances in the dispersion and separation of single walled carbon nanotubes have led to new methods of optical characterization and some novel applications. We find that Raman spectroscopy can be used to probe the aggregation state of single-walled carbon nanotubes in solution or as solids with a range of varying morphologies. Carbon nanotubes experience an orthogonal electronic dispersion when in electrical contact that broadens (from 40 meV to roughly 80 meV) and shifts the interband transition to lower energy (by 60 meV). We show that the magnitude of this shift is dependent on the extent of bundle organization and the inter-nanotube contact area. In the Raman spectrum, aggregation shifts the effective excitation profile and causes peaks to increase or decrease, depending on where the transition lies, relative to the excitation wavelength. The findings are particularly relevant for evaluating nanotube separation processes, where relative peak changes in the Raman spectrum can be confused for selective enrichment. We have also used gel electrophoresis and column chromatography conducted on individually dispersed, ultrasonicated single-walled carbon nanotubes to yield simultaneous separation by tube length and diameter. Electroelution after electrophoresis is shown to produce highly resolved fractions of nanotubes with average lengths between 92 and 435 nm. Separation by diameter is concomitant with length fractionation, and nanotubes that have been cut shortest also possess the greatest relative enrichments of large-diameter species. The relative quantum yield decreases nonlinearly as the nanotube length becomes shorter. These findings enable new applications of nanotubes as sensors and biomarkers. Particularly, molecular detection using near infrared (n-IR) light between 0.9 and 1.3 eV has important biomedical applications because of greater tissue penetration and reduced auto-fluorescent background in thick tissue or whole blood media. Carbon nanotubes

  19. Multiple kernel boosting framework based on information measure for classification

    International Nuclear Information System (INIS)

    Qi, Chengming; Wang, Yuping; Tian, Wenjie; Wang, Qun

    2016-01-01

    The performance of kernel-based method, such as support vector machine (SVM), is greatly affected by the choice of kernel function. Multiple kernel learning (MKL) is a promising family of machine learning algorithms and has attracted many attentions in recent years. MKL combines multiple sub-kernels to seek better results compared to single kernel learning. In order to improve the efficiency of SVM and MKL, in this paper, the Kullback–Leibler kernel function is derived to develop SVM. The proposed method employs an improved ensemble learning framework, named KLMKB, which applies Adaboost to learning multiple kernel-based classifier. In the experiment for hyperspectral remote sensing image classification, we employ feature selected through Optional Index Factor (OIF) to classify the satellite image. We extensively examine the performance of our approach in comparison to some relevant and state-of-the-art algorithms on a number of benchmark classification data sets and hyperspectral remote sensing image data set. Experimental results show that our method has a stable behavior and a noticeable accuracy for different data set.

  20. Global Polynomial Kernel Hazard Estimation

    DEFF Research Database (Denmark)

    Hiabu, Munir; Miranda, Maria Dolores Martínez; Nielsen, Jens Perch

    2015-01-01

    This paper introduces a new bias reducing method for kernel hazard estimation. The method is called global polynomial adjustment (GPA). It is a global correction which is applicable to any kernel hazard estimator. The estimator works well from a theoretical point of view as it asymptotically redu...

  1. Classification Using the Zipfian Kernel

    Czech Academy of Sciences Publication Activity Database

    Jiřina, Marcel; Jiřina jr., M.

    2015-01-01

    Roč. 32, č. 2 (2015), s. 305-326 ISSN 0176-4268 R&D Projects: GA TA ČR TA01010490 Institutional support: RVO:67985807 Keywords : kernel machine * Zipfian kernel * multivariate data * correlation dimension * harmonic series * classification Subject RIV: JC - Computer Hardware ; Software Impact factor: 1.147, year: 2015

  2. Model Selection in Kernel Ridge Regression

    DEFF Research Database (Denmark)

    Exterkate, Peter

    , including polynomial kernels, the Gaussian kernel, and the Sinc kernel. We interpret the latter two kernels in terms of their smoothing properties, and we relate the tuning parameters associated to all these kernels to smoothness measures of the prediction function and to the signal-to-noise ratio. Based...... applicable, and we recommend their use instead of the popular polynomial kernels in general settings, in which no information on the data-generating process is available....

  3. Viscosity kernel of molecular fluids

    DEFF Research Database (Denmark)

    Puscasu, Ruslan; Todd, Billy; Daivis, Peter

    2010-01-01

    forms that fit the wave-vector-dependent kernel data over a large density and wave-vector range have also been tested. Finally, a structural normalization of the kernels in physical space is considered. Overall, the real-space viscosity kernel has a width of roughly 3–6 atomic diameters, which means......The wave-vector dependent shear viscosities for butane and freely jointed chains have been determined. The transverse momentum density and stress autocorrelation functions have been determined by equilibrium molecular dynamics in both atomic and molecular hydrodynamic formalisms. The density......, temperature, and chain length dependencies of the reciprocal and real-space viscosity kernels are presented. We find that the density has a major effect on the shape of the kernel. The temperature range and chain lengths considered here have by contrast less impact on the overall normalized shape. Functional...

  4. Model selection in kernel ridge regression

    DEFF Research Database (Denmark)

    Exterkate, Peter

    2013-01-01

    . The influence of the choice of kernel and the setting of tuning parameters on forecast accuracy is investigated. Several popular kernels are reviewed, including polynomial kernels, the Gaussian kernel, and the Sinc kernel. The latter two kernels are interpreted in terms of their smoothing properties...... confirms the practical usefulness of these rules of thumb. Finally, the flexible and smooth functional forms provided by the Gaussian and Sinc kernels makes them widely applicable. Therefore, their use is recommended instead of the popular polynomial kernels in general settings, where no information...

  5. Implementation of kernels on the Maestro processor

    Science.gov (United States)

    Suh, Jinwoo; Kang, D. I. D.; Crago, S. P.

    Currently, most microprocessors use multiple cores to increase performance while limiting power usage. Some processors use not just a few cores, but tens of cores or even 100 cores. One such many-core microprocessor is the Maestro processor, which is based on Tilera's TILE64 processor. The Maestro chip is a 49-core, general-purpose, radiation-hardened processor designed for space applications. The Maestro processor, unlike the TILE64, has a floating point unit (FPU) in each core for improved floating point performance. The Maestro processor runs at 342 MHz clock frequency. On the Maestro processor, we implemented several widely used kernels: matrix multiplication, vector add, FIR filter, and FFT. We measured and analyzed the performance of these kernels. The achieved performance was up to 5.7 GFLOPS, and the speedup compared to single tile was up to 49 using 49 tiles.

  6. Robotic intelligence kernel

    Science.gov (United States)

    Bruemmer, David J [Idaho Falls, ID

    2009-11-17

    A robot platform includes perceptors, locomotors, and a system controller. The system controller executes a robot intelligence kernel (RIK) that includes a multi-level architecture and a dynamic autonomy structure. The multi-level architecture includes a robot behavior level for defining robot behaviors, that incorporate robot attributes and a cognitive level for defining conduct modules that blend an adaptive interaction between predefined decision functions and the robot behaviors. The dynamic autonomy structure is configured for modifying a transaction capacity between an operator intervention and a robot initiative and may include multiple levels with at least a teleoperation mode configured to maximize the operator intervention and minimize the robot initiative and an autonomous mode configured to minimize the operator intervention and maximize the robot initiative. Within the RIK at least the cognitive level includes the dynamic autonomy structure.

  7. Growth and characterization of nonlinear optical single crystals: bis ...

    Indian Academy of Sciences (India)

    methoxy benzoate (C4MB) single crystals were successfully grown by the slow evaporation solution growth technique. The harvested crystals were subjected to single-crystal X-ray diffraction, spectral, optical, thermal and mechanical studies in ...

  8. Mixture Density Mercer Kernels: A Method to Learn Kernels

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper presents a method of generating Mercer Kernels from an ensemble of probabilistic mixture models, where each mixture model is generated from a Bayesian...

  9. Systematic approach in optimizing numerical memory-bound kernels on GPU

    KAUST Repository

    Abdelfattah, Ahmad

    2013-01-01

    The use of GPUs has been very beneficial in accelerating dense linear algebra computational kernels (DLA). Many high performance numerical libraries like CUBLAS, MAGMA, and CULA provide BLAS and LAPACK implementations on GPUs as well as hybrid computations involving both, CPUs and GPUs. GPUs usually score better performance than CPUs for compute-bound operations, especially those characterized by a regular data access pattern. This paper highlights a systematic approach for efficiently implementing memory-bound DLA kernels on GPUs, by taking advantage of the underlying device\\'s architecture (e.g., high throughput). This methodology proved to outperform existing state-of-the-art GPU implementations for the symmetric matrix-vector multiplication (SYMV), characterized by an irregular data access pattern, in a recent work (Abdelfattah et. al, VECPAR 2012). We propose to extend this methodology to the general matrix-vector multiplication (GEMV) kernel. The performance results show that our GEMV implementation achieves better performance for relatively small to medium matrix sizes, making it very influential in calculating the Hessenberg and bidiagonal reductions of general matrices (radar applications), which are the first step toward computing eigenvalues and singular values, respectively. Considering small and medium size matrices (≤4500), our GEMV kernel achieves an average 60% improvement in single precision (SP) and an average 25% in double precision (DP) over existing open-source and commercial software solutions. These results improve reduction algorithms for both small and large matrices. The improved GEMV performances engender an averge 30% (SP) and 15% (DP) in Hessenberg reduction and up to 25% (SP) and 14% (DP) improvement for the bidiagonal reduction over the implementation provided by CUBLAS 5.0. © 2013 Springer-Verlag.

  10. Signaling in Early Maize Kernel Development.

    Science.gov (United States)

    Doll, Nicolas M; Depège-Fargeix, Nathalie; Rogowsky, Peter M; Widiez, Thomas

    2017-03-06

    Developing the next plant generation within the seed requires the coordination of complex programs driving pattern formation, growth, and differentiation of the three main seed compartments: the embryo (future plant), the endosperm (storage compartment), representing the two filial tissues, and the surrounding maternal tissues. This review focuses on the signaling pathways and molecular players involved in early maize kernel development. In the 2 weeks following pollination, functional tissues are shaped from single cells, readying the kernel for filling with storage compounds. Although the overall picture of the signaling pathways regulating embryo and endosperm development remains fragmentary, several types of molecular actors, such as hormones, sugars, or peptides, have been shown to be involved in particular aspects of these developmental processes. These molecular actors are likely to be components of signaling pathways that lead to transcriptional programming mediated by transcriptional factors. Through the integrated action of these components, multiple types of information received by cells or tissues lead to the correct differentiation and patterning of kernel compartments. In this review, recent advances regarding the four types of molecular actors (hormones, sugars, peptides/receptors, and transcription factors) involved in early maize development are presented. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  11. Unsupervised multiple kernel learning for heterogeneous data integration.

    Science.gov (United States)

    Mariette, Jérôme; Villa-Vialaneix, Nathalie

    2018-03-15

    Recent high-throughput sequencing advances have expanded the breadth of available omics datasets and the integrated analysis of multiple datasets obtained on the same samples has allowed to gain important insights in a wide range of applications. However, the integration of various sources of information remains a challenge for systems biology since produced datasets are often of heterogeneous types, with the need of developing generic methods to take their different specificities into account. We propose a multiple kernel framework that allows to integrate multiple datasets of various types into a single exploratory analysis. Several solutions are provided to learn either a consensus meta-kernel or a meta-kernel that preserves the original topology of the datasets. We applied our framework to analyse two public multi-omics datasets. First, the multiple metagenomic datasets, collected during the TARA Oceans expedition, was explored to demonstrate that our method is able to retrieve previous findings in a single kernel PCA as well as to provide a new image of the sample structures when a larger number of datasets are included in the analysis. To perform this analysis, a generic procedure is also proposed to improve the interpretability of the kernel PCA in regards with the original data. Second, the multi-omics breast cancer datasets, provided by The Cancer Genome Atlas, is analysed using a kernel Self-Organizing Maps with both single and multi-omics strategies. The comparison of these two approaches demonstrates the benefit of our integration method to improve the representation of the studied biological system. Proposed methods are available in the R package mixKernel, released on CRAN. It is fully compatible with the mixOmics package and a tutorial describing the approach can be found on mixOmics web site http://mixomics.org/mixkernel/. jerome.mariette@inra.fr or nathalie.villa-vialaneix@inra.fr. Supplementary data are available at Bioinformatics online.

  12. Multiple kernel learning for dimensionality reduction.

    Science.gov (United States)

    Lin, Yen-Yu; Liu, Tyng-Luh; Fuh, Chiou-Shann

    2011-06-01

    In solving complex visual learning tasks, adopting multiple descriptors to more precisely characterize the data has been a feasible way for improving performance. The resulting data representations are typically high-dimensional and assume diverse forms. Hence, finding a way of transforming them into a unified space of lower dimension generally facilitates the underlying tasks such as object recognition or clustering. To this end, the proposed approach (termed MKL-DR) generalizes the framework of multiple kernel learning for dimensionality reduction, and distinguishes itself with the following three main contributions: first, our method provides the convenience of using diverse image descriptors to describe useful characteristics of various aspects about the underlying data. Second, it extends a broad set of existing dimensionality reduction techniques to consider multiple kernel learning, and consequently improves their effectiveness. Third, by focusing on the techniques pertaining to dimensionality reduction, the formulation introduces a new class of applications with the multiple kernel learning framework to address not only the supervised learning problems but also the unsupervised and semi-supervised ones.

  13. Kernel parameter dependence in spatial factor analysis

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg

    2010-01-01

    kernel PCA. Shawe-Taylor and Cristianini [4] is an excellent reference for kernel methods in general. Bishop [5] and Press et al. [6] describe kernel methods among many other subjects. The kernel version of PCA handles nonlinearities by implicitly transforming data into high (even infinite) dimensional...

  14. Proteome analysis of the almond kernel (Prunus dulcis).

    Science.gov (United States)

    Li, Shugang; Geng, Fang; Wang, Ping; Lu, Jiankang; Ma, Meihu

    2016-08-01

    Almond (Prunus dulcis) is a popular tree nut worldwide and offers many benefits to human health. However, the importance of almond kernel proteins in the nutrition and function in human health requires further evaluation. The present study presents a systematic evaluation of the proteins in the almond kernel using proteomic analysis. The nutrient and amino acid content in almond kernels from Xinjiang is similar to that of American varieties; however, Xinjiang varieties have a higher protein content. Two-dimensional electrophoresis analysis demonstrated a wide distribution of molecular weights and isoelectric points of almond kernel proteins. A total of 434 proteins were identified by LC-MS/MS, and most were proteins that were experimentally confirmed for the first time. Gene ontology (GO) analysis of the 434 proteins indicated that proteins involved in primary biological processes including metabolic processes (67.5%), cellular processes (54.1%), and single-organism processes (43.4%), the main molecular function of almond kernel proteins are in catalytic activity (48.0%), binding (45.4%) and structural molecule activity (11.9%), and proteins are primarily distributed in cell (59.9%), organelle (44.9%), and membrane (22.8%). Almond kernel is a source of a wide variety of proteins. This study provides important information contributing to the screening and identification of almond proteins, the understanding of almond protein function, and the development of almond protein products. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  15. Heat kernels and critical limits

    OpenAIRE

    Pickrell, Doug

    2007-01-01

    This paper is an exposition of several questions linking heat kernel measures on infinite dimensional Lie groups, limits associated with critical Sobolev exponents, and Feynmann-Kac measures for sigma models.

  16. Multineuron spike train analysis with R-convolution linear combination kernel.

    Science.gov (United States)

    Tezuka, Taro

    2018-06-01

    A spike train kernel provides an effective way of decoding information represented by a spike train. Some spike train kernels have been extended to multineuron spike trains, which are simultaneously recorded spike trains obtained from multiple neurons. However, most of these multineuron extensions were carried out in a kernel-specific manner. In this paper, a general framework is proposed for extending any single-neuron spike train kernel to multineuron spike trains, based on the R-convolution kernel. Special subclasses of the proposed R-convolution linear combination kernel are explored. These subclasses have a smaller number of parameters and make optimization tractable when the size of data is limited. The proposed kernel was evaluated using Gaussian process regression for multineuron spike trains recorded from an animal brain. It was compared with the sum kernel and the population Spikernel, which are existing ways of decoding multineuron spike trains using kernels. The results showed that the proposed approach performs better than these kernels and also other commonly used neural decoding methods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Characterization of the nonclassical nature of conditionally prepared single photons

    International Nuclear Information System (INIS)

    U'Ren, Alfred B.; Silberhorn, Christine; Ball, Jonathan L.; Banaszek, Konrad; Walmsley, Ian A.

    2005-01-01

    A reliable single photon source is a prerequisite for linear optical quantum computation and for secure quantum key distribution. A criterion yielding a conclusive test of the single photon character of a given source, attainable with realistic detectors, is therefore highly desirable. In the context of heralded single photon sources, such a criterion should be sensitive to the effects of higher photon number contributions, and to vacuum introduced through optical losses, which tend to degrade source performance. In this Rapid Communication we present, theoretically and experimentally, a criterion meeting the above requirements

  18. Option Valuation with Volatility Components, Fat Tails, and Non-Monotonic Pricing Kernels

    DEFF Research Database (Denmark)

    Babaoglu, Kadir; Christoffersen, Peter; Heston, Steven L.

    We nest multiple volatility components, fat tails and a U-shaped pricing kernel in a single option model and compare their contribution to describing returns and option data. All three features lead to statistically significant model improvements. A U-shaped pricing kernel is economically most im...

  19. Growth and characterization of nonlinear optical single crystals: bis ...

    Indian Academy of Sciences (India)

    Administrator

    Organic compound; growth from solution; characterization; nonlinear optical materials. 1. Introduction. Organic nonlinear optical (NLO) materials have attracted much attention due to their potential applications in telecommunication, optical switching, optical frequency conversion, THz generation, electro-optical and inte-.

  20. Characterization of MnO4-/KBr Single Crystal

    International Nuclear Information System (INIS)

    Win Kyaw; Win Zaw; Thein Soe; Pho Kaung; Sein Htoon

    2006-06-01

    Manually operated X- ray diffractometer (Tel-X-Ometer 580) was upgraded successfully into the Personal Computer (PC) based instrument. Utilizing this together with Fourier Transform Infrared (FTIR) Spectrophotometer investigates the effect of doping Permanganate, MnO4- , ions into Potassium Bromide, KBr, single crystal. XRD spectra of the pure KBr single crystal and the MnO4 doped KBr (MnO4- / KBr) single crystal are found to be similar irrespective of the dopant MnO4- ion. The IR spectrum, however, confirms the existence of MnO4- matrix isolated in KBr. The high intensity of the resonance Raman transitions is employed to examine the dopants in substrate which are present in such low abundances that conventional Raman Spectroscopy cannot detect

  1. Kernel versions of some orthogonal transformations

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg

    Kernel versions of orthogonal transformations such as principal components are based on a dual formulation also termed Q-mode analysis in which the data enter into the analysis via inner products in the Gram matrix only. In the kernel version the inner products of the original data are replaced...... by inner products between nonlinear mappings into higher dimensional feature space. Via kernel substitution also known as the kernel trick these inner products between the mappings are in turn replaced by a kernel function and all quantities needed in the analysis are expressed in terms of this kernel...... function. This means that we need not know the nonlinear mappings explicitly. Kernel principal component analysis (PCA) and kernel minimum noise fraction (MNF) analyses handle nonlinearities by implicitly transforming data into high (even infinite) dimensional feature space via the kernel function...

  2. A method for manufacturing kernels of metallic oxides and the thus obtained kernels

    International Nuclear Information System (INIS)

    Lelievre Bernard; Feugier, Andre.

    1973-01-01

    A method is described for manufacturing fissile or fertile metal oxide kernels, consisting in adding at least a chemical compound capable of releasing ammonia to an aqueous solution of actinide nitrates dispersing the thus obtained solution dropwise in a hot organic phase so as to gelify the drops and transform them into solid particles, washing drying and treating said particles so as to transform them into oxide kernels. Such a method is characterized in that the organic phase used in the gel-forming reactions comprises a mixture of two organic liquids, one of which acts as a solvent, whereas the other is a product capable of extracting the metal-salt anions from the drops while the gel forming reaction is taking place. This can be applied to the so-called high temperature nuclear reactors [fr

  3. Growth and Characterization on PMN-PT-Based Single Crystals

    Directory of Open Access Journals (Sweden)

    Jian Tian

    2014-07-01

    Full Text Available Lead magnesium niobate—lead titanate (PMN-PT single crystals have been successfully commercialized in medical ultrasound imaging. The superior properties of PMN-PT crystals over the legacy piezoelectric ceramics lead zirconate titanate (PZT enabled ultrasound transducers with enhanced imaging (broad bandwidth and improved sensitivity. To obtain high quality and relatively low cost single crystals for commercial production, PMN-PT single crystals were grown with modified Bridgman method, by which crystals were grown directly from stoichiometric melt without flux. For ultrasound imaging application, [001] crystal growth is essential to provide uniform composition and property within a crystal plate, which is critical for transducer performance. In addition, improvement in crystal growth technique is under development with the goals of improving the composition homogeneity along crystal growth direction and reducing unit cost of crystals. In recent years, PIN-PMN-PT single crystals have been developed with higher de-poling temperature and coercive field to provide improved thermal and electrical stability for transducer application.

  4. Spermometer: electrical characterization of single boar sperm motility

    NARCIS (Netherlands)

    de Wagenaar, B.; Geijs, Daan J.; de Boer, Hans L.; Bomer, Johan G.; Olthuis, Wouter; van den Berg, Albert; Segerink, Loes Irene

    2016-01-01

    Objective: To study single sperm boar motility using electrical impedance measurements in a microfluidic system. Design: Comparison of the optical data and electrical impedance data. Setting: Research laboratory at a university. Animal(s): Boar semen sample were used. Intervention(s): A microfluidic

  5. Integral equations with contrasting kernels

    Directory of Open Access Journals (Sweden)

    Theodore Burton

    2008-01-01

    Full Text Available In this paper we study integral equations of the form $x(t=a(t-\\int^t_0 C(t,sx(sds$ with sharply contrasting kernels typified by $C^*(t,s=\\ln (e+(t-s$ and $D^*(t,s=[1+(t-s]^{-1}$. The kernel assigns a weight to $x(s$ and these kernels have exactly opposite effects of weighting. Each type is well represented in the literature. Our first project is to show that for $a\\in L^2[0,\\infty$, then solutions are largely indistinguishable regardless of which kernel is used. This is a surprise and it leads us to study the essential differences. In fact, those differences become large as the magnitude of $a(t$ increases. The form of the kernel alone projects necessary conditions concerning the magnitude of $a(t$ which could result in bounded solutions. Thus, the next project is to determine how close we can come to proving that the necessary conditions are also sufficient. The third project is to show that solutions will be bounded for given conditions on $C$ regardless of whether $a$ is chosen large or small; this is important in real-world problems since we would like to have $a(t$ as the sum of a bounded, but badly behaved function, and a large well behaved function.

  6. Kernel-based machine learning techniques for infrasound signal classification

    Science.gov (United States)

    Tuma, Matthias; Igel, Christian; Mialle, Pierrick

    2014-05-01

    Infrasound monitoring is one of four remote sensing technologies continuously employed by the CTBTO Preparatory Commission. The CTBTO's infrasound network is designed to monitor the Earth for potential evidence of atmospheric or shallow underground nuclear explosions. Upon completion, it will comprise 60 infrasound array stations distributed around the globe, of which 47 were certified in January 2014. Three stages can be identified in CTBTO infrasound data processing: automated processing at the level of single array stations, automated processing at the level of the overall global network, and interactive review by human analysts. At station level, the cross correlation-based PMCC algorithm is used for initial detection of coherent wavefronts. It produces estimates for trace velocity and azimuth of incoming wavefronts, as well as other descriptive features characterizing a signal. Detected arrivals are then categorized into potentially treaty-relevant versus noise-type signals by a rule-based expert system. This corresponds to a binary classification task at the level of station processing. In addition, incoming signals may be grouped according to their travel path in the atmosphere. The present work investigates automatic classification of infrasound arrivals by kernel-based pattern recognition methods. It aims to explore the potential of state-of-the-art machine learning methods vis-a-vis the current rule-based and task-tailored expert system. To this purpose, we first address the compilation of a representative, labeled reference benchmark dataset as a prerequisite for both classifier training and evaluation. Data representation is based on features extracted by the CTBTO's PMCC algorithm. As classifiers, we employ support vector machines (SVMs) in a supervised learning setting. Different SVM kernel functions are used and adapted through different hyperparameter optimization routines. The resulting performance is compared to several baseline classifiers. All

  7. Model selection for Gaussian kernel PCA denoising

    DEFF Research Database (Denmark)

    Jørgensen, Kasper Winther; Hansen, Lars Kai

    2012-01-01

    We propose kernel Parallel Analysis (kPA) for automatic kernel scale and model order selection in Gaussian kernel PCA. Parallel Analysis [1] is based on a permutation test for covariance and has previously been applied for model order selection in linear PCA, we here augment the procedure to also...... tune the Gaussian kernel scale of radial basis function based kernel PCA.We evaluate kPA for denoising of simulated data and the US Postal data set of handwritten digits. We find that kPA outperforms other heuristics to choose the model order and kernel scale in terms of signal-to-noise ratio (SNR...

  8. Kernel learning algorithms for face recognition

    CERN Document Server

    Li, Jun-Bao; Pan, Jeng-Shyang

    2013-01-01

    Kernel Learning Algorithms for Face Recognition covers the framework of kernel based face recognition. This book discusses the advanced kernel learning algorithms and its application on face recognition. This book also focuses on the theoretical deviation, the system framework and experiments involving kernel based face recognition. Included within are algorithms of kernel based face recognition, and also the feasibility of the kernel based face recognition method. This book provides researchers in pattern recognition and machine learning area with advanced face recognition methods and its new

  9. Single Crystals of Organolead Halide Perovskites: Growth, Characterization, and Applications

    KAUST Repository

    Peng, Wei

    2017-04-01

    With the soaring advancement of organolead halide perovskite solar cells rising from a power conversion efficiency of merely 3% to more than 22% shortly in five years, researchers’ interests on this big material family have been greatly spurred. So far, both in-depth studies on the fundamental properties of organolead halide perovskites and their extended applications such as photodetectors, light emitting diodes, and lasing have been intensively reported. The great successes have been ascribed to various superior properties of organolead halide hybrid perovskites such as long carrier lifetimes, high carrier mobility, and solution-processable high quality thin films, as will be discussed in Chapter 1. Notably, most of these studies have been limited to their polycrystalline thin films. Single crystals, as a counter form of polycrystals, have no grain boundaries and higher crystallinity, and thus less defects. These characteristics gift single crystals with superior optical, electrical, and mechanical properties, which will be discussed in Chapter 2. For example, organolead halide perovskite single crystals have been reported with much longer carrier lifetimes and higher carrier mobilities, which are especially intriguing for optoelectronic applications. Besides their superior optoelectronic properties, organolead halide perovskites have shown large composition versatility, especially their organic components, which can be controlled to effectively adjust their crystal structures and further fundamental properties. Single crystals are an ideal platform for such composition-structure-property study since a uniform structure with homogeneous compositions and without distraction from grain boundaries as well as excess defects can provide unambiguously information of material properties. As a major part of work of this dissertation, explorative work on the composition-structure-property study of organic-cation-alloyed organolead halide perovskites using their single

  10. Batched Triangular Dense Linear Algebra Kernels for Very Small Matrix Sizes on GPUs

    KAUST Repository

    Charara, Ali

    2017-03-06

    Batched dense linear algebra kernels are becoming ubiquitous in scientific applications, ranging from tensor contractions in deep learning to data compression in hierarchical low-rank matrix approximation. Within a single API call, these kernels are capable of simultaneously launching up to thousands of similar matrix computations, removing the expensive overhead of multiple API calls while increasing the occupancy of the underlying hardware. A challenge is that for the existing hardware landscape (x86, GPUs, etc.), only a subset of the required batched operations is implemented by the vendors, with limited support for very small problem sizes. We describe the design and performance of a new class of batched triangular dense linear algebra kernels on very small data sizes using single and multiple GPUs. By deploying two-sided recursive formulations, stressing the register usage, maintaining data locality, reducing threads synchronization and fusing successive kernel calls, the new batched kernels outperform existing state-of-the-art implementations.

  11. Characterizing single-molecule FRET dynamics with probability distribution analysis.

    Science.gov (United States)

    Santoso, Yusdi; Torella, Joseph P; Kapanidis, Achillefs N

    2010-07-12

    Probability distribution analysis (PDA) is a recently developed statistical tool for predicting the shapes of single-molecule fluorescence resonance energy transfer (smFRET) histograms, which allows the identification of single or multiple static molecular species within a single histogram. We used a generalized PDA method to predict the shapes of FRET histograms for molecules interconverting dynamically between multiple states. This method is tested on a series of model systems, including both static DNA fragments and dynamic DNA hairpins. By fitting the shape of this expected distribution to experimental data, the timescale of hairpin conformational fluctuations can be recovered, in good agreement with earlier published results obtained using different techniques. This method is also applied to studying the conformational fluctuations in the unliganded Klenow fragment (KF) of Escherichia coli DNA polymerase I, which allows both confirmation of the consistency of a simple, two-state kinetic model with the observed smFRET distribution of unliganded KF and extraction of a millisecond fluctuation timescale, in good agreement with rates reported elsewhere. We expect this method to be useful in extracting rates from processes exhibiting dynamic FRET, and in hypothesis-testing models of conformational dynamics against experimental data.

  12. Characterization of Disorder in Semiconductors via Single-Photon Interferometry

    Science.gov (United States)

    Bozsoki, P.; Thomas, P.; Kira, M.; Hoyer, W.; Meier, T.; Koch, S. W.; Maschke, K.; Varga, I.; Stolz, H.

    2006-12-01

    The method of angular photonic correlations of spontaneous emission is introduced as an experimental, purely optical scheme to characterize disorder in semiconductor nanostructures. The theoretical expression for the angular correlations is derived and numerically evaluated for a model system. The results demonstrate how the proposed experimental method yields direct information about the spatial distribution of the relevant states and thus on the disorder present in the system.

  13. RTOS kernel in portable electrocardiograph

    Science.gov (United States)

    Centeno, C. A.; Voos, J. A.; Riva, G. G.; Zerbini, C.; Gonzalez, E. A.

    2011-12-01

    This paper presents the use of a Real Time Operating System (RTOS) on a portable electrocardiograph based on a microcontroller platform. All medical device digital functions are performed by the microcontroller. The electrocardiograph CPU is based on the 18F4550 microcontroller, in which an uCOS-II RTOS can be embedded. The decision associated with the kernel use is based on its benefits, the license for educational use and its intrinsic time control and peripherals management. The feasibility of its use on the electrocardiograph is evaluated based on the minimum memory requirements due to the kernel structure. The kernel's own tools were used for time estimation and evaluation of resources used by each process. After this feasibility analysis, the migration from cyclic code to a structure based on separate processes or tasks able to synchronize events is used; resulting in an electrocardiograph running on one Central Processing Unit (CPU) based on RTOS.

  14. Corruption clubs: empirical evidence from kernel density estimates

    NARCIS (Netherlands)

    Herzfeld, T.; Weiss, Ch.

    2007-01-01

    A common finding of many analytical models is the existence of multiple equilibria of corruption. Countries characterized by the same economic, social and cultural background do not necessarily experience the same levels of corruption. In this article, we use Kernel Density Estimation techniques to

  15. Semi-Supervised Kernel PCA

    DEFF Research Database (Denmark)

    Walder, Christian; Henao, Ricardo; Mørup, Morten

    We present three generalisations of Kernel Principal Components Analysis (KPCA) which incorporate knowledge of the class labels of a subset of the data points. The first, MV-KPCA, penalises within class variances similar to Fisher discriminant analysis. The second, LSKPCA is a hybrid of least squ...... squares regression and kernel PCA. The final LR-KPCA is an iteratively reweighted version of the previous which achieves a sigmoid loss function on the labeled points. We provide a theoretical risk bound as well as illustrative experiments on real and toy data sets....

  16. Microstructural characterization of single-crystalline potassium hollandite nanowires

    International Nuclear Information System (INIS)

    Xu, C.Y.; Zhen, L.; Zhang, Q.; Tang, J.; Qin, L.-C.

    2008-01-01

    Single-crystalline potassium hollandite KTi 8 O 16.5 nanowires were synthesized by the molten salt method at 800 deg. C. Scanning electron microscopy observation shows that the nanowires are with octagonal cross-sections, and combined analyses of transmission electron microscopy and the electron diffraction results show that the terminated planes are angled 90 or 60 degrees to the growth direction, [001] crystallography direction. Ordering of the potassium cations in the tunnels was revealed by electron diffraction. The mechanism of one-dimensional growth of the nanowires was attributed to the oriented attachment mechanism

  17. Growth and Characterization of Tl2S Single Crystals

    Science.gov (United States)

    Gamal, G. A.; Zied, M. Abou; Gerges, M. K.; Galal, E. M.

    2003-09-01

    Single crystals of the Tl2S compound were grown for the first time in our laboratory by a new crystal growth technique based on a modification of the traveling heater method technique (THM). This growth was performed in our laboratory. Electrical conductivity, Hall effect and thermoelectric power (TEP) measurements were carried out in the temperature range (200-575 K). Throughout these measurements, various physical parameters such as effective mass of charge carriers, carrier mobility, diffusion length, diffusion coefficient, and the relaxation time for both majority and minority carriers were found. In conjunction with electrical conductivity and charge carrier concentration, thermoelectric power is discussed.

  18. Metabolisable energy values of whole palm kernel and palm kernel ...

    African Journals Online (AJOL)

    4.12 Kcal/kg DM. 4.36 and 4.13 Kcal/kg DM, respectively were the corresponding values for broiler chickens. No interaction between ingredients and birds was found but there were interactions among the bioavailable energy systems and the bird types. Keywords: Metabolisable energy, palm kernel layers, broilers.

  19. Spine labeling in axial magnetic resonance imaging via integral kernels.

    Science.gov (United States)

    Miles, Brandon; Ben Ayed, Ismail; Hojjat, Seyed-Parsa; Wang, Michael H; Li, Shuo; Fenster, Aaron; Garvin, Gregory J

    2016-12-01

    This study investigates a fast integral-kernel algorithm for classifying (labeling) the vertebra and disc structures in axial magnetic resonance images (MRI). The method is based on a hierarchy of feature levels, where pixel classifications via non-linear probability product kernels (PPKs) are followed by classifications of 2D slices, individual 3D structures and groups of 3D structures. The algorithm further embeds geometric priors based on anatomical measurements of the spine. Our classifier requires evaluations of computationally expensive integrals at each pixel, and direct evaluations of such integrals would be prohibitively time consuming. We propose an efficient computation of kernel density estimates and PPK evaluations for large images and arbitrary local window sizes via integral kernels. Our method requires a single user click for a whole 3D MRI volume, runs nearly in real-time, and does not require an intensive external training. Comprehensive evaluations over T1-weighted axial lumbar spine data sets from 32 patients demonstrate a competitive structure classification accuracy of 99%, along with a 2D slice classification accuracy of 88%. To the best of our knowledge, such a structure classification accuracy has not been reached by the existing spine labeling algorithms. Furthermore, we believe our work is the first to use integral kernels in the context of medical images. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. New Antifouling Platform Characterized by Single-Molecule Imaging

    Science.gov (United States)

    2015-01-01

    Antifouling surfaces have been widely studied for their importance in medical devices and industry. Antifouling surfaces mostly achieved by methoxy-poly(ethylene glycol) (mPEG) have shown biomolecular adsorption less than 1 ng/cm2 which was measured by surface analytical tools such as surface plasmon resonance (SPR) spectroscopy, quartz crystal microbalance (QCM), or optical waveguide lightmode (OWL) spectroscopy. Herein, we utilize a single-molecule imaging technique (i.e., an ultimate resolution) to study antifouling properties of functionalized surfaces. We found that about 600 immunoglobulin G (IgG) molecules are adsorbed. This result corresponds to ∼5 pg/cm2 adsorption, which is far below amount for the detection limit of the conventional tools. Furthermore, we developed a new antifouling platform that exhibits improved antifouling performance that shows only 78 IgG molecules adsorbed (∼0.5 pg/cm2). The antifouling platform consists of forming 1 nm TiO2 thin layer, on which peptidomimetic antifouling polymer (PMAP) is robustly anchored. The unprecedented antifouling performance can potentially revolutionize a variety of research fields such as single-molecule imaging, medical devices, biosensors, and others. PMID:24503420

  1. CELLULOSE EXTRACTION FROM PALM KERNEL CAKE USING LIQUID PHASE OXIDATION

    Directory of Open Access Journals (Sweden)

    FARM YAN YAN

    2009-03-01

    Full Text Available Cellulose is widely used in many aspect and industries such as food industry, pharmaceutical, paint, polymers, and many more. Due to the increasing demand in the market, studies and work to produce cellulose are still rapidly developing. In this work, liquid phase oxidation was used to extract cellulose from palm kernel cake to separate hemicellulose, cellulose and lignin. The method is basically a two-step process. Palm kernel cake was pretreated in hot water at 180°C and followed by liquid oxidation process with 30% H2O2 at 60°C at atmospheric pressure. The process parameters are hot water treatment time, ratio of palm kernel cake to H2O2, liquid oxidation reaction temperature and time. Analysis of the process parameters on production cellulose from palm kernel cake was performed by using Response Surface Methodology. The recovered cellulose was further characterized by Fourier Transform Infrared (FTIR. Through the hot water treatment, hemicellulose in the palm kernel cake was successfully recovered as saccharides and thus leaving lignin and cellulose. Lignin was converted to water soluble compounds in liquid oxidation step which contains small molecular weight fatty acid as HCOOH and CH3COOH and almost pure cellulose was recovered.

  2. Heat kernel analysis for Bessel operators on symmetric cones

    DEFF Research Database (Denmark)

    Möllers, Jan

    2014-01-01

    . The heat kernel is explicitly given in terms of a multivariable $I$-Bessel function on $Ω$. Its corresponding heat kernel transform defines a continuous linear operator between $L^p$-spaces. The unitary image of the $L^2$-space under the heat kernel transform is characterized as a weighted Bergmann space...... on the complexification $G_{\\mathbb C}/K_{\\mathbb C}$ of $Ω$, the weight being expressed explicitly in terms of a multivariable $K$-Bessel function on $Ω$. Even in the special case of the symmetric cone $Ω=\\mathbb{R}_+$ these results seem to be new.......We investigate the heat equation corresponding to the Bessel operators on a symmetric cone $Ω=G/K$. These operators form a one-parameter family of elliptic self-adjoint second order differential operators and occur in the Lie algebra action of certain unitary highest weight representations...

  3. Mechanical characterization of cellulose single nanofiber by atomic force microscopy

    Science.gov (United States)

    Zhai, Lindong; Kim, Jeong Woong; Lee, Jiyun; Kim, Jaehwan

    2017-04-01

    Cellulose fibers are strong natural fibers and they are renewable, biodegradable and the most abundant biopolymer in the world. So to develop new cellulose fibers based products, the mechanical properties of cellulose nanofibers would be a key. The atomic microscope is used to measure the mechanical properties of cellulose nanofibers based on 3-points bending of cellulose nanofiber. The cellulose nanofibers were generated for an aqueous counter collision system. The cellulose microfibers were nanosized under 200 MPa high pressure. The cellulose nanofiber suspension was diluted with DI water and sprayed on the silicon groove substrate. By performing a nanoscale 3-points bending test using the atomic force microscopy, a known force was applied on the center of the fiber. The elastic modulus of the single nanofiber is obtained by calculating the fiber deflection and several parameters. The elastic modulus values were obtained from different resources of cellulose such as hardwood, softwood and cotton.

  4. Reducing Kernel Development Complexity in Distributed Environments

    OpenAIRE

    Lèbre , Adrien; Lottiaux , Renaud; Focht , Erich; Morin , Christine

    2008-01-01

    Setting up generic and fully transparent distributed services for clusters implies complex and tedious kernel developments. More flexible approaches such as user-space libraries are usually preferred with the drawback of requiring application recompilation. A second approach consists in using specific kernel modules (such as FUSE in Gnu/Linux system) to transfer kernel complexity into user space. In this paper, we present a new way to design and implement kernel distributed services for clust...

  5. Oops! What about a Million Kernel Oopses?

    OpenAIRE

    Guo , Lisong; Senna Tschudin , Peter; Kono , Kenji; Muller , Gilles; Lawall , Julia

    2013-01-01

    When a failure occurs in the Linux kernel, the kernel emits an "oops", summarizing the execution context of the failure. Kernel oopses describe real Linux errors, and thus can help prioritize debugging efforts and motivate the design of tools to improve the reliability of Linux code. Nevertheless, the information is only meaningful if it is representative and can be interpreted correctly. In this paper, we study a repository of kernel oopses collected over 8 months by Red Hat. We consider the...

  6. Single particle detection and characterization of synuclein co-aggregation

    International Nuclear Information System (INIS)

    Giese, Armin; Bader, Benedikt; Bieschke, Jan; Schaffar, Gregor; Odoy, Sabine; Kahle, Philipp J.; Haass, Christian; Kretzschmar, Hans

    2005-01-01

    Protein aggregation is the key event in a number of human diseases such as Alzheimer's and Parkinson's disease. We present a general method to quantify and characterize protein aggregates by dual-colour scanning for intensely fluorescent targets (SIFT). In addition to high sensitivity, this approach offers a unique opportunity to study co-aggregation processes. As the ratio of two fluorescently labelled components can be analysed for each aggregate separately in a homogeneous assay, the molecular composition of aggregates can be studied even in samples containing a mixture of different types of aggregates. Using this method, we could show that wild-type α-synuclein forms co-aggregates with a mutant variant found in familial Parkinson's disease. Moreover, we found a striking increase in aggregate formation at non-equimolar mixing ratios, which may have important therapeutic implications, as lowering the relative amount of aberrant protein may cause an increase of protein aggregation leading to adverse effects

  7. Derivative Kernels: Numerics and Applications.

    Science.gov (United States)

    Hosseini, Mahdi S; Plataniotis, Konstantinos N

    2017-10-01

    A generalized framework for numerical differentiation (ND) is proposed for constructing a finite impulse response (FIR) filter in closed form. The framework regulates the frequency response of ND filters for arbitrary derivative-order and cutoff frequency selected parameters relying on interpolating power polynomials and maximally flat design techniques. Compared with the state-of-the-art solutions, such as Gaussian kernels, the proposed ND filter is sharply localized in the Fourier domain with ripple-free artifacts. Here, we construct 2D MaxFlat kernels for image directional differentiation to calculate image differentials for arbitrary derivative order, cutoff level and steering angle. The resulted kernel library renders a new solution capable of delivering discrete approximation of gradients, Hessian, and higher-order tensors in numerous applications. We tested the utility of this library on three different imaging applications with main focus on the unsharp masking. The reported results highlight the high efficiency of the 2D MaxFlat kernel and its versatility with respect to robustness and parameter control accuracy.

  8. Veto-Consensus Multiple Kernel Learning

    NARCIS (Netherlands)

    Zhou, Y.; Hu, N.; Spanos, C.J.

    2016-01-01

    We propose Veto-Consensus Multiple Kernel Learning (VCMKL), a novel way of combining multiple kernels such that one class of samples is described by the logical intersection (consensus) of base kernelized decision rules, whereas the other classes by the union (veto) of their complements. The

  9. Paramecium: An Extensible Object-Based Kernel

    NARCIS (Netherlands)

    van Doorn, L.; Homburg, P.; Tanenbaum, A.S.

    1995-01-01

    In this paper we describe the design of an extensible kernel, called Paramecium. This kernel uses an object-based software architecture which together with instance naming, late binding and explicit overrides enables easy reconfiguration. Determining which components reside in the kernel protection

  10. GRIM : Leveraging GPUs for Kernel integrity monitoring

    NARCIS (Netherlands)

    Koromilas, Lazaros; Vasiliadis, Giorgos; Athanasopoulos, Ilias; Ioannidis, Sotiris

    2016-01-01

    Kernel rootkits can exploit an operating system and enable future accessibility and control, despite all recent advances in software protection. A promising defense mechanism against rootkits is Kernel Integrity Monitor (KIM) systems, which inspect the kernel text and data to discover any malicious

  11. Single Nucleotide Polymorphism Identification, Characterization, and Linkage Mapping in Quinoa

    Directory of Open Access Journals (Sweden)

    P. J. Maughan

    2012-11-01

    Full Text Available Quinoa ( Willd. is an important seed crop throughout the Andean region of South America. It is important as a regional food security crop for millions of impoverished rural inhabitants of the Andean Altiplano (high plains. Efforts to improve the crop have led to an increased focus on genetic research. We report the identification of 14,178 putative single nucleotide polymorphisms (SNPs using a genomic reduction protocol as well as the development of 511 functional SNP assays. The SNP assays are based on KASPar genotyping chemistry and were detected using the Fluidigm dynamic array platform. A diversity screen of 113 quinoa accessions showed that the minor allele frequency (MAF of the SNPs ranged from 0.02 to 0.50, with an average MAF of 0.28. Structure analysis of the quinoa diversity panel uncovered the two major subgroups corresponding to the Andean and coastal quinoa ecotypes. Linkage mapping of the SNPs in two recombinant inbred line populations produced an integrated linkage map consisting of 29 linkage groups with 20 large linkage groups, spanning 1404 cM with a marker density of 3.1 cM per SNP marker. The SNPs identified here represent important genomic tools needed in emerging plant breeding programs for advanced genetic analysis of agronomic traits in quinoa.

  12. Broadband Spectroscopic Thermoacoustic Characterization of Single-Walled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Daniel R. Bauer

    2015-01-01

    Full Text Available Carbon nanotubes have attracted interest as contrast agents for biomedical imaging because they strongly absorb electromagnetic radiation in the optical and microwave regions. This study applies thermoacoustic (TA imaging and spectroscopy to measure the frequency-dependent absorption profile of single-walled carbon nanotubes (SWNT in the ranges of 2.7–3.1 GHz and 7–9 GHz using two tunable microwave sources. Between 7 and 9 GHz, the peak TA signal for solutions containing semiconducting and metallic SWNTs increased monotonically with a slope of 1.75 AU/GHz (R2=0.95 and 2.8 AU/GHz (R2=0.93, respectively, relative to a water baseline. However, after compensating for the background signal from water, it was revealed that the TA signal from metallic SWNTs increased exponentially within this frequency band. Results suggest that TA imaging and spectroscopy could be a powerful tool for quantifying the absorption properties of SWNTs and optimizing their performance as contrast agents for imaging or heat sources for thermal therapy.

