WorldWideScience

Sample records for single ion events

  1. Single event upsets caused by solar energetic heavy ions

    International Nuclear Information System (INIS)

    Tylka, A.J.; Adams, J.H. Jr.; Boberg, P.R.; Smith, E.C.

    1996-01-01

    The authors calculate single event upset (SEU) rates due to protons, alphas, and heavier ions in two satellite systems for the major solar particle events of 1989--92, using a new and complete analysis of GOES proton data and high-energy heavy-ion fluences from the University of Chicago Cosmic Ray Telescope on IMP-8. These measurements cover the entire range of energies relevant to SEU studies and therefore overcome shortcomings of previous studies, which relied upon theoretical or semi-empirical estimates of high-energy heavy-ion spectra. They compare the results to the observed SEU rates in these events. The SEU rates in one device were overwhelmingly dominated by protons. However, even after taking into account uncertainties in the ground-test cross-section data, the authors find that at least ∼45% of the SEUs in the other device must have been caused by heavy ions. The results demonstrate that both protons and heavy ions must be considered in order to make a reliable assessment of SEU vulnerabilities. Furthermore, the GOES/Chicago database of solar particle events provides a basis for making accurate solar particle SEU calculations and credible worst-case estimates. In particular, measurements of the historic solar particle events of October 1989 are used in worst week and worst day environment models in CREME96, a revision of NRL's Cosmic Ray Effects on MicroElectronics code

  2. Applications of heavy ion microprobe for single event effects analysis

    International Nuclear Information System (INIS)

    Reed, Robert A.; Vizkelethy, Gyorgy; Pellish, Jonathan A.; Sierawski, Brian; Warren, Kevin M.; Porter, Mark; Wilkinson, Jeff; Marshall, Paul W.; Niu, Guofu; Cressler, John D.; Schrimpf, Ronald D.; Tipton, Alan; Weller, Robert A.

    2007-01-01

    The motion of ionizing-radiation-induced rogue charge carriers in a semiconductor can create unwanted voltage and current conditions within a microelectronic circuit. If sufficient unwanted charge or current occurs on a sensitive node, a variety of single event effects (SEEs) can occur with consequences ranging from trivial to catastrophic. This paper describes the application of heavy ion microprobes to assist with calibration and validation of SEE modeling approaches

  3. Single event effects induced by 15.14 MeV/u 136Xe ions

    International Nuclear Information System (INIS)

    Hou Mingdong; Zhang Qingxiang; Liu Jie; Wang Zhiguang; Jin Yunfan; Zhu Zhiyong; Zhen Honglou; Liu Changlong; Chen Xiaoxi; Wei Xinguo; Zhang Lin; Fan Youcheng; Zhu Zhourong; Zhang Yiting

    2002-01-01

    Single event effects induced by 15.14 MeV/u 136 Xe ions in different batches of 32k x 8 bits static random access memory are studied. The incident angle dependences of the cross sections for single event upset and single event latch up are presented. The SEE cross sections are plotted versus energy loss instead of linear energy transfer value in sensitive region. The depth of sensitive volume and thickness of 'dead' layer above the sensitive volume are estimated

  4. Development of heavy-ion irradiation technique for single-event in semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Nemoto, Norio; Akutsu, Takao; Matsuda, Sumio [National Space Development Agency of Japan, Tsukuba, Ibaraki (Japan). Tsukuba Space Center; Naitoh, Ichiro; Itoh, Hisayoshi; Agematsu, Takashi; Kamiya, Tomihiro; Nashiyama, Isamu

    1997-03-01

    Heavy-ion irradiation technique has been developed for the evaluation of single-event effects on semiconductor devices. For the uniform irradiation of high energy heavy ions to device samples, we have designed and installed a magnetic beam-scanning system in a JAERI cyclotron beam course. It was found that scanned area was approximately 4 x 2 centimeters and that the deviation of ion fluence from the average value was less than 7%. (author)

  5. Single event simulation for memories using accelerated ions

    International Nuclear Information System (INIS)

    Sakagawa, Y.; Shiono, N.; Mizusawa, T.; Sekiguchi, M.; Sato, K.; Sugai, I.; Hirao, Y.; Nishimura, J.; Hattori, T.

    1987-01-01

    To evaluate the error immunity of the LSI memories from cosmic rays in space, an irradiation test using accelerated heavy ions is performed. The sensitive regions for 64 K DRAM (Dynamic Random Access Memory) and 4 K SRAM (Static Random Access Memory) are determined from the irradiation test results and the design parameters of the devices. The observed errors can be classified into two types. One is the direct ionization type and the other is the recoil produced error type. Sensitive region is determined for the devices. Error rate estimation methods for both types are proposed and applied to those memories used in space. The error rate of direct ionization exceeds the recoil type by 2 or 3 orders. And the direct ionization is susceptible to shield thickness. (author)

  6. Heavy Ion Irradiation Fluence Dependence for Single-Event Upsets of NAND Flash Memory

    Science.gov (United States)

    Chen, Dakai; Wilcox, Edward; Ladbury, Raymond; Kim, Hak; Phan, Anthony; Seidleck, Christina; LaBel, Kenneth

    2016-01-01

    We investigated the single-event effect (SEE) susceptibility of the Micron 16 nm NAND flash, and found the single-event upset (SEU) cross section varied inversely with fluence. The SEU cross section decreased with increasing fluence. We attribute the effect to the variable upset sensitivities of the memory cells. The current test standards and procedures assume that SEU follow a Poisson process and do not take into account the variability in the error rate with fluence. Therefore, heavy ion irradiation of devices with variable upset sensitivity distribution using typical fluence levels may underestimate the cross section and on-orbit event rate.

  7. Impact of temperature on single event upset measurement by heavy ions in SRAM devices

    International Nuclear Information System (INIS)

    Liu Tianqi; Geng Chao; Zhang Zhangang; Gu Song; Tong Teng; Xi Kai; Hou Mingdong; Liu Jie; Zhao Fazhan; Liu Gang; Han Zhengsheng

    2014-01-01

    The temperature dependence of single event upset (SEU) measurement both in commercial bulk and silicon on insulator (SOI) static random access memories (SRAMs) has been investigated by experiment in the Heavy Ion Research Facility in Lanzhou (HIRFL). For commercial bulk SRAM, the SEU cross section measured by 12 C ions is very sensitive to the temperature. The temperature test of SEU in SOI SRAM was conducted by 209 Bi and 12 C ions, respectively, and the SEU cross sections display a remarkable growth with the elevated temperature for 12 C ions but keep constant for 209 Bi ions. The impact of temperature on SEU measurement was analyzed by Monte Carlo simulation. It is revealed that the SEU cross section is significantly affected by the temperature around the threshold linear energy transfer of SEU occurrence. As the SEU occurrence approaches saturation, the SEU cross section gradually exhibits less temperature dependency. Based on this result, the experimental data measured in HIRFL was analyzed, and then a reasonable method of predicting the on-orbit SEU rate was proposed. (semiconductor devices)

  8. Single event effects induced by 15.14 MeV/u sup 1 sup 3 sup 6 Xe ions

    CERN Document Server

    Hou Ming Dong; LiuJie; Wang Zhi Guang; Jin Yun Fan; Zhu Zhi Yong; Zhen Hong Lou; Liu Chang Long; Chen Xiao Xi; Wei Xin Guo; Zhang Li; Fan You Cheng; Zhu Zhou Rong; Zhang Yiting

    2002-01-01

    Single event effects induced by 15.14 MeV/u sup 1 sup 3 sup 6 Xe ions in different batches of 32k x 8 bits static random access memory are studied. The incident angle dependences of the cross sections for single event upset and single event latch up are presented. The SEE cross sections are plotted versus energy loss instead of linear energy transfer value in sensitive region. The depth of sensitive volume and thickness of 'dead' layer above the sensitive volume are estimated

  9. Heavy Ion Irradiation Fluence Dependence for Single-Event Upsets in a NAND Flash Memory

    Science.gov (United States)

    Chen, Dakai; Wilcox, Edward; Ladbury, Raymond L.; Kim, Hak; Phan, Anthony; Seidleck, Christina; Label, Kenneth

    2016-01-01

    We investigated the single-event effect (SEE) susceptibility of the Micron 16 nm NAND flash, and found that the single-event upset (SEU) cross section varied inversely with cumulative fluence. We attribute the effect to the variable upset sensitivities of the memory cells. Furthermore, the effect impacts only single cell upsets in general. The rate of multiple-bit upsets remained relatively constant with fluence. The current test standards and procedures assume that SEU follow a Poisson process and do not take into account the variability in the error rate with fluence. Therefore, traditional SEE testing techniques may underestimate the on-orbit event rate for a device with variable upset sensitivity.

  10. High-energy heavy ion testing of VLSI devices for single event ...

    Indian Academy of Sciences (India)

    Unknown

    Single event upset is defined by NASA as 'radiation- induced errors in microelectronic circuits caused when charged particles (usually from the radiation belts or from cosmic rays) lose energy by ionizing the medium through which they pass, leaving behind a wake of elec- tron-hole pairs'. SEU are transient soft errors and ...

  11. Investigations on heavy ion induced Single-Event Transients (SETs) in highly-scaled FinFETs

    International Nuclear Information System (INIS)

    Gaillardin, M.; Raine, M.; Paillet, P.; Adell, P.C.; Girard, S.; Duhamel, O.; Andrieu, F.; Barraud, S.; Faynot, O.

    2015-01-01

    We investigate Single-Event Transients (SET) in different designs of multiple-gate devices made of FinFETs with various geometries. Heavy ion experimental results are explained by using a thorough charge collection analysis of fast transients measured on dedicated test structures. Multi-level simulations are performed to get new insights into the charge collection mechanisms in multiple-gate devices. Implications for multiple-gate device design hardening are finally discussed.

  12. Development of Guidelines for Use of Proton Single-Event Test Data to Bound Single-Event Effect Susceptibility Due to Light Ions

    Data.gov (United States)

    National Aeronautics and Space Administration — Conventional methods for Single-Event Effects (SEE) Hardness Assurance have proven difficult to adapt to Explorer, Cubesat and other risk tolerant platforms with...

  13. Single-Event Effects in Power MOSFETs During Heavy Ion Irradiations Performed After Gamma-Ray Degradation

    Science.gov (United States)

    Busatto, G.; De Luca, V.; Iannuzzo, F.; Sanseverino, A.; Velardi, F.

    2013-10-01

    The robustness of commercial power metal-oxide semiconductor field-effect transistors to combined gamma-heavy ion irradiation has been investigated, evidence that the degradation of the gate oxide caused by the γ irradiation can severely corrupt the robustness to single-event effects and drastically modify the physical behavior of the device under test after the impact of a heavy ion. A decrease of the critical voltages at which destructive burnouts and gate ruptures for heavy ion impact appear, has been detected in the devices under test, which were previously irradiated with γ rays. In addition, the amount of critical voltage reduction is strictly related to the amount of the absorbed γ-ray dose. Furthermore, at the failure voltage, the behavior of the device is affected by the conduction of a current through the gate oxide. Moreover, the single-event gate rupture” of the device appears at lower voltages because of the reduction of the Fowler-Nordheim limit in the γ-irradiated devices.

  14. High-energy heavy ion testing of VLSI devices for single event ...

    Indian Academy of Sciences (India)

    Unknown

    board pattern of 55h (01010101) and AAh (10101010) in alternate locations during irradiation. Data stored in the memory is continuously read and verified with the refer- ence data pattern. In the event of any upset, the failure is recorded and the data is re-written again. This reading and writing process continues during the ...

  15. Single event upset test programs

    International Nuclear Information System (INIS)

    Russen, L.C.

    1984-11-01

    It has been shown that the heavy ions in cosmic rays can give rise to single event upsets in VLSI random access memory devices (RAMs). Details are given of the programs written to test 1K, 4K, 16K and 64K memories during their irradiation with heavy charged ions, in order to simulate the effects of cosmic rays in space. The test equipment, which is used to load the memory device to be tested with a known bit pattern, and subsequently interrogate it for upsets, or ''flips'', is fully described. (author)

  16. Test Standard Revision Update: JESD57, "Procedures for the Measurement of Single-Event Effects in Semiconductor Devices from Heavy-Ion Irradiation"

    Science.gov (United States)

    Lauenstein, Jean-Marie

    2015-01-01

    The JEDEC JESD57 test standard, Procedures for the Measurement of Single-Event Effects in Semiconductor Devices from Heavy-Ion Irradiation, is undergoing its first revision since 1996. In this talk, we place this test standard into context with other relevant radiation test standards to show its importance for single-event effect radiation testing for space applications. We show the range of industry, government, and end-user party involvement in the revision. Finally, we highlight some of the key changes being made and discuss the trade-space in which setting standards must be made to be both useful and broadly adopted.

  17. Event-By-Event Initial Conditions for Heavy Ion Collisions

    Science.gov (United States)

    Rose, S.; Fries, R. J.

    2017-04-01

    The early time dynamics of heavy ion collisions can be described by classical fields in an approximation of Quantum ChromoDynamics (QCD) called Color Glass Condensate (CGC). Monte-Carlo sampling of the color charge for the incoming nuclei are used to calculate their classical gluon fields. Following the recent work by Chen et al. we calculate the energy momentum tensor of those fields at early times in the collision event-by-event. This can then be used for subsequent hydrodynamic evolution of the single events.

  18. Establishing a Quantitative Relationship Between Ion and Pulsed-Laser Induced Single Event Soft Errors in Advanced Semiconductor Devices

    Data.gov (United States)

    National Aeronautics and Space Administration — Radiation is a pervasive environmental challenge in space and the upper atmosphere. Ions can interact with microelectronic devices and create unwanted charge leading...

  19. Equivalent properties of single event burnout induced by different sources

    International Nuclear Information System (INIS)

    Yang Shiyu; Cao Zhou; Da Daoan; Xue Yuxiong

    2009-01-01

    The experimental results of single event burnout induced by heavy ions and 252 Cf fission fragments in power MOSFET devices have been investigated. It is concluded that the characteristics of single event burnout induced by 252 Cf fission fragments is consistent to that in heavy ions. The power MOSFET in the 'turn-off' state is more susceptible to single event burnout than it is in the 'turn-on' state. The thresholds of the drain-source voltage for single event burnout induced by 173 MeV bromine ions and 252 Cf fission fragments are close to each other, and the burnout cross section is sensitive to variation of the drain-source voltage above the threshold of single event burnout. In addition, the current waveforms of single event burnouts induced by different sources are similar. Different power MOSFET devices may have different probabilities for the occurrence of single event burnout. (authors)

  20. Single Cathode Ion Thruster

    Data.gov (United States)

    National Aeronautics and Space Administration — Objective is to design an electrostatic ion thruster that is more efficient, simpler, and lower cost than the current gridded ion thruster. Initial objective is to...

  1. Improving Single Event Effects Testing Through Software

    Science.gov (United States)

    Banker, M. W.

    2011-01-01

    Radiation encountered in space environments can be damaging to microelectronics and potentially cause spacecraft failure. Single event effects (SEE) are a type of radiation effect that occur when an ion strikes a device. Single event gate rupture (SEGR) is a type of SEE that can cause failure in power transistors. Unlike other SEE rates in which a constant linear energy transfer (LET) can be used, SEGR rates sometimes require a non-uniform LET to be used to be accurate. A recent analysis shows that SEGR rates are most easily calculated when the environment is described as a stopping rate per unit volume for each ion species. Stopping rates in silicon for pertinent ions were calculated using the Stopping and Range of Ions in Matter (SRIM) software and CREME-MC software. A reference table was generated and can be used by others to calculate SEGR rates for a candidate device. Additionally, lasers can be used to simulate SEEs, providing more control and information at lower cost than heavy ion testing. The electron/hole pair generation rate from a laser pulse in a semiconductor can be related to the LET of an ion. MATLAB was used to generate a plot to easily make this comparison.

  2. Broad Beam and Ion Microprobe Studies of Single-Event Upsets in High Speed 0.18micron Silicon Germanium Heterojunction Bipolar Transistors and Circuits

    Science.gov (United States)

    Reed, Robert A.; Marshall, Paul W.; Pickel, Jim; Carts, Martin A.; Irwin, TIm; Niu, Guofu; Cressler, John; Krithivasan, Ramkumar; Fritz, Karl; Riggs, Pam

    2003-01-01

    SiGe based technology is widely recognized for its tremendous potential to impact the high speed microelectronic industry, and therefore the space industry, by monolithic incorporation of low power complementary logic with extremely high speed SiGe Heterojunction Bipolar Transistor (HBT) logic. A variety of studies have examined the ionizing dose, displacement damage and single event characteristics, and are reported. Accessibility to SiGe through an increasing number of manufacturers adds to the importance of understanding its intrinsic radiation characteristics, and in particular the single event effect (SEE) characteristics of the high bandwidth HBT based circuits. IBM is now manufacturing in its 3rd generation of their commercial SiGe processes, and access is currently available to the first two generations (known as and 6HP) through the MOSIS shared mask services with anticipated future release of the latest (7HP) process. The 5 HP process is described and is characterized by a emitter spacing of 0.5 micron and a cutoff frequency ff of 50 GHz, whereas the fully scaled 7HP HBT employs a 0.18 micron emitter and has an fT of 120 GHz. Previous investigations have the examined SEE response of 5 HP HBT circuits through both circuit testing and modeling. Charge collection modeling studies in the 5 H P process have also been conducted, but to date no measurements have been reported of charge collection in any SiGe HBT structures. Nor have circuit models for charge collection been developed in any version other than the 5 HP HBT structure. Our investigation reports the first indications of both charge collection and circuit response in IBM s 7HP-based SiGe process. We compare broad beam heavy ion SEU test results in a fully function Pseudo-Random Number (PRN) sequence generator up to frequencies of 12 Gbps versus effective LET, and also report proton test results in the same circuit. In addition, we examine the charge collection characteristics of individual 7HP HBT

  3. Single event phenomena in atmospheric neutron environments

    International Nuclear Information System (INIS)

    Gossett, C.A.; Hughlock, B.W.; Katoozi, M.; LaRue, G.S.; Wender, S.A.

    1993-01-01

    As integrated circuit technology achieves higher density through smaller feature sizes and as the airplane manufacturing industry integrates more sophisticated electronic components into the design of new aircraft, it has become increasingly important to evaluate the contribution of single event effects, primarily Single Event Upset (SEU), to the safety and reliability of commercial aircraft. In contrast to the effects of radiation on electronic systems in space applications for which protons and heavy ions are of major concern, in commercial aircraft applications the interactions of high energy neutrons are the dominant cause of single event effects. These high energy neutrons are produced by the interaction of solar and galactic cosmic rays, principally protons and heavy ions, in the upper atmosphere. This paper will describe direct experimental measurements of neutron-induced Single Event Effect (SEE) rates in commercial high density static random access memories in a neutron environment characteristic of that at commercial airplane altitudes. The first experimental measurements testing current models for neutron-silicon burst generation rates will be presented, as well as measurements of charge collection in silicon test structures as a function of neutron energy. These are the first laboratory SEE and charge collection measurements using a particle beam having a continuum energy spectrum and with a shape nearly identical to that observed during flight

  4. Experimental Setups for Single Event Effect Studies

    OpenAIRE

    N. H. Medina; V. A. P. Aguiar; N. Added; F. Aguirre; E. L. A. Macchione; S. G. Alberton; M. A. G. Silveira; J. Benfica; F. Vargas; B. Porcher

    2016-01-01

    Experimental setups are being prepared to test and to qualify electronic devices regarding their tolerance to Single Event Effect (SEE). A multiple test setup and a new beam line developed especially for SEE studies at the São Paulo 8 UD Pelletron accelerator were prepared. This accelerator produces proton beams and heavy ion beams up to 107Ag. A Super conducting Linear accelerator, which is under construction, may fulfill all of the European Space Agency requirements to qualify electronic...

  5. Experimental study of single event burnout and single event gate rupture in power MOSFETs and IGBT

    International Nuclear Information System (INIS)

    Tang Benqi; Wang Yanping; Geng Bin

    2001-01-01

    An experimental study was carried out to determine the single event burnout and single event gate rupture sensitivities in power MOSFETs and IGBT which were exposed to heavy ions from 252 Cf source. The test method, test results, a description of observed burnout current waveforms and a discussion of a possible failure mechanism were presented. Current measurements have been performed with a specially designed circuit. The test results include the observed dependence upon applied drain or gate to source bias and versus with external capacitors and limited resistors

  6. Crystal ball single event display

    International Nuclear Information System (INIS)

    Grosnick, D.; Gibson, A.; Allgower, C.; Alyea, J.; Argonne National Lab., IL

    1997-01-01

    The Single Event Display (SED) is a routine that is designed to provide information graphically about a triggered event within the Crystal Ball. The SED is written entirely in FORTRAN and uses the CERN-based HICZ graphing package. The primary display shows the amount of energy deposited in each of the NaI crystals on a Mercator-like projection of the crystals. Ten different shades and colors correspond to varying amounts of energy deposited within a crystal. Information about energy clusters is displayed on the crystal map by outlining in red the thirteen (or twelve) crystals contained within a cluster and assigning each cluster a number. Additional information about energy clusters is provided in a series of boxes containing useful data about the energy distribution among the crystals within the cluster. Other information shown on the event display include the event trigger type and data about π o 's and η's formed from pairs of clusters as found by the analyzer. A description of the major features is given, along with some information on how to install the SED into the analyzer

  7. Event by event fluctuations in heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Volker

    2001-01-01

    The authors discuss the physics underlying event-by-event fluctuations in relativistic heavy ion collisions. We will argue that the fluctuations of the ratio of positively over negatively charged particles may serve as a unique signature for the Quark Gluon Plasma.

  8. Event-by-event fluctuations in heavy ion collisions

    OpenAIRE

    Doering, M.; Koch, V.

    2002-01-01

    We discuss the physics underlying event-by-event fluctuations in relativistic heavy ion collisions. We will argue that the fluctuations of the ratio of positively over negatively charged particles may serve as a unique signature for the Quark Gluon Plasma.

  9. Single Event Effects in FPGA Devices 2015-2016

    Science.gov (United States)

    Berg, Melanie; LaBel, Kenneth; Pellish, Jonathan

    2016-01-01

    This presentation provides an overview of single event effects in FPGA devices 2015-2016 including commercial Xilinx V5 heavy ion accelerated testing, Xilinx Kintex-7 heavy ion accelerated testing, mitigation study, and investigation of various types of triple modular redundancy (TMR) for commercial SRAM based FPGAs.

  10. Laboratory tests for single-event effects

    International Nuclear Information System (INIS)

    Buchner, S.; McMorrow, D.; Melinger, J.; Campbell, A.B.

    1996-01-01

    Integrated circuits are currently tested at accelerators for their susceptibility to single-event effects (SEE's). However, because of the cost and limited accessibility associated with accelerator testing, there is considerable interest in developing alternate testing methods. Two laboratory techniques for measuring SEE, one involving a pulsed laser and the other 252 Cf, are described in detail in this paper. The pulsed laser provides information on the spatial and temporal dependence of SEE, information that has proven invaluable in understanding and mitigating SEE in spite of the differences in the physical mechanisms responsible for SEE induced by light and by ions. Considerable effort has been expended on developing 252 Cf as a laboratory test for SEE, but the technique has not found wide use because it is severely limited by the low energy and short range of the emitted ions that are unable to reach junctions either covered with dielectric layers or deep below the surface. In fact, there are documented cases where single-event latchup (SEL) testing with 252 Cf gave significantly different results from accelerator testing. A detailed comparison of laboratory and accelerator SEE data is presented in this review in order to establish the limits of each technique

  11. An Updated Perspective of Single Event Gate Rupture and Single Event Burnout in Power MOSFETs

    Science.gov (United States)

    Titus, Jeffrey L.

    2013-06-01

    Studies over the past 25 years have shown that heavy ions can trigger catastrophic failure modes in power MOSFETs [e.g., single-event gate rupture (SEGR) and single-event burnout (SEB)]. In 1996, two papers were published in a special issue of the IEEE Transaction on Nuclear Science [Johnson, Palau, Dachs, Galloway and Schrimpf, “A Review of the Techniques Used for Modeling Single-Event Effects in Power MOSFETs,” IEEE Trans. Nucl. Sci., vol. 43, no. 2, pp. 546-560, April. 1996], [Titus and Wheatley, “Experimental Studies of Single-Event Gate Rupture and Burnout in Vertical Power MOSFETs,” IEEE Trans. Nucl. Sci., vol. 43, no. 2, pp. 533-545, Apr. 1996]. Those two papers continue to provide excellent information and references with regard to SEB and SEGR in vertical planar MOSFETs. This paper provides updated references/information and provides an updated perspective of SEB and SEGR in vertical planar MOSFETs as well as provides references/information to other device types that exhibit SEB and SEGR effects.

  12. Single Event Effect (SEE) Test Planning 101

    Science.gov (United States)

    LaBel, Kenneth A.; Pellish, Jonathan; Berg, Melanie D.

    2011-01-01

    This is a course on SEE Test Plan development. It is an introductory discussion of the items that go into planning an SEE test that should complement the SEE test methodology used. Material will only cover heavy ion SEE testing and not proton, LASER, or other though many of the discussed items may be applicable. While standards and guidelines for how-to perform single event effects (SEE) testing have existed almost since the first cyclotron testing, guidance on the development of SEE test plans has not been as easy to find. In this section of the short course, we attempt to rectify this lack. We consider the approach outlined here as a "living" document: mission specific constraints and new technology related issues always need to be taken into account. We note that we will use the term "test planning" in the context of those items being included in a test plan.

  13. Physical mechanisms of single-event effects in advanced microelectronics

    International Nuclear Information System (INIS)

    Schrimpf, Ronald D.; Weller, Robert A.; Mendenhall, Marcus H.; Reed, Robert A.; Massengill, Lloyd W.

    2007-01-01

    The single-event error rate in advanced semiconductor technologies can be estimated more accurately than conventional methods by using simulation based on accurate descriptions of a large number of individual particle interactions. The results can be used to select the ion types and energies for accelerator testing and to identify situations in which nuclear reactions will contribute to the error rate

  14. The effect of a single recombination event

    DEFF Research Database (Denmark)

    Schierup, Mikkel Heide; Jensen, Thomas Mailund; Wiuf, Carsten

    We investigate the variance in how visible a single recombination event is in a SNP data set as a function of the type of recombination event and its age. Data is simulated under the coalescent with recombination and inference is by the popular composite likelihood methods. The major determinant...... of the effect of a recombination event is the genealogical type of the event and whether SNP variation is present that can reveal the genealogical consequences of the recombination event. Recombination events that only change some branch lengths in the genealogy have a very small, but detectable, effect....... The more lineages left when the recombination event occurs, the larger effect it has, implying that it is mainly young recombination events that we detect when estimating the rate. If the population is growing, though, more lineages are present back in time and relatively more ancient recombination events...

  15. Single Event Rates for Devices Sensitive to Particle Energy

    Science.gov (United States)

    Edmonds, L. D.; Scheick, L. Z.; Banker, M. W.

    2012-01-01

    Single event rates (SER) can include contributions from low-energy particles such that the linear energy transfer (LET) is not constant. Previous work found that the environmental description that is most relevant to the low-energy contribution to the rate is a "stopping rate per unit volume" even when the physical mechanisms for a single-event effect do not require an ion to stop in some device region. Stopping rate tables are presented for four heavy-ion environments that are commonly used to assess device suitability for space applications. A conservative rate estimate utilizing limited test data is derived, and the example of SEGR rate in a power MOSFET is presented.

  16. Single-Event Effects in Silicon Carbide Power Devices

    Science.gov (United States)

    Lauenstein, Jean-Marie; Casey, Megan C.; LaBel, Kenneth A.; Ikpe, Stanley; Topper, Alyson D.; Wilcox, Edward P.; Kim, Hak; Phan, Anthony M.

    2015-01-01

    This report summarizes the NASA Electronic Parts and Packaging Program Silicon Carbide Power Device Subtask efforts in FY15. Benefits of SiC are described and example NASA Programs and Projects desiring this technology are given. The current status of the radiation tolerance of silicon carbide power devices is given and paths forward in the effort to develop heavy-ion single-event effect hardened devices indicated.

  17. Calcium ion currents mediating oocyte maturation events

    Directory of Open Access Journals (Sweden)

    Tosti Elisabetta

    2006-05-01

    Full Text Available Abstract During maturation, the last phase of oogenesis, the oocyte undergoes several changes which prepare it to be ovulated and fertilized. Immature oocytes are arrested in the first meiotic process prophase, that is morphologically identified by a germinal vesicle. The removal of the first meiotic block marks the initiation of maturation. Although a large number of molecules are involved in complex sequences of events, there is evidence that a calcium increase plays a pivotal role in meiosis re-initiation. It is well established that, during this process, calcium is released from the intracellular stores, whereas less is known on the role of external calcium entering the cell through the plasma membrane ion channels. This review is focused on the functional role of calcium currents during oocyte maturation in all the species, from invertebrates to mammals. The emerging role of specific L-type calcium channels will be discussed.

  18. Single event upset immunity of strontium bismuth tantalate ferroelectric memories

    International Nuclear Information System (INIS)

    Benedetto, J.M.; Derbenwick, G.F.; Cuchiaro, J.D.

    1999-01-01

    An embedded 1Kbit non-volatile (NV) serial memory manufactured with strontium bismuth tantalate (SBT) ferroelectric (FE) technology was shown to be immune to effects of heavy ion irradiation. The memories did not lose any data in the non-volatile mode when exposed to xenon (maximum effective LET of 128 MeV-cm 2 /mg and a total fluence of 1.5 x 10 7 ions/cm 2 ). The ferroelectric memories also did not exhibit any loss in the ability to rewrite new data into the memory bits, indicating that no significant degradation of the FE dipoles occurred as a result of the heavy ion exposure. The fast read/write times of FE memories also means that single event gate rupture is unlikely to occur in this technology

  19. Single ion dynamics in molten sodium bromide

    Energy Technology Data Exchange (ETDEWEB)

    Alcaraz, O.; Trullas, J. [Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, 08034 Barcelona (Spain); Demmel, F. [ISIS Facility, Rutherford Appleton Laboratory, Didcot OX11 0QX (United Kingdom)

    2014-12-28

    We present a study on the single ion dynamics in the molten alkali halide NaBr. Quasielastic neutron scattering was employed to extract the self-diffusion coefficient of the sodium ions at three temperatures. Molecular dynamics simulations using rigid and polarizable ion models have been performed in parallel to extract the sodium and bromide single dynamics and ionic conductivities. Two methods have been employed to derive the ion diffusion, calculating the mean squared displacements and the velocity autocorrelation functions, as well as analysing the increase of the line widths of the self-dynamic structure factors. The sodium diffusion coefficients show a remarkable good agreement between experiment and simulation utilising the polarisable potential.

  20. Current Single Event Effects Results for Candidate Spacecraft Electronics for NASA

    Science.gov (United States)

    OBryan, Martha V.; Seidleck, Christina M.; Carts, Martin A.; LaBel, Kenneth A.; Marshall, Cheryl J.; Reed, Robert A.; Sanders, Anthony B.; Hawkins, Donald K.; Cox, Stephen R.; Kniffin, Scott D.

    2004-01-01

    We present data on the vulnerability of a variety of candidate spacecraft electronics to proton and heavy ion induced single event effects. Devices tested include digital, analog, linear bipolar, and hybrid devices, among others.

  1. NEPP Update of Independent Single Event Upset Field Programmable Gate Array Testing

    Science.gov (United States)

    Berg, Melanie; Label, Kenneth; Campola, Michael; Pellish, Jonathan

    2017-01-01

    This presentation provides a NASA Electronic Parts and Packaging (NEPP) Program update of independent Single Event Upset (SEU) Field Programmable Gate Array (FPGA) testing including FPGA test guidelines, Microsemi RTG4 heavy-ion results, Xilinx Kintex-UltraScale heavy-ion results, Xilinx UltraScale+ single event effect (SEE) test plans, development of a new methodology for characterizing SEU system response, and NEPP involvement with FPGA security and trust.

  2. Dual Interlocked Logic for Single-Event Transient Mitigation

    Science.gov (United States)

    2017-03-01

    Dual Interlocked Logic for Single -Event Transient Mitigation Jeffrey Maharrey, Jeffrey Kauppila, Dennis Ball, Timothy Holman, Lloyd Massengill...is shown to be robust to single event transients. Keywords: SET; CVSL; DIL; single event transient; hardened logic; cascode voltage switch; dual...interlocked Introduction Single event transients (SETs) generated in combinational logic are a major, often dominant, contributor to soft errors in

  3. Single-event burnout of power bipolar junction transistors

    International Nuclear Information System (INIS)

    Titus, J.L.; Johnson, G.H.; Schrimpf, R.D.; Galloway, K.F.

    1991-01-01

    Experimental evidence of single-event burnout of power bipolar junctions transistors (BJTs) is reported for the first time. Several commercial power BJTs were characterized in a simulated cosmic ray environment using mono-energetic ions at the tandem Van de Graaff accelerator facility at Brookhaven National Laboratory. Most of the device types exposed to this simulated environment exhibited burnout behavior. In this paper the experimental technique, data, and results are presented, while a qualitative model is used to help explain those results and trends observed in this experiment

  4. Single event upsets correlated with environment

    International Nuclear Information System (INIS)

    Vampola, A.L.; Albin, F.; Lauriente, M.; Wilkinson, D.C.; Allen, J.

    1994-01-01

    Single Event Upset rates on satellites in different Earth orbits are correlated with solar protons and geomagnetic activity and also with the NASA AP8 proton model to extract information about satellite anomalies caused by the space environment. An extensive discussion of the SEU data base from the TOMS solid state recorder and an algorithm for correcting spontaneous upsets in it are included as an Appendix. SAMPEX and TOMS, which have the same memory chips, have similar normalized responses in the South Atlantic Anomaly. SEU rates due to solar protons over the polar caps are within expectations. No geomagnetic activity effects can be discerned in the SEU rates

  5. Single event upsets in spacecraft digital systems

    Science.gov (United States)

    Leukowicz, P. E.; Richter, L. J.

    This paper describes the physical environments that can result in random bit changes in spaceborne memory systems. The impact of bit flips in digital telemetry systems is emphasized, with special attention paid to software requirements for protection from single event upset (SEU) effects. Some observations on incidence rates are presented along with an outline of hardware and software methods that can be taken to prevent future SEU problems. Several conclusions are drawn about strategies for preventing data corruption on the next generation of satellites in the presence of SEU-inducing particles.

  6. Single-ion nonlinear mechanical oscillator

    International Nuclear Information System (INIS)

    Akerman, N.; Kotler, S.; Glickman, Y.; Dallal, Y.; Keselman, A.; Ozeri, R.

    2010-01-01

    We study the steady-state motion of a single trapped ion oscillator driven to the nonlinear regime. Damping is achieved via Doppler laser cooling. The ion motion is found to be well described by the Duffing oscillator model with an additional nonlinear damping term. We demonstrate here the unique ability of tuning both the linear as well as the nonlinear damping coefficients by controlling the laser-cooling parameters. Our observations pave the way for the investigation of nonlinear dynamics on the quantum-to-classical interface as well as mechanical noise squeezing in laser-cooling dynamics.

  7. Event-by-Event Cluster Analysis of Final States from Heavy Ion Collisions

    International Nuclear Information System (INIS)

    Fialkowski, K.; Wit, R.

    1999-01-01

    We present an event-by-event analysis of the cluster structure of final multihadron states resulting from heavy ion collisions. A comparison of experimental data with the states obtained from Monte Carlo generators is shown. The analysis of the first available experimental events suggests that the method is suitable for selecting some different types of events. (author)

  8. Heavy ion event generator HYDJET++ (HYDrodynamics plus JETs)

    Science.gov (United States)

    Lokhtin, I. P.; Malinina, L. V.; Petrushanko, S. V.; Snigirev, A. M.; Arsene, I.; Tywoniuk, K.

    2009-05-01

    rescattering and energy loss, so-called "jet quenching") is lacking. Thus, in order to analyze existing data on low and high- p hadron production, test the sensitivity of physical observables at the upcoming LHC experiments (and other future heavy ion facilities) to the QGP formation, and study the experimental capabilities of constructed detectors, the development of adequate and fast MC models for simultaneous collective flow and jet quenching simulations is necessary. HYDJET++ event generator includes detailed treatment of soft hadroproduction as well as hard multi-parton production, and takes into account known medium effects. Solution method: A heavy ion event in HYDJET++ is a superposition of the soft, hydro-type state and the hard state resulting from multi-parton fragmentation. Both states are treated independently. HYDJET++ is the development and continuation of HYDJET MC model [12]. The main program is written in the object-oriented C++ language under the ROOT environment [1]. The hard part of HYDJET++ is identical to the hard part of Fortran-written HYDJET [13] (version 1.5) and is included in the generator structure as a separate directory. The routine for generation of single hard NN collision, generator PYQUEN [12,14], modifies the "standard" jet event obtained with the generator PYTHIA 6.4 [15]. The event-by-event simulation procedure in PYQUEN includes generation of initial parton spectra with PYTHIA and production vertexes at given impact parameter; rescattering-by-rescattering simulation of the parton path in a dense zone and its radiative and collisional energy loss; final hadronization according to the Lund string model for hard partons and in-medium emitted gluons. Then the PYQUEN multi-jets generated according to the binomial distribution are included in the hard part of the event. The mean number of jets produced in an AA event is the product of the number of binary NN subcollisions at a given impact parameter and the integral cross section of the hard

  9. On the Role of Ionospheric Ions in Sawtooth Events

    Science.gov (United States)

    Lund, E. J.; Nowrouzi, N.; Kistler, L. M.; Cai, X.; Frey, H. U.

    2018-01-01

    Simulations have suggested that feedback of heavy ions originating in the ionosphere is an important mechanism for driving sawtooth injections. However, this feedback may only be necessary for events driven by coronal mass ejections (CMEs), whereas in events driven by streaming interaction regions (SIRs), solar wind variability may suffice to drive these injections. Here we present case studies of two sawtooth events for which in situ data are available in both the magnetotail (Cluster) and the nightside auroral region (FAST), as well as global auroral images (IMAGE). One event, on 1 October 2001, was driven by a CME; the other, on 24 October 2002, was driven by an SIR. The available data do not support the hypothesis that heavy ion feedback is necessary to drive either event. This result is consistent with simulations of the SIR-driven event but disagrees with simulation results for a different CME-driven event. We also find that in an overwhelming majority of the sawtooth injections for which Cluster tail data are available, the O+ observed in the tail comes from the cusp rather than the nightside auroral region, which further casts doubt on the hypothesis that ionospheric heavy ion feedback is the cause of sawtooth injections.

  10. Design of a single ion facility and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Cholewa, M.; Saint, A.; Legge, G.J.F. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    The use of micro-irradiation techniques in radiobiology is not new; however, the current techniques take advantage of recent developments in particle delivery, focussing detection, image processing, cell recognition and computer control. These developments have generally come from other fields, for example microbeam elemental analysis techniques and single-event upset testing of semiconductor devices. Also in radiation biology there have been important advances in developments of individual cell assays, which allow a wide range of endpoints to be studied with good accuracy at low doses. Many of the studies that are planned involve following the responses of individual cells after a programmed exposure to charged-particle traversals. To probe the radiation sensitivity of a single cell and/or its constituents with a submicron resolution several developments are needed. The essential parameters of the proposed system can be summarised as follows: a focussed beam of ions of 300nm or less at the cell; a reliable (close to 100%) single ion detection; a fast beam switch to prevent second hits; a target holder adapted for the irradiation of wet cells and a fully automated system for cell recognition and single hits. 1 fig.

  11. Comparison of single event upset rates for microelectronic memory devices during interplanetary solar particle events

    Science.gov (United States)

    Mckerracher, P. L.; Kinnison, J. D.; Maurer, R. H.

    1993-01-01

    Variability in the methods and models used for single event upset calculations in microelectronic memory devices can lead to a range of possible upset rates. Using heavy ion and proton data for selected DRAM and SRAM memories, we have calculated an array of upset rates in order to compare the Adams worst case interplanetary solar flare model to a model proposed by scientists at the Jet Propulsion Laboratory. In addition, methods of upset rate calculation are compared: the Cosmic Ray Effects on Microelectronics CREME code and a Monte Carlo algorithm developed at the Applied Physics Laboratory. The results show that use of a more realistic, although still conservative, model of the space environment can have significant cost saving benefits.

  12. The composition of heavy ions in solar energetic particle events

    Science.gov (United States)

    Fan, C. Y.; Gloeckler, G.; Hovestadt, D.

    1983-01-01

    Recent advances in determining the elemental, charge state, and isotopic composition of or approximate to 1 to or approximate to 20 MeV per nucleon ions in solar energetic particle (SEP) events and outline our current understanding of the nature of solar and interplanetary processes which may explain the observations. Average values of relative abundances measured in a large number of SEP events were found to be roughly energy independent in the approx. 1 to approx. 20 MeV per nucleon range, and showed a systematic deviation from photospheric abundances which seems to be organized in terms of the first ionization potential of the ion. Direct measurements of the charge states of SEPs revealed the surprisingly common presence of energetic He(+) along with heavy ion with typically coronal ionization states. High resolution measurements of isotopic abundance ratios in a small number of SEP events showed these to be consistent with the universal composition except for the puzzling overabundance of the SEP(22)Ne/(20)Ne relative to this isotopes ratio in the solar wind. The broad spectrum of observed elemental abundance variations, which in their extreme result in composition anomalies characteristic of (3)He rich, heavy ion rich and carbon poor SEP events, along with direct measurements of the ionization states of SEPs provided essential information on the physical characteristics of, and conditions in the source regions, as well as important constraints to possible models for SEP production.

  13. Single-Event Effect Testing of the Linear Technology LTC6103HMS8#PBF Current Sense Amplifier

    Science.gov (United States)

    Yau, Ka-Yen; Campola, Michael J.; Wilcox, Edward

    2016-01-01

    The LTC6103HMS8#PBF (henceforth abbreviated as LTC6103) current sense amplifier from Linear Technology was tested for both destructive and non-destructive single-event effects (SEE) using the heavy-ion cyclotron accelerator beam at Lawrence Berkeley National Laboratory (LBNL) Berkeley Accelerator Effects (BASE) facility. During testing, the input voltages and output currents were monitored to detect single event latch-up (SEL) and single-event transients (SETs).

  14. Measuring Single Event Upsets in the ATLAS Inner Tracker

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    When the HL-LHC starts collecting data, the electronics inside will be subject to massive amounts of radiation. As a result, single event upsets could pose a threat to the ATLAS readout chain. The ABC130, a prototype front-end ASIC for the ATLAS inner tracker, must be tested for its susceptibility to single event upsets.

  15. Towards single Ce ion detection in a bulk crystal for the development of a single-ion qubit readout scheme

    OpenAIRE

    Yan, Ying

    2013-01-01

    The work presented in this thesis was concerned with investigating the relevant spectroscopic properties of Ce ions randomly doped in an Y2SiO5 crystal at low temperatures (around 4 K), in order to develop a technique and an experimental set-up to detect the fluorescence photons emitted by a single Ce ion. The aim of the work was to determine whether a single Ce ion (referred to as the readout ion) can be used as a local probe to sense the quantum state of a neighbouring single-ion qubit via ...

  16. Single Event Effect Hardware Trojans with Remote Activation

    Science.gov (United States)

    2017-03-01

    Interrupt SEFI Corruption of a data path leading to loss of normal operation Complex devices with built-in cpu/state machine or control...Acronym Description Devices Affected Single Event Upset SEU Corruption of the information stored in a memory element Memories, latches in logic...devices Multiple Bit Upset MBU Several memory elements corrupted by a single strike Memories, latches in logic devices Single Event Functional

  17. Kinetic nucleation and ions in boreal forest particle formation events

    Directory of Open Access Journals (Sweden)

    L. Laakso

    2004-01-01

    Full Text Available In order to gain a more comprehensive picture on different mechanisms behind atmospheric particle formation, measurement results from QUEST 2-campaign are analyzed with an aid of an aerosol dynamic model. A special emphasis is laid on air ion and charged aerosol dynamics. Model simulations indicate that kinetic nucleation of ammonia and sulphuric acid together with condensation of sulphuric acid and low-volatile organic vapours onto clusters and particles explain basic features of particle formation events as well as ion characteristics. However, an observed excess of negative ions in the diameter range 1.5-3nm and overcharge of 3-5nm particles demonstrate that ions are also involved in particle formation. These observations can be explained by preferential condensation of sulphuric acid onto negatively charged clusters and particles and/or contribution of ion-induced nucleation on particle formation. According to model simulations, which assume that the nucleation rate is equal to the sulfuric acid collision rate, the relative contribution of ion-based particle formation seems to be smaller than kinetic nucleation of neutral clusters. Conducted model simulations also corroborate the recently-presented hypothesis according to which a large number of so-called thermodynamically stable clusters (TSCs having a diameter between 1-3nm exist in the atmosphere. TSCs were found to grow to observable sizes only under favorable conditions, e.g. when the pre-existing particle concentration was low.

  18. Solar wind heavy ions from energetic coronal events

    International Nuclear Information System (INIS)

    Bame, S.J.

    1978-01-01

    Ions heavier than those of He can be resolved in the solar wind with electrostatic E/q analyzers when the local thermal temperatures are low. Ordinarily this condition prevails in the low speed solar wind found between high speed streams, i.e. the interstream, IS, solar wind. Various ions of O, Si and Fe are resolved in IS heavy ion spectra. Relative ion peak intensities indicate that the O ionization state is established in the IS coronal source regions at approx. 2.1 x 10 6 K while the state of Fe is frozen in at approx. 1.5 x 10 6 K farther out. Occasionally, anomalous spectra are observed in which the usually third most prominent ion peak, O 8+ , is depressed as are the Fe peaks ranging from Fe 12+ to Fe 7+ . A prominent peak in the usual Si 8+ position of IS spectra is self-consistently shown to be Fe 16+ . These features demonstrate that the ionization states were frozen in at higher than usual coronal temperatures. The source regions of these hot heavy ion spectra are identified as energetic coronal events including flares and nonflare coronal mass ejections. 24 references

  19. Analysis of Single Event Evoked Potentials.

    Science.gov (United States)

    1979-11-01

    stimuli is available in the literature, and since this study deals with single responses, an assumption had to be made before the information in the...Figue 4 Repon e mocekroadpten.trp atrsadt ln 0m10 4 4 22 A S10 2D 3 40 5 64 10 i 13 10 II0 Visul wo (miautes) of side of dck Figure 5. The effect of unit...differences in their average evoked responses. These responses will also lend themselves to detection based on information from multiple electrodes because

  20. Coherent Control of a Single Trapped Rydberg Ion

    Science.gov (United States)

    Higgins, Gerard; Pokorny, Fabian; Zhang, Chi; Bodart, Quentin; Hennrich, Markus

    2017-12-01

    Trapped Rydberg ions are a promising novel approach to quantum computing and simulations. They are envisaged to combine the exquisite control of trapped ion qubits with the fast two-qubit Rydberg gates already demonstrated in neutral atom experiments. Coherent Rydberg excitation is a key requirement for these gates. Here, we carry out the first coherent Rydberg excitation of an ion and perform a single-qubit Rydberg gate, thus demonstrating basic elements of a trapped Rydberg ion quantum computer.

  1. Simulating single-event burnout of n-channel power MOSFET's

    International Nuclear Information System (INIS)

    Johnson, G.H.; Hohl, J.H.; Schrimpf, R.D.; Galloway, K.F.

    1993-01-01

    Heavy ions are ubiquitous in a space environment. Single-event burnout of power MOSFET's is a sudden catastrophic failure mechanism that is initiated by the passage of a heavy ion through the device structure. The passage of the heavy ion generates a current filament that locally turns on a parasitic n-p-n transistor inherent to the power MOSFET. Subsequent high currents and high voltage in the device induce second breakdown of the parasitic bipolar transistor and hence meltdown of the device. This paper presents a model that can be used for simulating the burnout mechanism in order to gain insight into the significant device parameters that most influence the single-event burnout susceptibility of n-channel power MOSFET's

  2. Relationship between single-event upset immunity and fabrication processes of recent memories

    International Nuclear Information System (INIS)

    Nemoto, N.; Shindou, H.; Kuboyama, S.; Matsuda, S.; Itoh, H.; Okada, S.; Nashiyama, I.

    1999-01-01

    Single-Event upset (SEU) immunity for commercial devices were evaluated by irradiation tests using high-energy heavy ions. We show test results and describe the relationship between observed SEU and structures/fabrication processes. We have evaluated single-even upset (SEU) tolerance of recent commercial memory devices using high energy heavy ions in order to find relationship between SEU rate and their fabrication process. It was revealed that the change of the process parameter gives much effect for the SEU rate of the devices. (authors)

  3. An improved system of detecting single event effect in SRAM

    International Nuclear Information System (INIS)

    Tong Teng; Wang Xiaohui; Zhang Zhangang; Liu Tianqi; Gu Song; Yang Zhenlei; Su Hong; Liu Jie

    2014-01-01

    The material research center in Institute of Modern Physics, Chinese Academy of Sciences (IMP, CAS) have made a fruitful achievements in the research of single event effects (SEEs) occurring in static random access memory (SRAM). However, there are some drawbacks exist in the two systems of detecting SEE owning by the material research center. Therefore, an improved method of detecting SEE is proposed, and the method functionality is implemented in a circuit. Further, a sequence of experiments are carried out in the beam radiation terminal of the Heavy Ion Facility in Lanzhou (HIRFL), and a bunch of experimental data are collected. The irradiation tests were carried out using 129 Xe for the SEE research of 65 nm SRAMs; Using 12 C for the SEE research of the 65, 130 and 150 nm SRAMs with ECC module; Using 129 Xe for the SEL research of the common commercial SRAMs and so on. These experiments provide a statistical evidence of the effectiveness and robustness of the improved system. It is believed that the proposed system will be beneficial for detecting SEE in diverse settings, and it could be taken advantage of as a platform for future research on SEE tests in more intricate devices. (authors)

  4. Single ion counting with a MCP (microchannel plate) detector

    Energy Technology Data Exchange (ETDEWEB)

    Tawara, Hiroko; Sasaki, Shinichi; Miyajima, Mitsuhiro [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan); Shibamura, Eido

    1996-07-01

    In this study, a single-ion-counting method using alpha-particle-impact ionization of Ar atoms is demonstrated and the preliminary {epsilon}{sub mcp} for Ar ions with incident energies of 3 to 4.7 keV is determined. The single-ion counting by the MCP is aimed to be performed under experimental conditions as follows: (1) A signal from the MCP is reasonably identified as incidence of single Ar-ion. (2) The counting rate of Ar ions is less than 1 s{sup -1}. (3) The incident Ar ions are not focused on a small part of an active area of the MCP, namely, {epsilon}{sub mcp} is determined with respect to the whole active area of the MCP. So far, any absolute detection efficiency has not been reported under these conditions. (J.P.N.)

  5. Automated parallel recordings of topologically identified single ion channels.

    Science.gov (United States)

    Kawano, Ryuji; Tsuji, Yutaro; Sato, Koji; Osaki, Toshihisa; Kamiya, Koki; Hirano, Minako; Ide, Toru; Miki, Norihisa; Takeuchi, Shoji

    2013-01-01

    Although ion channels are attractive targets for drug discovery, the systematic screening of ion channel-targeted drugs remains challenging. To facilitate automated single ion-channel recordings for the analysis of drug interactions with the intra- and extracellular domain, we have developed a parallel recording methodology using artificial cell membranes. The use of stable lipid bilayer formation in droplet chamber arrays facilitated automated, parallel, single-channel recording from reconstituted native and mutated ion channels. Using this system, several types of ion channels, including mutated forms, were characterised by determining the protein orientation. In addition, we provide evidence that both intra- and extracellular amyloid-beta fragments directly inhibit the channel open probability of the hBK channel. This automated methodology provides a high-throughput drug screening system for the targeting of ion channels and a data-intensive analysis technique for studying ion channel gating mechanisms.

  6. Future challenges in single event effects for advanced CMOS technologies

    International Nuclear Information System (INIS)

    Guo Hongxia; Wang Wei; Luo Yinhong; Zhao Wen; Guo Xiaoqiang; Zhang Keying

    2010-01-01

    SEE have became a substantial Achilles heel for the reliability of space-based advanced CMOS technologies with features size downscaling. Future space and defense systems require identification and understanding of single event effects to develop hardening approaches for advanced technologies, including changes in device geometry and materials affect energy deposition, charge collection,circuit upset, parametric degradation devices. Topics covered include the impact of technology scaling on radiation response, including single event transients in high speed digital circuits, evidence for single event effects caused by proton direct ionization, and the impact for SEU induced by particle energy effects and indirect ionization. The single event effects in CMOS replacement technologies are introduced briefly. (authors)

  7. Non Invasive Instrumentation For Single Event Effects (NIISEE), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — On this Phase 1 project, Adventium will identify and address key hurdles to achieve Radiation Hardening by Software (RHS) for Single Event Effects (SEEs) for modern...

  8. Single track regime in ion implanted polystyrene

    Energy Technology Data Exchange (ETDEWEB)

    Licciardello, A.; Puglisi, O.; Calcagno, L.; Foti, G.

    1988-05-01

    The molecular weight distribution (MWD) of nearly monodisperse polystyrene thin films is heavily affected by ion bombardment. The main effect is an increase of the MW and is detectable at fluences as low as 10/sup 11/ ions cm/sup -2/ for 400 keV Ar/sup +/ bombardment. A statistical model, here outlined for the first time, allows us the predict the size distribution of these high MW components. From the analysis of the MWD curves one can extract useful information concerning the lateral dimensions of the ion tracks.

  9. Impact of NBTI Aging on the Single-Event Upset of SRAM Cells

    CERN Document Server

    Bagatin, M; Gerardin, Simone; Paccagnella, Alessandro; Bagatin, Marta

    2010-01-01

    We analyzed the impact of negative bias temperature instability (NBTI) on the single-event upset rate of SRAM cells through experiments and SPICE simulations. We performed critical charge simulations introducing different degradation patterns in the cells, in three technology nodes, from 180 to 90 nm. The simulations results were checked with alpha-particle and heavy-ion irradiations on a 130-nm technology. Both simulations and experimental results show that NBTI degradation does not significantly affect the single-event upset SRAM cell rate as long as the parametric drift induced by aging is within 10\\%.

  10. Studies of energetic ion confinement during fishbone events in PDX

    International Nuclear Information System (INIS)

    Strachan, J.D.; Grek, B.; Heidbrink, W.; Johnson, D.; Kaye, S.; Kugel, H.; LeBlanc, B.; McGuire, K.

    1984-11-01

    The 2.5-MeV neutron emission from the beam-target d(d,n,) 3 He fusion reaction has been examined for all PDX deuterium plasmas which were heated by deuterium neutral beams. The magnitude of the emission was found to scale classically and increase with T/sub e//sup 3/2/ as expected when electron drag is the primary energy degradation mechanism. The time evolution of the neutron emission through fishbone events was measured and used to determine the confinement properties of the energetic beam ions. Many of the experimental results are predicted by the Mode Particle Pumping theory

  11. Near bed suspended sediment flux by single turbulent events

    Science.gov (United States)

    Amirshahi, Seyed Mohammad; Kwoll, Eva; Winter, Christian

    2018-01-01

    The role of small scale single turbulent events in the vertical mixing of near bed suspended sediments was explored in a shallow shelf sea environment. High frequency velocity and suspended sediment concentration (SSC; calibrated from the backscatter intensity) were collected using an Acoustic Doppler Velocimeter (ADV). Using quadrant analysis, the despiked velocity time series was divided into turbulent events and small background fluctuations. Reynolds stress and Turbulent Kinetic Energy (TKE) calculated from all velocity samples, were compared to the same turbulent statistics calculated only from velocity samples classified as turbulent events (Reevents and TKEevents). The comparison showed that Reevents and TKEevents was increased 3 and 1.6 times, respectively, when small background fluctuations were removed and that the correlation with SSC for TKE could be improved through removal of the latter. The correlation between instantaneous vertical turbulent flux (w ‧) and SSC fluctuations (SSC ‧) exhibits a tidal pattern with the maximum correlation at peak ebb and flood currents, when strong turbulent events appear. Individual turbulent events were characterized by type, strength, duration and length. Cumulative vertical turbulent sediment fluxes and average SSC associated with individual turbulent events were calculated. Over the tidal cycle, ejections and sweeps were the most dominant events, transporting 50% and 36% of the cumulative vertical turbulent event sediment flux, respectively. Although the contribution of outward interactions to the vertical turbulent event sediment flux was low (11%), single outward interaction events were capable of inducing similar SSC ‧ as sweep events. The results suggest that on time scales of tens of minutes to hours, TKE may be appropriate to quantify turbulence in sediment transport studies, but that event characteristics, particular the upward turbulent flux need to be accounted for when considering sediment transport

  12. NASA Electronic Parts and Packaging Field Programmable Gate Array Single Event Effects Test Guideline Update

    Science.gov (United States)

    Berg, Melanie D.; LaBel, Kenneth A.

    2018-01-01

    The following are updated or new subjects added to the FPGA SEE Test Guidelines manual: academic versus mission specific device evaluation, single event latch-up (SEL) test and analysis, SEE response visibility enhancement during radiation testing, mitigation evaluation (embedded and user-implemented), unreliable design and its affects to SEE Data, testing flushable architectures versus non-flushable architectures, intellectual property core (IP Core) test and evaluation (addresses embedded and user-inserted), heavy-ion energy and linear energy transfer (LET) selection, proton versus heavy-ion testing, fault injection, mean fluence to failure analysis, and mission specific system-level single event upset (SEU) response prediction. Most sections within the guidelines manual provide information regarding best practices for test structure and test system development. The scope of this manual addresses academic versus mission specific device evaluation and visibility enhancement in IP Core testing.

  13. European accelerator facilities for single event effects testing

    Energy Technology Data Exchange (ETDEWEB)

    Adams, L.; Nickson, R.; Harboe-Sorensen, R. [ESA-ESTEC, Noordwijk (Netherlands); Hajdas, W.; Berger, G.

    1997-03-01

    Single event effects are an important hazard to spacecraft and payloads. The advances in component technology, with shrinking dimensions and increasing complexity will give even more importance to single event effects in the future. The ground test facilities are complex and expensive and the complexities of installing a facility are compounded by the requirement that maximum control is to be exercised by users largely unfamiliar with accelerator technology. The PIF and the HIF are the result of experience gained in the field of single event effects testing and represent a unique collaboration between space technology and accelerator experts. Both facilities form an essential part of the European infrastructure supporting space projects. (J.P.N.)

  14. A compact source for bunches of singly charged atomic ions

    Science.gov (United States)

    Murböck, T.; Schmidt, S.; Andelkovic, Z.; Birkl, G.; Nörtershäuser, W.; Vogel, M.

    2016-04-01

    We have built, operated, and characterized a compact ion source for low-energy bunches of singly charged atomic ions in a vacuum beam line. It is based on atomic evaporation from an electrically heated oven and ionization by electron impact from a heated filament inside a grid-based ionization volume. An adjacent electrode arrangement is used for ion extraction and focusing by applying positive high-voltage pulses to the grid. The method is particularly suited for experimental environments which require low electromagnetic noise. It has proven simple yet reliable and has been used to produce μs-bunches of up to 106 Mg+ ions at a repetition rate of 1 Hz. We present the concept, setup and characterizing measurements. The instrument has been operated in the framework of the SpecTrap experiment at the HITRAP facility at GSI/FAIR to provide Mg+ ions for sympathetic cooling of highly charged ions by laser-cooled 24Mg+.

  15. Multi-Unit Initiating Event Analysis for a Single-Unit Internal Events Level 1 PSA

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong San; Park, Jin Hee; Lim, Ho Gon [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The Fukushima nuclear accident in 2011 highlighted the importance of considering the risks from multi-unit accidents at a site. The ASME/ANS probabilistic risk assessment (PRA) standard also includes some requirements related to multi-unit aspects, one of which (IE-B5) is as follows: 'For multi-unit sites with shared systems, DO NOT SUBSUME multi-unit initiating events if they impact mitigation capability [1].' However, the existing single-unit PSA models do not explicitly consider multi-unit initiating events and hence systems shared by multiple units (e.g., alternate AC diesel generator) are fully credited for the single unit and ignores the need for the shared systems by other units at the same site [2]. This paper describes the results of the multi-unit initiating event (IE) analysis performed as a part of the at-power internal events Level 1 probabilistic safety assessment (PSA) for an OPR1000 single unit ('reference unit'). In this study, a multi-unit initiating event analysis for a single-unit PSA was performed, and using the results, dual-unit LOOP initiating event was added to the existing PSA model for the reference unit (OPR1000 type). Event trees were developed for dual-unit LOOP and dual-unit SBO which can be transferred from dual- unit LOOP. Moreover, CCF basic events for 5 diesel generators were modelled. In case of simultaneous SBO occurrences in both units, this study compared two different assumptions on the availability of the AAC D/G. As a result, when dual-unit LOOP initiating event was added to the existing single-unit PSA model, the total CDF increased by 1∼ 2% depending on the probability that the AAC D/G is available to a specific unit in case of simultaneous SBO in both units.

  16. Single-Event Effect Testing of the Cree C4D40120D Commercial 1200V Silicon Carbide Schottky Diode

    Science.gov (United States)

    Lauenstein, J.-M.; Casey, M. C.; Wilcox, E. P.; Kim, Hak; Topper, A. D.

    2014-01-01

    This study was undertaken to determine the single event effect (SEE) susceptibility of the commercial silicon carbide 1200V Schottky diode manufactured by Cree, Inc. Heavy-ion testing was conducted at the Texas A&M University Cyclotron Single Event Effects Test Facility (TAMU). Its purpose was to evaluate this device as a candidate for use in the Solar-Electric Propulsion flight project.

  17. Planning Single-Event Nutrition Education: A New Model

    Science.gov (United States)

    Brown, Lora Beth

    2011-01-01

    A theoretical model for planning single-event nutrition education contrasts a Practical, Foods, and Positive (PFP) emphasis to an Abstract, Nutrient, and Negative (ANN) focus on nutrition topics. Use of this model makes messages more appealing to consumers and may increase the likelihood that people will apply the nutrition information in their…

  18. Anisotropic Lithium Ion Conductivity in Single-Ion Diblock Copolymer Electrolyte Thin Films

    NARCIS (Netherlands)

    Aissou, Karim; Mumtaz, Muhammad; Usluer, Özlem; Pécastaings, Gilles; Portale, Giuseppe; Fleury, Guillaume; Cloutet, Eric; Hadziioannou, Georges

    Well-defined single-ion diblock copolymers consisting of a Li-ion conductive poly(styrenesulfonyllithium(trifluoromethylsulfonyl)imide) (PSLiTFSI) block associated with a glassy polystyrene (PS) block have been synthesized via reversible addition fragmentation chain transfer polymerization.

  19. Conduction in ion implanted single crystal diamond

    International Nuclear Information System (INIS)

    Hunn, J.D.; Parikh, N.R.; Swanson, M.L.

    1992-01-01

    We have implanted sodium, phosphorus and arsenic into single crystal type IIa diamond as possible n-type dopants. Particular emphasis was applied to the implantation of sodium at different temperatures and doses; combined implantation energies of 55,80 and 120 keV were used to provide a uniformly doped layer over approximately 100 nm depth. The implanted layers exhibited semiconducting behavior with a single exponential activation energy between 0.40 and 0.48 eV, as determined by temperature dependent resistance measurements. A sample implanted to a concentration of 5.10 19 Na + /cm 3 at 550 degrees C exhibited a single activation energy of 0.415 eV over a temperature range from 25 to 500 degrees C. Thermal annealing above 900 degrees C was found to remove implantation damage as measured by optical absorption and RBS/channeling. However, concomitant increases in the resistance and the activation energy were observed. Implantation of 22 Ne was used to introduce a damage density equivalent to the 23 Na implant, while not introducing an electrically active species. The activation energy and electrical resistance were similar but higher than those produced by implantation with sodium. We conclude that the electrical properties of the Na-implanted samples were at least partly due to electrically active Na, but that residual implantation damage was still important

  20. Localization Spectroscopy of a Single Ion in an Optical Lattice

    DEFF Research Database (Denmark)

    Legrand, Olivier Philippe Alexandre

    2015-01-01

    The work reported in this thesis primarily focuses on studies of the dynamics of a single laser-cooled ion, simultaneously confined in the harmonic potential of a linear Paul trap and a rapidly varying periodic potential – a so-called optical lattice – generated from an optical standing-wave. Bes......The work reported in this thesis primarily focuses on studies of the dynamics of a single laser-cooled ion, simultaneously confined in the harmonic potential of a linear Paul trap and a rapidly varying periodic potential – a so-called optical lattice – generated from an optical standing...... calibration and analysis of the detection system, several theoretical simulations of the expected dynamics and associated optical response of the ion were undertaken. Finally, a new laser source based on second harmonic generation was developed in order to perform laser-cooling of Ca+ ions, and to serve...

  1. Ion implantation induced blistering of rutile single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Bing-Xi [School of Physics, Shandong University, Jinan, Shandong 250100 (China); Jiao, Yang [College of Physics and Electronics, Shandong Normal University, Jinan, Shandong 250100 (China); Guan, Jing [School of Physics, Shandong University, Jinan, Shandong 250100 (China); Wang, Lei [School of Physics, Shandong University, Jinan, Shandong 250100 (China); Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (China)

    2015-07-01

    The rutile single crystals were implanted by 200 keV He{sup +} ions with a series fluence and annealed at different temperatures to investigate the blistering behavior. The Rutherford backscattering spectrometry, optical microscope and X-ray diffraction were employed to characterize the implantation induced lattice damage and blistering. It was found that the blistering on rutile surface region can be realized by He{sup +} ion implantation with appropriate fluence and the following thermal annealing.

  2. Single event effects and performance predictions for space applications of RISC processors

    Energy Technology Data Exchange (ETDEWEB)

    Kimbrough, J.R.; Colella, N.J.; Denton, S.M.; Shaeffer, D.L.; Shih, D.; Wilburn, J.W. (Lawrence Livermore National Lab., CA (United States)); Coakley, P.G. (JAYCOR, San Diego, CA (United States)); Casteneda, C. (Crocker Nuclar Lab., Davis, CA (United States)); Koga, R. (Aerospace Corp., El Segundo, CA (United States)); Clark, D.A.; Ullmann, J.L. (Los Alamos National Lab., NM (United States))

    1994-12-01

    Proton and ion Single Event Phenomena (SEP) tests were performed on 32-b processors including R3000A's from all commercial manufacturers along with the Performance PR3400 family, Integrated Device Technology Inc. 79R3081, LSI Logic Corporation LR33000HC, and Intel i80960MX parts. The microprocessors had acceptable upset rates for operation in a low earth orbit or a lunar mission such as CLEMENTINE with a wide range in proton total dose failure. Even though R3000A devices are 60% smaller in physical area than R3000 devices, there was a 340% increase in device Single Event Upset (SEU) cross section. Software tests of varying complexity demonstrate that registers and other functional blocks using register architecture dominate the cross section. The current approach of giving a single upset cross section can lead to erroneous upset rates depending on the application software.

  3. Investigation of the Semicoa 2N7616 and 2N7425 and the Microsemi 2N7480 for Single-Event Gate Rupture and Single-Event Burnout

    Science.gov (United States)

    Scheick, Leif

    2014-01-01

    Single-event-effect test results for hi-rel total-dose-hardened power MOSFETs are presented in this report. The 2N7616 and the 2N7425 from Semicoa and the 2N7480 from International Rectifier were tested to NASA test condition standards and requirements. The 2N7480 performed well and the data agree with the manufacture's data. The 2N7616 and 2N7425 were entry parts from Semicoa using a new device architecture. Unfortunately, the device performed poorly and Semicoa is withdrawing power MOSFETs from it line due to these data. Vertical metal-oxide-semiconductor field-effect transistors (MOSFETs) are the most commonly used power transistor. MOSFETs are typically employed in power supplies and high current switching applications. Due to the inherent high electric fields in the device, power MOSFETs are sensitive to heavy ion irradiation and can fail catastrophically as a result of single-event gate rupture (SEGR) or single-event burnout (SEB). Manufacturers have designed radiation-hardened power MOSFETs for space applications. See [1] through [5] for more information. The objective of this effort was to investigate the SEGR and SEB responses of two power MOSFETs recently produced. These tests will serve as a limited verification of these parts. It is acknowledged that further testing on the respective parts may be needed for some mission profiles.

