WorldWideScience

Sample records for single ion channels

  1. Automated parallel recordings of topologically identified single ion channels.

    Science.gov (United States)

    Kawano, Ryuji; Tsuji, Yutaro; Sato, Koji; Osaki, Toshihisa; Kamiya, Koki; Hirano, Minako; Ide, Toru; Miki, Norihisa; Takeuchi, Shoji

    2013-01-01

    Although ion channels are attractive targets for drug discovery, the systematic screening of ion channel-targeted drugs remains challenging. To facilitate automated single ion-channel recordings for the analysis of drug interactions with the intra- and extracellular domain, we have developed a parallel recording methodology using artificial cell membranes. The use of stable lipid bilayer formation in droplet chamber arrays facilitated automated, parallel, single-channel recording from reconstituted native and mutated ion channels. Using this system, several types of ion channels, including mutated forms, were characterised by determining the protein orientation. In addition, we provide evidence that both intra- and extracellular amyloid-beta fragments directly inhibit the channel open probability of the hBK channel. This automated methodology provides a high-throughput drug screening system for the targeting of ion channels and a data-intensive analysis technique for studying ion channel gating mechanisms.

  2. Photodynamic membrane damage at the level of single ion channels.

    Science.gov (United States)

    Kunz, L; Stark, G

    1997-07-05

    Illumination of cellular membranes by visible light in the presence of appropriate photosensitizers is known to inactivate specific ionic pathways and to increase the unspecific leak conductance of the membranes. While previous studies have concentrated on the macroscopic ionic currents, the present study separates the two phenomena at the microscopic level. Using opossum kidney (OK) cells as epithelial model system and photofrin II as sensitizer, the patch-clamp technique in inside-out configuration has been applied to show the inactivation of single ion channels immediately after start of illumination and the subsequent strong increase of the leak conductance. Inactivation is shown for two kinds of channels: the large-conductance Ca2+-dependent K+ channel (maxi-K(Ca)) and the stretch-activated nonselective cation channel (SA-cat).

  3. Imaging large cohorts of single ion channels and their activity

    Directory of Open Access Journals (Sweden)

    Katia eHiersemenzel

    2013-09-01

    Full Text Available As calcium is the most important signaling molecule in neurons and secretory cells, amongst many other cell types, it follows that an understanding of calcium channels and their regulation of exocytosis is of vital importance. Calcium imaging using calcium dyes such as Fluo3, or FRET-based dyes that have been used widely has provided invaluable information, which combined with modeling has estimated the sub-types of channels responsible for triggering the exocytotic machinery as well as inferences about the relative distances away from vesicle fusion sites these molecules adopt. Importantly, new super-resolution microscopy techniques, combined with novel Ca2+ indicators and imaginative imaging approaches can now define directly the nanoscale locations of very large cohorts of single channel molecules in relation to single vesicles. With combinations of these techniques the activity of individual channels can be visualized and quantified using novel Ca2+ indicators. Fluorescently labeled specific channel toxins can also be used to localize endogenous assembled channel tetramers. Fluorescence lifetime imaging microscopy and other single-photon-resolution spectroscopic approaches offer the possibility to quantify protein-protein interactions between populations of channels and the SNARE protein machinery for the first time. Together with simultaneous electrophysiology, this battery of quantitative imaging techniques has the potential to provide unprecedented detail describing the locations, dynamic behaviours, interactions and conductance activities of many thousands of channel molecules and vesicles in living cells.

  4. Not Only Enthalpy: Large Entropy Contribution to Ion Permeation Barriers in Single-File Channels

    OpenAIRE

    Portella, Guillem; Hub, Jochen S.; Vesper, Martin D.; de Groot, Bert L.

    2008-01-01

    The effect of channel length on the barrier for potassium ion permeation through single-file channels has been studied by means of all-atom molecular dynamics simulations. Using series of peptidic gramicidin-like and simplified ring-structured channels, both embedded in model membranes, we obtained two distinct types of behavior: saturation of the central free energy barriers for peptidic channels and a linear increase in simplified ring-structured channels with increasing channel length. The...

  5. Ion channeling

    International Nuclear Information System (INIS)

    Erramli, H.; Blondiaux, G.

    1994-01-01

    Channeling phenomenon was predicted, many years ago, by stark. The first channeling experiments were performed in 1963 by Davies and his coworkers. Parallely Robinson and Oen have investigated this process by simulating trajectories of ions in monocrystals. This technique has been combined with many methods like Rutherford Backscattering Spectrometry (R.B.S.), Particles Induced X-rays Emission (P.I.X.E) and online Nuclear Reaction (N.R.A.) to localize trace elements in the crystal or to determine crystalline quality. To use channeling for material characterization we need data about the stopping power of the incident particle in the channeled direction. The ratios of channeled to random stopping powers of silicon for irradiation in the direction have been investigated and compared to the available theoretical results. We describe few applications of ion channeling in the field of materials characterization. Special attention is given to ion channeling combined with Charged Particle Activation Analysis (C.P.A.A.) for studying the behaviour of oxygen atoms in Czochralski silicon lattices under the influence of internal gettering and in different gaseous atmospheres. Association between ion channeling and C.P.A.A was also utilised for studying the influence of the growing conditions on concentration and position of carbon atoms at trace levels in the MOVPE Ga sub (1-x) Al sub x lattice. 6 figs., 1 tab., 32 refs. (author)

  6. Changes in ion channel geometry resolved to sub-angstroem precision via single molecule mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Joseph W F; Kasianowicz, John J; Reiner, Joseph E [Semiconductor Electronics Division, Electronics and Electrical Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States)

    2010-11-17

    The ion channel formed by Staphylococcus aureus alpha-hemolysin switches between multiple open conducting states. We describe a method for precisely estimating the changes in the ion channel geometry that correspond to these different states. Experimentally, we observed that the permeability of a single channel to differently sized poly(ethylene glycol) molecules depends on the magnitude of the open state conductance. A simple theory is proposed for determining changes in channel length of 4.2% and in cross-sectional area of - 0.4%.

  7. Ion mass dependence for low energy channeling in single-wall nanotubes

    International Nuclear Information System (INIS)

    An Monte Carlo (MC) simulation program has been used to study ion mass dependence for the low energy channeling of natural- and pseudo-Ar ions in single-wall nanotubes. The MC simulations show that the channeling critical angle Ψ C obeys the (E) -1/2 and the (M 1 ) -1/2 rules, where E is the incident energy and M 1 is the ion mass. The reason for this may be that the motion of the channeled (or de-channeled) ions should be correlated with both the incident energy E and the incident momentum (2M 1 E) 1/2 , in order to obey the conservation of energy and momentum

  8. Charging the quantum capacitance of graphene with a single biological ion channel.

    Science.gov (United States)

    Wang, Yung Yu; Pham, Ted D; Zand, Katayoun; Li, Jinfeng; Burke, Peter J

    2014-05-27

    The interaction of cell and organelle membranes (lipid bilayers) with nanoelectronics can enable new technologies to sense and measure electrophysiology in qualitatively new ways. To date, a variety of sensing devices have been demonstrated to measure membrane currents through macroscopic numbers of ion channels. However, nanoelectronic based sensing of single ion channel currents has been a challenge. Here, we report graphene-based field-effect transistors combined with supported lipid bilayers as a platform for measuring, for the first time, individual ion channel activity. We show that the supported lipid bilayers uniformly coat the single layer graphene surface, acting as a biomimetic barrier that insulates (both electrically and chemically) the graphene from the electrolyte environment. Upon introduction of pore-forming membrane proteins such as alamethicin and gramicidin A, current pulses are observed through the lipid bilayers from the graphene to the electrolyte, which charge the quantum capacitance of the graphene. This approach combines nanotechnology with electrophysiology to demonstrate qualitatively new ways of measuring ion channel currents.

  9. Energy transduction and signal averaging of fluctuating electric fields by a single protein ion channel.

    Science.gov (United States)

    Verdia-Baguena, C; Gomez, V; Cervera, J; Ramirez, P; Mafe, S

    2016-12-21

    We demonstrate the electrical rectification and signal averaging of fluctuating signals using a biological nanostructure in aqueous solution: a single protein ion channel inserted in the lipid bilayer characteristic of cell membranes. The conversion of oscillating, zero time-average potentials into directional currents permits charging of a load capacitor to significant steady-state voltages within a few minutes in the case of the outer membrane porin F (OmpF) protein, a bacterial channel of Escherichia coli. The experiments and simulations show signal averaging effects at a more fundamental level than the traditional cell and tissue scales, which are characterized by ensembles of many ion channels operating simultaneously. The results also suggest signal transduction schemes with bio-electronic interfaces and ionic circuits where soft matter nanodiodes can be coupled to conventional electronic elements.

  10. How to resolve microsecond current fluctuations in single ion channels: The power of beta distributions

    Science.gov (United States)

    Schroeder, Indra

    2015-01-01

    Abstract A main ingredient for the understanding of structure/function correlates of ion channels is the quantitative description of single-channel gating and conductance. However, a wealth of information provided from fast current fluctuations beyond the temporal resolution of the recording system is often ignored, even though it is close to the time window accessible to molecular dynamics simulations. This kind of current fluctuations provide a special technical challenge, because individual opening/closing or blocking/unblocking events cannot be resolved, and the resulting averaging over undetected events decreases the single-channel current. Here, I briefly summarize the history of fast-current fluctuation analysis and focus on the so-called “beta distributions.” This tool exploits characteristics of current fluctuation-induced excess noise on the current amplitude histograms to reconstruct the true single-channel current and kinetic parameters. A guideline for the analysis and recent applications demonstrate that a construction of theoretical beta distributions by Markov Model simulations offers maximum flexibility as compared to analytical solutions. PMID:26368656

  11. Changes in ion channel geometry resolved to sub-ångström precision via single molecule mass spectrometry

    Science.gov (United States)

    Robertson, Joseph W. F.; Kasianowicz, John J.; Reiner, Joseph E.

    2010-11-01

    The ion channel formed by Staphylococcus aureus alpha-hemolysin switches between multiple open conducting states. We describe a method for precisely estimating the changes in the ion channel geometry that correspond to these different states. Experimentally, we observed that the permeability of a single channel to differently sized poly(ethylene glycol) molecules depends on the magnitude of the open state conductance. A simple theory is proposed for determining changes in channel length of 4.2% and in cross-sectional area of - 0.4%.

  12. Elucidating distinct ion channel populations on the surface of hippocampal neurons via single-particle tracking recurrence analysis

    Science.gov (United States)

    Sikora, Grzegorz; Wyłomańska, Agnieszka; Gajda, Janusz; Solé, Laura; Akin, Elizabeth J.; Tamkun, Michael M.; Krapf, Diego

    2017-12-01

    Protein and lipid nanodomains are prevalent on the surface of mammalian cells. In particular, it has been recently recognized that ion channels assemble into surface nanoclusters in the soma of cultured neurons. However, the interactions of these molecules with surface nanodomains display a considerable degree of heterogeneity. Here, we investigate this heterogeneity and develop statistical tools based on the recurrence of individual trajectories to identify subpopulations within ion channels in the neuronal surface. We specifically study the dynamics of the K+ channel Kv1.4 and the Na+ channel Nav1.6 on the surface of cultured hippocampal neurons at the single-molecule level. We find that both these molecules are expressed in two different forms with distinct kinetics with regards to surface interactions, emphasizing the complex proteomic landscape of the neuronal surface. Further, the tools presented in this work provide new methods for the analysis of membrane nanodomains, transient confinement, and identification of populations within single-particle trajectories.

  13. Potent neutralization of influenza A virus by a single-domain antibody blocking M2 ion channel protein.

    Directory of Open Access Journals (Sweden)

    Guowei Wei

    Full Text Available Influenza A virus poses serious health threat to humans. Neutralizing antibodies against the highly conserved M2 ion channel is thought to offer broad protection against influenza A viruses. Here, we screened synthetic Camel single-domain antibody (VHH libraries against native M2 ion channel protein. One of the isolated VHHs, M2-7A, specifically bound to M2-expressed cell membrane as well as influenza A virion, inhibited replication of both amantadine-sensitive and resistant influenza A viruses in vitro, and protected mice from a lethal influenza virus challenge. Moreover, M2-7A showed blocking activity for proton influx through M2 ion channel. These pieces of evidence collectively demonstrate for the first time that a neutralizing antibody against M2 with broad specificity is achievable, and M2-7A may have potential for cross protection against a number of variants and subtypes of influenza A viruses.

  14. Fluorescence-based high-throughput functional profiling of ligand-gated ion channels at the level of single cells.

    Directory of Open Access Journals (Sweden)

    Sahil Talwar

    Full Text Available Ion channels are involved in many physiological processes and are attractive targets for therapeutic intervention. Their functional properties vary according to their subunit composition, which in turn varies in a developmental and tissue-specific manner and as a consequence of pathophysiological events. Understanding this diversity requires functional analysis of ion channel properties in large numbers of individual cells. Functional characterisation of ligand-gated channels involves quantitating agonist and drug dose-response relationships using electrophysiological or fluorescence-based techniques. Electrophysiology is limited by low throughput and high-throughput fluorescence-based functional evaluation generally does not enable the characterization of the functional properties of each individual cell. Here we describe a fluorescence-based assay that characterizes functional channel properties at single cell resolution in high throughput mode. It is based on progressive receptor activation and iterative fluorescence imaging and delivers >100 dose-responses in a single well of a 384-well plate, using α1-3 homomeric and αβ heteromeric glycine receptor (GlyR chloride channels as a model system. We applied this assay with transiently transfected HEK293 cells co-expressing halide-sensitive yellow fluorescent protein and different GlyR subunit combinations. Glycine EC50 values of different GlyR isoforms were highly correlated with published electrophysiological data and confirm previously reported pharmacological profiles for the GlyR inhibitors, picrotoxin, strychnine and lindane. We show that inter and intra well variability is low and that clustering of functional phenotypes permits identification of drugs with subunit-specific pharmacological profiles. As this method dramatically improves the efficiency with which ion channel populations can be characterized in the context of cellular heterogeneity, it should facilitate systems

  15. Sensing with Ion Channels

    CERN Document Server

    Martinac, Boris

    2008-01-01

    All living cells are able to detect and translate environmental stimuli into biologically meaningful signals. Sensations of touch, hearing, sight, taste, smell or pain are essential to the survival of all living organisms. The importance of sensory input for the existence of life thus justifies the effort made to understand its molecular origins. Sensing with Ion Channels focuses on ion channels as key molecules enabling biological systems to sense and process the physical and chemical stimuli that act upon cells in their living environment. Its aim is to serve as a reference to ion channel specialists and as a source of new information to non specialists who want to learn about the structural and functional diversity of ion channels and their role in sensory physiology.

  16. A permeation theory for single-file ion channels: one- and two-step models.

    Science.gov (United States)

    Nelson, Peter Hugo

    2011-04-28

    How many steps are required to model permeation through ion channels? This question is investigated by comparing one- and two-step models of permeation with experiment and MD simulation for the first time. In recent MD simulations, the observed permeation mechanism was identified as resembling a Hodgkin and Keynes knock-on mechanism with one voltage-dependent rate-determining step [Jensen et al., PNAS 107, 5833 (2010)]. These previously published simulation data are fitted to a one-step knock-on model that successfully explains the highly non-Ohmic current-voltage curve observed in the simulation. However, these predictions (and the simulations upon which they are based) are not representative of real channel behavior, which is typically Ohmic at low voltages. A two-step association/dissociation (A/D) model is then compared with experiment for the first time. This two-parameter model is shown to be remarkably consistent with previously published permeation experiments through the MaxiK potassium channel over a wide range of concentrations and positive voltages. The A/D model also provides a first-order explanation of permeation through the Shaker potassium channel, but it does not explain the asymmetry observed experimentally. To address this, a new asymmetric variant of the A/D model is developed using the present theoretical framework. It includes a third parameter that represents the value of the "permeation coordinate" (fractional electric potential energy) corresponding to the triply occupied state n of the channel. This asymmetric A/D model is fitted to published permeation data through the Shaker potassium channel at physiological concentrations, and it successfully predicts qualitative changes in the negative current-voltage data (including a transition to super-Ohmic behavior) based solely on a fit to positive-voltage data (that appear linear). The A/D model appears to be qualitatively consistent with a large group of published MD simulations, but no

  17. Ion Channels in Leukocytes

    Science.gov (United States)

    1991-07-01

    be fitted to a Hodgkin - conductance. K (1.0) > Rb (0.77) > NH4 (0.10) > Cs Huxley type n4j model (17, 38). However, the rate of K0 (0.02) > Na (ɘ.01...15, 25 activated) T- and B-cells, murine B-cells? SCG, single-channel conductance under physiological ionic gradient- tfor ructif~ y ig ehannel, largest...the channel induces a confor- kat T-cell line (52). Fina:! y , single-channel recordings of mational change that ina.-tix ates the channel rather human T

  18. Ion channeling revisited

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, Barney Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Corona, Aldo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nguyen, Anh [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    A MS Excel program has been written that calculates accidental, or unintentional, ion channeling in cubic bcc, fcc and diamond lattice crystals or polycrystalline materials. This becomes an important issue when simulating the creation by energetic neutrons of point displacement damage and extended defects using beams of ions. All of the tables and graphs in the three Ion Beam Analysis Handbooks that previously had to be manually looked up and read from were programed into Excel in handy lookup tables, or parameterized, for the case of the graphs, using rather simple exponential functions with different powers of the argument. The program then offers an extremely convenient way to calculate axial and planar half-angles and minimum yield or dechanneling probabilities, effects on half-angles of amorphous overlayers, accidental channeling probabilities for randomly oriented crystals or crystallites, and finally a way to automatically generate stereographic projections of axial and planar channeling half-angles. The program can generate these projections and calculate these probabilities for axes and [hkl] planes up to (555).

  19. Ion channelling in diamond

    International Nuclear Information System (INIS)

    Derry, T.E.

    1978-06-01

    Diamond is one of the most extreme cases from a channelling point of view, having the smallest thermal vibration amplitude and the lowest atomic number of commonly-encountered crystals. These are the two parameters most important for determining channelling behaviour. It is of consiberable interest therefore to see how well the theories explaining and predicting the channeling properties of other substance, succeed with diamond. Natural diamond, although the best available form for these experiments, is rather variable in its physical properties. Part of the project was devoted to considering and solving the problem of obtaining reproducible results representative of the ideal crystal. Channelling studies were performed on several good crystals, using the Rutherford backscattering method. Critical angles for proton channelling were measured for incident energies from 0.6 to 4.5 MeV, in the three most open axes and three most open planes of the diamond structure, and for α-particle channelling at 0.7 and 1.0 MeV (He + ) in the same axes and planes. For 1.0 MeV protons, the crystal temperature was varied from 20 degrees Celsius to 700 degrees Celsius. The results are presented as curves of backscattered yield versus angle in the region of each axis or plane, and summarised in the form of tables and graphs. Generally the critical angles, axial minimum yields, and temperature dependence are well predicted by the accepted theories. The most valuable overall conclusion is that the mean thermal vibration amplitude of the atoms in a crytical determines the critical approach distance to the channel walls at which an ion can remain channelled, even when this distance is much smaller than the Thomas-Fermi screening distance of the atomic potential, as is the case in diamond. A brief study was made of the radiation damage caused by α-particle bombardment, via its effect on the channelling phenomenon. It was possible to hold damage down to negligible levels during the

  20. Single amino acids in the carboxyl terminal domain of aquaporin-1 contribute to cGMP-dependent ion channel activation

    Directory of Open Access Journals (Sweden)

    Yool Andrea J

    2003-10-01

    Full Text Available Abstract Background Aquaporin-1 (AQP1 functions as an osmotic water channel and a gated cation channel. Activation of the AQP1 ion conductance by intracellular cGMP was hypothesized to involve the carboxyl (C- terminus, based on amino acid sequence alignments with cyclic-nucleotide-gated channels and cGMP-selective phosphodiesterases. Results Voltage clamp analyses of human AQP1 channels expressed in Xenopus oocytes demonstrated that the nitric oxide donor, sodium nitroprusside (SNP; 3–14 mM activated the ionic conductance response in a dose-dependent manner. Block of soluble guanylate cyclase prevented the response. Enzyme immunoassays confirmed a linear dose-dependent relationship between SNP and the resulting intracellular cGMP levels (up to 1700 fmol cGMP /oocyte at 14 mM SNP. Results here are the first to show that the efficacy of ion channel activation is decreased by mutations of AQP1 at conserved residues in the C-terminal domain (aspartate D237 and lysine K243. Conclusions These data support the idea that the limited amino acid sequence similarities found between three diverse classes of cGMP-binding proteins are significant to the function of AQP1 as a cGMP-gated ion channel, and provide direct evidence for the involvement of the AQP1 C-terminal domain in cGMP-mediated ion channel activation.

  1. Structural properties of as-grown and reduced Pr2CuO4 single crystals investigated by ion channeling

    International Nuclear Information System (INIS)

    Haga, T.; Abe, Y.

    1996-01-01

    Ion channeling is very sensitive to atomic arrangements and small atomic displacements in real space. Thus, in order to clarify a role of reduction for Pr 2 CuO 4 , ion channeling properties for the materials have been measured in detail. Anomalous increases of dechanneling fractions of Cu and O atoms in the reduced samples have been found. These results could not be explained by the apical oxygen model but probably suggest that O atoms in Cu-O planes are removed by reduction. Taking these results into account, correlation between lattice instability and superconductivity in the material will be discussed. (orig.)

  2. Ion channel model development and validation

    Science.gov (United States)

    Nelson, Peter Hugo

    2010-03-01

    The structure of the KcsA ion channel selectivity filter is used to develop three simple models of ion channel permeation. The quantitative predictions of the knock-on model are tested by comparison with experimental data from single-channel recordings of the KcsA channel. By comparison with experiment, students discover that the knock-on model can't explain saturation of ion channel current as the concentrations of the bathing solutions are increased. By inverting the energy diagram, students derive the association-dissociation model of ion channel permeation. This model predicts non-linear Michaelis-Menten saturating behavior that requires students to perform non-linear least-squares fits to the experimental data. This is done using Excel's solver feature. Students discover that this simple model does an excellent job of explaining the qualitative features of ion channel permeation but cannot account for changes in voltage sensitivity. The model is then extended to include an electrical dissociation distance. This rapid translocation model is then compared with experimental data from a wide variety of ion channels and students discover that this model also has its limitations. Support from NSF DUE 0836833 is gratefully acknowledged.

  3. Intracellular ion channels and cancer

    Directory of Open Access Journals (Sweden)

    Luigi eLeanza

    2013-09-01

    Full Text Available Several types of channels play a role in the maintenance of ion homeostasis in subcellular organelles including endoplasmatic reticulum, nucleus, lysosome, endosome and mitochondria. Here we give a brief overview of the contribution of various mitochondrial and other organellar channels to cancer cell proliferation or death. Much attention is focused on channels involved in intracellular calcium signaling and on ion fluxes in the ATP-producing organelle mitochondria. Mitochondrial K+ channels (Ca2+-dependent BKCa and IKCa, ATP-dependent KATP, Kv1.3, two-pore TWIK-related Acid-Sensitive K+ channel-3 (TASK-3, Ca2+ uniporter MCU, Mg2+-permeable Mrs2, anion channels (voltage-dependent chloride channel VDAC, intracellular chloride channel CLIC and the Permeability Transition Pore (MPTP contribute importantly to the regulation of function in this organelle. Since mitochondria play a central role in apoptosis, modulation of their ion channels by pharmacological means may lead to death of cancer cells. The nuclear potassium channel Kv10.1 and the nuclear chloride channel CLIC4 as well as the endoplasmatic reticulum (ER-located inositol 1,4,5-trisphosphate (IP3 receptor, the ER-located Ca2+ depletion sensor STIM1 (stromal interaction molecule 1, a component of the store-operated Ca2+ channel and the ER-resident TRPM8 are also mentioned. Furthermore, pharmacological tools affecting organellar channels and modulating cancer cell survival are discussed. The channels described in this review are summarized on Figure 1. Overall, the view is emerging that intracellular ion channels may represent a promising target for cancer treatment.

  4. Channeling of molecular ions with relativistic energy

    International Nuclear Information System (INIS)

    Azuma, Toshiyuki; Muranaka, Tomoko; Kondo, Chikara; Hatakeyama, Atsushi; Komaki, Kenichiro; Yamazaki, Yasunori; Takabayashi, Yuichi; Murakami, Takeshi; Takada, Eiichi

    2003-01-01

    When energetic ions are injected into a single crystal parallel to a crystal axis or plane, they proceed in an open space guided by the crystal potential without colliding with atoms in the atomic plane or string, which is called channeling. We aimed to study dynamics of molecular ions, H 2 + , of 160 MeV/u and their fragment ions, H + ions in a Si crystal under the channeling condition. The molecular ions, H 2 + , are soon ionized, i.e. electron-stripped in the crystal, and a pair of bare nuclei, H + ions, travels in the crystal potential with mutual Coulomb repulsion. We developed a 2D position sensitive detector for the angular-distribution measurement of the H + ions transmitted through the crystal, and observed the detailed angular distribution. In addition we measured the case of H + on incidence for comparison. As a result, the channeled component and non-channeling were clearly separated. The incident angular divergence is critical to discuss the effect of Coulomb explosion of molecular H 2 + ions. (author)

  5. NALCN ion channels have alternative selectivity filters resembling calcium channels or sodium channels

    NARCIS (Netherlands)

    Senatore, A.; Monteil, A.; van Minnen, J.; Smit, A.B.; Spafford, J.D.

    2013-01-01

    NALCN is a member of the family of ion channels with four homologous, repeat domains that include voltage-gated calcium and sodium channels. NALCN is a highly conserved gene from simple, extant multicellular organisms without nervous systems such as sponges and placozoans and mostly remains a single

  6. Ion-solid interactions under channeling conditions

    International Nuclear Information System (INIS)

    Kurup, M.B.

    1992-01-01

    When an energetic beam of ions enters a single crystal target along one of its major crystallographic directions, channeling of these ions takes place. For the well channeled ions, low impact parameter collisions are strongly suppressed and it was shown that for such ions moving with velocities v i >> v f , where v f is the Fermi velocity of the target electrons, the projectiles can be treated as being bombarded by a weakly bound target electron gas. Even though this was established several years ago, the utility of this effect to study electron capture and loss processes in highly charges ions has become evident only recently. Radiative electron capture (REC) and dielectronic capture into inner shells of few electron ions under channeling conditions have shown very interesting features in recent experiments. It has also been seen that the K-shell REC cross-sections follow a universal scaling behaviour with the adiabaticity parameter η (the ratio of kinetic energy of the electron in the projectile frame to the K-shell binding energy of the projectile). There are also indication that electron capture and loss processes in highly stripped ions are not symmetric. In the present talk, we will review the current status of these areas in the light of recent experimental and theoretical results, particularly using fully stripped, hydrogen like and helium like heavy ions. (author). 17 refs., 15 figs

  7. Single-channel kinetics of BK (Slo1 channels

    Directory of Open Access Journals (Sweden)

    Yanyan eGeng

    2015-01-01

    Full Text Available Single-channel kinetics has proven a powerful tool to reveal information about the gating mechanisms that control the opening and closing of ion channels. This introductory review focuses on the gating of large conductance Ca2+- and voltage-activated K+ (BK or Slo1 channels at the single-channel level. It starts with single-channel current records and progresses to presentation and analysis of single-channel data and the development of gating mechanisms in terms of discrete state Markov (DSM models. The DSM models are formulated in terms of the tetrameric modular structure of BK channels, consisting of a central transmembrane pore-gate domain (PGD attached to four surrounding transmembrane voltage sensing domains (VSD and a large intracellular cytosolic domain (CTD, also referred to as the gating ring. The modular structure and data analysis shows that the Ca2+ and voltage dependent gating considered separately can each be approximated by 10-state two-tiered models with 5 closed states on the upper tier and 5 open states on the lower tier. The modular structure and joint Ca2+ and voltage dependent gating are consistent with a 50 state two-tiered model with 25 closed states on the upper tier and 25 open states on the lower tier. Adding an additional tier of brief closed (flicker states to the 10-state or 50-state models improved the description of the gating. For fixed experimental conditions a channel would gate in only a subset of the potential number of states. The detected number of states and the correlations between adjacent interval durations are consistent with the tiered models. The examined models can account for the single-channel kinetics and the bursting behavior of gating. Ca2+ and voltage activate BK channels by predominantly increasing the effective opening rate of the channel with a smaller decrease in the effective closing rate. Ca2+ and depolarization thus activate by mainly destabilizing the closed states.

  8. Improved Ion-Channel Biosensors

    Science.gov (United States)

    Nadeau, Jay; White, Victor; Dougherty, Dennis; Maurer, Joshua

    2004-01-01

    An effort is underway to develop improved biosensors of a type based on ion channels in biomimetic membranes. These sensors are microfabricated from silicon and other materials compatible with silicon. As described, these sensors offer a number of advantages over prior sensors of this type.

  9. The earliest ion channels in protocellular membranes

    Science.gov (United States)

    Mijajlovic, Milan; Pohorille, Andrew; Wilson, Michael; Wei, Chenyu

    Cellular membranes with their hydrophobic interior are virtually impermeable to ions. Bulk of ion transport through them is enabled through ion channels. Ion channels of contemporary cells are complex protein molecules which span the membrane creating a cylindrical pore filled with water. Protocells, which are widely regarded as precursors to modern cells, had similarly impermeable membranes, but the set of proteins in their disposal was much simpler and more limited. We have been, therefore, exploring an idea that the first ion channels in protocellular membranes were formed by much smaller peptide molecules that could spontaneously self-assemble into short-lived cylindrical bundles in a membrane. Earlier studies have shown that a group of peptides known as peptaibols is capable of forming ion channels in lipid bilayers when they are exposed to an electric field. Peptaibols are small, non-genetically encoded peptides produced by some fungi as a part of their system of defense against bacteria. They are usually only 14-20 residues long, which is just enough to span the membrane. Their sequence is characterized by the presence of non-standard amino acids which, interestingly, are also expected to have existed on the early earth. In particular, the presence of 2-aminoisobutyric acid (AIB) gives peptaibols strong helix forming propensities. Association of the helices inside membranes leads to the formation of cylindrical bundles, typically containing 4 to 10 monomers. Although peptaibols are excellent candidates for models of the earliest ion channels their struc-tures, which are stabilized only by van der Waals forces and occasional hydrogen bonds between neighboring helices, are not very stable. Although it might properly reflect protobiological real-ity, it is also a major obstacle in studying channel behavior. For this reason we focused on two members of the peptaibol family, trichotoxin and antiamoebin, which are characterized by a single conductance level. This

  10. The Earliest Ion Channels in Protocellular Membranes

    Science.gov (United States)

    Mijajlovic, Milan; Pohorille, Andrew; Wilson, Michael; Wei, Chenyu

    2010-01-01

    Cellular membranes with their hydrophobic interior are virtually impermeable to ions. Bulk of ion transport through them is enabled through ion channels. Ion channels of contemporary cells are complex protein molecules which span the membrane creating a cylindrical pore filled with water. Protocells, which are widely regarded as precursors to modern cells, had similarly impermeable membranes, but the set of proteins in their disposal was much simpler and more limited. We have been, therefore, exploring an idea that the first ion channels in protocellular membranes were formed by much smaller peptide molecules that could spontaneously selfassemble into short-lived cylindrical bundles in a membrane. Earlier studies have shown that a group of peptides known as peptaibols is capable of forming ion channels in lipid bilayers when they are exposed to an electric field. Peptaibols are small, non-genetically encoded peptides produced by some fungi as a part of their system of defense against bacteria. They are usually only 14-20 residues long, which is just enough to span the membrane. Their sequence is characterized by the presence of non-standard amino acids which, interestingly, are also expected to have existed on the early earth. In particular, the presence of 2-aminoisobutyric acid (AIB) gives peptaibols strong helix forming propensities. Association of the helices inside membranes leads to the formation of cylindrical bundles, typically containing 4 to 10 monomers. Although peptaibols are excellent candidates for models of the earliest ion channels their structures, which are stabilized only by van der Waals forces and occasional hydrogen bonds between neighboring helices, are not very stable. Although it might properly reflect protobiological reality, it is also a major obstacle in studying channel behavior. For this reason we focused on two members of the peptaibol family, trichotoxin and antiamoebin, which are characterized by a single conductance level. This

  11. Single top t-channel

    CERN Document Server

    Faltermann, Nils

    2017-01-01

    The production of single top quarks allows to study the interplay of top quark physics and the electroweak sector of the standard model. Deviations from predictions can be a hint for physics beyond the standard model. The t-channel is the dominant production mode for single top quarks at the LHC. This talk presents the latest measurements from the ATLAS and CMS collaborations.

  12. Engineered ion channels as emerging tools for chemical biology.

    Science.gov (United States)

    Mayer, Michael; Yang, Jerry

    2013-12-17

    Over the last 25 years, researchers have developed exogenously expressed, genetically engineered, semi-synthetic, and entirely synthetic ion channels. These structures have sufficient fidelity to serve as unique tools that can reveal information about living organisms. One of the most exciting success stories is optogenetics: the use of light-gated channels to trigger action potentials in specific neurons combined with studies of the response from networks of cells or entire live animals. Despite this breakthrough, the use of molecularly engineered ion channels for studies of biological systems is still in its infancy. Historically, researchers studied ion channels in the context of their own function in single cells or in multicellular signaling and regulation. Only recently have researchers considered ion channels and pore-forming peptides as responsive tools to report on the chemical and physical changes produced by other biochemical processes and reactions. This emerging class of molecular probes has a number of useful characteristics. For instance, these structures can greatly amplify the signal of chemical changes: the binding of one molecule to a ligand-gated ion channel can result in flux of millions of ions across a cell membrane. In addition, gating occurs on sub-microsecond time scales, resulting in fast response times. Moreover, the signal is complementary to existing techniques because the output is ionic current rather than fluorescence or radioactivity. And finally, ion channels are also localized at the membrane of cells where essential processes such as signaling and regulation take place. This Account highlights examples, mostly from our own work, of uses of ion channels and pore-forming peptides such as gramicidin in chemical biology. We discuss various strategies for preparing synthetically tailored ion channels that range from de novo designed synthetic molecules to genetically engineered or simply exogenously expressed or reconstituted wild

  13. Natural and artificial ion channels for biosensing platforms.

    Science.gov (United States)

    Steller, L; Kreir, M; Salzer, R

    2012-01-01

    The single-molecule selectivity and specificity of the binding process together with the expected intrinsic gain factor obtained when utilizing flow through a channel have attracted the attention of analytical chemists for two decades. Sensitive and selective ion channel biosensors for high-throughput screening are having an increasing impact on modern medical care, drug screening, environmental monitoring, food safety, and biowarefare control. Even virus antigens can be detected by ion channel biosensors. The study of ion channels and other transmembrane proteins is expected to lead to the development of new medications and therapies for a wide range of illnesses. From the first attempts to use membrane proteins as the receptive part of a sensor, ion channels have been engineered as chemical sensors. Several other types of peptidic or nonpeptidic channels have been investigated. Various gating mechanisms have been implemented in their pores. Three technical problems had to be solved to achieve practical biosensors based on ion channels: the fabrication of stable lipid bilayer membranes, the incorporation of a receptor into such a structure, and the marriage of the modified membrane to a transducer. The current status of these three areas of research, together with typical applications of ion-channel biosensors, are discussed in this review.

  14. A single-cell correlative nanoelectromechanosensing approach to detect cancerous transformation: monitoring the function of F-actin microfilaments in the modulation of the ion channel activity

    Science.gov (United States)

    AbdolahadThe Authors With Same Contributions., Mohammad; Saeidi, Ali; Janmaleki, Mohsen; Mashinchian, Omid; Taghinejad, Mohammad; Taghinejad, Hossein; Azimi, Soheil; Mahmoudi, Morteza; Mohajerzadeh, Shams

    2015-01-01

    Cancerous transformation may be dependent on correlation between electrical disruptions in the cell membrane and mechanical disruptions of cytoskeleton structures. Silicon nanotube (SiNT)-based electrical probes, as ultra-accurate signal recorders with subcellular resolution, may create many opportunities for fundamental biological research and biomedical applications. Here, we used this technology to electrically monitor cellular mechanosensing. The SiNT probe was combined with an electrically activated glass micropipette aspiration system to achieve a new cancer diagnostic technique that is based on real-time correlation between mechanical and electrical behaviour of single cells. Our studies demonstrated marked changes in the electrical response following increases in the mechanical aspiration force in healthy cells. In contrast, such responses were extremely weak for malignant cells. Confocal microscopy results showed the impact of actin microfilament remodelling on the reduction of the electrical response for aspirated cancer cells due to the significant role of actin in modulating the ion channel activity in the cell membrane.Cancerous transformation may be dependent on correlation between electrical disruptions in the cell membrane and mechanical disruptions of cytoskeleton structures. Silicon nanotube (SiNT)-based electrical probes, as ultra-accurate signal recorders with subcellular resolution, may create many opportunities for fundamental biological research and biomedical applications. Here, we used this technology to electrically monitor cellular mechanosensing. The SiNT probe was combined with an electrically activated glass micropipette aspiration system to achieve a new cancer diagnostic technique that is based on real-time correlation between mechanical and electrical behaviour of single cells. Our studies demonstrated marked changes in the electrical response following increases in the mechanical aspiration force in healthy cells. In contrast, such

  15. Reconstitution of lysosomal ion channels into artificial membranes.

    Science.gov (United States)

    Venturi, Elisa; Sitsapesan, Rebecca

    2015-01-01

    Ion channels that are located on intracellular organelles have always posed challenges for biophysicists seeking to measure their ion conduction, selectivity, and gating kinetics. Unlike cell surface ion channels, intracellular ion channels cannot be accessed for biophysical single-channel recordings using the patch-clamp technique while remaining in a physiological setting. Disruption of the cell is always necessary and hence experiments inevitably have a certain "artificial" nature about them. This drawback is turned to considerable advantage if the internal membranes containing the channels of interest can be isolated or if the channels can be purified because they can then be incorporated into artificial membranes of controlled composition. This approach guarantees a tight but flexible control over the biophysical and biochemical environment of the ion channel molecules. This includes the lipid composition of the membrane and the ionic solutions on both sides of the channel, thus allowing the conductance properties of the channel to be accurately measured. Since the influence of multiple unknown regulators of channel function (that could be present within the physiological membrane or in cytosolic, or intraorganelle compartments) is removed, the identification and characterization of physiological and pharmacological regulators that directly affect channel gating can also be achieved. This cannot be performed in a cellular environment. These techniques have typically been used to study the properties of channels located on endoplasmic/sarcoplasmic reticulum (ER/SR) membranes but in this chapter we describe how the techniques are also suited for ion channels of the acidic lysosomal and endolysosomal Ca(2+) stores. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Highlights for the 6th International Ion Channel Conference: ion channel structure, function, disease and therapeutics

    Directory of Open Access Journals (Sweden)

    Limei Wang

    2017-11-01

    Full Text Available To foster communication and interactions amongst international scholars and scientists in the field of ion channel research, the 6th International Ion Channel Conference (IICC-2017 was held between June 23–27, 2017 in the eastern coastal city of Qingdao, China. The meeting consisted of 450 attendees and 130 speakers and poster presenters. The program consisted of research progress, new findings and ongoing studies that were focused on (1 Ion channel structure and function; (2 Ion channel physiology and human diseases; (3 Ion channels as targets for drug discovery; (4 Technological advances in ion channel research. An insightful overview was presented on the structure and function of the mechanotransduction channel Drosophila NOMPC (No mechanoreceptor potential C, a member of the transient receptor potential (TRP channel family. Recent studies on Transmembrane protein 16 or Anoctamin-1 (TMEM16A, a member of the calcium-activated chloride channel [CaCC] family were summarized as well. In addition, topics for ion channel regulation, homeostatic feedback and brain disorders were thoroughly discussed. The presentations at the IICC-2017 offer new insights into our understanding of ion channel structures and functions, and ion channels as targets for drug discovery.

  17. NALCN ion channels have alternative selectivity filters resembling calcium channels or sodium channels.

    Directory of Open Access Journals (Sweden)

    Adriano Senatore

    Full Text Available NALCN is a member of the family of ion channels with four homologous, repeat domains that include voltage-gated calcium and sodium channels. NALCN is a highly conserved gene from simple, extant multicellular organisms without nervous systems such as sponges and placozoans and mostly remains a single gene compared to the calcium and sodium channels which diversified into twenty genes in humans. The single NALCN gene has alternatively-spliced exons at exons 15 or exon 31 that splices in novel selectivity filter residues that resemble calcium channels (EEEE or sodium channels (EKEE or EEKE. NALCN channels with alternative calcium, (EEEE and sodium, (EKEE or EEKE -selective pores are conserved in simple bilaterally symmetrical animals like flatworms to non-chordate deuterostomes. The single NALCN gene is limited as a sodium channel with a lysine (K-containing pore in vertebrates, but originally NALCN was a calcium-like channel, and evolved to operate as both a calcium channel and sodium channel for different roles in many invertebrates. Expression patterns of NALCN-EKEE in pond snail, Lymnaea stagnalis suggest roles for NALCN in secretion, with an abundant expression in brain, and an up-regulation in secretory organs of sexually-mature adults such as albumen gland and prostate. NALCN-EEEE is equally abundant as NALCN-EKEE in snails, but is greater expressed in heart and other muscle tissue, and 50% less expressed in the brain than NALCN-EKEE. Transfected snail NALCN-EEEE and NALCN-EKEE channel isoforms express in HEK-293T cells. We were not able to distinguish potential NALCN currents from background, non-selective leak conductances in HEK293T cells. Native leak currents without expressing NALCN genes in HEK-293T cells are NMDG(+ impermeant and blockable with 10 µM Gd(3+ ions and are indistinguishable from the hallmark currents ascribed to mammalian NALCN currents expressed in vitro by Lu et al. in Cell. 2007 Apr 20;129(2:371-83.

  18. Single Cathode Ion Thruster

    Data.gov (United States)

    National Aeronautics and Space Administration — Objective is to design an electrostatic ion thruster that is more efficient, simpler, and lower cost than the current gridded ion thruster. Initial objective is to...

  19. Microvillar ion channels: cytoskeletal modulation of ion fluxes.

    Science.gov (United States)

    Lange, K

    2000-10-21

    The recently presented theory of microvillar Ca(2+)signaling [Lange, K. (1999) J. Cell. Physiol.180, 19-35], combined with Manning's theory of "condensed counterions" in linear polyelectrolytes [Manning, G. S. (1969). J. Chem. Phys.51, 924-931] and the finding of cable-like ion conductance in actin filaments [Lin, E. C. & Cantiello, H. F. (1993). Biophys. J.65, 1371-1378], allows a systematic interpretation of the role of the actin cytoskeleton in ion channel regulation. Ion conduction through actin filament bundles of microvilli exhibits unique nonlinear transmission properties some of which closely resemble that of electronic semiconductors: (1) bundles of microfilaments display significant resistance to cation conduction and (2) this resistance is decreased by supply of additional energy either as thermal, mechanical or electromagnetic field energy. Other transmission properties, however, are unique for ionic conduction in polyelectrolytes. (1) Current pulses injected into the filaments were transformed into oscillating currents or even into several discrete charge pulses closely resembling that of single-channel recordings. Discontinuous transmission is due to the existence of counterion clouds along the fixed anionic charge centers of the polymer, each acting as an "ionic capacitor". (2) The conductivity of linear polyelectrolytes strongly decreases with the charge number of the counterions; thus, Ca(2+)and Mg(2+)are effective modulator of charge transfer through linear polyelectrolytes. Field-dependent formation of divalent cation plugs on either side of the microvillar conduction line may generate the characteristic gating behavior of cation channels. (3) Mechanical movement of actin filament bundles, e.g. bending of hair cell microvilli, generates charge translocations along the filament structure (mechano-electrical coupling). (4) Energy of external fields, by inducing molecular dipoles within the polyelectrolyte matrix, can be transformed into mechanical

  20. Introduction: Applying Chemical Biology to Ion Channels.

    Science.gov (United States)

    Pless, Stephan A; Ahern, Christopher A

    2015-01-01

    Ion channels are membrane-spanning proteins that control the flow of ions across biological membranes through an aqueous pathway. The opening or closing of this pore can be controlled by a myriad of physiological inputs (voltage, ligands, temperature, metabolites, pH), which in turn allow for the controlled flux of ions across membranes, resulting in the generation of minute electrical signals. The functional implications of ion channel function on physiological processes are vast. Electrical impulses, in the form of action potentials or diverse chemo-electrical signals, coordinate the syncytium of the heart beat, support a myriad of neuronal communication pathways, insulin secretion, and are central to the immune response, with more roles being discovered virtually everyday. Thus, ion channel function is a biophysical process that is central to biological life at many levels. And with over 500 channel-forming subunits known today in humans, this large class of proteins is also increasingly recognised as important drug targets, as inherited or acquired ion channel dysfunction are known causes of disease.

  1. Modification of single Na+ channels by batrachotoxin.

    OpenAIRE

    Quandt, F N; Narahashi, T

    1982-01-01

    The modifications in the properties of voltage-gated Na+ channels caused by batrachotoxin were studied by using the patch clamp method for measuring single channel currents from excised membranes of N1E-115 neuroblastoma cells. The toxin-modified open state of the Na+ channel has a decreased conductance in comparison to that of normal Na+ channels. The lifetime of the modified open state is drastically prolonged, and channels now continue to open during a maintained depolarization so that the...

  2. Nonequilibrium Thermodynamics of Ion Flux through Membrane Channels

    Directory of Open Access Journals (Sweden)

    Chi-Pan Hsieh

    2017-01-01

    Full Text Available Ion flux through membrane channels is passively driven by the electrochemical potential differences across the cell membrane. Nonequilibrium thermodynamics has been successful in explaining transport mechanisms, including the ion transport phenomenon. However, physiologists may not be familiar with biophysical concepts based on the view of entropy production. In this paper, I have reviewed the physical meanings and connections between nonequilibrium thermodynamics and the expressions commonly used in describing ion fluxes in membrane physiology. The fluctuation theorem can be applied to interpret the flux ratio in the small molecular systems. The multi-ion single-file feature of the ion channel facilitates the utilization of the natural tendency of electrochemical driving force to couple specific biophysical processes and biochemical reactions on the membrane.

  3. The Origins of Transmembrane Ion Channels

    Science.gov (United States)

    Pohorille, Andrew; Wilson, Michael A.

    2012-01-01

    Even though membrane proteins that mediate transport of ions and small molecules across cell walls are among the largest and least understood biopolymers in contemporary cells, it is still possible to shed light on their origins and early evolution. The central observation is that transmembrane portions of most ion channels are simply bundles of -helices. By combining results of experimental and computer simulation studies on synthetic models and natural channels, mostly of non-genomic origin, we show that the emergence of -helical channels was protobiologically plausible, and did not require highly specific amino acid sequences. Despite their simple structure, such channels could possess properties that, at the first sight, appear to require markedly larger complexity. Specifically, we explain how the antiamoebin channels, which are made of identical helices, 16 amino acids in length, achieve efficiency comparable to that of highly evolved channels. We further show that antiamoebin channels are extremely flexible, compared to modern, genetically coded channels. On the basis of our results, we propose that channels evolved further towards high structural complexity because they needed to acquire stable rigid structures and mechanisms for precise regulation rather than improve efficiency. In general, even though architectures of membrane proteins are not nearly as diverse as those of water-soluble proteins, they are sufficiently flexible to adapt readily to the functional demands arising during evolution.

  4. Unsupervised Idealization of Ion Channel Recordings by Minimum Description Length: Application to Human PIEZO1-Channels

    Directory of Open Access Journals (Sweden)

    Jakob K. Dreyer

    2017-04-01

    Full Text Available Researchers can investigate the mechanistic and molecular basis of many physiological phenomena in cells by analyzing the fundamental properties of single ion channels. These analyses entail recording single channel currents and measuring current amplitudes and transition rates between conductance states. Since most electrophysiological recordings contain noise, the data analysis can proceed by idealizing the recordings to isolate the true currents from the noise. This de-noising can be accomplished with threshold crossing algorithms and Hidden Markov Models, but such procedures generally depend on inputs and supervision by the user, thus requiring some prior knowledge of underlying processes. Channels with unknown gating and/or functional sub-states and the presence in the recording of currents from uncorrelated background channels present substantial challenges to such analyses. Here we describe and characterize an idealization algorithm based on Rissanen's Minimum Description Length (MDL Principle. This method uses minimal assumptions and idealizes ion channel recordings without requiring a detailed user input or a priori assumptions about channel conductance and kinetics. Furthermore, we demonstrate that correlation analysis of conductance steps can resolve properties of single ion channels in recordings contaminated by signals from multiple channels. We first validated our methods on simulated data defined with a range of different signal-to-noise levels, and then showed that our algorithm can recover channel currents and their substates from recordings with multiple channels, even under conditions of high noise. We then tested the MDL algorithm on real experimental data from human PIEZO1 channels and found that our method revealed the presence of substates with alternate conductances.

  5. Unsupervised Idealization of Ion Channel Recordings by Minimum Description Length: Application to Human PIEZO1-Channels

    Science.gov (United States)

    Gnanasambandam, Radhakrishnan; Nielsen, Morten S.; Nicolai, Christopher; Sachs, Frederick; Hofgaard, Johannes P.; Dreyer, Jakob K.

    2017-01-01

    Researchers can investigate the mechanistic and molecular basis of many physiological phenomena in cells by analyzing the fundamental properties of single ion channels. These analyses entail recording single channel currents and measuring current amplitudes and transition rates between conductance states. Since most electrophysiological recordings contain noise, the data analysis can proceed by idealizing the recordings to isolate the true currents from the noise. This de-noising can be accomplished with threshold crossing algorithms and Hidden Markov Models, but such procedures generally depend on inputs and supervision by the user, thus requiring some prior knowledge of underlying processes. Channels with unknown gating and/or functional sub-states and the presence in the recording of currents from uncorrelated background channels present substantial challenges to such analyses. Here we describe and characterize an idealization algorithm based on Rissanen's Minimum Description Length (MDL) Principle. This method uses minimal assumptions and idealizes ion channel recordings without requiring a detailed user input or a priori assumptions about channel conductance and kinetics. Furthermore, we demonstrate that correlation analysis of conductance steps can resolve properties of single ion channels in recordings contaminated by signals from multiple channels. We first validated our methods on simulated data defined with a range of different signal-to-noise levels, and then showed that our algorithm can recover channel currents and their substates from recordings with multiple channels, even under conditions of high noise. We then tested the MDL algorithm on real experimental data from human PIEZO1 channels and found that our method revealed the presence of substates with alternate conductances. PMID:28496407

  6. Ion Channel Trafficking: Control of Ion Channel Density as a Target for Arrhythmias?

    Directory of Open Access Journals (Sweden)

    Elise Balse

    2017-10-01

    Full Text Available The shape of the cardiac action potential (AP is determined by the contributions of numerous ion channels. Any dysfunction in the proper function or expression of these ion channels can result in a change in effective refractory period (ERP and lead to arrhythmia. The processes underlying the correct targeting of ion channels to the plasma membrane are complex, and have not been fully characterized in cardiac myocytes. Emerging evidence highlights ion channel trafficking as a potential causative factor in certain acquired and inherited arrhythmias, and therapies which target trafficking as opposed to pore block are starting to receive attention. In this review we present the current evidence for the mechanisms which underlie precise control of cardiac ion channel trafficking and targeting.

  7. Single Na+ channels activated by veratridine and batrachotoxin

    Science.gov (United States)

    1987-01-01

    Voltage-sensitive Na+ channels from rat skeletal muscle plasma membrane vesicles were inserted into planar lipid bilayers in the presence of either of the alkaloid toxins veratridine (VT) or batrachotoxin (BTX). Both of these toxins are known to cause persistent activation of Na+ channels. With BTX as the channel activator, single channels remain open nearly all the time. Channels activated with VT open and close on a time scale of 1-10 s. Increasing the VT concentration enhances the probability of channel opening, primarily by increasing the rate constant of opening. The kinetics and voltage dependence of channel block by 21-sulfo-11-alpha-hydroxysaxitoxin are identical for VT and BTX, as is the ionic selectivity sequence determined by bi-ionic reversal potential (Na+ approximately Li+ greater than K+ greater than Rb+ greater than Cs+). However, there are striking quantitative differences in open channel conduction for channels in the presence of the two activators. Under symmetrical solution conditions, the single channel conductance for Na+ is about twice as high with BTX as with VT. Furthermore, the symmetrical solution single channel conductances show a different selectivity for BTX (Na+ greater than Li+ greater than K+) than for VT (Na+ greater than K+ greater than Li+). Open channel current-voltage curves in symmetrical Na+ and Li+ are roughly linear, while those in symmetrical K+ are inwardly rectifying. Na+ currents are blocked asymmetrically by K+ with both BTX and VT, but the voltage dependence of K+ block is stronger with BTX than with VT. The results show that the alkaloid neurotoxins not only alter the gating process of the Na+ channel, but also affect the structure of the open channel. We further conclude that the rate-determining step for conduction by Na+ does not occur at the channel's "selectivity filter," where poorly permeating ions like K+ are excluded. PMID:2435846

  8. Ion channeling study of defects in multicomponent semiconductor compounds

    International Nuclear Information System (INIS)

    Turos, A.; Nowicki, L.; Stonert, A.

    2002-01-01

    Compound semiconductor crystals are of great technological importance as basic materials for production of modern opto- and microelectronic devices. Ion implantation is one of the principal techniques for heterostructures processing. This paper reports the results of the study of defect formation and transformation in binary and ternary semiconductor compounds subjected to ion implantation with ions of different mass and energy. The principal analytical technique was He-ion channeling. The following materials were studied: GaN and InGaN epitaxial layers. First the semi empirical method of channeling spectra analysis for ion implanted multicomponent single crystal was developed. This method was later complemented by the more sophisticated method based on the Monte Carlo simulation of channeling spectra. Next, the damage buildup in different crystals and epitaxial layers as a function of the implantation dose was studied for N, Mg, Te, and Kr ions. The influence of the substrate temperature on the defect transformations was studied for GaN epitaxial layers implanted with Mg ions. Special attention was devoted to the study of growth conditions of InGaN/GaN/sapphire heterostructures, which are important component of the future blue laser diodes. In-atom segregation and tetragonal distortion of the epitaxial layer were observed and characterized. Next problem studied was the incorporation of hydrogen atoms in GaAs and GaN. Elastic recoil detection (ERDA) and nuclear reaction analysis (NRA) were applied for the purpose. (author)

  9. Conductance of Ion Channels - Theory vs. Experiment

    Science.gov (United States)

    Pohorille, Andrew; Wilson, Michael; Mijajlovic, Milan

    2013-01-01

    Transmembrane ion channels mediate a number of essential physiological processes in a cell ranging from regulating osmotic pressure to transmission of neural signals. Kinetics and selectivity of ion transport is of critical importance to a cell and, not surprisingly, it is a subject of numerous experimental and theoretical studies. In this presentation we will analyze in detail computer simulations of two simple channels from fungi - antiamoebin and trichotoxin. Each of these channels is made of an alpha-helical bundle of small, nongenomically synthesized peptides containing a number of rare amino acids and exhibits strong antimicrobial activity. We will focus on calculating ionic conductance defined as the ratio of ionic current through the channel to applied voltage. From molecular dynamics simulations, conductance can be calculated in at least two ways, each involving different approximations. Specifically, the current, given as the number of charges transferred through the channel per unit of time, can be obtained from the number of events in which ions cross the channel during the simulation. This method works well for large currents (high conductance values and/or applied voltages). If the number of crossing events is small, reliable estimates of current are difficult to achieve. Alternatively, conductance can be estimated assuming that ion transport can be well approximated as diffusion in the external potential given by the free energy profile. Then, the current can be calculated by solving the one-dimensional diffusion equation in this external potential and applied voltage (the generalized Nernst-Planck equation). To do so three ingredients are needed: the free energy profile, the position-dependent diffusion coefficient and the diffusive flux of ions into the channel. All these quantities can be obtained from molecular dynamics simulations. An important advantage of this method is that it can be used equally well to estimating large and small currents

  10. Modeling ion channel dynamics through reflected stochastic differential equations.

    Science.gov (United States)

    Dangerfield, Ciara E; Kay, David; Burrage, Kevin

    2012-05-01

    Ion channels are membrane proteins that open and close at random and play a vital role in the electrical dynamics of excitable cells. The stochastic nature of the conformational changes these proteins undergo can be significant, however current stochastic modeling methodologies limit the ability to study such systems. Discrete-state Markov chain models are seen as the "gold standard," but are computationally intensive, restricting investigation of stochastic effects to the single-cell level. Continuous stochastic methods that use stochastic differential equations (SDEs) to model the system are more efficient but can lead to simulations that have no biological meaning. In this paper we show that modeling the behavior of ion channel dynamics by a reflected SDE ensures biologically realistic simulations, and we argue that this model follows from the continuous approximation of the discrete-state Markov chain model. Open channel and action potential statistics from simulations of ion channel dynamics using the reflected SDE are compared with those of a discrete-state Markov chain method. Results show that the reflected SDE simulations are in good agreement with the discrete-state approach. The reflected SDE model therefore provides a computationally efficient method to simulate ion channel dynamics while preserving the distributional properties of the discrete-state Markov chain model and also ensuring biologically realistic solutions. This framework could easily be extended to other biochemical reaction networks.

  11. Modification of single Na+ channels by batrachotoxin.

    Science.gov (United States)

    Quandt, F N; Narahashi, T

    1982-11-01

    The modifications in the properties of voltage-gated Na+ channels caused by batrachotoxin were studied by using the patch clamp method for measuring single channel currents from excised membranes of N1E-115 neuroblastoma cells. The toxin-modified open state of the Na+ channel has a decreased conductance in comparison to that of normal Na+ channels. The lifetime of the modified open state is drastically prolonged, and channels now continue to open during a maintained depolarization so that the probability of a channel being open becomes constant. Modified and normal open states of Na+ channels coexist in batrachotoxin-exposed membrane patches. Unlike the normal condition, Na+ channels exposed to batrachotoxin open spontaneously at large negative potentials. These spontaneous openings apparently cause the toxin-induced increase in Na+ permeability which, in turn, causes membrane depolarization.

  12. Monitoring single-channel water permeability in polarized cells.

    Science.gov (United States)

    Erokhova, Liudmila; Horner, Andreas; Kügler, Philipp; Pohl, Peter

    2011-11-18

    So far the determination of unitary permeability (p(f)) of water channels that are expressed in polarized cells is subject to large errors because the opening of a single water channel does not noticeably increase the water permeability of a membrane patch above the background. That is, in contrast to the patch clamp technique, where the single ion channel conductance may be derived from a single experiment, two experiments separated in time and/or space are required to obtain the single-channel water permeability p(f) as a function of the incremental water permeability (P(f,c)) and the number (n) of water channels that contributed to P(f,c). Although the unitary conductance of ion channels is measured in the native environment of the channel, p(f) is so far derived from reconstituted channels or channels expressed in oocytes. To determine the p(f) of channels from live epithelial monolayers, we exploit the fact that osmotic volume flow alters the concentration of aqueous reporter dyes adjacent to the epithelia. We measure these changes by fluorescence correlation spectroscopy, which allows the calculation of both P(f,c) and osmolyte dilution within the unstirred layer. Shifting the focus of the laser from the aqueous solution to the apical and basolateral membranes allowed the FCS-based determination of n. Here we validate the new technique by determining the p(f) of aquaporin 5 in Madin-Darby canine kidney cell monolayers. Because inhibition and subsequent activity rescue are monitored on the same sample, drug effects on exocytosis or endocytosis can be dissected from those on p(f).

  13. Fluoride export (FEX proteins from fungi, plants and animals are 'single barreled' channels containing one functional and one vestigial ion pore.

    Directory of Open Access Journals (Sweden)

    Tetyana Berbasova

    Full Text Available The fluoride export protein (FEX in yeast and other fungi provides tolerance to fluoride (F-, an environmentally ubiquitous anion. FEX efficiently eliminates intracellular fluoride that otherwise would accumulate at toxic concentrations. The FEX homolog in bacteria, Fluc, is a 'double-barreled' channel formed by dimerization of two identical or similar subunits. FEX in yeast and other eukaryotes is a monomer resulting from covalent fusion of the two subunits. As a result, both potential fluoride pores are created from different parts of the same protein. Here we identify FEX proteins from two multicellular eukaryotes, a plant Arabidopsis thaliana and an animal Amphimedon queenslandica, by demonstrating significant fluoride tolerance when these proteins are heterologously expressed in the yeast Saccharomyces cerevisiae. Residues important for eukaryotic FEX function were determined by phylogenetic sequence alignment and functional analysis using a yeast growth assay. Key residues of the fluoride channel are conserved in only one of the two potential fluoride-transporting pores. FEX activity is abolished upon mutation of residues in this conserved pore, suggesting that only one of the pores is functional. The same topology is conserved for the newly identified FEX proteins from plant and animal. These data suggest that FEX family of fluoride channels in eukaryotes are 'single-barreled' transporters containing one functional pore and a second non-functional vestigial remnant of a homologous gene fusion event.

  14. Quantum Interference and Selectivity through Biological Ion Channels.

    Science.gov (United States)

    Salari, Vahid; Naeij, Hamidreza; Shafiee, Afshin

    2017-01-30

    The mechanism of selectivity in ion channels is still an open question in biology for more than half a century. Here, we suggest that quantum interference can be a solution to explain the selectivity mechanism in ion channels since interference happens between similar ions through the same size of ion channels. In this paper, we simulate two neighboring ion channels on a cell membrane with the famous double-slit experiment in physics to investigate whether there is any possibility of matter-wave interference of ions via movement through ion channels. Our obtained decoherence timescales indicate that the quantum states of ions can only survive for short times, i.e. ≈100 picoseconds in each channel and ≈17-53 picoseconds outside the channels, giving the result that the quantum interference of ions seems unlikely due to environmental decoherence. However, we discuss our results and raise few points, which increase the possibility of interference.

  15. Radiative electron capture by channeled ions

    International Nuclear Information System (INIS)

    Pitarke, J.M.; Ritchie, R.H.; Tennessee Univ., Knoxville, TN

    1989-01-01

    Considerable experimental data have been accumulated relative to the emission of photons accompanying electron capture by swift, highly stripped atoms penetrating crystalline matter under channeling conditions. Recent data suggest that the photon energies may be less than that expected from simple considerations of transitions from the valence band of the solid to hydrogenic states on the moving ion. We have studied theoretically the impact parameter dependence of the radiative electron capture (REC) process, the effect of the ion's wake and the effect of capture from inner shells of the solid on the photon emission probability, using a statistical approach. Numerical comparisons of our results with experiment are made. 13 refs., 6 figs

  16. Unsupervised Idealization of Ion Channel Recordings by Minimum Description Length

    DEFF Research Database (Denmark)

    Gnanasambandam, Radhakrishnan; Nielsen, Morten S; Nicolai, Christopher

    2017-01-01

    states. Since most electrophysiological recordings contain noise, the data analysis can proceed by idealizing the recordings to isolate the true currents from the noise. This de-noising can be accomplished with threshold crossing algorithms and Hidden Markov Models, but such procedures generally depend...... on inputs and supervision by the user, thus requiring some prior knowledge of underlying processes. Channels with unknown gating and/or functional sub-states and the presence in the recording of currents from uncorrelated background channels present substantial challenges to such analyses. Here we describe...... that correlation analysis of conductance steps can resolve properties of single ion channels in recordings contaminated by signals from multiple channels. We first validated our methods on simulated data defined with a range of different signal-to-noise levels, and then showed that our algorithm can recover...

  17. Radiative electron capture by fully stripped channeled light ions

    Energy Technology Data Exchange (ETDEWEB)

    Tribedi, L.C.; Nanal, V.; Press, M.R.; Kurup, M.B.; Prasad, K.G.; Tandon, P.N. (Tata Institute of Fundamental Research, Bombay 400 005 (India))

    1994-01-01

    The cross sections for radiative electron capture (REC) into the [ital K] shell of bare and H-like light ions of [sup 12]C, [sup 16]O, [sup 19]F, and [sup 32]S are measured at different energies, under channeling conditions using a Si single crystal as target. These cross section data using different projectiles are shown to fall on a universal curve when plotted against a scaled variable, the adiabaticity parameter [eta][sub [ital K

  18. Mechanisms of distribution and targeting of neuronal ion channels.

    Science.gov (United States)

    Thayer, Desiree A; Jan, Lily Y

    2010-09-01

    The discovery and development of pharmaceutical drugs targeting ion channels is important for treating a variety of medical conditions and diseases. Ion channels are expressed ubiquitously throughout the body, and are involved in many basic physiological processes. Neuronal ion channels are particularly appealing drug targets, and recent advances in screening ion channel function using optical-based and electrophysiological technologies have improved drug development in this field. Moreover, methods for the discovery of peptide-based neurotoxins and other natural products have proven useful in the pharmacological assessment of ion channel structure and function, while also contributing to the identification of lead molecules for drug development.