  13. An Extreme Learning Machine Based on the Mixed Kernel Function of Triangular Kernel and Generalized Hermite Dirichlet Kernel

    Directory of Open Access Journals (Sweden)

    Senyue Zhang

    2016-01-01

    Full Text Available According to the characteristics that the kernel function of extreme learning machine (ELM and its performance have a strong correlation, a novel extreme learning machine based on a generalized triangle Hermitian kernel function was proposed in this paper. First, the generalized triangle Hermitian kernel function was constructed by using the product of triangular kernel and generalized Hermite Dirichlet kernel, and the proposed kernel function was proved as a valid kernel function of extreme learning machine. Then, the learning methodology of the extreme learning machine based on the proposed kernel function was presented. The biggest advantage of the proposed kernel is its kernel parameter values only chosen in the natural numbers, which thus can greatly shorten the computational time of parameter optimization and retain more of its sample data structure information. Experiments were performed on a number of binary classification, multiclassification, and regression datasets from the UCI benchmark repository. The experiment results demonstrated that the robustness and generalization performance of the proposed method are outperformed compared to other extreme learning machines with different kernels. Furthermore, the learning speed of proposed method is faster than support vector machine (SVM methods.

  14. ESTs analysis in maize developing kernels exposed to single and combined water and heat stresses Análise de ESTs de espigas de milho em desenvolvimento expostas a estresse simples e combinado de água e calor

    Directory of Open Access Journals (Sweden)

    Violeta Andjelković

    2011-06-01

    Full Text Available Molecular and metabolic response of plants to a combination of two abiotic stresses is unique and cannot be directly extrapolated from the response of plants to each of the stresses individually. cDNA macroarray has become a useful tool to analyze expression profiles and compare the similarities and differences of various expression patterns. A macroarray of approximately 2,500 maize (Zea mays L. cDNAs was used for transcriptome profiling in response to single and simultaneous application of water and high temperature stress of maize developing kernels at 15 days after pollination. All stress treatments (water stress-WS, heat stress-HS and their combined application-CS induced changes in expression of 106 transcripts with 54 up-regulated and 52 down-regulated. There were 11 up-regulated and 15 down-regulated transcripts in common for all three stresses. Although these common transcripts showed existence of a mutual mechanism in stress response, the 23 transcripts induced only in CS indicate that plants responded in a different manner when exposed to simultaneous effects of both stresses. A glimpse of functions regulated under WS, HS and CS is provided, and also the common and different responses between individual and simultaneous stresses.A resposta molecular e metabólica de plantas a uma combinação de dois estresses abióticos é singular, e não pode ser diretamente extrapolada da resposta das plantas a cada um dos estresses individualmente. O macroarranjo do cDNA, tornou-se uma ferramenta útil para analisar os perfís de expressão e comparar as similaridades e diferenças de vários padrões de expressão. Um macroarranjo de 2.500 cDNAs de milho (Zea mays L. foi usado para traçar um perfil de transcriptoma em resposta ao stress ocasionado por uma única e simultânea aplicação de água e alta temperatura em espigas em desenvolvimento, 15 dias após a polinização. Todos os tratamentos de stress (stress de água - SA, stress de calor

  15. Pareto-path multitask multiple kernel learning.

    Science.gov (United States)

    Li, Cong; Georgiopoulos, Michael; Anagnostopoulos, Georgios C

    2015-01-01

    A traditional and intuitively appealing Multitask Multiple Kernel Learning (MT-MKL) method is to optimize the sum (thus, the average) of objective functions with (partially) shared kernel function, which allows information sharing among the tasks. We point out that the obtained solution corresponds to a single point on the Pareto Front (PF) of a multiobjective optimization problem, which considers the concurrent optimization of all task objectives involved in the Multitask Learning (MTL) problem. Motivated by this last observation and arguing that the former approach is heuristic, we propose a novel support vector machine MT-MKL framework that considers an implicitly defined set of conic combinations of task objectives. We show that solving our framework produces solutions along a path on the aforementioned PF and that it subsumes the optimization of the average of objective functions as a special case. Using the algorithms we derived, we demonstrate through a series of experimental results that the framework is capable of achieving a better classification performance, when compared with other similar MTL approaches.

  16. Viscozyme L pretreatment on palm kernels improved the aroma of palm kernel oil after kernel roasting.

    Science.gov (United States)

    Zhang, Wencan; Leong, Siew Mun; Zhao, Feifei; Zhao, Fangju; Yang, Tiankui; Liu, Shaoquan

    2018-05-01

    With an interest to enhance the aroma of palm kernel oil (PKO), Viscozyme L, an enzyme complex containing a wide range of carbohydrases, was applied to alter the carbohydrates in palm kernels (PK) to modulate the formation of volatiles upon kernel roasting. After Viscozyme treatment, the content of simple sugars and free amino acids in PK increased by 4.4-fold and 4.5-fold, respectively. After kernel roasting and oil extraction, significantly more 2,5-dimethylfuran, 2-[(methylthio)methyl]-furan, 1-(2-furanyl)-ethanone, 1-(2-furyl)-2-propanone, 5-methyl-2-furancarboxaldehyde and 2-acetyl-5-methylfuran but less 2-furanmethanol and 2-furanmethanol acetate were found in treated PKO; the correlation between their formation and simple sugar profile was estimated by using partial least square regression (PLS1). Obvious differences in pyrroles and Strecker aldehydes were also found between the control and treated PKOs. Principal component analysis (PCA) clearly discriminated the treated PKOs from that of control PKOs on the basis of all volatile compounds. Such changes in volatiles translated into distinct sensory attributes, whereby treated PKO was more caramelic and burnt after aqueous extraction and more nutty, roasty, caramelic and smoky after solvent extraction. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Three-Dimensional Sensitivity Kernels of Z/H Amplitude Ratios of Surface and Body Waves

    Science.gov (United States)

    Bao, X.; Shen, Y.

    2017-12-01

    The ellipticity of Rayleigh wave particle motion, or Z/H amplitude ratio, has received increasing attention in inversion for shallow Earth structures. Previous studies of the Z/H ratio assumed one-dimensional (1D) velocity structures beneath the receiver, ignoring the effects of three-dimensional (3D) heterogeneities on wave amplitudes. This simplification may introduce bias in the resulting models. Here we present 3D sensitivity kernels of the Z/H ratio to Vs, Vp, and density perturbations, based on finite-difference modeling of wave propagation in 3D structures and the scattering-integral method. Our full-wave approach overcomes two main issues in previous studies of Rayleigh wave ellipticity: (1) the finite-frequency effects of wave propagation in 3D Earth structures, and (2) isolation of the fundamental mode Rayleigh waves from Rayleigh wave overtones and converted Love waves. In contrast to the 1D depth sensitivity kernels in previous studies, our 3D sensitivity kernels exhibit patterns that vary with azimuths and distances to the receiver. The laterally-summed 3D sensitivity kernels and 1D depth sensitivity kernels, based on the same homogeneous reference model, are nearly identical with small differences that are attributable to the single period of the 1D kernels and a finite period range of the 3D kernels. We further verify the 3D sensitivity kernels by comparing the predictions from the kernels with the measurements from numerical simulations of wave propagation for models with various small-scale perturbations. We also calculate and verify the amplitude kernels for P waves. This study shows that both Rayleigh and body wave Z/H ratios provide vertical and lateral constraints on the structure near the receiver. With seismic arrays, the 3D kernels afford a powerful tool to use the Z/H ratios to obtain accurate and high-resolution Earth models.

  18. Testing Infrastructure for Operating System Kernel Development

    DEFF Research Database (Denmark)

    Walter, Maxwell; Karlsson, Sven

    2014-01-01

    Testing is an important part of system development, and to test effectively we require knowledge of the internal state of the system under test. Testing an operating system kernel is a challenge as it is the operating system that typically provides access to this internal state information. Multi......-core kernels pose an even greater challenge due to concurrency and their shared kernel state. In this paper, we present a testing framework that addresses these challenges by running the operating system in a virtual machine, and using virtual machine introspection to both communicate with the kernel...... and obtain information about the system. We have also developed an in-kernel testing API that we can use to develop a suite of unit tests in the kernel. We are using our framework for for the development of our own multi-core research kernel....

  19. Experimental and computational characterization of biological liquid crystals: a review of single-molecule bioassays.

    Science.gov (United States)

    Eom, Kilho; Yang, Jaemoon; Park, Jinsung; Yoon, Gwonchan; Soo Sohn, Young; Park, Shinsuk; Yoon, Dae Sung; Na, Sungsoo; Kwon, Taeyun

    2009-09-10

    Quantitative understanding of the mechanical behavior of biological liquid crystals such as proteins is essential for gaining insight into their biological functions, since some proteins perform notable mechanical functions. Recently, single-molecule experiments have allowed not only the quantitative characterization of the mechanical behavior of proteins such as protein unfolding mechanics, but also the exploration of the free energy landscape for protein folding. In this work, we have reviewed the current state-of-art in single-molecule bioassays that enable quantitative studies on protein unfolding mechanics and/or various molecular interactions. Specifically, single-molecule pulling experiments based on atomic force microscopy (AFM) have been overviewed. In addition, the computational simulations on single-molecule pulling experiments have been reviewed. We have also reviewed the AFM cantilever-based bioassay that provides insight into various molecular interactions. Our review highlights the AFM-based single-molecule bioassay for quantitative characterization of biological liquid crystals such as proteins.

  20. VARIABILITY OF NUMBER OF KERNELS PER SPIKE IN WHEAT CULTIVARS (Triticum aestivum L.

    Directory of Open Access Journals (Sweden)

    Desimir KNEZEVIC

    2012-09-01

    Full Text Available In this paper was analyzed number of kernels per spike in 20 genetically divergent wheat cultivars originated from different breeding centers in Serbia. Investigation conducted during two seasons which characterized different climatic condition. For analysis used samples of 60 wheat plants (20 plants in 3 replications which were harvested in full maturity stage. The differences in average values for number of kernels per spike in studied cultivars were determined. The variability of number of kernels per spike was established. In average, number of kernels per spike for all cultivars was higher in second year 72.22 than in first experimental year 68.73. The highest number of kernels/spike in both year expressed Tanjugovka cultivar and the lowest Yugoslavia cultivar. Average value of coefficientvariation for all cultivars varied from 14.19 in first year to 12.92 in second year. Average number of kernels per spike for both year of growing, varied from 54.56 in cultivar Yugoslavia to 77.83 in cultivar Tanjugovka. Significant differences for number of kernels/spike were found among cultivars in both years as well between years. Heritability in wide sense for number of kernels/spike was 79.13%.

  1. RKRD: Runtime Kernel Rootkit Detection

    Science.gov (United States)

    Grover, Satyajit; Khosravi, Hormuzd; Kolar, Divya; Moffat, Samuel; Kounavis, Michael E.

    In this paper we address the problem of protecting computer systems against stealth malware. The problem is important because the number of known types of stealth malware increases exponentially. Existing approaches have some advantages for ensuring system integrity but sophisticated techniques utilized by stealthy malware can thwart them. We propose Runtime Kernel Rootkit Detection (RKRD), a hardware-based, event-driven, secure and inclusionary approach to kernel integrity that addresses some of the limitations of the state of the art. Our solution is based on the principles of using virtualization hardware for isolation, verifying signatures coming from trusted code as opposed to malware for scalability and performing system checks driven by events. Our RKRD implementation is guided by our goals of strong isolation, no modifications to target guest OS kernels, easy deployment, minimal infra-structure impact, and minimal performance overhead. We developed a system prototype and conducted a number of experiments which show that the per-formance impact of our solution is negligible.

  2. Kernel Bayesian ART and ARTMAP.

    Science.gov (United States)

    Masuyama, Naoki; Loo, Chu Kiong; Dawood, Farhan

    2018-02-01

    Adaptive Resonance Theory (ART) is one of the successful approaches to resolving "the plasticity-stability dilemma" in neural networks, and its supervised learning model called ARTMAP is a powerful tool for classification. Among several improvements, such as Fuzzy or Gaussian based models, the state of art model is Bayesian based one, while solving the drawbacks of others. However, it is known that the Bayesian approach for the high dimensional and a large number of data requires high computational cost, and the covariance matrix in likelihood becomes unstable. This paper introduces Kernel Bayesian ART (KBA) and ARTMAP (KBAM) by integrating Kernel Bayes' Rule (KBR) and Correntropy Induced Metric (CIM) to Bayesian ART (BA) and ARTMAP (BAM), respectively, while maintaining the properties of BA and BAM. The kernel frameworks in KBA and KBAM are able to avoid the curse of dimensionality. In addition, the covariance-free Bayesian computation by KBR provides the efficient and stable computational capability to KBA and KBAM. Furthermore, Correntropy-based similarity measurement allows improving the noise reduction ability even in the high dimensional space. The simulation experiments show that KBA performs an outstanding self-organizing capability than BA, and KBAM provides the superior classification ability than BAM, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Nonlinear Deep Kernel Learning for Image Annotation.

    Science.gov (United States)

    Jiu, Mingyuan; Sahbi, Hichem

    2017-02-08

    Multiple kernel learning (MKL) is a widely used technique for kernel design. Its principle consists in learning, for a given support vector classifier, the most suitable convex (or sparse) linear combination of standard elementary kernels. However, these combinations are shallow and often powerless to capture the actual similarity between highly semantic data, especially for challenging classification tasks such as image annotation. In this paper, we redefine multiple kernels using deep multi-layer networks. In this new contribution, a deep multiple kernel is recursively defined as a multi-layered combination of nonlinear activation functions, each one involves a combination of several elementary or intermediate kernels, and results into a positive semi-definite deep kernel. We propose four different frameworks in order to learn the weights of these networks: supervised, unsupervised, kernel-based semisupervised and Laplacian-based semi-supervised. When plugged into support vector machines (SVMs), the resulting deep kernel networks show clear gain, compared to several shallow kernels for the task of image annotation. Extensive experiments and analysis on the challenging ImageCLEF photo annotation benchmark, the COREL5k database and the Banana dataset validate the effectiveness of the proposed method.

  4. A framework for dense triangular matrix kernels on various manycore architectures

    KAUST Repository

    Charara, Ali

    2017-06-06

    We present a new high-performance framework for dense triangular Basic Linear Algebra Subroutines (BLAS) kernels, ie, triangular matrix-matrix multiplication (TRMM) and triangular solve (TRSM), on various manycore architectures. This is an extension of a previous work on a single GPU by the same authors, presented at the EuroPar\\'16 conference, in which we demonstrated the effectiveness of recursive formulations in enhancing the performance of these kernels. In this paper, the performance of triangular BLAS kernels on a single GPU is further enhanced by implementing customized in-place CUDA kernels for TRMM and TRSM, which are called at the bottom of the recursion. In addition, a multi-GPU implementation of TRMM and TRSM is proposed and we show an almost linear performance scaling, as the number of GPUs increases. Finally, the algorithmic recursive formulation of these triangular BLAS kernels is in fact oblivious to the targeted hardware architecture. We, therefore, port these recursive kernels to homogeneous x86 hardware architectures by relying on the vendor optimized BLAS implementations. Results reported on various hardware architectures highlight a significant performance improvement against state-of-the-art implementations. These new kernels are freely available in the KAUST BLAS (KBLAS) open-source library at https://github.com/ecrc/kblas.

  5. A Heterogeneous Multi-core Architecture with a Hardware Kernel for Control Systems

    DEFF Research Database (Denmark)

    Li, Gang; Guan, Wei; Sierszecki, Krzysztof

    2012-01-01

    Rapid industrialisation has resulted in a demand for improved embedded control systems with features such as predictability, high processing performance and low power consumption. Software kernel implementation on a single processor is becoming more difficult to satisfy those constraints. This pa......Rapid industrialisation has resulted in a demand for improved embedded control systems with features such as predictability, high processing performance and low power consumption. Software kernel implementation on a single processor is becoming more difficult to satisfy those constraints......). Second, a heterogeneous multi-core architecture is investigated, focusing on its performance in relation to hard real-time constraints and predictable behavior. Third, the hardware implementation of HARTEX is designated to support the heterogeneous multi-core architecture. This hardware kernel has...... several advantages over a similar kernel implemented in software: higher-speed processing capability, parallel computation, and separation between the kernel itself and the applications being run. A microbenchmark has been used to compare the hardware kernel with the software kernel, and compare...

  6. Detection and characterization of chemical aerosol using laser-trapping single-particle Raman spectroscopy.

    Science.gov (United States)

    Kalume, Aimable; Beresnev, Leonid A; Santarpia, Joshua; Pan, Yong-Le

    2017-08-10

    Detection and characterization of the presence of chemical agent aerosols in various complex atmospheric environments is an essential defense mission. Raman spectroscopy has the ability to identify chemical molecules, but there are limited numbers of photons detectable from single airborne aerosol particles as they are flowing through a detection system. In this paper, we report on a single-particle Raman spectrometer system that can measure strong spontaneous, stimulated, and resonance Raman spectral peaks from a single laser-trapped chemical aerosol particle, such as a droplet of the VX nerve agent chemical simulant diethyl phthalate. Using this system, time-resolved Raman spectra and elastic scattered intensities were recorded to monitor the chemical properties and size variation of the trapped particle. Such a system supplies a new approach for the detection and characterization of single airborne chemical aerosol particles.

  7. Superconducting Qubit with Integrated Single Flux Quantum Controller Part II: Experimental Characterization

    Science.gov (United States)

    Leonard, Edward, Jr.; Beck, Matthew; Thorbeck, Ted; Zhu, Shaojiang; Howington, Caleb; Nelson, Jj; Plourde, Britton; McDermott, Robert

    We describe the characterization of a single flux quantum (SFQ) pulse generator cofabricated with a superconducting quantum circuit on a single chip. Resonant trains of SFQ pulses are used to induce coherent qubit rotations on the Bloch sphere. We describe the SFQ drive characteristics of the qubit at the fundamental transition frequency and at subharmonics (ω01 / n , n = 2 , 3 , 4 , ⋯). We address the issue of quasiparticle poisoning due to the proximal SFQ pulse generator, and we characterize the fidelity of SFQ-based rotations using randomized benchmarking. Present address: IBM T.J. Watson Research Center.

  8. Optimizing Multiple Kernel Learning for the Classification of UAV Data

    Directory of Open Access Journals (Sweden)

    Caroline M. Gevaert

    2016-12-01

    Full Text Available Unmanned Aerial Vehicles (UAVs are capable of providing high-quality orthoimagery and 3D information in the form of point clouds at a relatively low cost. Their increasing popularity stresses the necessity of understanding which algorithms are especially suited for processing the data obtained from UAVs. The features that are extracted from the point cloud and imagery have different statistical characteristics and can be considered as heterogeneous, which motivates the use of Multiple Kernel Learning (MKL for classification problems. In this paper, we illustrate the utility of applying MKL for the classification of heterogeneous features obtained from UAV data through a case study of an informal settlement in Kigali, Rwanda. Results indicate that MKL can achieve a classification accuracy of 90.6%, a 5.2% increase over a standard single-kernel Support Vector Machine (SVM. A comparison of seven MKL methods indicates that linearly-weighted kernel combinations based on simple heuristics are competitive with respect to computationally-complex, non-linear kernel combination methods. We further underline the importance of utilizing appropriate feature grouping strategies for MKL, which has not been directly addressed in the literature, and we propose a novel, automated feature grouping method that achieves a high classification accuracy for various MKL methods.

  9. Matrix kernels for MEG and EEG source localization and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mosher, J.C.; Lewis, P.S. [Los Alamos National Lab., NM (United States); Leahy, R.M. [University of Southern California, Los Angeles, CA (United States)

    1994-12-31

    The most widely used model for electroencephalography (EEG) and magnetoencephalography (MEG) assumes a quasi-static approximation of Maxwell`s equations and a piecewise homogeneous conductor model. Both models contain an incremental field element that linearly relates an incremental source element (current dipole) to the field or voltage at a distant point. The explicit form of the field element is dependent on the head modeling assumptions and sensor configuration. Proper characterization of this incremental element is crucial to the inverse problem. The field element can be partitioned into the product of a vector dependent on sensor characteristics and a matrix kernel dependent only on head modeling assumptions. We present here the matrix kernels for the general boundary element model (BEM) and for MEG spherical models. We show how these kernels are easily interchanged in a linear algebraic framework that includes sensor specifics such as orientation and gradiometer configuration. We then describe how this kernel is easily applied to ``gain`` or ``transfer`` matrices used in multiple dipole and source imaging models.

  10. Matrix kernels for MEG and EEG source localization and imaging

    International Nuclear Information System (INIS)

    Mosher, J.C.; Lewis, P.S.; Leahy, R.M.

    1994-01-01

    The most widely used model for electroencephalography (EEG) and magnetoencephalography (MEG) assumes a quasi-static approximation of Maxwell's equations and a piecewise homogeneous conductor model. Both models contain an incremental field element that linearly relates an incremental source element (current dipole) to the field or voltage at a distant point. The explicit form of the field element is dependent on the head modeling assumptions and sensor configuration. Proper characterization of this incremental element is crucial to the inverse problem. The field element can be partitioned into the product of a vector dependent on sensor characteristics and a matrix kernel dependent only on head modeling assumptions. We present here the matrix kernels for the general boundary element model (BEM) and for MEG spherical models. We show how these kernels are easily interchanged in a linear algebraic framework that includes sensor specifics such as orientation and gradiometer configuration. We then describe how this kernel is easily applied to ''gain'' or ''transfer'' matrices used in multiple dipole and source imaging models

  11. Theory of reproducing kernels and applications

    CERN Document Server

    Saitoh, Saburou

    2016-01-01

    This book provides a large extension of the general theory of reproducing kernels published by N. Aronszajn in 1950, with many concrete applications. In Chapter 1, many concrete reproducing kernels are first introduced with detailed information. Chapter 2 presents a general and global theory of reproducing kernels with basic applications in a self-contained way. Many fundamental operations among reproducing kernel Hilbert spaces are dealt with. Chapter 2 is the heart of this book. Chapter 3 is devoted to the Tikhonov regularization using the theory of reproducing kernels with applications to numerical and practical solutions of bounded linear operator equations. In Chapter 4, the numerical real inversion formulas of the Laplace transform are presented by applying the Tikhonov regularization, where the reproducing kernels play a key role in the results. Chapter 5 deals with ordinary differential equations; Chapter 6 includes many concrete results for various fundamental partial differential equations. In Chapt...

  12. kFOIL: Learning simple relational kernels

    OpenAIRE

    Landwehr, Niels; Passerini, Andrea; De Raedt, Luc; Frasconi, Paolo

    2006-01-01

    A novel and simple combination of inductive logic programming with kernel methods is presented. The kFOIL algorithm integrates the well-known inductive logic programming system FOIL with kernel methods. The feature space is constructed by leveraging FOIL search for a set of relevant clauses. The search is driven by the performance obtained by a support vector machine based on the resulting kernel. In this way, kFOIL implements a dynamic propositionalization approach. Both classification an...

  13. Convergence of barycentric coordinates to barycentric kernels

    KAUST Repository

    Kosinka, Jiří

    2016-02-12

    We investigate the close correspondence between barycentric coordinates and barycentric kernels from the point of view of the limit process when finer and finer polygons converge to a smooth convex domain. We show that any barycentric kernel is the limit of a set of barycentric coordinates and prove that the convergence rate is quadratic. Our convergence analysis extends naturally to barycentric interpolants and mappings induced by barycentric coordinates and kernels. We verify our theoretical convergence results numerically on several examples.

  14. Characterizing rapid-onset vasodilation to single muscle contractions in the human leg

    Science.gov (United States)

    Credeur, Daniel P.; Holwerda, Seth W.; Restaino, Robert M.; King, Phillip M.; Crutcher, Kiera L.; Laughlin, M. Harold; Padilla, Jaume

    2014-01-01

    Rapid-onset vasodilation (ROV) following single muscle contractions has been examined in the forearm of humans, but has not yet been characterized in the leg. Given known vascular differences between the arm and leg, we sought to characterize ROV following single muscle contractions in the leg. Sixteen healthy men performed random ordered single contractions at 5, 10, 20, 40, and 60% of their maximum voluntary contraction (MVC) using isometric knee extension made with the leg above and below heart level, and these were compared with single isometric contractions of the forearm (handgrip). Single thigh cuff compressions (300 mmHg) were utilized to estimate the mechanical contribution to leg ROV. Continuous blood flow was determined by duplex-Doppler ultrasound and blood pressure via finger photoplethysmography (Finometer). Single isometric knee extensor contractions produced intensity-dependent increases in peak leg vascular conductance that were significantly greater than the forearm in both the above- and below-heart level positions (e.g., above heart level: leg 20% MVC, +138 ± 28% vs. arm 20% MVC, +89 ± 17%; P leg. Collectively, these data demonstrate the presence of a rapid and robust vasodilation to single muscle contractions in the leg that is largely independent of mechanical factors, thus establishing the leg as a viable model to study ROV in humans. PMID:25539935

  15. Relational kernel-based grasping with numerical features

    OpenAIRE

    Antanas, Laura; Moreno, Plinio; De Raedt, Luc

    2015-01-01

    Object grasping is a key task in robot manipulation. Performing a grasp largely depends on the object properties and grasp constraints. This paper proposes a new statistical relational learning approach to recognize graspable points in object point clouds. We characterize each point with numerical shape features and represent each cloud as a (hyper-) graph by considering qualitative spatial relations between neighboring points. Further, we use kernels on graphs to exploit extended contextual ...

  16. Process for producing metal oxide kernels and kernels so obtained

    International Nuclear Information System (INIS)

    Lelievre, Bernard; Feugier, Andre.

    1974-01-01

    The process desbribed is for producing fissile or fertile metal oxide kernels used in the fabrication of fuels for high temperature nuclear reactors. This process consists in adding to an aqueous solution of at least one metallic salt, particularly actinide nitrates, at least one chemical compound capable of releasing ammonia, in dispersing drop by drop the solution thus obtained into a hot organic phase to gel the drops and transform them into solid particles. These particles are then washed, dried and treated to turn them into oxide kernels. The organic phase used for the gel reaction is formed of a mixture composed of two organic liquids, one acting as solvent and the other being a product capable of extracting the anions from the metallic salt of the drop at the time of gelling. Preferably an amine is used as product capable of extracting the anions. Additionally, an alcohol that causes a part dehydration of the drops can be employed as solvent, thus helping to increase the resistance of the particles [fr

  17. Preliminary tank characterization report for single-shell tank 241-SX-112: Best-basis inventory

    International Nuclear Information System (INIS)

    Kupfer, M.J.; Schulz, W.W.; Winward, R.T.

    1997-01-01

    An effort is underway to provide waste inventory estimates that will serve as standard characterization source terms for the various waste management activities. As part of this effort, an evaluation of available information for single-shell tank 241-SX-112 was performed, and a best-basis, inventory was established. This work follows the methodology that was established by the standard inventory task

  18. Preliminary tank characterization report for single-shell tank 241-BY-101: best-basis inventory

    International Nuclear Information System (INIS)

    Kupfer, M.J.

    1997-01-01

    An effort is underway to provide waste inventory estimates that will serve as standard characterization source terms for the various waste management activities. As part of this effort, an evaluation of available information for single-shell tank 241-BY-101 was performed, and a best-basis inventory was established. This work follows the methodology that was established by the standard inventory task

  19. Preliminary tank characterization report for single-shell tank 241-c-102: best-basis inventory

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, S.L.

    1997-08-26

    An effort is underway to provide waste inventory estimates that will serve as standard characterization source terms for the various waste management activities. As part of this effort, an evaluation of available information for single-shell tank 241-C-102 was performed, and a best-basis inventory was established. This work follows the methodology that was established by the standard inventory task.

  20. Preliminary tank characterization report for single-shell tank 241-TX-116: best-basis inventory

    Energy Technology Data Exchange (ETDEWEB)

    Place, D.E.

    1997-06-01

    An effort is underway to provide waste inventory estimates that will serve as standard characterization source terms for the various waste management activities. As part of this effort, an evaluation of available information for single-shell tank 241-TX-116 was performed, and a bost-basis inventory was established. This work follows the methodology that was established by the standard inventory task.

  1. Preliminary tank characterization report for single-shell tank 241-TX-117: best-basis inventory

    Energy Technology Data Exchange (ETDEWEB)

    Place, D.E.

    1997-06-01

    An effort is underway to provide waste inventory estimates that will serve as standard characterization source terms for the various waste management activities. As part of this effort, an evaluation of available information for single-shell tank 241-TX-117 was performed, and a best-basis inventory was established. This work follows the methodology that was established by the standard inventory task.

  2. Preliminary tank characterization report for single-shell tank 241-TY-101: best-basis inventory

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, S.L.

    1997-09-02

    An effort is underway to provide waste inventory estimates that will serve as standard characterization source terms for the various waste management activities. As part of this effort, an evaluation of available information for single-shell tank 241-TY-101 was performed, and a best-basis inventory was established. This work follows the methodology that was established by the standard inventory task.

  3. Preliminary tank characterization report for single-shell tank 241-BX-111: best-basis inventory

    International Nuclear Information System (INIS)

    Kupfer, M.J.

    1997-01-01

    An effort is underway to provide waste inventory estimates that will serve as standard characterization source terms for the various waste management activities. As part of this effort, an evaluation of available information for single-shell tank 241-BX-111 was performed, and a best-basis inventory was established. This work follows the methodology that was established by the standard inventory task

  4. Characterization of Single-Photon Avalanche Diodes in Standard 140-nm SOI CMOS Technology

    NARCIS (Netherlands)

    Lee, M.J.; Sun, P.; Charbon, E.

    2015-01-01

    We report on the characterization of single-photon avalanche diodes (SPADs) fabricated in standard 140-nm silicon on insulator (SOI) complementary metal-oxide-semiconductor (CMOS) technology. As a methodology for SPAD optimization, a test structure array, called SPAD farm, was realized with several

  5. Defect characterization of Ga4Se3S layered single crystals by ...

    Indian Academy of Sciences (India)

    Trapping centres in undoped Ga 4 Se 3 S single crystals grown by Bridgman method were characterized for the first time by thermoluminescence (TL) measurements carried out in the low temperature range of 15−300 K. After illuminating the sample with blue light (∼470 nm) at 15 K, TL glow curve exhibited one peak ...

  6. Prelimainary tank characterization report for single-shell tank 241-TY-103 : Best-Basis inventory

    International Nuclear Information System (INIS)

    Hendrickson, D.W.

    1997-01-01

    An effort is underway to provide waste inventory estimates that will serve as standard characterization source terms for the various waste management activities. As part of this effort, an evaluation of available information for single-shell tank 241'-TY-103 was performed, and a best-basis inventory was established. This work follows the methodology that was established by the standard inventory task

  7. Preliminary tank characterization report for single-shell tank 241-TX-117: best-basis inventory

    International Nuclear Information System (INIS)

    Place, D.E.

    1997-01-01

    An effort is underway to provide waste inventory estimates that will serve as standard characterization source terms for the various waste management activities. As part of this effort, an evaluation of available information for single-shell tank 241-TX-117 was performed, and a best-basis inventory was established. This work follows the methodology that was established by the standard inventory task

  8. Preliminary tank characterization report for single-shell tank 241-TX-116: best-basis inventory

    International Nuclear Information System (INIS)

    Place, D.E.

    1997-01-01

    An effort is underway to provide waste inventory estimates that will serve as standard characterization source terms for the various waste management activities. As part of this effort, an evaluation of available information for single-shell tank 241-TX-116 was performed, and a bost-basis inventory was established. This work follows the methodology that was established by the standard inventory task

  9. Preliminary tank characterization report for single-shell tank 241-BX-102: best-basis inventory

    International Nuclear Information System (INIS)

    Kupfer, M.J.

    1997-01-01

    An effort is underway to provide waste inventory estimates that will serve as standard characterization source terms for the various waste management activities. As part of this effort, an evaluation of available information for single-shell tank 241-BX-102 was performed, and a best-basis inventory was established. This work follows the methodology that was established by the standard inventory task

  10. Mechanical characterization and single asperity scratch behaviour of dry zinc and manganese phosphate coatings

    NARCIS (Netherlands)

    Ernens, D.; de Rooij, M. B.; Pasaribu, H. R.; van Riet, E.J.; van Haaften, W.M.; Schipper, D. J.

    The goal of this study is to characterise the mechanical properties of zinc and manganese phosphate coatings before and after running in. The characterization is done with nano-indentation to determine the individual crystal hardness and single asperity scratch tests to investigate the deformation

  11. Preliminary tank characterization report for single-shell tank 241-TY-101: best-basis inventory

    International Nuclear Information System (INIS)

    Lambert, S.L.

    1997-01-01

    An effort is underway to provide waste inventory estimates that will serve as standard characterization source terms for the various waste management activities. As part of this effort, an evaluation of available information for single-shell tank 241-TY-101 was performed, and a best-basis inventory was established. This work follows the methodology that was established by the standard inventory task

  12. Characterization of deep wet etching of fused silica glass for single cell and optical sensor deposition

    International Nuclear Information System (INIS)

    Zhu, Haixin; Holl, Mark; Ray, Tathagata; Bhushan, Shivani; Meldrum, Deirdre R

    2009-01-01

    The development of a high-throughput single-cell metabolic rate monitoring system relies on the use of transparent substrate material for a single cell-trapping platform. The high optical transparency, high chemical resistance, improved surface quality and compatibility with the silicon micromachining process of fused silica make it very attractive and desirable for this application. In this paper, we report the results from the development and characterization of a hydrofluoric acid (HF) based deep wet-etch process on fused silica. The pin holes and notching defects of various single-coated masking layers during the etching are characterized and the most suitable masking materials are identified for different etch depths. The dependence of the average etch rate and surface roughness on the etch depth, impurity concentration and HF composition are also examined. The resulting undercut from the deep HF etch using various masking materials is also investigated. The developed and characterized process techniques have been successfully implemented in the fabrication of micro-well arrays for single cell trapping and sensor deposition. Up to 60 µm deep micro-wells have been etched in a fused silica substrate with over 90% process yield and repeatability. To our knowledge, such etch depth has never been achieved in a fused silica substrate by using a non-diluted HF etchant and a single-coated masking layer at room temperature

  13. Hilbertian kernels and spline functions

    CERN Document Server

    Atteia, M

    1992-01-01

    In this monograph, which is an extensive study of Hilbertian approximation, the emphasis is placed on spline functions theory. The origin of the book was an effort to show that spline theory parallels Hilbertian Kernel theory, not only for splines derived from minimization of a quadratic functional but more generally for splines considered as piecewise functions type. Being as far as possible self-contained, the book may be used as a reference, with information about developments in linear approximation, convex optimization, mechanics and partial differential equations.

  14. Genetic Analysis of Kernel Traits in Maize-Teosinte Introgression Populations

    Directory of Open Access Journals (Sweden)

    Zhengbin Liu

    2016-08-01

    Full Text Available Seed traits have been targeted by human selection during the domestication of crop species as a way to increase the caloric and nutritional content of food during the transition from hunter-gather to early farming societies. The primary seed trait under selection was likely seed size/weight as it is most directly related to overall grain yield. Additional seed traits involved in seed shape may have also contributed to larger grain. Maize (Zea mays ssp. mays kernel weight has increased more than 10-fold in the 9000 years since domestication from its wild ancestor, teosinte (Z. mays ssp. parviglumis. In order to study how size and shape affect kernel weight, we analyzed kernel morphometric traits in a set of 10 maize-teosinte introgression populations using digital imaging software. We identified quantitative trait loci (QTL for kernel area and length with moderate allelic effects that colocalize with kernel weight QTL. Several genomic regions with strong effects during maize domestication were detected, and a genetic framework for kernel traits was characterized by complex pleiotropic interactions. Our results both confirm prior reports of kernel domestication loci and identify previously uncharacterized QTL with a range of allelic effects, enabling future research into the genetic basis of these traits.

  15. 7 CFR 51.1403 - Kernel color classification.

    Science.gov (United States)

    2010-01-01

    ... models of pecan kernels, illustrate the color intensities implied by the terms “golden,” “light brown... Kernel color classification. (a) The skin color of pecan kernels may be described in terms of the color...

  16. Ligand-tailored single-site silica supported titanium catalysts: Synthesis, characterization and towards cyanosilylation reaction

    International Nuclear Information System (INIS)

    Xu, Wei; Li, Yani; Yu, Bo; Yang, Jindou; Zhang, Ying; Chen, Xi; Zhang, Guofang; Gao, Ziwei

    2015-01-01

    A successive anchoring of Ti(NMe 2 ) 4 , cyclopentadiene and a O-donor ligand, 1-hydroxyethylbenzene (PEA), 1,1′-bi-2-naphthol (Binol) or 2,3-dihydroxybutanedioic acid diethyl ester (Tartrate), on silica was conducted by SOMC strategy in moderate conditions. The silica, monitored by in-situ Fourier transform infrared spectroscopy (in-situ FT-IR), was pretreated at different temperatures (200, 500 and 800 °C). The ligand tailored silica-supported titanium complexes were characterized by in-situ FT-IR, 13 C CP MAS-NMR, X-ray photoelectron spectroscopy (XPS), X-ray absorption near edge structure (XANES) and elemental analysis in detail, verifying that the surface titanium species are single sited. The catalytic activity of the ligand tailored single-site silica supported titanium complexes was evaluated by a cyanosilylation of benzaldehyde. The results showed that the catalytic activity is dependent strongly on the dehydroxylation temperatures of silica and the configuration of the ligands. - Graphical abstract: The ligand-tailored silica supported “single site” titanium complexes were synthesized by SOMC strategy and fully characterized. Their catalytic activity were evaluated by benzaldehyde silylcyanation. - Highlights: • Single-site silica supported Ti active species was prepared by SOMC technique. • O-donor ligand tailored Ti surface species was synthesized. • The surface species was characterized by XPS, 13 C CP-MAS NMR, XANES etc. • Catalytic activity of the Ti active species in silylcyanation reaction was evaluated

  17. Single-hole in situ thermal probe for hydrothermal characterization at Yucca Mountain

    International Nuclear Information System (INIS)

    Danko, G.

    1993-01-01

    The REKA thermal probe method, which uses a single borehole to measure in situ rock thermophysical properties and provides for efficient and low-cost site characterization, is analyzed for its application to hydrothermal system characterization. It is demonstrated throughout the evaluation of several temperature fields obtained for different thermal zones that the REKA method can be applied to simultaneously determine (1) two independent thermophysical properties, i.e., heat conductivity and thermal diffusivity and (2) a set of heat transport parameters, which can be used to characterize the behavior of a hydrothermal system. Based on the direct physical meaning of these transport parameters, the components of the heat transport mechanism in a given time and location of the hydrothermal system can be described. This evaluation can be applied to characterizing and quantifying in situ rock dry-out and condensate shedding at the proposed repository site

  18. Tank characterization report for single-shell tank 241-C-109

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, B.C.

    1997-05-23

    One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-C-109. The objectives of this report are: (1) to use characterization data in response to technical issues associated with tank 241 C-109 waste; and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices.

  19. XPS Protocol for the Characterization of Pristine and Functionalized Single Wall Carbon Nanotubes

    Science.gov (United States)

    Sosa, E. D.; Allada, R.; Huffman, C. B.; Arepalli, S.

    2009-01-01

    Recent interest in developing new applications for carbon nanotubes (CNT) has fueled the need to use accurate macroscopic and nanoscopic techniques to characterize and understand their chemistry. X-ray photoelectron spectroscopy (XPS) has proved to be a useful analytical tool for nanoscale surface characterization of materials including carbon nanotubes. Recent nanotechnology research at NASA Johnson Space Center (NASA-JSC) helped to establish a characterization protocol for quality assessment for single wall carbon nanotubes (SWCNTs). Here, a review of some of the major factors of the XPS technique that can influence the quality of analytical data, suggestions for methods to maximize the quality of data obtained by XPS, and the development of a protocol for XPS characterization as a complementary technique for analyzing the purity and surface characteristics of SWCNTs is presented. The XPS protocol is then applied to a number of experiments including impurity analysis and the study of chemical modifications for SWCNTs.

  20. Tank characterization report for single-shell tank 241-C-109

    International Nuclear Information System (INIS)

    Simpson, B.C.

    1997-01-01

    One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-C-109. The objectives of this report are: (1) to use characterization data in response to technical issues associated with tank 241 C-109 waste; and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices

  1. Sentiment classification with interpolated information diffusion kernels

    NARCIS (Netherlands)

    Raaijmakers, S.

    2007-01-01

    Information diffusion kernels - similarity metrics in non-Euclidean information spaces - have been found to produce state of the art results for document classification. In this paper, we present a novel approach to global sentiment classification using these kernels. We carry out a large array of

  2. Ranking Support Vector Machine with Kernel Approximation

    Directory of Open Access Journals (Sweden)

    Kai Chen

    2017-01-01

    Full Text Available Learning to rank algorithm has become important in recent years due to its successful application in information retrieval, recommender system, and computational biology, and so forth. Ranking support vector machine (RankSVM is one of the state-of-art ranking models and has been favorably used. Nonlinear RankSVM (RankSVM with nonlinear kernels can give higher accuracy than linear RankSVM (RankSVM with a linear kernel for complex nonlinear ranking problem. However, the learning methods for nonlinear RankSVM are still time-consuming because of the calculation of kernel matrix. In this paper, we propose a fast ranking algorithm based on kernel approximation to avoid computing the kernel matrix. We explore two types of kernel approximation methods, namely, the Nyström method and random Fourier features. Primal truncated Newton method is used to optimize the pairwise L2-loss (squared Hinge-loss objective function of the ranking model after the nonlinear kernel approximation. Experimental results demonstrate that our proposed method gets a much faster training speed than kernel RankSVM and achieves comparable or better performance over state-of-the-art ranking algorithms.

  3. Evolution kernel for the Dirac field

    International Nuclear Information System (INIS)

    Baaquie, B.E.

    1982-06-01

    The evolution kernel for the free Dirac field is calculated using the Wilson lattice fermions. We discuss the difficulties due to which this calculation has not been previously performed in the continuum theory. The continuum limit is taken, and the complete energy eigenfunctions as well as the propagator are then evaluated in a new manner using the kernel. (author)

  4. Modelling Issues in Kernel Ridge Regression

    NARCIS (Netherlands)

    P. Exterkate (Peter)

    2011-01-01

    textabstractKernel ridge regression is gaining popularity as a data-rich nonlinear forecasting tool, which is applicable in many different contexts. This paper investigates the influence of the choice of kernel and the setting of tuning parameters on forecast accuracy. We review several popular

  5. Experimental and Computational Characterization of Biological Liquid Crystals: A Review of Single-Molecule Bioassays

    Directory of Open Access Journals (Sweden)

    Sungsoo Na

    2009-09-01

    Full Text Available Quantitative understanding of the mechanical behavior of biological liquid crystals such as proteins is essential for gaining insight into their biological functions, since some proteins perform notable mechanical functions. Recently, single-molecule experiments have allowed not only the quantitative characterization of the mechanical behavior of proteins such as protein unfolding mechanics, but also the exploration of the free energy landscape for protein folding. In this work, we have reviewed the current state-of-art in single-molecule bioassays that enable quantitative studies on protein unfolding mechanics and/or various molecular interactions. Specifically, single-molecule pulling experiments based on atomic force microscopy (AFM have been overviewed. In addition, the computational simulations on single-molecule pulling experiments have been reviewed. We have also reviewed the AFM cantilever-based bioassay that provides insight into various molecular interactions. Our review highlights the AFM-based single-molecule bioassay for quantitative characterization of biological liquid crystals such as proteins.

  6. Kernel method for corrections to scaling.

    Science.gov (United States)

    Harada, Kenji

    2015-07-01

    Scaling analysis, in which one infers scaling exponents and a scaling function in a scaling law from given data, is a powerful tool for determining universal properties of critical phenomena in many fields of science. However, there are corrections to scaling in many cases, and then the inference problem becomes ill-posed by an uncontrollable irrelevant scaling variable. We propose a new kernel method based on Gaussian process regression to fix this problem generally. We test the performance of the new kernel method for some example cases. In all cases, when the precision of the example data increases, inference results of the new kernel method correctly converge. Because there is no limitation in the new kernel method for the scaling function even with corrections to scaling, unlike in the conventional method, the new kernel method can be widely applied to real data in critical phenomena.

  7. Multiple kernel SVR based on the MRE for remote sensing water depth fusion detection

    Science.gov (United States)

    Wang, Jinjin; Ma, Yi; Zhang, Jingyu

    2018-03-01

    Remote sensing has an important means of water depth detection in coastal shallow waters and reefs. Support vector regression (SVR) is a machine learning method which is widely used in data regression. In this paper, SVR is used to remote sensing multispectral bathymetry. Aiming at the problem that the single-kernel SVR method has a large error in shallow water depth inversion, the mean relative error (MRE) of different water depth is retrieved as a decision fusion factor with single kernel SVR method, a multi kernel SVR fusion method based on the MRE is put forward. And taking the North Island of the Xisha Islands in China as an experimentation area, the comparison experiments with the single kernel SVR method and the traditional multi-bands bathymetric method are carried out. The results show that: 1) In range of 0 to 25 meters, the mean absolute error(MAE)of the multi kernel SVR fusion method is 1.5m,the MRE is 13.2%; 2) Compared to the 4 single kernel SVR method, the MRE of the fusion method reduced 1.2% (1.9%) 3.4% (1.8%), and compared to traditional multi-bands method, the MRE reduced 1.9%; 3) In 0-5m depth section, compared to the single kernel method and the multi-bands method, the MRE of fusion method reduced 13.5% to 44.4%, and the distribution of points is more concentrated relative to y=x.

  8. Migration of ThO2 kernels under the influence of a temperature gradient

    International Nuclear Information System (INIS)

    Smith, C.L.