  4. Single Ion Trapping for the Enriched Xenon Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Waldman, Samuel J.; /Stanford U., Phys. Dept. /SLAC

    2006-03-28

    In the last decade, a variety of neutrino oscillation experiments have established that there is a mass difference between neutrino flavors, without determining the absolute neutrino mass scale. The Enriched Xenon Observatory for neutrinoless double beta decay (EXO) will search for the rare decays of xenon to determine the absolute value of the neutrino mass. The experiment uses a novel technique to minimize backgrounds, identifying the decay daughter product in real time using single ion spectroscopy. Here, we describe single ion trapping and spectroscopy compatible with the EXO detector. We extend the technique of single ion trapping in ultrahigh vacuum to trapping in xenon gas. With this technique, EXO will achieve a neutrino mass sensitivity of {approx_equal} .010 eV.

  5. Do multiple health events reduce resilience when compared with single events?

    Science.gov (United States)

    Morin, Ruth T; Galatzer-Levy, Isaac R; Maccallum, Fiona; Bonanno, George A

    2017-08-01

    The impact of multiple major life stressors is hypothesized to reduce the probability of resilience and increase rates of mortality. However, this hypothesis lacks strong empirical support because of the lack of prospective evidence. This study investigated whether experiencing multiple major health events diminishes rates of resilience and increases rates of mortality using a large population-based prospective cohort. There were n = 1,395 individuals sampled from the Health and Retirement Study (HRS) and examined prospectively from 2 years before 4 years after either single or multiple health events (lung disease, heart disease, stroke, or cancer). Distinct depression and resilience trajectories were identified using latent growth mixture modeling (LGMM). These trajectories were compared on rates of mortality 4 years after the health events. Findings indicated that 4 trajectories best fit the data including resilience, emergent postevent depression, chronic pre-to-post depression, and depressed prior followed by improvement. Analyses demonstrate that multiple health events do not decrease rates of resilience but do increase the severity of symptoms among those on the emergent depression trajectory. Emergent depression increased mortality compared with all others but among those in this class, rates were not different in response to single versus multiple health events. Multiple major stressors do not reduce rates of resilience. The emergence of depression after health events does significantly increase risk for mortality regardless of the number of events. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  6. Re-Verification of the IRHN57133SE and IRHN57250SE for Single Event Gate Rupture and Single Event Burnout

    Science.gov (United States)

    Scheick, Leif

    2010-01-01

    The vertical metal oxide semiconductor field-effect transistor (MOSFET) is a widely used power transistor onboard a spacecraft. The MOSFET is typically employed in power supplies and high current switching applications. Due to the inherent high electric fields in the device, power MOSFETs are sensitive to heavy ion irradiation and can fail catastrophically as a result of single event gate rupture (SEGR) or single event burnout (SEB). Manufacturers have designed radiation-hardened power MOSFETs for space applications. These radiation hardened devices are not immune to SEGR or SEB but, rather, can exhibit them at a much more damaging ion than their non-radiation hardened counterparts. See [1] through [5] for more information.This effort was to investigate the SEGR and SEB responses of two power MOSFETs from IR(the IRHN57133SE and the IRHN57250SE) that have recently been produced on a new fabrication line. These tests will serve as a limited verification of these parts, but it is acknowledged that further testing on the respective parts may be needed for some mission profiles.

  7. Numerical simulation study into the effect of a single heavy ion on a sub-micron CMOS device

    International Nuclear Information System (INIS)

    Detcheverry, C.; Lorfevre, E.; Bruguier, G.; Palau, J.M.; Gasiot, J.; Ecoffet, R.

    1997-01-01

    This article discusses coupling between the MEDICI component simulator and the SPICE circuit simulator to study single-event-upset phenomena caused by a single ion on a 0.6 μm CMOS device. Results conforming closely to experimental values were obtained by adopting an appropriate mesh size, a hydrodynamic charge transport model (rather than a diffusion-conduction model), and realistic simulation of photon-induced carrier generation, to accurately model the ion passage and trajectory. (authors)

  8. Ion Source Multiplexing on a Single Mass Spectrometer.

    Science.gov (United States)

    Kostyukevich, Yury; Nikolaev, Eugene

    2018-03-06

    We present the simple approach for the combination of different ion sources on a single mass spectrometer without any interference between them. Each ion source can be positioned as far as 1 m from the mass spectrometer; ions are transported by the means of flexible copper tubes, which are connected, to the separate inlet capillaries. Special valves enable switching channels on and off. Using this approach, we successfully combined native electrospray ionization (ESI), regular ESI, β-electrons ionization, and atmospheric pressure photoionization (APPI) of thermally desorbed vapors of petroleum on a single mass spectrometer. In addition, separate channels allow infusing internal calibration mixture or performing ion molecular reactions in one channel and using the other as a reference. Using this idea, we have developed an original sequential window acquisition of all theoretical mass spectra (SWATH MS) approach in which peptide ions are transported in different channels, one of which is heated to high temperature so that ions are thermally fragmented, and the other channel ensures the presence of nonfragmented ions in the spectrum. Also, we demonstrated the possibility to perform gas phase H/D exchange reaction in one channel and using another as reference. Use of valves makes it possible to exclude any interference between them. Thus, we have demonstrated the possibility to create a multichannel system in which ions would be transported through several inlet tubes in which different ion molecular reactions such as Paternò-Büchi, ozonation, or H/D exchange will occur. Comparison of mass spectra recorded when different channels are open will provide structural and chemical information about unknown species.

  9. Modification of ion implanted or irradiated single crystal sapphire

    International Nuclear Information System (INIS)

    Song Yin; Zhang Chonghong; Wang Zhiguang; Zhao Zhiming; Yao Cunfeng; Zhou Lihong; Jin Yunfan

    2006-01-01

    Single crystal sapphire (Al 2 O 3 ) samples were implanted at 600 K by He, Ne and Ar ions with energy of 110 keV to doses ranging from 5 x 10 16 to 2 x 10 17 ion/cm 2 or irradiated at 320 K by 208 Pb 27+ ion with energy of 1.1 MeV/u to the fluences ranging from 1 x 10 12 to 5 x 10 14 ion/cm 2 . The modification of structure and optical properties induced by ion implantation or irradiation were analyzed by using photoluminescence (PL) and Fourier transformation infrared spectrum (FTIR) spectra and transmission electron microscopy (TEM) measurements. The PL measurements showed that absorption peaks located at 375, 413 and 450 nm appeared in all the implanted or irradiated samples, the PL intensities reached up to the maximum for the 5 x 10 16 ion/cm 2 implanted samples. After Pb-ion irradiation, a new peak located at 390 nm formed. TEM analyses showed that small size voids (1-2 nm) with high density were formed in the region from the surface till to about 100 nm in depth and also large size Ne-bubble formed in the Ne-doped region. Form the obtained FTIR spectra, it was found that Pb-ion irradiation induced broadening of the absorption band in 460-510 cm -1 and position shift of the absorption band in 1000-1300 cm -1 towards to high wavenumber. The possible damage mechanism in single crystal sapphire induced by energetic ion implantation or irradiation was briefly discussed. (authors)

  10. A Search for Single Photon Events in Neutrino Interactions

    CERN Document Server

    Kullenberg, C.T.; Dimmery, D.; Tian, X.C.; Autiero, D.; Gninenko, S.; Rubbia, A.; Alekhin, S.; Astier, P.; Baldisseri, A.; Baldo-Ceolin, M.; Banner, M.; Bassompierre, G.; Benslama, K.; Besson, N.; Bird, I.; Blumenfeld, B.; Bobisut, F.; Bouchez, J.; Boyd, S.; Bueno, A.; Bunyatov, S.; Camilleri, L.; Cardini, A.; Cattaneo, P.W.; Cavasinni, V.; Cervera-Villanueva, A.; Challis, R.; Chukanov, A.; Collazuol, G.; Conforto, G.; Conta, C.; Contalbrigo, M.; Cousins, R.; Degaudenzi, H.; De Santo, A.; Del Prete, T.; Di Lella, L.; do Couto e Silva, E.; Dumarchez, J.; Ellis, M.; Feldman, G.J.; Ferrari, R.; Ferrère, D.; Flaminio, V.; Fraternali, M.; Gaillard, J.-M.; Gangler, E.; Geiser, A.; Geppert, D.; Gibin, D.; Godley, A.; Gomez-Cadenas, J.-J.; Gosset, J.; Gößling, C.; Gouanère, M.; Grant, A.; Graziani, G.; Guglielmi, A.; Hagner, C.; Hernando, J.; Hurst, P.; Hyett, N.; Iacopini, E.; Joseph, C.; Juget, F.; Kent, N.; Klimov, O.; Kokkonen, J.; Kovzelev, A.; Krasnoperov, A.; Kim, J.J.; Kirsanov, M.; Kulagin, S.; Lacaprara, S.; Lachaud, C.; Lakić, B.; Lanza, A.; La Rotonda, L.; Laveder, M.; Letessier-Selvon, A.; Levy, J.M.; Ling, J.; Linssen, L.; Ljubičic, A.; Long, J.; Lupi, A.; Lyubushkin, V.; Marchionni, A.; Martelli, F.; Méchain, X.; Mendiburu, J.-P.; Meyer, J.-P.; Mezzetto, M.; Moorhead, G.F.; Naumov, D.; Nédélec, P.; Nefedov, Yu.; Nguyen-Mau, C.; Orestano, D.; Pastore, F.; Peak, L.S.; Pennacchio, E.; Pessard, H.; Petti, R.; Placci, A.; Polesello, G.; Pollmann, D.; Polyarush, A.; Poulsen, C.; Popov, B.; Rebuffi, L.; Rico, J.; Riemann, P.; Roda, C.; Salvatore, F.; Samoylov, O.; Schahmaneche, K.; Schmidt, B.; Schmidt, T.; Sconza, A.; Scott, A.M.; Seaton, M.B.; Sevior, M.; Sillou, D.; Soler, F.J.P.; Sozzi, G.; Steele, D.; Stiegler, U.; Stipčević, M.; Stolarczyk, Th.; Tareb-Reyes, M.; Taylor, G.N.; Tereshchenko, V.; Toropin, A.; Touchard, A.-M.; Tovey, S.N.; Tran, M.-T.; Tsesmelis, E.; Ulrichs, J.; Vacavant, L.; Valdata-Nappi, M.; Valuev, V.; Vannucci, F.; Varvell, K.E.; Veltri, M.; Vercesi, V.; Vidal-Sitjes, G.; Vieira, J.-M.; Vinogradova, T.; Weber, F.V.; Weisse, T.; Wilson, F.F.; Winton, L.J.; Wu, Q.; Yabsley, B.D.; Zaccone, H.; Zuber, K.; Zuccon, P.

    2012-01-01

    We present a search for neutrino-induced events containing a single, exclusive photon using data from the NOMAD experiment at the CERN SPS where the average energy of the neutrino flux is $\\simeq 25$ GeV. The search is motivated by an excess of electron-like events in the 200--475 MeV energy region as reported by the MiniBOONE experiment. In NOMAD, photons are identified via their conversion to $e^+e^-$ in an active target embedded in a magnetic field. The background to the single photon signal is dominated by the asymmetric decay of neutral pions produced either in a coherent neutrino-nucleus interaction, or in a neutrino-nucleon neutral current deep inelastic scattering, or in an interaction occurring outside the fiducial volume. All three backgrounds are determined {\\it in situ} using control data samples prior to opening the `signal-box'. In the signal region, we observe {\\bf 155} events with a predicted background of {\\bf 129.2 $\\pm$ 8.5 $\\pm$ 3.3}. We interpret this as null evidence for excess of single...

  11. Surface noise analysis using a single-ion sensor

    Science.gov (United States)

    Daniilidis, N.; Gerber, S.; Bolloten, G.; Ramm, M.; Ransford, A.; Ulin-Avila, E.; Talukdar, I.; Häffner, H.

    2014-06-01

    We use a single-ion electric-field noise sensor in combination with in situ surface treatment and analysis tools, to investigate the relationship between electric-field noise from metal surfaces in vacuum and the composition of the surface. These experiments are performed in a setup that integrates ion trapping capabilities with surface analysis tools. We find that treatment of an aluminum-copper surface with energetic argon ions significantly reduces the level of room-temperature electric-field noise, but the surface does not need to be atomically clean to show noise levels comparable to those of the best cryogenic traps. The noise levels after treatment are low enough to allow fault-tolerant trapped-ion quantum information processing on a microfabricated surface trap at room temperature.

  12. Analyzing System on A Chip Single Event Upset Responses using Single Event Upset Data, Classical Reliability Models, and Space Environment Data

    Science.gov (United States)

    Berg, Melanie; LaBel, Kenneth; Campola, Michael; Xapsos, Michael

    2017-01-01

    We are investigating the application of classical reliability performance metrics combined with standard single event upset (SEU) analysis data. We expect to relate SEU behavior to system performance requirements. Our proposed methodology will provide better prediction of SEU responses in harsh radiation environments with confidence metrics. single event upset (SEU), single event effect (SEE), field programmable gate array devises (FPGAs)

  13. Evaluation of single-event upset tolerance on 64Mbit DRAM and 16Mbit DRAM

    Energy Technology Data Exchange (ETDEWEB)

    Nemoto, N.; Shindou, H.; Matsuzaki, K.; Akutsu, T.; Matsuda, S. [National Space Development Agency of Japan, Tokyo (Japan); Hirao, T.; Itoh, H.; Nashiyama, I.

    1997-11-01

    In recent years, reduction in the mission cost is regarded as one of the most important matters, and thus much effort has been made to reduce the cost of electronic components used in spacecrafts without diminishing their performance. On this policy, there has been a growing interest in space application of commercial devices such as highly integrated memory ICs because of low prices and high performance of such devices. To ensure success in this application, it is indispensable to investigate radiation effects, e.g., single-event and total-dose effects, on commercial devices precisely. In the present study, we have evaluated single-event upset (SEU) tolerance for 1Mbit, 4Mbit SRAM and 16Mbit, 64Mbit DRAM by irradiation of high energy heavy ions such as 175MeV-Ar{sup 8+} and 450MeV-Xe{sup 23+}. We observed these SEU tolerance in space. (author)

  14. Single qubit manipulation in a microfabricated surface electrode ion trap

    Science.gov (United States)

    Mount, Emily; Baek, So-Young; Blain, Matthew; Stick, Daniel; Gaultney, Daniel; Crain, Stephen; Noek, Rachel; Kim, Taehyun; Maunz, Peter; Kim, Jungsang

    2013-09-01

    We trap individual 171Yb+ ions in a surface trap microfabricated on a silicon substrate, and demonstrate a complete set of high fidelity single qubit operations for the hyperfine qubit. Trapping times exceeding 20 min without laser cooling, and heating rates as low as 0.8 quanta ms-1, indicate stable trapping conditions in these microtraps. A coherence time of more than 1 s, high fidelity qubit state detection and single qubit rotations are demonstrated. The observation of low heating rates and demonstration of high quality single qubit gates at room temperature are critical steps toward scalable quantum information processing in microfabricated surface traps.

  15. Single qubit manipulation in a microfabricated surface electrode ion trap

    International Nuclear Information System (INIS)

    Mount, Emily; Baek, So-Young; Gaultney, Daniel; Crain, Stephen; Noek, Rachel; Kim, Taehyun; Maunz, Peter; Kim, Jungsang; Blain, Matthew; Stick, Daniel

    2013-01-01

    We trap individual 171 Yb + ions in a surface trap microfabricated on a silicon substrate, and demonstrate a complete set of high fidelity single qubit operations for the hyperfine qubit. Trapping times exceeding 20 min without laser cooling, and heating rates as low as 0.8 quanta ms −1 , indicate stable trapping conditions in these microtraps. A coherence time of more than 1 s, high fidelity qubit state detection and single qubit rotations are demonstrated. The observation of low heating rates and demonstration of high quality single qubit gates at room temperature are critical steps toward scalable quantum information processing in microfabricated surface traps. (paper)

  16. Fast recognition of single molecules based on single-event photon statistics

    International Nuclear Information System (INIS)

    Dong Shuangli; Huang Tao; Liu Yuan; Wang Jun; Zhang Guofeng; Xiao Liantuan; Jia Suotang

    2007-01-01

    Mandel's Q parameter, which is determined from single-event photon statistics, provides an alternative way to recognize single molecules with fluorescence detection, other than the second-order correlation function. It is shown that the Q parameter of an assumed ideal double-molecule fluorescence with the same average photon number as that of the sample fluorescence can act as the criterion for single-molecule recognition. The influence of signal-to-background ratio and the error estimates for photon statistics are also presented. We have applied this method to ascertain single Cy5 dye molecules within hundreds of milliseconds

  17. Analysis of experiment testing technology for single event effects in China

    International Nuclear Information System (INIS)

    He Chaohui

    2001-01-01

    The merit and demerit of simulation source were analyzed for Single Event Effects (SEE) experiment testing in China. Laboratory experiment systems for SEE were brief introduced and requests for SEE test system were emphasize analyzed. Test systems were presented for Single Event Upset, Single Event Latch-up, Single Event Burnout and Single Event Gate-Rupture. The attention should be in mind in SEE experiments were discussed

  18. Enriching lanthanide single-ion magnetism through symmetry and axiality.

    Science.gov (United States)

    Gupta, Sandeep K; Murugavel, Ramaswamy

    2018-04-10

    Rapidly growing modern information technology demands energy and cost efficient tools that can efficiently store and process a large amount of data. However, the miniaturization technology that was being used to boost the performance of the electronic devices, keeping up with the pace as estimated by Moore's law, is reaching its limit. To overcome these challenges, several alternative routes that can eventually mimic the modern electronics fabrication using silicon have been proposed. Single molecule magnets (SMMs), being considered as one of the potential alternatives, have gone through significant progress and the focus has shifted from the use of polynuclear clusters to mononuclear complexes in the last few years. The recent frenzy in the field of SMMs is driven by a better understanding of the effects of crystal field (CF) and molecular symmetry on the magnetic properties, especially in the case of mononuclear paramagnetic complexes, apart from other controlling factors. This has led to the advent of highly anisotropic single-ion magnets (SIMs) with magnetic blocking temperatures as high as 60 K and anisotropic energy barriers over 1800 K. This article overviews our recent research in the light of the emergence of the importance of CF and symmetry in 4f ion based single-ion magnets (SIMs), especially in the context of SIMs with D5h symmetry, apart from commenting on the synthetic efforts adopted to place these metal ions in unusual coordination geometries.

  19. Single Gold Nanorod Charge Modulation in an Ion Gel Device.

    Science.gov (United States)

    Collins, Sean S E; Wei, Xingzhan; McKenzie, Thomas G; Funston, Alison M; Mulvaney, Paul

    2016-11-09

    A reliable and reproducible method to rapidly charge single gold nanocrystals in a solid-state device is reported. Gold nanorods (Au NRs) were integrated into an ion gel capacitor, enabling them to be charged in a transparent and highly capacitive device, ideal for optical transmission. Changes in the electron concentration of a single Au NR were observed with dark-field imaging spectroscopy via localized surface plasmon resonance (LSPR) shifts in the scattering spectrum. A time-resolved, laser-illuminated, dark-field system was developed to enable direct measurement of single particle charging rates with time resolution below one millisecond. The added sensitivity of this new approach has enabled the optical detection of fewer than 110 electrons on a single Au NR. Single wavelength resonance shifts provide a much faster, more sensitive method for all surface plasmon-based sensing applications.

  20. Time-resolved gamma spectroscopy of single events

    Science.gov (United States)

    Wolszczak, W.; Dorenbos, P.

    2018-04-01

    In this article we present a method of characterizing scintillating materials by digitization of each individual scintillation pulse followed by digital signal processing. With this technique it is possible to measure the pulse shape and the energy of an absorbed gamma photon on an event-by-event basis. In contrast to time-correlated single photon counting technique, the digital approach provides a faster measurement, an active noise suppression, and enables characterization of scintillation pulses simultaneously in two domains: time and energy. We applied this method to study the pulse shape change of a CsI(Tl) scintillator with energy of gamma excitation. We confirmed previously published results and revealed new details of the phenomenon.

  1. Validation of an "Intelligent Mouthguard" Single Event Head Impact Dosimeter.

    Science.gov (United States)

    Bartsch, Adam; Samorezov, Sergey; Benzel, Edward; Miele, Vincent; Brett, Daniel

    2014-11-01

    Dating to Colonel John Paul Stapp MD in 1975, scientists have desired to measure live human head impacts with accuracy and precision. But no instrument exists to accurately and precisely quantify single head impact events. Our goal is to develop a practical single event head impact dosimeter known as "Intelligent Mouthguard" and quantify its performance on the benchtop, in vitro and in vivo. In the Intelligent Mouthguard hardware, limited gyroscope bandwidth requires an algorithm-based correction as a function of impact duration. After we apply gyroscope correction algorithm, Intelligent Mouthguard results at time of CG linear acceleration peak correlate to the Reference Hybrid III within our tested range of pulse durations and impact acceleration profiles in American football and Boxing in vitro tests: American football, IMG=1.00REF-1.1g, R2=0.99; maximum time of peak XYZ component imprecision 3.6g and 370 rad/s2; maximum time of peak azimuth and elevation imprecision 4.8° and 2.9°; maximum average XYZ component temporal imprecision 3.3g and 390 rad/s2. Boxing, IMG=1.00REF-0.9 g, R2=0.99, R2=0.98; maximum time of peak XYZ component imprecision 3.9 g and 390 rad/s2, maximum time of peak azimuth and elevation imprecision 2.9° and 2.1°; average XYZ component temporal imprecision 4.0 g and 440 rad/s2. In vivo Intelligent Mouthguard true positive head impacts from American football players and amateur boxers have temporal characteristics (first harmonic frequency from 35 Hz to 79 Hz) within our tested benchtop (first harmonic frequencyIntelligent Mouthguard qualifies as a single event dosimeter in American football and Boxing.

  2. Critical evaluation of the pulsed laser method for single event effects testing and fundamental studies

    International Nuclear Information System (INIS)

    Melinger, J.S.; Buchner, S.; McMorrow, D.; Stapor, W.J.; Weatherford, T.R.; Campbell, A.B.; Eisen, H.

    1994-01-01

    In this paper the authors present an evaluation of the pulsed laser as a technique for single events effects (SEE) testing. They explore in detail the important optical effects, such as laser beam propagation, surface reflection, and linear and nonlinear absorption, which determine the nature of laser-generated charge tracks in semiconductor materials. While there are differences in the structure of laser- and ion-generated charge tracks, they show that in many cases the pulsed laser remains an invaluable tool for SEE testing. Indeed, for several SEE applications, they show that the pulsed laser method represents a more practical approach than conventional accelerator-based methods

  3. Single ion impact detection and scanning probe aligned ion implantation for quantum bit formation

    International Nuclear Information System (INIS)

    Weis, Christoph D.

    2011-01-01

    Quantum computing and quantum information processing is a promising path to replace classical information processing via conventional computers which are approaching fundamental physical limits. Instead of classical bits, quantum bits (qubits) are utilized for computing operations. Due to quantum mechanical phenomena such as superposition and entanglement, a completely different way of information processing is achieved, enabling enhanced performance for certain problem sets. Various proposals exist on how to realize a quantum bit. Among them are electron or nuclear spins of defect centers in solid state systems. Two such candidates with spin degree of freedom are single donor atoms in silicon and nitrogen vacancy (NV) defect centers in diamond. Both qubit candidates possess extraordinary qualities which makes them promising building blocks. Besides certain advantages, the qubits share the necessity to be placed precisely in their host materials and device structures. A commonly used method is to introduce the donor atoms into the substrate materials via ion implantation. For this, focused ion beam systems can be used, or collimation techniques as in this work. A broad ion beam hits the back of a scanning probe microscope (SPM) cantilever with incorporated apertures. The high resolution imaging capabilities of the SPM allows the non destructive location of device areas and the alignment of the cantilever and thus collimated ion beam spot to the desired implant locations. In this work, this technique is explored, applied and pushed forward to meet necessary precision requirements. The alignment of the ion beam to surface features, which are sensitive to ion impacts and thus act as detectors, is demonstrated. The technique is also used to create NV center arrays in diamond substrates. Further, single ion impacts into silicon device structures are detected which enables deliberate single ion doping.

  4. Single ion impact detection and scanning probe aligned ion implantation for quantum bit formation

    Energy Technology Data Exchange (ETDEWEB)

    Weis, Christoph D.

    2011-10-04

    Quantum computing and quantum information processing is a promising path to replace classical information processing via conventional computers which are approaching fundamental physical limits. Instead of classical bits, quantum bits (qubits) are utilized for computing operations. Due to quantum mechanical phenomena such as superposition and entanglement, a completely different way of information processing is achieved, enabling enhanced performance for certain problem sets. Various proposals exist on how to realize a quantum bit. Among them are electron or nuclear spins of defect centers in solid state systems. Two such candidates with spin degree of freedom are single donor atoms in silicon and nitrogen vacancy (NV) defect centers in diamond. Both qubit candidates possess extraordinary qualities which makes them promising building blocks. Besides certain advantages, the qubits share the necessity to be placed precisely in their host materials and device structures. A commonly used method is to introduce the donor atoms into the substrate materials via ion implantation. For this, focused ion beam systems can be used, or collimation techniques as in this work. A broad ion beam hits the back of a scanning probe microscope (SPM) cantilever with incorporated apertures. The high resolution imaging capabilities of the SPM allows the non destructive location of device areas and the alignment of the cantilever and thus collimated ion beam spot to the desired implant locations. In this work, this technique is explored, applied and pushed forward to meet necessary precision requirements. The alignment of the ion beam to surface features, which are sensitive to ion impacts and thus act as detectors, is demonstrated. The technique is also used to create NV center arrays in diamond substrates. Further, single ion impacts into silicon device structures are detected which enables deliberate single ion doping.

  5. Single Event Upset Studies Using the ATLAS SCT

    CERN Document Server

    Weidberg, A R; The ATLAS collaboration

    2013-01-01

    Single Event Upsets (SEU) are expected to occur during high luminosity running of the ATLAS SemiConductor Tracker (SCT). The SEU cross sections were measured in pion beams with momenta in the range 200 to 465 MeV/c and proton test beams at 24 GeV/c but the extrapolation to LHC conditions is non-trivial because of the range of particle types and momenta. The SEUs studied occur in the \\emph{p-i-n} photodiode and the registers in the ABCD chip. Comparisons between predicted SEU rates and those measured from ATLAS data are presented. The implications for ATLAS operation are discussed.

  6. Single Event Upset Studies Using the ATLAS SCT

    CERN Document Server

    Dafinca, A; The ATLAS collaboration; Weidberg, A R

    2014-01-01

    Single Event Upsets (SEU) are expected to occur during high luminosity running of the ATLAS SemiConductor Tracker (SCT). The SEU cross sections were measured in pion beams with momenta in the range 200 to 465 MeV/c and proton test beams at 24 GeV/c but the extrapolation to LHC conditions is non-trivial because of the range of particle types and momenta. The SEUs studied occur in the p-i-n photodiode and the registers in the ABCD chip. Comparisons between predicted SEU rates and those measured from ATLAS data are presented. The implications for ATLAS operation are discussed

  7. Intercalation events visualized in single microcrystals of graphite.

    Science.gov (United States)

    White, Edward R; Lodico, Jared J; Regan, B C

    2017-12-06

    The electrochemical intercalation of layered materials, particularly graphite, is fundamental to the operation of rechargeable energy-storage devices such as the lithium-ion battery and the carbon-enhanced lead-acid battery. Intercalation is thought to proceed in discrete stages, where each stage represents a specific structure and stoichiometry of the intercalant relative to the host. However, the three-dimensional structures of the stages between unintercalated and fully intercalated are not known, and the dynamics of the transitions between stages are not understood. Using optical and scanning transmission electron microscopy, we video the intercalation of single microcrystals of graphite in concentrated sulfuric acid. Here we find that intercalation charge transfer proceeds through highly variable current pulses that, although directly associated with structural changes, do not match the expectations of the classical theories. Evidently random nanoscopic defects dominate the dynamics of intercalation.

  8. Scaling properties in single collision model of light ion reflection

    International Nuclear Information System (INIS)

    Vukanic, J.; Simovic, R.

    2004-01-01

    Light ion reflection from solids in the keV energy region has been studied within the single collision model. Particle and energy reflection coefficients as functions of the scaled transport cross section have been calculated numerically by utilizing the exact scattering function for the Kr-C potential and analytically with an effective power approximation for the same potential. The obtained analytical formulae approximate very accurately to the numerical results. Comparison of the calculated reflection coefficients with the experimental data and computer simulations for different light ion-heavy target combinations shows that the scaled transport cross section remains a convenient scaling parameter in the single collision domain, as adopted previously in multiple collision theory

  9. Simulation study on single event burnout in linear doping buffer layer engineered power VDMOSFET

    International Nuclear Information System (INIS)

    Jia Yunpeng; Su Hongyuan; Hu Dongqing; Wu Yu; Jin Rui

    2016-01-01

    The addition of a buffer layer can improve the device's secondary breakdown voltage, thus, improving the single event burnout (SEB) threshold voltage. In this paper, an N type linear doping buffer layer is proposed. According to quasi-stationary avalanche simulation and heavy ion beam simulation, the results show that an optimized linear doping buffer layer is critical. As SEB is induced by heavy ions impacting, the electric field of an optimized linear doping buffer device is much lower than that with an optimized constant doping buffer layer at a given buffer layer thickness and the same biasing voltages. Secondary breakdown voltage and the parasitic bipolar turn-on current are much higher than those with the optimized constant doping buffer layer. So the linear buffer layer is more advantageous to improving the device's SEB performance. (paper)

  10. Acquisition and classification of static single-event upset cross section for SRAM-based FPGAs

    International Nuclear Information System (INIS)

    Yao Zhibin; Fan Ruyu; Guo Hongxia; Wang Zhongming; He Baoping; Zhang Fengqi; Zhang Keying

    2011-01-01

    In order to evaluate single event upsets (SEUs) in SRAM-based FPGAs and to find the sensitive resource in configuration memory, a heavy ions irradiation experiment was carried out on a Xilinx FPGAs device XCV300PQ240. The experiment was conducted to gain the static SEU cross section and classify the SEUs in configurations memory according to different resource uses. The results demonstrate that the inter-memory of SRAM-based FPGAs is extremely sensitive to heavy-ion-induced SEUs. The LUT and routing resources are the main source of SEUs in the configuration memory, which covers more than 97.46% of the total upsets. The SEU sensitivity of various resources is different. The IOB control bit and LUT elements are more sensitive,and more attention should be paid to the LUT elements in radiation hardening,which account for a quite large proportion of the configuration memory. (authors)

  11. Conduction Mechanisms and Structure of Ionomeric Single-Ion Conductors

    Energy Technology Data Exchange (ETDEWEB)

    Colby, Ralph H. [Pennsylvania State Univ., University Park, PA (United States); Maranas, Janna K. [Pennsylvania State Univ., University Park, PA (United States); Mueller, Karl T. [Pennsylvania State Univ., University Park, PA (United States); Runt, James [Pennsylvania State Univ., University Park, PA (United States); Winey, Karen I. [Univ. of Pennsylvania, Philadelphia, PA (United States)

    2015-03-01

    Our team has designed using DFT (Gaussian) and synthesized low glass transition temperature single-ion conductors that are either polyanions that conduct small cations Li+, Na+, Cs+ or polycations that conduct small anions F-, OH-, Br-. We utilize a wide range of complimentary experimental materials characterization tools to understand ion transport; differential scanning calorimetry, dielectric relaxation spectroscopy, infrared spectroscopy, nuclear magnetic resonance spectroscopy, linear viscoelasticity, X-ray scattering and molecular dynamics simulations. The glass transition temperature Tg needs to be as low as possible to facilitate ion transport, so the nonionic parts of the polymer need to be polar, flexible and have strong solvation interactions with the ions. The lowest Tg we have managed for polyanions conducting Li+ is -60 °C. In contrast, polysiloxanes with PEO side chains and tetrabutylphosphonium cationic side groups have Tg ≈ -75 °C that barely increases with ion content, as anticipated by DFT. A survey of all polyanions in the literature suggests that Tg < -80 °C is needed to achieve the 10-4 S/cm conductivity needed for battery separators.

  12. Toward Molecular 4f Single-Ion Magnet Qubits.

    Science.gov (United States)

    Pedersen, Kasper S; Ariciu, Ana-Maria; McAdams, Simon; Weihe, Høgni; Bendix, Jesper; Tuna, Floriana; Piligkos, Stergios

    2016-05-11

    Quantum coherence is detected in the 4f single-ion magnet (SIM) Yb(trensal), by isotope selective pulsed EPR spectroscopy on an oriented single crystal. At X-band, the spin-lattice relaxation (T1) and phase memory (Tm) times are found to be independent of the nuclei bearing, or not, a nuclear spin. The observation of Rabi oscillations of the spin echo demonstrates the possibility to coherently manipulate the system for more than 70 rotations. This renders Yb(trensal), a sublimable and chemically modifiable SIM, an excellent candidate for quantum information processing.

  13. ATLAS Event Display: Run 2 Heavy Ion Collision

    CERN Multimedia

    ATLAS Collaboration

    2018-01-01

    Event display of a lead-lead collision with a large transverse momentum photon. In this event, the expected balancing jet is not visible by eye, consistent with it being degraded by its passage through the quark-gluon plasma.

  14. Bevalac Ion Beam Characterizations for Single Event Phenomena

    Science.gov (United States)

    1992-07-16

    should be a prerequisite to any SEP study undertaken at a high energy accelerator site. 13 REFERENCES 1. T. L. Criswell, P. R. Measel and K. L. Wahlin...Wert, P. R. Measel , and W. E. Wilson, "Measurement of SEU Thresholds and Cross Sections at Fixed Incident Angles," IEEE Trans. Nucl. Sci., NS-34. 1316

  15. Experimental and 2D simulation study of the single-event burnout in n-channel power MOSFETs

    International Nuclear Information System (INIS)

    Roubaud, F.; Dachs, C.; Palau, J.M.; Gasiot, J.

    1993-01-01

    The use of the 2D simulator MEDICI as a tool for Single Event Burnout (SEB) comprehension is investigated. Simulation results are compared to experimental currents induced in an N channel power MOSFET by the ions from a 252 Cf source. Current measurements have been carried out with a specially designed circuit. Simulations allow to analyze separately the effects of the ion impact and of the electrical environment parameters on the SEB phenomenon. Burnout sensitivity is found to be increased by increasing supply voltage, ion's LET and by decreasing load charge. These electrical tendencies are validated by experiments. Burnout sensitivity is also found to be sensitive to the ion impact position. The current shapes variations for given electrical parameters can be related to LET or ion impact position changes. However, some experimental current shapes are not reproduced by simulations

  16. Single-Event Gate Rupture in Power MOSFETs: A New Radiation Hardness Assurance Approach

    Science.gov (United States)

    Lauenstein, Jean-Marie

    2011-01-01

    Almost every space mission uses vertical power metal-semiconductor-oxide field-effect transistors (MOSFETs) in its power-supply circuitry. These devices can fail catastrophically due to single-event gate rupture (SEGR) when exposed to energetic heavy ions. To reduce SEGR failure risk, the off-state operating voltages of the devices are derated based upon radiation tests at heavy-ion accelerator facilities. Testing is very expensive. Even so, data from these tests provide only a limited guide to on-orbit performance. In this work, a device simulation-based method is developed to measure the response to strikes from heavy ions unavailable at accelerator facilities but posing potential risk on orbit. This work is the first to show that the present derating factor, which was established from non-radiation reliability concerns, is appropriate to reduce on-orbit SEGR failure risk when applied to data acquired from ions with appropriate penetration range. A second important outcome of this study is the demonstration of the capability and usefulness of this simulation technique for augmenting SEGR data from accelerator beam facilities. The mechanisms of SEGR are two-fold: the gate oxide is weakened by the passage of the ion through it, and the charge ionized along the ion track in the silicon transiently increases the oxide electric field. Most hardness assurance methodologies consider the latter mechanism only. This work demonstrates through experiment and simulation that the gate oxide response should not be neglected. In addition, the premise that the temporary weakening of the oxide due to the ion interaction with it, as opposed to due to the transient oxide field generated from within the silicon, is validated. Based upon these findings, a new approach to radiation hardness assurance for SEGR in power MOSFETs is defined to reduce SEGR risk in space flight projects. Finally, the potential impact of accumulated dose over the course of a space mission on SEGR

  17. Translocation events in a single-walled carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    He Jin; Lindsay, Stuart [Biodesign Institute, Arizona State University, Tempe, AZ 85287 (United States); Liu Hao [Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287 (United States); Pang Pei; Cao Di, E-mail: jinhe@asu.ed [Department of Physics, Arizona State University, Tempe, AZ 85287 (United States)

    2010-11-17

    Translocation of DNA oligomers through a single-walled carbon nanotube was demonstrated recently. Translocation events are accompanied by giant current pulses, the origin of which remains obscure. Here, we show that the introduction of a nucleotide, guanosine triphosphate, alone into the input reservoir of a carbon nanotube nanofluidic device also gives giant current pulses. Taken together with data on oligomer translocation, these new results suggest that the pulse width has a nonlinear, power-law dependence on the number of nucleotides in a DNA molecule. We have also measured the time for the onset of DNA translocation pulses after bias reversal, finding that the time for the onset of translocation is directly proportional to the period of the bias reversal.

  18. Translocation events in a single-walled carbon nanotube

    International Nuclear Information System (INIS)

    He Jin; Lindsay, Stuart; Liu Hao; Pang Pei; Cao Di

    2010-01-01

    Translocation of DNA oligomers through a single-walled carbon nanotube was demonstrated recently. Translocation events are accompanied by giant current pulses, the origin of which remains obscure. Here, we show that the introduction of a nucleotide, guanosine triphosphate, alone into the input reservoir of a carbon nanotube nanofluidic device also gives giant current pulses. Taken together with data on oligomer translocation, these new results suggest that the pulse width has a nonlinear, power-law dependence on the number of nucleotides in a DNA molecule. We have also measured the time for the onset of DNA translocation pulses after bias reversal, finding that the time for the onset of translocation is directly proportional to the period of the bias reversal.

  19. Single event effect testing of the Intel 80386 family and the 80486 microprocessor

    International Nuclear Information System (INIS)

    Moran, A.; LaBel, K.; Gates, M.; Seidleck, C.; McGraw, R.; Broida, M.; Firer, J.; Sprehn, S.

    1996-01-01

    The authors present single event effect test results for the Intel 80386 microprocessor, the 80387 coprocessor, the 82380 peripheral device, and on the 80486 microprocessor. Both single event upset and latchup conditions were monitored

  20. Electron–Ion Intensity Dropouts in Gradual Solar Energetic Particle Events during Solar Cycle 23

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Lun C., E-mail: ltan@umd.edu [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States)

    2017-09-01

    Since the field-line mixing model of Giacalone et al. suggests that ion dropouts cannot happen in the “gradual” solar energetic particle (SEP) event because of the large size of the particle source region in the event, the observational evidence of ion dropouts in the gradual SEP event should challenge the model. We have searched for the presence of ion dropouts in the gradual SEP event during solar cycle 23. From 10 SEP events the synchronized occurrence of ion and electron dropouts is identified in 12 periods. Our main observational facts, including the mean width of electron–ion dropout periods being consistent with the solar wind correlation scale, during the dropout period the dominance of the slab turbulence component and the enhanced turbulence power parallel to the mean magnetic field, and the ion gyroradius dependence of the edge steepness in dropout periods, are all in support of the solar wind turbulence origin of dropout events. Also, our observation indicates that a wide longitude distribution of SEP events could be due to the increase of slab turbulence fraction with the increased longitude distance from the flare-associated active region.

  1. Complex Dynamic Scene Perception: Effects of Attentional Set on Perceiving Single and Multiple Event Types

    Science.gov (United States)

    Sanocki, Thomas; Sulman, Noah

    2013-01-01

    Three experiments measured the efficiency of monitoring complex scenes composed of changing objects, or events. All events lasted about 4 s, but in a given block of trials, could be of a single type (single task) or of multiple types (multitask, with a total of four event types). Overall accuracy of detecting target events amid distractors was…

  2. NASA Electronic Parts and Packaging (NEPP) Field Programmable Gate Array (FPGA) Single Event Effects (SEE) Test Guideline Update

    Science.gov (United States)

    Berg, Melanie D.; LaBel, Kenneth A.

    2018-01-01

    The following are updated or new subjects added to the FPGA SEE Test Guidelines manual: academic versus mission specific device evaluation, single event latch-up (SEL) test and analysis, SEE response visibility enhancement during radiation testing, mitigation evaluation (embedded and user-implemented), unreliable design and its affects to SEE Data, testing flushable architectures versus non-flushable architectures, intellectual property core (IP Core) test and evaluation (addresses embedded and user-inserted), heavy-ion energy and linear energy transfer (LET) selection, proton versus heavy-ion testing, fault injection, mean fluence to failure analysis, and mission specific system-level single event upset (SEU) response prediction. Most sections within the guidelines manual provide information regarding best practices for test structure and test system development. The scope of this manual addresses academic versus mission specific device evaluation and visibility enhancement in IP Core testing.

  3. Negative ions in the auroral mesosphere during a PCA event around sunset

    Directory of Open Access Journals (Sweden)

    C. F. del Pozo

    Full Text Available This is a study of the negative ion chemistry in the mesosphere above Tromsø using a number of EISCAT observations of high energy proton precipitation events during the last solar maximum, and in particular around sunset on 23 October, 1989. In these conditions it is possible to look at the relative importance of the various photodetachment and photodissociation processes controlling the concentration of negative ions. The data analysed are from several UHF GEN11 determinations of the ion-plasma ACF together with the pseudo zero-lag estimate of the `raw' electron density, at heights between 55 km and 85 km, at less than 1 km resolution. The power profiles from the UHF are combined with the 55-ion Sodankylä model to obtain consistent estimates of the electron density, the negative ion concentrations, and the average ion mass with height. The neutral concentrations and ion temperature are given by the MSIS90 model. These parameters are then used to compare the calculated widths of the ion-line with the GEN11 determinations. The ion-line spectrum gives information on the effects of negative ions below 70 km where they are dominant; the spectral width is almost a direct measure of the relative abundance of negative ions.

    Key words. Ionosphere (auroral ionosphere; ion chemistry and composition; particle precipitation.

  4. Negative ions in the auroral mesosphere during a PCA event around sunset

    Directory of Open Access Journals (Sweden)

    C. F. del Pozo

    1999-06-01

    Full Text Available This is a study of the negative ion chemistry in the mesosphere above Tromsø using a number of EISCAT observations of high energy proton precipitation events during the last solar maximum, and in particular around sunset on 23 October, 1989. In these conditions it is possible to look at the relative importance of the various photodetachment and photodissociation processes controlling the concentration of negative ions. The data analysed are from several UHF GEN11 determinations of the ion-plasma ACF together with the pseudo zero-lag estimate of the `raw' electron density, at heights between 55 km and 85 km, at less than 1 km resolution. The power profiles from the UHF are combined with the 55-ion Sodankylä model to obtain consistent estimates of the electron density, the negative ion concentrations, and the average ion mass with height. The neutral concentrations and ion temperature are given by the MSIS90 model. These parameters are then used to compare the calculated widths of the ion-line with the GEN11 determinations. The ion-line spectrum gives information on the effects of negative ions below 70 km where they are dominant; the spectral width is almost a direct measure of the relative abundance of negative ions.Key words. Ionosphere (auroral ionosphere; ion chemistry and composition; particle precipitation.

  5. Temperature control system for the study of single event effects in integrated circuits using a cyclotron accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Bakerenkov, A.S., E-mail: as_bakerenkov@list.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation); Belyakov, V.V. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation); Kozyukov, A.E. [Joint-Stock Company Institute of Space Device Engineering (JSC ISDE), Moscow (Russian Federation); Pershenkov, V.S.; Solomatin, A.V.; Shurenkov, V.V. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation)

    2015-02-11

    The temperature control system for the study of single event disruptions produced by hard ion impacts in integrated circuits is described. Heating and cooling of the irradiated device are achieved using thermoelectric modules (Peltier modules). The thermodynamic performance of the system is estimated. The technique for the numerical estimation of the main parameters of the temperature control system for cooling and heating is considered. The results of a test of the system in a vacuum cell of an accelerator are presented.

  6. Electron-ion and ion-ion reaction rate coefficients at low altitudes during a PCA event

    NARCIS (Netherlands)

    Larsen, T.R.; Jespersen, M.; Murdin, J.; Bowling, T.S.; Beek, H.F. van; Stevens, G.A.

    Based on experimental data from several ESRO PCA rocket flights some considerations are presented regarding the mean values of the electron-ion dissociative recombination coefficient (αd) and the ion-ion neutralization coefficient (αi). The estimates yield values for αd = 10−5 cm3 sec−1 for heights

  7. Single-ion quantum lock-in amplifier.

    Science.gov (United States)

    Kotler, Shlomi; Akerman, Nitzan; Glickman, Yinnon; Keselman, Anna; Ozeri, Roee

    2011-05-05

    Quantum metrology uses tools from quantum information science to improve measurement signal-to-noise ratios. The challenge is to increase sensitivity while reducing susceptibility to noise, tasks that are often in conflict. Lock-in measurement is a detection scheme designed to overcome this difficulty by spectrally separating signal from noise. Here we report on the implementation of a quantum analogue to the classical lock-in amplifier. All the lock-in operations--modulation, detection and mixing--are performed through the application of non-commuting quantum operators to the electronic spin state of a single, trapped Sr(+) ion. We significantly increase its sensitivity to external fields while extending phase coherence by three orders of magnitude, to more than one second. Using this technique, we measure frequency shifts with a sensitivity of 0.42 Hz Hz(-1/2) (corresponding to a magnetic field measurement sensitivity of 15 pT Hz(-1/2)), obtaining an uncertainty of less than 10 mHz (350 fT) after 3,720 seconds of averaging. These sensitivities are limited by quantum projection noise and improve on other single-spin probe technologies by two orders of magnitude. Our reported sensitivity is sufficient for the measurement of parity non-conservation, as well as the detection of the magnetic field of a single electronic spin one micrometre from an ion detector with nanometre resolution. As a first application, we perform light shift spectroscopy of a narrow optical quadrupole transition. Finally, we emphasize that the quantum lock-in technique is generic and can potentially enhance the sensitivity of any quantum sensor. ©2011 Macmillan Publishers Limited. All rights reserved

  8. V79 cell survival after a single lithium ion nuclear traversal

    International Nuclear Information System (INIS)

    Pinto, M.; Buonanno, M.; Campajola, L.; Durante, M.; Grossi, G.; Publiese, G.; Scampoli, P.; Gialanella, G.; Manti, L.

    2003-01-01

    Full text: Biological studies on the effects of low doses of densely ionising radiation are highly influenced by the stochastic character of the energy deposition events. For several end-points, including clonogenic survival, to follow-up individual cells that have undergone an exactly determined number of charged particle traversals is highly desirable. While RBE-LET curves have been measured after conventional 'broad beam' irradiation with several ions of varying energies, the probability of cell survival after a single charged particle traversal has only been determined for accelerated protons and alpha particles, whereas the ability of single particle traversals at higher LET to cause clonogenic death is yet unknown. Recently, low dose studies have also shown phenomena of high interest, such as the hypersensitivity/induced radioresistance(HS/IRR) adaptive responses. However, for particles of high LET, even a single nuclear traversal may deliver an average dose to a single cell that may be beyond the dose region of the HS/IRR response. We ave set up an experimental apparatus for the determination of the inactivation cross section after an exactly known number of accelerated Lithium ions traversals (210 keV/micron when hitting the cell surface). Using a bio-stack approach (Pugliese et al, IJRB Oct;72(4):397-407 1997) LR115 thin nuclear track detectors have been employed for the direct visualisation of Lithium ion traversals in V79 cells nuclei that are labeled with Hoechst 33258. A computer software has been designed and implemented to control micro-meter movements of a motorised Marzhauser stage, mounted on a fluorescent microscope, for the acquisition of individual attached cell coordinates, type of traversal, as well as for re-visiting the registered coordinates for analysis of survivors. The V79 cell survival experiment after exactly known numbers of Lithium ions traversals is in progress, along with a classical 'broad beam' survival assay

  9. Ion burst event in the earth's dayside magnetosheath

    International Nuclear Information System (INIS)

    Paschalidis, N.P.; Krimigis, S.M.; Sibeck, D.G.; McEntire, R.W.; Zanetti, L.J.; Sarris, E.T.; Christon, S.P.

    1991-01-01

    The MEPA instrument on the AMPTE/CCE Spacecraft provided ion angular distributions as rapidly as every 6 sec for H, He, and O at energies of 10 keV to 2 MeV in the dayside magnetosheath within 8.75 R E , the CCE apogee. In this report the authors discuss a burst of energetic particles in the subsolar magnetosheath and its association with rapid changes in the local magnetic field direction in such a way that the magnetic field connected the spacecraft to the magnetopause during the enhancement. They find that magnetosheath angular distributions outside the burst peaked at 90 degree pitch angles, whereas during the burst they exhibited field aligned streaming either parallel or antiparallel to the magnetic field combined with a clear earthward gradient. The clear earthward gradients at E ≥ 10 KeV, the streaming, and the slope change in the burst-time magnetosheath spectrum at ∼10 KeV suggest magnetospheric source for the burst-time ≥ 10 KeV ions and heated solar wind for E < 10 KeV

  10. EVIDENCE FOR A COMMON ACCELERATION MECHANISM FOR ENRICHMENTS OF {sup 3}He AND HEAVY IONS IN IMPULSIVE SEP EVENTS

    Energy Technology Data Exchange (ETDEWEB)

    Mason, Glenn M. [Applied Physics Laboratory, Johns Hopkins University, Laurel, MD 20723 (United States); Nitta, Nariaki V. [Lockheed Martin Advanced Technology Center, Dept/A021S, B/252, 3251 Hanover Street, Palo Alto, CA 94304 (United States); Wiedenbeck, Mark E. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Innes, Davina E., E-mail: glenn.mason@jhuapl.edu, E-mail: nitta@lmsal.com, E-mail: mark.e.wiedenbeck@jpl.nasa.gov, E-mail: innes@mps.mpg.de [Max-Planck-Institut für Sonnensystemforschung, D-37077 Göttingen (Germany)

    2016-06-01

    We have surveyed the period 1997–2015 for a rare type of {sup 3}He-rich solar energetic particle (SEP) event, with enormously enhanced values of the S/O ratio, that differs from the majority of {sup 3}He-rich events, which show enhancements of heavy ions increasing smoothly with mass. Sixteen events were found, most of them small but with solar source characteristics similar to other {sup 3}He-rich SEP events. A single event on 2014 May 16 had higher intensities than the others, and curved Si and S spectra that crossed the O spectrum above ∼200 keV nucleon{sup −1}. Such crossings of heavy-ion spectra have never previously been reported. The dual enhancement of Si and S suggests that element Q / M ratio is critical to the enhancement since this pair of elements uniquely has very similar Q / M ratios over a wide range of temperatures. Besides {sup 3}He, Si, and S, in this same event the C, N, and Fe spectra also showed curved shape and enhanced abundances compared to O. The spectral similarities suggest that all have been produced from the same mechanism that enhances {sup 3}He. The enhancements are large only in the high-energy portion of the spectrum, and so affect only a small fraction of the ions. The observations suggest that the accelerated plasma was initially cool (∼0.4 MK) and was then heated to a few million kelvin to generate the preferred Q / M ratio in the range C–Fe. The temperature profile may be the distinct feature of these events that produces the unusual abundance signature.

  11. Single event upset studies on the CMS tracker APV25 readout chip

    CERN Document Server

    Noah, E; Bisello, D; Faccio, F; Friedl, M; Fulcher, J R; Hall, G; Huhtinen, M; Kaminski, A; Pernicka, Manfred; Raymond, M; Wyss, J

    2002-01-01

    The microstrip tracker for the CMS experiment at the CERN Large Hadron Collider will be read out using APV25 chips. During high luminosity running the tracker will be exposed to particle fluxes up to 10**7 cm**-**2 s**-**1, which raises concerns that the APV25 could occasionally suffer Single Event Upsets (SEUs). The effect of SEU on the APV25 has been studied to investigate implications for CMS detector operation and from the viewpoint of detailed circuit operation, to improve the understanding of its origin and what factors affect its magnitude. Simulations were performed to reconstruct the effects created by highly ionising particles striking sensitive parts of the circuits, along with consideration of the underlying mechanisms of charge deposition, collection and the consequences. A model to predict the behaviour of the memory circuits in the APV25 has been developed and data collected from dedicated experiments using both heavy ions and hadrons have been shown to support it.

  12. Talys calculations for evaluation of neutron-induced single-event upset cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Bourselier, Jean-Christophe

    2005-08-15

    The computer code TALYS has been used to calculate interactions between cosmic-ray neutrons and silicon nuclei with the goal to describe single-event upset (SEU) cross sections in microelectronics devices. Calculations for the Si(n,X) reaction extend over an energy range of 2 to 200 MeV. The obtained energy spectra of the resulting residuals and light-ions have been integrated using several different critical charges as SEU threshold. It is found that the SEU cross section seems largely to be dominated by {sup 28}Si recoils from elastic scattering. Furthermore, the shape of the SEU cross section as a function of the energy of the incoming neutron changes drastically with decreasing critical charge. The results presented in this report stress the importance of performing studies at mono-energetic neutron beams to advance the understanding of the underlying mechanisms causing SEUs.

  13. Experimental setup for Single Event Effects at the São Paulo 8UD Pelletron Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, V.A.P. [Instituto de Física da Universidade de São Paulo, São Paulo, SP (Brazil); Added, N., E-mail: nemitala@if.usp.br [Instituto de Física da Universidade de São Paulo, São Paulo, SP (Brazil); Medina, N.H.; Macchione, E.L.A.; Tabacniks, M.H.; Aguirre, F.R. [Instituto de Física da Universidade de São Paulo, São Paulo, SP (Brazil); Silveira, M.A.G.; Santos, R.B.B. [Centro Universitário da FEI, São Bernardo do Campo, SP (Brazil); Seixas, L.E. [Centro de Tecnologia da Informação Renato Archer, Campinas, SP (Brazil)

    2014-08-01

    In this work we present an experimental setup mounted in one of the beam lines at the São Paulo 8UD Pelletron Accelerator in order to study Single Event Effects in electronic devices. The basic idea is to use elastic scattering collisions to achieve a low-flux with a high-uniformity ion beam to irradiate several devices. {sup 12}C, {sup 16}O, {sup 28}Si, {sup 35}Cl and {sup 63}Cu beams were used to test the experimental setup. In this system it is possible to use efficiently LET values of 17 MeV/mg/cm{sup 2} for an external beam arrangement and up to 32 MeV/mg/cm{sup 2} for in-vacuum irradiation.

  14. Experimental setup for Single Event Effects at the São Paulo 8UD Pelletron Accelerator

    Science.gov (United States)

    Aguiar, V. A. P.; Added, N.; Medina, N. H.; Macchione, E. L. A.; Tabacniks, M. H.; Aguirre, F. R.; Silveira, M. A. G.; Santos, R. B. B.; Seixas, L. E.

    2014-08-01

    In this work we present an experimental setup mounted in one of the beam lines at the São Paulo 8UD Pelletron Accelerator in order to study Single Event Effects in electronic devices. The basic idea is to use elastic scattering collisions to achieve a low-flux with a high-uniformity ion beam to irradiate several devices. 12C, 16O, 28Si, 35Cl and 63Cu beams were used to test the experimental setup. In this system it is possible to use efficiently LET values of 17 MeV/mg/cm2 for an external beam arrangement and up to 32 MeV/mg/cm2 for in-vacuum irradiation.

  15. Single-Event Effect Performance of a Conductive-Bridge Memory EEPROM

    Science.gov (United States)

    Chen, Dakai; Wilcox, Edward; Berg, Melanie; Kim, Hak; Phan, Anthony; Figueiredo, Marco; Seidleck, Christina; LaBel, Kenneth

    2015-01-01

    We investigated the heavy ion single-event effect (SEE) susceptibility of the industry’s first stand-alone memory based on conductive-bridge memory (CBRAM) technology. The device is available as an electrically erasable programmable read-only memory (EEPROM). We found that single-event functional interrupt (SEFI) is the dominant SEE type for each operational mode (standby, dynamic read, and dynamic write/read). SEFIs occurred even while the device is statically biased in standby mode. Worst case SEFIs resulted in errors that filled the entire memory space. Power cycle did not always clear the errors. Thus the corrupted cells had to be reprogrammed in some cases. The device is also vulnerable to bit upsets during dynamic write/read tests, although the frequency of the upsets are relatively low. The linear energy transfer threshold for cell upset is between 10 and 20 megaelectron volts per square centimeter per milligram, with an upper limit cross section of 1.6 times 10(sup -11) square centimeters per bit (95 percent confidence level) at 10 megaelectronvolts per square centimeter per milligram. In standby mode, the CBRAM array appears invulnerable to bit upsets.

  16. Photodynamic membrane damage at the level of single ion channels.

    Science.gov (United States)

    Kunz, L; Stark, G

    1997-07-05

    Illumination of cellular membranes by visible light in the presence of appropriate photosensitizers is known to inactivate specific ionic pathways and to increase the unspecific leak conductance of the membranes. While previous studies have concentrated on the macroscopic ionic currents, the present study separates the two phenomena at the microscopic level. Using opossum kidney (OK) cells as epithelial model system and photofrin II as sensitizer, the patch-clamp technique in inside-out configuration has been applied to show the inactivation of single ion channels immediately after start of illumination and the subsequent strong increase of the leak conductance. Inactivation is shown for two kinds of channels: the large-conductance Ca2+-dependent K+ channel (maxi-K(Ca)) and the stretch-activated nonselective cation channel (SA-cat).

  17. Ion-ion coincidence imaging at high event rate using an in-vacuum pixel detector

    Science.gov (United States)

    Long, Jingming; Furch, Federico J.; Durá, Judith; Tremsin, Anton S.; Vallerga, John; Schulz, Claus Peter; Rouzée, Arnaud; Vrakking, Marc J. J.

    2017-07-01

    A new ion-ion coincidence imaging spectrometer based on a pixelated complementary metal-oxide-semiconductor detector has been developed for the investigation of molecular ionization and fragmentation processes in strong laser fields. Used as a part of a velocity map imaging spectrometer, the detection system is comprised of a set of microchannel plates and a Timepix detector. A fast time-to-digital converter (TDC) is used to enhance the ion time-of-flight resolution by correlating timestamps registered separately by the Timepix detector and the TDC. In addition, sub-pixel spatial resolution (principle experiment on strong field dissociative double ionization of carbon dioxide molecules (CO2), using a 400 kHz repetition rate laser system. The experimental results demonstrate that the spectrometer can detect multiple ions in coincidence, making it a valuable tool for studying the fragmentation dynamics of molecules in strong laser fields.

  18. Numerical Simulations of Calcium Ions Spiral Wave in Single Cardiac Myocyte

    Science.gov (United States)

    Bai, Yong-Qiang; Zhu, Xing

    2010-04-01

    The calcium ions (Ca2+) spark is an elementary Ca2+ release event in cardiac myocytes. It is believed to buildup cell-wide Ca2+ signals, such as Ca2+ transient and Ca2+ wave, through a Ca2+-induced Ca2+ release (CICR) mechanism. Here the excitability of the Ca2+ wave in a single cardiac myocyte is simulated by employing the fire-diffuse-fire model. By modulating the dynamic parameters of Ca2+ release and re-uptake channels, we find three Ca2+ signaling states in a single cardiac myocyte: no wave, plane wave, and spiral wave. The period of a spiral wave is variable in the different regimes. This study indicates that the spiral wave or the excitability of the system can be controlled through micro-modulation in a living excitable medium.

  19. Line-edge roughness induced single event transient variation in SOI FinFETs

    International Nuclear Information System (INIS)

    Wu Weikang; An Xia; Jiang Xiaobo; Chen Yehua; Liu Jingjing; Zhang Xing; Huang Ru

    2015-01-01

    The impact of process induced variation on the response of SOI FinFET to heavy ion irradiation is studied through 3-D TCAD simulation for the first time. When FinFET biased at OFF state configuration (V gs = 0, V ds = V dd ) is struck by a heavy ion, the drain collects ionizing charges under the electric field and a current pulse (single event transient, SET) is consequently formed. The results reveal that with the presence of line-edge roughness (LER), which is one of the major variation sources in nano-scale FinFETs, the device-to-device variation in terms of SET is observed. In this study, three types of LER are considered: type A has symmetric fin edges, type B has irrelevant fin edges and type C has parallel fin edges. The results show that type A devices have the largest SET variation while type C devices have the smallest variation. Further, the impact of the two main LER parameters, correlation length and root mean square amplitude, on SET variation is discussed as well. The results indicate that variation may be a concern in radiation effects with the down scaling of feature size. (paper)

  20. Magnetospheric Multiscale (MMS) Observations of Energetic Ion Response to Magnetotail Dipolarization Events

    Science.gov (United States)

    Cohen, I. J.; Mauk, B.; Anderson, B. J.; Sitnov, M. I.; Motoba, T.; Ohtani, S.; Gkioulidou, M.; Fuselier, S. A.; Giles, B. L.; Strangeway, R. J.; Torbert, R. B.; Burch, J. L.

    2017-12-01

    Observations from the Energetic Ion Spectrometer (EIS) instruments aboard MMS have shown angular (pitch, elevation, azimuthal) asymmetries of energetic (>10s of keV) ions corresponding to dipolarization events in the near-Earth and distant magnetotail. In particular, EIS distinguishes the species composition of these ions (protons, helium, oxygen) and reveals apparent species-based differences in their response. This study presents analysis of the dynamic injection and mass-dependent response of energetic ions that likely result from the kinetic response of the ions to the time-varying electric and magnetic fields associated with injection process. Analysis is focused on discriminating between truly kinetic responses to the dynamics and the features that arise from large gyro-radii particles in the vicinity of strong spatial gradients. The study will focus on EIS measurements and include supplementary data from the FIELDS, FPI, and HPCA instruments.

  1. Single-ion and single-chain magnetism in triangular spin-chain oxides

    Science.gov (United States)

    Seikh, Md. Motin; Caignaert, Vincent; Perez, Olivier; Raveau, Bernard; Hardy, Vincent

    2017-05-01

    S r4 -xC axM n2Co O9 oxides (x =0 and x =2 ) are found to exhibit magnetic responses typical of single-chain magnets (SCMs) and single-ion magnets (SIMs), two features generally investigated in coordination polymers or complexes. The compound x =0 appears to be a genuine SCM, in that blocking effects associated with slow spin dynamics yield remanence and coercivity in the absence of long-range ordering (LRO). In addition, SIM signatures of nearly identical nature are detected in both compounds, coexisting with SCM in x =0 and with LRO in x =2 . It is also observed that a SCM response can be recovered in x =2 after application of magnetic field. These results suggest that purely inorganic systems could play a valuable role in the topical issue of the interplay among SIM, SCM, and LRO phenomena in low-dimensional magnetism.

  2. Ion rates in the International Space Station during the December 2006 Solar Particle Event

    OpenAIRE

    2011-01-01

    Abstract Solar Particle Events (SPEs) are a major concern during prolonged space missions. During such events, a large amount of light ions, mostly protons and helium nuclei, are accelerated with enough energy to traverse the spacecraft hull and therefore represent a high hazard for the crew health. The ALTEA particle telescope was collecting continuous data inside the USLab module of the International Space Station (ISS) during most of the December 2006 SPEs. The telescope is able to meas...

  3. How to resolve microsecond current fluctuations in single ion channels: The power of beta distributions

    Science.gov (United States)

    Schroeder, Indra

    2015-01-01

    Abstract A main ingredient for the understanding of structure/function correlates of ion channels is the quantitative description of single-channel gating and conductance. However, a wealth of information provided from fast current fluctuations beyond the temporal resolution of the recording system is often ignored, even though it is close to the time window accessible to molecular dynamics simulations. This kind of current fluctuations provide a special technical challenge, because individual opening/closing or blocking/unblocking events cannot be resolved, and the resulting averaging over undetected events decreases the single-channel current. Here, I briefly summarize the history of fast-current fluctuation analysis and focus on the so-called “beta distributions.” This tool exploits characteristics of current fluctuation-induced excess noise on the current amplitude histograms to reconstruct the true single-channel current and kinetic parameters. A guideline for the analysis and recent applications demonstrate that a construction of theoretical beta distributions by Markov Model simulations offers maximum flexibility as compared to analytical solutions. PMID:26368656

  4. Cosmic and terrestrial single-event radiation effects in dynamic random access memories

    International Nuclear Information System (INIS)

    Massengill, L.W.

    1996-01-01

    A review of the literature on single-event radiation effects (SEE) on MOS integrated-circuit dynamic random access memories (DRAM's) is presented. The sources of single-event (SE) radiation particles, causes of circuit information loss, experimental observations of SE information upset, technological developments for error mitigation, and relationships of developmental trends to SE vulnerability are discussed

  5. Single-well moment tensor inversion of tensile microseismic events

    Czech Academy of Sciences Publication Activity Database

    Grechka, V.; Li, Z.; Howell, B.; Vavryčuk, Václav

    2016-01-01

    Roč. 81, č. 6 (2016), KS219-KS229 ISSN 0016-8033 R&D Projects: GA ČR(CZ) GAP210/12/1491; GA ČR(CZ) GC16-19751J Institutional support: RVO:67985530 Keywords : microseismic events * moment tensor inversion * mathematical formulation Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.391, year: 2016

  6. Single item inventory models : A time- and event- averages approach

    NARCIS (Netherlands)

    E.M. Bazsa-Oldenkamp; P. den Iseger

    2003-01-01

    textabstractThis paper extends a fundamental result about single-item inventory systems. This approach allows more general performance measures, demand processes and order policies, and leads to easier analysis and implementation, than prior research. We obtain closed form expressions for the

  7. MMS Observations of the Evolution of Ion-Scale Flux Transfer Events

    Science.gov (United States)

    Zhao, C.; Russell, C. T.; Strangeway, R. J.; Paterson, W.; Petrinec, S.; Zhou, M.; Anderson, B. J.; Baumjohann, W.; Bromund, K. R.; Chutter, M.; Fischer, D.; Gershman, D. J.; Giles, B. L.; Le, G.; Nakamura, R.; Plaschke, F.; Slavin, J. A.; Torbert, R. B.

    2017-12-01

    Flux transfer events are key processes in the solar wind-magnetosphere interaction. Previously, the observed flux transfer events have had scale sizes of 10,000 km radius in the cross-section and connect about 2 MWb magnetic flux from solar wind to the terrestrial magnetosphere. Recently, from the high-temporal resolution MMS magnetic field data, many ion-scale FTEs have been found. These FTEs contains only about 2 kWb magnetic flux and are believed to be in an early stage of FTE evolution. With the help of the well-calibrated MMS data, we are also able to determine the velocity profile and forces within the FTE events. We find that some ion-scale FTEs are expanding as we expect, but there are also contracting FTEs. We examine the differences between the two classes of FTEs and their differences with the larger previously studied class of FTE.

  8. Analyzing the Influence of the Angles of Incidence and Rotation on MBU Events Induced by Low LET Heavy Ions in a 28-nm SRAM-Based FPGA

    Science.gov (United States)

    Tonfat, Jorge; Kastensmidt, Fernanda Lima; Artola, Laurent; Hubert, Guillaume; Medina, Nilberto H.; Added, Nemitala; Aguiar, Vitor A. P.; Aguirre, Fernando; Macchione, Eduardo L. A.; Silveira, Marcilei A. G.