  19. Simultaneous optical and electrical recording of single gramicidin channels.

    Science.gov (United States)

    Borisenko, V; Lougheed, T; Hesse, J; Füreder-Kitzmüller, E; Fertig, N; Behrends, J C; Woolley, G A; Schütz, G J

    2003-01-01

    We report here an approach for simultaneous fluorescence imaging and electrical recording of single ion channels in planar bilayer membranes. As a test case, fluorescently labeled (Cy3 and Cy5) gramicidin derivatives were imaged at the single-molecule level using far-field illumination and cooled CCD camera detection. Gramicidin monomers were observed to diffuse in the plane of the membrane with a diffusion coefficient of 3.3 x 10(-8) cm(2)s(-1). Simultaneous electrical recording detected gramicidin homodimer (Cy3/Cy3, Cy5/Cy5) and heterodimer (Cy3/Cy5) channels. Heterodimer formation was observed optically by the appearance of a fluorescence resonance energy transfer (FRET) signal (irradiation of Cy3, detection of Cy5). The number of FRET signals was significantly smaller than the number of Cy3 signals (Cy3 monomers plus Cy3 homodimers) as expected. The number of FRET signals increased with increasing channel activity. In numerous cases the appearance of a FRET signal was observed to correlate with a channel opening event detected electrically. The heterodimers also diffused in the plane of the membrane with a diffusion coefficient of 3.0 x 10(-8) cm(2)s(-1). These experiments demonstrate the feasibility of simultaneous optical and electrical detection of structural changes in single ion channels as well as suggesting strategies for improving the reliability of such measurements.

  20. Acid-sensing ion channels and migraine

    Directory of Open Access Journals (Sweden)

    Yu-qi KANG

    2015-09-01

    Full Text Available Acid-sensing ion channels (ASICs are ligand-gated ion channels that are activated by extracellular protons (H+, which belong to epithelial sodium channels/degenerin (ENaC/DEG superfamily. ASICs are widely distributed in central nervous system, peripheral nervous system, digestive system and some tumor tissues. Different ASIC subunits play important roles in various pathophysiological processes such as touch, sour taste, learning and memory, including inflammation, ischemic stroke, pain, learning and memory decline, epilepsy, multiple sclerosis (MS, migraine, irritable bowel syndrome and tumor. Research over the last 2 decades has achieved substantial advances in migraine pathophysiology. It is now largely accepted that inflammatory pathways play a key role and three main events seem to take place: cortical spreading depression (CSD, activation of the trigeminovascular system (i.e. dural nociceptors, peripheral and central sensitization of this pain pathway. However, the exact mechanisms that link these three events to each other and to inflammation have so far remained to be studied. This article takes an overview of newly research advances in structure, distribution and the relationship with migraine of ASICs.  DOI: 10.3969/j.issn.1672-6731.2015.09.013

  1. Divalent Metal Ion Transport across Large Biological Ion Channels and Their Effect on Conductance and Selectivity

    Directory of Open Access Journals (Sweden)

    Elena García-Giménez

    2012-01-01

    Full Text Available Electrophysiological characterization of large protein channels, usually displaying multi-ionic transport and weak ion selectivity, is commonly performed at physiological conditions (moderate gradients of KCl solutions at decimolar concentrations buffered at neutral pH. We extend here the characterization of the OmpF porin, a wide channel of the outer membrane of E. coli, by studying the effect of salts of divalent cations on the transport properties of the channel. The regulation of divalent cations concentration is essential in cell metabolism and understanding their effects is of key importance, not only in the channels specifically designed to control their passage but also in other multiionic channels. In particular, in porin channels like OmpF, divalent cations modulate the efficiency of molecules having antimicrobial activity. Taking advantage of the fact that the OmpF channel atomic structure has been resolved both in water and in MgCl2 aqueous solutions, we analyze the single channel conductance and the channel selectivity inversion aiming to separate the role of the electrolyte itself, and the counterion accumulation induced by the protein channel charges and other factors (binding, steric effects, etc. that being of minor importance in salts of monovalent cations become crucial in the case of divalent cations.

  2. [Compared Markov with fractal models by using single-channel experimental and simulation data].

    Science.gov (United States)

    Lan, Tonghan; Wu, Hongxiu; Lin, Jiarui

    2006-10-01

    The gating mechanical kinetical of ion channels has been modeled as a Markov process. In these models it is assumed that the channel protein has a small number of discrete conformational states and kinetic rate constants connecting these states are constant, the transition rate constants among the states is independent both of time and of the previous channel activity. It is assumed in Liebovitch's fractal model that the channel exists in an infinite number of energy states, consequently, transitions from one conductance state to another would be governed by a continuum of rate constants. In this paper, a statistical comparison is presented of Markov and fractal models of ion channel gating, the analysis is based on single-channel data from ion channel voltage-dependence K+ single channel of neuron cell and simulation data from three-states Markov model.

  3. Ion channels: molecular targets of neuroactive insecticides.

    Science.gov (United States)

    Raymond-Delpech, Valérie; Matsuda, Kazuhiko; Sattelle, Benedict M; Rauh, James J; Sattelle, David B

    2005-11-01

    Many of the insecticides in current use act on molecular targets in the insect nervous system. Recently, our understanding of these targets has improved as a result of the complete sequencing of an insect genome, i.e., Drosophila melanogaster. Here we examine the recent work, drawing on genetics, genomics and physiology, which has provided evidence that specific receptors and ion channels are targeted by distinct chemical classes of insect control agents. The examples discussed include, sodium channels (pyrethroids, p,p'-dichlorodiphenyl-trichloroethane (DDT), dihydropyrazoles and oxadiazines); nicotinic acetylcholine receptors (cartap, spinosad, imidacloprid and related nitromethylenes/nitroguanidines); gamma-aminobutyric acid (GABA) receptors (cyclodienes, gamma-BHC and fipronil) and L-glutamate receptors (avermectins). Finally, we have examined the molecular basis of resistance to these molecules, which in some cases involves mutations in the molecular target, and we also consider the future impact of molecular genetic technologies in our understanding of the actions of neuroactive insecticides.

  4. Ion Source Multiplexing on a Single Mass Spectrometer.

    Science.gov (United States)

    Kostyukevich, Yury; Nikolaev, Eugene

    2018-03-06

    We present the simple approach for the combination of different ion sources on a single mass spectrometer without any interference between them. Each ion source can be positioned as far as 1 m from the mass spectrometer; ions are transported by the means of flexible copper tubes, which are connected, to the separate inlet capillaries. Special valves enable switching channels on and off. Using this approach, we successfully combined native electrospray ionization (ESI), regular ESI, β-electrons ionization, and atmospheric pressure photoionization (APPI) of thermally desorbed vapors of petroleum on a single mass spectrometer. In addition, separate channels allow infusing internal calibration mixture or performing ion molecular reactions in one channel and using the other as a reference. Using this idea, we have developed an original sequential window acquisition of all theoretical mass spectra (SWATH MS) approach in which peptide ions are transported in different channels, one of which is heated to high temperature so that ions are thermally fragmented, and the other channel ensures the presence of nonfragmented ions in the spectrum. Also, we demonstrated the possibility to perform gas phase H/D exchange reaction in one channel and using another as reference. Use of valves makes it possible to exclude any interference between them. Thus, we have demonstrated the possibility to create a multichannel system in which ions would be transported through several inlet tubes in which different ion molecular reactions such as Paternò-Büchi, ozonation, or H/D exchange will occur. Comparison of mass spectra recorded when different channels are open will provide structural and chemical information about unknown species.

  5. Theory of the ion-channel laser

    Energy Technology Data Exchange (ETDEWEB)

    Whittum, D.H.

    1990-09-01

    A relativistic electron beam propagating through a plasma in the ion-focussed regime exhibits an electromagnetic instability with peak growth rate near a resonant frequency {omega}{approximately}2 {gamma}{sup 2} {omega}{beta}, where {gamma} is the Lorentz factor and {omega}{beta} is the betatron frequency. The physical basis for this instability is that an ensemble of relativistic simple harmonic oscillators, weakly driven by an electromagnetic wave, will lose energy to the wave through axial bunching. This bunching'' corresponds to the development of an rf component in the beam current, and a coherent centroid oscillation. The subject of this thesis is the theory of a laser capitalizing on this electromagnetic instability. A historical perspective is offered. The basic features of relativistic electron beam propagation in the ion-focussed regime are reviewed. The ion-channel laser (ICL) instability is explored theoretically through an eikonal formalism, analgous to the KMR'' formalism for the free-electron laser (FEL). The dispersion relation is derived, and the dependence of growth rate on three key parameters is explored. Finite temperature effects are assessed. From this work it is found that the typical gain length for amplification is longer than the Rayleigh length and we go on to consider three mechanisms which will tend to guide waveguide. First, we consider the effect of the ion channel as a dielectric waveguide. We consider next the use of a conducting waveguide, appropriate for a microwave amplifier. Finally, we examine a form of optical guiding'' analgous to that found in the FEL. The eikonal formalism is used to model numerically the instability through and beyond saturation. Results are compared with the numerical simulation of the full equations of motion, and with the analytic scalings. The analytical requirement on detuning spread is confirmed.

  6. Theory of the ion-channel laser

    International Nuclear Information System (INIS)

    Whittum, D.H.

    1990-09-01

    A relativistic electron beam propagating through a plasma in the ion-focussed regime exhibits an electromagnetic instability with peak growth rate near a resonant frequency ω∼2 γ 2 ωβ, where γ is the Lorentz factor and ωβ is the betatron frequency. The physical basis for this instability is that an ensemble of relativistic simple harmonic oscillators, weakly driven by an electromagnetic wave, will lose energy to the wave through axial bunching. This ''bunching'' corresponds to the development of an rf component in the beam current, and a coherent centroid oscillation. The subject of this thesis is the theory of a laser capitalizing on this electromagnetic instability. A historical perspective is offered. The basic features of relativistic electron beam propagation in the ion-focussed regime are reviewed. The ion-channel laser (ICL) instability is explored theoretically through an eikonal formalism, analgous to the ''KMR'' formalism for the free-electron laser (FEL). The dispersion relation is derived, and the dependence of growth rate on three key parameters is explored. Finite temperature effects are assessed. From this work it is found that the typical gain length for amplification is longer than the Rayleigh length and we go on to consider three mechanisms which will tend to guide waveguide. First, we consider the effect of the ion channel as a dielectric waveguide. We consider next the use of a conducting waveguide, appropriate for a microwave amplifier. Finally, we examine a form of ''optical guiding'' analgous to that found in the FEL. The eikonal formalism is used to model numerically the instability through and beyond saturation. Results are compared with the numerical simulation of the full equations of motion, and with the analytic scalings. The analytical requirement on detuning spread is confirmed

  7. Ion channel regulation by protein S-acylation

    Science.gov (United States)

    2014-01-01

    Protein S-acylation, the reversible covalent fatty-acid modification of cysteine residues, has emerged as a dynamic posttranslational modification (PTM) that controls the diversity, life cycle, and physiological function of numerous ligand- and voltage-gated ion channels. S-acylation is enzymatically mediated by a diverse family of acyltransferases (zDHHCs) and is reversed by acylthioesterases. However, for most ion channels, the dynamics and subcellular localization at which S-acylation and deacylation cycles occur are not known. S-acylation can control the two fundamental determinants of ion channel function: (1) the number of channels resident in a membrane and (2) the activity of the channel at the membrane. It controls the former by regulating channel trafficking and the latter by controlling channel kinetics and modulation by other PTMs. Ion channel function may be modulated by S-acylation of both pore-forming and regulatory subunits as well as through control of adapter, signaling, and scaffolding proteins in ion channel complexes. Importantly, cross-talk of S-acylation with other PTMs of both cysteine residues by themselves and neighboring sites of phosphorylation is an emerging concept in the control of ion channel physiology. In this review, I discuss the fundamentals of protein S-acylation and the tools available to investigate ion channel S-acylation. The mechanisms and role of S-acylation in controlling diverse stages of the ion channel life cycle and its effect on ion channel function are highlighted. Finally, I discuss future goals and challenges for the field to understand both the mechanistic basis for S-acylation control of ion channels and the functional consequence and implications for understanding the physiological function of ion channel S-acylation in health and disease. PMID:24821965

  8. Low Complexity Bayesian Single Channel Source Separation

    DEFF Research Database (Denmark)

    Beierholm, Thomas; Pedersen, Brian Dam; Winther, Ole

    2004-01-01

    We propose a simple Bayesian model for performing single channel speech separation using factorized source priors in a sliding window linearly transformed domain. Using a one dimensional mixture of Gaussians to model each band source leads to fast tractable inference for the source signals. Simul...

  9. Simultaneous Optical and Electrical Recording of Single Gramicidin Channels

    OpenAIRE

    Borisenko, V.; Lougheed, T.; Hesse, J.; Füreder-Kitzmüller, E.; Fertig, N.; Behrends, J.C.; Woolley, G.A.; Schütz, G.J.

    2003-01-01

    We report here an approach for simultaneous fluorescence imaging and electrical recording of single ion channels in planar bilayer membranes. As a test case, fluorescently labeled (Cy3 and Cy5) gramicidin derivatives were imaged at the single-molecule level using far-field illumination and cooled CCD camera detection. Gramicidin monomers were observed to diffuse in the plane of the membrane with a diffusion coefficient of 3.3 × 10−8 cm2s−1. Simultaneous electrical recording detected gramicidi...

  10. New light on ion channel imaging by total internal reflection fluorescence (TIRF) microscopy.

    Science.gov (United States)

    Yamamura, Hisao; Suzuki, Yoshiaki; Imaizumi, Yuji

    2015-05-01

    Ion channels play pivotal roles in a wide variety of cellular functions; therefore, their physiological characteristics, pharmacological responses, and molecular structures have been extensively investigated. However, the mobility of an ion channel itself in the cell membrane has not been examined in as much detail. A total internal reflection fluorescence (TIRF) microscope allows fluorophores to be imaged in a restricted region within an evanescent field of less than 200 nm from the interface of the coverslip and plasma membrane in living cells. Thus the TIRF microscope is useful for selectively visualizing the plasmalemmal surface and subplasmalemmal zone. In this review, we focused on a single-molecule analysis of the dynamic movement of ion channels in the plasma membrane using TIRF microscopy. We also described two single-molecule imaging techniques under TIRF microscopy: fluorescence resonance energy transfer (FRET) for the identification of molecules that interact with ion channels, and subunit counting for the determination of subunit stoichiometry in a functional channel. TIRF imaging can also be used to analyze spatiotemporal Ca(2+) events in the subplasmalemma. Single-molecule analyses of ion channels and localized Ca(2+) signals based on TIRF imaging provide beneficial pharmacological and physiological information concerning the functions of ion channels. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  11. Biological Membrane Ion Channels Dynamics, Structure, and Applications

    CERN Document Server

    Chung, Shin-Ho; Krishnamurthy, Vikram

    2007-01-01

    Ion channels are biological nanotubes that are formed by membrane proteins. Because ion channels regulate all electrical activities in living cells, understanding their mechanisms at a molecular level is a fundamental problem in biology. This book deals with recent breakthroughs in ion-channel research that have been brought about by the combined effort of experimental biophysicists and computational physicists, who together are beginning to unravel the story of these exquisitely designed biomolecules. With chapters by leading experts, the book is aimed at researchers in nanodevices and biosensors, as well as advanced undergraduate and graduate students in biology and the physical sciences. Key Features Presents the latest information on the molecular mechanisms of ion permeation through membrane ion channels Uses schematic diagrams to illustrate important concepts in biophysics Written by leading researchers in the area of ion channel investigations

  12. High throughput electrophysiology: new perspectives for ion channel drug discovery

    DEFF Research Database (Denmark)

    Willumsen, Niels J; Bech, Morten; Olesen, Søren-Peter

    2003-01-01

    Proper function of ion channels is crucial for all living cells. Ion channel dysfunction may lead to a number of diseases, so-called channelopathies, and a number of common diseases, including epilepsy, arrhythmia, and type II diabetes, are primarily treated by drugs that modulate ion channels....... A cornerstone in current drug discovery is high throughput screening assays which allow examination of the activity of specific ion channels though only to a limited extent. Conventional patch clamp remains the sole technique with sufficiently high time resolution and sensitivity required for precise and direct...... characterization of ion channel properties. However, patch clamp is a slow, labor-intensive, and thus expensive, technique. New techniques combining the reliability and high information content of patch clamping with the virtues of high throughput philosophy are emerging and predicted to make a number of ion...

  13. From Brownian Dynamics to Markov Chain: An Ion Channel Example

    KAUST Repository

    Chen, Wan

    2014-02-27

    A discrete rate theory for multi-ion channels is presented, in which the continuous dynamics of ion diffusion is reduced to transitions between Markovian discrete states. In an open channel, the ion permeation process involves three types of events: an ion entering the channel, an ion escaping from the channel, or an ion hopping between different energy minima in the channel. The continuous dynamics leads to a hierarchy of Fokker-Planck equations, indexed by channel occupancy. From these the mean escape times and splitting probabilities (denoting from which side an ion has escaped) can be calculated. By equating these with the corresponding expressions from the Markov model, one can determine the Markovian transition rates. The theory is illustrated with a two-ion one-well channel. The stationary probability of states is compared with that from both Brownian dynamics simulation and the hierarchical Fokker-Planck equations. The conductivity of the channel is also studied, and the optimal geometry maximizing ion flux is computed. © 2014 Society for Industrial and Applied Mathematics.

  14. Cellular ion channel-pump system modeling using switched stochastic differential equations.

    Science.gov (United States)

    Weaver, Jeffrey

    2007-01-01

    This paper identifies a multidimensional random switched process model of a neuron with embedded Ca++ ion channel and pump molecules adiabatically interacting based on local ion concentrations near the cell membrane. The model interprets known physiology of the channels as a coupled set of switched random processes and derives mechanical equations based on concentration flow among different states of the system. Rapid changes to channel barrier energies occurring during channel opening and closing transitions are modeled as another degree of freedom commutating the state of the overall system. An ion reservoir model is used as the primary tool to incorporate stochastic effects in channel operation. The complete model is analyzed numerically and then the equations are used to motivate a stochastic model for closed state dwell times. The result is compared against expected results of a leaky-integrator and known single-channel histograms.

  15. Studying mechanosensitive ion channels with an automated patch clamp

    NARCIS (Netherlands)

    Barthmes, Maria; Jose, Mac Donald F; Birkner, Jan Peter; Brüggemann, Andrea; Wahl-Schott, Christian; Kocer, Armagan

    Patch clamp electrophysiology is the main technique to study mechanosensitive ion channels (MSCs), however, conventional patch clamping is laborious and success and output depends on the skills of the operator. Even though automated patch systems solve these problems for other ion channels, they

  16. Single-Particle Cryo-EM of the Ryanodine Receptor Channel in an Aqueous Environment.

    Science.gov (United States)

    Baker, Mariah R; Fan, Guizhen; Serysheva, Irina I

    2015-01-07

    Ryanodine receptors (RyRs) are tetrameric ligand-gated Ca(2+) release channels that are responsible for the increase of cytosolic Ca(2+) concentration leading to muscle contraction. Our current understanding of RyR channel gating and regulation is greatly limited due to the lack of a high-resolution structure of the channel protein. The enormous size and unwieldy shape of Ca(2+) release channels make X-ray or NMR methods difficult to apply for high-resolution structural analysis of the full-length functional channel. Single-particle electron cryo-microscopy (cryo-EM) is one of the only effective techniques for the study of such a large integral membrane protein and its molecular interactions. Despite recent developments in cryo-EM technologies and break-through single-particle cryo-EM studies of ion channels, cryospecimen preparation, particularly the presence of detergent in the buffer, remains the main impediment to obtaining atomic-resolution structures of ion channels and a multitude of other integral membrane protein complexes. In this review we will discuss properties of several detergents that have been successfully utilized in cryo-EM studies of ion channels and the emergence of the detergent alternative amphipol to stabilize ion channels for structure-function characterization. Future structural studies of challenging specimen like ion channels are likely to be facilitated by cryo-EM amenable detergents or alternative surfactants.

  17. Sinusoidal masks for single channel speech separation

    DEFF Research Database (Denmark)

    Mowlaee, Pejman; Christensen, Mads Græsbøll; Jensen, Søren Holdt

    2010-01-01

    In this paper we present a new approach for binary and soft masks used in single-channel speech separation. We present a novel approach called the sinusoidal mask (binary mask and Wiener filter) in a sinusoidal space. Theoretical analysis is presented for the proposed method, and we show that the......In this paper we present a new approach for binary and soft masks used in single-channel speech separation. We present a novel approach called the sinusoidal mask (binary mask and Wiener filter) in a sinusoidal space. Theoretical analysis is presented for the proposed method, and we show...... that the proposed method is able to minimize the target speech distortion while suppressing the crosstalk to a predetermined threshold. It is observed that compared to the STFTbased masks, the proposed sinusoidal masks improve the separation performance in terms of objective measures (SSNR and PESQ) and are mostly...

  18. Visualization Techniques for Single Channel DPF Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dillon, Heather E.; Maupin, Gary D.; Carlson, Shelley J.; Saenz, Natalio T.; Gallant, Thomas R.

    2007-04-01

    New techniques have been developed to visualize soot deposition in both traditional and new diesel particulate filter (DPF) substrate materials using a modified cyanoacrylate fuming technique. Loading experiments have been conducted on a variety of single channel DPF substrates to develop a deeper understanding of soot penetration, soot deposition characteristics, and to confirm modeling results. Early results indicate that stabilizing the soot layer using a vapor adhesive may allow analysis of the layer with new methods.

  19. Wavelength-selective fluorescence in ion channels formed by ...

    Indian Academy of Sciences (India)

    TECS

    Abstract. Gramicidins are linear peptides that form ion channels that are specific for monovalent cations in membranes. The tryptophan residues in the gramicidin channel play a crucial role in the orga- nization and function of the channel. The natural mixture of gramicidins, denoted as gramicidin A′, con- sists of mostly ...

  20. Wavelength-selective fluorescence in ion channels formed by ...

    Indian Academy of Sciences (India)

    Gramicidins are linear peptides that form ion channels that are specific for monovalent cations in membranes. The tryptophan residues in the gramicidin channel play a crucial role in the organization and function of the channel. The natural mixture of gramicidins, denoted as gramicidin A', consists of mostly gramicidin A, but ...

  1. Well-Defined Microapertures for Ion Channel Biosensors

    NARCIS (Netherlands)

    Halza, Erik; Bro, Tobias Hedegaard; Bilenberg, Brian; Kocer, Armagan

    2013-01-01

    Gated ion channels are excitable nanopores in biological membranes. They sense and respond to different triggers in nature. The sensory characteristics of these channels can be modified by protein engineering tools and the channels can be functionally reconstituted into synthetic lipid bilayer

  2. Non stochastic distribution of single channels in planar lipid bilayers.

    Science.gov (United States)

    Krasilnikov, O V; Merzliak, P G; Yuldasheva, L N; Nogueira, R A; Rodrigues, C G

    1995-02-15

    The selectivity of the planar lipid bilayers modified by two channel-forming proteins (alpha-toxin S. aureus and colicin Ia) was examined. It was established that in all cases the value of zero current potential depended on the amount of open ion channels and increased with the number of channels (from one to about 5-7). These facts point out both the interactions among ion channels and their non stochastic distribution on the membrane surface.

  3. Calcium signals driven by single channel noise.

    Directory of Open Access Journals (Sweden)

    Alexander Skupin

    Full Text Available Usually, the occurrence of random cell behavior is appointed to small copy numbers of molecules involved in the stochastic process. Recently, we demonstrated for a variety of cell types that intracellular Ca2+ oscillations are sequences of random spikes despite the involvement of many molecules in spike generation. This randomness arises from the stochastic state transitions of individual Ca2+ release channels and does not average out due to the existence of steep concentration gradients. The system is hierarchical due to the structural levels channel--channel cluster--cell and a corresponding strength of coupling. Concentration gradients introduce microdomains which couple channels of a cluster strongly. But they couple clusters only weakly; too weak to establish deterministic behavior on cell level. Here, we present a multi-scale modelling concept for stochastic hierarchical systems. It simulates active molecules individually as Markov chains and their coupling by deterministic diffusion. Thus, we are able to follow the consequences of random single molecule state changes up to the signal on cell level. To demonstrate the potential of the method, we simulate a variety of experiments. Comparisons of simulated and experimental data of spontaneous oscillations in astrocytes emphasize the role of spatial concentration gradients in Ca2+ signalling. Analysis of extensive simulations indicates that frequency encoding described by the relation between average and standard deviation of interspike intervals is surprisingly robust. This robustness is a property of the random spiking mechanism and not a result of control.

  4. Calcium signals driven by single channel noise.

    Science.gov (United States)

    Skupin, Alexander; Kettenmann, Helmut; Falcke, Martin

    2010-08-05

    Usually, the occurrence of random cell behavior is appointed to small copy numbers of molecules involved in the stochastic process. Recently, we demonstrated for a variety of cell types that intracellular Ca2+ oscillations are sequences of random spikes despite the involvement of many molecules in spike generation. This randomness arises from the stochastic state transitions of individual Ca2+ release channels and does not average out due to the existence of steep concentration gradients. The system is hierarchical due to the structural levels channel--channel cluster--cell and a corresponding strength of coupling. Concentration gradients introduce microdomains which couple channels of a cluster strongly. But they couple clusters only weakly; too weak to establish deterministic behavior on cell level. Here, we present a multi-scale modelling concept for stochastic hierarchical systems. It simulates active molecules individually as Markov chains and their coupling by deterministic diffusion. Thus, we are able to follow the consequences of random single molecule state changes up to the signal on cell level. To demonstrate the potential of the method, we simulate a variety of experiments. Comparisons of simulated and experimental data of spontaneous oscillations in astrocytes emphasize the role of spatial concentration gradients in Ca2+ signalling. Analysis of extensive simulations indicates that frequency encoding described by the relation between average and standard deviation of interspike intervals is surprisingly robust. This robustness is a property of the random spiking mechanism and not a result of control.

  5. Ion Channel Disorders and Sudden Cardiac Death

    Directory of Open Access Journals (Sweden)

    Anna Garcia-Elias

    2018-02-01

    Full Text Available Long QT syndrome, short QT syndrome, Brugada syndrome and catecholaminergic polymorphic ventricular tachycardia are inherited primary electrical disorders that predispose to sudden cardiac death in the absence of structural heart disease. Also known as cardiac channelopathies, primary electrical disorders respond to mutations in genes encoding cardiac ion channels and/or their regulatory proteins, which result in modifications in the cardiac action potential or in the intracellular calcium handling that lead to electrical instability and life-threatening ventricular arrhythmias. These disorders may have low penetrance and expressivity, making clinical diagnosis often challenging. However, because sudden cardiac death might be the first presenting symptom of the disease, early diagnosis becomes essential. Genetic testing might be helpful in this regard, providing a definite diagnosis in some patients. Yet important limitations still exist, with a significant proportion of patients remaining with no causative mutation identifiable after genetic testing. This review aims to provide the latest knowledge on the genetic basis of cardiac channelopathies and discuss the role of the affected proteins in the pathophysiology of each one of these diseases.

  6. Electrical Heart Defibrillation with Ion Channel Blockers

    Science.gov (United States)

    Feeney, Erin; Clark, Courtney; Puwal, Steffan

    Heart disease is the leading cause of mortality in the United States. Rotary electrical waves within heart muscle underlie electrical disorders of the heart termed fibrillation; their propagation and breakup leads to a complex distribution of electrical activation of the tissue (and of the ensuing mechanical contraction that comes from electrical activation). Successful heart defibrillation has, thus far, been limited to delivering large electrical shocks to activate the entire heart and reset its electrical activity. In theory, defibrillation of a system this nonlinear should be possible with small electrical perturbations (stimulations). A successful algorithm for such a low-energy defibrillator continues to elude researchers. We propose to examine in silica whether low-energy electrical stimulations can be combined with antiarrhythmic, ion channel-blocking drugs to achieve a higher rate of defibrillation and whether the antiarrhythmic drugs should be delivered before or after electrical stimulation has commenced. Progress toward a more successful, low-energy defibrillator will greatly minimize the adverse effects noted in defibrillation and will assist in the development of pediatric defibrillators.

  7. Channeling effect studies in V3Si single crystals

    International Nuclear Information System (INIS)

    Meyer, O.

    1978-01-01

    Angular scans through the [100] and [110] channeling directions in V 3 Si have been performed using elastically scattered He ions for the V-rows and the 28 Si(d,p 8 ) 29 Si reaction for the Si-rows. The amplitude of thermal vibration perpendicular to the V-chains was found to be larger than that at 45 0 to them. The Si atoms however vibrate isotropically. The use of multi-row potentials instead of single-row potentials leads to better overall agreement between measured and calculated critical angles. (Auth.)

  8. The molecular mechanism of multi-ion conduction in K{sup +} channels

    Energy Technology Data Exchange (ETDEWEB)

    Gwan, J.F.

    2007-01-19

    Steered molecular dynamics (SMD) simulation method is applied to a fully solvated membrane-channel model for studying the ion permeation process in potassium channels. The channel model is based on the crystallographic structure of a prokaryotic K{sup +} channel- the KcsA channel, which is a representative of most known eukaryotic K{sup +} channels. It has long been proposed that the ion transportation in a conventional K{sup +}-channel follows a multi-ion fashion: permeating ions line in a queue in the channel pore and move in a single file through the channel. The conventional view of multi-ion transportation is that the electrostatic repulsion between ions helps to overcome the attraction between ions and the channel pore. In this study, we proposed two SMD simulation schemes, referred to 'the single-ion SMD' simulations and 'the multi-ion SMD' simulations. Concerted movements of a K-W-K sequence in the selectivity filter were observed in the single-ion SMD simulations. The analysis of the concerted movement reveals the molecular mechanism of the multi-ion transportation. It shows that, rather than the long range electrostatic interaction, the short range polar interaction is a more dominant factor in the multi-ion transportation. The polar groups which play a role in the concerted transportation are the water molecules and the backbone carbonyl groups of the selectivity filter. The polar interaction is sensitive to the relative orientation of the polar groups. By changing the orientation of a polar group, the interaction may switch from attractive to repulsive or vice versa. By this means, the energy barrier between binding sites in the selectivity filter can be switched on and off, and therefore the K{sup +} may be able to move to the neighboring binding site without an external driving force. The concerted transportation in the selectivity filter requires a delicate cooperation between K{sup +}, waters, and the backbone carbonyl groups. To

  9. Molecular Dynamics Simulation of the Antiamoebin Ion Channel: Linking Structure and Conductance

    Science.gov (United States)

    Wilson, Michael A.; Wei, Chenyu; Bjelkmar, Paer; Wallace, B. A.; Pohorille, Andrew

    2011-01-01

    Molecular dynamics simulations were carried out in order to ascertain which of the potential multimeric forms of the transmembrane peptaibol channel, antiamoebin, is consistant with its measured conductance. Estimates of the conductance obtained through counting ions that cross the channel and by solving the Nernst-Planck equation yield consistent results, indicating that the motion of ions inside the channel can be satisfactorily described as diffusive.The calculated conductance of octameric channels is markedly higher than the conductance measured in single channel recordings, whereas the tetramer appears to be non-conducting. The conductance of the hexamer was estimated to be 115+/-34 pS and 74+/-20 pS, at 150 mV and 75 mV, respectively, in satisfactory agreement with the value of 90 pS measured at 75 mV. On this basis we propose that the antiamoebin channel consists of six monomers. Its pore is large enough to accommodate K(+) and Cl(-) with their first solvation shells intact. The free energy barrier encountered by K(+) is only 2.2 kcal/mol whereas Cl(-) encounters a substantially higher barrier of nearly 5 kcal/mol. This difference makes the channel selective for cations. Ion crossing events are shown to be uncorrelated and follow Poisson statistics. keywords: ion channels, peptaibols, channel conductance, molecular dynamics

  10. The Seventh Annual Ion Channel Retreat Vancouver, Canada, June 29-July 1, 2009.

    Science.gov (United States)

    Brugger, Saranna; Kennedy, Susannah; King, Noel

    2010-02-01

    Seven years ago, Aurora Biomed Inc. (Vancouver, BC) recognized the need to create a forum for scientific discourse spanning the spectrum of ion channel disciplines. Since then, researchers from both academia and industry have been invited each year to share their knowledge on the advancement of ion channel research and technology, drug discovery, and safety pharmacology. Aurora Biomed's 2009 Retreat continued this tradition by covering a variety of topics including Ion Channels as Disease and Pain Targets, TRP Ion Channels, Ion Channel Screening Technologies, Ion Channels in Safety Pharmacology, Structure & Function of Ion Channels, Ion Channels in Disease Pathology, and New Horizons in Life Sciences.

  11. Ventricular beat detection in single channel electrocardiograms.

    Science.gov (United States)

    Dotsinsky, Ivan A; Stoyanov, Todor V

    2004-01-29

    Detection of QRS complexes and other types of ventricular beats is a basic component of ECG analysis. Many algorithms have been proposed and used because of the waves' shape diversity. Detection in a single channel ECG is important for several applications, such as in defibrillators and specialized monitors. The developed heuristic algorithm for ventricular beat detection includes two main criteria. The first of them is based on steep edges and sharp peaks evaluation and classifies normal QRS complexes in real time. The second criterion identifies ectopic beats by occurrence of biphasic wave. It is modified to work with a delay of one RR interval in case of long RR intervals. Other algorithm branches classify already detected QRS complexes as ectopic beats if a set of wave parameters is encountered or the ratio of latest two RR intervals RRi-1/RRi is less than 1:2.5. The algorithm was tested with the AHA and MIT-BIH databases. A sensitivity of 99.04% and a specificity of 99.62% were obtained in detection of 542014 beats. The algorithm copes successfully with different complicated cases of single channel ventricular beat detection. It is aimed to simulate to some extent the experience of the cardiologist, rather than to rely on mathematical approaches adopted from the theory of signal analysis. The algorithm is open to improvement, especially in the part concerning the discrimination between normal QRS complexes and ectopic beats.

  12. Unravelling the complexities of vascular smooth muscle ion channels

    DEFF Research Database (Denmark)

    Jepps, Thomas A

    2017-01-01

    channels have been identified in the vasculature over the years and claimed as future therapeutic targets. Unfortunately, several of these ion channels are not just found in the vasculature, with many of them also found to have prominent functional roles in different organs of the body, which then leads...

  13. Voltage-gated lipid ion channels

    DEFF Research Database (Denmark)

    Blicher, Andreas; Heimburg, Thomas Rainer

    2013-01-01

    probability as a function of voltage. The voltage-dependence of the lipid pores is found comparable to that of protein channels. Lifetime distributions of open and closed events indicate that the channel open distribution does not follow exponential statistics but rather power law behavior for long open times...

  14. Achieving single channel, full duplex wireless communication

    KAUST Repository

    Choi, Jung Il

    2010-01-01

    This paper discusses the design of a single channel full-duplex wireless transceiver. The design uses a combination of RF and baseband techniques to achieve full-duplexing with minimal effect on link reliability. Experiments on real nodes show the full-duplex prototype achieves median performance that is within 8% of an ideal full-duplexing system. This paper presents Antenna Cancellation, a novel technique for self-interference cancellation. In conjunction with existing RF interference cancellation and digital baseband interference cancellation, antenna cancellation achieves the amount of self-interference cancellation required for full-duplex operation. The paper also discusses potential MAC and network gains with full-duplexing. It suggests ways in which a full-duplex system can solve some important problems with existing wireless systems including hidden terminals, loss of throughput due to congestion, and large end-to-end delays. Copyright 2010 ACM.

  15. Dependency plots suggest the kinetic structure of ion channels.

    Science.gov (United States)

    Magleby, K L; Song, L

    1992-08-22

    Ion channels are integral membrane proteins that regulate ionic flux through cell membranes by opening and closing (gating) their pores. The gating can be monitored by observing step changes in the current flowing through single channels, and analysis of the observed open and closed interval durations has provided a window to develop kinetic models for the gating process. One difficulty in developing such models has been to determine the connections (transition pathways) among the various kinetic states involved in the gating. To help overcome this difficulty we present a transform (dependency plot) of the single-channel data that can give immediate insight into the connections. A dependency plot is derived by calculating a contingency table from a two-dimensional (joint density) dwell-time distribution of adjacent open and closed intervals by assuming that the two classified criteria are the open and closed durations of each pair of adjacent intervals. A three-dimensional surface plot of the fractional difference between the numbers of observed interval pairs and the numbers expected if the durations of adjacent intervals are independent then gives the dependency plot. An excess of interval pairs in the dependency plot suggests that the open and closed states (or compound states) that give rise to the interval pairs in excess are directly connected. A deficit of interval pairs suggests that the open and closed states (or compound states) that give rise to the interval pairs in deficit are either not directly connected or that there are additional open-closed transition pathways arising from the directly connected states.

  16. Alternative paradigms for ion channelopathies: disorders of ion channel membrane trafficking and posttranslational modification.

    Science.gov (United States)

    Curran, Jerry; Mohler, Peter J

    2015-01-01

    Channelopathies are a diverse set of disorders associated with defects in ion channel (and transporter) function. Although the vast majority of channelopathies are linked with inherited mutations that alter ion channel biophysical properties, another group of similar disorders has emerged that alter ion channel synthesis, membrane trafficking, and/or posttranslational modifications. In fact, some electrical and episodic disorders have now been identified that are not defects in the ion channel but instead reflect dysfunction in an ion channel (or transporter) regulatory protein. This review focuses on alternative paradigms for physiological disorders associated with protein biosynthesis, folding, trafficking, and membrane retention. Furthermore, the review highlights the role of aberrant posttranslational modifications in acquired channelopathies.

  17. Cardiac ion channels and mechanisms for protection against atrial fibrillation

    DEFF Research Database (Denmark)

    Grunnet, Morten; Bentzen, Bo Hjorth; Sørensen, Ulrik S

    2011-01-01

    Atrial fibrillation (AF) is recognised as the most common sustained cardiac arrhythmia in clinical practice. Ongoing drug development is aiming at obtaining atrial specific effects in order to prevent pro-arrhythmic, devastating ventricular effects. In principle, this is possible due to a different...... ion channel composition in the atria and ventricles. The present text will review the aetiology of arrhythmias with focus on AF and include a description of cardiac ion channels. Channels that constitute potentially atria-selective targets will be described in details. Specific focus is addressed...

  18. New Trends in Cancer Therapy: Targeting Ion Channels and Transporters

    Directory of Open Access Journals (Sweden)

    Annarosa Arcangeli

    2010-04-01

    Full Text Available The expression and activity of different channel types mark and regulate specific stages of cancer establishment and progression. Blocking channel activity impairs the growth of some tumors, both in vitro and in vivo, which opens a new field for pharmaceutical research. However, ion channel blockers may produce serious side effects, such as cardiac arrhythmias. For instance, Kv11.1 (hERG1 channels are aberrantly expressed in several human cancers, in which they control different aspects of the neoplastic cell behaviour. hERG1 blockers tend to inhibit cancer growth. However they also retard the cardiac repolarization, thus lengthening the electrocardiographic QT interval, which can lead to life-threatening ventricular arrhythmias. Several possibilities exist to produce less harmful compounds, such as developing specific drugs that bind hERG1 channels in the open state or disassemble the ion channel/integrin complex which appears to be crucial in certain stages of neoplastic progression. The potential approaches to improve the efficacy and safety of ion channel targeting in oncology include: (1 targeting specific conformational channel states; (2 finding ever more specific inhibitors, including peptide toxins, for channel subtypes mainly expressed in well-identified tumors; (3 using specific ligands to convey traceable or cytotoxic compounds; (4 developing channel blocking antibodies; (5 designing new molecular tools to decrease channel expression in selected cancer types. Similar concepts apply to ion transporters such as the Na+/K+ pump and the Na+/H+ exchanger. Pharmacological targeting of these transporters is also currently being considered in anti-neoplastic therapy.

  19. Symposia for a Meeting on Ion Channels and Gap Junctions

    CERN Document Server

    Sáez, Juan

    1997-01-01

    Ion channels allow us to see nature in all its magnificence, to hear a Bach suite, to smell the aroma of grandmother's cooking, and, in this regard, they put us in contact with the external world. These ion channels are protein molecules located in the cell membrane. In complex organisms, cells need to communicate in order to know about their metabolic status and to act in a coordinate manner. The latter is also accomplished by a class of ion channels able to pierce the lipid bilayer membranes of two adjacent cells. These intercellular channels are the functional subunits of gap junctions. Accordingly, the book is divided in two parts: the first part is dedicated to ion channels that look to the external world, and the second part is dedicated to gap junctions found at cell interfaces. This book is based on a series of symposia for a meeting on ion channels and gap junctions held in Santiago, Chile, on November 28-30, 1995. The book should be useful to graduate students taking the first steps in this field as...

  20. X-ray generation in an ion channel

    International Nuclear Information System (INIS)

    Kostyukov, I.; Kiselev, S.; Pukhov, A.

    2003-01-01

    X-ray generation by relativistic electrons in an ion channel is studied. The emission process is analyzed in the regime of high harmonic generation when the plasma wiggler strength is large. Like for the conventional free electron laser, the synchrotron-like broadband spectrum is generated in this regime. An asymptotic expression for the radiation spectrum of the spontaneous emission is derived. The radiation spectrum emitted from an axisymmetric monoenergetic electron beam is analyzed. The stimulated emission in the ion channel is studied and the gain of the ion-channel synchrotron-radiation laser is calculated. It is shown that the use of laser-produced ion channels leads to a much higher power of x-ray radiation than the one in a self-generated channel. In addition, the mean photon energy, the number of emitted photons and the brilliance of the photon beam increase dramatically. Three-dimensional particle-in-cell simulations of a 25-GeV electron bunch propagating in a laser-produced ion channel are made. Several GeV γ-quants are produced in a good agreement with the analytical results

  1. Turning a Poor Ion Channel into a Good Pump

    Science.gov (United States)

    Astumian, Dean

    2003-05-01

    We consider a membrane protein that can exist in two configurations, either one of which acts as a poor ion channel, allowing ions to slowly leak across the membrane from high to low elctrochemical potential. We show that random external fluctuations can provide the energy to turn this poor channel into a good pump that drives ion transport from low to high electrochemical potential. We discuss this result in terms of a gambling analogy, and point to possible implications for fields as far ranging as population biology, economics, and actuarial science.

  2. Ion Concentration- and Voltage-Dependent Push and Pull Mechanisms of Potassium Channel Ion Conduction.

    Directory of Open Access Journals (Sweden)

    Kota Kasahara

    Full Text Available The mechanism of ion conduction by potassium channels is one of the central issues in physiology. In particular, it is still unclear how the ion concentration and the membrane voltage drive ion conduction. We have investigated the dynamics of the ion conduction processes in the Kv1.2 pore domain, by molecular dynamics (MD simulations with several different voltages and ion concentrations. By focusing on the detailed ion movements through the pore including selectivity filter (SF and cavity, we found two major conduction mechanisms, called the III-IV-III and III-II-III mechanisms, and the balance between the ion concentration and the voltage determines the mechanism preference. In the III-IV-III mechanism, the outermost ion in the pore is pushed out by a new ion coming from the intracellular fluid, and four-ion states were transiently observed. In the III-II-III mechanism, the outermost ion is pulled out first, without pushing by incoming ions. Increases in the ion concentration and voltage accelerated ion conductions, but their mechanisms were different. The increase in the ion concentrations facilitated the III-IV-III conductions, while the higher voltages increased the III-II-III conductions, indicating that the pore domain of potassium channels permeates ions by using two different driving forces: a push by intracellular ions and a pull by voltage.

  3. Fragile X mental retardation protein controls ion channel expression and activity.

    Science.gov (United States)

    Ferron, Laurent

    2016-10-15

    Fragile X-associated disorders are a family of genetic conditions resulting from the partial or complete loss of fragile X mental retardation protein (FMRP). Among these disorders is fragile X syndrome, the most common cause of inherited intellectual disability and autism. FMRP is an RNA-binding protein involved in the control of local translation, which has pleiotropic effects, in particular on synaptic function. Analysis of the brain FMRP transcriptome has revealed hundreds of potential mRNA targets encoding postsynaptic and presynaptic proteins, including a number of ion channels. FMRP has been confirmed to bind voltage-gated potassium channels (K v 3.1 and K v 4.2) mRNAs and regulates their expression in somatodendritic compartments of neurons. Recent studies have uncovered a number of additional roles for FMRP besides RNA regulation. FMRP was shown to directly interact with, and modulate, a number of ion channel complexes. The sodium-activated potassium (Slack) channel was the first ion channel shown to directly interact with FMRP; this interaction alters the single-channel properties of the Slack channel. FMRP was also shown to interact with the auxiliary β4 subunit of the calcium-activated potassium (BK) channel; this interaction increases calcium-dependent activation of the BK channel. More recently, FMRP was shown to directly interact with the voltage-gated calcium channel, Ca v 2.2, and reduce its trafficking to the plasma membrane. Studies performed on animal models of fragile X syndrome have revealed links between modifications of ion channel activity and changes in neuronal excitability, suggesting that these modifications could contribute to the phenotypes observed in patients with fragile X-associated disorders. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  4. Increased Numbers of Ion Channels Promoted by an Intracellular Second Messenger

    Science.gov (United States)

    Gunning, Richard

    1987-01-01

    The anomalous rectifier potassium current in Aplysia neurons was examined to determine the immediate cause of an increase in conductance induced by serotonin and mediated by adenosine 3' ,5' -monophosphate. Voltage-dependent cesium ion block and steady-state current power spectral density were measured under voltage clamp before and after application of serotonin. The amplitude of the anomalous rectifier conductance was increased by adding serotonin, but the shapes of the conductance-voltage curve and the power spectrum were not altered. Calculation of the number of functional channels and of the single-channel conductance from the power spectra indicates that the serotonin-induced increase in conductance resulted from an increase in the number of functional channels, while the single-channel conductance and the open-channel probability were unchanged.

  5. Proteoglycans, ion channels and cell-matrix adhesion

    DEFF Research Database (Denmark)

    Mitsou, Ioli; Multhaupt, Hinke A.B.; Couchman, John R.

    2017-01-01

    , growth factors and morphogens to enzymes and extracellular matrix (ECM) glycoproteins and collagens.Extracellular interactions with other receptors, such as some integrins, are mediated by the core protein.This places syndecans at the nexus of many cellular responses to extracellular cues in development......, maintenance, repair and disease.The cytoplasmic domains of syndecans, while having no intrinsic kinase activity, can nevertheless signal through binding proteins.All syndecans appear to be connected to the actin cytoskeleton and can therefore contribute to cell adhesion, notably to the ECM and migration.......Recent data now suggest that syndecans can regulate stretchactivated ion channels.The structure and function of the syndecans and the ion channels are reviewed here, along with an analysis of ion channel functions in cell-matrix adhesion.This area sheds new light on the syndecans, not least since evidence...

  6. Voltage-Sensitive Ion Channels Biophysics of Molecular Excitability

    CERN Document Server

    Leuchtag, H. Richard

    2008-01-01

    Voltage-sensitive ion channels are macromolecules embedded in the membranes of nerve and muscle fibers of animals. Because of their physiological functions, biochemical structures and electrical switching properties, they are at an intersection of biology, chemistry and physics. Despite decades of intensive research under the traditional approach of gated structural pores, the relation between the structure of these molecules and their function remains enigmatic. This book critically examines physically oriented approaches not covered in other ion-channel books. It looks at optical and thermal as well as electrical data, and at studies in the frequency domain as well as in the time domain. Rather than presenting the reader with only an option of mechanistic models at an inappropriate pseudo-macroscopic scale, it emphasizes concepts established in organic chemistry and condensed state physics. The book’s approach to the understanding of these unique structures breaks with the unproven view of ion channels as...

  7. Ion Channels in Hematopoietic and Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Serena Pillozzi

    2012-01-01

    Full Text Available Hematopoietic stem cells (HSCs reside in bone marrow niches and give rise to hematopoietic precursor cells (HPCs. These have more restricted lineage potential and eventually differentiate into specific blood cell types. Bone marrow also contains mesenchymal stromal cells (MSCs, which present multilineage differentiation potential toward mesodermal cell types. In bone marrow niches, stem cell interaction with the extracellular matrix is mediated by integrin receptors. Ion channels regulate cell proliferation and differentiation by controlling intracellular Ca2+, cell volume, release of growth factors, and so forth. Although little evidence is available about the ion channel roles in true HSCs, increasing information is available about HPCs and MSCs, which present a complex pattern of K+ channel expression. K+ channels cooperate with Ca2+ and Cl− channels in regulating calcium entry and cell volume during mitosis. Other K+ channels modulate the integrin-dependent interaction between leukemic progenitor cells and the niche stroma. These channels can also regulate leukemia cell interaction with MSCs, which also involves integrin receptors and affects the MSC-mediated protection from chemotherapy. Ligand-gated channels are also implicated in these processes. Nicotinic acetylcholine receptors regulate cell proliferation and migration in HSCs and MSCs and may be implicated in the harmful effects of smoking.

  8. Identification and characterization of a bacterial hydrosulphide ion channel

    Energy Technology Data Exchange (ETDEWEB)

    Czyzewski, Bryan K.; Wang, Da-Neng (NYUSM)

    2012-10-26

    The hydrosulphide ion (HS{sup -}) and its undissociated form, hydrogen sulphide (H{sub 2}S), which are believed to have been critical to the origin of life on Earth, remain important in physiology and cellular signalling. As a major metabolite in anaerobic bacterial growth, hydrogen sulphide is a product of both assimilatory and dissimilatory sulphate reduction. These pathways can reduce various oxidized sulphur compounds including sulphate, sulphite and thiosulphate. The dissimilatory sulphate reduction pathway uses this molecule as the terminal electron acceptor for anaerobic respiration, in which process it produces excess amounts of H{sub 2}S. The reduction of sulphite is a key intermediate step in all sulphate reduction pathways. In Clostridium and Salmonella, an inducible sulphite reductase is directly linked to the regeneration of NAD{sup +}, which has been suggested to have a role in energy production and growth, as well as in the detoxification of sulphite. Above a certain concentration threshold, both H{sub 2}S and HS{sup -} inhibit cell growth by binding the metal centres of enzymes and cytochrome oxidase, necessitating a release mechanism for the export of this toxic metabolite from the cell. Here we report the identification of a hydrosulphide ion channel in the pathogen Clostridium difficile through a combination of genetic, biochemical and functional approaches. The HS{sup -} channel is a member of the formate/nitrite transport family, in which about 50 hydrosulphide ion channels form a third subfamily alongside those for formate (FocA) and for nitrite (NirC). The hydrosulphide ion channel is permeable to formate and nitrite as well as to HS{sup -} ions. Such polyspecificity can be explained by the conserved ion selectivity filter observed in the channel's crystal structure. The channel has a low open probability and is tightly regulated, to avoid decoupling of the membrane proton gradient.

  9. The construction and operation of an ion channelling apparatus

    International Nuclear Information System (INIS)

    Grimshaw, J. A.; Barrat, E.E.; Wilson, C.G.; Spooner, F.J.

    1975-12-01

    The ion channelling facility at the Royal Military College of Science Rutherford Laboratory is described. A detailed account is given of new apparatus installed on the beam line of the 2.5 MeV Van de Graaf accelerator. Emphasis is placed on the mechanical and electronic requirements of such a system for the attainment of the required experimental conditions for good channelling. (author)

  10. Charge exchange processes of high energy heavy ions channeled in crystals

    International Nuclear Information System (INIS)

    Andriamonje, S.; Dural, J.; Toulemonde, M.; Groeneveld, K.O.; Maier, R.; Quere, Y.

    1990-01-01

    The interaction of moving ions with single crystals is very sensitive to the orientation of the incident beam with respect to the crystalline directions of the target. The experiments show that high energy heavy ion channeling deeply modifies the slowing down and charge exchange processes. In this review, we describe the opportunity offered by channeling conditions to study the charge exchange processes. Some aspects of the charge exchange processes with high energy channeled heavy ions are selected from the extensive literature published over the past few years on this subject. Special attention is given to the work performed at the GANIL facility on the study of Radiative Electron Capture (REG), Electron Impact Ionisation (EII), and convoy electron emission. Finally we emphasize the interest of studying resonant charge exchange processes such as Resonant Coherent Excitation (RCE), Resonant Transfer and Excitation (RTE) or Dielectronic Recombination (DR) and the recently proposed Nuclear Excitation by Electron Capture (NEEC)

  11. Supramolecular ion channels from a transmembrane bischolic acid derivative showing two discrete conductances.

    Science.gov (United States)

    Yoshii, Mami; Yamamura, Mika; Satake, Akiharu; Kobuke, Yoshiaki

    2004-09-21

    Bischolic acid derivative 1 linked by m-xylylene dicarbamate at the 3,3'-position was synthesized and the single ion channel properties were examined. Compound 1 showed two clearly distinct conductances, 9.5 (type A) and 25.3 pS (type B), under 500 mM KCl symmetric salt conditions, whereas various conductances, ranging from 5-20 pS, were observed in the tetramethylether analogue reported previously. Results indicate that the replacement of four methylether groups with hydroxyls at the 7, 7', 12, and 12' positions in the bischolic acid framework influences the stability of aggregated (supramolecular) ion channel structures. Ion permeability ratios (potassium/chloride and potassium/sodium) for each type of channel were also determined.

  12. Briefing in Application of Machine Learning Methods in Ion Channel Prediction

    Directory of Open Access Journals (Sweden)

    Hao Lin

    2015-01-01

    Full Text Available In cells, ion channels are one of the most important classes of membrane proteins which allow inorganic ions to move across the membrane. A wide range of biological processes are involved and regulated by the opening and closing of ion channels. Ion channels can be classified into numerous classes and different types of ion channels exhibit different functions. Thus, the correct identification of ion channels and their types using computational methods will provide in-depth insights into their function in various biological processes. In this review, we will briefly introduce and discuss the recent progress in ion channel prediction using machine learning methods.

  13. Calcium-permeable ion channels in the kidney

    Science.gov (United States)

    Zhou, Yiming

    2016-01-01

    Calcium ions (Ca2+) are crucial for a variety of cellular functions. The extracellular and intracellular Ca2+ concentrations are thus tightly regulated to maintain Ca2+ homeostasis. The kidney, one of the major organs of the excretory system, regulates Ca2+ homeostasis by filtration and reabsorption. Approximately 60% of the Ca2+ in plasma is filtered, and 99% of that is reabsorbed by the kidney tubules. Ca2+ is also a critical signaling molecule in kidney development, in all kidney cellular functions, and in the emergence of kidney diseases. Recently, studies using genetic and molecular biological approaches have identified several Ca2+-permeable ion channel families as important regulators of Ca2+ homeostasis in kidney. These ion channel families include transient receptor potential channels (TRP), voltage-gated calcium channels, and others. In this review, we provide a brief and systematic summary of the expression, function, and pathological contribution for each of these Ca2+-permeable ion channels. Moreover, we discuss their potential as future therapeutic targets. PMID:27029425

  14. Ion channels and osteoarthritic pain: potential for novel analgesics.

    Science.gov (United States)

    Staunton, C A; Lewis, R; Barrett-Jolley, R

    2013-12-01

    Osteoarthritis (OA) is a debilitating chronic condition widely prevalent in ageing populations. Because the pathology of the disease includes cartilage erosion and joint remodelling, OA patients experience a great deal of pain. Despite numerous studies, details of OA are frequently inseparable from other types of chronic pain, and its causes are unknown. In most circumstances in OA, the cartilage lacks afferent innervation, although other joint tissues contain nociceptive neurones. In addition to physical joint damage, there is a strong element of joint inflammation. Genetic studies have identified several associations between ion channels and OA pain, including NaV1.7, P2X7, and TRPV1, but several other channels have also been implicated. Many ion channels involved with OA pain are common to those seen in inflammatory pain. This review considers causes of OA pain and discusses three possible pain-reducing strategies involving ion channel modulation: chondroprotection, innate afferent nerve inhibition, and inhibition of inflammatory hyperalgesia. Future targets for OA pain analgesia could involve a number of ion channels.

  15. Single ion dynamics in molten sodium bromide

    Energy Technology Data Exchange (ETDEWEB)

    Alcaraz, O.; Trullas, J. [Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, 08034 Barcelona (Spain); Demmel, F. [ISIS Facility, Rutherford Appleton Laboratory, Didcot OX11 0QX (United Kingdom)

    2014-12-28

    We present a study on the single ion dynamics in the molten alkali halide NaBr. Quasielastic neutron scattering was employed to extract the self-diffusion coefficient of the sodium ions at three temperatures. Molecular dynamics simulations using rigid and polarizable ion models have been performed in parallel to extract the sodium and bromide single dynamics and ionic conductivities. Two methods have been employed to derive the ion diffusion, calculating the mean squared displacements and the velocity autocorrelation functions, as well as analysing the increase of the line widths of the self-dynamic structure factors. The sodium diffusion coefficients show a remarkable good agreement between experiment and simulation utilising the polarisable potential.

  16. Ion Channels and Zinc: Mechanisms of Neurotoxicity and Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Deborah R. Morris

    2012-01-01

    Full Text Available Ionotropic glutamate receptors, such as NMDA, AMPA and kainate receptors, are ligand-gated ion channels that mediate much of the excitatory neurotransmission in the brain. Not only do these receptors bind glutamate, but they are also regulated by and facilitate the postsynaptic uptake of the trace metal zinc. This paper discusses the role of the excitotoxic influx and accumulation of zinc, the mechanisms responsible for its cytotoxicity, and a number of disorders of the central nervous system that have been linked to these neuronal ion channels and zinc toxicity including ischemic brain injury, traumatic brain injury, and epilepsy.

  17. Ion channel recordings on an injection-molded polymer chip

    DEFF Research Database (Denmark)

    Tanzi, Simone; Matteucci, Marco; Christiansen, Thomas Lehrmann

    2013-01-01

    In this paper, we demonstrate recordings of the ion channel activity across the cell membrane in a biological cell by employing the so-called patch clamping technique on an injection-molded polymer microfluidic device. The findings will allow direct recordings of ion channel activity to be made...... using the cheapest materials and production platform to date and with the potential for very high throughput. The employment of cornered apertures for cell capture allowed the fabrication of devices without through holes and via a scheme comprising master origination by dry etching in a silicon...

  18. Flexoelectric effects in model and native membranes containing ion channels.

    Science.gov (United States)

    Petrov, A G; Miller, B A; Hristova, K; Usherwood, P N

    1993-01-01

    An experimental study of flexoelectricity in model membranes containing ion pores and native membranes containing ion channels has been undertaken with the objective of determining the relationship, if any, between flexoelectricity and ion transport. Model membrane patches containing ion pores induced by a blue-green algal toxin, microcystin-LR, and locust muscle membrane patches containing potassium channels were studied using patch-clamp techniques. A correspondence was established between the presence of open channels and pores and the amplitude of the 1st harmonic of the total membrane current when the membranes or patches were subjected to pressure oscillations. The 2nd harmonic of the membrane current provided a measure of the amplitude of a membrane curvature induced by pressure, thus making it possible to determine the membrane flexoelectric coefficient. This study shows that flexoelectricity could be an effective driving force for ion transport through membrane pores and channels, thus further highlighting the possible biological significance of this mechano-electric phenomenon.

  19. Modern analysis of ion channeling data by Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Nowicki, Lech [Andrzej SoItan Institute for Nuclear Studies, ul. Hoza 69, 00-681 Warsaw (Poland)]. E-mail: lech.nowicki@fuw.edu.pl; Turos, Andrzej [Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw (Poland); Ratajczak, Renata [Andrzej SoItan Institute for Nuclear Studies, ul. Hoza 69, 00-681 Warsaw (Poland); Stonert, Anna [Andrzej SoItan Institute for Nuclear Studies, ul. Hoza 69, 00-681 Warsaw (Poland); Garrido, Frederico [Centre de Spectrometrie Nucleaire et Spectrometrie de Masse, CNRS-IN2P3-Universite Paris-Sud, 91405 Orsay (France)

    2005-10-15

    Basic scheme of ion channeling spectra Monte Carlo simulation is reformulated in terms of statistical sampling. The McChasy simulation code is described and two examples of the code applications are presented. These are: calculation of projectile flux in uranium dioxide crystal and defect analysis for ion implanted InGaAsP/InP superlattice. Virtues and pitfalls of defect analysis using Monte Carlo simulations are discussed.

  20. Polymorphism in ion channel genes of Dirofilaria immitis: Relevant knowledge for future anthelmintic drug design

    Directory of Open Access Journals (Sweden)

    Thangadurai Mani

    2016-12-01

    Full Text Available Dirofilaria immitis, a filarial parasite, causes cardiopulmonary dirofilariasis in dogs, cats and wild canids. The macrocyclic lactone (ML class of drugs has been used to prevent heartworm infection. There is confirmed ML resistance in D. immitis and thus there is an urgent need to find new anthelmintics that could prevent and/or control the disease. Targeting ion channels of D. immitis for drug design has obvious advantages. These channels, present in the nematode nervous system, control movement, feeding, mating and respond to environmental cues which are necessary for survival of the parasite. Any new drug that targets these ion channels is likely to have a motility phenotype and should act to clear the worms from the host. Many of the successful anthelmintics in the past have targeted these ion channels and receptors. Knowledge about genetic variability of the ion channel and receptor genes should be useful information for drug design as receptor polymorphism may affect responses to a drug. Such information may also be useful for anticipation of possible resistance development. A total of 224 ion channel genes/subunits have been identified in the genome of D. immitis. Whole genome sequencing data of parasites from eight different geographical locations, four from ML-susceptible populations and the other four from ML-loss of efficacy (LOE populations, were used for polymorphism analysis. We identified 1762 single nucleotide polymorphic (SNP sites (1508 intronic and 126 exonic in these 224 ion channel genes/subunits with an overall polymorphic rate of 0.18%. Of the SNPs found in the exon regions, 129 of them caused a non-synonymous type of polymorphism. Fourteen of the exonic SNPs caused a change in predicted secondary structure. A few of the SNPs identified may have an effect on gene expression, function of the protein and resistance selection processes.

  1. Ion-Channeling Studies of Interfaces and Defect Properties in Silicon Carbide

    International Nuclear Information System (INIS)

    Jiang, Weilin; Weber, William J.; C.H. Carter, Jr., R.P. Devaty, and G.S. Rohrer

    2000-01-01

    Helium ion channeling has been used in a detailed study of 3C-SiC films on a Si/SiO2/Si (SIMOX) substrate. The strain-induced angular shift was determined to be 0.16?? 0.05?, indicating a kink between the SiC and Si layers along the axis. Single crystals of 6H-SiC have been irradiated with a variety of ions over a range of fluences. The relative disorder on Si sublattice shows a sigmoidal dependence on dose for all ions. In isochronal and isothermal annealing studies, two distinct recovery stages are identified with activation energies of 0.25? 0.1 eV and 1.5? 0.3 eV, respectively. Deuterium ion channeling is also applied to simultaneously study accumulated disorder on Si and C sublattices in 6H-SiC crystals irradiated at 100 and 300 K

  2. Block of neuronal chloride channels by tetraethylammonium ion derivatives.

    Science.gov (United States)

    Sanchez, D Y; Blatz, A L

    1995-11-01

    The block by the symmetric tetraethylammonium (TEA) ion derivatives tetrapropylammonium (TPrA), tetrabutylammonium (TBA), and tetrapentylammonium (TPeA) ions of fast chloride channels in acutely dissociated rat cortical neurons was studied with the excised inside-out configuration of the patch-clamp technique. When applied to the intracellular membrane surface, all three of the quaternary ammonium compounds (QAs) induced the appearance of short-lived closed states in a manner consistent with a blocking mechanism where the blocker preferentially binds to the open kinetic state and completely blocks ion current through the channel. The drug must leave the channel before the channel can return to a closed state. The mechanism of block was studied using one-dimensional dwell-time analysis. Kinetic models were fit to distributions of open and closed interval durations using the Q-matrix approach. The blocking rate constants for all three of the QAs were similar with values of approximately 12-20 x 10(6) M-1s-1. The unblocking rates were dependent on the size or hydrophobicity of the QA with the smallest derivative, TPrA, inducing a blocked state with a mean lifetime of approximately 90 microseconds, while the most hydrophobic derivative, TPeA, induced a blocked state with a mean lifetime of approximately 1 ms. Thus, it appears as though quaternary ammonium ion block of these chloride channels is nearly identical to the block of many potassium channels by these compounds. This suggests that there must be structural similarities in the conduction pathway between anion and cation permeable channels.