    1976-11-01

    BISO coated ThO 2 fertile fuel kernels will migrate up the thermal gradients imposed across coated particles during HTGR operation. Thorium dioxide kernel migration has been studied as a function of temperature (1300 to 1700 0 C) and ThO 2 kernel burnup (0.9 to 5.8 percent FIMA) in out-of-pile, postirradiation thermal gradient heating experiments. The studies were conducted to obtain descriptions of migration rates that will be used in core design studies to evaluate the impact of ThO 2 migration on fertile fuel performance in an operating HTGR and to define characteristics needed by any comprehensive model describing ThO 2 kernel migration. The kinetics data generated in these postirradiation studies are consistent with in-pile data collected by investigators at Oak Ridge National Laboratory, which supports use of the more precise postirradiation heating results in HTGR core design studies. Observations of intergranular carbon deposits on the cool side of migrating kernels support the assumption that the kinetics of kernel migration are controlled by solid state diffusion within irradiated ThO 2 kernels. The migration is characterized by a period of no migration (incubation period) followed by migration at the equilibrium rate for ThO 2 . The incubation period decreases with increasing temperature and kernel burnup. The improved understanding of the kinetics of ThO 2 kernel migration provided by this work will contribute to an optimization of HTGR core design and an increased confidence in fuel performance predictions

  9. Hierarchical zeolites: progress on synthesis and characterization of mesoporous zeolite single crystal catalysts

    DEFF Research Database (Denmark)

    Kustova, Marina; Egeblad, Kresten; Christensen, Claus H.

    2007-01-01

    in a hierarchical pore size distribution. In this work, the preparation of mesoporous ZSM-12 single crystal catalysts using a new improved procedure for directly introducing carbon in the reaction mixture is reported. The microwave heating technique is also applied for the synthesis of mesoporous silicalite-1...... single crystals using this direct introduction of carbon into the reaction mixture. All samples were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), temperature-programmed desorption of ammonia (NH3-TPD), and N-2 adsorption...

  10. Adaptive Shape Kernel-Based Mean Shift Tracker in Robot Vision System

    Directory of Open Access Journals (Sweden)

    Chunmei Liu

    2016-01-01

    Full Text Available This paper proposes an adaptive shape kernel-based mean shift tracker using a single static camera for the robot vision system. The question that we address in this paper is how to construct such a kernel shape that is adaptive to the object shape. We perform nonlinear manifold learning technique to obtain the low-dimensional shape space which is trained by training data with the same view as the tracking video. The proposed kernel searches the shape in the low-dimensional shape space obtained by nonlinear manifold learning technique and constructs the adaptive kernel shape in the high-dimensional shape space. It can improve mean shift tracker performance to track object position and object contour and avoid the background clutter. In the experimental part, we take the walking human as example to validate that our method is accurate and robust to track human position and describe human contour.

  11. Data visualization and dimensionality reduction using kernel maps with a reference point.

    Science.gov (United States)

    Suykens, Johan A K

    2008-09-01

    In this paper, a new kernel-based method for data visualization and dimensionality reduction is proposed. A reference point is considered corresponding to additional constraints taken in the problem formulation. In contrast with the class of kernel eigenmap methods, the solution (coordinates in the low-dimensional space) is characterized by a linear system instead of an eigenvalue problem. The kernel maps with a reference point are generated from a least squares support vector machine (LS-SVM) core part that is extended with an additional regularization term for preserving local mutual distances together with reference point constraints. The kernel maps possess primal and dual model representations and provide out-of-sample extensions, e.g., for validation-based tuning. The method is illustrated on toy problems and real-life data sets.

  12. Bayesian Kernel Mixtures for Counts.

    Science.gov (United States)

    Canale, Antonio; Dunson, David B

    2011-12-01

    Although Bayesian nonparametric mixture models for continuous data are well developed, there is a limited literature on related approaches for count data. A common strategy is to use a mixture of Poissons, which unfortunately is quite restrictive in not accounting for distributions having variance less than the mean. Other approaches include mixing multinomials, which requires finite support, and using a Dirichlet process prior with a Poisson base measure, which does not allow smooth deviations from the Poisson. As a broad class of alternative models, we propose to use nonparametric mixtures of rounded continuous kernels. An efficient Gibbs sampler is developed for posterior computation, and a simulation study is performed to assess performance. Focusing on the rounded Gaussian case, we generalize the modeling framework to account for multivariate count data, joint modeling with continuous and categorical variables, and other complications. The methods are illustrated through applications to a developmental toxicity study and marketing data. This article has supplementary material online.

  13. Neuronal model with distributed delay: analysis and simulation study for gamma distribution memory kernel.

    Science.gov (United States)

    Karmeshu; Gupta, Varun; Kadambari, K V

    2011-06-01

    A single neuronal model incorporating distributed delay (memory)is proposed. The stochastic model has been formulated as a Stochastic Integro-Differential Equation (SIDE) which results in the underlying process being non-Markovian. A detailed analysis of the model when the distributed delay kernel has exponential form (weak delay) has been carried out. The selection of exponential kernel has enabled the transformation of the non-Markovian model to a Markovian model in an extended state space. For the study of First Passage Time (FPT) with exponential delay kernel, the model has been transformed to a system of coupled Stochastic Differential Equations (SDEs) in two-dimensional state space. Simulation studies of the SDEs provide insight into the effect of weak delay kernel on the Inter-Spike Interval(ISI) distribution. A measure based on Jensen-Shannon divergence is proposed which can be used to make a choice between two competing models viz. distributed delay model vis-á-vis LIF model. An interesting feature of the model is that the behavior of (CV(t))((ISI)) (Coefficient of Variation) of the ISI distribution with respect to memory kernel time constant parameter η reveals that neuron can switch from a bursting state to non-bursting state as the noise intensity parameter changes. The membrane potential exhibits decaying auto-correlation structure with or without damped oscillatory behavior depending on the choice of parameters. This behavior is in agreement with empirically observed pattern of spike count in a fixed time window. The power spectral density derived from the auto-correlation function is found to exhibit single and double peaks. The model is also examined for the case of strong delay with memory kernel having the form of Gamma distribution. In contrast to fast decay of damped oscillations of the ISI distribution for the model with weak delay kernel, the decay of damped oscillations is found to be slower for the model with strong delay kernel.

  14. Development of Microfluidic Systems Enabling High-Throughput Single-Cell Protein Characterization

    OpenAIRE

    Fan, Beiyuan; Li, Xiufeng; Chen, Deyong; Peng, Hongshang; Wang, Junbo; Chen, Jian

    2016-01-01

    This article reviews recent developments in microfluidic systems enabling high-throughput characterization of single-cell proteins. Four key perspectives of microfluidic platforms are included in this review: (1) microfluidic fluorescent flow cytometry; (2) droplet based microfluidic flow cytometry; (3) large-array micro wells (microengraving); and (4) large-array micro chambers (barcode microchips). We examine the advantages and limitations of each technique and discuss future research oppor...

  15. Preliminary tank characterization report for single-shell tank 241-SX-111: Best-basis inventory

    International Nuclear Information System (INIS)

    Kupfer, M.J.; Schulz, W.W.; Winward, R.T.

    1997-01-01

    An effort is underway to provide waste inventory estimates that will serve as standard characterization source terms for the various waste management activities. As part of this effort,.an evaluation of available information for single-shell tank 241-SX-111 was performed, and a best-basis inventory was established. This work follows the methodology that was established by the standard inventory task

  16. Electrical and thermal characterization of single and multi-finger InP DHBTs

    DEFF Research Database (Denmark)

    Midili, Virginio; Nodjiadjim, V.; Johansen, Tom Keinicke

    2015-01-01

    This paper presents the characterization of single and multi-finger Indium Phosphide Double Heterojunction Bipolar transistors (InP DHBTs). It is used as the starting point for technology optimization. Safe Operating Area (SOA) and small signal AC parameters are investigated along with thermal...... characteristics. The results are presented comparing different device dimensions and number of fingers. This work gives directions towards further optimization of geometrical parameters and reduction of thermal effects....

  17. Tank characterization report for single-shell tank 241-U-103

    Energy Technology Data Exchange (ETDEWEB)

    SASAKI, L.M.

    1999-02-24

    A major function of the Tank Waste Remediation System (TWRS) is to characterize waste in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis and other available information about a tank are compiled and maintained in a tank characterization report. This report and its appendices serve as the tank characterization report for single-shell tank 241-U-103. The objectives of this report are (1) to use characterization data in response to technical issues associated with tank 241-U-103 waste and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 summarizes the response to technical issues, Section 3.0 shows the best-basis inventory estimate, Section 4.0 makes recommendations about the safety status of the tank and additional sampling needs. The appendices contain supporting data and information. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1997), Milestone M-44-15b, change request M-44-97-03 to ''issue characterization deliverables consistent with Waste Information Requirements Documents developed for 1998.''

  18. Tank Characterization report for single-shell tank 241-SX-103

    International Nuclear Information System (INIS)

    WILMARTH, S.R.

    1999-01-01

    A major function of the Tank Waste Remediation System (TWRS) is to characterize waste in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis and other available information about a tank are compiled and maintained in a tank characterization report. This report and its appendices serve as the tank characterization report for single-shell tank 241-SX-103. The objectives of this report are (1) to use characterization data in response to technical issues associated with tank 241-SX-103 waste, and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 summarizes the response to technical issues, Section 3.0 shows the best-basis inventory estimate, and Section 4.0 makes recommendations about the safety status of the tank and additional sampling needs. The appendices contain supporting data and information. This report supports the requirements of Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1997), Milestone M-44-15c, change request M-44-97-03 to ''issue characterization deliverables consistent with the Waste Information Requirements Document developed for fiscal year 1999'' (Adams et al. 1998)

  19. Towards a digital sound reconstruction MEMS device: Characterization of a single PZT based piezoelectric actuator

    KAUST Repository

    Carreno, Armando Arpys Arevalo

    2015-04-01

    In this paper we report the fabrication and characterization of a single piezoelectric actuator for digital sound reconstruction. This work is the first step towards the implementation of a true digital micro-loudspeaker by means of an array of acoustic actuators. These actuators consist of a flexible membrane fabricated using polyimide, which is actuated using a Lead-Zirconate-Titanate (PZT) piezoelectric ceramic layer working in the d31 actuation mode. The dimensions of the membrane are of 1mm diameter and 4μm in thickness, which is capable of being symmetrically actuated in both upward and downward directions, due to the back etch step releasing the membrane. Our electrical characterization shows an improvement in the polarization of the piezoelectric material after its final etch patterning step, and our mechanical characterization shows the natural modes of resonance of the stacked membrane. © 2015 IEEE.

  20. Characterization of Direct Push Vadose Zone Sediments from the 241-U Single-Shell Tank Farm

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Christopher F.; Valenta, Michelle M.; Serne, R. Jeffrey; Bjornstad, Bruce N.; Lanigan, David C.; Iovin, Cristian; Clayton, Ray E.; Geiszler, Keith N.; Clayton, Eric T.; Kutnyakov, Igor V.; Baum, Steven R.; Lindberg, Michael J.; Orr, Robert D.

    2007-12-20

    The overall goals of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., are 1) to define risks from past and future single-shell tank farm activities, 2) to identify and evaluate the efficacy of interim measures, and 3) to aid, via collection of geochemical information and data, the future decisions that must be made by the U.S. Department of Energy (DOE) regarding the near-term operations, future waste retrieval, and final closure activities for the single-shell tank Waste Management Areas (WMAs). For a more complete discussion of the goals of the Tank Farm Vadose Zone Project, see the overall work plan, Phase 1 RCRA Facility Investigation/Corrective Measures Study Work Plan for the Single-Shell Tank Waste Management Areas (DOE 1999). Specific details on the rationale for activities performed at WMA U are found in Crumpler (2003). To meet these goals, CH2M HILL Hanford Group, Inc., asked scientists from Pacific Northwest National Laboratory (PNNL) to perform detailed analyses of vadose zone sediment collected within the U Single-Shell Tank Farm. Specifically, this report contains all the geochemical and selected physical characterization data collected on vadose zone sediment recovered from ten direct push characterization holes emplaced to investigate vadose zone contamination associated with potential leaks within the 241-U Single-Shell Tank Farm. Specific tanks targeted during this characterization campaign included tanks 241-U-104/241-U-105, 241-U-110, and 241-U-112. Additionally, this report compiles data from direct push samples collected north of tank 241-U-201, as well as sediment collected from the background borehole (C3393). After evaluating all the characterization and analytical data, there is no question that the vadose zone in the vicinity of tanks 241-U-104 and 241-U-105 has been contaminated by tank-related waste. This observation is not new, as gamma logging of drywells in the area has identified uranium contamination at the

  1. A Visual Approach to Investigating Shared and Global Memory Behavior of CUDA Kernels

    KAUST Repository

    Rosen, Paul

    2013-06-01

    We present an approach to investigate the memory behavior of a parallel kernel executing on thousands of threads simultaneously within the CUDA architecture. Our top-down approach allows for quickly identifying any significant differences between the execution of the many blocks and warps. As interesting warps are identified, we allow further investigation of memory behavior by visualizing the shared memory bank conflicts and global memory coalescence, first with an overview of a single warp with many operations and, subsequently, with a detailed view of a single warp and a single operation. We demonstrate the strength of our approach in the context of a parallel matrix transpose kernel and a parallel 1D Haar Wavelet transform kernel. © 2013 The Author(s) Computer Graphics Forum © 2013 The Eurographics Association and Blackwell Publishing Ltd.

  2. Ligand-tailored single-site silica supported titanium catalysts: Synthesis, characterization and towards cyanosilylation reaction

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wei; Li, Yani; Yu, Bo; Yang, Jindou; Zhang, Ying; Chen, Xi; Zhang, Guofang, E-mail: gfzhang@snnu.edu.cn; Gao, Ziwei, E-mail: zwgao@snnu.edu.cn

    2015-01-15

    A successive anchoring of Ti(NMe{sub 2}){sub 4}, cyclopentadiene and a O-donor ligand, 1-hydroxyethylbenzene (PEA), 1,1′-bi-2-naphthol (Binol) or 2,3-dihydroxybutanedioic acid diethyl ester (Tartrate), on silica was conducted by SOMC strategy in moderate conditions. The silica, monitored by in-situ Fourier transform infrared spectroscopy (in-situ FT-IR), was pretreated at different temperatures (200, 500 and 800 °C). The ligand tailored silica-supported titanium complexes were characterized by in-situ FT-IR, {sup 13}C CP MAS-NMR, X-ray photoelectron spectroscopy (XPS), X-ray absorption near edge structure (XANES) and elemental analysis in detail, verifying that the surface titanium species are single sited. The catalytic activity of the ligand tailored single-site silica supported titanium complexes was evaluated by a cyanosilylation of benzaldehyde. The results showed that the catalytic activity is dependent strongly on the dehydroxylation temperatures of silica and the configuration of the ligands. - Graphical abstract: The ligand-tailored silica supported “single site” titanium complexes were synthesized by SOMC strategy and fully characterized. Their catalytic activity were evaluated by benzaldehyde silylcyanation. - Highlights: • Single-site silica supported Ti active species was prepared by SOMC technique. • O-donor ligand tailored Ti surface species was synthesized. • The surface species was characterized by XPS, {sup 13}C CP-MAS NMR, XANES etc. • Catalytic activity of the Ti active species in silylcyanation reaction was evaluated.

  3. Optimizing memory-bound SYMV kernel on GPU hardware accelerators

    KAUST Repository

    Abdelfattah, Ahmad

    2013-01-01

    Hardware accelerators are becoming ubiquitous high performance scientific computing. They are capable of delivering an unprecedented level of concurrent execution contexts. High-level programming language extensions (e.g., CUDA), profiling tools (e.g., PAPI-CUDA, CUDA Profiler) are paramount to improve productivity, while effectively exploiting the underlying hardware. We present an optimized numerical kernel for computing the symmetric matrix-vector product on nVidia Fermi GPUs. Due to its inherent memory-bound nature, this kernel is very critical in the tridiagonalization of a symmetric dense matrix, which is a preprocessing step to calculate the eigenpairs. Using a novel design to address the irregular memory accesses by hiding latency and increasing bandwidth, our preliminary asymptotic results show 3.5x and 2.5x fold speedups over the similar CUBLAS 4.0 kernel, and 7-8% and 30% fold improvement over the Matrix Algebra on GPU and Multicore Architectures (MAGMA) library in single and double precision arithmetics, respectively. © 2013 Springer-Verlag.

  4. Distance Based Multiple Kernel ELM: A Fast Multiple Kernel Learning Approach

    Directory of Open Access Journals (Sweden)

    Chengzhang Zhu

    2015-01-01

    Full Text Available We propose a distance based multiple kernel extreme learning machine (DBMK-ELM, which provides a two-stage multiple kernel learning approach with high efficiency. Specifically, DBMK-ELM first projects multiple kernels into a new space, in which new instances are reconstructed based on the distance of different sample labels. Subsequently, an l2-norm regularization least square, in which the normal vector corresponds to the kernel weights of a new kernel, is trained based on these new instances. After that, the new kernel is utilized to train and test extreme learning machine (ELM. Extensive experimental results demonstrate the superior performance of the proposed DBMK-ELM in terms of the accuracy and the computational cost.

  5. Tank characterization report for single-shell tank 241-SX-115

    Energy Technology Data Exchange (ETDEWEB)

    HULSE, N.L.

    1999-05-13

    A major function of the Tank Waste Remediation System (TWRS) is to characterize waste in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis and other available information about a tank are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-SX-115. The objectives of this report are (1) to use characterization data in response to technical issues associated with tank 241-SX-115 waste, and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 summarizes the response to technical issues, Section 3.0 shows the best-basis inventory estimate, Section 4.0 makes recommendations about the safety status of the tank and additional sampling needs. The appendices contain supporting data and information. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1997), Milestone M-44-15c, change request M-44-97-03 to ''issue characterization deliverables consistent with the Waste Information Requirements Document developed for FY 1999'' (Adams et al. 1998).

  6. Tank characterization report for single-shell tank 241-T-105

    Energy Technology Data Exchange (ETDEWEB)

    Field, J.G.

    1998-06-18

    A major function of the Tank Waste Remediation System (TWRS) is to characterize waste in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis and other available information about a tank are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-T-105. The objectives of this report are (1) to use characterization data in response to technical issues associated with tank 241-T-105 waste and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 summarizes the response to technical issues, Section 3.0 shows the best-basis inventory estimate, Section 4.0 makes recommendations about the safety status of the tank and additional sampling needs. The appendices contain supporting data and information. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1997), Milestone M-44-15b, change request M-44-97-03, to ``issue characterization deliverables consistent with the waste information requirements documents developed for 1998``.

  7. Tank characterization report for single-shell tank 241-TX-104

    International Nuclear Information System (INIS)

    FIELD, J.G.

    1999-01-01

    A major function of the Tank Waste Remediation System (TWRS) is to characterize waste in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis and other available information about a tank are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-TX-104. The objectives of this report are (1) to use characterization data in response to technical issues associated with tank 241-TX-104 waste, and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 summarizes the response to technical issues, Section 3.0 shows the best-basis inventory estimate, Section 4.0 makes recommendations about the safety status of the tank and additional sampling needs. The appendices contain supporting data and information. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1997), Milestone M-44-15c, change request M-44-97-03 to ''issue characterization deliverables consistent with the Waste Information Requirements Document developed for FY 1999'' (Adams et al. 1998)

  8. Tank characterization report for single-shell tank 241-T-105

    International Nuclear Information System (INIS)

    Field, J.G.

    1998-01-01

    A major function of the Tank Waste Remediation System (TWRS) is to characterize waste in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis and other available information about a tank are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-T-105. The objectives of this report are (1) to use characterization data in response to technical issues associated with tank 241-T-105 waste and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 summarizes the response to technical issues, Section 3.0 shows the best-basis inventory estimate, Section 4.0 makes recommendations about the safety status of the tank and additional sampling needs. The appendices contain supporting data and information. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1997), Milestone M-44-15b, change request M-44-97-03, to ''issue characterization deliverables consistent with the waste information requirements documents developed for 1998''

  9. Local Kernel for Brains Classification in Schizophrenia

    Science.gov (United States)

    Castellani, U.; Rossato, E.; Murino, V.; Bellani, M.; Rambaldelli, G.; Tansella, M.; Brambilla, P.

    In this paper a novel framework for brain classification is proposed in the context of mental health research. A learning by example method is introduced by combining local measurements with non linear Support Vector Machine. Instead of considering a voxel-by-voxel comparison between patients and controls, we focus on landmark points which are characterized by local region descriptors, namely Scale Invariance Feature Transform (SIFT). Then, matching is obtained by introducing the local kernel for which the samples are represented by unordered set of features. Moreover, a new weighting approach is proposed to take into account the discriminative relevance of the detected groups of features. Experiments have been performed including a set of 54 patients with schizophrenia and 54 normal controls on which region of interest (ROI) have been manually traced by experts. Preliminary results on Dorso-lateral PreFrontal Cortex (DLPFC) region are promising since up to 75% of successful classification rate has been obtained with this technique and the performance has improved up to 85% when the subjects have been stratified by sex.

  10. NLO corrections to the Kernel of the BKP-equations

    International Nuclear Information System (INIS)

    Bartels, J.; Lipatov, L.N.; Vacca, G.P.

    2012-01-01

    We present results for the NLO kernel of the BKP equations for composite states of three reggeized gluons in the Odderon channel, both in QCD and in N=4 SYM. The NLO kernel consists of the NLO BFKL kernel in the color octet representation and the connected 3→3 kernel, computed in the tree approximation.

  11. 21 CFR 176.350 - Tamarind seed kernel powder.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Tamarind seed kernel powder. 176.350 Section 176... Substances for Use Only as Components of Paper and Paperboard § 176.350 Tamarind seed kernel powder. Tamarind... the provisions of this section. (a) Tamarind seed kernel powder is the ground kernel of tamarind seed...

  12. Higher-order Gaussian kernel in bootstrap boosting algorithm ...

    African Journals Online (AJOL)

    The bootstrap boosting algorithm is a bias reduction scheme. The adoption of higher-order Gaussian kernel in a bootstrap boosting algorithm in kernel density estimation was investigated. The algorithm used the higher-order. Gaussian kernel instead of the regular fixed kernels. A comparison of the scheme with existing ...

  13. Kernel maximum autocorrelation factor and minimum noise fraction transformations

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg

    2010-01-01

    in hyperspectral HyMap scanner data covering a small agricultural area, and 3) maize kernel inspection. In the cases shown, the kernel MAF/MNF transformation performs better than its linear counterpart as well as linear and kernel PCA. The leading kernel MAF/MNF variates seem to possess the ability to adapt...

  14. Adaptive Kernel in Meshsize Boosting Algorithm in KDE ...

    African Journals Online (AJOL)

    This paper proposes the use of adaptive kernel in a meshsize boosting algorithm in kernel density estimation. The algorithm is a bias reduction scheme like other existing schemes but uses adaptive kernel instead of the regular fixed kernels. An empirical study for this scheme is conducted and the findings are comparatively ...

  15. Adaptive Kernel In The Bootstrap Boosting Algorithm In KDE ...

    African Journals Online (AJOL)

    This paper proposes the use of adaptive kernel in a bootstrap boosting algorithm in kernel density estimation. The algorithm is a bias reduction scheme like other existing schemes but uses adaptive kernel instead of the regular fixed kernels. An empirical study for this scheme is conducted and the findings are comparatively ...

  16. Higher-Order Hybrid Gaussian Kernel in Meshsize Boosting Algorithm

    African Journals Online (AJOL)

    In this paper, we shall use higher-order hybrid Gaussian kernel in a meshsize boosting algorithm in kernel density estimation. Bias reduction is guaranteed in this scheme like other existing schemes but uses the higher-order hybrid Gaussian kernel instead of the regular fixed kernels. A numerical verification of this scheme ...

  17. NLO corrections to the Kernel of the BKP-equations

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, J. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Fadin, V.S. [Budker Institute of Nuclear Physics, Novosibirsk (Russian Federation); Novosibirskij Gosudarstvennyj Univ., Novosibirsk (Russian Federation); Lipatov, L.N. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg (Russian Federation); Vacca, G.P. [INFN, Sezione di Bologna (Italy)

    2012-10-02

    We present results for the NLO kernel of the BKP equations for composite states of three reggeized gluons in the Odderon channel, both in QCD and in N=4 SYM. The NLO kernel consists of the NLO BFKL kernel in the color octet representation and the connected 3{yields}3 kernel, computed in the tree approximation.

  18. Classification of EEG Signals Using a Multiple Kernel Learning Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Xiaoou Li

    2014-07-01

    Full Text Available In this study, a multiple kernel learning support vector machine algorithm is proposed for the identification of EEG signals including mental and cognitive tasks, which is a key component in EEG-based brain computer interface (BCI systems. The presented BCI approach included three stages: (1 a pre-processing step was performed to improve the general signal quality of the EEG; (2 the features were chosen, including wavelet packet entropy and Granger causality, respectively; (3 a multiple kernel learning support vector machine (MKL-SVM based on a gradient descent optimization algorithm was investigated to classify EEG signals, in which the kernel was defined as a linear combination of polynomial kernels and radial basis function kernels. Experimental results showed that the proposed method provided better classification performance compared with the SVM based on a single kernel. For mental tasks, the average accuracies for 2-class, 3-class, 4-class, and 5-class classifications were 99.20%, 81.25%, 76.76%, and 75.25% respectively. Comparing stroke patients with healthy controls using the proposed algorithm, we achieved the average classification accuracies of 89.24% and 80.33% for 0-back and 1-back tasks respectively. Our results indicate that the proposed approach is promising for implementing human-computer interaction (HCI, especially for mental task classification and identifying suitable brain impairment candidates.

  19. Single step synthesis, characterization and applications of curcumin functionalized iron oxide magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bhandari, Rohit; Gupta, Prachi; Dziubla, Thomas; Hilt, J. Zach, E-mail: zach.hilt@uky.edu

    2016-10-01

    Magnetic iron oxide nanoparticles have been well known for their applications in magnetic resonance imaging (MRI), hyperthermia, targeted drug delivery, etc. The surface modification of these magnetic nanoparticles has been explored extensively to achieve functionalized materials with potential application in biomedical, environmental and catalysis field. Herein, we report a novel and versatile single step methodology for developing curcumin functionalized magnetic Fe{sub 3}O{sub 4} nanoparticles without any additional linkers, using a simple coprecipitation technique. The magnetic nanoparticles (MNPs) were characterized using transmission electron microscopy, X-ray diffraction, fourier transform infrared spectroscopy and thermogravimetric analysis. The developed MNPs were employed in a cellular application for protection against an inflammatory agent, a polychlorinated biphenyl (PCB) molecule. - Graphical abstract: Novel single step curcumin coated magnetic Fe{sub 3}O{sub 4} nanoparticles without any additional linkers for medical, environmental, and other applications. Display Omitted - Highlights: • A novel and versatile single step methodology for developing curcumin functionalized magnetic Fe{sub 3}O{sub 4} nanoparticles is reported. • The magnetic nanoparticles (MNPs) were characterized using TEM, XRD, FTIR and TGA. • The developed MNPs were employed in a cellular application for protection against an inflammatory agent, a polychlorinated biphenyl (PCB).

  20. Benchmarking NWP Kernels on Multi- and Many-core Processors

    Science.gov (United States)

    Michalakes, J.; Vachharajani, M.

    2008-12-01

    Increased computing power for weather, climate, and atmospheric science has provided direct benefits for defense, agriculture, the economy, the environment, and public welfare and convenience. Today, very large clusters with many thousands of processors are allowing scientists to move forward with simulations of unprecedented size. But time-critical applications such as real-time forecasting or climate prediction need strong scaling: faster nodes and processors, not more of them. Moreover, the need for good cost- performance has never been greater, both in terms of performance per watt and per dollar. For these reasons, the new generations of multi- and many-core processors being mass produced for commercial IT and "graphical computing" (video games) are being scrutinized for their ability to exploit the abundant fine- grain parallelism in atmospheric models. We present results of our work to date identifying key computational kernels within the dynamics and physics of a large community NWP model, the Weather Research and Forecast (WRF) model. We benchmark and optimize these kernels on several different multi- and many-core processors. The goals are to (1) characterize and model performance of the kernels in terms of computational intensity, data parallelism, memory bandwidth pressure, memory footprint, etc. (2) enumerate and classify effective strategies for coding and optimizing for these new processors, (3) assess difficulties and opportunities for tool or higher-level language support, and (4) establish a continuing set of kernel benchmarks that can be used to measure and compare effectiveness of current and future designs of multi- and many-core processors for weather and climate applications.

  1. Tank characterization report for single-shell tank 241-T-104

    International Nuclear Information System (INIS)

    DiCenso, A.T.; Simpson, B.C.

    1994-01-01

    In August 1992, Single-Shell Tank 241-T-104 was sampled to determine proper handling of the waste, to address corrosivity and compatibility issues, and to comply with requirements of the Washington Administrative Code (Ecology, 1991). This Tank Characterization Report presents an overview of that tank sampling and analysis effort, and contains observations regarding waste characteristics. It also addresses expected concentration and bulk inventory data for the waste contents based on this latest sampling data and background tank information. The purpose of this report is to describe and characterize the waste in Single-Shall Tank 241-T-104 (hereafter, Tank 241-T-104) based on information given from various sources. This report summarizes the available information regarding the waste in Tank 241-T-104, and using the historical information to place the analytical data in context, arranges this information in a useful format for making management and technical decisions concerning this waste tank. In addition, conclusions and recommendations are given based on safety issues and further characterization needs

  2. Digital signal processing with kernel methods

    CERN Document Server

    Rojo-Alvarez, José Luis; Muñoz-Marí, Jordi; Camps-Valls, Gustavo

    2018-01-01

    A realistic and comprehensive review of joint approaches to machine learning and signal processing algorithms, with application to communications, multimedia, and biomedical engineering systems Digital Signal Processing with Kernel Methods reviews the milestones in the mixing of classical digital signal processing models and advanced kernel machines statistical learning tools. It explains the fundamental concepts from both fields of machine learning and signal processing so that readers can quickly get up to speed in order to begin developing the concepts and application software in their own research. Digital Signal Processing with Kernel Methods provides a comprehensive overview of kernel methods in signal processing, without restriction to any application field. It also offers example applications and detailed benchmarking experiments with real and synthetic datasets throughout. Readers can find further worked examples with Matlab source code on a website developed by the authors. * Presents the necess...

  3. HAYABUSA SPICE KERNELS V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set includes the complete set of Hayabusa SPICE data files (kernel files'') for the surveying and collection phases of the mission. The SPICE data files,...

  4. Ensemble Approach to Building Mercer Kernels

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper presents a new methodology for automatic knowledge driven data mining based on the theory of Mercer Kernels, which are highly nonlinear symmetric positive...

  5. Multiple Kernel Spectral Regression for Dimensionality Reduction

    Directory of Open Access Journals (Sweden)

    Bing Liu

    2013-01-01

    Full Text Available Traditional manifold learning algorithms, such as locally linear embedding, Isomap, and Laplacian eigenmap, only provide the embedding results of the training samples. To solve the out-of-sample extension problem, spectral regression (SR solves the problem of learning an embedding function by establishing a regression framework, which can avoid eigen-decomposition of dense matrices. Motivated by the effectiveness of SR, we incorporate multiple kernel learning (MKL into SR for dimensionality reduction. The proposed approach (termed MKL-SR seeks an embedding function in the Reproducing Kernel Hilbert Space (RKHS induced by the multiple base kernels. An MKL-SR algorithm is proposed to improve the performance of kernel-based SR (KSR further. Furthermore, the proposed MKL-SR algorithm can be performed in the supervised, unsupervised, and semi-supervised situation. Experimental results on supervised classification and semi-supervised classification demonstrate the effectiveness and efficiency of our algorithm.

  6. MESSENGER SPICE KERNELS V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set includes the complete set of MESSENGER SPICE data files (''kernel files''), which can be accessed using SPICE software. The SPICE data contains...

  7. CASSINI SPICE KERNELS V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set includes the complete set of Cassini SPICE data files (kernel files''), which can be accessed using SPICE software. The SPICE data contains geometric...

  8. NEAR SPICE KERNELS V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set includes the complete set of NEAR SPICE data files (kernel files'), which can be accessed using SPICE software. The SPICE data contain geometric and...

  9. STARDUST SPICE KERNELS V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set includes the complete set of Stardust SPICE data files (kernel files'), which can be accessed using SPICE software. The SPICE data contains geometric...

  10. MSL SPICE KERNELS V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set includes the MSL SPICE data files (kernel files''), which can be accessed using SPICE software. The SPICE data contain geometric and other ancillary...

  11. Bandwidth Selection for Weighted Kernel Density Estimation

    OpenAIRE

    Wang, Bin; Wang, Xiaofeng

    2007-01-01

    In the this paper, the authors propose to estimate the density of a targeted population with a weighted kernel density estimator (wKDE) based on a weighted sample. Bandwidth selection for wKDE is discussed. Three mean integrated squared error based bandwidth estimators are introduced and their performance is illustrated via Monte Carlo simulation. The least-squares cross-validation method and the adaptive weight kernel density estimator are also studied. The authors also consider the boundary...

  12. Some Remarks on the Symmetry Kernel Test

    OpenAIRE

    Baszczyńska, Aleksandra

    2013-01-01

    The paper presents chosen statistical tests used to verify the hypothesis of the symmetry of random variable’s distribution. Detailed analysis of the symmetry kernel test is made. The properties of the regarded symmetry kernel test are compared with the other symmetry tests using Monte Carlo methods. The symmetry tests are used, as an example, in analysis of the distribution of the Human Development Index (HDI). W pracy przedstawiono wybrane statystyczne testy wykorzystywane w ...

  13. High Throughput Characterization of Epitaxially Grown Single-Layer MoS2

    Directory of Open Access Journals (Sweden)

    Foad Ghasemi

    2017-03-01

    Full Text Available The growth of single-layer MoS2 with chemical vapor deposition is an established method that can produce large-area and high quality samples. In this article, we investigate the geometrical and optical properties of hundreds of individual single-layer MoS2 crystallites grown on a highly-polished sapphire substrate. Most of the crystallites are oriented along the terraces of the sapphire substrate and have an area comprised between 10 µm2 and 60 µm2. Differential reflectance measurements performed on these crystallites show that the area of the MoS2 crystallites has an influence on the position and broadening of the B exciton while the orientation does not influence the A and B excitons of MoS2. These measurements demonstrate that differential reflectance measurements have the potential to be used to characterize the homogeneity of large-area chemical vapor deposition (CVD-grown samples.

  14. Structural Characterization of Doped GaSb Single Crystals by X-ray Topography

    Energy Technology Data Exchange (ETDEWEB)

    Honnicke, M.G.; Mazzaro, I.; Manica, J.; Benine, E.; M da Costa, E.; Dedavid, B. A.; Cusatis, C.; Huang, X. R.

    2009-09-13

    We characterized GaSb single crystals containing different dopants (Al, Cd and Te), grown by the Czochralski method, by x-ray topography and high angular resolution x-ray diffraction. Lang topography revealed dislocations parallel and perpendicular to the crystal's surface. Double-crystal GaSb 333 x-ray topography shows dislocations and vertical stripes than can be associated with circular growth bands. We compared our high-angular resolution x-ray diffraction measurements (rocking curves) with the findings predicted by the dynamical theory of x-ray diffraction. These measurements show that our GaSb single crystals have a relative variation in the lattice parameter ({Delta}d/d) on the order of 10{sup -5}. This means that they can be used as electronic devices (detectors, for example) and as x-ray monochromators.

  15. Growth and characterization of organometallic L-alanine cadmium chloride single crystal by slow evaporation technique

    International Nuclear Information System (INIS)

    Bright, K.C.; Freeda, T.H.

    2010-01-01

    Single crystals of L-alanine cadmium chloride (LACC), an organometallic nonlinear optical material, have been grown by the slow evaporation technique. The grown crystals were subjected to various characterization techniques, such as single crystal and powder XRD, FTIR, UV-vis and TGA-DTA. The mechanical properties of the crystals show that this material belongs to the category of hard materials. Second harmonic generation was confirmed by the Kurtz and Perry powder technique. Electrical parameters, such as dielectric constant, dielectric loss, ac and dc conductivity and their corresponding activation energies have been studied. The low dielectric constant and dielectric loss suggest that this material is a good candidate for micro-electronic applications.

  16. Wet-chemical enzymatic preparation and characterization of ultrathin gold-decorated single glass nanopore.

    Science.gov (United States)

    He, Haili; Xu, Xiaolong; Jin, Yongdong

    2014-05-20

    The conical glass nanopore was modified through layer-by-layer electrostatic deposition of a monolayer of glucose oxidase, and then an ultrathin gold film was formed in situ through enzyme-catalyzed reactions. The morphology and components of single glass nanopore before and after ultrathin Au deposition were characterized by transmission electron microscopy (TEM) and energy-dispersive X-ray (EDX) analysis, respectively. In particular, the quenching of the quantum dots fluorescence in the nanopore tip zone further illustrated that the gold nanofilm was successfully deposited on the inner wall of the single glass nanopore. The Au thin films make the glass nanopores more biologically friendly and allow the nanopores facile functionalization of the surface through the Au-S bonds. For instance, the ionic current rectification (ICR) properties of the gold-decorated glass nanopores could be switched readily at different pHs by introducing different thiol molecules.

  17. Synthesis and characterization of nonlinear optical L-arginine semi-oxalate single crystal

    Science.gov (United States)

    Vasudevan, P.; Gokul Raj, S.; Sankar, S.

    2013-04-01

    L-arginine semi-oxalate single crystals have been synthesized by slow evaporation method at room temperature. Single crystal and powder X-ray diffraction analyses has been made to confirm the triclinic structure with non-centrosymmetric space group P1. The presence of functional groups of L-arginine semi-oxalate crystals was identified and confirmed by using the Fourier transform infrared spectroscopy. Molecular structure of the grown crystal was analyzed by 1H NMR and 13C NMR studies. Optical absorption studies carried out in wavelength range from 250 nm to 1200 nm have revealed that the material is completely transparent for the entire wavelength range studied. Thermal characterization using thermogravimetric analysis and differential scanning calorimetry studies show that the crystal is thermally stable up to 146 °C. The presence of second harmonic generation of the grown crystal was tested and its efficiency was determined by using Kurtz and Perry powder technique.

  18. Graphical user interface for input output characterization of single variable and multivariable highly nonlinear systems

    Directory of Open Access Journals (Sweden)

    Shahrukh Adnan Khan M. D.

    2017-01-01

    Full Text Available This paper presents a Graphical User Interface (GUI software utility for the input/output characterization of single variable and multivariable nonlinear systems by obtaining the sinusoidal input describing function (SIDF of the plant. The software utility is developed on MATLAB R2011a environment. The developed GUI holds no restriction on the nonlinearity type, arrangement and system order; provided that output(s of the system is obtainable either though simulation or experiments. An insight to the GUI and its features are presented in this paper and example problems from both single variable and multivariable cases are demonstrated. The formulation of input/output behavior of the system is discussed and the nucleus of the MATLAB command underlying the user interface has been outlined. Some of the industries that would benefit from this software utility includes but not limited to aerospace, defense technology, robotics and automotive.

  19. Feasibility of Observing and Characterizing Single Ion Strikes in Microelectronic Components.

    Energy Technology Data Exchange (ETDEWEB)

    Dingreville, Remi Philippe Michel [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Hattar, Khalid Mikhiel [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Bufford, Daniel Charles [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    The transient degradation of semiconductor device performance under irradiation has long been an issue of concern. A single high-energy charged particle can degrade or permanently destroy the microelectronic component, potentially altering the course or function of the systems. Disruption of the the crystalline structure through the introduction of quasi-stable defect structures can change properties from semiconductor to conductor. Typically, the initial defect formation phase is followed by a recovery phase in which defect-defect or defect-dopant interactions modify the characteristics of the damaged structure. In this LDRD Express, in-situ ion irradiation transmission microscopy (TEM) in-situ TEM experiments combined with atomistic simulations have been conducted to determine the feasibility of imaging and characterizing the defect structure resulting from a single cascade in silicon. In-situ TEM experiments have been conducted to demonstrate that a single ion strike can be observed in Si thin films with nanometer resolution in real time using the in-situ ion irradiation transmission electron microscope (I3TEM). Parallel to this experimental effort, ion implantation has been numerically simulated using Molecular Dynamics (MD). This numerical framework provides detailed predictions of the damage and follow the evolution of the damage during the first nanoseconds. The experimental results demonstrate that single ion strike can be observed in prototypical semiconductors.

  20. Feasibility of Observing and Characterizing Single Ion Strikes in Microelectronic Components

    International Nuclear Information System (INIS)

    Dingreville, Remi Philippe Michel; Hattar, Khalid Mikhiel; Bufford, Daniel Charles

    2015-01-01

    The transient degradation of semiconductor device performance under irradiation has long been an issue of concern. A single high-energy charged particle can degrade or permanently destroy the microelectronic component, potentially altering the course or function of the systems. Disruption of the the crystalline structure through the introduction of quasi-stable defect structures can change properties from semiconductor to conductor. Typically, the initial defect formation phase is followed by a recovery phase in which defect-defect or defect-dopant interactions modify the characteristics of the damaged structure. In this LDRD Express, in-situ ion irradiation transmission microscopy (TEM) in-situ TEM experiments combined with atomistic simulations have been conducted to determine the feasibility of imaging and characterizing the defect structure resulting from a single cascade in silicon. In-situ TEM experiments have been conducted to demonstrate that a single ion strike can be observed in Si thin films with nanometer resolution in real time using the in-situ ion irradiation transmission electron microscope (I 3 TEM). Parallel to this experimental effort, ion implantation has been numerically simulated using Molecular Dynamics (MD). This numerical framework provides detailed predictions of the damage and follow the evolution of the damage during the first nanoseconds. The experimental results demonstrate that single ion strike can be observed in prototypical semiconductors.

  1. Geometric characterization of separability and entanglement in pure Gaussian states by single-mode unitary operations

    International Nuclear Information System (INIS)

    Adesso, Gerardo; Giampaolo, Salvatore M.; Illuminati, Fabrizio

    2007-01-01

    We present a geometric approach to the characterization of separability and entanglement in pure Gaussian states of an arbitrary number of modes. The analysis is performed adapting to continuous variables a formalism based on single subsystem unitary transformations that has been recently introduced to characterize separability and entanglement in pure states of qubits and qutrits [S. M. Giampaolo and F. Illuminati, Phys. Rev. A 76, 042301 (2007)]. In analogy with the finite-dimensional case, we demonstrate that the 1xM bipartite entanglement of a multimode pure Gaussian state can be quantified by the minimum squared Euclidean distance between the state itself and the set of states obtained by transforming it via suitable local symplectic (unitary) operations. This minimum distance, corresponding to a, uniquely determined, extremal local operation, defines an entanglement monotone equivalent to the entropy of entanglement, and amenable to direct experimental measurement with linear optical schemes

  2. Optimization And Single-Shot Characterization Of Ultrashort Thz Pulses From A Laser Wakefield Accelerator

    International Nuclear Information System (INIS)

    Plateau, G.R.; Matlis, N.H.; van Tilborg, J.; Geddes, C.G.R.; Toth, Cs.; Schroeder, C.B.; Leemans, W.P.

    2009-01-01

    We present spatiotemporal characterization of μJ-class ultrashort THz pulses generated from a laser wakefield accelerator (LWFA). Accelerated electrons, resulting from the interaction of a high-intensity laser pulse with a plasma, emit high-intensity THz pulses as coherent transition radiation. Such high peak-power THz pulses, suitable for high-field (MV/cm) pump-probe experiments, also provide a non-invasive bunch-length diagnostic and thus feedback for the accelerator. The characterization of the THz pulses includes energy measurement using a Golay cell, 2D sign-resolved electro-optic measurement and single-shot spatiotemporal electric-field distribution retrieval using a new technique, coined temporal electric-field cross-Correlation (TEX). All three techniques corroborate THz pulses of ∼ 5 μJ, with peak fields of 100's of kV/cm and ∼ 0.4 ps rms duration.

  3. Penetuan Bilangan Iodin pada Hydrogenated Palm Kernel Oil (HPKO) dan Refined Bleached Deodorized Palm Kernel Oil (RBDPKO)

    OpenAIRE

    Sitompul, Monica Angelina

    2015-01-01

    Have been conducted Determination of Iodin Value by method titration to some Hydrogenated Palm Kernel Oil (HPKO) and Refined Bleached Deodorized Palm Kernel Oil (RBDPKO). The result of analysis obtained the Iodin Value in Hydrogenated Palm Kernel Oil (A) = 0,16 gr I2/100gr, Hydrogenated Palm Kernel Oil (B) = 0,20 gr I2/100gr, Hydrogenated Palm Kernel Oil (C) = 0,24 gr I2/100gr. And in Refined Bleached Deodorized Palm Kernel Oil (A) = 17,51 gr I2/100gr, Refined Bleached Deodorized Palm Kernel ...

  4. Tank characterization report for single-shell tank 241-C-104

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, J.H.

    1997-05-21

    A major function of the Tank Waste Remediation System is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-C-104. The objectives of this report are: (1) to use characterization data in response to technical issues associated with tank 241-C-104 waste; and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1996) milestone M-44-10.

  5. Tank characterization report for single-shell tank 241-U-106

    Energy Technology Data Exchange (ETDEWEB)

    Brown, T.M.

    1997-04-15

    One major function of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information, are compiled and maintained in a tank characterization report (TCR). This report and its appendixes serve as the TCR for single-shell tank 241-U-106. The objectives of this report are: (1) to use characterization data in response to technical issues associated with tank 241-U-106 waste, and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 of this report summarizes the response to technical issues, Section 3.0 shows the best-basis inventory estimate, and Section 4.0 makes recommendations regarding safety status and additional sampling. The appendixes contain supporting data and information. This report also supports the requirements of the Hanford Federal Facility Agreement and Consent Order (Ikology et al. 1996), Milestone M-44-10.

  6. Tank characterization report for single-shell tank 241-U-106

    International Nuclear Information System (INIS)

    Brown, T.M.

    1997-01-01

    One major function of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information, are compiled and maintained in a tank characterization report (TCR). This report and its appendixes serve as the TCR for single-shell tank 241-U-106. The objectives of this report are: (1) to use characterization data in response to technical issues associated with tank 241-U-106 waste, and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 of this report summarizes the response to technical issues, Section 3.0 shows the best-basis inventory estimate, and Section 4.0 makes recommendations regarding safety status and additional sampling. The appendixes contain supporting data and information. This report also supports the requirements of the Hanford Federal Facility Agreement and Consent Order (Ikology et al. 1996), Milestone M-44-10

  7. Tank characterization report for single-shell tank 241-S-111

    International Nuclear Information System (INIS)

    Conner, J.M.

    1997-01-01

    One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-S-111. The objectives of this report are: (1) to use characterization data to address technical issues associated with tank 241-S-111 waste; and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices. This report also supports the requirements of Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1996) milestone M-44-10

  8. Tank characterization report for single-shell tank 241-S-104

    International Nuclear Information System (INIS)

    Jo, J.