    2017-08-01

    This paper shows the impact of low linear energy transfer heavy ions on the reliability of 28-nm Bulk static random access memory (RAM) cells from Artix-7 field-programmable gate array. Irradiation tests on the ground showed significant differences in the multiple bit upset cross section of configuration RAM and block RAM memory cells under various angles of incidence and rotation of the device. Experimental data are analyzed at transistor level by using the single-event effect prediction tool called multiscale single-event phenomenon prediction platform coupled with SPICE simulations.

  9. Single event and TREE latchup mitigation for a star tracker sensor: An innovative approach to system level latchup mitigation

    International Nuclear Information System (INIS)

    Kimbrough, J.R.; Colella, N.J.; Davis, R.W.; Bruener, D.B.; Coakley, P.G.; Lutjens, S.W.; Mallon, C.E.

    1994-08-01

    Electronic packages designed for spacecraft should be fault-tolerant and operate without ground control intervention through extremes in the space radiation environment. If designed for military use, the electronics must survive and function in a nuclear radiation environment. This paper presents an innovative ''blink'' approach rather than the typical ''operate through'' approach to achieve system level latchup mitigation on a prototype star tracker camera. Included are circuit designs, flash x-ray test data, and heavy ion data demonstrating latchup mitigation protecting micro-electronics from current latchup and burnout due to Single Event Latchup (SEL) and Transient Radiation Effects on Electronics (TREE)

  10. Single event and TREE latchup mitigation for a star tracker sensor: An innovative approach to system level latchup mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Kimbrough, J.R.; Colella, N.J.; Davis, R.W. [Lawrence Livermore National Lab., CA (United States); Bruener, D.B.; Coakley, P.G.; Lutjens, S.W.; Mallon, C.E. [JAYCOR, San Diego, CA (United States)

    1994-08-01

    Electronic packages designed for spacecraft should be fault-tolerant and operate without ground control intervention through extremes in the space radiation environment. If designed for military use, the electronics must survive and function in a nuclear radiation environment. This paper presents an innovative ``blink`` approach rather than the typical ``operate through`` approach to achieve system level latchup mitigation on a prototype star tracker camera. Included are circuit designs, flash x-ray test data, and heavy ion data demonstrating latchup mitigation protecting micro-electronics from current latchup and burnout due to Single Event Latchup (SEL) and Transient Radiation Effects on Electronics (TREE).

  11. STEREO/SEPT observations of upstream particle events: almost monoenergetic ion beams

    Directory of Open Access Journals (Sweden)

    A. Klassen

    2009-05-01

    Full Text Available We present observations of Almost Monoenergetic Ion (AMI events in the energy range of 100–1200 keV detected with the Solar Electron and Proton Telescope (SEPT onboard both STEREO spacecraft. The energy spectrum of AMI events contain 1, 2, or 3 narrow peaks with the relative width at half maximum of 0.1–0.7 and their energy maxima varies for different events from 120 to 1200 keV. These events were detected close to the bow-shock (STEREO-A&B and to the magnetopause at STEREO-B as well as unexpectedly far upstream of the bow-shock and far away from the magnetotail at distances up to 1100 RE (STEREO-B and 1900 RE (STEREO-A. We discuss the origin of AMI events, the connection to the Earth's bow-shock and to the magnetosphere, and the conditions of the interplanetary medium and magnetosphere under which these AMI bursts occur. Evidence that the detected spectral peaks were caused by quasi-monoenergetic beams of protons, helium, and heavier ions are given. Furthermore, we present the spatial distribution of all AMI events from December 2006 until August 2007.

  12. Demonstration of Single-Barium-Ion Sensitivity for Neutrinoless Double-Beta Decay Using Single-Molecule Fluorescence Imaging

    Science.gov (United States)

    McDonald, A. D.; Jones, B. J. P.; Nygren, D. R.; Adams, C.; Álvarez, V.; Azevedo, C. D. R.; Benlloch-Rodríguez, J. M.; Borges, F. I. G. M.; Botas, A.; Cárcel, S.; Carrión, J. V.; Cebrián, S.; Conde, C. A. N.; Díaz, J.; Diesburg, M.; Escada, J.; Esteve, R.; Felkai, R.; Fernandes, L. M. P.; Ferrario, P.; Ferreira, A. L.; Freitas, E. D. C.; Goldschmidt, A.; Gómez-Cadenas, J. J.; González-Díaz, D.; Gutiérrez, R. M.; Guenette, R.; Hafidi, K.; Hauptman, J.; Henriques, C. A. O.; Hernandez, A. I.; Hernando Morata, J. A.; Herrero, V.; Johnston, S.; Labarga, L.; Laing, A.; Lebrun, P.; Liubarsky, I.; López-March, N.; Losada, M.; Martín-Albo, J.; Martínez-Lema, G.; Martínez, A.; Monrabal, F.; Monteiro, C. M. B.; Mora, F. J.; Moutinho, L. M.; Muñoz Vidal, J.; Musti, M.; Nebot-Guinot, M.; Novella, P.; Palmeiro, B.; Para, A.; Pérez, J.; Querol, M.; Repond, J.; Renner, J.; Riordan, S.; Ripoll, L.; Rodríguez, J.; Rogers, L.; Santos, F. P.; dos Santos, J. M. F.; Simón, A.; Sofka, C.; Sorel, M.; Stiegler, T.; Toledo, J. F.; Torrent, J.; Tsamalaidze, Z.; Veloso, J. F. C. A.; Webb, R.; White, J. T.; Yahlali, N.; NEXT Collaboration

    2018-03-01

    A new method to tag the barium daughter in the double-beta decay of Xe 136 is reported. Using the technique of single molecule fluorescent imaging (SMFI), individual barium dication (Ba++ ) resolution at a transparent scanning surface is demonstrated. A single-step photobleach confirms the single ion interpretation. Individual ions are localized with superresolution (˜2 nm ), and detected with a statistical significance of 12.9 σ over backgrounds. This lays the foundation for a new and potentially background-free neutrinoless double-beta decay technology, based on SMFI coupled to high pressure xenon gas time projection chambers.

  13. Demonstration of Single-Barium-Ion Sensitivity for Neutrinoless Double-Beta Decay Using Single-Molecule Fluorescence Imaging

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, A. D.; Jones, B. J. P.; Nygren, D. R.; Adams, C.; Álvarez, V.; Azevedo, C. D. R.; Benlloch-Rodríguez, J. M.; Borges, F. I. G. M.; Botas, A.; Cárcel, S.; Carrión, J. V.; Cebrián, S.; Conde, C. A. N.; Díaz, J.; Diesburg, M.; Escada, J.; Esteve, R.; Felkai, R.; Fernandes, L. M. P.; Ferrario, P.; Ferreira, A. L.; Freitas, E. D. C.; Goldschmidt, A.; Gómez-Cadenas, J. J.; González-Díaz, D.; Gutiérrez, R. M.; Guenette, R.; Hafidi, K.; Hauptman, J.; Henriques, C. A. O.; Hernandez, A. I.; Hernando Morata, J. A.; Herrero, V.; Johnston, S.; Labarga, L.; Laing, A.; Lebrun, P.; Liubarsky, I.; López-March, N.; Losada, M.; Martín-Albo, J.; Martínez-Lema, G.; Martínez, A.; Monrabal, F.; Monteiro, C. M. B.; Mora, F. J.; Moutinho, L. M.; Muñoz Vidal, J.; Musti, M.; Nebot-Guinot, M.; Novella, P.; Palmeiro, B.; Para, A.; Pérez, J.; Querol, M.; Repond, J.; Renner, J.; Riordan, S.; Ripoll, L.; Rodríguez, J.; Rogers, L.; Santos, F. P.; dos Santos, J. M. F.; Simón, A.; Sofka, C.; Sorel, M.; Stiegler, T.; Toledo, J. F.; Torrent, J.; Tsamalaidze, Z.; Veloso, J. F. C. A.; Webb, R.; White, J. T.; Yahlali, N.

    2018-03-01

    A new method to tag the barium daughter in the double beta decay of $^{136}$Xe is reported. Using the technique of single molecule fluorescent imaging (SMFI), individual barium dication (Ba$^{++}$) resolution at a transparent scanning surface has been demonstrated. A single-step photo-bleach confirms the single ion interpretation. Individual ions are localized with super-resolution ($\\sim$2~nm), and detected with a statistical significance of 12.9~$\\sigma$ over backgrounds. This lays the foundation for a new and potentially background-free neutrinoless double beta decay technology, based on SMFI coupled to high pressure xenon gas time projection chambers.

  14. Novel, Solvent-Free, Single Ion Conductive Polymer Electrolytes

    National Research Council Canada - National Science Library

    Florjanczyk, Zbigniew

    2008-01-01

    This project report concerns studies on the synthesis of new polymer electrolytes for application in lithium and lithium-ion batteries characterized by limited participation of anions in the transport...

  15. 3D Thermal and Mechanical Analysis of a Single Event Burnout

    Science.gov (United States)

    Peretti, Gabriela; Demarco, Gustavo; Romero, Eduardo; Tais, Carlos

    2015-08-01

    This paper presents a study related to thermal and mechanical behavior of power DMOS transistors during a Single Event Burnout (SEB) process. We use a cylindrical heat generation region for emulating the thermal and mechanical phenomena related to the SEB. In this way, it is avoided the complexity of the mathematical treatment of the ion-device interaction. This work considers locating the heat generation region in positions that are more realistic than the ones used in previous work. For performing the study, we formulate and validate a new 3D model for the transistor that maintains the computational cost at reasonable level. The resulting mathematical models are solved by means of the Finite Element Method. The simulations results show that the failure dynamics is dominated by the mechanical stress in the metal layer. Additionally, the time to failure depends on the heat source position, for a given power and dimension of the generation region. The results suggest that 3D modeling should be considered for a detailed study of thermal and mechanical effects induced by SEBs.

  16. Oxygen ion uplift and satellite drag effects during the 30 October 2003 daytime superfountain event

    Directory of Open Access Journals (Sweden)

    B. T. Tsurutani

    2007-03-01

    Full Text Available The prompt penetration of interplanetary electric fields (IEFs to the dayside low-latitude ionosphere during the first ~2 h of a superstorm is estimated and applied to a modified NRL SAMI2 code for the 30 October 2003 event. In our simulations, the dayside ionospheric O+ is convected to higher altitudes (~600 km and higher latitudes (~±25° to 30°, forming highly displaced equatorial ionospheric anomaly (EIA peaks. This feature plus others are consistent with previously published CHAMP electron (TEC measurements and with the dayside superfountain model. The rapid upward motion of the O+ ions causes neutral oxygen (O uplift due to ion-neutral drag. It is estimated that above ~400 km altitude the O densities within the displaced EIAs can be increased substantially over quiet time values. The latter feature will cause increased drag for low-altitude satellites. This newly predicted phenomenon is expected to be typical for superstorm/IEF events.

  17. A single geophone to locate seismic events on Mars

    Science.gov (United States)

    Roques, Aurélien; Berenguer, Jean-Luc; Bozdag, Ebru

    2016-04-01

    Knowing the structure of Mars is a key point in understanding the formation of Earth-like planets as plate tectonics and erosion have erased the original suface of the Earth formation. Installing a seismometer on Mars surface makes it possible to identify its structure. An important step in the identification of the structure of a planet is the epicenter's location of a seismic source, typically a meteoric impact or an earthquake. On Earth, the classical way of locating epicenters is triangulation, which requires at least 3 stations. The Mars InSight Project plans to set a single station with 3 components. We propose a software to locate seismic sources on Mars thanks to the 3-components simulated data of an earthquake given by Geoazur (Nice Sophia-Antipolis University, CNRS) researchers. Instrumental response of a sensor is crucial for data interpretation. We study the oscillations of geophone in several situations so as to awaken students to the meaning of damping in second order modeling. In physics, car shock absorbers are often used to illustrate the principle of damping but rarely in practical experiments. We propose the use of a simple seismometer (a string with a mass and a damper) that allows changing several parameters (inductive damping, temperature and pressure) so as to see the effects of these parameters on the impulse response and, in particular, on the damping coefficient. In a second step, we illustrate the effect of damping on a seismogram with the difficulty of identifying and interpreting the different phase arrival times with low damping.

  18. Features of polyatomic ion emission under sputtering of a silicon single crystal by Au sub m sup - cluster ions

    CERN Document Server

    Akhunov, S; Rasulev, U K

    2003-01-01

    Comparative studies of the emission of secondary cluster Si sub n sup + ions (n=1-11) and polyatomic Si sub n X sub l Y sub k sup + ions (X, Y are Au, B, C, N), as well as doubly charged Si sup 2 sup + ions under bombardment of single crystalline silicon by cluster Au sub m sup - (m=1-5) ions with energy E sub 0 =4-18 keV have been carried out. High non-additivity enhancement of the yield of the Si sub n sup + ions and most polyatomic ones has been observed with an increase of the number of atoms in the projectiles. For Si sup 2 sup + ions the negative non-additive effect has been observed. The increase in the yield of impurity-containing cluster Si sub n X sup + ions allows for an increase by a factor of 100-1000 for the sensitivity of the SIMS analysis of the Au, B, C, N impurities in Si with the use of cluster ions as primary and secondary ones.

  19. Single-Event Effects in Silicon and Silicon Carbide Power Devices

    Science.gov (United States)

    Lauenstein, Jean-Marie; Casey, Megan C.; LaBel, Kenneth A.; Topper, Alyson D.; Wilcox, Edward P.; Kim, Hak; Phan, Anthony M.

    2014-01-01

    NASA Electronics Parts and Packaging program-funded activities over the past year on single-event effects in silicon and silicon carbide power devices are presented, with focus on SiC device failure signatures.

  20. Development of Cost-Effective Screening Techniques to Assess Single-Event Latchup Susceptibility

    Data.gov (United States)

    National Aeronautics and Space Administration — Although Single-Event Latchup (SEL) has proven to be one of the most significant radiation threats for low-cost missions, conventional SEL hardness assurance...

  1. Single-event upset and snapback in silicon-on-insulator devices

    International Nuclear Information System (INIS)

    Dodd, Paul E.; Shaneyfelt, Marty R.; Schwank, James R.; Hash, Gerald L.; Draper, Bruce L.; Winokur, Peter S.

    2000-01-01

    SEU is studied in SOI transistors and circuits with various body tie structures. The importance of impact ionization effects, including single-event snapback, is explored. Implications for hardness assurance testing of SOI integrated circuits are discussed

  2. Single event monitoring system based on Java 3D and XML data binding

    International Nuclear Information System (INIS)

    Wang Liang; Chinese Academy of Sciences, Beijing; Zhu Kejun; Zhao Jingwei

    2007-01-01

    Online single event monitoring is important to BESIII DAQ System. Java3D is extension of Java Language in 3D technology, XML data binding is more efficient to handle XML document than SAX and DOM. This paper mainly introduce the implementation of BESIII single event monitoring system with Java3D and XML data binding, and interface for track fitting software with JNI technology. (authors)

  3. Pulsed laser simulation of VLSI single-event effect testing study

    International Nuclear Information System (INIS)

    Xue Yuxiong; Cao Zhou Yang Shiyu; Tian Kai; Liu Shufen; Chu Nan; Cao Haining; Shang Zhi

    2008-01-01

    This paper describes a study aimed at investigating the pulsed laser simulation of Single-Event Effect (SEE) testing for VLSI Intel386EX CPU, using our laboratory LSS (laser simulation system). We have detailed SEE testing principle, testing method, testing system constituting, testing result. It validates that our laser pulses simulate may use SEE testing in VLSI, and Intel 386Ex have a large locking resistance to single event. (authors)

  4. Development of a keV single-ion-implanter for nanofabrication

    International Nuclear Information System (INIS)

    Yang, C.; Jamieson, D.N.; Hopf, T.; Tamanyan, G.; Spizziri, P.; Pakes, C.; Andresen, S.E.; Hudson, F.; Gauja, E.; Dzurak, A.; Clark, R.G.

    2005-01-01

    Traditional methods of doping semiconductors have a difficulty meeting the demand for high precision doping due to large statistical fluctuations in the numbers of dopant atoms introduced in the ever shrinking volume in micro- and nano-electronics devices, especially when the fabrication process approaches the nanometre scale. The statistical fluctuations in doping semiconductors for the fabrication of devices with a very small feature size may lead to inconsistent and unreliable performance. This paper describes the adaptation of a commercial ion implanter into a single-ion-implantation system for the accurate delivery of dopants into a nanometre or micrometre area in a silicon substrate. All the implanted ions can be accurately counted with near 100% certainty through online detection using the silicon substrate itself as an ion detector. A variety of ion species including B + , N + , P + at the energy range of 10-15 keV can be delivered in the single ion implantation system. (author). 6 refs., 6 figs

  5. Optimization of ECR singly-charged ion sources for the radioactive ion beam production

    CERN Document Server

    Jardin, P; Gaubert, G; Pacquet, J Y; Drobert, T; Cornell, J; Barue, C; Canet, C; Dupuis, M; Flambard, J L; Lecesne, N; Leherissier, P; Lemagnen, F; Leroy, R

    2003-01-01

    Measurements of the transformation time of atoms into ions were carried out with two 2.45 GHz electron cyclotron resonance ion sources (ECRIS) in the case of the simple ionization of He, Ne, Ar and Kr gases. The effect of the plasma volume, of the dead volumes and of the ionization efficiency are presented. Some rules are deduced for the design of the next ECRIS dedicated to radioactive ion production with noble gases.

  6. Ion beam induced single phase nanocrystalline TiO2 formation

    Science.gov (United States)

    Rukade, Deepti A.; Tribedi, L. C.; Bhattacharyya, Varsha

    2014-06-01

    Single phase TiO2 nanostructures are fabricated by oxygen ion implantation (60 keV) at fluence ranging from 1×1016 ions/cm2 to 1×1017 ions/cm2 in titanium thin films deposited on fused silica substrate and subsequent thermal annealing in argon atmosphere. GAXRD and Raman spectroscopy study reveals formation of single rutile phases of TiO2. Particle size is found to vary from 29 nm to 35 nm, establishing nanostructure formation. Nanostructure formation is also confirmed by the quantum confinement effect manifested by the blueshift of the UV-vis absorption spectra. Photoluminescence spectra show peaks corresponding to TiO2 rutile phase and reveal the presence of oxygen defects due to implantation. The controlled synthesis of single phase nanostructure is attributed to ion induced defects and post-implantation annealing. It is observed that the size of the nanostructures formed is strongly dependent on the ion fluence.

  7. Action of age-hardening on the copper single crystals after ion implantation

    International Nuclear Information System (INIS)

    Kul'ment'eva, O.P.; Kul'ment'ev, A.I.

    2007-01-01

    High-dose implantation (up to (1-5)·10 17 cm -2 ) of tantalum ions into a copper single crystal of (100), (110) and (111) orientation has been investigated. Modified properties just after ion implantation and subsequent age-hardening during ten years were studied. It was shown that ion implantation and subsequent masstransfer process results in sufficient long-term stable changes of the microhardness. (authors)

  8. Energy time dispersion of a new class of magnetospheric ion events observed near the Earth's bow shock

    Directory of Open Access Journals (Sweden)

    G. C. Anagnostopoulos

    2000-01-01

    Full Text Available We have analyzed high time resolution (\\geq6 s data during the onset and the decay phase of several energetic (\\geq35 keV ion events observed near the Earth's bow shock by the CCE/AMPTE and IMP-7/8 spacecraft, during times of intense substorm/geomagnetic activity. We found that forward energy dispersion at the onset of events (earlier increase of middle energy ions and/or a delayed fall of the middle energy ion fluxes at the end of events are often evident in high time resolution data. The energy spectra at the onset and the decay of this kind of events show a characteristic hump at middle (50-120 keV energies and the angular distributions display either anisotropic or broad forms. The time scale of energy dispersion in the ion events examined was found to range from several seconds to \\sim1 h depending on the ion energies compared and on the rate of variation of the Interplanetary Magnetic Field (IMF direction. Several canditate processes are discussed to explain the observations and it is suggested that a rigidity dependent transport process of magnetospheric particles within the magnetosheath is most probably responsible for the detection of this new type of near bow shock magnetospheric ion events. The new class of ion events was observed within both the magnetosheath and the upstream region.Key words. Interplanetary physics (energetic particles; planetary bow shocks

  9. Production of multi-, oligo- and single-pore membranes using a continuous ion beam

    Czech Academy of Sciences Publication Activity Database

    Apel, P. Yu.; Ivanov, O.; Lizunov, N. E.; Mamonova, T. I.; Nechaev, A. N.; Olejniczak, K.; Vacík, Jiří; Dmitriev, S. N.

    2015-01-01

    Roč. 365, DEC (2015), s. 641-645 ISSN 0168-583X R&D Projects: GA MŠk LG14004 Institutional support: RVO:61389005 Keywords : ion beam * irradiation * ion track * etching * single nanopore Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.389, year: 2015

  10. New method for selection and characterization of single-source events in Ni+Ni collisions at 32 A.MeV

    International Nuclear Information System (INIS)

    Maskay-Wallez, Anne-Marie

    1999-01-01

    The study of heavy ion collisions, with the help of such efficient multi-detectors as INDRA, has shown the persistence of reactions leading to single-source events, up to bombarding energies higher than the Fermi one. These events could help characterizing an expected phase transition in nuclear matter. Whatever interesting they may be, the single-source events correspond to a small part of the total cross section, which makes them difficult to isolate and therefore to analyze. That is why different selection means have been tested - thanks to the 'Simon' event generator - on a simulated Ni + Ni at 32 A·MeV sample, before any application to the INDRA experimental data. As the known methods based on global variables did not prove effective, a set of new 4-dimensional quantities has been built, whose main advantage lies in a better description of physical events. From a Discriminant Analysis performed on 625 of these new 'moments' proceeds a highly discriminant variable, called D 625 . The experimental cross section associated with D 625 -selected single-source events amounts to 170 mb at 32 A·MeV. Such quasi-fusion events are shown to disappear at about 60 A·MeV. As regards the deexcitation mode of the 32 A·MeV Ni + Ni single-source events, an extensive experimental study and comparisons of the data with two reference models seem to confirm the hypothesis of a transition between fusion-evaporation and simultaneous multifragmentation mechanisms. (author)

  11. Lattice location of platinum ions implanted into single crystal zirconia and their annealing behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Cao, D.X. [Royal Melbourne Inst. of Tech., VIC (Australia); Sood, D.K. [Academia Sinica, Shanghai, SH (China). Shanghai Inst. of Nuclear Research; Brown, I.G. [Lawrence Berkeley Lab., CA (United States)

    1993-12-31

    Single crystal samples of (100) oriented cubic zirconia stabilised with 9.5 mol % yttria were implanted with platinum ions, using a metal vapour vacuum arc (MEVVA) high current ion implanter, to a nominal dose of 1x10{sup 17} ions/cm{sup 2}. The implanted samples were annealed isothermally in air ambient at 1200 deg C, from 1-24 hours. Rutherford Backscattering Spectrometry and Channeling (RBSC) of 2 MeV He ions are employed to determine depth distributions of ion damage, Pt ions and substitutionality of Pt ions before and after annealing. The damage behaviour, Pt migration and lattice location are discussed in terms of metastable phase formation and solid solubility considerations. 7 refs., 3 figs.

  12. Single ion induced surface nanostructures: a comparison between slow highly charged and swift heavy ions.

    Science.gov (United States)

    Aumayr, Friedrich; Facsko, Stefan; El-Said, Ayman S; Trautmann, Christina; Schleberger, Marika

    2011-10-05

    This topical review focuses on recent advances in the understanding of the formation of surface nanostructures, an intriguing phenomenon in ion-surface interaction due to the impact of individual ions. In many solid targets, swift heavy ions produce narrow cylindrical tracks accompanied by the formation of a surface nanostructure. More recently, a similar nanometric surface effect has been revealed for the impact of individual, very slow but highly charged ions. While swift ions transfer their large kinetic energy to the target via ionization and electronic excitation processes (electronic stopping), slow highly charged ions produce surface structures due to potential energy deposited at the top surface layers. Despite the differences in primary excitation, the similarity between the nanostructures is striking and strongly points to a common mechanism related to the energy transfer from the electronic to the lattice system of the target. A comparison of surface structures induced by swift heavy ions and slow highly charged ions provides a valuable insight to better understand the formation mechanisms. © 2011 IOP Publishing Ltd

  13. Effects of drain-wall in mitigating N-hit single event transient via 45 nm CMOS process

    International Nuclear Information System (INIS)

    Xu, X Y; Tang, M H; Xiao, Y G; Yan, S A; Zhang, W L; Li, Z; Xiong, Y; Zhao, W; Guo, H X

    2015-01-01

    A three-dimensional (3D) technology computer-aided design (TCAD) simulation in a novel layout technique for N-hit single event transient (SET) mitigation based on drain-wall layout technique is proposed. Numerical simulations of both single-device and mixed-mode show that the proposed layout technique designed with 45 nm CMOS process can efficiently reduce not only charge collection but also SET pulse widths (W SET ). What is more, simulations show that impacts caused by part of ion-incidents can be shielded with this novel layout technique. When compared with conventional layout technique and guard drain layout technique, we find that the proposed novel layout technique can provide the best benefit of SET mitigation with a small sacrifice in effective area. (paper)

  14. Secondary electron emission from boron-doped diamond under ion impact: Applications in single-ion detection

    International Nuclear Information System (INIS)

    Kamiya, T.; Cholewa, M.; Saint, A.; Prawer, S.; Legge, G.J.; Butler, J.E.; Vestyck, D.J. , Jr.

    1997-01-01

    The secondary electron emission from a 2 μm thick boron-doped diamond film under ion (4.6 endash 7.7 MeV He + )impact is reported. The yield under ions impact is found to be remarkably high, stable over a period of many months, and independent of which side of the film (i.e., growth or substrate side) is exposed to the ion flux. By taking advantage of the high secondary-electron yield, the passage of each ion through the film could be detected with an efficiency of close to 100%, which to the best of our knowledge is the highest efficiency recorded to date for any thin-film window. This finding has an immediate application in single-ion irradiation systems where a thin vacuum window is required to allow extraction of an ion beam from the vacuum into air and at the same time offer 100% efficiency for the detection of the passage of the ion through the window. copyright 1997 American Institute of Physics

  15. Measurement of the top quark mass from single-top production events

    CERN Document Server

    CMS Collaboration

    2016-01-01

    We measure the mass of the top quark from events where a single top quark is produced. The analysis is performed on data from $\\mathrm{pp}$ collisions collected by the CMS detector at a center of mass energy of 8 TeV. The top quark is reconstructed from its decay $\\mathrm{t} \\rightarrow \\mathrm{W}^+ \\mathrm{b}$, with the $\\mathrm{W}$ boson decaying leptonically in the muon channel. Specific event topology and kinematic properties are used in order to enrich the sample in single-top-quark events in the t-channel, at the expense of top-quark pair production events. For the single-top quark component, a fit to the reconstructed top invariant mass distribution yields $m_{\\mathrm{t}}=172.60 \\pm 0.77~\\mathrm{(stat)}~^{+0.97}_{-0.93}~\\mathrm{(syst)}$ GeV.

  16. Method and apparatus for single-stepping coherence events in a multiprocessor system under software control

    Science.gov (United States)

    Blumrich, Matthias A.; Salapura, Valentina

    2010-11-02

    An apparatus and method are disclosed for single-stepping coherence events in a multiprocessor system under software control in order to monitor the behavior of a memory coherence mechanism. Single-stepping coherence events in a multiprocessor system is made possible by adding one or more step registers. By accessing these step registers, one or more coherence requests are processed by the multiprocessor system. The step registers determine if the snoop unit will operate by proceeding in a normal execution mode, or operate in a single-step mode.

  17. Single-Event Transgene Product Levels Predict Levels in Genetically Modified Breeding Stacks.

    Science.gov (United States)

    Gampala, Satyalinga Srinivas; Fast, Brandon J; Richey, Kimberly A; Gao, Zhifang; Hill, Ryan; Wulfkuhle, Bryant; Shan, Guomin; Bradfisch, Greg A; Herman, Rod A

    2017-09-13

    The concentration of transgene products (proteins and double-stranded RNA) in genetically modified (GM) crop tissues is measured to support food, feed, and environmental risk assessments. Measurement of transgene product concentrations in breeding stacks of previously assessed and approved GM events is required by many regulatory authorities to evaluate unexpected transgene interactions that might affect expression. Research was conducted to determine how well concentrations of transgene products in single GM events predict levels in breeding stacks composed of these events. The concentrations of transgene products were compared between GM maize, soybean, and cotton breeding stacks (MON-87427 × MON-89034 × DAS-Ø15Ø7-1 × MON-87411 × DAS-59122-7 × DAS-40278-9 corn, DAS-81419-2 × DAS-44406-6 soybean, and DAS-21023-5 × DAS-24236-5 × SYN-IR102-7 × MON-88913-8 × DAS-81910-7 cotton) and their component single events (MON-87427, MON-89034, DAS-Ø15Ø7-1, MON-87411, DAS-59122-7, and DAS-40278-9 corn, DAS-81419-2, and DAS-44406-6 soybean, and DAS-21023-5, DAS-24236-5, SYN-IR102-7, MON-88913-8, and DAS-81910-7 cotton). Comparisons were made within a crop and transgene product across plant tissue types and were also made across transgene products in each breeding stack for grain/seed. Scatter plots were generated comparing expression in the stacks to their component events, and the percent of variability accounted for by the line of identity (y = x) was calculated (coefficient of identity, I 2 ). Results support transgene concentrations in single events predicting similar concentrations in breeding stacks containing the single events. Therefore, food, feed, and environmental risk assessments based on concentrations of transgene products in single GM events are generally applicable to breeding stacks composed of these events.

  18. Scanning probe microscopy of single Au ion implants in Si

    International Nuclear Information System (INIS)

    Vines, L.; Monakhov, E.; Maknys, K.; Svensson, B.G.; Jensen, J.; Hallen, A.; Kuznetsov, A. Yu.

    2006-01-01

    We have studied 5 MeV Au 2+ ion implantation with fluences between 7 x 10 7 and 2 x 10 8 cm -2 in Si by deep level transient spectroscopy (DLTS) and scanning capacitance microscopy (SCM). The DLTS measurements show formation of electrically active defects such as the two negative charge states of the divacancy (V 2 (=/-) and V 2 (-/0)) and the vacancy-oxygen (VO) center. It is observed that the intensity of the V 2 (=/-) peak is lower compared to that of V 2 (-/0) by a factor of 5. This has been attributed to a highly localized distribution of the defects along the ion tracks, which results in trapping of the carriers at V 2 (-/0) and incomplete occupancy of V 2 (=/-). The SCM measurements obtained in a plan view show a random pattern of regions with a reduced SCM signal for the samples implanted with fluence above 2 x 10 8 cm -2 . The reduced SCM signal is attributed to extra charges associated with acceptor states, such as V 2 (-/0), formed along the ion tracks in the bulk Si. Indeed, the electron emission rate from the V 2 (-/0) state is in the range of 10 kHz at room temperature, which is well below the probing frequency of the SCM measurements, resulting in 'freezing' of electrons at V 2 (-/0)

  19. A simple and rapid method for high-resolution visualization of single-ion tracks

    Directory of Open Access Journals (Sweden)

    Masaaki Omichi

    2014-11-01

    Full Text Available Prompt determination of spatial points of single-ion tracks plays a key role in high-energy particle induced-cancer therapy and gene/plant mutations. In this study, a simple method for the high-resolution visualization of single-ion tracks without etching was developed through the use of polyacrylic acid (PAA-N, N’-methylene bisacrylamide (MBAAm blend films. One of the steps of the proposed method includes exposure of the irradiated films to water vapor for several minutes. Water vapor was found to promote the cross-linking reaction of PAA and MBAAm to form a bulky cross-linked structure; the ion-track scars were detectable at a nanometer scale by atomic force microscopy. This study demonstrated that each scar is easily distinguishable, and the amount of generated radicals of the ion tracks can be estimated by measuring the height of the scars, even in highly dense ion tracks. This method is suitable for the visualization of the penumbra region in a single-ion track with a high spatial resolution of 50 nm, which is sufficiently small to confirm that a single ion hits a cell nucleus with a size ranging between 5 and 20 μm.

  20. Network type sp3 boron-based single-ion conducting polymer electrolytes for lithium ion batteries

    Science.gov (United States)

    Deng, Kuirong; Wang, Shuanjin; Ren, Shan; Han, Dongmei; Xiao, Min; Meng, Yuezhong

    2017-08-01

    Electrolytes play a vital role in modulating lithium ion battery performance. An outstanding electrolyte should possess both high ionic conductivity and unity lithium ion transference number. Here, we present a facile method to fabricate a network type sp3 boron-based single-ion conducting polymer electrolyte (SIPE) with high ionic conductivity and lithium ion transference number approaching unity. The SIPE was synthesized by coupling of lithium bis(allylmalonato)borate (LiBAMB) and pentaerythritol tetrakis(2-mercaptoacetate) (PETMP) via one-step photoinitiated in situ thiol-ene click reaction in plasticizers. Influence of kinds and content of plasticizers was investigated and the optimized electrolytes show both outstanding ionic conductivity (1.47 × 10-3 S cm-1 at 25 °C) and high lithium transference number of 0.89. This ionic conductivity is among the highest ionic conductivity exhibited by SIPEs reported to date. Its electrochemical stability window is up to 5.2 V. More importantly, Li/LiFePO4 cells with the prepared single-ion conducting electrolytes as the electrolyte as well as the separator display highly reversible capacity and excellent rate capacity under room temperature. It also demonstrates excellent long-term stability and reliability as it maintains capacity of 124 mA h g-1 at 1 C rate even after 500 cycles without obvious decay.

  1. The method and equipment for the investigation of ions orienting transmission through thin single crystals

    CERN Document Server

    Soroka, V Y; Maznij, Y O

    2003-01-01

    A new approach is proposed to solve the task of angular distribution measurement of intensity strongly differentiated ions fluxes. Channeling effect makes this problem a regular feature of experimental study of ions orientating transmission through thin single crystals. The approach is based on the use of ions additional scattering by an amorphous (polycrystalline) target after passing through single crystal. The additional target manipulator is joined with the principal target chamber equipment with three-axis goniometer. The manipulator allows to move an additional target in the vicinity of the accelerator beam within the limits of +- 3 sup 0 in all directions and allows to measure the angular distribution of scattered ions with the accuracy of 1 min. The method and equipment were tested at the single ended electrostatic accelerator (EG-5) using a proton beam. At present the measurements have been resumed at the tandem accelerator (EG-10) of the Institute for Nuclear Research of the Academy of Sciences of U...

  2. Most spin-1/2 transition-metal ions do have single ion anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jia; Whangbo, Myung-Hwan, E-mail: hxiang@fudan.edu.cn, E-mail: mike-whangbo@ncsu.edu [Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695 (United States); Koo, Hyun-Joo [Department of Chemistry and Research Institute for Basic Sciences, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Xiang, Hongjun, E-mail: hxiang@fudan.edu.cn, E-mail: mike-whangbo@ncsu.edu [Key Laboratory of Computational Physical Sciences (Ministry of Education), State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433 (China); Kremer, Reinhard K. [Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart (Germany)

    2014-09-28

    The cause for the preferred spin orientation in magnetic systems containing spin-1/2 transition-metal ions was explored by studying the origin of the easy-plane anisotropy of the spin-1/2 Cu{sup 2+} ions in CuCl{sub 2}·2H{sub 2}O, LiCuVO{sub 4}, CuCl{sub 2}, and CuBr{sub 2} on the basis of density functional theory and magnetic dipole-dipole energy calculations as well as a perturbation theory treatment of the spin-orbit coupling. We find that the spin orientation observed for these spin-1/2 ions is not caused by their anisotropic spin exchange interactions, nor by their magnetic dipole-dipole interactions, but by the spin-orbit coupling associated with their crystal-field split d-states. Our study also predicts in-plane anisotropy for the Cu{sup 2+} ions of Bi{sub 2}CuO{sub 4} and Li{sub 2}CuO{sub 2}. The results of our investigations dispel the mistaken belief that magnetic systems with spin-1/2 ions have no magnetic anisotropy induced by spin-orbit coupling.

  3. Single-Event Latchup Testing of the Micrel MIC4424 Dual Power MOSFET Driver

    Science.gov (United States)

    Pellish, J. A.; Boutte, A.; Kim, H.; Phan, A.; Topper, A.

    2016-01-01

    We conducted 47 exposures of four different MIC4424 devices and did not observe any SEL or high-current events. This included worst-case conditions with a LET of 81 MeV-sq cm/mg, applied voltage of 18.5 V, a case temperature greater than 120 C, and a final fluence of 1x10(exp 7)/sq cm. We also monitored both the outputs for the presence of SETs. While the period of the 1 MHz square wave was slightly altered in some cases, no pulses were added or deleted. 1. Purpose: The purpose of this testing is to characterize the BiCMOS/DMOS Micrel MIC4424 dual, non-inverting MOSFET driver for single-event latchup (SEL) susceptibility. These data will be used for flight lot evaluation purposes. 2. Devices Tested: The MIC4423/4424/4425 family are highly reliable BiCMOS/DMOS buffer/driver MOSFET drivers. They are higher output current versions of the MIC4426/4427/4428. They can survive up to 5V of noise spiking, of either polarity, on the ground pin. They can accept, without either damage or logic upset, up to half an amp of reverse current (either polarity) forced back into their outputs. Primarily intended for driving power MOSFETs, the MIC4423/4424/4425 drivers are suitable for driving other loads (capacitive, resistive, or inductive) which require low-impedance, high peak currents, and fast switching times. Heavily loaded clock lines, coaxial cables, or piezoelectric transducers are some examples. The only known limitation on loading is that total power dissipated in the driver must be kept within the maximum power dissipation limits of the package. Five (5) parts were provided for SEL testing. We prepared four parts for irradiation and reserved one piece as an un-irradiated control. More information about the devices can be found in Table 1. The parts were prepared for testing by removing the lid from the CDIP package to expose the target die. The parts were then soldered to small copper circuit adapter boards for easy handling. These parts are fabricated in a bulk Bi

  4. Study of Single Event Effects induced by highly energetic charged particles of the space environment in CMOS image Sensors

    International Nuclear Information System (INIS)

    Lalucaa, Valerian

    2013-01-01

    This thesis studies the single event effects of space environment in CMOS image sensors (CIS). This work focuses on the effects of heavy ions on 3T standard photodiode pixels, and 4T and 5T pinned photodiode pixels. The first part describes the space radioactive environment and the sensor architecture. The most harmful events (SEL and SETs) are identified thanks to the scientific literature. The experimentally tested sensors agree with the theoretical work. SETs are compared to STARDUST simulations with a good agreement for all ions and sensors. The work explains why the SETs on 3T pixels are insensitive to the various photodiode designs, and they are decreased when an epitaxial substrate is used. A method using anti-blooming was successfully used in 4T and 5T pixels to prevent the spread of the SETs. The mechanism of latch-up in 4T pixel sensors is described. All the identified mechanisms are very useful to provide hardening methods for the CISs. (author) [fr

  5. Low-energy neutron-induced single-event upsets in static random access memory

    International Nuclear Information System (INIS)

    Guo Xiaoqiang; Guo Hongxia; Wang Guizhen; Ling Dongsheng; Chen Wei; Bai Xiaoyan; Yang Shanchao; Liu Yan

    2009-01-01

    The visual analysis method of data process was provided for neutron-induced single-event upset(SEU) in static random access memory(SRAM). The SEU effects of six CMOS SRAMs with different feature size(from 0.13 μm to 1.50 μm) were studied. The SEU experiments were performed using the neutron radiation environment at Xi'an pulsed reactor. And the dependence of low-energy neutron-induced SEU cross section on SRAM's feature size was given. The results indicate that the decreased critical charge is the dominant factor for the increase of single event effect sensitivity of SRAM devices with decreased feature size. Small-sized SRAM devices are more sensitive than large-sized ones to single event effect induced by low-energy neutrons. (authors)

  6. Single photons, dileptons and hadrons from relativistic heavy ion ...

    Indian Academy of Sciences (India)

    The production of single photons in Pb+Pb collisions at the CERN SPS as measured by the WA98 experiment is analysed. A quark gluon plasma is assumed to be formed initially, which expands, cools, hadronizes, and undergoes freeze-out. A rich hadronic equation of state is used and the transverse expansion of the ...

  7. Single photons, dileptons and hadrons from relativistic heavy ion ...

    Indian Academy of Sciences (India)

    Abstract. The production of single photons in Pb+Pb collisions at the CERN SPS as measured by the WA98 experiment is analysed. A quark gluon plasma is assumed to be formed initially, which expands, cools, hadronizes, and undergoes freeze-out. A rich hadronic equation of state is used and the transverse expansion of ...

  8. Single tagged 2γ events with BGO, ALR, and VSAT of L3

    Science.gov (United States)

    Baksay, Laszlo; Dehmelt, Klaus; Hohlmann, Marcus

    2003-11-01

    In order to extend the investigation of the Q^2 evolution of the hadronic structure function F_2^γ with L3, to Q^2 as low as 0.5GeV^2 and as high as 3850GeV^2, we will include the electromagnetic calorimeters (BGO), active lead rings (ALR), and the very small angle tagging detectors (VSAT) as tagging devices for single tagged 2γ events. Strategies for selecting events with these detector components will be presented.

  9. Overview of software tools for modeling single event upsets in microelectronic devices

    Directory of Open Access Journals (Sweden)

    Anatoly Alexandrovich Smolin

    2016-10-01

    Full Text Available The paper presents the results of the analysis of existing simulation tools for evaluation of single event upset susceptibility of microelectronic devices with deep sub-micron feature sizes. This simulation tools are meant to replace obsolete approach to single event rate estimation based on integral rectangular parallelepiped model. Three main approaches implemented in simulation tools are considered: combined use of particle transport codes and rectangular parallelepiped model, combined use of particle transport codes and analytical models of charge collection and circuit simulators, and combined use of particle transport codes and TCAD simulators.

  10. Oxygen ion uplift and satellite drag effects during the 30 October 2003 daytime superfountain event

    Directory of Open Access Journals (Sweden)

    B. T. Tsurutani

    2007-03-01

    Full Text Available The prompt penetration of interplanetary electric fields (IEFs to the dayside low-latitude ionosphere during the first ~2 h of a superstorm is estimated and applied to a modified NRL SAMI2 code for the 30 October 2003 event. In our simulations, the dayside ionospheric O+ is convected to higher altitudes (~600 km and higher latitudes (~±25° to 30°, forming highly displaced equatorial ionospheric anomaly (EIA peaks. This feature plus others are consistent with previously published CHAMP electron (TEC measurements and with the dayside superfountain model. The rapid upward motion of the O+ ions causes neutral oxygen (O uplift due to ion-neutral drag. It is estimated that above ~400 km altitude the O densities within the displaced EIAs can be increased substantially over quiet time values. The latter feature will cause increased drag for low-altitude satellites. This newly predicted phenomenon is expected to be typical for superstorm/IEF events.

  11. Imaging large cohorts of single ion channels and their activity

    Directory of Open Access Journals (Sweden)

    Katia eHiersemenzel

    2013-09-01

    Full Text Available As calcium is the most important signaling molecule in neurons and secretory cells, amongst many other cell types, it follows that an understanding of calcium channels and their regulation of exocytosis is of vital importance. Calcium imaging using calcium dyes such as Fluo3, or FRET-based dyes that have been used widely has provided invaluable information, which combined with modeling has estimated the sub-types of channels responsible for triggering the exocytotic machinery as well as inferences about the relative distances away from vesicle fusion sites these molecules adopt. Importantly, new super-resolution microscopy techniques, combined with novel Ca2+ indicators and imaginative imaging approaches can now define directly the nanoscale locations of very large cohorts of single channel molecules in relation to single vesicles. With combinations of these techniques the activity of individual channels can be visualized and quantified using novel Ca2+ indicators. Fluorescently labeled specific channel toxins can also be used to localize endogenous assembled channel tetramers. Fluorescence lifetime imaging microscopy and other single-photon-resolution spectroscopic approaches offer the possibility to quantify protein-protein interactions between populations of channels and the SNARE protein machinery for the first time. Together with simultaneous electrophysiology, this battery of quantitative imaging techniques has the potential to provide unprecedented detail describing the locations, dynamic behaviours, interactions and conductance activities of many thousands of channel molecules and vesicles in living cells.

  12. Selection of Single Top Events with the CMS Detector at LHC

    CERN Document Server

    Abramov, Victor; Slabospitsky, Sergey; Najafabadi, M Mohammadi; Giammanco, Andrea; Tenchini, Roberto; Boos, Edouard; Dudko, Lev; Savrin, Viktor; Sherstnev, Alexander; Kalinin, Sergey; Drozdetsky, A A

    2006-01-01

    The detection of single-top events with CMS is discussed. Two selections are proposed, aimed to measure single top production in the Standard Model t- and s-channel, respectively. The perspectives of the measurements for an integrated luminosity of 10 fb-1 are described. The results are based on detailed detector simulations, either based on GEANT4, or on faster techniques. The reconstruction procedures developed by the CMS Collaboration are utilized.

  13. EUCAARI ion spectrometer measurements at 12 European sites – analysis of new particle formation events

    Directory of Open Access Journals (Sweden)

    H. E. Manninen

    2010-08-01

    Full Text Available We present comprehensive results on continuous atmospheric cluster and particle measurements in the size range ~1–42 nm within the European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI project. We focused on characterizing the spatial and temporal variation of new particle formation events and relevant particle formation parameters across Europe. Different types of air ion and cluster mobility spectrometers were deployed at 12 field sites across Europe from March 2008 to May 2009. The measurements were conducted in a wide variety of environments, including coastal and continental locations as well as sites at different altitudes (both in the boundary layer and the free troposphere. New particle formation events were detected at all of the 12 field sites during the year-long measurement period. From the data, nucleation and growth rates of newly formed particles were determined for each environment. In a case of parallel ion and neutral cluster measurements, we could also estimate the relative contribution of ion-induced and neutral nucleation to the total particle formation. The formation rates of charged particles at 2 nm accounted for 1–30% of the corresponding total particle formation rates. As a significant new result, we found out that the total particle formation rate varied much more between the different sites than the formation rate of charged particles. This work presents, so far, the most comprehensive effort to experimentally characterize nucleation and growth of atmospheric molecular clusters and nanoparticles at ground-based observation sites on a continental scale.

  14. Laser spectroscopic investigation of singly and doubly charged thorium ions

    Energy Technology Data Exchange (ETDEWEB)

    Thielking, Johannes; Meier, David-Marcel; Glowacki, Przemyslaw; Okhapkin, Maksim V.; Peik, Ekkehard [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany)

    2017-07-01

    The {sup 229}Th isotope possesses a unique, low-energy nuclear isomeric state at about 7.8(5) eV. This fact has stimulated the development of novel ideas in the borderland between atomic and nuclear physics, for example the use as an optical nuclear clock. Since the required precise information on the isomer energy is not yet available, it is intensely searched for using different experimental approaches. For the excitation of the nuclear isomer via electronic bridge or NEET processes, we plan to use two-photon laser excitation of high-lying electronic levels in Th{sup +}. We recently expanded our search range to higher energies and measured 38 previously unknown energy levels in the range from 7.8 eV to 8.7 eV. We also prepare to study the nuclear structure of the isomeric state in cooperation with the Maier-Leibnitz-Laboratorium at LMU Munich, using trapped recoil ions, where the isomeric state is populated via α-decay from {sup 233}U. For this purpose we investigate the hyperfine structure of suitable transitions of Th{sup 2+}.

  15. Transmission of Fast Highly Charged Ions through a Single Glass Macrocapillary and Polycarbonate Nanocapillary Foils

    Science.gov (United States)

    Ayyad, A. M.; Dassanayake, B. S.; Keerthisinghe, D.; DeSilva, G. G.; Elkafrawy, T.; Kayani, N.; Tanis, J. A.

    2012-11-01

    Transmission of 3 MeV protons and 16 MeV O5+ ions through a single glass macrocapillary and a polycarbonate nanocapillary foil has been investigated. Results show that 3 MeV protons transmit through the capillary and the foils with little or no energy loss, while 16 MeV O5+ ions show transmission through the capillary and the foil with energy losses that vary with the tilt angle, and there are also changes in the charge state.

  16. Characterization of strained InGaAs single quantum well structures by ion beam methods

    International Nuclear Information System (INIS)

    Yu, K.M.; Chan, K.T.

    1990-01-01

    We have investigated strained InGaAs single quantum well structures using MeV ion beam methods. The structural properties of these structures, including composition and well size, have been studied. It has been found that the composition obtained by Rutherford backscattering spectrometry and particle-induced x-ray emission techniques agrees very well with that obtained by the ion channeling method

  17. Effect of 120 MeV Ag9+ ion irradiation of YCOB single crystals

    Science.gov (United States)

    Arun Kumar, R.; Dhanasekaran, R.

    2012-09-01

    Single crystals of yttrium calcium oxy borate (YCOB) grown from boron-tri-oxide flux were subjected to swift heavy ion irradiation using silver Ag9+ ions from the 15 UD Pelletron facility at Inter University Accelerator Center, New Delhi. The crystals were irradiated at 1 × 1013, 5 × 1013 and 1 × 1014 ions/cm2 fluences at room temperature and with 5 × 1013 ions/cm2 fluence at liquid nitrogen temperature. The pristine and the irradiated samples were characterized by glancing angle X-ray diffraction, UV-Vis-NIR and photoluminescence studies. From the characterization studies performed on the samples, it is inferred that the crystals irradiated at liquid nitrogen temperature had fewer defects compared to the crystals irradiated at room temperature and the defects increased when the ion fluence was increased at room temperature.

  18. Early Stage of Deformation under Nanoindenter Tip of Ion-irradiated Single Crystals

    International Nuclear Information System (INIS)

    Shin, Chan Sun; Jin, Hyung Ha; Kwon, Jun Hyun

    2010-01-01

    Ion irradiation has been used for almost 40 years to emulate the effect of neutrons. Ion irradiation has a number of advantages in terms of time and expenses compared to neutron irradiation. Ion irradiation is expected to greatly contribute to the development of Fusion and Gen IV materials. Ions have short penetration depth, and they induce continuously varying dose rate over the penetration depth. Although it depends on the energy and species of incident ions, the depth of ion-irradiated region is in general on the order of a few micron meters. Depth controlled probing technique is required to measure the mechanical properties of ion-irradiated layer, and nanoindentation is widely used. During nanoindentation, a hard tip with known properties is pressed into a material which has unknown properties. The depth of penetration and load on the indenter are recorded during loading and unloading. The initial Loading depth curve follows the Hertzian elastic solution, and at a certain load, a sudden displacement excursion occurs in indenter depth and then hardening follows. This is called 'Pop-in' event, and since residual impression can be found only after pop-ins, the pop-in is regarded as the onset of plasticity. The objectives of this research are to investigate the effects of ion irradiation on popins, and to examine dislocation nucleation and propagation at the onset of plasticity by using MD simulations

  19. Early Stage of Deformation under Nanoindenter Tip of Ion-irradiated Single Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Chan Sun; Jin, Hyung Ha; Kwon, Jun Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    Ion irradiation has been used for almost 40 years to emulate the effect of neutrons. Ion irradiation has a number of advantages in terms of time and expenses compared to neutron irradiation. Ion irradiation is expected to greatly contribute to the development of Fusion and Gen IV materials. Ions have short penetration depth, and they induce continuously varying dose rate over the penetration depth. Although it depends on the energy and species of incident ions, the depth of ion-irradiated region is in general on the order of a few micron meters. Depth controlled probing technique is required to measure the mechanical properties of ion-irradiated layer, and nanoindentation is widely used. During nanoindentation, a hard tip with known properties is pressed into a material which has unknown properties. The depth of penetration and load on the indenter are recorded during loading and unloading. The initial Loading depth curve follows the Hertzian elastic solution, and at a certain load, a sudden displacement excursion occurs in indenter depth and then hardening follows. This is called 'Pop-in' event, and since residual impression can be found only after pop-ins, the pop-in is regarded as the onset of plasticity. The objectives of this research are to investigate the effects of ion irradiation on popins, and to examine dislocation nucleation and propagation at the onset of plasticity by using MD simulations

  20. Analysis of single event transient pulse-width in 65 nm commercial radiation-hardened logic cell

    Science.gov (United States)

    Li, Haisong; Wu, Longsheng; Yang, Bo; Jiang, Yihu

    2017-08-01

    With the critical charge reduced to generate a single event effect (SEE) and high working frequency for a nanometer integrated circuit, the single event effect (SET) becomes increasingly serious for high performance SOC and DSP chips. To analyze the radiation-hardened method of SET for the nanometer integrated circuit, the n+ guard ring and p+ guard ring have been adopted in the layout for a 65 nm commercial radiation-hardened standard cell library. The weakest driving capacity inverter cell was used to evaluate the single event transient (SET) pulse-width distribution. We employed a dual-lane measurement circuit to get more accurate SET’s pulse-width. Six kinds of ions, which provide LETs of 12.5, 22.5, 32.5, 42, 63, and 79.5 {MeV}\\cdot {{cm}}2/{mg}, respectively, have been utilized to irradiate the SET test circuit in the Beijing Tandem Accelerator Nuclear Physics National Laboratory. The testing results reveal that the pulse-width of most SETs is shorter than 400 ps in the range of LETeff from 12.5 {MeV}\\cdot {{cm}}2/{mg} to 79.5 {MeV}\\cdot {{cm}}2/{mg} and the pulse-width presents saturation tendency when the effective linear energy transfer (LETeff) value is larger than 40 {MeV}\\cdot {{cm}}2/{mg}. The test results also show that the hardened commercial standard cell’s pulse-width concentrates on 33 to 264 ps, which decreases by 40% compared to the pulse-width of the 65 nm commercial unhardened standard cell.

  1. Nuclear data relevant to single-event upsets (SEU) in microelectronics and their application to SEU simulation

    International Nuclear Information System (INIS)

    Watanabe, Yukinobu; Tukamoto, Yasuyuki; Kodama, Akihiro; Nakashima, Hideki

    2004-01-01

    A cross-section database for neutron-induced reactions on 28 Si was developed in the energy range between 2 MeV and 3 GeV in order to analyze single-event upsets (SEUs) phenomena induced by cosmic-ray neutrons in microelectronic devices. A simplified spherical device model was proposed for simulation of the initial process of SEUs. The model was applied to SEU cross-section calculations for semiconductor memory devices. The calculated results were compared with measured SEU cross-sections and the other simulation result. The dependence of SEU cross-sections on incident neutron energy and secondary ions having the most important effects on SEUs are discussed. (author)

  2. SINGLE AND DOUBLE IMPRINTED POLYMER FOR SELECTIVE RECOGNITION OF Cd(II IONS IN AQUEOUS MEDIA

    Directory of Open Access Journals (Sweden)

    Ebru Birlik ÖZKÜTÜK

    2010-12-01

    Full Text Available In this paper, we have reported the synthesis of a new single and double-imprinted polymeric material for the separation of Cd(II ions in aqueous solutions. Chitosan has choosen as the Cd(II metal complexing big polymer for single and double imprinted polymers. In the synthesis of single imprinted polymer, Cd(II-complexed chitosan has crosslinked by epichlorohydrin. In the synthesis of double imprinted polymer, Cd(II-complexed chitosan was reacted with 3-mercaptopropyl-trimethoxysilane. Then, the polymeric beads have crosslinked with tetraethoxysilane (TEOS. The imprinted cadmium ions have removed from the polymeric matrix by 0.1M HNO3 (to prepare Cd(II templates. Optimum pH for rebinding of Cd(II on the single and double-imprinted polymers was 7.0. Equilibrium binding time and sorbent capacity have been found as 120 and 60 min, 342 and 172 mg g-1 for single and double imprinted polymers, respectively. In selectivity studies, it has been found that double imprinted results in increased affinity of the material toward Cd(II ion over other competitor metal ions with the same charge. The prepared single and double-imprinted polymers have repeatedly used and regenerated for thirty times without a significant decrease in polymer binding affinities.

  3. Ion beam synthesis of buried single crystal erbium silicide

    International Nuclear Information System (INIS)

    Golanski, A.; Feenstra, R.; Galloway, M.D.; Park, J.L.; Pennycook, S.J.; Harmon, H.E.; White, C.W.

    1990-01-01

    High doses (10 16 --10 17 /cm 2 ) of 170 keV Er + were implanted into single-crystal left-angle 111 right-angle Si at implantation temperatures between 350 degree C and 520 degree C. Annealing at 800 degree C in vacuum following the implant, the growth and coalescence of ErSi 2 precipitates leads to a buried single crystalline ErSi 2 layer. This has been studied using Rutherford backscattering/channeling, X-ray diffraction, cross-sectional TEM and resistance versus temperature measurements. Samples implanted at 520 degree C using an Er dose of 7 x 10 16 /cm 2 and thermally annealed were subsequently used as seeds for the mesoepitaxial growth of the buried layer during a second implantation and annealing process. Growth occurs meso-epitaxially along both interfaces through beam induced, defect mediated mobility of Er atoms. The crystalline quality of the ErSi 2 layer strongly depends on the temperature during the second implantation. 12 refs., 4 figs

  4. Quantum ion-acoustic oscillations in single-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Khan, S.A. [Kyoto Univ., Katsura (Japan). Graduate School of Engineering; Quaid-i-Azam Univ., Islamabad (Pakistan). National Centre for Physics; Iqbal, Z. [University of Management and Technology, Sialkot (Pakistan); Wazir, Z. [Riphah International Univ., Islamabad (Pakistan). Dept. of Basic Sciences; Rehman, Aman ur [Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad (Pakistan)

    2016-08-01

    Quantum ion-acoustic oscillations in single-walled carbon nanotubes are studied by employing a quantum hydrodynamics model. The dispersion equation is obtained by Fourier transformation, which exhibits the existence of quantum ion-acoustic wave affected by change of density balance due to presence of positive or negative heavy species as stationary ion clusters and wave potential at equilibrium. The numerical results are presented, and the role of quantum degeneracy, nanotube geometry, electron exchange-correlation effects, and concentration and polarity of heavy species on wave dispersion is pointed out for typical systems of interest.

  5. Quantum Ion-Acoustic Oscillations in Single-Walled Carbon Nanotubes

    Science.gov (United States)

    Khan, S. A.; Iqbal, Z.; Wazir, Z.; Aman-ur-Rehman

    2016-05-01

    Quantum ion-acoustic oscillations in single-walled carbon nanotubes are studied by employing a quantum hydrodynamics model. The dispersion equation is obtained by Fourier transformation, which exhibits the existence of quantum ion-acoustic wave affected by change of density balance due to presence of positive or negative heavy species as stationary ion clusters and wave potential at equilibrium. The numerical results are presented, and the role of quantum degeneracy, nanotube geometry, electron exchange-correlation effects, and concentration and polarity of heavy species on wave dispersion is pointed out for typical systems of interest.

  6. Single Event Testing on Complex Devices: Test Like You Fly versus Test-Specific Design Structures

    Science.gov (United States)

    Berg, Melanie; LaBel, Kenneth A.

    2014-01-01

    We present a framework for evaluating complex digital systems targeted for harsh radiation environments such as space. Focus is limited to analyzing the single event upset (SEU) susceptibility of designs implemented inside Field Programmable Gate Array (FPGA) devices. Tradeoffs are provided between application-specific versus test-specific test structures.

  7. Single Event Upset Energy Dependence In a Buck-Converter Power Supply Design

    CERN Document Server

    Drake, G; The ATLAS collaboration; Gopalakrishnan, A; Mahadik, S; Mellado, B; Proudfoot, J; Reed, R; Senthilkumaran, A; Stanek, R

    2012-01-01

    We present a study of Single Event Upsets (SEU) performed on a commercial pulse-width modulator controller chip for switching power supplies. We performed tests to study the probability of an SEU occurring as a function of incident particle (hadron) energy. We discuss the performance of the circuit, and present a solution using external circuitry to effectively eliminate the effect.

  8. Simulation aided hardening of N-channel power MOSFETs to prevent single event burnout

    International Nuclear Information System (INIS)

    Dachs, C.; Palau, J.M.; Bruguier, G.; Gasiot, J.; Roubaud, F.; Tastet, P.; Calvet, M.C.; Calvel, P.

    1995-01-01

    2D MEDICI simulator is used to investigate hardening solutions to single-event burnout (SEB). SEB parametric dependencies such as carrier lifetime reduction, base enlargement, and emitter doping decrease have been verified and a p + plug modification approach for SEB hardening of power MOSFETs is validated with simulations on actual device structures

  9. Single-event burnout of power MOSFET devices for satellite application

    International Nuclear Information System (INIS)

    Xue Yuxiong; Tian Kai; Cao Zhou; Yang Shiyu; Liu Gang; Cai Xiaowu; Lu Jiang

    2008-01-01

    Single-event burnout (SEB) sensitivity was tested for power MOSFET devices, JTMCS081 and JTMCS062, which were made in Institute of Microelectronics, Chinese Academy of Sciences, using californium-252 simulation source. SEB voltage threshold was found for devices under test (DUT). It is helpful for engineers to choose devices used in satellites. (authors)

  10. First nondestructive measurements of power MOSFET single event burnout cross sections

    International Nuclear Information System (INIS)

    Oberg, D.L.; Wert, J.L.

    1987-01-01

    A new technique to nondestructively measure single event burnout cross sections for N-channel power MOSFETs is presented. Previous measurements of power MOSFET burnout susceptibility have been destructive and thus not conducive to providing statistically meaningful burnout probabilities. The nondestructive technique and data for various device types taken at several accelerators, including the LBL Bevalac, are documented. Several new phenomena are observed

  11. Feasibility of Observing and Characterizing Single Ion Strikes in Microelectronic Components.

    Energy Technology Data Exchange (ETDEWEB)

    Dingreville, Remi Philippe Michel [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Hattar, Khalid Mikhiel [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Bufford, Daniel Charles [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    The transient degradation of semiconductor device performance under irradiation has long been an issue of concern. A single high-energy charged particle can degrade or permanently destroy the microelectronic component, potentially altering the course or function of the systems. Disruption of the the crystalline structure through the introduction of quasi-stable defect structures can change properties from semiconductor to conductor. Typically, the initial defect formation phase is followed by a recovery phase in which defect-defect or defect-dopant interactions modify the characteristics of the damaged structure. In this LDRD Express, in-situ ion irradiation transmission microscopy (TEM) in-situ TEM experiments combined with atomistic simulations have been conducted to determine the feasibility of imaging and characterizing the defect structure resulting from a single cascade in silicon. In-situ TEM experiments have been conducted to demonstrate that a single ion strike can be observed in Si thin films with nanometer resolution in real time using the in-situ ion irradiation transmission electron microscope (I3TEM). Parallel to this experimental effort, ion implantation has been numerically simulated using Molecular Dynamics (MD). This numerical framework provides detailed predictions of the damage and follow the evolution of the damage during the first nanoseconds. The experimental results demonstrate that single ion strike can be observed in prototypical semiconductors.

  12. Single-ion and pair-interaction potentials near simple metal surfaces

    International Nuclear Information System (INIS)

    Barnett, R.N.; Barrera, R.G.; Cleveland, C.L.; Landman, U.

    1983-01-01

    Presented is a model for semi-infinite simple metals which does not require crystalline order or a single species, and thus is applicable to problems of defect energetics near the surface and random-alloy surfaces as well as ideal metal surfaces. The formulation is based on the use of ionic pseudopotentials and linear-response theory. An expression for the total energy is obtained which depends explicitly on ionic species and position. This expression is decomposed into a density-dependent term and single-ion and ionic pair-interaction potential terms. The single-ion potentials oscillate about a constant bulk value, with the magnitude of the oscillation decreasing rapidly away from the surface. The interaction between pairs of ions near the surface is shown to be a noncentral force interaction which differs significantly from the central-force bulk pair potential. The effect of quantum interference in the response of the semi-infinite electron gas to the ions is seen in both the single-ion and the pair-interaction potentials. Results are presented for the simple metals sodium, potassium, and rubidium

  13. Feasibility of Observing and Characterizing Single Ion Strikes in Microelectronic Components

    International Nuclear Information System (INIS)

    Dingreville, Remi Philippe Michel; Hattar, Khalid Mikhiel; Bufford, Daniel Charles

    2015-01-01

    The transient degradation of semiconductor device performance under irradiation has long been an issue of concern. A single high-energy charged particle can degrade or permanently destroy the microelectronic component, potentially altering the course or function of the systems. Disruption of the the crystalline structure through the introduction of quasi-stable defect structures can change properties from semiconductor to conductor. Typically, the initial defect formation phase is followed by a recovery phase in which defect-defect or defect-dopant interactions modify the characteristics of the damaged structure. In this LDRD Express, in-situ ion irradiation transmission microscopy (TEM) in-situ TEM experiments combined with atomistic simulations have been conducted to determine the feasibility of imaging and characterizing the defect structure resulting from a single cascade in silicon. In-situ TEM experiments have been conducted to demonstrate that a single ion strike can be observed in Si thin films with nanometer resolution in real time using the in-situ ion irradiation transmission electron microscope (I 3 TEM). Parallel to this experimental effort, ion implantation has been numerically simulated using Molecular Dynamics (MD). This numerical framework provides detailed predictions of the damage and follow the evolution of the damage during the first nanoseconds. The experimental results demonstrate that single ion strike can be observed in prototypical semiconductors.

  14. Combined determination of copper ions and β-amyloid peptide by a single ratiometric electrochemical biosensor.

    Science.gov (United States)

    Yu, Yanyan; Wang, Peng; Zhu, Xiaodan; Peng, Qiwen; Zhou, Yi; Yin, Tianxiao; Liang, Yixin; Yin, Xiaoxing

    2017-12-18

    Copper ions (Cu 2+ ) play a critical role in biological processes and are directly involved in β-amyloid peptide (Aβ) aggregation, which is responsible for the occurrence and development of Alzheimer's disease (AD). Therefore, combined determination of Cu 2+ and Aβ in one analytical system is of great significance to understand the exact nature of the AD event. This work presents a novel ratiometric electrochemical biosensor for the dual determination of Cu 2+ and Aβ 1-42 . This unique sensor is based on a 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulphonate) (ABTS) and poly(diallyldimethylammonium chloride) (PDDA)-bi functionalized single-walled carbon nanotubes (ABTS-PDDA/CNTs) composite. The inclusion of ABTS not only enhanced the sensitivity, but it also acted as an inner reference molecule to improve detection accuracy. The specific recognition of Cu 2+ was realized by neurokinin B (NKB) coatings on the ABTS-PDDA/CNTs surface to form a [Cu II (NKB) 2 ] complex with Cu 2+ . The ABTS-PDDA/CNTs-NKB modified electrode also displayed an excellent electrochemical response toward the Aβ 1-42 monomer, when a certain amount of the Aβ 1-42 monomer was added to Cu 2+ -contained PBS buffer, which was due to the release of Cu 2+ from the [Cu II (NKB) 2 ] complex through Aβ binding to Cu 2+ . Meanwhile, our work showed that Cu 2+ bound Aβ 1-42 was concentration-dependent. Consequently, the presented electrochemical approach was capable of quantifying two important biological species associated with AD by one single biosensor, with the detection limits of 0.04 μM for Cu 2+ and 0.5 ng mL -1 for Aβ 1-42 , respectively. Finally, the ratiometric electrode was successfully applied for monitoring Cu 2+ and Aβ 1-42 variations in plasma and hippocampus of normal and AD rats.