  3. Mouse middle ear ion homeostasis channels and intercellular junctions.

    Directory of Open Access Journals (Sweden)

    Lisa M Morris

    Full Text Available The middle ear contains homeostatic mechanisms that control the movement of ions and fluids similar to those present in the inner ear, and are altered during inflammation.The normal middle ear cavity is fluid-free and air-filled to allow for effective sound transmission. Within the inner ear, the regulation of fluid and ion movement is essential for normal auditory and vestibular function. The same ion and fluid channels active in the inner ear may have similar roles with fluid regulation in the middle ear.Middle and inner ears from BALB/c mice were processed for immunohistochemistry of 10 specific ion homeostasis factors to determine if similar transport and barrier mechanisms are present in the tympanic cavity. Examination also was made of BALB/c mice middle ears after transtympanic injection with heat-killed Haemophilus influenza to determine if these channels are impacted by inflammation.The most prominent ion channels in the middle ear included aquaporins 1, 4 and 5, claudin 3, ENaC and Na(+,K(+-ATPase. Moderate staining was found for GJB2, KCNJ10 and KCNQ1. The inflamed middle ear epithelium showed increased staining due to expected cellular hypertrophy. Localization of ion channels was preserved within the inflamed middle ear epithelium.The middle ear epithelium is a dynamic environment with intrinsic mechanisms for the control of ion and water transport to keep the middle ear clear of fluids. Compromise of these processes during middle ear disease may underlie the accumulation of effusions and suggests they may be a therapeutic target for effusion control.

  4. FASEB Science Research Conference on Ion Channel Regulation

    Science.gov (United States)

    2015-11-02

    Administration Ph: 301-634-7033 Email: sgscott@faseb.org ION CHANNEL REGULATION JUNE 28 – JULY 3, 2015 BIG SKY, MONTANA (USA) CO-CHAIRS: AMY...of membrane excitability Min Li (GSK) 11:30 a.m. – 12:00 p.m. Inside-out pharmacology of nicotinic acetylcholine receptors Henry Lester

  5. CONTRIBUTIONS OF INTRACELLULAR IONS TO Kv CHANNEL VOLTAGE SENSOR DYNAMICS.

    Directory of Open Access Journals (Sweden)

    Samuel eGoodchild

    2012-06-01

    Full Text Available Voltage sensing domains of Kv channels control ionic conductance through coupling of the movement of charged residues in the S4 segment to conformational changes at the cytoplasmic region of the pore domain, that allow K+ ions to flow. Conformational transitions within the voltage sensing domain caused by changes in the applied voltage across the membrane field are coupled to the conducting pore region and the gating of ionic conductance. However, several other factors not directly linked to the voltage dependent movement of charged residues within the voltage sensor impact the dynamics of the voltage sensor, such as inactivation, ionic conductance, intracellular ion identity and block of the channel by intracellular ligands. The effect of intracellular ions on voltage sensor dynamics is of importance in the interpretation of gating current measurements and the physiology of pore/voltage sensor coupling. There is a significant amount of variability in the reported kinetics of voltage sensor deactivation kinetics of Kv channels attributed to different mechanisms such as open state stabilization, immobilization and relaxation processes of the voltage sensor. Here we separate these factors and focus on the causal role that intracellular ions can play in allosterically modulating the dynamics of Kv voltage sensor deactivation kinetics. These considerations are of critical importance in understanding the molecular determinants of the complete channel gating cycle from activation to deactivation.

  6. Imaging the PCP site of the NMDA ion channel

    International Nuclear Information System (INIS)

    Waterhouse, Rikki N.

    2003-01-01

    The N-methyl-D-aspartate (NMDA) ion channel plays a role in neuroprotection, neurodegeneration, long-term potentiation, memory, and cognition. It is implicated in the pathophysiology of several neurological and neuropsychiatric disorders including Parkinson's Disease, Huntington's Chorea, schizophrenia, alcoholism and stroke. The development of effective radiotracers for the study of NMDA receptors is critical for our understanding of their function, and their modulation by endogenousr substances or therapeutic drugs. Since the NMDA/PCP receptor lies within the channel, it is a unique target and is theoretically accessible only when the channel is in the active and 'open' state, but not when it is in the inactive or 'closed' state. The physical location of the NMDA/PCP receptor not only makes it an important imaging target but also complicates the development of suitable PET and SPECT radiotracers for this site. An intimate understanding of the biochemical, pharmacological, physiological and behavioral processes associated with the NMDA ion channel is essential to develop improved imaging agents. This review outlines progress made towards the development of radiolabeled agents for PCP sites of the NMDA ion channel. In addition, the animal and pharmacological models used for in vitro and in vivo assessment of NMDA receptor targeted agents are discussed

  7. Imaging the PCP site of the NMDA ion channel

    Energy Technology Data Exchange (ETDEWEB)

    Waterhouse, Rikki N. E-mail: rnw7@columbia.edu

    2003-11-01

    The N-methyl-D-aspartate (NMDA) ion channel plays a role in neuroprotection, neurodegeneration, long-term potentiation, memory, and cognition. It is implicated in the pathophysiology of several neurological and neuropsychiatric disorders including Parkinson's Disease, Huntington's Chorea, schizophrenia, alcoholism and stroke. The development of effective radiotracers for the study of NMDA receptors is critical for our understanding of their function, and their modulation by endogenousr substances or therapeutic drugs. Since the NMDA/PCP receptor lies within the channel, it is a unique target and is theoretically accessible only when the channel is in the active and 'open' state, but not when it is in the inactive or 'closed' state. The physical location of the NMDA/PCP receptor not only makes it an important imaging target but also complicates the development of suitable PET and SPECT radiotracers for this site. An intimate understanding of the biochemical, pharmacological, physiological and behavioral processes associated with the NMDA ion channel is essential to develop improved imaging agents. This review outlines progress made towards the development of radiolabeled agents for PCP sites of the NMDA ion channel. In addition, the animal and pharmacological models used for in vitro and in vivo assessment of NMDA receptor targeted agents are discussed.

  8. Patch clamp and perfusion techniques for studying ion channels expressed in Xenopus oocytes.

    Science.gov (United States)

    Yang, Junqiu; Delaloye, Kelli; Lee, Urvi S; Cui, Jianmin

    2011-01-10

    The protocol presented here is designed to study the activation of the large conductance, voltage- and Ca(2+)-activated K(+) (BK) channels. The protocol may also be used to study the structure-function relationship for other ion channels and neurotransmitter receptors. BK channels are widely expressed in different tissues and have been implicated in many physiological functions, including regulation of smooth muscle contraction, frequency tuning of inner hair cells and regulation of neurotransmitter release. BK channels are activated by membrane depolarization and by intracellular Ca(2+) and Mg(2+). Therefore, the protocol is designed to control both the membrane voltage and the intracellular solution. In this protocol, messenger RNA of BK channels is injected into Xenopus laevis oocytes (stage V-VI) followed by 2-5 days of incubation at 18°C. Membrane patches that contain single or multiple BK channels are excised with the inside-out configuration using patch clamp techniques. The intracellular side of the patch is perfused with desired solutions during recording so that the channel activation under different conditions can be examined. To summarize, the mRNA of BK channels is injected into Xenopus laevis oocytes to express channel proteins on the oocyte membrane; patch clamp techniques are used to record currents flowing through the channels under controlled voltage and intracellular solutions.

  9. Tuning the ion selectivity of two-pore channels

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jiangtao; Zeng, Weizhong; Jiang, Youxing (UTSMC)

    2017-01-17

    Organellar two-pore channels (TPCs) contain two copies of a Shaker-like six-transmembrane (6-TM) domain in each subunit and are ubiquitously expressed in plants and animals. Interestingly, plant and animal TPCs share high sequence similarity in the filter region, yet exhibit drastically different ion selectivity. Plant TPC1 functions as a nonselective cation channel on the vacuole membrane, whereas mammalian TPC channels have been shown to be endo/lysosomal Na+-selective or Ca2+-release channels. In this study, we performed systematic characterization of the ion selectivity of TPC1 from Arabidopsis thaliana (AtTPC1) and compared its selectivity with the selectivity of human TPC2 (HsTPC2). We demonstrate that AtTPC1 is selective for Ca2+ over Na+, but nonselective among monovalent cations (Li+, Na+, and K+). Our results also confirm that HsTPC2 is a Na+-selective channel activated by phosphatidylinositol 3,5-bisphosphate. Guided by our recent structure of AtTPC1, we converted AtTPC1 to a Na+-selective channel by mimicking the selectivity filter of HsTPC2 and identified key residues in the TPC filters that differentiate the selectivity between AtTPC1 and HsTPC2. Furthermore, the structure of the Na+-selective AtTPC1 mutant elucidates the structural basis for Na+ selectivity in mammalian TPCs.

  10. Ion channeling in natural and synthetic beryl crystals

    International Nuclear Information System (INIS)

    Fritzsche, C.R.; Diehl, R.; Goetzberger, A.

    1980-01-01

    The transmission of ions by channeling through natural beryl and synthetic emerald has been studied extensively. The transmission ratios depend upon the angle of incidence with a full half width of less than 0.32 0 . While the maximum ratio obtained up to now is only 4 x 10 -4 for 350 keV protons through a crystal of 21 μm thickness, the energy of the transmitted ions is high, the loss being in the order of a few keV/μm. About 60-80% of the particles emerging from the rear surface are ionized. By varying the ion species transmission could be observed up to atomic number 9. It is assumed that the transmission is facilitated by the existence of an electron free channel core. Higher transmission ratios can be expected for sufficiently perfect crystals. (orig.) 891 CDS/orig. 892 MB

  11. Ion Selectivity Mechanism in a Bacterial Pentameric Ligand-Gated Ion Channel

    International Nuclear Information System (INIS)

    Wang, Hailong; Cheng, Xiaolin

    2011-01-01

    The proton-gated ion channel from Gloeobacter violaceus (GLIC) is a prokaryotic homolog of the eukaryotic nicotinic acetylcholine receptor (nAChR) that responds to the binding of neurotransmitter acetylcholine and mediates fast signal transmission. Recent emergence of a high resolution crystal structure of GLIC captured in a potentially open state allowed detailed, atomic-level insight into ion conduction and selectivity mechanisms in these channels. Herein, we have examined the barriers to ion conduction and origins of ion selectivity in the GLIC channel by the construction of potential of mean force (PMF) profiles for sodium and chloride ions inside the transmembrane region. Our calculations reveal that the GLIC channel is open for a sodium ion to transport, but presents a ∼10 kcal/mol free energy barrier for a chloride ion, which arises primarily from the unfavorable interactions with a ring of negatively charged glutamate residues (E-2) at the intracellular end and a ring of hydrophobic residues (I9) in the middle of the transmembrane domain. Our collective findings further suggest that the charge selection mechanism can, to a large extent, be attributed to the narrow intracellular end and a ring of glutamate residues in this position their strong negative electrostatics and ability to bind cations. By contrast, E19 at the extracellular entrance only plays a minor role in ion selectivity of GLIC. In addition to electrostatics, both ion hydration and protein dynamics are found to be crucial for ion conduction as well, which explains why a chloride ion experiences a much greater barrier than a sodium ion in the hydrophobic region of the pore.

  12. Ion Selectivity Mechanism in a Bacterial Pentameric Ligand-Gated Ion Channel

    Energy Technology Data Exchange (ETDEWEB)

    Fritsch, Sebastian M [ORNL; Ivanov, Ivaylo N [ORNL; Wang, Hailong [Mayo Clinic College of Medicine; Cheng, Xiaolin [ORNL

    2011-01-01

    The proton-gated ion channel from Gloeobacter violaceus (GLIC) is a prokaryotic homolog of the eukaryotic nicotinic acetylcholine receptor (nAChR) that responds to the binding of neurotransmitter acetylcholine and mediates fast signal transmission. Recent emergence of a high resolution crystal structure of GLIC captured in a potentially open state allowed detailed, atomic-level insight into ion conduction and selectivity mechanisms in these channels. Herein, we have examined the barriers to ion conduction and origins of ion selectivity in the GLIC channel by the construction of potential of mean force (PMF) profiles for sodium and chloride ions inside the transmembrane region. Our calculations reveal that the GLIC channel is open for a sodium ion to transport, but presents a ~10 kcal/mol free energy barrier for a chloride ion, which arises primarily from the unfavorable interactions with a ring of negatively charged glutamate residues (E-2 ) at the intracellular end and a ring of hydrophobic residues (I9 ) in the middle of the transmembrane domain. Our collective findings further suggest that the charge selection mechanism can, to a large extent, be attributed to the narrow intracellular end and a ring of glutamate residues in this position their strong negative electrostatics and ability to bind cations. By contrast, E19 at the extracellular entrance only plays a minor role in ion selectivity of GLIC. In addition to electrostatics, both ion hydration and protein dynamics are found to be crucial for ion conduction as well, which explains why a chloride ion experiences a much greater barrier than a sodium ion in the hydrophobic region of the pore.

  13. Ion channel permeable for divalent and monovalent cations in native spinach thylakoid membranes.

    Science.gov (United States)

    Pottosin, I I; Schönknecht, G

    1996-08-01

    A cation-selective channel was characterized in isolated patches from osmotically swollen thylakoids of spinach (Spinacea oleracea). This channel was permeable for K+ as well as for Mg2+ and Ca2+ but not for Cl-. When K+ was the main permeant ion (symmetrical 105 mM KCl) the conductance of the channel was about 60 pS. The single channel conductance for different cations followed a sequence K+ > Mg2+ >/= Ca2+. The permeabilities determined by reversal potential measurements were comparable for K+, Ca2+, and Mg2+. The cation channel displayed bursting behavior. The total open probability of the channel increased at more positive membrane potentials. Kinetic analysis demonstrated that voltage dependence of the total open probability was determined by the probability of bursts formation while the probability to find the channel in open state within a burst of activity was hardly voltage-dependent. The cation permeability of intact spinach thylakoids can be explained on the single channel level by the data presented here.

  14. Epithelial Sodium and Acid-Sensing Ion Channels

    Science.gov (United States)

    Kellenberger, Stephan

    The epithelial Na+ channel (ENaC) and acid-sensing ion channels (ASICs) are non-voltage-gated Na+ channels that form their own subfamilies within the ENaC/degenerin ion channel family. ASICs are sensors of extracellular pH, and ENaC, whose main function is trans-epithelial Na+ transport, can sense extra- and intra-cellular Na+. In aldosterone-responsive epithelial cells of the kidney, ENaC plays a critical role in the control of sodium balance, blood volume and blood pressure. In airway epithelia, ENaC has a distinct role in controlling fluid reabsorption at the air-liquid interface, thereby determining the rate of mucociliary transport. In taste receptor cells of the tongue, ENaC is involved in salt taste sensation. ASICs have emerged as key sensors for extracellular protons in central and peripheral neurons. Although not all of their physiological and pathological functions are firmly established yet, there is good evidence for a role of ASICs in the brain in learning, expression of fear, and in neurodegeneration after ischaemic stroke. In sensory neurons, ASICs are involved in nociception and mechanosensation. ENaC and ASIC subunits share substantial sequence homology and the conservation of several functional domains. This chapter summarises our current understanding of the physiological functions and of the mechanisms of ion permeation, gating and regulation of ENaC and ASICs.

  15. Sculpting ion channel functional expression with engineered ubiquitin ligases

    Science.gov (United States)

    Kanner, Scott A; Morgenstern, Travis

    2017-01-01

    The functional repertoire of surface ion channels is sustained by dynamic processes of trafficking, sorting, and degradation. Dysregulation of these processes underlies diverse ion channelopathies including cardiac arrhythmias and cystic fibrosis. Ubiquitination powerfully regulates multiple steps in the channel lifecycle, yet basic mechanistic understanding is confounded by promiscuity among E3 ligase/substrate interactions and ubiquitin code complexity. Here we targeted the catalytic domain of E3 ligase, CHIP, to YFP-tagged KCNQ1 ± KCNE1 subunits with a GFP-nanobody to selectively manipulate this channel complex in heterologous cells and adult rat cardiomyocytes. Engineered CHIP enhanced KCNQ1 ubiquitination, eliminated KCNQ1 surface-density, and abolished reconstituted K+ currents without affecting protein expression. A chemo-genetic variation enabling chemical control of ubiquitination revealed KCNQ1 surface-density declined with a ~ 3.5 hr t1/2 by impaired forward trafficking. The results illustrate utility of engineered E3 ligases to elucidate mechanisms underlying ubiquitin regulation of membrane proteins, and to achieve effective post-translational functional knockdown of ion channels. PMID:29256394

  16. Mechanical transduction by ion channels: A cautionary tale.

    Science.gov (United States)

    Sachs, Frederick

    2015-09-28

    Mechanical transduction by ion channels occurs in all cells. The physiological functions of these channels have just begun to be elaborated, but if we focus on the upper animal kingdom, these channels serve the common sensory services such as hearing and touch, provide the central nervous system with information on the force and position of muscles and joints, and they provide the autonomic system with information about the filling of hollow organs such as blood vessels. However, all cells of the body have mechanosensitive channels (MSCs), including red cells. Most of these channels are cation selective and are activated by bilayer tension. There are also K + selective MSCs found commonly in neurons where they may be responsible for both general anesthesia and knockout punches in the boxing ring by hyperpolarizing neurons to reduce excitability. The cationic MSCs are typically inactive under normal mechanical stress, but open under pathologic stress. The channels are normally inactive because they are shielded from stress by the cytoskeleton. The cationic MSCs are specifically blocked by the externally applied peptide GsMtx4 (aka, AT-300). This is the first drug of its class and provides a new approach to many pathologies since it is nontoxic, non-immunogenic, stable in a biological environment and has a long pharmacokinetic lifetime. Pathologies involving excessive stress are common. They produce cardiac arrhythmias, contraction in stretched dystrophic muscle, xerocytotic and sickled red cells, etc . The channels seem to function primarily as "fire alarms", providing feedback to the cytoskeleton that a region of the bilayer is under excessive tension and needs reinforcing. The eukaryotic forms of MSCs have only been cloned in recent years and few people have experience working with them. "Newbies" need to become aware of the technology, potential artifacts, and the fundamentals of mechanics. The most difficult problem in studying MSCs is that the actual stimulus

  17. Single-ion nonlinear mechanical oscillator

    International Nuclear Information System (INIS)

    Akerman, N.; Kotler, S.; Glickman, Y.; Dallal, Y.; Keselman, A.; Ozeri, R.

    2010-01-01

    We study the steady-state motion of a single trapped ion oscillator driven to the nonlinear regime. Damping is achieved via Doppler laser cooling. The ion motion is found to be well described by the Duffing oscillator model with an additional nonlinear damping term. We demonstrate here the unique ability of tuning both the linear as well as the nonlinear damping coefficients by controlling the laser-cooling parameters. Our observations pave the way for the investigation of nonlinear dynamics on the quantum-to-classical interface as well as mechanical noise squeezing in laser-cooling dynamics.

  18. Targeting ion channels in leukemias: a new challenge for treatment.

    Science.gov (United States)

    Arcangeli, A; Pillozzi, S; Becchetti, A

    2012-01-01

    Leukemias, as other cancers, bear several genetic alterations of tumor-related genes, such as point mutations, translocations, epigenetic modifications, often accompanied by gene amplification or inactivation. The identification of tumor-related genes provides considerable insight into the biology of leukemias and opens the way to more specific pharmacological treatments. These genes comprise several ion channels and pumps, as the transport mechanisms associated with volume control, proliferation and apoptosis are often altered in cancers. In leukemic cells, such changes are observed as early as the stem cell stage. Ion channels can regulate other malignant features, such as lack of differentiation, increased migratory and invasive phenotype and chemoresistance. The role of certain voltage-gated K(+) channels, such as K(v)11.1 (also known as hERG1) can be largely attributed to modulation of cell adhesion to the extracellular matrix (ECM). K(v)11.1 exerts pleiotropic regulatory effects by forming multiprotein membrane complexes with integrin receptors in both acute myeloid leukemias (AML) and acute lymphoblastic leukemias (ALL). By recruiting growth factor and chemokine receptors, these complexes form signaling hubs that control neoplastic progression. Work in mice shows that blocking K(v)11.1 has a protective effect in acute leukemias. Ion channels are most promising targets for anti-leukemic therapy, because of their accessibility from the extracellular side and the thorough understanding of their pharmacology. In ALL cells, K(v)11.1 inhibitors abrogate the protective effect of bone marrow stromal cells and enhance the cytotoxicity of some common antileukemic drugs. Hence, ion channel modulators could overcome chemoresistance in acute leukemias, a major hindrance to therapeutic success.

  19. Beyond ion-conduction: Channel-dependent and -independent roles of TRP channels during development and tissue homeostasis

    NARCIS (Netherlands)

    Vrenken, K.S.; Jalink, K.; Leeuwen, F.N. van; Middelbeek, J.A.

    2016-01-01

    Transient receptor potential (TRP) channels comprise a family of cation channels implicated in a variety of cellular processes, including proliferation, cell migration and cell survival. As a consequence, members of this ion family play prominent roles during embryonic development, tissue

  20. Ligand activation of the prokaryotic pentameric ligand-gated ion channel ELIC.

    Directory of Open Access Journals (Sweden)

    Iwan Zimmermann

    2011-06-01

    Full Text Available While the pentameric ligand-gated ion channel ELIC has recently provided first insight into the architecture of the family at high resolution, its detailed investigation was so far prevented by the fact that activating ligands were unknown. Here we describe a study on the functional characterization of ELIC by electrophysiology and X-ray crystallography. ELIC is activated by a class of primary amines that include the neurotransmitter GABA at high micro- to millimolar concentrations. The ligands bind to a conserved site and evoke currents that slowly desensitize over time. The protein forms cation selective channels with properties that resemble the nicotinic acetylcholine receptor. The high single channel conductance and the comparably simple functional behavior make ELIC an attractive model system to study general mechanisms of ion conduction and gating in this important family of neurotransmitter receptors.

  1. From Toxins Targeting Ligand Gated Ion Channels to Therapeutic Molecules

    Directory of Open Access Journals (Sweden)

    Antoine Taly

    2011-03-01

    Full Text Available Ligand-gated ion channels (LGIC play a central role in inter-cellular communication. This key function has two consequences: (i these receptor channels are major targets for drug discovery because of their potential involvement in numerous human brain diseases; (ii they are often found to be the target of plant and animal toxins. Together this makes toxin/receptor interactions important to drug discovery projects. Therefore, toxins acting on LGIC are presented and their current/potential therapeutic uses highlighted.

  2. Single-Channel Blind Estimation of Reverberation Parameters

    DEFF Research Database (Denmark)

    Doire, C.S.J.; Brookes, M. D.; Naylor, P. A.

    2015-01-01

    The reverberation of an acoustic channel can be characterised by two frequency-dependent parameters: the reverberation time and the direct-to-reverberant energy ratio. This paper presents an algorithm for blindly determining these parameters from a single-channel speech signal. The algorithm uses...

  3. Investigation of reordered (001) Au surfaces by positive ion channeling spectroscopy, LEED and AES

    International Nuclear Information System (INIS)

    Appleton, B.R.; Noggle, T.S.; Miller, J.W.; Schow, O.E. III; Zehner, D.M.; Jenkins, L.H.; Barrett, J.H.

    1974-01-01

    As a consequence of the channeling phenomenon of positive ions in single crystals, the yield of ions Rutherford scattered from an oriented single crystal surface is dependent on the density of surface atoms exposed to the incident ion beam. Thus, the positive ion channeling spectroscopy (PICS) technique should provide a useful tool for studying reordered surfaces. This possibility was explored by examining the surfaces of epitaxially grown thin Au single crystals with the combined techniques of LEED-AES and PICS. The LEED and AES investigations showed that when the (001) surface was sputter cleaned in ultra-high vacuum, the normal (1 x 1) symmetry of the (001) surfaces reordered into a structure which gave a complex (5 x 20) LEED pattern. The yield and energy distributions of 1 MeV He ions scattered from the Au surfaces were used to determine the number of effective monolayers contributing to the normal and reordered surfaces. These combined measurements were used to characterize the nature of the reordered surface. The general applicability of the PICS technique for investigations of surface and near surface regions is discussed

  4. Single channel analysis of membrane proteins in artificial bilayer membranes.

    Science.gov (United States)

    Bartsch, Philipp; Harsman, Anke; Wagner, Richard

    2013-01-01

    The planar lipid bilayer technique is a powerful experimental approach for electrical single channel recordings of pore-forming membrane proteins in a chemically well-defined and easily modifiable environment. Here we provide a general survey of the basic materials and procedures required to set up a robust bilayer system and perform electrophysiological single channel recordings of reconstituted proteins suitable for the in-depth characterization of their functional properties.

  5. Screen-based identification and validation of four novel ion channels as regulators of renal ciliogenesis

    NARCIS (Netherlands)

    Slaats, Gisela G|info:eu-repo/dai/nl/413981452; Wheway, Gabrielle; Foletto, Veronica; Szymanska, Katarzyna; van Balkom, Bas W M|info:eu-repo/dai/nl/256594783; Logister, Ive; Den Ouden, Krista; Keijzer-Veen, Mandy G|info:eu-repo/dai/nl/292371950; Lilien, Marc R|info:eu-repo/dai/nl/271538899; Knoers, Nine V|info:eu-repo/dai/nl/298974460; Johnson, Colin A; Giles, Rachel H|info:eu-repo/dai/nl/173658725

    2015-01-01

    To investigate the contribution of ion channels to ciliogenesis we carried out an siRNA-based reverse genetics screen of all ion channels in the mouse genome in murine inner medullary collecting duct kidney cells. This screen revealed four candidate ion channel genes: Kcnq1, Kcnj10, Kcnf1 and Clcn4.

  6. Nerve membrane ion channels as the target site of environmental toxicants

    Energy Technology Data Exchange (ETDEWEB)

    Narahashi, T.

    1987-04-01

    There are many environmentally important chemicals which exhibit potent effects on the nervous system. Since nerve excitation takes place in a fraction of a second, electrophysiological methods provide the authors with the most straightforward approach to the study of the mechanisms of action of environmental toxicants on the nervous system. Aquatic animals such as crayfish, lobster, squid, and marine snails represent extremely useful materials for such electrophysiological studies, because much of the authors knowledge of nerve excitation is derived from those animals. Nerve excitation takes place as a result of opening and closing of ion channels of the membrane. These functions are independent of metabolic energy, and can be measured most effectively by voltage clamp techniques as applied to the giant axons of the crayfish and the squid. Patch clamp techniques developed during the past 10 years have added a new dimension to the electrophysiological investigation. These techniques allow them to measure the activity of individual ion channels, thereby making it possible to analyze the interaction of toxic molecules directly with single ion channels. Examples are given summarizing electrophysiological studies of environmental neurotoxicants. The abdominal nerve cords and neuromuscular preparations isolated from the crayfish are convenient materials for bioassay of certain environmental toxicants such as pyrethroids, chlorinated hydrocarbons, and other insecticides. Only a small fraction of the flux through the sodium channel, less than 1%, must be modified by pyrethroids for the animal to develop symptoms of poisoning. Such a toxicological application from channel to animal is important is understanding the potent toxic effect.

  7. Mechanosensitivity of cell membranes. Ion channels, lipid matrix and cytoskeleton.

    Science.gov (United States)

    Petrov, A G; Usherwood, P N

    1994-01-01

    Physical and biophysical mechanisms of mechano-sensitivity of cell membranes are reviewed. The possible roles of the lipid matrix and of the cytoskeleton in membrane mechanoreception are discussed. Techniques for generation of static strains and dynamic curvatures of membrane patches are considered. A unified model for stress-activated and stress-inactivated ion channels under static strains is described. A review of work on stress-sensitive pores in lipid-peptide model membranes is presented. The possible role of flexoelectricity in mechano-electric transduction, e.g. in auditory receptors is discussed. Studies of flexoelectricity in model lipid membranes, lipid-peptide membranes and natural membranes containing ion channels are reviewed. Finally, possible applications in molecular electronics of mechanosensors employing some of the recognized principles of mechano-electric transduction in natural membranes are discussed.

  8. Dopamine negatively modulates the NCA ion channels in C. elegans.

    Science.gov (United States)

    Topalidou, Irini; Cooper, Kirsten; Pereira, Laura; Ailion, Michael

    2017-10-01

    The NALCN/NCA ion channel is a cation channel related to voltage-gated sodium and calcium channels. NALCN has been reported to be a sodium leak channel with a conserved role in establishing neuronal resting membrane potential, but its precise cellular role and regulation are unclear. The Caenorhabditis elegans orthologs of NALCN, NCA-1 and NCA-2, act in premotor interneurons to regulate motor circuit activity that sustains locomotion. Recently we found that NCA-1 and NCA-2 are activated by a signal transduction pathway acting downstream of the heterotrimeric G protein Gq and the small GTPase Rho. Through a forward genetic screen, here we identify the GPCR kinase GRK-2 as a new player affecting signaling through the Gq-Rho-NCA pathway. Using structure-function analysis, we find that the GPCR phosphorylation and membrane association domains of GRK-2 are required for its function. Genetic epistasis experiments suggest that GRK-2 acts on the D2-like dopamine receptor DOP-3 to inhibit Go signaling and positively modulate NCA-1 and NCA-2 activity. Through cell-specific rescuing experiments, we find that GRK-2 and DOP-3 act in premotor interneurons to modulate NCA channel function. Finally, we demonstrate that dopamine, through DOP-3, negatively regulates NCA activity. Thus, this study identifies a pathway by which dopamine modulates the activity of the NCA channels.

  9. The Flatworm Macrostomum lignano Is a Powerful Model Organism for Ion Channel and Stem Cell Research

    OpenAIRE

    Simanov, Daniil; Mellaart-Straver, Imre; Sormacheva, Irina; Berezikov, Eugene

    2012-01-01

    Bioelectrical signals generated by ion channels play crucial roles in many cellular processes in both excitable and nonexcitable cells. Some ion channels are directly implemented in chemical signaling pathways, the others are involved in regulation of cytoplasmic or vesicular ion concentrations, pH, cell volume, and membrane potentials. Together with ion transporters and gap junction complexes, ion channels form steady-state voltage gradients across the cell membranes in nonexcitable cells. T...

  10. Undercover Power of Endocannabinoids: Postsynaptic Ion-Channel Modulator.

    Science.gov (United States)

    Matsui, Aya; Alvarez, Veronica A

    2017-03-22

    In this issue of Neuron, Gantz and Bean (2017) show that the endocannabinoid 2-arachidonoyl glycerol (2-AG) can directly alter the properties of native ion-channel Kv 4.3 and accelerate the pacemaker activity of rodent dopamine neurons. These findings are one of the first demonstrations of postsynaptic, cell-autonomous actions of endocannabinoids in the mammalian brain. Published by Elsevier Inc.

  11. Amino acid-sensing ion channels in plants

    Energy Technology Data Exchange (ETDEWEB)

    Spalding, Edgar P. [Univ. of Wisconsin, Madison, WI (United States)

    2014-08-12

    The title of our project is “Amino acid-sensing ion channels in plants”. Its goals are two-fold: to determine the molecular functions of glutamate receptor-like (GLR) proteins, and to elucidate their biological roles (physiological or developmental) in plants. Here is our final technical report. We were highly successful in two of the three aims, modestly successful in the third.

  12. Free energy of a potassium ion in a model of the channel formed by an amphipathic leucine-serine peptide.

    Science.gov (United States)

    Smith, Graham R; Sansom, Mark S P

    2002-06-01

    We use molecular dynamics simulations to investigate the position-dependent free energy of a potassium ion in a model of an ion channel formed by the synthetic amphipathic leucine-serine peptide, LS3. The channel model is a parallel bundle of six LS3 helices around which are packed 146 methane-like spheres in order to mimic a membrane. At either end of and within the channel are 1051 water molecules, plus four ions (two potassium and two chloride). The free energy of a potassium ion in the channel was estimated using the weighted histogram analysis (WHAM) method. This is the first time to our knowledge that such a calculation has been carried out as a function of the position of an ion in three dimensions within a channel. The results indicate that for this channel, which is lined by hydrophilic serine sidechains, there is a relatively weak dependence of the free energy on the axial/off-axial position of the ion. There are some off-axis local minima, especially in the C-terminal half of the channel. Using the free energy results, a single channel current-voltage curve was estimated using a one-dimensional Nernst-Planck equation. Although reasonable agreement with experiment is achieved for K(+) ions flowing from the N-terminal to the C-terminal mouth, in the opposite direction the current is underestimated. This underestimation may be a consequence of under-sampling of the conformational dynamics of the channel. We suggest that our simulations may have captured, for example, a sub-conductance level (i.e. an incompletely open state) of the LS3 channel.

  13. Progress in Development of Improved Ion-Channel Biosensors

    Science.gov (United States)

    Nadeau, Jay L.; White, Victor E.; Maurer, Joshua A.; Dougherty, Dennis A.

    2008-01-01

    Further improvements have recently been made in the development of the devices described in Improved Ion-Channel Biosensors (NPO-30710), NASA Tech Briefs, Vol. 28, No. 10 (October 2004), page 30. As discussed in more detail in that article, these sensors offer advantages of greater stability, greater lifetime, and individual electrical addressability, relative to prior ion-channel biosensors. In order to give meaning to a brief description of the recent improvements, it is necessary to recapitulate a substantial portion of the text of the cited previous article. The figure depicts one sensor that incorporates the recent improvements, and can be helpful in understanding the recapitulated text, which follows: These sensors are microfabricated from silicon and other materials compatible with silicon. Typically, the sensors are fabricated in arrays in silicon wafers on glass plates. Each sensor in the array can be individually electrically addressed, without interference with its neighbors. Each sensor includes a well covered by a thin layer of silicon nitride, in which is made a pinhole for the formation of a lipid bilayer membrane. In one stage of fabrication, the lower half of the well is filled with agarose, which is allowed to harden. Then the upper half of the well is filled with a liquid electrolyte (which thereafter remains liquid) and a lipid bilayer is painted over the pinhole. The liquid contains a protein that forms an ion channel on top of the hardened agarose. The combination of enclosure in the well and support by the hardened agarose provides the stability needed to keep the membrane functional for times as long as days or even weeks. An electrode above the well, another electrode below the well, and all the materials between the electrodes together constitute a capacitor. What is measured is the capacitive transient current in response to an applied voltage pulse. One notable feature of this sensor, in comparison with prior such sensors, is a

  14. Spatially incoherent single channel digital Fourier holography.

    Science.gov (United States)

    Kelner, Roy; Rosen, Joseph

    2012-09-01

    We present a new method for recording digital Fourier holograms under incoherent illumination. A single exposure recorded by a digital camera is sufficient to record a real-valued hologram that encodes the complete three-dimensional properties of an object.

  15. Applications of focused MeV light ion beams for high resolution channeling contrast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Jamieson, D.N.; Breese, M.B.H.; Prawer, S.; Dooley, S.P.; Allen, M.G.; Bettiol, A.A.; Saint, A. [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Ryan, C.G. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW (Australia). Div. of Exploration Geoscience

    1993-12-31

    The technique of Nuclear Microscopy, utilizing a focused ion probe of typically MeV H{sup +} or He{sup +} ions, can produce images where the contrast depends on typical Ion Beam Analysis (lBA) processes. The probe forming lens system usually utilizes strong focusing, precision magnetic quadrupole lenses and the probe is scanned over the target to produce images. Originally, this imaging technique was developed to utilize backscattered particles with incident beam currents typically of a few nA, and the technique became known as Channeling Contrast Microscopy (CCM). Recently, the technique has been developed further to utilize the forward scattering of ions incident along a major crystal axis in thin crystals. This technique is known as Channeling Scanning Transmission Ion Microscopy (CSTIM). Since nearly all incident ions are detected, CSTIM is highly efficient and very low beam currents are sufficient for imaging, typically as low as a few fA. This allows probes as small as 50 nm to be used. In this paper we briefly review the recent applications of these emerging techniques to a variety of single crystal materials (authors). 13 refs., 5 figs.

  16. Computer Simulation Studies of Ion Channels at High Temperatures

    Science.gov (United States)

    Song, Hyun Deok

    The gramicidin channel is the smallest known biological ion channel, and it exhibits cation selectivity. Recently, Dr. John Cuppoletti's group at the University of Cincinnati showed that the gramicidin channel can function at high temperatures (360 ˜ 380K) with significant currents. This finding may have significant implications for fuel cell technology. In this thesis, we have examined the gramicidin channel at 300K, 330K, and 360K by computer simulation. We have investigated how the temperature affects the current and differences in magnitude of free energy between the two gramicidin forms, the helical dimer (HD) and the double helix (DH). A slight decrease of the free energy barrier inside the gramicidin channel and increased diffusion at high temperatures result in an increase of current. An applied external field of 0.2V/nm along the membrane normal results in directly observable ion transport across the channels at high temperatures for both HD and DH forms. We found that higher temperatures also affect the probability distribution of hydrogen bonds, the bending angle, the distance between dimers, and the size of the pore radius for the helical dimer structure. These findings may be related to the gating of the gramicidin channel. Methanococcus jannaschii (MJ) is a methane-producing thermophile, which was discovered at a depth of 2600m in a Pacific Ocean vent in 1983. It has the ability to thrive at high temperatures and high pressures, which are unfavorable for most life forms. There have been some experiments to study its stability under extreme conditions, but still the origin of the stability of MJ is not exactly known. MJ0305 is the chloride channel protein from the thermophile MJ. After generating a structure of MJ0305 by homology modeling based on the Ecoli ClC templates, we examined the thermal stability, and the network stability from the change of network entropy calculated from the adjacency matrices of the protein. High temperatures increase the

  17. Study of the interaction of potassium ion channel protein with micelle by molecular dynamics simulation

    Science.gov (United States)

    Shantappa, Anil; Talukdar, Keka

    2018-04-01

    Ion channels are proteins forming pore inside the body of all living organisms. This potassium ion channel known as KcsA channel and it is found in the each cell and nervous system. Flow of various ions is regulated by the function of the ion channels. The nerve ion channel protein with protein data bank entry 1BL8, which is basically an ion channel protein in Streptomyces Lividans and which is taken up to form micelle-protein system and the system is analyzed by using molecular dynamics simulation. Firstly, ion channel pore is engineered by CHARMM potential and then Micelle-protein system is subjected to molecular dynamics simulation. For some specific micelle concentration, the protein unfolding is observed.

  18. Functional modifications of acid-sensing ion channels by ligand-gated chloride channels.

    Directory of Open Access Journals (Sweden)

    Xuanmao Chen

    Full Text Available Together, acid-sensing ion channels (ASICs and epithelial sodium channels (ENaC constitute the majority of voltage-independent sodium channels in mammals. ENaC is regulated by a chloride channel, the cystic fibrosis transmembrane conductance regulator (CFTR. Here we show that ASICs were reversibly inhibited by activation of GABA(A receptors in murine hippocampal neurons. This inhibition of ASICs required opening of the chloride channels but occurred with both outward and inward GABA(A receptor-mediated currents. Moreover, activation of the GABA(A receptors modified the pharmacological features and kinetic properties of the ASIC currents, including the time course of activation, desensitization and deactivation. Modification of ASICs by open GABA(A receptors was also observed in both nucleated patches and outside-out patches excised from hippocampal neurons. Interestingly, ASICs and GABA(A receptors interacted to regulate synaptic plasticity in CA1 hippocampal slices. The activation of glycine receptors, which are similar to GABA(A receptors, also modified ASICs in spinal neurons. We conclude that GABA(A receptors and glycine receptors modify ASICs in neurons through mechanisms that require the opening of chloride channels.

  19. Materials analysis by ion backscattering and channeling. Materials modification by ion irradiation and implementation

    International Nuclear Information System (INIS)

    Meyer, O.

    1984-08-01

    A description will be given of the basic processes occuring during ion implantation and ion beam analyses. The usefulness of the backscattering and channeling technique is demonstrated by a discussion of the applications to thin film analysis, studies of diffusion and reactions in thin films, lattice location investigations, disorder analysis and surface studies. Ion implantation is a valuable research tool in metallurgy. The process operates very far from equilibrium conditions and thus will influence near surface properties in a unique way. The observed modifications are related to special microscopic structures which will be considered in detail. (orig.) [de

  20. A parallel finite element simulator for ion transport through three-dimensional ion channel systems.

    Science.gov (United States)

    Tu, Bin; Chen, Minxin; Xie, Yan; Zhang, Linbo; Eisenberg, Bob; Lu, Benzhuo

    2013-09-15

    A parallel finite element simulator, ichannel, is developed for ion transport through three-dimensional ion channel systems that consist of protein and membrane. The coordinates of heavy atoms of the protein are taken from the Protein Data Bank and the membrane is represented as a slab. The simulator contains two components: a parallel adaptive finite element solver for a set of Poisson-Nernst-Planck (PNP) equations that describe the electrodiffusion process of ion transport, and a mesh generation tool chain for ion channel systems, which is an essential component for the finite element computations. The finite element method has advantages in modeling irregular geometries and complex boundary conditions. We have built a tool chain to get the surface and volume mesh for ion channel systems, which consists of a set of mesh generation tools. The adaptive finite element solver in our simulator is implemented using the parallel adaptive finite element package Parallel Hierarchical Grid (PHG) developed by one of the authors, which provides the capability of doing large scale parallel computations with high parallel efficiency and the flexibility of choosing high order elements to achieve high order accuracy. The simulator is applied to a real transmembrane protein, the gramicidin A (gA) channel protein, to calculate the electrostatic potential, ion concentrations and I - V curve, with which both primitive and transformed PNP equations are studied and their numerical performances are compared. To further validate the method, we also apply the simulator to two other ion channel systems, the voltage dependent anion channel (VDAC) and α-Hemolysin (α-HL). The simulation results agree well with Brownian dynamics (BD) simulation results and experimental results. Moreover, because ionic finite size effects can be included in PNP model now, we also perform simulations using a size-modified PNP (SMPNP) model on VDAC and α-HL. It is shown that the size effects in SMPNP can

  1. Measuring Vtb via s-channel Single Top at ATLAS

    CERN Document Server

    O'Neil, D C; Lefebvre, M

    1999-01-01

    The production of single top quarks via the electroweak interaction promises to provide new opportunities to both test the Standard Model and search for new physics. In particular, electroweak top production provides the only means to directly measure the CKM matrix element Vtb, at ATLAS. The s-channel is the lowest rate, but best theoretically understood mechanism of electroweak top production. An evaluation of the potential for background suppression and Vtb measurement in this channel is presented. It is found that significant background suppression can be achieved and Vtb can be measured in the s-channel after 3 years of low luminosity running at LHC.

  2. The complementary use of electron backscatter diffraction and ion channelling imaging for the characterization of nanotwins

    DEFF Research Database (Denmark)

    Alimadadi, Hossein; da Silva Fanta, Alice Bastos; Pantleon, Karen

    2013-01-01

    On the example of electrodeposited nickel films, it is shown that unique information on twins with dimensions on the nanoscale can be obtained by suitable combination of ion channelling imaging and electron backscatter diffraction analysis, whereas both (routine) single techniques cannot meet...... the requirements for analysis of these films. High‐resolution electron backscatter diffraction is inadequate for full characterization of nanotwins, but image quality maps obtained from electron backscatter diffraction at least yield a qualitative estimation of the location and number of nanotwins. Complementing...... EBSD data based on ion channelling images are proposed. Thorough selection of the complementary techniques opens future perspectives for the investigation of other challenging samples with nanoscale features in the microstructure....

  3. Origin of heterogeneous spiking patterns from continuously distributed ion channel densities: a computational study in spinal dorsal horn neurons.

    Science.gov (United States)

    Balachandar, Arjun; Prescott, Steven A

    2018-01-20

    Distinct spiking patterns may arise from qualitative differences in ion channel expression (i.e. when different neurons express distinct ion channels) and/or when quantitative differences in expression levels qualitatively alter the spike generation process. We hypothesized that spiking patterns in neurons of the superficial dorsal horn (SDH) of spinal cord reflect both mechanisms. We reproduced SDH neuron spiking patterns by varying densities of K V 1- and A-type potassium conductances. Plotting the spiking patterns that emerge from different density combinations revealed spiking-pattern regions separated by boundaries (bifurcations). This map suggests that certain spiking pattern combinations occur when the distribution of potassium channel densities straddle boundaries, whereas other spiking patterns reflect distinct patterns of ion channel expression. The former mechanism may explain why certain spiking patterns co-occur in genetically identified neuron types. We also present algorithms to predict spiking pattern proportions from ion channel density distributions, and vice versa. Neurons are often classified by spiking pattern. Yet, some neurons exhibit distinct patterns under subtly different test conditions, which suggests that they operate near an abrupt transition, or bifurcation. A set of such neurons may exhibit heterogeneous spiking patterns not because of qualitative differences in which ion channels they express, but rather because quantitative differences in expression levels cause neurons to operate on opposite sides of a bifurcation. Neurons in the spinal dorsal horn, for example, respond to somatic current injection with patterns that include tonic, single, gap, delayed and reluctant spiking. It is unclear whether these patterns reflect five cell populations (defined by distinct ion channel expression patterns), heterogeneity within a single population, or some combination thereof. We reproduced all five spiking patterns in a computational model by

  4. Zinc as Allosteric Ion Channel Modulator: Ionotropic Receptors as Metalloproteins

    Science.gov (United States)

    Peralta, Francisco Andrés; Huidobro-Toro, Juan Pablo

    2016-01-01

    Zinc is an essential metal to life. This transition metal is a structural component of many proteins and is actively involved in the catalytic activity of cell enzymes. In either case, these zinc-containing proteins are metalloproteins. However, the amino acid residues that serve as ligands for metal coordination are not necessarily the same in structural proteins compared to enzymes. While crystals of structural proteins that bind zinc reveal a higher preference for cysteine sulfhydryls rather than histidine imidazole rings, catalytic enzymes reveal the opposite, i.e., a greater preference for the histidines over cysteines for catalysis, plus the influence of carboxylic acids. Based on this paradigm, we reviewed the putative ligands of zinc in ionotropic receptors, where zinc has been described as an allosteric modulator of channel receptors. Although these receptors do not strictly qualify as metalloproteins since they do not normally bind zinc in structural domains, they do transitorily bind zinc at allosteric sites, modifying transiently the receptor channel’s ion permeability. The present contribution summarizes current information showing that zinc allosteric modulation of receptor channels occurs by the preferential metal coordination to imidazole rings as well as to the sulfhydryl groups of cysteine in addition to the carboxyl group of acid residues, as with enzymes and catalysis. It is remarkable that most channels, either voltage-sensitive or transmitter-gated receptor channels, are susceptible to zinc modulation either as positive or negative regulators. PMID:27384555

  5. Studies on positive conveying in helically channeled single screw extruders

    Directory of Open Access Journals (Sweden)

    L. Pan

    2012-07-01

    Full Text Available A solids conveying theory called double-flight driving theory was proposed for helically channeled single screw extruders. In the extruder, screw channel rotates against static barrel channel, which behaves as cooperative embedded twin-screws for the positive conveying. They turn as two parallel arc plates, between which an arc-plate solid-plug was assumed. By analyzing the forces on the solid-plug in the barrel channel and screw channel, the boundary conditions when the solid-plug is waived of being cut off on barrel wall, were found to have the capacity of the positive conveying. Experimental data were obtained using a specially designed extruder with a helically channeled barrel in the feeding zone and a pressure-adjustable die. The effects of the barrel channel geometry and friction coefficients on the conveying mechanism were presented and compared with the experimental results. The simulations showed that the positive conveying could be achieved after optimizing extruder designs. Compared with the traditional design with the friction-drag conveying, the throughput is higher while screw torque and energy consumption are decreased. Besides, the design criteria of the barrel channel were also discussed.

  6. Parameterization of ion channeling half-angles and minimum yields

    Science.gov (United States)

    Doyle, Barney L.

    2016-03-01

    A MS Excel program has been written that calculates ion channeling half-angles and minimum yields in cubic bcc, fcc and diamond lattice crystals. All of the tables and graphs in the three Ion Beam Analysis Handbooks that previously had to be manually looked up and read from were programed into Excel in handy lookup tables, or parameterized, for the case of the graphs, using rather simple exponential functions with different power functions of the arguments. The program then offers an extremely convenient way to calculate axial and planar half-angles, minimum yields, effects on half-angles and minimum yields of amorphous overlayers. The program can calculate these half-angles and minimum yields for axes and [h k l] planes up to (5 5 5). The program is open source and available at

  7. Dynamics of voltage-gated ion channels in cell membranes by the path probability method

    Science.gov (United States)

    Özer, Mahmut; Erdem, Rıza

    2004-01-01

    Dynamics of voltage-gated ion channels in the excitable cell membranes is formulated by the path probability method of nonequilibrium statistical physics and approaches of the system toward the steady or equilibrium states are presented. For a single-particle noninteractive two-state model, a first-order rate equation or dynamic equation is derived by introducing the path probability rate coefficients which satisfy the detailed balancing relation. Using known parameters for the batrachotoxin (BTX)-modified sodium channels in giand squid axon as an example, the rate equation is solved and voltage dependence of the time constant ( τ) and its temperature effect are investigated. An increase in voltage caused a shift in τ towards shorter durations while increasing temperature caused a shift in time distribution towards longer durations. Results are compared with the kinetic model for the squid axon BTX-modified sodium channels by the cut-open axon technique and a very good agreement is found.

  8. Ionic fragmentation channels in electron collisions of small molecular ions

    International Nuclear Information System (INIS)

    Hoffmann, Jens

    2009-01-01

    Dissociative Recombination (DR) is one of the most important loss processes of molecular ions in the interstellar medium (IM). Ion storage rings allow to investigate these processes under realistic conditions. At the Heidelberg test storage ring TSR a new detector system was installed within the present work in order to study the DR sub-process of ion pair formation (IPF). The new detector expands the existing electron target setup by the possibility to measure strongly deflected negative ionic fragments. At the TSR such measurements can be performed with a uniquely high energy resolution by independently merging two electron beams with the ion beam. In this work IPF of HD + , H 3 + and HF + has been studied. In the case of HD + the result of the high resolution experiment shows quantum interferences. Analysis of the quantum oscillations leads to a new understanding of the reaction dynamics. For H 3 + it was for the first time possible to distinguish different IPF channels and to detect quantum interferences in the data. Finally the IPF of HF + was investigated in an energy range, where in previous experiments no conclusive results could be obtained. (orig.)

  9. Conduction in ion implanted single crystal diamond

    International Nuclear Information System (INIS)

    Hunn, J.D.; Parikh, N.R.; Swanson, M.L.

    1992-01-01

    We have implanted sodium, phosphorus and arsenic into single crystal type IIa diamond as possible n-type dopants. Particular emphasis was applied to the implantation of sodium at different temperatures and doses; combined implantation energies of 55,80 and 120 keV were used to provide a uniformly doped layer over approximately 100 nm depth. The implanted layers exhibited semiconducting behavior with a single exponential activation energy between 0.40 and 0.48 eV, as determined by temperature dependent resistance measurements. A sample implanted to a concentration of 5.10 19 Na + /cm 3 at 550 degrees C exhibited a single activation energy of 0.415 eV over a temperature range from 25 to 500 degrees C. Thermal annealing above 900 degrees C was found to remove implantation damage as measured by optical absorption and RBS/channeling. However, concomitant increases in the resistance and the activation energy were observed. Implantation of 22 Ne was used to introduce a damage density equivalent to the 23 Na implant, while not introducing an electrically active species. The activation energy and electrical resistance were similar but higher than those produced by implantation with sodium. We conclude that the electrical properties of the Na-implanted samples were at least partly due to electrically active Na, but that residual implantation damage was still important

  10. The Flatworm Macrostomum lignano Is a Powerful Model Organism for Ion Channel and Stem Cell Research

    NARCIS (Netherlands)

    Simanov, Daniil; Mellaart-Straver, Imre; Sormacheva, Irina; Berezikov, Eugene

    2012-01-01

    Bioelectrical signals generated by ion channels play crucial roles in many cellular processes in both excitable and nonexcitable cells. Some ion channels are directly implemented in chemical signaling pathways, the others are involved in regulation of cytoplasmic or vesicular ion concentrations, pH,

  11. Cocaine-induced closures of single batrachotoxin-activated Na+ channels in planar lipid bilayers

    Science.gov (United States)

    1988-01-01

    Batrachotoxin (BTX)-activated Na+ channels from rabbit skeletal muscle were incorporated into planar lipid bilayers. These channels appear to open most of the time at voltages greater than -60 mV. Local anesthetics, including QX-314, bupivacaine, and cocaine when applied internally, induce different durations of channel closures and can be characterized as "fast" (mean closed duration less than 10 ms at +50 mV), "intermediate" (approximately 80 ms), and "slow" (approximately 400 ms) blockers, respectively. The action of these local anesthetics on the Na+ channel is voltage dependent; larger depolarizations give rise to stronger binding interactions. Both the dose-response curve and the kinetics of the cocaine-induced closures indicate that there is a single class of cocaine-binding site. QX-314, though a quaternary-amine local anesthetic, apparently competes with the same binding site. External cocaine or bupivacaine application is almost as effective as internal application, whereas external QX-314 is ineffective. Interestingly, external Na+ ions reduce the cocaine binding affinity drastically, whereas internal Na+ ions have little effect. Both the cocaine association and dissociation rate constants are altered when external Na+ ion concentrations are raised. We conclude that (a) one cocaine molecule closes one BTX-activated Na+ channel in an all-or-none manner, (b) the binding affinity of cocaine is voltage sensitive, (c) this cocaine binding site can be reached by a hydrophilic pathway through internal surface and by a hydrophobic pathway through bilayer membrane, and (d) that this binding site interacts indirectly with the Na+ ions. A direct interaction between the receptor and Na+ ions seems minimal. PMID:2851029

  12. Simulating single-event burnout of n-channel power MOSFET's

    International Nuclear Information System (INIS)

    Johnson, G.H.; Hohl, J.H.; Schrimpf, R.D.; Galloway, K.F.

    1993-01-01

    Heavy ions are ubiquitous in a space environment. Single-event burnout of power MOSFET's is a sudden catastrophic failure mechanism that is initiated by the passage of a heavy ion through the device structure. The passage of the heavy ion generates a current filament that locally turns on a parasitic n-p-n transistor inherent to the power MOSFET. Subsequent high currents and high voltage in the device induce second breakdown of the parasitic bipolar transistor and hence meltdown of the device. This paper presents a model that can be used for simulating the burnout mechanism in order to gain insight into the significant device parameters that most influence the single-event burnout susceptibility of n-channel power MOSFET's

  13. Cytokine–Ion Channel Interactions in Pulmonary Inflammation

    Science.gov (United States)

    Hamacher, Jürg; Hadizamani, Yalda; Borgmann, Michèle; Mohaupt, Markus; Männel, Daniela Narcissa; Moehrlen, Ueli; Lucas, Rudolf; Stammberger, Uz

    2018-01-01

    The lungs conceptually represent a sponge that is interposed in series in the bodies’ systemic circulation to take up oxygen and eliminate carbon dioxide. As such, it matches the huge surface areas of the alveolar epithelium to the pulmonary blood capillaries. The lung’s constant exposure to the exterior necessitates a competent immune system, as evidenced by the association of clinical immunodeficiencies with pulmonary infections. From the in utero to the postnatal and adult situation, there is an inherent vital need to manage alveolar fluid reabsorption, be it postnatally, or in case of hydrostatic or permeability edema. Whereas a wealth of literature exists on the physiological basis of fluid and solute reabsorption by ion channels and water pores, only sparse knowledge is available so far on pathological situations, such as in microbial infection, acute lung injury or acute respiratory distress syndrome, and in the pulmonary reimplantation response in transplanted lungs. The aim of this review is to discuss alveolar liquid clearance in a selection of lung injury models, thereby especially focusing on cytokines and mediators that modulate ion channels. Inflammation is characterized by complex and probably time-dependent co-signaling, interactions between the involved cell types, as well as by cell demise and barrier dysfunction, which may not uniquely determine a clinical picture. This review, therefore, aims to give integrative thoughts and wants to foster the unraveling of unmet needs in future research. PMID:29354115

  14. Characterization of strained InGaAs single quantum well structures by ion beam methods

    International Nuclear Information System (INIS)

    Yu, K.M.; Chan, K.T.

    1990-01-01

    We have investigated strained InGaAs single quantum well structures using MeV ion beam methods. The structural properties of these structures, including composition and well size, have been studied. It has been found that the composition obtained by Rutherford backscattering spectrometry and particle-induced x-ray emission techniques agrees very well with that obtained by the ion channeling method

  15. Ladder-Shaped Ion Channel Ligands: Current State of Knowledge

    Directory of Open Access Journals (Sweden)

    Yuri B. Shmukler

    2017-07-01

    Full Text Available Ciguatoxins (CTX and brevetoxins (BTX are polycyclic ethereal compounds biosynthesized by the worldwide distributed planktonic and epibenthic dinoflagellates of Gambierdiscus and Karenia genera, correspondingly. Ciguatera, evoked by CTXs, is a type of ichthyosarcotoxism, which involves a variety of gastrointestinal and neurological symptoms, while BTXs cause so-called neurotoxic shellfish poisoning. Both types of toxins are reviewed together because of similar mechanisms of their action. These are the only molecules known to activate voltage-sensitive Na+-channels in mammals through a specific interaction with site 5 of its α-subunit and may compete for it, which results in an increase in neuronal excitability, neurotransmitter release and impairment of synaptic vesicle recycling. Most marine ciguatoxins potentiate Nav channels, but a considerable number of them, such as gambierol and maitotoxin, have been shown to affect another ion channel. Although the extrinsic function of these toxins is probably associated with the function of a feeding deterrent, it was suggested that their intrinsic function is coupled with the regulation of photosynthesis via light-harvesting complex II and thioredoxin. Antagonistic effects of BTXs and brevenal may provide evidence of their participation as positive and negative regulators of this mechanism.

  16. Computational Tools for Interpreting Ion Channel pH-Dependence.

    Directory of Open Access Journals (Sweden)

    Ivan Sazanavets

    Full Text Available Activity in many biological systems is mediated by pH, involving proton titratable groups with pKas in the relevant pH range. Experimental analysis of pH-dependence in proteins focusses on particular sidechains, often with mutagenesis of histidine, due to its pKa near to neutral pH. The key question for algorithms that predict pKas is whether they are sufficiently accurate to effectively narrow the search for molecular determinants of pH-dependence. Through analysis of inwardly rectifying potassium (Kir channels and acid-sensing ion channels (ASICs, mutational effects on pH-dependence are probed, distinguishing between groups described as pH-coupled or pH-sensor. Whereas mutation can lead to a shift in transition pH between open and closed forms for either type of group, only for pH-sensor groups does mutation modulate the amplitude of the transition. It is shown that a hybrid Finite Difference Poisson-Boltzmann (FDPB - Debye-Hückel continuum electrostatic model can filter mutation candidates, providing enrichment for key pH-coupled and pH-sensor residues in both ASICs and Kir channels, in comparison with application of FDPB alone.

  17. Single-molecule denaturation mapping of DNA in nanofluidic channels

    DEFF Research Database (Denmark)

    Reisner, Walter; Larsen, Niels Bent; Silahtaroglu, Asli

    2010-01-01

    Here we explore the potential power of denaturation mapping as a single-molecule technique. By partially denaturing YOYO (R)-1-labeled DNA in nanofluidic channels with a combination of formamide and local heating, we obtain a sequence-dependent "barcode" corresponding to a series of local dips...

  18. Single channel in-line multimodal digital holography.

    Science.gov (United States)

    Rivenson, Yair; Katz, Barak; Kelner, Roy; Rosen, Joseph

    2013-11-15

    We present a new single channel in-line setup for holographic recording that can properly record various objects that cannot be recorded by the Gabor holographic method. This configuration allows the recording of holograms based on several modalities while addressing important issues of the original Gabor setup, including the well-known twin-image problem and the weak scattering condition.

  19. Virtual instrument automation of ion channeling setup for 1.7 MV tandetron accelerator

    International Nuclear Information System (INIS)

    Suresh, K.; Sundaravel, B.; Panigrahi, B.K.; Nair, K.G.M.; Viswanathan, B.

    2004-01-01

    A virtual instrument based automated ion channeling experimental setup has been developed and implemented in a 1.7 MV tandetron accelerator. Automation of the PC based setup is done using a windows based virtual instrument software allowing the setup to be easily ported between different computer operating systems. The virtual instrument software has been chosen to achieve quick and easy development of versatile, multi-purpose user friendly graphical interface for carrying out channeling experiments. The software has been modular designed to provide independent control of the stepper motors for fixing the sample at any user defined orientation, running and on-line display of azimuthal and tilt angular scans, auto storage of the angular scan data. Using this automated setup, the crystallographic axis of the sample can be aligned with the incident ion beam rapidly minimizing the beam damages to the sample. A standard single crystalline GaAs(100) has been characterized with this set up using 2 MeV He ++ ion beam. The crystalline quality (χ min ) and channeling half angle (ψ 1sol2 ) are measured to be 3.7% and 0.48 deg., respectively, which are close to the theoretical values. Salient features, working principles and design details of the automated setup are discussed in this paper

  20. Lattice location of platinum ions implanted into single crystal zirconia and their annealing behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Cao, D.X. [Royal Melbourne Inst. of Tech., VIC (Australia); Sood, D.K. [Academia Sinica, Shanghai, SH (China). Shanghai Inst. of Nuclear Research; Brown, I.G. [Lawrence Berkeley Lab., CA (United States)

    1993-12-31

    Single crystal samples of (100) oriented cubic zirconia stabilised with 9.5 mol % yttria were implanted with platinum ions, using a metal vapour vacuum arc (MEVVA) high current ion implanter, to a nominal dose of 1x10{sup 17} ions/cm{sup 2}. The implanted samples were annealed isothermally in air ambient at 1200 deg C, from 1-24 hours. Rutherford Backscattering Spectrometry and Channeling (RBSC) of 2 MeV He ions are employed to determine depth distributions of ion damage, Pt ions and substitutionality of Pt ions before and after annealing. The damage behaviour, Pt migration and lattice location are discussed in terms of metastable phase formation and solid solubility considerations. 7 refs., 3 figs.

  1. Controlled fabrication of ion track nanowires and channels

    Science.gov (United States)

    Spohr, Reimar; Zet, Cristian; Eberhard Fischer, Bernd; Kiesewetter, Helge; Apel, Pavel; Gunko, Igor; Ohgai, Takeshi; Westerberg, Lars

    2010-03-01

    We describe a system for fabricating prescribed numbers of ion track nanochannels and nanowires from a few hundred down to one. It consists of two parts: first, a mobile tape transport system, which, in connection with an ion beam from a heavy-ion accelerator (nuclear charge Z above 18 and specific energy between 1 and 10 MeV/nucleon) tuned down to low flux density by means of defocusing and a set of sensitive fluorescence screens, can fabricate a series of equidistant irradiation spots on a tape, whereby each spot corresponds to a preset number of ion tracks. The tape transport system uses films of 36 mm width and thicknesses between 5 and 100 μm. The aiming precision of the system depends on the diameter of the installed beam-defining aperture, which is between 50 and 500 μm. The distance between neighboring irradiation spots on the tape is variable and typically set to 25 mm. After reaching the preset number of ion counts the irradiation is terminated, the tape is marked and moved to the next position. The irradiated frames are punched out to circular membranes with the irradiation spot in the center. The second part of the setup is a compact conductometric system with 10 picoampere resolution consisting of a computer controlled conductometric cell, sealing the membrane hermetically between two chemically inert half-chambers containing electrodes and filling/flushing openings, and is encased by an electrical shield and a thermal insulation. The ion tracks can be etched to a preset diameter and the system can be programmed to electroreplicate nanochannels in a prescribed sequence of magnetic/nonmagnetic metals, alloys or semiconductors. The goal of our article is to make the scientific community aware of the special features of single-ion fabrication and to demonstrate convincingly the significance of controlled etching and electro-replication.