    1997-01-01

    One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendixes serve as the TCR for single-shell tank 241-S-104. The objectives of this report are: (1) to use characterization data in response to technical issues associated with 241-S- 104 waste; and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendixes. This report also supports the requirements of the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1996) milestone M-44-05

  9. Tank characterization report for single-shell tak 241-C-112. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, B.C.

    1997-06-11

    One major function of the Tank Waste Remediation System (IWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis and other available information about a tank are compiled and maintained in a tank characterization report (CR). This report and its appendixes serve as the CR for single-shell tank 24 1 -C- 1 12. The objectives of this report are: 1) to use characterization data in response to technical issues associated with tank 24 1 -C- 1 12 waste, and 2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 summarizes the response to technical issues, Section 3.0 shows the best-basis inventory estimate, and Section 4.0 makes recommendations regarding safety status and additional sampling needs. The appendixes contain supporting data and information. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order, Milestone M-44-05 (Ecology et al. 1996).

  10. Single-scan dual-tracer FLT+FDG PET tumor characterization.

    Science.gov (United States)

    Kadrmas, Dan J; Rust, Thomas C; Hoffman, John M

    2013-02-07

    Rapid multi-tracer PET aims to image two or more tracers in a single scan, simultaneously characterizing multiple aspects of physiology and function without the need for repeat imaging visits. Using dynamic imaging with staggered injections, constraints on the kinetic behavior of each tracer are applied to recover individual-tracer measures from the multi-tracer PET signal. The ability to rapidly and reliably image both (18)F-fluorodeoxyglucose (FDG) and (18)F-fluorothymidine (FLT) would provide complementary measures of tumor metabolism and proliferative activity, with important applications in guiding oncologic treatment decisions and assessing response. However, this tracer combination presents one of the most challenging dual-tracer signal-separation problems--both tracers have the same radioactive half-life, and the injection delay is short relative to the half-life and tracer kinetics. This work investigates techniques for single-scan dual-tracer FLT+FDG PET tumor imaging, characterizing the performance of recovering static and dynamic imaging measures for each tracer from dual-tracer datasets. Simulation studies were performed to characterize dual-tracer signal-separation performance for imaging protocols with both injection orders and injection delays of 10-60 min. Better performance was observed when FLT was administered first, and longer delays before administration of FDG provided more robust signal-separation and recovery of the single-tracer imaging measures. An injection delay of 30 min led to good recovery (R > 0.96) of static image values (e.g. SUV), K(net), and K(1) as compared to values from separate, single-tracer time-activity curves. Recovery of higher order rate parameters (k(2), k(3)) was less robust, indicating that information regarding these parameters was harder to recover in the presence of statistical noise and dual-tracer effects. Performance of the dual-tracer FLT(0 min)+FDG(32 min) technique was further evaluated using PET/CT imaging

  11. The actuation characterization of cantilevered unimorph beams with single crystal piezoelectric materials

    International Nuclear Information System (INIS)

    Bilgen, Onur; Friswell, Michael I; Amin Karami, M; Inman, Daniel J

    2011-01-01

    An experimental and theoretical electromechanical characterization of beam-like, uniform cross-section, unimorph structures employing single crystal piezoelectrics is presented. The purpose of the research is to understand and compare the actuation capabilities of several piezoelectric materials and substrate configurations so that optimal design choices can be employed in lightweight, low power aerodynamic applications. Monolithic devices made from three kinds of piezoelectrics—single crystal PMN–PZT (lead magnesium niobate–lead zirconate titanate) and the polycrystalline PZT-5A and PZT-5H types—are compared in a unimorph cantilevered beam configuration. A total of 24 unimorph specimens are fabricated and the validity of existing models is examined through experimentation. The tip velocity response to harmonic voltage excitation is measured and compared to the analytical prediction with the perfect bonding assumption. Summarizing, it was confirmed that the substrate-to-piezoelectric thickness ratio and substrate modulus are the important design parameters in determining the measured output of the unimorphs and the accuracy of the model prediction. The single crystal piezoelectrics demonstrated actuation authority two to four times higher (measured in terms of peak displacement per applied voltage) when compared to the polycrystalline piezoceramics for the same substrate material and geometry choice. In contrast to the higher actuation output, practical implementation issues are noted for the single crystal devices. The lack of grain boundaries (as in the polycrystalline material) makes the single crystals very 'brittle' and susceptible to stress concentrations. Another important limitation is the low transition temperature, which limits the use of conventional solder materials in creating electrical connections

  12. Characterization of a Messer – The late-Medieval single-edged sword of Central Europe

    Energy Technology Data Exchange (ETDEWEB)

    Fajfar, Peter; Medved, Jožef; Klančnik, Grega [Department of Materials and Metallurgy, Faculty of Natural Sciences and Engineering, University of Ljubljana, Aškerčeva cesta 12, SI-1000 Ljubljana (Slovenia); Lazar, Tomaž [National Museum of Slovenia, Prešernova cesta 20, SI-1000 Ljubljana (Slovenia); Nečemer, Marijan [Jožef Stefan Institut, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Mrvar, Primož, E-mail: primoz.mrvar@omm.ntf.uni-lj.si [Department of Materials and Metallurgy, Faculty of Natural Sciences and Engineering, University of Ljubljana, Aškerčeva cesta 12, SI-1000 Ljubljana (Slovenia)

    2013-12-15

    Metallurgical characterization of a sword blade fragments dating from the second half of the 15th century found in central Slovenia was performed in order to determine its chemical composition, microstructure, microhardness, and to obtain insight into the methods of manufacture of a late-medieval Messer sword. As the artefact was broken, examinations were limited to six very small fragments that were allowed to be removed from the cutting edge, core and the back of the blade. Light optical microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, energy dispersive X-ray fluorescence spectrometry, differential scanning calorimetry, thermodynamics approach and Vickers micro-hardness tests were employed to analyze the microstructure and mechanical properties. The results show that the sword was manufactured from a single wrought iron billet. The surface of the sword was carburized. No evidence of quenching was found. The ferritic microstructure is concentrated in the core, and the pearlitic in the outer layer of the blade. All metal fragments contained non-metallic inclusions that were derived mostly from slag and some from hammer scale. - Highlights: • A metallurgical characterization of a medieval sword blade has been performed. • The carbon content decreased from the surface to the core of the blade. • The dominant microstructure in the outer layer is pearlite and in the core is ferrite. • The presence of lump shaped and elongated non-metallic inclusions was observed. • The sword was manufactured from a single wrought iron billet.

  13. Single cigar-shaped nanopores functionalized with amphoteric amino acid chains: experimental and theoretical characterization.

    Science.gov (United States)

    Ali, Mubarak; Ramirez, Patricio; Nguyen, Hung Quoc; Nasir, Saima; Cervera, Javier; Mafe, Salvador; Ensinger, Wolfgang

    2012-04-24

    We present an experimental and theoretical characterization of single cigar-shaped nanopores with pH-responsive carboxylic acid and lysine chains functionalized on the pore surface. The nanopore characterization includes (i) optical images of the nanostructure obtained by FESEM; (ii) different chemical procedures for the nanopore preparation (etching time and functionalizations; pH and electrolyte concentration of the external solution) allowing externally tunable nanopore responses monitored by the current-voltage (I-V) curves; and (iii) transport simulations obtained with a multilayer nanopore model. We show that a single, approximately symmetric nanopore can be operated as a reconfigurable diode showing different rectifying behaviors by applying chemical and electrical signals. The remarkable characteristics of the new nanopore are the sharp response observed in the I-V curves, the improved tunability (with respect to previous designs of symmetric nanopores) which is achieved because of the direct external access to the nanostructure mouths, and the broad range of rectifying properties. The results concern both fundamental concepts useful for the understanding of transport processes in biological systems (ion channels) and applications relevant for tunable nanopore technology (information processing and drug controlled release).

  14. Flexibly imposing periodicity in kernel independent FMM: A multipole-to-local operator approach

    Science.gov (United States)

    Yan, Wen; Shelley, Michael

    2018-02-01

    An important but missing component in the application of the kernel independent fast multipole method (KIFMM) is the capability for flexibly and efficiently imposing singly, doubly, and triply periodic boundary conditions. In most popular packages such periodicities are imposed with the hierarchical repetition of periodic boxes, which may give an incorrect answer due to the conditional convergence of some kernel sums. Here we present an efficient method to properly impose periodic boundary conditions using a near-far splitting scheme. The near-field contribution is directly calculated with the KIFMM method, while the far-field contribution is calculated with a multipole-to-local (M2L) operator which is independent of the source and target point distribution. The M2L operator is constructed with the far-field portion of the kernel function to generate the far-field contribution with the downward equivalent source points in KIFMM. This method guarantees the sum of the near-field & far-field converge pointwise to results satisfying periodicity and compatibility conditions. The computational cost of the far-field calculation observes the same O (N) complexity as FMM and is designed to be small by reusing the data computed by KIFMM for the near-field. The far-field calculations require no additional control parameters, and observes the same theoretical error bound as KIFMM. We present accuracy and timing test results for the Laplace kernel in singly periodic domains and the Stokes velocity kernel in doubly and triply periodic domains.

  15. Exact Heat Kernel on a Hypersphere and Its Applications in Kernel SVM

    Directory of Open Access Journals (Sweden)

    Chenchao Zhao

    2018-01-01

    Full Text Available Many contemporary statistical learning methods assume a Euclidean feature space. This paper presents a method for defining similarity based on hyperspherical geometry and shows that it often improves the performance of support vector machine compared to other competing similarity measures. Specifically, the idea of using heat diffusion on a hypersphere to measure similarity has been previously proposed and tested by Lafferty and Lebanon [1], demonstrating promising results based on a heuristic heat kernel obtained from the zeroth order parametrix expansion; however, how well this heuristic kernel agrees with the exact hyperspherical heat kernel remains unknown. This paper presents a higher order parametrix expansion of the heat kernel on a unit hypersphere and discusses several problems associated with this expansion method. We then compare the heuristic kernel with an exact form of the heat kernel expressed in terms of a uniformly and absolutely convergent series in high-dimensional angular momentum eigenmodes. Being a natural measure of similarity between sample points dwelling on a hypersphere, the exact kernel often shows superior performance in kernel SVM classifications applied to text mining, tumor somatic mutation imputation, and stock market analysis.

  16. Oecophylla longinoda (Hymenoptera: Formicidae) Lead to Increased Cashew Kernel Size and Kernel Quality.

    Science.gov (United States)

    Anato, F M; Sinzogan, A A C; Offenberg, J; Adandonon, A; Wargui, R B; Deguenon, J M; Ayelo, P M; Vayssières, J-F; Kossou, D K

    2017-06-01

    Weaver ants, Oecophylla spp., are known to positively affect cashew, Anacardium occidentale L., raw nut yield, but their effects on the kernels have not been reported. We compared nut size and the proportion of marketable kernels between raw nuts collected from trees with and without ants. Raw nuts collected from trees with weaver ants were 2.9% larger than nuts from control trees (i.e., without weaver ants), leading to 14% higher proportion of marketable kernels. On trees with ants, the kernel: raw nut ratio from nuts damaged by formic acid was 4.8% lower compared with nondamaged nuts from the same trees. Weaver ants provided three benefits to cashew production by increasing yields, yielding larger nuts, and by producing greater proportions of marketable kernel mass. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Single-site SBA-15 supported zirconium catalysts. Synthesis, characterization and toward cyanosilylation reaction

    International Nuclear Information System (INIS)

    Xu, Wei; Yu, Bo; Zhang, Ying; Chen, Xi; Zhang, Guofang; Gao, Ziwei

    2015-01-01

    Graphical abstract: Ligand-modified signal-site SBA-15 supported zirconium catalysts were synthesized by SOMC method and characterized by a variety of techniques. The zirconium surface complexes show high catalytic efficiency for cyanosilylation of benzaldehyde. - Highlights: • Some Zr active species have been anchored on the surface of SBA-15 by SOMC technique. • The structures of the Zr species have been characterized by a variety of techniques. • The anchored Zr species are single-sited surface complexes. • The Zr surface complexes are catalytic active for cyanosilylation of benzaldehyde. - Abstract: A successive anchoring of Zr(NMe 2 ) 4 , cyclopentadiene and a O-donor ligand, 1-hydroxyethylbenzene (PEA), 1,1′-bi-2-naphthol (Binol) or 2,3-dihydroxybutanedioic acid diethyl ester (Tartrate), on dehydroxylated SBA-15 pretreated at 500 °C for 16 h (SBA-15 -500 ) was conducted by SOMC strategy in moderate conditions. The dehydoxylation of SBA-15 was monitored by in situ Fourier transform infrared spectroscopy (in situ FT-IR). The ligand-modified SBA-15 -500 supported zirconium complexes were characterized by in situ FT-IR, 13 C CP MAS-NMR, X-ray photoelectron spectroscopy (XPS), inductively coupled plasma mass spectrometry (ICP-MAS) and elemental analysis in detail, verifying that the surface zirconium species are single-sited. The catalytic activity of these complexes was evaluated by cyanosilylation of benzaldehyde. The results showed that the catalytic activity is dependent strongly on the structure of surface species and the configuration of the ligands

  18. Single-site SBA-15 supported zirconium catalysts. Synthesis, characterization and toward cyanosilylation reaction

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wei; Yu, Bo; Zhang, Ying; Chen, Xi; Zhang, Guofang, E-mail: gfzhang@snnu.edu.cn; Gao, Ziwei, E-mail: zwgao@snnu.edu.cn

    2015-01-15

    Graphical abstract: Ligand-modified signal-site SBA-15 supported zirconium catalysts were synthesized by SOMC method and characterized by a variety of techniques. The zirconium surface complexes show high catalytic efficiency for cyanosilylation of benzaldehyde. - Highlights: • Some Zr active species have been anchored on the surface of SBA-15 by SOMC technique. • The structures of the Zr species have been characterized by a variety of techniques. • The anchored Zr species are single-sited surface complexes. • The Zr surface complexes are catalytic active for cyanosilylation of benzaldehyde. - Abstract: A successive anchoring of Zr(NMe{sub 2}){sub 4}, cyclopentadiene and a O-donor ligand, 1-hydroxyethylbenzene (PEA), 1,1′-bi-2-naphthol (Binol) or 2,3-dihydroxybutanedioic acid diethyl ester (Tartrate), on dehydroxylated SBA-15 pretreated at 500 °C for 16 h (SBA-15{sub -500}) was conducted by SOMC strategy in moderate conditions. The dehydoxylation of SBA-15 was monitored by in situ Fourier transform infrared spectroscopy (in situ FT-IR). The ligand-modified SBA-15{sub -500} supported zirconium complexes were characterized by in situ FT-IR, {sup 13}C CP MAS-NMR, X-ray photoelectron spectroscopy (XPS), inductively coupled plasma mass spectrometry (ICP-MAS) and elemental analysis in detail, verifying that the surface zirconium species are single-sited. The catalytic activity of these complexes was evaluated by cyanosilylation of benzaldehyde. The results showed that the catalytic activity is dependent strongly on the structure of surface species and the configuration of the ligands.

  19. Characterization of a mitochondrially targeted single-stranded DNA-binding protein in Arabidopsis thaliana.

    Science.gov (United States)

    Edmondson, Andrew C; Song, Daqing; Alvarez, Luis A; Wall, Melisa K; Almond, David; McClellan, David A; Maxwell, Anthony; Nielsen, Brent L

    2005-04-01

    A gene encoding a predicted mitochondrially targeted single-stranded DNA binding protein (mtSSB) was identified in the Arabidopsis thaliana genome sequence. This gene (At4g11060) codes for a protein of 201 amino acids, including a 28-residue putative mitochondrial targeting transit peptide. Protein sequence alignment shows high similarity between the mtSSB protein and single-stranded DNA binding proteins (SSB) from bacteria, including residues conserved for SSB function. Phylogenetic analysis indicates a close relationship between this protein and other mitochondrially targeted SSB proteins. The predicted targeting sequence was fused with the GFP coding region, and the organellar localization of the expressed fusion protein was determined. Specific targeting to mitochondria was observed in in-vitro import experiments and by transient expression of a GFP fusion construct in Arabidopsis leaves after microprojectile bombardment. The mature mtSSB coding region was overexpressed in Escherichia coli and the protein was purified for biochemical characterization. The purified protein binds single-stranded, but not double-stranded, DNA. MtSSB stimulates the homologous strand-exchange activity of E. coli RecA. These results indicate that mtSSB is a functional homologue of the E. coli SSB, and that it may play a role in mitochondrial DNA recombination.

  20. Morphological and mechanical characterization of composite calcite/SWCNT-COOH single crystals.

    Science.gov (United States)

    Calvaresi, Matteo; Falini, Giuseppe; Pasquini, Luca; Reggi, Michela; Fermani, Simona; Gazzadi, Gian Carlo; Frabboni, Stefano; Zerbetto, Francesco

    2013-08-07

    A growing number of classes of organic (macro)molecular materials have been trapped into inorganic crystalline hosts, such as calcite single crystals, without significantly disrupting their crystalline lattices. Inclusion of an organic phase plays a key role in enhancing the mechanical properties of the crystals, which are believed to share structural features with biogenic minerals. Here we report the synthesis and mechanical characterization of composite calcite/SWCNT-COOH single crystals. Once entrapped into the crystals SWCNT-COOH appeared both as aggregates of entangled bundles and nanoropes. Their observation was possible only after crystal etching, fracture or FIB (focused ion beam) cross-sectioning. SWCNT-COOHs occupied a small volume fraction and were randomly distributed into the host crystal. They did not strongly affect the crystal morphology. However, although the Young's modulus of composite calcite/SWCNT-COOH single crystals was similar to that of pure calcite their hardness increased by about 20%. Thus, SWCNT-COOHs provide an obstacle against the dislocation-mediated propagation of plastic deformation in the crystalline slip systems, in analogy with the well-known hardness increase in fiber-reinforced composites.

  1. Single-Trial Linear Correlation Analysis: Application to characterization of stimulus modality effects

    Directory of Open Access Journals (Sweden)

    Christoforos eChristoforou

    2013-03-01

    Full Text Available A key objective in systems and cognitive neuroscience is to establish associations between behavioral measures and concurrent neuronal activity. Single-trial analysis has been proposed as a novel method for characterizing such correlates by first extracting neural components that maximally discriminate trials on a categorical variable, (e.g., hard vs. easy, correct vs. incorrect etc., and then correlate those components to a continues dependent variable of interest , e.g. reaction time, difficulty Index, etc. However, often times in experiment design it is difficult to either define meaningful categorical variables, or to record enough trials for the method to extract the discriminant components. Experiments designed for the study of the effects of stimulus presentation modality in working memory provide such a scenario, as will be exemplified. In this paper, we proposed a new approach to single-trial analysis in which we directly extract neural activity that maximally correlates to single-trial manual response times; eliminating the need to define an arbitrary categorical variable. We demonstrate our method on real EEG data recordings from the study of stimulus presentation modality effect.

  2. AC signal characterization for optimization of a CMOS single-electron pump

    Science.gov (United States)

    Murray, Roy; Perron, Justin K.; Stewart, M. D., Jr.; Zimmerman, Neil M.

    2018-02-01

    Pumping single electrons at a set rate is being widely pursued as an electrical current standard. Semiconductor charge pumps have been pursued in a variety of modes, including single gate ratchet, a variety of 2-gate ratchet pumps, and 2-gate turnstiles. Whether pumping with one or two AC signals, lower error rates can result from better knowledge of the properties of the AC signal at the device. In this work, we operated a CMOS single-electron pump with a 2-gate ratchet style measurement and used the results to characterize and optimize our two AC signals. Fitting this data at various frequencies revealed both a difference in signal path length and attenuation between our two AC lines. Using this data, we corrected for the difference in signal path length and attenuation by applying an offset in both the phase and the amplitude at the signal generator. Operating the device as a turnstile while using the optimized parameters determined from the 2-gate ratchet measurement led to much flatter, more robust charge pumping plateaus. This method was useful in tuning our device up for optimal charge pumping, and may prove useful to the semiconductor quantum dot community to determine signal attenuation and path differences at the device.

  3. Growth, structural and magnetic characterization of Al-substituted barium hexaferrite single crystals

    International Nuclear Information System (INIS)

    Vinnik, D.A.; Zherebtsov, D.A.; Mashkovtseva, L.S.; Nemrava, S.; Bischoff, M.; Perov, N.S.; Semisalova, A.S.; Krivtsov, I.V.; Isaenko, L.I.; Mikhailov, G.G.; Niewa, R.

    2014-01-01

    Highlights: • Growth of large Al-substituted crystals BaFe 12−x Al x O 19. • Al-content controllable by flux composition. • Crystallographic site preference of Al unraveled. • Magnetic characterization depending on Al-content. - Abstract: Large single crystals of aluminum-substituted M-type barium hexaferrite BaFe 12−x Al x O 19 were obtained from carbonate flux. The Al content in the crystals can be controlled via the Al content of the flux up to x = 1.1 according to single crystal X-ray structure refinements. Al shows a distinct preference to substitute Fe on crystallographic sites with high coordination numbers by oxygen atoms, whereas no significant amounts of Al can be found on a tetrahedrally coordinated site. An increasing amount of the aluminum dopant results in a monotonous reduction of the Curie temperature from 440 to 415 °C and the saturation magnetization at room temperature from 68 to 57 emu/g for single crystal and from 61 to 53 emu/g for powder samples

  4. Kernel based orthogonalization for change detection in hyperspectral images

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg

    matrix only. In the kernel version the inner products are replaced by inner products between nonlinear mappings into higher dimensional feature space of the original data. Via kernel substitution also known as the kernel trick these inner products between the mappings are in turn replaced by a kernel...... function and all quantities needed in the analysis are expressed in terms of this kernel function. This means that we need not know the nonlinear mappings explicitly. Kernel PCA and MNF analyses handle nonlinearities by implicitly transforming data into high (even infinite) dimensional feature space via...... the kernel function and then performing a linear analysis in that space. An example shows the successful application of (kernel PCA and) kernel MNF analysis to change detection in HyMap data covering a small agricultural area near Lake Waging-Taching, Bavaria, in Southern Germany. In the change detection...

  5. Single- and two-phase flow characterization using optical fiber bragg gratings.

    Science.gov (United States)

    Baroncini, Virgínia H V; Martelli, Cicero; da Silva, Marco José; Morales, Rigoberto E M

    2015-03-17

    Single- and two-phase flow characterization using optical fiber Bragg gratings (FBGs) is presented. The sensor unit consists of the optical fiber Bragg grating positioned transversely to the flow and fixed in the pipe walls. The hydrodynamic pressure applied by the liquid or air/liquid flow to the optical fiber induces deformation that can be detected by the FBG. Given that the applied pressure is directly related to the mass flow, it is possible to establish a relationship using the grating resonance wavelength shift to determine the mass flow when the flow velocity is well known. For two phase flows of air and liquid, there is a significant change in the force applied to the fiber that accounts for the very distinct densities of these substances. As a consequence, the optical fiber deformation and the correspondent grating wavelength shift as a function of the flow will be very different for an air bubble or a liquid slug, allowing their detection as they flow through the pipe. A quasi-distributed sensing tool with 18 sensors evenly spread along the pipe is developed and characterized, making possible the characterization of the flow, as well as the tracking of the bubbles over a large section of the test bed. Results show good agreement with standard measurement methods and open up plenty of opportunities to both laboratory measurement tools and field applications.

  6. Bayesian Genomic Prediction with Genotype × Environment Interaction Kernel Models

    Science.gov (United States)

    Cuevas, Jaime; Crossa, José; Montesinos-López, Osval A.; Burgueño, Juan; Pérez-Rodríguez, Paulino; de los Campos, Gustavo

    2016-01-01

    The phenomenon of genotype × environment (G × E) interaction in plant breeding decreases selection accuracy, thereby negatively affecting genetic gains. Several genomic prediction models incorporating G × E have been recently developed and used in genomic selection of plant breeding programs. Genomic prediction models for assessing multi-environment G × E interaction are extensions of a single-environment model, and have advantages and limitations. In this study, we propose two multi-environment Bayesian genomic models: the first model considers genetic effects (u) that can be assessed by the Kronecker product of variance–covariance matrices of genetic correlations between environments and genomic kernels through markers under two linear kernel methods, linear (genomic best linear unbiased predictors, GBLUP) and Gaussian (Gaussian kernel, GK). The other model has the same genetic component as the first model (u) plus an extra component, f, that captures random effects between environments that were not captured by the random effects u. We used five CIMMYT data sets (one maize and four wheat) that were previously used in different studies. Results show that models with G × E always have superior prediction ability than single-environment models, and the higher prediction ability of multi-environment models with u and f over the multi-environment model with only u occurred 85% of the time with GBLUP and 45% of the time with GK across the five data sets. The latter result indicated that including the random effect f is still beneficial for increasing prediction ability after adjusting by the random effect u. PMID:27793970

  7. Bayesian Genomic Prediction with Genotype × Environment Interaction Kernel Models

    Directory of Open Access Journals (Sweden)

    Jaime Cuevas

    2017-01-01

    Full Text Available The phenomenon of genotype × environment (G × E interaction in plant breeding decreases selection accuracy, thereby negatively affecting genetic gains. Several genomic prediction models incorporating G × E have been recently developed and used in genomic selection of plant breeding programs. Genomic prediction models for assessing multi-environment G × E interaction are extensions of a single-environment model, and have advantages and limitations. In this study, we propose two multi-environment Bayesian genomic models: the first model considers genetic effects ( u that can be assessed by the Kronecker product of variance–covariance matrices of genetic correlations between environments and genomic kernels through markers under two linear kernel methods, linear (genomic best linear unbiased predictors, GBLUP and Gaussian (Gaussian kernel, GK. The other model has the same genetic component as the first model ( u plus an extra component, f, that captures random effects between environments that were not captured by the random effects u . We used five CIMMYT data sets (one maize and four wheat that were previously used in different studies. Results show that models with G × E always have superior prediction ability than single-environment models, and the higher prediction ability of multi-environment models with u   and   f over the multi-environment model with only u occurred 85% of the time with GBLUP and 45% of the time with GK across the five data sets. The latter result indicated that including the random effect f is still beneficial for increasing prediction ability after adjusting by the random effect u .

  8. Bayesian Genomic Prediction with Genotype × Environment Interaction Kernel Models.

    Science.gov (United States)

    Cuevas, Jaime; Crossa, José; Montesinos-López, Osval A; Burgueño, Juan; Pérez-Rodríguez, Paulino; de Los Campos, Gustavo

    2017-01-05

    The phenomenon of genotype × environment (G × E) interaction in plant breeding decreases selection accuracy, thereby negatively affecting genetic gains. Several genomic prediction models incorporating G × E have been recently developed and used in genomic selection of plant breeding programs. Genomic prediction models for assessing multi-environment G × E interaction are extensions of a single-environment model, and have advantages and limitations. In this study, we propose two multi-environment Bayesian genomic models: the first model considers genetic effects [Formula: see text] that can be assessed by the Kronecker product of variance-covariance matrices of genetic correlations between environments and genomic kernels through markers under two linear kernel methods, linear (genomic best linear unbiased predictors, GBLUP) and Gaussian (Gaussian kernel, GK). The other model has the same genetic component as the first model [Formula: see text] plus an extra component, F: , that captures random effects between environments that were not captured by the random effects [Formula: see text] We used five CIMMYT data sets (one maize and four wheat) that were previously used in different studies. Results show that models with G × E always have superior prediction ability than single-environment models, and the higher prediction ability of multi-environment models with [Formula: see text] over the multi-environment model with only u occurred 85% of the time with GBLUP and 45% of the time with GK across the five data sets. The latter result indicated that including the random effect f is still beneficial for increasing prediction ability after adjusting by the random effect [Formula: see text]. Copyright © 2017 Cuevas et al.

  9. Pattern Classification of Signals Using Fisher Kernels

    Directory of Open Access Journals (Sweden)

    Yashodhan Athavale

    2012-01-01

    Full Text Available The intention of this study is to gauge the performance of Fisher kernels for dimension simplification and classification of time-series signals. Our research work has indicated that Fisher kernels have shown substantial improvement in signal classification by enabling clearer pattern visualization in three-dimensional space. In this paper, we will exhibit the performance of Fisher kernels for two domains: financial and biomedical. The financial domain study involves identifying the possibility of collapse or survival of a company trading in the stock market. For assessing the fate of each company, we have collected financial time-series composed of weekly closing stock prices in a common time frame, using Thomson Datastream software. The biomedical domain study involves knee signals collected using the vibration arthrometry technique. This study uses the severity of cartilage degeneration for classifying normal and abnormal knee joints. In both studies, we apply Fisher Kernels incorporated with a Gaussian mixture model (GMM for dimension transformation into feature space, which is created as a three-dimensional plot for visualization and for further classification using support vector machines. From our experiments we observe that Fisher Kernel usage fits really well for both kinds of signals, with low classification error rates.

  10. Single-molecule characterization and engineering of the surfaces of nucleic acid sensors

    Science.gov (United States)

    Josephs, Eric Alan

    The advent of personalized medicine will require biosensors capable of reliably detecting small levels of disease biomarkers. In microarrays and sensors for nucleic acids, hybridization events between surface-tethered DNA probes and the nucleic acids of interest (targets) are transduced into a detectable signal. However, target-binding ultimately occurs as a result of molecular motions and interactions between the probe and target at the nanometer scale, and common characterization methods either lack the resolution to characterize the sensors at this scale or provide only limited information about their interactions with their nanoscale chemical environment. In this dissertation I argue that an impediment to the development of more reliable and practical biosensors is the lack of knowledge and control of the nanometer length-scale structure of biosensor surfaces, which has a profound impact on molecular recognition and reactions for detection. After reviewing the fundamental surface chemistry and structural motifs of biosensors in Chapter 1, in Chapter 2 I use electrochemical atomic force microscopy (EC-AFM) to characterize in situ a common class of model nucleic acid sensors---thiolated DNA attached to a gold electrode which has been passivated by an alkanethiol self-assembled monolayer---with single-molecule resolution. This level of detail allows me to observe both the conformations of individual probes and their spatial distribution at the nanoscale, then determine how these are affected by assembly conditions, probe structure, and interactions with co-adsorbates. I also determine how these nanoscale details affect the dynamic response of probes to electric fields, which have been commonly used in sensing schemes, and ultimately the ability of the surface-tethered probes to bind with target nucleic acids. In Chapter 3, I demonstrate and optimize the nanoscale patterning of individual DNA molecules into isolated, chemically well-defined niches on the surface

  11. OS X and iOS Kernel Programming

    CERN Document Server

    Halvorsen, Ole Henry

    2011-01-01

    OS X and iOS Kernel Programming combines essential operating system and kernel architecture knowledge with a highly practical approach that will help you write effective kernel-level code. You'll learn fundamental concepts such as memory management and thread synchronization, as well as the I/O Kit framework. You'll also learn how to write your own kernel-level extensions, such as device drivers for USB and Thunderbolt devices, including networking, storage and audio drivers. OS X and iOS Kernel Programming provides an incisive and complete introduction to the XNU kernel, which runs iPhones, i

  12. Tank characterization report for single-shell tank 241-C-110. Revision 1

    International Nuclear Information System (INIS)

    Benar, C.J.

    1997-01-01

    One of the major functions of the Tank Waste Remediation System (IWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendixes serve as the TCR for single-shell tank 241-C-110. The objectives of this report are to use characterization data in response to technical issues associated with 241-C-110 waste and to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Supporting data and information are contained in the appendixes. This report also supports the requirements of the Hanford Federal Facility Agreement and Consent Order milestone M-44-05. Characterization information presented in this report originated from sample analyses and known historical sources. While only the results from recent sample events will be used to fulfill the requirements of the data quality objectives (DQOs), other information can be used to support or question conclusions derived from these results. Historical information for tank 241-C-110 are provided included surveillance information, records pertaining to waste transfers and tank operations, and 1124 expected tank contents derived from a process knowledge model. The sampling events are listed, as well as sample data obtained before 1989. The results of the 1992 sampling events are also reported in the data package. The statistical analysis and numerical manipulation of data used in issue resolution are reported in Appendix C. Appendix D contains the evaluation to establish the best basis for the inventory estimate and the statistical analysis performed for this evaluation. A bibliography that resulted from an in-depth literature search of all known information sources applicable to tank 241-C-110 and its respective waste types is contained in Appendix E

  13. Discriminating oat and groat kernels from other grains using near infrared spectroscopy

    Science.gov (United States)

    Oat and groats can be discriminated from other grains such as barley, wheat, rye, and triticale (non-oats) using near infrared spectroscopy. The two instruments tested were the manual version of the ARS-USDA Single Kernel Near Infrared (SKNIR) and the automated QualySense QSorter Explorer high-speed...

  14. Option Valuation with Volatility Components, Fat Tails, and Nonlinear Pricing Kernels

    DEFF Research Database (Denmark)

    Babaoglu, Kadir Gokhan; Christoffersen, Peter; Heston, Steven

    We nest multiple volatility components, fat tails and a U-shaped pricing kernel in a single option model and compare their contribution to describing returns and option data. All three features lead to statistically significant model improvements. A second volatility factor is economically most i...

  15. Diversity of maize kernels from a breeding program for protein quality III: Ionome profiling

    Science.gov (United States)

    Densities of single and multiple macro- and micronutrients have been estimated in mature kernels of 1,348 accessions in 13 maize genotypes. The germplasm belonged to stiff stalk (SS) and non-stiff stalk (NS) heterotic groups (HG) with one (S1) to four (S4) years of inbreeding (IB), or open pollinati...

  16. Eucalyptus-Palm Kernel Oil Blends: A Complete Elimination of Diesel in a 4-Stroke VCR Diesel Engine

    Directory of Open Access Journals (Sweden)

    Srinivas Kommana

    2015-01-01

    Full Text Available Fuels derived from biomass are mostly preferred as alternative fuels for IC engines as they are abundantly available and renewable in nature. The objective of the study is to identify the parameters that influence gross indicated fuel conversion efficiency and how they are affected by the use of biodiesel relative to petroleum diesel. Important physicochemical properties of palm kernel oil and eucalyptus blend were experimentally evaluated and found within acceptable limits of relevant standards. As most of vegetable oils are edible, growing concern for trying nonedible and waste fats as alternative to petrodiesel has emerged. In present study diesel fuel is completely replaced by biofuels, namely, methyl ester of palm kernel oil and eucalyptus oil in various blends. Different blends of palm kernel oil and eucalyptus oil are prepared on volume basis and used as operating fuel in single cylinder 4-stroke variable compression ratio diesel engine. Performance and emission characteristics of these blends are studied by varying the compression ratio. In the present experiment methyl ester extracted from palm kernel oil is considered as ignition improver and eucalyptus oil is considered as the fuel. The blends taken are PKE05 (palm kernel oil 95 + eucalyptus 05, PKE10 (palm kernel oil 90 + eucalyptus 10, and PKE15 (palm kernel 85 + eucalyptus 15. The results obtained by operating with these fuels are compared with results of pure diesel; finally the most preferable combination and the preferred compression ratio are identified.

  17. HIV-1 coreceptor usage prediction without multiple alignments: an application of string kernels

    Directory of Open Access Journals (Sweden)

    Laviolette François

    2008-12-01

    Full Text Available Abstract Background Human immunodeficiency virus type 1 (HIV-1 infects cells by means of ligand-receptor interactions. This lentivirus uses the CD4 receptor in conjunction with a chemokine coreceptor, either CXCR4 or CCR5, to enter a target cell. HIV-1 is characterized by high sequence variability. Nonetheless, within this extensive variability, certain features must be conserved to define functions and phenotypes. The determination of coreceptor usage of HIV-1, from its protein envelope sequence, falls into a well-studied machine learning problem known as classification. The support vector machine (SVM, with string kernels, has proven to be very efficient for dealing with a wide class of classification problems ranging from text categorization to protein homology detection. In this paper, we investigate how the SVM can predict HIV-1 coreceptor usage when it is equipped with an appropriate string kernel. Results Three string kernels were compared. Accuracies of 96.35% (CCR5 94.80% (CXCR4 and 95.15% (CCR5 and CXCR4 were achieved with the SVM equipped with the distant segments kernel on a test set of 1425 examples with a classifier built on a training set of 1425 examples. Our datasets are built with Los Alamos National Laboratory HIV Databases sequences. A web server is available at http://genome.ulaval.ca/hiv-dskernel. Conclusion We examined string kernels that have been used successfully for protein homology detection and propose a new one that we call the distant segments kernel. We also show how to extract the most relevant features for HIV-1 coreceptor usage. The SVM with the distant segments kernel is currently the best method described.

  18. Phenolic constituents of shea (Vitellaria paradoxa) kernels.

    Science.gov (United States)

    Maranz, Steven; Wiesman, Zeev; Garti, Nissim

    2003-10-08

    Analysis of the phenolic constituents of shea (Vitellaria paradoxa) kernels by LC-MS revealed eight catechin compounds-gallic acid, catechin, epicatechin, epicatechin gallate, gallocatechin, epigallocatechin, gallocatechin gallate, and epigallocatechin gallate-as well as quercetin and trans-cinnamic acid. The mean kernel content of the eight catechin compounds was 4000 ppm (0.4% of kernel dry weight), with a 2100-9500 ppm range. Comparison of the profiles of the six major catechins from 40 Vitellaria provenances from 10 African countries showed that the relative proportions of these compounds varied from region to region. Gallic acid was the major phenolic compound, comprising an average of 27% of the measured total phenols and exceeding 70% in some populations. Colorimetric analysis (101 samples) of total polyphenols extracted from shea butter into hexane gave an average of 97 ppm, with the values for different provenances varying between 62 and 135 ppm of total polyphenols.

  19. Kernel Method for Nonlinear Granger Causality

    Science.gov (United States)

    Marinazzo, Daniele; Pellicoro, Mario; Stramaglia, Sebastiano

    2008-04-01

    Important information on the structure of complex systems can be obtained by measuring to what extent the individual components exchange information among each other. The linear Granger approach, to detect cause-effect relationships between time series, has emerged in recent years as a leading statistical technique to accomplish this task. Here we generalize Granger causality to the nonlinear case using the theory of reproducing kernel Hilbert spaces. Our method performs linear Granger causality in the feature space of suitable kernel functions, assuming arbitrary degree of nonlinearity. We develop a new strategy to cope with the problem of overfitting, based on the geometry of reproducing kernel Hilbert spaces. Applications to coupled chaotic maps and physiological data sets are presented.

  20. The scalar field kernel in cosmological spaces

    Energy Technology Data Exchange (ETDEWEB)

    Koksma, Jurjen F; Prokopec, Tomislav [Institute for Theoretical Physics (ITP) and Spinoza Institute, Utrecht University, Postbus 80195, 3508 TD Utrecht (Netherlands); Rigopoulos, Gerasimos I [Helsinki Institute of Physics, University of Helsinki, PO Box 64, FIN-00014 (Finland)], E-mail: J.F.Koksma@phys.uu.nl, E-mail: T.Prokopec@phys.uu.nl, E-mail: gerasimos.rigopoulos@helsinki.fi

    2008-06-21

    We construct the quantum-mechanical evolution operator in the functional Schroedinger picture-the kernel-for a scalar field in spatially homogeneous FLRW spacetimes when the field is (a) free and (b) coupled to a spacetime-dependent source term. The essential element in the construction is the causal propagator, linked to the commutator of two Heisenberg picture scalar fields. We show that the kernels can be expressed solely in terms of the causal propagator and derivatives of the causal propagator. Furthermore, we show that our kernel reveals the standard light cone structure in FLRW spacetimes. We finally apply the result to Minkowski spacetime, to de Sitter spacetime and calculate the forward time evolution of the vacuum in a general FLRW spacetime.

  1. Fast Generation of Sparse Random Kernel Graphs.

    Science.gov (United States)

    Hagberg, Aric; Lemons, Nathan

    2015-01-01

    The development of kernel-based inhomogeneous random graphs has provided models that are flexible enough to capture many observed characteristics of real networks, and that are also mathematically tractable. We specify a class of inhomogeneous random graph models, called random kernel graphs, that produces sparse graphs with tunable graph properties, and we develop an efficient generation algorithm to sample random instances from this model. As real-world networks are usually large, it is essential that the run-time of generation algorithms scales better than quadratically in the number of vertices n. We show that for many practical kernels our algorithm runs in time at most (n(logn)2). As a practical example we show how to generate samples of power-law degree distribution graphs with tunable assortativity.

  2. Robust C-Loss Kernel Classifiers.

    Science.gov (United States)

    Xu, Guibiao; Hu, Bao-Gang; Principe, Jose C

    2018-03-01

    The correntropy-induced loss (C-loss) function has the nice property of being robust to outliers. In this paper, we study the C-loss kernel classifier with the Tikhonov regularization term, which is used to avoid overfitting. After using the half-quadratic optimization algorithm, which converges much faster than the gradient optimization algorithm, we find out that the resulting C-loss kernel classifier is equivalent to an iterative weighted least square support vector machine (LS-SVM). This relationship helps explain the robustness of iterative weighted LS-SVM from the correntropy and density estimation perspectives. On the large-scale data sets which have low-rank Gram matrices, we suggest to use incomplete Cholesky decomposition to speed up the training process. Moreover, we use the representer theorem to improve the sparseness of the resulting C-loss kernel classifier. Experimental results confirm that our methods are more robust to outliers than the existing common classifiers.

  3. Hardy type inequalities with kernels: The current status and some new results

    Czech Academy of Sciences Publication Activity Database

    Kufner, Alois; Persson, L. E.; Samko, N.

    2017-01-01

    Roč. 290, č. 1 (2017), s. 57-65 ISSN 0025-584X Institutional support: RVO:67985840 Keywords : Hardy operators with kernels * Hardy type inequalities * new scales of characterizations Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.742, year: 2016 http://dx. doi . org /10.1002/mana.201500363

  4. The linearization of boundary eigenvalue problems and reproducing kernel Hilbert spaces

    NARCIS (Netherlands)

    Ćurgus, Branko; Dijksma, Aad; Read, Tom

    2001-01-01

    The boundary eigenvalue problems for the adjoint of a symmetric relation S in a Hilbert space with finite, not necessarily equal, defect numbers, which are related to the selfadjoint Hilbert space extensions of S are characterized in terms of boundary coefficients and the reproducing kernel Hilbert

  5. Hardy type inequalities with kernels: The current status and some new results

    Czech Academy of Sciences Publication Activity Database

    Kufner, Alois; Persson, L. E.; Samko, N.

    2017-01-01

    Roč. 290, č. 1 (2017), s. 57-65 ISSN 0025-584X Institutional support: RVO:67985840 Keywords : Hardy operators with kernels * Hardy type inequalities * new scales of characterizations Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.742, year: 2016 http://dx.doi.org/10.1002/ mana .201500363

  6. Sizing Single Cantilever Beam Specimens for Characterizing Facesheet/Core Peel Debonding in Sandwich Structure

    Science.gov (United States)

    Ratcliffe, James G.

    2010-01-01

    This paper details part of an effort focused on the development of a standardized facesheet/core peel debonding test procedure. The purpose of the test is to characterize facesheet/core peel in sandwich structure, accomplished through the measurement of the critical strain energy release rate associated with the debonding process. The specific test method selected for the standardized test procedure utilizes a single cantilever beam (SCB) specimen configuration. The objective of the current work is to develop a method for establishing SCB specimen dimensions. This is achieved by imposing specific limitations on specimen dimensions, with the objectives of promoting a linear elastic specimen response, and simplifying the data reduction method required for computing the critical strain energy release rate associated with debonding. The sizing method is also designed to be suitable for incorporation into a standardized test protocol. Preliminary application of the resulting sizing method yields practical specimen dimensions.

  7. Purity and Defect Characterization of Single-Wall Carbon Nanotubes Using Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Yasumitsu Miyata

    2011-01-01

    Full Text Available We investigated the purity and defects of single-wall carbon nanotubes (SWCNTs produced by various synthetic methods including chemical vapor deposition, arc discharge, and laser ablation. The SWCNT samples were characterized using scanning electron microscopy (SEM, thermogravimetric analysis (TGA, and Raman spectroscopy. Quantitative analysis of SEM images suggested that the G-band Raman intensity serves as an index for the purity. By contrast, the intensity ratio of G-band to D-band (G/D ratio reflects both the purity and the defect density of SWCNTs. The combination of G-band intensity and G/D ratio is useful for a quick, nondestructive evaluation of the purity and defect density of a SWCNT sample.

  8. Preliminary tank characterization report for single-shell tank 241-TX-101: best-basis inventory

    International Nuclear Information System (INIS)

    Kupfer, M.J.

    1997-01-01

    This document is a preliminary Tank Characterization Report (TCR). It only contains the current best-basis inventory (Appendix D) for single-shell tank 241-TX-101. No TCRs have been previously issued for this tank, and current core sample analyses are not available. The best-basis inventory, therefore, is based on an engineering assessment of waste type, process flowsheet data, early sample data, and/or other available information. The Standard Inventories of Chemicals and Radionuclides in Hanford Site Tank Wastes describes standard methodology used to derive the tank-by-tank best-basis inventories. This preliminary TCR will be updated using this same methodology when additional data on tank contents become available

  9. CsPb2Br5 Single Crystals: Synthesis and Characterization

    KAUST Repository

    Dursun, Ibrahim

    2017-08-02

    CsPb2Br5 is a ternary halogen-plumbate material with close characteristics to well-reported halide perovskites. Due to its unconventional two-dimensional structure, CsPb2Br5 is being looked at broadly for potential applications in optoelectronics. CsPb2Br5 investigations are currently limited to nanostructures and powder forms of the material, which present unclear and conflicting optical properties. In this study, we present the synthesis and characterization of CsPb2Br5 bulk single crystals, which enabled us to finally clarify the material\\'s optical features. Our CsPb2Br5 crystal has a two-dimensional structure with Pb2Br5- layers spaced by Cs+ cations, and exhibits a ~3.1 eV indirect bandgap with no emission in the visible spectrum.

  10. Extraction and characterization of cellulose single fibers from native african napier grass.

    Science.gov (United States)

    Reddy, K Obi; Maheswari, C Uma; Dhlamini, M S; Mothudi, B M; Kommula, V P; Zhang, Jinming; Zhang, Jun; Rajulu, A Varada

    2018-05-15

    With increasing awareness of protecting the environment, the demand for renewable and environmental materials is increasing. In this work, the cellulose single fibers (CSFs) were extracted from the African native Napier grass fibers (NGFs) by chemical process. NGFs and CSFs were characterized for their chemical composition, structure, morphology, crystallinity and thermal properties using, chemical analysis, FTIR, 13C CP/MAS NMR, SEM, XRD and TGA techniques. The resulted CSFs had higher α-cellulose content, crystallinity and thermal stability than the pristine NGFs. SEM images showed cleaner and rough surfaces for the CSFs when compared to those of NGFs. About 69% of the extracted CSFs showed a diameter range between 4 and 10 μm. FTIR and 13C CP/MAS NMR spectra confirmed the removal of lignin and hemicellulose components after chemical treatments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Development of an ultrasound microscope combined with optical microscope for multiparametric characterization of a single cell.