  15. Exchange interaction of strongly anisotropic tripodal erbium single-ion magnets with metallic surfaces

    DEFF Research Database (Denmark)

    Dreiser, Jan; Wäckerlin, Christian; Ali, Md. Ehesan

    2014-01-01

    We present a comprehensive study of Er(trensal) single-ion magnets deposited in ultrahigh vacuum onto metallic surfaces. X-ray photoelectron spectroscopy reveals that the molecular structure is preserved after sublimation, and that the molecules are physisorbed on Au(111) while they are chemisorbed....... Furthermore XMCD indicates a weak antiferromagnetic exchange coupling between the single-ion magnets and the ferromagnetic Ni/Cu(100) substrate. For the latter case, spin-Hamiltonian fits to the XMCD M(H) suggest a significant structural distortion of the molecules. Scanning tunneling microscopy reveals...

  16. Single Event Effects Test Facility Options at the Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Riemer, Bernie [ORNL; Gallmeier, Franz X [ORNL; Dominik, Laura J [ORNL

    2015-01-01

    Increasing use of microelectronics of ever diminishing feature size in avionics systems has led to a growing Single Event Effects (SEE) susceptibility arising from the highly ionizing interactions of cosmic rays and solar particles. Single event effects caused by atmospheric radiation have been recognized in recent years as a design issue for avionics equipment and systems. To ensure a system meets all its safety and reliability requirements, SEE induced upsets and potential system failures need to be considered, including testing of the components and systems in a neutron beam. Testing of integrated circuits (ICs) and systems for use in radiation environments requires the utilization of highly advanced laboratory facilities that can run evaluations on microcircuits for the effects of radiation. This paper provides a background of the atmospheric radiation phenomenon and the resulting single event effects, including single event upset (SEU) and latch up conditions. A study investigating requirements for future single event effect irradiation test facilities and developing options at the Spallation Neutron Source (SNS) is summarized. The relatively new SNS with its 1.0 GeV proton beam, typical operation of 5000 h per year, expertise in spallation neutron sources, user program infrastructure, and decades of useful life ahead is well suited for hosting a world-class SEE test facility in North America. Emphasis was put on testing of large avionics systems while still providing tunable high flux irradiation conditions for component tests. Makers of ground-based systems would also be served well by these facilities. Three options are described; the most capable, flexible, and highest-test-capacity option is a new stand-alone target station using about one kW of proton beam power on a gas-cooled tungsten target, with dual test enclosures. Less expensive options are also described.

  17. Electrochemical Dynamics of a Single Platinum Nanoparticle Collision Event for the Hydrogen Evolution Reaction.

    Science.gov (United States)

    Xiang, Zhi-Peng; Deng, Hai-Qiang; Peljo, Pekka; Fu, Zhi-Yong; Wang, Su-Li; Mandler, Daniel; Sun, Gong-Quan; Liang, Zhen-Xing

    2018-03-19

    Chronoamperometry was used to study the dynamics of Pt nanoparticle (NP) collision with an inert ultramicroelectrode via electrocatalytic amplification (ECA) in the hydrogen evolution reaction. ECA and dynamic light scattering (DLS) results reveal that the NP colloid remains stable only at low proton concentrations (1.0 mm) under a helium (He) atmosphere, ensuring that the collision events occur at genuinely single NP level. Amperometry of single NP collisions under a He atmosphere shows that each discrete current profile of the collision event evolves from spike to staircase at more negative potentials, while a staircase response is observed at all of the applied potentials under hydrogen-containing atmospheres. The particle size distribution estimated from the diffusion-controlled current in He agrees well with electron microscopy and DLS observations. These results shed light on the interfacial dynamics of the single nanoparticle collision electrochemistry. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. The nematocyst extract of Hydra attenuata causes single channel events in lipid bilayers.

    Science.gov (United States)

    Weber, J; Schürholz, T; Neumann, E

    1990-01-01

    The nematocyst extract of Hydra attenuata causes single conductance events in reconstituted planar lipid membranes as well as in inside-out patches derived from liposomes. The smallest single channel conductance level of the toxins is 110 pS. The conductance levels increase stepwise with time up to 2000 pS. These large conductance jumps indicate channel cooperativity. If the membrane-voltage is changed from positive to negative values, the single channel events become undefined and noisy, indicating major reorganizations of the proteins which form the channels. The molecular properties of the ionophoric component(s) of the nematocyst extract may help explain the observed macroscopic effects, such as hemolysis of human erythrocytes, after addition of the nematocyst extract.

  19. Xenon gas field ion source from a single-atom tip

    Science.gov (United States)

    Lai, Wei-Chiao; Lin, Chun-Yueh; Chang, Wei-Tse; Li, Po-Chang; Fu, Tsu-Yi; Chang, Chia-Seng; Tsong, T. T.; Hwang, Ing-Shouh

    2017-06-01

    Focused ion beam (FIB) systems have become powerful diagnostic and modification tools for nanoscience and nanotechnology. Gas field ion sources (GFISs) built from atomic-size emitters offer the highest brightness among all ion sources and thus can improve the spatial resolution of FIB systems. Here we show that the Ir/W(111) single-atom tip (SAT) can emit high-brightness Xe+ ion beams with a high current stability. The ion emission current versus extraction voltage was analyzed from 150 K up to 309 K. The optimal emitter temperature for maximum Xe+ ion emission was ˜150 K and the reduced brightness at the Xe gas pressure of 1 × 10-4 torr is two to three orders of magnitude higher than that of a Ga liquid metal ion source, and four to five orders of magnitude higher than that of a Xe inductively coupled plasma ion source. Most surprisingly, the SAT emitter remained stable even when operated at 309 K. Even though the ion current decreased with increasing temperature, the current at room temperature (RT) could still reach over 1 pA when the gas pressure was higher than 1 × 10-3 torr, indicating the feasibility of RT-Xe-GFIS for application to FIB systems. The operation temperature of Xe-SAT-GFIS is considerably higher than the cryogenic temperature required for the helium ion microscope (HIM), which offers great technical advantages because only simple or no cooling schemes can be adopted. Thus, Xe-GFIS-FIB would be easy to implement and may become a powerful tool for nanoscale milling and secondary ion mass spectroscopy.

  20. Subauroral polarization stream on the outer boundary of the ring current during an energetic ion injection event

    Science.gov (United States)

    Yuan, Zhigang; Qiao, Zheng; Li, Haimeng; Huang, Shiyong; Wang, Dedong; Yu, Xiongdong; Yu, Tao

    2017-04-01

    Subauroral polarization stream (SAPS) electric field can play an important role in the coupling between the inner magnetosphere and ionosphere; however, the production mechanism of SAPS has not been yet solved. During an energetic ion injection event on 26 March 2004, at latitudes lower than the equatorward boundaries of precipitating plasma sheet electrons and ions, the Defense Meteorological Satellite Program (DMSP) F13 satellite simultaneously observed a strong SAPS with the peak velocity of 1294 m/s and downward flowing field-aligned currents (FACs). Conjugate observations of DMSP F13 and NOAA 15 satellites have shown that FACs flowing into the ionosphere just lie in the outer boundary of the ring current (RC). The downward flowing FACs were observed in a region of positive latitudinal gradients of the ion energy density, implying that the downward flowing FACs are more likely linked to the azimuthal gradient than the radial gradient of the RC ion pressure. Our result demonstrates that RC ion pressure gradients on the outer boundary of the RC in the evening sector during energetic ion injection events can lead to downward flowing FACs so as to cause strong SAPS in condition of low ionospheric conductivities.Plain Language SummaryThis paper provides a good case that the SAPS and FAC occurred in the outer boundary of the ring current during an energetic ion injection event. Our result demonstrates that RC ion pressure gradients on the outer boundary of the RC in the evening sector during energetic ion injection events can lead to downward flowing FACs so as to cause strong SAPS in condition of low ionospheric conductivities.

  1. Event-shape-engineering study of charge separation in heavy-ion collisions

    Science.gov (United States)

    Wen, Fufang; Bryon, Jacob; Wen, Liwen; Wang, Gang

    2018-01-01

    Recent measurements of charge-dependent azimuthal correlations in high-energy heavy-ion collisions have indicated charge-separation signals perpendicular to the reaction plane, and have been related to the chiral magnetic effect (CME). However, the correlation signal is contaminated with the background caused by the collective motion (flow) of the collision system, and an effective approach is needed to remove the flow background from the correlation. We present a method study with simplified Monte Carlo simulations and a multi-phase transport model, and develop a scheme to reveal the true CME signal via event-shape engineering with the flow vector of the particles of interest. Supported by a grant (DE-FG02-88ER40424) from U.S. Department of Energy, Office of Nuclear Physics

  2. Single-photon emission correlated to double-electron capture by bare ions: background processes

    Science.gov (United States)

    Elkafrawy, T.; Warczak, A.; Simon, A.; Tanis, J. A.

    2013-09-01

    Radiative single- and double-electron capture are one-step processes where a single target electron or two target electrons, respectively, are captured to a bound state of a highly charged projectile with the simultaneous emission of a single photon. In ion-atom collisions, several background processes are likely to contribute to these processes and may interfere with the measured x-rays due to radiative single and double capture. In this study, possible contributions from radiative electron capture to the continuum, secondary electron bremsstrahlung, the two-step process of independent double radiative electron capture, as well as radiative- combined with nonradiative-electron capture are taken into account based on our analysis of the data for 2.21 MeV u-1 F9+ ions colliding with a thin carbon foil.

  3. Structural and optical properties of Cd2+ ion on the growth of sulphamic acid single crystals

    Science.gov (United States)

    Rajyalakshmi, S.; Rao, Valluru Srinivasa; Reddy, P. V. S. S. S. N.; Krishna, V. Y. Rama; Samatha, K.; Rao, K. Ramachandra

    2016-05-01

    Transparent single crystals of Cadmium doped Sulphamic acid (SA) was grown by Conventional slow evaporation solution technique (SEST) which had the size of 13 × 8 × 7 mm3. The grown single crystals have been characterized using single crystal X-ray diffraction UV-visible Spectral studies and Second harmonic generation (SHG) efficiency and the results were discussed. The lattice parameters of the grown Cd2+ ion doped SA crystal are confirmed by single crystal X-ray diffraction and belong to orthorhombic system. Optical transmittance of the crystal was recorded using UV-vis NIR spectrophotometer with its lower cut off wavelength around 259nm. SHG measurements indicate that the SHG efficiency of the grown Cd2+ ion doped SA crystal at a fundamental wavelength of 1064 nm is approximately equal to KDP.

  4. Single-trial normalization for event-related spectral decomposition reduces sensitivity to noisy trials

    Directory of Open Access Journals (Sweden)

    Romain eGrandchamp

    2011-09-01

    Full Text Available In EEG research, the classical Event-Related Potential (ERP model often proves to be a limited method when studying complex brain dynamics. For this reason, spectral techniques adapted from signal processing such as Event-Related Spectral Perturbation (ERSP – and its variant ERS (Event-Related Synchronization and ERD (Event-Related Desynchronization – have been used over the past 20-years. They represent average spectral changes in response to a stimulus.These spectral methods do not have strong consensus for comparing pre and post-stimulus activity. When computing ERSP, pre-stimulus baseline removal is usually performed after averaging the spectral estimate of multiple trials. Correcting the baseline of each single-trial prior to averaging spectral estimates is an alternative baseline correction method. However, we show that this method leads to positively skewed post-stimulus ERSP values. We eventually present new single-trial based ERSP baseline correction methods that perform trial normalization or centering prior to applying classical baseline correction methods. We show that single-trial correction methods minimize the contribution of artifactual data trials with high-amplitude spectral estimates and are robust to outliers when performing statistical inference testing. We then characterize these methods in terms of their time-frequency responses and behavior when performing statistical inference testing compared to classical ERSP methods.

  5. Study of single and binary ion plasma expansion into laboratory-generated plasma wakes

    International Nuclear Information System (INIS)

    Wright, K.H. Jr.

    1988-02-01

    Plasma expansion into the wake of a large rectangular plate immersed in a collisionless, supersonic plasma was investigated in laboratory experiments. The experimental conditions address both single ion and binary ion plasma flows for the case of a body whose size is large in comparison with the Debye length, when the potential difference between the body and the plasma is relatively small. A new plasma source was developed to generate equi-velocity, binary ion plasma flows, which allows access to new parameter space that have previously been unavailable for laboratory studies. Specifically, the new parameters are the ionic mass ratio and the ionic component density ratio. In a series of experiments, a krypton-neon plasma is employed where the ambient density ratio of neon to krypton is varied more than an order of magnitude. The expansion in both the single ion and binary ion plasma cases is limited to early times, i.e., a few ion plasma periods, by the combination of plasma density, plasma drift speed, and vacuum chamber size, which prevented detailed comparison with self-similar theory

  6. Ion beam induced single phase nanocrystalline TiO{sub 2} formation

    Energy Technology Data Exchange (ETDEWEB)

    Rukade, Deepti A. [Department of Physics, University of Mumbai, Mumbai 400098 (India); Tribedi, L.C. [Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005 (India); Bhattacharyya, Varsha, E-mail: varsha.b1.physics@gmail.com [Department of Physics, University of Mumbai, Mumbai 400098 (India)

    2014-06-15

    Single phase TiO{sub 2} nanostructures are fabricated by oxygen ion implantation (60 keV) at fluence ranging from 1×10{sup 16} ions/cm{sup 2} to 1×10{sup 17} ions/cm{sup 2} in titanium thin films deposited on fused silica substrate and subsequent thermal annealing in argon atmosphere. GAXRD and Raman spectroscopy study reveals formation of single rutile phases of TiO{sub 2}. Particle size is found to vary from 29 nm to 35 nm, establishing nanostructure formation. Nanostructure formation is also confirmed by the quantum confinement effect manifested by the blueshift of the UV–vis absorption spectra. Photoluminescence spectra show peaks corresponding to TiO{sub 2} rutile phase and reveal the presence of oxygen defects due to implantation. The controlled synthesis of single phase nanostructure is attributed to ion induced defects and post-implantation annealing. It is observed that the size of the nanostructures formed is strongly dependent on the ion fluence.

  7. A method for measuring event-by-event elliptic flow fluctuations with the first-order event plane in heavy-ion collisions

    International Nuclear Information System (INIS)

    Wang Gang; Declan Keane; Aihong Tang; Voloshin, S.A.

    2007-01-01

    A new method is presented for measuring event-by-event fluctuations of elliptic flow (υ 2 ) using first-order event planes. By studying the event-by-event distributions of υ 2 observables and first-order event-plane observables, average flow (υ 2 ) and event-by-event fluctuations with respect to that average can be separately determined, making appropriate allowance for the effects of finite multiplicity. The relation of flow fluctuations to eccentricity fluctuations in the initial-state participant region, as well as detector acceptance effects, are discussed. (authors)

  8. Ion mass dependence for low energy channeling in single-wall nanotubes

    International Nuclear Information System (INIS)

    An Monte Carlo (MC) simulation program has been used to study ion mass dependence for the low energy channeling of natural- and pseudo-Ar ions in single-wall nanotubes. The MC simulations show that the channeling critical angle Ψ C obeys the (E) -1/2 and the (M 1 ) -1/2 rules, where E is the incident energy and M 1 is the ion mass. The reason for this may be that the motion of the channeled (or de-channeled) ions should be correlated with both the incident energy E and the incident momentum (2M 1 E) 1/2 , in order to obey the conservation of energy and momentum

  9. Heavy doping of CdTe single crystals by Cr ion implantation

    Science.gov (United States)

    Popovych, Volodymyr D.; Böttger, Roman; Heller, Rene; Zhou, Shengqiang; Bester, Mariusz; Cieniek, Bogumil; Mroczka, Robert; Lopucki, Rafal; Sagan, Piotr; Kuzma, Marian

    2018-03-01

    Implantation of bulk CdTe single crystals with high fluences of 500 keV Cr+ ions was performed to achieve Cr concentration above the equilibrium solubility limit of this element in CdTe lattice. The structure and composition of the implanted samples were studied using secondary ion mass spectrometry (SIMS), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, X-ray diffraction (XRD) and Rutherford backscattering spectrometry (RBS) to characterize the incorporation of chromium into the host lattice and to investigate irradiation-induced damage build-up. It was found that out-diffusion of Cr atoms and sputtering of the targets alter the depth distribution and limit concentration of the projectile ions in the as-implanted samples. Appearance of crystallographically oriented, metallic α-Cr nanoparticles inside CdTe matrix was found after implantation, as well as a strong disorder at the depth far beyond the projected range of the implanted ions.

  10. Magnetic anisotropy of a Co-II single ion magnet with distorted trigonal prismatic coordination

    DEFF Research Database (Denmark)

    Peng, Yan; Bodenstein, Tilmann; Fink, Karin

    2016-01-01

    (methanylylidene)) bis(2-methoxyphenol) coordinates to Co(II) does indeed lead to enhanced single-ion behaviour as has previously been predicted. Synthesis of the compound, structural information, and static as well as dynamic magnetic data are presented along with an analysis using quantum chemical ab initio......The single ion magnetic properties of Co(II) are affected by the details of the coordination geometry of the ion. Here we show that a geometry close to trigonal prismatic which arises when the ligand 6,6'-((1Z)-((piperazine-1,4-diylbis(propane-3,1-diyl)) bis(azanylylidene)) bis...... calculations. Though the complex shows a slight deviation from an ideal trigonal prismatic coordination, the zero-field splitting as well as the g-tensor are strongly axial with D = -41 cm(-1) and E

  11. Development of noise-suppressed detector for single ion hit system

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Takuro; Hamano, Tsuyoshi; Suda, Tamotsu; Hirao, Toshio; Kamiya, Tomihiro [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    A noise-suppressed detector for single ion detection has been developed, and combined with the heavy ion microbeam apparatus. This detector consists of a pair of micro channel plates (MCP`s) and a very thin carbon foil. The detection signal is formed by the coincidence of the signals from these MCP`s, so that this detector and the coincidence measurement unit can reduce miscounting in the circuit. The detection efficiency for 15 MeV heavy ions was evaluated to be comparable to that of a silicon surface-barrier detector (SSD) and the miscounting rate was 4 orders lower than the noise rate of a single MCP. The rise time of the detection signal was also estimated. (author)

  12. Surface structure modification of single crystal graphite after slow, highly charged ion irradiation

    Science.gov (United States)

    Alzaher, I.; Akcöltekin, S.; Ban-d'Etat, B.; Manil, B.; Dey, K. R.; Been, T.; Boduch, P.; Rothard, H.; Schleberger, M.; Lebius, H.

    2018-04-01

    Single crystal graphite was irradiated by slow, highly charged ions. The modification of the surface structure was studied by means of Low-Energy Electron Diffraction. The observed damage cross section increases with the potential energy, i.e. the charge state of the incident ion, at a constant kinetic energy. The potential energy is more efficient for the damage production than the kinetic energy by more than a factor of twenty. Comparison with earlier results hints to a strong link between early electron creation and later target atom rearrangement. With increasing ion fluence, the initially large-scale single crystal is first transformed into μ m-sized crystals, before complete amorphisation takes place.

  13. Production of multi-, oligo- and single-pore membranes using a continuous ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Apel, P.Yu., E-mail: apel@nrmail.jinr.ru [Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Joliot-Curie Str. 6, 141980 Dubna (Russian Federation); Dubna International University, Universitetskaya Str. 19, 141980 Dubna (Russian Federation); Ivanov, O.M.; Lizunov, N.E.; Mamonova, T.I.; Nechaev, A.N. [Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Joliot-Curie Str. 6, 141980 Dubna (Russian Federation); Olejniczak, K. [Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Joliot-Curie Str. 6, 141980 Dubna (Russian Federation); Faculty of Chemistry, Nicolaus Copernicus University, Gagarina Str. 7, 87-100 Torun (Poland); Vacik, J. [Nuclear Physics Institute, ASCR, v.v.i., 25068 Řež (Czech Republic); Dmitriev, S.N. [Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Joliot-Curie Str. 6, 141980 Dubna (Russian Federation)

    2015-12-15

    Ion track membranes (ITM) have attracted significant interest over the past two decades due to their numerous applications in physical, biological, chemical, biochemical and medical experimental works. A particular feature of ITM technology is the possibility to fabricate samples with a predetermined number of pores, including single-pore membranes. The present report describes a procedure that allowed for the production of multi-, oligo- and single-pore membranes using a continuous ion beam from an IC-100 cyclotron. The beam was scanned over a set of small diaphragms, from 17 to ∼1000 μm in diameter. Ions passed through the apertures and impinged two sandwiched polymer foils, with the total thickness close to the ion range in the polymer. The foils were pulled across the ion beam at a constant speed. The ratio between the transport speed and the scanning frequency determined the distance between irradiation spots. The beam intensity and the aperture diameters were adjusted such that either several, one or no ions passed through the diaphragms during one half-period of scanning. After irradiation, the lower foil was separated from the upper foil and was etched to obtain pores 6–8 μm in diameter. The pores were found using a color chemical reaction between two reagents placed on opposite sides of the foil. The located pores were further confirmed using SEM and optical microscopy. The numbers of tracks in the irradiation spots were consistent with the Poisson statistics. Samples with single or few tracks obtained in this way were employed to study fine phenomena in ion track nanopores.

  14. Potential of electric quadrupole transitions in radium isotopes for single-ion optical frequency standards

    NARCIS (Netherlands)

    Versolato, O. O.; Wansbeek, L. W.; Jungmann, K.; Timmermans, R. G. E.; Willmann, L.; Wilschut, H. W.

    2011-01-01

    We explore the potential of the electric quadrupole transitions 7s (2)S(1/2)-(6)d (2)D(3/2), 6d (2)D(5/2) in radium isotopes as single-ion optical frequency standards. The frequency shifts of the clock transitions due to external fields and the corresponding uncertainties are calculated. Several

  15. Towards a Precise Measurement of Atomic Parity Violation in a Single Ra+ Ion

    NARCIS (Netherlands)

    Jungmann, K.; Giri, G. S.; Versolato, O. O.; Steadman, SG; Stephans, GSF; Taylor, FE

    2012-01-01

    In the singly charged Ra+ ion the contributions of the weak interactions to the atomic level energies are some 50 times larger than in the Cs atom. We report the results of laser spectroscopy experiments on Ra-209-214(+) isotopes in preparation of a precision atomic parity violation experiment.

  16. Dimer self-organization of impurity ytterbium ions in synthetic forsterite single crystals

    Science.gov (United States)

    Tarasov, V. F.; Sukhanov, A. A.; Dudnikova, V. B.; Zharikov, E. V.; Lis, D. A.; Subbotin, K. A.

    2017-07-01

    Paramagnetic centers formed by impurity Yb3+ ions in synthetic forsterite (Mg2SiO4) grown by the Czochralski technique are studied by X-band CW and pulsed EPR spectroscopy. These centers are single ions substituting magnesium in two different crystallographic positions denoted M1 and M2, and dimer associates formed by two Yb3+ ions in nearby positions M1. It is established that there is a pronounced mechanism favoring self-organization of ytterbium ions in dimer associates during the crystal growth, and the mechanism of the spin-spin coupling between ytterbium ions in the associate has predominantly a dipole-dipole character, which makes it possible to control the energy of the spin-spin interaction by changing the orientation of the external magnetic field. The structural computer simulation of cluster ytterbium centers in forsterite crystals is carried out by the method of interatomic potentials using the GULP 4.0.1 code (General Utility Lattice Program). It is established that the formation of dimer associates in the form of a chain parallel to the crystallographic axis consisting of two ytterbium ions with a magnesium vacancy between them is the most energetically favorable for ytterbium ions substituting magnesium in the position M1.

  17. Transport of ions and biomolecules through asymmetric single nanopores fabricated by heavy ion irradiation and chemical etching

    International Nuclear Information System (INIS)

    Neumann, R.; Siwy, Z.; Schiedt, B.; Toimil Molares, M.E.

    2005-01-01

    In the framework of the CRP 'Radiation Synthesis of Stimuli-responsive Membranes, Hydrogels and Adsorbents for Separation Purposes', GSI has worked on the production of polymeric single conical nanopores and the study of the ionic transport through these pores. To produce single-pore membranes, polyethylene teraphthalate (PET) and polyimide (PI) foils were first irradiated with GeV single heavy ions. By subsequent one-side etching, asymmetric nanopores were created. The diameter of the conical pores in PET varied between 4-20 nm at the small opening and several hundred nm at the large opening. In the case of PI, due to the higher bulk etching rate, the large aperture reached a few μm. The current-voltage (I-V) characteristics were measured at symmetric electrolyte conditions of KCl at various concentrations and pH values. It was found that conical nanopores with charged surfaces are cation selective, and show preferential cation flow (i.e. rectification) from the narrow entrance to the wide opening of the cone. Concentration and pH influence the rectification properties for both polymers was studied. The experimental results are in agreement with existing models. The transient transport properties of single PET and PI pores were also investigated. The ion current through PET nanopores fluctuates considerably, the fluctuation depending on the voltage, whereas PI nanopores display a stable current signal for KCl concentrations between 0.1 and 3 M, and pH values between 2 and 8. This different behavior has been attributed to the chemical structure of the two polymers influencing surface characteristics of the resulting nanopores. Finally, the application of polyimide conical nanopores as single-molecule-DNA sensors is being investigated. First results demonstrate their ability to detect individual plasmid DNA molecules. The nanopore sensor is also able to discriminate between DNA fragments of different lengths. (author)

  18. Fluorescence-based high-throughput functional profiling of ligand-gated ion channels at the level of single cells.

    Directory of Open Access Journals (Sweden)

    Sahil Talwar

    Full Text Available Ion channels are involved in many physiological processes and are attractive targets for therapeutic intervention. Their functional properties vary according to their subunit composition, which in turn varies in a developmental and tissue-specific manner and as a consequence of pathophysiological events. Understanding this diversity requires functional analysis of ion channel properties in large numbers of individual cells. Functional characterisation of ligand-gated channels involves quantitating agonist and drug dose-response relationships using electrophysiological or fluorescence-based techniques. Electrophysiology is limited by low throughput and high-throughput fluorescence-based functional evaluation generally does not enable the characterization of the functional properties of each individual cell. Here we describe a fluorescence-based assay that characterizes functional channel properties at single cell resolution in high throughput mode. It is based on progressive receptor activation and iterative fluorescence imaging and delivers >100 dose-responses in a single well of a 384-well plate, using α1-3 homomeric and αβ heteromeric glycine receptor (GlyR chloride channels as a model system. We applied this assay with transiently transfected HEK293 cells co-expressing halide-sensitive yellow fluorescent protein and different GlyR subunit combinations. Glycine EC50 values of different GlyR isoforms were highly correlated with published electrophysiological data and confirm previously reported pharmacological profiles for the GlyR inhibitors, picrotoxin, strychnine and lindane. We show that inter and intra well variability is low and that clustering of functional phenotypes permits identification of drugs with subunit-specific pharmacological profiles. As this method dramatically improves the efficiency with which ion channel populations can be characterized in the context of cellular heterogeneity, it should facilitate systems

  19. Total ionizing dose (TID) effect and single event effect (SEE) in quasi-SOI nMOSFETs

    International Nuclear Information System (INIS)

    Tan, Fei; Huang, Ru; An, Xia; Wu, Weikang; Feng, Hui; Huang, Liangxi; Fan, Jiewen; Zhang, Xing; Wang, Yangyuan

    2014-01-01

    This paper studies the total ionizing dose (TID) and single event effect (SEE) in quasi-SOI nMOSFETs for the first time. After exposure to gamma rays, the off-state leakage current (I off ) of a quasi-SOI device increases with the accumulating TID, and the on-state bias configuration is shown to be the worst-case bias configuration during irradiation. Although an additional TID-sensitive region is introduced by the unique structure of the quasi-SOI device, the influence of positive charge trapped in L-type oxide layers on the degradation of device performance is neglectable. Since the TID-induced leakage path in the quasi-SOI device is greatly reduced due to the isolation of L-type oxide layers, the TID-induced I off  degradation in the quasi-SOI device is greatly suppressed. In addition, 3D simulation is performed to investigate the SEE of the quasi-SOI device. The full-width at half-maximum (FWHM) of worst-case drain current transient and collected charges of the quasi-SOI device after single-ion-striking is smaller than in a bulk Si device, indicating that the quasi-SOI device inherits the advantage of an SOI device in single event transient immunity. Therefore, the quasi-SOI device, which has improved electrical properties and radiation-hardened characteristics for both TID and SEE, can be considered as one of the promising candidates for space applications. (paper)

  20. Deep level defects in 4H-SiC introduced by ion implantation: the role of single ion regime.

    Science.gov (United States)

    Pastuović, Željko; Siegele, Rainer; Capan, Ivana; Brodar, Tomislav; Sato, Shin-Ichiro; Ohshima, Takeshi

    2017-11-29

    We characterized intrinsic deep level defects created in ion collision cascades which were produced by patterned implantation of single accelerated 2.0 MeV He and 600 keV H ions into n-type 4H-SiC epitaxial layers using a fast-scanning reduced-rate ion microbeam. The initial deep level transient spectroscopy measurement performed on as-grown material in the temperature range 150-700 K revealed the presence of only two electron traps, Z 1/2 (0.64 eV) and EH 6/7 (1.84 eV) assigned to the two different charge state transitions of the isolated carbon vacancy, V C (=/0) and (0/+). C-V measurements of as-implanted samples revealed the increasing free carrier removal with larger ion fluence values, in particular at depth corresponding to a vicinity of the end of an ion range. The first DLTS measurement of as-implanted samples revealed formation of additional deep level defects labelled as ET1 (0.35 eV), ET2 (0.65 eV) and EH3 (1.06 eV) which were clearly distinguished from the presence of isolated carbon vacancies (Z 1/2 and EH 6/7 defects) in increased concentrations after implantations either by He or H ions. Repeated C-V measurements showed that a partial net free-carrier recovery occurred in as-implanted samples upon the low-temperature annealing following the first DLTS measurement. The second DLTS measurement revealed the almost complete removal of ET2 defect and the partial removal of EH3 defect, while the concentrations of Z 1/2 and EH 6/7 defects increased, due to the low temperature annealing up to 700 K accomplished during the first temperature scan. We concluded that the ET2 and EH3 defects: (i) act as majority carrier removal traps, (ii) exhibit a low thermal stability and (iii) can be related to the simple point-like defects introduced by light ion implantation, namely interstitials and/or complex of interstitials and vacancies in both carbon and silicon sub-lattices.

  1. A Stochastic Single-Molecule Event Triggers Phenotype Switching of a Bacterial Cell

    Science.gov (United States)

    Xie, Sunney; Choi, Paul; Cai, Long

    2009-03-01

    By monitoring fluorescently labeled lactose permease with single-molecule sensitivity, we investigated the molecular mechanism of how an Escherichia coli cell with the lac operon switches from one phenotype to another. At intermediate inducer concentrations, a population of genetically identical cells exhibits two phenotypes: induced cells with highly fluorescent membranes and uninduced cells with a small number of membrane-bound permeases. We found that this basal-level expression results from partial dissociation of the tetrameric lactose repressor from one of its operators on looped DNA. In contrast, infrequent events of complete dissociation of the repressor from DNA result in large bursts of permease expression that trigger induction of the lac operon. Hence, a stochastic single-molecule event determines a cell's phenotype.

  2. Estimation of the LET threshold of single event upset of microelectronics in experiments with Cf-252

    International Nuclear Information System (INIS)

    Kuznetsov, N.V.; Nymmik, R.A.

    1996-01-01

    A method is proposed for analyzing single event upsets (SEU) in large scale integration circuits of random access memory (RAM) when exposed to Cf-252 fission fragments. The method makes is possible to find the RAM linear energy transfer (LET) threshold to be used for estimations of RAM SEU rates in space. The method is illustrated by analyzing experimental data for the 2 x 8 kbit CMOS/bulk RAM. (author)

  3. In-flight and ground testing of single event upset sensitivity in static RAMs

    International Nuclear Information System (INIS)

    Johansson, K.; Dyreklev, P.; Granbom, B.; Calvet, C.; Fourtine, S.; Feuillatre, O.

    1998-01-01

    This paper presents the results from in-flight measurements of single event upsets (SEU) in static random access memories (SRAM) caused by the atmospheric radiation environment at aircraft altitudes. The memory devices were carried on commercial airlines at high altitude and mainly high latitudes. The SEUs were monitored by a Component Upset Test Equipment (CUTE), designed for this experiment. The in flight results are compared to ground based testing with neutrons from three different sources

  4. Prediction Methodology for Proton Single Event Burnout: Application to a STRIPFET Device

    CERN Document Server

    Siconolfi, Sara; Oser, Pascal; Spiezia, Giovanni; Hubert, Guillaume; David, Jean-Pierre

    2015-01-01

    This paper presents a single event burnout (SEB) sensitivity characterization for power MOSFETs, independent from tests, through a prediction model issued from TCAD analysis and the knowledge of device topology. The methodology is applied to a STRIPFET device and compared to proton data obtained at PSI, showing a good agreement in the order of magnitude of proton SEB cross section, and thus validating the prediction model as an alternative device characterization with respect to SEB.

  5. Results of single-event multilevel orthopedic surgery in children with cerebral palsy

    Directory of Open Access Journals (Sweden)

    Akhmed Tomov

    2015-11-01

    Full Text Available Background: Single-event multilevel orthopedic surgery is a modern approach in the operative treatment of children with cerebral palsy. Methods: Single-event multilevel orthopedic surgery was carried out in 108 patients with cerebral palsy. Patients’ average age was 11.3±1.7 years. Surgical results were analyzed at follow-up after 18 to 24 months, by way of detailed physical examination, functional assessment, imaging, the Edinburgh Visual Gait Score and Gillette Functional Assessment Questionnaire. Results: In our series, 647 procedures were performed during 141 surgeries. Patients had an average of 4.59 procedures per surgery. Observational gait analysis showed an improvement in stance and swing gait phases in ambulatory children. According to the Gillette Functional Assessment Questionnaire, an increase of functional level was noted in 50 patients but did not change in 32 patients. Conclusions: For children with cerebral palsy, single-event multilevel surgery is defined as two or more surgical procedures of the soft tissue or bone at two or more anatomical levels during one operative procedure. In cases where a large volume of surgery is required, two separate operations with a short break in between, but requiring only one hospital admission and one rehabilitation period, are also included. This approach requires adapted methods of surgical intervention, and appropriate methods of anesthesia and pain control in the postoperative period to the start of rehabilitation. Compliance with the above principles allowed the necessary correction of orthopedic complications to be achieved in all cases.

  6. RBSPICE detection of high energy ion modulations during a high beta plasma event in the Earth's inner magnetosphere

    Science.gov (United States)

    Soto-chavez, A. R.; Cohen, R. J.; Lanzerotti, L. J.; Gerrard, A. J.

    2016-12-01

    We describe energetic ions (˜ 50-500 keV) modulations detected by RBSPICE-A instrument [on-board NASA's Van Allen Probes] on 2013-04-24. This is a high beta plasma event that shows features characteristic of the drift-mirror instability. We describe the plasma conditions during the event and explain the wave main features as well as the plasma instability condition.

  7. Effect of H + ion implantation on structural, morphological, optical and dielectric properties of L-arginine monohydrochloride monohydrate single crystals

    Science.gov (United States)

    Sangeetha, K.; Babu, R. Ramesh; Kumar, P.; Bhagvannarayana, G.; Ramamurthi, K.

    2011-06-01

    L-arginine monohydrochloride monohydrate (LAHCl) single crystals have been implanted with 100 keV H + ions at different ion fluence ranging from 10 12 to 10 15 ions/cm 2. Implanted LAHCl single crystals have been investigated for property changes. Crystal surface and crystalline perfection of the pristine and implanted crystals were analyzed by atomic force microscope and high-resolution X-ray diffraction studies, respectively. Optical absorption bands induced by colour centers, refractive index and birefringence, mechanical stability and dielectric constant of implanted crystals were studied at different ion fluence and compared with that of pristine LAHCl single crystal.

  8. Modification of mechanical properties of single crystal aluminum oxide by ion beam induced structural changes

    International Nuclear Information System (INIS)

    Ensinger, W.; Nowak, R.; Horino, Y.; Baba, K.

    1993-01-01

    The mechanical behaviour of ceramics is essentially determined by their surface qualities. As a surface modification technique, ion implantation provides the possibility to modify the mechanical properties of ceramics. Highly energetic ions are implanted into the near-surface region of a material and modify its composition and structure. Ions of aluminum, oxygen, nickel and tantalum were implanted into single-crystal α-aluminum oxide. Three-point bending tests showed that an increase in flexural strength of up to 30% could be obtained after implantation of aluminum and oxygen. Nickel and tantalum ion implantation increased the fracture toughness. Indentation tests with Knoop and Vickers diamonds and comparison of the lengths of the developed radial cracks showed that ion implantation leads to a reaction in cracking. The observed effects are assigned to radiation induced structural changes of the ceramic. Ion bombardment leads to radiation damage and formation of compressive stress. In case of tantalum implantation, the implanted near-surface zone becomes amorphous. These effects make the ceramic more resistant to fracture. (orig.)

  9. Engineering of electronic properties of single layer graphene by swift heavy ion irradiation

    Science.gov (United States)

    Kumar, Sunil; Kumar, Ashish; Tripathi, Ambuj; Tyagi, Chetna; Avasthi, D. K.

    2018-04-01

    In this work, swift heavy ion irradiation induced effects on the electrical properties of single layer graphene are reported. The modulation in minimum conductivity point in graphene with in-situ electrical measurement during ion irradiation was studied. It is found that the resistance of graphene layer decreases at lower fluences up to 3 × 1011 ions/cm2, which is accompanied by the five-fold increase in electron and hole mobilities. The ion irradiation induced increase in electron and hole mobilities at lower fluence up to 1 × 1011 ions/cm2 is verified by separate Hall measurements on another irradiated graphene sample at the selected fluence. In contrast to the adverse effects of irradiation on the electrical properties of materials, we have found improvement in electrical mobility after irradiation. The increment in mobility is explained by considering the defect annealing in graphene after irradiation at a lower fluence regime. The modification in carrier density after irradiation is also observed. Based on findings of the present work, we suggest ion beam irradiation as a useful tool for tuning of the electrical properties of graphene.

  10. Single Qubit Manipulation in a Microfabricated Surface Electrode Ion Trap (Open Access, Publisher’s Version)

    Science.gov (United States)

    2013-09-13

    electrode ion trap with field compensation using a modulated Raman effect D T C Allcock, J A Sherman, D N Stacey et al. Spatially uniform single-qubit gate...in thermal states of motion G Kirchmair, J Benhelm, F Zähringer et al. Normal modes of trapped ions in the presence of anharmonic trap potentials J P...Qloaded = 280) [35]. New Journal of Physics 15 (2013) 093018 (http://www.njp.org/) 5 2.1 GHz Zeeman = 1.4 MHz/G 36 9. 5 nm HF = 12.6 GHz 171Yb+ 2P 1

  11. Changes in ion channel geometry resolved to sub-angstroem precision via single molecule mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Joseph W F; Kasianowicz, John J; Reiner, Joseph E [Semiconductor Electronics Division, Electronics and Electrical Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States)

    2010-11-17

    The ion channel formed by Staphylococcus aureus alpha-hemolysin switches between multiple open conducting states. We describe a method for precisely estimating the changes in the ion channel geometry that correspond to these different states. Experimentally, we observed that the permeability of a single channel to differently sized poly(ethylene glycol) molecules depends on the magnitude of the open state conductance. A simple theory is proposed for determining changes in channel length of 4.2% and in cross-sectional area of - 0.4%.

  12. Single electron attachment and stripping cross sections for relativistic heavy ions

    International Nuclear Information System (INIS)

    Crawford, H.J.

    1979-06-01

    The results of a Bevalac experiment to measure the single electron attachment and stripping cross sections for relativistic (0.5 1 , and fully stripped, N 0 , ion beams emerging from the targets. Separate counters measured the number of ions in each charge state. The ratios N 1 /N 0 for different target thicknesses were fit to a simple growth curve to yield electron attachment and stripping cross sections. The data are compared to relativistic extrapolations of available theories. Clear evidence for two separate attachment processes, radiative and non-radiative, is found. Data are compared to a recently improved formulation for the stripping cross sections

  13. Single electron attachment and stripping cross sections for relativistic heavy ions

    International Nuclear Information System (INIS)

    Crawford, H.J.

    1979-01-01

    The results of a Bevalac experiment to measure the single electron attachment and stripping cross sections for relativistic (0.5 1 , and fully stripped, N 0 , ion beams emerging from the targets. Separate counters measured the number of ions in each charge state. The ratios N 1 /N 0 for different target thicknesses were fit to a simple growth curve to yield electron attachment and stripping cross sections. The data are compared to relativistic extrapolations of available theories. Clear evidence of two separate attachment processes, radiative and non-radiative, is found. Data are compared to a recently improved formulation for the stripping cross sections

  14. Accuracy of the detection of binding events using 3D single particle tracking.

    Science.gov (United States)

    Carozza, Sara; Culkin, Jamie; van Noort, John

    2017-01-01

    Nanoparticles can be used as markers to track the position of biomolecules, such as single proteins, inside living cells. The activity of a protein can sometimes be inferred from changes in the mobility of the attached particle. Mean Square Displacement analysis is the most common method to obtain mobility information from trajectories of tracked particles, such as the diffusion coefficient D . However, the precision of D sets a limit to discriminate changes in mobility caused by biological events from changes that reflect the stochasticity inherent to diffusion. This issue is of particular importance in an experiment aiming to quantify dynamic processes. Here, we present simulations and 3D tracking experiments with Gold Nanorods freely diffusing in glycerol solution to establish the best analysis parameters to extract the diffusion coefficient. We applied this knowledge to the detection of a temporary change in diffusion, as it can occur due to the transient binding of a particle to an immobile structure within the cell, and tested its dependence on the magnitude of the change in diffusion and duration of this event. The simulations show that the spatial accuracy of particle tracking generally does not limit the detection of short binding events. Careful analysis of the magnitude of the change in diffusion and the number of frames per binding event is required for accurate quantification of such events.

  15. Autonomous Gait Event Detection with Portable Single-Camera Gait Kinematics Analysis System

    Directory of Open Access Journals (Sweden)

    Cheng Yang

    2016-01-01

    Full Text Available Laboratory-based nonwearable motion analysis systems have significantly advanced with robust objective measurement of the limb motion, resulting in quantified, standardized, and reliable outcome measures compared with traditional, semisubjective, observational gait analysis. However, the requirement for large laboratory space and operational expertise makes these systems impractical for gait analysis at local clinics and homes. In this paper, we focus on autonomous gait event detection with our bespoke, relatively inexpensive, and portable, single-camera gait kinematics analysis system. Our proposed system includes video acquisition with camera calibration, Kalman filter + Structural-Similarity-based marker tracking, autonomous knee angle calculation, video-frame-identification-based autonomous gait event detection, and result visualization. The only operational effort required is the marker-template selection for tracking initialization, aided by an easy-to-use graphic user interface. The knee angle validation on 10 stroke patients and 5 healthy volunteers against a gold standard optical motion analysis system indicates very good agreement. The autonomous gait event detection shows high detection rates for all gait events. Experimental results demonstrate that the proposed system can automatically measure the knee angle and detect gait events with good accuracy and thus offer an alternative, cost-effective, and convenient solution for clinical gait kinematics analysis.

  16. Parasitic bipolar amplification in a single event transient and its temperature dependence

    International Nuclear Information System (INIS)

    Liu Zheng; Chen Shu-Ming; Chen Jian-Jun; Qin Jun-Rui; Liu Rong-Rong

    2012-01-01

    Using three-dimensional technology computer-aided design (TCAD) simulation, parasitic bipolar amplification in a single event transient (SET) current of a single transistor and its temperature dependence are studied. We quantify the contributions of different current components in a SET current pulse, and it is found that the proportion of parasitic bipolar amplification in total collected charge is about 30% in both 130-nm and 90-nm technologies. The temperature dependence of parasitic bipolar amplification and the mechanism of the SET pulse are also investigated and quantified. The results show that the proportion of charge induced by parasitic bipolar increases with rising temperature, which illustrates that the parasitic bipolar amplification plays an important role in the charge collection of a single transistor

  17. The tensile effect on crack formation in single crystal silicon irradiated by intense pulsed ion beam

    Science.gov (United States)

    Liang, Guoying; Shen, Jie; Zhang, Jie; Zhong, Haowen; Cui, Xiaojun; Yan, Sha; Zhang, Xiaofu; Yu, Xiao; Le, Xiaoyun

    2017-10-01

    Improving antifatigue performance of silicon substrate is very important for the development of semiconductor industry. The cracking behavior of silicon under intense pulsed ion beam irradiation was studied by numerical simulation in order to understand the mechanism of induced surface peeling observed by experimental means. Using molecular dynamics simulation based on Stillinger Weber potential, tensile effect on crack growth and propagation in single crystal silicon was investigated. Simulation results reveal that stress-strain curves of single crystal silicon at a constant strain rate can be divided into three stages, which are not similar to metal stress-strain curves; different tensile load velocities induce difference of single silicon crack formation speed; the layered stress results in crack formation in single crystal silicon. It is concluded that the crack growth and propagation is more sensitive to strain rate, tensile load velocity, stress distribution in single crystal silicon.

  18. Higher moments of net-proton multiplicity distributions in a heavy-ion event pile-up scenario

    Science.gov (United States)

    Garg, P.; Mishra, D. K.

    2017-10-01

    High-luminosity modern accelerators, like the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) and Large Hadron Collider (LHC) at European Organization for Nuclear Research (CERN), inherently have event pile-up scenarios which significantly contribute to physics events as a background. While state-of-the-art tracking algorithms and detector concepts take care of these event pile-up scenarios, several offline analytical techniques are used to remove such events from the physics analysis. It is still difficult to identify the remaining pile-up events in an event sample for physics analysis. Since the fraction of these events is significantly small, it may not be as serious of an issue for other analyses as it would be for an event-by-event analysis. Particularly when the characteristics of the multiplicity distribution are observable, one needs to be very careful. In the present work, we demonstrate how a small fraction of residual pile-up events can change the moments and their ratios of an event-by-event net-proton multiplicity distribution, which are sensitive to the dynamical fluctuations due to the QCD critical point. For this study, we assume that the individual event-by-event proton and antiproton multiplicity distributions follow Poisson, negative binomial, or binomial distributions. We observe a significant effect in cumulants and their ratios of net-proton multiplicity distributions due to pile-up events, particularly at lower energies. It might be crucial to estimate the fraction of pile-up events in the data sample while interpreting the experimental observable for the critical point.

  19. Damage evolution in Xe-ion irradiated rutile (TiO2) single crystals

    International Nuclear Information System (INIS)

    Li, F.; Sickafus, K.E.; Evans, C.R.; Nastasi, M.

    1999-01-01

    Rutile (TiO 2 ) single crystals with (110) orientation were irradiated with 360 keV Xe 2+ ions at 300 K to fluences ranging from 2 x 10 19 to 1 x 10 20 Xe/m 2 . Irradiated samples were analyzed using: (1) Rutherford backscattering spectroscopy combined with ion channeling analysis (RBS/C); and (2) cross-sectional transmission electron microscopy (XTEM). Upon irradiation to a fluence of 2 x 10 19 Xe/m 2 , the sample thickness penetrated by the implanted ions was observed to consist of three distinct layers: (1) a defect-free layer at the surface (thickness about 12 nm) exhibiting good crystallinity; (2) a second layer with a low density of relatively large-sized defects; and (3) a third layer consisting of a high concentration of small defects. After the fluence was increased to 7 x 10 19 Xe/m 2 , a buried amorphous layer was visible by XTEM. The thickness of the amorphous layer was found to increase with increasing Xe ion fluence. The location of this buried amorphous layer was found to coincide with the measured peak in the Xe concentration (measured by RBS/C), rather than with the theoretical maximum in the displacement damage profile. This observation suggests the implanted Xe ions may serve as nucleation sites for the amorphization transformation. The total thickness of the damaged microstructure due to ion irradiation was always found to be much greater than the projected range of the Xe ions. This is likely due to point defect migration under the high stresses induced by ion implantation

  20. Single-column ion chromatography with determination of hydrazoic acid produced in spent nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Ma Guilan; Tan Shuping

    2006-01-01

    The reaction of hydrazine and its derivative with ammonium metavanadate may produce hydrazoic acid (HN 3 ). A single-column ion chromatography is used for the determination of HN 3 after neutralizing the rest acid in the sample with sodium hydroxide. Chromatography separation of HN 3 is carried out on a 25 cm x 0.46 cm (inside diameter) stainless steel column packed with Vydac IC302 ion Chromatography packing. The eluent is 1 mmol/L o-phthalic acid, and the ion is detected by conductivity detector. The detection limit in the presence chromatography is 5 μg/mL, the linear range is from 5 to 201 μg/mL, the linear correlation coefficient is 0.9994, respectively. The analysis accuracy is 2% for standard sample, and the detection limit is 51 μg/mL for HN 3 in the real sample. (authors)

  1. Multiple discrete-energy ion features in the inner magnetosphere: 9 February 1998, event

    Directory of Open Access Journals (Sweden)

    Y. Ebihara

    2004-04-01

    Full Text Available Multiple discrete-energy ion bands observed by the Polar satellite in the inner magnetosphere on 9 February 1998 were investigated by means of particle simulation with a realistic model of the convection electric field. The multiple bands appeared in the energy vs. L spectrum in the 1–100 keV range when Polar traveled in the heart of the ring current along the outbound and inbound paths. We performed particle tracing, and simulated the energy vs. L spectra of proton fluxes under the dipole magnetic field, the corotation electric field, and the realistic convection electric field model with its parameters depending on the solar wind data. Simulated spectra are shown to agree well with the observed ones. A better agreement is achieved when we rotate the convection electric potential eastward by 2h inMLT and we change the distribution function in time in the near-Earth magnetotail. It is concluded that the multiple bands are likely produced by two processes for this particular event, that is, changes in the convection electric field (for >3keV protons and changes in the distribution function in the near-Earth magnetotail (for <3keV protons. Key words. Magnetospheric physics (energetic particles, trapped; electric field – Space plasma physics (numerical simulation studies

  2. Modeling a Single SEP Event from Multiple Vantage Points Using the iPATH Model

    Science.gov (United States)

    Hu, Junxiang; Li, Gang; Fu, Shuai; Zank, Gary; Ao, Xianzhi

    2018-02-01

    Using the recently extended 2D improved Particle Acceleration and Transport in the Heliosphere (iPATH) model, we model an example gradual solar energetic particle event as observed at multiple locations. Protons and ions that are energized via the diffusive shock acceleration mechanism are followed at a 2D coronal mass ejection-driven shock where the shock geometry varies across the shock front. The subsequent transport of energetic particles, including cross-field diffusion, is modeled by a Monte Carlo code that is based on a stochastic differential equation method. Time intensity profiles and particle spectra at multiple locations and different radial distances, separated in longitudes, are presented. The results shown here are relevant to the upcoming Parker Solar Probe mission.

  3. Charging the quantum capacitance of graphene with a single biological ion channel.

    Science.gov (United States)

    Wang, Yung Yu; Pham, Ted D; Zand, Katayoun; Li, Jinfeng; Burke, Peter J

    2014-05-27

    The interaction of cell and organelle membranes (lipid bilayers) with nanoelectronics can enable new technologies to sense and measure electrophysiology in qualitatively new ways. To date, a variety of sensing devices have been demonstrated to measure membrane currents through macroscopic numbers of ion channels. However, nanoelectronic based sensing of single ion channel currents has been a challenge. Here, we report graphene-based field-effect transistors combined with supported lipid bilayers as a platform for measuring, for the first time, individual ion channel activity. We show that the supported lipid bilayers uniformly coat the single layer graphene surface, acting as a biomimetic barrier that insulates (both electrically and chemically) the graphene from the electrolyte environment. Upon introduction of pore-forming membrane proteins such as alamethicin and gramicidin A, current pulses are observed through the lipid bilayers from the graphene to the electrolyte, which charge the quantum capacitance of the graphene. This approach combines nanotechnology with electrophysiology to demonstrate qualitatively new ways of measuring ion channel currents.

  4. The single-ion anisotropy effects in the mixed-spin ternary-alloy

    Science.gov (United States)

    Albayrak, Erhan

    2018-04-01

    The effect of single-ion anisotropy on the thermal properties of the ternary-alloy in the form of ABpC1-p is investigated on the Bethe lattice (BL) in terms of exact recursion relations. The simulation on the BL consists of placing A atoms (spin-1/2) on the odd shells and randomly placing B (spin-3/2) or C (spin-5/2) atoms with concentrations p and 1 - p, respectively, on the even shells. The phase diagrams are calculated in possible planes spanned by the system parameters: temperature, single-ion anisotropy, concentration and ratio of the bilinear interaction parameters for z = 3 corresponding to the honeycomb lattice. It is found that the crystal field drives the system to the lowest possible state therefore reducing the temperatures of the critical lines in agreement with the literature.

  5. Modifying the properties of 4f single-ion magnets by peripheral ligand functionalisation

    DEFF Research Database (Denmark)

    Pedersen, Kasper Steen; Ungur, Liviu; Sigrist, Marc

    2014-01-01

    We study the ligand-field splittings and magnetic properties of three ErIII single-ion magnets which differ in the peripheral ligand sphere but exhibit similar first coordination spheres by inelastic neutron scattering (INS) and SQUID magnetometry. The INS spectra of the three compounds are profo......We study the ligand-field splittings and magnetic properties of three ErIII single-ion magnets which differ in the peripheral ligand sphere but exhibit similar first coordination spheres by inelastic neutron scattering (INS) and SQUID magnetometry. The INS spectra of the three compounds...... allows for the extraction of the sign and magnitude of all symmetry-allowed Stevens parameters. The parameter values and the energy spectrum derived from INS are compared to the results of state-of-the-art ab initio CASSCF calculations. Temperature-dependent alternating current (ac) susceptibility...... measurements suggest that the magnetisation relaxation in the investigated temperature range of 1.9 K

  6. Investigating change of properties in gallium ion irradiation patterned single-layer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Quan, E-mail: wangq@mail.ujs.edu.cn [School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China); Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (China); Dong, Jinyao; Bai, Bing [School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China); Xie, Guoxin [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China)

    2016-10-14

    Besides its excellent physical properties, graphene promises to play a significant role in electronics with superior properties, which requires patterning of graphene for device integration. Here, we presented the changes in properties of single-layer graphene before and after patterning using gallium ion beam. Combined with Raman spectra of graphene, the scanning capacitance microscopy (SCM) image confirmed that a metal–insulator transition occurred after large doses of gallium ion irradiation. The changes in work function and Raman spectra of graphene indicated that the defect density increased as increasing the dose and a structural transition occurred during gallium ion irradiation. The patterning width of graphene presented an increasing trend due to the scattering influence of the impurities and the substrate. - Highlights: • The scanning capacitance microscopy image confirmed a metal–insulator transition occurred after large doses of gallium ion irradiation. • The changes indicated the defect density increased as increasing the dose and a structural transition occurred during gallium ion irradiation. • The patterning width of graphene presented a increasing trend due to the scattering influence of the impurities and the substrate.

  7. Investigating change of properties in gallium ion irradiation patterned single-layer graphene

    International Nuclear Information System (INIS)

    Wang, Quan; Dong, Jinyao; Bai, Bing; Xie, Guoxin

    2016-01-01

    Besides its excellent physical properties, graphene promises to play a significant role in electronics with superior properties, which requires patterning of graphene for device integration. Here, we presented the changes in properties of single-layer graphene before and after patterning using gallium ion beam. Combined with Raman spectra of graphene, the scanning capacitance microscopy (SCM) image confirmed that a metal–insulator transition occurred after large doses of gallium ion irradiation. The changes in work function and Raman spectra of graphene indicated that the defect density increased as increasing the dose and a structural transition occurred during gallium ion irradiation. The patterning width of graphene presented an increasing trend due to the scattering influence of the impurities and the substrate. - Highlights: • The scanning capacitance microscopy image confirmed a metal–insulator transition occurred after large doses of gallium ion irradiation. • The changes indicated the defect density increased as increasing the dose and a structural transition occurred during gallium ion irradiation. • The patterning width of graphene presented a increasing trend due to the scattering influence of the impurities and the substrate.

  8. Single-crate stand-alone CAMAC control system for a negative ion source test facility

    International Nuclear Information System (INIS)

    Juras, R.C.; Ziegler, N.F.

    1979-01-01

    A single-crate CAMAC system was configured to control a negative ion source development facility at ORNL and control software was written for the crate microcomputer. The software uses inputs from a touch panel and a shaft encoder to control the various operating parameters of the test facility and uses the touch panel to display the operating status. Communication to and from the equipment at ion source potential is accomplished over optical fibers from an ORNL-built CAMAC module. A receiver at ion source potential stores the transmitted data and some of these stored values are then used to control discrete parameters of the ion source (i.e., power supply on or off). Other stored values are sent to a multiplexed digital-to-analog converter to provide analog control signals. A transmitter at ion source potential transmits discrete status information and several channels of analog data from an analog-to-digital converter back to the ground-potential receiver where it is stored to be read and displayed by the software

  9. Not Only Enthalpy: Large Entropy Contribution to Ion Permeation Barriers in Single-File Channels

    OpenAIRE

    Portella, Guillem; Hub, Jochen S.; Vesper, Martin D.; de Groot, Bert L.

    2008-01-01

    The effect of channel length on the barrier for potassium ion permeation through single-file channels has been studied by means of all-atom molecular dynamics simulations. Using series of peptidic gramicidin-like and simplified ring-structured channels, both embedded in model membranes, we obtained two distinct types of behavior: saturation of the central free energy barriers for peptidic channels and a linear increase in simplified ring-structured channels with increasing channel length. The...

  10. The rise of 3-d single-ion magnets in molecular magnetism: towards materials from molecules?

    Science.gov (United States)

    Frost, Jamie M; Harriman, Katie L M; Murugesu, Muralee

    2016-04-21

    Single-molecule magnets (SMMs) that contain one spin centre (so-called single-ion magnets) theoretically represent the smallest possible unit for spin-based electronic devices. The realisation of this and related technologies, depends on first being able to design systems with sufficiently large energy barriers to magnetisation reversal, U eff , and secondly, on being able to organise these molecules into addressable arrays. In recent years, significant progress has been made towards the former goal - principally as a result of efforts which have been directed towards studying complexes based on highly anisotropic lanthanide ions, such as Tb(iii) and Dy(iii). Since 2013 however, and the remarkable report by Long and co-workers of a linear Fe(i) system exhibiting U eff = 325 K, single-ion systems of transition metals have undergone something of a renaissance in the literature. Not only do they have important lessons to teach us about anisotropy and relaxation dynamics in the quest to enhance U eff , the ability to create strongly coupled spin systems potentially offers access to a whole of host of 1, 2 and 3-dimensional materials with interesting structural and physical properties. This perspective summarises recent progress in this rapidly expanding sub-genre of molecular magnetism from the viewpoint of the synthetic chemist, with a particular focus on the lessons that have so far been learned from single-ion magnets of the d-block, and, the future research directions which we feel are likely to emerge in the coming years.

  11. A generalized Jaynes-Cummings model: The relativistic parametric amplifier and a single trapped ion

    Energy Technology Data Exchange (ETDEWEB)

    Ojeda-Guillén, D., E-mail: dojedag@ipn.mx [Escuela Superior de Cómputo, Instituto Politécnico Nacional, Av. Juan de Dios Bátiz esq. Av. Miguel Othón de Mendizábal, Col. Lindavista, Delegación Gustavo A. Madero, C.P. 07738 Ciudad de México (Mexico); Mota, R. D. [Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Culhuacán, Instituto Politécnico Nacional, Av. Santa Ana No. 1000, Col. San Francisco Culhuacán, Delegación Coyoacán, C.P. 04430 Ciudad de México (Mexico); Granados, V. D. [Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Ed. 9, Unidad Profesional Adolfo López Mateos, Delegación Gustavo A. Madero, C.P. 07738 Ciudad de México (Mexico)

    2016-06-15

    We introduce a generalization of the Jaynes-Cummings model and study some of its properties. We obtain the energy spectrum and eigenfunctions of this model by using the tilting transformation and the squeezed number states of the one-dimensional harmonic oscillator. As physical applications, we connect this new model to two important and novelty problems: the relativistic parametric amplifier and the quantum simulation of a single trapped ion.

  12. Effectiveness Analysis of a Non-Destructive Single Event Burnout Test Methodology

    CERN Document Server

    Oser, P; Spiezia, G; Fadakis, E; Foucard, G; Peronnard, P; Masi, A; Gaillard, R

    2014-01-01

    It is essential to characterize power MosFETs regarding their tolerance to destructive Single Event Burnouts (SEB). Therefore, several non-destructive test methods have been developed to evaluate the SEB cross-section of power devices. A power MosFET has been evaluated using a test circuit, designed according to standard non-destructive test methods discussed in the literature. Guidelines suggest a prior adaptation of auxiliary components to the device sensitivity before the radiation test. With the first value chosen for the de-coupling capacitor, the external component initiated destructive events and affected the evaluation of the cross-section. As a result, the influence of auxiliary components on the device cross-section was studied. This paper presents the obtained experimental results, supported by SPICE simulations, to evaluate and discuss how the circuit effectiveness depends on the external components.

  13. Anisotropy effect of crater formation on single crystal silicon surface under intense pulsed ion beam irradiation

    Science.gov (United States)

    Shen, Jie; Yu, Xiao; Zhang, Jie; Zhong, Haowen; Cui, Xiaojun; Liang, Guoying; Yu, Xiang; Huang, Wanying; Shahid, Ijaz; Zhang, Xiaofu; Yan, Sha; Le, Xiaoyun

    2018-04-01

    Due to the induced extremely fast thermal and dynamic process, Intense Pulsed Ion Beam (IPIB) is widely applied in material processing, which can bring enhanced material performance and surface craters as well. To investigate the craters' formation mechanism, a specific model was built with Finite Element Methods (FEM) to simulate the thermal field on irradiated single crystal silicon. The direct evidence for the existence of the simulated 6-fold rotational symmetric thermal distribution was provided by electron microscope images obtained on single crystal silicon. The correlation of the experiment and simulation is of great importance to understand the interaction between IPIB and materials.

  14. Towards radiocarbon dating of single foraminifera with a gas ion source

    Science.gov (United States)

    Wacker, L.; Lippold, J.; Molnár, M.; Schulz, H.

    2013-01-01

    Carbonate shells from foraminifera are often analysed for radiocarbon to determine the age of deep-sea sediments or to assess radiocarbon reservoir ages. However, a single foraminiferal test typically contains only a few micrograms of carbon, while most laboratories require more than 100 μg for radiocarbon dating with an accelerator mass spectrometry (AMS) system. The collection of the required amount of foraminifera for a single analyses is therefore time consuming and not always possible. Here, we present a convenient method to measure the radiocarbon content of foraminifera using an AMS system fitted with a gas ion source. CO2 is liberated from 150 to 1150 μg of carbonate in septum sealed vials by acid decomposition of the carbonate. The CO2 is collected on a zeolite trap and subsequently transferred to a syringe from where it is delivered to the ion source. A sample of 400 μg (50 μg C) typically gives a 12C- ion source current of 10-15 μA over 20 min, yielding a measurement precision of less than 7 per mil for a modern sample. Using this method, we were able to date a single 560 μg Cibicides pseudoungerianus test at 14,030 ± 160 radiocarbon years. Only a minor modification to our existing gas handling system was required and the system is fully automatable to further reduce the effort involved for sample preparation.

  15. Towards radiocarbon dating of single foraminifera with a gas ion source

    International Nuclear Information System (INIS)

    Wacker, L.; Lippold, J.; Molnár, M.; Schulz, H.

    2013-01-01

    Carbonate shells from foraminifera are often analysed for radiocarbon to determine the age of deep-sea sediments or to assess radiocarbon reservoir ages. However, a single foraminiferal test typically contains only a few micrograms of carbon, while most laboratories require more than 100 μg for radiocarbon dating with an accelerator mass spectrometry (AMS) system. The collection of the required amount of foraminifera for a single analyses is therefore time consuming and not always possible. Here, we present a convenient method to measure the radiocarbon content of foraminifera using an AMS system fitted with a gas ion source. CO 2 is liberated from 150 to 1150 μg of carbonate in septum sealed vials by acid decomposition of the carbonate. The CO 2 is collected on a zeolite trap and subsequently transferred to a syringe from where it is delivered to the ion source. A sample of 400 μg (50 μg C) typically gives a 12 C − ion source current of 10–15 μA over 20 min, yielding a measurement precision of less than 7 per mil for a modern sample. Using this method, we were able to date a single 560 μg Cibicides pseudoungerianus test at 14,030 ± 160 radiocarbon years. Only a minor modification to our existing gas handling system was required and the system is fully automatable to further reduce the effort involved for sample preparation.

  16. Towards radiocarbon dating of single foraminifera with a gas ion source

    Energy Technology Data Exchange (ETDEWEB)

    Wacker, L., E-mail: wacker@phys.ethz.ch [Laboratory of Ion Beam Physics, ETH Zurich, 8093 Zurich (Switzerland); Lippold, J. [Heidelberg Academy of Sciences, 69120 Heidelberg (Germany); Molnar, M. [Laboratory of Ion Beam Physics, ETH Zurich, 8093 Zurich (Switzerland); Institute of Nuclear Research, Hungarian Academy of Sciences, 4026 Debrecen (Hungary); Schulz, H. [Institute for Geosciencies, University of Tuebingen, 72076 Tuebingen (Germany)

    2013-01-15

    Carbonate shells from foraminifera are often analysed for radiocarbon to determine the age of deep-sea sediments or to assess radiocarbon reservoir ages. However, a single foraminiferal test typically contains only a few micrograms of carbon, while most laboratories require more than 100 {mu}g for radiocarbon dating with an accelerator mass spectrometry (AMS) system. The collection of the required amount of foraminifera for a single analyses is therefore time consuming and not always possible. Here, we present a convenient method to measure the radiocarbon content of foraminifera using an AMS system fitted with a gas ion source. CO{sub 2} is liberated from 150 to 1150 {mu}g of carbonate in septum sealed vials by acid decomposition of the carbonate. The CO{sub 2} is collected on a zeolite trap and subsequently transferred to a syringe from where it is delivered to the ion source. A sample of 400 {mu}g (50 {mu}g C) typically gives a {sup 12}C{sup -} ion source current of 10-15 {mu}A over 20 min, yielding a measurement precision of less than 7 per mil for a modern sample. Using this method, we were able to date a single 560 {mu}g Cibicides pseudoungerianus test at 14,030 {+-} 160 radiocarbon years. Only a minor modification to our existing gas handling system was required and the system is fully automatable to further reduce the effort involved for sample preparation.

  17. Single Event Upset Energy Dependence In a Buck-Converter Power Supply Design

    CERN Document Server

    Drake, G; The ATLAS collaboration; De Lurgio, P; Stanek, R; Mellado, B; Gopalakrishnan, A; Mahadik, S; Reed, R; Senthilkumaran, A

    2012-01-01

    We present a study of Single Event Upsets performed on a commercial pulse-width modulator controller chip that we are using for a switching power supply design for the Atlas Tile Calorimeter at the LHC. We performed tests to study the probability of an SEU occurring as a function of incident particle (hadron) energy. We compare the results with prediction from theory. We discuss the performance of the circuit, and perform an analysis using Bendel parameters. We also present a solution that we found using external circuitry that eliminates the effect.