  2. Bioelectrical Signals and Ion Channels in the Modeling of Multicellular Patterns and Cancer Biophysics

    Science.gov (United States)

    Cervera, Javier; Alcaraz, Antonio; Mafe, Salvador

    2016-02-01

    Bioelectrical signals and ion channels are central to spatial patterns in cell ensembles, a problem of fundamental interest in positional information and cancer processes. We propose a model for electrically connected cells based on simple biological concepts: i) the membrane potential of a single cell characterizes its electrical state; ii) the long-range electrical coupling of the multicellular ensemble is realized by a network of gap junction channels between neighboring cells; and iii) the spatial distribution of an external biochemical agent can modify the conductances of the ion channels in a cell membrane and the multicellular electrical state. We focus on electrical effects in small multicellular ensembles, ignoring slow diffusional processes. The spatio-temporal patterns obtained for the local map of cell electric potentials illustrate the normalization of regions with abnormal cell electrical states. The effects of intercellular coupling and blocking of specific channels on the electrical patterns are described. These patterns can regulate the electrically-induced redistribution of charged nanoparticles over small regions of a model tissue. The inclusion of bioelectrical signals provides new insights for the modeling of cancer biophysics because collective multicellular states show electrical coupling mechanisms that are not readily deduced from biochemical descriptions at the individual cell level.

  3. Channel waveguides formed by ion implantation of PECVD grown silica

    International Nuclear Information System (INIS)

    Leech, P.W.; Faith, M.F.; Johnson, C.M.; Ridgway, M.C.; Bazylenko, M.

    1997-01-01

    Low loss channel waveguides have been formed in silica-on-silicon by implantation with 5 MeV Si and Ge ions. In these experiments, the substrate was comprised of an undoped layer of silica (30 μm thick) which was grown by plasma enhanced chemical vapour deposition (PECVD). The optical loss characteristics of the waveguides, as measured at both λ 1300 and 1550 nm, were independent of the implanted ion species. A minimum in the attenuation loss (α) of ∼0.10-0.20 dB/cm was obtained following both a pre-implant (1050 o C) and a post-implant (400-500 o C) anneal of the waveguides. The ability to produce a minimum in α by pre-implant annealing has been attributed to the thermally induced relaxation of the densified structure in the as-grown layer. Only a comparatively small degree of compaction was measured for Si-implanted samples which did not receive a pre-implant anneal. In contrast, the much larger degree of compaction in the pre-implant annealed samples was similar in magnitiude to that observed in fused silica. These are the first reported examples of ion-implanted waveguides using a substrate of silica grown by PECVD. (author)

  4. The jellyfish green fluorescent protein: a new tool for studying ion channel expression and function.

    Science.gov (United States)

    Marshall, J; Molloy, R; Moss, G W; Howe, J R; Hughes, T E

    1995-02-01

    Two methods are described for using the jellyfish green fluorescent protein (GFP) as a reporter gene for ion channel expression. GFP fluorescence can be used to identify the transfected cells, and to estimate the relative levels of ion channel expression, in cotransfection experiments. A GFP-NMDAR1 chimera can be constructed that produces a functional, fluorescent receptor subunit. These methods should facilitate studies of ion channel expression, localization, and processing.

  5. Dispersion relation and growth in a two-stream free electron laser with helical wiggler and ion channel guiding

    International Nuclear Information System (INIS)

    Mehdian, Hassan; Abbasi, Negar

    2008-01-01

    A linear theory of two-stream free electron laser (FEL) with helical wiggler and ion channel guiding is presented. The dispersion relation is obtained with the help of fluid theory and the growth rate is analyzed through the numerical solutions. The considerable enhancement of the growth rate is demonstrated due to the two-stream instability and continuous tuning of peak growth rate ratio, two-stream FEL compared to single-stream FEL, in terms of varying the ion channel frequency is illustrated

  6. Channelling investigation of the behaviour of urania under low-energy ion irradiation

    International Nuclear Information System (INIS)

    Nguyen, Tien Hien

    2013-01-01

    This thesis is dedicated to the investigation of the structural destabilisation of UO 2 single crystal. Irradiations with 470-keV Xe, 500-keV Ce and 500-keV La ions (with corresponding ion range of Rp 85 nm and range straggling of Delta Rp 40 nm according to SRIM calculation) have been performed to investigate the destabilisation of UO 2 single crystals induce by (i) the radiation damage effects due to the nuclear stopping process of a fission fragment at the end of their trajectories (ballistic contribution) and by (ii) the incorporation of a fission product at high concentration (chemical contribution). The energies and masses of bombarding ions were deliberately chosen so that they would have very similar projected range in UO 2 in order to compare the effects induced by solubles (La and Ce) versus non soluble Xe species in UO 2 . Rutherford Backscattering Spectrometry in channelling geometry (RBS/C) was applied to study the defects induced. Channelling data were analysed afterwards by Monte-Carlo simulation with McChasy code assuming a two-class model of defects comprising (i) the randomly displaced atoms (RDA) and the bent channels (BC) defects. The accumulation of RDA with increasing ion fluence leads to a steep increase (build-up of defects) observed from 4 to 7 dpa regardless of nature of ions and a dramatic increase observed from 300 dpa (corresponding to 5 at. % of implanted ions) only for Xe irradiated crystal. The difference due to the soluble versus insoluble species was clearly observed. Such a difference was observed via the dramatic increase of RDA when the crystal is implanted at very high concentration only for crystal implanted with insoluble species. Moreover, the difference is also observed via the higher fraction of RDA created in the crystal irradiated with insoluble element. This phenomenon is mostly due to the size of implanted species in the matrix. Insoluble Xe atoms have the atomic radius which is larger than twice the atomic radius of U

  7. Three-dimensional (3-D) video systems: bi-channel or single-channel optics?

    Science.gov (United States)

    van Bergen, P; Kunert, W; Buess, G F

    1999-11-01

    This paper presents the results of a comparison between two different three-dimensional (3-D) video systems, one with single-channel optics, the other with bi-channel optics. The latter integrates two lens systems, each transferring one half of the stereoscopic image; the former uses only one lens system, similar to a two-dimensional (2-D) endoscope, which transfers the complete stereoscopic picture. In our training centre for minimally invasive surgery, surgeons were involved in basic and advanced laparoscopic courses using both a 2-D system and the two 3-D video systems. They completed analog scale questionnaires in order to record a subjective impression of the relative convenience of operating in 2-D and 3-D vision, and to identify perceived deficiencies in the 3-D system. As an objective test, different experimental tasks were developed, in order to measure performance times and to count pre-defined errors made while using the two 3-D video systems and the 2-D system. Using the bi-channel optical system, the surgeon has a heightened spatial perception, and can work faster and more safely than with a single-channel system. However, single-channel optics allow the use of an angulated endoscope, and the free rotation of the optics relative to the camera, which is necessary for some operative applications.

  8. Axonal voltage-gated ion channels as pharmacological targets for pain

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Alvarez, Susana; Romer Rosberg, Mette

    2013-01-01

    . The rationale for considering axonal voltage-gated ion channels as targets for pain treatment comes from the accumulating evidence that chronic pain states are associated with a dysregulation of these channels that could alter their specificity and make them more susceptible to pharmacological modulation...... ultimately depends on the function of voltage-gated ion channels. This review focuses on the pharmacological modulators of voltage-gated ion channels known to be present on axonal membrane which represents by far the largest surface of DRG neurons. Blockers of voltage-gated Na(+) channels, openers of voltage...

  9. Macroscopic kinetics of pentameric ligand gated ion channels: comparisons between two prokaryotic channels and one eukaryotic channel.

    Science.gov (United States)

    Laha, Kurt T; Ghosh, Borna; Czajkowski, Cynthia

    2013-01-01

    Electrochemical signaling in the brain depends on pentameric ligand-gated ion channels (pLGICs). Recently, crystal structures of prokaryotic pLGIC homologues from Erwinia chrysanthemi (ELIC) and Gloeobacter violaceus (GLIC) in presumed closed and open channel states have been solved, which provide insight into the structural mechanisms underlying channel activation. Although structural studies involving both ELIC and GLIC have become numerous, thorough functional characterizations of these channels are still needed to establish a reliable foundation for comparing kinetic properties. Here, we examined the kinetics of ELIC and GLIC current activation, desensitization, and deactivation and compared them to the GABAA receptor, a prototypic eukaryotic pLGIC. Outside-out patch-clamp recordings were performed with HEK-293T cells expressing ELIC, GLIC, or α1β2γ2L GABAA receptors, and ultra-fast ligand application was used. In response to saturating agonist concentrations, we found both ELIC and GLIC current activation were two to three orders of magnitude slower than GABAA receptor current activation. The prokaryotic channels also had slower current desensitization on a timescale of seconds. ELIC and GLIC current deactivation following 25 s pulses of agonist (cysteamine and pH 4.0 buffer, respectively) were relatively fast with time constants of 24.9 ± 5.1 ms and 1.2 ± 0.2 ms, respectively. Surprisingly, ELIC currents evoked by GABA activated very slowly with a time constant of 1.3 ± 0.3 s and deactivated even slower with a time constant of 4.6 ± 1.2 s. We conclude that the prokaryotic pLGICs undergo similar agonist-mediated gating transitions to open and desensitized states as eukaryotic pLGICs, supporting their use as experimental models. Their uncharacteristic slow activation, slow desensitization and rapid deactivation time courses are likely due to differences in specific structural elements, whose future identification may help uncover mechanisms underlying p

  10. Single Particle Nanoplasmonic Sensing in Individual Nanofluidic Channels.

    Science.gov (United States)

    Fritzsche, Joachim; Albinsson, David; Fritzsche, Michael; Antosiewicz, Tomasz J; Westerlund, Fredrik; Langhammer, Christoph

    2016-12-14

    Nanoplasmonics allows label-free optical sensing and spectroscopy at the single nanoparticle level by exploiting plasmonic excitations in metal nanoparticles. Nanofluidics offers exclusive possibilities for applying and controlling fluid flow and mass transport at the nanoscale and toward nanosized objects. Here, we combine these two concepts in a single device, by integrating single particle nanoplasmonic sensing with nanofluidics using advanced nanofabrication. The developed devices enable on-chip referenced parallel single particle nanoplasmonic sensing inside multiple individual nanofluidic channels with dimensions down to the 100 nm range. Beyond detailed discussion of the nanofabrication, general device characterization, and parallelized single particle plasmonic readout concepts, we demonstrate device function on two examples: (i) in situ measurements of local buffer concentrations inside a nanofluidic channel; (ii) real time binding kinetics of alkanethiol molecules to a single plasmonic nanonatenna sensor in a single nanochannel. Our concept thus provides a powerful solution for controlling mass transport to and from individual (plasmonic) nanoparticles, which in a long-term perspective offers unique opportunities for label-free detection of analyte molecules at low concentrations and for fundamental studies of fluids in extreme confinement.

  11. On the estimation of cooperativity in ion channel kinetics: activation free energy and kinetic mechanism of Shaker K+ channel.

    Science.gov (United States)

    Banerjee, Kinshuk; Das, Biswajit; Gangopadhyay, Gautam

    2013-04-28

    In this paper, we have explored generic criteria of cooperative behavior in ion channel kinetics treating it on the same footing with multistate receptor-ligand binding in a compact theoretical framework. We have shown that the characterization of cooperativity of ion channels in terms of the Hill coefficient violates the standard Hill criteria defined for allosteric cooperativity of ligand binding. To resolve the issue, an alternative measure of cooperativity is proposed here in terms of the cooperativity index that sets a unified criteria for both the systems. More importantly, for ion channel this index can be very useful to describe the cooperative kinetics as it can be readily determined from the experimentally measured ionic current combined with theoretical modelling. We have analyzed the correlation between the voltage value and slope of the voltage-activation curve at the half-activation point and consequently determined the standard free energy of activation of the ion channel using two well-established mechanisms of cooperativity, namely, Koshland-Nemethy-Filmer (KNF) and Monod-Wyman-Changeux (MWC) models. Comparison of the theoretical results for both the models with appropriate experimental data of mutational perturbation of Shaker K(+) channel supports the experimental fact that the KNF model is more suitable to describe the cooperative behavior of this class of ion channels, whereas the performance of the MWC model is unsatisfactory. We have also estimated the mechanistic performance through standard free energy of channel activation for both the models and proposed a possible functional disadvantage in the MWC scheme.

  12. Histamine selectively potentiates acid-sensing ion channel 1a.

    Science.gov (United States)

    Nagaeva, Elina I; Tikhonova, Tatiana B; Magazanik, Lev G; Tikhonov, Denis B

    2016-10-06

    Although acid-sensitive ion channels (ASICs) play an important role in brain functions, the exact mechanism of their physiological activation remain unclear. A possible answer to the intriguing question is that some presently unknown endogenous ligand(s) positively modulate ASICs and enhance their responses to physiologically significant level. In the present work we found that histamine selectively potentiates ASIC1a homomers in CHO cells. Action of histamine was particularly pronounced at modest acidifications, which cause minor response. At these conditions micromolar concentrations of histamine have provided significant potentiation of ASIC1a response. We proposed that histamine and possibly some other endogenous amines can positively modulate ASICs functions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Towards single Ce ion detection in a bulk crystal for the development of a single-ion qubit readout scheme

    OpenAIRE

    Yan, Ying

    2013-01-01

    The work presented in this thesis was concerned with investigating the relevant spectroscopic properties of Ce ions randomly doped in an Y2SiO5 crystal at low temperatures (around 4 K), in order to develop a technique and an experimental set-up to detect the fluorescence photons emitted by a single Ce ion. The aim of the work was to determine whether a single Ce ion (referred to as the readout ion) can be used as a local probe to sense the quantum state of a neighbouring single-ion qubit via ...

  14. Micro- and nanofabrication methods for ion channel reconstitution in bilayer lipid membranes

    Science.gov (United States)

    Tadaki, Daisuke; Yamaura, Daichi; Arata, Kohei; Ohori, Takeshi; Ma, Teng; Yamamoto, Hideaki; Niwano, Michio; Hirano-Iwata, Ayumi

    2018-03-01

    The self-assembled bilayer lipid membrane (BLM) forms the basic structure of the cell membrane and serves as a major barrier against ion movement. Ion channel proteins function as gated pores that permit ion permeation across the BLM. The reconstitution of ion channel proteins in artificially formed BLMs represents a well-defined system for investigating channel functions and screening drug effects on ion channels. In this review, we will discuss our recent microfabrication approaches to the formation of stable BLMs containing ion channel proteins as a potential platform for next-generation drug screening systems. BLMs formed in a microaperture having a tapered edge exhibited highly stable properties, such as a lifetime of ∼65 h and tolerance to solution changes even after the incorporation of the human ether-a-go-go-related gene (hERG) channel. We also explore a new method of efficiently incorporating human ion channels into BLMs by centrifugation. Our approaches to the formation of stable BLMs and efficient channel incorporation markedly improve the experimental efficiency of BLM reconstitution systems, leading to the realization of a BLM-based high-throughput platform for functional assays of various ion channels.

  15. Biophysics, Pathophysiology and Pharmacology of Ion Channel Gating Pores

    Directory of Open Access Journals (Sweden)

    Adrien eMoreau

    2014-04-01

    Full Text Available Voltage sensor domain (VSDs are a feature of voltage gated ion channel (VGICs and voltage sensitive proteins. They are composed of four transmembrane (TM segments (S1 to S4. Currents leaking through VSDs are called omega or gating pore currents.Gating pores are caused by mutations of the highly conserved positively charged amino acids in the S4 segment that disrupt interactions between the S4 segment and the gating charge transfer center (GCTC. The GCTC separates the intracellular and extracellular water crevices. The disruption of S4–GCTC interactions allows these crevices to communicate and create a fast activating and non-inactivating alternative cation-selective permeation pathway of low conductance, or a gating pore.Gating pore currents have recently been shown to cause periodic paralysis phenotypes. There is also increasing evidence that gating pores are linked to several other familial diseases. For example, gating pores in Nav1.5 and Kv7.2 channels may underlie mixed arrhythmias associated with dilated cardiomyopathy (DCM phenotypes and peripheral nerve hyperexcitability (PNH respectively. There is little evidence for the existence of gating pore blockers. Moreover, it is known that a number of toxins bind to the VSD of a specific domain of Na+ channels. These toxins may thus modulate gating pore currents. This focus on the VSD motif opens up a new area of research centered on developing molecules to treat a number of cell excitability disorders such as epilepsy, cardiac arrhythmias, and pain.The purpose of the present review is to summarize existing knowledge of the pathophysiology, biophysics, and pharmacology of gating pore currents and to serve as a guide for future studies aimed at improving our understanding of gating pores and their pathophysiological roles.

  16. The method and equipment for the investigation of ions orienting transmission through thin single crystals

    CERN Document Server

    Soroka, V Y; Maznij, Y O

    2003-01-01

    A new approach is proposed to solve the task of angular distribution measurement of intensity strongly differentiated ions fluxes. Channeling effect makes this problem a regular feature of experimental study of ions orientating transmission through thin single crystals. The approach is based on the use of ions additional scattering by an amorphous (polycrystalline) target after passing through single crystal. The additional target manipulator is joined with the principal target chamber equipment with three-axis goniometer. The manipulator allows to move an additional target in the vicinity of the accelerator beam within the limits of +- 3 sup 0 in all directions and allows to measure the angular distribution of scattered ions with the accuracy of 1 min. The method and equipment were tested at the single ended electrostatic accelerator (EG-5) using a proton beam. At present the measurements have been resumed at the tandem accelerator (EG-10) of the Institute for Nuclear Research of the Academy of Sciences of U...

  17. Beam propagation in Cu +-Na + ion exchange channel waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Villegas Vicencio, L. J.; Khomenko, A. V.; Salazar, D.; Marquez, H. [Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Baja California (Mexico); Porte, H. [Universite de Franche-Comte, UFR des Sciences et Techniques, Besancon, Cedex (France)

    2001-06-01

    We employ the fast Fourier transform beam propagation method to simulate the propagation of light in graded index channel waveguides, these have been obtained by solid state diffusion of copper ions in soda-lime glass substrates. Longitudinal propagation has been simulated, the input light beam has a gaussian profile. Two cases have been analyzed, in the first, the Gaussian beam is collinear center to center with respect to waveguide; in the second, a small lateral offset and angular tilt have been introduced. Modal beating and bending effects have been founded. We have proven the validity of our numerical results in detailed comparison with experimental data. [Spanish] Se ha empleado el metodo de propagacion de haces por la transformada rapida de Fourier para simular la propagacion de la luz en guias de onda de indice de gradiente. Estas han sido fabricadas por difusion de iones de cobre en estado solido en substratos de vidrios sodicos-calcicos. Se han simulado dos casos, el primero, el perfil de luz de entrada, que es gaussiano, es colineal centro a centro respecto al centro de la guia de ondas: el segundo, se ha dado un pequeno corrimiento lateral y una inclinacion angular. Como consecuencia de los casos anteriores se ha observado efectos de batimiento modal. Los resultados de la simulacion se han validado con resultados experimentales.

  18. Joint Single-Channel Speech Separation and Speaker Identification

    DEFF Research Database (Denmark)

    Mowlaee, Pejman; Saeidi, Rahim; Tan, Zheng-Hua

    2010-01-01

    In this paper, we propose a closed loop system to improve the performance of single-channel speech separation in a speaker independent scenario. The system is composed of two interconnected blocks: a separation block and a speaker identiſcation block. The improvement is accomplished by incorporat......In this paper, we propose a closed loop system to improve the performance of single-channel speech separation in a speaker independent scenario. The system is composed of two interconnected blocks: a separation block and a speaker identiſcation block. The improvement is accomplished...... by incorporating the speaker identities found by the speaker identiſcation block as additional information for the separation block, which converts the speaker-independent separation problem to a speaker-dependent one where the speaker codebooks are known. Simulation results show that the closed loop system...

  19. Evaluation of an automated single-channel sleep staging algorithm

    OpenAIRE

    Kaplan, Richard; Wang,Ying; Loparo,Kenneth; Kelly,Monica

    2015-01-01

    Ying Wang,1 Kenneth A Loparo,1,2 Monica R Kelly,3 Richard F Kaplan1 1General Sleep Corporation, Euclid, OH, 2Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, OH, 3Department of Psychology, University of Arizona, Tucson, AZ, USA Background: We previously published the performance evaluation of an automated electroencephalography (EEG)-based single-channel sleep–wake detection algorithm called Z-ALG used by the Zmachine® s...

  20. Wicking: a rapid method for manually inserting ion channels into planar lipid bilayers.

    Science.gov (United States)

    Costa, Justin A; Nguyen, Dac A; Leal-Pinto, Edgar; Gordon, Ronald E; Hanss, Basil

    2013-01-01

    The planar lipid bilayer technique has a distinguished history in electrophysiology but is arguably the most technically difficult and time-consuming method in the field. Behind this is a lack of experimental consistency between laboratories, the challenges associated with painting unilamellar bilayers, and the reconstitution of ion channels into them. While there has be a trend towards automation of this technique, there remain many instances where manual bilayer formation and subsequent membrane protein insertion is both required and advantageous. We have developed a comprehensive method, which we have termed "wicking", that greatly simplifies many experimental aspects of the lipid bilayer system. Wicking allows one to manually insert ion channels into planar lipid bilayers in a matter of seconds, without the use of a magnetic stir bar or the addition of other chemicals to monitor or promote the fusion of proteoliposomes. We used the wicking method in conjunction with a standard membrane capacitance test and a simple method of proteoliposome preparation that generates a heterogeneous mixture of vesicle sizes. To determine the robustness of this technique, we selected two ion channels that have been well characterized in the literature: CLIC1 and α-hemolysin. When reconstituted using the wicking technique, CLIC1 showed biophysical characteristics congruent with published reports from other groups; and α-hemolysin demonstrated Type A and B events when threading single stranded DNA through the pore. We conclude that the wicking method gives the investigator a high degree of control over many aspects of the lipid bilayer system, while greatly reducing the time required for channel reconstitution.

  1. Wicking: a rapid method for manually inserting ion channels into planar lipid bilayers.

    Directory of Open Access Journals (Sweden)

    Justin A Costa

    Full Text Available The planar lipid bilayer technique has a distinguished history in electrophysiology but is arguably the most technically difficult and time-consuming method in the field. Behind this is a lack of experimental consistency between laboratories, the challenges associated with painting unilamellar bilayers, and the reconstitution of ion channels into them. While there has be a trend towards automation of this technique, there remain many instances where manual bilayer formation and subsequent membrane protein insertion is both required and advantageous. We have developed a comprehensive method, which we have termed "wicking", that greatly simplifies many experimental aspects of the lipid bilayer system. Wicking allows one to manually insert ion channels into planar lipid bilayers in a matter of seconds, without the use of a magnetic stir bar or the addition of other chemicals to monitor or promote the fusion of proteoliposomes. We used the wicking method in conjunction with a standard membrane capacitance test and a simple method of proteoliposome preparation that generates a heterogeneous mixture of vesicle sizes. To determine the robustness of this technique, we selected two ion channels that have been well characterized in the literature: CLIC1 and α-hemolysin. When reconstituted using the wicking technique, CLIC1 showed biophysical characteristics congruent with published reports from other groups; and α-hemolysin demonstrated Type A and B events when threading single stranded DNA through the pore. We conclude that the wicking method gives the investigator a high degree of control over many aspects of the lipid bilayer system, while greatly reducing the time required for channel reconstitution.

  2. Effects of Calcium Ion, Calpains, and Calcium Channel Blockers on Retinitis Pigmentosa

    Directory of Open Access Journals (Sweden)

    Mitsuru Nakazawa

    2011-01-01

    Full Text Available Recent advances in molecular genetic studies have revealed many of the causative genes of retinitis pigmentosa (RP. These achievements have provided clues to the mechanisms of photoreceptor degeneration in RP. Apoptosis is known to be a final common pathway in RP and, therefore, a possible therapeutic target for photoreceptor rescue. However, apoptosis is not a single molecular cascade, but consists of many different reactions such as caspase-dependent and caspase-independent pathways commonly leading to DNA fractionation and cell death. The intracellular concentration of calcium ions is also known to increase in apoptosis. These findings suggest that calpains, one of the calcium-dependent proteinases, play some roles in the process of photoreceptor apoptosis and that calcium channel antagonists may potentially inhibit photoreceptor apoptosis. Herein, the effects of calpains and calcium channel antagonists on photoreceptor degeneration are reviewed.

  3. Lipid Bilayer – mediated Regulation of Ion Channel Function by Amphiphilic Drugs

    DEFF Research Database (Denmark)

    Lundbæk, Jens August

    2008-01-01

    that are transforming it into a subject of quantitative science. It is described how the hydrophobic interactions between a membrane protein and the host lipid bilayer provide the basis for a mechanism, whereby protein function is regulated by the bilayer physical properties. The use of gramicidin channels as single-molecule......Drugs that at pico- to nanomolar concentration regulate ion channel function by high-affi nity binding to their cognate receptor often have a “ secondary pharmacology, ” in which the same molecule at low micromolar concentrations regulates a diversity of membrane proteins in an apparently...... nonspecifi c manner. It has long been suspected that this promiscuous regulation of membrane protein function could be due to changes in the physical properties of the host lipid bilayer, but the underlying mechanisms have been poorly understood. Given that pharmacological research often involves drug...

  4. Three homologous subunits form a high affinity peptide-gated ion channel in Hydra

    DEFF Research Database (Denmark)

    Dürrnagel, Stefan; Kuhn, Anne; Tsiairis, Charisios D

    2010-01-01

    Recently, three ion channel subunits of the degenerin (DEG)/epithelial Na(+) channel (ENaC) gene family have been cloned from the freshwater polyp Hydra magnipapillata, the Hydra Na(+) channels (HyNaCs) 2-4. Two of them, HyNaC2 and HyNaC3, co-assemble to form an ion channel that is gated by the n......Recently, three ion channel subunits of the degenerin (DEG)/epithelial Na(+) channel (ENaC) gene family have been cloned from the freshwater polyp Hydra magnipapillata, the Hydra Na(+) channels (HyNaCs) 2-4. Two of them, HyNaC2 and HyNaC3, co-assemble to form an ion channel that is gated......NaC2/3/5 channel has altered pore properties and amiloride affinity, more similarly to other DEG/ENaC channels. Collectively, our results suggest that the three homologous subunits HyNaC2, -3, and -5 form a peptide-gated ion channel in Hydra that could contribute to fast synaptic transmission....

  5. Coherent Control of a Single Trapped Rydberg Ion

    Science.gov (United States)

    Higgins, Gerard; Pokorny, Fabian; Zhang, Chi; Bodart, Quentin; Hennrich, Markus

    2017-12-01

    Trapped Rydberg ions are a promising novel approach to quantum computing and simulations. They are envisaged to combine the exquisite control of trapped ion qubits with the fast two-qubit Rydberg gates already demonstrated in neutral atom experiments. Coherent Rydberg excitation is a key requirement for these gates. Here, we carry out the first coherent Rydberg excitation of an ion and perform a single-qubit Rydberg gate, thus demonstrating basic elements of a trapped Rydberg ion quantum computer.

  6. Ion solvation by channel carbonyls characterized by 17O solid-state NMR at 21 T.

    Science.gov (United States)

    Hu, Jun; Chekmenev, Eduard Y; Gan, Zhehong; Gor'kov, Peter L; Saha, Saikat; Brey, William W; Cross, Timothy A

    2005-08-31

    Recently available ultrahigh magnetic fields offer new opportunities for studies of quadrupole nuclei in biological solids because of the dramatic enhancement in sensitivity and resolution associated with the reduction of second-order quadrupole interactions. Here, we present a new approach for understanding the function and energetics of ion solvation in channels using solid-state 17O NMR spectroscopy of single-site 17O-labeled gramicidin A. The chemical shift and quadrupole coupling parameters obtained in powder samples of lyophilized material are similar to those shown in the literature for carbonyl oxygens. In lipid bilayers, it is found that the carbonyl 17O anisotropic chemical shift of Leu10, one of the three carbonyl oxygens contributing to the ion binding site in gramicidin A, is altered by 40 ppm when K+ ion binds to the channel, demonstrating a high sensitivity to such interactions. Moreover, considering the large breadth of the carbonyl 17O chemical shift (>500 ppm), the recording of anisotropic 17O chemical shifts in bilayers aligned with respect to magnetic field B0 offers high-quality structural restraints similar to 15N and 13C anisotropic chemical shifts.

  7. Differential subcellular distribution of ion channels and the diversity of neuronal function.

    Science.gov (United States)

    Nusser, Zoltan

    2012-06-01

    Following the astonishing molecular diversity of voltage-gated ion channels that was revealed in the past few decades, the ion channel repertoire expressed by neurons has been implicated as the major factor governing their functional heterogeneity. Although the molecular structure of ion channels is a key determinant of their biophysical properties, their subcellular distribution and densities on the surface of nerve cells are just as important for fulfilling functional requirements. Recent results obtained with high resolution quantitative localization techniques revealed complex, subcellular compartment-specific distribution patterns of distinct ion channels. Here I suggest that within a given neuron type every ion channel has a unique cell surface distribution pattern, with the functional consequence that this dramatically increases the computational power of nerve cells. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Probing Ion Channel Structure and Function Using Light-Sensitive Amino Acids.

    Science.gov (United States)

    Klippenstein, Viktoria; Mony, Laetitia; Paoletti, Pierre

    2018-04-10

    Approaches to remotely control and monitor ion channel operation with light are expanding rapidly in the biophysics and neuroscience fields. A recent development directly introduces light sensitivity into proteins by utilizing photosensitive unnatural amino acids (UAAs) incorporated using the genetic code expansion technique. The introduction of UAAs results in unique molecular level control and, when combined with the maximal spatiotemporal resolution and poor invasiveness of light, enables direct manipulation and interrogation of ion channel functionality. Here, we review the diverse applications of light-sensitive UAAs in two superfamilies of ion channels (voltage- and ligand-gated ion channels; VGICs and LGICs) and summarize existing UAA tools, their mode of action, potential, caveats, and technical considerations to their use in illuminating ion channel structure and function. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Ion channels and their molecular environments--glimpses and insights from functional proteomics.

    Science.gov (United States)

    Schulte, Uwe; Müller, Catrin S; Fakler, Bernd

    2011-04-01

    There is emerging evidence from functional analyses and molecular research that the role of ion channels in cell physiology is not only determined by the pore-forming subunits but also depends on their molecular environment. Accordingly, the local and temporal specificity of channel-mediated signal transduction is thought to result from association of these integral membrane proteins with distinct sets of partner proteins or from their assembly into stable macromolecular complexes. As yet, however, the molecular environments of most ion channels have escaped direct investigation, mostly because of technical limitations that precluded their comprehensive molecular analysis. Recent advances in proteomic technologies promoted an experimental workflow that combines affinity purification of readily solubilized protein complexes with quantitative high-resolution mass spectrometry and that offers access to channel-associated protein environments. We will discuss advantages and limitations of this proteomic approach, as well as the results obtained from its application to several types of ion channels including Cav channels, Kv channels, HCN channels, AMPA-type glutamate receptors and GABA(B) receptors. The respective results indicate that the approach provides unbiased and comprehensive information on (i) the subunit composition of channel cores including identification of auxiliary subunits, on (ii) the assembly of channel cores into 'signaling entities' and on (iii) integration of channels into extended protein networks. Thus, quantitative proteomics opens a new window for the investigation of ion channels and their function in the context of various types of cell. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Sodium ion channel mutations in glioblastoma patients correlate with shorter survival

    Directory of Open Access Journals (Sweden)

    Velculescu Victor E

    2011-02-01

    Full Text Available Abstract Background Glioblastoma Multiforme (GBM is the most common and invasive astrocytic tumor associated with dismal prognosis. Treatment for GBM patients has advanced, but the median survival remains a meager 15 months. In a recent study, 20,000 genes from 21 GBM patients were sequenced that identified frequent mutations in ion channel genes. The goal of this study was to determine whether ion channel mutations have a role in disease progression and whether molecular targeting of ion channels is a promising therapeutic strategy for GBM patients. Therefore, we compared GBM patient survival on the basis of presence or absence of mutations in calcium, potassium and sodium ion transport genes. Cardiac glycosides, known sodium channel inhibitors, were then tested for their ability to inhibit GBM cell proliferation. Results Nearly 90% of patients showed at least one mutation in ion transport genes. GBM patients with mutations in sodium channels showed a significantly shorter survival compared to patients with no sodium channel mutations, whereas a similar comparison based on mutational status of calcium or potassium ion channel mutations showed no survival differences. Experimentally, targeting GBM cells with cardiac glycosides such as digoxin and ouabain demonstrated preferential cytotoxicity against U-87 and D54 GBM cells compared to non-tumor astrocytes (NTAs. Conclusions These pilot studies of GBM patients with sodium channel mutations indicate an association with a more aggressive disease and significantly shorter survival. Moreover, inhibition of GBM cells by ion channel inhibitors such as cardiac glycosides suggest a therapeutic strategy with relatively safe drugs for targeting GBM ion channel mutations. Key Words: glioblastoma multiforme, ion channels, mutations, small molecule inhibitors, cardiac glycosides.

  11. Stochastic differential equation models for ion channel noise in Hodgkin-Huxley neurons

    OpenAIRE

    Goldwyn, Joshua H.; Imennov, Nikita S.; Famulare, Michael; Shea-Brown, Eric

    2011-01-01

    The random transitions of ion channels between conducting and nonconducting states generate a source of internal fluctuations in a neuron, known as channel noise. The standard method for modeling the states of ion channels nonlinearly couples continuous-time Markov chains to a differential equation for voltage. Beginning with the work of R. F. Fox and Y.-N. Lu [Phys. Rev. E 49, 3421 (1994)], there have been attempts to generate simpler models that use stochastic differential equation (SDEs) t...

  12. Macroscopic kinetics of pentameric ligand gated ion channels: comparisons between two prokaryotic channels and one eukaryotic channel.

    Directory of Open Access Journals (Sweden)

    Kurt T Laha

    Full Text Available Electrochemical signaling in the brain depends on pentameric ligand-gated ion channels (pLGICs. Recently, crystal structures of prokaryotic pLGIC homologues from Erwinia chrysanthemi (ELIC and Gloeobacter violaceus (GLIC in presumed closed and open channel states have been solved, which provide insight into the structural mechanisms underlying channel activation. Although structural studies involving both ELIC and GLIC have become numerous, thorough functional characterizations of these channels are still needed to establish a reliable foundation for comparing kinetic properties. Here, we examined the kinetics of ELIC and GLIC current activation, desensitization, and deactivation and compared them to the GABAA receptor, a prototypic eukaryotic pLGIC. Outside-out patch-clamp recordings were performed with HEK-293T cells expressing ELIC, GLIC, or α1β2γ2L GABAA receptors, and ultra-fast ligand application was used. In response to saturating agonist concentrations, we found both ELIC and GLIC current activation were two to three orders of magnitude slower than GABAA receptor current activation. The prokaryotic channels also had slower current desensitization on a timescale of seconds. ELIC and GLIC current deactivation following 25 s pulses of agonist (cysteamine and pH 4.0 buffer, respectively were relatively fast with time constants of 24.9 ± 5.1 ms and 1.2 ± 0.2 ms, respectively. Surprisingly, ELIC currents evoked by GABA activated very slowly with a time constant of 1.3 ± 0.3 s and deactivated even slower with a time constant of 4.6 ± 1.2 s. We conclude that the prokaryotic pLGICs undergo similar agonist-mediated gating transitions to open and desensitized states as eukaryotic pLGICs, supporting their use as experimental models. Their uncharacteristic slow activation, slow desensitization and rapid deactivation time courses are likely due to differences in specific structural elements, whose future identification may help uncover

  13. Improvement of Source Number Estimation Method for Single Channel Signal.

    Directory of Open Access Journals (Sweden)

    Zhi Dong

    Full Text Available Source number estimation methods for single channel signal have been investigated and the improvements for each method are suggested in this work. Firstly, the single channel data is converted to multi-channel form by delay process. Then, algorithms used in the array signal processing, such as Gerschgorin's disk estimation (GDE and minimum description length (MDL, are introduced to estimate the source number of the received signal. The previous results have shown that the MDL based on information theoretic criteria (ITC obtains a superior performance than GDE at low SNR. However it has no ability to handle the signals containing colored noise. On the contrary, the GDE method can eliminate the influence of colored noise. Nevertheless, its performance at low SNR is not satisfactory. In order to solve these problems and contradictions, the work makes remarkable improvements on these two methods on account of the above consideration. A diagonal loading technique is employed to ameliorate the MDL method and a jackknife technique is referenced to optimize the data covariance matrix in order to improve the performance of the GDE method. The results of simulation have illustrated that the performance of original methods have been promoted largely.

  14. Single ion counting with a MCP (microchannel plate) detector

    Energy Technology Data Exchange (ETDEWEB)

    Tawara, Hiroko; Sasaki, Shinichi; Miyajima, Mitsuhiro [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan); Shibamura, Eido

    1996-07-01

    In this study, a single-ion-counting method using alpha-particle-impact ionization of Ar atoms is demonstrated and the preliminary {epsilon}{sub mcp} for Ar ions with incident energies of 3 to 4.7 keV is determined. The single-ion counting by the MCP is aimed to be performed under experimental conditions as follows: (1) A signal from the MCP is reasonably identified as incidence of single Ar-ion. (2) The counting rate of Ar ions is less than 1 s{sup -1}. (3) The incident Ar ions are not focused on a small part of an active area of the MCP, namely, {epsilon}{sub mcp} is determined with respect to the whole active area of the MCP. So far, any absolute detection efficiency has not been reported under these conditions. (J.P.N.)

  15. Gating kinetics of batrachotoxin-modified sodium channels in neuroblastoma cells determined from single-channel measurements

    OpenAIRE

    Huang, L.Y.; Moran, N.; Ehrenstein, G.

    1984-01-01

    We have observed the opening and closing of single batrachotoxin (BTX)-modified sodium channels in neuroblastoma cells using the patch-clamp method. The conductance of a single BTX-modified channel is approximately 10 pS. At a given membrane potential, the channels are open longer than are normal sodium channels. As is the case for normal sodium channels, the open dwell times become longer as the membrane is depolarized. For membrane potentials more negative than about -70 mV, histograms of b...

  16. Single track regime in ion implanted polystyrene

    Energy Technology Data Exchange (ETDEWEB)

    Licciardello, A.; Puglisi, O.; Calcagno, L.; Foti, G.

    1988-05-01

    The molecular weight distribution (MWD) of nearly monodisperse polystyrene thin films is heavily affected by ion bombardment. The main effect is an increase of the MW and is detectable at fluences as low as 10/sup 11/ ions cm/sup -2/ for 400 keV Ar/sup +/ bombardment. A statistical model, here outlined for the first time, allows us the predict the size distribution of these high MW components. From the analysis of the MWD curves one can extract useful information concerning the lateral dimensions of the ion tracks.

  17. Interaction of a dinoflagellate neurotoxin with voltage-activated ion channels in a marine diatom.

    Science.gov (United States)

    Kitchen, Sheila A; Bourdelais, Andrea J; Taylor, Alison R

    2018-01-01

    The potent neurotoxins produced by the harmful algal bloom species Karenia brevis are activators of sodium voltage-gated channels (VGC) in animals, resulting in altered channel kinetics and membrane hyperexcitability. Recent biophysical and genomic evidence supports widespread presence of homologous sodium (Na + ) and calcium (Ca 2+ ) permeable VGCs in unicellular algae, including marine phytoplankton. We therefore hypothesized that VGCs of these phytoplankton may be an allelopathic target for waterborne neurotoxins produced by K. brevis blooms that could lead to ion channel dysfunction and disruption of signaling in a similar manner to animal Na + VGCs. We examined the interaction of brevetoxin-3 (PbTx-3), a K. brevis neurotoxin, with the Na + /Ca 2+ VGC of the non-toxic diatom Odontella sinensi s using electrophysiology. Single electrode current- and voltage- clamp recordings from O. sinensis in the presence of PbTx-3 were used to examine the toxin's effect on voltage gated Na + /Ca 2+ currents. In silico analysis was used to identify the putative PbTx binding site in the diatoms. We identified Na + /Ca 2+ VCG homologs from the transcriptomes and genomes of 12 diatoms, including three transcripts from O. sinensis and aligned them with site-5 of Na + VGCs, previously identified as the PbTx binding site in animals. Up to 1 µM PbTx had no effect on diatom resting membrane potential or membrane excitability. The kinetics of fast inward Na + /Ca 2+ currents that underlie diatom action potentials were also unaffected. However, the peak inward current was inhibited by 33%, delayed outward current was inhibited by 25%, and reversal potential of the currents shifted positive, indicating a change in permeability of the underlying channels. Sequence analysis showed a lack of conservation of the PbTx binding site in diatom VGC homologs, many of which share molecular features more similar to single-domain bacterial Na + /Ca 2+ VGCs than the 4-domain eukaryote channels

  18. Phylogenomics of Ligand-Gated Ion Channels Predicts Monepantel Effect

    Science.gov (United States)

    Rufener, Lucien; Keiser, Jennifer; Kaminsky, Ronald; Mäser, Pascal; Nilsson, Daniel

    2010-01-01

    The recently launched veterinary anthelmintic drench for sheep (Novartis Animal Health Inc., Switzerland) containing the nematocide monepantel represents a new class of anthelmintics: the amino-acetonitrile derivatives (AADs), much needed in view of widespread resistance to the classical drugs. Recently, it was shown that the ACR-23 protein in Caenorhabditis elegans and a homologous protein, MPTL-1 in Haemonchus contortus, are potential targets for AAD action. Both proteins belong to the DEG-3 subfamily of acetylcholine receptors, which are thought to be nematode-specific, and different from those targeted by the imidazothiazoles (e.g. levamisole). Here we provide further evidence that Cel-ACR-23 and Hco-MPTL-1-like subunits are involved in the monepantel-sensitive phenotype. We performed comparative genomics of ligand-gated ion channel genes from several nematodes and subsequently assessed their sensitivity to anthelmintics. The nematode species in the Caenorhabditis genus, equipped with ACR-23/MPTL-1-like receptor subunits, are sensitive to monepantel (EC5043 µM). Genome sequence information has long been used to identify putative targets for therapeutic intervention. We show how comparative genomics can be applied to predict drug sensitivity when molecular targets of a compound are known or suspected. PMID:20838602

  19. Ion-imprinted nanoparticles for the concurrent estimation of Pb(II) and Cu(II) ions over a two channel surface plasmon resonance-based fiber optic platform

    Science.gov (United States)

    Shrivastav, Anand Mohan; Gupta, Banshi D.

    2018-01-01

    We report the design, fabrication, and characterization of an optical fiber sensor based on the surface plasmon resonance (SPR) technique for the simultaneous determination of lead (Pb) and copper (Cu) metal ions in aqueous samples. Two cascade channels over a single optical fiber are fabricated by removing cladding from two well-separated regions of the fiber. SPR working as a transducing mechanism for the sensor is realized by coating thin films of copper and silver over unclad cores of channel I and channel II, respectively. Ion-imprinted nanoparticles for both ions are separately synthesized and coated over the metal-coated unclad cores of the fiber as the recognition layers for sensor fabrication. A first channel having layer of Pb(II) ion-imprinted nanoparticles detects Pb(II) ions and a second channel having layer of Cu(II) ion-imprinted nanoparticles are used for the detection of Cu(II) ions. Both channels are characterized using the wavelength interrogation method. The sensor operates in the range between 0 to 1000 μg/L and 0 to 1000 mg/L for Pb(II) and Cu(II) ions, respectively. These ranges cover water resources and the human body for these ions. The sensitivities of channel I and channel II are found to be 8.19×104 nm/(μg/L) and 4.07×105 nm/(mg/L) near the lowest concentration of Pb(II) and Cu(II) ions, respectively. The sensor can detect concentrations of Pb(II) and Cu(II) ions as low as 4.06 × 10-12 g/L and 8.18 × 10-10 g/L, respectively, which are the least among the reported values in the literature. Further, the probe is simple, cost effective, highly selective, and applicable for online monitoring and remote sensing.

  20. Inhibition of Sodium Ion Channel Function with Truncated Forms of Batrachotoxin.

    Science.gov (United States)

    Toma, Tatsuya; Logan, Matthew M; Menard, Frederic; Devlin, A Sloan; Du Bois, J

    2016-10-19

    A novel family of small molecule inhibitors of voltage-gated sodium channels (Na V s) based on the structure of batrachotoxin (BTX), a well-known channel agonist, is described. Protein mutagenesis and electrophysiology experiments reveal the binding site as the inner pore region of the channel, analogous to BTX, alkaloid toxins, and local anesthetics. Homology modeling of the eukaryotic channel based on recent crystallographic analyses of bacterial Na V s suggests a mechanism of action for ion conduction block.

  1. A Timing Single Channel Analyzer with pileup rejection

    International Nuclear Information System (INIS)

    Lauch, J.; Nachbar, H.U.

    1981-07-01

    A Timing Single Channel Analyzer is described as normally used in nuclear physics applications for measuring certain ranges of energy spectra. The unit accepts unipolar or bipolar gaussian shaped or rectangular pulses and includes a special pileup rejection circuit. Because of its good timing performance high resolution timing and coincidence measurements are possible. The differential analyzer, trigger and timing modes and the function of external strobe and gate signals are explained. Parts of the circuit are illustrated by help of block diagrams and pulse schematics. An essential part of the unit is the pileup rejection circuit. Following theoretical reflections the circuit is described and some measurement results are reported. (orig.) [de

  2. Synchronization of uncertain chaotic systems using a single transmission channel

    International Nuclear Information System (INIS)

    Feng Yong; Yu Xinghuo; Sun Lixia

    2008-01-01

    This paper proposes a robust sliding mode observer for synchronization of uncertain chaotic systems with multi-nonlinearities. A new control strategy is proposed for the construction of the robust sliding mode observer, which can avoid the strict conditions in the design process of Walcott-Zak observer. A new method of multi-dimensional signal transmission via single transmission channel is proposed and applied to chaos synchronization of uncertain chaotic systems with multi-nonlinearities. The simulation results are presented to validate the method

  3. Molecular mechanism of ATP binding and ion channel activation in P2X receptors

    Energy Technology Data Exchange (ETDEWEB)

    Hattori, Motoyuki; Gouaux, Eric (Oregon HSU)

    2012-10-24

    P2X receptors are trimeric ATP-activated ion channels permeable to Na{sup +}, K{sup +} and Ca{sup 2+}. The seven P2X receptor subtypes are implicated in physiological processes that include modulation of synaptic transmission, contraction of smooth muscle, secretion of chemical transmitters and regulation of immune responses. Despite the importance of P2X receptors in cellular physiology, the three-dimensional composition of the ATP-binding site, the structural mechanism of ATP-dependent ion channel gating and the architecture of the open ion channel pore are unknown. Here we report the crystal structure of the zebrafish P2X4 receptor in complex with ATP and a new structure of the apo receptor. The agonist-bound structure reveals a previously unseen ATP-binding motif and an open ion channel pore. ATP binding induces cleft closure of the nucleotide-binding pocket, flexing of the lower body {beta}-sheet and a radial expansion of the extracellular vestibule. The structural widening of the extracellular vestibule is directly coupled to the opening of the ion channel pore by way of an iris-like expansion of the transmembrane helices. The structural delineation of the ATP-binding site and the ion channel pore, together with the conformational changes associated with ion channel gating, will stimulate development of new pharmacological agents.

  4. Mimicking multichannel scattering with single-channel approaches

    Science.gov (United States)

    Grishkevich, Sergey; Schneider, Philipp-Immanuel; Vanne, Yulian V.; Saenz, Alejandro

    2010-02-01

    The collision of two atoms is an intrinsic multichannel (MC) problem, as becomes especially obvious in the presence of Feshbach resonances. Due to its complexity, however, single-channel (SC) approximations, which reproduce the long-range behavior of the open channel, are often applied in calculations. In this work the complete MC problem is solved numerically for the magnetic Feshbach resonances (MFRs) in collisions between generic ultracold Li6 and Rb87 atoms in the ground state and in the presence of a static magnetic field B. The obtained MC solutions are used to test various existing as well as presently developed SC approaches. It was found that many aspects even at short internuclear distances are qualitatively well reflected. This can be used to investigate molecular processes in the presence of an external trap or in many-body systems that can be feasibly treated only within the framework of the SC approximation. The applicability of various SC approximations is tested for a transition to the absolute vibrational ground state around an MFR. The conformance of the SC approaches is explained by the two-channel approximation for the MFR.

  5. Mimicking multichannel scattering with single-channel approaches

    International Nuclear Information System (INIS)

    Grishkevich, Sergey; Schneider, Philipp-Immanuel; Vanne, Yulian V.; Saenz, Alejandro

    2010-01-01

    The collision of two atoms is an intrinsic multichannel (MC) problem, as becomes especially obvious in the presence of Feshbach resonances. Due to its complexity, however, single-channel (SC) approximations, which reproduce the long-range behavior of the open channel, are often applied in calculations. In this work the complete MC problem is solved numerically for the magnetic Feshbach resonances (MFRs) in collisions between generic ultracold 6 Li and 87 Rb atoms in the ground state and in the presence of a static magnetic field B. The obtained MC solutions are used to test various existing as well as presently developed SC approaches. It was found that many aspects even at short internuclear distances are qualitatively well reflected. This can be used to investigate molecular processes in the presence of an external trap or in many-body systems that can be feasibly treated only within the framework of the SC approximation. The applicability of various SC approximations is tested for a transition to the absolute vibrational ground state around an MFR. The conformance of the SC approaches is explained by the two-channel approximation for the MFR.

  6. Expression and distribution of voltage-gated ion channels in ferret sinoatrial node.

    Science.gov (United States)

    Brahmajothi, Mulugu V; Morales, Michael J; Campbell, Donald L; Steenbergen, Charles; Strauss, Harold C

    2010-10-01

    Spontaneous diastolic depolarization in the sinoatrial (SA) node enables it to serve as pacemaker of the heart. The variable cell morphology within the SA node predicts that ion channel expression would be heterogeneous and different from that in the atrium. To evaluate ion channel heterogeneity within the SA node, we used fluorescent in situ hybridization to examine ion channel expression in the ferret SA node region and atrial appendage. SA nodal cells were distinguished from surrounding cardiac myocytes by expression of the slow (SA node) and cardiac (surrounding tissue) forms of troponin I. Nerve cells in the sections were identified by detection of GAP-43 and cytoskeletal middle neurofilament. Transcript expression was characterized for the 4 hyperpolarization-activated cation channels, 6 voltage-gated Na(+) channels, 3 voltage-gated Ca(2+) channels, 24 voltage-gated K(+) channel α-subunits, and 3 ancillary subunits. To ensure that transcript expression was representative of protein expression, immunofluorescence was used to verify localization patterns of voltage-dependent K(+) channels. Colocalizations were performed to observe any preferential patterns. Some overlapping and nonoverlapping binding patterns were observed. Measurement of different cation channel transcripts showed heterogeneous expression with many different patterns of expression, attesting to the complexity of electrical activity in the SA node. This study provides insight into the possible role ion channel heterogeneity plays in SA node pacemaker activity.

  7. GsMTx4: Mechanism of Inhibiting Mechanosensitive Ion Channels.

    Science.gov (United States)

    Gnanasambandam, Radhakrishnan; Ghatak, Chiranjib; Yasmann, Anthony; Nishizawa, Kazuhisa; Sachs, Frederick; Ladokhin, Alexey S; Sukharev, Sergei I; Suchyna, Thomas M

    2017-01-10

    GsMTx4 is a spider venom peptide that inhibits cationic mechanosensitive channels (MSCs). It has six lysine residues that have been proposed to affect membrane binding. We synthesized six analogs with single lysine-to-glutamate substitutions and tested them against Piezo1 channels in outside-out patches and independently measured lipid binding. Four analogs had ∼20% lower efficacy than the wild-type (WT) peptide. The equilibrium constants calculated from the rates of inhibition and washout did not correlate with the changes in inhibition. The lipid association strength of the WT GsMTx4 and the analogs was determined by tryptophan autofluorescence quenching and isothermal calorimetry with membrane vesicles and showed no significant differences in binding energy. Tryptophan fluorescence-quenching assays showed that both WT and analog peptides bound superficially near the lipid-water interface, although analogs penetrated deeper. Peptide-lipid association, as a function of lipid surface pressure, was investigated in Langmuir monolayers. The peptides occupied a large fraction of the expanded monolayer area, but that fraction was reduced by peptide expulsion as the pressure approached the monolayer-bilayer equivalence pressure. Analogs with compromised efficacy had pressure-area isotherms with steeper slopes in this region, suggesting tighter peptide association. The pressure-dependent redistribution of peptide between "deep" and "shallow" binding modes was supported by molecular dynamics (MD) simulations of the peptide-monolayer system under different area constraints. These data suggest a model placing GsMTx4 at the membrane surface, where it is stabilized by the lysines, and occupying a small fraction of the surface area in unstressed membranes. When applied tension reduces lateral pressure in the lipids, the peptides penetrate deeper acting as "area reservoirs" leading to partial relaxation of the outer monolayer, thereby reducing the effective magnitude of

  8. Neurological channelopathies: new insights into disease mechanisms and ion channel function

    Science.gov (United States)

    Kullmann, Dimitri M; Waxman, Stephen G

    2010-01-01

    Inherited mutations of ion channels provide unique insights into the mechanisms of many neurological diseases. However, they also provide a wealth of new information on the fundamental biology of ion channels and on neuron and muscle function. Ion channel genes are continuing to be discovered by positional cloning of disease loci. And some mutations provide unique tools to manipulate signalling cascades, which cannot be achieved by pharmacological intervention. Here we highlight some unanswered questions, and some promising areas for research that will likely lead to a fuller understanding of the link from molecular lesion to disease. PMID:20375141

  9. Acute single channel EEG predictors of cognitive function after stroke.

    Directory of Open Access Journals (Sweden)

    Anna Aminov

    Full Text Available Early and accurate identification of factors that predict post-stroke cognitive outcome is important to set realistic targets for rehabilitation and to guide patients and their families accordingly. However, behavioral measures of cognition are difficult to obtain in the acute phase of recovery due to clinical factors (e.g. fatigue and functional barriers (e.g. language deficits. The aim of the current study was to test whether single channel wireless EEG data obtained acutely following stroke could predict longer-term cognitive function.Resting state Relative Power (RP of delta, theta, alpha, beta, delta/alpha ratio (DAR, and delta/theta ratio (DTR were obtained from a single electrode over FP1 in 24 participants within 72 hours of a first-ever stroke. The Montreal Cognitive Assessment (MoCA was administered at 90-days post-stroke. Correlation and regression analyses were completed to identify relationships between 90-day cognitive function and electrophysiological data, neurological status, and demographic characteristics at admission.Four acute qEEG indices demonstrated moderate to high correlations with 90-day MoCA scores: DTR (r = -0.57, p = 0.01, RP theta (r = 0.50, p = 0.01, RP delta (r = -0.47, p = 0.02, and DAR (r = -0.45, p = 0.03. Acute DTR (b = -0.36, p < 0.05 and stroke severity on admission (b = -0.63, p < 0.01 were the best linear combination of predictors of MoCA scores 90-days post-stroke, accounting for 75% of variance.Data generated by a single pre-frontal electrode support the prognostic value of acute DAR, and identify DTR as a potential marker of post-stroke cognitive outcome. Use of single channel recording in an acute clinical setting may provide an efficient and valid predictor of cognitive function after stroke.

  10. Single-channel stereoscopic ophthalmology microscope based on TRD

    Science.gov (United States)

    Radfar, Edalat; Park, Jihoon; Lee, Sangyeob; Ha, Myungjin; Yu, Sungkon; Jang, Seulki; Jung, Byungjo

    2016-03-01

    A stereoscopic imaging modality was developed for the application of ophthalmology surgical microscopes. A previous study has already introduced a single-channel stereoscopic video imaging modality based on a transparent rotating deflector (SSVIM-TRD), in which two different view angles, image disparity, are generated by imaging through a transparent rotating deflector (TRD) mounted on a stepping motor and is placed in a lens system. In this case, the image disparity is a function of the refractive index and the rotation angle of TRD. Real-time single-channel stereoscopic ophthalmology microscope (SSOM) based on the TRD is improved by real-time controlling and programming, imaging speed, and illumination method. Image quality assessments were performed to investigate images quality and stability during the TRD operation. Results presented little significant difference in image quality in terms of stability of structural similarity (SSIM). A subjective analysis was performed with 15 blinded observers to evaluate the depth perception improvement and presented significant improvement in the depth perception capability. Along with all evaluation results, preliminary results of rabbit eye imaging presented that the SSOM could be utilized as an ophthalmic operating microscopes to overcome some of the limitations of conventional ones.

  11. Testing the single degenerate channel for supernova Ia

    Science.gov (United States)

    Parsons, Steven

    2014-10-01

    The progenitors of supernova Ia are close binaries containing white dwarfs. Of crucial importance to the evolution of these systems is how much material the white dwarf can stably accrete and hence grow in mass. This occurs during a short-lived intense phase of mass transfer known as the super soft source (SSS) phase. The short duration of this phase and large extinction to soft X-rays means that only a handful are known in our Galaxy. Far more can be learned from the underlying SSS progenitor population of close white dwarf plus FGK type binaries. Unfortunately, these systems are hard to find since the main-sequence stars completely outshine the white dwarfs at optical wavelengths. Because of this, there are currently no known close white dwarf binaries with F, G or early K type companions, making it impossible to determine the contribution of the single degenerate channel towards supernova Ia. Using the GALEX and RAVE surveys we have now identified the first large sample of FGK stars with UV excesses, a fraction of which are these illusive, close systems. Following an intense ground based spectroscopic investigation of these systems, we have identified 5 definite close binaries, with periods of less than a few days. Here we apply for COS spectroscopic observations to measure the mass and temperature of the white dwarfs in order to determine the future evolution of these systems. This will provide a crucial test for the single degenerate channel towards supernova Ia.

  12. Distributed sensing: multiple capacitive stretch sensors on a single channel

    Science.gov (United States)

    Tairych, Andreas; Anderson, Iain A.

    2017-04-01

    "Soft, stretchable, and unobtrusive". These are some of the attributes frequently associated with capacitive dielectric elastomer (DE) sensors for body motion capture. While the sensors themselves are soft and elastic, they require rigid peripheral components for capacitance measurement. Each sensor is connected to a separate channel on the sensing circuitry through its own set of wires. In wearable applications with large numbers of sensors, this can lead to a considerable circuit board footprint, and cumbersome wiring. The additional equipment can obstruct movement and alter user behaviour. Previous work has demonstrated how a transmission line model can be applied to localise deformation on a single DE sensor. Building on this approach, we have developed a distributed sensing method by arranging capacitive DE sensors and external resistors to form a transmission line, which is connected to a single sensing channel with only one set of wires. The sensors are made from conductive fabric electrodes, and silicone dielectrics, and the external resistors are off-the-shelf metal film resistors. Excitation voltages with different frequencies are applied to the transmission line. The lumped transmission line capacitances at these frequencies are passed on to a mathematical model that calculates individual sensor capacitance changes. The prototype developed for this study is capable of obtaining separate readings for simultaneously stretched sensors.

  13. Optimizing ion channel models using a parallel genetic algorithm on graphical processors.

    Science.gov (United States)

    Ben-Shalom, Roy; Aviv, Amit; Razon, Benjamin; Korngreen, Alon

    2012-01-01

    We have recently shown that we can semi-automatically constrain models of voltage-gated ion channels by combining a stochastic search algorithm with ionic currents measured using multiple voltage-clamp protocols. Although numerically successful, this approach is highly demanding computationally, with optimization on a high performance Linux cluster typically lasting several days. To solve this computational bottleneck we converted our optimization algorithm for work on a graphical processing unit (GPU) using NVIDIA's CUDA. Parallelizing the process on a Fermi graphic computing engine from NVIDIA increased the speed ∼180 times over an application running on an 80 node Linux cluster, considerably reducing simulation times. This application allows users to optimize models for ion channel kinetics on a single, inexpensive, desktop "super computer," greatly reducing the time and cost of building models relevant to neuronal physiology. We also demonstrate that the point of algorithm parallelization is crucial to its performance. We substantially reduced computing time by solving the ODEs (Ordinary Differential Equations) so as to massively reduce memory transfers to and from the GPU. This approach may be applied to speed up other data intensive applications requiring iterative solutions of ODEs. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Analyses of Short Channel Effects of Single-Gate and Double-Gate Graphene Nanoribbon Field Effect Transistors

    Directory of Open Access Journals (Sweden)

    Hojjatollah Sarvari

    2016-01-01

    Full Text Available Short channel effects of single-gate and double-gate graphene nanoribbon field effect transistors (GNRFETs are studied based on the atomistic pz orbital model for the Hamiltonian of graphene nanoribbon using the nonequilibrium Green’s function formalism. A tight-binding Hamiltonian with an atomistic pz orbital basis set is used to describe the atomistic details in the channel of the GNRFETs. We have investigated the vital short channel effect parameters such as Ion and Ioff, the threshold voltage, the subthreshold swing, and the drain induced barrier lowering versus the channel length and oxide thickness of the GNRFETs in detail. The gate capacitance and the transconductance of both devices are also computed in order to calculate the intrinsic cut-off frequency and switching delay of GNRFETs. Furthermore, the effects of doping of the channel on the threshold voltage and the frequency response of the double-gate GNRFET are discussed. We have shown that the single-gate GNRFET suffers more from short channel effects if compared with those of the double-gate structure; however, both devices have nearly the same cut-off frequency in the range of terahertz. This work provides a collection of data comparing different features of short channel effects of the single gate with those of the double gate GNRFETs. The results give a very good insight into the devices and are very useful for their digital applications.

  15. Three homologous subunits form a high affinity peptide-gated ion channel in Hydra.

    Science.gov (United States)

    Dürrnagel, Stefan; Kuhn, Anne; Tsiairis, Charisios D; Williamson, Michael; Kalbacher, Hubert; Grimmelikhuijzen, Cornelis J P; Holstein, Thomas W; Gründer, Stefan

    2010-04-16

    Recently, three ion channel subunits of the degenerin (DEG)/epithelial Na(+) channel (ENaC) gene family have been cloned from the freshwater polyp Hydra magnipapillata, the Hydra Na(+) channels (HyNaCs) 2-4. Two of them, HyNaC2 and HyNaC3, co-assemble to form an ion channel that is gated by the neuropeptides Hydra-RFamides I and II. The HyNaC2/3 channel is so far the only cloned ionotropic receptor from cnidarians and, together with the related ionotropic receptor FMRFamide-activated Na(+) channel (FaNaC) from snails, the only known peptide-gated ionotropic receptor. The HyNaC2/3 channel has pore properties, like a low Na(+) selectivity and a low amiloride affinity, that are different from other channels of the DEG/ENaC gene family, suggesting that a component of the native Hydra channel might still be lacking. Here, we report the cloning of a new ion channel subunit from Hydra, HyNaC5. The new subunit is closely related to HyNaC2 and -3 and co-localizes with HyNaC2 and -3 to the base of the tentacles. Coexpression in Xenopus oocytes of HyNaC5 with HyNaC2 and -3 largely increases current amplitude after peptide stimulation and affinity of the channel to Hydra-RFamides I and II. Moreover, the HyNaC2/3/5 channel has altered pore properties and amiloride affinity, more similarly to other DEG/ENaC channels. Collectively, our results suggest that the three homologous subunits HyNaC2, -3, and -5 form a peptide-gated ion channel in Hydra that could contribute to fast synaptic transmission.

  16. IBiSA_Tools: A Computational Toolkit for Ion-Binding State Analysis in Molecular Dynamics Trajectories of Ion Channels.

    Science.gov (United States)

    Kasahara, Kota; Kinoshita, Kengo

    2016-01-01

    Ion conduction mechanisms of ion channels are a long-standing conundrum. Although the molecular dynamics (MD) method has been extensively used to simulate ion conduction dynamics at the atomic level, analysis and interpretation of MD results are not straightforward due to complexity of the dynamics. In our previous reports, we proposed an analytical method called ion-binding state analysis to scrutinize and summarize ion conduction mechanisms by taking advantage of a variety of analytical protocols, e.g., the complex network analysis, sequence alignment, and hierarchical clustering. This approach effectively revealed the ion conduction mechanisms and their dependence on the conditions, i.e., ion concentration and membrane voltage. Here, we present an easy-to-use computational toolkit for ion-binding state analysis, called IBiSA_tools. This toolkit consists of a C++ program and a series of Python and R scripts. From the trajectory file of MD simulations and a structure file, users can generate several images and statistics of ion conduction processes. A complex network named ion-binding state graph is generated in a standard graph format (graph modeling language; GML), which can be visualized by standard network analyzers such as Cytoscape. As a tutorial, a trajectory of a 50 ns MD simulation of the Kv1.2 channel is also distributed with the toolkit. Users can trace the entire process of ion-binding state analysis step by step. The novel method for analysis of ion conduction mechanisms of ion channels can be easily used by means of IBiSA_tools. This software is distributed under an open source license at the following URL: http://www.ritsumei.ac.jp/~ktkshr/ibisa_tools/.