    Science.gov (United States)

    Arakawa, Mototaka; Shikama, Joe; Yoshida, Koki; Nagaoka, Ryo; Kobayashi, Kazuto; Saijo, Yoshifumi

    2015-09-01

    Biomechanics of the cell has been gathering much attention because it affects the pathological status in atherosclerosis and cancer. In the present study, an ultrasound microscope system combined with optical microscope for characterization of a single cell with multiple ultrasound parameters was developed. The central frequency of the transducer was 375 MHz and the scan area was 80 × 80 μm with up to 200 × 200 sampling points. An inverted optical microscope was incorporated in the design of the system, allowing for simultaneous optical observations of cultured cells. Two-dimensional mapping of multiple ultrasound parameters, such as sound speed, attenuation, and acoustic impedance, as well as the thickness, density, and bulk modulus of specimen/cell under investigation, etc., was realized by the system. Sound speed and thickness of a 3T3-L1 fibroblast cell were successfully obtained by the system. The ultrasound microscope system combined with optical microscope further enhances our understanding of cellular biomechanics.

  12. Dispersion and characterization of arc discharge single-walled carbon nanotubes--towards conducting transparent films.

    Science.gov (United States)

    Rösner, B; Guldi, D M; Chen, J; Minett, A I; Fink, R H

    2014-04-07

    This study addresses a combination of a well-developed and mild dispersion method and high-quality arc discharge single-walled carbon nanotubes (SWCNTs) as starting materials. Thus, we advance in fabrication of transparent, conducting films with extraordinary low material loss during SWCNT processing. The starting material was characterized by means of thermogravimetric analysis, high-resolution transmission electron microscopy and Raman spectroscopy. The quality of the starting material and produced dispersions was evaluated by ultraviolet and visible light absorption spectroscopy and Raman spectroscopy. A transparent conductive film was fabricated by drop-casting, whereas films were obtained with electrical to optical conductivity ratios (σDC/σOp) as high as 2.2, combined with a loss of nanotube material during processing well below 20 wt%. High pressure carbon monoxide conversion (HiPCO) SWCNTs, which are very well described in the literature, were used for comparison.

  13. Characterization of single-crystal sapphire substrates by X-ray methods and atomic force microscopy

    International Nuclear Information System (INIS)

    Prokhorov, I. A.; Zakharov, B. G.; Asadchikov, V. E.; Butashin, A. V.; Roshchin, B. S.; Tolstikhina, A. L.; Zanaveskin, M. L.; Grishchenko, Yu. V.; Muslimov, A. E.; Yakimchuk, I. V.; Volkov, Yu. O.; Kanevskii, V. M.; Tikhonov, E. O.

    2011-01-01

    The possibility of characterizing a number of practically important parameters of sapphire substrates by X-ray methods is substantiated. These parameters include wafer bending, traces of an incompletely removed damaged layer that formed as a result of mechanical treatment (scratches and marks), surface roughness, damaged layer thickness, and the specific features of the substrate real structure. The features of the real structure of single-crystal sapphire substrates were investigated by nondestructive methods of double-crystal X-ray diffraction and plane-wave X-ray topography. The surface relief of the substrates was investigated by atomic force microscopy and X-ray scattering. The use of supplementing analytical methods yields the most complete information about the structural inhomogeneities and state of crystal surface, which is extremely important for optimizing the technology of substrate preparation for epitaxy.

  14. Ensemble-based forecasting at Horns Rev: Ensemble conversion and kernel dressing

    DEFF Research Database (Denmark)

    Pinson, Pierre; Madsen, Henrik

    For management and trading purposes, information on short-term wind generation (from few hours to few days ahead) is even more crucial at large offshore wind farms, since they concentrate a large capacity at a single location. The most complete information that can be provided today consists....... The obtained ensemble forecasts of wind power are then converted into predictive distributions with an original adaptive kernel dressing method. The shape of the kernels is driven by a mean-variance model, the parameters of which are recursively estimated in order to maximize the overall skill of obtained...

  15. Reproducing kernel method with Taylor expansion for linear Volterra integro-differential equations

    Directory of Open Access Journals (Sweden)

    Azizallah Alvandi

    2017-06-01

    Full Text Available This research aims of the present a new and single algorithm for linear integro-differential equations (LIDE. To apply the reproducing Hilbert kernel method, there is made an equivalent transformation by using Taylor series for solving LIDEs. Shown in series form is the analytical solution in the reproducing kernel space and the approximate solution $ u_{N} $ is constructed by truncating the series to $ N $ terms. It is easy to prove the convergence of $ u_{N} $ to the analytical solution. The numerical solutions from the proposed method indicate that this approach can be implemented easily which shows attractive features.

  16. Short wave infrared hyperspectral imaging for recovered post-consumer single and mixed polymers characterization

    Science.gov (United States)

    Bonifazi, Giuseppe; Palmieri, Roberta; Serranti, Silvia

    2015-03-01

    Postconsumer plastics from packing and packaging represent about the 60% of the total plastic wastes (i.e. 23 million of tons) produced in Europe. The EU Directive (2014/12/EC) fixes as target that the 60%, by weight, of packaging waste has to be recovered, or thermally valorized. When recovered, the same directive established that packaging waste has to be recycled in a percentage ranging between 55% (minimum) and 60% (maximum). The non-respect of these rules can produce that large quantities of end-of-life plastic products, specifically those utilized for packaging, are disposed-off, with a strong environmental impact. The application of recycling strategies, finalized to polymer recovery, can represent an opportunity to reduce: i) not renewable raw materials (i.e. oil) utilization, ii) carbon dioxide emissions and iii) amount of plastic waste disposed-off. Aim of this work was to perform a full characterization of different end-of-life polymers based products, constituted not only by single polymers but also of mixtures, in order to realize their identification for quality control and/or certification assessment. The study was specifically addressed to characterize the different recovered products as resulting from a recycling plant where classical processing flow-sheets, based on milling, classification and separation, are applied. To reach this goal, an innovative sensing technique, based on the utilization of a HyperSpectral[b] I[/b]maging (HSI) device working in the SWIR region (1000-2500 nm), was investigated. Following this strategy, single polymers and/or mixed polymers recovered were correctly recognized. The main advantage of the proposed approach is linked to the possibility to perform "on-line" analyses, that is directly on the different material flow streams, as resulting from processing, without any physical sampling and classical laboratory "off-line" determination.

  17. Functional characterization of acetylated Brazil nut (Bertholletia excelsa HBK kernel globulin Caracterizaçao funcional das globulinas de amêndoa de castanha-do-Pará após a acetilação

    Directory of Open Access Journals (Sweden)

    Cíntia Maria Pinto Ramos

    2004-03-01

    Full Text Available Defatted Brazil nut kernel flour, a rich source of high quality proteins, is presently being utilized in the formulation of animal feeds. One of the possible ways to improve its utilization for human consumption is through improvement in its functional properties. In the present study, changes in some of the functional properties of Brazil nut kernel globulin were evaluated after acetylation at 58.6, 66.2 and 75.3% levels. The solubility of acetylated globulin was improved above pH 6.0 but was reduced in the pH range of 3.0-4.0. Water and oil absorption capacity, as well as the viscosity increased with increase in the level of acetylation. Level of modification also influenced the emulsifying capacity: decreased at pH 3.0, but increased at pH 7.0 and 9.0. Highest emulsion activity (approximately 62.2% was observed at pH 3.0 followed by pH 9.0 and pH 7.0 and least (about 11.8% at pH 5.0. Emulsion stability also followed similar behavior as that of emulsion activity.Farinha desengordurada de amêndoa de castanha-do-Pará, fonte rica de proteína de alta qualidade, vem sendo, atualmente, aproveitada apenas na formulação de ração animal. Uma das possíveis maneiras de melhorar seu aproveitamento para o consumo humano é através do melhoramento de suas propriedades funcionais. No presente trabalho, mudanças em algumas propriedades funcionais da globulina de castanha-do-Pará, após acetilação, aos níveis de 58,6, 66,2 e 75,3% foram estudadas. A solubilidade da globulina acetilada aumentou acima de pH 6,0, porém diminuiu na faixa de pH 3,0 a 4,0. As capacidades de absorção de água e de óleo como também a viscosidade, melhoraram com o aumento de grau de acetilação. O grau de modificação também influenciou a capacidade de emulsificação: reduziu em pH 3,0, e aumentou nos pHs 7,0 e 9,0. A máxima atividade de emulsão (aproximadamente 62,2% foi observada em pH 3,0 seguida de pH 9,0 e a mínima foi observada (11,8% em pH 5,0. A

  18. Kernel principal component analysis for change detection

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg; Morton, J.C.

    2008-01-01

    Principal component analysis (PCA) is often used to detect change over time in remotely sensed images. A commonly used technique consists of finding the projections along the two eigenvectors for data consisting of two variables which represent the same spectral band covering the same geographical...... region acquired at two different time points. If change over time does not dominate the scene, the projection of the original two bands onto the second eigenvector will show change over time. In this paper a kernel version of PCA is used to carry out the analysis. Unlike ordinary PCA, kernel PCA...

  19. Panel data specifications in nonparametric kernel regression

    DEFF Research Database (Denmark)

    Czekaj, Tomasz Gerard; Henningsen, Arne

    We discuss nonparametric regression models for panel data. A fully nonparametric panel data specification that uses the time variable and the individual identifier as additional (categorical) explanatory variables is considered to be the most suitable. We use this estimator and conventional...... parametric panel data estimators to analyse the production technology of Polish crop farms. The results of our nonparametric kernel regressions generally differ from the estimates of the parametric models but they only slightly depend on the choice of the kernel functions. Based on economic reasoning, we...... found the estimates of the fully nonparametric panel data model to be more reliable....

  20. Fluidization calculation on nuclear fuel kernel coating

    International Nuclear Information System (INIS)

    Sukarsono; Wardaya; Indra-Suryawan

    1996-01-01

    The fluidization of nuclear fuel kernel coating was calculated. The bottom of the reactor was in the from of cone on top of the cone there was a cylinder, the diameter of the cylinder for fluidization was 2 cm and at the upper part of the cylinder was 3 cm. Fluidization took place in the cone and the first cylinder. The maximum and the minimum velocity of the gas of varied kernel diameter, the porosity and bed height of varied stream gas velocity were calculated. The calculation was done by basic program

  1. Kernel abortion in maize. II. Distribution of 14C among kernel carboydrates

    International Nuclear Information System (INIS)

    Hanft, J.M.; Jones, R.J.

    1986-01-01

    This study was designed to compare the uptake and distribution of 14 C among fructose, glucose, sucrose, and starch in the cob, pedicel, and endosperm tissues of maize (Zea mays L.) kernels induced to abort by high temperature with those that develop normally. Kernels cultured in vitro at 309 and 35 0 C were transferred to [ 14 C]sucrose media 10 days after pollination. Kernels cultured at 35 0 C aborted prior to the onset of linear dry matter accumulation. Significant uptake into the cob, pedicel, and endosperm of radioactivity associated with the soluble and starch fractions of the tissues was detected after 24 hours in culture on atlageled media. After 8 days in culture on [ 14 C]sucrose media, 48 and 40% of the radioactivity associated with the cob carbohydrates was found in the reducing sugars at 30 and 35 0 C, respectively. Of the total carbohydrates, a higher percentage of label was associated with sucrose and lower percentage with fructose and glucose in pedicel tissue of kernels cultured at 35 0 C compared to kernels cultured at 30 0 C. These results indicate that sucrose was not cleaved to fructose and glucose as rapidly during the unloading process in the pedicel of kernels induced to abort by high temperature. Kernels cultured at 35 0 C had a much lower proportion of label associated with endosperm starch (29%) than did kernels cultured at 30 0 C (89%). Kernels cultured at 35 0 C had a correspondingly higher proportion of 14 C in endosperm fructose, glucose, and sucrose

  2. Characterization of energy losses in an upflow single-chamber microbial electrolysis cell

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyung-Sool; Rittmann, Bruce E. [Center for Environmental Biotechnology, The Biodesign Institute at Arizona State University, 1001 South McAllister Avenue, Tempe, AZ 85287-5701 (United States)

    2010-02-15

    We characterized electrode energy losses and ohmic energy loss in an upflow, single-chamber microbial electrolysis cell (MEC) with no metal catalyst on the cathode. The MEC produced 0.57 m{sup 3}-H{sub 2}/m{sup 3}-d at an applied voltage of {proportional_to}1 V and achieved a cathodic conversion efficiency of 98% and a H{sub 2} yield of 2.4 mol H{sub 2}/mol acetate. Eliminating the membrane lowered the ohmic energy loss to 0.005 V, and the pH energy loss became as small as 0.072 V. The lack of metal catalyst on the cathode led to a significant cathode energy loss of 0.56 V. The anode energy loss also was relatively large at 0.395 V, but this was artificial, due to the high positive anode potential, poised at +0.07 V (vs. the standard hydrogen electrode). The energy-conversion efficiency (ECE) was 75% in the single-chamber MEC when the energy input and outputs were compared directly as electrical energy. To achieve an energy benefit out of an MEC (i.e., an ECE >100%), the applied voltage must be less than 0.6 V with a cathodic conversion efficiency over 80%. An ECE of 180% could be achieved if the anode and cathode energy losses were reduced to 0.2 V each. (author)

  3. Structural, thermal and optical characterization of an organic NLO material—Benzaldehyde thiosemicarbazone monohydrate single crystals

    Science.gov (United States)

    Santhakumari, R.; Ramamurthi, K.

    2011-02-01

    Single crystals of the organic NLO material, benzaldehyde thiosemicarbazone (BTSC) monohydrate, were grown by slow evaporation method. Solubility of BTSC monohydrate was determined in ethanol at different temperatures. The grown crystals were characterized by single crystal X-ray diffraction analysis to determine the cell parameters and by FT-IR technique to study the presence of the functional groups. Thermogravimetric and differential thermal analyses reveal the thermal stability of the crystal. UV-vis-NIR spectrum shows excellent transmission in the region of 200-1100 nm. Theoretical calculations were carried out to determine the linear optical constants such as extinction coefficient and refractive index. Further the optical nonlinearities of BTSC have been investigated by Z-scan technique with He-Ne laser radiation of wavelength 632.8 nm. Mechanical properties of the grown crystal were studied using Vickers microhardness tester. Second harmonic generation efficiency of the powdered BTSC monohydrate was tested using Nd:YAG laser and it is found to be ˜5.3 times that of potassium dihydrogen orthophosphate.

  4. Synthesis and characterization of p-type boron-doped IIb diamond large single crystals

    International Nuclear Information System (INIS)

    Li Shang-Sheng; Li Xiao-Lei; Su Tai-Chao; Jia Xiao-Peng; Ma Hong-An; Huang Guo-Feng; Li Yong

    2011-01-01

    High-quality p-type boron-doped IIb diamond large single crystals are successfully synthesized by the temperature gradient method in a china-type cubic anvil high-pressure apparatus at about 5.5 GPa and 1600 K. The morphologies and surface textures of the synthetic diamond crystals with different boron additive quantities are characterized by using an optical microscope and a scanning electron microscope respectively. The impurities of nitrogen and boron in diamonds are detected by micro Fourier transform infrared technique. The electrical properties including resistivities, Hall coefficients, Hall mobilities and carrier densities of the synthesized samples are measured by a four-point probe and the Hall effect method. The results show that large p-type boron-doped diamond single crystals with few nitrogen impurities have been synthesized. With the increase of quantity of additive boron, some high-index crystal faces such as {113} gradually disappear, and some stripes and triangle pits occur on the crystal surface. This work is helpful for the further research and application of boron-doped semiconductor diamond. (cross-disciplinary physics and related areas of science and technology)

  5. Growth and characterization of Tm-doped Y 2O 3 single crystals

    Science.gov (United States)

    Mun, J. H.; Jouini, A.; Novoselov, A.; Guyot, Y.; Yoshikawa, A.; Ohta, H.; Shibata, H.; Waseda, Y.; Boulon, G.; Fukuda, T.

    2007-07-01

    The rare-earth sesquioxides (RE2O3, RE = Lu, Y and Sc) are promising host materials for solid-state lasers due to their low phonon energy and high thermal conductivity. On the other hand, Tm3+ and Yb3+ are preferable activators for advanced laser diode pumped solid-state lasers. In addition to that, Tm-doped materials can be used for eye-safe lasers application. Tm-doped Y2O3 single crystals were grown using the micro-pulling-down method. Crystals were transparent with gray and blue colors of 4.2 mm in diameter and 13-20 mm in length. The crystallinity was characterized using X-ray rocking curve analysis. Tm-doped Y2O3 single crystals have a good compositional homogeneity along the growth axis and their thermal conductivity was calculated from the measurements of thermal diffusivity, heat capacity and density. We have also recorded absorption, fluorescence spectra and measured fluorescence lifetimes as a function of the Tm content, we have found a very attractive fluorescence around the eye-safe wavelength of 1.9 mm which corresponds to a 3F4 → 3H6 transition of Tm3+.

  6. Rapid combined characterization of microorganism and host genotypes using a single technology.

    Science.gov (United States)

    Hjalmarsson, Sandra; Alderborn, Anders; Fock, Caroline; Muldin, Ingrid; Kling, Helene; Uhlén, Mathias; Engstrand, Lars

    2004-04-01

    Genetic information is becoming increasingly important in diagnosis and prognosis of infectious diseases. In this study we investigated the possibility of using a single technology, the Pyrosequencing trade mark technology (Biotage AB, Uppsala, Sweden), to gather several kinds of important genetic information from the human pathogen Helicobacter pylori, as well as from the carrier of the H. pylori infection. DNA from 87 clinical isolates of H. pylori, 50 isolates from H. pylori-infected transgenic mice and nine gastric biopsies from H. pylori-infected patients was analyzed for targets in the 16S rRNA, 23S rRNA and cytotoxin associated gene A (cagA) genes to determine species identity, clarithromycin susceptibility and virulence level, respectively. In addition, three single nucleotide polymorphisms in the human interleukin-1B (IL-1B) gene, reported to affect the risk of developing gastric cancer, were analyzed in the gastric biopsy samples. All DNA targets were processed and analyzed in parallel, enabling convenient genetic characterization of both pathogen and host. All genotypes were easily and accurately assigned. In the 16S rRNA analysis, 99.83% of the bases were correctly called. We conclude that genetic analysis using Pyrosequencing trade mark technology was nonlaborious, and gave highly accurate data for different kinds of target. We therefore believe that this technology has the potential to complement or in the future substitute the time-consuming traditional microbial identification and typing methods, as well as enabling rapid typing of relevant host genetic markers.

  7. Optically pumped semiconductor lasers: Conception and characterization of a single mode source for Cesium atoms manipulation

    International Nuclear Information System (INIS)

    Cocquelin, B.

    2009-02-01

    Lasers currently used in atomic clocks or inertial sensors are suffering from a lack of power, narrow linewidth or compactness for future spatial missions. Optically pumped semiconductor lasers, which combine the approach of classical solid state lasers and the engineering of semiconductor laser, are considered here as a candidate to a metrological laser source dedicated to the manipulation of Cesium atoms in these instruments. These lasers have demonstrated high power laser emission in a circular single transverse mode, as well as single longitudinal mode emission, favoured by the semiconductor structure and the external cavity design. We study the definition and the characterization of a proper semiconductor structure for the cooling and the detection of Cesium atoms at 852 nm. A compact and robust prototype tunable on the Cesium D2 hyperfine structure is built. The laser frequency is locked to an atomic transition thanks to a saturated absorption setup. The emission spectral properties are investigated, with a particular attention to the laser frequency noise and the laser linewidth. Finally, we describe and model the thermal properties of the semiconductor structure, which enables the simulation of the laser power characteristic. The experimental parameters are optimised to obtain the maximum output power with our structure. Thanks to our analysis, we propose several ways to overcome these limitations, by reducing the structure heating. (authors)

  8. Ligand-tailored single-site silica supported titanium catalysts: Synthesis, characterization and towards cyanosilylation reaction

    Science.gov (United States)

    Xu, Wei; Li, Yani; Yu, Bo; Yang, Jindou; Zhang, Ying; Chen, Xi; Zhang, Guofang; Gao, Ziwei

    2015-01-01

    A successive anchoring of Ti(NMe2)4, cyclopentadiene and a O-donor ligand, 1-hydroxyethylbenzene (PEA), 1,1‧-bi-2-naphthol (Binol) or 2,3-dihydroxybutanedioic acid diethyl ester (Tartrate), on silica was conducted by SOMC strategy in moderate conditions. The silica, monitored by in-situ Fourier transform infrared spectroscopy (in-situ FT-IR), was pretreated at different temperatures (200, 500 and 800 °C). The ligand tailored silica-supported titanium complexes were characterized by in-situ FT-IR, 13C CP MAS-NMR, X-ray photoelectron spectroscopy (XPS), X-ray absorption near edge structure (XANES) and elemental analysis in detail, verifying that the surface titanium species are single sited. The catalytic activity of the ligand tailored single-site silica supported titanium complexes was evaluated by a cyanosilylation of benzaldehyde. The results showed that the catalytic activity is dependent strongly on the dehydroxylation temperatures of silica and the configuration of the ligands.

  9. Electromechanical Characterization of Single GaN Nanobelt Probed with Conductive Atomic Force Microscope

    Science.gov (United States)

    Yan, X. Y.; Peng, J. F.; Yan, S. A.; Zheng, X. J.

    2018-04-01

    The electromechanical characterization of the field effect transistor based on a single GaN nanobelt was performed under different loading forces by using a conductive atomic force microscope (C-AFM), and the effective Schottky barrier height (SBH) and ideality factor are simulated by the thermionic emission model. From 2-D current image, the high value of the current always appears on the nanobelt edge with the increase of the loading force less than 15 nN. The localized (I-V) characteristic reveals a typical rectifying property, and the current significantly increases with the loading force at the range of 10-190 nN. The ideality factor is simulated as 9.8 within the scope of GaN nano-Schottky diode unity (6.5-18), therefore the thermionic emission current is dominant in the electrical transport of the GaN-tip Schottky junction. The SBH is changed through the piezoelectric effect induced by the loading force, and it is attributed to the enhanced current. Furthermore, a single GaN nanobelt has a high mechanical-induced current ratio that could be made use of in a nanoelectromechanical switch.

  10. Design and Characterization of 64K Pixels Chips Working in Single Photon Processing Mode

    CERN Document Server

    Llopart Cudie, Xavier; Campbell, M

    2007-01-01

    Progress in CMOS technology and in fine pitch bump bonding has made possible the development of high granularity single photon counting detectors for X-ray imaging. This thesis studies the design and characterization of three pulse processing chips with 65536 square pixels of 55 µm x 55 µm designed in a commercial 0.25 µm 6-metal CMOS technology. The 3 chips share the same architecture and dimensions and are named Medipix2, Mpix2MXR20 and Timepix. The Medipix2 chip is a pixel detector readout chip consisting of 256 x 256 identical elements, each working in single photon counting mode for positive or negative input charge signals. The preamplifier feedback provides compensation for detector leakage current on a pixel by pixel basis. Two identical pulse height discriminators are used to define an energy window. Every event falling inside the energy window is counted with a 13 bit pseudo-random counter. The counter logic, based in a shift register, also behaves as the input/output register for the pixel. Each...

  11. Rapid Characterization of Bacterial Electrogenicity Using a Single-Sheet Paper-Based Electrofluidic Array

    Directory of Open Access Journals (Sweden)

    Yang Gao

    2017-07-01

    Full Text Available Electrogenicity, or bacterial electron transfer capacity, is an important application which offers environmentally sustainable advances in the fields of biofuels, wastewater treatment, bioremediation, desalination, and biosensing. Significant boosts in this technology can be achieved with the growth of synthetic biology that manipulates microbial electron transfer pathways, thereby potentially significantly improving their electrogenic potential. There is currently a need for a high-throughput, rapid, and highly sensitive test array to evaluate the electrogenic properties of newly discovered and/or genetically engineered bacterial species. In this work, we report a single-sheet, paper-based electrofluidic (incorporating both electronic and fluidic structure screening platform for rapid, sensitive, and potentially high-throughput characterization of bacterial electrogenicity. This novel screening array uses (i a commercially available wax printer for hydrophobic wax patterning on a single sheet of paper and (ii water-dispersed electrically conducting polymer mixture, poly(3,4-ethylenedioxythiophene:polystyrene sulfonate, for full integration of electronic and fluidic components into the paper substrate. The engineered 3-D, microporous, hydrophilic, and conductive paper structure provides a large surface area for efficient electron transfer. This results in rapid and sensitive power assessment of electrogenic bacteria from a microliter sample volume. We validated the effectiveness of the sensor array using hypothesis-driven genetically modified Pseudomonas aeruginosa mutant strains. Within 20 min, we observed that the sensor platform successfully measured the electricity-generating capacities of five isogenic mutants of P. aeruginosa while distinguishing their differences from genetically unmodified bacteria.

  12. Characterization of Necking Phenomena in High-Speed Experiments by Using a Single Camera

    Directory of Open Access Journals (Sweden)

    Hild François

    2010-01-01

    Full Text Available The purpose of the experiment described herein is the study of material deformation (here a cylinder induced by explosives. During its expansion, the cylinder (initially 3 mm thick is thinning until fracture appears. Some tens of microseconds before destruction, strain localizations occur and induce mechanical necking. To characterize the time of first localizations, 25 stereoscopic acquisitions at about 500,000 frames per second are used by resorting to a single ultra-high speed camera. The 3D reconstruction from stereoscopic movies is described. A special calibration procedure is followed, namely, the calibration target is imaged during the experiment itself. To characterize the performance of the present procedure, resolution and optical distortions are estimated. The principle of stereoscopic reconstruction of an object subjected to a high-speed experiment is then developed. This reconstruction is achieved by using a global image correlation code that exploits random markings on the object outer surface. The spatial resolution of the estimated surface is evaluated thanks to a realistic image pair synthesis. Last, the time evolution of surface roughness is estimated. It gives access to the onset of necking.

  13. Non-destructive characterization of materials by single-sided NMR

    International Nuclear Information System (INIS)

    Goga, Nicolae-Octavian

    2007-01-01

    The experiments conducted in this work demonstrate the efficiency and sensitivity of single-sided NMR for investigating macromolecular materials on large time and length scales. Elastomers can readily be characterized by unilateral NMR of protons in terms of a variety of parameters, which correlate with the overall molecular mobility. In this way information about the cross-link density, state of cure and strain, the effects of aging and product heterogeneity can obtained. For these purposes, the NMR-MOUSE was used to optimize product development and to monitor product and production quality on-line. The sensor is also suitable for nondestructive probing of the mechanical deformation in cross-linked elastomers. A special magnet design that fits a stress-strain device has been used for complementary investigation of a series of different rubber stripes during mechanical testing. The profile NMR-MOUSE was found to be a unique tool for the characterization of changes induced by the UV irradiation in natural rubber. The aging profiles were interpreted for the first time based on a novel model in which the radiation absorption coefficient depends on the depth in the sample. (orig.)

  14. Solvent Carryover Characterization and Recovery for a 10-inch Single Stage Centrifugal Contactor

    International Nuclear Information System (INIS)

    Lentsch, R.D.; Stephens, A.B.; Leung, D.T.; Baffling, K.E.; Harmon, H.D.; Suggs, P.C.

    2006-01-01

    A test program has been performed to characterize the organic solvent carryover and recovery from centrifugal contactors in the Caustic-side Solvent Extraction (CSSX) process. CSSX is the baseline design for removing cesium from salt solutions for Department of Energy (DOE) Savannah River Site's Salt Waste Processing Facility. CSSX uses a custom solvent to extract cesium from the salt solution in a series of single stage centrifugal contactors. Meeting the Waste Acceptance Criteria at the Defense Waste Processing Facility and Saltstone, as well as plant economics, dictate that solvent loss should be kept to a minimum. Solvent droplet size distribution in the aqueous outlet streams of the CSSX contactors is of particular importance to the design of solvent recovery equipment. Because insufficient solvent droplet size data existed to form a basis for the recovery system design, DOE funded the CSSX Solvent Carryover Characterization and Recovery Test (SCCRT). This paper presents the droplet size distribution of solvent and concentration in the contactor aqueous outlet streams as a function of rotor speed, bottom plate type, and flow rate. It also presents the performance data of a prototype coalescer. (authors)

  15. Non-destructive characterization of materials by single-sided NMR

    Energy Technology Data Exchange (ETDEWEB)

    Goga, Nicolae-Octavian

    2007-08-20

    The experiments conducted in this work demonstrate the efficiency and sensitivity of single-sided NMR for investigating macromolecular materials on large time and length scales. Elastomers can readily be characterized by unilateral NMR of protons in terms of a variety of parameters, which correlate with the overall molecular mobility. In this way information about the cross-link density, state of cure and strain, the effects of aging and product heterogeneity can obtained. For these purposes, the NMR-MOUSE was used to optimize product development and to monitor product and production quality on-line. The sensor is also suitable for nondestructive probing of the mechanical deformation in cross-linked elastomers. A special magnet design that fits a stress-strain device has been used for complementary investigation of a series of different rubber stripes during mechanical testing. The profile NMR-MOUSE was found to be a unique tool for the characterization of changes induced by the UV irradiation in natural rubber. The aging profiles were interpreted for the first time based on a novel model in which the radiation absorption coefficient depends on the depth in the sample. (orig.)

  16. In vitro selection and characterization of single stranded DNA aptamers for luteolin: A possible recognition tool.

    Science.gov (United States)

    Tuma Sabah, Jinan; Zulkifli, Razauden Mohamed; Shahir, Shafinaz; Ahmed, Farediah; Abdul Kadir, Mohammed Rafiq; Zakaria, Zarita

    2018-03-06

    Distinctive bioactivities possessed by luteolin (3', 4', 5, 7-tetrahydroxy-flavone) are advantageous for sundry practical applications. This paper reports the in vitro selection and characterization of single stranded-DNA (ssDNA) aptamers, specific for luteolin (LUT). 76-mer library containing 1015 randomized ssDNA were screened via systematic evolution of ligands by exponential enrichment (SELEX). The recovered ssDNA pool from the 8th round was amplified with unlabeled primers and cloned into PSTBlue-1 vector prior to sequencing. 22 of LUT-binding aptamer variants were further classified into one of the seven groups based on their N40 random sequence regions, wherein one representative from each group was characterized. The dissociation constant of aptamers designated as LUT#28, LUT#20 and LUT#3 was discerned to be 107, 214 and 109 nM, respectively with high binding affinity towards LUT. Prediction analysis of the secondary structure suggested discrete features with typical loop and stem motifs. Furthermore, LUT#3 displayed higher specificity with insignificant binding toward kaempferol and quercetin despite its structural and functional similarity compared to LUT#28 and LUT#20. Further LUT#3 can detect free luteolin within 0.2-1 mM in solution. It was suggested that LUT#3 aptamer were the most suitable for LUT recognition tool at laboratory scale based on the condition tested. Copyright © 2018. Published by Elsevier Inc.

  17. Construction and characterization of a single stage dual diaphragm gas gun

    Science.gov (United States)

    Helminiak, Nathaniel Steven

    In the interest of studying the propagation of shock waves, this work sets out to design, construct, and characterize a pneumatic accelerator that performs high-velocity flyer plate impact tests. A single stage gas gun with a dual diaphragm breach allows for a non-volatile, reliable experimental testing platform for shock phenomena. This remotely operated gas gun utilizes compressed nitrogen to launch projectiles down a 14 foot long, 2 inch diameter bore barrel, which subsequently impacts a target material of interest. A dual diaphragm firing mechanism allows the 4.5 liter breech to reach a total pressure differential of 10ksi before accelerating projectiles to velocities as high as 1,000 m/s (1570-2240 mph). The projectile's velocity is measured using a series of break pin circuits. The target response can be measured with Photon Doppler Velocimetry (PDV) and/or stress gauge system. A vacuum system eliminates the need for pressure relief in front of the projectile, while additionally allowing the system to remain closed over the entire firing cycle. Characterization of the system will allow for projectile speed to be estimated prior to launching based on initial breach pressure.

  18. Relaxor-based ferroelectric single crystals: growth, domain engineering, characterization and applications

    Science.gov (United States)

    Sun, Enwei; Cao, Wenwu

    2014-01-01

    techniques, domain engineering concept, and full-matrix property characterization all the way to device innovations. It outlines a truly encouraging story in materials science in the modern era. All key references are provided and 30 complete sets of material parameters for different types of relaxor-PT single crystals are listed in the Appendix. It is the intension of this review article to serve as a resource for those who are interested in basic research and practical applications of these relaxor-PT single crystals. In addition, possible mechanisms of giant piezoelectric properties in these domain-engineered relaxor-PT systems will be discussed based on contributions from polarization rotation and charged domain walls. PMID:25061239

  19. Statistical Analysis of Photopyroelectric Signals using Histogram and Kernel Density Estimation for differentiation of Maize Seeds

    Science.gov (United States)

    Rojas-Lima, J. E.; Domínguez-Pacheco, A.; Hernández-Aguilar, C.; Cruz-Orea, A.

    2016-09-01

    Considering the necessity of photothermal alternative approaches for characterizing nonhomogeneous materials like maize seeds, the objective of this research work was to analyze statistically the amplitude variations of photopyroelectric signals, by means of nonparametric techniques such as the histogram and the kernel density estimator, and the probability density function of the amplitude variations of two genotypes of maize seeds with different pigmentations and structural components: crystalline and floury. To determine if the probability density function had a known parametric form, the histogram was determined which did not present a known parametric form, so the kernel density estimator using the Gaussian kernel, with an efficiency of 95 % in density estimation, was used to obtain the probability density function. The results obtained indicated that maize seeds could be differentiated in terms of the statistical values for floury and crystalline seeds such as the mean (93.11, 159.21), variance (1.64× 103, 1.48× 103), and standard deviation (40.54, 38.47) obtained from the amplitude variations of photopyroelectric signals in the case of the histogram approach. For the case of the kernel density estimator, seeds can be differentiated in terms of kernel bandwidth or smoothing constant h of 9.85 and 6.09 for floury and crystalline seeds, respectively.

  20. On methods to increase the security of the Linux kernel

    International Nuclear Information System (INIS)

    Matvejchikov, I.V.

    2014-01-01

    Methods to increase the security of the Linux kernel for the implementation of imposed protection tools have been examined. The methods of incorporation into various subsystems of the kernel on the x86 architecture have been described [ru

  1. Comparative Analysis of Kernel Methods for Statistical Shape Learning

    National Research Council Canada - National Science Library

    Rathi, Yogesh; Dambreville, Samuel; Tannenbaum, Allen

    2006-01-01

    .... In this work, we perform a comparative analysis of shape learning techniques such as linear PCA, kernel PCA, locally linear embedding and propose a new method, kernelized locally linear embedding...

  2. A new kernel discriminant analysis framework for electronic nose recognition

    International Nuclear Information System (INIS)

    Zhang, Lei; Tian, Feng-Chun

    2014-01-01

    Graphical abstract: - Highlights: • This paper proposes a new discriminant analysis framework for feature extraction and recognition. • The principle of the proposed NDA is derived mathematically. • The NDA framework is coupled with kernel PCA for classification. • The proposed KNDA is compared with state of the art e-Nose recognition methods. • The proposed KNDA shows the best performance in e-Nose experiments. - Abstract: Electronic nose (e-Nose) technology based on metal oxide semiconductor gas sensor array is widely studied for detection of gas components. This paper proposes a new discriminant analysis framework (NDA) for dimension reduction and e-Nose recognition. In a NDA, the between-class and the within-class Laplacian scatter matrix are designed from sample to sample, respectively, to characterize the between-class separability and the within-class compactness by seeking for discriminant matrix to simultaneously maximize the between-class Laplacian scatter and minimize the within-class Laplacian scatter. In terms of the linear separability in high dimensional kernel mapping space and the dimension reduction of principal component analysis (PCA), an effective kernel PCA plus NDA method (KNDA) is proposed for rapid detection of gas mixture components by an e-Nose. The NDA framework is derived in this paper as well as the specific implementations of the proposed KNDA method in training and recognition process. The KNDA is examined on the e-Nose datasets of six kinds of gas components, and compared with state of the art e-Nose classification methods. Experimental results demonstrate that the proposed KNDA method shows the best performance with average recognition rate and total recognition rate as 94.14% and 95.06% which leads to a promising feature extraction and multi-class recognition in e-Nose

  3. Mitigation of artifacts in rtm with migration kernel decomposition

    KAUST Repository

    Zhan, Ge

    2012-01-01

    The migration kernel for reverse-time migration (RTM) can be decomposed into four component kernels using Born scattering and migration theory. Each component kernel has a unique physical interpretation and can be interpreted differently. In this paper, we present a generalized diffraction-stack migration approach for reducing RTM artifacts via decomposition of migration kernel. The decomposition leads to an improved understanding of migration artifacts and, therefore, presents us with opportunities for improving the quality of RTM images.

  4. A finite element characterization of a commercial endlessly single-mode photonic crystal fiber: is it really single mode?

    NARCIS (Netherlands)

    Uranus, H.P.; Hoekstra, Hugo; van Groesen, Embrecht W.C.

    2007-01-01

    One of interesting properties of photonic crystal fibers (PCFs) is their possibility to be single-moded over a wide wavelength range, down to UV, while still having a reasonably large modal profile. Such properties are attractive for applications like optical sensing, interferometry, and transport

  5. Development and characterization of a single particle laser ablation mass spectrometer (SPLAM for organic aerosol studies

    Directory of Open Access Journals (Sweden)

    F. Gaie-Levrel

    2012-01-01

    Full Text Available A single particle instrument was developed for real-time analysis of organic aerosol. This instrument, named Single Particle Laser Ablation Mass Spectrometry (SPLAM, samples particles using an aerodynamic lens system for which the theoretical performances were calculated. At the outlet of this system, particle detection and sizing are realized by using two continuous diode lasers operating at λ = 403 nm. Polystyrene Latex (PSL, sodium chloride (NaCl and dioctylphtalate (DOP particles were used to characterize and calibrate optical detection of SPLAM. The optical detection limit (DL and detection efficiency (DE were determined using size-selected DOP particles. The DE ranges from 0.1 to 90% for 100 and 350 nm DOP particles respectively and the SPLAM instrument is able to detect and size-resolve particles as small as 110–120 nm. During optical detection, particle scattered light from the two diode lasers, is detected by two photomultipliers and the detected signals are used to trigger UV excimer laser (λ = 248 nm used for one-step laser desorption ionization (LDI of individual aerosol particles. The formed ions are analyzed by a 1 m linear time-of-flight mass spectrometer in order to access to the chemical composition of individual particles. The TOF-MS detection limit for gaseous aromatic compounds was determined to be 0.85 × 10−15 kg (∼4 × 103 molecules. DOP particles were also used to test the overall operation of the instrument. The analysis of a secondary organic aerosol, formed in a smog chamber by the ozonolysis of indene, is presented as a first application of the instrument. Single particle mass spectra were obtained with an effective hit rate of 8%. Some of these mass spectra were found to be very different from one particle to another possibly reflecting chemical differences within the investigated indene SOA particles. Our study shows that an exhaustive statistical analysis, over hundreds of particles

  6. Characterization of Plastic Deformation Evolution in Single Crystal and Nanocrystalline Cu During Shock by Atomistic Simulations

    Science.gov (United States)

    Mirzaei Sichani, Mehrdad

    The objective of this dissertation is to characterize the evolution of plastic deformation mechanisms in single crystal and nanocrystalline Cu models during shock by atomistic simulations. Molecular dynamics (MD) simulations are performed for a range of particle velocities from 0.5 to 1.7 km/s and initial temperatures of 5, 300 and 600 K for single crystal models as well as particle velocities from 1.5 to 3.4 km/s for nanocrystalline models with grain diameters of 6, 11, 16 and 26 nm. For single crystal models, four different shock directions are selected, , , and , and dislocation density behind the shock wave front generally increases with increasing particle velocity for all shock orientations. Plastic relaxation for shock in the , and directions is primarily due to a reduction in the Shockley partial dislocation density. In contrast, plastic relaxation is limited for shock in the orientation. This is partially due to the emergence of sessile stair-rod dislocations with Burgers vectors of 1/3 and 1/6 due to the reaction of Shockley partial dislocations with twin boundaries and stacking fault intersections. For shock, FCC Cu is uniaxially compressed towards the BCC structure behind the shock wave front; this process is more favorable at higher shock pressures and temperatures. For particle velocities above 0.9 km/s, regions of HCP crystal structure nucleate from uniaxially compressed Cu. Free energy calculations proves that the nucleation and growth of these HCP clusters are an artifact of the embedded-atom interatomic potential. In addition, simulated x-ray diffraction line profiles are created for shock models of single crystal Cu at the Hugoniot state. Generally, peak broadening in the x-ray diffraction line profiles increases with increasing particle velocity. For nanocrystalline models, the compression of the FCC lattice towards the BCC structure is more apparent at particle velocity of 2.4 km/s, and at this particle velocity, the atomic percentage of BCC

  7. Symbol recognition with kernel density matching.

    Science.gov (United States)

    Zhang, Wan; Wenyin, Liu; Zhang, Kun

    2006-12-01

    We propose a novel approach to similarity assessment for graphic symbols. Symbols are represented as 2D kernel densities and their similarity is measured by the Kullback-Leibler divergence. Symbol orientation is found by gradient-based angle searching or independent component analysis. Experimental results show the outstanding performance of this approach in various situations.

  8. Analytic properties of the Virasoro modular kernel

    Energy Technology Data Exchange (ETDEWEB)

    Nemkov, Nikita [Moscow Institute of Physics and Technology (MIPT), Dolgoprudny (Russian Federation); Institute for Theoretical and Experimental Physics (ITEP), Moscow (Russian Federation); National University of Science and Technology MISIS, The Laboratory of Superconducting metamaterials, Moscow (Russian Federation)

    2017-06-15

    On the space of generic conformal blocks the modular transformation of the underlying surface is realized as a linear integral transformation. We show that the analytic properties of conformal block implied by Zamolodchikov's formula are shared by the kernel of the modular transformation and illustrate this by explicit computation in the case of the one-point toric conformal block. (orig.)

  9. 42 Variability Bugs in the Linux Kernel

    DEFF Research Database (Denmark)

    Abal, Iago; Brabrand, Claus; Wasowski, Andrzej

    2014-01-01

    , serving to evaluate tool implementations of feature-sensitive analyses by testing them on real bugs. We present a qualitative study of 42 variability bugs collected from bug-fixing commits to the Linux kernel repository. We analyze each of the bugs, and record the results in a database. In addition, we...

  10. 40 Variability Bugs in the Linux Kernel

    DEFF Research Database (Denmark)

    Abal Rivas, Iago; Brabrand, Claus; Wasowski, Andrzej

    2014-01-01

    is a requirement for goal-oriented research, serving to evaluate tool implementations of feature-sensitive analyses by testing them on real bugs. We present a qualitative study of 40 variability bugs collected from bug-fixing commits to the Linux kernel repository. We investigate each of the 40 bugs, recording...

  11. Flexible Scheduling in Multimedia Kernels: An Overview

    NARCIS (Netherlands)

    Jansen, P.G.; Scholten, Johan; Laan, Rene; Chow, W.S.

    1999-01-01

    Current Hard Real-Time (HRT) kernels have their timely behaviour guaranteed on the cost of a rather restrictive use of the available resources. This makes current HRT scheduling techniques inadequate for use in a multimedia environment where we can make a considerable profit by a better and more

  12. Analytic continuation of weighted Bergman kernels

    Czech Academy of Sciences Publication Activity Database

    Engliš, Miroslav

    2010-01-01

    Roč. 94, č. 6 (2010), s. 622-650 ISSN 0021-7824 R&D Projects: GA AV ČR IAA100190802 Keywords : Bergman kernel * analytic continuation * Toeplitz operator Subject RIV: BA - General Mathematics Impact factor: 1.450, year: 2010 http://www.sciencedirect.com/science/article/pii/S0021782410000942

  13. A synthesis of empirical plant dispersal kernels

    Czech Academy of Sciences Publication Activity Database

    Bullock, J. M.; González, L. M.; Tamme, R.; Götzenberger, Lars; White, S. M.; Pärtel, M.; Hooftman, D. A. P.

    2017-01-01

    Roč. 105, č. 1 (2017), s. 6-19 ISSN 0022-0477 Institutional support: RVO:67985939 Keywords : dispersal kernel * dispersal mode * probability density function Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 5.813, year: 2016

  14. Graph Bundling by Kernel Density Estimation

    NARCIS (Netherlands)

    Hurter, C.; Ersoy, O.; Telea, A.

    We present a fast and simple method to compute bundled layouts of general graphs. For this, we first transform a given graph drawing into a density map using kernel density estimation. Next, we apply an image sharpening technique which progressively merges local height maxima by moving the convolved

  15. Evaluation of different combinations of palm kernel cake - and cotton ...

    African Journals Online (AJOL)

    ... sole palm kernel cake based diets than those fed combinations of palm kernel cake and cottonseed cake. It is concluded that palm kernel cake alone (without any combination with cottonseed cake) is adequate as protein source in compounding protein supplements for West African Dwarf goats for profitable performance.

  16. Enhanced gluten properties in soft kernel durum wheat

    Science.gov (United States)

    Soft kernel durum wheat is a relatively recent development (Morris et al. 2011 Crop Sci. 51:114). The soft kernel trait exerts profound effects on kernel texture, flour milling including break flour yield, milling energy, and starch damage, and dough water absorption (DWA). With the caveat of reduce...

  17. determination of bio-energy potential of palm kernel shell

    African Journals Online (AJOL)

    88888888

    2012-11-03

    Nov 3, 2012 ... Palm Kernel Shell (PKS) is an economically and environmentally sustainable raw material for ... oil and palm kernel oil production, palm oil fibre, effluent, kernel shell and empty fruit bunch are re- garded as wastes. According to Luangkiattikhun et ... use as concrete reinforcement in construction indus-.