  18. Search for new phenomena using single photon events in the DELPHI detector at LEP

    CERN Document Server

    Abreu, P; Adye, T; Agasi, E; Ajinenko, I; Aleksan, Roy; Alekseev, G D; Alemany, R; Allport, P P; Almehed, S; Amaldi, Ugo; Amato, S; Andreazza, A; Andrieux, M L; Antilogus, P; Apel, W D; Arnoud, Y; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Bambade, P; Barão, F; Barate, R; Barbi, M S; Barbiellini, Guido; Bardin, Dimitri Yuri; Baroncelli, A; Bärring, O; Barrio, J A; Bartl, Walter; Bates, M J; Battaglia, Marco; Baubillier, M; Baudot, J; Becks, K H; Begalli, M; Beillière, P; Belokopytov, Yu A; Belous, K S; Benvenuti, Alberto C; Berggren, M; Bertrand, D; Bianchi, F; Bigi, M; Bilenky, S M; Billoir, P; Bloch, D; Blume, M; Blyth, S; Bolognese, T; Bonesini, M; Bonivento, W; Booth, P S L; Borisov, G; Bosio, C; Bosworth, S; Botner, O; Boudinov, E; Bouquet, B; Bourdarios, C; Bowcock, T J V; Bozzo, M; Branchini, P; Brand, K D; Brenke, T; Brenner, R A; Bricman, C; Brillault, L; Brown, R C A; Brückman, P; Brunet, J M; Bugge, L; Buran, T; Burgsmüller, T; Buschmann, P; Buys, A; Cabrera, S; Caccia, M; Calvi, M; Camacho-Rozas, A J; Camporesi, T; Canale, V; Canepa, M; Cankocak, K; Cao, F; Carena, F; Carroll, L; Caso, Carlo; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Cerrito, L; Chabaud, V; Charpentier, P; Chaussard, L; Chauveau, J; Checchia, P; Chelkov, G A; Chen, M; Chierici, R; Chliapnikov, P V; Chochula, P; Chorowicz, V; Cindro, V; Collins, P; Contreras, J L; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Crawley, H B; Crennell, D J; Crosetti, G; Cuevas-Maestro, J; Czellar, S; Dahl-Jensen, Erik; Dahm, J; D'Almagne, B; Dam, M; Damgaard, G; Dauncey, P D; Davenport, Martyn; Da Silva, W; Defoix, C; Deghorain, A; Della Ricca, G; Delpierre, P A; Demaria, N; De Angelis, A; de Boer, Wim; De Brabandere, S; De Clercq, C; La Vaissière, C de; De Lotto, B; De Min, A; De Paula, L S; De Saint-Jean, C; Dijkstra, H; Di Ciaccio, Lucia; Djama, F; Dolbeau, J; Dönszelmann, M; Doroba, K; Dracos, M; Drees, J; Drees, K A; Dris, M; Dufour, Y; Edsall, D M; Ehret, R; Eigen, G; Ekelöf, T J C; Ekspong, Gösta; Elsing, M; Engel, J P; Ershaidat, N; Erzen, B; Espirito-Santo, M C; Falk, E; Fassouliotis, D; Feindt, Michael; Fenyuk, A; Ferrer, A; Filippas-Tassos, A; Firestone, A; Fischer, P A; Föth, H; Fokitis, E; Fontanelli, F; Formenti, F; Franek, B J; Frenkiel, P; Fries, D E C; Frodesen, A G; Frühwirth, R; Fulda-Quenzer, F; Fuster, J A; Galloni, A; Gamba, D; Gandelman, M; García, C; García, J; Gaspar, C; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Gerber, J P; Gerdyukov, L N; Gibbs, M; Gokieli, R; Golob, B; Gopal, Gian P; Gorn, L; Górski, M; Guz, Yu; Gracco, Valerio; Graziani, E; Grosdidier, G; Grzelak, K; Gumenyuk, S A; Gunnarsson, P; Günther, M; Guy, J; Hahn, F; Hahn, S; Hajduk, Z; Hallgren, A; Hamacher, K; Hao, W; Harris, F J; Hedberg, V; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Higón, E; Hilke, Hans Jürgen; Hill, T S; Holmgren, S O; Holt, P J; Holthuizen, D J; Hoorelbeke, S; Houlden, M A; Huet, K; Hultqvist, K; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, C; Jarlskog, G; Jarry, P; Jean-Marie, B; Johansson, E K; Jönsson, L B; Jönsson, P E; Joram, Christian; Juillot, P; Kaiser, M; Kapusta, F; Karafasoulis, K; Karlsson, M; Karvelas, E; Katsanevas, S; Katsoufis, E C; Keränen, R; Khokhlov, Yu A; Khomenko, B A; Khovanskii, N N; King, B J; Kjaer, N J; Klein, H; Klovning, A; Kluit, P M; Köne, B; Kokkinias, P; Koratzinos, M; Korcyl, K; Kourkoumelis, C; Kuznetsov, O; Kramer, P H; Krammer, Manfred; Kreuter, C; Kronkvist, I J; Krumshtein, Z; Krupinski, W; Kubinec, P; Kucewicz, W; Kurvinen, K L; Lacasta, C; Laktineh, I; Lamblot, S; Lamsa, J; Lanceri, L; Lane, D W; Langefeld, P; Last, I; Laugier, J P; Lauhakangas, R; Leder, Gerhard; Ledroit, F; Lefébure, V; Legan, C K; Leitner, R; Lemoigne, Y; Lemonne, J; Lenzen, Georg; Lepeltier, V; Lesiak, T; Liko, D; Lindner, R; Lipniacka, A; Lippi, I; Lörstad, B; Lokajícek, M; Loken, J G; López, J M; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J N; Maehlum, G; Maio, A; Malychev, V; Mandl, F; Marco, J; Marco, R P; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Maron, T; Martínez-Rivero, C; Martínez-Vidal, F; Martí i García, S; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, M; McCubbin, M L; McKay, R; McNulty, R; Medbo, J; Merk, M; Meroni, C; Meyer, S; Meyer, W T; Michelotto, M; Migliore, E; Mirabito, L; Mitaroff, Winfried A; Mjörnmark, U; Moa, T; Møller, R; Mönig, K; Monge, M R; Morettini, P; Müller, H; Mundim, L M; Murray, W J; Muryn, B; Myatt, Gerald; Naraghi, F; Navarria, Francesco Luigi; Navas, S; Nawrocki, K; Negri, P; Némécek, S; Neumann, W; Neumeister, N; Nicolaidou, R; Nielsen, B S; Nieuwenhuizen, M; Nikolaenko, V; Niss, P; Nomerotski, A; Normand, Ainsley; Oberschulte-Beckmann, W; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Österberg, K; Ouraou, A; Paganini, P; Paganoni, M; Pagès, P; Palka, H; Papadopoulou, T D; Papageorgiou, K; Pape, L; Parkes, C; Parodi, F; Passeri, A; Pegoraro, M; Peralta, L; Pernegger, H; Pernicka, Manfred; Perrotta, A; Petridou, C; Petrolini, A; Petrovykh, M; Phillips, H T; Piana, G; Pierre, F; Pimenta, M; Pindo, M; Plaszczynski, S; Podobrin, O; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Prest, M; Privitera, P; Pukhaeva, N; Pullia, Antonio; Radojicic, D; Ragazzi, S; Rahmani, H; Rames, J; Ratoff, P N; Read, A L; Reale, M; Rebecchi, P; Redaelli, N G; Regler, Meinhard; Reid, D; Renton, P B; Resvanis, L K; Richard, F; Richardson, J; Rídky, J; Rinaudo, G; Ripp, I; Romero, A; Roncagliolo, I; Ronchese, P; Roos, L; Rosenberg, E I; Rosso, E; Roudeau, Patrick; Rovelli, T; Rückstuhl, W; Ruhlmann-Kleider, V; Ruiz, A; Rybicki, K; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sajot, G; Salt, J; Sánchez, J; Sannino, M; Schimmelpfennig, M; Schneider, H; Schwickerath, U; Schyns, M A E; Sciolla, G; Scuri, F; Seager, P; Sedykh, Yu; Segar, A M; Seitz, A; Sekulin, R L; Shellard, R C; Siccama, I; Siegrist, P; Simonetti, S; Simonetto, F; Sissakian, A N; Sitár, B; Skaali, T B; Smadja, G; Smirnov, N; Smirnova, O G; Smith, G R; Solovyanov, O; Sosnowski, R; Souza-Santos, D; Spassoff, Tz; Spiriti, E; Sponholz, P; Squarcia, S; Stanescu, C; Stapnes, Steinar; Stavitski, I; Stichelbaut, F; Stocchi, A; Strauss, J; Strub, R; Stugu, B; Szczekowski, M; Szeptycka, M; Tabarelli de Fatis, T; Tavernet, J P; Chikilev, O G; Tilquin, A; Timmermans, J; Tkatchev, L G; Todorov, T; Toet, D Z; Tomaradze, A G; Tomé, B; Tonazzo, A; Tortora, L; Tranströmer, G; Treille, D; Trischuk, W; Tristram, G; Trombini, A; Troncon, C; Tsirou, A L; Turluer, M L; Tyapkin, I A; Tyndel, M; Tzamarias, S; Überschär, B; Ullaland, O; Uvarov, V; Valenti, G; Vallazza, E; Van der Velde, C; van Apeldoorn, G W; van Dam, P; Van Doninck, W K; Van Eldik, J; Vassilopoulos, N; Vegni, G; Ventura, L; Venus, W A; Verbeure, F; Verlato, M; Vertogradov, L S; Vilanova, D; Vincent, P; Vitale, L; Vlasov, E; Vodopyanov, A S; Vrba, V; Wahlen, H; Walck, C; Weierstall, M; Weilhammer, Peter; Weiser, C; Wetherell, Alan M; Wicke, D; Wickens, J H; Wielers, M; Wilkinson, G R; Williams, W S C; Winter, M; Witek, M; Woschnagg, K; Yip, K; Yushchenko, O P; Zach, F; Zaitsev, A; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zevgolatakos, E; Zimin, N I; Zito, M; Zontar, D; Zuberi, R; Zucchelli, G C; Zumerle, G; Charpentier, Ph; Gavillet, Ph

    1997-01-01

    Data are presented on the reaction \\epem~\\into~\\gamma + no other detected particle at center-of-mass energies, \\sqs = 89.48 GeV, 91.26 GeV and 93.08 GeV. The cross section for this reaction is related directly to the number of light neutrino generations which couple to the \\zz boson, and to several other phenomena such as excited neutrinos, the production of an invisible `X' particle, a possible magnetic moment of the tau neutrino, and neutral monojets. Based on the observed number of single photon events, the number of light neutrinos which couple to the \\zz is measured to be N_\

  19. The associated charged particle multiplicity of high-p/sub T/ pi /sup 0/ and single-photon events

    CERN Document Server

    Diakonou, M; Albrow, M G; Almehed, S; Benary, O; Bøggild, H; Botner, O; Cnops, A M; Cockerill, D J A; Dagan, S; Dahl-Jensen, Erik; Dahl-Jensen, I; Damgaard, G; Fabjan, Christian Wolfgang; Filippas-Tassos, A; Fokitis, E; Fowler, E C; Hallgren, A; Hansen, K H; Henning, S; Hood, D M; Hooper, J; Jarlskog, G; Karpathopoulos, S; Killian, T; Kourkoumelis, C; Kreisler, M; Lissauer, D; Lörstad, B; Ludlam, T; Mannelli, I; McCubbin, N A; Melin, A; Mjörnmark, U; Møller, R; Molzon, W; Mouzourakis, P; Nielsen, B S; Nielsen, S O; Nilsson, A; Oren, Y; Palmer, R B; Rahm, David Charles; Rehak, P; Resvanis, L K; Rosselt, L; Schistad, B; Stumer, I; Svensson, L; von Dardel, Guy F; Willis, W J

    1980-01-01

    The associated charged particle multiplicities of high-p/sub T/ pi /sup 0/ and single-photon events were measured at the CERN intersecting storage rings using lead/liquid-argon calorimeters and a scintillation counter array placed around the intersection region. The average multiplicity on the trigger side for the single-photon events was found to be significantly lower than that for the pi /sup 0/ events. The away-side multiplicity for both pi /sup 0/ and single- photon events increases with the trigger particle p/sub T/, but, at a fixed p/sub T/, the direct photon sample was found to have a slightly lower average multiplicity. The differences in the event structure can be explained if a large fraction of the single photons are produced via qg to gamma q constituent scattering. (16 refs).

  20. Patients with single ventricle physiology undergoing noncardiac surgery are at high risk for adverse events.

    Science.gov (United States)

    Brown, Morgan L; DiNardo, James A; Odegard, Kirsten C

    2015-08-01

    intraoperative adverse events (9.8%) including: arrhythmias requiring treatment (n = 4), conversion from sedation to a general anesthetic (n = 2), difficult airway (n = 1), inadvertent extubation with desaturation and bradycardia (n = 1), hypotension and desaturation (n = 1), and cardiac arrest (n = 1). Postoperative events (surgery in a high-risk subgroup of palliated cardiac patients with single ventricle physiology. However, 11.8% of patients had an adverse event associated with their anesthetic. © 2015 John Wiley & Sons Ltd.

  1. Designing Single-Ion Magnets and Phosphorescent Materials with 1-Methylimidazole-5-carboxylate and Transition-Metal Ions.

    Science.gov (United States)

    García-Valdivia, Antonio A; Seco, Jose M; Cepeda, Javier; Rodríguez-Diéguez, Antonio

    2017-11-20

    Detailed structural, magnetic, and photoluminescence (PL) characterization of four new compounds based on 1-methylimidazole-5-carboxylate (mimc) ligand and transition metal ions, namely [Ni(mimc) 2 (H 2 O) 4 ] (1), [Co(μ-mimc) 2 ] n (2), {[Cu 2 (μ-mimc) 4 (H 2 O)]·2H 2 O} n (3), and [Cd(μ-mimc) 2 (H 2 O)] n (4) is reported. The structural diversity found in the family of compounds derives from the coordination versatility of the ligand, which coordinates as a terminal ligand to give a supramolecular network of monomeric entities in 1 or acts as a bridging linker to build isoreticular 2D coordination polymers (CPs) in 2-4. Magnetic direct-current (dc) susceptibility data have been measured for compounds 1-3 to analyze the exchange interactions among paramagnetic centers, which have been indeed supported by calculations based on broken symmetry (BS) and density functional theory (DFT) methodology. The temperature dependence of susceptibility and magnetization data of 2 are indicative of easy-plane anisotropy (D = +12.9 cm -1 , E = +0.5 cm -1 ) that involves a bistable M s = ±1/2 ground state. Alternating-current (ac) susceptibility curves exhibit field-induced single-ion magnet (SIM) behavior that occurs below 14 K, which is characterized by two spin relaxation processes of distinct nature: fast relaxation of single ions proceeding through multiple mechanisms (U eff = 26 K) and a slow relaxation attributed to interactions along the polymeric crystal building. Exhaustive PL analysis of compound 4 in the solid state confirms low-temperature phosphorescent green emission consisting of radiative lifetimes in the range of 0.25-0.43 s, which explains the afterglow observed during about 1 s after the removal of the UV source. Time-dependent DFT and computational calculations to estimate phosphorescent vertical transitions have been also employed to provide an accurate description of the PL performance of this long-lasting phosphor.

  2. Kernel PLS Estimation of Single-trial Event-related Potentials

    Science.gov (United States)

    Rosipal, Roman; Trejo, Leonard J.

    2004-01-01

    Nonlinear kernel partial least squaes (KPLS) regressior, is a novel smoothing approach to nonparametric regression curve fitting. We have developed a KPLS approach to the estimation of single-trial event related potentials (ERPs). For improved accuracy of estimation, we also developed a local KPLS method for situations in which there exists prior knowledge about the approximate latency of individual ERP components. To assess the utility of the KPLS approach, we compared non-local KPLS and local KPLS smoothing with other nonparametric signal processing and smoothing methods. In particular, we examined wavelet denoising, smoothing splines, and localized smoothing splines. We applied these methods to the estimation of simulated mixtures of human ERPs and ongoing electroencephalogram (EEG) activity using a dipole simulator (BESA). In this scenario we considered ongoing EEG to represent spatially and temporally correlated noise added to the ERPs. This simulation provided a reasonable but simplified model of real-world ERP measurements. For estimation of the simulated single-trial ERPs, local KPLS provided a level of accuracy that was comparable with or better than the other methods. We also applied the local KPLS method to the estimation of human ERPs recorded in an experiment on co,onitive fatigue. For these data, the local KPLS method provided a clear improvement in visualization of single-trial ERPs as well as their averages. The local KPLS method may serve as a new alternative to the estimation of single-trial ERPs and improvement of ERP averages.

  3. Comparison of analytical models and experimental results for single-event upset in CMOS SRAMs

    International Nuclear Information System (INIS)

    Mnich, T.M.; Diehl, S.E.; Shafer, B.D.

    1983-01-01

    In an effort to design fully radiation-hardened memories for satellite and deep-space applications, a 16K and a 2K CMOS static RAM were modeled for single-particle upset during the design stage. The modeling resulted in the addition of a hardening feedback resistor in the 16K remained tentatively unaltered. Subsequent experiments, using the Lawrence Berkeley Laboratories' 88-inch cyclotron to accelerate krypton and oxygen ions, established an upset threshold for the 2K and the 16K without resistance added, as well as a hardening threshold for the 16K with feedback resistance added. Results for the 16K showed it to be hardenable to the higher level than previously published data for other unhardened 16K RAMs. The data agreed fairly well with the modeling results; however, a close look suggests that modification of the simulation methodology is required to accurately predict the resistance necessary to harden the RAM cell

  4. Primary single event effect studies on Xilinx 28-nm System-on-Chip (SoC)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yao [Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Liu, Shuhuan, E-mail: shuhuanliu@126.com [Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Du, Xuecheng; Yuan, Yuan; He, Chaohui [Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Ren, Xiaotang [Peking University, Beijing 100000 (China); Du, Xiaozhi; Li, Yonghong [Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China)

    2016-09-21

    Single Event Effect (SEE) on Xilinx 28-nm System-on-Chip (SoC) was investigated by both simulation and experiments in this study. In the simulation process, typical structure of NAND gate and flip-flop in SoC were designed using Cadence tool. Various kinds of radiation were simulated as pulsed current source in consideration of multilayer wiring and energy loss before reaching the sensitive area. The circuit modules were simulated as SEE occurred and malfunctioned when pulsed current source existed. The changes of the circuit modules output were observed when pulsed current signals were placed at different sensitive nodes or the circuit operated under different conditions. The sensitive nodes in typical modules and the possible reasons of test program malfunction were primarily studied. In the experimental process, SoC chip was irradiated with α particles, protons and laser respectively. The irradiation test results showed that Single Event Upset (SEU) occurred in typical modules of SoC, in accordance with the simulation results.

  5. A single prolific r-process event preserved in an ultra-faint dwarf galaxy

    Science.gov (United States)

    Ji, Alexander; Frebel, Anna; Chiti, Anirudh; Simon, Joshua

    2016-03-01

    The heaviest elements in the periodic table are synthesized through the r-process, but the astrophysical site for r-process nucleosynthesis is still unknown. Ultra-faint dwarf galaxies contain a simple fossil record of early chemical enrichment that may determine this site. Previous measurements found very low levels of neutron-capture elements in ultra-faint dwarfs, preferring supernovae as the r-process site. I present high-resolution chemical abundances of nine stars in the recently discovered ultra-faint dwarf Reticulum II, which display extremely enhanced r-process abundances 2-3 orders of magnitude higher than the other ultra-faint dwarfs. Stars with such extreme r-process enhancements are only rarely found in the Milky Way halo. The r-process abundances imply that the neutron-capture material in Reticulum II was synthesized in a single prolific event that is incompatible with r-process yields from ordinary core-collapse supernovae. Reticulum II provides an opportunity to discriminate whether the source of this pure r-process signature is a neutron star merger or magnetorotationally driven supernova. The single event is also a uniquely stringent constraint on the metal mixing and star formation history of this ultra-faint dwarf galaxy.

  6. Fast detection of narcotics by single photon ionization mass spectrometry and laser ion mobility spectrometry

    Science.gov (United States)

    Laudien, Robert; Schultze, Rainer; Wieser, Jochen

    2010-10-01

    In this contribution two analytical devices for the fast detection of security-relevant substances like narcotics and explosives are presented. One system is based on an ion trap mass spectrometer (ITMS) with single photon ionization (SPI). This soft ionization technique, unlike electron impact ionization (EI), reduces unwanted fragment ions in the mass spectra allowing the clear determination of characteristic (usually molecular) ions. Their enrichment in the ion trap and identification by tandem MS investigations (MS/MS) enables the detection of the target substances in complex matrices at low concentrations without time-consuming sample preparation. For SPI an electron beam pumped excimer light source of own fabrication (E-Lux) is used. The SPI-ITMS system was characterized by the analytical study of different drugs like cannabis, heroin, cocaine, amphetamines, and some precursors. Additionally, it was successfully tested on-site in a closed illegal drug laboratory, where low quantities of MDMA could be directly detected in samples from floors, walls and lab equipments. The second analytical system is based on an ion mobility (IM) spectrometer with resonant multiphoton ionization (REMPI). With the frequency quadrupled Nd:YAG laser (266 nm), used for ionization, a selective and sensitive detection of aromatic compounds is possible. By application of suited aromatic dopants, in addition, also non-aromatic polar compounds are accessible by ion molecule reactions like proton transfer or complex formation. Selected drug precursors could be successfully detected with this device as well, qualifying it to a lower-priced alternative or useful supplement of the SPI-ITMS system for security analysis.

  7. Effect of body biasing on single-event induced charge collection in deep N-well technology

    International Nuclear Information System (INIS)

    Ding Yi; Hu Jian-Guo; Tan Hong-Zhou; Qin Jun-Rui

    2015-01-01

    As the device size decreases, the soft error induced by space ions is becoming a great concern for the reliability of integrated circuits (ICs). At present, the body biasing technique is widely used in highly scaled technologies. In the paper, using the three-dimensional technology computer-aided design (TCAD) simulation, we analyze the effect of the body biasing on the single-event charge collection in deep N-well technology. Our simulation results show that the body biasing mainly affects the behavior of the source, and the effect of body biasing on the charge collection for the nMOSFET and pMOSFET is quite different. For the nMOSFET, the RBB will increase the charge collection, while the FBB will reduce the charge collection. For the pMOSFET, the effect of RBB on the SET pulse width is small, while the FBB has an adverse effect. Moreover, the differenceof the effect of body biasing on the charge collection is compared in deep N-well and twin well. (paper)

  8. Aftershock Sequences and Seismic-Like Organization of Acoustic Events Produced by a Single Propagating Crack

    Science.gov (United States)

    Alizee, D.; Bonamy, D.

    2017-12-01

    In inhomogeneous brittle solids like rocks, concrete or ceramics, one usually distinguish nominally brittle fracture, driven by the propagation of a single crack from quasibrittle one, resulting from the accumulation of many microcracks. The latter goes along with intermittent sharp noise, as e.g. revealed by the acoustic emission observed in lab scale compressive fracture experiments or at geophysical scale in the seismic activity. In both cases, statistical analyses have revealed a complex time-energy organization into aftershock sequences obeying a range of robust empirical scaling laws (the Omori-Utsu, productivity and Bath's law) that help carry out seismic hazard analysis and damage mitigation. These laws are usually conjectured to emerge from the collective dynamics of microcrack nucleation. In the experiments presented at AGU, we will show that such a statistical organization is not specific to the quasi-brittle multicracking situations, but also rules the acoustic events produced by a single crack slowly driven in an artificial rock made of sintered polymer beads. This simpler situation has advantageous properties (statistical stationarity in particular) permitting us to uncover the origins of these seismic laws: Both productivity law and Bath's law result from the scale free statistics for event energy and Omori-Utsu law results from the scale-free statistics of inter-event time. This yields predictions on how the associated parameters are related, which were analytically derived. Surprisingly, the so-obtained relations are also compatible with observations on lab scale compressive fracture experiments, suggesting that, in these complex multicracking situations also, the organization into aftershock sequences and associated seismic laws are also ruled by the propagation of individual microcrack fronts, and not by the collective, stress-mediated, microcrack nucleation. Conversely, the relations are not fulfilled in seismology signals, suggesting that

  9. Effect of swift heavy ion irradiation on single- and multiwalled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Olejniczak, Andrzej, E-mail: aolejnic@chem.uni.torun.pl [Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Faculty of Chemistry, Nicolaus Copernicus University, ul. Gagarina 7, 87-100 Toruń (Poland); Skuratov, Vladimir A. [Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation)

    2014-05-01

    The effect of irradiation with swift heavy ions on the structure and properties of carbon nanotubes was investigated by Raman spectroscopy. It was found that disordering of the system occurred mainly at the surface. No ordering phenomena have been observed over a whole range of both fluences and electronic stopping powers studied. The disorder parameter (i.e., the ratio of the D and G band intensities (I{sub D}/I{sub G})) increases non-linearly with the irradiation dose, showing a tendency to saturate at high fluences. The increase in the disorder parameter upon irradiation was proportional to the square root of the ion fluence. The radiation stability of the few-walled nanotubes was ca. 1.6 higher than that of the single-walled ones. The irradiation with both the Xe and Kr ions leads to essentially the same increase in the I{sub D}/I{sub G} ratio with respect to the deposited electronic energy density. In the case of the Ar ion irradiation, the observed increase in the I{sub D}/I{sub G} ratio is much lower, suggesting that the electronic stopping power threshold for defects creation in carbon nanotubes is lower than that for graphite.

  10. Trapped-ion anomalous diffusion coefficient on the basis of single mode saturation

    International Nuclear Information System (INIS)

    Koshi, Yuji; Hatayama, Akiyoshi; Ogasawara, Masatada.

    1982-03-01

    Expressions of the anomalous diffusion coefficient due to the dissipative trapped ion instability (DTII) are derived for the case with and without the effect of magnetic shear. Derivation is made by taking into account of the single mode saturation of the DTII previously obtained numerically. In the absence of the shear effect, the diffusion coefficient is proportional to #betta#sub(i)a 2 (#betta#sub(i) is the effective collision frequency of the trapped ions and a is the minor radius of a torus) and is much larger than the neoclassical ion heat conductivity. In the presence of the shear effect, the diffusion coefficient is much smaller than the Kadomtsev and Pogutse's value and is the same order of magnitude as the neoclassical ion heat conductivity. Dependences of the diffusion coefficient on the temperature and on the total particle number density are rather complicated due to the additional spectral cut-off, which is introduced to regularize the short wavelength modes in the numerical analysis. (author)

  11. Live cell imaging combined with high-energy single-ion microbeam

    International Nuclear Information System (INIS)

    Guo, Na; Du, Guanghua; Liu, Wenjing; Wu, Ruqun; Wei, Junzhe; Guo, Jinlong; Chen, Hao

    2016-01-01

    DNA strand breaks can lead to cell carcinogenesis or cell death if not repaired rapidly and efficiently. An online live cell imaging system was established at the high energy microbeam facility at the Institute of Modern Physics to study early and fast cellular response to DNA damage after high linear energy transfer ion radiation. The HT1080 cells expressing XRCC1-RFP were irradiated with single high energy nickel ions, and time-lapse images of the irradiated cells were obtained online. The live cell imaging analysis shows that strand-break repair protein XRCC1 was recruited to the ion hit position within 20 s in the cells and formed bright foci in the cell nucleus. The fast recruitment of XRCC1 at the ion hits reached a maximum at about 200 s post-irradiation and then was followed by a slower release into the nucleoplasm. The measured dual-exponential kinetics of XRCC1 protein are consistent with the proposed consecutive reaction model, and the measurements obtained that the reaction rate constant of the XRCC1 recruitment to DNA strand break is 1.2 × 10 −3 s −1 and the reaction rate constant of the XRCC1 release from the break-XRCC1 complex is 1.2 × 10 −2 s −1 .

  12. Live cell imaging combined with high-energy single-ion microbeam

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Na; Du, Guanghua, E-mail: gh-du@impcas.ac.cn; Liu, Wenjing; Wu, Ruqun; Wei, Junzhe [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou (China); Guo, Jinlong [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou (China); Northwest Normal University, Lanzhou (China); Chen, Hao [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou (China); Institute of Nuclear Science and Technology, University of Lanzhou, Lanzhou (China)

    2016-03-15

    DNA strand breaks can lead to cell carcinogenesis or cell death if not repaired rapidly and efficiently. An online live cell imaging system was established at the high energy microbeam facility at the Institute of Modern Physics to study early and fast cellular response to DNA damage after high linear energy transfer ion radiation. The HT1080 cells expressing XRCC1-RFP were irradiated with single high energy nickel ions, and time-lapse images of the irradiated cells were obtained online. The live cell imaging analysis shows that strand-break repair protein XRCC1 was recruited to the ion hit position within 20 s in the cells and formed bright foci in the cell nucleus. The fast recruitment of XRCC1 at the ion hits reached a maximum at about 200 s post-irradiation and then was followed by a slower release into the nucleoplasm. The measured dual-exponential kinetics of XRCC1 protein are consistent with the proposed consecutive reaction model, and the measurements obtained that the reaction rate constant of the XRCC1 recruitment to DNA strand break is 1.2 × 10{sup −3} s{sup −1} and the reaction rate constant of the XRCC1 release from the break-XRCC1 complex is 1.2 × 10{sup −2} s{sup −1}.

  13. Live cell imaging combined with high-energy single-ion microbeam

    Science.gov (United States)

    Guo, Na; Du, Guanghua; Liu, Wenjing; Guo, Jinlong; Wu, Ruqun; Chen, Hao; Wei, Junzhe

    2016-03-01

    DNA strand breaks can lead to cell carcinogenesis or cell death if not repaired rapidly and efficiently. An online live cell imaging system was established at the high energy microbeam facility at the Institute of Modern Physics to study early and fast cellular response to DNA damage after high linear energy transfer ion radiation. The HT1080 cells expressing XRCC1-RFP were irradiated with single high energy nickel ions, and time-lapse images of the irradiated cells were obtained online. The live cell imaging analysis shows that strand-break repair protein XRCC1 was recruited to the ion hit position within 20 s in the cells and formed bright foci in the cell nucleus. The fast recruitment of XRCC1 at the ion hits reached a maximum at about 200 s post-irradiation and then was followed by a slower release into the nucleoplasm. The measured dual-exponential kinetics of XRCC1 protein are consistent with the proposed consecutive reaction model, and the measurements obtained that the reaction rate constant of the XRCC1 recruitment to DNA strand break is 1.2 × 10-3 s-1 and the reaction rate constant of the XRCC1 release from the break-XRCC1 complex is 1.2 × 10-2 s-1.

  14. Scattering of atomic and molecular ions from single crystal surfaces of Cu, Ag and Fe

    International Nuclear Information System (INIS)

    Zoest, J.M. van.

    1986-01-01

    This thesis deals with analysis of crystal surfaces of Cu, Ag and Fe with Low Energy Ion scattering Spectroscopy (LEIS). Different atomic and molecular ions with fixed energies below 7 keV are scattered by a metal single crystal (with adsorbates). The energy and direction of the scattered particles are analysed for different selected charge states. In that way information can be obtained concerning the composition and atomic and electronic structure of the single crystal surface. Energy spectra contain information on the composition of the surface, while structural atomic information is obtained by direction measurements (photograms). In Ch.1 a description is given of the experimental equipment, in Ch.2 a characterization of the LEIS method. Ch.3 deals with the neutralization of keV-ions in surface scattering. Two different ways of data interpretation are presented. First a model is treated in which the observed directional dependence of neutralization action of the first atom layer of the surface is presented by a laterally varying thickness of the neutralizing layer. Secondly it is shown that the data can be reproduced by a more realistic, physical model based on atomic transition matrix elements. In Ch.4 the low energy hydrogen scattering is described. The study of the dissociation of H 2 + at an Ag surface r0230ted in a model based on electronic dissociation, initialized by electron capture into a repulsive (molecular) state. In Ch.5 finally the method is applied to the investigation of the surface structure of oxidized Fe. (Auth.)

  15. R-process enrichment from a single event in an ancient dwarf galaxy.

    Science.gov (United States)

    Ji, Alexander P; Frebel, Anna; Chiti, Anirudh; Simon, Joshua D

    2016-03-31

    Elements heavier than zinc are synthesized through the rapid (r) and slow (s) neutron-capture processes. The main site of production of the r-process elements (such as europium) has been debated for nearly 60 years. Initial studies of trends in chemical abundances in old Milky Way halo stars suggested that these elements are produced continually, in sites such as core-collapse supernovae. But evidence from the local Universe favours the idea that r-process production occurs mainly during rare events, such as neutron star mergers. The appearance of a plateau of europium abundance in some dwarf spheroidal galaxies has been suggested as evidence for rare r-process enrichment in the early Universe, but only under the assumption that no gas accretes into those dwarf galaxies; gas accretion favours continual r-process enrichment in these systems. Furthermore, the universal r-process pattern has not been cleanly identified in dwarf spheroidals. The smaller, chemically simpler, and more ancient ultrafaint dwarf galaxies assembled shortly after the first stars formed, and are ideal systems with which to study nucleosynthesis events such as the r-process. Reticulum II is one such galaxy. The abundances of non-neutron-capture elements in this galaxy (and others like it) are similar to those in other old stars. Here, we report that seven of the nine brightest stars in Reticulum II, observed with high-resolution spectroscopy, show strong enhancements in heavy neutron-capture elements, with abundances that follow the universal r-process pattern beyond barium. The enhancement seen in this 'r-process galaxy' is two to three orders of magnitude higher than that detected in any other ultrafaint dwarf galaxy. This implies that a single, rare event produced the r-process material in Reticulum II. The r-process yield and event rate are incompatible with the source being ordinary core-collapse supernovae, but consistent with other possible sources, such as neutron star mergers.

  16. Energy Dispersion in Solar Ion Events over 4 Orders of Magnitude: SOHO/COSTEP and Wind/STICS

    Science.gov (United States)

    Kunow, Horst W.; Posner, A.

    2003-07-01

    The ma jority of solar particle events in the COSTEP observational range of 4 75 MeV/n reveals nucleon energy disp ersion (NED), implying a flare-associated particle acceleration mechanism. Towards lower energies, the situation changes somewhat. Only in a minority of solar energetic particle (SEP) events can the effect of NED be followed into the lower keV range. We analyse the reasons for the distinctly different types of particle transport of >10 keV suprathermal up to 100 MeV energetic ions and conclude that the mean free path depends on rigidity.

  17. Compendium of Single-Event Latchup and Total Ionizing Dose Test Results of Commercial Analog to Digital Converters

    Science.gov (United States)

    Irom, Farokh; Agarwal, Shri G.

    2012-01-01

    This paper reports single-event latchup and total dose results for a variety of analog to digital converters targeted for possible use in NASA spacecraft's. The compendium covers devices tested over the last 15 years.

  18. Single event upsets calculated from new ENDF/B-VI proton and neutron data up to 150 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Chadwick, M.B. [Los Alamos National Lab., NM (United States). Theoretical Div.; Normand, E. [Boeing Military Aircraft and Missile Systems, Seattle, WA (United States)

    1999-06-01

    Single-event upsets (SEU) in microelectronics are calculated from newly-developed silicon nuclear reaction recoil data that extend up to 150 MeV, for incident protons and neutrons. Calculated SEU cross sections are compared with measured data.

  19. Characterization of System Level Single Event Upset (SEU) Responses using SEU Data, Classical Reliability Models, and Space Environment Data

    Science.gov (United States)

    Berg, Melanie; Label, Kenneth; Campola, Michael; Xapsos, Michael

    2017-01-01

    We propose a method for the application of single event upset (SEU) data towards the analysis of complex systems using transformed reliability models (from the time domain to the particle fluence domain) and space environment data.

  20. Electrochemical lithium-ion storage properties of quinone molecules encapsulated in single-walled carbon nanotubes.

    Science.gov (United States)

    Ishii, Yosuke; Tashiro, Kosuke; Hosoe, Kento; Al-Zubaidi, Ayar; Kawasaki, Shinji

    2016-04-21

    We investigated the electrochemical lithium-ion storage properties of 9,10-anthraquinone (AQ) and 9,10-phenanthrenequinone (PhQ) molecules encapsulated in the inner hollow core of single-walled carbon nanotubes (SWCNTs). The structural properties of the obtained encapsulated systems were characterized by electron microscopy, synchrotron powder X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and Raman spectroscopy. We found that almost all quinone molecules encapsulated in the SWCNTs can store Li-ions reversibly. Interestingly, the undesired capacity fading, which comes from the dissolution of quinone molecules into the electrolyte, was suppressed by the encapsulation. It was also found that the overpotential of AQ was decreased by the encapsulation, probably due to the high-electric conductivity of SWCNTs.

  1. Swift heavy ion induced modifications of single walled carbon nanotube thin films

    Energy Technology Data Exchange (ETDEWEB)

    Vishalli, E-mail: vishalli_2008@yahoo.com [Department of Physics, Panjab University, Chandigarh 160014 (India); Raina, K.K. [Materials Research Laboratory, School of Physics and Materials Science, Thapar University, P.O. Box 32, Patiala 147004, Punjab (India); Avasthi, D.K. [Materials Science Group, Inter University Accelerator Centre, Aruna Asaf Ali Marg, P.O. Box 10502, New Delhi 110067 (India); Srivastava, Alok [Department of Chemistry, Panjab University, Chandigarh 160014 (India); Dharamvir, Keya [Department of Physics, Panjab University, Chandigarh 160014 (India)

    2016-04-15

    Thin films of single walled carbon nanotubes (SWCNTs) were prepared by Langmuir–Blodgett method and irradiated with swift heavy ions, carbon and nickel each of energy 60 MeV. The ion beams have different electronic energy loss (S{sub e}) values and the samples were exposed to various irradiation doses. The irradiated films were characterized using Raman and optical absorption spectroscopy. Raman spectroscopy results indicate the competing processes of defect creation and healing (annealing) of SWCNTs at lower fluences, while at higher fluences defect creation or damage dominates. In UV–Vis–NIR spectroscopy we find that there is decrease in the intensity of characteristic peaks with every increasing fluence, indicating decrease in the optically active states with irradiation.

  2. Investigation on optical absorption properties of ion irradiated single walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Vishalli,, E-mail: vishalli-2008@yahoo.com; Dharamvir, Keya, E-mail: keya@pu.ac.in [Department of Physics, Panjab University, Chandigarh (India); Kaur, Ramneek; Raina, K. K. [Materials Research Laboratory, School of Physics and Materials Science, Thapar University, Patiala (India); Avasthi, D. K. [Materials Science Group, Inter University Accelerator Centre, ArunaAsaf Ali Marg, NewDelhi (India); Jeet, Kiran [Electron Microscopy and Nanoscience laboratory, Punjab Agriculture University, Ludhiana (India)

    2015-08-28

    In the present study change in the optical absorption properties of single walled carbon nanotubes (SWCNTs) under nickel ion (60 MeV) irradiation at various fluences has been investigated. Langmuir Blodgett technique is used to deposit SWCNT thin film of uniform thickness. AFM analysis shows a network of interconnected bundles of nanotubes. UV-Vis-NIR absorption spectra indicate that the sample mainly contain SWCNTs of semiconducting nature. It has been found in absorption spectra that there is decrease in the intensity of the characteristic SWCNT peaks with increase in fluence. At fluence value 1×10{sup 14} ions/cm{sup 2} there is almost complete suppression of the characteristic SWCNTs peaks.The decrease in the optical absorption with increase in fluence is due to the increase in the disorder in the system which leads to the decrease in optically active states.

  3. Energy transduction and signal averaging of fluctuating electric fields by a single protein ion channel.

    Science.gov (United States)

    Verdia-Baguena, C; Gomez, V; Cervera, J; Ramirez, P; Mafe, S

    2016-12-21

    We demonstrate the electrical rectification and signal averaging of fluctuating signals using a biological nanostructure in aqueous solution: a single protein ion channel inserted in the lipid bilayer characteristic of cell membranes. The conversion of oscillating, zero time-average potentials into directional currents permits charging of a load capacitor to significant steady-state voltages within a few minutes in the case of the outer membrane porin F (OmpF) protein, a bacterial channel of Escherichia coli. The experiments and simulations show signal averaging effects at a more fundamental level than the traditional cell and tissue scales, which are characterized by ensembles of many ion channels operating simultaneously. The results also suggest signal transduction schemes with bio-electronic interfaces and ionic circuits where soft matter nanodiodes can be coupled to conventional electronic elements.

  4. An efficient single-step scheme for manipulating quantum information of two trapped ions beyond the Lamb-Dicke limit

    International Nuclear Information System (INIS)

    Wei, L.F.; Nori, Franco

    2003-01-01

    Based on the exact conditional quantum dynamics for a two-ion system, we propose an efficient single-step scheme for coherently manipulating quantum information of two trapped cold ions by using a pair of synchronous laser pulses. Neither the auxiliary atomic level nor the Lamb-Dicke approximation are needed

  5. Single-event multilevel surgery in children with spastic diplegia: a pilot randomized controlled trial.

    Science.gov (United States)

    Thomason, Pamela; Baker, Richard; Dodd, Karen; Taylor, Nicholas; Selber, Paulo; Wolfe, Rory; Graham, H Kerr

    2011-03-02

    Single-event multilevel surgery is considered the standard of care to improve gait and functioning of children with spastic diplegic cerebral palsy. However, the evidence base is limited. This pilot study is the first randomized controlled trial of single-event multilevel surgery, to our knowledge. Nineteen children (twelve boys and seven girls with a mean age of nine years and eight months) with spastic diplegia were enrolled. Eleven children were randomized to the surgical group and eight, to the control group. The control group underwent a program of progressive resistance strength training. The randomized phase of the trial concluded at twelve months. The control group then exited the study and progressed to surgery, whereas the surgical group continued to be followed in a prospective cohort study. The primary outcome measures were the Gait Profile Score (GPS) and the Gillette Gait Index (GGI). Secondary outcome measures were gross motor function (Gross Motor Function Measure-66 [GMFM-66]), functional mobility (Functional Mobility Scale [FMS]), time spent in the upright position, and health-related quality of life (Child Health Questionnaire [CHQ]). A total of eighty-five surgical procedures were performed, with a mean of eight procedures per child (standard deviation, four). The surgical group had a 34% improvement in the GPS and a 57% improvement in the GGI at twelve months. The control group had a small nonsignificant deterioration in both indices. The between-group differences for the change in the GPS (-5.5; 95% confidence interval, -7.6 to -3.4) and the GGI (-218; 95% confidence interval, -299 to -136) were highly significant. The differences between the groups with regard to the secondary outcome measures were not significant at twelve months. At twenty-four months after surgery, there was a 4.9% increase in the GMFM-66 score and improvements in the FMS score, time spent in the upright position, and the physical functioning domain of the CHQ in the

  6. Observation of Single Isolated Electrons of High Transverse Momentum in Events with Missing Transverse Energy at the CERN pp Collider

    DEFF Research Database (Denmark)

    Banner, M.; Kofoed-Hansen, O.

    1983-01-01

    We report the results of a search for single isolated electrons of high transverse momentum at the CERN collider. Above 15 GeV/c, four events are found having large missing transverse energy along a direction opposite in azimuth to that of the high-pT electron. Both the configuration of the events...

  7. Mixed response and time-to-event endpoints for multistage single-arm phase II design.

    Science.gov (United States)

    Lai, Xin; Zee, Benny Chung-Ying

    2015-06-04

    The objective of phase II cancer clinical trials is to determine if a treatment has sufficient activity to warrant further study. The efficiency of a conventional phase II trial design has been the object of considerable debate, particularly when the study regimen is characteristically cytostatic. At the time of development of a phase II cancer trial, we accumulated clinical experience regarding the time to progression (TTP) for similar classes of drugs and for standard therapy. By considering the time to event (TTE) in addition to the tumor response endpoint, a mixed-endpoint phase II design may increase the efficiency and ability of selecting promising cytotoxic and cytostatic agents for further development. We proposed a single-arm phase II trial design by extending the Zee multinomial method to fully use mixed endpoints with tumor response and the TTE. In this design, the dependence between the probability of response and the TTE outcome is modeled through a Gaussian copula. Given the type I and type II errors and the hypothesis as defined by the response rate (RR) and median TTE, such as median TTP, the decision rules for a two-stage phase II trial design can be generated. We demonstrated through simulation that the proposed design has a smaller expected sample size and higher early stopping probability under the null hypothesis than designs based on a single-response endpoint or a single TTE endpoint. The proposed design is more efficient for screening new cytotoxic or cytostatic agents and less likely to miss an effective agent than the alternative single-arm design.

  8. Evolution of ionosphere-thermosphere (IT) parameters in the cusp region related to ion upflow events

    Science.gov (United States)

    Kervalishvili, Guram; Lühr, Hermann

    2017-04-01

    In this study we investigate the relationships of various IT parameters with the intensity of vertical ion flow. Our study area is the ionospheric cusp region in the northern hemisphere. The approach uses superposed epoch analysis (SEA) method, centered alternately on peaks of the three different variables: neutral density enhancement, vertical plasma flow, and electron temperature. Further parameters included are large-scale field-aligned currents (LSFACs) and thermospheric zonal wind velocity profiles over magnetic latitude (MLat), which are centered at the event time and location. The dependence on the interplanetary magnetic field (IMF) By component orientation and the local (Lloyd) season is of particular interest. Our investigations are based on CHAMP and DMSP (F13 and F15) satellite observations and the OMNI online database collected during the years 2002-2007. The three Lloyd seasons of 130 days each are defined as follows: local winter (1 January ± 65 days), combined equinoxes (1 April and 1 October ± 32 days), and local summer (1 July ± 65 days). A period of 130 days corresponds to the time needed by CHAMP to sample all local times. The SEA MLat profiles with respect to neutral density enhancement and vertical plasma flow peaks show no significant but only slight (decreasing towards local summer) seasonal variations for both IMF By orientations. The latitude profiles of median LSFACs show a clear dependence on the IMF By orientation. As expected, the maximum and minimum values of LSFAC amplitudes are increasing towards local summer for both IMF By signs. With respect to zero epoch latitude, FAC peaks appear equatorward (negative MLat) related to Region 1 (R1) and poleward (positive MLat) to Region 0 (R0) FACs. However, there is an imbalance between the amplitudes of LSFACs, depending on the current latitude. R1 currents are systematically stronger than R0 FACs. A somewhat different distribution of density enhancements and large-scale FACs emerges when

  9. Screening of nanosatellite microprocessors using californium single-event latch-up test results

    Science.gov (United States)

    Tomioka, Takahiro; Okumura, Yuta; Masui, Hirokazu; Takamiya, Koichi; Cho, Mengu

    2016-09-01

    A single-event latch-up (SEL) test using a 252Cf radioisotope was carried out. The results were compared with those of a proton test and from observation in orbit. A radioisotope can reproduce phenomena observed in orbit that are caused by protons. Considering the inexpensive nature of the 252Cf test, it is more suitable for nanosatellites that require low cost and fast delivery. A SEL occurrence rate of a commercial-off-the-shelf microprocessor was derived from the ground test results. The 252Cf test provided a SEL rate approximately 1×106 times greater than that in orbit. This data can be used to derive the minimum SEL occurrence rate in orbit and help satellite designers to evaluate the risk of SEL and take measures if necessary.

  10. Experimental study on the single event effects in pulse width modulators by laser testing

    International Nuclear Information System (INIS)

    Zhao Wen; Guo Xiaoqiang; Chen Wei; Guo Hongxia; Lin Dongsheng; Luo Yinhong; Ding Lili; Wang Yuanming; Wang Hanning

    2015-01-01

    This paper presents single event effect (SEE) characteristics of UC1845AJ pulse width modulators (PWMs) by laser testing. In combination with analysis to map PWM circuitry in the microchip dies, the typical SEE response waveforms for laser pulses located in different circuit blocks of UC1845AJ are obtained and the SEE mechanisms are analyzed. The laser SEE test results show that there are some differences in the SEE mechanisms of different circuit blocks, and phase shifts or changes in the duty cycles of few output pulses are the main SEE behaviors for UC1845AJ. In addition, a new SEE behavior which manifests as changes in the duty cycles of many output pulses is revealed. This means that an SEE hardened design should be considered. (paper)

  11. Radiation Fields in High Energy Accelerators and their impact on Single Event Effects

    CERN Document Server

    García Alía, Rubén; Wrobel, Frédéric; Brugger, Markus

    Including calculation models and measurements for a variety of electronic components and their concerned radiation environments, this thesis describes the complex radiation field present in the surrounding of a high-energy hadron accelerator and assesses the risks related to it in terms of Single Event Effects (SEE). It is shown that this poses not only a serious threat to the respective operation of modern accelerators but also highlights the impact on other high-energy radiation environments such as those for ground and avionics applications. Different LHC-like radiation environments are described in terms of their hadron composition and energy spectra. They are compared with other environments relevant for electronic component operation such as the ground-level, avionics or proton belt. The main characteristic of the high-energy accelerator radiation field is its mixed nature, both in terms of hadron types and energy interval. The threat to electronics ranges from neutrons of thermal energies to GeV hadron...

  12. Single Event Effect cross section calibration and application to quasi-monoenergetic and spallation facilities

    Directory of Open Access Journals (Sweden)

    Alía Rubén García

    2018-01-01

    Full Text Available We describe an approach to calibrate Single Event Effect (SEE-based detectors in monoenergetic fields and apply the resulting semi-empiric responses to more general mixed-field cases in which a broad variety of particle species and energy spectra are present. The calibration of the response functions is based both on experimental proton (30–200 MeV and neutron (5–300 MeV data and considerations derived from Monte Carlo simulations using the FLUKA Monte Carlo code. The application environments include the quasi-monoenergetic neutrons at RCNP, the atmospheric-like VESUVIO spallation spectrum and the CHARM high-energy accelerator test facility. The agreement between the mixed-field response and that predicted through the mono-energetic calibration is within ±30% for the broad variety of cases considered and thus regarded as highly successful for mixed-field monitoring applications.

  13. Single event upset in static random access memories in atmospheric neutron environments

    CERN Document Server

    Arita, Y; Ogawa, I; Kishimoto, T

    2003-01-01

    Single-event upsets (SEUs) in a 0.4 mu m 4Mbit complementary metal oxide semiconductor (CMOS) static random access memory (SRAM) were investigated in various atmospheric neutron environments at sea level, at an altitude of 2612 m mountain, at an altitude of commercial airplane, and at an underground depth of 476m. Neutron-induced SEUs increase with the increase in altitude. For a device with a borophosphosilicate glass (BPSG) film, SEU rates induced by thermal neutrons increase with the decrease in the cell charge of a memory cell. A thermal neutron-induced SEU is significant in SRAMs with a small cell charge. With the conditions of small cell charge, thermal neutron-induced SEUs account for 60% or more of the total neutron-induced SEUs. The SEU rate induced by atmospheric thermal neutrons can be estimated by an acceleration test using sup 2 sup 5 sup 2 Cf. (author)

  14. Neutron-induced single event upsets in static RAMs observed at 10 KM flight altitude

    Science.gov (United States)

    Olsen, J.; Becher, P. E.; Fynbo, P. B.; Raaby, P.; Schultz, J.

    1993-04-01

    Neutron induced single event upsets (SEUs) in static memory devices (SRAMs) have so far been seen only in laboratory environments. We report observations of 14 neutron induced SEUs at commercial aircraft flight altitudes. The observed SEU rate at 10 km flight altitude based on exposure of 160 standard 256 Kbit CMOS SRAMs is 4.8 x 10 exp -8 upsets/bit/day. In the laboratory 117 SRAMs of two different brands were irradiated with fast neutrons from a Pu-Be source. A total of 176 SEUs have been observed, among these are two SEU pairs. The upset rates from the laboratory tests are compared to those found in the airborne SRAMs.

  15. Spatial-Temporal Feature Analysis on Single-Trial Event Related Potential for Rapid Face Identification

    Directory of Open Access Journals (Sweden)

    Lei Jiang

    2017-11-01

    Full Text Available The event-related potential (ERP is the brain response measured in electroencephalography (EEG, which reflects the process of human cognitive activity. ERP has been introduced into brain computer interfaces (BCIs to communicate the computer with the subject's intention. Due to the low signal-to-noise ratio of EEG, most ERP studies are based on grand-averaging over many trials. Recently single-trial ERP detection attracts more attention, which enables real time processing tasks as rapid face identification. All the targets needed to be retrieved may appear only once, and there is no knowledge of target label for averaging. More interestingly, how the features contribute temporally and spatially to single-trial ERP detection has not been fully investigated. In this paper, we propose to implement a local-learning-based (LLB feature extraction method to investigate the importance of spatial-temporal components of ERP in a task of rapid face identification using single-trial detection. Comparing to previous methods, LLB method preserves the nonlinear structure of EEG signal distribution, and analyze the importance of original spatial-temporal components via optimization in feature space. As a data-driven methods, the weighting of the spatial-temporal component does not depend on the ERP detection method. The importance weights are optimized by making the targets more different from non-targets in feature space, and regularization penalty is introduced in optimization for sparse weights. This spatial-temporal feature extraction method is evaluated on the EEG data of 15 participants in performing a face identification task using rapid serial visual presentation paradigm. Comparing with other methods, the proposed spatial-temporal analysis method uses sparser (only 10% of the total features, and could achieve comparable performance (98% of single-trial ERP detection as the whole features across different detection methods. The interesting finding is

  16. Single-Qubit-Gate Error below 0.0001 in a Trapped Ion

    Science.gov (United States)

    2011-01-01

    nuclear spins in liquid-state nuclear-magnetic resonance experiments [6] and with neutral atoms confined in optical lattices [7]; here we demonstrate...Single trapped ion 2.0(2)×10−5 Reference [6] (2009) Nuclear magnetic resonance 1.3(1)×10−4 Reference [7] (2010) Atoms in an optical lattice 1.4(1)×10...determined by comparing the qubit frequency measured in a Ramsey experiment with that of a Rabi experiment. Such back-to-back comparisons yielded values

  17. Machining with micro-size single crystalline diamond tools fabricated by a focused ion beam

    International Nuclear Information System (INIS)

    Ding, X; Butler, D L; Lim, G C; Shaw, K C; Liu, K; Fong, W S; Zheng, H Y; Cheng, C K

    2009-01-01

    A study was carried out to understand the physics of micro-scale mechanical machining (henceforth referred to as 'micro-machining') with a micro-size tool using a five-axis ultra-precision machine. A micro-size single crystalline diamond (SCD) tool with sharp cutting edges fabricated by a focused ion beam (FIB) was employed to orthogonal-machine four materials (three polycrystalline metals with various grain sizes and one amorphous metal plating material). Since the wealth of knowledge of macro-machining cannot be successfully used in micro-machining, this study contributes to the understanding of the physics of mechanical machining with micro-size tools

  18. Rational Design of Lanthanoid Single-Ion Magnets: Predictive Power of the Theoretical Models.

    Science.gov (United States)

    Baldoví, José J; Duan, Yan; Morales, Roser; Gaita-Ariño, Alejandro; Ruiz, Eliseo; Coronado, Eugenio

    2016-09-12

    We report two new single-ion magnets (SIMs) of a family of oxydiacetate lanthanide complexes with D3 symmetry to test the predictive capabilities of complete active space ab initio methods (CASSCF and CASPT2) and the semiempirical radial effective charge (REC) model. Comparison of the theoretical predictions of the energy levels, wave functions and magnetic properties with detailed spectroscopic and magnetic characterisation is used to critically discuss the limitations of these theoretical approaches. The need for spectroscopic information for a reliable description of the properties of lanthanide SIMs is emphasised. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Subattoampere current induced by single ions in silicon oxide layers of nonvolatile memory cells

    International Nuclear Information System (INIS)

    Cellere, G.; Paccagnella, A.; Larcher, L.; Visconti, A.; Bonanomi, M.

    2006-01-01

    A single ion impinging on a thin silicon dioxide layer generates a number of electron/hole pairs proportional to its linear energy transfer coefficient. Defects generated by recombination can act as a conductive path for electrons that cross the oxide barrier, thanks to a multitrap-assisted mechanism. We present data on the dependence of this phenomenon on the oxide thickness by using floating gate memory arrays. The tiny number of excess electrons stored in these devices allows for extremely high sensitivity, impossible with any direct measurement of oxide leakage current. Results are of particular interest for next generation devices

  20. Fracture analysis of surface exfoliation on single crystal silicon irradiated by intense pulsed ion beam

    Science.gov (United States)

    Shen, Jie; Shahid, Ijaz; Yu, Xiao; Zhang, Jie; Zhong, Haowen; Cui, Xiaojun; Liang, Guoying; Yu, Xiang; Huang, Wanying; Yan, Sha; Zhang, Gaolong; Zhang, Xiaofu; Le, Xiaoyun

    2017-12-01

    Surface exfoliation was observed on single crystal silicon surface irradiated by Intense Pulsed Ion Beam (IPIB). As the strong transient thermal stress impact induced by IPIB was mainly attributed to the exfoliation, a micro scale model combined with thermal conduction and linear elastic fracture mechanics was built to analyze the thermal stress distribution along the energy deposition process. After computation with finite element method, J integral parameter was applied as the criterion for crack development. It was demonstrated that the exfoliation initiation calls for specific material, crack depth and IPIB parameter. The results are potentially valuable for beam/target selection and IPIB parameter optimization.

  1. Events

    Directory of Open Access Journals (Sweden)

    Igor V. Karyakin

    2016-02-01

    Full Text Available The 9th ARRCN Symposium 2015 was held during 21st–25th October 2015 at the Novotel Hotel, Chumphon, Thailand, one of the most favored travel destinations in Asia. The 10th ARRCN Symposium 2017 will be held during October 2017 in the Davao, Philippines. International Symposium on the Montagu's Harrier (Circus pygargus «The Montagu's Harrier in Europe. Status. Threats. Protection», organized by the environmental organization «Landesbund für Vogelschutz in Bayern e.V.» (LBV was held on November 20-22, 2015 in Germany. The location of this event was the city of Wurzburg in Bavaria.

  2. Long term outcome of single event multilevel surgery in spastic diplegia with flexed knee gait.

    Science.gov (United States)

    Sung, Ki Hyuk; Chung, Chin Youb; Lee, Kyoung Min; Akhmedov, Bekhzad; Lee, Seung Yeol; Choi, In Ho; Cho, Tae-Joon; Yoo, Won Joon; Park, Moon Seok

    2013-04-01

    Distal hamstring lengthening (DHL) is a commonly performed procedure in flexed knee gait. However, the necessity of this procedure has been challenged due to the concerns on adverse effects in long-term follow-up. This retrospective study was undertaken to investigate the long-term outcome of single event multilevel surgery (SEMLS), including bilateral DHL, in ambulatory patients with cerebral palsy using 3D gait analysis. Twenty-nine ambulatory patients with spastic diplegic cerebral palsy who had undergone SEMLS including bilateral DHL were included. 3D gait analysis was performed preoperatively, 1 year postoperatively and over 10 years postoperatively. Preoperative temporal parameters, kinematics and GDI were compared with values obtained 1 and 10 year follow-up visits. The mean age of patients at time of first surgery was 8.3 years (range, 5.4-16.3 years), and mean time from first surgery to last 3D gait analysis was 11.8 years (range, 10.0-13.3 years). Mean pelvic tilt was not changed significantly after SEMLS including DHL. Mean knee flexion at initial contact decreased from 31.1° preoperatively to 26.0° at 1 year postoperatively (p=0.065), and then decreased significantly to 23.6° at 10 years postoperatively (p=0.038) versus the preoperative value. Mean GDI score significantly improved from 69.4 preoperatively to 77.9 at 1 year postoperatively (p=0.003) and continuously improved to 82.2 at 10 years postoperatively (p=0.017). Single event multilevel surgery including DHL provides a favorable outcome 10 years postoperatively in patients with spastic diplegic cerebral palsy. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. A detector system for studying nuclear reactions relevant to Single Event Effects

    Energy Technology Data Exchange (ETDEWEB)

    Murin, Yu. [V.G. Khlopin Radium Institute, 2nd Murinski 28, 194021 St. Petersburg (Russian Federation)]. E-mail: murin@jinr.ru; Babain, Yu. [V.G. Khlopin Radium Institute, 2nd Murinski 28, 194021 St. Petersburg (Russian Federation); Chubarov, M. [V.G. Khlopin Radium Institute, 2nd Murinski 28, 194021 St. Petersburg (Russian Federation); Tuboltsev, Yu. [V.G. Khlopin Radium Institute, 2nd Murinski 28, 194021 St. Petersburg (Russian Federation); Pljuschev, V. [V.G. Khlopin Radium Institute, 2nd Murinski 28, 194021 St. Petersburg (Russian Federation); Zubkov, M. [V.G. Khlopin Radium Institute, 2nd Murinski 28, 194021 St. Petersburg (Russian Federation); Nomokonov, P. [High Energy Laboratory, Joint Institute for Nuclear Research, 141980 Moscow Region (Russian Federation); Voronin, A. [Moscow State University, 119992 Moscow (Russian Federation); Merkin, M. [Moscow State University, 119992 Moscow (Russian Federation); Kondratiev, V. [St. Petersburg State University, 198504 St. Petersburg (Russian Federation); Olsson, N.; Blomgren, J. [Department of Neutron Research, Uppsala University, Box 525, SE 751 20 Uppsala (Sweden); Westerberg, L. [Department of Physics, Uppsala University, Box 530, SE 751 21 Uppsala (Sweden); Ekstroem, C.; Kolozhvari, A. [The Svedberg Laboratory, Uppsala University, Box 533, SE 751 21 Uppsala (Sweden); Jaederstroem, H. [Department of Nuclear and Particle Physics, Uppsala University, Box 531, SE 751 21 Uppsala (Sweden); Jakobsson, B.; Golubev, P. [Department of Physics, Lund University, Box 118, SE 221 00 Lund (Sweden); Bargholz, Chr.; Geren, L.; Tegner, P.-E.; Zartova, I. [Department of Physics, Stockholm University, AlbaNova, SE 10691 Stockholm (Sweden); Budzanowski, A.; Czech, B.; Skwirczynska, I. [H. Niewodniczanski Institute of Nuclear Physics, PL 31 342 Cracow (Poland); Tang, H.H.K. [IBM, T.J. Watson Research Center, Yorktown Heights, NY 10598 (United States)

    2007-08-01

    We describe a device to study reactions relevant for the Single Event Effect (SEE) in microelectronics by means of 200A and 300AMeV, inverse kinematics, Si+H and Si+D reactions. The work is focused on the possibility to measure Z=2-14 projectile fragments as efficiently as possible. During commissioning and first experiments the fourth quadrant of the CELSIUS storage ring acted as a spectrometer to register fragments in two planes of Si strip detectors in the angular region 0{sup a}t -0.6{sup a}t. A combination of ring-structured and sector-structured Si strip detector planes operated at angles 0.6{sup a}t-1.1{sup a}t. For specific event tagging a Si+ phoswich scintillator wall operated in the range 3.9{sup a}t-11.7{sup a}t and Si {delta}E-E telescopes of CHICSi type operated at large angles.

  4. Femtomolar detection of single mismatches by discriminant analysis of DNA hybridization events using gold nanoparticles.

    Science.gov (United States)

    Ma, Xingyi; Sim, Sang Jun

    2013-03-21

    Even though DNA-based nanosensors have been demonstrated for quantitative detection of analytes and diseases, hybridization events have never been numerically investigated for further understanding of DNA mediated interactions. Here, we developed a nanoscale platform with well-designed capture and detection gold nanoprobes to precisely evaluate the hybridization events. The capture gold nanoprobes were mono-laid on glass and the detection probes were fabricated via a novel competitive conjugation method. The two kinds of probes combined in a suitable orientation following the hybridization with the target. We found that hybridization efficiency was markedly dependent on electrostatic interactions between DNA strands, which can be tailored by adjusting the salt concentration of the incubation solution. Due to the much lower stability of the double helix formed by mismatches, the hybridization efficiencies of single mismatched (MMT) and perfectly matched DNA (PMT) were different. Therefore, we obtained an optimized salt concentration that allowed for discrimination of MMT from PMT without stringent control of temperature or pH. The results indicated this to be an ultrasensitive and precise nanosensor for the diagnosis of genetic diseases.

  5. Electron paramagnetic resonance and optical absorption of uranium ions diluted in CdF2 single crystals

    International Nuclear Information System (INIS)

    Pereira, J.J.C.R.

    1976-08-01

    The electron paramagnetic resonance (EPR) has been studied in conection with the optical absortion spectra of Uranium ions diluted in CdF 2 single crystals. Analyses of the EPR and optical absorption spectra obtained experimentally, and a comparison with known results in the isomorfic CaF 2 , SrF 2 and BaF 2 , allowed the identification of two paramagnetic centers associated with Uranium ions. These are the U(2+) ion in cubic symmetry having the triplet γ 5 as ground state, and the U(3+) ion in cubic symmetry having the dublet γ 6 as ground state. (Author) [pt

  6. COHERENT EVENTS AND SPECTRAL SHAPE AT ION KINETIC SCALES IN THE FAST SOLAR WIND TURBULENCE

    International Nuclear Information System (INIS)

    Lion, Sonny; Alexandrova, Olga; Zaslavsky, Arnaud

    2016-01-01

    In this paper we investigate spectral and phase coherence properties of magnetic fluctuations in the vicinity of the spectral transition from large, magnetohydrodynamic to sub-ion scales using in situ measurements of the Wind spacecraft in a fast stream. For the time interval investigated by Leamon et al. (1998) the phase coherence analysis shows the presence of sporadic quasi-parallel Alfvén ion cyclotron (AIC) waves as well as coherent structures in the form of large-amplitude, quasi-perpendicular Alfvén vortex-like structures and current sheets. These waves and structures importantly contribute to the observed power spectrum of magnetic fluctuations around ion scales; AIC waves contribute to the spectrum in a narrow frequency range whereas the coherent structures contribute to the spectrum over a wide frequency band from the inertial range to the sub-ion frequency range. We conclude that a particular combination of waves and coherent structures determines the spectral shape of the magnetic field spectrum around ion scales. This phenomenon provides a possible explanation for a high variability of the magnetic power spectra around ion scales observed in the solar wind.

  7. Experimental Verification of a Jarzynski-Related Information-Theoretic Equality by a Single Trapped Ion

    Science.gov (United States)

    Xiong, T. P.; Yan, L. L.; Zhou, F.; Rehan, K.; Liang, D. F.; Chen, L.; Yang, W. L.; Ma, Z. H.; Feng, M.; Vedral, V.

    2018-01-01

    Most nonequilibrium processes in thermodynamics are quantified only by inequalities; however, the Jarzynski relation presents a remarkably simple and general equality relating nonequilibrium quantities with the equilibrium free energy, and this equality holds in both the classical and quantum regimes. We report a single-spin test and confirmation of the Jarzynski relation in the quantum regime using a single ultracold Ca40 + ion trapped in a harmonic potential, based on a general information-theoretic equality for a temporal evolution of the system sandwiched between two projective measurements. By considering both initially pure and mixed states, respectively, we verify, in an exact and fundamental fashion, the nonequilibrium quantum thermodynamics relevant to the mutual information and Jarzynski equality.

  8. High-fidelity state detection and tomography of a single-ion Zeeman qubit

    International Nuclear Information System (INIS)

    Keselman, A; Glickman, Y; Akerman, N; Kotler, S; Ozeri, R

    2011-01-01

    We demonstrate high-fidelity Zeeman qubit state detection in a single trapped 88 Sr + ion. Qubit readout is performed by shelving one of the qubit states to a metastable level using a narrow linewidth diode laser at 674 nm, followed by state-selective fluorescence detection. The average fidelity reached for the readout of the qubit state is 0.9989(1). We then measure the fidelity of state tomography, averaged over all possible single-qubit states, which is 0.9979(2). We also fully characterize the detection process using quantum process tomography. This readout fidelity is compatible with recent estimates of the detection error threshold required for fault-tolerant computation, whereas high-fidelity state tomography opens the way for high-precision quantum process tomography.

  9. High-fidelity state detection and tomography of a single-ion Zeeman qubit

    Energy Technology Data Exchange (ETDEWEB)

    Keselman, A; Glickman, Y; Akerman, N; Kotler, S; Ozeri, R, E-mail: ozeri@weizmann.ac.il [Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100 (Israel)

    2011-07-15

    We demonstrate high-fidelity Zeeman qubit state detection in a single trapped {sup 88}Sr{sup +} ion. Qubit readout is performed by shelving one of the qubit states to a metastable level using a narrow linewidth diode laser at 674 nm, followed by state-selective fluorescence detection. The average fidelity reached for the readout of the qubit state is 0.9989(1). We then measure the fidelity of state tomography, averaged over all possible single-qubit states, which is 0.9979(2). We also fully characterize the detection process using quantum process tomography. This readout fidelity is compatible with recent estimates of the detection error threshold required for fault-tolerant computation, whereas high-fidelity state tomography opens the way for high-precision quantum process tomography.