  17. Chloride Transport through Supramolecular Barrel-Rosette Ion Channels: Lipophilic Control and Apoptosis-Inducing Activity.

    Science.gov (United States)

    Saha, Tanmoy; Gautam, Amitosh; Mukherjee, Arnab; Lahiri, Mayurika; Talukdar, Pinaki

    2016-12-21

    Despite the great interest in artificial ion channel design, only a small number of channel-forming molecules are currently available for addressing challenging problems, particularly in the biological systems. Recent advances in chloride-mediated cell death, aided by synthetic ion carriers, encouraged us to develop chloride selective supramolecular ion channels. The present work describes vicinal diols, tethered to a rigid 1,3-diethynylbenzene core, as pivotal moieties for the barrel-rosette ion channel formation, and the activity of such channels was tuned by controlling the lipophilicity of designed monomers. Selective transport of chloride ions via an antiport mechanism and channel formation in the lipid bilayer membranes were confirmed for the most active molecule. A theoretical model of the supramolecular barrel-rosette, favored by a network of intermolecular hydrogen bonding, has been proposed. The artificial ion-channel-mediated transport of chloride into cells and subsequent disruption of cellular ionic homeostasis were evident. Perturbation of chloride homeostasis in cells instigates cell death by inducing the caspase-mediated intrinsic pathway of apoptosis.

  18. Evaluation of an automated single-channel sleep staging algorithm

    Science.gov (United States)

    Wang, Ying; Loparo, Kenneth A; Kelly, Monica R; Kaplan, Richard F

    2015-01-01

    Background We previously published the performance evaluation of an automated electroencephalography (EEG)-based single-channel sleep–wake detection algorithm called Z-ALG used by the Zmachine® sleep monitoring system. The objective of this paper is to evaluate the performance of a new algorithm called Z-PLUS, which further differentiates sleep as detected by Z-ALG into Light Sleep, Deep Sleep, and Rapid Eye Movement (REM) Sleep, against laboratory polysomnography (PSG) using a consensus of expert visual scorers. Methods Single night, in-lab PSG recordings from 99 subjects (52F/47M, 18–60 years, median age 32.7 years), including both normal sleepers and those reporting a variety of sleep complaints consistent with chronic insomnia, sleep apnea, and restless leg syndrome, as well as those taking selective serotonin reuptake inhibitor/serotonin–norepinephrine reuptake inhibitor antidepressant medications, previously evaluated using Z-ALG were re-examined using Z-PLUS. EEG data collected from electrodes placed at the differential-mastoids (A1–A2) were processed by Z-ALG to determine wake and sleep, then those epochs detected as sleep were further processed by Z-PLUS to differentiate into Light Sleep, Deep Sleep, and REM. EEG data were visually scored by multiple certified polysomnographic technologists according to the Rechtschaffen and Kales criterion, and then combined using a majority-voting rule to create a PSG Consensus score file for each of the 99 subjects. Z-PLUS output was compared to the PSG Consensus score files for both epoch-by-epoch (eg, sensitivity, specificity, and kappa) and sleep stage-related statistics (eg, Latency to Deep Sleep, Latency to REM, Total Deep Sleep, and Total REM). Results Sensitivities of Z-PLUS compared to the PSG Consensus were 0.84 for Light Sleep, 0.74 for Deep Sleep, and 0.72 for REM. Similarly, positive predictive values were 0.85 for Light Sleep, 0.78 for Deep Sleep, and 0.73 for REM. Overall, kappa agreement of 0

  19. Electric field modulation of the membrane potential in solid-state ion channels.

    Science.gov (United States)

    Guan, Weihua; Reed, Mark A

    2012-12-12

    Biological ion channels are molecular devices that allow a rapid flow of ions across the cell membrane. Normal physiological functions, such as generating action potentials for cell-to-cell communication, are highly dependent on ion channels that can open and close in response to external stimuli for regulating ion permeation. Mimicking these biological functions using synthetic structures is a rapidly progressing yet challenging area. Here we report the electric field modulation of the membrane potential phenomena in mechanically and chemically robust solid-state ion channels, an abiotic analogue to the voltage-gated ion channels in living systems. To understand the complex physicochemical processes in the electric field regulated membrane potential behavior, both quasi-static and transient characteristics of converting transmembrane ion gradients into electric potential are investigated. It is found that the transmembrane potential can be adequately tuned by an external electrical stimulation, thanks to the unique properties of the voltage-regulated selective ion transport through a nanoscale channel.

  20. Experimental and 2D simulation study of the single-event burnout in n-channel power MOSFETs

    International Nuclear Information System (INIS)

    Roubaud, F.; Dachs, C.; Palau, J.M.; Gasiot, J.

    1993-01-01

    The use of the 2D simulator MEDICI as a tool for Single Event Burnout (SEB) comprehension is investigated. Simulation results are compared to experimental currents induced in an N channel power MOSFET by the ions from a 252 Cf source. Current measurements have been carried out with a specially designed circuit. Simulations allow to analyze separately the effects of the ion impact and of the electrical environment parameters on the SEB phenomenon. Burnout sensitivity is found to be increased by increasing supply voltage, ion's LET and by decreasing load charge. These electrical tendencies are validated by experiments. Burnout sensitivity is also found to be sensitive to the ion impact position. The current shapes variations for given electrical parameters can be related to LET or ion impact position changes. However, some experimental current shapes are not reproduced by simulations

  1. Channel for Applied Investigations on Low Energy Ion Beams of Cyclotron DC-60

    CERN Document Server

    Gikal, B N; Borisenko, A N; Fateev, A A; Gulbekyan, G G; Kalagin, I V; Kazacha, V I; Kazarinov, N Yu; Kolesov, I V; Lebedev, N I; Lysukhin, S N; Melnikov, V N

    2006-01-01

    The channel intended for carrying out applied investigations on the low energy ion beams having the kinetic energy 25 $Z/A$ keV/a.u. and transported from the ECR-source to a target is worked out. The channel structure and parameters of all its optics elements are defined. The calculation results of different ion types transportation are given. It is shown that ions having the ratio of their mass to charge Z/A=2-20 can be transported in the worked out channel with enough high expected efficiency. At that the ion beam diameter on the target is $\\sim$40 mm. The characteristics of the basic optical elements of the channel are also given.

  2. Polypeptide Translocation Through the Mitochondrial TOM Channel: Temperature-Dependent Rates at the Single-Molecule Level.

    Science.gov (United States)

    Mahendran, Kozhinjampara R; Lamichhane, Usha; Romero-Ruiz, Mercedes; Nussberger, Stephan; Winterhalter, Mathias

    2013-01-03

    The TOM protein complex facilitates the transfer of nearly all mitochondrial preproteins across outer mitochondrial membranes. Here we characterized the effect of temperature on facilitated translocation of a mitochondrial presequence peptide pF1β. Ion current fluctuations analysis through single TOM channels revealed thermodynamic and kinetic parameters of substrate binding and allowed determining the energy profile of peptide translocation. The activation energy for the on-rate and off-rate of the presequence peptide into the TOM complex was symmetric with respect to the electric field and estimated to be about 15 and 22 kT per peptide. These values are above that expected for free diffusion of ions in water (6 kT) and reflect the stronger interaction in the channel. Both values are in the range for typical enzyme kinetics and suggest one process without involving large conformational changes within the channel protein.

  3. Developmental Profile of Ion Channel Specializations in the Avian Nucleus Magnocellularis

    Directory of Open Access Journals (Sweden)

    Hui eHong

    2016-03-01

    Full Text Available Ultrafast and temporally precise action potentials (APs are biophysical specializations of auditory brainstem neurons; properties necessary for encoding sound localization and communication cues. Fundamental to these specializations are voltage dependent potassium (KV and sodium (NaV ion channels. Here we characterized the functional development of these ion channels and quantified how they shape AP properties in the avian cochlear nucleus magnocellularis (NM. We report that late developing NM neurons (embryonic [E] days 19-21 generate fast APs that reliably phase lock to sinusoidal inputs at 75 Hz. In contrast, early developing neurons (E19 contained NaV channels that inactivate at more negative voltages, suggesting alterations in NaV channel subtypes. Taken together, our results indicate that the refinement of passive and active ion channel properties operate differentially in order to develop fast and reliable APs in the avian NM.

  4. Overcharging below the nanoscale: Multivalent cations reverse the ion selectivity of a biological channel

    Science.gov (United States)

    García-Giménez, Elena; Alcaraz, Antonio; Aguilella, Vicente M.

    2010-02-01

    We report charge inversion within a nanoscopic biological protein ion channel in salts of multivalent ions. The presence of positive divalent and trivalent counterions reverses the cationic selectivity of the OmpF channel, a general diffusion porin located in the outer membrane of E. coli. We discuss the conditions under which charge inversion can be inferred from the change in sign of the measured quantity, the channel zero current potential. By comparing experimental results in protein channels whose charge has been modified after site-directed mutagenesis, the predictions of current theories of charge inversion are critically examined. It is emphasized that charge inversion does not necessarily increase with the bare surface charge density of the interface and that even this concept of surface charge density may become meaningless in some biological ion channels. Thus, any theory based on electrostatic correlations or chemical binding should explicitly take into account the particular structure of the charged interface.

  5. Development of noise-suppressed detector for single ion hit system

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Takuro; Hamano, Tsuyoshi; Suda, Tamotsu; Hirao, Toshio; Kamiya, Tomihiro [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    A noise-suppressed detector for single ion detection has been developed, and combined with the heavy ion microbeam apparatus. This detector consists of a pair of micro channel plates (MCP`s) and a very thin carbon foil. The detection signal is formed by the coincidence of the signals from these MCP`s, so that this detector and the coincidence measurement unit can reduce miscounting in the circuit. The detection efficiency for 15 MeV heavy ions was evaluated to be comparable to that of a silicon surface-barrier detector (SSD) and the miscounting rate was 4 orders lower than the noise rate of a single MCP. The rise time of the detection signal was also estimated. (author)

  6. Natural products as tools for studies of ligand-gated ion channels

    DEFF Research Database (Denmark)

    Strømgaard, Kristian

    2005-01-01

    in the brain. Historically, natural products have been used extensively in biomedical studies and ultimately as drugs or leads for drug design. In studies of ligand-gated ion channels, natural products have been essential for the understanding of their structure and function. In the following a short survey...... of natural products and their use in studies of ligand-gated ion channels is given....

  7. Single sodium channels from human ventricular muscle in planar lipid bilayers

    NARCIS (Netherlands)

    Wartenberg, H. C.; Wartenberg, J. P.; Urban, B. W.

    2001-01-01

    Sodium channels from human ventricular muscle membrane vesicles were incorporated into planar lipid bilayers and the steady-state behavior of single sodium channels were examined in the presence of batrachotoxin. In symmetrical 500 mM NaCl the averaged single channel conductance was 24.7 +/- 1.3 pS

  8. Development of a lung slice preparation for recording ion channel activity in alveolar epithelial type I cells

    Directory of Open Access Journals (Sweden)

    Crandall Edward D

    2005-04-01

    Full Text Available Abstract Background Lung fluid balance in the healthy lung is dependent upon finely regulated vectorial transport of ions across the alveolar epithelium. Classically, the cellular locus of the major ion transport processes has been widely accepted to be the alveolar type II cell. Although evidence is now emerging to suggest that the alveolar type I cell might significantly contribute to the overall ion and fluid homeostasis of the lung, direct assessment of functional ion channels in type I cells has remained elusive. Methods Here we describe a development of a lung slice preparation that has allowed positive identification of alveolar type I cells within an intact and viable alveolar epithelium using living cell immunohistochemistry. Results This technique has allowed, for the first time, single ion channels of identified alveolar type I cells to be recorded using the cell-attached configuration of the patch-clamp technique. Conclusion This exciting new development should facilitate the ascription of function to alveolar type I cells and allow us to integrate this cell type into the general model of alveolar ion and fluid balance in health and disease.

  9. Spontaneous formation of structurally diverse membrane channel architectures from a single antimicrobial peptide

    Science.gov (United States)

    Wang, Yukun; Chen, Charles H.; Hu, Dan; Ulmschneider, Martin B.; Ulmschneider, Jakob P.

    2016-11-01

    Many antimicrobial peptides (AMPs) selectively target and form pores in microbial membranes. However, the mechanisms of membrane targeting, pore formation and function remain elusive. Here we report an experimentally guided unbiased simulation methodology that yields the mechanism of spontaneous pore assembly for the AMP maculatin at atomic resolution. Rather than a single pore, maculatin forms an ensemble of structurally diverse temporarily functional low-oligomeric pores, which mimic integral membrane protein channels in structure. These pores continuously form and dissociate in the membrane. Membrane permeabilization is dominated by hexa-, hepta- and octamers, which conduct water, ions and small dyes. Pores form by consecutive addition of individual helices to a transmembrane helix or helix bundle, in contrast to current poration models. The diversity of the pore architectures--formed by a single sequence--may be a key feature in preventing bacterial resistance and could explain why sequence-function relationships in AMPs remain elusive.

  10. The effect of closed channels on the electron impact excitation of Mg +, Cd + ions

    Science.gov (United States)

    Li, Yueming

    2018-04-01

    Based on the developed method for solving the multi-channel equation, which had been applied to the calculations of several kinds of ions including only open-open interactions, closed channels and their interactions with open channels have been studied. The wave functions of the closed channels are also expressed in terms of their homogeneous solutions which is just the same as for open channels. The homogeneous solutions are described and solved in WKB form, therefore the regular and irregular solutions as well as the quantum defect numbers can be obtained simultaneously. Excitations of Mg +, Cd + ions impact by electrons are calculated for energies close to the thresholds. The results are compared with those of the experimental observations and previous theoretical calculations. The effect of including the closed channels, especially when the energy passes through the resonance energies, has been discussed according to the deduced formulae and the calculated results.

  11. Propofol causes vasodilation in vivo via TRPA1 ion channels: role of nitric oxide and BKCa channels.

    Science.gov (United States)

    Sinha, Sayantani; Sinharoy, Pritam; Bratz, Ian N; Damron, Derek S

    2015-01-01

    Transient receptor potential (TRP) ion channels of the A1 (TRPA1) and V1 (TRPV1) subtypes are key regulators of vasomotor tone. Propofol is an intravenous anesthetic known to cause vasorelaxation. Our objectives were to examine the extent to which TRPA1 and/or TRPV1 ion channels mediate propofol-induced depressor responses in vivo and to delineate the signaling pathway(s) involved. Mice were subjected to surgery under 1.5-2.5% sevoflurane gas with supplemental oxygen. After a stable baseline in mean arterial pressure (MAP) was achieved propofol (2.5, 5.0, 10.0 mg/kg/min) was administered to assess the hemodynamic actions of the intravenous anesthetic. The effect of nitric oxide synthase (NOS) inhibition with L-NAME and/or calcium-gated K+ channel (BKCa) inhibition with Penetrim A (Pen A), alone and in combination, on propofol-induced decreases in mean arterial pressure were assessed in control C57Bl/6J, TRPA1-/-, TRPV1-/- and double-knockout mice (TRPAV-/-). Propofol decreased MAP in control mice and this effect was markedly attenuated in TRPA1-/- and TRPAV-/- mice but unaffected in TRPV1-/-mice. Moreover, pretreatment with L-NAME or Pen A attenuated the decrease in MAP in control and TRPV1-/- mice, and combined inhibition abolished the depressor response. In contrast, the markedly attenuated propofol-induced depressor response observed in TRPA1-/- and TRPAV-/- mice was unaffected by pre-treatment with Pen A or L-NAME when used either alone or in combination. These data demonstrate for the first time that propofol-induced depressor responses in vivo are predominantly mediated by TRPA1 ion channels with no involvement of TRPV1 ion channels and includes activation of both NOS and BKCa channels.

  12. A compact source for bunches of singly charged atomic ions

    Science.gov (United States)

    Murböck, T.; Schmidt, S.; Andelkovic, Z.; Birkl, G.; Nörtershäuser, W.; Vogel, M.

    2016-04-01

    We have built, operated, and characterized a compact ion source for low-energy bunches of singly charged atomic ions in a vacuum beam line. It is based on atomic evaporation from an electrically heated oven and ionization by electron impact from a heated filament inside a grid-based ionization volume. An adjacent electrode arrangement is used for ion extraction and focusing by applying positive high-voltage pulses to the grid. The method is particularly suited for experimental environments which require low electromagnetic noise. It has proven simple yet reliable and has been used to produce μs-bunches of up to 106 Mg+ ions at a repetition rate of 1 Hz. We present the concept, setup and characterizing measurements. The instrument has been operated in the framework of the SpecTrap experiment at the HITRAP facility at GSI/FAIR to provide Mg+ ions for sympathetic cooling of highly charged ions by laser-cooled 24Mg+.

  13. A New MEMS Gyroscope Used for Single-Channel Damping.

    Science.gov (United States)

    Zhang, Zengping; Zhang, Wei; Zhang, Fuxue; Wang, Biao

    2015-04-30

    The silicon micromechanical gyroscope, which will be introduced in this paper, represents a novel MEMS gyroscope concept. It is used for the damping of a single-channel control system of rotating aircraft. It differs from common MEMS gyroscopes in that does not have a drive structure, itself, and only has a sense structure. It is installed on a rotating aircraft, and utilizes the aircraft spin to make its sensing element obtain angular momentum. When the aircraft is subjected to an angular rotation, a periodic Coriolis force is induced in the direction orthogonal to both the angular momentum and the angular velocity input axis. This novel MEMS gyroscope can thus sense angular velocity inputs. The output sensing signal is exactly an amplitude-modulation signal. Its envelope is proportional to the input angular velocity, and the carrier frequency corresponds to the spin frequency of the rotating aircraft, so the MEMS gyroscope can not only sense the transverse angular rotation of an aircraft, but also automatically change the carrier frequency over the change of spin frequency, making it very suitable for the damping of a single-channel control system of a rotating aircraft. In this paper, the motion equation of the MEMS gyroscope has been derived. Then, an analysis has been carried to solve the motion equation and dynamic parameters. Finally, an experimental validation has been done based on a precision three axis rate table. The correlation coefficients between the tested data and the theoretical values are 0.9969, 0.9872 and 0.9842, respectively. These results demonstrate that both the design and sensing mechanism are correct.

  14. A selectivity filter at the intracellular end of the acid-sensing ion channel pore

    DEFF Research Database (Denmark)

    Lynagh, Timothy; Flood, Emelie; Boiteux, Céline

    2017-01-01

    Increased extracellular proton concentrations during neurotransmission are converted to excitatory sodium influx by acid-sensing ion channels (ASICs). 10-fold sodium/potassium selectivity in ASICs has long been attributed to a central constriction in the channel pore, but experimental verification...

  15. Binding of ArgTX-636 in the NMDA receptor ion channel

    DEFF Research Database (Denmark)

    Poulsen, Mette H; Andersen, Jacob; Christensen, Rune

    2015-01-01

    The N-methyl-d-aspartate receptors (NMDARs) constitute an important class of ligand-gated cation channels that are involved in the majority of excitatory neurotransmission in the human brain. Compounds that bind in the NMDAR ion channel and act as blockers are use- and voltage-dependent inhibitor...

  16. Hexagonal, square and stripe patterns of the ion channel density in biomembranes

    OpenAIRE

    Hilt, Markus; Zimmermann, Walter

    2006-01-01

    Transmembrane ion flow through channel proteins undergoing density fluctuations may cause lateral gradients of the electrical potential across the membrane giving rise to electrophoresis of charged channels. A model for the dynamics of the channel density and the voltage drop across the membrane (cable equation) coupled to a binding-release reaction with the cell skeleton (P. Fromherz and W. Zimmerman, Phys. Rev. E 51, R1659 (1995)) is analyzed in one and two spatial dimensions. Due to the bi...

  17. Cells exposed to a huntingtin fragment containing an expanded polyglutamine tract show no sign of ion channel formation: results arguing against the ion channel hypothesis

    DEFF Research Database (Denmark)

    Nørremølle, Anne; Grunnet, Morten; Hasholt, Lis

    2003-01-01

    Ion channels formed by expanded polyglutamine tracts have been proposed to play an important role in the pathological processes leading to neurodegeneration in Huntington's disease and other CAG repeat diseases. We tested the capacity of a huntingtin fragment containing an expanded polyglutamine...

  18. PSIONplus: Accurate Sequence-Based Predictor of Ion Channels and Their Types.

    Science.gov (United States)

    Gao, Jianzhao; Cui, Wei; Sheng, Yajun; Ruan, Jishou; Kurgan, Lukasz

    2016-01-01

    Ion channels are a class of membrane proteins that attracts a significant amount of basic research, also being potential drug targets. High-throughput identification of these channels is hampered by the low levels of availability of their structures and an observation that use of sequence similarity offers limited predictive quality. Consequently, several machine learning predictors of ion channels from protein sequences that do not rely on high sequence similarity were developed. However, only one of these methods offers a wide scope by predicting ion channels, their types and four major subtypes of the voltage-gated channels. Moreover, this and other existing predictors utilize relatively simple predictive models that limit their accuracy. We propose a novel and accurate predictor of ion channels, their types and the four subtypes of the voltage-gated channels called PSIONplus. Our method combines a support vector machine model and a sequence similarity search with BLAST. The originality of PSIONplus stems from the use of a more sophisticated machine learning model that for the first time in this area utilizes evolutionary profiles and predicted secondary structure, solvent accessibility and intrinsic disorder. We empirically demonstrate that the evolutionary profiles provide the strongest predictive input among new and previously used input types. We also show that all new types of inputs contribute to the prediction. Results on an independent test dataset reveal that PSIONplus obtains relatively good predictive performance and outperforms existing methods. It secures accuracies of 85.4% and 68.3% for the prediction of ion channels and their types, respectively, and the average accuracy of 96.4% for the discrimination of the four ion channel subtypes. Standalone version of PSIONplus is freely available from https://sourceforge.net/projects/psion/.

  19. Stochastic differential equation models for ion channel noise in Hodgkin-Huxley neurons

    Science.gov (United States)

    Goldwyn, Joshua H.; Imennov, Nikita S.; Famulare, Michael; Shea-Brown, Eric

    2011-04-01

    The random transitions of ion channels between conducting and nonconducting states generate a source of internal fluctuations in a neuron, known as channel noise. The standard method for modeling the states of ion channels nonlinearly couples continuous-time Markov chains to a differential equation for voltage. Beginning with the work of R. F. Fox and Y.-N. Lu [Phys. Rev. EMTHDE91539-375510.1103/PhysRevE.49.3421 49, 3421 (1994)], there have been attempts to generate simpler models that use stochastic differential equation (SDEs) to approximate the stochastic spiking activity produced by Markov chain models. Recent numerical investigations, however, have raised doubts that SDE models can capture the stochastic dynamics of Markov chain models.We analyze three SDE models that have been proposed as approximations to the Markov chain model: one that describes the states of the ion channels and two that describe the states of the ion channel subunits. We show that the former channel-based approach can capture the distribution of channel noise and its effects on spiking in a Hodgkin-Huxley neuron model to a degree not previously demonstrated, but the latter two subunit-based approaches cannot. Our analysis provides intuitive and mathematical explanations for why this is the case. The temporal correlation in the channel noise is determined by the combinatorics of bundling subunits into channels, but the subunit-based approaches do not correctly account for this structure. Our study confirms and elucidates the findings of previous numerical investigations of subunit-based SDE models. Moreover, it presents evidence that Markov chain models of the nonlinear, stochastic dynamics of neural membranes can be accurately approximated by SDEs. This finding opens a door to future modeling work using SDE techniques to further illuminate the effects of ion channel fluctuations on electrically active cells.

  20. Acid-sensing ion channels contribute to the effect of extracellular acidosis on proliferation and migration of A549 cells.

    Science.gov (United States)

    Wu, Yu; Gao, Bo; Xiong, Qiu-Ju; Wang, Yu-Chan; Huang, Da-Ke; Wu, Wen-Ning

    2017-06-01

    Acid-sensing ion channels, a proton-gated cation channel, can be activated by low extracellular pH and involved in pathogenesis of some tumors such as glioma and breast cancer. However, the role of acid-sensing ion channels in the growth of lung cancer cell is unclear. In this study, we investigated the expression of acid-sensing ion channels in human lung cancer cell line A549 and their possible role in proliferation and migration of A549 cells. The results show that acid-sensing ion channel 1, acid-sensing ion channel 2, and acid-sensing ion channel 3 are expressed in A549 cells at the messenger RNA and protein levels, and acid-sensing ion channel-like currents were elicited by extracellular acid stimuli. Moreover, we found that acidic extracellular medium or overexpressing acid-sensing ion channel 1a promotes proliferation and migration of A549 cells. In addition psalmotoxin 1, a specific acid-sensing ion channel 1a inhibitor, or acid-sensing ion channel 1a knockdown can abolish the effect of acid stimuli on A549 cells. In addition, acid-sensing ion channels mediate increase of [Ca 2+ ] i induced by low extracellular pH in A549 cells. All these results indicate that acid-sensing ion channel-calcium signal mediate lung cancer cell proliferation and migration induced by extracellular acidosis, and acid-sensing ion channels may serve as a prognostic marker and a therapeutic target for lung cancer.

  1. Anisotropic Lithium Ion Conductivity in Single-Ion Diblock Copolymer Electrolyte Thin Films

    NARCIS (Netherlands)

    Aissou, Karim; Mumtaz, Muhammad; Usluer, Özlem; Pécastaings, Gilles; Portale, Giuseppe; Fleury, Guillaume; Cloutet, Eric; Hadziioannou, Georges

    Well-defined single-ion diblock copolymers consisting of a Li-ion conductive poly(styrenesulfonyllithium(trifluoromethylsulfonyl)imide) (PSLiTFSI) block associated with a glassy polystyrene (PS) block have been synthesized via reversible addition fragmentation chain transfer polymerization.

  2. Active membrane having uniform physico-chemically functionalized ion channels

    Science.gov (United States)

    Gerald, II, Rex E; Ruscic, Katarina J; Sears, Devin N; Smith, Luis J; Klingler, Robert J; Rathke, Jerome W

    2012-09-24

    The present invention relates to a physicochemically-active porous membrane for electrochemical cells that purports dual functions: an electronic insulator (separator) and a unidirectional ion-transporter (electrolyte). The electrochemical cell membrane is activated for the transport of ions by contiguous ion coordination sites on the interior two-dimensional surfaces of the trans-membrane unidirectional pores. One dimension of the pore surface has a macroscopic length (1 nm-1000 .mu.m) and is directed parallel to the direction of an electric field, which is produced between the cathode and the anode electrodes of an electrochemical cell. The membrane material is designed to have physicochemical interaction with ions. Control of the extent of the interactions between the ions and the interior pore walls of the membrane and other materials, chemicals, or structures contained within the pores provides adjustability of the ionic conductivity of the membrane.

  3. Ion channel profile of TRPM8 cold receptors reveals a novel role of TASK-3 potassium channels in thermosensation

    Science.gov (United States)

    Morenilla-Palao, Cruz; Luis, Enoch; Fernández-Peña, Carlos; Quintero, Eva; Weaver, Janelle L.; Bayliss, Douglas A.; Viana, Félix

    2017-01-01

    Summary Animals sense cold ambient temperatures through the activation of peripheral thermoreceptors that express TRPM8, a cold- and menthol-activated ion channel. These receptors can discriminate a very wide range of temperatures from innocuous to noxious. The molecular mechanism responsible for the variable sensitivity of individual cold receptors to temperature is unclear. To address this question, we performed a detailed ion channel expression analysis of cold sensitive neurons, combining BAC transgenesis with a molecular profiling approach in FACS purified TRPM8 neurons. We found that TASK-3 leak potassium channels are highly enriched in a subpopulation of these sensory neurons. The thermal threshold of TRPM8 cold neurons is decreased during TASK-3 blockade and in mice lacking TASK-3 and, most importantly, these mice display hypersensitivity to cold. Our results demonstrate a novel role of TASK-3 channels in thermosensation, showing that a channel-based combinatorial strategy in TRPM8 cold thermoreceptors leads to molecular specialization and functional diversity. PMID:25199828

  4. Localization Spectroscopy of a Single Ion in an Optical Lattice

    DEFF Research Database (Denmark)

    Legrand, Olivier Philippe Alexandre

    2015-01-01

    The work reported in this thesis primarily focuses on studies of the dynamics of a single laser-cooled ion, simultaneously confined in the harmonic potential of a linear Paul trap and a rapidly varying periodic potential – a so-called optical lattice – generated from an optical standing-wave. Bes......The work reported in this thesis primarily focuses on studies of the dynamics of a single laser-cooled ion, simultaneously confined in the harmonic potential of a linear Paul trap and a rapidly varying periodic potential – a so-called optical lattice – generated from an optical standing...... calibration and analysis of the detection system, several theoretical simulations of the expected dynamics and associated optical response of the ion were undertaken. Finally, a new laser source based on second harmonic generation was developed in order to perform laser-cooling of Ca+ ions, and to serve...

  5. Angular distributions of ions channeled in the <1 0 0> Si crystals

    CERN Document Server

    Petrovic, S; Kokkoris, M; Neskovic, N

    2002-01-01

    In this study we analyze the angular distributions of Ne sup 1 sup 0 sup + ions channeled in the Si crystals. The ion energy is 60 MeV and the crystal thickness is varied from 286 to 3435 nm. This thickness range corresponds to the reduced crystal thickness range from 0.5 to 6, i.e. from the second to the twelfth rainbow cycle. The angular distributions were obtained via the numerical solution of the ion equations of motion and the computer simulation method. The analysis shows that the angular distribution has a periodic behavior. We also analyze the transmission patterns corresponding to the angular distributions. These patterns should be compared to the experimental patterns obtainable by a two-dimensional position sensitive detector. We demonstrate that, when the ion beam divergence is sufficiently large, i.e. much larger than the critical angle for channeling, the channeling star effect occurs in the transmission patterns.

  6. Ion implantation induced blistering of rutile single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Bing-Xi [School of Physics, Shandong University, Jinan, Shandong 250100 (China); Jiao, Yang [College of Physics and Electronics, Shandong Normal University, Jinan, Shandong 250100 (China); Guan, Jing [School of Physics, Shandong University, Jinan, Shandong 250100 (China); Wang, Lei [School of Physics, Shandong University, Jinan, Shandong 250100 (China); Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (China)

    2015-07-01

    The rutile single crystals were implanted by 200 keV He{sup +} ions with a series fluence and annealed at different temperatures to investigate the blistering behavior. The Rutherford backscattering spectrometry, optical microscope and X-ray diffraction were employed to characterize the implantation induced lattice damage and blistering. It was found that the blistering on rutile surface region can be realized by He{sup +} ion implantation with appropriate fluence and the following thermal annealing.

  7. A digital atlas of ion channel expression patterns in the two-week-old rat brain.

    Science.gov (United States)

    Shcherbatyy, Volodymyr; Carson, James; Yaylaoglu, Murat; Jäckle, Katharina; Grabbe, Frauke; Brockmeyer, Maren; Yavuz, Halenur; Eichele, Gregor

    2015-01-01

    The approximately 350 ion channels encoded by the mammalian genome are a main pillar of the nervous system. We have determined the expression pattern of 320 channels in the two-week-old (P14) rat brain by means of non-radioactive robotic in situ hybridization. Optimized methods were developed and implemented to generate stringently coronal brain sections. The use of standardized methods permits a direct comparison of expression patterns across the entire ion channel expression pattern data set and facilitates recognizing ion channel co-expression. All expression data are made publically available at the Genepaint.org database. Inwardly rectifying potassium channels (Kir, encoded by the Kcnj genes) regulate a broad spectrum of physiological processes. Kcnj channel expression patterns generated in the present study were fitted with a deformable subdivision mesh atlas produced for the P14 rat brain. This co-registration, when combined with numerical quantification of expression strengths, allowed for semi-quantitative automated annotation of expression patterns as well as comparisons among and between Kcnj subfamilies. The expression patterns of Kcnj channel were also cross validated against previously published expression patterns of Kcnj channel genes.

  8. Cell-based potassium ion channel screening using the FluxOR assay.

    Science.gov (United States)

    Beacham, Daniel W; Blackmer, Trillium; O' Grady, Michael; Hanson, George T

    2010-04-01

    FluxOR technology is a cell-based assay used for high-throughput screening measurements of potassium channel activity. Using thallium influx as a surrogate indicator of potassium ion channel activity, the FluxOR Potassium Ion Channel Assay is based on the activation of a novel fluorescent dye. This indicator reports channel activity with a large fluorogenic response and is proportional to the number of open potassium channels on the cell, making it extremely useful for studying K(+) channel targets. In contrast to BTC-AM ester, FluxOR dye is roughly 10-fold more thallium sensitive, requiring much lower thallium for a larger signal window. This also means that the assay is carried out in a physiological, normal-chloride saline. In this article, the authors describe how they used BacMam gene delivery to express Kv7.2 and 7.3 (KCNQ), Kir2.1, or Kv11.1 (hERG) potassium ion channels in U2-OS cells. Using these cells, they ran the FluxOR assay to identify and characterize channel-specific inhibitory compounds discovered within the library (Tocriscreen Mini 1200 and Sigma Sodium/Potassium Modulators Ligand set). The FluxOR assay was able to identify several known specific inhibitors of Kv7.2/7.3 or hERG, highlighting its potential to identify novel and more efficacious small-molecule modulators.

  9. Atrium-specific ion channels in the zebrafish-A role of Iin atrial repolarization

    DEFF Research Database (Denmark)

    Skarsfeldt, M A; Bomholtz, S H; Lundegaard, P R

    2018-01-01

    reaction, we assessed the expression level of atrium-specific potassium channels. The functional role of these channels was studied by patch clamp experiments on isolated atrial and ventricular cardiomyocytes and by optical mapping of explanted adult zebrafish hearts. Finally, surface ECGs were recorded...... to establish possible in vivo roles of atrial ion channels. RESULTS: In isolated adult zebrafish hearts, we identified the expression of kcnk3, kcnk9, kcnn1, kcnn2, kcnn3, kcnj3 and kcnj5, the genes that encode the atrium-specific K2P, KCa2.x and Kir3.1/4 (KACh) ion channels. The electrophysiological data...... indicate that the acetylcholine-activated inward-rectifying current, IKACh,plays a major role in the zebrafish atrium, whereas K2P3.1/9.1 and KCa2.x channels do not appear to be involved in regulating the action potential in the zebrafish heart. CONCLUSION: We demonstrate that the acetylcholine...

  10. Tarantula toxins use common surfaces for interacting with Kv and ASIC ion channels.

    Science.gov (United States)

    Gupta, Kanchan; Zamanian, Maryam; Bae, Chanhyung; Milescu, Mirela; Krepkiy, Dmitriy; Tilley, Drew C; Sack, Jon T; Yarov-Yarovoy, Vladimir; Kim, Jae Il; Swartz, Kenton J

    2015-05-07

    Tarantula toxins that bind to voltage-sensing domains of voltage-activated ion channels are thought to partition into the membrane and bind to the channel within the bilayer. While no structures of a voltage-sensor toxin bound to a channel have been solved, a structural homolog, psalmotoxin (PcTx1), was recently crystalized in complex with the extracellular domain of an acid sensing ion channel (ASIC). In the present study we use spectroscopic, biophysical and computational approaches to compare membrane interaction properties and channel binding surfaces of PcTx1 with the voltage-sensor toxin guangxitoxin (GxTx-1E). Our results show that both types of tarantula toxins interact with membranes, but that voltage-sensor toxins partition deeper into the bilayer. In addition, our results suggest that tarantula toxins have evolved a similar concave surface for clamping onto α-helices that is effective in aqueous or lipidic physical environments.

  11. Single Ion Trapping for the Enriched Xenon Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Waldman, Samuel J.; /Stanford U., Phys. Dept. /SLAC

    2006-03-28

    In the last decade, a variety of neutrino oscillation experiments have established that there is a mass difference between neutrino flavors, without determining the absolute neutrino mass scale. The Enriched Xenon Observatory for neutrinoless double beta decay (EXO) will search for the rare decays of xenon to determine the absolute value of the neutrino mass. The experiment uses a novel technique to minimize backgrounds, identifying the decay daughter product in real time using single ion spectroscopy. Here, we describe single ion trapping and spectroscopy compatible with the EXO detector. We extend the technique of single ion trapping in ultrahigh vacuum to trapping in xenon gas. With this technique, EXO will achieve a neutrino mass sensitivity of {approx_equal} .010 eV.

  12. Classification of four-class motor imagery employing single-channel electroencephalography.

    Directory of Open Access Journals (Sweden)

    Sheng Ge

    Full Text Available With advances in brain-computer interface (BCI research, a portable few- or single-channel BCI system has become necessary. Most recent BCI studies have demonstrated that the common spatial pattern (CSP algorithm is a powerful tool in extracting features for multiple-class motor imagery. However, since the CSP algorithm requires multi-channel information, it is not suitable for a few- or single-channel system. In this study, we applied a short-time Fourier transform to decompose a single-channel electroencephalography signal into the time-frequency domain and construct multi-channel information. Using the reconstructed data, the CSP was combined with a support vector machine to obtain high classification accuracies from channels of both the sensorimotor and forehead areas. These results suggest that motor imagery can be detected with a single channel not only from the traditional sensorimotor area but also from the forehead area.

  13. TRP ion channels in thermosensation, thermoregulation and metabolism

    Science.gov (United States)

    Wang, Hong; Siemens, Jan

    2015-01-01

    In humans, the TRP superfamily of cation channels includes 27 related molecules that respond to a remarkable variety of chemical and physical stimuli. While physiological roles for many TRP channels remain unknown, over the past years several have been shown to function as molecular sensors in organisms ranging from yeast to humans. In particular, TRP channels are now known to constitute important components of sensory systems, where they participate in the detection or transduction of osmotic, mechanical, thermal, or chemosensory stimuli. We here summarize our current understanding of the role individual members of this versatile receptor family play in thermosensation and thermoregulation, and also touch upon their immerging role in metabolic control. PMID:27227022

  14. Interaction of a dinoflagellate neurotoxin with voltage-activated ion channels in a marine diatom

    Directory of Open Access Journals (Sweden)

    Sheila A. Kitchen

    2018-04-01

    Full Text Available Background The potent neurotoxins produced by the harmful algal bloom species Karenia brevis are activators of sodium voltage-gated channels (VGC in animals, resulting in altered channel kinetics and membrane hyperexcitability. Recent biophysical and genomic evidence supports widespread presence of homologous sodium (Na+ and calcium (Ca2+ permeable VGCs in unicellular algae, including marine phytoplankton. We therefore hypothesized that VGCs of these phytoplankton may be an allelopathic target for waterborne neurotoxins produced by K. brevis blooms that could lead to ion channel dysfunction and disruption of signaling in a similar manner to animal Na+ VGCs. Methods We examined the interaction of brevetoxin-3 (PbTx-3, a K. brevis neurotoxin, with the Na+/Ca2+ VGC of the non-toxic diatom Odontella sinensis using electrophysiology. Single electrode current- and voltage- clamp recordings from O. sinensis in the presence of PbTx-3 were used to examine the toxin’s effect on voltage gated Na+/Ca2+ currents. In silico analysis was used to identify the putative PbTx binding site in the diatoms. We identified Na+/Ca2+ VCG homologs from the transcriptomes and genomes of 12 diatoms, including three transcripts from O. sinensis and aligned them with site-5 of Na+ VGCs, previously identified as the PbTx binding site in animals. Results Up to 1 µM PbTx had no effect on diatom resting membrane potential or membrane excitability. The kinetics of fast inward Na+/Ca2+ currents that underlie diatom action potentials were also unaffected. However, the peak inward current was inhibited by 33%, delayed outward current was inhibited by 25%, and reversal potential of the currents shifted positive, indicating a change in permeability of the underlying channels. Sequence analysis showed a lack of conservation of the PbTx binding site in diatom VGC homologs, many of which share molecular features more similar to single-domain bacterial Na+/Ca2+ VGCs than the 4-domain

  15. Emotion classification using single-channel scalp-EEG recording.

    Science.gov (United States)

    Jalilifard, Amir; Brigante Pizzolato, Ednaldo; Kafiul Islam, Md

    2016-08-01

    Several studies have found evidence for corticolimbic Theta electroencephalographic (EEG) oscillation in the neural processing of visual stimuli perceived as fear or threatening scene. Recent studies showed that neural oscillations' patterns in Theta, Alpha, Beta and Gamma sub-bands play a main role in brain's emotional processing. The main goal of this study is to classify two different emotional states by means of EEG data recorded through a single-electrode EEG headset. Nineteen young subjects participated in an EEG experiment while watching a video clip that evoked three emotional states: neutral, relaxation and scary. Following each video clip, participants were asked to report on their subjective affect by giving a score between 0 to 10. First, recorded EEG data were preprocessed by stationary wavelet transform (SWT) based denoising to remove artifacts. Afterward, the distribution of power in time-frequency space was obtained using short-time Fourier transform (STFT) and then, the mean value of energy was calculated for each EEG sub-band. Finally, 46 features, as the mean energy of frequency bands between 4 and 50 Hz, containing 689 instances - for each subject -were collected in order to classify the emotional states. Our experimental results show that EEG dynamics induced by horror and relaxing movies can be classified with average classification rate of 92% using support vector machine (SVM) classifier. We also compared the performance of SVM to K-nearest neighbors (K-NN). The results show that K-NN achieves a better classification rate by 94% accuracy. The findings of this work are expected to pave the way to a new horizon in neuroscience by proving the point that only single-channel EEG data carry enough information for emotion classification.

  16. Identifying kinetic gating mechanisms for ion channels by using two-dimensional distributions of simulated dwell times.

    Science.gov (United States)

    Magleby, K L; Weiss, D S

    1990-09-22

    Ion channels are integral membrane proteins that regulate ionic flux through cell membranes by opening and closing (or gating) their pores. The gating can be monitored by observing step changes in the current flowing through single channels. Analysis of the durations of the open and closed intervals and of the correlations among the interval durations can give insight into the gating mechanism. Although it is well known that the correlation information can be essential to distinguish among possible gating mechanisms, it has been difficult to use this information because it has not been possible to correct the predicted correlations for the distortion of the single-channel data because of filtering and noise. To overcome this limitation we present a method based on a comparison of simulated and experimental two-dimensional dwell-time distributions constructed by analysing simulated and experimental single-channel currents in an identical manner. The simulated currents incorporate the true effects of filtering and noise, the two-dimensional distributions retain the correlation information, and the identical analysis allows direct maximum-likelihood comparison of the simulated and experimental two-dimensional distributions. We show that the two-dimensional simulation method has a greatly increased ability to distinguish among models, compared with methods that use one-dimensional distributions.

  17. Human Digital Meissner Corpuscles Display Immunoreactivity for the Multifunctional Ion Channels Trpc6 and Trpv4.

    Science.gov (United States)

    Alonso-González, Paula; Cabo, Roberto; San José, Isabel; Gago, Angel; Suazo, Iván C; García-Suárez, Olivia; Cobo, Juan; Vega, José A

    2017-06-01

    Ion channels are at the basis of the sensory processes including mechanosensing. Some members of the transient receptor potential (TRP) ion channel superfamily have been proposed as mechanosensors, but their putative role in mechanotransduction is controversial. Among them there are TRP canonical 6 (TRPC6) and TRP vanilloid 4 (TRPV4) ion channels, which are known to cooperate in mechanical hyperalgesia. Here, we investigated the occurrence, distribution, and possible colocalization of TRPC6 and TRPV4 in human digital Meissner sensory corpuscles using immunohistochemistry and double immunofluorescence (associate with markers for specific corpuscular constituents). TRPC6 immunoreactivity was restricted to the axon of Meissner corpuscles, whereas TRPV4 was detected in the axon but also in the lamellar cells. Moreover, axonal colocalization of TRPV4 and TRPC6 was found in the digital Meissner corpuscles. Present results demonstrate for the first time the occurrence and colocalization of two ion channels candidates to mechanosensors in human cutaneous mechanoreceptors. The functional significance of these ion channels in that place remains to be clarified, but should be related to different properties of mechanosensitivity. Anat Rec, 300:1022-1031, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Modification of ion implanted or irradiated single crystal sapphire

    International Nuclear Information System (INIS)

    Song Yin; Zhang Chonghong; Wang Zhiguang; Zhao Zhiming; Yao Cunfeng; Zhou Lihong; Jin Yunfan

    2006-01-01

    Single crystal sapphire (Al 2 O 3 ) samples were implanted at 600 K by He, Ne and Ar ions with energy of 110 keV to doses ranging from 5 x 10 16 to 2 x 10 17 ion/cm 2 or irradiated at 320 K by 208 Pb 27+ ion with energy of 1.1 MeV/u to the fluences ranging from 1 x 10 12 to 5 x 10 14 ion/cm 2 . The modification of structure and optical properties induced by ion implantation or irradiation were analyzed by using photoluminescence (PL) and Fourier transformation infrared spectrum (FTIR) spectra and transmission electron microscopy (TEM) measurements. The PL measurements showed that absorption peaks located at 375, 413 and 450 nm appeared in all the implanted or irradiated samples, the PL intensities reached up to the maximum for the 5 x 10 16 ion/cm 2 implanted samples. After Pb-ion irradiation, a new peak located at 390 nm formed. TEM analyses showed that small size voids (1-2 nm) with high density were formed in the region from the surface till to about 100 nm in depth and also large size Ne-bubble formed in the Ne-doped region. Form the obtained FTIR spectra, it was found that Pb-ion irradiation induced broadening of the absorption band in 460-510 cm -1 and position shift of the absorption band in 1000-1300 cm -1 towards to high wavenumber. The possible damage mechanism in single crystal sapphire induced by energetic ion implantation or irradiation was briefly discussed. (authors)

  19. Ion-channeling analysis of As relocation in heavily doped Si:As irradiated with high-energy ions

    International Nuclear Information System (INIS)

    Lulli, G.; Albertazzi, E.; Bianconi, M.; Ferri, M.

    2003-01-01

    Silicon on insulator layers doped with 8x10 20 As cm -3 and thermally equilibrated at 1100 deg. C, have been irradiated with 2 MeV Si + ions. Rutherford backscattering-channeling analysis shows an increase in As disorder upon irradiation significantly larger than the increase in Si disorder, while electrical measurements show a large decrease in electrical activation. Monte Carlo simulation of channeling angular scans suggests that the enhanced As disorder effect is due to the preferential relocation of dopant atoms slightly displaced from lattice sites, which appear the main reason responsible for the electrical deactivation in the unirradiated sample and are believed to be in the form of As-vacancy clusters. Upon 600 deg. C 15 s annealing, the As atoms randomly relocated by ion irradiation almost completely recover their original configuration, probably capturing vacancies and forming, again, the complexes dissociated by ion irradiation

  20. Wavelength-selective fluorescence in ion channels formed by ...

    Indian Academy of Sciences (India)

    TECS

    channel. 5. An important aspect of this conformation is the membrane interfacial location of the tryptophan residues, a common feature of many transmembrane helices. 6–8. Gramicidins are linear pentadecapeptide antibio- tics with a molecular weight of ~1900. They are pro- duced by the soil bacterium Bacillus brevis, and.

  1. CatSper ion channels: Bioinformatics analysis in Homo sapiens

    African Journals Online (AJOL)

    Jane

    2011-08-17

    Aug 17, 2011 ... channels, located in the plasma membrane of sperm tail. It contains a conserved domain of six trans- ... tivated sperm tail motion appears different under different conditions but basically, it changes from ... The CatSper2 is being named as the human autosomal nonsyndromic male infertility gene due to its ...

  2. The Flatworm Macrostomum lignano Is a Powerful Model Organism for Ion Channel and Stem Cell Research

    Directory of Open Access Journals (Sweden)

    Daniil Simanov

    2012-01-01

    Full Text Available Bioelectrical signals generated by ion channels play crucial roles in many cellular processes in both excitable and nonexcitable cells. Some ion channels are directly implemented in chemical signaling pathways, the others are involved in regulation of cytoplasmic or vesicular ion concentrations, pH, cell volume, and membrane potentials. Together with ion transporters and gap junction complexes, ion channels form steady-state voltage gradients across the cell membranes in nonexcitable cells. These membrane potentials are involved in regulation of such processes as migration guidance, cell proliferation, and body axis patterning during development and regeneration. While the importance of membrane potential in stem cell maintenance, proliferation, and differentiation is evident, the mechanisms of this bioelectric control of stem cell activity are still not well understood, and the role of specific ion channels in these processes remains unclear. Here we introduce the flatworm Macrostomum lignano as a versatile model organism for addressing these topics. We discuss biological and experimental properties of M. lignano, provide an overview of the recently developed experimental tools for this animal model, and demonstrate how manipulation of membrane potential influences regeneration in M. lignano.

  3. The Flatworm Macrostomum lignano Is a Powerful Model Organism for Ion Channel and Stem Cell Research.

    Science.gov (United States)

    Simanov, Daniil; Mellaart-Straver, Imre; Sormacheva, Irina; Berezikov, Eugene

    2012-01-01

    Bioelectrical signals generated by ion channels play crucial roles in many cellular processes in both excitable and nonexcitable cells. Some ion channels are directly implemented in chemical signaling pathways, the others are involved in regulation of cytoplasmic or vesicular ion concentrations, pH, cell volume, and membrane potentials. Together with ion transporters and gap junction complexes, ion channels form steady-state voltage gradients across the cell membranes in nonexcitable cells. These membrane potentials are involved in regulation of such processes as migration guidance, cell proliferation, and body axis patterning during development and regeneration. While the importance of membrane potential in stem cell maintenance, proliferation, and differentiation is evident, the mechanisms of this bioelectric control of stem cell activity are still not well understood, and the role of specific ion channels in these processes remains unclear. Here we introduce the flatworm Macrostomum lignano as a versatile model organism for addressing these topics. We discuss biological and experimental properties of M. lignano, provide an overview of the recently developed experimental tools for this animal model, and demonstrate how manipulation of membrane potential influences regeneration in M. lignano.

  4. Effects of ion channel noise on neural circuits: an application to the respiratory pattern generator to investigate breathing variability.

    Science.gov (United States)

    Yu, Haitao; Dhingra, Rishi R; Dick, Thomas E; Galán, Roberto F

    2017-01-01

    Neural activity generally displays irregular firing patterns even in circuits with apparently regular outputs, such as motor pattern generators, in which the output frequency fluctuates randomly around a mean value. This "circuit noise" is inherited from the random firing of single neurons, which emerges from stochastic ion channel gating (channel noise), spontaneous neurotransmitter release, and its diffusion and binding to synaptic receptors. Here we demonstrate how to expand conductance-based network models that are originally deterministic to include realistic, physiological noise, focusing on stochastic ion channel gating. We illustrate this procedure with a well-established conductance-based model of the respiratory pattern generator, which allows us to investigate how channel noise affects neural dynamics at the circuit level and, in particular, to understand the relationship between the respiratory pattern and its breath-to-breath variability. We show that as the channel number increases, the duration of inspiration and expiration varies, and so does the coefficient of variation of the breath-to-breath interval, which attains a minimum when the mean duration of expiration slightly exceeds that of inspiration. For small channel numbers, the variability of the expiratory phase dominates over that of the inspiratory phase, and vice versa for large channel numbers. Among the four different cell types in the respiratory pattern generator, pacemaker cells exhibit the highest sensitivity to channel noise. The model shows that suppressing input from the pons leads to longer inspiratory phases, a reduction in breathing frequency, and larger breath-to-breath variability, whereas enhanced input from the raphe nucleus increases breathing frequency without changing its pattern. A major source of noise in neuronal circuits is the "flickering" of ion currents passing through the neurons' membranes (channel noise), which cannot be suppressed experimentally. Computational

  5. Surface noise analysis using a single-ion sensor

    Science.gov (United States)

    Daniilidis, N.; Gerber, S.; Bolloten, G.; Ramm, M.; Ransford, A.; Ulin-Avila, E.; Talukdar, I.; Häffner, H.

    2014-06-01

    We use a single-ion electric-field noise sensor in combination with in situ surface treatment and analysis tools, to investigate the relationship between electric-field noise from metal surfaces in vacuum and the composition of the surface. These experiments are performed in a setup that integrates ion trapping capabilities with surface analysis tools. We find that treatment of an aluminum-copper surface with energetic argon ions significantly reduces the level of room-temperature electric-field noise, but the surface does not need to be atomically clean to show noise levels comparable to those of the best cryogenic traps. The noise levels after treatment are low enough to allow fault-tolerant trapped-ion quantum information processing on a microfabricated surface trap at room temperature.

  6. The Challenge of Interpreting Glutamate-Receptor Ion-Channel Structures.

    Science.gov (United States)

    Mayer, Mark L

    2017-11-21

    Ion channels activated by glutamate mediate excitatory synaptic transmission in the central nervous system. Similar to other ligand-gated ion channels, their gating cycle begins with transitions from a ligand-free closed state to glutamate-bound active and desensitized states. In an attempt to reveal the molecular mechanisms underlying gating, numerous structures for glutamate receptors have been solved in complexes with agonists, antagonists, allosteric modulators, and auxiliary proteins. The embarrassingly rich library of structures emerging from this work reveals very dynamic molecules with a more complex conformational spectrum than anticipated from functional studies. Unanticipated conformations solved for complexes with competitive antagonists and a lack of understanding of the structural basis for ion channel subconductance states further highlight challenges that have yet to be addressed. Published by Elsevier Inc.

  7. Numerical methods for a Poisson-Nernst-Planck-Fermi model of biological ion channels.

    Science.gov (United States)

    Liu, Jinn-Liang; Eisenberg, Bob

    2015-07-01

    Numerical methods are proposed for an advanced Poisson-Nernst-Planck-Fermi (PNPF) model for studying ion transport through biological ion channels. PNPF contains many more correlations than most models and simulations of channels, because it includes water and calculates dielectric properties consistently as outputs. This model accounts for the steric effect of ions and water molecules with different sizes and interstitial voids, the correlation effect of crowded ions with different valences, and the screening effect of polarized water molecules in an inhomogeneous aqueous electrolyte. The steric energy is shown to be comparable to the electrical energy under physiological conditions, demonstrating the crucial role of the excluded volume of particles and the voids in the natural function of channel proteins. Water is shown to play a critical role in both correlation and steric effects in the model. We extend the classical Scharfetter-Gummel (SG) method for semiconductor devices to include the steric potential for ion channels, which is a fundamental physical property not present in semiconductors. Together with a simplified matched interface and boundary (SMIB) method for treating molecular surfaces and singular charges of channel proteins, the extended SG method is shown to exhibit important features in flow simulations such as optimal convergence, efficient nonlinear iterations, and physical conservation. The generalized SG stability condition shows why the standard discretization (without SG exponential fitting) of NP equations may fail and that divalent Ca(2+) may cause more unstable discrete Ca(2+) fluxes than that of monovalent Na(+). Two different methods-called the SMIB and multiscale methods-are proposed for two different types of channels, namely, the gramicidin A channel and an L-type calcium channel, depending on whether water is allowed to pass through the channel. Numerical methods are first validated with constructed models whose exact solutions are

  8. The Structure and Transport of Water and Hydrated Ions Within Hydrophobic, Nanoscale Channels

    Energy Technology Data Exchange (ETDEWEB)

    Holt, J K; Herberg, J L; Wu, Y; Schwegler, E; Mehta, A

    2009-06-15

    The purpose of this project includes an experimental and modeling investigation into water and hydrated ion structure and transport at nanomaterials interfaces. This is a topic relevant to understanding the function of many biological systems such as aquaporins that efficiently shuttle water and ion channels that permit selective transport of specific ions across cell membranes. Carbon nanotubes (CNT) are model nanoscale, hydrophobic channels that can be functionalized, making them artificial analogs for these biological channels. This project investigates the microscopic properties of water such as water density distributions and dynamics within CNTs using Nuclear Magnetic Resonance (NMR) and the structure of hydrated ions at CNT interfaces via X-ray Absorption Spectroscopy (XAS). Another component of this work is molecular simulation, which can predict experimental measurables such as the proton relaxation times, chemical shifts, and can compute the electronic structure of CNTs. Some of the fundamental questions this work is addressing are: (1) what is the length scale below which nanoscale effects such as molecular ordering become important, (2) is there a relationship between molecular ordering and transport?, and (3) how do ions interact with CNT interfaces? These are questions of interest to the scientific community, but they also impact the future generation of sensors, filters, and other devices that operate on the nanometer length scale. To enable some of the proposed applications of CNTs as ion filtration media and electrolytic supercapacitors, a detailed knowledge of water and ion structure at CNT interfaces is critical.

  9. A Mesoscopic-Microscopic Perspective on Ion Channel Permeation Energetics: The Semi-Microscopic Approach1

    Science.gov (United States)

    Jordan, Peter C.

    Understanding how physiological ion channels simultaneously exhibit the apparently contradictory properties of high throughput and great discrimination is a long-standing theoretical problem. These nanodevices all operate on the same basic principle: ions, solvated by bulk water, lose a significant part of their hydration shell as they pass through a constriction where a chemical selection process occurs (Hille, 2001). High throughput requires that the chosen ion faces no significant energy barrier, which would forbid its entry. On first blush, it seems that falling into a deep well is also forbidden, since that would apparently trap it in the channel and block further passage. While generally true, some channels function in multi-ion mode, so that they are permanently ion-occupied; permeation then occurs with the entry of a second (or third) ion, repelling the prior occupant and leading to conduction. In all instances, high selectivity requires that there is a mechanism by which all other physiologically prevalent ions face significant energetic discrimination.

  10. Low SNR capacity for MIMO Rician and Rayleigh-product fading channels with single co-channel interferer and noise

    KAUST Repository

    Zhong, Caijun

    2010-09-01

    This paper studies the ergodic capacity of multiple-input multiple-output (MIMO) systems with a single co-channel interferer in the low signal-to-noise-ratio (SNR) regime. Two MIMO models namely Rician and Rayleigh-product channels are investigated. Exact analytical expressions for the minimum energy per information bit, {Eb/N0min, and wideband slope, S0, are derived for both channels. Our results show that the minimum energy per information bit is the same for both channels while their wideband slopes differ significantly. Further, the impact of the numbers of transmit and receive antennas, the Rician K factor, the channel mean matrix and the interference-to-noise-ratio (INR) on the capacity, is addressed. Results indicate that interference degrades the capacity by increasing the required minimum energy per information bit and reducing the wideband slope. Simulation results validate our analytical results. © 2010 IEEE.

  11. Use of Ion-Channel Modulating Agents to Study Cyanobacterial Na+ - K+ Fluxes

    Directory of Open Access Journals (Sweden)

    Pomati Francesco

    2004-01-01

    Full Text Available Here we describe an experimental design aimed to investigate changes in total cellular levels of Na+ and K+ ions in cultures of freshwater filamentous cyanobacteria. Ion concentrations were measured in whole cells by flame photometry. Cellular Na+ levels increased exponentially with rising alkalinity, with K+ levels being maximal for optimal growth pH (~8. At standardized pH conditions, the increase in cellular Na+, as induced by NaCl at 10 mM, was coupled by the two sodium channel-modulating agents lidocaine hydrochloride at 1 &mgr;M and veratridine at 100 &mgr;M. Both the channel-blockers amiloride (1 mM and saxitoxin (1 &mgr;M, decreased cell-bound Na+ and K+ levels. Results presented demonstrate the robustness of well-defined channel blockers and channel-activators in the study of cyanobacterial Na+- K+ fluxes.

  12. Aluminium and hydrogen ions inhibit a mechanosensory calcium-selective cation channel

    Science.gov (United States)

    Ding, J. P.; Pickard, B. G.

    1993-01-01

    The tension-dependent activity of mechanosensory calcium-selective cation channels in excised plasmalemmal patches from onion bulb scale epidermis is modulated by pH in the physiologically meaningful range between 4.5 and 7.2. It is rapidly lowered by lowering pH and rapidly raised by raising pH. Channel activity is effectively inhibited by low levels of aluminium ions and activity can be partially restored by washing for a few minutes. We suggest that under normal conditions the sensitivity of the mechanosensory channels to pH of the wall free space plays important roles in regulation of plant activities such as growth. We further suggest that, when levels of acid and aluminium ions in the soil solution are high, they might inhibit similar sensory channels in cells of the root tip, thus contributing critically to the acid soil syndrome.

  13. Dual Regulation of Voltage-Sensitive Ion Channels by PIP2

    Directory of Open Access Journals (Sweden)

    Aldo A Rodríguez Menchaca

    2012-09-01

    Full Text Available Over the past 16 years, there has been an impressive number of ion channels shown to be sensitive to the major phosphoinositide in the plasma membrane, phosphatidilinositol 4,5-bisphosphate (PIP2. Among them are voltage-gated channels, which are crucial for both neuronal and cardiac excitability. Voltage-gated calcium (Cav channels were shown to be regulated bidirectionally by PIP2. On one hand, PIP2 stabilized their activity by reducing current rundown but on the other hand it produced a voltage-dependent inhibition by shifting the activation curve to more positive voltages. For voltage-gated potassium (Kv channels PIP2 was first shown to prevent N-type inactivation. Careful examination of the effects of PIP2 on the activation mechanism of Kv1.2 has shown a similar bidirectional regulation as in the Cav channels. The two effects could be distinguished kinetically, in terms of their sensitivities to PIP2 and by distinct molecular determinants. The rightward shift of the Kv1.2 voltage dependence implicated basic residues in the S4-S5 linker and was consistent with stabilization of the inactive state of the voltage sensor. A third type of a voltage-gated ion channel modulated by PIP2 is the hyperpolarization-activated cyclic nucleotide-gated (HCN channel. PIP2 has been shown to enhance the opening of HCN channels by shifting their voltage-dependent activation toward depolarized potentials. The sea urchin HCN channel, SpIH, showed again a PIP2-mediated bidirectional effect but in reverse order than the depolarization-activated Cav and Kv channels: a voltage-dependent potentiation, like the mammalian HCN channels, but also an inhibition of the cGMP-induced current activation. Just like the Kv1.2 channels, distinct molecular determinants underlied the PIP2 dual effects on SpIH channels. The dual regulation of these very different ion channels, all of which are voltage dependent, points to conserved mechanisms of regulation of these channels by PIP2.

  14. High-throughput electrophysiological assays for voltage gated ion channels using SyncroPatch 768PE.

    Directory of Open Access Journals (Sweden)

    Tianbo Li

    Full Text Available Ion channels regulate a variety of physiological processes and represent an important class of drug target. Among the many methods of studying ion channel function, patch clamp electrophysiology is considered the gold standard by providing the ultimate precision and flexibility. However, its utility in ion channel drug discovery is impeded by low throughput. Additionally, characterization of endogenous ion channels in primary cells remains technical challenging. In recent years, many automated patch clamp (APC platforms have been developed to overcome these challenges, albeit with varying throughput, data quality and success rate. In this study, we utilized SyncroPatch 768PE, one of the latest generation APC platforms which conducts parallel recording from two-384 modules with giga-seal data quality, to push these 2 boundaries. By optimizing various cell patching parameters and a two-step voltage protocol, we developed a high throughput APC assay for the voltage-gated sodium channel Nav1.7. By testing a group of Nav1.7 reference compounds' IC50, this assay was proved to be highly consistent with manual patch clamp (R > 0.9. In a pilot screening of 10,000 compounds, the success rate, defined by > 500 MΩ seal resistance and >500 pA peak current, was 79%. The assay was robust with daily throughput ~ 6,000 data points and Z' factor 0.72. Using the same platform, we also successfully recorded endogenous voltage-gated potassium channel Kv1.3 in primary T cells. Together, our data suggest that SyncroPatch 768PE provides a powerful platform for ion channel research and drug discovery.

  15. Single Ih channels in pyramidal neuron dendrites: properties, distribution, and impact on action potential output

    NARCIS (Netherlands)

    Kole, Maarten H. P.; Hallermann, Stefan; Stuart, Greg J.