  18. Dense Medium Machine Processing Method for Palm Kernel/ Shell ...

    African Journals Online (AJOL)

    ADOWIE PERE

    ABSTRACT: A machine processing method for the separation of cracked palm kernel from the shells using ... Cracked palm kernel is a mixture of kernels, broken shells, dusts and other impurities. In order to produce ... Received 31 September 2017, received in revised form 18 October 2017, accepted 29 November 2017.

  19. An Investigation of Kernel Data Attacks and Countermeasures

    Science.gov (United States)

    2017-02-14

    demonstrate that attackers can stealthily subvert various kernel security mechanism s and develop a new keylogger , which is more stealthy than existing... keyloggers .. By classifying kernel data into different categories and handling them separately, we propose a defense mechanism and evaluate its...a computer system. 15. SUBJECT TERMS Kernel Data, Rootkit, Keylogger , Countermeasure 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF a. REPORT b

  20. Learning a peptide-protein binding affinity predictor with kernel ridge regression.

    Science.gov (United States)

    Giguère, Sébastien; Marchand, Mario; Laviolette, François; Drouin, Alexandre; Corbeil, Jacques

    2013-03-05

    The cellular function of a vast majority of proteins is performed through physical interactions with other biomolecules, which, most of the time, are other proteins. Peptides represent templates of choice for mimicking a secondary structure in order to modulate protein-protein interaction. They are thus an interesting class of therapeutics since they also display strong activity, high selectivity, low toxicity and few drug-drug interactions. Furthermore, predicting peptides that would bind to a specific MHC alleles would be of tremendous benefit to improve vaccine based therapy and possibly generate antibodies with greater affinity. Modern computational methods have the potential to accelerate and lower the cost of drug and vaccine discovery by selecting potential compounds for testing in silico prior to biological validation. We propose a specialized string kernel for small bio-molecules, peptides and pseudo-sequences of binding interfaces. The kernel incorporates physico-chemical properties of amino acids and elegantly generalizes eight kernels, comprised of the Oligo, the Weighted Degree, the Blended Spectrum, and the Radial Basis Function. We provide a low complexity dynamic programming algorithm for the exact computation of the kernel and a linear time algorithm for it's approximation. Combined with kernel ridge regression and SupCK, a novel binding pocket kernel, the proposed kernel yields biologically relevant and good prediction accuracy on the PepX database. For the first time, a machine learning predictor is capable of predicting the binding affinity of any peptide to any protein with reasonable accuracy. The method was also applied to both single-target and pan-specific Major Histocompatibility Complex class II benchmark datasets and three Quantitative Structure Affinity Model benchmark datasets. On all benchmarks, our method significantly (p-value ≤ 0.057) outperforms the current state-of-the-art methods at predicting peptide-protein binding

  1. Wheat kernel dimensions: how do they contribute to kernel weight at ...

    Indian Academy of Sciences (India)

    2011-12-02

    Dec 2, 2011 ... Wheat kernel dimensions: how do they contribute to kernel weight at an individual QTL level? FA CUI1, 2†, ANMING DING1†, JUN LI1, 3†, CHUNHUA ZHAO1†, XINGFENG LI1, DESHUN FENG1,. XIUQIN WANG4, LIN WANG1, 5, JURONG GAO1 and HONGGANG WANG1∗. 1State Key Laboratory of Crop ...

  2. Tank characterization report for single-shell tank 241-T-102

    International Nuclear Information System (INIS)

    Baldwin, J.H.

    1997-01-01

    A major function of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendixes serve as the TCR for single-shell tank 241-T-102. The objectives of this report are to use characterization data in response to technical issues associated with tank 241-T-102 waste; and to provide a standard characterization of this waste in terms of a best-basis inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendixes. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order milestone M-44-05. Characterization information presented in this report originated from sample analyses and known historical sources. The most recent core sampling of tank 241-T-102 (March 1993) predated the existence of data quality objectives (DQOs). An assessment of the technical issues from the currently applicable DQOs was made using data from the 1993 push mode core sampling event, a July 1994 grab sampling event, and a May 1996 vapor flammability measurement. Historical information for tank 241-T-102, provided in Appendix A, includes surveillance information, records pertaining to waste transfers and tank operations, and expected tank contents derived from a process knowledge model. Appendix B contains further sampling and analysis data from the March 1993 push mode core sampling event and data from the grab sampling event in August 1994 and May 1996 vapor flammability measurement. Of the two push mode cores taken in March of 1993, cores 55

  3. Spectroscopic characterization of a green copper site in a single-domain cupredoxin.

    Science.gov (United States)

    Roger, Magali; Biaso, Frédéric; Castelle, Cindy J; Bauzan, Marielle; Chaspoul, Florence; Lojou, Elisabeth; Sciara, Giuliano; Caffarri, Stefano; Giudici-Orticoni, Marie-Thérèse; Ilbert, Marianne

    2014-01-01

    Cupredoxins are widespread copper-binding proteins, mainly involved in electron transfer pathways. They display a typical rigid greek key motif consisting of an eight stranded β-sandwich. A fascinating feature of cupredoxins is the natural diversity of their copper center geometry. These geometry variations give rise to drastic changes in their color, such as blue, green, red or purple. Based on several spectroscopic and structural analyses, a connection between the geometry of their copper-binding site and their color has been proposed. However, little is known about the relationship between such diversity of copper center geometry in cupredoxins and possible implications for function. This has been difficult to assess, as only a few naturally occurring green and red copper sites have been described so far. We report herein the spectrocopic characterization of a novel kind of single domain cupredoxin of green color, involved in a respiratory pathway of the acidophilic organism Acidithiobacillus ferrooxidans. Biochemical and spectroscopic characterization coupled to bioinformatics analysis reveal the existence of some unusual features for this novel member of the green cupredoxin sub-family. This protein has the highest redox potential reported to date for a green-type cupredoxin. It has a constrained green copper site insensitive to pH or temperature variations. It is a green-type cupredoxin found for the first time in a respiratory pathway. These unique properties might be explained by a region of unknown function never found in other cupredoxins, and by an unusual length of the loop between the second and the fourth copper ligands. These discoveries will impact our knowledge on non-engineered green copper sites, whose involvement in respiratory chains seems more widespread than initially thought.

  4. Spectroscopic characterization of a green copper site in a single-domain cupredoxin.

    Directory of Open Access Journals (Sweden)

    Magali Roger

    Full Text Available Cupredoxins are widespread copper-binding proteins, mainly involved in electron transfer pathways. They display a typical rigid greek key motif consisting of an eight stranded β-sandwich. A fascinating feature of cupredoxins is the natural diversity of their copper center geometry. These geometry variations give rise to drastic changes in their color, such as blue, green, red or purple. Based on several spectroscopic and structural analyses, a connection between the geometry of their copper-binding site and their color has been proposed. However, little is known about the relationship between such diversity of copper center geometry in cupredoxins and possible implications for function. This has been difficult to assess, as only a few naturally occurring green and red copper sites have been described so far. We report herein the spectrocopic characterization of a novel kind of single domain cupredoxin of green color, involved in a respiratory pathway of the acidophilic organism Acidithiobacillus ferrooxidans. Biochemical and spectroscopic characterization coupled to bioinformatics analysis reveal the existence of some unusual features for this novel member of the green cupredoxin sub-family. This protein has the highest redox potential reported to date for a green-type cupredoxin. It has a constrained green copper site insensitive to pH or temperature variations. It is a green-type cupredoxin found for the first time in a respiratory pathway. These unique properties might be explained by a region of unknown function never found in other cupredoxins, and by an unusual length of the loop between the second and the fourth copper ligands. These discoveries will impact our knowledge on non-engineered green copper sites, whose involvement in respiratory chains seems more widespread than initially thought.

  5. Online Regularized and Kernelized Extreme Learning Machines with Forgetting Mechanism

    Directory of Open Access Journals (Sweden)

    Xinran Zhou

    2014-01-01

    Full Text Available To apply the single hidden-layer feedforward neural networks (SLFN to identify time-varying system, online regularized extreme learning machine (ELM with forgetting mechanism (FORELM and online kernelized ELM with forgetting mechanism (FOKELM are presented in this paper. The FORELM updates the output weights of SLFN recursively by using Sherman-Morrison formula, and it combines advantages of online sequential ELM with forgetting mechanism (FOS-ELM and regularized online sequential ELM (ReOS-ELM; that is, it can capture the latest properties of identified system by studying a certain number of the newest samples and also can avoid issue of ill-conditioned matrix inversion by regularization. The FOKELM tackles the problem of matrix expansion of kernel based incremental ELM (KB-IELM by deleting the oldest sample according to the block matrix inverse formula when samples occur continually. The experimental results show that the proposed FORELM and FOKELM have better stability than FOS-ELM and have higher accuracy than ReOS-ELM in nonstationary environments; moreover, FORELM and FOKELM have time efficiencies superiority over dynamic regression extreme learning machine (DR-ELM under certain conditions.

  6. Single Shell Tank Waste Characterization Project for Tank B-110, Core 9 - data package and PNL validation summary report

    International Nuclear Information System (INIS)

    Pool, K.N.; Jones, T.E.; McKinley, S.G.; Tingey, J.M.; Longaker, T.M.; Gibson, J.A.

    1990-01-01

    This Data Package contains results obtained by Pacific Northwest Laboratory (PNL) staff in the characterization and analyses of Core 9 segments taken from the Single-Shell Tank (SST) 110B. The characterization and analysis of Core 9 segments are outlined in the Waste Characterization Plan for Hanford Site Single-Shell Tanks and in the Pacific Northwest Laboratory (PNL) Single-Shell Tank Waste Characterization Support FY 89/90 Statement of Work (SOW), Rev. 1 dated March, 1990. Specific analyses for each sub-sample taken from a segment are delineated in Test Instructions prepared by the PNL Single-Shell Tank Waste Characterization Project Management Office (SST Project) in accordance with procedures contained in the SST Waste Characterization Procedure Compendium (PNL-MA-599). Analytical procedures used in the characterization activities are also included in PNL-MA-599. Core 9 included five segments although segment 1 did not have sufficient material for characterization. The five samplers were received from Westinghouse Hanford Company (WHC) on 11/21-22/89. Each segment was contained in a sampler and was enclosed in a shipping cask. The shipping cask was butted up to the 325-A hot cell and the sampler moved into the hot cell. The material in the sampler (i.e., the segment) was extruded from the sampler, limited physical characteristics assessed, and photographed. At this point samples were taken for particle size and volatile organic analyses. Each segment was then homogenized. Sub-samples were taken for required analyses as delineated in the appropriate Test Instruction. Table 1 includes sample numbers assigned to Core 9 segment materials being transferred from 325-A Hot Cell. Sample numbers 90-0298, 90-0299, 90-0302, and 90-0303 were included in Table 1 although no analyses were requested for these samples. Table 2 lists Core 9 sub-sample numbers per sample preparation method

  7. Revisiting the definition of local hardness and hardness kernel.

    Science.gov (United States)

    Polanco-Ramírez, Carlos A; Franco-Pérez, Marco; Carmona-Espíndola, Javier; Gázquez, José L; Ayers, Paul W

    2017-05-17

    An analysis of the hardness kernel and local hardness is performed to propose new definitions for these quantities that follow a similar pattern to the one that characterizes the quantities associated with softness, that is, we have derived new definitions for which the integral of the hardness kernel over the whole space of one of the variables leads to local hardness, and the integral of local hardness over the whole space leads to global hardness. A basic aspect of the present approach is that global hardness keeps its identity as the second derivative of energy with respect to the number of electrons. Local hardness thus obtained depends on the first and second derivatives of energy and electron density with respect to the number of electrons. When these derivatives are approximated by a smooth quadratic interpolation of energy, the expression for local hardness reduces to the one intuitively proposed by Meneses, Tiznado, Contreras and Fuentealba. However, when one combines the first directional derivatives with smooth second derivatives one finds additional terms that allow one to differentiate local hardness for electrophilic attack from the one for nucleophilic attack. Numerical results related to electrophilic attacks on substituted pyridines, substituted benzenes and substituted ethenes are presented to show the overall performance of the new definition.

  8. Image re-sampling detection through a novel interpolation kernel.

    Science.gov (United States)

    Hilal, Alaa

    2018-03-27

    Image re-sampling involved in re-size and rotation transformations is an essential element block in a typical digital image alteration. Fortunately, traces left from such processes are detectable, proving that the image has gone a re-sampling transformation. Within this context, we present in this paper two original contributions. First, we propose a new re-sampling interpolation kernel. It depends on five independent parameters that controls its amplitude, angular frequency, standard deviation, and duration. Then, we demonstrate its capacity to imitate the same behavior of the most frequent interpolation kernels used in digital image re-sampling applications. Secondly, the proposed model is used to characterize and detect the correlation coefficients involved in re-sampling transformations. The involved process includes a minimization of an error function using the gradient method. The proposed method is assessed over a large database of 11,000 re-sampled images. Additionally, it is implemented within an algorithm in order to assess images that had undergone complex transformations. Obtained results demonstrate better performance and reduced processing time when compared to a reference method validating the suitability of the proposed approaches. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Characterization of single grain by observing magnetic ejection and rotation in microgravity

    Science.gov (United States)

    Uyeda, Chiaki

    A simple and nondestructive method to perform material identification on a single particle is desired in various fields of material science that is concerned with nano-sized particles. We propose a method of identification based on magnetization data, which is obtained from field-induced translation and rotation in microgravity [1]. Material identification is possible from magnetization data because an intrinsic value of susceptibility and anisotropy is assigned to every material according to a data book that compiles the published values [2]. Preliminary ob-servation on free translational motion due to repulsive field-gradient force was reported for mm-sized crystal of corundum [1] and other oxides. Rotational oscillation was observed for various diamagnetic single-crystals in homogeneous field [2]. In order to examine the capability of the above-mentioned material characterization, translation and rotation motion was observed for sub-millimeter-sized quartz, calcite and forsterite in microgravity condition (MGLAB, Japan, duration: 4.5s). It is expected from motional equations that the 2 motions are independent to mass of particles, In a given field distribution, acceleration of translation is expected to be uniquely determined from intrinsic susceptibility of sample. The above properties are exam-ined in the present work by varying experimental parameters. It is noted that observation of the above two motions in microgravity serve as a useful method to detect magnetization of single small particles, be cause the system is free of both sample holder and mass measure-ment. It is expected that magnetization can be measured on a isolated small sample down to nano-level, in condition that motion of the sample is observable. For both susceptibility and anisotropy, range of observed values using microgravity cover the range of compiled published values [2]. Hence material identification is possible for solid material in general. Diamagnetic magnetization and its

  10. Single particle characterization of black carbon aerosols at a tropospheric alpine site in Switzerland

    Science.gov (United States)

    Liu, D.; Flynn, M.; Gysel, M.; Targino, A.; Crawford, I.; Bower, K.; Choularton, T.; Jurányi, Z.; Steinbacher, M.; Hüglin, C.; Curtius, J.; Kampus, M.; Petzold, A.; Weingartner, E.; Baltensperger, U.; Coe, H.

    2010-08-01

    The refractory black carbon (rBC) mass, size distribution (190-720 nm) and mixing state in sub-micron aerosols were characterized from late February to March 2007 using a single particle incandescence method at the high alpine research station Jungfraujoch (JFJ), Switzerland (46.33° N, 7.59° E, 3580 m a.s.l.). JFJ is a ground based location, which is at times exposed to continental free tropospheric air. A median mass absorption coefficient (MAC) of 10.2±3.2 m2 g-1 at λ=630 nm was derived by comparing single particle incandescence measurements of black carbon mass with continuous measurements of absorption coefficient. This value is comparable with other estimates at this location. The aerosols measured at the site were mostly well mixed and aged during transportation via the free troposphere. Pollutant sources were traced by air mass back trajectories, trace gases concentrations and the mass loading of rBC. In southeasterly wind directions, mixed or convective weather types provided the potential to vent polluted boundary layer air from the southern Alpine area and industrial northern Italy, delivering enhanced rBC mass loading and CN concentrations to the JFJ. The aerosol loadings at this site were also significantly influenced by precipitation, which led to the removal of rBC from the atmosphere. Precipitation events were shown to remove about 65% of the rBC mass from the free tropospheric background reducing the mean loading from 13±5 ng m-3 to 6±2 ng m-3(corrected to standard temperature and pressure). Overall, 40±15% of the observed rBC particles within the detectable size range were mixed with large amounts of non-refractory materials present as a thick coating. The growth of particle size into the accumulation mode was positively linked with the degree of rBC mixing, suggesting the important role of condensable materials in increasing particle size and leading to enhanced internal mixing of these materials with rBC. It is the first time that BC mass

  11. Landslide Susceptibility Mapping Based on Particle Swarm Optimization of Multiple Kernel Relevance Vector Machines: Case of a Low Hill Area in Sichuan Province, China

    Directory of Open Access Journals (Sweden)

    Yongliang Lin

    2016-10-01

    Full Text Available In this paper, we propose a multiple kernel relevance vector machine (RVM method based on the adaptive cloud particle swarm optimization (PSO algorithm to map landslide susceptibility in the low hill area of Sichuan Province, China. In the multi-kernel structure, the kernel selection problem can be solved by adjusting the kernel weight, which determines the single kernel contribution of the final kernel mapping. The weights and parameters of the multi-kernel function were optimized using the PSO algorithm. In addition, the convergence speed of the PSO algorithm was increased using cloud theory. To ensure the stability of the prediction model, the result of a five-fold cross-validation method was used as the fitness of the PSO algorithm. To verify the results, receiver operating characteristic curves (ROC and landslide dot density (LDD were used. The results show that the model that used a heterogeneous kernel (a combination of two different kernel functions had a larger area under the ROC curve (0.7616 and a lower prediction error ratio (0.28% than did the other types of kernel models employed in this study. In addition, both the sum of two high susceptibility zone LDDs (6.71/100 km2 and the sum of two low susceptibility zone LDDs (0.82/100 km2 demonstrated that the landslide susceptibility map based on the heterogeneous kernel model was closest to the historical landslide distribution. In conclusion, the results obtained in this study can provide very useful information for disaster prevention and land-use planning in the study area.

  12. Windows Vista Kernel-Mode: Functions, Security Enhancements and Flaws

    Directory of Open Access Journals (Sweden)

    Mohammed D. ABDULMALIK

    2008-06-01

    Full Text Available Microsoft has made substantial enhancements to the kernel of the Microsoft Windows Vista operating system. Kernel improvements are significant because the kernel provides low-level operating system functions, including thread scheduling, interrupt and exception dispatching, multiprocessor synchronization, and a set of routines and basic objects.This paper describes some of the kernel security enhancements for 64-bit edition of Windows Vista. We also point out some weakness areas (flaws that can be attacked by malicious leading to compromising the kernel.

  13. Growth and characterization of 2-amino-4-picolinium 4-aminobenzoate single crystals

    Science.gov (United States)

    Srinivasan, T. P.; Anandhi, S.; Gopalakrishnan, R.

    2010-04-01

    The organic material of 2-amino-4-picolinium 4-aminobenzoate (C 6H 9N 2+·C 7H 6NO 2-) was synthesized and grown as single crystals at room temperature by slow evaporation solution growth technique in the constant temperature bath (±0.01 °C) using ethanol as solvent. The grown crystals were characterized by XRD and FT-IR spectral analyses. The melting point, density, UV-visible spectral studies were carried out for the grown crystals. The theoretical factor group analysis predicts 372 internal modes of vibration and optical modes in the grown title compound. The second harmonic generation (SHG) output of 2-amino-4-picolinium 4-aminobenzoate was recorded by Kurtz-Perry powder technique and it is found to be 355 mV at a given pulse energy of 1.45 mJ/s and for urea the SHG output was 525 mV. The dielectric behaviour of 2-amino-4-picolinium 4-aminobenzoate was investigated with different frequencies and temperatures.

  14. Development, Characterization, and Linkage Mapping of Single Nucleotide Polymorphisms in the Grain Amaranths (Amaranthus sp.

    Directory of Open Access Journals (Sweden)

    PJ. Maughan

    2011-03-01

    Full Text Available The grain amaranths ( sp. are important pseudo-cereals native to the New World. During the last decade they have garnered increased international attention for their nutritional quality, tolerance to abiotic stress, and importance as a symbol of indigenous cultures. We describe the development of the first single nucleotide polymorphism (SNP assays for amaranth. In addition, we report the characterization of the first complete genetic linkage map in the genus. The SNP assays are based on KASPar genotyping chemistry and were detected using the Fluidigm dynamic array platform. A diversity screen of 41 accessions of the cultivated amaranth species and their putative ancestor species ( L. showed that the minor allele frequency (MAF of these markers ranged from 0.05 to 0.5 with an average MAF of 0.27 per SNP locus. One hundred and forty-one of the SNP loci were considered highly polymorphic (MAF ≥ 0.3. Linkage mapping placed all 411 markers into 16 linkage groups, presumably corresponding to each of the 16 amaranth haploid chromosomes. The map spans 1288 cM with an average marker density of 3.1 cM per marker. The work reported here represents the initial first steps toward the genetic dissection of agronomically important characteristics in amaranth.

  15. Carbon-Ring Microelectrode Arrays for Electrochemical Imaging of Single Cell Exocytosis: Fabrication and Characterization

    Science.gov (United States)

    Lin, Yuqing; Trouillon, Raphaël; Svensson, Maria I.; Keighron, Jacqueline D.; Cans, Ann-Sofie; Ewing, Andrew G.

    2012-01-01

    Fabrication of carbon microelectrode arrays, with up to 15 electrodes in total tips as small as 10 to 50 μm, is presented. The support structures of microelectrodes were obtained by pulling multiple quartz capillaries together to form hollow capillary arrays before carbon deposition. Carbon ring microelectrodes were deposited by pyrolysis of acetylene in the lumen of these quartz capillary arrays. Each carbon deposited array tip was filled with epoxy, followed by beveling of the tip of the array to form a deposited carbon-ring microelectrode array (CRMA). Both the number of the microelectrodes in the array and the tip size are independently tunable. These CRMAs have been characterized using scanning electron microscopy, energy dispersive X-ray spectroscopy, and electrogenerated chemiluminescence. Additionally, the electrochemical properties were investigated with steady-state voltammetry. In order to demonstrate the utility of these fabricated microelectrodes in neurochemistry, CRMAs containing eight microring electrodes were used for electrochemical monitoring of exocytotic events from single PC12 cells. Subcellular temporal heterogeneities in exocytosis (ie. cold spots vs. hot spots) were successfully detected with the CRMAs. PMID:22339586

  16. Kelvin probe characterization of buried graphitic microchannels in single-crystal diamond

    International Nuclear Information System (INIS)

    Bernardi, E.; Battiato, A.; Olivero, P.; Vittone, E.; Picollo, F.

    2015-01-01

    In this work, we present an investigation by Kelvin Probe Microscopy (KPM) of buried graphitic microchannels fabricated in single-crystal diamond by direct MeV ion microbeam writing. Metal deposition of variable-thickness masks was adopted to implant channels with emerging endpoints and high temperature annealing was performed in order to induce the graphitization of the highly-damaged buried region. When an electrical current was flowing through the biased buried channel, the structure was clearly evidenced by KPM maps of the electrical potential of the surface region overlying the channel at increasing distances from the grounded electrode. The KPM profiling shows regions of opposite contrast located at different distances from the endpoints of the channel. This effect is attributed to the different electrical conduction properties of the surface and of the buried graphitic layer. The model adopted to interpret these KPM maps and profiles proved to be suitable for the electronic characterization of buried conductive channels, providing a non-invasive method to measure the local resistivity with a micrometer resolution. The results demonstrate the potential of the technique as a powerful diagnostic tool to monitor the functionality of all-carbon graphite/diamond devices to be fabricated by MeV ion beam lithography

  17. Synthesis and Characterization of Hexahapto-Chromium Complexes of Single-Walled Carbon Nanotubes

    KAUST Repository

    Kalinina, Irina

    2016-12-17

    This chapter employs purified pristine single-walled carbon nanotubes (SWNTs) and octadecylaminefunctionalized-SWNTs. These SWNTs are employed for investigate the potential of the SWNT sidewall to function as a hexahapto ligand for chromium (Cr), with in-depth characterization of the products using some of the techniques, such as thermogravimetric analysis (TGA), transmission electron microscopy (TEM), x-ray photoelectron spectroscopy (XPS). Purified electric arc (EA)-produced SWNTs (P2-SWNT) and octadecylaminefunctionalized SWNTs were obtained from Carbon Solutions, Inc. The TEM images show the removal of the Cr particles from the outer surface of the SWNT bundles in the SWNT-Cr complexes after decomplexation; Cr attachment to the surface of the as-prepared complexes (η6-SWNT)Cr(CO)3 and (η6-SWNT-CONH(CH2)17CH3)Cr(CO)3 is clearly evident. The positions of the bands in the Raman spectra of SWNTs are sensitive to doping and thus the chapter examines the effect of complexation of the Cr(CO)3 and Cr(η6-benzene) units on the position of the G and 2D bands in the (η6-SWNT)Cr(CO)3 and (η6-SWNT)Cr(η6-benzene) complexes.

  18. Synthesis, characterization, single crystal X-ray and DFT analysis of disubstituted phosphorodithioates

    Science.gov (United States)

    Kour, Mandeep; Kumar, Sandeep; Feddag, Ahmed; Andotra, Savit; Chouaih, Abdelkader; Gupta, Vivek K.; Kant, Rajni; Pandey, Sushil K.

    2018-04-01

    Disubstituted phosphorodithioates of the type [{(2,5-CH3)2C6H3O}2PS2HNEt3] (1) and [{(3,5-CH3)2C6H3O)2(PS2)}2] (2) were synthesized and characterized by IR and NMR (1H,13C and 31P) spectroscopic studies and as single crystal X-ray analysis. The compound 1 crystallizes in monoclinic space group P21/c whereas compound 2 crystallizes in triclinic space group Pbar1. The X-ray analysis reveals that in compound 1 phosphorus atom is coordinated to the two S and two O atoms to form tetrahedral geometry. The structure is stabilized by cation-anion Nsbnd H⋯S hydrogen bonded interactions. In compound 2, the two phosphorus atoms have a distorted tetrahedral geometry coordinated to two (3,5-CH3)2C6H3O groups. The molecule possesses a crystallographic center of symmetry and consists of zig-zag array of Sdbnd Psbnd Ssbnd Ssbnd Pdbnd S linkages with two diphenyldithiophosphate moieties in the trans configuration. Molecular geometries, HOMO-LUMO analysis and molecular electrostatic potential of compounds 1 and 2 are investigated by theoretical calculations using B3LYP functional with the 6-311G basis combination set in the ground state and compared with the experimental values.

  19. Mesoporous single-crystal Cr 2O 3: Synthesis, characterization, and its activity in toluene removal

    Science.gov (United States)

    Wang, Yangang; Yuan, Xiaohong; Liu, Xiaohui; Ren, Jiawen; Tong, Weiyi; Wang, Yanqin; Lu, Guanzhong

    2008-09-01

    In this paper, a series of ordered mesoporous single-crystal Cr 2O 3 samples were synthesized through a hard-templating pathway by using three-dimensional (3D) cubic mesoporous silica, KIT-6, as the template and chromium nitrate as the precursor. In the synthesis, the intermediate composites (chromium nitrate/KIT-6) were calcined in air for 4 h at different temperatures (from 400 to 700 °C, interval 100 °C) to decompose the nitrate species. Then, the silica template was removed by dissolution in 10% HF solution twice. The resulting Cr 2O 3 samples were characterized by XRD, TEM, XPS, and N 2-sorption analysis and their catalytic properties were also investigated in the oxidation of toluene. These results showed that the obtained ordered mesoporous Cr 2O 3 are exact reverse-replica of the template. It was also found that the catalytic activity was related to mesostructure and/or surface area as well as the calcination temperatures.

  20. NASA-JSC Protocol for the Characterization of Single Wall Carbon Nanotube Material Quality

    Science.gov (United States)

    Arepalli, Sivaram; Nikolaev, Pasha; Gorelik, Olga; Hadjiev, Victor; Holmes, William; Devivar, Rodrigo; Files, Bradley; Yowell, Leonard

    2010-01-01

    It is well known that the raw as well as purified single wall carbon nanotube (SWCNT) material always contain certain amount of impurities of varying composition (mostly metal catalyst and non-tubular carbon). Particular purification method also creates defects and/or functional groups in the SWCNT material and therefore affects the its dispersability in solvents (important to subsequent application development). A number of analytical characterization tools have been used successfully in the past years to assess various properties of nanotube materials, but lack of standards makes it difficult to compare these measurements across the board. In this work we report the protocol developed at NASA-JSC which standardizes measurements using TEM, SEM, TGA, Raman and UV-Vis-NIR absorption techniques. Numerical measures are established for parameters such as metal content, homogeneity, thermal stability and dispersability, to allow easy comparison of SWCNT materials. We will also report on the recent progress in quantitative measurement of non-tubular carbon impurities and a possible purity standard for SWCNT materials.

  1. A versatile low-temperature setup for the electrical characterization of single-molecule junctions

    Science.gov (United States)

    Martin, Christian A.; Smit, Roel H. M.; Egmond, Ruud van; van der Zant, Herre S. J.; van Ruitenbeek, Jan M.

    2011-05-01

    We present a modular high-vacuum setup for the electrical characterization of single molecules down to liquid helium temperatures. The experimental design is based on microfabricated mechanically controllable break junctions, which offer control over the distance of two electrodes via the bending of a flexible substrate. The actuator part of the setup is divided into two stages. The slow stage is based on a differential screw drive with a large bending range. An amplified piezoceramic actuator forms the fast stage of the setup, which can operate at bending speeds of up to 800 μm/s. In our microfabricated break junctions this is translated into breaking speeds of several 10 nm/s, sufficient for the fast acquisition of large statistical datasets. The bandwidth of the measurement electronics has been optimized to enable fast dI/dV spectroscopy on molecular junctions with resistances up to 100 MΩ. The performance of the setup is demonstrated for a π-conjugated oligo(phenylene-ethynylene)-dithiol molecule.

  2. Single-Molecule Characterization of DNA-Protein Interactions Using Nanopore Biosensors.

    Science.gov (United States)

    Squires, A H; Gilboa, T; Torfstein, C; Varongchayakul, N; Meller, A

    2017-01-01

    Detection and characterization of nucleic acid-protein interactions, particularly those involving DNA and proteins such as transcription factors, enzymes, and DNA packaging proteins, remain significant barriers to our understanding of genetic regulation. Nanopores are an extremely sensitive and versatile sensing platform for label-free detection of single biomolecules. Analyte molecules are drawn to and through a nanoscale aperture by an electrophoretic force, which acts upon their native charge while in the sensing region of the pore. When the nanopore's diameter is only slightly larger than the biopolymer's cross section (typically a few nm); the latter must translocate through the pore in a linear fashion due to the constricted geometry in this region. These features allow nanopores to interrogate protein-nucleic acids in multiple sensing modes: first, by scanning and mapping the locations of binding sites along an analyte molecule, and second, by probing the strength of the bond between a protein and nucleic acid, using the native charge of the nucleic acid to apply an electrophoretic force to the complex while the protein is geometrically prevented from passing through the nanopore. In this chapter, we describe progress toward nanopore sensing of protein-nucleic acid complexes in the context of both mapping binding sites and performing force spectroscopy to determine the strength of interactions. We conclude by reviewing the strengths and challenges of the nanopore technique in the context of studying DNA-protein interactions. © 2017 Elsevier Inc. All rights reserved.

  3. Single-site SBA-15 supported zirconium catalysts. Synthesis, characterization and toward cyanosilylation reaction

    Science.gov (United States)

    Xu, Wei; Yu, Bo; Zhang, Ying; Chen, Xi; Zhang, Guofang; Gao, Ziwei

    2015-01-01

    A successive anchoring of Zr(NMe2)4, cyclopentadiene and a O-donor ligand, 1-hydroxyethylbenzene (PEA), 1,1‧-bi-2-naphthol (Binol) or 2,3-dihydroxybutanedioic acid diethyl ester (Tartrate), on dehydroxylated SBA-15 pretreated at 500 °C for 16 h (SBA-15-500) was conducted by SOMC strategy in moderate conditions. The dehydoxylation of SBA-15 was monitored by in situ Fourier transform infrared spectroscopy (in situ FT-IR). The ligand-modified SBA-15-500 supported zirconium complexes were characterized by in situ FT-IR, 13C CP MAS-NMR, X-ray photoelectron spectroscopy (XPS), inductively coupled plasma mass spectrometry (ICP-MAS) and elemental analysis in detail, verifying that the surface zirconium species are single-sited. The catalytic activity of these complexes was evaluated by cyanosilylation of benzaldehyde. The results showed that the catalytic activity is dependent strongly on the structure of surface species and the configuration of the ligands.

  4. Preparation, characterization and single cell testing of new ionic conducting polymers for fuel cell applications

    Science.gov (United States)

    Escribano, P. G.; del Río y, C.; Acosta, J. L.

    In this work, heterogeneous sulfonation and both, structural and electrical characterization of a mixture composed on block copolymer ionomers (HSBS and EPDM) and commercial silica, are studied. The incorporation of sulfonic groups was checked by infrared spectroscopy (FTIR-ATR). Microstructure was studied by means of dynamic mechanical analysis (DMA). Also, water uptake and methanol crossover were determined, and the results were compared with those of Nafion ® 117. Electrical behavior was recorded by means of electrochemical impedance spectroscopy (EIS) at different hydration times. Results show that sulfonation of the styrene rings has effectively occurred. Conductivity values are similar to Nafion and they improve with hydration time. Methanol crossover is lower than in Nafion. Finally, a single complete proton exchange membrane fuel cell (PEMFC) as a whole was tested obtaining the polarization and power curves at different temperatures and pressures, and modeling it by an electrical equivalent circuit (EC) in the symmetrical mode (SM) configuration using the EIS technique. This study offers a physical interpretation relating physical parameters to several processes occurring in the system. Power density values are higher than in Nafion.

  5. Tensile Characterization of Single-Walled Carbon Nanotubes with Helical Structural Defects.

    Science.gov (United States)

    Jhon, Young I; Kim, Chulki; Seo, Minah; Cho, Woon Jo; Lee, Seok; Jhon, Young Min

    2016-02-04

    Recently, evidence was presented that certain single-walled carbon nanotubes (SWNTs) possess helical defective traces, exhibiting distinct cleaved lines, yet their mechanical characterization remains a challenge. On the basis of the spiral growth model of SWNTs, here we present atomic details of helical defects and investigate how the tensile behaviors of SWNTs change with their presence using molecular dynamics simulations. SWNTs have exhibited substantially lower tensile strength and strain than theoretical results obtained from a seamless tubular structure, whose physical origin cannot be explained either by any known SWNT defects so far. We find that this long-lasting puzzle could be explained by assuming helical defects in SWNTs, exhibiting excellent agreement with experimental observation. The mechanism of this tensile process is elucidated by analyzing atomic stress distribution and evolution, and the effects of the chirality and diameter of SWNTs on this phenomenon are examined based on linear elastic fracture mechanics. This work contributes significantly to our understanding of the growth mechanism, defect hierarchies, and mechanical properties of SWNTs.

  6. Single lipid vesicle assay for characterizing single-enzyme kinetics of phospholipid hydrolysis in a complex biological fluid.

    Science.gov (United States)

    Tabaei, Seyed R; Rabe, Michael; Zetterberg, Henrik; Zhdanov, Vladimir P; Höök, Fredrik

    2013-09-25

    Imaging of individual lipid vesicles is used to track single-enzyme kinetics of phospholipid hydrolysis. The method is employed to quantify the catalytic activity of phospholipase A2 (PLA2) in both pure and complex biological fluids. The measurements are demonstrated to offer a subpicomolar limit of detection (LOD) of human secretory PLA2 (sPLA2) in up to 1000-fold-diluted cerebrospinal fluid (CSF). An additional new feature provided by the single-enzyme sensitivity is that information about both relative concentration variations of active sPLA2 in CSF and the specific enzymatic activity can be simultaneously obtained. When CSF samples from healthy controls and individuals diagnosed with Alzheimer's disease (AD) are analyzed, the specific enzymatic activity is found to be preserved within 7% in the different CSF samples whereas the enzyme concentration differs by up to 56%. This suggests that the previously reported difference in PLA2 activity in CSF samples from healthy and AD individuals originates from differences in the PLA2 expression level rather than from the enzyme activity. Conventional ensemble averaging methods used to probe sPLA2 activity do not allow one to obtain such information. Together with an improvement in the LOD of at least 1 order of magnitude compared to that of conventional assays, this suggests that the method will become useful in furthering our understanding of the role of PLA2 in health and disease and in detecting the pharmacodynamic effects of PLA2-targeting drug candidates.

  7. Are single-well "push-pull" tests suitable tracer methods for aquifer characterization?

    Science.gov (United States)

    Hebig, Klaus; Zeilfelder, Sarah; Ito, Narimitsu; Machida, Isao; Scheytt, Traugott; Marui, Atsunao

    2013-04-01

    Recently, investigations were conducted for geological and hydrogeological characterisation of the sedimentary coastal basin of Horonobe (Hokkaido, Japan). Coastal areas are typical geological settings in Japan, which are less tectonically active than the mountain ranges. In Asia, and especially in Japan, these areas are often densely populated. Therefore, it is important to investigate the behaviour of solutes in such unconsolidated aquifers. In such settings sometimes only single boreholes or groundwater monitoring wells are available for aquifer testing for various reasons, e.g. depths of more than 100 m below ground level and slow groundwater velocities due to density driven flow. A standard tracer test with several involved groundwater monitoring wells is generally very difficult or even not possible at these depths. One of the most important questions in our project was how we can obtain information about chemical and hydraulic properties in such aquifers. Is it possible to characterize solute transport behaviour parameters with only one available groundwater monitoring well or borehole? A so-called "push-pull" test may be one suitable method for aquifer testing with only one available access point. In a push-pull test a known amount of several solutes including a conservative tracer is injected into the aquifer ("push") and afterwards extracted ("pull"). The measured breakthrough curve during the pumping back phase can then be analysed. This method has already been used previously with various aims, also in the recent project (e.g. Hebig et al. 2011, Zeilfelder et al. 2012). However, different test setups produced different tracer breakthrough curves. As no systematic evaluation of this aquifer tracer test method was done so far, nothing is known about its repeatability. Does the injection and extraction rate influence the shape of the breakthrough curve? Which role plays the often applied "chaser", which is used to push the test solution out from the

  8. Utilizing Temporal Information in fMRI Decoding: Classifier Using Kernel Regression Methods

    Science.gov (United States)

    Chu, Carlton; Mourão-Miranda, Janaina; Chiu, Yu-Chin; Kriegeskorte, Nikolaus; Tan, Geoffrey; Ashburner, John

    2011-01-01

    This paper describes a general kernel regression approach to predict experimental conditions from activity patterns acquired with functional magnetic resonance image (fMRI). The standard approach is to use classifiers that predict conditions from activity patterns. Our approach involves training different regression machines for each experimental condition, so that a predicted temporal profile is computed for each condition. A decision function is then used to classify the responses from the testing volumes into the corresponding category, by comparing the predicted temporal profile elicited by each event, against a canonical haemodynamic response function. This approach utilizes the temporal information in the fMRI signal and maintains more training samples in order to improve the classification accuracy over an existing strategy. This paper also introduces efficient techniques of temporal compaction, which operate directly on kernel matrices for kernel classification algorithms such as the support vector machine (SVM). Temporal compacting can convert the kernel computed from each fMRI volume directly into the kernel computed from beta-maps, average of volumes or spatial-temporal kernel. The proposed method was applied to three different datasets. The first one is a block-design experiment with three conditions of image stimuli. The method outperformed the SVM classifiers of three different types of temporal compaction in single-subject leave-one-block-out cross-validation. Our method achieved 100% classification accuracy for six of the subjects and an average of 94% accuracy across all 16 subjects, exceeding the best SVM classification result, which was 83% accuracy (p=0.008). The second dataset is also a block-design experiment with two conditions of visual attention (left or right). Our method yielded 96% accuracy and SVM yielded 92% (p=0.005). The third dataset is from a fast event-related experiment with two categories of visual objects. Our method achieved

  9. Kernel Methods for Machine Learning with Life Science Applications

    DEFF Research Database (Denmark)

    Abrahamsen, Trine Julie

    Kernel methods refer to a family of widely used nonlinear algorithms for machine learning tasks like classification, regression, and feature extraction. By exploiting the so-called kernel trick straightforward extensions of classical linear algorithms are enabled as long as the data only appear...... models to kernel learning, and means for restoring the generalizability in both kernel Principal Component Analysis and the Support Vector Machine are proposed. Viability is proved on a wide range of benchmark machine learning data sets....... as innerproducts in the model formulation. This dissertation presents research on improving the performance of standard kernel methods like kernel Principal Component Analysis and the Support Vector Machine. Moreover, the goal of the thesis has been two-fold. The first part focuses on the use of kernel Principal...

  10. Single pass kernel k-means clustering method

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Department of Computer Science and Engineering, Srinivasa Ramanujan Institute of Technology, Anantapur 515701, India; Department of Computer Science and Engineering, Rajeev Gandhi Memorial College of Engineering and Technology, Nandyal 518501, India; Department of Computer Science and ...

  11. Detection of Fusarium in single wheat kernels using spectral Imaging

    NARCIS (Netherlands)

    Polder, G.; Heijden, van der G.W.A.M.; Waalwijk, C.; Young, I.T.

    2005-01-01

    Fusarium head blight (FHB) is a harmful fungal disease that occurs in small grains. Non-destructive detection of this disease is traditionally done using spectroscopy or image processing. In this paper the combination of these two in the form of spectral imaging is evaluated. Transmission spectral

  12. Growth and characterization of air annealing Tb-doped YAG:Ce single crystal for white-light-emitting diode

    International Nuclear Information System (INIS)

    Gong, Maogao; Xiang, Weidong; Liang, Xiaojuan; Zhong, Jiasong; Chen, Daqin; Huang, Jun; Gu, Guorui; Yang, Cheng; Xiang, Run

    2015-01-01

    Highlights: • We report preparation of transparent Ce,Tb:YAG single crystal by Czochralski method. • The effect of annealing on Ce,Tb:YAG single crystal had been investigated. • The Ce,Tb:YAG single crystal after annealing exhibited better optical performance. • The Ce,Tb:YAG single crystal could be used as an ideal candidate for WLED. - Abstract: We report the preparation of transparent Ce and Tb co-doped Y 3 Al 5 O 12 single crystal by the Czochralski method. The characterization of the resulting single crystal was accomplished by using X-ray powder diffractometer, scanning electron microscopy and energy dispersive X-ray spectroscopy. Absorption peak of the single crystal at about 460 nm has been obtained from ultraviolet–visible absorption spectrometer and their intensity is changed with different annealing condition. Its optical properties also have been investigated using fluorescence spectrometer. What’s more, its photoelectric parameters were studied by LED fast spectrometer. The constructed single crystal based white-light-emitting diode exhibits a high luminous efficiency of 140.89 lm/W, and a correlated color temperature of 4176 K as well as a color rendering index of 56.7, which reveal the prominent feasibility of the present single crystal material in white-light-emitting diode application

  13. Characterization of ryanodine receptor type 1 single channel activity using "on-nucleus" patch clamp.

    Science.gov (United States)

    Wagner, Larry E; Groom, Linda A; Dirksen, Robert T; Yule, David I

    2014-08-01

    In this study, we provide the first description of the biophysical and pharmacological properties of ryanodine receptor type 1 (RyR1) expressed in a native membrane using the on-nucleus configuration of the patch clamp technique. A stable cell line expressing rabbit RyR1 was established (HEK-RyR1) using the FLP-in 293 cell system. In contrast to untransfected cells, RyR1 expression was readily demonstrated by immunoblotting and immunocytochemistry in HEK-RyR1 cells. In addition, the RyR1 agonists 4-CMC and caffeine activated Ca(2+) release that was inhibited by high concentrations of ryanodine. On nucleus patch clamp was performed in nuclei prepared from HEK-RyR1 cells. Raising the [Ca(2+)] in the patch pipette resulted in the appearance of a large conductance cation channel with well resolved kinetics and the absence of prominent subconductance states. Current versus voltage relationships were ohmic and revealed a chord conductance of ∼750pS or 450pS in symmetrical 250mM KCl or CsCl, respectively. The channel activity was markedly enhanced by caffeine and exposure to ryanodine resulted in the appearance of a subconductance state with a conductance ∼40% of the full channel opening with a Po near unity. In total, these properties are entirely consistent with RyR1 channel activity. Exposure of RyR1 channels to cyclic ADP ribose (cADPr), nicotinic acid adenine dinucleotide phosphate (NAADP) or dantrolene did not alter the single channel activity stimulated by Ca(2+), and thus, it is unlikely these molecules directly modulate RyR1 channel activity. In summary, we describe an experimental platform to monitor the single channel properties of RyR channels. We envision that this system will be influential in characterizing disease-associated RyR mutations and the molecular determinants of RyR channel modulation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Kernel-based tests for joint independence

    DEFF Research Database (Denmark)

    Pfister, Niklas; Bühlmann, Peter; Schölkopf, Bernhard

    2018-01-01

    if the $d$ variables are jointly independent, as long as the kernel is characteristic. Based on an empirical estimate of dHSIC, we define three different non-parametric hypothesis tests: a permutation test, a bootstrap test and a test based on a Gamma approximation. We prove that the permutation test......We investigate the problem of testing whether $d$ random variables, which may or may not be continuous, are jointly (or mutually) independent. Our method builds on ideas of the two variable Hilbert-Schmidt independence criterion (HSIC) but allows for an arbitrary number of variables. We embed...... the $d$-dimensional joint distribution and the product of the marginals into a reproducing kernel Hilbert space and define the $d$-variable Hilbert-Schmidt independence criterion (dHSIC) as the squared distance between the embeddings. In the population case, the value of dHSIC is zero if and only...

  15. Wilson Dslash Kernel From Lattice QCD Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Balint [Jefferson Lab, Newport News, VA; Smelyanskiy, Mikhail [Parallel Computing Lab, Intel Corporation, California, USA; Kalamkar, Dhiraj D. [Parallel Computing Lab, Intel Corporation, India; Vaidyanathan, Karthikeyan [Parallel Computing Lab, Intel Corporation, India

    2015-07-01

    Lattice Quantum Chromodynamics (LQCD) is a numerical technique used for calculations in Theoretical Nuclear and High Energy Physics. LQCD is traditionally one of the first applications ported to many new high performance computing architectures and indeed LQCD practitioners have been known to design and build custom LQCD computers. Lattice QCD kernels are frequently used as benchmarks (e.g. 168.wupwise in the SPEC suite) and are generally well understood, and as such are ideal to illustrate several optimization techniques. In this chapter we will detail our work in optimizing the Wilson-Dslash kernels for Intel Xeon Phi, however, as we will show the technique gives excellent performance on regular Xeon Architecture as well.