  10. Single charging events on colloidal particles in a nonpolar liquid with surfactant

    Science.gov (United States)

    Schreuer, Caspar; Vandewiele, Stijn; Brans, Toon; Strubbe, Filip; Neyts, Kristiaan; Beunis, Filip

    2018-01-01

    Electrical charging of colloidal particles in nonpolar liquids due to surfactant additives is investigated intensively, motivated by its importance in a variety of applications. Most methods rely on average electrophoretic mobility measurements of many particles, which provide only indirect information on the charging mechanism. In the present work, we present a method that allows us to obtain direct information on the charging mechanism, by measuring the charge fluctuations on individual particles with a precision higher than the elementary charge using optical trapping electrophoresis. We demonstrate the capabilities of the method by studying the influence of added surfactant OLOA 11000 on the charging of single colloidal PMMA particles in dodecane. The particle charge and the frequency of charging events are investigated both below and above the critical micelle concentration (CMC) and with or without applying a DC offset voltage. It is found that at least two separate charging mechanisms are present below the critical micelle concentration. One mechanism is a process where the particle is stripped from negatively charged ionic molecules. An increase in the charging frequency with increased surfactant concentration suggests a second mechanism that involves single surfactant molecules. Above the CMC, neutral inverse micelles can also be involved in the charging process.

  11. Single-Trial Event-Related Potential Based Rapid Image Triage System

    Directory of Open Access Journals (Sweden)

    Ke Yu

    2011-06-01

    Full Text Available Searching for points of interest (POI in large-volume imagery is a challenging problem with few good solutions. In this work, a neural engineering approach called rapid image triage (RIT which could offer about a ten-fold speed up in POI searching is developed. It is essentially a cortically-coupled computer vision technique, whereby the user is presented bursts of images at a speed of 6–15 images per second and then neural signals called event-related potential (ERP is used as the ‘cue’ for user seeing images of high relevance likelihood. Compared to past efforts, the implemented system has several unique features: (1 it applies overlapping frames in image chip preparation, to ensure rapid image triage performance; (2 a novel common spatial-temporal pattern (CSTP algorithm that makes use of both spatial and temporal patterns of ERP topography is proposed for high-accuracy single-trial ERP detection; (3 a weighted version of probabilistic support-vector-machine (SVM is used to address the inherent unbalanced nature of single-trial ERP detection for RIT. High accuracy, fast learning, and real-time capability of the developed system shown on 20 subjects demonstrate the feasibility of a brainmachine integrated rapid image triage system for fast detection of POI from large-volume imagery.

  12. Single photon and multiphoton events with missing energy in $e^{+} e^{-}$ collisions at LEP

    CERN Document Server

    Achard, P; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Anderhub, H; Andreev, V P; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, G; Baksay, L; Baldew, S V; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillère, R; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Biasini, M; Biglietti, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böhm, A; Boldizsar, L; Borgia, B; Bottai, S; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brochu, F; Burger, J D; Burger, W J; Cai, X D; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Chamizo-Llatas, M; Chang, Y H; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; de la Cruz, B; Cucciarelli, S; van Dalen, J A; De Asmundis, R; Déglon, P L; Debreczeni, J; Degré, A; Dehmelt, K; Deiters, K; Della Volpe, D; Delmeire, E; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Dionisi, C; Dittmar, M; Doria, A; Dova, M T; Duchesneau, D; Duda, M; Echenard, B; Eline, A; El-Hage, A; El-Mamouni, H; Engler, A; Eppling, F J; Extermann, P; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, M; Ferguson, T; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, F; Fisher, P H; Fisher, W; Fisk, I; Forconi, G; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gentile, S; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Grünewald, M W; Guida, M; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hirschfelder, J; Hofer, H; Hohlmann, M; Holzner, G; Hou, S R; Hu, Y; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Käfer, D; Kaur, M; Kienzle-Focacci, M N; Kim, J K; Kirkby, Jasper; Kittel, E W; Klimentov, A; König, A C; Kopal, M; Koutsenko, V F; Kräber, M H; Krämer, R W; Krüger, A; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Leiste, R; Levtchenko, M; Levchenko, P M; Li, C; Likhoded, S; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Luci, C; Luminari, L; Lustermann, W; Ma Wen Gan; Malgeri, L; Malinin, A; Maña, C; Mans, J; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Muanza, G S; Muijs, A J M; Musicar, B; Musy, M; Nagy, S; Natale, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Nisati, A; Novák, T; Nowak, H; Ofierzynski, R A; Organtini, G; Pal, I; Palomares, C; Paolucci, P; Paramatti, R; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pioppi, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Pothier, J; Prokofev, D; Prokofiev, D O; Quartieri, J; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A V; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Riemann, S; Riles, K; Roe, B P; Romero, L; Rosca, A; Rosenbleck, C; Rosier-Lees, S; Roth, S; Rubio, J A; Ruggiero, G; Rykaczewski, H; Sakharov, A; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Schäfer, C; Shchegelskii, V; Schopper, Herwig Franz; Schotanus, D J; Sciacca, C; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A V; Son, D; Souga, C; Spillantini, P; Steuer, M; Stickland, D P; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Sushkov, S; Suter, H; Swain, J D; Szillási, Z; Tang, X W; Tarjan, P; Tauscher, Ludwig; Taylor, L; Tellili, B; Teyssier, D; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Ulbricht, J; Valente, E; Van de Walle, R T; Vásquez, R; Veszpremi, V; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Wadhwa, M; Wang, Q; Wang, X L; Wang, Z M; Weber, M; Wienemann, P; Wilkens, H; Wynhoff, S; Xia, L; Xu, Z Z; Yamamoto, J; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Yeh, S C; Zalite, A; Zalite, Yu; Zhang, Z P; Zhao, J; Zhu, G Y; Zhu, R Y; Zhuang, H L; Zichichi, A; Zimmermann, B; Zöller, M

    2004-01-01

    Single- and multi-photon events with missing energy are selected in 619/pb of data collected by the L3 detector at LEP at centre-of-mass energies between 189GeV and 209GeV. The cross sections of the process e^+e^- -> nu nu gamma (gamma) are found to be in agreement with the Standard Model expectations, and the number of light neutrino species is determined, including lower energy data, to be N_nu = 2.98 +/- 0.05 +/- 0.04. Selection results are also given in the form of tables which can be used to test future models involving single- and multi-photon signatures at LEP. These final states are also predicted by models with large extra dimensions and by several supersymmetric models. No evidence for such models is found. Among others, lower limits between 1.5TeV and 0.65TeV are set, at 95% confidence level, on the new scale of gravity for the number of extra dimensions between 2 and 8.

  13. Modeling of Single Event Transients With Dual Double-Exponential Current Sources: Implications for Logic Cell Characterization

    Science.gov (United States)

    Black, Dolores A.; Robinson, William H.; Wilcox, Ian Z.; Limbrick, Daniel B.; Black, Jeffrey D.

    2015-08-01

    Single event effects (SEE) are a reliability concern for modern microelectronics. Bit corruptions can be caused by single event upsets (SEUs) in the storage cells or by sampling single event transients (SETs) from a logic path. An accurate prediction of soft error susceptibility from SETs requires good models to convert collected charge into compact descriptions of the current injection process. This paper describes a simple, yet effective, method to model the current waveform resulting from a charge collection event for SET circuit simulations. The model uses two double-exponential current sources in parallel, and the results illustrate why a conventional model based on one double-exponential source can be incomplete. A small set of logic cells with varying input conditions, drive strength, and output loading are simulated to extract the parameters for the dual double-exponential current sources. The parameters are based upon both the node capacitance and the restoring current (i.e., drive strength) of the logic cell.

  14. Conductometric determination of single pores in polyethyleneterephthalate irradiated by heavy ions

    International Nuclear Information System (INIS)

    Oganesyan, V.R.; Trofimov, V.V.; Doerschel, B.; Hermsdorf, D.; Vetter, J.; Danziger, M.

    2002-01-01

    Most of the previous works devoted to the problem of track formation processes did not pay enough attention to direct measurement of the appearance of every individual pore in an array of many pores induced by the irradiation of polymer films with ions. Such measurements are not easy to carry out due to the extremely high electric resistance in the moment of pore opening. In this work the analysis of films irradiated with low particle fluences up to 3.7·10 3 ions/cm 2 is described. Polyethyleneterephthalate (PET) Hostaphan with a thickness of 20μm was used. The samples were irradiated with Bi ions of 11.4 MeV/amu energy. Using optimized etching conditions and computer aided data evaluation, we obtained results, which are in good agreement with theoretical predictions and model calculations. The measured increase of conductivity beginning from the breakthrough of a single track up to the next pore opening in dependence on the etching time and the number of opened pores confirm the assumed model. Thus, the developed 'track-by-track' method can be used effectively for description of the sequential appearance of individual pores in an electrolytic etching process

  15. Nanomechanical investigation of ion implanted single crystals - Challenges, possibilities and pitfall traps related to nanoindentation

    Science.gov (United States)

    Kurpaska, Lukasz

    2017-10-01

    Nanoindentation technique have developed considerably over last thirty years. Nowadays, commercially available systems offer very precise measurement in nano- and microscale, environmental noise cancelling (or at least noise suppressing), in situ high temperature indentation in controlled atmosphere and vacuum conditions and different additional options, among them dedicated indentation is one of the most popular. Due to its high precision, and ability to measure mechanical properties from very small depths (tens of nm), this technique become quite popular in the nuclear society. It is known that ion implantation (to some extent) can simulate the influence of neutron flux. However, depth of the material damage is very limited resulting in creation of thin layer of modified material over unmodified bulk. Therefore, only very precise technique, offering possibility to control depth of the measurement can be used to study functional properties of the material. For this reason, nanoindentation technique seems to be a perfect tool to investigate mechanical properties of ion implanted specimens. However, conducting correct nanomechanical experiment and extracting valuable mechanical parameters is not an easy task. In this paper a discussion about the nanoindentation tests performed on ion irradiated YSZ single crystal is presented. The goal of this paper is to discuss possible traps when studying mechanical properties of such materials and thin coatings.

  16. An investigation of electron paramagnetic resonance spectra of Mn+2 ion in silver nitrate single crystals

    International Nuclear Information System (INIS)

    Korkmaz, M.

    1974-01-01

    X-band EPR spectra of Mn +2 ion in AgNO 3 single crystals have been investigated as a function of temperature. Because of the small size of the fine structure constant 'a' and the large size of the hyperfine constant 'A' in this crystal, all electronic transitions are superimposed. For this reason, spectra consist of a group of six hyperfine components. The spectra appeared to be isotropic, although the symmetry of the host lattice is orthoromibc. This shows that the local symmetry of the paramagnetic ions is of cubic type. EPR signal disappears completely at -40 0 C. As the temperature is increased from this value the signal intensity increases steadily and reaches a maximum value at +40 0 C. If the temperature is raised further the signal tends to decrease. In other words in this crystal Mn +2 ion shows antiferromagnetic property below +40 0 C and paramagnetic property above +40 0 C. We also found that, in the antiferromagnetic region, the line width increases as the temperature is decreased. In the paramagnetic region the line width increases as the temperature is increased. Other spectral parameters A and g do not change with the temperature. Spectra obtained at room temperature and at different temperatures are also discussed. (Korkmaz, M.)

  17. Diode-like single-ion track membrane prepared by electro-stopping

    International Nuclear Information System (INIS)

    Apel, P.Yu.; Korchev, Yu.E.; Siwy, Z.; Spohr, R.; Yoshida, M.

    2001-01-01

    The preparation of an asymmetric membrane in poly(ethylene terephthalate) (PET) is described, using a combination of chemical and electro-stopping. For this purpose, a single-ion-irradiated PET film is inserted into an electrolytic cell and etched from one side in 9 M sodium hydroxide while bathing the other side in a mixture of 2 M KCl and 2 M HCOOH (1:1 by volume), electrically retracting the OH - ions from the tip of the etch pit during pore break-through. When a preset current has been reached, the etch process is interrupted by replacing the etching solution with acidic 1 M potassium chloride solution. After etching, the current-voltage (I-V) characteristic is determined under symmetric bathing conditions, immersing both sides of the membrane in KCl solutions of identical concentration (0.01-1 M) and pH (3-8). The I-V characteristic is strongly non-linear, comparable to that of an electrical diode. If the polarity during etching is reversed, pushing the OH - ions into the tip of the etch pit, the resulting pores are larger and the degree of asymmetry smaller. The importance of electro-stopping is compared with chemical stopping

  18. Conductometric determination of single pores in polyethyleneterephthalate irradiated by heavy ions

    CERN Document Server

    Oganesyan, V R; Dörschel, B; Hermsdorf, D; Trofimov, V V; Vetter, J

    2002-01-01

    Most of the previous works devoted to the problem of track formation processes did not pay enough attention to direct measurement of the appearance of every individual pore in an array of many pores induced by the irradiation of polymer films with ions. Such measurements are not easy to carry out due to the extremely high electric resistance in the moment of pore opening. In this work the analysis of films irradiated with low particle fluences up to 3.7 centre dot 10 sup 3 ions/cm sup 2 is described. Polyethyleneterephthalate (PET) Hostaphan with a thickness of 20 mu m was used. The samples were irradiated with Bi ions of 11.4 MeV/amu energy. Using optimized etching conditions and computer aided data evaluation, we obtained results, which are in good agreement with theoretical predictions and model calculations. The measured increase of conductivity beginning from the breakthrough of a single track up to the next pore opening in dependence on the etching time and the number of opened pores confirm the assumed...

  19. Conductometric Determination of Single Pores in Polyethyleneterephthalate Irradiated by Heavy Ions

    CERN Document Server

    Oganesyan, V R; Dörschel, B; Vetter, J E; Danziger, M; Hermsdorf, D

    2002-01-01

    Most of previous works devoted to the problem of track formation processes did not pay enough attention to direct measurement of the appearance of every individual pore in an array of many pores induced by the irradiation of polymer films with ions. Such measurements are not easy to carry out due to the extremely high electric resistance in the moment of pore opening. In this work the analysis of films irradiated with low particle fluences up to 3.7\\cdot 10^{3} ions/cm^2 is described. Polyethyleneterephthalate (PET) Hostaphan with a thickness of 20 m was used. The samples were irradiated with Bi ions of 11.4 MeV/amu energy. Using optimized etching conditions and computer aided data evaluation we obtained results, which are in good agreement with theoretical predictions and model calculations. The measured increase of conductivity beginning from the breakthrough of a single track up to the next pore opening in dependence on the etching time and the number of opened pores confirm the assumed model. Thus, the de...

  20. Development of the IFJ single ion hit facility for cells irradiation

    International Nuclear Information System (INIS)

    Veselov, O.; Polak, W.; Ugenskiene, R.; Hajduk, R.; Lebed, K.; Lekki, J.; Horwacik, T.; Dutkiewicz, E.M.; Maranda, S.; Pieprzyca, T.; Sarnecki, C.; Stachura, Z.; Szklarz, Z.; Styczen, J.

    2005-12-01

    In recent years a single ion hit facility (SIHF) has been constructed at the IFJ ion microprobe. The setup is used for the precise irradiations of living cells by a controlled number of ions. The facility allows investigations in various aspects of biomedical research, such as adaptive response, bystander effect, inverse dose-rate effect, low-dose hypersensitivity, etc. Those investigations have two very important requirements: (i) cells must be examined in their natural state and environment, i.e. without previously being killed, and preferentially, neither fixed nor stained, and (ii) a possibility of automatic irradiation of large number of cells with a computer recognition of their positions must be provided. This work presents some of the crucial features of the off-line and on-line optical systems, including self-developed software responsible for the automatic cell recognition. We also show several tests carried out to determine the efficiency of the whole setup and some segments. In conclusion, the results of our first irradiation measurements performed with living cells are demonstrated. (author)

  1. Designing Artificial Solid-Electrolyte Interphases for Single-Ion and High-Efficiency Transport in Batteries

    KAUST Repository

    Tu, Zhengyuan

    2017-09-21

    Substrates able to rectify transport of ions based on charge and/or size are ubiquitous in biological systems. Electrolytes and interphases that selectively transport electrochemically active ions are likewise of broad interest in all electrical energy storage technologies. In lithium-ion batteries, electrolytes with single- or near-single-ion conductivity reduce losses caused by ion polarization. In emergent lithium or sodium metal batteries, they maintain high conductivity at the anode and stabilize metal deposition by fundamental mechanisms. We report that 20- to 300-nm-thick, single-ion-conducting membranes deposited at the anode enable electrolytes with the highest combination of cation transference number, ionic conductivity, and electrochemical stability reported. By means of direct visualization we find that single-ion membranes also reduce dendritic deposition of Li in liquids. Galvanostatic measurements further show that the electrolytes facilitate long (3 mAh) recharge of full Li/LiNi0.8Co0.15Al0.05O2 (NCA) cells with high cathode loadings (3 mAh cm−2/19.9 mg cm−2) and at high current densities (3 mA cm−2).

  2. Event-specific qualitative and quantitative detection of five genetically modified rice events using a single standard reference molecule.

    Science.gov (United States)

    Kim, Jae-Hwan; Park, Saet-Byul; Roh, Hyo-Jeong; Shin, Min-Ki; Moon, Gui-Im; Hong, Jin-Hwan; Kim, Hae-Yeong

    2017-07-01

    One novel standard reference plasmid, namely pUC-RICE5, was constructed as a positive control and calibrator for event-specific qualitative and quantitative detection of genetically modified (GM) rice (Bt63, Kemingdao1, Kefeng6, Kefeng8, and LLRice62). pUC-RICE5 contained fragments of a rice-specific endogenous reference gene (sucrose phosphate synthase) as well as the five GM rice events. An existing qualitative PCR assay approach was modified using pUC-RICE5 to create a quantitative method with limits of detection correlating to approximately 1-10 copies of rice haploid genomes. In this quantitative PCR assay, the square regression coefficients ranged from 0.993 to 1.000. The standard deviation and relative standard deviation values for repeatability ranged from 0.02 to 0.22 and 0.10% to 0.67%, respectively. The Ministry of Food and Drug Safety (Korea) validated the method and the results suggest it could be used routinely to identify five GM rice events. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Persistent photoconductivity in hydrogen ion-implanted KNbO3 bulk single crystal

    Science.gov (United States)

    Tsuruoka, R.; Shinkawa, A.; Nishimura, T.; Tanuma, C.; Kuriyama, K.; Kushida, K.

    2017-06-01

    Persistent Photoconductivity (PPC) in hydorogen-ion implanted (001) oriented KNbO3 bulk single crystals (perovskite structure at room temperature; ferroelectric with a band gap of 3.16 eV) is studied in air at room temperature to prevent the crystallinity degradation caused by the phase transition. Hydrogen is implanted into KNbO3 bulk single crystals using the energy (the peak ion fluence) of 500 keV (5.0 × 1015 cm-2). The resistivity varies from ∼108 Ω/□ for an un-implanted KNbO3 sample to 2.3 × 105 Ω/□ for as-implanted one. suggesting the presence of donors consisting of hydrogen interstitial and oxygen vacancy. The PPC is clearly observed with ultraviolet and blue LEDs illumination rather than green and infrared, suggesting the release of electrons from the metastable conductive state below the conduction band relating to the charge states of the oxygen vacancy as observed in electron irradiated ZnO.

  4. Comb-shaped single ion conductors based on polyacrylate ethers and lithium alkyl sulfonate

    International Nuclear Information System (INIS)

    Sun Xiaoguang; Hou Jun; Kerr, John B.

    2005-01-01

    Comb-shaped single ion conductors have been synthesized by (1) sulfonation of small molecule chloroethyleneglycols, which, after ion exchange to the Li + salt were then converted to the acrylate by reaction with acryloyl chloride and copolymerized with polyethylene glycol monomethyl ether acrylate (Mn = 454, n = 8) (PAE 8 -co-E 3 SO 3 Li); (2) sulfonation of chloride end groups grafted on to prepolymers of polyacrylate ethers (PAE 8 -g-E n SO 3 Li, n = 2, 3). The highest conductivity at 25 deg. C of 2.0 x 10 -7 S cm -1 was obtained for the PAE 8 -co-E 3 SO 3 Li with a salt concentration of EO/Li = 40. The conductivity of PAE 8 -g-E 3 SO 3 Li is lower than that of PAE 8 -co-E 3 SO 3 Li at similar salt concentrations, which is related to the incomplete sulfonation of the grafted polymer that leads to a lower concentration of Li + . The addition of 50 wt.% of plasticizer, PC/EMC (1/1, v/v), to PAE 8 -g-E 2 SO 3 Li increases the ambient conductivity by three orders of magnitude, which is due to the increased ion mobility in a micro-liquid environment and an increase concentration of free ions as a result of the higher dielectric constant of the solvent. A symmetrical Li/Li cell with an electrolyte membrane consisting of 75 wt.% PC/EMC (1/1, v/v) was cycled at a current density of 100 μA cm -2 at 85 deg. C. The cycling profile showed no concentration polarization after a break-in period during the first few cycles, which was apparently due to reaction of the solvent at the lithium metal surface that reacted with lithium metal to form a stable SEI layer

  5. Ion assisted structural collapse of a single stranded DNA: A molecular dynamics approach

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Soumadwip; Dixit, Himanshu; Chakrabarti, Rajarshi, E-mail: rajarshi@chem.iitb.ac.in

    2015-09-28

    Highlights: • The dynamics of a single-stranded DNA in presence of different concentrations of Mg{sup 2+} is investigated. • The initial DNA chain collapse is characterized by the formation of non-sequentially stacked base pairs. • The DNA chain re-swells at high concentrations of Mg{sup 2+} as a consequence of overcharging. - Abstract: The structure and dynamics of negatively charged nucleic acids strongly correlate with the concentration and charge of the oppositely charged counterions. It is well known that the structural collapse of DNA is favoured in the presence of additional salt, a source of excess oppositely charged ions. Under such conditions single stranded DNA adopts a collapsed coil like conformation, typically characterized by stacking base pairs. Using atomistic molecular dynamics simulation, we demonstrate that in the presence of additional divalent salt (MgCl{sub 2}) single stranded DNA with base sequence 5′-CGCGAATTCGCG-3′ (Dickerson Drew dodecamer) initially collapses and then expands with increasing salt concentration. This is due to the overcharging induced DNA chain swelling, a dominant factor at a higher divalent salt concentration. In a nutshell, our simulations show how in the presence of divalent salt, non-sequential base stacking and overcharging competes and affect single stranded DNA dynamics unlike a monovalent salt.

  6. Measurement Of The Heavy-Ion Collision Event Characteristics With The Atlas Experiment At The Lhc

    Directory of Open Access Journals (Sweden)

    Iwona Grabowska-Bołd

    2015-01-01

    Full Text Available Heavy-ion collisions at extreme energies can reproduce conditionspresent in the early Universe. The new state of very dense and hotmatter of deconfined quarks and gluons, called the Quark GluonPlasma~(QGP, is observed. This state is characterised by very lowviscosity resembling the properties of a perfect fluid. In suchmedium, the density fluctuations can be easily spread. In experimentalpractice, the size of these fluctuations is estimated by measuring theangular correlation of produced particles. The aim of this paper isto present measurements of the azimuthal anisotropy of chargedparticles produced in heavy-ion collisions using the ATLAS detector atthe LHC. Two measurement techniques are presented and compared.

  7. Single-event multilevel surgery for children with cerebral palsy: a systematic review.

    Science.gov (United States)

    McGinley, Jennifer L; Dobson, Fiona; Ganeshalingam, Rekha; Shore, Benjamin J; Rutz, Erich; Graham, H Kerr

    2012-02-01

    To conduct a systematic review of single-event multilevel surgery (SEMLS) for children with cerebral palsy, with the aim of evaluating the quality of the evidence and developing recommendations for future research. The systematic review was conducted using standard search and extraction methods in Medline, EMBASE, CINAHL, and Cochrane electronic databases. For the purposes of this review, SEMLS was defined as two or more soft-tissue or bony surgical procedures at two or more anatomical levels during one operative procedure, requiring only one hospital admission and one period of rehabilitation. Studies were included if: (1) the primary focus was to examine the effect of SEMLS in children with cerebral palsy; (2) the results focused on multiple anatomic levels and reported findings of one or more World Health Organization International Classification of Functioning, Disability and Health (ICF) domains. Studies that focused on a single intervention or level, or on the utility of a specific outcome measure were excluded. Study quality was appraised with the Methodological Index for Non-Randomized Studies (MINORS) and the Oxford Centre for Evidence-Based Medicine scale. The review also examined the reporting of surgery, adverse events, and rehabilitation. Thirty-one studies fulfilled the criteria for inclusion, over the period 1985 to October 2010. The MINORS score for these studies varied from 4 to 19, with marked variation in the quality of reporting. Study quality has improved over recent years. Valid measures of gait and function have been introduced and several of the most recent studies have addressed multiple dimensions of the ICF. A statistical synthesis of the outcome data was not conducted, although a trend towards favourable outcomes in gait was evident. Caution is advised with interpretation owing to the variable study quality. Uncontrolled studies may have resulted in an overestimation of treatment efficacy. The design and reporting of studies of SEMLS are

  8. ATLAS One of the first Heavy ions collisions with stable beams- Event Display - November 2015

    CERN Multimedia

    ATLAS Collaboration

    2015-01-01

    One of the first heavy ions collisions with stable beams recorded by ATLAS in November 2015. Tracks reconstructed from hits in the inner tracking detector are shown as orange arcs curving in the solenoidal magnetic field. The green and yellow bars indicate energy deposits in the Liquid Argon and Scintillating Tile calorimeters respectively. The beam pipe and the inner detectors are also shown.

  9. Single-Trial Event-Related Potential Correlates of Belief Updating

    Science.gov (United States)

    Murawski, Carsten; Bode, Stefan

    2015-01-01

    Abstract Belief updating—the process by which an agent alters an internal model of its environment—is a core function of the CNS. Recent theory has proposed broad principles by which belief updating might operate, but more precise details of its implementation in the human brain remain unclear. In order to address this question, we studied how two components of the human event-related potential encoded different aspects of belief updating. Participants completed a novel perceptual learning task while electroencephalography was recorded. Participants learned the mapping between the contrast of a dynamic visual stimulus and a monetary reward and updated their beliefs about a target contrast on each trial. A Bayesian computational model was formulated to estimate belief states at each trial and was used to quantify the following two variables: belief update size and belief uncertainty. Robust single-trial regression was used to assess how these model-derived variables were related to the amplitudes of the P3 and the stimulus-preceding negativity (SPN), respectively. Results showed a positive relationship between belief update size and P3 amplitude at one fronto-central electrode, and a negative relationship between SPN amplitude and belief uncertainty at a left central and a right parietal electrode. These results provide evidence that belief update size and belief uncertainty have distinct neural signatures that can be tracked in single trials in specific ERP components. This, in turn, provides evidence that the cognitive mechanisms underlying belief updating in humans can be described well within a Bayesian framework. PMID:26473170

  10. MULTI-SPACECRAFT ANALYSIS OF ENERGETIC HEAVY ION AND INTERPLANETARY SHOCK PROPERTIES IN ENERGETIC STORM PARTICLE EVENTS NEAR 1 au

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, R. W.; Dayeh, M. A.; Desai, M. I. [Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78238 (United States); Jian, L. K. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Li, G. [The Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35756 (United States); Mason, G. M., E-mail: rebert@swri.edu [Johns Hopkins University/Applied Physics Laboratory, Laurel, MD 20273 (United States)

    2016-11-10

    We examine the longitude distribution of and relationship between interplanetary (IP) shock properties and ∼0.1–20 MeV nucleon{sup -1} O and Fe ions during seven multi-spacecraft energetic storm particle (ESP) events at 1 au. These ESP events were observed at two spacecraft and were primarily associated with low Mach number, quasi-perpendicular shocks. Key observations include the following: (i) the Alfvén Mach number increased from east to west of the coronal mass ejection source longitude, while the shock speed, compression ratios, and obliquity showed no clear dependence; (ii) the O and Fe time intensity profiles and peak intensities varied significantly between longitudinally separated spacecraft observing the same event, the peak intensities being larger near the nose and smaller along the flank of the IP shock; (iii) the O and Fe peak intensities had weak to no correlations with the shock parameters; (iv) the Fe/O time profiles showed intra-event variations upstream of the shock that disappeared downstream of the shock, where values plateaued to those comparable to the mean Fe/O of solar cycle 23; (v) the O and Fe spectral index ranged from ∼1.0 to 3.4, the Fe spectra being softer in most events; and (vi) the observed spectral index was softer than the value predicted from the shock compression ratio in most events. We conclude that while the variations in IP shock properties may account for some variations in O and Fe properties within these multi-spacecraft events, detailed examination of the upstream seed population and IP turbulence, along with modeling, are required to fully characterize these observations.

  11. [Single event multilevel surgery to improve gait in diplegic cerebral palsy - a prospective controlled trial].

    Science.gov (United States)

    Zwick, E B; Saraph, V; Strobl, W; Steinwender, G

    2001-01-01

    To evaluate prospectively the outcome of gait-improvement surgery in children with spastic diplegia. Three-dimensional gait analysis was performed in twenty children with spastic diplegia. Ten children underwent single event multilevel surgery for gait improvement. Indications for individual procedures followed a fixed set of selection criteria. The other ten children continued with their physiotherapy programme and served as a control group. A second gait analysis was performed in all children after 1.5 years. Time-distance parameters and kinematics of the pelvis, hip, knee and ankle joints in the sagittal plane served as main outcome measures The patients walked faster with an increased stride length after surgery in comparison to the conservatively treated controls. The average pelvic tilt increased slightly and the range of motion of the knee joint increased considerably after multilevel surgery. The motion at the ankle remained unchanged over the study period in both the groups. An improved knee extension during the stance phase of gait served to improve stance limb stability and facilitated an unhindered swing phase of the opposite limb. This prospective trial showed favourable changes in gait function after multilevel surgery in spastic diplegic children.

  12. Monitoring single event upsets in SRAM-based FPGAs at the SuperKEKB interaction point

    Science.gov (United States)

    Giordano, R.; Tortone, G.; Perrella, S.; Izzo, V.; Aloisio, A.

    2017-07-01

    In February 2016, the SuperKEKB positron-electron high-luminosity collider of the KEK laboratory (Tsukuba, Japan) started being commissioned. A dedicated commissioning detector, named BEAST2, has been used to characterize beam backgrounds before the Belle2 detector was rolled into the beams and to provide tuning parameters for Monte Carlo simulations. BEAST2 consists of a fiberglass support structure and several sub-detectors mounted onto it, including time projection chambers (TPCs) and He-3 tubes. In this work, we present direct measurements of radiation-induced single event upsets in a SRAM-based FPGA device installed in BEAST2 at a distance of ~ 1 m from the beam interaction point. Our goal was to provide experimental results of the expected radiation-induced configuration upset rate and power consumption variation at Belle2 and at other experiments operating in similar radiation environments. Beam currents for both electron and positron rings spanned a range between 50 and 500 mA, therefore providing data about the FPGA operation in different radiation conditions. Even if the machine has not been providing collisions yet, as the beams were not focused to the interaction point, our results show a rate of 0.15 upsets/day averaged over the whole commissioning time frame. We had neither evidence of total dose effects on the FPGA power consumption nor of permanent damage to the device.

  13. Position sensitive regions in a generic radiation sensor based on single event upsets in dynamic RAMs

    International Nuclear Information System (INIS)

    Darambara, D.G.; Spyrou, N.M.

    1997-01-01

    Modern integrated circuits are highly complex systems and, as such, are susceptible to occasional failures. Semiconductor memory devices, particularly dynamic random access memories (dRAMs), are subject to random, transient single event upsets (SEUs) created by energetic ionizing radiation. These radiation-induced soft failures in the stored data of silicon based memory chips provide the foundation for a new, highly efficient, low cost generic radiation sensor. The susceptibility and the detection efficiency of a given dRAM device to SEUs is a complicated function of the circuit design and geometry, the operating conditions and the physics of the charge collection mechanisms involved. Typically, soft error rates measure the cumulative response of all sensitive regions of the memory by broad area chip exposure in ionizing radiation environments. However, this study shows that many regions of a dynamic memory are competing charge collection centres having different upset thresholds. The contribution to soft fails from discrete regions or individual circuit elements of the memory device is unambiguously separated. Hence the use of the dRAM as a position sensitive radiation detector, with high spatial resolution, is assessed and demonstrated. (orig.)

  14. Single-trial event-related potential extraction through one-unit ICA-with-reference

    Science.gov (United States)

    Lih Lee, Wee; Tan, Tele; Falkmer, Torbjörn; Leung, Yee Hong

    2016-12-01

    Objective. In recent years, ICA has been one of the more popular methods for extracting event-related potential (ERP) at the single-trial level. It is a blind source separation technique that allows the extraction of an ERP without making strong assumptions on the temporal and spatial characteristics of an ERP. However, the problem with traditional ICA is that the extraction is not direct and is time-consuming due to the need for source selection processing. In this paper, the application of an one-unit ICA-with-Reference (ICA-R), a constrained ICA method, is proposed. Approach. In cases where the time-region of the desired ERP is known a priori, this time information is utilized to generate a reference signal, which is then used for guiding the one-unit ICA-R to extract the source signal of the desired ERP directly. Main results. Our results showed that, as compared to traditional ICA, ICA-R is a more effective method for analysing ERP because it avoids manual source selection and it requires less computation thus resulting in faster ERP extraction. Significance. In addition to that, since the method is automated, it reduces the risks of any subjective bias in the ERP analysis. It is also a potential tool for extracting the ERP in online application.

  15. The application of particle filters in single trial event-related potential estimation

    International Nuclear Information System (INIS)

    Mohseni, Hamid R; Nazarpour, Kianoush; Sanei, Saeid; Wilding, Edward L

    2009-01-01

    In this paper, an approach for the estimation of single trial event-related potentials (ST-ERPs) using particle filters (PFs) is presented. The method is based on recursive Bayesian mean square estimation of ERP wavelet coefficients using their previous estimates as prior information. To enable a performance evaluation of the approach in the Gaussian and non-Gaussian distributed noise conditions, we added Gaussian white noise (GWN) and real electroencephalogram (EEG) signals recorded during rest to the simulated ERPs. The results were compared to that of the Kalman filtering (KF) approach demonstrating the robustness of the PF over the KF to the added GWN noise. The proposed method also outperforms the KF when the assumption about the Gaussianity of the noise is violated. We also applied this technique to real EEG potentials recorded in an odd-ball paradigm and investigated the correlation between the amplitude and the latency of the estimated ERP components. Unlike the KF method, for the PF there was a statistically significant negative correlation between amplitude and latency of the estimated ERPs, matching previous neurophysiological findings

  16. Low energy proton induced single event upset in 65 nm DDR and QDR commercial SRAMs

    Science.gov (United States)

    Ye, B.; Liu, J.; Wang, T. S.; Liu, T. Q.; Maaz, K.; Luo, J.; Wang, B.; Yin, Y. N.; Ji, Q. G.; Sun, Y. M.; Hou, M. D.

    2017-09-01

    The single event upset (SEU) response of 65 nm commercial double data rate static random access memory (SRAM) and quad data rate SRAM was investigated by using proton beams with energies in the range of 0.15 MeV to 8.0 MeV. Experimental results show that a significant number of SEU occurrences can be triggered when the energy of incident proton is below 1 MeV. For the low energy protons, the SEU cross section measured in these SRAMs was found to increase with increasing proton energy, attaining a peak value, and then decreases as the proton energy was further increased. While in case of quad data rate SRAMs, it seems that they are more sensitive to SEU occurrences as compared with double data rate SRAMs. The bias voltage and data pattern dependence on SEU cross section induced by the low energy protons were also investigated in this work. In addition, the over-layer thickness of the SRAMs and the impact of degrader use in proton induced SEU test were also analyzed in detail. Monte Carlo simulations results indicate that the use of degrader in case of low energy proton induced SEU test results in a significant reduction of the SEU cross section.

  17. Single-event burnout hardening of planar power MOSFET with partially widened trench source

    Science.gov (United States)

    Lu, Jiang; Liu, Hainan; Cai, Xiaowu; Luo, Jiajun; Li, Bo; Li, Binhong; Wang, Lixin; Han, Zhengsheng

    2018-03-01

    We present a single-event burnout (SEB) hardened planar power MOSFET with partially widened trench sources by three-dimensional (3D) numerical simulation. The advantage of the proposed structure is that the work of the parasitic bipolar transistor inherited in the power MOSFET is suppressed effectively due to the elimination of the most sensitive region (P-well region below the N+ source). The simulation result shows that the proposed structure can enhance the SEB survivability significantly. The critical value of linear energy transfer (LET), which indicates the maximum deposited energy on the device without SEB behavior, increases from 0.06 to 0.7 pC/μm. The SEB threshold voltage increases to 120 V, which is 80% of the rated breakdown voltage. Meanwhile, the main parameter characteristics of the proposed structure remain similar with those of the conventional planar structure. Therefore, this structure offers a potential optimization path to planar power MOSFET with high SEB survivability for space and atmospheric applications. Project supported by the National Natural Science Foundation of China (Nos. 61404161, 61404068, 61404169).

  18. Calibration of a neutron detector based on single event upset of SRAM memories

    Energy Technology Data Exchange (ETDEWEB)

    Domingo, C., E-mail: carles.domingo@uab.ca [Departament de Fisica, Univ. Autonoma de Barcelona, E-08193 Bellaterra (Spain); Gomez, F. [Dpto. de Particulas, Univ. de Santiago, 15782 Santiago de Compostela (Spain); Sanchez-Doblado, F. [Dpto. de Fisiologia Medica y Biofisica, Univ. de Sevilla, 41009 Sevilla (Spain); Servicio de Radiofisica, Hospital Univ. Virgen Macarena, 41009 Sevilla (Spain); Hartmann, G.H. [DKFZ E0400, Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Amgarou, K.; Garcia-Fuste, M.J. [Departament de Fisica, Univ. Autonoma de Barcelona, E-08193 Bellaterra (Spain); Romero, M.T. [Dpto. de Fisiologia Medica y Biofisica, Univ. de Sevilla, 41009 Sevilla (Spain); Boettger, R.; Nolte, R.; Wissmann, F.; Zimbal, A.; Schuhmacher, H. [PTB, Bundesallee 100, 38116 Braunschweig (Germany)

    2010-12-15

    One of the challenges of measuring neutron fluences around medical linacs is the fact that the scattered photon fluence is important and higher than the surrounding neutron leakage fluence. Additionally most electron accelerators are pulsed, with repetition rates of the order of hundreds of Hertz, while the pulse duration is in the microsecond range. For this reason, neutron fluence around RT linacs is usually measured through passive methods, with the inconvenience of their time consuming analysis. A new neutron detector, based on the relation between Single Event Upsets (SEU) in digital SRAM memories and the existing thermal neutron fluence, has been developed. This work reports the calibration results of prototypes of this detector, obtained from exposures to the Physikalisch-Technische Bundesanstalt in Braunschweig (PTB) moderated {sup 252}Cf source, to PTB quasi-monoenergetic neutron beams of 0.565 MeV, 1.2 MeV, 5 MeV, 8 MeV and 14.8 MeV, and to the GKSS thermal neutron beam.

  19. SRAM single event upset calculation and test using protons in the secondary beam in the BEPC

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yuanming; Guo Hongxia; Zhang Fengqi; Zhang Keying; Chen Wei; Luo Yinhong; Guo Xiaoqiang, E-mail: wangym2007@gmail.com [Northwest Institute of Nuclear Technology, Xi' an 710024 (China)

    2011-09-15

    The protons in the secondary beam in the Beijing Electron Positron Collider (BEPC) are first analyzed and a large proportion at the energy of 50-100 MeV supply a source gap of high energy protons. In this study, the proton energy spectrum of the secondary beam was obtained and a model for calculating the proton single event upset (SEU) cross section of a static random access memory (SRAM) cell has been presented in the BEPC secondary beam proton radiation environment. The proton SEU cross section for different characteristic dimensions has been calculated. The test of SRAM SEU cross sections has been designed, and a good linear relation between SEUs in SRAM and the fluence was found, which is evidence that an SEU has taken place in the SRAM. The SEU cross sections were measured in SRAM with different dimensions. The test result shows that the SEU cross section per bit will decrease with the decrease of the characteristic dimensions of the device, while the total SEU cross section still increases upon the increase of device capacity. The test data accords with the calculation results, so the high-energy proton SEU test on the proton beam in the BEPC secondary beam could be conducted. (semiconductor physics)

  20. Radiation induced Single Event Effects in the ATLAS MDT-ASD front-end chip

    CERN Document Server

    Posch, C

    2002-01-01

    Single Event Effect (SEE) tests of the MDT-ASD, the ATLAS MDT front-end chip have been performed at the Harvard Cyclotron Lab. The MDT-ASD is an 8-channel drift tube read-out ASIC fabricated in a commercial 0.5um CMOS process (AMOS14TB). The chip contains a 53 bit register which holds the setup information and an associated shift register of the same length plus some additional control logic. 10 test devices were exposed to a 160 MeV proton beam with a fluence of 1.05E9 p.cm-2.s-1 up to >4.4E p.cm-2 per device. After a total fluence of 4.46E13 p.cm-2, 7 soft SEEs (non-permanent bit flips in the registers) and 0 hard/destructive SEE (e.g. latch-ups, SEL) had occurred. The simulated fluence for 10 years of LHC operation at nominal luminosity for worst case location MDT components is 2.67E11 h.cm-2. The rate of SEUs in the ASD setup register for all of ATLAS, derived from these numbers, is 2.4 per day. It is foreseen to update the active registers of the on-detector electronics at regular intervals. Depending on...

  1. Verifying Heisenberg's error-disturbance relation using a single trapped ion.

    Science.gov (United States)

    Zhou, Fei; Yan, Leilei; Gong, Shijie; Ma, Zhihao; He, Jiuzhou; Xiong, Taiping; Chen, Liang; Yang, Wanli; Feng, Mang; Vedral, Vlatko

    2016-10-01

    Heisenberg's uncertainty relations have played an essential role in quantum physics since its very beginning. The uncertainty relations in the modern quantum formalism have become a fundamental limitation on the joint measurements of general quantum mechanical observables, going much beyond the original discussion of the trade-off between knowing a particle's position and momentum. Recently, the uncertainty relations have generated a considerable amount of lively debate as a result of the new inequalities proposed as extensions of the original uncertainty relations. We report an experimental test of one of the new Heisenberg's uncertainty relations using a single 40 Ca + ion trapped in a harmonic potential. By performing unitary operations under carrier transitions, we verify the uncertainty relation proposed by Busch, Lahti, and Werner (BLW) based on a general error-trade-off relation for joint measurements on two compatible observables. The positive operator-valued measure, required by the compatible observables, is constructed by single-qubit operations, and the lower bound of the uncertainty, as observed, is satisfied in a state-independent manner. Our results provide the first evidence confirming the BLW-formulated uncertainty at a single-spin level and will stimulate broad interests in various fields associated with quantum mechanics.

  2. Verifying Heisenberg’s error-disturbance relation using a single trapped ion

    Science.gov (United States)

    Zhou, Fei; Yan, Leilei; Gong, Shijie; Ma, Zhihao; He, Jiuzhou; Xiong, Taiping; Chen, Liang; Yang, Wanli; Feng, Mang; Vedral, Vlatko

    2016-01-01

    Heisenberg’s uncertainty relations have played an essential role in quantum physics since its very beginning. The uncertainty relations in the modern quantum formalism have become a fundamental limitation on the joint measurements of general quantum mechanical observables, going much beyond the original discussion of the trade-off between knowing a particle’s position and momentum. Recently, the uncertainty relations have generated a considerable amount of lively debate as a result of the new inequalities proposed as extensions of the original uncertainty relations. We report an experimental test of one of the new Heisenberg’s uncertainty relations using a single 40Ca+ ion trapped in a harmonic potential. By performing unitary operations under carrier transitions, we verify the uncertainty relation proposed by Busch, Lahti, and Werner (BLW) based on a general error–trade-off relation for joint measurements on two compatible observables. The positive operator-valued measure, required by the compatible observables, is constructed by single-qubit operations, and the lower bound of the uncertainty, as observed, is satisfied in a state-independent manner. Our results provide the first evidence confirming the BLW-formulated uncertainty at a single-spin level and will stimulate broad interests in various fields associated with quantum mechanics. PMID:28861461

  3. Dependence of the structure of ion-modified NiTi single crystal layers on the orientation of irradiated surface

    Science.gov (United States)

    Poletika, T. M.; Meisner, L. L.; Girsova, S. L.; Tverdokhlebova, A. V.; Meisner, S. N.

    2017-07-01

    The composition and structure of Si layers implanted into titanium nickelide single crystals with different orientations relative to the ion beam propagation direction have been studied using Auger electron spectroscopy and transmission electron microscopy. The role of the "soft" [111]B2 and "hard" [001]B2 NiTi orientations in the formation of the structure of ion-modified surface layer, as well as the defect structure of the surface layers of the single crystals, has been revealed. Orientation effects of selective sputtering and channeling of ions, which control the composition and thickness of the oxide and amorphous layers being formed, ion and impurity penetration depth, as well as the concentration profile of the Ni distribution over the surface, have been detected.

  4. SPECTRAL PROPERTIES OF LARGE GRADUAL SOLAR ENERGETIC PARTICLE EVENTS. II. SYSTEMATIC Q/M DEPENDENCE OF HEAVY ION SPECTRAL BREAKS

    Energy Technology Data Exchange (ETDEWEB)

    Desai, M. I.; Dayeh, M. A.; Ebert, R. W.; Schwadron, N. A. [Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78238 (United States); Mason, G. M. [Johns Hopkins University/Applied Physics Laboratory, Laurel, MD 20723 (United States); McComas, D. J. [Department of Astrophysical Sciences, Princeton University, NJ 08544 (United States); Li, G. [The Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35756 (United States); Cohen, C. M. S.; Mewaldt, R. A. [California Institute of Technology, Pasadena, CA 91125 (United States); Smith, C. W., E-mail: mdesai@swri.edu [University of New Hampshire, 8 College Road, Durham NH 03824 (United States)

    2016-09-10

    We fit ∼0.1–500 MeV nucleon{sup −1} H–Fe spectra in 46 large solar energetic particle (SEP) events with the double power-law Band function to obtain a normalization constant, low- and high-energy parameters γ {sub a} and γ {sub b}, and break energy E {sub B}, and derive the low-energy spectral slope γ {sub 1}. We find that: (1) γ {sub a}, γ {sub 1}, and γ {sub b} are species-independent and the spectra steepen with increasing energy; (2) E {sub B} decreases systematically with decreasing Q/M scaling as (Q/M){sup α}; (3) α varies between ∼0.2–3 and is well correlated with the ∼0.16–0.23 MeV nucleon{sup −1} Fe/O; (4) in most events, α < 1.4, γ {sub b}– γ {sub a} > 3, and O E {sub B} increases with γ {sub b}– γ {sub a}; and (5) in many extreme events (associated with faster coronal mass ejections (CMEs) and GLEs), Fe/O and {sup 3}He/{sup 4}He ratios are enriched, α ≥ 1.4, γ {sub b}– γ {sub a} < 3, and E {sub B} decreases with γ {sub b}– γ {sub a}. The species-independence of γ {sub a}, γ {sub 1}, and γ {sub b} and the Q/M dependence of E {sub B} within an event and the α values suggest that double power-law SEP spectra occur due to diffusive acceleration by near-Sun CME shocks rather than scattering in interplanetary turbulence. Using γ {sub 1}, we infer that the average compression ratio for 33 near-Sun CME shocks is 2.49 ± 0.08. In most events, the Q/M dependence of E {sub B} is consistent with the equal diffusion coefficient condition and the variability in α is driven by differences in the near-shock wave intensity spectra, which are flatter than the Kolmogorov turbulence spectrum but weaker than the spectra for extreme events. In contrast, in extreme events, enhanced wave power enables faster CME shocks to accelerate impulsive suprathermal ions more efficiently than ambient coronal ions.

  5. Coherent manipulation of three-qubit states in a molecular single-ion magnet

    Science.gov (United States)

    Jenkins, M. D.; Duan, Y.; Diosdado, B.; García-Ripoll, J. J.; Gaita-Ariño, A.; Giménez-Saiz, C.; Alonso, P. J.; Coronado, E.; Luis, F.

    2017-02-01

    We study the quantum spin dynamics of nearly isotropic Gd3 + ions entrapped in polyoxometalate molecules and diluted in crystals of a diamagnetic Y3 + derivative. The full energy-level spectrum and the orientations of the magnetic anisotropy axes have been determined by means of continuous-wave electron paramagnetic resonance experiments, using X-band (9-10 GHz) cavities and on-chip superconducting waveguides and 1.5-GHz resonators. The results show that seven allowed transitions between the 2 S +1 spin states can be separately addressed. Spin coherence T2 and spin-lattice relaxation T1 rates have been measured for each of these transitions in properly oriented single crystals. The results suggest that quantum spin coherence is limited by residual dipolar interactions with neighbor electronic spins. Coherent Rabi oscillations have been observed for all transitions. The Rabi frequencies increase with microwave power and agree quantitatively with predictions based on the spin Hamiltonian of the molecular spin. We argue that the spin states of each Gd3 + ion can be mapped onto the states of three addressable qubits (or, alternatively, of a d =8 -level "qudit"), for which the seven allowed transitions form a universal set of operations. Within this scheme, one of the coherent oscillations observed experimentally provides an implementation of a controlled-controlled-NOT (or Toffoli) three-qubit gate.

  6. The effect of Cu{sup II} ions in L-asparagine single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Santana, Ricardo C., E-mail: santana@ufg.br; Gontijo, Henrique O.; Menezes, Arthur F.; Martins, José A.; Carvalho, Jesiel F., E-mail: carvalho@ufg.br

    2016-11-15

    We report the synthesis, crystal growth, and spectroscopic characterization of L-asparagine monohydrate (LAM) single crystals doped with CuII. The crystals were successfully grown by slow cooling from a supersaturated aqueous solution up to size of 16×12×2 mm{sup 3};the effect of copper impurities in the crystals morphology was discussed. Electron Paramagnetic Resonance (EPR) was used to calculate the g and hyperfine coupling (A) tensors of the CuII ions (g{sub 1}=2.044, g{sub 2}=2.105, g{sub 3}=2.383and A{sub 1}≈0, A{sub 2}=35, A{sub 3}=108 Gauss). The EPR spectra for certain orientations of the magnetic field suggest that CuII ions are coordinated to two {sup 14}N atoms. Correlating the EPR and optical absorption results, the crystal field and the Cu{sup II} orbital bond parameters were calculated. The results indicate that the paramagnetic center occupies interstitial rhombic distorted site and the ground orbital state for the unpaired electron is the d(x{sup 2}-y{sup 2}).

  7. Non-destructive single-pass low-noise detection of ions in a beamline

    Science.gov (United States)

    Schmidt, Stefan; Murböck, Tobias; Andelkovic, Zoran; Birkl, Gerhard; Nörtershäuser, Wilfried; Stahl, Stefan; Vogel, Manuel

    2015-11-01

    We have conceived, built, and operated a device for the non-destructive single-pass detection of charged particles in a beamline. The detector is based on the non-resonant pick-up and subsequent low-noise amplification of the image charges induced in a cylindrical electrode surrounding the particles' beam path. The first stage of the amplification electronics is designed to be operated from room temperature down to liquid helium temperature. The device represents a non-destructive charge counter as well as a sensitive timing circuit. We present the concept and design details of the device. We have characterized its performance and show measurements with low-energy highly charged ions (such as Ar13+) passing through one of the electrodes of a cylindrical Penning trap. This work demonstrates a novel approach of non-destructive, low noise detection of charged particles which is, depending on the bunch structure, suitable, e.g., for ion traps, low-energy beamlines or accelerator transfer sections.

  8. Luminescent single-ion magnets from Lanthanoid(III) complexes with monodentate ketone ligands

    Energy Technology Data Exchange (ETDEWEB)

    Kanetomo, Takuya; Ishida, Takayuki, E-mail: takayuki.ishida@uec.ac.jp [Department of Engineering Science, The University of Electro-Communications, Tokyo (Japan)

    2016-02-01

    We synthesized [Ln{sup III}(hfac){sub 3}(H{sub 2}O)(L)] (abbreviated as Ln-L; Ln = Gd, Tb, Eu; L = DTBK (di-t-butyl ketone), BP (benzophenone)), in which the carbonyl oxygen atom was coordinated to the Ln ion center, despite of such bulky substituents. Their crystal structures were determined by means of X-ray diffraction study. Gd-DTBK is completely isomorphous to the di-t-butyl nitroxide derivative and accordingly can be regarded as a model with the ligand spin masked. The ac magnetic susceptibility measurements on Tb-DTBK and -BP showed frequency dependence, characteristic of single-ion magnets. They also displayed photoluminescence in the solid state at room temperature. The quantum yields of the luminescence of Tb-DTBK and -BP (λ{sub ex} = 360 nm) were improved to 57 and 35%, respectively, from that of the starting material [TbI{sup III}(hfac){sub 3}(H{sub 2}O){sub 2}] (28% at λ{sub ex} = 370 nm). Similarly, the quantum yields for Eu-DTBK and -BP were 8 and 15%, respectively, with λ{sub ex} = 400 nm, while that of the starting material [EuI{sup III}(hfac){sub 3}(H{sub 2}O){sub 2}] was 4% at λ{sub ex}=400 nm.

  9. Luminescent single-ion magnets from Lanthanoid(III) complexes with monodentate ketone ligands

    Science.gov (United States)

    Kanetomo, Takuya; Ishida, Takayuki

    2016-02-01

    We synthesized [LnIII(hfac)3(H2O)(L)] (abbreviated as Ln-L; Ln = Gd, Tb, Eu; L = DTBK (di-t-butyl ketone), BP (benzophenone)), in which the carbonyl oxygen atom was coordinated to the Ln ion center, despite of such bulky substituents. Their crystal structures were determined by means of X-ray diffraction study. Gd-DTBK is completely isomorphous to the di-t-butyl nitroxide derivative and accordingly can be regarded as a model with the ligand spin masked. The ac magnetic susceptibility measurements on Tb-DTBK and -BP showed frequency dependence, characteristic of single-ion magnets. They also displayed photoluminescence in the solid state at room temperature. The quantum yields of the luminescence of Tb-DTBK and -BP (λex = 360 nm) were improved to 57 and 35%, respectively, from that of the starting material [TbIIII(hfac)3(H2O)2] (28% at λex = 370 nm). Similarly, the quantum yields for Eu-DTBK and -BP were 8 and 15%, respectively, with λex = 400 nm, while that of the starting material [EuIIII(hfac)3(H2O)2] was 4% at λex=400 nm.

  10. Single Ion transient-IBIC analyses of semiconductor devices using a cryogenic temperature stage

    International Nuclear Information System (INIS)

    Laird, J.S.; Bardos, R.; Legge, G.J.F.; Jagadish, C.

    1998-01-01

    A new Transient - IBIC data acquisition and analysis system at MARC is described. A discussion on the need for single ion control and temperature control is also given. The recorded signal is used as the trigger for beam pulsing. The new cryostatic temperature control stage is introduced. Data is presented on line profiles across the edge of a Au-Si junction collected over the temperature range of 25-300K using a developed C-V and I-V variable temperature stage incorporating a liquid helium cryostat. It demonstrates the potential improvements in spatial resolution in materials of long lifetime by mapping on timing windows around the prompt charge component in the charge transient

  11. A diode laser stabilization scheme for 40Ca+ single-ion spectroscopy

    Science.gov (United States)

    Rohde, F.; Almendros, M.; Schuck, C.; Huwer, J.; Hennrich, M.; Eschner, J.

    2010-06-01

    We present a scheme for stabilizing multiple lasers at wavelengths between 795 and 866 nm to the same atomic reference line. A reference laser at 852 nm is stabilized to the Cs D2 line using a Doppler-free frequency modulation technique. Through transfer cavities, four lasers are stabilized to the relevant atomic transitions in 40Ca+. The rms linewidth of a transfer-locked laser is measured to be 123 kHz over 200 ms with respect to an independent atomic reference, the Rb D1 line. This stability is confirmed by the comparison of an excitation spectrum of a single 40Ca+ ion to an eight-level Bloch equation model. The long-term stability with respect to the same reference is measured to be 130 kHz over a period of 2 h. The high degree of stability is demonstrated by the measured Allan deviation around 10-11 between 1 and 100 s.

  12. A diode laser stabilization scheme for 40Ca+ single-ion spectroscopy

    International Nuclear Information System (INIS)

    Rohde, F; Almendros, M; Schuck, C; Huwer, J; Hennrich, M; Eschner, J

    2010-01-01

    We present a scheme for stabilizing multiple lasers at wavelengths between 795 and 866 nm to the same atomic reference line. A reference laser at 852 nm is stabilized to the Cs D 2 line using a Doppler-free frequency modulation technique. Through transfer cavities, four lasers are stabilized to the relevant atomic transitions in 40 Ca + . The rms linewidth of a transfer-locked laser is measured to be 123 kHz over 200 ms with respect to an independent atomic reference, the Rb D 1 line. This stability is confirmed by the comparison of an excitation spectrum of a single 40 Ca + ion to an eight-level Bloch equation model. The long-term stability with respect to the same reference is measured to be 130 kHz over a period of 2 h. The high degree of stability is demonstrated by the measured Allan deviation around 10 -11 between 1 and 100 s.

  13. Single Ion transient-IBIC analyses of semiconductor devices using a cryogenic temperature stage

    Energy Technology Data Exchange (ETDEWEB)

    Laird, J.S.; Bardos, R.; Legge, G.J.F. [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Jagadish, C. [Australian National Univ., Canberra, ACT (Australia). School of Physics, Electronic Materials Engineering

    1998-06-01

    A new Transient - IBIC data acquisition and analysis system at MARC is described. A discussion on the need for single ion control and temperature control is also given. The recorded signal is used as the trigger for beam pulsing. The new cryostatic temperature control stage is introduced. Data is presented on line profiles across the edge of a Au-Si junction collected over the temperature range of 25-300K using a developed C-V and I-V variable temperature stage incorporating a liquid helium cryostat. It demonstrates the potential improvements in spatial resolution in materials of long lifetime by mapping on timing windows around the prompt charge component in the charge transient. 2 figs.

  14. Dynamics of a single ion in a perturbed Penning trap: Octupolar perturbation

    International Nuclear Information System (INIS)

    Lara, Martin; Salas, J. Pablo

    2004-01-01

    Imperfections in the design or implementation of Penning traps may give rise to electrostatic perturbations that introduce nonlinearities in the dynamics. In this paper we investigate, from the point of view of classical mechanics, the dynamics of a single ion trapped in a Penning trap perturbed by an octupolar perturbation. Because of the axial symmetry of the problem, the system has two degrees of freedom. Hence, this model is ideal to be managed by numerical techniques like continuation of families of periodic orbits and Poincare surfaces of section. We find that, through the variation of the two parameters controlling the dynamics, several periodic orbits emanate from two fundamental periodic orbits. This process produces important changes (bifurcations) in the phase space structure leading to chaotic behavior

  15. Focused ion beam milling of nanocavities in single colloidal particles and self-assembled opals

    International Nuclear Information System (INIS)

    Woldering, Leon A; Otter, A M; Husken, Bart H; Vos, Willem L

    2006-01-01

    We present a new method of realizing single nanocavities in individual colloidal particles on the surface of silicon dioxide artificial opals using a focused ion beam milling technique. We show that both the radius and the position of the nanocavity can be controlled with nanometre precision, to radii as small as 40 nm. The relation between the defect size and the milling time has been established. We confirmed that milling not only occurs on the surface of the spheres, but into and through them as well. We also show that an array of nanocavities can be fashioned. Structurally modified colloids have interesting potential applications in nanolithography, as well as in chemical sensing and solar cells, and as photonic crystal cavities

  16. Angle-resolved imaging of single-crystal materials with MeV helium ions

    International Nuclear Information System (INIS)

    Strathman, M.D.; Baumann, S.

    1992-01-01

    The simplest form of angle-resolved mapping for single-crystal materials is the creation of a channeling angular scan. Several laboratories have expanded this simple procedure to include mapping as a function of two independent tilts. These angle-resolved images are particularly suited to the assessment of crystal parameters including disorder, lattice location of impurities, and lattice stress. This paper will describe the use of the Charles Evans and Associates RBS-400 scattering chamber for acquisition, display, and analysis of angle-resolved images obtained from backscattered helium ions. Typical data acquisition times are 20 min for a ±2deg X-Y tilt scan with 2500 pixels (8/100deg resolution), and 10 nC per pixel. In addition, we will present a method for automatically aligning crystals for channeling measurements based on this imaging technology. (orig.)

  17. On the calculation of single ion activity coefficients in homogeneous ionic systems by application of the grand canonical ensemble

    DEFF Research Database (Denmark)

    Sloth, Peter

    1993-01-01

    The grand canonical ensemble has been used to study the evaluation of single ion activity coefficients in homogeneous ionic fluids. In this work, the Coulombic interactions are truncated according to the minimum image approximation, and the ions are assumed to be placed in a structureless...... of the individual ionic activity coefficients with respect to the total ionic concentration. This formula has previously been proposed on the basis of somewhat different considerations....

  18. Wavelet based automated postural event detection and activity classification with single imu - biomed 2013.

    Science.gov (United States)

    Lockhart, Thurmon E; Soangra, Rahul; Zhang, Jian; Wu, Xuefan

    2013-01-01

    and classification algorithm using denoised signals from single wireless IMU placed at sternum. The algorithm was further validated and verified with motion capture system in laboratory environment. Wavelet denoising highlighted postural events and transition durations that further provided clinical information on postural control and motor coordination. The presented method can be applied in real life ambulatory monitoring approaches for assessing condition of elderly.

  19. An evaluation testing technique of single event effect using Beam Blanking SEM

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, J.; Hada, T.; Pesce, A.; Akutsu, T.; Matsuda, S. [National Space Development Agency of Japan, Tsukuba, Ibaraki (Japan). Tsukuba Space Center; Igarashi, T.; Baba, S.

    1997-03-01

    Beam Blanking SEM (Scanning Electron Microscope) testing technique has been applied to CMOS SRAM devices to evaluate the occurence of soft errors on memory cells. Cross-section versus beam current and LET curves derived from BBSEM and heavy ion testing technique, respectively, have been compared. A linear relation between BBSEM current and heavy ion LET has been found. The purpose of this study was to demonstrate that the application of focused pulsed electron beam could be a reliable, convenient and inexpensive tool to investigate the effects of heavy ions and high energy particles on memory devices for space application. (author)

  20. Multifragment events from heavy-ion collisions: Sources and excitation functions

    Science.gov (United States)

    Blumenfeld, Y.; Colonna, N.; Roussel-Chomaz, P.; Delis, D. N.; Hanold, K.; Meng, J. C.; Peaslee, G. F.; Sui, Q. C.; Wozniak, G. J.; Moretto, L. G.; Libby, B.; Mignerey, A. C.; Guarino, G.; Santoruvo, N.; Iori, I.

    1991-02-01

    Multifragment events from 35, 40, 45, and 55 MeV/nucleon 139La+12C, 27Al, 40Ca, 51V, natCu, and 139La reactions can be assigned to sources characterized by their velocity. At each bombarding energy, the probabilities of threefold, fourfold and fivefold events increase substantially with decreasing source velocity, but are independent of the target mass. To remove the bombarding-energy dependence, a simple transformation has been applied which gives the excitation energy of the fused system in the simple incomplete-fusion picture. These ``excitation functions'' appear to independent of both the system and bombarding energy.

  1. Ionization in matrix-assisted laser desorption/ionization: singly charged molecular ions are the lucky survivors.

    Science.gov (United States)

    Karas, M; Glückmann, M; Schäfer, J

    2000-01-01

    A new model for the ionization processes in UV matrix-assisted laser desorption/ionization (MALDI) which accounts for the major phenomena observed is presented and discussed. The model retains elements of earlier approaches, such as photoionization and photochemical reactions, but it redefines these in the light of new working questions, most importantly why only singly charged ions are detected. Based on experimental evidence, the formation of singly and multiply charged clusters by a deficiency/excess of ions and also by photoionization and subsequent photochemical processes is pointed out to be the major ionization processes, which typically occur in parallel. The generation of electrons and their partial loss into the surrounding vacuum and solid, on the one hand, results in a positively charged ion-neutral plume facilitating a high overall ionization yield. On the other hand, these electrons, and also the large excess of protonated matrix ions in the negative ion mode, induce effective ion reneutralization in the plume. These neutralization processes are most effective for the highly charged cluster ions initially formed. Their fragmentation behaviour is evidenced in fast metastable fragmentation characteristics and agrees well with an electron capture dissociation mechanism and the enthalpy transfer upon neutralization forms the rationale for the prominent fragmentation and intense chemical noise accompanying successful MALDI. Within the course of the paper, cross-correlations with other desorption/ionization techniques and with earlier discussions on their mechanisms are drawn. Copyright 2000 John Wiley & Sons, Ltd.

  2. Spectroscopy of single Pr3+ ion in LaF3 crystal at 1.5 K.

    Science.gov (United States)

    Nakamura, Ippei; Yoshihiro, Tatsuya; Inagawa, Hironori; Fujiyoshi, Satoru; Matsushita, Michio

    2014-12-08

    Optical read-out and manipulation of the nuclear spin state of single rare-earth ions doped in a crystal enable the large-scale storage and the transport of quantum information. Here, we report the photo-luminescence excitation spectroscopy results of single Pr(3+) ions in a bulk crystal of LaF3 at 1.5 K. In a bulk sample, the signal from a single ion at the focus is often hidden under the background signal originating from numerous out-of-focus ions in the entire sample. To combine with a homemade cryogenic confocal microscope, we developed a reflecting objective that works in superfluid helium with a numerical aperture of 0.99, which increases the signal by increasing the solid angle of collection to 1.16π and reduces the background by decreasing the focal volume. The photo-luminescence excitation spectrum of single Pr(3+) was measured at a wing of the spectral line of the (3)H4 → (3)P0 transition at 627.33 THz (477.89 nm). The spectrum of individual Pr(3+) ions appears on top of the background of 60 cps as isolated peaks with intensities of 20-30 cps and full-width at half-maximum widths of approximately 3 MHz at an excitation intensity of 80 W cm(-2).

  3. Increased Cardiovascular Events and Subclinical Atherosclerosis in Rheumatoid Arthritis Patients: 1 Year Prospective Single Centre Study.

    Directory of Open Access Journals (Sweden)

    Piero Ruscitti

    Full Text Available Several studies showed the close relationship between Rheumatoid Arthritis (RA and cerebro-cardiovascular events (CVEs and subclinical atherosclerosis. In this study, we investigated the occurrence of CVEs and subclinical atherosclerosis during the course of RA and we evaluated the possible role of both traditional cardiovascular (CV and disease related risk factors to predict the occurrence of new CVEs and the onset of subclinical atherosclerosis.We designed a single centre, bias-adjusted, prospective, observational study to investigate, in a homogeneous subset of RA patients, the occurrence of new onset of CVEs and subclinical atherosclerosis. Statistical analyses were performed to evaluate the role of traditional CV and disease-related risk factors to predict the occurrence of new CVEs and subclinical atherosclerosis.We enrolled 347 RA patients prospectively followed for 12 months. An increased percentage of patients experienced CVEs, developed subclinical atherosclerosis and was affected by systemic arterial hypertension (SAH, type 2 diabetes mellitus and metabolic syndrome (MS, at the end of follow up. Our analysis showed that the insurgence of both SAH and MS, during the follow up, the older age, the CVE familiarity and the lack of clinical response, were associated with a significantly increased risk to experience CVEs and to develop subclinical atherosclerosis.Our study quantifies the increased expected risk for CVEs in a cohort of RA patients prospectively followed for 1 year. The occurrence of both new CVEs and subclinical atherosclerosis in RA patients may be explained by inflammatory burden as well as traditional CV risk factors.