    2006-01-01

    The hyperpolarization-activated cation current (Ih) plays an important role in regulating neuronal excitability, yet its native single-channel properties in the brain are essentially unknown. Here we use variance-mean analysis to study the properties of single Ih channels in the apical dendrites of

  16. A Low-Noise Transimpedance Amplifier for BLM-Based Ion Channel Recording

    Directory of Open Access Journals (Sweden)

    Marco Crescentini

    2016-05-01

    Full Text Available High-throughput screening (HTS using ion channel recording is a powerful drug discovery technique in pharmacology. Ion channel recording with planar bilayer lipid membranes (BLM is scalable and has very high sensitivity. A HTS system based on BLM ion channel recording faces three main challenges: (i design of scalable microfluidic devices; (ii design of compact ultra-low-noise transimpedance amplifiers able to detect currents in the pA range with bandwidth >10 kHz; (iii design of compact, robust and scalable systems that integrate these two elements. This paper presents a low-noise transimpedance amplifier with integrated A/D conversion realized in CMOS 0.35 μm technology. The CMOS amplifier acquires currents in the range ±200 pA and ±20 nA, with 100 kHz bandwidth while dissipating 41 mW. An integrated digital offset compensation loop balances any voltage offsets from Ag/AgCl electrodes. The measured open-input input-referred noise current is as low as 4 fA/√Hz at ±200 pA range. The current amplifier is embedded in an integrated platform, together with a microfluidic device, for current recording from ion channels. Gramicidin-A, α-haemolysin and KcsA potassium channels have been used to prove both the platform and the current-to-digital converter.

  17. 24-channel dual microcontroller-based voltage controller for ion optics remote control

    Science.gov (United States)

    Bengtsson, L.

    2018-05-01

    The design of a 24-channel voltage control instrument for Wenzel Elektronik N1130 NIM modules is described. This instrument is remote controlled from a LabVIEW GUI on a host Windows computer and is intended for ion optics control in electron affinity measurements on negative ions at the CERN-ISOLDE facility. Each channel has a resolution of 12 bits and has a normally distributed noise with a standard deviation of <1 mV. The instrument is designed as a standard 2-unit NIM module where the electronic hardware consists of a printed circuit board with two asynchronously operating microcontrollers.

  18. Single qubit manipulation in a microfabricated surface electrode ion trap

    Science.gov (United States)

    Mount, Emily; Baek, So-Young; Blain, Matthew; Stick, Daniel; Gaultney, Daniel; Crain, Stephen; Noek, Rachel; Kim, Taehyun; Maunz, Peter; Kim, Jungsang

    2013-09-01

    We trap individual 171Yb+ ions in a surface trap microfabricated on a silicon substrate, and demonstrate a complete set of high fidelity single qubit operations for the hyperfine qubit. Trapping times exceeding 20 min without laser cooling, and heating rates as low as 0.8 quanta ms-1, indicate stable trapping conditions in these microtraps. A coherence time of more than 1 s, high fidelity qubit state detection and single qubit rotations are demonstrated. The observation of low heating rates and demonstration of high quality single qubit gates at room temperature are critical steps toward scalable quantum information processing in microfabricated surface traps.

  19. Single qubit manipulation in a microfabricated surface electrode ion trap

    International Nuclear Information System (INIS)

    Mount, Emily; Baek, So-Young; Gaultney, Daniel; Crain, Stephen; Noek, Rachel; Kim, Taehyun; Maunz, Peter; Kim, Jungsang; Blain, Matthew; Stick, Daniel

    2013-01-01

    We trap individual 171 Yb + ions in a surface trap microfabricated on a silicon substrate, and demonstrate a complete set of high fidelity single qubit operations for the hyperfine qubit. Trapping times exceeding 20 min without laser cooling, and heating rates as low as 0.8 quanta ms −1 , indicate stable trapping conditions in these microtraps. A coherence time of more than 1 s, high fidelity qubit state detection and single qubit rotations are demonstrated. The observation of low heating rates and demonstration of high quality single qubit gates at room temperature are critical steps toward scalable quantum information processing in microfabricated surface traps. (paper)

  20. Beyond the Electrocardiogram: Mutations in Cardiac Ion Channel Genes Underlie Nonarrhythmic Phenotypes

    Directory of Open Access Journals (Sweden)

    Thomas M Roston

    2017-03-01

    Full Text Available Cardiac ion channelopathies are an important cause of sudden death in the young and include long QT syndrome, Brugada syndrome, catecholaminergic polymorphic ventricular tachycardia, idiopathic ventricular fibrillation, and short QT syndrome. Genes that encode ion channels have been implicated in all of these conditions, leading to the widespread implementation of genetic testing for suspected channelopathies. Over the past half-century, researchers have also identified systemic pathologies that extend beyond the arrhythmic phenotype in patients with ion channel gene mutations, including deafness, epilepsy, cardiomyopathy, periodic paralysis, and congenital heart disease. A coexisting phenotype, such as cardiomyopathy, can influence evaluation and management. However, prior to recent molecular advances, our understanding and recognition of these overlapping phenotypes were poor. This review highlights the systemic and structural heart manifestations of the cardiac ion channelopathies, including their phenotypic spectrum and molecular basis.

  1. Simulation of biological ion channels with technology computer-aided design.

    Science.gov (United States)

    Pandey, Santosh; Bortei-Doku, Akwete; White, Marvin H

    2007-01-01

    Computer simulations of realistic ion channel structures have always been challenging and a subject of rigorous study. Simulations based on continuum electrostatics have proven to be computationally cheap and reasonably accurate in predicting a channel's behavior. In this paper we discuss the use of a device simulator, SILVACO, to build a solid-state model for KcsA channel and study its steady-state response. SILVACO is a well-established program, typically used by electrical engineers to simulate the process flow and electrical characteristics of solid-state devices. By employing this simulation program, we have presented an alternative computing platform for performing ion channel simulations, besides the known methods of writing codes in programming languages. With the ease of varying the different parameters in the channel's vestibule and the ability of incorporating surface charges, we have shown the wide-ranging possibilities of using a device simulator for ion channel simulations. Our simulated results closely agree with the experimental data, validating our model.

  2. Patch-clamp technique to characterize ion channels in enlarged individual endolysosomes.

    Science.gov (United States)

    Chen, Cheng-Chang; Cang, Chunlei; Fenske, Stefanie; Butz, Elisabeth; Chao, Yu-Kai; Biel, Martin; Ren, Dejian; Wahl-Schott, Christian; Grimm, Christian

    2017-08-01

    According to proteomics analyses, more than 70 different ion channels and transporters are harbored in membranes of intracellular compartments such as endosomes and lysosomes. Malfunctioning of these channels has been implicated in human diseases such as lysosomal storage disorders, neurodegenerative diseases and metabolic pathologies, as well as in the progression of certain infectious diseases. As a consequence, these channels have engendered very high interest as future drug targets. Detailed electrophysiological characterization of intracellular ion channels is lacking, mainly because standard methods to analyze plasma membrane ion channels, such as the patch-clamp technique, are not readily applicable to intracellular organelles. Here we present a protocol detailing how to implement a manual patch-clamp technique for endolysosomal compartments. In contrast to the alternatively used planar endolysosomal patch-clamp technique, this method is a visually controlled, direct patch-clamp technique similar to conventional patch-clamping. The protocol assumes basic knowledge and experience with patch-clamp methods. Implementation of the method requires up to 1 week, and material preparation takes ∼2-4 d. An individual experiment (i.e., measurement of channel currents across the endolysosomal membrane), including control experiments, can be completed within 1 h. This excludes the time for endolysosome enlargement, which takes between 1 and 48 h, depending on the approach and cell type used. Data analysis requires an additional hour.

  3. Computer simulation of ion channel gating: the M(2) channel of influenza A virus in a lipid bilayer

    Science.gov (United States)

    Schweighofer, K. J.; Pohorille, A.

    2000-01-01

    The transmembrane fragment of the influenza virus M(2) protein forms a homotetrameric channel that transports protons. In this paper, we use molecular dynamics simulations to help elucidate the mechanism of channel gating by four histidines that occlude the channel lumen in the closed state. We test two competing hypotheses. In the "shuttle" mechanism, the delta nitrogen atom on the extracellular side of one histidine is protonated by the incoming proton, and, subsequently, the proton on the epsilon nitrogen atom is released on the opposite side. In the "water-wire" mechanism, the gate opens because of electrostatic repulsion between four simultaneously biprotonated histidines. This allows for proton transport along the water wire that penetrates the gate. For each system, composed of the channel embedded in a hydrated phospholipid bilayer, a 1.3-ns trajectory was obtained. It is found that the states involved in the shuttle mechanism, which contain either single-protonated histidines or a mixture of single-protonated histidines plus one biprotonated residue, are stable during the simulations. Furthermore, the orientations and dynamics of water molecules near the gate are conducive to proton transfer. In contrast, the fully biprotonated state is not stable. Additional simulations show that if only two histidines are biprotonated, the channel deforms but the gate remains closed. These results support the shuttle mechanism but not the gate-opening mechanism of proton gating in M(2).

  4. Photoionisation detection of single {sup 87}Rb-atoms using channel electron multipliers

    Energy Technology Data Exchange (ETDEWEB)

    Henkel, Florian Alexander

    2011-09-02

    Fast and efficient detection of single atoms is a universal requirement concerning modern experiments in atom physics, quantum optics, and precision spectroscopy. In particular for future quantum information and quantum communication technologies, the efficient readout of qubit states encoded in single atoms or ions is an elementary prerequisite. The rapid development in the field of quantum optics and atom optics in the recent years has enabled to prepare individual atoms as quantum memories or arrays of single atoms as qubit registers. With such systems, the implementation of quantum computation or quantum communication protocols seems feasible. This thesis describes a novel detection scheme which enables fast and efficient state analysis of single neutral atoms. The detection scheme is based on photoionisation and consists of two parts: the hyperfine-state selective photoionisation of single atoms and the registration of the generated photoion-electron pairs via two channel electron multipliers (CEMs). In this work, both parts were investigated in two separate experiments. For the first step, a photoionisation probability of p{sub ion}=0.991 within an ionisation time of t{sub ion}=386 ns is achieved for a single {sup 87}Rb-atom in an optical dipole trap. For the second part, a compact detection system for the ionisation fragments was developed consisting of two opposing CEM detectors. Measurements show that single neutral atoms can be detected via their ionisation fragments with a detection efficiency of {eta}{sub atom}=0.991 within a detection time of t{sub det}=415.5 ns. In a future combined setup, this will allow the state-selective readout of optically trapped, single neutral {sup 87}Rb-atoms via photoionisation detection with an estimated detection efficiency {eta}=0.982 and a detection time of t{sub tot} = 802 ns. Although initially developed for single {sup 87}Rb-atoms, the concept of photoionisation detection is in principle generally applicable to any

  5. Fabrication of optical channel waveguides in crystals and glasses using macro- and micro ion beams

    Czech Academy of Sciences Publication Activity Database

    Banyasz, I.; Rajta, I.; Nagy, G. U. L.; Zolnai, Z.; Havránek, Vladimír; Veres, M.; Berneschi, S.; Nunzi-Conti, G.; Righini, G. C.

    2014-01-01

    Roč. 331, JUL (2014), s. 157-162 ISSN 0168-583X R&D Projects: GA MŠk(XE) LM2011019 Institutional support: RVO:61389005 Keywords : channel optical waveguides * ion beam irradiation * focussed ion beam * Er-doped tungsten-tellurite glass * Bismuth germanate * Micro Raman spectroscopy Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.124, year: 2014

  6. Enriching lanthanide single-ion magnetism through symmetry and axiality.

    Science.gov (United States)

    Gupta, Sandeep K; Murugavel, Ramaswamy

    2018-04-10

    Rapidly growing modern information technology demands energy and cost efficient tools that can efficiently store and process a large amount of data. However, the miniaturization technology that was being used to boost the performance of the electronic devices, keeping up with the pace as estimated by Moore's law, is reaching its limit. To overcome these challenges, several alternative routes that can eventually mimic the modern electronics fabrication using silicon have been proposed. Single molecule magnets (SMMs), being considered as one of the potential alternatives, have gone through significant progress and the focus has shifted from the use of polynuclear clusters to mononuclear complexes in the last few years. The recent frenzy in the field of SMMs is driven by a better understanding of the effects of crystal field (CF) and molecular symmetry on the magnetic properties, especially in the case of mononuclear paramagnetic complexes, apart from other controlling factors. This has led to the advent of highly anisotropic single-ion magnets (SIMs) with magnetic blocking temperatures as high as 60 K and anisotropic energy barriers over 1800 K. This article overviews our recent research in the light of the emergence of the importance of CF and symmetry in 4f ion based single-ion magnets (SIMs), especially in the context of SIMs with D5h symmetry, apart from commenting on the synthetic efforts adopted to place these metal ions in unusual coordination geometries.

  7. The Importance of the Dissociation Rate in Ion Channel Blocking

    Directory of Open Access Journals (Sweden)

    Hugo Zeberg

    2018-02-01

    Full Text Available Understanding the relationships between the rates and dynamics of current wave forms under voltage clamp conditions is essential for understanding phenomena such as state-dependence and use-dependence, which are fundamental for the action of drugs used as anti-epileptics, anti-arrhythmics, and anesthetics. In the present study, we mathematically analyze models of blocking mechanisms. In previous experimental studies of potassium channels we have shown that the effect of local anesthetics can be explained by binding to channels in the open state. We therefore here examine models that describe the effect of a blocking drug that binds to a non-inactivating channel in its open state. Such binding induces an inactivation-like current decay at higher potential steps. The amplitude of the induced peak depends on voltage and concentration of blocking drug. In the present study, using analytical methods, we (i derive a criterion for the existence of a peak in the open probability time evolution for a model with an arbitrary number of closed states, (ii derive formula for the relative height of the peak amplitude, and (iii determine the voltage dependence of the relative peak height. Two findings are apparent: (1 the dissociation (unbinding rate constant is important for the existence of a peak in the current waveform, while the association (binding rate constant is not, and (2 for a peak to exist it suffices that the dissociation rate must be smaller than the absolute value of all eigenvalues to the kinetic matrix describing the model.

  8. Monte Carlo simulation for statistical mechanics model of ion-channel cooperativity in cell membranes

    Science.gov (United States)

    Erdem, Riza; Aydiner, Ekrem

    2009-03-01

    Voltage-gated ion channels are key molecules for the generation and propagation of electrical signals in excitable cell membranes. The voltage-dependent switching of these channels between conducting and nonconducting states is a major factor in controlling the transmembrane voltage. In this study, a statistical mechanics model of these molecules has been discussed on the basis of a two-dimensional spin model. A new Hamiltonian and a new Monte Carlo simulation algorithm are introduced to simulate such a model. It was shown that the results well match the experimental data obtained from batrachotoxin-modified sodium channels in the squid giant axon using the cut-open axon technique.

  9. LHC BLM Single Channel Connectivity Test using the Standard Installation

    CERN Document Server

    Emery, J; Effinger, E; Ferioli, G; Zamantzas, C; Ikeda, H; Verhagen, E

    2009-01-01

    For the LHC Beam Loss Measurement system (BLM), the high voltage supply of the ionisation chambers and the secondary emission detectors is used to test their connectivity. A harmonic modulation of 0.03 Hz results in a current signal of about 100pA measured by the beam loss acquisition electronics. The signal is analyzed and the measured amplitude and phase are compared with individual channel limits for the 4000 channels. It is foreseen to execute an automatic procedure for all channels every 12 hours which takes about 20 minutes. The paper will present the design of the system, the circuit simulations, measurements of systematic dependencies of different channels and the reproducibility of the amplitude and phase measurements.

  10. Single Gold Nanorod Charge Modulation in an Ion Gel Device.

    Science.gov (United States)

    Collins, Sean S E; Wei, Xingzhan; McKenzie, Thomas G; Funston, Alison M; Mulvaney, Paul

    2016-11-09

    A reliable and reproducible method to rapidly charge single gold nanocrystals in a solid-state device is reported. Gold nanorods (Au NRs) were integrated into an ion gel capacitor, enabling them to be charged in a transparent and highly capacitive device, ideal for optical transmission. Changes in the electron concentration of a single Au NR were observed with dark-field imaging spectroscopy via localized surface plasmon resonance (LSPR) shifts in the scattering spectrum. A time-resolved, laser-illuminated, dark-field system was developed to enable direct measurement of single particle charging rates with time resolution below one millisecond. The added sensitivity of this new approach has enabled the optical detection of fewer than 110 electrons on a single Au NR. Single wavelength resonance shifts provide a much faster, more sensitive method for all surface plasmon-based sensing applications.

  11. Characteristics of a single-channel superconducting flux flow transistor fabricated by an AFM modification technique

    International Nuclear Information System (INIS)

    Ko, Seokcheol; Kim, Seong-Jong

    2007-01-01

    The demand for high performance, integrity, and miniaturization in the area of electronic and mechanic devices has drawn interest in the fabrication of nanostructures. However, it is difficult to fabricate the channel with nano-scale using a conventional photography techniques. AFM anodization technique is a maskless process and effective method to overcome the difficulty in fabricating a nano-scale channel. In this paper, we first present a new fabrication of a single-channel SFFT using a selective oxidation process induced by an AFM probe. The modified channel was investigated by electron probe microanalyzer (EPMA) to find the compositional variation of the transformed region. In order to confirm the operation of a single-channel SFFT, we measured the voltage-current characteristics at the temperature of liquid nitrogen by an I-V automatic measurement system. Our results indicate that the single-channel SFFT having effect as a weak link is effectively fabricated by an AFM lithography process

  12. Hypoxia Sensing in Plants: On a Quest for Ion Channels as Putative Oxygen Sensors.

    Science.gov (United States)

    Wang, Feifei; Chen, Zhong-Hua; Shabala, Sergey

    2017-07-01

    Over 17 million km2 of land is affected by soil flooding every year, resulting in substantial yield losses and jeopardizing food security across the globe. A key step in resolving this problem and creating stress-tolerant cultivars is an understanding of the mechanisms by which plants sense low-oxygen stress. In this work, we review the current knowledge about the oxygen-sensing and signaling pathway in mammalian and plant systems and postulate the potential role of ion channels as putative oxygen sensors in plant roots. We first discuss the definition and requirements for the oxygen sensor and the difference between sensing and signaling. We then summarize the literature and identify several known candidates for oxygen sensing in the mammalian literature. This includes transient receptor potential (TRP) channels; K+-permeable channels (Kv, BK and TASK); Ca2+ channels (RyR and TPC); and various chemo- and reactive oxygen species (ROS)-dependent oxygen sensors. Identified key oxygen-sensing domains (PAS, GCS, GAF and PHD) in mammalian systems are used to predict the potential plant counterparts in Arabidopsis. Finally, the sequences of known mammalian ion channels with reported roles in oxygen sensing were employed to BLAST the Arabidopsis genome for the candidate genes. Several plasma membrane and tonoplast ion channels (such as TPC, AKT and KCO) and oxygen domain-containing proteins with predicted oxygen-sensing ability were identified and discussed. We propose a testable model for potential roles of ion channels in plant hypoxia sensing. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. Automated Electrophysiology Makes the Pace for Cardiac Ion Channel Safety Screening

    Directory of Open Access Journals (Sweden)

    Clemens eMoeller

    2011-11-01

    Full Text Available The field of automated patch-clamp electrophysiology has emerged from the tension between the pharmaceutical industry’s need for high-throughput compound screening versus its need to be conservative due to regulatory requirements. On the one hand, hERG channel screening was increasingly requested for new chemical entities, as the correlation between blockade of the ion channel coded by hERG and Torsades de Pointes cardiac arrhythmia gained increasing attention. On the other hand, manual patch-clamping, typically quoted as the gold-standard for understanding ion channel function and modulation, was far too slow (and, consequently, too expensive for keeping pace with the numbers of compounds submitted for hERG channel investigations from pharmaceutical R&D departments. In consequence it became more common for some pharmaceutical companies to outsource safety pharmacological investigations, with a focus on hERG channel interactions. This outsourcing has allowed those pharmaceutical companies to build up operational flexibility and greater independence from internal resources, and allowed them to obtain access to the latest technological developments that emerged in automated patch-clamp electrophysiology – much of which arose in specialized biotech companies. Assays for nearly all major cardiac ion channels are now available by automated patch-clamping using heterologous expression systems, and recently, automated action potential recordings from stem-cell derived cardiomyocytes have been demonstrated. Today, most of the large pharmaceutical companies have acquired automated electrophysiology robots and have established various automated cardiac ion channel safety screening assays on these, in addition to outsourcing parts of their needs for safety screening.

  14. Single ion impact detection and scanning probe aligned ion implantation for quantum bit formation

    International Nuclear Information System (INIS)

    Weis, Christoph D.

    2011-01-01

    Quantum computing and quantum information processing is a promising path to replace classical information processing via conventional computers which are approaching fundamental physical limits. Instead of classical bits, quantum bits (qubits) are utilized for computing operations. Due to quantum mechanical phenomena such as superposition and entanglement, a completely different way of information processing is achieved, enabling enhanced performance for certain problem sets. Various proposals exist on how to realize a quantum bit. Among them are electron or nuclear spins of defect centers in solid state systems. Two such candidates with spin degree of freedom are single donor atoms in silicon and nitrogen vacancy (NV) defect centers in diamond. Both qubit candidates possess extraordinary qualities which makes them promising building blocks. Besides certain advantages, the qubits share the necessity to be placed precisely in their host materials and device structures. A commonly used method is to introduce the donor atoms into the substrate materials via ion implantation. For this, focused ion beam systems can be used, or collimation techniques as in this work. A broad ion beam hits the back of a scanning probe microscope (SPM) cantilever with incorporated apertures. The high resolution imaging capabilities of the SPM allows the non destructive location of device areas and the alignment of the cantilever and thus collimated ion beam spot to the desired implant locations. In this work, this technique is explored, applied and pushed forward to meet necessary precision requirements. The alignment of the ion beam to surface features, which are sensitive to ion impacts and thus act as detectors, is demonstrated. The technique is also used to create NV center arrays in diamond substrates. Further, single ion impacts into silicon device structures are detected which enables deliberate single ion doping.

  15. Single ion impact detection and scanning probe aligned ion implantation for quantum bit formation

    Energy Technology Data Exchange (ETDEWEB)

    Weis, Christoph D.

    2011-10-04

    Quantum computing and quantum information processing is a promising path to replace classical information processing via conventional computers which are approaching fundamental physical limits. Instead of classical bits, quantum bits (qubits) are utilized for computing operations. Due to quantum mechanical phenomena such as superposition and entanglement, a completely different way of information processing is achieved, enabling enhanced performance for certain problem sets. Various proposals exist on how to realize a quantum bit. Among them are electron or nuclear spins of defect centers in solid state systems. Two such candidates with spin degree of freedom are single donor atoms in silicon and nitrogen vacancy (NV) defect centers in diamond. Both qubit candidates possess extraordinary qualities which makes them promising building blocks. Besides certain advantages, the qubits share the necessity to be placed precisely in their host materials and device structures. A commonly used method is to introduce the donor atoms into the substrate materials via ion implantation. For this, focused ion beam systems can be used, or collimation techniques as in this work. A broad ion beam hits the back of a scanning probe microscope (SPM) cantilever with incorporated apertures. The high resolution imaging capabilities of the SPM allows the non destructive location of device areas and the alignment of the cantilever and thus collimated ion beam spot to the desired implant locations. In this work, this technique is explored, applied and pushed forward to meet necessary precision requirements. The alignment of the ion beam to surface features, which are sensitive to ion impacts and thus act as detectors, is demonstrated. The technique is also used to create NV center arrays in diamond substrates. Further, single ion impacts into silicon device structures are detected which enables deliberate single ion doping.

  16. Molecular interplay between ion channels and the regulation of apoptosis

    Directory of Open Access Journals (Sweden)

    MONA A RAZIK

    2002-01-01

    Full Text Available Apoptosis is the programmed and deliberate destruction of specific cells. This process occurs during normal development and maintains cellular homeostasis. Disruption or malfunction of apoptosis is implicated in diseases like cancer, AIDS as well as neurodegenerative disorders. The movement of monovalent ions appears to set the stage for the induction of the self-destruction machinery by creating an intracellular environment that favors activation and coordinated execution of the apoptotic program. Understanding the components and steps involved in this intricate process can further our insight to diseases and reveal new approaches for therapeutic treatment

  17. Mobility-limiting mechanisms in single and dual channel strained Si/SiGe MOSFETs

    International Nuclear Information System (INIS)

    Olsen, S.H.; Dobrosz, P.; Escobedo-Cousin, E.; Bull, S.J.; O'Neill, A.G.

    2005-01-01

    Dual channel strained Si/SiGe CMOS architectures currently receive great attention due to maximum performance benefits being predicted for both n- and p-channel MOSFETs. Epitaxial growth of a compressively strained SiGe layer followed by tensile strained Si can create a high mobility buried hole channel and a high mobility surface electron channel on a single relaxed SiGe virtual substrate. However, dual channel n-MOSFETs fabricated using a high thermal budget exhibit compromised mobility enhancements compared with single channel devices, in which both electron and hole channels form in strained Si. This paper investigates the mobility-limiting mechanisms of dual channel structures. The first evidence of increased interface roughness due to the introduction of compressively strained SiGe below the tensile strained Si channel is presented. Interface corrugations degrade electron mobility in the strained Si. Roughness measurements have been carried out using AFM and TEM. Filtering AFM images allowed roughness at wavelengths pertinent to carrier transport to be studied and the results are in agreement with electrical data. Furthermore, the first comparison of strain measurements in the surface channels of single and dual channel architectures is presented. Raman spectroscopy has been used to study channel strain both before and after processing and indicates that there is no impact of the buried SiGe layer on surface macrostrain. The results provide further evidence that the improved performance of the single channel devices fabricated using a high thermal budget arises from improved surface roughness and reduced Ge diffusion into the Si channel

  18. Ligands of histamine receptors modulate acid-sensing ion channels.

    Science.gov (United States)

    Shteinikov, V Y; Korosteleva, A S; Tikhonova, T B; Potapieva, N N; Tikhonov, D B

    2017-09-02

    Recently we found that synthetic compounds containing amino group linked to hydrophobic or aromatic moiety are potent modulators of the proton-gated channels (ASICs). These structures have clear similarity with ligands of histamine receptors. We have also demonstrated that histamine potentiates homomeric ASIC1a by shifting its activation dependence to less acidic conditions. In the present work the action of a series of histamine receptors ligands on recombinant ASIC1a and ASIC2a was characterized. Two types of action were found for ASIC1a. 1-methylhistamine, N-alpha-methylhistamine, dimaprit and thioperamide caused significant potentiation, which was pH-dependent and voltage-independent. The H4R antagonist A943931 caused inhibition, which is likely due to voltage-dependent pore block. ASIC2a were virtually insensitive to the drugs tested. We conclude that ligands of histamine receptors should also be considered as ASIC modulators. Copyright © 2017. Published by Elsevier Inc.

  19. Acid-sensing ion channel (ASIC) 1a/2a heteromers have a flexible 2:1/1:2 stoichiometry.

    Science.gov (United States)

    Bartoi, Tudor; Augustinowski, Katrin; Polleichtner, Georg; Gründer, Stefan; Ulbrich, Maximilian H

    2014-06-03

    Acid-sensing ion channels (ASICs) are widely expressed proton-gated Na(+) channels playing a role in tissue acidosis and pain. A trimeric composition of ASICs has been suggested by crystallization. Upon coexpression of ASIC1a and ASIC2a in Xenopus oocytes, we observed the formation of heteromers and their coexistence with homomers by electrophysiology, but could not determine whether heteromeric complexes have a fixed subunit stoichiometry or whether certain stoichiometries are preferred over others. We therefore imaged ASICs labeled with green and red fluorescent proteins on a single-molecule level, counted bleaching steps from GFP and colocalized them with red tandem tetrameric mCherry for many individual complexes. Combinatorial analysis suggests a model of random mixing of ASIC1a and ASIC2a subunits to yield both 2:1 and 1:2 ASIC1a:ASIC2a heteromers together with ASIC1a and ASIC2a homomers.

  20. Angle-resolved imaging of single-crystal materials with MeV helium ions

    International Nuclear Information System (INIS)

    Strathman, M.D.; Baumann, S.

    1992-01-01

    The simplest form of angle-resolved mapping for single-crystal materials is the creation of a channeling angular scan. Several laboratories have expanded this simple procedure to include mapping as a function of two independent tilts. These angle-resolved images are particularly suited to the assessment of crystal parameters including disorder, lattice location of impurities, and lattice stress. This paper will describe the use of the Charles Evans and Associates RBS-400 scattering chamber for acquisition, display, and analysis of angle-resolved images obtained from backscattered helium ions. Typical data acquisition times are 20 min for a ±2deg X-Y tilt scan with 2500 pixels (8/100deg resolution), and 10 nC per pixel. In addition, we will present a method for automatically aligning crystals for channeling measurements based on this imaging technology. (orig.)

  1. Stopping Power and Energy Straggling of Channeled He-Ions in GaN

    International Nuclear Information System (INIS)

    Turos, A.; Ratajczak, R.; Pagowska, K.; Nowicki, L.; Stonert, A.; Caban, P.

    2011-01-01

    GaN epitaxial layers are usually grown on sapphire substrates. To avoid disastrous effect of the large lattice mismatch a thin polycrystalline nucleation layer is grown at 500 o C followed by the deposition of thick GaN template at much higher temperature. Remnants of the nucleation layer were visualized by transmission electron microscopy as defect agglomeration at the GaN/sapphire interface and provide a very useful depth marker for the measurement of channeled ions stopping power. Random and aligned spectra of He ions incident at energies ranging from 1.7 to 3.7 MeV have been measured and evaluated using the Monte Carlo simulation code McChasy. Impact parameter dependent stopping power has been calculated for channeling direction and its parameters have been adjusted according to experimental data. For virgin, i.e. as grown, samples, the ratio of channeled to random stopping power is constant and amounts to 0.7 in the energy range studied. Defects produced by ion implantation largely influence the stopping power. For channeled ions the variety of possible trajectories leads to different energy loss at a given depth, thus resulting in much larger energy straggling than that for the random path. Beam energy distributions at different depths have been calculated using the McChasy code. They are significantly broader than those predicted by the Bohr formula for random direction. (author)

  2. (n,p) emission channeling measurements on ion-implanted beryllium

    CERN Multimedia

    Jakubek, J; Uher, J

    2007-01-01

    We propose to perform emission-channeling measurements using thermal neutron induced proton emission from ion-implanted $^{7}$Be. The physics questions addressed concern the beryllium doping of III-V and II-VI semiconductors and the host dependence of the electron capture half-life of $^{7}$Be.

  3. Increased Throughput in Ion Channel Drug Development and Exploration by Automation of Electrophysiology

    DEFF Research Database (Denmark)

    Willumsen, N. J.

    2006-01-01

    Ion channels constitute macromolecular communication gates that are present in the membranes of all living cells. They are crucial for practically any physiological process, either as chemical or electrical signal transducers or as transmembrane routes for the bulk transport of salts. Not surpris...

  4. Optical waveguide lightmode spectroscopic techniques for investigating membrane-bound ion channel activities.

    Directory of Open Access Journals (Sweden)

    Inna Székács

    Full Text Available Optical waveguide lightmode spectroscopic (OWLS techniques were probed for monitoring ion permeation through channels incorporated into artificial lipid environment. A novel sensor set-up was developed by depositing liposomes or cell-derived membrane fragments onto hydrophilic polytetrafluoroethylene (PTFE membrane. The fibrous material of PTFE membrane could entrap lipoid vesicles and the water-filled pores provided environment for the hydrophilic domains of lipid-embedded proteins. The sensor surface was kept clean from the lipid holder PTFE membrane by a water- and ion-permeable polyethylene terephthalate (PET mesh. The sensor set-up was tested with egg yolk lecithin liposomes containing gramicidin ion channels and with cell-derived membrane fragments enriched in GABA-gated anion channels. The method allowed monitoring the move of Na(+ and organic cations through gramicidin channels and detecting the Cl(--channel functions of the (α5β2γ2 GABAA receptor in the presence or absence of GABA and the competitive GABA-blocker bicuculline.

  5. Scaling properties in single collision model of light ion reflection

    International Nuclear Information System (INIS)

    Vukanic, J.; Simovic, R.

    2004-01-01

    Light ion reflection from solids in the keV energy region has been studied within the single collision model. Particle and energy reflection coefficients as functions of the scaled transport cross section have been calculated numerically by utilizing the exact scattering function for the Kr-C potential and analytically with an effective power approximation for the same potential. The obtained analytical formulae approximate very accurately to the numerical results. Comparison of the calculated reflection coefficients with the experimental data and computer simulations for different light ion-heavy target combinations shows that the scaled transport cross section remains a convenient scaling parameter in the single collision domain, as adopted previously in multiple collision theory

  6. Damage evolution in Xe-ion irradiated rutile (TiO2) single crystals

    International Nuclear Information System (INIS)

    Li, F.; Sickafus, K.E.; Evans, C.R.; Nastasi, M.

    1999-01-01

    Rutile (TiO 2 ) single crystals with (110) orientation were irradiated with 360 keV Xe 2+ ions at 300 K to fluences ranging from 2 x 10 19 to 1 x 10 20 Xe/m 2 . Irradiated samples were analyzed using: (1) Rutherford backscattering spectroscopy combined with ion channeling analysis (RBS/C); and (2) cross-sectional transmission electron microscopy (XTEM). Upon irradiation to a fluence of 2 x 10 19 Xe/m 2 , the sample thickness penetrated by the implanted ions was observed to consist of three distinct layers: (1) a defect-free layer at the surface (thickness about 12 nm) exhibiting good crystallinity; (2) a second layer with a low density of relatively large-sized defects; and (3) a third layer consisting of a high concentration of small defects. After the fluence was increased to 7 x 10 19 Xe/m 2 , a buried amorphous layer was visible by XTEM. The thickness of the amorphous layer was found to increase with increasing Xe ion fluence. The location of this buried amorphous layer was found to coincide with the measured peak in the Xe concentration (measured by RBS/C), rather than with the theoretical maximum in the displacement damage profile. This observation suggests the implanted Xe ions may serve as nucleation sites for the amorphization transformation. The total thickness of the damaged microstructure due to ion irradiation was always found to be much greater than the projected range of the Xe ions. This is likely due to point defect migration under the high stresses induced by ion implantation

  7. Single event upsets caused by solar energetic heavy ions

    International Nuclear Information System (INIS)

    Tylka, A.J.; Adams, J.H. Jr.; Boberg, P.R.; Smith, E.C.

    1996-01-01

    The authors calculate single event upset (SEU) rates due to protons, alphas, and heavier ions in two satellite systems for the major solar particle events of 1989--92, using a new and complete analysis of GOES proton data and high-energy heavy-ion fluences from the University of Chicago Cosmic Ray Telescope on IMP-8. These measurements cover the entire range of energies relevant to SEU studies and therefore overcome shortcomings of previous studies, which relied upon theoretical or semi-empirical estimates of high-energy heavy-ion spectra. They compare the results to the observed SEU rates in these events. The SEU rates in one device were overwhelmingly dominated by protons. However, even after taking into account uncertainties in the ground-test cross-section data, the authors find that at least ∼45% of the SEUs in the other device must have been caused by heavy ions. The results demonstrate that both protons and heavy ions must be considered in order to make a reliable assessment of SEU vulnerabilities. Furthermore, the GOES/Chicago database of solar particle events provides a basis for making accurate solar particle SEU calculations and credible worst-case estimates. In particular, measurements of the historic solar particle events of October 1989 are used in worst week and worst day environment models in CREME96, a revision of NRL's Cosmic Ray Effects on MicroElectronics code

  8. Conduction Mechanisms and Structure of Ionomeric Single-Ion Conductors

    Energy Technology Data Exchange (ETDEWEB)

    Colby, Ralph H. [Pennsylvania State Univ., University Park, PA (United States); Maranas, Janna K. [Pennsylvania State Univ., University Park, PA (United States); Mueller, Karl T. [Pennsylvania State Univ., University Park, PA (United States); Runt, James [Pennsylvania State Univ., University Park, PA (United States); Winey, Karen I. [Univ. of Pennsylvania, Philadelphia, PA (United States)

    2015-03-01

    Our team has designed using DFT (Gaussian) and synthesized low glass transition temperature single-ion conductors that are either polyanions that conduct small cations Li+, Na+, Cs+ or polycations that conduct small anions F-, OH-, Br-. We utilize a wide range of complimentary experimental materials characterization tools to understand ion transport; differential scanning calorimetry, dielectric relaxation spectroscopy, infrared spectroscopy, nuclear magnetic resonance spectroscopy, linear viscoelasticity, X-ray scattering and molecular dynamics simulations. The glass transition temperature Tg needs to be as low as possible to facilitate ion transport, so the nonionic parts of the polymer need to be polar, flexible and have strong solvation interactions with the ions. The lowest Tg we have managed for polyanions conducting Li+ is -60 °C. In contrast, polysiloxanes with PEO side chains and tetrabutylphosphonium cationic side groups have Tg ≈ -75 °C that barely increases with ion content, as anticipated by DFT. A survey of all polyanions in the literature suggests that Tg < -80 °C is needed to achieve the 10-4 S/cm conductivity needed for battery separators.

  9. Applications of heavy ion microprobe for single event effects analysis

    International Nuclear Information System (INIS)

    Reed, Robert A.; Vizkelethy, Gyorgy; Pellish, Jonathan A.; Sierawski, Brian; Warren, Kevin M.; Porter, Mark; Wilkinson, Jeff; Marshall, Paul W.; Niu, Guofu; Cressler, John D.; Schrimpf, Ronald D.; Tipton, Alan; Weller, Robert A.

    2007-01-01

    The motion of ionizing-radiation-induced rogue charge carriers in a semiconductor can create unwanted voltage and current conditions within a microelectronic circuit. If sufficient unwanted charge or current occurs on a sensitive node, a variety of single event effects (SEEs) can occur with consequences ranging from trivial to catastrophic. This paper describes the application of heavy ion microprobes to assist with calibration and validation of SEE modeling approaches

  10. Single-crate stand-alone CAMAC control system for a negative ion source test facility

    International Nuclear Information System (INIS)

    Juras, R.C.; Ziegler, N.F.

    1979-01-01

    A single-crate CAMAC system was configured to control a negative ion source development facility at ORNL and control software was written for the crate microcomputer. The software uses inputs from a touch panel and a shaft encoder to control the various operating parameters of the test facility and uses the touch panel to display the operating status. Communication to and from the equipment at ion source potential is accomplished over optical fibers from an ORNL-built CAMAC module. A receiver at ion source potential stores the transmitted data and some of these stored values are then used to control discrete parameters of the ion source (i.e., power supply on or off). Other stored values are sent to a multiplexed digital-to-analog converter to provide analog control signals. A transmitter at ion source potential transmits discrete status information and several channels of analog data from an analog-to-digital converter back to the ground-potential receiver where it is stored to be read and displayed by the software

  11. Dependence of the structure of ion-modified NiTi single crystal layers on the orientation of irradiated surface

    Science.gov (United States)

    Poletika, T. M.; Meisner, L. L.; Girsova, S. L.; Tverdokhlebova, A. V.; Meisner, S. N.

    2017-07-01

    The composition and structure of Si layers implanted into titanium nickelide single crystals with different orientations relative to the ion beam propagation direction have been studied using Auger electron spectroscopy and transmission electron microscopy. The role of the "soft" [111]B2 and "hard" [001]B2 NiTi orientations in the formation of the structure of ion-modified surface layer, as well as the defect structure of the surface layers of the single crystals, has been revealed. Orientation effects of selective sputtering and channeling of ions, which control the composition and thickness of the oxide and amorphous layers being formed, ion and impurity penetration depth, as well as the concentration profile of the Ni distribution over the surface, have been detected.

  12. Imaging and structural studies of DNA–protein complexes and membrane ion channels

    KAUST Repository

    Marini, Monica

    2017-01-17

    In bio-imaging by electron microscopy, damage of the sample and limited contrast are the two main hurdles for reaching high image quality. We extend a new preparation method based on nanofabrication and super-hydrophobicity to the imaging and structural studies of nucleic acids, nucleic acid-protein complexes (DNA/Rad51 repair protein complex) and neuronal ion channels (gap-junction, K+ and GABA(A) channels) as paradigms of biological significance and increasing complexity. The preparation method is based on the liquid phase and is compatible with physiological conditions. Only in the very last stage, samples are dried for TEM analysis. Conventional TEM and high-resolution TEM (HRTEM) were used to achieve a resolution of 3.3 and 1.5 angstrom, respectively. The EM dataset quality allows the determination of relevant structural and metrological information on the DNA structure, DNA-protein interactions and ion channels, allowing the identification of specific macromolecules and their structure.

  13. Toward Molecular 4f Single-Ion Magnet Qubits.

    Science.gov (United States)

    Pedersen, Kasper S; Ariciu, Ana-Maria; McAdams, Simon; Weihe, Høgni; Bendix, Jesper; Tuna, Floriana; Piligkos, Stergios

    2016-05-11

    Quantum coherence is detected in the 4f single-ion magnet (SIM) Yb(trensal), by isotope selective pulsed EPR spectroscopy on an oriented single crystal. At X-band, the spin-lattice relaxation (T1) and phase memory (Tm) times are found to be independent of the nuclei bearing, or not, a nuclear spin. The observation of Rabi oscillations of the spin echo demonstrates the possibility to coherently manipulate the system for more than 70 rotations. This renders Yb(trensal), a sublimable and chemically modifiable SIM, an excellent candidate for quantum information processing.

  14. Volumetric erosion rate reduction of Hall thruster channel wall during ion sputtering process

    International Nuclear Information System (INIS)

    Yu Daren; Li Yuquan

    2007-01-01

    The mechanisms of the volumetric erosion rate reduction of the channel wall were studied theoretically and numerically in order to explain the reasons why the volumetric erosion rate of Hall thruster channel decreases over time. The results of the theoretical analysis indicate that the variation of three sputtering conditions results from the increase in the tilt angle and the erosion depth of the channel wall erosion surface during the surface evolution process. The mass loss of the Hall thruster channel wall material is a reduction process due to which the ion flux divergent angle is smaller than the value that corresponds to the sufficient condition of the reduction process. The simulation results of the channel wall erosion process qualitatively agree well with the experimental results, and the numerical analysis of the reduction process shows that the magnitude orders of three sputtering condition variation effects on the volumetric erosion rate reduction are the same, and the reduction rate reaches its maximum value in the initial operation period when the ion radiation angle equals the optimum sputtering rate angle. This work provides theoretical fundamentals of the channel wall erosion reduction process and it can be used for the lifetime prediction and optimum design of the Hall thruster

  15. Ion channel gene expressions in infertile men: A case-control study

    Directory of Open Access Journals (Sweden)

    Serkan Carkci

    2017-12-01

    Full Text Available Background: Infertility is described as not receiving pregnancy despite unprotected and regular sexual intercourse in a 1 yr period. It is detected by 15% of the couples. Male and female factor in the etiology may be detected in similar rates. Objective: The present study aims to investigate ion channel gene expression in semen samples of infertile male compared with fertile men. Materials and Methods: A total of 150 men who applied to the urology clinic due to infertility were divided into five equal groups: asthenozoospermia, oligozoospermia, oligoasthenoteratozoospermia, teratozoospermia, and normozoospermia (control. All paticipants were evaluated with Cation Channel Spermia (CatSper 1, 2, 3, 4, Proton Voltage Gated Ion Channel1 (Hv1, Potassium Channel Subfamily U1 (KCNU1, and transmembrane protein (TMEM16A gene expression in semen samples. Results: “CatSper1, 4, HV1, KCNU1, and TMEM16A gene expression were detected higher in the oligozoospermia group compared to the controls. CatSper1, 2, 3, 4, KCNU1, and TMEM16A gene expression in the asthenozoospermia group and CatSper1, 2, 3, 4, KCNU1, and TMEM16A gene expression in the teratozoospermia group were detected lower compared to the controls. CatSper1, 4, HV1, and TMEM16A gen expression were higher in the oligoasthenoteratozoospermia men than the controls while CatSper3 gen expression was detected as lower.” Conclusion: It was detected that these ion channels have an effect on sperm progressive motility and morphology. It may be considered that mutations in these ion channels may result in infertility

  16. Ion channelling analysis of pre-amorphised silicon diodes using a nuclear microprobe

    International Nuclear Information System (INIS)

    Thornton, J.; Paus, K.C.

    1988-01-01

    Aligned and random ion channelling analysis was performed on p + n diode structures in silicon, with the Surrey nuclear microprobe. Three different types of diode were investigated, each pre-amorphised by a different ion (Si + , Ge + or Sn + ) before the p + region was formed by BF 2 + implantation. The ion channelling measurements are presented and compared with previously published electrical measurements on these diodes. Relatively large residual disorder and junction leakage currents were found for the Si + pre-amorphised diodes; however, all the diodes were leaky. The results are consistent with dislocation loops within the depletion regions of the diodes causing both the residual disorder and the large leakage currents. Cross-sectional transmission electron microscopy studies support this model. (author)

  17. Airway irritation and cough evoked by acid: from human to ion channel

    Science.gov (United States)

    Gu, Qihai; Lee, Lu-Yuan

    2011-01-01

    Inhalation or aspiration of acid solution evokes airway defense responses such as cough and reflex bronchoconstriction, resulting from activation of vagal bronchopulmonary C-fibers and Aδ afferents. The stimulatory effect of hydrogen ion on these sensory nerves is generated by activation of two major types of ion channels expressed in these neurons: a rapidly activating and inactivating current mediated through ASICs, and a slow sustaining current via activation of TRPV1. Recent studies have shown that these acid-evoked responses are elevated during airway inflammatory reaction, revealing the potential convergence of a wide array of inflammatory signaling on these ion channels. Since pH in the airway fluid drops substantially in patients with inflammatory airway diseases, these heightened stimulatory effects of acid on airway sensory nerves may play a part in the manifestation of airway irritation and excessive cough under those pathophysiological conditions. PMID:21543258

  18. Role of ion channels in regulating Ca²⁺ homeostasis during the interplay between immune and cancer cells.

    Science.gov (United States)

    Bose, T; Cieślar-Pobuda, A; Wiechec, E

    2015-02-19

    Ion channels are abundantly expressed in both excitable and non-excitable cells, thereby regulating the Ca(2+) influx and downstream signaling pathways of physiological processes. The immune system is specialized in the process of cancer cell recognition and elimination, and is regulated by different ion channels. In comparison with the immune cells, ion channels behave differently in cancer cells by making the tumor cells more hyperpolarized and influence cancer cell proliferation and metastasis. Therefore, ion channels comprise an important therapeutic target in anti-cancer treatment. In this review, we discuss the implication of ion channels in regulation of Ca(2+) homeostasis during the crosstalk between immune and cancer cell as well as their role in cancer progression.

  19. Two-dimensional probability density analysis of single channel currents from reconstituted acetylcholine receptors and sodium channels.

    Science.gov (United States)

    Keller, B U; Montal, M S; Hartshorne, R P; Montal, M

    1990-01-01

    Two-dimensional probability density analysis of single channel current recordings was applied to two purified channel proteins reconstituted in planar lipid bilayers: Torpedo acetylcholine receptors and voltage-sensitive sodium channels from rat brain. The information contained in the dynamic history of the gating process, i.e., the time sequence of opening and closing events was extracted from two-dimensional distributions of transitions between identifiable states. This approach allows one to identify kinetic models consistent with the observables. Gating of acetylcholine receptors expresses "memory" of the transition history: the receptor has two channel open (O) states; the residence time in each of them strongly depends on both the preceding open time and the intervening closed interval. Correspondingly, the residence time in the closed (C) states depends on both the preceding open time and the preceding closed time. This result confirms the scheme that considers, at least, two transition pathways between the open and closed states and extends the details of the model in that it defines that the short-lived open state is primarily entered from long-lived closed states while the long-lived open state is accessed mainly through short-lived closed states. Since ligand binding to the acetylcholine-binding sites is a reaction with channel closed states, we infer that the longest closed state (approximately 19 ms) is unliganded, the intermediate closed state (approximately 2 ms) is singly liganded and makes transitions to the short open state (approximately 0.5 ms) and the shortest closed state (approximately 0.4 ms) is doubly liganded and isomerizes to long open states (approximately 5 ms). This is the simplest interpretation consistent with available data. In contrast, sodium channels modified with batrachotoxin to eliminate inactivation show no correlation in the sequence of channel opening and closing events, i.e., have no memory of the transition history. This

  20. Generic Single-Channel Detection of Absence Seizures

    DEFF Research Database (Denmark)

    Petersen, Eline B.; Duun-Henriksen, Jonas; Mazzaretto, Andrea

    2011-01-01

    is obtained for the derivation F7-FP1. Using this channel a sensitivity of 99.1 %, positive predictive value of 94.8 %, mean detection latency of 3.7 s, and false detection rate value of 0.5/h was obtained. The topographical visualization of the results clearly shows that the frontal, midline, and parietal...

  1. Three-channel single-wavelength lidar depolarization calibration

    Science.gov (United States)

    McCullough, Emily M.; Sica, Robert J.; Drummond, James R.; Nott, Graeme J.; Perro, Christopher; Duck, Thomas J.

    2018-02-01

    Linear depolarization measurement capabilities were added to the CANDAC Rayleigh-Mie-Raman lidar (CRL) at Eureka, Nunavut, in the Canadian High Arctic in 2010. This upgrade enables measurements of the phases (liquid versus ice) of cold and mixed-phase clouds throughout the year, including during polar night. Depolarization measurements were calibrated according to existing methods using parallel- and perpendicular-polarized profiles as discussed in ). We present a new technique that uses the polarization-independent Rayleigh elastic channel in combination with one of the new polarization-dependent channels, and we show that for a lidar with low signal in one of the polarization-dependent channels this method is superior to the traditional method. The optimal procedure for CRL is to determine the depolarization parameter using the traditional method at low resolution (from parallel and perpendicular signals) and then to use this value to calibrate the high-resolution new measurements (from parallel and polarization-independent Rayleigh elastic signals). Due to its use of two high-signal-rate channels, the new method has lower statistical uncertainty and thus gives depolarization parameter values at higher spatial-temporal resolution by up to a factor of 20 for CRL. This method is easily adaptable to other lidar systems which are considering adding depolarization capability to existing hardware.

  2. Three-channel single-wavelength lidar depolarization calibration

    Directory of Open Access Journals (Sweden)

    E. M. McCullough

    2018-02-01

    Full Text Available Linear depolarization measurement capabilities were added to the CANDAC Rayleigh–Mie–Raman lidar (CRL at Eureka, Nunavut, in the Canadian High Arctic in 2010. This upgrade enables measurements of the phases (liquid versus ice of cold and mixed-phase clouds throughout the year, including during polar night. Depolarization measurements were calibrated according to existing methods using parallel- and perpendicular-polarized profiles as discussed in . We present a new technique that uses the polarization-independent Rayleigh elastic channel in combination with one of the new polarization-dependent channels, and we show that for a lidar with low signal in one of the polarization-dependent channels this method is superior to the traditional method. The optimal procedure for CRL is to determine the depolarization parameter using the traditional method at low resolution (from parallel and perpendicular signals and then to use this value to calibrate the high-resolution new measurements (from parallel and polarization-independent Rayleigh elastic signals. Due to its use of two high-signal-rate channels, the new method has lower statistical uncertainty and thus gives depolarization parameter values at higher spatial–temporal resolution by up to a factor of 20 for CRL. This method is easily adaptable to other lidar systems which are considering adding depolarization capability to existing hardware.

  3. Changes in Single K+ Channel Behavior Induced by a Lipid Phase Transition

    Science.gov (United States)

    Seeger, Heiko M.; Aldrovandi, Laura; Alessandrini, Andrea; Facci, Paolo

    2010-01-01

    We show that the activity of an ion channel is correlated with the phase state of the lipid bilayer hosting the channel. By measuring unitary conductance, dwell times, and open probability of the K+ channel KcsA as a function of temperature in lipid bilayers composed of POPE and POPG in different relative proportions, we obtain that all those properties show a trend inversion when the bilayer is in the transition region between the liquid-disordered and the solid-ordered phase. These data suggest that the physical properties of the lipid bilayer influence ion channel activity likely via a fine-tuning of its conformations. In a more general interpretative framework, we suggest that other parameters such as pH, ionic strength, and the action of amphiphilic drugs can affect the physical behavior of the lipid bilayer in a fashion similar to temperature changes resulting in functional changes of transmembrane proteins. PMID:21112292

  4. Building Atomic Models of the Ion Channels Based on Low Resolution Electron Microscopy Maps and Homology Modeling.

    Science.gov (United States)

    Novoseletsky, Valery; Malak, Olfat A; Loussouarn, Gildas; Sokolova, Olga S

    2018-01-01

    Voltage-gated potassium channels play pivotal roles in excitable and non-excitable cells. For many decades, structural properties and molecular mechanisms of these channels were inferred from functional observations. At the turn of the twenty-first century, structural biology revealed major aspects in the structural basis of ion channel organization, permeation, and gating. Among the available tools, homology modeling associated with low resolution microscopy helps in delineating the different structural elements of voltage-gated channels. Here, we describe in detail the methodology of homology modeling, using the 3D structure of the Kv2.1ΔCTA ion channel as a reference.

  5. Adding efficiency: the role of the CAN ion channels TRPM4 and TRPM5 in pancreatic islets.

    Science.gov (United States)

    Enklaar, Thorsten; Brixel, Lili R; Zabel, Bernhard U; Prawitt, Dirk

    2010-01-01

    Insulin secretion in β-pancreatic cells after glucose stimulation requires the concerted action of a number of different ion channels. The main players seem to be the ATP sensitive K(+) (KATP-) channels, and voltage gated ion channels that drive Ca(2+) influx into β-cells. Recently two calcium activated nonselective (CAN) cation channels (TRPM4 and TRPM5) have been shown to influence efficient insulin response upon glucose stimulation. This addendum summarizes the data known for these two TRP channels in β-cells, discusses some of the remaining open questions and addresses a possible scenario that involves and integrates the triggering and amplifying pathway of glucose mediated insulin secretion.

  6. Single sodium channels from human skeletal muscle in planar lipid bilayers: characterization and response to pentobarbital.

    Science.gov (United States)

    Wartenberg, Hans C; Urban, Bernd W

    2004-01-01

    To investigate the response to general anesthetics of different sodium-channel subtypes, we examined the effects of pentobarbital, a close thiopental analogue, on single sodium channels from human skeletal muscle and compared them to existing data from human brain and human ventricular muscle channels. Sodium channels from a preparation of human skeletal muscle were incorporated into planar lipid bilayers, and the steady-state behavior of single sodium channels and their response to pentobarbital was examined in the presence of batrachotoxin, a sodium-channel activator. Single-channel currents were recorded before and after the addition of pentobarbital (0.34-1.34 mM). In symmetrical 500 mM NaCl, human skeletal muscle sodium channels had an averaged single-channel conductance of 21.0 +/- 0.6 pS, and the channel fractional open time was 0.96 +/- 0.04. The activation midpoint potential was -96.2 +/- 1.6 mV. Extracellular tetrodotoxin blocked the channel with a half-maximal concentration (k1/2) of 60 nM at 0 mV. Pentobarbital reduced the time-averaged conductance of single skeletal muscle sodium channels in a concentration-dependent manner (inhibitory concentration 50% [IC50] = 0.66 mM). The steady-state activation was shifted to more hyperpolarized potentials (-16.7 mV at 0.67 mM pentobarbital). In the planar lipid bilayer system, skeletal muscle sodium channels have some electrophysiological properties that are significantly different compared with those of sodium channels from cardiac or from central nervous tissue. In contrast to the control data, these different human sodium channel subtypes showed the same qualitative and quantitative response to the general anesthetic pentobarbital. The implication of these effects for overall anesthesia will depend on the role the individual channels play within their neuronal networks, but suppression of both central nervous system and peripheral sodium channels may add to general anesthetic effects.

  7. Autoantibodies to neurotransmitter receptors and ion channels: from neuromuscular to neuropsychiatric disorders

    Directory of Open Access Journals (Sweden)

    Pilar eMartinez-Martinez

    2013-09-01

    Full Text Available Changes of voltage-gated ion channels and ligand-gated receptor channels caused by mutation or autoimmune attack are the cause of so-called channelopathies in the central and peripheral nervous system. We present the pathophysiology of channelopathies of the neuromuscular junction in terms of loss-of-function and gain-of-function principles. Autoantibodies generally have reduced access to the CNS, but in some cases this is enough to cause disease. A review is provided of recent findings implicating autoantibodies against ligand–activated receptor channels and potassium channels in psychiatric and neurological disorders, including schizophrenia and limbic encephalitis. The emergence of channelopathy-related neuropsychiatric disorders has implications for research and practice.

  8. Monte Carlo simulation of ion-beam channeling in YBa2Cu3O7

    International Nuclear Information System (INIS)

    Khodyrev, V.A.; Chumanov, V.Ya.; Bourdelle, K.K.; Pokhil, G.P.

    1994-01-01

    A Monte Carlo program (UPIC) for the simulation of ion channeling in crystals with complex structure is described. The program is applied to simulate the channeling of 1.5 MeV He + and 1 MeV D + near the [001] axis of YBa 2 Cu 3 O 7 assuming strongly correlated atomic displacements along the [001] Cu-O rows in the superconducting state. The values for the abrupt change in the half-width of the channeling dip observed in experiments [R.P. Sharma et al., Phys. Rev. B 38 (1988) 9287] at the temperature of the superconducting transition, T c , are reproduced in the simulations with correlation coefficients of 0.8-0.9. The increase in the minimum channeling yield at T c found in measurements [T. Haga et al., Phys. Rev. B 41 (1990) 826] can be qualitatively explained by the increase in dechanneling rate due to correlations. ((orig.))

  9. Modulation of the conductance of a 2,2′-bipyridine-functionalized peptidic ion channel by Ni2+

    Science.gov (United States)

    Pilz, Claudia S.

    2008-01-01

    An α-helical amphipathic peptide with the sequence H2N-(LSSLLSL)3-CONH2 was obtained by solid phase synthesis and a 2,2′-bipyridine was coupled to its N-terminus, which allows complexation of Ni2+. Complexation of the 2,2′-bipyridine residues was proven by UV/Vis spectroscopy. The peptide helices were inserted into lipid bilayers (nano black lipid membranes, nano-BLMs) that suspend the pores of porous alumina substrates with a pore diameter of 60 nm by applying a potential difference. From single channel recordings, we were able to distinguish four distinct conductance states, which we attribute to an increasing number of peptide helices participating in the conducting helix bundle. Addition of Ni2+ in micromolar concentrations altered the conductance behaviour of the formed ion channels in nano-BLMs considerably. The first two conductance states appear much more prominent demonstrating that the complexation of bipyridine by Ni2+ results in a considerable confinement of the observed multiple conductance states. However, the conductance levels were independent of the presence of Ni2+. Moreover, from a detailed analysis of the open lifetimes of the channels, we conclude that the complexation of Ni2+ diminishes the frequency of channel events with larger open times. Electronic supplementary material The online version of this article (doi:10.1007/s00249-008-0298-8) contains supplementary material, which is available to authorized users. PMID:18347789

  10. Design of a single ion facility and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Cholewa, M.; Saint, A.; Legge, G.J.F. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    The use of micro-irradiation techniques in radiobiology is not new; however, the current techniques take advantage of recent developments in particle delivery, focussing detection, image processing, cell recognition and computer control. These developments have generally come from other fields, for example microbeam elemental analysis techniques and single-event upset testing of semiconductor devices. Also in radiation biology there have been important advances in developments of individual cell assays, which allow a wide range of endpoints to be studied with good accuracy at low doses. Many of the studies that are planned involve following the responses of individual cells after a programmed exposure to charged-particle traversals. To probe the radiation sensitivity of a single cell and/or its constituents with a submicron resolution several developments are needed. The essential parameters of the proposed system can be summarised as follows: a focussed beam of ions of 300nm or less at the cell; a reliable (close to 100%) single ion detection; a fast beam switch to prevent second hits; a target holder adapted for the irradiation of wet cells and a fully automated system for cell recognition and single hits. 1 fig.

  11. Transport of long-pulse relativistic electron beams in preformed plasma channels in the ion focus regime

    International Nuclear Information System (INIS)

    Miller, J.D.

    1989-01-01

    Experiments have been performed demonstrating efficient transport of long-pulse (380 ns), high-current (200 A), relativistic electron beams (REBs) in preformed plasma channels in the ion focus regime (IFR). Plasma channels were created by low-energy ( e , and channel ion mass, in agreement with theoretical values predicted for the ion hose instability. Microwave emission has also been observed indicative of REB-plasma electron two-stream instability. Plasma channel density measurements indicate that the two-stream instability can become dominant for measured f e values slightly above unity. The author has introduced a theoretical analysis for high-current REB transport and modulation in axially periodic IFR plasma channels. Analytic expression for the electric field are found for the case of a cosine modulation of the channel ion density. Two different types of channels are considered: (i) periodic beam-induced ionization channels, and (ii) periodic plasma slab channels created by an external source. Analytical conditions are derived for the matched radius of the electron beam and for approximate beam envelope motion using a 'smooth' approximation. Numerical solutions to the envelope equation show that by changing the wavelength or the amplitude of the space-charge neutralization fraction of the ion channel density modulation, the beam can be made to focus and diverge, or to undergo stable, modulated transport

  12. Single sodium channels from human skeletal muscle in planar lipid bilayers: characterization and response to pentobarbital

    NARCIS (Netherlands)

    Wartenberg, Hans C.; Urban, Bernd W.

    2004-01-01

    PURPOSE: To investigate the response to general anesthetics of different sodium-channel subtypes, we examined the effects of pentobarbital, a close thiopental analogue, on single sodium channels from human skeletal muscle and compared them to existing data from human brain and human ventricular

  13. Development of NUPREP PC Version and Input Structures for NUCIRC Single Channel Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Churl; Jun, Ji Su; Park, Joo Hwan

    2007-12-15

    The input file for a steady-state thermal-hydraulic code NUCIRC consists of common channel input data and specific channel input data in a case of single channel analysis. Even when all the data is ready for the 380 channels' single channel analyses, it takes long time and requires enormous effort to compose an input file by hand-editing. The automatic pre-processor for this tedious job is a NUPREP code. In this study, a NUPREP PC version has been developed from the source list in the program manual of NUCIRC-MOD2.000 that is imported in a form of an execution file. In this procedure, some errors found in PC executions and lost statements are fixed accordingly. It is confirmed that the developed NUPREP code produces input file correctly for the CANDU-6 single channel analysis. Additionally, the NUCIRC input structure and data format are summarized for a single channel analysis and the input CARDs required for the creep information of aged channels are listed.

  14. Development of NUPREP PC Version and Input Structures for NUCIRC Single Channel Analyses

    International Nuclear Information System (INIS)

    Yoon, Churl; Jun, Ji Su; Park, Joo Hwan

    2007-12-01

    The input file for a steady-state thermal-hydraulic code NUCIRC consists of common channel input data and specific channel input data in a case of single channel analysis. Even when all the data is ready for the 380 channels' single channel analyses, it takes long time and requires enormous effort to compose an input file by hand-editing. The automatic pre-processor for this tedious job is a NUPREP code. In this study, a NUPREP PC version has been developed from the source list in the program manual of NUCIRC-MOD2.000 that is imported in a form of an execution file. In this procedure, some errors found in PC executions and lost statements are fixed accordingly. It is confirmed that the developed NUPREP code produces input file correctly for the CANDU-6 single channel analysis. Additionally, the NUCIRC input structure and data format are summarized for a single channel analysis and the input CARDs required for the creep information of aged channels are listed

  15. Advanced patch-clamp techniques and single-channel analysis

    NARCIS (Netherlands)

    Biskup, B; Elzenga, JTM; Homann, U; Thiel, G; Wissing, F; Maathuis, FJM

    Much of our knowledge of ion-transport mechanisms in plant cell membranes comes from experiments using voltage-clamp. This technique allows the measurement of ionic currents across the membrane, whilst the voltage is held under experimental control. The patch-clamp technique was developed to study

  16. Importance of the alphaC-helix in the cyclic nucleotide binding domain for the stable channel regulation and function of cyclic nucleotide gated ion channels in Arabidopsis.

    Science.gov (United States)

    Chin, Kimberley; Moeder, Wolfgang; Abdel-Hamid, Huda; Shahinas, Dea; Gupta, Deepali; Yoshioka, Keiko

    2010-05-01

    The involvement of cyclic nucleotide gated ion channels (CNGCs) in the signal transduction of animal light and odorant perception is well documented. Although plant CNGCs have recently been revealed to mediate multiple stress responses and developmental pathways, studies that aim to elucidate their structural and regulatory properties are still very much in their infancy. The structure-function relationship of plant CNGCs was investigated here by using the chimeric Arabidopsis AtCNGC11/12 gene that induces multiple defence responses in the Arabidopsis mutant constitutive expresser of PR genes 22 (cpr22) for the identification of functionally essential residues. A genetic screen for mutants that suppress cpr22-conferred phenotypes identified over 20 novel mutant alleles in AtCNGC11/12. One of these mutants, suppressor S58 possesses a single amino acid substitution, arginine 557 to cysteine, in the alphaC-helix of the cyclic nucleotide-binding domain (CNBD). The suppressor S58 lost all cpr22 related phenotypes, such as spontaneous cell death formation under ambient temperature conditions. However, these phenotypes were recovered at 16 degrees C suggesting that the stability of channel function is affected by temperature. In silico modelling and site-directed mutagenesis analyses suggest that arginine 557 in the alphaC-helix of the CNBD is important for channel regulation, but not for basic function. Furthermore, another suppressor mutant, S136 that lacks the entire alphaC-helix due to a premature stop codon, lost channel function completely. Our data presented here indicate that the alphaC-helix is functionally important in plant CNGCs.