  16. A Kernel for Protein Secondary Structure Prediction

    OpenAIRE

    Guermeur , Yann; Lifchitz , Alain; Vert , Régis

    2004-01-01

    http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=10338&mode=toc; International audience; Multi-class support vector machines have already proved efficient in protein secondary structure prediction as ensemble methods, to combine the outputs of sets of classifiers based on different principles. In this chapter, their implementation as basic prediction methods, processing the primary structure or the profile of multiple alignments, is investigated. A kernel devoted to the task is in...

  17. Searching and Indexing Genomic Databases via Kernelization

    Directory of Open Access Journals (Sweden)

    Travis eGagie

    2015-02-01

    Full Text Available The rapid advance of DNA sequencing technologies has yielded databases of thousands of genomes. To search and index these databases effectively, it is important that we take advantage of the similarity between those genomes. Several authors have recently suggested searching or indexing only one reference genome and the parts of the other genomes where they differ. In this paper we survey the twenty-year history of this idea and discuss its relation to kernelization in parameterized complexity.

  18. Kernel based subspace projection of hyperspectral images

    DEFF Research Database (Denmark)

    Larsen, Rasmus; Nielsen, Allan Aasbjerg; Arngren, Morten

    In hyperspectral image analysis an exploratory approach to analyse the image data is to conduct subspace projections. As linear projections often fail to capture the underlying structure of the data, we present kernel based subspace projections of PCA and Maximum Autocorrelation Factors (MAF......). The MAF projection exploits the fact that interesting phenomena in images typically exhibit spatial autocorrelation. The analysis is based on nearinfrared hyperspectral images of maize grains demonstrating the superiority of the kernelbased MAF method....

  19. Multiple Kernel Learning with Data Augmentation

    Science.gov (United States)

    2016-11-22

    et al., 2010; Sun et al., 2010). Particularly, Sun et al. (2010) developed an efficient method based on sequential minimal optimization (SMO). The...http://www.robots.ox.ac.uk/~vgg/data/ flowers /17/ 58 Multiple Kernel Learning with Data Augmentation Algorithm 2 MKL with Data Augmentation approach for...Maria-Elena Nilsback and Andrew Zisserman. A visual vocabulary for flower classification. In Com- puter Vision and Pattern Recognition, 2006 IEEE Computer

  20. Multiple Kernel Spectral Regression for Dimensionality Reduction

    OpenAIRE

    Liu, Bing; Xia, Shixiong; Zhou, Yong

    2013-01-01

    Traditional manifold learning algorithms, such as locally linear embedding, Isomap, and Laplacian eigenmap, only provide the embedding results of the training samples. To solve the out-of-sample extension problem, spectral regression (SR) solves the problem of learning an embedding function by establishing a regression framework, which can avoid eigen-decomposition of dense matrices. Motivated by the effectiveness of SR, we incorporate multiple kernel learning (MKL) into SR for dimensionality...

  1. Searching and Indexing Genomic Databases via Kernelization.

    Science.gov (United States)

    Gagie, Travis; Puglisi, Simon J

    2015-01-01

    The rapid advance of DNA sequencing technologies has yielded databases of thousands of genomes. To search and index these databases effectively, it is important that we take advantage of the similarity between those genomes. Several authors have recently suggested searching or indexing only one reference genome and the parts of the other genomes where they differ. In this paper, we survey the 20-year history of this idea and discuss its relation to kernelization in parameterized complexity.

  2. Scalar contribution to the BFKL kernel

    International Nuclear Information System (INIS)

    Gerasimov, R. E.; Fadin, V. S.

    2010-01-01

    The contribution of scalar particles to the kernel of the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation is calculated. A great cancellation between the virtual and real parts of this contribution, analogous to the cancellation in the quark contribution in QCD, is observed. The reason of this cancellation is discovered. This reason has a common nature for particles with any spin. Understanding of this reason permits to obtain the total contribution without the complicated calculations, which are necessary for finding separate pieces.

  3. Weighted Bergman Kernels for Logarithmic Weights

    Czech Academy of Sciences Publication Activity Database

    Engliš, Miroslav

    2010-01-01

    Roč. 6, č. 3 (2010), s. 781-813 ISSN 1558-8599 R&D Projects: GA AV ČR IAA100190802 Keywords : Bergman kernel * Toeplitz operator * logarithmic weight * pseudodifferential operator Subject RIV: BA - General Mathematics Impact factor: 0.462, year: 2010 http://www.intlpress.com/site/pub/pages/journals/items/pamq/content/vols/0006/0003/a008/

  4. Heat kernels and zeta functions on fractals

    International Nuclear Information System (INIS)

    Dunne, Gerald V

    2012-01-01

    On fractals, spectral functions such as heat kernels and zeta functions exhibit novel features, very different from their behaviour on regular smooth manifolds, and these can have important physical consequences for both classical and quantum physics in systems having fractal properties. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical in honour of Stuart Dowker's 75th birthday devoted to ‘Applications of zeta functions and other spectral functions in mathematics and physics’. (paper)

  5. Discovery and characterization of single-nucleotide polymorphisms in steelhead/rainbow trout, Oncorhynchus mykiss.

    Science.gov (United States)

    Abadía-Cardoso, Alicia; Clemento, Anthony J; Garza, John Carlos

    2011-03-01

    Single-nucleotide polymorphisms (SNPs) have several advantages over other genetic markers, including lower mutation and genotyping error rates, ease of inter-laboratory standardization, and the prospect of high-throughput, low-cost genotyping. Nevertheless, their development and use has only recently moved beyond model organisms to groups such as salmonid fishes. Oncorhynchus mykiss is a salmonid native to the North Pacific rim that has now been introduced throughout the world for fisheries and aquaculture. The anadromous form of the species is known as steelhead. Native steelhead populations on the west coast of the United States have declined and many now have protected status. The nonanadromous, or resident, form of the species is termed rainbow, redband or golden trout. Additional life history and morphological variation, and interactions between the forms, make the species challenging to study, monitor and evaluate. Here, we describe the discovery, characterization and assay development for 139 SNP loci in steelhead/rainbow trout. We used EST sequences from existing genomic databases to design primers for 480 genes. Sanger-sequencing products from these genes provided 130 KB of consensus sequence in which variation was surveyed for 22 individuals from steelhead, rainbow and redband trout groups. The resulting TaqMan assays were surveyed in five steelhead populations and three rainbow trout stocks, where they had a mean minor allele frequency of 0.15-0.26 and observed heterozygosity of 0.18-0.35. Mean F(ST) was 0.204. The development of SNPs for O. mykiss will help to provide highly informative genetic tools for individual and stock identification, pedigree reconstruction, phylogeography and ecological investigation. © 2011 Blackwell Publishing Ltd.

  6. In vitro characterization of antithrombin III concentrates--a single-blind study.

    Science.gov (United States)

    Hellstern, P; Moberg, U; Ekblad, M; Anders, C U; Faller, B; Müller, S

    1995-01-01

    Twenty-three lots of five antithrombin III (AT III) concentrates from four manufacturers were analyzed in a single-blind study. All the preparations had been virus-inactivated by pasteurization, and one concentrate had also been treated with solvent/detergent (S/D). AT III activities were determined using two thrombin-based and one factor Xa-based chromogenic substrate assays. AT III antigen was measured by kinetic nephelometry. All AT III assays were tested against the first international reference preparation coded 72/1. In addition, AT III was characterized by crossed immunoelectrophoresis in the presence of heparin and by gel filtration. The following were quantified: heparin cofactor II activity and antigen content, heparin activity, thrombin-AT III complexes, AT III-protease complexes, total protein, albumin, immunoglobulins, glucose and pH. The AT III concentrates differed markedly in terms of their purity and potency. The specific activities of AT III and the ratios of AT III activity to antigen content ranged from 3.4 to 6.9 and from 0.63 to 0.84, respectively. The highest values were found in five lots of the concentrate that had been treated by both pasteurization and S/D. This preparation was the only one that was virtually free of denaturated AT III, as judged by crossed immunoelectrophoresis. Marked batch-to-batch variation in AT III potencies was found in two out of the five preparations analyzed. In two out of five lots from one manufacturer, the measured potencies were more than 10% lower than the declared potencies.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Isolation and characterization of anti c-met single chain fragment variable (scFv) antibodies.

    Science.gov (United States)

    Qamsari, Elmira Safaie; Sharifzadeh, Zahra; Bagheri, Salman; Riazi-Rad, Farhad; Younesi, Vahid; Abolhassani, Mohsen; Ghaderi, Sepideh Safaei; Baradaran, Behzad; Somi, Mohammad Hossein; Yousefi, Mehdi

    2017-12-01

    The receptor tyrosine kinase (RTK) Met is the cell surface receptor for hepatocyte growth factor (HGF) involved in invasive growth programs during embryogenesis and tumorgenesis. There is compelling evidence suggesting important roles for c-Met in colorectal cancer proliferation, migration, invasion, angiogenesis, and survival. Hence, a molecular inhibitor of an extracellular domain of c-Met receptor that blocks c-Met-cell surface interactions could be of great thera-peutic importance. In an attempt to develop molecular inhibitors of c-Met, single chain variable fragment (scFv) phage display libraries Tomlinson I + J against a specific synthetic oligopeptide from the extracellular domain of c-Met receptor were screened; selected scFv were then characterized using various immune techniques. Three c-Met specific scFv (ES1, ES2, and ES3) were selected following five rounds of panning procedures. The scFv showed specific binding to c-Met receptor, and significantly inhibited proliferation responses of a human colorectal carcinoma cell line (HCT-116). Moreover, anti- apoptotic effects of selected scFv antibodies on the HCT-116 cell line were also evaluated using Annexin V/PI assays. The results demonstrated rates of apoptotic cell death of 46.0, 25.5, and 37.8% among these cells were induced by use of ES1, ES2, and ES3, respectively. The results demonstrated ability to successfully isolate/char-acterize specific c-Met scFv that could ultimately have a great therapeutic potential in immuno-therapies against (colorectal) cancers.

  8. Identification and Characterization of Single-Chain Antibodies that Specifically Bind GI Noroviruses.

    Directory of Open Access Journals (Sweden)

    Amy M Hurwitz

    Full Text Available Norovirus infections commonly lead to outbreaks of acute gastroenteritis and spread quickly, resulting in many health and economic challenges prior to diagnosis. Rapid and reliable diagnostic tests are therefore essential to identify infections and to guide the appropriate clinical responses at the point-of-care. Existing tools, including RT-PCR and enzyme immunoassays, pose several limitations based on the significant time, equipment and expertise required to elicit results. Immunochromatographic assays available for use at the point-of-care have poor sensitivity and specificity, especially for genogroup I noroviruses, thus requiring confirmation of results with more sensitive testing methods. Therefore, there is a clear need for novel reagents to help achieve quick and reliable results. In this study, we have identified two novel single-chain antibodies (scFvs-named NJT-R3-A2 and NJT-R3-A3-that effectively detect GI.1 and GI.7 virus-like particles (VLPs through selection of a phage display library against the P-domain of the GI.1 major capsid protein. The limits of detection by each scFv for GI.1 and GI.7 are 0.1 and 0.2 ng, and 6.25 and 25 ng, respectively. They detect VLPs with strong specificity in multiple diagnostic formats, including ELISAs and membrane-based dot blots, and in the context of norovirus-negative stool suspensions. The scFvs also detect native virions effectively in norovirus-positive clinical stool samples. Purified scFvs bind to GI.1 and GI.7 VLPs with equilibrium constant (KD values of 27 nM and 49 nM, respectively. Overall, the phage-based scFv reagents identified and characterized here show utility for detecting GI.1 and GI.7 noroviruses in multiple diagnostic assay formats with strong specificity and sensitivity, indicating promise for integration into existing point-of-care tests to improve future diagnostics.

  9. Exploiting graph kernels for high performance biomedical relation extraction.

    Science.gov (United States)

    Panyam, Nagesh C; Verspoor, Karin; Cohn, Trevor; Ramamohanarao, Kotagiri

    2018-01-30

    Relation extraction from biomedical publications is an important task in the area of semantic mining of text. Kernel methods for supervised relation extraction are often preferred over manual feature engineering methods, when classifying highly ordered structures such as trees and graphs obtained from syntactic parsing of a sentence. Tree kernels such as the Subset Tree Kernel and Partial Tree Kernel have been shown to be effective for classifying constituency parse trees and basic dependency parse graphs of a sentence. Graph kernels such as the All Path Graph kernel (APG) and Approximate Subgraph Matching (ASM) kernel have been shown to be suitable for classifying general graphs with cycles, such as the enhanced dependency parse graph of a sentence. In this work, we present a high performance Chemical-Induced Disease (CID) relation extraction system. We present a comparative study of kernel methods for the CID task and also extend our study to the Protein-Protein Interaction (PPI) extraction task, an important biomedical relation extraction task. We discuss novel modifications to the ASM kernel to boost its performance and a method to apply graph kernels for extracting relations expressed in multiple sentences. Our system for CID relation extraction attains an F-score of 60%, without using external knowledge sources or task specific heuristic or rules. In comparison, the state of the art Chemical-Disease Relation Extraction system achieves an F-score of 56% using an ensemble of multiple machine learning methods, which is then boosted to 61% with a rule based system employing task specific post processing rules. For the CID task, graph kernels outperform tree kernels substantially, and the best performance is obtained with APG kernel that attains an F-score of 60%, followed by the ASM kernel at 57%. The performance difference between the ASM and APG kernels for CID sentence level relation extraction is not significant. In our evaluation of ASM for the PPI task, ASM

  10. Deep Sequencing of RNA from Ancient Maize Kernels

    Science.gov (United States)

    Rasmussen, Morten; Cappellini, Enrico; Romero-Navarro, J. Alberto; Wales, Nathan; Alquezar-Planas, David E.; Penfield, Steven; Brown, Terence A.; Vielle-Calzada, Jean-Philippe; Montiel, Rafael; Jørgensen, Tina; Odegaard, Nancy; Jacobs, Michael; Arriaza, Bernardo; Higham, Thomas F. G.; Ramsey, Christopher Bronk; Willerslev, Eske; Gilbert, M. Thomas P.

    2013-01-01

    The characterization of biomolecules from ancient samples can shed otherwise unobtainable insights into the past. Despite the fundamental role of transcriptomal change in evolution, the potential of ancient RNA remains unexploited – perhaps due to dogma associated with the fragility of RNA. We hypothesize that seeds offer a plausible refuge for long-term RNA survival, due to the fundamental role of RNA during seed germination. Using RNA-Seq on cDNA synthesized from nucleic acid extracts, we validate this hypothesis through demonstration of partial transcriptomal recovery from two sources of ancient maize kernels. The results suggest that ancient seed transcriptomics may offer a powerful new tool with which to study plant domestication. PMID:23326310

  11. Creativity’s Kernel Development for Conscience Society

    Directory of Open Access Journals (Sweden)

    Dumitru TODOROI

    2012-01-01

    Full Text Available Creativity is man’s (in our opinion not only man’s (Natural Intelligence but an exclusive important computer’s, that is, Artificial Intelligence’s capacity to produce insights, new ideas, inventions or artistic objects, which are accepted of being of social, spiritual, esthetic, or technological value. Creativity is a mental process [1]. The Piirto’s Six Steps of Creativity development (acquire Knowledge, develop Curiosity, become Interested, Passion, Dedication, and Professionalism interference and interaction with Piirto’s 7i features (Inspiration, Imagery, Imagination, Intuition, Insights, Improvisation, and Incubation which characterize highly creative people represents the Base Creativity’s Kernel to be developed in Conscience Society. Tools for Base Creativity’s Kernel’s development are represented by both [2] it’s information (adaptable environment and its operational (adaptable system parts.

  12. Identification of Fusarium damaged wheat kernels using image analysis

    Directory of Open Access Journals (Sweden)

    Ondřej Jirsa

    2011-01-01

    Full Text Available Visual evaluation of kernels damaged by Fusarium spp. pathogens is labour intensive and due to a subjective approach, it can lead to inconsistencies. Digital imaging technology combined with appropriate statistical methods can provide much faster and more accurate evaluation of the visually scabby kernels proportion. The aim of the present study was to develop a discrimination model to identify wheat kernels infected by Fusarium spp. using digital image analysis and statistical methods. Winter wheat kernels from field experiments were evaluated visually as healthy or damaged. Deoxynivalenol (DON content was determined in individual kernels using an ELISA method. Images of individual kernels were produced using a digital camera on dark background. Colour and shape descriptors were obtained by image analysis from the area representing the kernel. Healthy and damaged kernels differed significantly in DON content and kernel weight. Various combinations of individual shape and colour descriptors were examined during the development of the model using linear discriminant analysis. In addition to basic descriptors of the RGB colour model (red, green, blue, very good classification was also obtained using hue from the HSL colour model (hue, saturation, luminance. The accuracy of classification using the developed discrimination model based on RGBH descriptors was 85 %. The shape descriptors themselves were not specific enough to distinguish individual kernels.

  13. Genomic-Enabled Prediction in Maize Using Kernel Models with Genotype × Environment Interaction.

    Science.gov (United States)

    Bandeira E Sousa, Massaine; Cuevas, Jaime; de Oliveira Couto, Evellyn Giselly; Pérez-Rodríguez, Paulino; Jarquín, Diego; Fritsche-Neto, Roberto; Burgueño, Juan; Crossa, Jose

    2017-06-07

    Multi-environment trials are routinely conducted in plant breeding to select candidates for the next selection cycle. In this study, we compare the prediction accuracy of four developed genomic-enabled prediction models: (1) single-environment, main genotypic effect model (SM); (2) multi-environment, main genotypic effects model (MM); (3) multi-environment, single variance G×E deviation model (MDs); and (4) multi-environment, environment-specific variance G×E deviation model (MDe). Each of these four models were fitted using two kernel methods: a linear kernel Genomic Best Linear Unbiased Predictor, GBLUP (GB), and a nonlinear kernel Gaussian kernel (GK). The eight model-method combinations were applied to two extensive Brazilian maize data sets (HEL and USP data sets), having different numbers of maize hybrids evaluated in different environments for grain yield (GY), plant height (PH), and ear height (EH). Results show that the MDe and the MDs models fitted with the Gaussian kernel (MDe-GK, and MDs-GK) had the highest prediction accuracy. For GY in the HEL data set, the increase in prediction accuracy of SM-GK over SM-GB ranged from 9 to 32%. For the MM, MDs, and MDe models, the increase in prediction accuracy of GK over GB ranged from 9 to 49%. For GY in the USP data set, the increase in prediction accuracy of SM-GK over SM-GB ranged from 0 to 7%. For the MM, MDs, and MDe models, the increase in prediction accuracy of GK over GB ranged from 34 to 70%. For traits PH and EH, gains in prediction accuracy of models with GK compared to models with GB were smaller than those achieved in GY. Also, these gains in prediction accuracy decreased when a more difficult prediction problem was studied. Copyright © 2017 Bandeira e Sousa et al.

  14. Genomic-Enabled Prediction in Maize Using Kernel Models with Genotype × Environment Interaction

    Directory of Open Access Journals (Sweden)

    Massaine Bandeira e Sousa

    2017-06-01

    Full Text Available Multi-environment trials are routinely conducted in plant breeding to select candidates for the next selection cycle. In this study, we compare the prediction accuracy of four developed genomic-enabled prediction models: (1 single-environment, main genotypic effect model (SM; (2 multi-environment, main genotypic effects model (MM; (3 multi-environment, single variance G×E deviation model (MDs; and (4 multi-environment, environment-specific variance G×E deviation model (MDe. Each of these four models were fitted using two kernel methods: a linear kernel Genomic Best Linear Unbiased Predictor, GBLUP (GB, and a nonlinear kernel Gaussian kernel (GK. The eight model-method combinations were applied to two extensive Brazilian maize data sets (HEL and USP data sets, having different numbers of maize hybrids evaluated in different environments for grain yield (GY, plant height (PH, and ear height (EH. Results show that the MDe and the MDs models fitted with the Gaussian kernel (MDe-GK, and MDs-GK had the highest prediction accuracy. For GY in the HEL data set, the increase in prediction accuracy of SM-GK over SM-GB ranged from 9 to 32%. For the MM, MDs, and MDe models, the increase in prediction accuracy of GK over GB ranged from 9 to 49%. For GY in the USP data set, the increase in prediction accuracy of SM-GK over SM-GB ranged from 0 to 7%. For the MM, MDs, and MDe models, the increase in prediction accuracy of GK over GB ranged from 34 to 70%. For traits PH and EH, gains in prediction accuracy of models with GK compared to models with GB were smaller than those achieved in GY. Also, these gains in prediction accuracy decreased when a more difficult prediction problem was studied.

  15. Reversible Single-Crystal-to-Single-Crystal Structural Transformation in a Mixed-Ligand 2D Layered Metal-Organic Framework: Structural Characterization and Sorption Study

    Directory of Open Access Journals (Sweden)

    Chih-Chieh Wang

    2017-12-01

    Full Text Available A 3D supramolecular network, [Cd(bipy(C4O4(H2O2]·3H2O (1 (bipy = 4,4′-bipyridine and C4O42− = dianion of H2C4O4, constructed by mixed-ligand two-dimensional (2D metal-organic frameworks (MOFs has been reported and structurally determined by the single-crystal X-ray diffraction method and characterized by other physicochemical methods. In 1, the C4O42− and bipy both act as bridging ligands connecting the Cd(II ions to form a 2D layered MOF, which are then extended to a 3D supramolecular network via the mutually parallel and interpenetrating arrangements among the 2D-layered MOFs. Compound 1 shows a two-step dehydration process with weight losses of 11.0% and 7.3%, corresponding to the weight-loss of three guest and two coordinated water molecules, respectively, and exhibits an interesting reversible single-crystal-to-single-crystal (SCSC structural transformation upon de-hydration and re-hydration for guest water molecules. The SCSC structural transformation have been demonstrated and monitored by single-crystal and X-ray powder diffraction, and thermogravimetic analysis studies.

  16. Kernel-Based Sensor Fusion With Application to Audio-Visual Voice Activity Detection

    Science.gov (United States)

    Dov, David; Talmon, Ronen; Cohen, Israel

    2016-12-01

    In this paper, we address the problem of multiple view data fusion in the presence of noise and interferences. Recent studies have approached this problem using kernel methods, by relying particularly on a product of kernels constructed separately for each view. From a graph theory point of view, we analyze this fusion approach in a discrete setting. More specifically, based on a statistical model for the connectivity between data points, we propose an algorithm for the selection of the kernel bandwidth, a parameter, which, as we show, has important implications on the robustness of this fusion approach to interferences. Then, we consider the fusion of audio-visual speech signals measured by a single microphone and by a video camera pointed to the face of the speaker. Specifically, we address the task of voice activity detection, i.e., the detection of speech and non-speech segments, in the presence of structured interferences such as keyboard taps and office noise. We propose an algorithm for voice activity detection based on the audio-visual signal. Simulation results show that the proposed algorithm outperforms competing fusion and voice activity detection approaches. In addition, we demonstrate that a proper selection of the kernel bandwidth indeed leads to improved performance.

  17. Kernel based subspace projection of near infrared hyperspectral images of maize kernels

    DEFF Research Database (Denmark)

    Larsen, Rasmus; Arngren, Morten; Hansen, Per Waaben

    2009-01-01

    In this paper we present an exploratory analysis of hyper- spectral 900-1700 nm images of maize kernels. The imaging device is a line scanning hyper spectral camera using a broadband NIR illumi- nation. In order to explore the hyperspectral data we compare a series of subspace projection methods...... including principal component analysis and maximum autocorrelation factor analysis. The latter utilizes the fact that interesting phenomena in images exhibit spatial autocorrelation. However, linear projections often fail to grasp the underlying variability on the data. Therefore we propose to use so......- tor transform outperform the linear methods as well as kernel principal components in producing interesting projections of the data....

  18. Classification of maize kernels using NIR hyperspectral imaging

    DEFF Research Database (Denmark)

    Williams, Paul; Kucheryavskiy, Sergey V.

    2016-01-01

    NIR hyperspectral imaging was evaluated to classify maize kernels of three hardness categories: hard, medium and soft. Two approaches, pixel-wise and object-wise, were investigated to group kernels according to hardness. The pixel-wise classification assigned a class to every pixel from individual...... kernels and did not give acceptable results because of high misclassification. However by using a predefined threshold and classifying entire kernels based on the number of correctly predicted pixels, improved results were achieved (sensitivity and specificity of 0.75 and 0.97). Object-wise classification...... was performed using two methods for feature extraction — score histograms and mean spectra. The model based on score histograms performed better for hard kernel classification (sensitivity and specificity of 0.93 and 0.97), while that of mean spectra gave better results for medium kernels (sensitivity...

  19. Object classification and detection with context kernel descriptors

    DEFF Research Database (Denmark)

    Pan, Hong; Olsen, Søren Ingvor; Zhu, Yaping

    2014-01-01

    Context information is important in object representation. By embedding context cue of image attributes into kernel descriptors, we propose a set of novel kernel descriptors called Context Kernel Descriptors (CKD) for object classification and detection. The motivation of CKD is to use spatial...... consistency of image attributes or features defined within a neighboring region to improve the robustness of descriptor matching in kernel space. For feature selection, Kernel Entropy Component Analysis (KECA) is exploited to learn a subset of discriminative CKD. Different from Kernel Principal Component...... Analysis (KPCA) that only keeps features contributing mostly to image reconstruction, KECA selects the CKD that contribute mostly to the Rényi entropy of the image. These CKD are discriminative as they relate to the density distribution of the histogram of image attributes. We report superior performance...

  20. Factorization and the synthesis of optimal feedback kernels for differential-delay systems

    Science.gov (United States)

    Milman, Mark M.; Scheid, Robert E.

    1987-01-01

    A combination of ideas from the theories of operator Riccati equations and Volterra factorizations leads to the derivation of a novel, relatively simple set of hyperbolic equations which characterize the optimal feedback kernel for the finite-time regulator problem for autonomous differential-delay systems. Analysis of these equations elucidates the underlying structure of the feedback kernel and leads to the development of fast and accurate numerical methods for its computation. Unlike traditional formulations based on the operator Riccati equation, the gain is characterized by means of classical solutions of the derived set of equations. This leads to the development of approximation schemes which are analogous to what has been accomplished for systems of ordinary differential equations with given initial conditions.

  1. Visualization of nonlinear kernel models in neuroimaging by sensitivity maps

    DEFF Research Database (Denmark)

    Rasmussen, Peter Mondrup; Hansen, Lars Kai; Madsen, Kristoffer Hougaard

    show that the performance of linear models is reduced for certain scan labelings/categorizations in this data set, while the nonlinear models provide more flexibility. We show that the sensitivity map can be used to visualize nonlinear versions of kernel logistic regression, the kernel Fisher...... discriminant, and the SVM, and conclude that the sensitivity map is a versatile and computationally efficient tool for visualization of nonlinear kernel models in neuroimaging...

  2. Nonlinear Forecasting with Many Predictors using Kernel Ridge Regression

    OpenAIRE

    Peter Exterkate; Patrick J.F. Groenen; Christiaan Heij; Dick van Dijk

    2011-01-01

    textabstractThis paper puts forward kernel ridge regression as an approach for forecasting with many predictors that are related nonlinearly to the target variable. In kernel ridge regression, the observed predictor variables are mapped nonlinearly into a high-dimensional space, where estimation of the predictive regression model is based on a shrinkage estimator to avoid overfitting. We extend the kernel ridge regression methodology to enable its use for economic time-series forecasting, by ...

  3. Parameter optimization in the regularized kernel minimum noise fraction transformation

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg; Vestergaard, Jacob Schack

    2012-01-01

    Based on the original, linear minimum noise fraction (MNF) transformation and kernel principal component analysis, a kernel version of the MNF transformation was recently introduced. Inspired by we here give a simple method for finding optimal parameters in a regularized version of kernel MNF...... analysis. We consider the model signal-to-noise ratio (SNR) as a function of the kernel parameters and the regularization parameter. In 2-4 steps of increasingly refined grid searches we find the parameters that maximize the model SNR. An example based on data from the DLR 3K camera system is given....

  4. Kernel methods in orthogonalization of multi- and hypervariate data

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg

    2009-01-01

    A kernel version of maximum autocorrelation factor (MAF) analysis is described very briefly and applied to change detection in remotely sensed hyperspectral image (HyMap) data. The kernel version is based on a dual formulation also termed Q-mode analysis in which the data enter into the analysis......) dimensional feature space via the kernel function and then performing a linear analysis in that space. An example shows the successful application of kernel MAF analysis to change detection in HyMap data covering a small agricultural area near Lake Waging-Taching, Bavaria, Germany....

  5. Visualization of nonlinear kernel models in neuroimaging by sensitivity maps

    DEFF Research Database (Denmark)

    Rasmussen, P.M.; Madsen, Kristoffer H; Lund, T.E.

    on visualization of such nonlinear kernel models. Specifically, we investigate the sensitivity map as a technique for generation of global summary maps of kernel classification methods. We illustrate the performance of the sensitivity map on functional magnetic resonance (fMRI) data based on visual stimuli. We...... show that the performance of linear models is reduced for certain scan labelings/categorizations in this data set, while the nonlinear models provide more flexibility. We show that the sensitivity map can be used to visualize nonlinear versions of kernel logistic regression, the kernel Fisher...

  6. Characterization of the C-protein from posterior latissimus dorsi muscle of the adult chicken: heterogeneity within a single sarcomere

    OpenAIRE

    1983-01-01

    Specific isoforms of myofibrillar proteins are expressed in different muscles and in various fiber types within a single muscle. We have isolated and characterized monoclonal antibodies against C-proteins from slow tonic (anterior latissimus dorsi, ALD) and fast twitch (pectoralis major) muscles of the chicken. Although the antibody against "fast" C-protein (MF-1) did not bind to the "slow" isoform and the antibody to the "slow" C-protein (ALD-66) did not bind to the "fast" isoform, we observ...

  7. Generation and characterization of ultra-short electron beams for single spike infrared FEL radiation at SPARC_LAB

    Science.gov (United States)

    Villa, F.; Anania, M. P.; Artioli, M.; Bacci, A.; Bellaveglia, M.; Bisesto, F. G.; Biagioni, A.; Carpanese, M.; Cardelli, F.; Castorina, G.; Chiadroni, E.; Cianchi, A.; Ciocci, F.; Croia, M.; Curcio, A.; Dattoli, G.; Gallo, A.; Di Giovenale, D.; Di Palma, E.; Di Pirro, G.; Ferrario, M.; Filippi, F.; Giannessi, L.; Giribono, A.; Marocchino, A.; Massimo, F.; Mostacci, A.; Petralia, A.; Petrarca, M.; Petrillo, V.; Piersanti, L.; Pioli, S.; Pompili, R.; Romeo, S.; Rossi, A. R.; Scifo, J.; Shpakov, V.; Vaccarezza, C.

    2017-09-01

    The technique for producing and measuring few tens of femtosecond electron beams, and the consequent generation of few tens femtoseconds single spike FEL radiation pulses at SPARC_LAB is presented. The undulator has been used in the double role of radiation source and diagnostic tool for the characterization of the electron beam. The connection between the electron bunch length and the radiation bandwidth is analyzed.

  8. Characterizing the angiogenic activity of patients with single ventricle physiology and aortopulmonary collateral vessels.

    Science.gov (United States)

    Sandeep, Nefthi; Uchida, Yutaka; Ratnayaka, Kanishka; McCarter, Robert; Hanumanthaiah, Sridhar; Bangoura, Aminata; Zhao, Zhen; Oliver-Danna, Jacqueline; Leatherbury, Linda; Kanter, Joshua; Mukouyama, Yoh-Suke

    2016-04-01

    Patients with single ventricle congenital heart disease often form aortopulmonary collateral vessels via an unclear mechanism. To gain insights into the pathogenesis of aortopulmonary collateral vessels, we correlated angiogenic factor levels with in vitro activity and angiographic aortopulmonary collateral assessment and examined whether patients with single ventricle physiology have increased angiogenic factors that can stimulate endothelial cell sprouting in vitro. In patients with single ventricle physiology (n = 27) and biventricular acyanotic control patients (n = 21), hypoxia-inducible angiogenic factor levels were measured in femoral venous and arterial plasma at cardiac catheterization. To assess plasma angiogenic activity, we used a 3-dimensional in vitro cell sprouting assay that recapitulates angiogenic sprouting. Aortopulmonary collateral angiograms were graded using a 4-point scale. Compared with controls, patients with single ventricle physiology had increased vascular endothelial growth factor (artery: 58.7 ± 1.2 pg/mL vs 35.3 ± 1.1 pg/mL, P collateral severity. We are the first to correlate plasma angiogenic factor levels with angiography and in vitro angiogenic activity in patients with single ventricle disease with aortopulmonary collaterals. Patients with single ventricle disease have increased stromal-derived factor 1-alpha and soluble fms-like tyrosine kinase-1, and their roles in aortopulmonary collateral formation require further investigation. Plasma factors and angiogenic activity correlate poorly with aortopulmonary collateral severity in patients with single ventricles, suggesting complex mechanisms of angiogenesis. Published by Elsevier Inc.

  9. Fixed kernel regression for voltammogram feature extraction

    International Nuclear Information System (INIS)

    Acevedo Rodriguez, F J; López-Sastre, R J; Gil-Jiménez, P; Maldonado Bascón, S; Ruiz-Reyes, N

    2009-01-01

    Cyclic voltammetry is an electroanalytical technique for obtaining information about substances under analysis without the need for complex flow systems. However, classifying the information in voltammograms obtained using this technique is difficult. In this paper, we propose the use of fixed kernel regression as a method for extracting features from these voltammograms, reducing the information to a few coefficients. The proposed approach has been applied to a wine classification problem with accuracy rates of over 98%. Although the method is described here for extracting voltammogram information, it can be used for other types of signals

  10. Index-free Heat Kernel Coefficients

    OpenAIRE

    van de Ven, Anton E. M.

    1997-01-01

    Using index-free notation, we present the diagonal values of the first five heat kernel coefficients associated with a general Laplace-type operator on a compact Riemannian space without boundary. The fifth coefficient appears here for the first time. For a flat space with a gauge connection, the sixth coefficient is given too. Also provided are the leading terms for any coefficient, both in ascending and descending powers of the Yang-Mills and Riemann curvatures, to the same order as require...

  11. Localized Multiple Kernel Learning A Convex Approach

    Science.gov (United States)

    2016-11-22

    1/2 . Theorem 9 (CLMKL Generalization Error Bounds) Assume that km(x, x) ≤ B, ∀m ∈ NM , x ∈ X . Suppose the loss function ℓ is L- Lipschitz and...mathematical foundation (e.g., Schölkopf and Smola, 2002). The performance of such algorithms, however, crucially depends on the involved kernel function ...approaches to localized MKL (reviewed in Section 1.1) optimize non-convex objective functions . This puts their generalization ability into doubt. Indeed

  12. Learning Rotation for Kernel Correlation Filter

    KAUST Repository

    Hamdi, Abdullah

    2017-08-11

    Kernel Correlation Filters have shown a very promising scheme for visual tracking in terms of speed and accuracy on several benchmarks. However it suffers from problems that affect its performance like occlusion, rotation and scale change. This paper tries to tackle the problem of rotation by reformulating the optimization problem for learning the correlation filter. This modification (RKCF) includes learning rotation filter that utilizes circulant structure of HOG feature to guesstimate rotation from one frame to another and enhance the detection of KCF. Hence it gains boost in overall accuracy in many of OBT50 detest videos with minimal additional computation.

  13. Predicting linear B-cell epitopes using string kernels

    Science.gov (United States)

    EL-Manzalawy, Yasser; Dobbs, Drena; Honavar, Vasant

    2008-01-01

    The identification and characterization of B-cell epitopes play an important role in vaccine design, immunodiagnostic tests, and antibody production. Therefore, computational tools for reliably predicting linear B-cell epitopes are highly desirable. We evaluated Support Vector Machine (SVM) classifiers trained utilizing five different kernel methods using fivefold cross-validation on a homology-reduced data set of 701 linear B-cell epitopes, extracted from Bcipep database, and 701 non-epitopes, randomly extracted from SwissProt sequences. Based on the results of our computational experiments, we propose BCPred, a novel method for predicting linear B-cell epitopes using the subsequence kernel. We show that the predictive performance of BCPred (AUC = 0.758) outperforms 11 SVM-based classifiers developed and evaluated in our experiments as well as our implementation of AAP (AUC = 0.7), a recently proposed method for predicting linear B-cell epitopes using amino acid pair antigenicity. Furthermore, we compared BCPred with AAP and ABCPred, a method that uses recurrent neural networks, using two data sets of unique B-cell epitopes that had been previously used to evaluate ABCPred. Analysis of the data sets used and the results of this comparison show that conclusions about the relative performance of different B-cell epitope prediction methods drawn on the basis of experiments using data sets of unique B-cell epitopes are likely to yield overly optimistic estimates of performance of evaluated methods. This argues for the use of carefully homology-reduced data sets in comparing B-cell epitope prediction methods to avoid misleading conclusions about how different methods compare to each other. Our homology-reduced data set and implementations of BCPred as well as the APP method are publicly available through our web-based server, BCPREDS, at: http://ailab.cs.iastate.edu/bcpreds/. PMID:18496882

  14. Affinity chromatography revealed insights into unique functionality of two 14-3-3 protein species in developing maize kernels.

    Science.gov (United States)

    Dou, Yao; Liu, Xiangguo; Yin, Yuejia; Han, Siping; Lu, Yang; Liu, Yang; Hao, Dongyun

    2015-01-30

    The 14-3-3 proteins are a group of regulatory proteins of divergent functions in plants. However, little is known about their roles in maize kernel development. Using publically available gene expression profiling data, we found that two 14-3-3 species genes, zmgf14-4 and zmgf14-6, exhibited prominent expression profiles over other 14-3-3 protein genes during maize kernel development. More than 5000 transcripts of these two genes were identified accounting for about 1/10 of the total transcripts of genes correlating to maize kernel development. We constructed a proteomics pipeline based on the affinity chromatography, in combination with 2-DE and LC-MS/MS technologies to identify the specific client proteins of the two proteins for their functional characterization. Consequently, we identified 77 specific client proteins from the developing kernels of the inbred maize B73. More than 60% of the client proteins were commonly affinity-identified by the two 14-3-3 species and are predicted to be implicated in the fundamental functions of metabolism, protein destination and storage. In addition, we found ZmGF14-4 specifically bound to the disease- or defense-relating proteins, whilst ZmGF14-6 tended to interact with the proteins involving metabolism and cell structure. Our findings provide primary insights into the functional roles of 14-3-3 proteins in maize kernel development. Maize kernel development is a complicated physiological process for its importance in both genetics and cereal breeding. 14-3-3 proteins form a multi-gene family participating in regulations of developmental processes in plants. However, the correlation between this protein family and maize kernel development has hardly been studied. We have for the first time found 12 14-3-3 protein genes from maize genome and studied in silico the gene transcription profiling of these genes. Comparative studies revealed that maize kernel development aroused a great number of gene expression, among which 14

  15. Growth and Characterization of PDMS-Stamped Halide Perovskite Single Microcrystals

    NARCIS (Netherlands)

    Khoram, P.; Brittman, S.; Dzik, W.I.; Reek, J.N.H.; Garneett, E.C.

    2016-01-01

    Recently, halide perovskites have attracted considerable attention for optoelectronic applications, but further progress in this field requires a thorough understanding of the fundamental properties of these materials. Studying perovskites in their single-crystalline form provides a model system for

  16. Tank characterization report for single-shell tank 241-BY-104

    Energy Technology Data Exchange (ETDEWEB)

    Benar, C.J.

    1996-09-26

    This characterization report summarizes the available information on the historical uses, current status, and the sampling and analysis results of waste contained in underground storage tank 241-BY-104. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order, Milestone M-44-09. Tank 241-BY-104 is one of 12 single-shell tanks located in the BY-Tank Farm in the 200 East Area of the Hanford Site. Tank 241-BY-104 entered service in the first quarter of 1950 with a transfer of metal waste from an unknown source. Through cascading, the tank was full of metal waste by the second quarter of 1951. The waste was sluiced in the second quarter of 1954. Uranium recovery (tributyl phosphate) waste was sent from tank 241-BY-107 during the second quarter of 1955 and from tank 241-BY-110 during the third quarter of 1955. Most of this waste was sent to a crib during the fourth quarter of 1955. During the third and fourth quarters of 1956 and the second and third quarters of 1957, the tank received waste from the in-plant ferrocyanide scavenging process (PFeCN2) from tanks 241-BY-106, -107, -108, and -110. This waste type is predicted to compose the bottom layer of waste currently in the tank. The tank received PUREX cladding waste (CWP) periodically from 1961 to 1968. Ion-exchange waste from cesium recovery operations was received from tank 241-BX-104 during the second and third quarters of 1968. Tank 241-BY-104 received evaporator bottoms waste from the in-tank solidification process that was conducted in the BY-Tank Farm 0247from tanks 241 -BY- 109 and 241 -BY- 1 12 from 1970 to 1974. The upper portion of tank waste is predicted to be composed of BY saltcake. Tank 241-BY-104 was declared inactive in 1977. Waste was saltwell pumped from the tank during the third quarter of 1982 and the fourth quarter of 1985. Table ES-1 and Figure ES-1 describe tank 241-BY-104 and its status. The tank has an operating capacity of 2,869 kL and presently

  17. Unidirectional growth and characterization of L-arginine monohydrochloride monohydrate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Sangeetha, K. [Department of Physics, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu 620 024 (India); Babu, R. Ramesh, E-mail: rampap2k@yahoo.co.in [Department of Physics, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu 620 024 (India); Bhagavannarayana, G. [Materials Characterization Division, National Physical Laboratory, New Delhi 110 012 (India); Ramamurthi, K. [Department of Physics, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu 620 024 (India)

    2011-10-17

    Highlights: {yields} L-Arginine monohydrochloride monohydrate (LAHCl) single crystal was grown successfully by unidirectional solution growth method for the first time. {yields} High crystalline perfection was observed for UDS grown crystal compared to CS grown crystal. {yields} The optical transparency and mechanical stability are high for UDS grown LAHCl single crystal. {yields} Optical birefringence measurement on this material. {yields} The piezoelectric resonance frequencies observation - first time observation on this material. - Abstract: L-Arginine monohydrochloride monohydrate (LAHCl) single crystals were grown successfully by conventional and unidirectional solution growth methods. The crystalline perfection of grown crystals was analyzed by high-resolution X-ray diffraction. The linear optical transmittance, mechanical stability of conventional and unidirectional grown LAHCl single crystals were analyzed and compared along (0 0 1) plane. The refractive index and birefringence of LAHCl single crystals were also measured using He-Ne laser source. From the dielectric studies, piezoelectric resonance frequencies were observed in kHz frequency range for both conventional and unidirectional grown LAHCl single crystals along (0 0 1) plane.

  18. Oligo kernels for datamining on biological sequences: a case study on prokaryotic translation initiation sites

    Directory of Open Access Journals (Sweden)

    Merkl Rainer

    2004-10-01

    we found for that signal is in accordance with previous biological knowledge. We also find evidence for signals downstream of the start codon, previously introduced as transcriptional enhancers. These signals are mainly characterized by occurrences of adenine in a region of about 4 nucleotides next to the start codon. Conclusions We showed that the oligo kernel can provide a valuable tool for the analysis of relevant signals in biological sequences. In the case of translation initiation sites we could clearly deduce the most discriminative motifs and their positional variation from example sequences. Attractive features of our approach are its flexibility with respect to oligomer length and position conservation. By means of these two parameters oligo kernels can easily be adapted to different biological problems.

  19. Tank characterization report for single-shell tank 241-U-110

    International Nuclear Information System (INIS)

    Brown, T.M.; Jensen, L.

    1993-09-01

    Tank 241-U-110 (U-110) is a Hanford Site waste tank that was;most recently sampled in November and December 1989. Analysis of the samples obtained from tank U-110 was conducted to support the characterization of the contents of this tank and to support Hanford Federal Facility Agreement and Consent Order milestone M-10-00 (Ecology, et al. 1992). Because of incomplete recovery of the waste during sampling, there may be bias in the results of this characterization report

  20. Tank characterization report for single-shell tank 241-U-110. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Brown, T.M.; Jensen, L.

    1993-09-01

    Tank 241-U-110 (U-110) is a Hanford Site waste tank that was ;most recently sampled in November and December 1989. Analysis of the samples obtained from tank U-110 was conducted to support the characterization of the contents of this tank and to support Hanford Federal Facility Agreement and Consent Order milestone M-10-00 (Ecology, et al. 1992). Because of incomplete recovery of the waste during sampling, there may be bias in the results of this characterization report.

  1. Influent of Carbonization of Sol Solution at the External Gelation Process on the Quality of Uranium Oxide Kernel

    International Nuclear Information System (INIS)

    Damunir; Sukarsono

    2007-01-01

    The influent of carbonization of sol solution at the external gelation process on the quality of uranium oxide kernel was done. Variables observed are the influent of carbon, temperature and time of reduction process of U 3 O 8 kernel resulted from carbonization of sol solution. First of all, uranyl nitrate was reacted with 1 M NH 4 OH solution, producing the colloid of UO 3 . Then by mixing and heating up to the temperature of 60-80 °C, the colloid solution was reacted with PVA, mono sorbitol oleate and paraffin producing of uranium-PVA sol. Then sol solution was carbonized with carbon black of mol ratio of carbon to uranium =2.32-6.62, produce of carbide gel. Gel then washed, dried and calcined at 800 °C for 4 hours to produce of U 3 O 8 kernel containing carbon. Then the kernel was reduced by H 2 gas in the medium of N 2 gas at 500-800 °C, 50 mmHg pressure for 3 hours. The process was repeated at 700 °C, 50 mmHg pressure for 1-4 hours. The characterization of chemical properties of the gel grains and uranium oxide kernel using FTIR covering the analysis of absorption band of infra red spectrum of UO 3 , C-OH, NH 3 , C-C, C-H and OH functional group. The physical properties of uranium oxide covering specific surface area, void volume, mean diameter using surface area meter Nova-1000 and as N 2 gas an absorbent. And O/U ratio of uranium dioxide kernel by gravimetry method. The result of experiment showed that carbonization of sol solution at the external gelation process give influencing the quality of uranium oxide kernel. (author)

  2. Index-free heat kernel coefficients

    Science.gov (United States)

    van de Ven, Anton E. M.