  4. Mitigation of Temperature Induced Single Event Crosstalk Noise by Applying Adaptive Forward Body Bias

    Science.gov (United States)

    Bhowmik, Pankaj

    Soft Errors due to Single Event (SE) Transients is one of the important reliability issues, which is becoming very prominent in advanced technology and in space applications. Increasing coupling effects among interconnects, on the other hand, can cause SE Transients to contaminate electronically unrelated circuit paths, which in turn can increase circuit sensitivity to radiation. Coupling capacitance increases due to reducing distances between interconnect lines making crosstalk noise more important. On the other hand, chips now experience higher temperatures due to environmental factors and high performance of chips. High-performance VLSI circuits consume more power and hence experience higher temperature due to high utilization factor. The increased temperature affects both interconnect resistance and driving strength of interconnect buffers. This work shows that thermal effects increase the amount of crosstalk noise observed on the victim line at nominal supply voltages. With thermally induced crosstalk contribution, total crosstalk noise may exceed the noise margin of the subsequent gate causing a wrong value to be propagated. The crosstalk prevention measures taken such as victim driver sizing may not be sufficient if thermal effects are not properly considered. This work aims to provide a mitigation method for thermally induced crosstalk noise using adaptive forward body bias. At high temperature, drain current reduces, and adaptive body biasing makes the CMOS recover the lost the drain current. A temperature sensor is proposed here to generate a necessary voltage at the CMOS body. A good temperature sensitivity is achieved with the tiny sensors that keep constant driving strength. Interconnect is modeled in using 10-pi modeling and 45nm technology was use for this simulation. Our proposed method mitigates 90% of temperature induced crosstalk contribution.

  5. Development of Single-Event Upset hardened programmable logic devices in deep submicron CMOS

    International Nuclear Information System (INIS)

    Bonacini, S.

    2007-11-01

    The electronics associated to the particle detectors of the Large Hadron Collider (LHC), under construction at CERN, will operate in a very harsh radiation environment. Commercial Off-The-Shelf (COTS) components cannot be used in the vicinity of particle collision due to their poor radiation tolerance. This thesis is a contribution to the effort to cover the need for radiation-tolerant SEU-robust (Single Event Upset) programmable components for application in high energy physics experiments. Two components are under development: a Programmable Logic Device (PLD) and a Field-Programmable Gate Array (FPGA). The PLD is a fuse-based, 10-input, 8-I/O general architecture device in 0.25 μm CMOS technology. The FPGA under development is a 32*32 logic block array, equivalent to ∼ 25 k gates, in 0.13 μm CMOS. The irradiation test results obtained in the CMOS 0.25 μm technology demonstrate good robustness of the circuit up to an LET (Linear Energy Transfer) of 79.6 cm 2 *MeV/mg, which make it suitable for the target environment. The CMOS 0.13 μm circuit has showed robustness to an LET of 37.4 cm 2 *MeV/mg in the static test mode and has increased sensitivity in the dynamic test mode. This work focused also on the research for an SEU-robust register in both the mentioned technologies. The SEU-robust register is employed as a user data flip-flop in the FPGA and PLD designs and as a configuration cell as well in the FPGA design

  6. Three-dimensional simulation of fabrication process-dependent effects on single event effects of SiGe heterojunction bipolar transistor

    International Nuclear Information System (INIS)

    Zhang Jin-Xin; Guo Bao-Long; Wu Xian-Xiang; He Chao-Hui; Li Pei; Guo Hong-Xia

    2017-01-01

    The fabrication process dependent effects on single event effects (SEEs) are investigated in a commercial silicon–germanium heterojunction bipolar transistor (SiGe HBT) using three-dimensional (3D) TCAD simulations. The influences of device structure and doping concentration on SEEs are discussed via analysis of current transient and charge collection induced by ions strike. The results show that the SEEs representation of current transient is different from representation of the charge collection for the same process parameters. To be specific, the area of C/S junction is the key parameter that affects charge collection of SEE. Both current transient and charge collection are dependent on the doping of collector and substrate. The base doping slightly influences transient currents of base, emitter, and collector terminals. However, the SEEs of SiGe HBT are hardly affected by the doping of epitaxial base and the content of Ge. (paper)

  7. Primary chemical events in ion bombarded polystyrene films: an infrared study

    Energy Technology Data Exchange (ETDEWEB)

    Puglisi, O.; Licciardello, A.; Pignataro, S.; Calcagno, L.; Foti, G.

    1986-09-01

    The chemical phenomenology which occurs in polystyrene films bombarded with low doses 100 keV He/sup +/ ions has been investigated by infrared spectroscopy. The results obtained show that the polymer is rapidly transformed into a different chemical compound consistent with high cross-linking as indicated by low solubility in CHCl/sub 3/. The I.R. finding is in agreement with XPS findings and indicates that the observed phenomenology occurs via a mechanism which eliminates the electronic ..pi.. system of the phenyl ring and gives rise to alkene-type bonding.

  8. Effect of giant plasmon excitations in single and double ionization of C60 in fast heavy-ion collisions

    Science.gov (United States)

    Kadhane, Umesh; Kelkar, A.; Misra, D.; Kumar, Ajay; Tribedi, Lokesh C.

    2007-04-01

    Single and multiple ionization of C60 in collisions with highly charged fast oxygen ions have been studied using the recoil-ion time-of-flight technique. The dependence of multiple-ionization cross sections on projectile charge state (qp) was found to be drastically different from those for an atomic target, such as Ne. A model based on the giant dipole plasmon resonance explains quite well the observed qp dependence for the single- and-double-ionization cross sections. But the same model deviates for triple and quadruple ionizations.

  9. Single-electron capture collisions of ground and metastable Ne2+ ions with molecular gases

    Science.gov (United States)

    Hasan, A.; Abu-Haija, O.; Harris, J.; Elkafrawy, T.; Kayani, A.; Kamber, E. Y.

    2013-09-01

    Using the translational energy-gain spectroscopy technique, we have measured the energy-gain spectra and absolute total cross sections for single-electron capture in collisions of Ne2+ with N2, CO2 and H2O at laboratory impact energies between 50 and 400 eV and 0° scattering angles. In all the collision systems studied here, reaction channels have been observed which indicate the presence of the long-lived metastable states of (2s2 2p4 1D and 1S) in the Ne2+ incident beam. These measurements also indicate that capture from the metastable states into excited states of the projectile product ions is the most important inelastic process. Contributions from capture accompanied by the excitation and ionization of the target product are also detected. In addition, the energy dependence of the total single-electron capture cross sections is studied and found to slowly increase with increasing impact energy. The present data are compared with the theoretical calculations of the classical over the barrier, extended classical over the barrier and Landau-Zener models.

  10. Detection of isolated protein-bound metal ions by single-particle cryo-STEM.

    Science.gov (United States)

    Elad, Nadav; Bellapadrona, Giuliano; Houben, Lothar; Sagi, Irit; Elbaum, Michael

    2017-10-17

    Metal ions play essential roles in many aspects of biological chemistry. Detecting their presence and location in proteins and cells is important for understanding biological function. Conventional structural methods such as X-ray crystallography and cryo-transmission electron microscopy can identify metal atoms on protein only if the protein structure is solved to atomic resolution. We demonstrate here the detection of isolated atoms of Zn and Fe on ferritin, using cryogenic annular dark-field scanning transmission electron microscopy (cryo-STEM) coupled with single-particle 3D reconstructions. Zn atoms are found in a pattern that matches precisely their location at the ferroxidase sites determined earlier by X-ray crystallography. By contrast, the Fe distribution is smeared along an arc corresponding to the proposed path from the ferroxidase sites to the mineral nucleation sites along the twofold axes. In this case the single-particle reconstruction is interpreted as a probability distribution function based on the average of individual locations. These results establish conditions for detection of isolated metal atoms in the broader context of electron cryo-microscopy and tomography.

  11. Optical spectroscopy of Eu3+ ions doped in KLu(WO4)2 single crystals

    International Nuclear Information System (INIS)

    Koubaa, T.; Dammak, M.; Pujol, M.C.; Aguiló, M.; Díaz, F.

    2015-01-01

    Europium single doped potassium lutetium tungstate Eu 3+ :KLu(WO 4 ) 2 single crystals have been grown with the top seeded solution growth slow cooling method. Their absorption spectra are studied in detail for principal light polarizations, E||N p , N m and N g at room and low temperatures. The absorption oscillator strengths parameters are calculated by means of the theory of f–f transition intensities for systems with anomalously strong configuration interaction and by Judd–Ofelt theory. The Ω t (t=2, 4, 6) intensity parameters, and the {O dk , O ck , Δ d , Δ c1 and Δ c2 } (k=1, 2, 3) ASCI parameters are calculated. The radiative transition rates A R , radiative lifetimes τ R , and fluorescent branching ratios β R associated with 5 D 0 – 7 F J transitions of Eu 3+ were determined. The calculated decay times are discussed and compared with experimental values. - Highlights: • Absorption spectra of Eu:KLuW are investigated with respect to principal light polarizations. • Spectroscopic properties of Eu:KLuW are modeled within conventional Judd–Ofelt and (ASCI) theories. • 5 D 0 multiplet shows the contribution of a NR processes and an ET between the Eu 3+ ions. • It is suggested that the Eu 3+ :KLuW is a potential host material for optical applications.

  12. Single-Event Transient Testing of the Crane Aerospace and Electronics SMHF2812D Dual DC-DC Converter

    Science.gov (United States)

    Casey, Megan

    2015-01-01

    The purpose of this testing was to characterize the Crane Aerospace & Electronics (Crane) Interpoint SMHF2812D for single-event transient (SET) susceptibility. These data shall be used for flight lot evaluation, as well as qualification by similarity of the SMHF family of converters, all of which use the same active components.

  13. A laser desorption-electron impact ionization ion trap mass spectrometer for real-time analysis of single atmospheric particles

    Science.gov (United States)

    Simpson, E. A.; Campuzano-Jost, P.; Hanna, S. J.; Robb, D. B.; Hepburn, J. H.; Blades, M. W.; Bertram, A. K.

    2009-04-01

    A novel aerosol ion trap mass spectrometer combining pulsed IR laser desorption with electron impact (EI) ionization for single particle studies is described. The strengths of this instrument include a two-step desorption and ionization process to minimize matrix effects; electron impact ionization, a universal and well-characterized ionization technique; vaporization and ionization inside the ion trap to improve sensitivity; and an ion trap mass spectrometer for MSn experiments. The instrument has been used for mass spectral identification of laboratory generated pure aerosols in the 600 nm-1.1 [mu]m geometric diameter range of a variety of aromatic and aliphatic compounds, as well as for tandem mass spectrometry studies (up to MS3) of single caffeine particles. We investigate the effect of various operational parameters on the mass spectrum and fragmentation patterns. The single particle detection limit of the instrument was found to be a 325 nm geometric diameter particle (8.7 × 107 molecules or 22 fg) for 2,4-dihydroxybenzoic acid. Lower single particle detection limits are predicted to be attainable by modifying the EI pulse. The use of laser desorption-electron impact (LD-EI) in an ion trap is a promising technique for determining the size and chemical composition of single aerosol particles in real time.

  14. Definition of Capabilities Needed for a Single Event Effects Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Riemer, Bernie [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS); Gallmeier, Franz X. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS)

    2014-12-01

    The Federal Aviation Administration (FAA) is contemplating new regulations mandating testing of the vulnerability of flight-critical avionics to single event effects (SEE). A limited number of high-energy neutron test facilities currently serve the SEE industrial and institutional research community. The FAA recognizes that existing facilities have insufficient test capacity to meet new demand from such mandates; it desires more flexible irradiation capabilities to test complete, large systems and would like capabilities to address greater concerns for thermal neutrons. For this reason, the FAA funded this study by Spallation Neutron Source (SNS) staff with the ultimate aim of developing options for SEE test facilities using high-energy neutrons at the SNS complex. After an investigation of current SEE test practices and assessment of future testing requirements, three concepts were identified covering a range of test functionality, neutron flux levels, and fidelity to the atmospheric neutron spectrum. The costs and times required to complete each facility were also estimated. SEE testing is generally performed by accelerating the event rate to a point where the effects are still dominated by single events and double event causes of failures are negligible. In practice, acceleration factors of as high as 106 are applicable for component testing, whereas for systems testing acceleration factors of 104 seem to be the upper limit. It is strongly desirable that the irradiation facility be tunable over a large range of high-energy neutron fluxes of 102 - 104 n/cm²/s for systems testing and from 104 - 107 n/cm²/s for components testing. The most capable, most flexible, and highest-test-capacity option is a new stand-alone target station named the High-Energy neutron Test Station (HETS). It is also the most expensive option, with a cost to complete of approximately $100 million. Dual test enclosures would

  15. Multifragment events from heavy-ion collisions: Sources and excitation functions

    Energy Technology Data Exchange (ETDEWEB)

    Blumenfeld, Y.; Colonna, N.; Roussel-Chomaz, P.; Delis, D.N.; Hanold, K.; Meng, J.C.; Peaslee, G.F.; Sui, Q.C.; Wozniak, G.J.; Moretto, L.G. (Lawrence Berkeley Laboratory, Berkeley, CA (USA). Nuclear Science Division); Libby, B.; Mignerey, A.C. (University of Maryland, College Park, MD (USA). Department of Chemistry); Guarino, G. (Instituto Nazionale di Fisica Nucleare (INFN), Sezione di Bari, Bari 70126 (Italy)); Santoruvo, N.; Iori, I. (Universita di Milano, Milano (Italy))

    1991-02-04

    Multifragment events from 35, 40, 45, and 55 MeV/nucleon {sup 139}La+{sup 12}C, {sup 27}Al, {sup 40}Ca, {sup 51}V, {sup nat}Cu, and {sup 139}La reactions can be assigned to sources characterized by their velocity. At each bombarding energy, the probabilities of threefold, fourfold and fivefold events increase substantially with decreasing source velocity, but are independent of the target mass. To remove the bombarding-energy dependence, a simple transformation has been applied which gives the excitation energy of the fused system in the simple incomplete-fusion picture. These excitation functions'' appear to independent of both the system and bombarding energy.

  16. Correlation of precursor and product ions in single-stage high resolution mass spectrometry. A tool for detecting diagnostic ions and improving the precursor elemental composition elucidation

    Energy Technology Data Exchange (ETDEWEB)

    Borràs, S. [Departament de Química Analítica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona (Spain); Kaufmann, A., E-mail: anton.kaufmann@klzh.ch [Official Food Control Authority, Fehrenstrasse 15, 8032 Zürich (Switzerland); Companyó, R. [Departament de Química Analítica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona (Spain)

    2013-04-15

    Highlights: ► We are describing a technique to spot ions which are derived from each other. ► Single stage high resolution data is used. ► This “in silicon” technique is compared to conventional precursor scan. ► Some applications for this technique are presented. -- Abstract: Monitoring of common diagnostic fragments is essential for recognizing molecules which are members of a particular compound class. Up to now, unit resolving tandem quadrupole mass spectrometers, operating in the precursor ion scan mode, have been typically used to perform such analysis. By means of high-resolution mass spectrometry (HRMS) a much more sensitive and selective detection can be achieved. However, using a single-stage HRMS instrument, there is no unequivocal link to the corresponding precursor ion, since such instrumentation does not permit a previous precursor selection. Thus, to address this limitation, an in silico approach to locate precursor ions, based on diagnostic fragments, was developed. Implemented as an Excel macro, the algorithm rapidly assembles and surveys exact mass data to provide a list of feasible precursor candidates according to the correlation of the chromatographic peak shape profile and other additional filtering criteria (e.g. neutral losses and isotopes). The macro was tested with two families of veterinary drugs, sulfonamides and penicillins, which are known to yield diagnostic product ions when fragmented. Data sets obtained from different food matrices (fish and liver), both at high and low concentration of the target compounds, were investigated in order to evaluate the capabilities and limitations of the reported approach. Finally, other possible applications of this technique, such as the elucidation of elemental compositions based on product ions and corresponding neutral losses, were also presented and discussed.

  17. Structural and optical properties of Cd{sup 2+} ion on the growth of sulphamic acid single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Rajyalakshmi, S.; Samatha, K. [Department of Physics, Andhra University, Visakhapatnam-530003 (India); Rao, Valluru Srinivasa; Reddy, P. V. S. S. S. N.; Rao, K. Ramachandra, E-mail: drkrcr@gmail.com [Crystal Growth & Nano Science Research Center, Department of Physics, Govt. College (A), Rajahmundry-533 105 (India); Krishna, V. Y. Rama [Department of Engg. Physics, Andhra University, Visakhapatnam-530003 (India)

    2016-05-06

    Transparent single crystals of Cadmium doped Sulphamic acid (SA) was grown by Conventional slow evaporation solution technique (SEST) which had the size of 13 × 8 × 7 mm{sup 3}. The grown single crystals have been characterized using single crystal X-ray diffraction UV-visible Spectral studies and Second harmonic generation (SHG) efficiency and the results were discussed. The lattice parameters of the grown Cd{sup 2+} ion doped SA crystal are confirmed by single crystal X-ray diffraction and belong to orthorhombic system. Optical transmittance of the crystal was recorded using UV-vis NIR spectrophotometer with its lower cut off wavelength around 259nm. SHG measurements indicate that the SHG efficiency of the grown Cd{sup 2+} ion doped SA crystal at a fundamental wavelength of 1064 nm is approximately equal to KDP.

  18. Searches for new physics in single-photon events and a search for charginos at the DELPHI experiment

    CERN Document Server

    Ask, S M

    2004-01-01

    A search for new physics using events with a single photon and missing energy has been made at the DELPHI experiment together with a search for charginos. The results were based on data collected up to and including the final year of 2000. An integrated luminosity of 650 pb−1 was used in the single photon analysis and 450 pb−1 in the chargino search. Center-of-mass energies up to 209 GeV were explored. Searches have been made for supersymmetry as well as for extra dimensions and non standard neutrino interactions. Since no signs of a signal have been observed in any of the searches the results have been used to set exclusion limits and to constrain the theoretical parameter spaces. The search results using single and acoplanar photon events from the four LEP experiments have also been combined within the searches for supersymmetry and extra dimensions.

  19. Criticality of Low-Energy Protons in Single-Event Effects Testing of Highly-Scaled Technologies

    Science.gov (United States)

    Pellish, Jonathan A.; Marshall, Paul W.; Rodbell, Kenneth P.; Gordon, Michael S.; LaBel, Kenneth A.; Schwank, James R.; Dodds, Nathaniel A.; Castaneda, Carlos M.; Berg, Melanie D.; Kim, Hak S.; hide

    2014-01-01

    We report low-energy proton and low-energy alpha particle single-event effects (SEE) data on a 32 nm silicon-on-insulator (SOI) complementary metal oxide semiconductor (CMOS) latches and static random access memory (SRAM) that demonstrates the criticality of using low-energy protons for SEE testing of highly-scaled technologies. Low-energy protons produced a significantly higher fraction of multi-bit upsets relative to single-bit upsets when compared to similar alpha particle data. This difference highlights the importance of performing hardness assurance testing with protons that include energy distribution components below 2 megaelectron-volt. The importance of low-energy protons to system-level single-event performance is based on the technology under investigation as well as the target radiation environment.

  20. Synchrotron Topographic and Diffractometer Studies of Buried Layered Structures Obtained by Implantation with Swift Heavy Ions in Silicon Single Crystals

    International Nuclear Information System (INIS)

    Wierzchowski, W.; Wieteska, K.; Zymierska, D.; Graeff, W.; Czosnyka, T.; Choinski, J.

    2006-01-01

    A distribution of crystallographic defects and deformation in silicon crystals subjected to deep implantation (20-50 μm) with ions of the energy of a few MeV/amu is studied. Three different buried layered structures (single layer, binary buried structure and triple buried structure) were obtained by implantation of silicon single crystals with 184 MeV argon ions, 29.7 MeV boron ions, and 140 MeV argon ions, each implantation at a fluency of 1x10 14 ions cm -2 . The implanted samples were examined by means of white beam X-ray section and projection topography, monochromatic beam topography and by recording local rocking curves with the beam restricted to 50 x 50 μm 2 . The experiment pointed to a very low level of implantation-induced strain (below 10 -5 ). The white beam Bragg case section experiment revealed a layer producing district black contrast located at a depth of the expected mean ion range. The presence of these buried layered structures in studied silicon crystals strongly affected the fringe pattern caused by curvature of the samples. In case of white beam projection and monochromatic beam topographs the implanted areas were revealed as darker regions with a very tiny grain like structure. One may interpret these results as the effect of considerable heating causing annihilation of point defects and formation of dislocation loops connected with point defect clusters. (author)

  1. Irradiation of zinc single crystal with 500 keV singly-charged carbon ions: surface morphology, structure, hardness, and chemical modifications

    Science.gov (United States)

    Waqas Khaliq, M.; Butt, M. Z.; Saleem, Murtaza

    2017-07-01

    Cylindrical specimens of (1 0 4) oriented zinc single crystal (diameter  =  6 mm and length  =  5 mm) were irradiated with 500 keV C+1 ions with the help of a Pelletron accelerator. Six specimens were irradiated in an ultra-high vacuum (~10‒8 Torr) with different ion doses, namely 3.94  ×  1014, 3.24  ×  1015, 5.33  ×  1015, 7.52  ×  1015, 1.06  ×  1016, and 1.30  ×  1016 ions cm-2. A field emission scanning electron microscope (FESEM) was utilized for the morphological study of the irradiated specimens. Formation of nano- and sub-micron size rods, clusters, flower- and fork-like structures, etc, was observed. Surface roughness of the irradiated specimens showed an increasing trend with the ions dose. Energy dispersive x-ray spectroscopy (EDX) helped to determine chemical modifications in the specimens. It was found that carbon content varied in the range 22.86-31.20 wt.% and that oxygen content was almost constant, with an average value of 10.16 wt.%. The balance content was zinc. Structural parameters, i.e. crystallite size and lattice strain, were determined by Williamson-Hall analysis using x-ray diffraction (XRD) patterns of the irradiated specimens. Both crystallite size and lattice strain showed a decreasing trend with the increasing ions dose. A good linear relationship between crystallite size and lattice strain was observed. Surface hardness depicted a decreasing trend with the ions dose and followed an inverse Hall-Petch relation. FTIR spectra of the specimens revealed that absorption bands gradually diminish as the dose of singly-charged carbon ions is increased from 3.94  ×  1014 ions cm-1 to 1.30  ×  1016 ions cm-1. This indicates progressive deterioration of chemical bonds with the increase in ion dose.

  2. Pattern dependence in synergistic effects of total dose on single-event upset hardness

    International Nuclear Information System (INIS)

    Guo Hongxia; Ding Lili; Xiao Yao; Zhang Fengqi; Luo Yinhong; Zhao Wen; Wang Yuanming

    2016-01-01

    The pattern dependence in synergistic effects was studied in a 0.18 μm static random access memory (SRAM) circuit. Experiments were performed under two SEU test environments: 3 MeV protons and heavy ions. Measured results show different trends. In heavy ion SEU test, the degradation in the peripheral circuitry also existed because the measured SEU cross section decreased regardless of the patterns written to the SRAM array. TCAD simulation was performed. TID-induced degradation in nMOSFETs mainly induced the imprint effect in the SRAM cell, which is consistent with the measured results under the proton environment, but cannot explain the phenomena observed under heavy ion environment. A possible explanation could be the contribution from the radiation-induced GIDL in pMOSFETs. (paper)

  3. MeV single-ion beam irradiation of mammalian cells using the Surrey vertical nanobeam, compared with broad proton beam and X-ray irradiations

    Science.gov (United States)

    Prakrajang, K.; Jeynes, J. C. G.; Merchant, M. J.; Kirkby, K.; Kirkby, N.; Thopan, P.; Yu, L. D.

    2013-07-01

    As a part of a systematic study on mechanisms involved in physical cancer therapies, this work investigated response of mammalian cells to ultra-low-dose ion beam irradiation. The ion beam irradiation was performed using the recently completed nanobeam facility at the Surrey Ion Beam Centre. A scanning focused vertical ion nano-beam was applied to irradiate Chinese hamster V79 cells. The V79 cells were irradiated in two different beam modes, namely, focused single ion beam and defocused scanning broad ion beam of 3.8-MeV protons. The single ion beam was capable of irradiating a single cell with a precisely controlled number of the ions to extremely low doses. After irradiation and cell incubation, the number of surviving colonies as a function of the number of the irradiating ions was measured for the cell survival fraction curve. A lower survival for the single ion beam irradiation than that of the broad beam case implied the hypersensitivity and bystander effect. The ion-beam-induced cell survival curves were compared with that from 300-kV X-ray irradiation. Theoretical studies indicated that the cell death in single ion irradiation mainly occurred in the cell cycle phases of cell division and intervals between the cell division and the DNA replication. The success in the experiment demonstrated the Surrey vertical nanobeam successfully completed.

  4. Monitoring of seismic events from a specific source region using a single regional array: A case study

    Science.gov (United States)

    Gibbons, S. J.; Kværna, T.; Ringdal, F.

    2005-07-01

    In the monitoring of earthquakes and nuclear explosions using a sparse worldwide network of seismic stations, it is frequently necessary to make reliable location estimates using a single seismic array. It is also desirable to screen out routine industrial explosions automatically in order that analyst resources are not wasted upon detections which can, with a high level of confidence, be associated with such a source. The Kovdor mine on the Kola Peninsula of NW Russia is the site of frequent industrial blasts which are well recorded by the ARCES regional seismic array at a distance of approximately 300 km. We describe here an automatic procedure for identifying signals which are likely to result from blasts at the Kovdor mine and, wherever possible, for obtaining single array locations for such events. Carefully calibrated processing parameters were chosen using measurements from confirmed events at the mine over a one-year period for which the operators supplied Ground Truth information. Phase arrival times are estimated using an autoregressive method and slowness and azimuth are estimated using broadband f{-} k analysis in fixed frequency bands and time-windows fixed relative to the initial P-onset time. We demonstrate the improvement to slowness estimates resulting from the use of fixed frequency bands. Events can be located using a single array if, in addition to the P-phase, at least one secondary phase is found with both an acceptable slowness estimate and valid onset-time estimate. We evaluate the on-line system over a twelve month period; every event known to have occured at the mine is detected by the process and 32 out of 53 confirmed events were located automatically. The remaining events were classified as “very likely” Kovdor events and were subsequently located by an analyst. The false alarm rate is low; only 84 very likely Kovdor events were identified during the whole of 2003 and none of these were subsequently located at a large distance from

  5. FinFET memory cell improvements for higher immunity against single event upsets

    Science.gov (United States)

    Sajit, Ahmed Sattar

    The 21st century is witnessing a tremendous demand for transistors. Life amenities have incorporated the transistor in every aspect of daily life, ranging from toys to rocket science. Day by day, scaling down the transistor is becoming an imperious necessity. However, it is not a straightforward process; instead, it faces overwhelming challenges. Due to these scaling changes, new technologies, such as FinFETs for example, have emerged as alternatives to the conventional bulk-CMOS technology. FinFET has more control over the channel, therefore, leakage current is reduced. FinFET could bridge the gap between silicon devices and non-silicon devices. The semiconductor industry is now incorporating FinFETs in systems and subsystems. For example, Intel has been using them in their newest processors, delivering potential saving powers and increased speeds to memory circuits. Memory sub-systems are considered a vital component in the digital era. In memory, few rows are read or written at a time, while the most rows are static; hence, reducing leakage current increases the performance. However, as a transistor shrinks, it becomes more vulnerable to the effects from radioactive particle strikes. If a particle hits a node in a memory cell, the content might flip; consequently, leading to corrupting stored data. Critical fields, such as medical and aerospace, where there are no second chances and cannot even afford to operate at 99.99% accuracy, has induced me to find a rigid circuit in a radiated working environment. This research focuses on a wide spectrum of memories such as 6T SRAM, 8T SRAM, and DICE memory cells using FinFET technology and finding the best platform in terms of Read and Write delay, susceptibility level of SNM, RSNM, leakage current, energy consumption, and Single Event Upsets (SEUs). This research has shown that the SEU tolerance that 6T and 8T FinFET SRAMs provide may not be acceptable in medical and aerospace applications where there is a very high

  6. A single hot event stimulates adult performance but reduces egg survival in the oriental fruit moth, Grapholitha molesta.

    Science.gov (United States)

    Liang, Li-Na; Zhang, Wei; Ma, Gang; Hoffmann, Ary A; Ma, Chun-Sen

    2014-01-01

    Climate warming is expected to increase the exposure of insects to hot events (involving a few hours at extreme high temperatures). These events are unlikely to cause widespread mortality but may modify population dynamics via impacting life history traits such as adult fecundity and egg hatching. These effects and their potential impact on population predictions are still largely unknown. In this study, we simulated a single hot event (maximum of 38°C lasting for 4 h) of a magnitude increasingly found under field conditions and examined its effect in the oriental fruit moth, Grapholitha molesta. This hot event had no impact on the survival of G. molesta adults, copulation periods or male longevity. However, the event increased female lifespan and the length of the oviposition period, leading to a potential increase in lifetime fecundity and suggesting hormesis. In contrast, exposure of males to this event markedly reduced the net reproductive value. Male heat treatment delayed the onset of oviposition in the females they mated with, as well as causing a decrease in the duration of oviposition period and lifetime fecundity. Both male and female stress also reduced egg hatch. Our findings of hormetic effects on female performance but concurrent detrimental effects on egg hatch suggest that hot events have unpredictable consequences on the population dynamics of this pest species with implications for likely effects associated with climate warming.

  7. A single hot event stimulates adult performance but reduces egg survival in the oriental fruit moth, Grapholitha molesta.

    Directory of Open Access Journals (Sweden)

    Li-Na Liang

    Full Text Available Climate warming is expected to increase the exposure of insects to hot events (involving a few hours at extreme high temperatures. These events are unlikely to cause widespread mortality but may modify population dynamics via impacting life history traits such as adult fecundity and egg hatching. These effects and their potential impact on population predictions are still largely unknown. In this study, we simulated a single hot event (maximum of 38°C lasting for 4 h of a magnitude increasingly found under field conditions and examined its effect in the oriental fruit moth, Grapholitha molesta. This hot event had no impact on the survival of G. molesta adults, copulation periods or male longevity. However, the event increased female lifespan and the length of the oviposition period, leading to a potential increase in lifetime fecundity and suggesting hormesis. In contrast, exposure of males to this event markedly reduced the net reproductive value. Male heat treatment delayed the onset of oviposition in the females they mated with, as well as causing a decrease in the duration of oviposition period and lifetime fecundity. Both male and female stress also reduced egg hatch. Our findings of hormetic effects on female performance but concurrent detrimental effects on egg hatch suggest that hot events have unpredictable consequences on the population dynamics of this pest species with implications for likely effects associated with climate warming.

  8. A Single Hot Event Stimulates Adult Performance but Reduces Egg Survival in the Oriental Fruit Moth, Grapholitha molesta

    Science.gov (United States)

    Ma, Gang; Hoffmann, Ary A.; Ma, Chun-Sen

    2014-01-01

    Climate warming is expected to increase the exposure of insects to hot events (involving a few hours at extreme high temperatures). These events are unlikely to cause widespread mortality but may modify population dynamics via impacting life history traits such as adult fecundity and egg hatching. These effects and their potential impact on population predictions are still largely unknown. In this study, we simulated a single hot event (maximum of 38°C lasting for 4 h) of a magnitude increasingly found under field conditions and examined its effect in the oriental fruit moth, Grapholitha molesta. This hot event had no impact on the survival of G. molesta adults, copulation periods or male longevity. However, the event increased female lifespan and the length of the oviposition period, leading to a potential increase in lifetime fecundity and suggesting hormesis. In contrast, exposure of males to this event markedly reduced the net reproductive value. Male heat treatment delayed the onset of oviposition in the females they mated with, as well as causing a decrease in the duration of oviposition period and lifetime fecundity. Both male and female stress also reduced egg hatch. Our findings of hormetic effects on female performance but concurrent detrimental effects on egg hatch suggest that hot events have unpredictable consequences on the population dynamics of this pest species with implications for likely effects associated with climate warming. PMID:25551751

  9. Water softening by single-bowl ion exchange filter efficiency estimate and improvement

    OpenAIRE

    Kostygin, V. A.; Stolyarenko, G. S.; Kochetov, G. M.; Tugay, A. M.; Vashchenko, V. N.

    2014-01-01

    The article presents results of experimental investigations of the water softener in a laboratory installation of uninterruptible countercurrent ion exchange filter, which has a movable layer of ion exchange material. The installation provides for two simultaneous processes: counter ion sorption and regeneration of the sorbent with the processing capability of the sorbent in the regeneration zone by ultrasonic radiation.

  10. Electrode property of single-walled carbon nanotubes in all-solid-state lithium ion battery using polymer electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, Y.; Ishii, Y.; Kawasaki, S., E-mail: kawasaki.shinji@nitech.ac.jp [Nagoya Institute of Technology, Gokiso, Showa, Nagoya, Aichi (Japan)

    2016-07-06

    Electrode properties of single-walled carbon nanotubes (SWCNTs) in an all-solid-state lithium ion battery were investigated using poly-ethylene oxide (PEO) solid electrolyte. Charge-discharge curves of SWCNTs in the solid electrolyte cell were successfully observed. It was found that PEO electrolyte decomposes on the surface of SWCNTs.

  11. Possible wave formation and martensitic transformation of iron particles in copper single crystals during argon ion bombardment

    DEFF Research Database (Denmark)

    Thölén, Anders Ragnar; Li, Chang-Hai; Easterling, K.E.

    1983-01-01

    Thin single crystal copper specimens (thickness ~250 nm) containing coherent iron particles (diameter 40–50 nm) have been bombarded with argon ions (5, 80, and 330 keV). During this process some of the iron particles transform to martensite. The transformation was observed near the exposed surface...

  12. Success in treating renal calculi with single-access, single-event percutaneous nephrolithotomy: is a routine "second look" necessary?

    Science.gov (United States)

    Davol, Patrick E; Wood, Craig; Fulmer, Brant

    2006-05-01

    Percutaneous nephrolithotomy (PCNL) is an effective procedure for the treatment of large renal calculi. An important consideration for patients undergoing PCNL is the management of any residual stone burden, which may include "second-look" nephroscopy. The utility of this practice is unproven, and we present our data on a series of patients in which second-look procedures were not performed. We retrospectively reviewed the records of 43 consecutive patients undergoing a total of 45 procedures by a single surgeon at a tertiary-care center. Patients were considered stone free if no calculi were evident by either plain film or noncontrast CT scan. Statistical analysis was used to look for correlations between radiographic stone clearance and various patient and stone characteristics. Of these procedures, 15% had immediate postoperative evidence of residual fragments. At a mean follow-up of 8 months, 32.5% had residual or recurrent stone. There were statistically significant correlations between both patient age and stone size and the risk of recurrent or residual stone. In our study, PCNL was effective for the single-stage treatment of large renal calculi. Aggressive stone clearance obviated the need for routine second-look nephroscopy. Factors leading to an increased risk of residual or recurrent calculi included the presence of a staghorn calculus and younger patient age. The excellent stone-free rates achieved suggest that routine second-look nephroscopy may not be necessary for the majority of patients undergoing PCNL.

  13. The longitudinal dependence of heavy-ion composition in the 2013 April 11 solar energetic particle event

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, C. M. S.; Mewaldt, R. A. [California Institute of Technology, Pasadena, CA 91125 (United States); Mason, G. M. [Applied Physics Laboratory, Johns Hopkins University, Laurel, MD 20723 (United States); Wiedenbeck, M. E. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2014-09-20

    On 2013 April 11 active region 11719 was centered just west of the central meridian; at 06:55 UT, it erupted with an M6.5 X-ray flare and a moderately fast (∼800 km s{sup –1}) coronal mass ejection. This solar activity resulted in the acceleration of energetic ions to produce a solar energetic particle (SEP) event that was subsequently observed in energetic protons by both ACE and the two STEREO spacecraft. Heavy ions at energies ≥10 MeV nucleon{sup –1} were well measured by SEP sensors on ACE and STEREO-B, allowing the longitudinal dependence of the event composition to be studied. Both spacecraft observed significant enhancements in the Fe/O ratio at 12-33 MeV nucleon{sup –1}, with the STEREO-B abundance ratio (Fe/O = 0.69) being similar to that of the large, Fe-rich SEP events observed in solar cycle 23. The footpoint of the magnetic field line connected to the ACE spacecraft was longitudinally farther from the flare site (77° versus 58°), and the measured Fe/O ratio at ACE was 0.48, 44% lower than at STEREO-B but still enhanced by more than a factor of 3.5 over average SEP abundances. Only upper limits were obtained for the {sup 3}He/{sup 4}He abundance ratio at both spacecraft. Low upper limits of 0.07% and 1% were obtained from the ACE sensors at 0.5-2 and 6.5-11.3 MeV nucleon{sup –1}, respectively, whereas the STEREO-B sensor provided an upper limit of 4%. These characteristics of high, but longitudinally variable, Fe/O ratios and low {sup 3}He/{sup 4}He ratios are not expected from either the direct flare contribution scenario or the remnant flare suprathermal material theory put forth to explain the Fe-rich SEP events of cycle 23.

  14. On moments of the multiplicity events of slow target fragments in relativistic Sulfur-ion collisions

    Science.gov (United States)

    Abdelsalam, A.; Kamel, S.; Rashed, N.; Sabry, N.

    2014-07-01

    A detailed study on the multiplicity characteristics of the slow target fragments emitted in relativistic heavy-ion collisions has been carried out at ELab = 3.7A and 200A GeV using 32S projectile. The beam energy dependence of the black particles produced in the full phase space of 32S-emulsion (32S-Em) interactions on the target size in terms of their moments (mean, variance, skewness and kurtosis) is investigated. The various order moments of target fragments emitted in the interactions of 32S beams with the heavy (AgBr) target nuclei are estimated in the forward (FHS) and backward (BHS) hemispheres. The investigated values of ratio of variance to mean at both energies show that the multiplicity distributions (MDs) are not Poissonian and the strongly correlated emission of target fragments are in the forward directions. The degree of anisotropic fragment emission and nature of correlation among the emitted fragments are investigated. The energy dependence of entropy is examined in both hemispheres. The entropy values normalized to average multiplicity are found to be energy independent. Scaling of MD of black particles produced in these interactions has been studied to verify the validity of scaling hypothesis via two scaling (Koba-Nielsen-Olesen (KNO)-scaling and Hegyi-scaling) functions. A simplified universal function has been used in each scaling to display the experimental data.

  15. Interplanetary ions during an energetic storm particle event: The distribution function from solar wind thermal energies to 1.6 MeV

    International Nuclear Information System (INIS)

    Gosling, J.T.; Asbridge, J.R.; Bame, S.J.; Feldman, W.C.; Zwickl, R.D.; Paschmann, G.; Sckopke, N.; Hynds, R.J.

    1981-01-01

    Data from the Los Alamos Scientific Laboratory/Max-Planck-Institut fast plasma experiment on Isee 2 have been combined with data from the European Space Agency/Imperial College/Space Research Laboratory low-energy proton experiment on Isee 3 to obtain for the first time an ion velocity distribution function f(v) extending from solar wind energies (-1 keV) to 1.6 MeV during the postshock phase of an energetic storm particle (ESP) event. This study reveals that f(v) of the ESP population is roughly isotropic in the solar wind frame from solar wind thermal energies out to 1.6 MeV. Emerging smoothly out of the solar wind thermal distribution, the ESP f(v) initially falls with increasing energy as E/sup -2.4/ in the solar wind frame. Above about 40 keV no single power law exponent adequately describes the energy dependence of f(v) in the solar wind frame. Above approx.200 keV in both the spacecraft frame and the solar wind frame, f(v) can be described by an exponential in speed (f(v)proportionale/sup -v/v//sub o/) with v/sub o/ = 1.05 x 10 8 cm s -1 . The ESP event studied (August 27, 1978) was superposed upon a more energetic particle event which was predominantly field-aligned and which was probably of solar origin. Our observations suggest that the ESP population is accelerated directly out of the solar wind thermal population or its quiescent suprathermal tail by a stochastic process associated with the shock wave disturbance. The acceleration mechanism is sufficiently efficient that approx.1% of the solar wind population is accelerated to suprathermal energies. These suprathermal particles have an energy density of approx.290 eV cm -3

  16. Two-dimensional numerical simulation of the effect of single event burnout for n-channel VDMOSFET

    International Nuclear Information System (INIS)

    Guo Hongxia; Chen Yusheng; Wang Wei; Zhao Jinlong; Zhang Yimen; Zhou Hui

    2004-01-01

    2D MEDICI simulator is used to investigate the effect of Single Event Burnout (SEB) for n-channel power VDMOSFETs. The simulation results are consistent with experimental results which have been published. The simulation results are of great interest for a better understanding of the occurrence of events. The effects of the minority carrier lifetime in the base region, the base width and the emitter doping density on SEB susceptibility are verified. Some hardening solutions to SEB are provided. The work shows that the 2D simulator MEDICI is an useful tool for burnout prediction and for the evaluation of hardening solutions. (authors)

  17. MMS observations of magnetic reconnection signatures of dissipating ion inertial-scale flux ropes associated with dipolarization events

    Science.gov (United States)

    Poh, G.; Slavin, J. A.; Lu, S.; Le, G.; Cassak, P.; Eastwood, J. P.; Ozturk, D. S.; Zou, S.; Nakamura, R.; Baumjohann, W.; Russell, C. T.; Gershman, D. J.; Giles, B. L.; Pollock, C.; Moore, T. E.; Torbert, R. B.; Burch, J. L.

    2017-12-01

    The formation of flux ropes is thought to be an integral part of the process that may have important consequences for the onset and subsequent rate of reconnection in the tail. Earthward flows, i.e. bursty bulk flows (BBFs), generate dipolarization fronts (DFs) as they interact with the closed magnetic flux in their path. Global hybrid simulations and THEMIS observations have shown that earthward-moving flux ropes can undergo magnetic reconnection with the near-Earth dipole field in the downtail region between the Near Earth Neutral Line and the near-Earth dipole field to create DFs-like signatures. In this study, we analyzed sequential "chains" of earthward-moving, ion-scale flux ropes embedded within DFs observed during MMS first tail season. MMS high-resolution plasma measurements indicate that these earthward flux ropes embedded in DFs have a mean bulk flow velocity and diameter of 250 km/s and 1000 km ( 2‒3 ion inertial length λi), respectively. Magnetic reconnection signatures preceding the flux rope/DF encounter were also observed. As the southward-pointing magnetic field in the leading edge of the flux rope reconnects with the northward-pointing geomagnetic field, the characteristic quadrupolar Hall magnetic field in the ion diffusion region and electron outflow jets in the north-south direction are observed. Our results strongly suggest that the earthward moving flux ropes brake and gradually dissipate due to magnetic reconnection with the near Earth magnetic field. We have also examined the occurrence rate of these dissipating flux ropes/DF events as a function of downtail distances.

  18. MeV single-ion beam irradiation of mammalian cells using the Surrey vertical nanobeam, compared with broad proton beam and X-ray irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Prakrajang, K. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Faculty of Science, Maejo University, Chiang Mai 50290 (Thailand); Jeynes, J.C.G.; Merchant, M.J.; Kirkby, K.; Kirkby, N. [Surrey Ion Beam Center, Faculty of Engineering and Physical Science, University of Surrey, Guildford Surrey, GU2 7XH (United Kingdom); Thopan, P. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, L.D., E-mail: yuld@fnrf.science.cmu.ac.th [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2013-07-15

    Highlights: •Recently completed nanobeam at the Surrey Ion Beam Centre was used. •3.8-MeV single and broad proton beams irradiated Chinese hamster cells. •Cell survival curves were measured and compared with 300-kV X-ray irradiation. •Single ion irradiation had a lower survival part at ultra-low dose. •It implies hypersensitivity, bystander effect and cell cycle phase of cell death. -- Abstract: As a part of a systematic study on mechanisms involved in physical cancer therapies, this work investigated response of mammalian cells to ultra-low-dose ion beam irradiation. The ion beam irradiation was performed using the recently completed nanobeam facility at the Surrey Ion Beam Centre. A scanning focused vertical ion nano-beam was applied to irradiate Chinese hamster V79 cells. The V79 cells were irradiated in two different beam modes, namely, focused single ion beam and defocused scanning broad ion beam of 3.8-MeV protons. The single ion beam was capable of irradiating a single cell with a precisely controlled number of the ions to extremely low doses. After irradiation and cell incubation, the number of surviving colonies as a function of the number of the irradiating ions was measured for the cell survival fraction curve. A lower survival for the single ion beam irradiation than that of the broad beam case implied the hypersensitivity and bystander effect. The ion-beam-induced cell survival curves were compared with that from 300-kV X-ray irradiation. Theoretical studies indicated that the cell death in single ion irradiation mainly occurred in the cell cycle phases of cell division and intervals between the cell division and the DNA replication. The success in the experiment demonstrated the Surrey vertical nanobeam successfully completed.

  19. Rational design of single-ion magnets and spin qubits based on mononuclear lanthanoid complexes.

    Science.gov (United States)

    Baldoví, José J; Cardona-Serra, Salvador; Clemente-Juan, Juan M; Coronado, Eugenio; Gaita-Ariño, Alejandro; Palii, Andrew

    2012-11-19

    Here we develop a general approach to calculating the energy spectrum and the wave functions of the low-lying magnetic levels of a lanthanoid ion submitted to the crystal field created by the surrounding ligands. This model allows us to propose general criteria for the rational design of new mononuclear lanthanoid complexes behaving as single-molecule magnets (SMMs) or acting as robust spin qubits. Three typical environments exhibited by these metal complexes are considered, namely, (a) square antiprism, (b) triangular dodecahedron, and (c) trigonal prism. The developed model is used to explain the properties of some representative examples showing these geometries. Key questions in this area, such as the chemical tailoring of the superparamagnetic energy barrier, tunneling gap, or spin relaxation time, are discussed. Finally, in order to take into account delocalization and/or covalent effects of the ligands, this point-charge model is complemented with ab initio calculations, which provide accurate information on the charge distribution around the metal, allowing for an explanation of the SMM behavior displayed by some sandwich-type organometallic compounds.

  20. A diode laser stabilization scheme for {sup 40}Ca{sup +} single-ion spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rohde, F; Almendros, M; Schuck, C; Huwer, J; Hennrich, M; Eschner, J, E-mail: felix.rohde@icfo.e [ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, E-08860 Castelldefels, Barcelona (Spain)

    2010-06-14

    We present a scheme for stabilizing multiple lasers at wavelengths between 795 and 866 nm to the same atomic reference line. A reference laser at 852 nm is stabilized to the Cs D{sub 2} line using a Doppler-free frequency modulation technique. Through transfer cavities, four lasers are stabilized to the relevant atomic transitions in {sup 40}Ca{sup +}. The rms linewidth of a transfer-locked laser is measured to be 123 kHz over 200 ms with respect to an independent atomic reference, the Rb D{sub 1} line. This stability is confirmed by the comparison of an excitation spectrum of a single {sup 40}Ca{sup +} ion to an eight-level Bloch equation model. The long-term stability with respect to the same reference is measured to be 130 kHz over a period of 2 h. The high degree of stability is demonstrated by the measured Allan deviation around 10{sup -11} between 1 and 100 s.

  1. Core-satellites assembly of silver nanoparticles on a single gold nanoparticle via metal ion-mediated complex.

    Science.gov (United States)

    Choi, Inhee; Song, Hyeon Don; Lee, Suseung; Yang, Young In; Kang, Taewook; Yi, Jongheop

    2012-07-25

    We report core-satellites (Au-Ag) coupled plasmonic nanoassemblies based on bottom-up, high-density assembly of molecular-scale silver nanoparticles on a single gold nanoparticle surface, and demonstrate direct observation and quantification of enhanced plasmon coupling (i.e., intensity amplification and apparent spectra shift) in a single particle level. We also explore metal ion sensing capability based on our coupled plasmonic core-satellites, which enabled at least 1000 times better detection limit as compared to that of a single plasmonic nanoparticle. Our results demonstrate and suggest substantial promise for the development of coupled plasmonic nanostructures for ultrasensitive detection of various biological and chemical analytes.

  2. Single Event Gate Rupture in 130-nm CMOS Transistor Arrays Subjected to X-Ray Irradiation

    CERN Document Server

    Silvestri, M; Gerardin, Simone; Faccio, Federico; Paccagnella, Alessandro

    2010-01-01

    We present new experimental results on heavy ion-induced gate rupture on deep submicron CMOS transistor arrays. Through the use of dedicated test structures, composed by a large number of 130-nm MOSFETs connected in parallel, we show the response to heavy ion irradiation under high stress voltages of devices previously irradiated with X-rays. We found only a slight impact on gate rupture critical voltage at a LET of 32 MeV cm(2) mg(-1) for devices previously irradiated up to 3 Mrad(SiO2), and practically no change for 100 Mrad(SiO2) irradiation, dose of interest for the future super large hadron collider (SLHC).

  3. Diagnostics and Degradation Investigations of Li-Ion Battery Electrodes using Single Nanowire Electrochemical Cells

    Science.gov (United States)

    Palapati, Naveen Kumar Reddy

    Portable energy storage devices, which drive advanced technological devices, are improving the productivity and quality of our everyday lives. In order to meet the growing needs for energy storage in transportation applications, the current lithium-ion (Li-ion) battery technology requires new electrode materials with performance improvements in multiple aspects: (1) energy and power densities, (2) safety, and (3) performance lifetime. While a number of interesting nanomaterials have been synthesized in recent years with promising performance, accurate capabilities to probe the intrinsic performance of these high-performance materials within a battery environment are lacking. Most studies on electrode nanomaterials have so far used traditional, bulk-scale techniques such as cyclic voltammetry, electrochemical impedance spectroscopy, and Raman spectroscopy. These approaches give an ensemble-average estimation of the electrochemical properties of a battery electrode and does not provide a true indication of the performance that is intrinsic to its material system. Thus, new techniques are essential to understand the changes happening at a single particle level during the operation of a battery. The results from this thesis solve this need and study the electrical, mechanical and size changes that take place in a battery electrode at a single particle level. Single nanowire lithium cells are built by depositing nanowires in carefully designed device regions of a silicon chip using Dielectrophoresis (DEP). This work has demonstrated the assembly of several NW cathode materials like LiFePO 4, pristine and acid-leached alpha-MnO2, todorokite - MnO2, acid and nonacid-leached Na0.44MnO2. Within these materials, alpha-MnO2 was chosen as the model material system for electrochemical experiments. Electrochemical lithiation of pristine alpha-MnO 2 was performed inside a glove box. The volume, elasticity and conductivity changes were measured at each state-of-charge (SOC) to

  4. Early events in copper-ion catalyzed oxidation of α-synuclein

    DEFF Research Database (Denmark)

    Tiwari, Manish K; Leinisch, Fabian; Sahin, Cagla

    2018-01-01

    -synuclein modification using six different molar ratios of Cu2+/H2O2/protein and Cu2+/H2O2/ascorbate/protein resulting in mild to moderate extents of oxidation. For a Cu2+/H2O2/protein molar ratio of 2.3:7.8:1 only low levels of carbonyls were detected (0.078 carbonyls per protein), whereas a molar ratio of 4......, as determined by SDS-PAGE and Western blot analysis. Limited histidine (His) modification was observed. The rapid formation of dityrosine cross-links was confirmed by fluorescence and mass-spectrometry. These data indicate that Met and Tyr oxidation are early events in Cu2+/H2O2-mediated damage, with carbonyl...... formation being a minor process. With the Cu2+/H2O2/ascorbate system, rapid protein carbonyl formation was detected with the first 5min, but after this time point, little additional carbonyl formation was detected. With this system, lower levels of Met and Tyr oxidation were detected (2 Met and 1 Tyr...

  5. Novel single-cell mega-size chambers for electrochemical etching of panorama position-sensitive polycarbonate ion image detectors

    Science.gov (United States)

    Sohrabi, Mehdi

    2017-11-01

    A novel development is made here by inventing panorama single-cell mega-size electrochemical etching (MS-ECE) chamber systems for processing panorama position-sensitive mega-size polycarbonate ion image detectors (MS-PCIDs) of potential for many neutron and ion detection applications in particular hydrogen ions or proton tracks and images detected for the first time in polycarbonates in this study. The MS-PCID is simply a large polycarbonate sheet of a desired size. The single-cell MS-ECE invented consists of two large equally sized transparent Plexiglas sheets as chamber walls holding a MS-PCID and the ECE chamber components tightly together. One wall has a large flat stainless steel electrode (dry cell) attached to it which is directly in contact with the MS-PCID and the other wall has a rod electrode with two holes to facilitate feeding and draining out the etching solution from the wet cell. A silicon rubber washer plays the role of the wet cell to hold the etchant and the electrical insulator to isolate the dry cell from the wet cell. A simple 50 Hz-HV home-made generator provides an adequate field strength through the two electrodes across the MS-ECE chamber. Two panorama single-cell MS-ECE chamber systems (circular and rectangular shapes) constructed were efficiently applied to processing the MS-PCIDs for 4π ion emission image detection of different gases in particular hydrogen ions or protons in a 3.5 kJ plasma focus device (PFD as uniquely observed by the unaided eyes). The panorama MS-PCID/MS-ECE image detection systems invented are novel with high potential for many applications in particular as applied to 4π panorama ion emission angular distribution image detection studies in PFD space, some results of which are presented and discussed.

  6. Effect of H{sup +} ion implantation on structural, morphological, optical and dielectric properties of L-arginine monohydrochloride monohydrate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Sangeetha, K. [Crystal Growth and Thin film Laboratory, Department of Physics, School of Physics, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu (India); Babu, R. Ramesh, E-mail: rampap2k@yahoo.co.in [Crystal Growth and Thin film Laboratory, Department of Physics, School of Physics, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu (India); Kumar, P. [Inter-University Accelerator Centre, P.O. Box 10502, Aruna Asaf Ali Marg, New Delhi 110067 (India); Bhagvannarayana, G. [Materials Characterization Division, National Physical Laboratory, New Delhi 110012 (India); Ramamurthi, K. [Crystal Growth and Thin film Laboratory, Department of Physics, School of Physics, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu (India)

    2011-06-15

    L-arginine monohydrochloride monohydrate (LAHCl) single crystals have been implanted with 100 keV H{sup +} ions at different ion fluence ranging from 10{sup 12} to 10{sup 15} ions/cm{sup 2}. Implanted LAHCl single crystals have been investigated for property changes. Crystal surface and crystalline perfection of the pristine and implanted crystals were analyzed by atomic force microscope and high-resolution X-ray diffraction studies, respectively. Optical absorption bands induced by colour centers, refractive index and birefringence, mechanical stability and dielectric constant of implanted crystals were studied at different ion fluence and compared with that of pristine LAHCl single crystal.

  7. Changes in ion channel geometry resolved to sub-ångström precision via single molecule mass spectrometry

    Science.gov (United States)

    Robertson, Joseph W. F.; Kasianowicz, John J.; Reiner, Joseph E.

    2010-11-01

    The ion channel formed by Staphylococcus aureus alpha-hemolysin switches between multiple open conducting states. We describe a method for precisely estimating the changes in the ion channel geometry that correspond to these different states. Experimentally, we observed that the permeability of a single channel to differently sized poly(ethylene glycol) molecules depends on the magnitude of the open state conductance. A simple theory is proposed for determining changes in channel length of 4.2% and in cross-sectional area of - 0.4%.

  8. Strong coupling between a single nitrogen-vacancy spin and the rotational mode of diamonds levitating in an ion trap

    Science.gov (United States)

    Delord, T.; Nicolas, L.; Chassagneux, Y.; Hétet, G.

    2017-12-01

    A scheme for strong coupling between a single atomic spin and the rotational mode of levitating nanoparticles is proposed. The idea is based on spin readout of nitrogen-vacancy centers embedded in aspherical nanodiamonds levitating in an ion trap. We show that the asymmetry of the diamond induces a rotational confinement in the ion trap. Using a weak homogeneous magnetic field and a strong microwave driving we then demonstrate that the spin of the nitrogen-vacancy center can be strongly coupled to the rotational mode of the diamond.

  9. Productivity Improvement for the SHX--SEN's Single-Wafer High-Current Ion Implanter

    International Nuclear Information System (INIS)

    Ninomiya, Shiro; Ochi, Akihiro; Kimura, Yasuhiko; Yumiyama, Toshio; Kudo, Tetsuya; Kurose, Takeshi; Kariya, Hiroyuki; Tsukihara, Mitsukuni; Ishikawa, Koji; Ueno, Kazuyoshi

    2011-01-01

    Equipment productivity is a critical issue for device fabrication. For ion implantation, productivity is determined both by ion current at the wafer and by utilization efficiency of the ion beam. Such improvements not only result in higher fabrication efficiency but also reduce consumption of both electrical power and process gases. For high-current ion implanters, reduction of implant area is a key factor to increase efficiency. SEN has developed the SAVING system (Scanning Area Variation Implantation with Narrower Geometrical pattern) to address this opportunity. In this paper, three variations of the SAVING system are introduced along with discussion of their effects on fab productivity.

  10. Event by Event fluctuations and Inclusive Distribution

    OpenAIRE

    Bialas, A.; Koch, V.

    1999-01-01

    Event-by-event observables are compared with conventional inclusive measurements. We find that moments of event-by-event fluctuations are closely related to inclusive correlation functions. Implications for upcomming heavy ion experiments are discussed.

  11. Topological events in single molecules of long genomic DNA confined in nanochannels

    Science.gov (United States)

    Reifenberger, Jeffrey; Dorfman, Kevin; Cao, Han

    2014-03-01

    ct- We present a rapid genome-wide analysis method based on new NanoChannel Array technology (IrysTM System) that confines and linearizes extremely long DNA molecules (100 to 1,000 kilobases) for direct image analysis at tens to hundred of gigabases per run. Genomic DNA is stained with YOYO and labeled specifically at the `GCTCTTC' sequence with fluorescent dyes allowing each molecule to be uniquely patterned and mapped to its corresponding reference. This high-throughput platform automates the imaging of such barcoded patterns on genomic DNA to identify wide spread structural variations in a genome. Here we describe a method to rule out possible topologically altered molecules in linear confinement by identifying possible topological events through a T-test looking for spikes in the fluorescence of the YOYO stained DNA backbone. These events are confirmed through aligning the marked individual molecules to a standard reference and measuring a distance differential between labels surrounding the suspected topological event compared to the reference. Such events could be flagged to distinguish from true structural variations.

  12. ions

    African Journals Online (AJOL)

    (MP2 B2). In order to draw the final conclusion about the content of the isomers of pentaatomic ions in saturated vapor over cesium chloride, we have taken into account the entropy factor. We considered the isomerization reactions which are given below: Cs3Cl2. + (V-shaped) = Cs3Cl2. + (cyclic or bipyramidal). (1). Cs2Cl3.

  13. Helicity of the $W$ boson in single - lepton $t \\bar{t}$ events

    Energy Technology Data Exchange (ETDEWEB)

    Canelli, Maria Florencia [Rochester U.

    2003-08-01

    We have applied a general approach for extracting information from data to a study of top quarks produced in proton-antiproton (pp) collisions in the process pp ! tt. This reaction can be calculated in the Standard Model (SM), in which the top (or antitop) quarks decay into b quarks and W bosons: t ! W+ b, t ! W b. We examine the decays of the W boson in these events in order to establish how the spin of the W correlates with its momentum vector. This is dened by the helicity of the W boson (pro jection of its spin along its line of ight), which is also predicted by the SM. The analysis is based on a direct calculation of a probability for each event as a function of the helicity of the W bosons in top-antitop events in the lepton+jets nal state. These events correspond to one W decaying into a lepton and its neutrino, and the other W into a quark-antiquark pair, with the quarks from the W and the two b quarks evolving into jets of particles. The probability is calculated by convoluting the dierential cross section with the resolution and acceptance of the detector. This measurement uses top quarks collected by the D experiment in 125 events/pb of data in pp collisions at p s=1.8 TeV during Run I of the Fermilab TeVatron. Assuming the \\V{A" coupling of the SM decay, we obtain a longitudinal helicity fraction of F0=0.560.31(stat)0.07(syst) for the W, which is consistent with the prediction of the Standard Model of F0=0.70 for a top-quark mass of 175 GeV/c2 . The method employed in this analysis oers the possibility of increasing statistical precision by using both of the decays of W bosons in these events. Also Monte Carlo studies indicate that the approach provides an unbiased result in the limit of poor statistics. Although our measurement is severely limited by the small event sample of Run I, this powerful technique will provide far greater sensitivity to any departures from the SM in the data anticipated from Run II.

  14. Single potential electrodeposition of nanostructured battery materials for lithium-ion batteries

    Science.gov (United States)

    Mosby, James Matthew

    The increasing reliance on portable electronics is continuing to fuel research in the area of low power lithium-ion batteries, while a new surge in research for high power lithium-ion batteries has been sparked by the demand for plug-in hybrid electric vehicles (PHEV) and plug-in electric vehicles (PEV). To compete with current lead-acid battery chemistry, a few of the shortcomings of lithium-ion battery chemistry need to be addressed. The three main drawbacks of lithium-ion batteries for this application are: (1) low power density, (2) safety, and (3) the high cost of manufacturing. This dissertation covers the development of a low cost fabrication technique for an alternative anode material with high surface area geometries. The anode material is safer than the conventional anode material in lithium-ion batteries and the high surface area geometries permit higher power densities to be achieved. Electrodeposition is an inexpensive alternative method for synthesizing materials for electronics, energy conversion and energy storage applications relative to traditional solid state techniques. These techniques led to expensive device fabrication. Unlike most solid state synthesis routes, electrodeposition can usually be performed from common solutions and at moderate conditions. Three other benefits of using electrodeposition are: (1) it allows precise control of composition and crystallinity, (2) it provides the ability to deposit on complex shapes, and (3) it can deposit materials with nanoscale dimensions. The use of electrodeposition for alternative anode materials results in the deposition of the material directly onto the current collector that is used for the battery testing and applications without the need of additional binders and with excellent electrical contact. While this improves the characterization of the material and lowers the weight of the non-active materials within a battery, it also allows the anode to be deposited onto current collectors with

  15. Determination of trace inorganic anions in weak acids by single-pump column-switching ion chromatography.

    Science.gov (United States)

    Zhu, Haibao; Chen, Huadong; Zhong, Yingying; Ren, Dandan; Qian, Yaling; Tang, Hongfang; Zhu, Yan

    2010-08-01

    Ion chromatography has been proposed for the determination of three common inorganic anions (chloride, nitrate, and sulfate) in nine weak acids (tartaric acid, citric acid, formic acid, acetic acid, metacetonic acid, butyric acid, butanedioic acid, hexafluorophosphoric acid, and salicylic acid) using a single pump, two valves, a single eluent, and a single conductivity detector. The present system uses ion exclusion, concentrator, and anion-exchange columns connected in series via 6-port and 10-port valves in a Dionex ICS-2100 ion chromatograph. The valves were switched for the determination of three inorganic anions from weak acids in a single chromatographic run. Sample matrices of weak acids with a series of concentrations can be investigated. Complete separations of the previously mentioned anions are demonstrated within 40 min. Under the optimum conditions, the relative standard deviation values ranged from 1.3 to 3.8%. The detection limits of the three inorganic anions (S/N = 3) were in the range of 0.3-1.7 microg/L. The recoveries were in the range of 75.2-117.6%. With this system, automation for routine analysis, short analysis time, and low cost can be achieved.

  16. A random access memory immune to single event upset using a T-Resistor

    Science.gov (United States)

    Ochoa, A. Jr.

    1987-10-28

    In a random access memory cell, a resistance ''T'' decoupling network in each leg of the cell reduces random errors caused by the interaction of energetic ions with the semiconductor material forming the cell. The cell comprises two parallel legs each containing a series pair of complementary MOS transistors having a common gate connected to the node between the transistors of the opposite leg. The decoupling network in each leg is formed by a series pair of resistors between the transistors together with a third resistor interconnecting the junction between the pair of resistors and the gate of the transistor pair forming the opposite leg of the cell. 4 figs.

  17. Random access memory immune to single event upset using a T-resistor

    Science.gov (United States)

    Ochoa, Jr., Agustin

    1989-01-01

    In a random access memory cell, a resistance "T" decoupling network in each leg of the cell reduces random errors caused by the interaction of energetic ions with the semiconductor material forming the cell. The cell comprises two parallel legs each containing a series pair of complementary MOS transistors having a common gate connected to the node between the transistors of the opposite leg. The decoupling network in each leg is formed by a series pair of resistors between the transistors together with a third resistor interconnecting the junction between the pair of resistors and the gate of the transistor pair forming the opposite leg of the cell.

  18. Measurement of the associated production of a single top quark and a W boson in single-lepton events with the ATLAS detector

    International Nuclear Information System (INIS)

    Mergelmeyer, Sebastian

    2016-06-01

    The production of a single top quark in association with a W boson (Wt) is measured with the ATLAS detector using proton-proton collision events with one lepton, three jets and missing transverse energy at √(s)=8 TeV. Signal events are identified using an artificial neural network in an unconventional manner, addressing the large uncertainties due to the major background, which has an about 10 times larger cross section and a very similar signature compared with the Wt signal. State-of-the-art statistical methods are used to validate the modelling of the signal and the background, and to extract the cross section for Wt production. The cross section is found to be consistent with related measurements as well as the Standard Model prediction. In addition, a direct measurement of the CKM matrix element V tb is performed.

  19. The Influence of Age at Single-Event Multilevel Surgery on Outcome in Children with Cerebral Palsy Who Walk with Flexed Knee Gait

    Science.gov (United States)

    Svehlik, Martin; Steinwender, Gerhard; Kraus, Tanja; Saraph, Vinay; Lehmann, Thomas; Linhart, Wolfgang E.; Zwick, Ernst B.

    2011-01-01

    Aim: Information on the timing and long-term outcome of single-event multilevel surgery in children with bilateral spastic cerebral palsy (CP) walking with flexed knee gait is limited. Based on our clinical experience, we hypothesized that older children with bilateral spastic CP would benefit more from single-event multilevel surgery than younger…

  20. Cationized phenylalanine conformations characterized by IRMPD and computation for singly and doubly charged ions

    NARCIS (Netherlands)

    Dunbar, R. C.; Steill, J. D.; Oomens, J.

    2010-01-01

    Electrospray ionization produces phenylalanine (Phe) complexes of the alkali metal ion series, plus Ag+ and Ba2+. Infrared multiple photon dissociation (IRMPD) spectroscopy using the FELIX free electron laser light source is used to characterize the conformations of the ions, in conjunction with

  1. Features of the triggering mehanism for single event burnout of power MOSFES

    International Nuclear Information System (INIS)

    Hohl, J.H.; Johnson, G.H.

    1989-01-01

    The feedback mechanism leading to second breakdown and burnout in a power MOSFET is reviewed briefly, and critical device design parameters are identified and chosen with regard to electrical specifications. Based on typical parameters, the avalanching conditions in the space charge region of the collector junction are investigated over a wide range of collector current densities. It is shown that the space charge associated with the collector current density modifies the electric field profile such that, with increasing collector current, the avalanche multiplication factor rises to a peak, then declines to a valley, and eventually rises monotonically. This behavior can be explained in simple terms. It may lead to a stable avalanching condition with a current density too low to damage the structure. This condition can be initiated by heavy ions with energies below a certain threshold. Ion energies beyond the threshold drive the avalanching process into the region of monotonic increase of the avalanche multiplication factor and lead to run-away and burnout. The threshold for runaway varies widely with changing configurations of the p + -plug and of the p-body region and promises configurations that are immune to burnout. Assessments of threshold currents in a typical hex cell are given

  2. Potent neutralization of influenza A virus by a single-domain antibody blocking M2 ion channel protein.

    Directory of Open Access Journals (Sweden)

    Guowei Wei

    Full Text Available Influenza A virus poses serious health threat to humans. Neutralizing antibodies against the highly conserved M2 ion channel is thought to offer broad protection against influenza A viruses. Here, we screened synthetic Camel single-domain antibody (VHH libraries against native M2 ion channel protein. One of the isolated VHHs, M2-7A, specifically bound to M2-expressed cell membrane as well as influenza A virion, inhibited replication of both amantadine-sensitive and resistant influenza A viruses in vitro, and protected mice from a lethal influenza virus challenge. Moreover, M2-7A showed blocking activity for proton influx through M2 ion channel. These pieces of evidence collectively demonstrate for the first time that a neutralizing antibody against M2 with broad specificity is achievable, and M2-7A may have potential for cross protection against a number of variants and subtypes of influenza A viruses.