  17. Single channel speech enhancement in the modulation domain: New insights in the modulation channel selection framework

    DEFF Research Database (Denmark)

    Boldt, Jesper B.; Bertelsen, Andreas Thelander; Gran, Fredrik

    2015-01-01

    Recently, the ideal binary mask has been introduced in the modulation domain by extending the ideal channel selection method to modulation channel selection [1]. This new method shows substantial improvement in speech intelligibility but less than its predecessor despite the higher complexity. Here......, we extend the previous finding from [1] and provide a more direct comparison of binary masking in the modulation domain with binary masking in the time-frequency domain. Subjective and objective evaluations are performed and provide additional insight into modulation domain processing....

  18. NOTE: Dielectrophoretic analysis of changes in cytoplasmic ion levels due to ion channel blocker action reveals underlying differences between drug-sensitive and multidrug-resistant leukaemic cells

    Science.gov (United States)

    Duncan, L.; Shelmerdine, H.; Hughes, M. P.; Coley, H. M.; Hübner, Y.; Labeed, F. H.

    2008-01-01

    Dielectrophoresis (DEP)—the motion of particles in non-uniform AC fields—has been used in the investigation of cell electrophysiology. The technique offers the advantages of rapid determination of the conductance and capacitance of membrane and cytoplasm. However, it is unable to directly determine the ionic strengths of individual cytoplasmic ions, which has potentially limited its application in assessing cell composition. In this paper, we demonstrate how dielectrophoresis can be used to investigate the cytoplasmic ion composition by using ion channel blocking agents. By blocking key ion transporters individually, it is possible to determine their overall contribution to the free ions in the cytoplasm. We use this technique to evaluate the relative contributions of chloride, potassium and calcium ions to the cytoplasmic conductivities of drug sensitive and resistant myelogenous leukaemic (K562) cells in order to determine the contributions of individual ion channel activity in mediating multi-drug resistance in cancer. Results indicate that whilst K+ and Ca2+ levels were extremely similar between sensitive and resistant lines, levels of Cl- were elevated by three times to that in the resistant line, implying increased chloride channel activity. This result is in line with current theories of MDR, and validates the use of ion channel blockers with DEP to investigate ion channel function.

  19. Dielectrophoretic analysis of changes in cytoplasmic ion levels due to ion channel blocker action reveals underlying differences between drug-sensitive and multidrug-resistant leukaemic cells

    International Nuclear Information System (INIS)

    Duncan, L; Shelmerdine, H; Hughes, M P; Coley, H M; Huebner, Y; Labeed, F H

    2008-01-01

    Dielectrophoresis (DEP)-the motion of particles in non-uniform AC fields-has been used in the investigation of cell electrophysiology. The technique offers the advantages of rapid determination of the conductance and capacitance of membrane and cytoplasm. However, it is unable to directly determine the ionic strengths of individual cytoplasmic ions, which has potentially limited its application in assessing cell composition. In this paper, we demonstrate how dielectrophoresis can be used to investigate the cytoplasmic ion composition by using ion channel blocking agents. By blocking key ion transporters individually, it is possible to determine their overall contribution to the free ions in the cytoplasm. We use this technique to evaluate the relative contributions of chloride, potassium and calcium ions to the cytoplasmic conductivities of drug sensitive and resistant myelogenous leukaemic (K562) cells in order to determine the contributions of individual ion channel activity in mediating multi-drug resistance in cancer. Results indicate that whilst K + and Ca 2+ levels were extremely similar between sensitive and resistant lines, levels of Cl - were elevated by three times to that in the resistant line, implying increased chloride channel activity. This result is in line with current theories of MDR, and validates the use of ion channel blockers with DEP to investigate ion channel function. (note)

  20. Sleep Apnoea Detection in Single Channel ECGs by Analyzing Heart Rate Dynamics

    National Research Council Canada - National Science Library

    Zywietz, C

    2001-01-01

    .... Sleep disorders are typically investigated by means of polysomnographic recordings. We have analyzed 70 eight-hour single-channel ECG recordings to find out to which extent sleep apneas may be detected from the ECG alone...

  1. Photocontrol of Voltage-Gated Ion Channel Activity by Azobenzene Trimethylammonium Bromide in Neonatal Rat Cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Sheyda R Frolova

    Full Text Available The ability of azobenzene trimethylammonium bromide (azoTAB to sensitize cardiac tissue excitability to light was recently reported. The dark, thermally relaxed trans- isomer of azoTAB suppressed spontaneous activity and excitation propagation speed, whereas the cis- isomer had no detectable effect on the electrical properties of cardiomyocyte monolayers. As the membrane potential of cardiac cells is mainly controlled by activity of voltage-gated ion channels, this study examined whether the sensitization effect of azoTAB was exerted primarily via the modulation of voltage-gated ion channel activity. The effects of trans- and cis- isomers of azoTAB on voltage-dependent sodium (INav, calcium (ICav, and potassium (IKv currents in isolated neonatal rat cardiomyocytes were investigated using the whole-cell patch-clamp technique. The experiments showed that azoTAB modulated ion currents, causing suppression of sodium (Na+ and calcium (Ca2+ currents and potentiation of net potassium (K+ currents. This finding confirms that azoTAB-effect on cardiac tissue excitability do indeed result from modulation of voltage-gated ion channels responsible for action potential.

  2. Multi-Dielectric Brownian Dynamics and Design-Space-Exploration Studies of Permeation in Ion Channels.

    Science.gov (United States)

    Siksik, May; Krishnamurthy, Vikram

    2017-09-01

    This paper proposes a multi-dielectric Brownian dynamics simulation framework for design-space-exploration (DSE) studies of ion-channel permeation. The goal of such DSE studies is to estimate the channel modeling-parameters that minimize the mean-squared error between the simulated and expected "permeation characteristics." To address this computational challenge, we use a methodology based on statistical inference that utilizes the knowledge of channel structure to prune the design space. We demonstrate the proposed framework and DSE methodology using a case study based on the KcsA ion channel, in which the design space is successfully reduced from a 6-D space to a 2-D space. Our results show that the channel dielectric map computed using the framework matches with that computed directly using molecular dynamics with an error of 7%. Finally, the scalability and resolution of the model used are explored, and it is shown that the memory requirements needed for DSE remain constant as the number of parameters (degree of heterogeneity) increases.

  3. Hexagonal, square, and stripe patterns of the ion channel density in biomembranes

    Science.gov (United States)

    Hilt, Markus; Zimmermann, Walter

    2007-01-01

    Transmembrane ion flow through channel proteins undergoing density fluctuations may cause lateral gradients of the electrical potential across the membrane giving rise to electrophoresis of charged channels. A model for the dynamics of the channel density and the voltage drop across the membrane (cable equation) coupled to a binding-release reaction with the cell skeleton [P. Fromherz and W. Zimmerman, Phys. Rev. E 51, R1659 (1995)] is analyzed in one and two spatial dimensions. Due to the binding release reaction spatially periodic modulations of the channel density with a finite wave number are favored at the onset of pattern formation, whereby the wave number decreases with the kinetic rate of the binding-release reaction. In a two-dimensional extended membrane hexagonal modulations of the ion channel density are preferred in a large range of parameters. The stability diagrams of the periodic patterns near threshold are calculated and in addition the equations of motion in the limit of a slow binding-release kinetics are derived.

  4. Towards understanding the molecular basis of ion channel modulation by lipids: Mechanistic models and current paradigms.

    Science.gov (United States)

    Poveda, José A; Marcela Giudici, A; Lourdes Renart, M; Morales, Andrés; González-Ros, José M

    2017-09-01

    Research on ion channel modulation has become a hot topic because of the key roles these membrane proteins play in both prokaryotic and eukaryotic organisms. In this respect, lipid modulation adds to the overall modulatory mechanisms as a potential via to find new pharmacological targets for drug design based on interfering with lipid/channel interactions. However, our knowledge in this field is scarce and often circumscribed to the sites where lipids bind and/or its final functional consequences. To fully understand this process it is necessary to improve our knowledge on its molecular basis, from the binding sites to the signalling pathways that derive in structural and functional effects on the ion channel. In this review, we have compiled information about such mechanisms and established a classification into four different modes of action. Afterwards, we have revised in more detail the lipid modulation of Cys-loop receptors and of the potassium channel KcsA, which were chosen as model channels modulated by specific lipids. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Atypical calcium regulation of the PKD2-L1 polycystin ion channel.

    Science.gov (United States)

    DeCaen, Paul G; Liu, Xiaowen; Abiria, Sunday; Clapham, David E

    2016-06-27

    Native PKD2-L1 channel subunits are present in primary cilia and other restricted cellular spaces. Here we investigate the mechanism for the channel's unusual regulation by external calcium, and rationalize this behavior to its specialized function. We report that the human PKD2-L1 selectivity filter is partially selective to calcium ions (Ca(2+)) moving into the cell, but blocked by high internal Ca(2+)concentrations, a unique feature of this transient receptor potential (TRP) channel family member. Surprisingly, we find that the C-terminal EF-hands and coiled-coil domains do not contribute to PKD2-L1 Ca(2+)-induced potentiation and inactivation. We propose a model in which prolonged channel activity results in calcium accumulation, triggering outward-moving Ca(2+) ions to block PKD2-L1 in a high-affinity interaction with the innermost acidic residue (D523) of the selectivity filter and subsequent long-term channel inactivation. This response rectifies Ca(2+) flow, enabling Ca(2+) to enter but not leave small compartments such as the cilium.

  6. Computer Simulations of Resonant Coherent Excitation of Heavy Hydrogen-Like Ions Under Planar Channeling

    Science.gov (United States)

    Babaev, A. A.; Pivovarov, Yu L.

    2010-04-01

    Resonant coherent excitation (RCE) of relativistic hydrogen-like ions is investigated by computer simulations methods. The suggested theoretical model is applied to the simulations of recent experiments on RCE of 390 MeV/u Ar17+ ions under (220) planar channeling in a Si crystal performed by T.Azuma et al at HIMAC (Tokyo). Theoretical results are in a good agreement with these experimental data and clearly show the appearance of the doublet structure of RCE peaks. The simulations are also extended to greater ion energies in order to predict the new RCE features at the future accelerator facility FAIR OSI and as an example, RCE of II GeV/u U91+ ions is considered in detail.

  7. An approach to emotion recognition in single-channel EEG signals: a mother child interaction

    Science.gov (United States)

    Gómez, A.; Quintero, L.; López, N.; Castro, J.

    2016-04-01

    In this work, we perform a first approach to emotion recognition from EEG single channel signals extracted in four (4) mother-child dyads experiment in developmental psychology. Single channel EEG signals are analyzed and processed using several window sizes by performing a statistical analysis over features in the time and frequency domains. Finally, a neural network obtained an average accuracy rate of 99% of classification in two emotional states such as happiness and sadness.

  8. Numerical Simulations of Calcium Ions Spiral Wave in Single Cardiac Myocyte

    Science.gov (United States)

    Bai, Yong-Qiang; Zhu, Xing

    2010-04-01

    The calcium ions (Ca2+) spark is an elementary Ca2+ release event in cardiac myocytes. It is believed to buildup cell-wide Ca2+ signals, such as Ca2+ transient and Ca2+ wave, through a Ca2+-induced Ca2+ release (CICR) mechanism. Here the excitability of the Ca2+ wave in a single cardiac myocyte is simulated by employing the fire-diffuse-fire model. By modulating the dynamic parameters of Ca2+ release and re-uptake channels, we find three Ca2+ signaling states in a single cardiac myocyte: no wave, plane wave, and spiral wave. The period of a spiral wave is variable in the different regimes. This study indicates that the spiral wave or the excitability of the system can be controlled through micro-modulation in a living excitable medium.

  9. Low energy RBS-channeling measurement system with the use of a time-of-flight scattered ion detector

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Masataka; Kobayashi, Naoto; Hayashi, Nobuyuki [Electrotechnical Lab., Tsukuba, Ibaraki (Japan)

    1996-07-01

    We have developed a low energy Rutherford backscattering spectrometry-ion channeling measurement system for the analysis of thin films and solid surfaces with the use of several tens keV hydrogen ions and a time-of-flight particle energy spectrometer. For the detection of the scattered ions new TOF spectrometer has been developed, which consists of two micro-channel-plate detectors. The pulsing of the primary ion beam is not necessary for this type of TOF measurement, and it is possible to observe continues scattered ion beams. The dimension of whole system is very compact compared to the conventional RBS-channeling measurement system with the use of MeV He ions. The energy resolution, {delta} E/E, for 25 keV H{sup +} was 4.1%, which corresponds to the depth resolution of 4.8 nm for silicon. The depth resolution of our system is better than that of conventional RBS system with MeV helium ions and solid state detectors. We have demonstrated the ion channeling measurement by this system with 25 keV hydrogen ions. The system can be available well to the analysis of thin films and solid surfaces with the use of the ion channeling effect. The observation of the reaction between Fe and hydrogen terminated silicon surface was also demonstrated. (J.P.N.)

  10. Use of mutant-specific ion channel characteristics for risk stratification of long QT syndrome patients

    DEFF Research Database (Denmark)

    Jons, Christian; O-Uchi, Jin; Moss, Arthur J

    2011-01-01

    Inherited long QT syndrome (LQTS) is caused by mutations in ion channels that delay cardiac repolarization, increasing the risk of sudden death from ventricular arrhythmias. Currently, the risk of sudden death in individuals with LQTS is estimated from clinical parameters such as age, gender...... a subunit KCNQ1. We investigated whether mutation-specific changes in I(Ks) function can predict cardiac risk in LQT1. By correlating the clinical phenotype of 387 LQT1 patients with the cellular electrophysiological characteristics caused by an array of mutations in KCNQ1, we found that channels...

  11. How to Connect Cardiac Excitation to the Atomic Interactions of Ion Channels.

    Science.gov (United States)

    Silva, Jonathan R

    2018-01-23

    Many have worked to create cardiac action potential models that explicitly represent atomic-level details of ion channel structure. Such models have the potential to define new therapeutic directions and to show how nanoscale perturbations to channel function predispose patients to deadly cardiac arrhythmia. However, there have been significant experimental and theoretical barriers that have limited model usefulness. Recently, many of these barriers have come down, suggesting that considerable progress toward creating these long-sought models may be possible in the near term. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. 4 × 160-Gbit/s multi-channel regeneration in a single fiber

    DEFF Research Database (Denmark)

    Wang, Ju; Ji, Hua; Hu, Hao

    2014-01-01

    Simultaneous regeneration of four high-speed (160 Gbit/s) wavelength-division multiplexed (WDM) and polarization-division multiplexed (PDM) signals in a single highly nonlinear fiber (HNLF) is demonstrated. The regeneration operation is based on four-wave mixing in HNLF, where the degraded data...... phase modulation of the CW light. Mitigation of the inter-channel nonlinearities is achieved mainly through an inter-channel 0.5 bit slot time delay. Bidirectional propagation is also applied to relieve the inter-channel four-wave mixing. The multi-channel regeneration performance is validated by bit...

  13. Differential association of GABABreceptors with their effector ion channels in Purkinje cells.

    Science.gov (United States)

    Luján, Rafael; Aguado, Carolina; Ciruela, Francisco; Cózar, Javier; Kleindienst, David; de la Ossa, Luis; Bettler, Bernhard; Wickman, Kevin; Watanabe, Masahiko; Shigemoto, Ryuichi; Fukazawa, Yugo

    2017-11-25

    Metabotropic GABA B receptors mediate slow inhibitory effects presynaptically and postsynaptically through the modulation of different effector signalling pathways. Here, we analysed the distribution of GABA B receptors using highly sensitive SDS-digested freeze-fracture replica labelling in mouse cerebellar Purkinje cells. Immunoreactivity for GABA B1 was observed on presynaptic and, more abundantly, on postsynaptic compartments, showing both scattered and clustered distribution patterns. Quantitative analysis of immunoparticles revealed a somato-dendritic gradient, with the density of immunoparticles increasing 26-fold from somata to dendritic spines. To understand the spatial relationship of GABA B receptors with two key effector ion channels, the G protein-gated inwardly rectifying K + (GIRK/Kir3) channel and the voltage-dependent Ca 2+ channel, biochemical and immunohistochemical approaches were performed. Co-immunoprecipitation analysis demonstrated that GABA B receptors co-assembled with GIRK and Ca V 2.1 channels in the cerebellum. Using double-labelling immunoelectron microscopic techniques, co-clustering between GABA B1 and GIRK2 was detected in dendritic spines, whereas they were mainly segregated in the dendritic shafts. In contrast, co-clustering of GABA B1 and Ca V 2.1 was detected in dendritic shafts but not spines. Presynaptically, although no significant co-clustering of GABA B1 and GIRK2 or Ca V 2.1 channels was detected, inter-cluster distance for GABA B1 and GIRK2 was significantly smaller in the active zone than in the dendritic shafts, and that for GABA B1 and Ca V 2.1 was significantly smaller in the active zone than in the dendritic shafts and spines. Thus, GABA B receptors are associated with GIRK and Ca V 2.1 channels in different subcellular compartments. These data provide a better framework for understanding the different roles played by GABA B receptors and their effector ion channels in the cerebellar network.

  14. Microscopic coupled-channels study of scattering and breakup of light heavy-ions

    International Nuclear Information System (INIS)

    Sakuragi, Yukinori; Yahiro, Masanobu; Kamimura, Masayasu.

    1987-01-01

    The elastic and inelastic scattering and the breakup reactions of light heavy-ions, particularly 6 Li, 7 Li and 12 C, are investigated on the basis of a microscopic coupled-channels method. The bound states and resonant and non-resonant continuum states of the projectile nucleus are taken into account. The wave functions of those states are given by a microscopic cluster model assuming α-d, α-t and 3α for the three projectile nuclei, respectively. The unbound continuum states are approximately treated with the method of coupled discretized continuum channels (CDCC). The real parts of all the diagonal and coupling potentials are given by doubly folding the M3Y effective nucleon-nucleon interaction into the nucleon transition densities of the projectile nucleus and the ground-state density of the target nucleus. The microscopic CDCC method is successfully applied to the analyses of the scattering and the breakup of 6,7 Li and 12 C in a wide range of the target mass and the bombarding energy. The effect of the projectile virtual breakup on the elastic scattering is strikingly large and absolutely important to reproduce the observed cross sections. The dynamical polarization (DP) potentials induced by the breakup of the 6,7 Li and 12 C projectiles are found to be strongly repulsive and, for 6 Li, very weakly absorptive, which is quite different from what has been known for DP potentials induced by the excitation of usual collective states. Unified understanding is presented for various types of possible DP potentials due to weak-coupling channels through strong-coupling channels. Further discussions are made on the roles of the coupling between the breakup channels and that between the elastic channel and the breakup channels in the scattering and breakup reactions of the light heavy-ions. (author)

  15. Ion channel density regulates switches between regular and fast spiking in soma but not in axons.

    Directory of Open Access Journals (Sweden)

    Hugo Zeberg

    2010-04-01

    Full Text Available The threshold firing frequency of a neuron is a characterizing feature of its dynamical behaviour, in turn determining its role in the oscillatory activity of the brain. Two main types of dynamics have been identified in brain neurons. Type 1 dynamics (regular spiking shows a continuous relationship between frequency and stimulation current (f-I(stim and, thus, an arbitrarily low frequency at threshold current; Type 2 (fast spiking shows a discontinuous f-I(stim relationship and a minimum threshold frequency. In a previous study of a hippocampal neuron model, we demonstrated that its dynamics could be of both Type 1 and Type 2, depending on ion channel density. In the present study we analyse the effect of varying channel density on threshold firing frequency on two well-studied axon membranes, namely the frog myelinated axon and the squid giant axon. Moreover, we analyse the hippocampal neuron model in more detail. The models are all based on voltage-clamp studies, thus comprising experimentally measurable parameters. The choice of analysing effects of channel density modifications is due to their physiological and pharmacological relevance. We show, using bifurcation analysis, that both axon models display exclusively Type 2 dynamics, independently of ion channel density. Nevertheless, both models have a region in the channel-density plane characterized by an N-shaped steady-state current-voltage relationship (a prerequisite for Type 1 dynamics and associated with this type of dynamics in the hippocampal model. In summary, our results suggest that the hippocampal soma and the two axon membranes represent two distinct kinds of membranes; membranes with a channel-density dependent switching between Type 1 and 2 dynamics, and membranes with a channel-density independent dynamics. The difference between the two membrane types suggests functional differences, compatible with a more flexible role of the soma membrane than that of the axon membrane.

  16. K+ channel openers restore verapamil-inhibited lung fluid resolution and transepithelial ion transport

    Directory of Open Access Journals (Sweden)

    Su Xue-Feng

    2010-05-01

    Full Text Available Abstract Background Lung epithelial Na+ channels (ENaC are regulated by cell Ca2+ signal, which may contribute to calcium antagonist-induced noncardiogenic lung edema. Although K+ channel modulators regulate ENaC activity in normal lungs, the therapeutical relevance and the underlying mechanisms have not been completely explored. We hypothesized that K+ channel openers may restore calcium channel blocker-inhibited alveolar fluid clearance (AFC by up-regulating both apical and basolateral ion transport. Methods Verapamil-induced depression of heterologously expressed human αβγ ENaC in Xenopus oocytes, apical and basolateral ion transport in monolayers of human lung epithelial cells (H441, and in vivo alveolar fluid clearance were measured, respectively, using the two-electrode voltage clamp, Ussing chamber, and BSA protein assays. Ca2+ signal in H441 cells was analyzed using Fluo 4AM. Results The rate of in vivo AFC was reduced significantly (40.6 ± 6.3% of control, P Ca3.1 (1-EBIO and KATP (minoxidil channel openers significantly recovered AFC. In addition to short-circuit current (Isc in intact H441 monolayers, both apical and basolateral Isc levels were reduced by verapamil in permeabilized monolayers. Moreover, verapamil significantly altered Ca2+ signal evoked by ionomycin in H441 cells. Depletion of cytosolic Ca2+ in αβγ ENaC-expressing oocytes completely abolished verapamil-induced inhibition. Intriguingly, KV (pyrithione-Na, K Ca3.1 (1-EBIO, and KATP (minoxidil channel openers almost completely restored the verapamil-induced decrease in Isc levels by diversely up-regulating apical and basolateral Na+ and K+ transport pathways. Conclusions Our observations demonstrate that K+ channel openers are capable of rescuing reduced vectorial Na+ transport across lung epithelial cells with impaired Ca2+ signal.

  17. K+ channel openers restore verapamil-inhibited lung fluid resolution and transepithelial ion transport

    Science.gov (United States)

    2010-01-01

    Background Lung epithelial Na+ channels (ENaC) are regulated by cell Ca2+ signal, which may contribute to calcium antagonist-induced noncardiogenic lung edema. Although K+ channel modulators regulate ENaC activity in normal lungs, the therapeutical relevance and the underlying mechanisms have not been completely explored. We hypothesized that K+ channel openers may restore calcium channel blocker-inhibited alveolar fluid clearance (AFC) by up-regulating both apical and basolateral ion transport. Methods Verapamil-induced depression of heterologously expressed human αβγ ENaC in Xenopus oocytes, apical and basolateral ion transport in monolayers of human lung epithelial cells (H441), and in vivo alveolar fluid clearance were measured, respectively, using the two-electrode voltage clamp, Ussing chamber, and BSA protein assays. Ca2+ signal in H441 cells was analyzed using Fluo 4AM. Results The rate of in vivo AFC was reduced significantly (40.6 ± 6.3% of control, P minoxidil) channel openers significantly recovered AFC. In addition to short-circuit current (Isc) in intact H441 monolayers, both apical and basolateral Isc levels were reduced by verapamil in permeabilized monolayers. Moreover, verapamil significantly altered Ca2+ signal evoked by ionomycin in H441 cells. Depletion of cytosolic Ca2+ in αβγ ENaC-expressing oocytes completely abolished verapamil-induced inhibition. Intriguingly, KV (pyrithione-Na), K Ca3.1 (1-EBIO), and KATP (minoxidil) channel openers almost completely restored the verapamil-induced decrease in Isc levels by diversely up-regulating apical and basolateral Na+ and K+ transport pathways. Conclusions Our observations demonstrate that K+ channel openers are capable of rescuing reduced vectorial Na+ transport across lung epithelial cells with impaired Ca2+ signal. PMID:20507598

  18. Fabrication of monolithic microfluidic channels in diamond with ion beam lithography

    Science.gov (United States)

    Picollo, F.; Battiato, A.; Boarino, L.; Ditalia Tchernij, S.; Enrico, E.; Forneris, J.; Gilardino, A.; Jakšić, M.; Sardi, F.; Skukan, N.; Tengattini, A.; Olivero, P.; Re, A.; Vittone, E.

    2017-08-01

    In the present work, we report on the monolithic fabrication by means of ion beam lithography of hollow micro-channels within a diamond substrate, to be employed for microfluidic applications. The fabrication strategy takes advantage of ion beam induced damage to convert diamond into graphite, which is characterized by a higher reactivity to oxidative etching with respect to the chemically inert pristine structure. This phase transition occurs in sub-superficial layers thanks to the peculiar damage profile of MeV ions, which mostly damage the target material at their end of range. The structures were obtained by irradiating commercial CVD diamond samples with a micrometric collimated C+ ion beam at three different energies (4 MeV, 3.5 MeV and 3 MeV) at a total fluence of 2 × 1016 cm-2. The chosen multiple-energy implantation strategy allows to obtain a thick box-like highly damaged region ranging from 1.6 μm to 2.1 μm below the sample surface. High-temperature annealing was performed to both promote the graphitization of the ion-induced amorphous layer and to recover the pristine crystalline structure in the cap layer. Finally, the graphite was removed by ozone etching, obtaining monolithic microfluidic structures. These prototypal microfluidic devices were tested injecting aqueous solutions and the evidence of the passage of fluids through the channels was confirmed by confocal fluorescent microscopy.

  19. The analysis of Rutherford scattering-channelling measurements of disorder production and annealing in ion irradiated semiconductors

    International Nuclear Information System (INIS)

    Carter, G.; Elliman, R.G.

    1983-01-01

    Rutherford scattering and channelling of light probe ions (e.g. He + ) has been extensively used for studies of disorder production in ion implanted semiconductors. Various authors have analysed models of amorphousness accumulation and Carter and Webb have indicated the general difficulties in assessing disorder production models from RBS/channelling studies if the production modes are complex and the manner in which the technique responds to different defect structures is unspecified. For less complex disorder production modes and by making reasonable assumptions about the technique response however, some insight into the form of backscattering yield - ion implant fluence functions can be obtained as is discussed in the present communication. It thus becomes possible to infer the importance of different disorder generation processes from RBS/channelling - ion influence studies. It will also be shown how simple annealing processes modify disorder accumulation and thus again how the operation of such processes may be inferred from RBS/channelling - ion fluence measurements. (author)

  20. Advanced applications of ion channeling for the study of imperfections in crystals

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, M.L. [North Carolina Univ., Chapel Hill, NC (United States)

    1997-03-01

    A review will be given of the applications of medium energy ion channeling for the studies of imperfections in the near-surface regions of crystals. The following topics will be discussed: (1.) epitaxial layers, including elemental depositions of a few monolayers, strained-layer superlattices, and compound layers; (2.) lattice defects, including ion damage in diamond, dislocation networks in Si, and anomalous lattice vibrations in high temperature superconductors; (3.) lattice sites of solute atoms, including substitutional sites in compounds (LiNbO{sub 3} and GaP), and interstitial sites produced by association with point defects. (author)

  1. Multi-Channel Distributed Coordinated Function over Single Radio in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Kok-Keong (Jonathan Loo

    2011-01-01

    Full Text Available Multi-channel assignments are becoming the solution of choice to improve performance in single radio for wireless networks. Multi-channel allows wireless networks to assign different channels to different nodes in real-time transmission. In this paper, we propose a new approach, Multi-channel Distributed Coordinated Function (MC-DCF which takes advantage of multi-channel assignment. The backoff algorithm of the IEEE 802.11 distributed coordination function (DCF was modified to invoke channel switching, based on threshold criteria in order to improve the overall throughput for wireless sensor networks (WSNs over 802.11 networks. We presented simulation experiments in order to investigate the characteristics of multi-channel communication in wireless sensor networks using an NS2 platform. Nodes only use a single radio and perform channel switching only after specified threshold is reached. Single radio can only work on one channel at any given time. All nodes initiate constant bit rate streams towards the receiving nodes. In this work, we studied the impact of non-overlapping channels in the 2.4 frequency band on: constant bit rate (CBR streams, node density, source nodes sending data directly to sink and signal strength by varying distances between the sensor nodes and operating frequencies of the radios with different data rates. We showed that multi-channel enhancement using our proposed algorithm provides significant improvement in terms of throughput, packet delivery ratio and delay. This technique can be considered for WSNs future use in 802.11 networks especially when the IEEE 802.11n becomes popular thereby may prevent the 802.15.4 network from operating effectively in the 2.4 GHz frequency band.

  2. Multi-channel distributed coordinated function over single radio in wireless sensor networks.

    Science.gov (United States)

    Campbell, Carlene E-A; Loo, Kok-Keong Jonathan; Gemikonakli, Orhan; Khan, Shafiullah; Singh, Dhananjay

    2011-01-01

    Multi-channel assignments are becoming the solution of choice to improve performance in single radio for wireless networks. Multi-channel allows wireless networks to assign different channels to different nodes in real-time transmission. In this paper, we propose a new approach, Multi-channel Distributed Coordinated Function (MC-DCF) which takes advantage of multi-channel assignment. The backoff algorithm of the IEEE 802.11 distributed coordination function (DCF) was modified to invoke channel switching, based on threshold criteria in order to improve the overall throughput for wireless sensor networks (WSNs) over 802.11 networks. We presented simulation experiments in order to investigate the characteristics of multi-channel communication in wireless sensor networks using an NS2 platform. Nodes only use a single radio and perform channel switching only after specified threshold is reached. Single radio can only work on one channel at any given time. All nodes initiate constant bit rate streams towards the receiving nodes. In this work, we studied the impact of non-overlapping channels in the 2.4 frequency band on: constant bit rate (CBR) streams, node density, source nodes sending data directly to sink and signal strength by varying distances between the sensor nodes and operating frequencies of the radios with different data rates. We showed that multi-channel enhancement using our proposed algorithm provides significant improvement in terms of throughput, packet delivery ratio and delay. This technique can be considered for WSNs future use in 802.11 networks especially when the IEEE 802.11n becomes popular thereby may prevent the 802.15.4 network from operating effectively in the 2.4 GHz frequency band.

  3. Development of therapeutic antibodies to G protein-coupled receptors and ion channels: Opportunities, challenges and their therapeutic potential in respiratory diseases.

    Science.gov (United States)

    Douthwaite, Julie A; Finch, Donna K; Mustelin, Tomas; Wilkinson, Trevor C I

    2017-01-01

    The development of recombinant antibody therapeutics continues to be a significant area of growth in the pharmaceutical industry with almost 50 approved monoclonal antibodies on the market in the US and Europe. Therapeutic drug targets such as soluble cytokines, growth factors and single transmembrane spanning receptors have been successfully targeted by recombinant monoclonal antibodies and the development of new product candidates continues. Despite this growth, however, certain classes of important disease targets have remained intractable to therapeutic antibodies due to the complexity of the target molecules. These complex target molecules include G protein-coupled receptors and ion channels which represent a large target class for therapeutic intervention with monoclonal antibodies. Although these targets have typically been addressed by small molecule approaches, the exquisite specificity of antibodies provides a significant opportunity to provide selective modulation of these important regulators of cell function. Given this opportunity, a significant effort has been applied to address the challenges of targeting these complex molecules and a number of targets are linked to the pathophysiology of respiratory diseases. In this review, we provide a summary of the importance of GPCRs and ion channels involved in respiratory disease and discuss advantages offered by antibodies as therapeutics at these targets. We highlight some recent GPCRs and ion channels linked to respiratory disease mechanisms and describe in detail recent progress made in the strategies for discovery of functional antibodies against challenging membrane protein targets such as GPCRs and ion channels. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Novel Insights into Acid-Sensing Ion Channels: Implications for Degenerative Diseases.

    Science.gov (United States)

    Zhou, Ren-Peng; Wu, Xiao-Shan; Wang, Zhi-Sen; Xie, Ya-Ya; Ge, Jin-Fang; Chen, Fei-Hu

    2016-08-01

    Degenerative diseases often strike older adults and are characterized by progressive deterioration of cells, eventually leading to tissue and organ degeneration for which limited effective treatment options are currently available. Acid-sensing ion channels (ASICs), a family of extracellular H(+)-activated ligand-gated ion channels, play critical roles in physiological and pathological conditions. Aberrant activation of ASICs is reported to regulate cell apoptosis, differentiation and autophagy. Accumulating evidence has highlighted a dramatic increase and activation of ASICs in degenerative disorders, including multiple sclerosis, Parkinson's disease, Huntington's disease, intervertebral disc degeneration and arthritis. In this review, we have comprehensively discussed the critical roles of ASICs and their potential utility as therapeutic targets in degenerative diseases.

  5. RBS cross-section of MeV ions channeling in crystals from quantum theory

    International Nuclear Information System (INIS)

    Den Besten, J.L.; Jamieson, D.N.; Spizzirri, P.G.; Allen, L.J.

    1999-01-01

    We present an alternative approach to describing Rutherford Backscattered (RBS) angular yield scans. The Bloch wave method to formulate the cross-section is a fundamental approach originating from Schrodinger's equation. This quantum formulation is often used when describing various aspects of electron diffraction including Backscattering, EDX and TEM but has seen little application to the very short wavelength regime of MeV ions. It offers several significant advantages. Great freedom is given to crystal properties and structure in the theory allowing a fundamental insight into the channeling phenomena and hence the crystal itself. We have calculated both planar and axial channeling scans and these maps are shown to be in good agreement to their experimental counterparts. There is excellent correlation between the theoretical and experimental results for both χ min and Ψ 1/2 . Further investigation is required into the area of absorption or dechanneling. This phenomenon requires different mechanisms for electron and ion scattering differ greatly

  6. The N-terminal domain of GluR6-subtype glutamate receptor ion channels

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Janesh; Schuck, Peter; Jin, Rongsheng; Mayer, Mark L.; (NIH); (Burnham)

    2009-09-25

    The amino-terminal domain (ATD) of glutamate receptor ion channels, which controls their selective assembly into AMPA, kainate and NMDA receptor subtypes, is also the site of action of NMDA receptor allosteric modulators. Here we report the crystal structure of the ATD from the kainate receptor GluR6. The ATD forms dimers in solution at micromolar protein concentrations and crystallizes as a dimer. Unexpectedly, each subunit adopts an intermediate extent of domain closure compared to the apo and ligand-bound complexes of LIVBP and G protein-coupled glutamate receptors (mGluRs), and the dimer assembly has a markedly different conformation from that found in mGluRs. This conformation is stabilized by contacts between large hydrophobic patches in the R2 domain that are absent in NMDA receptors, suggesting that the ATDs of individual glutamate receptor ion channels have evolved into functionally distinct families.

  7. Stopping powers for channeled helium ions in silicon using electron densities from bandstructure calculations

    Science.gov (United States)

    van Dijk, P. W. L.; van Ijzendoorn, L. J.; de Koning, M.; Bobbert, P.; van Haeringen, W.; de Voigt, M. J. A.

    1994-03-01

    Stopping powers for channeled He ions have been calculated with a modified version of the Monte Carlo code LAROSE [J.H. Barrett, Phys. Rev. B 3 (1971) 1527]. The spatial distribution of the valence electron density in Si was obtained from bandstructure calculations. The stopping power was calculated using Lindhard's free-electron gas approach within the framework of the local density approximation. Spatial variations of the electron density along individual trajectories produce a significant contribution to the energy loss distribution. The average energy loss of 4 MeV He ions channeled in the axial , and directions have been calculated and compared with measured values. The contribution of the core electrons to the energy loss is investigated by adding the spherically symmetric Hartree-Fock-Slater electron densities of the closed shells to the valence electron density. Calculations show a high energy loss tail in the spectrum qualitatively in agreement with published experimental results.

  8. A comprehensive structural model for the human KCNQ1/KCNE1 ion channel.

    Science.gov (United States)

    Jalily Hasani, Horia; Ahmed, Marawan; Barakat, Khaled

    2017-11-01

    The voltage-gated KCNQ1/KCNE1 potassium ion channel complex, forms the slow delayed rectifier (I Ks ) current in the heart, which plays an important role in heart signaling. The importance of KCNQ1/KCNE1 channel's function is further implicated by the linkage between loss-of-function and gain-of-function mutations in KCNQ1 or KCNE1, and long QT syndromes, congenital atrial fibrillation, and short QT syndrome. Also, KCNQ1/KCNE1 channels are an off-target for many non-cardiovascular drugs, leading to fatal cardiac irregularities. One solution to address and study the mentioned aspects of KCNQ1/KNCE1 channel would be the structural studies using a validated and accurate model. Along the same line in this study, we have used several top-notch modeling approaches to build a structural model for the open state of KCNQ1 protein, which is both accurate and compatible with available experimental data. Next, we included the KCNE1 protein components using data-driven protein-protein docking simulations, encompassing a 4:2 stoichiometry to complete the picture of the channel complex formed by these two proteins. All the protein systems generated through these processes were refined by long Molecular Dynamics simulations. The refined models were analyzed extensively to infer data about the interaction of KCNQ1 channel with its accessory KCNE1 beta subunits. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Intracellular Ca2+ and the phospholipid PIP2 regulate the taste transduction ion channel TRPM5.

    Science.gov (United States)

    Liu, Dan; Liman, Emily R

    2003-12-09

    The transduction of taste is a fundamental process that allows animals to discriminate nutritious from noxious substances. Three taste modalities, bitter, sweet, and amino acid, are mediated by G protein-coupled receptors that signal through a common transduction cascade: activation of phospholipase C beta2, leading to a breakdown of phosphatidylinositol-4,5-bisphosphate (PIP2) into diacylglycerol and inositol 1,4,5-trisphosphate, which causes release of Ca2+ from intracellular stores. The ion channel, TRPM5, is an essential component of this cascade; however, the mechanism by which it is activated is not known. Here we show that heterologously expressed TRPM5 forms a cation channel that is directly activated by micromolar concentrations of intracellular Ca2+ (K1/2 = 21 microM). Sustained exposure to Ca2+ desensitizes TRPM5 channels, but PIP2 reverses desensitization, partially restoring channel activity. Whole-cell TRPM5 currents can be activated by intracellular Ca2+ and show strong outward rectification because of voltage-sensitive gating of the channels. TRPM5 channels are nonselective among monovalent cations and not detectably permeable to divalent cations. We propose that the regulation of TRPM5 by Ca2+ mediates sensory activation in the taste system.

  10. The nematocyst extract of Hydra attenuata causes single channel events in lipid bilayers.

    Science.gov (United States)

    Weber, J; Schürholz, T; Neumann, E

    1990-01-01

    The nematocyst extract of Hydra attenuata causes single conductance events in reconstituted planar lipid membranes as well as in inside-out patches derived from liposomes. The smallest single channel conductance level of the toxins is 110 pS. The conductance levels increase stepwise with time up to 2000 pS. These large conductance jumps indicate channel cooperativity. If the membrane-voltage is changed from positive to negative values, the single channel events become undefined and noisy, indicating major reorganizations of the proteins which form the channels. The molecular properties of the ionophoric component(s) of the nematocyst extract may help explain the observed macroscopic effects, such as hemolysis of human erythrocytes, after addition of the nematocyst extract.

  11. Functional prokaryotic-eukaryotic chimera from the pentameric ligand-gated ion channel family.

    Science.gov (United States)

    Duret, Guillaume; Van Renterghem, Catherine; Weng, Yun; Prevost, Marie; Moraga-Cid, Gustavo; Huon, Christèle; Sonner, James M; Corringer, Pierre-Jean

    2011-07-19

    Pentameric ligand-gated ion channels (pLGICs), which mediate chemo-electric signal transduction in animals, have been recently found in bacteria. Despite clear sequence and 3D structure homology, the phylogenetic distance between prokaryotic and eukaryotic homologs suggests significant structural divergences, especially at the interface between the extracellular (ECD) and the transmembrane (TMD) domains. To challenge this possibility, we constructed a chimera in which the ECD of the bacterial protein GLIC is fused to the TMD of the human α1 glycine receptor (α1GlyR). Electrophysiology in Xenopus oocytes shows that it functions as a proton-gated ion channel, thereby locating the proton activation site(s) of GLIC in its ECD. Patch-clamp experiments in BHK cells show that the ion channel displays an anionic selectivity with a unitary conductance identical to that of the α1GlyR. In addition, pharmacological investigations result in transmembrane allosteric modulation similar to the one observed on α1GlyR. Indeed, the clinically active drugs propofol, four volatile general anesthetics, alcohols, and ivermectin all potentiate the chimera while they inhibit GLIC. Collectively, this work shows the compatibility between GLIC and α1GlyR domains and points to conservation of the ion channel and transmembrane allosteric regulatory sites in the chimera. This provides evidence that GLIC and α1GlyR share a highly homologous 3D structure. GLIC is thus a relevant model of eukaryotic pLGICs, at least from the anionic type. In addition, the chimera is a good candidate for mass production in Escherichia coli, opening the way for investigations of "druggable" eukaryotic allosteric sites by X-ray crystallography.

  12. Specific profiles of ion channels and ionotropic receptors define adipose- and bone marrow derived stromal cells.

    Czech Academy of Sciences Publication Activity Database

    Forostyak, Oksana; Butenko, Olena; Anděrová, Miroslava; Forostyak, Serhiy; Syková, Eva; Verkhratsky, A.; Dayanithi, Govindan

    2016-01-01

    Roč. 16, č. 3 (2016), s. 622-634 ISSN 1873-5061 R&D Projects: GA ČR(CZ) GA14-34077S; GA ČR(CZ) GAP304/11/2373; GA ČR(CZ) GBP304/12/G069 Institutional support: RVO:68378041 Keywords : adipose derived stromal cells * bone marrow stromal cell * Ca(2+) signaling * Ion channels Subject RIV: FH - Neurology Impact factor: 3.494, year: 2016

  13. Quantification of scanning ion conductance microscopy resolution for biological imaging with double barrel-ion channel probes

    Science.gov (United States)

    Weber, Anna E.

    Scanning ion conductance microscopy (SICM) is a scanning probe microscopy technique with far-reaching capabilities, from imaging of biological systems to characterization of electrochemical processes. However, without a reliable method for quantification of SICM lateral resolution, the technique's progression from esoteric instrument to laboratory necessity will be stalled. A method was developed which quantifies, for the first time, SICM resolution using laboratory techniques. Whereas previously described SICM resolution studies have relied on time consuming data processing, data simulations, or subjective reasoning, the method described here is the first to systematically test effects of probe size and sample feature with respect to resolution under experimental conditions. Lateral resolution below the size of the probe opening was achieved, and has been shown to be dependent on a number of factors, such as probe-surface distance. Quantifiable resolution is important for multiple SICM measurements, most notably those of biological nature. Here, a new SICM platform is described that has exciting possibilities, but will require precise knowledge of resolution for biological utility. Termed ion-channel probe SICM (ICP-SICM), a lipid bilayer is prepared across the pipette opening and an ion channel is reconstituted into the bilayer. Simultaneous imaging and sensing can be achieved with this platform, and ion transport across a cellular bilayer can be monitored and quantified in real time. Building upon a previously published study, a double barrel probe has been prepared with an open barrel for topographic imaging and probe control, and an ICP barrel for biological sensing. Paired with the resolution determining technique, there are implications for unprecedented studies on biological substrates.

  14. Suppression of ion conductance by electro-osmotic flow in nano-channels with weakly overlapping electrical double layers

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2016-08-01

    Full Text Available This theoretical study investigates the nonlinear ionic current-voltage characteristics of nano-channels that have weakly overlapping electrical double layers. Numerical simulations as well as a 1-D mathematical model are developed to reveal that the electro-osmotic flow (EOF interplays with the concentration-polarization process and depletes the ion concentration inside the channels, thus significantly suppressing the channel conductance. The conductance may be restored at high electrical biases in the presence of recirculating vortices within the channels. As a result of the EOF-driven ion depletion, a limiting-conductance behavior is identified, which is intrinsically different from the classical limiting-current behavior.

  15. RBS and ion channeling studies of Ag-doped YBa2Cu3O7-δ targets and films

    International Nuclear Information System (INIS)

    Li Yupu; Liu, J.R.; Cui, X.T.; Chu, W.K.

    1998-01-01

    The location of Ag in Ag-doped YBa 2 Cu 3 O 7-δ (YBCO) films and other high-T c materials (such as Ag-doped BiSrCaCuO films and Ag-sheathed textured BiSrCaCuO wires) is a very important issue for improving high-T c materials. In this work, laser ablated and DC magnetron sputtered YBCO films on (100) LaAlO 3 and (100) SrTiO 3 were prepared from sintered Ag-YBCO composite targets (nominally containing 5 wt% Ag) and studied by Rutherford backscattering spectrometry (RBS) and ion channeling techniques using 2.0 MeV 4 He + and 7 Li + beams. We have found that the Ag-YBCO targets contain about 3 wt% Ag and most of the retained Ag atoms form some small size Ag precipitates with a typical size smaller than a few microns. We have demonstrated that in very good single crystalline YBCO films, the percentage of retained Ag in substitutional sites can be estimated by ion channeling technique. For example, we have found that about 1.2 wt% Ag atoms remain in the laser ablated Ag-doped films prepared from the Ag-YBCO target and about two-thirds of the retained Ag atoms occupy substitutional sites. The sputtered films contain less retained Ag atoms since the deposition temperature is higher and deposition time is longer than those for laser ablated films. (orig.)

  16. Acid-Sensing Ion Channel 1a Contributes to Airway Hyperreactivity in Mice

    Science.gov (United States)

    Reznikov, Leah R.; Meyerholz, David K.; Adam, Ryan J.; Abou Alaiwa, Mahmoud; Jaffer, Omar; Michalski, Andrew S.; Powers, Linda S.; Price, Margaret P.; Stoltz, David A.; Welsh, Michael J.

    2016-01-01

    Neurons innervating the airways contribute to airway hyperreactivity (AHR), a hallmark feature of asthma. Several observations suggested that acid-sensing ion channels (ASICs), neuronal cation channels activated by protons, might contribute to AHR. For example, ASICs are found in vagal sensory neurons that innervate airways, and asthmatic airways can become acidic. Moreover, airway acidification activates ASIC currents and depolarizes neurons innervating airways. We found ASIC1a protein in vagal ganglia neurons, but not airway epithelium or smooth muscle. We induced AHR by sensitizing mice to ovalbumin and found that ASIC1a-/- mice failed to exhibit AHR despite a robust inflammatory response. Loss of ASIC1a also decreased bronchoalveolar lavage fluid levels of substance P, a sensory neuropeptide secreted from vagal sensory neurons that contributes to AHR. These findings suggest that ASIC1a is an important mediator of AHR and raise the possibility that inhibiting ASIC channels might be beneficial in asthma. PMID:27820848

  17. Transduction of Repetitive Mechanical Stimuli by Piezo1 and Piezo2 Ion Channels

    Directory of Open Access Journals (Sweden)

    Amanda H. Lewis

    2017-06-01

    Full Text Available Several cell types experience repetitive mechanical stimuli, including vein endothelial cells during pulsating blood flow, inner ear hair cells upon sound exposure, and skin cells and their innervating dorsal root ganglion (DRG neurons when sweeping across a textured surface or touching a vibrating object. While mechanosensitive Piezo ion channels have been clearly implicated in sensing static touch, their roles in transducing repetitive stimulations are less clear. Here, we perform electrophysiological recordings of heterologously expressed mouse Piezo1 and Piezo2 responding to repetitive mechanical stimulations. We find that both channels function as pronounced frequency filters whose transduction efficiencies vary with stimulus frequency, waveform, and duration. We then use numerical simulations and human disease-related point mutations to demonstrate that channel inactivation is the molecular mechanism underlying frequency filtering and further show that frequency filtering is conserved in rapidly adapting mouse DRG neurons. Our results give insight into the potential contributions of Piezos in transducing repetitive mechanical stimuli.

  18. Platinum atom location on the internal walls of nanocavities investigated by ion channeling analysis

    International Nuclear Information System (INIS)

    Kinomura, A.; Williams, J.S.; Tsubouchi, N.; Horino, Y.

    2002-01-01

    Atomic locations of Pt trapped at hydrogen-induced cavities in Si have been investigated by ion channeling analysis. A Pt dose of 1x10 14 cm -2 , corresponding to a monolayer coverage of the internal walls of cavities, was implanted into cavity-containing samples. The gettering of Pt to the cavities was induced by annealing at 850 deg. C for 1 h. Clear channeling effects were observed in aligned and random backscattering spectra for the , and axes. Angular yield profiles for three crystalline axes exhibited dips with a narrowing of Pt signal half width compared with the Si matrix. Results suggested that the Pt atoms trapped at the cavities are closely aligned with the Si atomic strings bounding axial channels in Si

  19. Fabrication of channel waveguides in Er3+-doped tellurite glass via N+ ion implantation

    International Nuclear Information System (INIS)

    Khanh, N.Q.; Berneschi, S.; Banyasz, I.; Brenci, M.; Fried, M.; Nunzi Conti, G.; Paszti, F.; Pelli, S.; Righini, G.C.; Watterich, A.

    2009-01-01

    Er 3+ -doped tellurite glasses are of great interest for the fabrication of active integrated optical circuits because of their unique properties in terms of bandwidth and rare-earth solubility. Multimode channel waveguides in a glass of this family, namely, a sodium-tungsten-tellurite glass, have been realized with high-energy ion irradiation, where the ion beam size in one dimension was reduced to a few tens of micrometers by a silicon mask. This approach makes possible the fast fabrication of waveguides with high aspect ratio (∼10 3 ). The 24 μm wide and 10 mm long waveguide stripes achieved by 1.5 MeV N + irradiation with fluences between 5 x 10 15 and 4.0 x 10 16 ions/cm 2 were studied using interference phase contrast microscopy and surface profilometry. The waveguiding effect was investigated by the end-fire coupling technique. Multimode light propagation has indeed been observed in these channels, confirming the effectiveness of this method. Dark-line spectroscopy revealed that light propagated in the channel via the optical barrier formed by the N + implantation.

  20. Predicting the Types of Ion Channel-Targeted Conotoxins Based on AVC-SVM Model.

    Science.gov (United States)

    Xianfang, Wang; Junmei, Wang; Xiaolei, Wang; Yue, Zhang

    2017-01-01

    The conotoxin proteins are disulfide-rich small peptides. Predicting the types of ion channel-targeted conotoxins has great value in the treatment of chronic diseases, epilepsy, and cardiovascular diseases. To solve the problem of information redundancy existing when using current methods, a new model is presented to predict the types of ion channel-targeted conotoxins based on AVC (Analysis of Variance and Correlation) and SVM (Support Vector Machine). First, the F value is used to measure the significance level of the feature for the result, and the attribute with smaller F value is filtered by rough selection. Secondly, redundancy degree is calculated by Pearson Correlation Coefficient. And the threshold is set to filter attributes with weak independence to get the result of the refinement. Finally, SVM is used to predict the types of ion channel-targeted conotoxins. The experimental results show the proposed AVC-SVM model reaches an overall accuracy of 91.98%, an average accuracy of 92.17%, and the total number of parameters of 68. The proposed model provides highly useful information for further experimental research. The prediction model will be accessed free of charge at our web server.

  1. String method solution of the gating pathways for a pentameric ligand-gated ion channel

    Science.gov (United States)

    Lev, Bogdan; Murail, Samuel; Poitevin, Frédéric; Cromer, Brett A.; Delarue, Marc; Allen, Toby W.

    2017-01-01

    Pentameric ligand-gated ion channels control synaptic neurotransmission by converting chemical signals into electrical signals. Agonist binding leads to rapid signal transduction via an allosteric mechanism, where global protein conformational changes open a pore across the nerve cell membrane. We use all-atom molecular dynamics with a swarm-based string method to solve for the minimum free-energy gating pathways of the proton-activated bacterial GLIC channel. We describe stable wetted/open and dewetted/closed states, and uncover conformational changes in the agonist-binding extracellular domain, ion-conducting transmembrane domain, and gating interface that control communication between these domains. Transition analysis is used to compute free-energy surfaces that suggest allosteric pathways; stabilization with pH; and intermediates, including states that facilitate channel closing in the presence of an agonist. We describe a switching mechanism that senses proton binding by marked reorganization of subunit interface, altering the packing of β-sheets to induce changes that lead to asynchronous pore-lining M2 helix movements. These results provide molecular details of GLIC gating and insight into the allosteric mechanisms for the superfamily of pentameric ligand-gated channels. PMID:28487483

  2. The Bile Acid-Sensitive Ion Channel (BASIC) Is Activated by Alterations of Its Membrane Environment

    Science.gov (United States)

    Schmidt, Axel; Lenzig, Pia; Oslender-Bujotzek, Adrienne; Kusch, Jana; Dias Lucas, Susana; Gründer, Stefan; Wiemuth, Dominik

    2014-01-01

    The bile acid-sensitive ion channel (BASIC) is a member of the DEG/ENaC family of ion channels. Channels of this family are characterized by a common structure, their physiological functions and modes of activation, however, are diverse. Rat BASIC is expressed in brain, liver and intestinal tract and activated by bile acids. The physiological function of BASIC and its mechanism of bile acid activation remain a puzzle. Here we addressed the question whether amphiphilic bile acids activate BASIC by directly binding to the channel or indirectly by altering the properties of the surrounding membrane. We show that membrane-active substances other than bile acids also affect the activity of BASIC and that activation by bile acids and other membrane-active substances is non-additive, suggesting that BASIC is sensitive for changes in its membrane environment. Furthermore based on results from chimeras between BASIC and ASIC1a, we show that the extracellular and the transmembrane domains are important for membrane sensitivity. PMID:25360526

  3. Cellular distribution and function of ion channels involved in transport processes in rat tracheal epithelium.

    Science.gov (United States)

    Hahn, Anne; Faulhaber, Johannes; Srisawang, Lalita; Stortz, Andreas; Salomon, Johanna J; Mall, Marcus A; Frings, Stephan; Möhrlen, Frank

    2017-06-01

    Transport of water and electrolytes in airway epithelia involves chloride-selective ion channels, which are controlled either by cytosolic Ca 2+ or by cAMP The contributions of the two pathways to chloride transport differ among vertebrate species. Because rats are becoming more important as animal model for cystic fibrosis, we have examined how Ca 2+ - dependent and cAMP- dependent Cl - secretion is organized in the rat tracheal epithelium. We examined the expression of the Ca 2+ -gated Cl - channel anoctamin 1 (ANO1), the cystic fibrosis transmembrane conductance regulator (CFTR) Cl - channel, the epithelial Na + channel ENaC, and the water channel aquaporin 5 (AQP5) in rat tracheal epithelium. The contribution of ANO1 channels to nucleotide-stimulated Cl - secretion was determined using the channel blocker Ani9 in short-circuit current recordings obtained from primary cultures of rat tracheal epithelial cells in Ussing chambers. We found that ANO1, CFTR and AQP5 proteins were expressed in nonciliated cells of the tracheal epithelium, whereas ENaC was expressed in ciliated cells. Among nonciliated cells, ANO1 occurred together with CFTR and Muc5b and, in addition, in a different cell type without CFTR and Muc5b. Bioelectrical studies with the ANO1-blocker Ani9 indicated that ANO1 mediated the secretory response to the nucleotide uridine-5'-triphosphate. Our data demonstrate that, in rat tracheal epithelium, Cl - secretion and Na + absorption are routed through different cell types, and that ANO1 channels form the molecular basis of Ca 2+ -dependent Cl - secretion in this tissue. These characteristic features of Cl - -dependent secretion reveal similarities and distinct differences to secretory processes in human airways. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  4. β2-Adrenergic ion-channel coupled receptors as conformational motion detectors.

    Directory of Open Access Journals (Sweden)

    Lydia N Caro

    Full Text Available Ion Channel-Coupled Receptors (ICCRs are artificial proteins comprised of a G protein-coupled receptor and a fused ion channel, engineered to couple channel gating to ligand binding. These novel biological objects have potential use in drug screening and functional characterization, in addition to providing new tools in the synthetic biology repertoire as synthetic K(+-selective ligand-gated channels. The ICCR concept was previously validated with fusion proteins between the K(+ channel Kir6.2 and muscarinic M(2 or dopaminergic D(2 receptors. Here, we extend the concept to the distinct, longer β(2-adrenergic receptor which, unlike M(2 and D(2 receptors, displayed barely detectable surface expression in our Xenopus oocyte expression system and did not couple to Kir6.2 when unmodified. Here, we show that a Kir6.2-binding protein, the N-terminal transmembrane domain of the sulfonylurea receptor, can greatly increase plasma membrane expression of β(2 constructs. We then demonstrate how engineering of both receptor and channel can produce β(2-Kir6.2 ICCRs. Specifically, removal of 62-72 residues from the cytoplasmic C-terminus of the receptor was required to enable coupling, suggesting that ligand-dependent conformational changes do not efficiently propagate to the distal C-terminus. Characterization of the β(2 ICCRs demonstrated that full and partial agonists had the same coupling efficacy, that an inverse agonist had no effect and that the stabilizing mutation E122 W reduced agonist-induced coupling efficacy without affecting affinity. Because the ICCRs are expected to report motions of the receptor C-terminus, these results provide novel insights into the conformational dynamics of the β(2 receptor.

  5. Insulin activates single amiloride-blockable Na channels in a distal nephron cell line (A6).

    Science.gov (United States)

    Marunaka, Y; Hagiwara, N; Tohda, H

    1992-09-01

    Using the patch-clamp technique, we studied the effect of insulin on an amiloride-blockable Na channel in the apical membrane of a distal nephron cell line (A6) cultured on permeable collagen films for 10-14 days. NPo (N, number of channels per patch membrane; Po, average value of open probability of individual channels in the patch) under baseline conditions was 0.88 +/- 0.12 (SE)(n = 17). After making cell-attached patches on the apical membrane which contained Na channels, insulin (1 mU/ml) was applied to the serosal bath. While maintaining the cell-attached patch, NPo significantly increased to 1.48 +/- 0.19 (n = 17; P less than 0.001) after 5-10 min of insulin application. The open probability of Na channels was 0.39 +/- 0.01 (n = 38) under baseline condition, and increased to 0.66 +/- 0.03 (n = 38, P less than 0.001) after addition of insulin. The baseline single-channel conductance was 4pS, and neither the single-channel conductance nor the current-voltage relationship was significantly changed by insulin. These results indicate that insulin increases Na absorption in the distal nephron by increasing the open probability of the amiloride-blockable Na channel.

  6. Safety of multi-channel stimulation implants: a single blocking capacitor per channel is not sufficient after single-fault failure.

    Science.gov (United States)

    Nonclercq, Antoine; Lonys, Laurent; Vanhoestenberghe, Anne; Demosthenous, Andreas; Donaldson, Nick

    2012-04-01

    One reason given for placing capacitors in series with stimulation electrodes is that they prevent direct current flow and therefore tissue damage under fault conditions. We show that this is not true for multiplexed multi-channel stimulators with one capacitor per channel. A test bench of two stimulation channels, two stimulation tripoles and a saline bath was used to measure the direct current flowing through the electrodes under two different single fault conditions. The electrodes were passively discharged between stimulation pulses. For the particular condition used (16 mA, 1 ms stimulation pulse at 20 Hz with electrodes placed 5 cm apart), the current ranged from 38 to 326 μA depending on the type of fault. The variation of the fault current with time, stimulation amplitude, stimulation frequency and distance between the electrodes is given. Possible additional methods to improve safety are discussed.

  7. Simulation study of a rectifying bipolar ion channel: Detailed model versus reduced model

    Directory of Open Access Journals (Sweden)

    Z. Ható

    2016-02-01

    Full Text Available We study a rectifying mutant of the OmpF porin ion channel using both all-atom and reduced models. The mutant was created by Miedema et al. [Nano Lett., 2007, 7, 2886] on the basis of the NP semiconductor diode, in which an NP junction is formed. The mutant contains a pore region with positive amino acids on the left-hand side and negative amino acids on the right-hand side. Experiments show that this mutant rectifies. Although we do not know the structure of this mutant, we can build an all-atom model for it on the basis of the structure of the wild type channel. Interestingly, molecular dynamics simulations for this all-atom model do not produce rectification. A reduced model that contains only the important degrees of freedom (the positive and negative amino acids and free ions in an implicit solvent, on the other hand, exhibits rectification. Our calculations for the reduced model (using the Nernst-Planck equation coupled to Local Equilibrium Monte Carlo simulations reveal a rectification mechanism that is different from that seen for semiconductor diodes. The basic reason is that the ions are different in nature from electrons and holes (they do not recombine. We provide explanations for the failure of the all-atom model including the effect of all the other atoms in the system as a noise that inhibits the response of ions (that would be necessary for rectification to the polarizing external field.

  8. Plasma channel and Z-pinch dynamics for heavy ion transport

    Energy Technology Data Exchange (ETDEWEB)

    Ponce-Marquez, David [Univ. of California, Berkeley, CA (United States)

    2002-01-01

    A self stabilized, free standing, z-pinch plasma channel has been proposed to deliver the high intensity heavy ion beam from the end of a driver to the fuel target in a heavy ion inertial fusion power plant. The z-pinch relaxes emittance and energy spread requirements requiring a lower cost driver. A z-pinch transport would reduce the number of beam entry port holes to the target chamber from over a hundred to four as compared to neutralized ballistic focusing thus reducing the driver hardware exposure to neutron flux. Experiments where a double pulse discharge technique is used, z-pinch plasma channels with enhanced stability are achieved. Typical parameters are 7 kV pre-pulse discharge and 30 kV main bank discharge with 50 kA of channel current in a 7 torr background gas atmosphere. This work is an experimental study of these plasma channels examining the relevant physics necessary to understand and model such plasmas. Laser diagnostics measured the dynamical properties of neutrals and plasma. Schlieren and phase contrast techniques probe the pre-pulse gas dynamics and infrared interferometry and faraday effect polarimetry are used on the z-pinch to study its electron density and current distribution. Stability and repeatability of the z-pinch depend on the initial conditions set by the pre-pulse. Results show that the z-pinch channel is wall stabilized by an on-axis gas density depression created by the pre-pulse through hydrodynamic expansion where the ratio of the initial gas density to the final gas density is > 10/1. The low on-axis density favors avalanching along the desired path for the main bank discharge. Pinch time is around 2 s from the main bank discharge initiation with a FWHM of ~ 2 cm. Results also show that typical main bank discharge plasma densities reach 1017 cm-3 peak on axis for a 30 kV, 7 torr gas nitrogen discharge. Current rise time is limited by the circuit-channel inductance with the highest contribution to the

  9. Coulomb blockade in a Si channel gated by an Al single-electron transistor

    OpenAIRE

    Sun, L.; Brown, K. R.; Kane, B. E.

    2007-01-01

    We incorporate an Al-AlO_x-Al single-electron transistor as the gate of a narrow (~100 nm) metal-oxide-semiconductor field-effect transistor (MOSFET). Near the MOSFET channel conductance threshold, we observe oscillations in the conductance associated with Coulomb blockade in the channel, revealing the formation of a Si single-electron transistor. Abrupt steps present in sweeps of the Al transistor conductance versus gate voltage are correlated with single-electron charging events in the Si t...

  10. 0.4 THz Photonic-Wireless Link With 106 Gb/s Single Channel Bitrate

    DEFF Research Database (Denmark)

    Jia, Shi; Pang, Xiaodan; Ozolins, Oskars

    2018-01-01

    THz channel is enabled by combining spectrally efficient modulation format, ultrabroadband THz transceiver and advanced digital signal processing routine. Besides that, our demonstration from system-wide implementation viewpoint also features high transmission stability, and hence shows its great......, we experimentally demonstrate a single channel 0.4 THz photonic-wireless link achieving a net data rate of beyond 100 Gb/s by using a single pair of THz emitter and receiver, without employing any spatial/frequency division multiplexing techniques. The high throughput up to 106 Gb/s within a single...