    1998-08-01

    Using index-free notation, we present the diagonal values 0264-9381/15/8/014/img1 of the first five heat kernel coefficients 0264-9381/15/8/014/img2 associated with a general Laplace-type operator on a compact Riemannian space without boundary. The fifth coefficient 0264-9381/15/8/014/img3 appears here for the first time. For the special case of a flat space, but with a gauge connection, the sixth coefficient is given too. Also provided are the leading terms for any coefficient, both in ascending and descending powers of the Yang-Mills and Riemann curvatures, to the same order as required for the fourth coefficient. These results are obtained by directly solving the relevant recursion relations, working in the Fock-Schwinger gauge and Riemann normal coordinates. Our procedure is thus non-covariant, but we show that for any coefficient the `gauged', respectively `curved', version is found from the corresponding `non-gauged', respectively `flat', coefficient by making some simple covariant substitutions. These substitutions being understood, the coefficients retain their `flat' form and size. In this sense the fifth and sixth coefficient have only 26 and 75 terms, respectively, allowing us to write them down. Using index-free notation also clarifies the general structure of the heat kernel coefficients. In particular, in flat space we find that from the fifth coefficient onward, certain scalars are absent. This may be relevant for the anomalies of quantum field theories in ten or more dimensions.

  3. The Kernel Estimation in Biosystems Engineering

    Directory of Open Access Journals (Sweden)

    Esperanza Ayuga Téllez

    2008-04-01

    Full Text Available In many fields of biosystems engineering, it is common to find works in which statistical information is analysed that violates the basic hypotheses necessary for the conventional forecasting methods. For those situations, it is necessary to find alternative methods that allow the statistical analysis considering those infringements. Non-parametric function estimation includes methods that fit a target function locally, using data from a small neighbourhood of the point. Weak assumptions, such as continuity and differentiability of the target function, are rather used than "a priori" assumption of the global target function shape (e.g., linear or quadratic. In this paper a few basic rules of decision are enunciated, for the application of the non-parametric estimation method. These statistical rules set up the first step to build an interface usermethod for the consistent application of kernel estimation for not expert users. To reach this aim, univariate and multivariate estimation methods and density function were analysed, as well as regression estimators. In some cases the models to be applied in different situations, based on simulations, were defined. Different biosystems engineering applications of the kernel estimation are also analysed in this review.

  4. Kernelized rank learning for personalized drug recommendation.

    Science.gov (United States)

    He, Xiao; Folkman, Lukas; Borgwardt, Karsten

    2018-03-08

    Large-scale screenings of cancer cell lines with detailed molecular profiles against libraries of pharmacological compounds are currently being performed in order to gain a better understanding of the genetic component of drug response and to enhance our ability to recommend therapies given a patient's molecular profile. These comprehensive screens differ from the clinical setting in which (1) medical records only contain the response of a patient to very few drugs, (2) drugs are recommended by doctors based on their expert judgment, and (3) selecting the most promising therapy is often more important than accurately predicting the sensitivity to all potential drugs. Current regression models for drug sensitivity prediction fail to account for these three properties. We present a machine learning approach, named Kernelized Rank Learning (KRL), that ranks drugs based on their predicted effect per cell line (patient), circumventing the difficult problem of precisely predicting the sensitivity to the given drug. Our approach outperforms several state-of-the-art predictors in drug recommendation, particularly if the training dataset is sparse, and generalizes to patient data. Our work phrases personalized drug recommendation as a new type of machine learning problem with translational potential to the clinic. The Python implementation of KRL and scripts for running our experiments are available at https://github.com/BorgwardtLab/Kernelized-Rank-Learning. xiao.he@bsse.ethz.ch, lukas.folkman@bsse.ethz.ch. Supplementary data are available at Bioinformatics online.

  5. Scientific Computing Kernels on the Cell Processor

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Samuel W.; Shalf, John; Oliker, Leonid; Kamil, Shoaib; Husbands, Parry; Yelick, Katherine

    2007-04-04

    The slowing pace of commodity microprocessor performance improvements combined with ever-increasing chip power demands has become of utmost concern to computational scientists. As a result, the high performance computing community is examining alternative architectures that address the limitations of modern cache-based designs. In this work, we examine the potential of using the recently-released STI Cell processor as a building block for future high-end computing systems. Our work contains several novel contributions. First, we introduce a performance model for Cell and apply it to several key scientific computing kernels: dense matrix multiply, sparse matrix vector multiply, stencil computations, and 1D/2D FFTs. The difficulty of programming Cell, which requires assembly level intrinsics for the best performance, makes this model useful as an initial step in algorithm design and evaluation. Next, we validate the accuracy of our model by comparing results against published hardware results, as well as our own implementations on a 3.2GHz Cell blade. Additionally, we compare Cell performance to benchmarks run on leading superscalar (AMD Opteron), VLIW (Intel Itanium2), and vector (Cray X1E) architectures. Our work also explores several different mappings of the kernels and demonstrates a simple and effective programming model for Cell's unique architecture. Finally, we propose modest microarchitectural modifications that could significantly increase the efficiency of double-precision calculations. Overall results demonstrate the tremendous potential of the Cell architecture for scientific computations in terms of both raw performance and power efficiency.

  6. Delimiting areas of endemism through kernel interpolation.

    Science.gov (United States)

    Oliveira, Ubirajara; Brescovit, Antonio D; Santos, Adalberto J

    2015-01-01

    We propose a new approach for identification of areas of endemism, the Geographical Interpolation of Endemism (GIE), based on kernel spatial interpolation. This method differs from others in being independent of grid cells. This new approach is based on estimating the overlap between the distribution of species through a kernel interpolation of centroids of species distribution and areas of influence defined from the distance between the centroid and the farthest point of occurrence of each species. We used this method to delimit areas of endemism of spiders from Brazil. To assess the effectiveness of GIE, we analyzed the same data using Parsimony Analysis of Endemism and NDM and compared the areas identified through each method. The analyses using GIE identified 101 areas of endemism of spiders in Brazil GIE demonstrated to be effective in identifying areas of endemism in multiple scales, with fuzzy edges and supported by more synendemic species than in the other methods. The areas of endemism identified with GIE were generally congruent with those identified for other taxonomic groups, suggesting that common processes can be responsible for the origin and maintenance of these biogeographic units.

  7. Delimiting areas of endemism through kernel interpolation.

    Directory of Open Access Journals (Sweden)

    Ubirajara Oliveira

    Full Text Available We propose a new approach for identification of areas of endemism, the Geographical Interpolation of Endemism (GIE, based on kernel spatial interpolation. This method differs from others in being independent of grid cells. This new approach is based on estimating the overlap between the distribution of species through a kernel interpolation of centroids of species distribution and areas of influence defined from the distance between the centroid and the farthest point of occurrence of each species. We used this method to delimit areas of endemism of spiders from Brazil. To assess the effectiveness of GIE, we analyzed the same data using Parsimony Analysis of Endemism and NDM and compared the areas identified through each method. The analyses using GIE identified 101 areas of endemism of spiders in Brazil GIE demonstrated to be effective in identifying areas of endemism in multiple scales, with fuzzy edges and supported by more synendemic species than in the other methods. The areas of endemism identified with GIE were generally congruent with those identified for other taxonomic groups, suggesting that common processes can be responsible for the origin and maintenance of these biogeographic units.

  8. Fabrication and characterization of size-controlled single-crystal-like PZT nanofibers by sol–gel based electrospinning

    International Nuclear Information System (INIS)

    Wang, Juan; Gao, Qian; He, Haiyan; Li, Xiang; Ren, Zhaohui; Liu, Yong; Shen, Ge; Xu, Gang; Zhang, Xiwen; Han, Gaorong

    2013-01-01

    Highlights: •Single-crystal-like PZT nanofibers were fabricated by electrospinning and calcination. •Fiber diameter was precisely controlled by solution viscosity and electrospinning parameters. •Pyrolysis is a key factor for fabrication of single-crystal-like structure. -- Abstract: Size-controlled single-crystal-like lead zirconate titanate (PbZr 0.52 Ti 0.48 O 3 , PZT) ceramic fibers have been successfully prepared by sol–gel based electrospinning and subsequent calcination process, and their morphology, crystal structure have been characterized at nanoscale. The fiber diameter can be precisely controlled from ∼50 to 540 nm by varying the PVP concentration and electrospinning process parameters. The crystal structure of the nanofibers pyrolyzed at 400 °C for 0.5 h and calcined at 650 °C for 2 h is proved to be single-crystal-like tetragonal perovskite phase. A formation mechanism is also discussed based on the thermal decomposition process, effect of the calcination and pyrolysis procedure, using the thermogravimetry/differential scanning caborimetry (TG/DSC), X-ray diffraction (XRD) and transmission electron microscopy (TEM). It is found that the pyrolysis procedure is a critical factor for the fabrication of single-crystal-like structure PZT nanofibers using electrospinning

  9. Low-temperature optical characterization of a near-infrared single-photon emitter in nanodiamonds

    Energy Technology Data Exchange (ETDEWEB)

    Siyushev, P; Jacques, V; Kaiser, F; Jelezko, F; Wrachtrup, J [3.Physikalisches Institut, Universitaet Stuttgart, D-70550 Stuttgart (Germany); Aharonovich, I; Castelletto, S; Prawer, S [School of Physics, University of Melbourne, VA 3010 (Australia); Mueller, T; Lombez, L; Atatuere, M [Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE (United Kingdom)], E-mail: v.jacques@physik.uni-stuttgart.de

    2009-11-15

    In this paper, we study the optical properties of single defects emitting in the near infrared (NIR) in nanodiamonds at liquid helium temperature. The nanodiamonds are synthesized using a microwave chemical vapor deposition method followed by nickel implantation and annealing. We show that single defects exhibit several striking features at cryogenic temperature: the photoluminescence is strongly concentrated into a sharp zero-phonon line (ZPL) in the NIR, the radiative lifetime is in the nanosecond range and the emission is linearly polarized. The spectral stability of the defects is then investigated. An optical resonance linewidth of 4 GHz is measured using resonant excitation on the ZPL. Although Fourier-transform-limited emission is not achieved, our results show that it might be possible to use consecutive photons emitted in the NIR by single defects in diamond nanocrystals to perform two photon interference experiments, which are at the heart of linear quantum computing protocols.

  10. a Comparison Study of Different Kernel Functions for Svm-Based Classification of Multi-Temporal Polarimetry SAR Data

    Science.gov (United States)

    Yekkehkhany, B.; Safari, A.; Homayouni, S.; Hasanlou, M.

    2014-10-01

    In this paper, a framework is developed based on Support Vector Machines (SVM) for crop classification using polarimetric features extracted from multi-temporal Synthetic Aperture Radar (SAR) imageries. The multi-temporal integration of data not only improves the overall retrieval accuracy but also provides more reliable estimates with respect to single-date data. Several kernel functions are employed and compared in this study for mapping the input space to higher Hilbert dimension space. These kernel functions include linear, polynomials and Radial Based Function (RBF). The method is applied to several UAVSAR L-band SAR images acquired over an agricultural area near Winnipeg, Manitoba, Canada. In this research, the temporal alpha features of H/A/α decomposition method are used in classification. The experimental tests show an SVM classifier with RBF kernel for three dates of data increases the Overall Accuracy (OA) to up to 3% in comparison to using linear kernel function, and up to 1% in comparison to a 3rd degree polynomial kernel function.

  11. Predictive Model Equations for Palm Kernel (Elaeis guneensis J ...

    African Journals Online (AJOL)

    A 3-factor experimental design was used to determine the influence of moisture content, roasting duration and temperature on palm kernel and sesame oil colours. Four levels each of these parameters were used. The data obtained were used to develop prediction models for palm kernel and sesame oil colours. Coefficient ...

  12. Evaluation of enzyme supplementation of palm kernel meal-based ...

    African Journals Online (AJOL)

    Journal of Agriculture, Forestry and the Social Sciences ... The results of this study showed that broilers can tolerate 20% inclusion rate of palm kernel meal in their rations without enzyme supplementation and partially replacing maize with palm kernel meal at that level of inclusion can reduce the cost of production of ...

  13. Nonlinear Forecasting With Many Predictors Using Kernel Ridge Regression

    DEFF Research Database (Denmark)

    Exterkate, Peter; Groenen, Patrick J.F.; Heij, Christiaan

    This paper puts forward kernel ridge regression as an approach for forecasting with many predictors that are related nonlinearly to the target variable. In kernel ridge regression, the observed predictor variables are mapped nonlinearly into a high-dimensional space, where estimation of the predi...

  14. Efficient methods for robust classification under uncertainty in kernel matrices

    NARCIS (Netherlands)

    Ben-Tal, A.; Bhadra, S.; Bhattacharyya, C.; Nemirovski, A.

    2012-01-01

    In this paper we study the problem of designing SVM classifiers when the kernel matrix, K , is affected by uncertainty. Specifically K is modeled as a positive affine combination of given positive semi definite kernels, with the coefficients ranging in a norm-bounded uncertainty set. We treat the

  15. Design and construction of palm kernel cracking and separation ...

    African Journals Online (AJOL)

    Design and construction of palm kernel cracking and separation machines. ... Username, Password, Remember me, or Register. DOWNLOAD FULL TEXT Open Access DOWNLOAD FULL TEXT Subscription or Fee Access. Design and construction of palm kernel cracking and separation machines. JO Nordiana, K ...

  16. Homotopy deform method for reproducing kernel space for ...

    Indian Academy of Sciences (India)

    In this paper, the combination of homotopy deform method (HDM) and simplified reproducing kernel method (SRKM) is introduced for solving the boundary value problems (BVPs) of nonlinear differential equations. The solution methodology is based on Adomian decomposition and reproducing kernel method (RKM).

  17. Replacement Value of Palm Kernel Meal for Maize on Carcass ...

    African Journals Online (AJOL)

    This study was conducted to evaluate the effect of replacing maize with palm kernel meal on nutrient composition, fatty acid profile and sensory qualities of the meat of turkeys fed the dietary treatments. Six dietary treatments were formulated using palm kernel meal to replace maize at 0, 20, 40, 60, 80 and 100 percent.

  18. Effect of Palm Kernel Cake Replacement and Enzyme ...

    African Journals Online (AJOL)

    A feeding trial which lasted for twelve weeks was conducted to study the performance of finisher pigs fed five different levels of palm kernel cake replacement for maize (0%, 40%, 40%, 60%, 60%) in a maize-palm kernel cake based ration with or without enzyme supplementation. It was a completely randomized design ...

  19. Extracting Feature Model Changes from the Linux Kernel Using FMDiff

    NARCIS (Netherlands)

    Dintzner, N.J.R.; Van Deursen, A.; Pinzger, M.

    2014-01-01

    The Linux kernel feature model has been studied as an example of large scale evolving feature model and yet details of its evolution are not known. We present here a classification of feature changes occurring on the Linux kernel feature model, as well as a tool, FMDiff, designed to automatically

  20. Denoising by semi-supervised kernel PCA preimaging

    DEFF Research Database (Denmark)

    Hansen, Toke Jansen; Abrahamsen, Trine Julie; Hansen, Lars Kai

    2014-01-01

    Kernel Principal Component Analysis (PCA) has proven a powerful tool for nonlinear feature extraction, and is often applied as a pre-processing step for classification algorithms. In denoising applications Kernel PCA provides the basis for dimensionality reduction, prior to the so-called pre-imag...

  1. High-power asymptotics of some weighted harmonic Bergman kernels

    Czech Academy of Sciences Publication Activity Database

    Engliš, Miroslav

    2016-01-01

    Roč. 271, č. 5 (2016), s. 1243-1261 ISSN 0022-1236 Institutional support: RVO:67985840 Keywords : Bergman kernel * harmonic Bergman kernel * asymptotic expansion Subject RIV: BA - General Mathematics Impact factor: 1.254, year: 2016 http://www.sciencedirect.com/science/article/pii/S0022123616301513

  2. Efficient Kernel-based 2DPCA for Smile Stages Recognition

    Directory of Open Access Journals (Sweden)

    Fitri Damayanti

    2012-03-01

    Full Text Available Recently, an approach called two-dimensional principal component analysis (2DPCA has been proposed for smile stages representation and recognition. The essence of 2DPCA is that it computes the eigenvectors of the so-called image covariance matrix without matrix-to-vector conversion so the size of the image covariance matrix are much smaller, easier to evaluate covariance matrix, computation cost is reduced and the performance is also improved than traditional PCA. In an effort to improve and perfect the performance of smile stages recognition, in this paper, we propose efficient Kernel based 2DPCA concepts. The Kernelization of 2DPCA can be benefit to develop the nonlinear structures in the input data. This paper discusses comparison of standard Kernel based 2DPCA and efficient Kernel based 2DPCA for smile stages recognition. The results of experiments show that Kernel based 2DPCA achieve better performance in comparison with the other approaches. While the use of efficient Kernel based 2DPCA can speed up the training procedure of standard Kernel based 2DPCA thus the algorithm can achieve much more computational efficiency and remarkably save the memory consuming compared to the standard Kernel based 2DPCA.

  3. Nutritional evaluation of palm kernel meal types: 1. Proximate ...

    African Journals Online (AJOL)

    Studies were conducted to determine the proximate composition and metabolizable energy values of palm kernel meal (PKM) types. The PKM types studied were obtained from Okomu, Presco and Envoy Oil Mills and were either mechanically or solvent extracted using different varieties of palm kernels. Samples of PKM ...

  4. A multi-scale kernel bundle for LDDMM

    DEFF Research Database (Denmark)

    Sommer, Stefan Horst; Nielsen, Mads; Lauze, Francois Bernard

    2011-01-01

    The Large Deformation Diffeomorphic Metric Mapping framework constitutes a widely used and mathematically well-founded setup for registration in medical imaging. At its heart lies the notion of the regularization kernel, and the choice of kernel greatly affects the results of registrations...

  5. Screening of the kernels of Pentadesma butyracea from various ...

    African Journals Online (AJOL)

    Gwla10

    Pentadesma butyracea Sabine (Clusiaceae) is a ligneous forest species of multipurpose uses. It is widely distributed in Africa from Guinea-Bissau to the West of the Democratic Republic of Congo. This study screened the kernel of P. butyracea on the basis of their physico-chemical properties. Six types of kernels were ...

  6. A relationship between Gel'fand-Levitan and Marchenko kernels

    International Nuclear Information System (INIS)

    Kirst, T.; Von Geramb, H.V.; Amos, K.A.

    1989-01-01

    An integral equation which relates the output kernels of the Gel'fand-Levitan and Marchenko inverse scattering equations is specified. Structural details of this integral equation are studied when the S-matrix is a rational function, and the output kernels are separable in terms of Bessel, Hankel and Jost solutions. 4 refs

  7. Boundary singularity of Poisson and harmonic Bergman kernels

    Czech Academy of Sciences Publication Activity Database

    Engliš, Miroslav

    2015-01-01

    Roč. 429, č. 1 (2015), s. 233-272 ISSN 0022-247X R&D Projects: GA AV ČR IAA100190802 Institutional support: RVO:67985840 Keywords : harmonic Bergman kernel * Poisson kernel * pseudodifferential boundary operators Subject RIV: BA - General Mathematics Impact factor: 1.014, year: 2015 http://www.sciencedirect.com/science/article/pii/S0022247X15003170

  8. Real time kernel performance monitoring with SystemTap

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    SystemTap is a dynamic method of monitoring and tracing the operation of a running Linux kernel. In this talk I will present a few practical use cases where SystemTap allowed me to turn otherwise complex userland monitoring tasks in simple kernel probes.

  9. Commutators of Integral Operators with Variable Kernels on Hardy ...

    Indian Academy of Sciences (India)

    Home; Journals; Proceedings – Mathematical Sciences; Volume 115; Issue 4. Commutators of Integral Operators with Variable Kernels on Hardy Spaces. Pu Zhang Kai Zhao. Volume 115 Issue 4 November 2005 pp 399-410 ... Keywords. Singular and fractional integrals; variable kernel; commutator; Hardy space.

  10. Nonlinear Forecasting with Many Predictors using Kernel Ridge Regression

    NARCIS (Netherlands)

    P. Exterkate (Peter); P.J.F. Groenen (Patrick); C. Heij (Christiaan); D.J.C. van Dijk (Dick)

    2011-01-01

    textabstractThis paper puts forward kernel ridge regression as an approach for forecasting with many predictors that are related nonlinearly to the target variable. In kernel ridge regression, the observed predictor variables are mapped nonlinearly into a high-dimensional space, where estimation of

  11. On sensitivity kernels for 'wave-equation' transmission tomography

    NARCIS (Netherlands)

    Hoop, Maarten V. de; Hilst, R.D. van der

    2004-01-01

    We combine seismological scattering theory with the theory of distributions to study some properties of sensitivity kernels for finite frequency seismic delay times. The theory to be used for calculating the kernels depends on the way the measurements are made. For example, the sensitivity to the

  12. Commutators of integral operators with variable kernels on Hardy ...

    Indian Academy of Sciences (India)

    Home; Journals; Proceedings – Mathematical Sciences; Volume 115; Issue 4. Commutators of Integral Operators with Variable Kernels on Hardy Spaces. Pu Zhang Kai Zhao. Volume 115 Issue 4 November 2005 pp 399-410 ... Keywords. Singular and fractional integrals; variable kernel; commutator; Hardy space.

  13. Growth and characterization of 2-methylquinolinium L-malate single crystal

    Science.gov (United States)

    Bharathi, M. Divya; Ahila, G.; Mohana, J.; Anbalagan, G.

    2017-05-01

    An organic nonlinear optical single crystal, 2-methylquinolinium L-malate (MLM) was grown from ethanol solvent using slow evaporation solution growth technique. The single crystal X-ray diffraction studies confirmed that the crystal belongs to the monoclinic system with the non-centrosymmetric space group P21. The crystal is transparent in the entire visible region. The second harmonic generation efficiency of the grown crystal has been obtained by the Kurtz-Perry powder technique. The laser damage threshold value 5.58 GW/cm2 indicates that this crystal can be used for high-power laser applications.

  14. Crystal growth and characterization of a semiorganic nonlinear optical single crystal of gamma glycine

    International Nuclear Information System (INIS)

    Prakash, J. Thomas Joseph; Kumararaman, S.

    2008-01-01

    Gamma glycine has been successfully synthesized by taking glycine and potassium chloride and single crystals have been grown by solvent evaporation method for the first time. The grown single crystals have been analyzed with XRD, Fourier transform infrared (FTIR), and thermo gravimetric and differential thermal analyses (TG/DTA) measurements. Its mechanical behavior has been assessed by Vickers microhardness measurements. Its nonlinear optical property has been tested by Kurtz powder technique. Its optical behavior was examined by UV-vis., and found that the crystal is transparent in the region between 240 and 1200 nm. Hence, it may be very much useful for the second harmonic generation (SHG) applications

  15. Characterization of the corrosion behavior of the carbon steel liner in Hanford Site single-shell tanks

    International Nuclear Information System (INIS)

    Anantatmula, R.P.; Schwenk, E.B.; Danielson, M.J.

    1994-06-01

    Six safety initiatives have been identified for accelerating the resolution of waste tank safety issues and closure of unreviewed safety questions. Safety Initiative 5 is to reduce safety and environmental risk from tank leaks. Item d of Safety Initiative 5 is to complete corrosion studies of single-shell tanks to determine failure mechanisms and corrosion control options to minimize further degradation by June 1994. This report has been prepared to fulfill Safety Initiative 5, Item d. The corrosion mechanisms that apply to Hanford Site single-shell tanks are stress corrosion cracking, pitting/crevice corrosion, uniform corrosion, hydrogen embrittlement, and microbiologically influenced corrosion. The corrosion data relevant to the single-shell tanks dates back three decades, when results were obtained from in-situ corrosion coupons in a few single-shell tanks. Since that time there have been intertank transfers, evaporation, and chemical alterations of the waste. These activities have changed the character and the present composition of the waste is not well characterized. All conclusions and recommendations are made in the absence of relevant laboratory experimental data and tank inspection data. The report attempts to identify the failure mechanisms by a literature survey of carbon steel data in environments similar to the single-shell tank wastes, and by a review of the work performed at the Savannah River Site where similar wastes are stored in similar carbon steel tanks. Based on these surveys, and in the absence of data specific to Hanford single-shell tanks, it may be concluded that the single-shell tanks identified as leakers failed primarily by stress corrosion cracking due to the presence of high nitrate/low hydroxide wastes and residual stresses. In addition, some failures may be attributed to pitting under crevices in low hydroxide locations

  16. Surface characterization of III-V MOCVD films from heterocyclic single-source precursors; Oberflaechencharakterisierung von III-V MOCVD-Filmen aus heterozyklischen Single Source Precursoren

    Energy Technology Data Exchange (ETDEWEB)

    Seemayer, Andreas

    2009-07-13

    In the present thesis the sublimation and evaporation properties of heterocyclic gallium and antimony containing single-source precursors as well as the chemical composition and morphology of the films fabricated from this were studied. The single-source precursors available by a new synthesis route were characterized concerning their evaporation properties and the obtained films studied surface-physically. By this way the process parameters were optimized and the applicability of the single-source precursors in HV-MOCVD processes studied. By evaporation experiments in the UHV it could be shown that thereby lighter ligands like ethyl- and methyl-groups lead to a lower contamination of the reaction space with carbon containing molecules. Furthermore it was expected that the 6-rings synthetized with short ligands exhibit a high stability. This however could not be confirmed. By unwanted parasitary reactions in the gaseous phase respectively dissociative sublimation in the gaseous phase a deposition of GaSb with these precursors was not possible. The 4-ring stabilized with tertiary-butyl and ethyl-groups caused in the evaporation the largest contamination of the gaseous phase, becauselonger-chain hydrocarbons exhibil only a bad pump cross section. By parasitary reactions originating elementary antimony is detectable in the gaseous phase. The films were studied concerning their chemical composition and their transport- respectively storage-conditioned surface contamination. Furthermore it has become clear that not only a purely synthetized precursor substance but also the reactor design is deciding for a successful deposition and a high film quality. First by successive optimization of the evaporation geometry it was possible to reduce the roughness of the produced GaSb films down to about 10 nm-30 nm.

  17. 3-D waveform tomography sensitivity kernels for anisotropic media

    KAUST Repository

    Djebbi, Ramzi

    2014-01-01

    The complications in anisotropic multi-parameter inversion lie in the trade-off between the different anisotropy parameters. We compute the tomographic waveform sensitivity kernels for a VTI acoustic medium perturbation as a tool to investigate this ambiguity between the different parameters. We use dynamic ray tracing to efficiently handle the expensive computational cost for 3-D anisotropic models. Ray tracing provides also the ray direction information necessary for conditioning the sensitivity kernels to handle anisotropy. The NMO velocity and η parameter kernels showed a maximum sensitivity for diving waves which results in a relevant choice of those parameters in wave equation tomography. The δ parameter kernel showed zero sensitivity; therefore it can serve as a secondary parameter to fit the amplitude in the acoustic anisotropic inversion. Considering the limited penetration depth of diving waves, migration velocity analysis based kernels are introduced to fix the depth ambiguity with reflections and compute sensitivity maps in the deeper parts of the model.

  18. Open Problem: Kernel methods on manifolds and metric spaces

    DEFF Research Database (Denmark)

    Feragen, Aasa; Hauberg, Søren

    2016-01-01

    Radial kernels are well-suited for machine learning over general geodesic metric spaces, where pairwise distances are often the only computable quantity available. We have recently shown that geodesic exponential kernels are only positive definite for all bandwidths when the input space has strong...... linear properties. This negative result hints that radial kernel are perhaps not suitable over geodesic metric spaces after all. Here, however, we present evidence that large intervals of bandwidths exist where geodesic exponential kernels have high probability of being positive definite over finite...... datasets, while still having significant predictive power. From this we formulate conjectures on the probability of a positive definite kernel matrix for a finite random sample, depending on the geometry of the data space and the spread of the sample....

  19. Compactly Supported Basis Functions as Support Vector Kernels for Classification.

    Science.gov (United States)

    Wittek, Peter; Tan, Chew Lim

    2011-10-01

    Wavelet kernels have been introduced for both support vector regression and classification. Most of these wavelet kernels do not use the inner product of the embedding space, but use wavelets in a similar fashion to radial basis function kernels. Wavelet analysis is typically carried out on data with a temporal or spatial relation between consecutive data points. We argue that it is possible to order the features of a general data set so that consecutive features are statistically related to each other, thus enabling us to interpret the vector representation of an object as a series of equally or randomly spaced observations of a hypothetical continuous signal. By approximating the signal with compactly supported basis functions and employing the inner product of the embedding L2 space, we gain a new family of wavelet kernels. Empirical results show a clear advantage in favor of these kernels.

  20. Triso coating development progress for uranium nitride kernels

    Energy Technology Data Exchange (ETDEWEB)

    Jolly, Brian C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lindemer, Terrence [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-08-01

    In support of fully ceramic matrix (FCM) fuel development [1-2], coating development work is ongoing at the Oak Ridge National Laboratory (ORNL) to produce tri-structural isotropic (TRISO) coated fuel particles with UN kernels [3]. The nitride kernels are used to increase fissile density in these SiC-matrix fuel pellets with details described elsewhere [4]. The advanced gas reactor (AGR) program at ORNL used fluidized bed chemical vapor deposition (FBCVD) techniques for TRISO coating of UCO (two phase mixture of UO2 and UCx) kernels [5]. Similar techniques were employed for coating of the UN kernels, however significant changes in processing conditions were required to maintain acceptable coating properties due to physical property and dimensional differences between the UCO and UN kernels (Table 1).

  1. Defect characterization of Ga4Se3S layered single crystals by ...

    Indian Academy of Sciences (India)

    Experimental details. Ga4Se3S polycrystals were synthesized from high-purity elements prepared in stoi- chiometric proportions.Gallium (Aldrich cat. no. 263273), selenium (Aldrich cat.no. 204307) and sulphur (Fluka cat. no. 84680) were of 99.999% purity. Ga4Se3S single crystals were grown by Bridgman method from the ...

  2. Single sodium channels from human skeletal muscle in planar lipid bilayers: characterization and response to pentobarbital

    NARCIS (Netherlands)

    Wartenberg, Hans C.; Urban, Bernd W.

    2004-01-01

    PURPOSE: To investigate the response to general anesthetics of different sodium-channel subtypes, we examined the effects of pentobarbital, a close thiopental analogue, on single sodium channels from human skeletal muscle and compared them to existing data from human brain and human ventricular

  3. Detection and Characterization of Single-Trial fMRI BOLD Responses : Paradigm Free Mapping

    NARCIS (Netherlands)

    Gaudes, Cesar Caballero; Petridou, Natalia; Dryden, Ian L.; Bai, Li; Francis, Susan T.; Gowland, Penny A.

    This work presents a novel method of mapping the brain's response to single stimuli in space and time without prior knowledge of the paradigm timing: paradigm free mapping (PFM). This method is based on deconvolution of the hemodynamic response from the voxel time series assuming a linear response

  4. Optical characterization of single-crystal diamond grown by DC arc plasma jet CVD

    Science.gov (United States)

    Hei, Li-fu; Zhao, Yun; Wei, Jun-jun; Liu, Jin-long; Li, Cheng-ming; Lü, Fan-xiu

    2017-12-01

    Optical centers of single-crystal diamond grown by DC arc plasma jet chemical vapor deposition (CVD) were examined using a low-temperature photoluminescence (PL) technique. The results show that most of the nitrogen-vacancy (NV) complexes are present as NV- centers, although some H2 and H3 centers and B-aggregates are also present in the single-crystal diamond because of nitrogen aggregation resulting from high N2 incorporation and the high mobility of vacancies under growth temperatures of 950-1000°C. Furthermore, emissions of radiation-induced defects were also detected at 389, 467.5, 550, and 588.6 nm in the PL spectra. The reason for the formation of these radiation-induced defects is not clear. Although a Ni-based alloy was used during the diamond growth, Ni-related emissions were not detected in the PL spectra. In addition, the silicon-vacancy (Si-V)-related emission line at 737 nm, which has been observed in the spectra of many previously reported microwave plasma chemical vapor deposition (MPCVD) synthetic diamonds, was absent in the PL spectra of the single-crystal diamond prepared in this work. The high density of NV- centers, along with the absence of Ni-related defects and Si-V centers, makes the single-crystal diamond grown by DC arc plasma jet CVD a promising material for applications in quantum computing.

  5. Synthesis of Cyclic Polymers and Characterization of Their Diffusive Motion in the Melt State at the Single Molecule Level

    KAUST Repository

    Habuchi, Satoshi

    2016-09-26

    We demonstrate a method for the synthesis of cyclic polymers and a protocol for characterizing their diffusive motion in a melt state at the single molecule level. An electrostatic self-assembly and covalent fixation (ESA-CF) process is used for the synthesis of the cyclic poly(tetrahydrofuran) (poly(THF)). The diffusive motion of individual cyclic polymer chains in a melt state is visualized using single molecule fluorescence imaging by incorporating a fluorophore unit in the cyclic chains. The diffusive motion of the chains is quantitatively characterized by means of a combination of mean-squared displacement (MSD) analysis and a cumulative distribution function (CDF) analysis. The cyclic polymer exhibits multiple-mode diffusion which is distinct from its linear counterpart. The results demonstrate that the diffusional heterogeneity of polymers that is often hidden behind ensemble averaging can be revealed by the efficient synthesis of the cyclic polymers using the ESA-CF process and the quantitative analysis of the diffusive motion at the single molecule level using the MSD and CDF analyses.

  6. Cationized phenylalanine conformations characterized by IRMPD and computation for singly and doubly charged ions

    NARCIS (Netherlands)

    Dunbar, R. C.; Steill, J. D.; Oomens, J.

    2010-01-01

    Electrospray ionization produces phenylalanine (Phe) complexes of the alkali metal ion series, plus Ag+ and Ba2+. Infrared multiple photon dissociation (IRMPD) spectroscopy using the FELIX free electron laser light source is used to characterize the conformations of the ions, in conjunction with

  7. Preparation and Characterization of Single Walled Carbon Nanotubes Poly(3-hexylthiophene) Nanohybrids

    OpenAIRE

    Sfuncia, Gianfranco

    2014-01-01

    In this work a purification method for carbon nanotubes was first developed. Purified nanotubes were characterized by AFM, TGA, RAMAN, NIR-PL and then used to prepare composite materials in conjunction with semiconducting polymers. Electrical and optical properties of this composite material were investigated and finally a nanostructuring technique able to create thin hybrid films with nanoscale phase separation was developed.

  8. Performance and Emission of VCR-CI Engine with palm kernel and eucalyptus blends

    Directory of Open Access Journals (Sweden)

    Srinivas kommana

    2016-09-01

    Full Text Available This study aims at complete replacement of conventional diesel fuel by biodiesel. In order to achieve that, palm kernel oil and eucalyptus oil blend has been chosen. Eucalyptus oil was blended with methyl ester of palm kernel oil in 5%, 10% and 15% by volume. Tests were conducted with diesel fuel and blends on a 4 stroke VCR diesel engine for comparative analysis with 220 bar injection pressure and 19:1 compression ratio. All the test fuels were used in computerized 4 stroke single cylinder variable compression ratio engine at five different loads (0, 6, 12, 18 and 24 N m. Present investigation depicts the improved combustion and reduced emissions for the PKO85% + EuO15% blend when compared to diesel at full load conditions.

  9. 3-D sensitivity kernels of the Rayleigh wave ellipticity

    Science.gov (United States)

    Maupin, Valérie

    2017-10-01

    The ellipticity of the Rayleigh wave at the surface depends on the seismic structure beneath and in the vicinity of the seismological station where it is measured. We derive here the expression and compute the 3-D kernels that describe this dependence with respect to S-wave velocity, P-wave velocity and density. Near-field terms as well as coupling to Love waves are included in the expressions. We show that the ellipticity kernels are the difference between the amplitude kernels of the radial and vertical components of motion. They show maximum values close to the station, but with a complex pattern, even when smoothing in a finite-frequency range is used to remove the oscillatory pattern present in mono-frequency kernels. In order to follow the usual data processing flow, we also compute and analyse the kernels of the ellipticity averaged over incoming wave backazimuth. The kernel with respect to P-wave velocity has the simplest lateral variation and is in good agreement with commonly used 1-D kernels. The kernels with respect to S-wave velocity and density are more complex and we have not been able to find a good correlation between the 3-D and 1-D kernels. Although it is clear that the ellipticity is mostly sensitive to the structure within half-a-wavelength of the station, the complexity of the kernels within this zone prevents simple approximations like a depth dependence times a lateral variation to be useful in the inversion of the ellipticity.

  10. Removal of Malachite Green Dye by Mangifera indica Seed Kernel Powder

    Science.gov (United States)

    Singh, Dilbagh; Sowmya, V.; Abinandan, S.; Shanthakumar, S.

    2017-11-01

    In this study, batch experiments were carried out to study the adsorption of Malachite green dye from aqueous solution by Mangifera indica (mango) seed kernel powder. The mango seed kernel powder was characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. Effect of various parameters including pH, contact time, adsorbent dosage, initial dye concentration and temperature on adsorption capacity of the adsorbent was observed and the optimized condition for maximum dye removal was identified. Maximum percentage removal of 96% was achieved with an adsorption capacity of 22.8 mg/g at pH 6 with an initial concentration of 100 mg/l. The equilibrium data were examined to fit the Langmuir and Freundlich isotherm models. Thermodynamic parameters for the adsorption process were also calculated.

  11. Molecular Genetic Characterization of Individual Cancer Cells Isolated via Single-Cell Printing.

    Directory of Open Access Journals (Sweden)

    Julian Riba

    Full Text Available Intratumoral genetic heterogeneity may impact disease outcome. Gold standard for dissecting clonal heterogeneity are single-cell analyses. Here, we present an efficient workflow based on an advanced Single-Cell Printer (SCP device for the study of gene variants in single cancer cells. To allow for precise cell deposition into microwells the SCP was equipped with an automatic dispenser offset compensation, and the 384-microwell plates were electrostatically neutralized. The ejection efficiency was 99.7% for fluorescent beads (n = 2304 and 98.7% for human cells (U-2 OS or Kasumi-1 cancer cell line, acute myeloid leukemia [AML] patient; n = 150. Per fluorescence microscopy, 98.8% of beads were correctly delivered into the wells. A subset of single cells (n = 81 was subjected to whole genome amplification (WGA, which was successful in all cells. On empty droplets, a PCR on LINE1 retrotransposons yielded no product after WGA, verifying the absence of free-floating DNA in SCP-generated droplets. Representative gene variants identified in bulk specimens were sequenced in single-cell WGA DNA. In U-2 OS, 22 of 25 cells yielded results for both an SLC34A2 and TET2 mutation site, including cells harboring the SLC34A2 but not the TET2 mutation. In one cell, the TET2 mutation analysis was inconclusive due to allelic dropout, as assessed via polymorphisms located close to the mutation. Of Kasumi-1, 23 of 33 cells with data on both the KIT and TP53 mutation site harbored both mutations. In the AML patient, 21 of 23 cells were informative for a TP53 polymorphism; the identified alleles matched the loss of chromosome arm 17p. The advanced SCP allows efficient, precise and gentle isolation of individual cells for subsequent WGA and routine PCR/sequencing-based analyses of gene variants. This makes single-cell information readily accessible to a wide range of applications and can provide insights into clonal heterogeneity that were indeterminable solely by

  12. Preparation and characterization of single crystal samples for high-pressure experiments

    Energy Technology Data Exchange (ETDEWEB)

    Farber, D; Antonangeli, D; Aracne, C; Benterou, J

    2005-10-26

    To date, most research utilizing the diamond anvil cell (DAC) has been conducted with polycrystalline samples, thus the results are limited to addressing average bulk properties. However, experiments on single crystals can yield data on a range of orientation dependent properties such as thermal and electrical conductivity, magnetic susceptibility, elasticity and plasticity. Here we report new procedures to produce extremely high-quality metallic single crystal samples of size compatible with DAC experiments in the Mbar range. So far, we have produced samples of zinc, Al{sub 2}O{sub 3}, cobalt, molybdenum and cerium, and have evaluated the quality of the finished samples with white-light interferometry, synchrotron x-ray diffraction and inelastic x-ray scattering.

  13. Production and characterization of polymer nanocomposite with aligned single wall carbon nanotubes

    International Nuclear Information System (INIS)

    Chen Wei; Tao Xiaoming

    2006-01-01

    We reported a simple method to fabricate polymer nanocomposites with single-walled carbon nanotubes (SWNTs) having exceptional alignment and improved mechanical properties. The composite films were fabricated by casting a suspension of single walled carbon nanotubes in a solution of thermoplastic polyurethane and tetrahydrofuran. The orientation as well as dispersion of nanotubes was determined by scanning electron microscopy, transmission electron microscopy and polarized Raman spectroscopy. The macroscopic alignment probably results from solvent-polymer interaction induced orientation of soft segment chain during swelling and moisture curing. The tensile behavior of the aligned nanotube composite film was also studied. At a 0.5 wt.% nanotube loading, a 1.9-fold increase in Young's modulus was achieved

  14. Controlled growth and electrical characterization of bent single-walled carbon nanotubes

    Science.gov (United States)

    Huang, Jun; Choi, Won Bong

    2008-12-01

    The frequency of appearance and curvature of zigzag shaped single-walled carbon nanotubes (SWNTs) are tailored by adjusting the gas flow rate, and changing the gas flow direction with respect to the step-edges on a single-crystal quartz substrate. The electrical resistance of SWNTs is found to increase with the number of bends. The resistance in SWNT segments with sharp curvature is observed to be 10-880 kΩ µm-1 higher than that in segments with smooth curvature. The increment in resistance may be attributed to the introduction of topological defects and heterojunctions at the curved part. Our results suggest the possibility of growing SWNTs with multiple-bend geometry in a simple one-step process and modulating the conductance of SWNTs by controlling the number of bends and the curvature of bends.

  15. Growth and characterization of 2-Methylimidazolium D-tartrate single crystal

    Science.gov (United States)

    Srinivasan, T. P.; Anandhi, S.; Gopalakrishnan, R.

    2011-03-01

    Single crystal of 2-Methylimidazolium D-tartrate (2MImdT; C8N2O6H12) has been grown by slow evaporation solution growth technique at room temperature using mixed solvents of ethanol and deionized water. Single crystal X-ray diffraction study confirms that 2-Methylimidazolium D-tartrate belongs to monoclinic crystal system with non-centrosymmetric space group P21. The Fourier transform infrared spectrum of 2-Methylimidazolium D-tartrate reveals the presence of methyl and carboxyl functional groups in the compound. The mechanical properties of 2MImdT crystal were studied. The theoretical factor group analysis predicts 168 optical modes in the title compound. The dielectric behavior of 2MImdT crystals was studied at different frequencies and temperatures. Decomposition and melting point of 2MImdT were found using thermal measurements. SHG behavior of the title compound was demonstrated using Q-switched Nd:YAG laser.

  16. Characterization of strained InGaAs single quantum well structures by ion beam methods

    International Nuclear Information System (INIS)

    Yu, K.M.; Chan, K.T.

    1990-01-01

    We have investigated strained InGaAs single quantum well structures using MeV ion beam methods. The structural properties of these structures, including composition and well size, have been studied. It has been found that the composition obtained by Rutherford backscattering spectrometry and particle-induced x-ray emission techniques agrees very well with that obtained by the ion channeling method

  17. Alignment characterization of single-wall carbon nanotubes by Raman scattering

    International Nuclear Information System (INIS)

    Liu Pijun; Liu Liyue; Zhang Yafei

    2003-01-01

    A novel method for identifying the Raman modes of single-wall carbon nanotubes (SWNT) based on the symmetry of the vibration modes has been studied. The Raman intensity of each vibration mode varies with polarization direction, and the relationship can be expressed as analytical functions. This method avoids troublesome numerical calculation and easily gives clear relations between Raman intensity and polarization direction. In this way, one can distinguish each Raman-active mode of SWNT through the polarized Raman spectrum

  18. Structure and Characterization of Vertically Aligned Single-Walled Carbon Nanotube Bundles

    International Nuclear Information System (INIS)

    Marquez, F.; Morant, C.; Elizalde, E.; Roque-Malherbe, R.; Lopez, V.; Zamora, F.; Domingo, C.

    2010-01-01

    Arrays of vertically aligned single-walled carbon nanotube bundles, SWCNTs, have been synthesized by simple alcohol catalytic chemical vapor deposition process, carried out at 800 degree C. The formed SWCNTs are organized in small groups perpendicularly aligned and attached to the substrate. These small bundles show a constant diameter of ca. 30 nm and are formed by the adhesion of no more than twenty individual SWCNTs perfectly aligned along their length.

  19. Growth and characterization of 4-chloro-3-nitrobenzophenone single crystals using vertical Bridgman technique

    Energy Technology Data Exchange (ETDEWEB)

    Aravinth, K., E-mail: anandcgc@gmail.com; Babu, G. Anandha, E-mail: anandcgc@gmail.com; Ramasamy, P., E-mail: anandcgc@gmail.com [Centre for Crystal Growth, SSN College of Engineering, Kalavakkam -603110, Tamilnadu (India)

    2014-04-24

    4-chloro-3-nitrobenzophenone (4C3N) has been grown by using vertical Bridgman technique. The grown crystal was confirmed by Powder X-ray diffraction analysis. The crystalline perfection of the grown crystal was examined by high-resolution X-ray diffraction study. The fluorescence spectra of grown 4C3N single crystals exhibit emission peak at 575 nm. The micro hardness measurements were used to analyze the mechanical property of the grown crystal.

  20. Learning molecular energies using localized graph kernels

    Science.gov (United States)

    Ferré, Grégoire; Haut, Terry; Barros, Kipton

    2017-03-01

    Recent machine learning methods make it possible to model potential energy of atomic configurations with chemical-level accuracy (as calculated from ab initio calculations) and at speeds suitable for molecular dynamics simulation. Best performance is achieved when the known physical constraints are encoded in the machine learning models. For example, the atomic energy is invariant under global translations and rotations; it is also invariant to permutations of same-species atoms. Although simple to state, these symmetries are complicated to encode into machine learning algorithms. In this paper, we present a machine learning approach based on graph theory that naturally incorporates translation, rotation, and permutation symmetries. Specifically, we use a random walk graph kernel to measure the similarity of two adjacency matrices, each of which represents a local atomic environment. This Graph Approximated Energy (GRAPE) approach is flexible and admits many possible extensions. We benchmark a simple version of GRAPE by predicting atomization energies on a standard dataset of organic molecules.