  3. A microprocessor-based single board computer for high energy physics event pattern recognition

    International Nuclear Information System (INIS)

    Bernstein, H.; Gould, J.J.; Imossi, R.; Kopp, J.K.; Love, W.A.; Ozaki, S.; Platner, E.D.; Kramer, M.A.

    1981-01-01

    A single board MC 68000 based computer has been assembled and bench marked against the CDC 7600 running portions of the pattern recognition code used at the MPS. This computer has a floating coprocessor to achieve throughputs equivalent to several percent that of the 7600. A major part of this work was the construction of a FORTRAN compiler including assembler, linker and library. The intention of this work is to assemble a large number of these single board computers in a parallel FASTBUS environment to act as an on-line and off-line filter for the raw data from MPS II and ISABELLE experiments. (orig.)

  4. Microprocessor-based single board computer for high energy physics event pattern recognition

    International Nuclear Information System (INIS)

    Bernstein, H.; Gould, J.J.; Imossi, R.; Kopp, J.K.; Love, W.A.; Ozaki, S.; Platner, E.D.; Kramer, M.A.

    1981-01-01

    A single board MC 68000 based computer has been assembled and bench marked against the CDC 7600 running portions of the pattern recognition code used at the MPS. This computer has a floating coprocessor to achieve throughputs equivalent to several percent that of the 7600. A major part of this work was the construction of a FORTRAN compiler including assembler, linker and library. The intention of this work is to assemble a large number of these single board computers in a parallel FASTBUS environment to act as an on-line and off-line filter for the raw data from MPS II and ISABELLE experiments

  5. Autonomous Gait Event Detection with Portable Single-Camera Gait Kinematics Analysis System

    OpenAIRE

    Yang, Cheng.; Ugbolue, Ukadike C..; Kerr, Andrew.; Stankovic, Vladimir.; Stankovic, Lina.; Carse, Bruce.; Kaliarntas, Konstantinos T..; Rowe, Philip J..

    2016-01-01

    Laboratory-based nonwearable motion analysis systems have significantly advanced with robust objective measurement of the limb motion, resulting in quantified, standardized, and reliable outcome measures compared with traditional, semisubjective, observational gait analysis. However, the requirement for large laboratory space and operational expertise makes these systems impractical for gait analysis at local clinics and homes. In this paper, we focus on autonomous gait event detection with o...

  6. Traumatic stress symptomatology after child maltreatment and single traumatic events: different profiles

    NARCIS (Netherlands)

    Jonkman, Caroline S.; Verlinden, Eva; Bolle, Eva A.; Boer, Frits; Lindauer, Ramón J. L.

    2013-01-01

    The sequelae of child maltreatment tend to extend current posttraumatic stress disorder (PTSD) symptoms. This study examined this assumption, hypothesizing that (a) PTSD and trauma-related symptoms are more severe after single trauma than after child maltreatment; (b) symptoms unrelated to trauma

  7. Optical planar waveguides in photo-thermal-refractive glasses fabricated by single- or double-energy carbon ion implantation

    Science.gov (United States)

    Wang, Yue; Shen, Xiao-Liang; Zheng, Rui-Lin; Guo, Hai-Tao; Lv, Peng; Liu, Chun-Xiao

    2018-01-01

    Ion implantation has demonstrated to be an efficient and reliable technique for the fabrication of optical waveguides in a diversity of transparent materials. Photo-thermal-refractive glass (PTR) is considered to be durable and stable holographic recording medium. Optical planar waveguide structures in the PTR glasses were formed, for the first time to our knowledge, by the C3+-ion implantation with single-energy (6.0 MeV) and double-energy (5.5+6.0 MeV), respectively. The process of the carbon ion implantation was simulated by the stopping and range of ions in matter code. The morphologies of the waveguides were recorded by a microscope operating in transmission mode. The guided beam distributions of the waveguides were measured by the end-face coupling technique. Comparing with the single-energy implantation, the double-energy implantation improves the light confinement for the dark-mode spectrum. The guiding properties suggest that the carbon-implanted PTR glass waveguides have potential for the manufacture of photonic devices.

  8. Junctionless Diode Enabled by Self-Bias Effect of Ion Gel in Single-Layer MoS2 Device.

    Science.gov (United States)

    Khan, Muhammad Atif; Rathi, Servin; Park, Jinwoo; Lim, Dongsuk; Lee, Yoontae; Yun, Sun Jin; Youn, Doo-Hyeb; Kim, Gil-Ho

    2017-08-16

    The self-biasing effects of ion gel from source and drain electrodes on electrical characteristics of single layer and few layer molybdenum disulfide (MoS 2 ) field-effect transistor (FET) have been studied. The self-biasing effect of ion gel is tested for two different configurations, covered and open, where ion gel is in contact with either one or both, source and drain electrodes, respectively. In open configuration, the linear output characteristics of the pristine device becomes nonlinear and on-off ratio drops by 3 orders of magnitude due to the increase in "off" current for both single and few layer MoS 2 FETs. However, the covered configuration results in a highly asymmetric output characteristics with a rectification of around 10 3 and an ideality factor of 1.9. This diode like behavior has been attributed to the reduction of Schottky barrier width by the electric field of self-biased ion gel, which enables an efficient injection of electrons by tunneling at metal-MoS 2 interface. Finally, finite element method based simulations are carried out and the simulated results matches well in principle with the experimental analysis. These self-biased diodes can perform a crucial role in the development of high-frequency optoelectronic and valleytronic devices.

  9. Elucidating distinct ion channel populations on the surface of hippocampal neurons via single-particle tracking recurrence analysis

    Science.gov (United States)

    Sikora, Grzegorz; Wyłomańska, Agnieszka; Gajda, Janusz; Solé, Laura; Akin, Elizabeth J.; Tamkun, Michael M.; Krapf, Diego

    2017-12-01

    Protein and lipid nanodomains are prevalent on the surface of mammalian cells. In particular, it has been recently recognized that ion channels assemble into surface nanoclusters in the soma of cultured neurons. However, the interactions of these molecules with surface nanodomains display a considerable degree of heterogeneity. Here, we investigate this heterogeneity and develop statistical tools based on the recurrence of individual trajectories to identify subpopulations within ion channels in the neuronal surface. We specifically study the dynamics of the K+ channel Kv1.4 and the Na+ channel Nav1.6 on the surface of cultured hippocampal neurons at the single-molecule level. We find that both these molecules are expressed in two different forms with distinct kinetics with regards to surface interactions, emphasizing the complex proteomic landscape of the neuronal surface. Further, the tools presented in this work provide new methods for the analysis of membrane nanodomains, transient confinement, and identification of populations within single-particle trajectories.

  10. Molecular dynamics study of radiation damage and microstructure evolution of zigzag single-walled carbon nanotubes under carbon ion incidence

    Science.gov (United States)

    Li, Huan; Tang, Xiaobin; Chen, Feida; Huang, Hai; Liu, Jian; Chen, Da

    2016-07-01

    The radiation damage and microstructure evolution of different zigzag single-walled carbon nanotubes (SWCNTs) were investigated under incident carbon ion by molecular dynamics (MD) simulations. The radiation damage of SWCNTs under incident carbon ion with energy ranging from 25 eV to 1 keV at 300 K showed many differences at different incident sites, and the defect production increased to the maximum value with the increase in incident ion energy, and slightly decreased but stayed fairly stable within the majority of the energy range. The maximum damage of SWCNTs appeared when the incident ion energy reached 200 eV and the level of damage was directly proportional to incident ion fluence. The radiation damage was also studied at 100 K and 700 K and the defect production decreased distinctly with rising temperature because radiation-induced defects would anneal and recombine by saturating dangling bonds and reconstructing carbon network at the higher temperature. Furthermore, the stability of a large-diameter tube surpassed that of a thin one under the same radiation environments.

  11. Tumor induction in mice after local irradiation with single doses of either carbon-ion beams or gamma rays.

    Science.gov (United States)

    Ando, Koichi; Koike, Sachiko; Ohmachi, Yasushi; Ando, Yutaka; Kobashi, Gen

    2014-12-01

    To determine the dose-dependent relative biological effectiveness (RBE) for tumor prevalence in mice receiving single localized doses to their right leg of either carbon ions (15, 45 or 75 keV/μm) or 137Cs gamma rays. A total of 1647 female C3H mice were irradiated to their hind legs with a localized dose of either reference gamma rays or 15, 45 or 75 keV/μm carbon-ion beams. Irradiated mice were evaluated for tumors twice a month during their three-year life span, and the dimensions of any tumors found were measured with a caliper. The tumor induction frequency was calculated by Kaplan-Meier analysis. The incidence of tumors from 50 Gy of 45 keV/μm carbon ions was marginally higher than those from 50 Gy of gamma rays. However, 60 Gy of 15 keV/μm carbon ions induced significantly fewer tumors than did gamma rays. RBE values of 0.87 + 0.12, 1.29 + 0.08 or 2.06 + 0.39 for lifetime tumorigenesis were calculated for 15, 45 or 75 keV/μm carbon-ion beams, respectively. Fibrosarcoma predominated, with no Linear Energy Transfer (LET)-dependent differences in the tumor histology. Experiments measuring the late effect of leg skin shrinkage suggested that the carcinogenic damage of 15 keV/μm carbon ions would be less than that of gamma rays. We conclude that patients receiving radiation doses to their normal tissues would face less risk of secondary tumor induction by carbon ions of intermediate LET values compared to equivalent doses of photons.

  12. Determination and shaping of the ion-velocity distribution function in a single-ended Q machine

    DEFF Research Database (Denmark)

    Andersen, S.A.; Jensen, Vagn Orla; Michelsen, Poul

    1971-01-01

    An electrostatic energy analyzer with a resolution better than 0.03 eV was constructed. This analyzer was used to determine the ion-velocity distribution function at different densities and plate temperatures in a single-ended Q machine. In all regions good agreement with theoretical predictions...... based on simple, physical pictures is obtained. It is shown that within certain limits the velocity distribution function can be shaped; double-humped distribution functions have been obtained. The technique used here is suggested as an accurate method for determination of plasma densities within 10......% in single-ended Q machines...

  13. Real-time gait event detection for lower limb amputees using a single wearable sensor.

    Science.gov (United States)

    Maqbool, H F; Husman, M A B; Awad, M I; Abouhossein, A; Mehryar, P; Iqbal, N; Dehghani-Sanij, A A

    2016-08-01

    This paper presents a rule-based real-time gait event/phase detection system (R-GEDS) using a shank mounted inertial measurement unit (IMU) for lower limb amputees during the level ground walking. Development of the algorithm is based on the shank angular velocity in the sagittal plane and linear acceleration signal in the shank longitudinal direction. System performance was evaluated with four control subjects (CS) and one transfemoral amputee (TFA) and the results were validated with four FlexiForce footswitches (FSW). The results showed a data latency for initial contact (IC) and toe off (TO) within a range of ± 40 ms for both CS and TFA. A delay of about 3.7 ± 62 ms for a foot-flat start (FFS) and an early detection of -9.4 ± 66 ms for heel-off (HO) was found for CS. Prosthetic side showed an early detection of -105 ± 95 ms for FFS whereas intact side showed a delay of 141 ±73 ms for HO. The difference in the kinematics of the TFA and CS is one of the potential reasons for high variations in the time difference. Overall, detection accuracy was 99.78% for all the events in both groups. Based on the validated results, the proposed system can be used to accurately detect the temporal gait events in real-time that leads to the detection of gait phase system and therefore, can be utilized in gait analysis applications and the control of lower limb prostheses.

  14. A novel aptasensor based on single-molecule force spectroscopy for highly sensitive detection of mercury ions.

    Science.gov (United States)

    Li, Qing; Michaelis, Monika; Wei, Gang; Colombi Ciacchi, Lucio

    2015-08-07

    We have developed a novel aptasensor based on single-molecule force spectroscopy (SMFS) capable of detecting mercury ions (Hg(2+)) with sub-nM sensitivity. The single-strand (ss) DNA aptamer used in this work is rich in thymine (T) and readily forms T-Hg(2+)-T complexes in the presence of Hg(2+). The aptamer was conjugated to an atomic force microscope (AFM) probe, and the adhesion force between the probe and a flat graphite surface was measured by single-molecule force spectroscopy (SMFS). The presence of Hg(2+) ions above a concentration threshold corresponding to the affinity constant of the ions for the aptamer (about 5 × 10(9) M(-1)) could be easily detected by a change of the measured adhesion force. With our chosen aptamer, we could reach an Hg(2+) detection limit of 100 pM, which is well below the maximum allowable level of Hg(2+) in drinking water. In addition, this aptasensor presents a very high selectivity for Hg(2+) over other metal cations, such as K(+), Ca(2+), Zn(2+), Fe(2+), and Cd(2+). Furthermore, the effects of the ionic strength and loading rate on the Hg(2+) detection were evaluated. Its simplicity, reproducibility, high selectivity and sensitivity make our SMFS-based aptasensor advantageous with respect to other current Hg(2+) sensing methods. It is expected that our strategy can be exploited for monitoring the pollution of water environments and the safety of potentially contaminated food.

  15. Single and multiple cardiovascular biomarkers in subjects without a previous cardiovascular event

    DEFF Research Database (Denmark)

    Pareek, Manan; Bhatt, Deepak L; Vaduganathan, Muthiah

    2017-01-01

    failure, stroke, or all-cause mortality. Predictive capabilities were evaluated using Cox proportional-hazards regression, Harrell's concordance index (C-index), and net reclassification improvement. Median age was 66 (interquartile range: 60-70) years, and 413 (31%) were female. During median 8.......6 (interquartile range: 8.1-9.2) follow-up years, 368 (28%) composite events occurred. NT-proBNP, hs-TnT, GDF-15, and IL-6 were significantly associated with outcome, independently of traditional risk factors, medications, and echocardiography ( p 

  16. SEARCH FOR DARK MATTER IN EVENTS WITH A SINGLE BOSON AND MISSING TRANSVERSE MOMENTUM WITH ATLAS

    CERN Document Server

    Brandt, Oleg; The ATLAS collaboration

    2017-01-01

    The presence of a non-baryonic dark matter component in the Universe is inferred from the observation of its gravitational interaction. If dark matter interacts weakly with the Standard Model it would be produced at the LHC, escaping the detector and leaving a large missing transverse momentum as their signature. The results of searches for Dark Matter with a single boson and large missing transverse momentum in 13 TeV will be presented.

  17. Single event upset tests of a RISC-based fault-tolerant computer

    Energy Technology Data Exchange (ETDEWEB)

    Kimbrough, J.R.; Butner, D.N.; Colella, N.J.; Kaschmitter, J.L.; Shaeffer, D.L.; McKnett, C.L.; Coakley, P.G.; Casteneda, C.

    1996-03-23

    The project successfully demonstrated that dual lock-step comparison of commercial RISC processors is a viable fault-tolerant approach to handling SEU in space environment. The fault tolerant approach on orbit error rate was 38 times less than the single processor error rate. The random nature of the upsets and appearance in critical code section show it is essential to incorporate both hardware and software in the design and operation of fault-tolerant computers.

  18. Do patients with recurrent episodes of campylobacteriosis differ from those with a single disease event?

    Directory of Open Access Journals (Sweden)

    Michel Pascal

    2011-01-01

    Full Text Available Abstract Background Although Campylobacter is the leading cause of reported bacterial gastro-enteritis in industrialized countries, little is known on its recurrence. The objective of this study is to describe the risk and the patient characteristics of recurrent episodes of human campylobacteriosis reported in Quebec. Methods Laboratory-confirmed cases of campylobacteriosis reported in the province of Quebec, Canada, through ongoing surveillance between 1996 and 2006 were analyzed. The risk of having a recurrent episode of campylobacteriosis was described using life table estimates. Logistic regression was used to assess if gender, age and patient residential location were associated with an increased risk of recurrence. Results Compared to the baseline risk, the risk for a recurrent disease event was higher for a period of four years and followed a decreasing trend. This increased risk of a recurrent event was similar across gender, but higher for people from rural areas and lower for children under four years of age. Conclusions These results may suggest the absence of durable immunity or clinical resilience following a first episode of campylobacteriosis and periodical re-exposure, at least among cases reported through the surveillance system.

  19. Do patients with recurrent episodes of campylobacteriosis differ from those with a single disease event?

    Science.gov (United States)

    2011-01-01

    Background Although Campylobacter is the leading cause of reported bacterial gastro-enteritis in industrialized countries, little is known on its recurrence. The objective of this study is to describe the risk and the patient characteristics of recurrent episodes of human campylobacteriosis reported in Quebec. Methods Laboratory-confirmed cases of campylobacteriosis reported in the province of Quebec, Canada, through ongoing surveillance between 1996 and 2006 were analyzed. The risk of having a recurrent episode of campylobacteriosis was described using life table estimates. Logistic regression was used to assess if gender, age and patient residential location were associated with an increased risk of recurrence. Results Compared to the baseline risk, the risk for a recurrent disease event was higher for a period of four years and followed a decreasing trend. This increased risk of a recurrent event was similar across gender, but higher for people from rural areas and lower for children under four years of age. Conclusions These results may suggest the absence of durable immunity or clinical resilience following a first episode of campylobacteriosis and periodical re-exposure, at least among cases reported through the surveillance system. PMID:21226938

  20. Measurement of s-channel single top-quark production with the ATLAS detector using total event likelihoods

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00333614

    2016-09-21

    A measurement of s-channel single top-quark production in proton-proton collisions at a centre-of-mass energy of $8\\,\\mathrm{TeV}$ is presented. The dataset has been recorded with the ATLAS detector at the LHC and corresponds to an integrated luminosity of 20.3$\\,\\mathrm{fb}^{−1}$. Collision events are selected so that a subset of the data is obtained where the signal fraction is relatively high. Selected events contain one isolated electron or muon, missing transverse momentum and 2 jets, both of which are induced by b-quarks. All of these objects have large transverse momenta. The resulting set of events is still dominated by background processes, most notably top-quark pair production and the production of W-bosons in association with jets. In order to further separate the signal from the backgrounds, several approximate event likelihoods are computed. They are based on different hypotheses regarding the scattering process at hand. Together they result in a function of the measured momenta which allows ...

  1. Lithium ions in the van der Waals gap of Bi2Se3 single crystals

    International Nuclear Information System (INIS)

    Bludska, J.; Jakubec, I.; Karamazov, S.; Horak, J.; Uher, C.

    2010-01-01

    Insertion/extraction of lithium ions into/from Bi 2 Se 3 crystals was investigated by means of cyclic voltammetry. The process of insertion is reflected in the appearance of two bands on voltammograms at ∼1.7 and ∼1.5 V, corresponding to the insertion of Li + ions into octahedral and tetrahedral sites of the van der Waals gap of these layered crystals. The process of extraction of Li + ions from the gap results in the appearance of four bands on the voltammograms. The bands 1 and 2 at ∼2.1 and ∼2.3 V correspond to the extraction of a part of Li + guest ions from the octahedral and tetrahedrals sites and this extraction has a character of a reversible intercalation/deintercalation process. A part of Li + ions is bound firmly in the crystal due to the formation of negatively charged clusters of the (LiBiSe 2 .Bi 3 Se 4 - ) type. A further extraction of Li + ions from the van der Waals gap is associated with the presence of bands 3 and 4 placed at ∼2.5 and ∼2.7 V on the voltammograms as their extraction needs higher voltage due to the influence of negative charges localized on these clusters. -- Graphical abstract: Insertion/extraction of lithium ions into/from Bi 2 Se 3 layered crystals was investigated by cyclic voltammetry. The extraction of Li + results in the appearance of four bands on the voltammograms. The first two bands have a character of a reversible process. A part of Li + ions is bound firmly in the crystal due to the formation of negatively charged clusters of the (LiBiSe 2 .Bi 3 Se 4 - ) type. Their extraction needs higher voltage due to the negative charge. Display Omitted

  2. Liquid Hole-Multipliers: A potential concept for large single-phase noble-liquid TPCs of rare events

    Science.gov (United States)

    Breskin, Amos

    2013-10-01

    A novel concept is proposed for large-volume single-phase noble-liquid TPC detectors for rare events. Both radiation-induced scintillation-light and ionization-charge are detected by Liquid Hole-Multipliers (LHM), immersed in the noble liquid. The latter may consist of cascaded Gas Electron Multipliers (GEM), Thick Gas Electron Multiplier (THGEM) electrodes or others, coated with CsI UV-photocathodes. Electrons, photo-induced on CsI by primary scintillation in the noble liquid, and event-correlated drifting ionization electrons are amplified in the cascaded elements primarily through electroluminescence, and possibly through additional moderate avalanche, occurring within the holes. The resulting charge-signals or light-pulses are recorded on anode pads or with photosensors - e.g. gaseous photomultipliers (GPM), respectively. Potential affordable solutions are proposed for multi-ton dark-matter detectors; open questions are formulated for validating this dream.

  3. Liquid Hole-Multipliers: A potential concept for large single-phase noble-liquid TPCs of rare events

    International Nuclear Information System (INIS)

    Breskin, Amos

    2013-01-01

    A novel concept is proposed for large-volume single-phase noble-liquid TPC detectors for rare events. Both radiation-induced scintillation-light and ionization-charge are detected by Liquid Hole-Multipliers (LHM), immersed in the noble liquid. The latter may consist of cascaded Gas Electron Multipliers (GEM), Thick Gas Electron Multiplier (THGEM) electrodes or others, coated with CsI UV-photocathodes. Electrons, photo-induced on CsI by primary scintillation in the noble liquid, and event-correlated drifting ionization electrons are amplified in the cascaded elements primarily through electroluminescence, and possibly through additional moderate avalanche, occurring within the holes. The resulting charge-signals or light-pulses are recorded on anode pads or with photosensors – e.g. gaseous photomultipliers (GPM), respectively. Potential affordable solutions are proposed for multi-ton dark-matter detectors; open questions are formulated for validating this dream

  4. Nanometer-size surface modification produced by single, low energy, highly charged ions

    International Nuclear Information System (INIS)

    Stockli, M.P.

    1994-01-01

    Atomically flat surfaces of insulators have been bombarded with low energy, highly charged ions to search for nanometer-size surface modifications. It is expected that the high electron deficiency of highly charged ions will capture and/or remove many of the insulator's localized electrons when impacting on an insulating surface. The resulting local electron deficiency is expected to locally disintegrate the insulator through a open-quotes Coulomb explosionclose quotes forming nanometer-size craters. Xe ions with charge states between 10+ and 45+ and kinetic energies between 0 and 10 keV/q were obtained from the KSU-CRYEBIS, a CRYogenic Electron Beam Ion Source and directed onto various insulating materials. Mica was favored as target material as atomically flat surfaces can be obtained reliably through cleaving. However, the authors observations with an atomic force microscope have shown that mica tends to defoliate locally rather than disintegrate, most likely due to the small binding forces between adjacent layers. So far the authors measurements indicate that each ion produces one blister if the charge state is sufficiently high. The blistering does not seem to depend very much on the kinetic energy of the ions

  5. Multivariate Bayesian decoding of single-trial event-related fMRI responses for memory retrieval of voluntary actions.

    Directory of Open Access Journals (Sweden)

    Dongha Lee

    Full Text Available This study proposes a method for classifying event-related fMRI responses in a specialized setting of many known but few unknown stimuli presented in a rapid event-related design. Compared to block design fMRI signals, classification of the response to a single or a few stimulus trial(s is not a trivial problem due to contamination by preceding events as well as the low signal-to-noise ratio. To overcome such problems, we proposed a single trial-based classification method of rapid event-related fMRI signals utilizing sparse multivariate Bayesian decoding of spatio-temporal fMRI responses. We applied the proposed method to classification of memory retrieval processes for two different classes of episodic memories: a voluntarily conducted experience and a passive experience induced by watching a video of others' actions. A cross-validation showed higher classification performance of the proposed method compared to that of a support vector machine or of a classifier based on the general linear model. Evaluation of classification performances for one, two, and three stimuli from the same class and a correlation analysis between classification accuracy and target stimulus positions among trials suggest that presenting two target stimuli at longer inter-stimulus intervals is optimal in the design of classification experiments to identify the target stimuli. The proposed method for decoding subject-specific memory retrieval of voluntary behavior using fMRI would be useful in forensic applications in a natural environment, where many known trials can be extracted from a simulation of everyday tasks and few target stimuli from a crime scene.

  6. Cluster-continuum quasichemical theory calculation of the lithium ion solvation in water, acetonitrile and dimethyl sulfoxide: an absolute single-ion solvation free energy scale.

    Science.gov (United States)

    Carvalho, Nathalia F; Pliego, Josefredo R

    2015-10-28

    Absolute single-ion solvation free energy is a very useful property for understanding solution phase chemistry. The real solvation free energy of an ion depends on its interaction with the solvent molecules and on the net potential inside the solute cavity. The tetraphenyl arsonium-tetraphenyl borate (TATB) assumption as well as the cluster-continuum quasichemical theory (CC-QCT) approach for Li(+) solvation allows access to a solvation scale excluding the net potential. We have determined this free energy scale investigating the solvation of the lithium ion in water (H2O), acetonitrile (CH3CN) and dimethyl sulfoxide (DMSO) solvents via the CC-QCT approach. Our calculations at the MP2 and MP4 levels with basis sets up to the QZVPP+diff quality, and including solvation of the clusters and solvent molecules by the dielectric continuum SMD method, predict the solvation free energy of Li(+) as -116.1, -120.6 and -123.6 kcal mol(-1) in H2O, CH3CN and DMSO solvents, respectively (1 mol L(-1) standard state). These values are compatible with the solvation free energy of the proton of -253.4, -253.2 and -261.1 kcal mol(-1) in H2O, CH3CN and DMSO solvents, respectively. Deviations from the experimental TATB scale are only 1.3 kcal mol(-1) in H2O and 1.8 kcal mol(-1) in DMSO solvents. However, in the case of CH3CN, the deviation reaches a value of 9.2 kcal mol(-1). The present study suggests that the experimental TATB scale is inconsistent for CH3CN. A total of 125 values of the solvation free energy of ions in these three solvents were obtained. These new data should be useful for the development of theoretical solvation models.

  7. Saharan dust events at the Jungfraujoch: detection by wavelength dependence of the single scattering albedo and first climatology analysis

    Directory of Open Access Journals (Sweden)

    M. Collaud Coen

    2004-01-01

    Full Text Available Scattering and absorption coefficients have been measured continuously at several wavelengths since March 2001 at the high altitude site Jungfraujoch (3580ma.s.l.. From these data, the wavelength dependences of the Ångström exponent and particularly of the single scattering albedo are determined. While the exponent of the single scattering albedo usually increases with wavelength, it decreases with wavelength during Saharan dust events (SDE due to the greater size of the mineral aerosol particles and their different chemical composition. This change in the sign of the single scattering exponent turns out to be a sensitive means for detecting Saharan dust events. The occurrence of SDE detected by this new method was confirmed by visual inspection of filter colors and by studying long-range back-trajectories. An examination of SDE over a 22-month period shows that SDE are more frequent during the March-June period as well as during October and November. The trajectory analysis indicated a mean traveling time of 96.5h, with the most important source countries situated in the northern and north-western part of the Saharan desert. Most of the SDE do not lead to a detectable increase of the 48-h total suspended particulate matter (TSP concentration at the Jungfraujoch. During Saharan dust events, the average contribution of this dust to hourly TSP at the Jungfraujoch is 16µg/m3, which corresponds to an annual mean of 0.8µg/m3 or 24% of TSP.

  8. Quantum theory of single events: Localized de Broglie-wavelets, Schroedinger waves and classical trajectories

    International Nuclear Information System (INIS)

    Barut, A.O.

    1990-06-01

    For an arbitrary potential V with classical trajectories x-vector=g-vector(t) we construct localized oscillating three-dimensional wave lumps ψ(x-vector,t,g-vector) representing a single quantum particle. The crest of the envelope of the ripple follows the classical orbit g-vector(t) slightly modified due to potential V and ψ(x-vector,t;g-vector) satisfies the Schroedinger equation. The field energy, momentum and angular momentum calculated as integrals over all space are equal to particle energy, momentum and angular momentum. The relation to coherent states and to Schroedinger waves are also discussed. (author). 6 refs

  9. It is highly unlikely that the development of an abdominal wall hernia can be attributable to a single strenuous event.

    Science.gov (United States)

    Pathak, Samir; Poston, Graeme J

    2006-03-01

    There is a commonly held belief that the development of a hernia can be attributed to a single strenuous or traumatic event. Hence, many litigants are successful in compensation claims, causing mounting financial burdens on employers, the courts, insurance companies and the tax-payer. However, there is very little scientific evidence to support this assertion. The aim of this study was to ascertain whether there was any causal link in this process. A total of 133 new patients with 135 abdominal herniae of all varieties (115 inguinal, 3 femoral, 9 umbilical, 4 incisional, and 4 ventral or epigastric), of which 25 were recurrent received structured questionnaires on arrival in the surgical clinic. These questionnaires covered all possible aetiological factors for hernia development (type of work, COAD, smoking, pregnancy, obesity, chronic bladder outflow obstruction, previous surgery including appendicectomy), in addition to any possible attribution to a single strenuous or traumatic event. We then reviewed the GP records in the surgery of all patients who answered positively to the latter possible cause. In the study group, 119 (89%) reported a gradual onset of symptoms. Of the 15 (12 male, 3 female; 11%) who believed that their hernia might be related to a single strenuous or traumatic event, 5 had no other aetiological factors. However, not one of the 15 was found to have contemporaneous forensic medical evidence to support their possible claim. We conclude that we are unable to find any clinical evidence to support the hypothesis that a hernia might develop as the result of one single strenuous or traumatic event. While we accept that this mechanism might still possibly occur, we believe that, at best, it is extremely uncommon. If a medical expert is preparing a report on such a case in a claim for personal injury, then they have a duty to the court to examine carefully all the contemporaneous medical records. If no clinical evidence exists to support the claim

  10. Search for supersymmetry in events with a single lepton, jets, and missing transverse momentum using a neural network

    CERN Document Server

    Chatterjee, Avishek

    A search for supersymmetry in proton-proton collisions at $\\sqrt{s} = 7$ TeV is presented, focusing on events with a single isolated lepton, energetic jets, and large missing transverse momentum. The analyzed data corresponds to a total integrated luminosity of 4.98 fb$^{−1}$ recorded by the CMS experiment. The search uses an artificial neural network to suppress Standard Model backgrounds, and estimates residual backgrounds using a fully data-driven method. The analysis is performed in both the muon and electron channels, and the combined result is interpreted in terms of limits on the CMSSM parameter space, as well as a simplified model.

  11. Synergistic effects of total ionizing dose on single event upset sensitivity in static random access memory under proton irradiation

    International Nuclear Information System (INIS)

    Xiao Yao; Guo Hong-Xia; Zhang Feng-Qi; Zhao Wen; Wang Yan-Ping; Zhang Ke-Ying; Ding Li-Li; Luo Yin-Hong; Wang Yuan-Ming; Fan Xue

    2014-01-01

    Synergistic effects of the total ionizing dose (TID) on the single event upset (SEU) sensitivity in static random access memories (SRAMs) were studied by using protons. The total dose was cumulated with high flux protons during the TID exposure, and the SEU cross section was tested with low flux protons at several cumulated dose steps. Because of the radiation-induced off-state leakage current increase of the CMOS transistors, the noise margin became asymmetric and the memory imprint effect was observed. (interdisciplinary physics and related areas of science and technology)

  12. Interaction of singly and multiply charged ions with a lithium-fluoride surface

    CERN Document Server

    Wirtz, L

    2001-01-01

    Charge transfer between slow ions and an ionic crystal surface still poses a considerable challenge to theory due to the intrinsic many-body character of the system. For the neutralization of multiply charged ions in front of metal surfaces, the Classical Over the Barrier (COB) model is a widely used tool. We present an extension of this model to ionic crystal surfaces where the localization of valence electrons at the anion sites and the lack of cylindrical symmetry of the ion-surface system impede a simple analytical estimate of electron transfer rates. We use a classical trajectory Monte Carlo approach to calculate electron transfer rates for different charge states of the projectile ion. With these rates we perform a Monte Carlo simulation of the neutralization of slow Ne10+ ions in vertical incidence on an LiF surface. Capture of one or several electrons may lead to a local positive charge up of the surface. The projectile dynamics depends on the balance between the repulsion due to this charge and the a...

  13. Single and binary adsorption of heavy metal ions from aqueous solutions using sugarcane cellulose-based adsorbent.

    Science.gov (United States)

    Wang, Futao; Pan, Yuanfeng; Cai, Pingxiong; Guo, Tianxiang; Xiao, Huining

    2017-10-01

    A high efficient and eco-friendly sugarcane cellulose-based adsorbent was prepared in an attempt to remove Pb 2+ , Cu 2+ and Zn 2+ from aqueous solutions. The effects of initial concentration of heavy metal ions and temperature on the adsorption capacity of the bioadsorbent were investigated. The adsorption isotherms showed that the adsorption of Pb 2+ , Cu 2+ and Zn 2+ followed the Langmuir model and the maximum adsorptions were as high as 558.9, 446.2 and 363.3mg·g -1 , respectively, in single component system. The binary component system was better described with the competitive Langmuir isotherm model. The three dimensional sorption surface of binary component system demonstrated that the presence of Pb 2+ decreased the sorption of Cu 2+ , but the adsorption amount of other metal ions was not affected. The result from SEM-EDAX revealed that the adsorption of metal ions on bioadsorbent was mainly driven by coordination, ion exchange and electrostatic association. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Single-ion triblock copolymer electrolytes based on poly(ethylene oxide) and methacrylic sulfonamide blocks for lithium metal batteries

    Science.gov (United States)

    Porcarelli, Luca; Aboudzadeh, M. Ali; Rubatat, Laurent; Nair, Jijeesh R.; Shaplov, Alexander S.; Gerbaldi, Claudio; Mecerreyes, David

    2017-10-01

    Single-ion conducting polymer electrolytes represent the ideal solution to reduce concentration polarization in lithium metal batteries (LMBs). This paper reports on the synthesis and characterization of single-ion ABA triblock copolymer electrolytes comprising PEO and poly(lithium 1-[3-(methacryloyloxy)propylsulfonyl]-1-(trifluoromethylsulfonyl)imide) blocks, poly(LiMTFSI). Block copolymers are prepared by reversible addition-fragmentation chain transfer polymerization, showing low glass transition temperature (-55 to 7 °C) and degree of crystallinity (51-0%). Comparatively high values of ionic conductivity are obtained (up to ≈ 10-4 S cm-1 at 70 °C), combined with a lithium-ion transference number close to unity (tLi+ ≈ 0.91) and a 4 V electrochemical stability window. In addition to these promising features, solid polymer electrolytes are successfully tested in lithium metal cells at 70 °C providing long lifetime up to 300 cycles, and stable charge/discharge cycling at C/2 (≈100 mAh g-1).

  15. Analysis of trace inorganic anions in weak acid salts by single pump cycling-column-switching ion chromatography.

    Science.gov (United States)

    Huang, Zhongping; Ni, Chengzhu; Zhu, Zhuyi; Pan, Zaifa; Wang, Lili; Zhu, Yan

    2015-05-01

    The application of ion chromatography with the single pump cycling-column-switching technique was described for the analysis of trace inorganic anions in weak acid salts within a single run. Due to the hydrogen ions provided by an anion suppressor electrolyzing water, weak acid anions could be transformed into weak acids, existing as molecules, after passing through the suppressor. Therefore, an anion suppressor and ion-exclusion column were adopted to achieve on-line matrix elimination of weak acid anions with high concentration for the analysis of trace inorganic anions in weak acid salts. A series of standard solutions consisting of target anions of various concentrations from 0.005 to 10 mg/L were analyzed, with correlation coefficients r ≥ 0.9990. The limits of detection were in the range of 0.67 to 1.51 μg/L, based on the signal-to-noise ratio of 3 and a 25 μL injection volume. Relative standard deviations for retention time, peak area, and peak height were all less than 2.01%. A spiking study was performed with satisfactory recoveries between 90.3 and 104.4% for all anions. The chromatographic system was successfully applied to the analysis of trace inorganic anions in five weak acid salts. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A Nanophase-Separated, Quasi-Solid-State Polymeric Single-Ion Conductor: Polysulfide Exclusion for Lithium–Sulfur Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jinhong; Song, Jongchan; Lee, Hongkyung; Noh, Hyungjun; Kim, Yun-Jung; Kwon, Sung Hyun; Lee, Seung Geol; Kim, Hee-Tak

    2017-04-19

    Formation of soluble polysulfide (PS), which is a key feature of lithium sulfur (Li–S) batteries, provides a fast redox kinetic based on a liquid–solid mechanism; however, it imposes the critical problem of PS shuttle. Here, we address the dilemma by exploiting a solvent-swollen polymeric single-ion conductor (SPSIC) as the electrolyte medium of the Li–S battery. The SPSIC consisting of a polymeric single-ion conductor and lithium salt-free organic solvents provides Li ion hopping by forming a nanoscale conducting channel and suppresses PS shuttle according to the Donnan exclusion principle when being employed for Li–S batteries. The organic solvents at the interface of the sulfur/carbon composite and SPSIC eliminate the poor interfacial contact and function as a soluble PS reservoir for maintaining the liquid–solid mechanism. Furthermore, the quasi-solid-state SPSIC allows the fabrication of a bipolar-type stack, which promises the realization of a high-voltage and energy-dense Li–S battery.

  17. Ion Density Analysis of Single-Stranded DNA in Liquid Crystal

    Science.gov (United States)

    Iwabata, Kazuki; Seki, Yasutaka; Toizumi, Ryota; Shimada, Yuki; Furue, Hirokazu; Sakaguchi, Kengo

    2013-09-01

    With the widespread use of liquid crystals (LCs) in liquid crystal displays, we have looked into the application of liquid crystals in biotechnology. The purpose of the study described here is to investigate the physical properties of DNA using LCs. Synthetic oligonucleotide molecules were dispersed in MLC6884, the sample injected into antiparallel cells, and the amount of mobile ions was measured. The LC cell doped with oligonucleotide molecules showed a sequence-dependent, specific correlation between oligonucleotide concentration and the amount of mobile ions in the LC cells. In the framework of the Stokes model and polyacrylamide gel electrophoresis (PAGE) analysis, we speculate that this result arises from the difference in ion mobility, which is caused by the shape of the oligonucleotide molecule in the LC.

  18. Single event transient modeling and mitigation techniques for mixed-signal delay locked loop (DLL) and clock circuits

    Science.gov (United States)

    Maillard, Pierre

    The purpose of this PhD work has been to investigate, model, test, develop and provide hardening techniques and guidelines for the mitigation of single event transients (SETs) in analog mixed-signal (AMS) delay locked loops (DLLs) for radiation-hardened applications. Delay-locked-loops (DLLs) are circuit substructures that are present in complex ASIC and system-on-a-chip designs. These circuits are widely used in on-chip clock distribution systems to reduce clock skew, to reduce jitter noise, and to recover clock signals at regional points within a global clock distribution system. DLLs are critical to the performance of many clock distribution systems, and in turn, the overall performance of the associated integrated system; as such, complex systems often employ multiple DLLs for clock deskew and distribution tasks. In radiation environments such as on-orbit, these critical circuits represent at-risk points of malfunction for large sections of integrated circuits due to vulnerabilities to radiation-generated transients (i.e. single event transients) that fan out across the system. The analysis of single event effects in analog DLLs has shown that each DLL sub-circuit primitive is vulnerable to single event transients. However, we have identified the voltage controlled delay line (VCDL) sub-circuit as the most sensitive to radiation-induced single event effects generating missing clock pulses that increase with the operating frequency of the circuit. This vulnerability increases with multiple instantiation of DLLs as clock distribution nodes throughout an integrated system on a chip. To our knowledge, no complete work in the rad-hard community regarding the hardening of mixed-signal DLLs against single event effects (missing pulses) has been developed. Most of the work present in the literature applies the "brute force" and well-established digital technique of triple modular redundancy (TMR) to the digital subcomponents. We have developed two novel design

  19. Positron bound states on hydride ions in thermochemically reduced MgO single crystals

    International Nuclear Information System (INIS)

    Monge, M.A.; Pareja, R.; Gonzalez, R.; Chen, Y.

    1996-01-01

    Positron-lifetime and Doppler-broadening techniques were used to unambiguously identify positronium hydrides in thermochemically reduced MgO crystals at low temperatures. Positrons trapped at H - ions, forming PsH, yield a lifetime of (640±40) ps, independent of temperature. Complementary evidence for this identification was provided by Doppler-broadening experiments, in which positrons were trapped at H 2- sites at low temperatures. The H 2- ions were formed via H - +e - →H 2- by the capturing of an electron released from Fe + impurity under blue-light stimulation. copyright 1996 The American Physical Society

  20. Models of synchronized hippocampal bursts in the presence of inhibition. I. Single population events.

    Science.gov (United States)

    Traub, R D; Miles, R; Wong, R K

    1987-10-01

    1. We constructed model networks with 520 or 1,020 cells intended to represent the CA3 region of the hippocampus. Model neurons were simulated in enough detail to reproduce intrinsic bursting and the electrotonic flow of currents along dendritic cables. Neurons exerted either excitatory or inhibitory postsynaptic actions on other cells. The network models were simulated with different levels of excitatory and inhibitory synaptic strengths in order to study epileptic and other interesting collective behaviors in the system. 2. Excitatory synapses between neurons in the network were powerful enough so that burst firing in a presynaptic neuron would evoke bursting in its connected cells. Since orthodromic or antidromic stimulation evokes both a fast and a slow phase of inhibition, two types of inhibitory cells were simulated. The properties of these inhibitory cells were modeled to resemble those of two types of inhibitory cells characterized by dual intracellular recordings in the slice preparation. 3. With fast inhibition totally blocked, a stimulus to a single cell lead to a synchronized population burst. Thus the principles of our epileptic synchronization model, developed earlier, apply even when slow inhibitory postsynaptic potentials (IPSPs) are present, as apparently occurs in the epileptic hippocampal slice. The model performs in this way because bursting can propagate through several generations in the network before slow inhibition builds up enough to block burst propagation. This can occur, however, only if connectivity is sufficiently large. With very low connection densities, slow IPSPs will prevent the development of full synchronization. 4. We performed multiple simulations in which the fast inhibitory conductance strength was kept fixed at various levels while the strength of the excitatory synapses was varied. In each simulation, we stimulated either one or four cells. For each level of inhibition, the peak number of cells bursting depended

  1. Analysis by Monte Carlo simulations of the sensitivity to single event upset of SRAM memories under spatial proton or terrestrial neutron environment

    International Nuclear Information System (INIS)

    Lambert, D.

    2006-07-01

    Electronic systems in space and terrestrial environments are subjected to a flow of particles of natural origin, which can induce dysfunctions. These particles can cause Single Event Upsets (SEU) in SRAM memories. Although non-destructive, the SEU can have consequences on the equipment functioning in applications requiring a great reliability (airplane, satellite, launcher, medical, etc). Thus, an evaluation of the sensitivity of the component technology is necessary to predict the reliability of a system. In atmospheric environment, the SEU sensitivity is mainly caused by the secondary ions resulting from the nuclear reactions between the neutrons and the atoms of the component. In space environment, the protons with strong energies induce the same effects as the atmospheric neutrons. In our work, a new code of prediction of the rate of SEU has been developed (MC-DASIE) in order to quantify the sensitivity for a given environment and to explore the mechanisms of failures according to technology. This code makes it possible to study various technologies of memories SRAM (Bulk and SOI) in neutron and proton environment between 1 MeV and 1 GeV. Thus, MC-DASIE was used with experiment data to study the effect of integration on the sensitivity of the memories in terrestrial environment, a comparison between the neutron and proton irradiations and the influence of the modeling of the target component on the calculation of the rate of SEU. (author)

  2. Role of multisensory stimuli in vigilance enhancement- a single trial event related potential study.

    Science.gov (United States)

    Abbasi, Nida Itrat; Bodala, Indu Prasad; Bezerianos, Anastasios; Yu Sun; Al-Nashash, Hasan; Thakor, Nitish V

    2017-07-01

    Development of interventions to prevent vigilance decrement has important applications in sensitive areas like transportation and defence. The objective of this work is to use multisensory (visual and haptic) stimuli for cognitive enhancement during mundane tasks. Two different epoch intervals representing sensory perception and motor response were analysed using minimum variance distortionless response (MVDR) based single trial ERP estimation to understand the performance dependency on both factors. Bereitschaftspotential (BP) latency L3 (r=0.6 in phase 1 (visual) and r=0.71 in phase 2 (visual and haptic)) was significantly correlated with reaction time as compared to that of sensory ERP latency L2 (r=0.1 in both phase 1 and phase 2). This implies that low performance in monotonous tasks is predominantly dependent on the prolonged neural interaction with the muscles to initiate movement. Further, negative relationship was found between the ERP latencies related to sensory perception and Bereitschaftspotential (BP) and occurrence of epochs when multisensory cues are provided. This means that vigilance decrement is reduced with the help of multisensory stimulus presentation in prolonged monotonous tasks.

  3. Classification of Single-Trial Auditory Events Using Dry-Wireless EEG During Real and Motion Simulated Flight

    Directory of Open Access Journals (Sweden)

    Daniel eCallan

    2015-02-01

    Full Text Available Application of neuro-augmentation technology based on dry-wireless EEG may be considerably beneficial for aviation and space operations because of the inherent dangers involved. In this study we evaluate classification performance of perceptual events using a dry-wireless EEG system during motion platform based flight simulation and actual flight in an open cockpit biplane to determine if the system can be used in the presence of considerable environmental and physiological artifacts. A passive task involving 200 random auditory presentations of a chirp sound was used for evaluation. The advantage of this auditory task is that it does not interfere with the perceptual motor processes involved with piloting the plane. Classification was based on identifying the presentation of a chirp sound versus silent periods. Evaluation of Independent component analysis and Kalman filtering to enhance classification performance by extracting brain activity related to the auditory event from other non-task related brain activity and artifacts was assessed. The results of permutation testing revealed that single trial classification of presence or absence of an auditory event was significantly above chance for all conditions on a novel test set. The best performance could be achieved with both ICA and Kalman filtering relative to no processing: Platform Off (83.4% vs 78.3%, Platform On (73.1% vs 71.6%, Biplane Engine Off (81.1% vs 77.4%, and Biplane Engine On (79.2% vs 66.1%. This experiment demonstrates that dry-wireless EEG can be used in environments with considerable vibration, wind, acoustic noise, and physiological artifacts and achieve good single trial classification performance that is necessary for future successful application of neuro-augmentation technology based on brain-machine interfaces.

  4. Classification of single-trial auditory events using dry-wireless EEG during real and motion simulated flight.

    Science.gov (United States)

    Callan, Daniel E; Durantin, Gautier; Terzibas, Cengiz

    2015-01-01

    Application of neuro-augmentation technology based on dry-wireless EEG may be considerably beneficial for aviation and space operations because of the inherent dangers involved. In this study we evaluate classification performance of perceptual events using a dry-wireless EEG system during motion platform based flight simulation and actual flight in an open cockpit biplane to determine if the system can be used in the presence of considerable environmental and physiological artifacts. A passive task involving 200 random auditory presentations of a chirp sound was used for evaluation. The advantage of this auditory task is that it does not interfere with the perceptual motor processes involved with piloting the plane. Classification was based on identifying the presentation of a chirp sound vs. silent periods. Evaluation of Independent component analysis (ICA) and Kalman filtering to enhance classification performance by extracting brain activity related to the auditory event from other non-task related brain activity and artifacts was assessed. The results of permutation testing revealed that single trial classification of presence or absence of an auditory event was significantly above chance for all conditions on a novel test set. The best performance could be achieved with both ICA and Kalman filtering relative to no processing: Platform Off (83.4% vs. 78.3%), Platform On (73.1% vs. 71.6%), Biplane Engine Off (81.1% vs. 77.4%), and Biplane Engine On (79.2% vs. 66.1%). This experiment demonstrates that dry-wireless EEG can be used in environments with considerable vibration, wind, acoustic noise, and physiological artifacts and achieve good single trial classification performance that is necessary for future successful application of neuro-augmentation technology based on brain-machine interfaces.

  5. Efficacy of zoniporide, an Na/H exchange ion inhibitor, for reducing perioperative cardiovascular events in vascular surgery patients.

    Science.gov (United States)

    Fleisher, Lee A; Newman, Mark F; St Aubin, Lisa B; Cropp, Anne B; Billing, C Bill; Bonney, Sharon; Mackey, William C; Poldermans, Don; Corbalan, Roman; Pereira, Adamastor H; Coriat, Pierre

    2005-10-01

    To determine whether a novel Na+/H+ exchange ion inhibitor, zoniporide, is associated with reduced perioperative myocardial ischemic injury in high-risk surgery patients. Randomized double-blind placebo-controlled multidose trial. Multicenter worldwide (105 centers) trial. Patients with known or multiple risk factors for coronary artery disease undergoing noncardiac vascular surgery. Four parallel groups received 1 of 3 doses of zoniporide or placebo, delivered as a 60-minute loading dose immediately before surgery, and followed by a continuous intravenous infusion for up to 7 days. A total of 824 subjects were randomized into the study from 105 centers worldwide. Of these, 784 subjects received study drug infusion in the 3-mg/kg/d, 6-mg/kg/d, and 12-mg/kg/d groups and the placebo group, and 769 satisfied the criteria for the primary efficacy analysis population. This is 68% of the planned sample size of 1125 subjects. Anesthetic management and perioperative cardiac medications were at the discretion of the attending anesthesiologists, surgeons, and cardiologists. The proportion of subjects who experienced the composite endpoint event (death, myocardial infarction, congestive heart failure, arrhythmia) by postsurgical day 30 was 18.5% in the 12-mg/kg/d group, compared with 15.7% in the placebo group, resulting in a relative risk (RR) of 1.17% (95% confidence interval [CI], 0.80-1.72; p = NS) favoring placebo. The proportions in the lower 2 zoniporide dose groups were slightly lower than in the placebo group, although the sample size is inadequate to reach any firm conclusions. The results fail to demonstrate the efficacy of zoniporide in reducing the proportion of patients at high risk undergoing noncardiac vascular surgery who experience a composite cardiovascular endpoint, which led the corporate sponsor to stop enrollment early on the basis of a futility analysis of the chance of demonstrating efficacy with a larger sample size.

  6. Sputtering of lunar regolith simulant by protons and singly and multicharged Ar ions at solar wind energies

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, F.W., E-mail: meyerfw@ornl.gov [Physics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Harris, P.R.; Taylor, C.N. [Physics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Meyer III, H.M. [MST Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Barghouty, A.F.; Adams, J.H. [NASA-Marshall Space Flight Center, Huntsville, AL 35812 (United States)

    2011-06-01

    We report preliminary results on sputtering of a lunar regolith simulant at room temperature by singly and multiply charged solar wind ions using quadrupole and time-of-flight (TOF) mass spectrometry approaches. Sputtering of the lunar regolith by solar-wind heavy ions may be an important particle source that contributes to the composition of the lunar exosphere, and is a possible mechanism for lunar surface ageing and compositional modification. The measurements were performed in order to assess the relative sputtering efficiency of protons, which are the dominant constituent of the solar wind, and less abundant heavier multicharged solar wind constituents, which have higher physical sputtering yields than same-velocity protons, and whose sputtering yields may be further enhanced due to potential sputtering. Two different target preparation approaches using JSC-1A AGGL lunar regolith simulant are described and compared using SEM and XPS surface analysis.

  7. Metallization of Single-Stranded Polyl by Zn2+ Ions in Neutral Solutions

    Czech Academy of Sciences Publication Activity Database

    Sorokin, V. A.; Valeev, V. A.; Usenko, E. L.; Andrushchenko, Valery

    2014-01-01

    Roč. 118, č. 43 (2014), s. 12360-12365 ISSN 1520-6106 Institutional support: RVO:61388963 Keywords : nucleic acid metallization * zinc ion * differential UV spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.302, year: 2014

  8. Spectroscopic properties of LaAlO3 single-crystal doped with Tb3+ ions

    Science.gov (United States)

    Sztolberg, D.; Brzostowski, B.; Dereń, P. J.

    2018-04-01

    LaAlO3 monocrystal doped with 0.5 wt% Tb3+ ions was grown by the Czochralski method. Absorption, emission and emission decay time were measured 300 K in the IR, visible and near UV range. The Tb3+ energy levels in LaAlO3 were assigned both from the absorption and emission spectra.

  9. Single-Ion Deconvolution of Mass Peak Overlaps for Atom Probe Microscopy.

    Science.gov (United States)

    London, Andrew J; Haley, Daniel; Moody, Michael P

    2017-04-01

    Due to the intrinsic evaporation properties of the material studied, insufficient mass-resolving power and lack of knowledge of the kinetic energy of incident ions, peaks in the atom probe mass-to-charge spectrum can overlap and result in incorrect composition measurements. Contributions to these peak overlaps can be deconvoluted globally, by simply examining adjacent peaks combined with knowledge of natural isotopic abundances. However, this strategy does not account for the fact that the relative contributions to this convoluted signal can often vary significantly in different regions of the analysis volume; e.g., across interfaces and within clusters. Some progress has been made with spatially localized deconvolution in cases where the discrete microstructural regions can be easily identified within the reconstruction, but this means no further point cloud analyses are possible. Hence, we present an ion-by-ion methodology where the identity of each ion, normally obscured by peak overlap, is resolved by examining the isotopic abundance of their immediate surroundings. The resulting peak-deconvoluted data are a point cloud and can be analyzed with any existing tools. We present two detailed case studies and discussion of the limitations of this new technique.

  10. Radiation-induced effects in MgO single crystal by 200 keV and 1 MeV Ni ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Ryohei; Nakai, Yoshihiro; Hamaguchi, Dai [Kyoto Inst. of Tech. (Japan)] [and others

    1997-03-01

    MgO(100) single crystals were implanted with 1.0 MeV and 200 keV Ni ions between 10{sup 15} and 10{sup 17} ions/cm{sup 2} at room temperature. Before and after thermal annealing the radiation damage and the lattice location of implanted Ni ions were analyzed by using Rutherford backscattering spectrometry with channeling and optical absorption measurements. For 1.0 MeV Ni ions, the disorder of Mg atoms increased slowly with ion dose near surface region, while it increased sharply and saturated with ion dose from 2x10{sup 16} ions/cm{sup 2} near ion range. The radiation damage was recovered and implanted Ni ions diffused to the whole of crystal and occupied substitutional positions after 1400degC annealing. For 200 keV Ni ions, the disorder of Mg atoms increased with dose near ion range and had a maximum at about 5x10{sup 16} ions/cm{sup 2}. This tendency agrees with the behavior of color centers obtained from optical measurements. For thermal annealing the radiation damage did not change during 500degC annealing, but the aggregate centers appeared after 300degC annealing. (author)

  11. Generation of vacancy cluster-related defects during single MeV silicon ion implantation of silicon

    Energy Technology Data Exchange (ETDEWEB)

    Pastuović, Ž., E-mail: zkp@ansto.gov.au [Australian Nuclear Science and Technology Organization, Locked Bag 2001, Kirrawee DC NSW 2232 (Australia); Capan, I. [Ruđer Bošković Institute, Bijenička cesta 54, P.O. Box 180, 10002 Zagreb (Croatia); Siegele, R. [Australian Nuclear Science and Technology Organization, Locked Bag 2001, Kirrawee DC NSW 2232 (Australia); Jačimović, R. [Jozef Stefan Institute, 1000 Ljubljana (Slovenia); Forneris, J. [Physics Department and NIS Excellence Centre, University of Torino, INFN – sez. Torino, CNISM – sez. Torino, via P. Giuria 1, 10125 Torino (Italy); Cohen, D.D. [Australian Nuclear Science and Technology Organization, Locked Bag 2001, Kirrawee DC NSW 2232 (Australia); Vittone, E. [Physics Department and NIS Excellence Centre, University of Torino, INFN – sez. Torino, CNISM – sez. Torino, via P. Giuria 1, 10125 Torino (Italy)

    2014-08-01

    Deep Level Transient Spectroscopy (DLTS) has been used to study defects formed in bulk silicon after implantation of 8.3 MeV {sup 28}Si{sup 3+} ions at room temperature. For this study, Schottky diodes prepared from n-type Czohralski-grown silicon wafers have been implanted in the single ion regime up to fluence value of 1 × 10{sup 10} cm{sup −2} utilizing the scanning focused ion microbeam as implantation tool and the Ion Beam Induced Current (IBIC) technique for ion counting. Differential DLTS analysis of the vacancy-rich region in self-implanted silicon reveals a formation of the broad vacancy-related defect state(s) at E{sub c} −0.4 eV. Direct measurements of the electron capture kinetics associated with this trap at E{sub c} −0.4 eV, prior to any annealing do not show an exponential behaviour typical for the simple point-like defects. The logarithmic capture kinetics is in accordance with the theory of majority carrier capture at extended or cluster-related defects. We have detected formation of two deep electron traps at E{sub c} −0.56 eV and E{sub c} −0.61 eV in the interstitial-rich region of the self-implanted silicon, before any annealing. No DLTS signal originating from vacancy-oxygen trap at E{sub c} −0.17 eV, present in the sample irradiated with 0.8 MeV neutrons, has been recorded in the self-implanted sample.

  12. Comparison of single and mixed ion implantation effects on the changes of the surface hardness, light transmittance, and electrical conductivity of polymeric materials

    International Nuclear Information System (INIS)

    Park, J. W.; Lee, J. H.; Lee, J. S.; Kil, J. G.; Choi, B. H.; Han, Z. H.

    2001-01-01

    Single or mixed ions of N, He, C were implanted onto the transparent PET(Polyethylen Terephtalate) with the ion energies of less than 100 keV and the surface hardness, light transmittance and electrical conductivity were examined. As measured with nanoindentation, mixed ion implantations such as N + +He + or N + + C + exhibited more increase in the surface hardness than the single ion implantation. Especially, implantation of C+N ions increased the surface hardness by about three times as compared to the implantation of N ion alone, which means more than 10 times increase than the untreated PET. Surface electrical conductivity was increased along with the hardness increase. The conductivity increase was more proportional to the hardness when used the higher ion energy and ion dose, while it did not show any relationship at as low as 50 keV of ion energy. The light at the 550 nm wavelength (visual range) transmitted more than 85%, which is close to that of as-received PET, and at the wavelength below 300 nm(UV range) the rays were absorbed more than 95% as traveling through the sheet, implying that there are processing parameters which the ion implanted PET maintains the transparency and absorbs the UV rays

  13. Characterization of System on a Chip (SoC) Single Event Upset (SEU) Responses Using SEU Data, Classical Reliability Models, and Space Environment Data

    Science.gov (United States)

    Berg, Melanie; Label, Kenneth; Campola, Michael; Xapsos, Michael

    2017-01-01

    We propose a method for the application of single event upset (SEU) data towards the analysis of complex systems using transformed reliability models (from the time domain to the particle fluence domain) and space environment data.

  14. Analyzing Test-As-You-Fly Single Event Upset (SEU) Responses using SEU Data, Classical Reliability Models, and Space Environment Data

    Science.gov (United States)

    Berg, Melanie; Label, Kenneth; Campola, Michael; Xapsos, Michael

    2017-01-01

    We propose a method for the application of single event upset (SEU) data towards the analysis of complex systems using transformed reliability models (from the time domain to the particle fluence domain) and space environment data.

  15. HCN4 ion channel function is required for early events that regulate anatomical left-right patterning in a nodal and lefty asymmetric gene expression-independent manner

    Directory of Open Access Journals (Sweden)

    Vaibhav P. Pai

    2017-10-01

    Full Text Available Laterality is a basic characteristic of all life forms, from single cell organisms to complex plants and animals. For many metazoans, consistent left-right asymmetric patterning is essential for the correct anatomy of internal organs, such as the heart, gut, and brain; disruption of left-right asymmetry patterning leads to an important class of birth defects in human patients. Laterality functions across multiple scales, where early embryonic, subcellular and chiral cytoskeletal events are coupled with asymmetric amplification mechanisms and gene regulatory networks leading to asymmetric physical forces that ultimately result in distinct left and right anatomical organ patterning. Recent studies have suggested the existence of multiple parallel pathways regulating organ asymmetry. Here, we show that an isoform of the hyperpolarization-activated cyclic nucleotide-gated (HCN family of ion channels (hyperpolarization-activated cyclic nucleotide-gated channel 4, HCN4 is important for correct left-right patterning. HCN4 channels are present very early in Xenopus embryos. Blocking HCN channels (Ih currents with pharmacological inhibitors leads to errors in organ situs. This effect is only seen when HCN4 channels are blocked early (pre-stage 10 and not by a later block (post-stage 10. Injections of HCN4-DN (dominant-negative mRNA induce left-right defects only when injected in both blastomeres no later than the 2-cell stage. Analysis of key asymmetric genes' expression showed that the sidedness of Nodal, Lefty, and Pitx2 expression is largely unchanged by HCN4 blockade, despite the randomization of subsequent organ situs, although the area of Pitx2 expression was significantly reduced. Together these data identify a novel, developmental role for HCN4 channels and reveal a new Nodal-Lefty-Pitx2 asymmetric gene expression-independent mechanism upstream of organ positioning during embryonic left-right patterning.

  16. Event-by-event fluctuations of the particle yield ratios in heavy-ion collisions at 20 - 158 AGeV

    Energy Technology Data Exchange (ETDEWEB)

    Kresan, Dmytro

    2010-12-22

    Non-statistical event-by-event fluctuations are considered as an important signal for the critical endpoint of the QCD phase diagram. Event-by-event fluctuations of different observables are thus investigated in detail in current experiments but are also an important observable to be studied at the future CBM experiment at FAIR. In this work we present the energy and centrality dependence of event-by-event fluctuations of particle yield ratios measured by the NA49 experiment in Pb+Pb collisions at 20-158 AGeV. Systematic studies of the influence of the dE/dx resolution on the particle identification and the centrality bin size were performed. Results can be compared to event-by-event fluctuations measured by NA49 for different observables such as or the mean charged particle multiplicity. Main results of these studies are an increase of absolute value of the dynamical particle ratio fluctuations with decreasing centrality for all considered ratios, saturation of the K/{pi} and K/p ratio fluctuations for peripheral Pb + Pb collisions at 158A GeV and scaling of the energy and centrality dependences of the p/{pi} ratio fluctuations with N{sub p}N{sub {pi}}. The measured energy and centrality dependences of the K/{pi} and K/p ratio fluctuations scale with N{sub K} in a different way. The saturation of the mentioned ratios fluctuations was attributed to the development of pronounced spike at zero in the eventwise ratio distributions, which, as was shown by Monte Carlo simulations, influence the measured fluctuations in the very peripheral Pb + Pb collisions at 158A GeV. In future, the CBM experiment at FAIR will investigate the intermediate region of the QCD phase diagram in great detail searching for the first order phase transition line and the expected critical endpoint. It is therefore important to closely investigate its sensitivity towards particle ratio fluctuations in Au+Au collisions at 10-45 AGeV beam energy. Detailed simulation studies are

  17. Phase diagrams of the ternary alloy with a single-ion anisotropy in the mean-field approximation

    International Nuclear Information System (INIS)

    Dely, J.; Bobak, A.

    2006-01-01

    The phase diagram of the AB p C 1-p ternary alloy consisting of Ising spins S A =32, S B =2, and S C =52 is investigated by the use of a mean-field theory based on the Bogoliubov inequality for the Gibbs free energy. The effect of the single-ion anisotropy on the phase diagrams is discussed by changing values of the parameters in the model Hamiltonian and comparison is made with the recently reported finite-temperature phase diagrams for the ternary alloy having spin S B =1

  18. The influence of elastic subsystem on phase transitions in ferromagnets with competitive exchange and single-ion anisotropies

    International Nuclear Information System (INIS)

    Freedman, Yu.A.; Klevets, F.N.; Matunin, D.A.

    2006-01-01

    The influence of planar and bulk elastic interactions on the phase states of an ultrathin ferromagnetic film with anisotropic exchange interaction is investigated for different relationships among the material constants. It is shown that when the elastic interactions, with competing exchange and single-ion anisotropies, and the magnetic dipole interaction are taken into account, a cascade of phase transitions appears. Furthermore, taking the 'planar' elastic interaction into account leads to realization of an additional phase, with an easy axis in the film plane. This state is absent in the case of a bulk elastic subsystem

  19. Source Regions of the Interplanetary Magnetic Field and Variability in Heavy-Ion Elemental Composition in Gradual Solar Energetic Particle Events

    Science.gov (United States)

    Ko, Yuan-Kuen; Tylka, Allan J.; Ng, Chee K.; Wang, Yi-Ming; Dietrich, William F.

    2013-01-01

    Gradual solar energetic particle (SEP) events are those in which ions are accelerated to their observed energies by interactions with a shock driven by a fast coronal mass-ejection (CME). Previous studies have shown that much of the observed event-to-event variability can be understood in terms of shock speed and evolution in the shock-normal angle. But an equally important factor, particularly for the elemental composition, is the origin of the suprathermal seed particles upon which the shock acts. To tackle this issue, we (1) use observed solar-wind speed, magnetograms, and the PFSS model to map the Sun-L1 interplanetary magnetic field (IMF) line back to its source region on the Sun at the time of the SEP observations; and (2) then look for correlation between SEP composition (as measured by Wind and ACE at approx. 2-30 MeV/nucleon) and characteristics of the identified IMF-source regions. The study is based on 24 SEP events, identified as a statistically-significant increase in approx. 20 MeV protons and occurring in 1998 and 2003-2006, when the rate of newly-emergent solar magnetic flux and CMEs was lower than in solar-maximum years and the field-line tracing is therefore more likely to be successful. We find that the gradual SEP Fe/O is correlated with the field strength at the IMF-source, with the largest enhancements occurring when the footpoint field is strong, due to the nearby presence of an active region. In these cases, other elemental ratios show a strong charge-to-mass (q/M) ordering, at least on average, similar to that found in impulsive events. These results lead us to suggest that magnetic reconnection in footpoint regions near active regions bias the heavy-ion composition of suprathermal seed ions by processes qualitatively similar to those that produce larger heavy-ion enhancements in impulsive SEP events. To address potential technical concerns about our analysis, we also discuss efforts to exclude impulsive SEP events from our event sample.

  20. Effects of Metal Ions on Conductivity and Structure of Single DNA Molecule in Different Environmental Conditions

    Directory of Open Access Journals (Sweden)

    Dong Ruixin

    2010-01-01

    Full Text Available Abstract We design a novel nano-gap electrode to measure the current of DNA molecule, by which the current–voltage characteristics of individual native DNA, Ag-DNA and Ni-DNA molecules are obtained, respectively. The results show that the voltage gap of Ag- and Ni-DNA is higher than that of native DNA, and the conductance is lower than native DNA in neutral environment. The structure transition from B- to Z-DNA is observed in the presence of high concentrations of nickel ions and Ag-DNA appears chaos state by STM image and U-V spectra characterization. But in alkaline environment, the conductance of Ni-DNA rises and the voltage gap decreases with the increasing of nickel ion concentration denotes that the conductive ability of Ni-DNA is higher than that of native DNA.