  11. Three-Dimensional Imaging by Self-Reference Single-Channel Digital Incoherent Holography.

    Science.gov (United States)

    Rosen, Joseph; Kelner, Roy

    2016-08-01

    Digital holography offers a reliable and fast method to image a three-dimensional scene from a single perspective. This article reviews recent developments of self-reference single-channel incoherent hologram recorders. Hologram recorders in which both interfering beams, commonly referred to as the signal and the reference beams, originate from the same observed objects are considered as self-reference systems. Moreover, the hologram recorders reviewed herein are configured in a setup of a single channel interferometer. This unique configuration is achieved through the use of one or more spatial light modulators.

  12. Three-Dimensional Imaging by Self-Reference Single-Channel Digital Incoherent Holography

    Science.gov (United States)

    Rosen, Joseph; Kelner, Roy

    2016-01-01

    Digital holography offers a reliable and fast method to image a three-dimensional scene from a single perspective. This article reviews recent developments of self-reference single-channel incoherent hologram recorders. Hologram recorders in which both interfering beams, commonly referred to as the signal and the reference beams, originate from the same observed objects are considered as self-reference systems. Moreover, the hologram recorders reviewed herein are configured in a setup of a single channel interferometer. This unique configuration is achieved through the use of one or more spatial light modulators. PMID:28757811

  13. Determination of lattice orientation in aluminium alloy grains by low energy gallium ion-channelling

    Energy Technology Data Exchange (ETDEWEB)

    Silk, Jonathan R. [Aerospace Metal Composites Ltd., RAE Road, Farnborough, GU14 6XE (United Kingdom); Dashwood, Richard J. [WMG, University of Warwick, Coventry, CV4 7AL (United Kingdom); Chater, Richard J., E-mail: r.chater@imperial.ac.u [Department of Materials, Imperial College, London SW7 2AZ (United Kingdom)

    2010-06-15

    Polished sections of a fine-grained aluminium, silicon carbide metal matrix composite (MMC) alloy were prepared by sputtering using a low energy gallium ion source and column (FIB). The MMC had been processed by high temperature extrusion. Images of the polished surface were recorded using the ion-induced secondary electron emission. The metal matrix grains were distinguished by gallium ion-channelling contrast from the silicon carbide component. The variation of the contrast from the aluminium grains with tilt angle can be recorded and used to determine lattice orientation with the contrast from the silicon carbide (SiC) component as a reference. This method is rapid and suits site-specific investigations where classical methods of sample preparation fail.

  14. Channeling energy loss of O ions in Si The Bark as effect

    CERN Document Server

    Araujo, L L; Behar, M; Dias, J F; Santos, J H; Schiwietz, G

    2002-01-01

    In this work we report on measurements of channeling stopping powers of sup 1 sup 6 O ions along Si axial direction for the energy range between 250 keV/u and 1 MeV/u by using the Rutherford backscattering technique with separated by implanted oxygen targets. In connection with the recent developed unitary convolution approximation, we are able to extract the Barkas contribution to the energy loss with high precision. This effect is clearly separated from other processes and amounts to about 15%. The observed Barkas contribution from the valence-electron gas is in agreement with the Lindhard model for higher energies. However, in contrast to recent investigations for Li ions, the Barkas effect at the lowest energies seems to saturate, indicating other non-perturbative terms in the polarization field induced by the O ions in Si.

  15. Single-ion quantum lock-in amplifier.

    Science.gov (United States)

    Kotler, Shlomi; Akerman, Nitzan; Glickman, Yinnon; Keselman, Anna; Ozeri, Roee

    2011-05-05

    Quantum metrology uses tools from quantum information science to improve measurement signal-to-noise ratios. The challenge is to increase sensitivity while reducing susceptibility to noise, tasks that are often in conflict. Lock-in measurement is a detection scheme designed to overcome this difficulty by spectrally separating signal from noise. Here we report on the implementation of a quantum analogue to the classical lock-in amplifier. All the lock-in operations--modulation, detection and mixing--are performed through the application of non-commuting quantum operators to the electronic spin state of a single, trapped Sr(+) ion. We significantly increase its sensitivity to external fields while extending phase coherence by three orders of magnitude, to more than one second. Using this technique, we measure frequency shifts with a sensitivity of 0.42 Hz Hz(-1/2) (corresponding to a magnetic field measurement sensitivity of 15 pT Hz(-1/2)), obtaining an uncertainty of less than 10 mHz (350 fT) after 3,720 seconds of averaging. These sensitivities are limited by quantum projection noise and improve on other single-spin probe technologies by two orders of magnitude. Our reported sensitivity is sufficient for the measurement of parity non-conservation, as well as the detection of the magnetic field of a single electronic spin one micrometre from an ion detector with nanometre resolution. As a first application, we perform light shift spectroscopy of a narrow optical quadrupole transition. Finally, we emphasize that the quantum lock-in technique is generic and can potentially enhance the sensitivity of any quantum sensor. ©2011 Macmillan Publishers Limited. All rights reserved

  16. Mechanisms of Rose Bengal inhibition on SecA ATPase and ion channel activities.

    Science.gov (United States)

    Hsieh, Ying-Hsin; Huang, Ying-Ju; Jin, Jin-Shan; Yu, Liyan; Yang, Hsiuchin; Jiang, Chun; Wang, Binghe; Tai, Phang C

    2014-11-14

    SecA is an essential protein possessing ATPase activity in bacterial protein translocation for which Rose Bengal (RB) is the first reported sub-micromolar inhibitor in ATPase activity and protein translocation. Here, we examined the mechanisms of inhibition on various forms of SecA ATPase by conventional enzymatic assays, and by monitoring the SecA-dependent channel activity in the semi-physiological system in cells. We build on the previous observation that SecA with liposomes form active protein-conducting channels in the oocytes. Such ion channel activity is enhanced by purified Escherichia coli SecYEG-SecDF·YajC liposome complexes. Inhibition by RB could be monitored, providing correlation of in vitro activity and intact cell functionality. In this work, we found the intrinsic SecA ATPase is inhibited by RB competitively at low ATP concentration, and non-competitively at high ATP concentrations while the translocation ATPase with precursors and SecYEG is inhibited non-competitively by RB. The Inhibition by RB on SecA channel activity in the oocytes with exogenous ATP-Mg(2+), mimicking translocation ATPase activity, is also non-competitive. The non-competitive inhibition on channel activity has also been observed with SecA from other bacteria which otherwise would be difficult to examine without the cognate precursors and membranes. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Guanidinium Toxins and Their Interactions with Voltage-Gated Sodium Ion Channels

    Directory of Open Access Journals (Sweden)

    Lorena M. Durán-Riveroll

    2017-10-01

    Full Text Available Guanidinium toxins, such as saxitoxin (STX, tetrodotoxin (TTX and their analogs, are naturally occurring alkaloids with divergent evolutionary origins and biogeographical distribution, but which share the common chemical feature of guanidinium moieties. These guanidinium groups confer high biological activity with high affinity and ion flux blockage capacity for voltage-gated sodium channels (NaV. Members of the STX group, known collectively as paralytic shellfish toxins (PSTs, are produced among three genera of marine dinoflagellates and about a dozen genera of primarily freshwater or brackish water cyanobacteria. In contrast, toxins of the TTX group occur mainly in macrozoa, particularly among puffer fish, several species of marine invertebrates and a few terrestrial amphibians. In the case of TTX and analogs, most evidence suggests that symbiotic bacteria are the origin of the toxins, although endogenous biosynthesis independent from bacteria has not been excluded. The evolutionary origin of the biosynthetic genes for STX and analogs in dinoflagellates and cyanobacteria remains elusive. These highly potent molecules have been the subject of intensive research since the latter half of the past century; first to study the mode of action of their toxigenicity, and later as tools to characterize the role and structure of NaV channels, and finally as therapeutics. Their pharmacological activities have provided encouragement for their use as therapeutants for ion channel-related pathologies, such as pain control. The functional role in aquatic and terrestrial ecosystems for both groups of toxins is unproven, although plausible mechanisms of ion channel regulation and chemical defense are often invoked. Molecular approaches and the development of improved detection methods will yield deeper understanding of their physiological and ecological roles. This knowledge will facilitate their further biotechnological exploitation and point the way towards

  18. Diffusion approximation-based simulation of stochastic ion channels: which method to use?

    Directory of Open Access Journals (Sweden)

    Danilo ePezo

    2014-11-01

    Full Text Available To study the effects of stochastic ion channel fluctuations on neural dynamics, several numerical implementation methods have been proposed. Gillespie’s method for Markov Chains (MC simulation is highly accurate, yet it becomes computationally intensive in the regime of high channel numbers. Many recent works aim to speed simulation time using the Langevin-based Diffusion Approximation (DA. Under this common theoretical approach, each implementation differs in how it handles various numerical difficulties – such as bounding of state variables to [0,1]. Here we review and test a set of the most recently published DA implementations (Dangerfield et al., 2012; Linaro et al., 2011; Huang et al., 2013a; Orio and Soudry, 2012; Schmandt and Galán, 2012; Goldwyn et al., 2011; Güler, 2013, comparing all of them in a set of numerical simulations that asses numerical accuracy and computational efficiency on three different models: the original Hodgkin and Huxley model, a model with faster sodium channels, and a multi-compartmental model inspired in granular cells. We conclude that for low channel numbers (usually below 1000 per simulated compartment one should use MC – which is both the most accurate and fastest method. For higher channel numbers, we recommend using the method by Orio and Soudry (2012, possibly combined with the method by Schmandt and Galán (2012 for increased speed and slightly reduced accuracy. Consequently, MC modelling may be the best method for detailed multicompartment neuron models – in which a model neuron with many thousands of channels is segmented into many compartments with a few hundred channels.

  19. Diffusion approximation-based simulation of stochastic ion channels: which method to use?

    Science.gov (United States)

    Pezo, Danilo; Soudry, Daniel; Orio, Patricio

    2014-01-01

    To study the effects of stochastic ion channel fluctuations on neural dynamics, several numerical implementation methods have been proposed. Gillespie's method for Markov Chains (MC) simulation is highly accurate, yet it becomes computationally intensive in the regime of a high number of channels. Many recent works aim to speed simulation time using the Langevin-based Diffusion Approximation (DA). Under this common theoretical approach, each implementation differs in how it handles various numerical difficulties—such as bounding of state variables to [0,1]. Here we review and test a set of the most recently published DA implementations (Goldwyn et al., 2011; Linaro et al., 2011; Dangerfield et al., 2012; Orio and Soudry, 2012; Schmandt and Galán, 2012; Güler, 2013; Huang et al., 2013a), comparing all of them in a set of numerical simulations that assess numerical accuracy and computational efficiency on three different models: (1) the original Hodgkin and Huxley model, (2) a model with faster sodium channels, and (3) a multi-compartmental model inspired in granular cells. We conclude that for a low number of channels (usually below 1000 per simulated compartment) one should use MC—which is the fastest and most accurate method. For a high number of channels, we recommend using the method by Orio and Soudry (2012), possibly combined with the method by Schmandt and Galán (2012) for increased speed and slightly reduced accuracy. Consequently, MC modeling may be the best method for detailed multicompartment neuron models—in which a model neuron with many thousands of channels is segmented into many compartments with a few hundred channels. PMID:25404914

  20. Single top quarks at the Tevatron and observation of the s-channel production mode

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    The presentation gives an overview of single-top-quark production at the Tevatron proton-antiproton collider. The talk covers measurements of the total s+t channel production cross section and the extraction of the CKM matrix element |V_tb|. Furthermore, separate analyses of the s-channel and t-channel production modes are discussed. The data correspond to total integrated luminosities of up to 9.7 fb-1 per experiment and represent in most cases the full Run-II dataset. Through a combination of the CDF and D0 measurements the first observation of single-top-quark production in the s-channel is claimed. This is particularly highlighted in the seminar.

  1. Atom-by-atom engineering of voltage-gated ion channels: Magnified insights into function and pharmacology

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Kim, Robin Y; Ahern, Christopher A

    2015-01-01

    Unnatural amino acid incorporation into ion channels has proven to be a valuable approach to interrogate detailed hypotheses arising from atomic resolution structures. In this short review, we provide a brief overview of some of the basic principles and methods for incorporation of unnatural amin...... acids into proteins. We also review insights into the function and pharmacology of voltage-gated ion channels that have emerged from unnatural amino acid mutagenesis approaches....

  2. Investigating Sterol and Redox Regulation of the Ion Channel Activity of CLIC1 Using Tethered Bilayer Membranes

    Directory of Open Access Journals (Sweden)

    Heba Al Khamici

    2016-12-01

    Full Text Available The Chloride Intracellular Ion Channel (CLIC family consists of six conserved proteins in humans. These are a group of enigmatic proteins, which adopt both a soluble and membrane bound form. CLIC1 was found to be a metamorphic protein, where under specific environmental triggers it adopts more than one stable reversible soluble structural conformation. CLIC1 was found to spontaneously insert into cell membranes and form chloride ion channels. However, factors that control the structural transition of CLIC1 from being an aqueous soluble protein into a membrane bound protein have yet to be adequately described. Using tethered bilayer lipid membranes and electrical impedance spectroscopy system, herein we demonstrate that CLIC1 ion channel activity is dependent on the type and concentration of sterols in bilayer membranes. These findings suggest that membrane sterols play an essential role in CLIC1’s acrobatic switching from a globular soluble form to an integral membrane form, promoting greater ion channel conductance in membranes. What remains unclear is the precise nature of this regulation involving membrane sterols and ultimately determining CLIC1’s membrane structure and function as an ion channel. Furthermore, our impedance spectroscopy results obtained using CLIC1 mutants, suggest that the residue Cys24 is not essential for CLIC1’s ion channel function. However Cys24 does appear important for optimal ion channel activity. We also observe differences in conductance between CLIC1 reduced and oxidized forms when added to our tethered membranes. Therefore, we conclude that both membrane sterols and redox play a role in the ion channel activity of CLIC1.

  3. Effects of the physiological parameters on the signal-to-noise ratio of single myoelectric channel

    Directory of Open Access Journals (Sweden)

    Zhang YT

    2007-08-01

    Full Text Available Abstract Background An important measure of the performance of a myoelectric (ME control system for powered artificial limbs is the signal-to-noise ratio (SNR at the output of ME channel. However, few studies illustrated the neuron-muscular interactive effects on the SNR at ME control channel output. In order to obtain a comprehensive understanding on the relationship between the physiology of individual motor unit and the ME control performance, this study investigates the effects of physiological factors on the SNR of single ME channel by an analytical and simulation approach, where the SNR is defined as the ratio of the mean squared value estimation at the channel output and the variance of the estimation. Methods Mathematical models are formulated based on three fundamental elements: a motoneuron firing mechanism, motor unit action potential (MUAP module, and signal processor. Myoelectric signals of a motor unit are synthesized with different physiological parameters, and the corresponding SNR of single ME channel is numerically calculated. Effects of physiological multi factors on the SNR are investigated, including properties of the motoneuron, MUAP waveform, recruitment order, and firing pattern, etc. Results The results of the mathematical model, supported by simulation, indicate that the SNR of a single ME channel is associated with the voluntary contraction level. We showed that a model-based approach can provide insight into the key factors and bioprocess in ME control. The results of this modelling work can be potentially used in the improvement of ME control performance and for the training of amputees with powered prostheses. Conclusion The SNR of single ME channel is a force, neuronal and muscular property dependent parameter. The theoretical model provides possible guidance to enhance the SNR of ME channel by controlling physiological variables or conscious contraction level.

  4. 70 GeV proton volume capture into channeling mode with a bent Si single crystal

    International Nuclear Information System (INIS)

    Chesnokov, Yu.A.; Galyaev, N.A.; Kotov, V.I.; Tsarik, S.V.; Zapol'skij, V.N.

    1990-01-01

    The existence of the volume capture of 70 GeV protons with a Si bent single crystal of (111) orientation into the channeling mode gas experimentally been proved. The data on the probability of capturing protons into the channeling mode versus the bending radius of the crystal have been obtained together with the information on the dynamics of volume captured particle dechanneling. 10 refs

  5. Relationship between Pore Occupancy and Gating in BK Potassium Channels

    OpenAIRE

    Piskorowski, Rebecca A.; Aldrich, Richard W.

    2006-01-01

    Permeant ions can have significant effects on ion channel conformational changes. To further understand the relationship between ion occupancy and gating conformational changes, we have studied macroscopic and single-channel gating of BK potassium channels with different permeant monovalent cations. While the slopes of the conductance?voltage curve were reduced with respect to potassium for all permeant ions, BK channels required stronger depolarization to open only when thallium was the perm...

  6. Dynamic Phenylalanine Clamp Interactions Define Single-Channel Polypeptide Translocation through the Anthrax Toxin Protective Antigen Channel.

    Science.gov (United States)

    Ghosal, Koyel; Colby, Jennifer M; Das, Debasis; Joy, Stephen T; Arora, Paramjit S; Krantz, Bryan A

    2017-03-24

    Anthrax toxin is an intracellularly acting toxin where sufficient detail is known about the structure of its channel, allowing for molecular investigations of translocation. The toxin is composed of three proteins, protective antigen (PA), lethal factor (LF), and edema factor (EF). The toxin's translocon, PA, translocates the large enzymes, LF and EF, across the endosomal membrane into the host cell's cytosol. Polypeptide clamps located throughout the PA channel catalyze the translocation of LF and EF. Here, we show that the central peptide clamp, the ϕ clamp, is a dynamic site that governs the overall peptide translocation pathway. Single-channel translocations of a 10-residue, guest-host peptide revealed that there were four states when peptide interacted with the channel. Two of the states had intermediate conductances of 10% and 50% of full conductance. With aromatic guest-host peptides, the 50% conducting intermediate oscillated with the fully blocked state. A Trp guest-host peptide was studied by manipulating its stereochemistry and prenucleating helix formation with a covalent linkage in the place of a hydrogen bond or hydrogen-bond surrogate (HBS). The Trp peptide synthesized with ʟ-amino acids translocated more efficiently than peptides synthesized with D- or alternating D,ʟ-amino acids. HBS stapled Trp peptide exhibited signs of steric hindrance and difficulty translocating. However, when mutant ϕ clamp (F427A) channels were tested, the HBS peptide translocated normally. Overall, peptide translocation is defined by dynamic interactions between the peptide and ϕ clamp. These dynamics require conformational flexibility, such that the peptide productively forms both extended-chain and helical states during translocation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Linear program differentiation for single-channel speech separation

    DEFF Research Database (Denmark)

    Pearlmutter, Barak A.; Olsson, Rasmus Kongsgaard

    2006-01-01

    Many apparently difficult problems can be solved by reduction to linear programming. Such problems are often subproblems within larger systems. When gradient optimisation of the entire larger system is desired, it is necessary to propagate gradients through the internally-invoked LP solver....... For instance, when an intermediate quantity z is the solution to a linear program involving constraint matrix A, a vector of sensitivities dE/dz will induce sensitivities dE/dA. Here we show how these can be efficiently calculated, when they exist. This allows algorithmic differentiation to be applied...... to algorithms that invoke linear programming solvers as subroutines, as is common when using sparse representations in signal processing. Here we apply it to gradient optimisation of over complete dictionaries for maximally sparse representations of a speech corpus. The dictionaries are employed in a single...

  8. Naked mole-rat acid-sensing ion channel 3 forms nonfunctional homomers, but functional heteromers.

    Science.gov (United States)

    Schuhmacher, Laura-Nadine; Callejo, Gerard; Srivats, Shyam; Smith, Ewan St John

    2018-02-02

    Acid-sensing ion channels (ASICs) form both homotrimeric and heterotrimeric ion channels that are activated by extracellular protons and are involved in a wide range of physiological and pathophysiological processes, including pain and anxiety. ASIC proteins can form both homotrimeric and heterotrimeric ion channels. The ASIC3 subunit has been shown to be of particular importance in the peripheral nervous system with pharmacological and genetic manipulations demonstrating a role in pain. Naked mole-rats, despite having functional ASICs, are insensitive to acid as a noxious stimulus and show diminished avoidance of acidic fumes, ammonia, and carbon dioxide. Here we cloned naked mole-rat ASIC3 (nmrASIC3) and used a cell-surface biotinylation assay to demonstrate that it traffics to the plasma membrane, but using whole-cell patch clamp electrophysiology we observed that nmrASIC3 is insensitive to both protons and the non-proton ASIC3 agonist 2-guanidine-4-methylquinazoline. However, in line with previous reports of ASIC3 mRNA expression in dorsal root ganglia neurons, we found that the ASIC3 antagonist APETx2 reversibly inhibits ASIC-like currents in naked mole-rat dorsal root ganglia neurons. We further show that like the proton-insensitive ASIC2b and ASIC4, nmrASIC3 forms functional, proton-sensitive heteromers with other ASIC subunits. An amino acid alignment of ASIC3s between 9 relevant rodent species and human identified unique sequence differences that might underlie the proton insensitivity of nmrASIC3. However, introducing nmrASIC3 differences into rat ASIC3 (rASIC3) produced only minor differences in channel function, and replacing the nmrASIC3 sequence with that of rASIC3 did not produce a proton-sensitive ion channel. Our observation that nmrASIC3 forms nonfunctional homomers may reflect a further adaptation of the naked mole-rat to living in an environment with high-carbon dioxide levels. © 2018 by The American Society for Biochemistry and Molecular

  9. Prediction of Thorough QT study results using action potential simulations based on ion channel screens.

    Science.gov (United States)

    Mirams, Gary R; Davies, Mark R; Brough, Stephen J; Bridgland-Taylor, Matthew H; Cui, Yi; Gavaghan, David J; Abi-Gerges, Najah

    2014-01-01

    Detection of drug-induced pro-arrhythmic risk is a primary concern for pharmaceutical companies and regulators. Increased risk is linked to prolongation of the QT interval on the body surface ECG. Recent studies have shown that multiple ion channel interactions can be required to predict changes in ventricular repolarisation and therefore QT intervals. In this study we attempt to predict the result of the human clinical Thorough QT (TQT) study, using multiple ion channel screening which is available early in drug development. Ion current reduction was measured, in the presence of marketed drugs which have had a TQT study, for channels encoded by hERG, CaV1.2, NaV1.5, KCNQ1/MinK, and Kv4.3/KChIP2.2. The screen was performed on two platforms - IonWorks Quattro (all 5 channels, 34 compounds), and IonWorks Barracuda (hERG & CaV1.2, 26 compounds). Concentration-effect curves were fitted to the resulting data, and used to calculate a percentage reduction in each current at a given concentration. Action potential simulations were then performed using the ten Tusscher and Panfilov (2006), Grandi et al. (2010) and O'Hara et al. (2011) human ventricular action potential models, pacing at 1Hz and running to steady state, for a range of concentrations. We compared simulated action potential duration predictions with the QT prolongation observed in the TQT studies. At the estimated concentrations, simulations tended to underestimate any observed QT prolongation. When considering a wider range of concentrations, and conventional patch clamp rather than screening data for hERG, prolongation of ≥5ms was predicted with up to 79% sensitivity and 100% specificity. This study provides a proof-of-principle for the prediction of human TQT study results using data available early in drug development. We highlight a number of areas that need refinement to improve the method's predictive power, but the results suggest that such approaches will provide a useful tool in cardiac safety

  10. Distribution and expression of non-neuronal transient receptor potential (TRPV) ion channels in rosacea.

    Science.gov (United States)

    Sulk, Mathias; Seeliger, Stephan; Aubert, Jerome; Schwab, Verena D; Cevikbas, Ferda; Rivier, Michel; Nowak, Pawel; Voegel, Johannes J; Buddenkotte, Jörg; Steinhoff, Martin

    2012-04-01

    Rosacea is a frequent chronic inflammatory skin disease of unknown etiology. Because early rosacea reveals all characteristics of neurogenic inflammation, a central role of sensory nerves in its pathophysiology has been discussed. Neuroinflammatory mediators and their receptors involved in rosacea are poorly defined. Good candidates may be transient receptor potential (TRP) ion channels of vanilloid type (TRPV), which can be activated by many trigger factors of rosacea. Interestingly, TRPV2, TRPV3, and TRPV4 are expressed by both neuronal and non-neuronal cells. Here, we analyzed the expression and distribution of TRPV receptors in the various subtypes of rosacea on non-neuronal cells using immunohistochemistry, morphometry, double immunoflourescence, and quantitative real-time PCR (qRT-PCR) as compared with healthy skin and lupus erythematosus. Our results show that dermal immunolabeling of TRPV2 and TRPV3 and gene expression of TRPV1 is significantly increased in erythematotelangiectatic rosacea (ETR). Papulopustular rosacea (PPR) displayed an enhanced immunoreactivity for TRPV2, TRPV4, and also of TRPV2 gene expression. In phymatous rosacea (PhR)-affected skin, dermal immunostaining of TRPV3 and TRPV4 and gene expression of TRPV1 and TRPV3 was enhanced, whereas epidermal TRPV2 staining was decreased. Thus, dysregulation of TRPV channels also expressed by non-neuronal cells may be critically involved in the initiation and/or development of rosacea. TRP ion channels may be targets for the treatment of rosacea.

  11. Phylogenetic conservation of protein-lipid motifs in pentameric ligand-gated ion channels.

    Science.gov (United States)

    Barrantes, Francisco J

    2015-09-01

    Using the crosstalk between the nicotinic acetylcholine receptor (nAChR) and its lipid microenvironment as a paradigm, this short overview analyzes the occurrence of structural motifs which appear not only to be conserved within the nAChR family and contemporary eukaryotic members of the pentameric ligand-gated ion channel (pLGIC) superfamily, but also extend to prokaryotic homologues found in bacteria. The evolutionarily conserved design is manifested in: 1) the concentric three-ring architecture of the transmembrane region, 2) the occurrence in this region of distinct lipid consensus motifs in prokaryotic and eukaryotic pLGIC and 3) the key participation of the outer TM4 ring in conveying the influence of the lipid membrane environment to the middle TM1-TM3 ring and this, in turn, to the inner TM2 channel-lining ring, which determines the ion selectivity of the channel. The preservation of these constant structural-functional features throughout such a long phylogenetic span likely points to the successful gain-of-function conferred by their early acquisition. This article is part of a Special Issue entitled: Lipid-protein interactions. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Supercooling Agent Icilin Blocks a Warmth-Sensing Ion Channel TRPV3

    Directory of Open Access Journals (Sweden)

    Muhammad Azhar Sherkheli

    2012-01-01

    Full Text Available Transient receptor potential vanilloid subtype 3 (TRPV3 is a thermosensitive ion channel expressed in a variety of neural cells and in keratinocytes. It is activated by warmth (33–39°C, and its responsiveness is dramatically increased at nociceptive temperatures greater than 40°C. Monoterpenoids and 2-APB are chemical activators of TRPV3 channels. We found that Icilin, a known cooling substance and putative ligand of TRPM8, reversibly inhibits TRPV3 activity at nanomolar concentrations in expression systems like Xenopus laeves oocytes, HEK-293 cells, and in cultured human keratinocytes. Our data show that icilin's antagonistic effects for the warm-sensitive TRPV3 ion channel occurs at very low concentrations. Therefore, the cooling effect evoked by icilin may at least in part be due to TRPV3 inhibition in addition to TRPM8 potentiation. Blockade of TRPV3 activity by icilin at such low concentrations might have important implications for overall cooling sensations detected by keratinocytes and free nerve endings in skin. We hypothesize that blockage of TRPV3 might be a signal for cool-sensing systems (like TRPM8 to beat up the basal activity resulting in increased cold perception when warmth sensors (like TRPV3 are shut off.

  13. Roles of TRPM8 Ion Channels in Cancer: Proliferation, Survival, and Invasion

    Directory of Open Access Journals (Sweden)

    Nelson S. Yee

    2015-10-01

    Full Text Available The goal of this article is to provide a critical review of the transient receptor potential melastatin-subfamily member 8 (TRPM8 in cancers, with an emphasis on its roles in cellular proliferation, survival, and invasion. The TRPM8 ion channels regulate Ca²⁺ homeostasis and function as a cellular sensor and transducer of cold temperature. Accumulating evidence has demonstrated that TRPM8 is aberrantly expressed in a variety of malignant solid tumors. Clinicopathological analysis has shown that over-expression of TRPM8 correlates with tumor progression. Experimental data have revealed important roles of TRPM8 channels in cancer cells proliferation, survival, and invasion, which appear to be dependent on the cancer type. Recent reports have begun to reveal the signaling mechanisms that mediate the biological roles of TRPM8 in tumor growth and metastasis. Determining the mechanistic roles of TRPM8 in cancer is expected to elucidate the impact of thermal and chemical stimuli on the formation and progression of neoplasms. Translational research and clinical investigation of TRPM8 in malignant diseases will help exploit these ion channels as molecular biomarkers and therapeutic targets for developing precision cancer medicine.

  14. Peptide-gated ion channels and the simple nervous system of Hydra.

    Science.gov (United States)

    Gründer, Stefan; Assmann, Marc

    2015-02-15

    Neurons either use electrical or chemical synapses to communicate with each other. Transmitters at chemical synapses are either small molecules or neuropeptides. After binding to their receptors, transmitters elicit postsynaptic potentials, which can either be fast and transient or slow and longer lasting, depending on the type of receptor. Fast transient potentials are mediated by ionotropic receptors and slow long-lasting potentials by metabotropic receptors. Transmitters and receptors are well studied for animals with a complex nervous system such as vertebrates and insects, but much less is known for animals with a simple nervous system like Cnidaria. As cnidarians arose early in animal evolution, nervous systems might have first evolved within this group and the study of neurotransmission in cnidarians might reveal an ancient mechanism of neuronal communication. The simple nervous system of the cnidarian Hydra extensively uses neuropeptides and, recently, we cloned and functionally characterized an ion channel that is directly activated by neuropeptides of the Hydra nervous system. These results demonstrate the existence of peptide-gated ion channels in Hydra, suggesting they mediate fast transmission in its nervous system. As related channels are also present in the genomes of the cnidarian Nematostella, of placozoans and of ctenophores, it should be considered that the early nervous systems of cnidarians and ctenophores have co-opted neuropeptides for fast transmission at chemical synapses. © 2015. Published by The Company of Biologists Ltd.

  15. Distribution and Expression of Non-Neuronal Transient Receptor Potential (TRPV) Ion Channels in Rosacea

    Science.gov (United States)

    Sulk, Mathias; Seeliger, Stephan; Aubert, Jerome; Schwab, Verena D.; Cevikbas, Ferda; Rivier, Michel; Nowak, Pawel; Voegel, Johannes J.; Buddenkotte, Jörg; Steinhoff, Martin

    2011-01-01

    Rosacea is a frequent chronic inflammatory skin disease of unknown etiology. Because early rosacea reveals all characteristics of neurogenic inflammation, a central role of sensory nerves in its pathophysiology has been discussed. Neuroinflammatory mediators and their receptors involved in rosacea are poorly defined. Good candidates may be transient receptor potential (TRP) ion channels of vanilloid type (TRPV), which can be activated by many trigger factors of rosacea. Interestingly, TRPV2, TRPV3, and TRPV4 are expressed by both neuronal and non-neuronal cells. Here, we analyzed the expression and distribution of TRPV receptors in the various subtypes of rosacea on non-neuronal cells using immunohistochemistry, morphometry, double immunoflourescence, and quantitative real-time PCR (qRT-PCR) as compared with healthy skin and lupus erythematosus. Our results show that dermal immunolabeling of TRPV2 and TRPV3 and gene expression of TRPV1 is significantly increased in erythematotelangiectatic rosacea (ETR). Papulopustular rosacea (PPR) displayed an enhanced immunoreactivity for TRPV2, TRPV4, and also of TRPV2 gene expression. In phymatous rosacea (PhR)-affected skin, dermal immunostaining of TRPV3 and TRPV4 and gene expression of TRPV1 and TRPV3 was enhanced, whereas epidermal TRPV2 staining was decreased. Thus, dysregulation of TRPV channels also expressed by non-neuronal cells may be critically involved in the initiation and/or development of rosacea. TRP ion channels may be targets for the treatment of rosacea. PMID:22189789

  16. Thermal-Hydraulics analysis of pressurized water reactor core by using single heated channel model

    Directory of Open Access Journals (Sweden)

    Reza Akbari

    2017-08-01

    Full Text Available Thermal hydraulics of nuclear reactor as a basis of reactor safety has a very important role in reactor design and control. The thermal-hydraulic analysis provides input data to the reactor-physics analysis, whereas the latter gives information about the distribution of heat sources, which is needed to perform the thermal-hydraulic analysis. In this study single heated channel model as a very fast model for predicting thermal hydraulics behavior of pressurized water reactor core has been developed. For verifying the results of this model, we used RELAP5 code as US nuclear regulatory approved thermal hydraulics code. The results of developed single heated channel model have been checked with RELAP5 results for WWER-1000. This comparison shows the capability of single heated channel model for predicting thermal hydraulics behavior of reactor core.

  17. Ion beam synthesis of buried single crystal erbium silicide

    International Nuclear Information System (INIS)

    Golanski, A.; Feenstra, R.; Galloway, M.D.; Park, J.L.; Pennycook, S.J.; Harmon, H.E.; White, C.W.

    1990-01-01

    High doses (10 16 --10 17 /cm 2 ) of 170 keV Er + were implanted into single-crystal left-angle 111 right-angle Si at implantation temperatures between 350 degree C and 520 degree C. Annealing at 800 degree C in vacuum following the implant, the growth and coalescence of ErSi 2 precipitates leads to a buried single crystalline ErSi 2 layer. This has been studied using Rutherford backscattering/channeling, X-ray diffraction, cross-sectional TEM and resistance versus temperature measurements. Samples implanted at 520 degree C using an Er dose of 7 x 10 16 /cm 2 and thermally annealed were subsequently used as seeds for the mesoepitaxial growth of the buried layer during a second implantation and annealing process. Growth occurs meso-epitaxially along both interfaces through beam induced, defect mediated mobility of Er atoms. The crystalline quality of the ErSi 2 layer strongly depends on the temperature during the second implantation. 12 refs., 4 figs

  18. Hydrophobic Gating of Ion Permeation in Magnesium Channel CorA.

    Directory of Open Access Journals (Sweden)

    Chris Neale

    2015-07-01

    Full Text Available Ion channels catalyze ionic permeation across membranes via water-filled pores. To understand how changes in intracellular magnesium concentration regulate the influx of Mg2+ into cells, we examine early events in the relaxation of Mg2+ channel CorA toward its open state using massively-repeated molecular dynamics simulations conducted either with or without regulatory ions. The pore of CorA contains a 2-nm-long hydrophobic bottleneck which remained dehydrated in most simulations. However, rapid hydration or "wetting" events concurrent with small-amplitude fluctuations in pore diameter occurred spontaneously and reversibly. In the absence of regulatory ions, wetting transitions are more likely and include a wet state that is significantly more stable and more hydrated. The free energy profile for Mg2+ permeation presents a barrier whose magnitude is anticorrelated to pore diameter and the extent of hydrophobic hydration. These findings support an allosteric mechanism whereby wetting of a hydrophobic gate couples changes in intracellular magnesium concentration to the onset of ionic conduction.

  19. Synthetic Ion Channels and DNA Logic Gates as Components of Molecular Robots.

    Science.gov (United States)

    Kawano, Ryuji

    2018-02-19

    A molecular robot is a next-generation biochemical machine that imitates the actions of microorganisms. It is made of biomaterials such as DNA, proteins, and lipids. Three prerequisites have been proposed for the construction of such a robot: sensors, intelligence, and actuators. This Minireview focuses on recent research on synthetic ion channels and DNA computing technologies, which are viewed as potential candidate components of molecular robots. Synthetic ion channels, which are embedded in artificial cell membranes (lipid bilayers), sense ambient ions or chemicals and import them. These artificial sensors are useful components for molecular robots with bodies consisting of a lipid bilayer because they enable the interface between the inside and outside of the molecular robot to function as gates. After the signal molecules arrive inside the molecular robot, they can operate DNA logic gates, which perform computations. These functions will be integrated into the intelligence and sensor sections of molecular robots. Soon, these molecular machines will be able to be assembled to operate as a mass microrobot and play an active role in environmental monitoring and in vivo diagnosis or therapy. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Acid-sensing ion channel 3 matches the acid-gated current in cardiac ischemia-sensing neurons

    Science.gov (United States)

    Sutherland, Stephani P.; Benson, Christopher J.; Adelman, John P.; McCleskey, Edwin W.

    2001-01-01

    Cardiac afferents are sensory neurons that mediate angina, pain that occurs when the heart receives insufficient blood supply for its metabolic demand (ischemia). These neurons display enormous acid-evoked depolarizing currents, and they fire action potentials in response to extracellular acidification that accompanies myocardial ischemia. Here we show that acid-sensing ion channel 3 (ASIC3), but no other known acid-sensing ion channel, reproduces the functional features of the channel that underlies the large acid-evoked current in cardiac afferents. ASIC3 and the native channel are both especially sensitive to pH, interact similarly with Ca2+, and gate rapidly between closed, open, and desensitized states. Particularly important is the ability of ASIC3 and the native channel to open at pH 7, a value reached in the first few minutes of a heart attack. The steep activation curve suggests that the channel opens when four protons bind. We propose that ASIC3, a member of the degenerin channel (of Caenorhabditis elegans)/epithelial sodium channel family of ion channels, is the sensor of myocardial acidity that triggers cardiac pain, and that it might be a useful pharmaceutical target for treating angina. PMID:11120882

  1. Structure and inhibition of the SARS coronavirus envelope protein ion channel.

    Directory of Open Access Journals (Sweden)

    Konstantin Pervushin

    2009-07-01

    Full Text Available The envelope (E protein from coronaviruses is a small polypeptide that contains at least one alpha-helical transmembrane domain. Absence, or inactivation, of E protein results in attenuated viruses, due to alterations in either virion morphology or tropism. Apart from its morphogenetic properties, protein E has been reported to have membrane permeabilizing activity. Further, the drug hexamethylene amiloride (HMA, but not amiloride, inhibited in vitro ion channel activity of some synthetic coronavirus E proteins, and also viral replication. We have previously shown for the coronavirus species responsible for severe acute respiratory syndrome (SARS-CoV that the transmembrane domain of E protein (ETM forms pentameric alpha-helical bundles that are likely responsible for the observed channel activity. Herein, using solution NMR in dodecylphosphatidylcholine micelles and energy minimization, we have obtained a model of this channel which features regular alpha-helices that form a pentameric left-handed parallel bundle. The drug HMA was found to bind inside the lumen of the channel, at both the C-terminal and the N-terminal openings, and, in contrast to amiloride, induced additional chemical shifts in ETM. Full length SARS-CoV E displayed channel activity when transiently expressed in human embryonic kidney 293 (HEK-293 cells in a whole-cell patch clamp set-up. This activity was significantly reduced by hexamethylene amiloride (HMA, but not by amiloride. The channel structure presented herein provides a possible rationale for inhibition, and a platform for future structure-based drug design of this potential pharmacological target.

  2. Single top measurements at the LHC: $s$-channel and $Wt$ production

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00214457; The ATLAS collaboration

    2016-01-01

    This paper summarises the latest experimental results on single top quark physics by the ATLAS and CMS collaborations using LHC proton--proton collisions at $\\sqrt{s}=8 \\rm \\ TeV$. Searches for single top-quark production in the $s$-channel and associated $Wt$ mode are presented and a determination of the CKM matrix element $|V_{tb}|$ is discussed. Evidence for $s$-channel production is reported by the ATLAS collaboration and the $Wt$ process has been observed at the LHC.

  3. 16 channel WDM regeneration in a single phase-sensitive amplifier through optical Fourier transformation

    DEFF Research Database (Denmark)

    Guan, Pengyu; Da Ros, Francesco; Lillieholm, Mads

    2016-01-01

    We demonstrate simultaneous phase regeneration of 16-WDM DPSK channels using optical Fourier transformation and a single phase-sensitive amplifier. The BERs of 16-WDM×10-Gbit/s phase noise degraded DPSK signals are improved by 0.4-1.3 orders of magnitude......We demonstrate simultaneous phase regeneration of 16-WDM DPSK channels using optical Fourier transformation and a single phase-sensitive amplifier. The BERs of 16-WDM×10-Gbit/s phase noise degraded DPSK signals are improved by 0.4-1.3 orders of magnitude...

  4. A novel K+ channel expressed in carrot roots with a low susceptibility toward metal ions.

    Science.gov (United States)

    Paganetto, A; Bregante, M; Downey, P; Lo Schiavo, F; Hoth, S; Hedrich, R; Gambale, F

    2001-02-01

    Kdc1 is a novel K+-channel gene cloned from carrot roots, and which is also present in cultured carrot cells. We investigated the characteristics of the ionic current elicited in Xenopus oocytes coinjected with KDC1 (K+-Daucus carota 1) and KAT1 (from Arabidopsis thaliana) RNA. Expressed heteromeric channels displayed inward-rectifying potassium currents whose kinetics, voltage characteristics, and inhibition by metal ions depended on KDC1:KAT1 ratios. At low KDC1:KAT1 ratios, Zn2+ inhibition of heteromeric K+ current was less pronounced compared to homomeric KAT1 channels, while at higher KDC1:KAT1 ratios, the addition of Zn2+ even produced an increase in current. Under the same conditions, the Ni2+ inhibition of the current was also reduced, but no current increase was observed. These effects might be explained by the unusual amino acid composition of the KDC1 protein in terms of histidine residues that are absent in the pore region, but abundant (four per subunit) in the proximity of the pore entrance. Channels like KDC1 could be at least partially responsible for the higher resistance of carrot cells in the presence of metals.

  5. Simple molecular model for the binding of antibiotic molecules to bacterial ion channels

    Science.gov (United States)

    Mafé, Salvador; Ramírez, Patricio; Alcaraz, Antonio

    2003-10-01

    A molecular model aimed at explaining recent experimental data by Nestorovich et al. [Proc. Natl. Acad. Sci. USA 99, 9789 (2002)] on the interaction of ampicillin molecules with the constriction zone in a channel of the general bacterial porin, OmpF (outer membrane protein F), is presented. The model extends T. L. Hill's theory for intermolecular interactions in a pair of binding sites [J. Am. Chem. Soc. 78, 3330 (1956)] by incorporating two binding ions and two pairs of interacting sites. The results provide new physical insights on the role of the complementary pattern of the charge distributions in the ampicillin molecule and the narrowest part of the channel pore. Charge matching of interacting sites facilitates drug binding. The dependence of the number of ampicillin binding events per second with the solution pH and salt concentration is explained qualitatively using a reduced number of fundamental concepts.

  6. Exit-channel distorting potentials in heavy-ion inelastic scattering and equivalent bare optical potential

    International Nuclear Information System (INIS)

    Kubo, K.-I.; Hodgson, P.E.

    1981-01-01

    The effect of distorting potentials on transitions in the heavy-ion inelastic 16 O on 40 Ca reaction at 60 MeV has been investigated using the DWBA approximation. The polarization potential due to the nuclear and Coulomb excitations was calculated based on the plane wave assumption and the bare imaginary potential calculated by subtracting the polarization potential from the elastic optical potential. The bare potential was found to compare well with a phenomenological channel-coupling calculation. This bare potential was used for the DWBA calculation and the result found to be quite consistent with those obtained by the exact channel-coupling calculation. The shape of the bare potential compared with the elastic optical imaginary potential is discussed with reference to those of the nuclear plus Coulomb excitation contributions and the nuclear-Coulomb cross term, which interfere destructively. (U.K.)

  7. Computing characterizations of drugs for ion channels and receptors using Markov models

    CERN Document Server

    Tveito, Aslak

    2016-01-01

    Flow of ions through voltage gated channels can be represented theoretically using stochastic differential equations where the gating mechanism is represented by a Markov model. The flow through a channel can be manipulated using various drugs, and the effect of a given drug can be reflected by changing the Markov model. These lecture notes provide an accessible introduction to the mathematical methods needed to deal with these models. They emphasize the use of numerical methods and provide sufficient details for the reader to implement the models and thereby study the effect of various drugs. Examples in the text include stochastic calcium release from internal storage systems in cells, as well as stochastic models of the transmembrane potential. Well known Markov models are studied and a systematic approach to including the effect of mutations is presented. Lastly, the book shows how to derive the optimal properties of a theoretical model of a drug for a given mutation defined in terms of a Markov model.

  8. Ion channeling study of epitaxy of iron based Heusler alloy films on Ge(111)

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, Yoshihito, E-mail: maeda@energy.kyoto-u.ac.jp [Department of Energy Science and Technology, Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan); Narumi, Kazumasa; Sakai, Seiji [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Terai, Yoshikazu [Department of Engineering, Osaka University, Suita, Osaka 565-0871 (Japan); Hamaya, Kohei; Sadoh, Taizoh; Miyao, Masanobu [Department of Electronics, Kyushu University, Motooka, Fukuoka 819-0395 (Japan)

    2011-10-03

    We have investigated perfection of atomic rows on iron-based Heusler alloy films on Ge(111) planes by using ion channeling technique in order to find the dominant factors for the perfection. Fe{sub 3}Si/Ge(111) and Fe{sub 2}CoSi/Ge(111) have a high quality of atomic rows at the heterointerface like that of perfect crystals. Fe{sub 3-x}Mn{sub x}Si/Ge(111) (x = 0.84, 0.72 and 0.36) interfaces have imperfection of atomic rows which may be controlled by both the lattice mismatch with the Ge substrate and the Mn-Si pairs due to the site disorder in the film with the Mn content x > 0.75. Analysis of axial channeling parameters employed in this study is very useful for quantitative evaluation of perfection of atomic rows at the heterointerface.

  9. Molecular Basis for Allosteric Inhibition of Acid-Sensing Ion Channel 1a by Ibuprofen

    DEFF Research Database (Denmark)

    Lynagh, Timothy; Romero-Rojo, José Luis; Lund, Camilla

    2017-01-01

    A growing body of evidence links certain aspects of nonsteroidal anti-inflammatory drug (NSAID) pharmacology with acid-sensing ion channels (ASICs), a small family of excitatory neurotransmitter receptors implicated in pain and neuroinflammation. The molecular basis of NSAID inhibition of ASICs has......-clamp fluorometry. Our results show that ibuprofen is an allosteric inhibitor of ASIC1a, which binds to a crucial site in the agonist transduction pathway and causes conformational changes that oppose channel activation. Ibuprofen inhibits several ASIC subtypes, but certain ibuprofen derivatives show some...... selectivity for ASIC1a over ASIC2a and vice versa. These results thus define the NSAID/ASIC interaction and pave the way for small-molecule drug design targeting pain and inflammation....

  10. Quantitative GPCR and ion channel transcriptomics in primary alveolar macrophages and macrophage surrogates

    Directory of Open Access Journals (Sweden)

    Groot-Kormelink Paul J

    2012-10-01

    Full Text Available Abstract Background Alveolar macrophages are one of the first lines of defence against invading pathogens and play a central role in modulating both the innate and acquired immune systems. By responding to endogenous stimuli within the lung, alveolar macrophages contribute towards the regulation of the local inflammatory microenvironment, the initiation of wound healing and the pathogenesis of viral and bacterial infections. Despite the availability of protocols for isolating primary alveolar macrophages from the lung these cells remain recalcitrant to expansion in-vitro and therefore surrogate cell types, such as monocyte derived macrophages and phorbol ester-differentiated cell lines (e.g. U937, THP-1, HL60 are frequently used to model macrophage function. Methods The availability of high throughput gene expression technologies for accurate quantification of transcript levels enables the re-evaluation of these surrogate cell types for use as cellular models of the alveolar macrophage. Utilising high-throughput TaqMan arrays and focussing on dynamically regulated families of integral membrane proteins, we explore the similarities and differences in G-protein coupled receptor (GPCR and ion channel expression in alveolar macrophages and their widely used surrogates. Results The complete non-sensory GPCR and ion channel transcriptome is described for primary alveolar macrophages and macrophage surrogates. The expression of numerous GPCRs and ion channels whose expression were hitherto not described in human alveolar macrophages are compared across primary macrophages and commonly used macrophage cell models. Several membrane proteins known to have critical roles in regulating macrophage function, including CXCR6, CCR8 and TRPV4, were found to be highly expressed in macrophages but not expressed in PMA-differentiated surrogates. Conclusions The data described in this report provides insight into the appropriate choice of cell models for

  11. Ion Channel ElectroPhysiology Ontology (ICEPO) - a case study of text mining assisted ontology development.

    Science.gov (United States)

    Elayavilli, Ravikumar Komandur; Liu, Hongfang

    2016-01-01

    Computational modeling of biological cascades is of great interest to quantitative biologists. Biomedical text has been a rich source for quantitative information. Gathering quantitative parameters and values from biomedical text is one significant challenge in the early steps of computational modeling as it involves huge manual effort. While automatically extracting such quantitative information from bio-medical text may offer some relief, lack of ontological representation for a subdomain serves as impedance in normalizing textual extractions to a standard representation. This may render textual extractions less meaningful to the domain experts. In this work, we propose a rule-based approach to automatically extract relations involving quantitative data from biomedical text describing ion channel electrophysiology. We further translated the quantitative assertions extracted through text mining to a formal representation that may help in constructing ontology for ion channel events using a rule based approach. We have developed Ion Channel ElectroPhysiology Ontology (ICEPO) by integrating the information represented in closely related ontologies such as, Cell Physiology Ontology (CPO), and Cardiac Electro Physiology Ontology (CPEO) and the knowledge provided by domain experts. The rule-based system achieved an overall F-measure of 68.93% in extracting the quantitative data assertions system on an independently annotated blind data set. We further made an initial attempt in formalizing the quantitative data assertions extracted from the biomedical text into a formal representation that offers potential to facilitate the integration of text mining into ontological workflow, a novel aspect of this study. This work is a case study where we created a platform that provides formal interaction between ontology development and text mining. We have achieved partial success in extracting quantitative assertions from the biomedical text and formalizing them in ontological

  12. Decoupling ion conductivity and fluid permeation through optimizing hydrophilic channel morphology

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Peter Po-Jen, E-mail: pjchu@cc.ncu.edu.tw; Fang, Yu-Shin; Tseng, Yu-Chen [Department of Chemistry, National Central University, No. 300, Jhongda Rd., Jhongli City, Taoyuan County 32001, Taiwan (R.O.C.) (China)

    2016-05-18

    Approaches to improve membrane ion conductivity usually leads to higher degree of swelling, more serious fuel cross-over and often sacrificed membrane mechanical strength. Preserving all three main membrane properties is a tough challenge in searching high ion conducting fuel cell membrane. The long standing dilemma is resolved by decoupling ion conduction and fluid permeation property by creating optimized channel morphology using external electric field poling. Success of this approach is demonstrated in the proton conducting membrane composed of poly(ether sulfones) (PES) and sulfonated poly(ether ether ketone) (sPEEK, degree of sulfonation=50%) composites prepared under electric field poling condition. The external field enhanced the aromatic chain ordering from both sPEEK and PES and improved the miscibility. This induced interaction is conducive to the formation of more densely packed amorphous domains that eventually leads to preferentially ordered hydrophilic proton conducting channels having a average dimension (3 nm) smaller than that in generic sPEEK or Nafion. The narrower but more ordered channel displayed much lower methanol permeability (3.17×10{sup −7} cm{sup 2}/s), and lower swelling ratio (31.20%), while the conductivity (~10{sup −1} S/cm) is higher than that of Nafion, or sPEEK at higher (64%) degree of sulfonation. The composite is chemically stable and highly durable with improved membrane mechanical strength. Nearly 50% increase of DMFC power output is observed using this membrane, and the best power density is recorded at 155 mA/cm{sup 2} (80 °C, 1M Methanol).

  13. Hydrogen sulfide: role in ion channel and transporter modulation in the eye

    Directory of Open Access Journals (Sweden)

    Ya Fatou eNjie-Mbye

    2012-07-01

    Full Text Available Hydrogen sulfide (H2S, a colorless gas with a characteristic smell of rotten eggs, has been portrayed for decades as a toxic environmental pollutant. Since evidence of its basal production in mammalian tissues a decade ago, H2S has attracted substantial interest as a potential inorganic gaseous mediator with biological importance in cellular functions. Current research suggests that, next to its counterparts nitric oxide and carbon monoxide, H2S is an important multifunctional signaling molecule with pivotal regulatory roles in various physiological and pathophysiological processes as diverse as learning and memory, modulation of synaptic activities, cell survival, inflammation and maintenance of vascular tone in the central nervous and cardiovascular systems. In contrast, there are few reports of a regulatory role of H2S in the eye. Accumulating reports on the pharmacological role of H2S in ocular tissues indicate the existence of a functional trans-sulfuration pathway and a potential physiological role for H2S as a gaseous neuromodulator in the eye. Thus, understanding the role of H2S in vision-related processes is imperative to our expanding knowledge of this molecule as a gaseous mediator in ocular tissues. This review aims to provide a comprehensive and current understanding of the potential role of H2S as a signaling molecule in the eye. This objective is achieved by discussing the involvement of H2S in the regulation of (1 ion channels such as calcium (L-type, T-type and intracellular stores, potassium (KATP and small conductance channels and chloride channels, (2 glutamate transporters such as EAAT1/GLAST and the L-cystine/glutamate antiporter. The role of H2S as an important mediator in cellular functions and physiological processes that are triggered by its interaction with ion channels/transporters in the eye will also be discussed.

  14. Pharmacological blockade of TRPM8 ion channels alters cold and cold pain responses in mice.

    Directory of Open Access Journals (Sweden)

    Wendy M Knowlton

    Full Text Available TRPM8 (Transient Receptor Potential Melastatin-8 is a cold- and menthol-gated ion channel necessary for the detection of cold temperatures in the mammalian peripheral nervous system. Functioning TRPM8 channels are required for behavioral responses to innocuous cool, noxious cold, injury-evoked cold hypersensitivity, cooling-mediated analgesia, and thermoregulation. Because of these various roles, the ability to pharmacologically manipulate TRPM8 function to alter the excitability of cold-sensing neurons may have broad impact clinically. Here we examined a novel compound, PBMC (1-phenylethyl-4-(benzyloxy-3-methoxybenzyl(2-aminoethylcarbamate which robustly and selectively inhibited TRPM8 channels in vitro with sub-nanomolar affinity, as determined by calcium microfluorimetry and electrophysiology. The actions of PBMC were selective for TRPM8, with no functional effects observed for the sensory ion channels TRPV1 and TRPA1. PBMC altered TRPM8 gating by shifting the voltage-dependence of menthol-evoked currents towards positive membrane potentials. When administered systemically to mice, PBMC treatment produced a dose-dependent hypothermia in wildtype animals while TRPM8-knockout mice remained unaffected. This hypothermic response was reduced at lower doses, whereas responses to evaporative cooling were still significantly attenuated. Lastly, systemic PBMC also diminished cold hypersensitivity in inflammatory and nerve-injury pain models, but was ineffective against oxaliplatin-induced neuropathic cold hypersensitivity, despite our findings that TRPM8 is required for the cold-related symptoms of this pathology. Thus PBMC is an attractive compound that serves as a template for the formulation of highly specific and potent TRPM8 antagonists that will have utility both in vitro and in vivo.

  15. Study of phosphorus implanted and annealed silicon by electrical measurements and ion channeling technique

    CERN Document Server

    Hadjersi, T; Zilabdi, M; Benazzouz, C

    2002-01-01

    We investigated the effect of annealing temperature on the electrical activation of phosphorus implanted into silicon. The measurements performed using spreading resistance, four-point probe and ion channeling techniques have allowed us to establish the existence of two domains of variation of the electrical activation (350-700 deg. C) and (800-1100 deg. C). The presence of reverse annealing and the annihilation of defects have been put in a prominent position in the first temperature range. It has been shown that in order to achieve a complete electrical activation, the annealing temperature must belong to the second domain (800-1100 deg. C).

  16. Ion blocking and channeling studies of heteroepitaxial GaN layers

    International Nuclear Information System (INIS)

    Flagmeyer, R.; Ehrlich, C.; Geist, V.; Otto, G.

    1978-01-01

    Ion channeling and blocking in backscattering measurements were used for the characterization of thin epitaxial GaN layers, which have varied lattice imperfections involved by different growth conditions. In particular, the following characteristics were examined: (1) the thickness and the uniformity of the layers, (2) the depth dependence of the crystalline imperfection, (3) the dislocation density, (4) the spread in the orientation distribution of tilted crystallites, and (5) some other types of imperfections, such as stacking faults, double positioning, twins and bending of the layer

  17. High quality ion channels recordings on an injection molded polymer chip

    DEFF Research Database (Denmark)

    Tanzi, Simone

    In this thesis we demonstrate high quality recordings of the ion channel activity across the cell membrane in a biological cell by employing the so called patch clamping technique on an injection molded polymer microfluidic device. Such recordings are traditionally made using glass micropipettes...... the cheapest materials and production platform to date, and with the potential for very high throughput. The employment of cornered apertures for cell capture allowed the fabrication of devices without through holes via a process comprising master origination by dry etching in a silicon substrate...

  18. Biochemical methods to study the interactions between integrins and ion channels.

    Science.gov (United States)

    Crociani, Olivia

    2010-01-01

    Protein-protein interactions between integrins and ion channels consist in a complicated bidirectional talk, not yet understood in detail, which triggers a downstream signaling network. Such a coordinated process occurs in discrete, localized microcompartments and involves different membrane and cytoplasmic proteins. Since the early nineties, when the first functional association between integrins and ion channels was characterized, the number of similar examples is constantly increasing. Identifying the components of this pathway has general importance for cell physiology and will eventually lead to fully understand the role of ion channels in the physiological processes typically controlled by integrin receptors, such as cell adhesion, migration and proliferation. Here, we detail the main experimental methods currently available to study these processes and discuss their advantages and disadvantages. Biochemical copurification and genetic interaction studies, as well as high-throughput screening, can be performed to initially identify the interacting proteins. Successively, in vitro binding assays such as pull-down and immunoprecipitation-based techniques allow to verify and better characterize these partnerships, possibly in combination with mass spectrometry methods. When transient interactions are involved, more sophisticated techniques, such as photoaffinity labelingprocedures, are necessary to detect the multiprotein complexes by having them covalently bound together as they interact. To provide even more thorough analyses of the formation, function and composition of protein complexes, other technologies such as confocal microscopy, fluorescence resonance energy transfer microscopy and site directed mutagenesis (possibly in murine models) have to be performed. The progressive accumulation of data defining novel protein-protein interactions has been considerably accelerated by the identification of specific sequence motifs that regulate integrin binding to

  19. Inactivation of Mechanically Activated Piezo1 Ion Channels Is Determined by the C-Terminal Extracellular Domain and the Inner Pore Helix

    Directory of Open Access Journals (Sweden)

    Jason Wu

    2017-11-01

    Full Text Available Piezo proteins form mechanically activated ion channels that are responsible for our sense of light touch, proprioception, and vascular blood flow. Upon activation by mechanical stimuli, Piezo channels rapidly inactivate in a voltage-dependent manner through an unknown mechanism. Inactivation of Piezo channels is physiologically important, as it modulates overall mechanical sensitivity, gives rise to frequency filtering of repetitive mechanical stimuli, and is itself the target of numerous human disease-related channelopathies that are not well understood mechanistically. Here, we identify the globular C-terminal extracellular domain as a structure that is sufficient to confer the time course of inactivation and a single positively charged lysine residue at the adjacent inner pore helix as being required for its voltage dependence. Our results are consistent with a mechanism for inactivation that is mediated through voltage-dependent conformations of the inner pore helix and allosteric coupling with the C-terminal extracellular domain.

  20. Even distribution/dividing of single-phase fluids by symmetric bifurcation of flow channels

    International Nuclear Information System (INIS)

    Liu, Hong; Li, Peiwen

    2013-01-01

    Highlights: ► We addressed an issue of distributing a flow to a number of flow channels uniformly. ► The flow distribution is accomplished through bifurcation of channels. ► Some key parameters to the flow distribution uniformity have been identified. ► Flow uniformity was studied for several versions of flow distributor designs. ► A novel fluid packaging device of high efficiency was provided. -- Abstract: This study addresses a fundamental issue of distributing a single-phase fluid flow into a number of flow channels uniformly. A basic mechanism of flow distribution is accomplished through bifurcation of channels that symmetrically split one flow channel into two downstream channels. Applying the basic mechanism, cascades flow distributions are designed to split one flow into a large number of downstream flows uniformly. Some key parameters decisive to the flow distribution uniformity in such a system have been identified, and the flow distribution uniformity of air was studied for several versions of flow distributor designs using CFD analysis. The effect of the key parameters of the flow channel designs to the flow distribution uniformity was investigated. As an example of industrial application, a novel fluid packaging device of high efficiency was proposed and some CFD analysis results for the device were provided. The optimized flow distributor makes a very good uniform flow distribution which will significantly improve the efficiency of fluid packaging. The technology is expected to be of great significance to many industrial devices that require high uniformity of flow distribution

  1. Dampening of hyperexcitability in CA1 pyramidal neurons by polyunsaturated fatty acids acting on voltage-gated ion channels.

    Directory of Open Access Journals (Sweden)

    Jenny Tigerholm

    Full Text Available A ketogenic diet is an alternative treatment of epilepsy in infants. The diet, rich in fat and low in carbohydrates, elevates the level of polyunsaturated fatty acids (PUFAs in plasma. These substances have therefore been suggested to contribute to the anticonvulsive effect of the diet. PUFAs modulate the properties of a range of ion channels, including K and Na channels, and it has been hypothesized that these changes may be part of a mechanistic explanation of the ketogenic diet. Using computational modelling, we here study how experimentally observed PUFA-induced changes of ion channel activity affect neuronal excitability in CA1, in particular responses to synaptic input of high synchronicity. The PUFA effects were studied in two pathological models of cellular hyperexcitability associated with epileptogenesis. We found that experimentally derived PUFA modulation of the A-type K (K(A channel, but not the delayed-rectifier K channel, restored healthy excitability by selectively reducing the response to inputs of high synchronicity. We also found that PUFA modulation of the transient Na channel was effective in this respect if the channel's steady-state inactivation was selectively affected. Furthermore, PUFA-induced hyperpolarization of the resting membrane potential was an effective approach to prevent hyperexcitability. When the combined effect of PUFA on the K(A channel, the Na channel, and the resting membrane potential, was simulated, a lower concentration of PUFA was needed to restore healthy excitability. We therefore propose that one explanation of the beneficial effect of PUFAs lies in its simultaneous action on a range of ion-channel targets. Furthermore, this work suggests that a pharmacological cocktail acting on the voltage dependence of the Na-channel inactivation, the voltage dependences of K(A channels, and the resting potential can be an effective treatment of epilepsy.

  2. Quaternary ammonium compounds as structural probes of single batrachotoxin-activated Na+ channels

    Science.gov (United States)

    1991-01-01

    Quaternary ammonium (QA) blockers are well-known structural probes for studying the permeation pathway of voltage-gated K+ channels. In this study we have examined the effects of a series of n-alkyl- trimethylammonium compounds (Cn-QA) on batrachotoxin (BTX)-activated Na+ channels from skeletal muscle incorporated into planar lipid bilayers. We found that these amphipathic QA compounds (Cn-QA where n = 10-18) block single Na+ channels preferentially from the internal side with equilibrium dissociation constants (KD) in the submicromolar to micromolar range. External application of amphipathic QA compounds is far less effective, by a factor of greater than 200. The block can be described by a QA molecule binding to a single site in the Na+ channel permeation pathway. QA binding affinity is dependent on transmembrane voltage with an effective valence (delta) of approximately 0.5. QA dwell times (given as mean closed times, tau c) increase as a function of n-alkyl chain length, ranging from approximately 13 ms for C10-QA to 500 ms for C18-QA at +50 mV. The results imply that there is a large hydrophobic region within the Na+ channel pore which accepts up to 18 methylene groups of the Cn-QA cation. This hydrophobic domain may be of clinical significance since it also interacts with local anesthetics such as cocaine and mepivacaine. Finally, like BTX-activated Na+ channels in bilayers, unmodified Na+ channels in GH3 cells are also susceptible to QA block. Amphipathic QA cations elicit both tonic and use-dependent inhibitions of normal Na+ currents in a manner similar to that of local anesthetic cocaine. We conclude that amphipathic QA compounds are valuable structural probes to study the permeation pathway of both normal and BTX-activated Na+ channels. PMID:1662681

  3. Tunable single-photon multi-channel quantum router based on an optomechanical system

    Science.gov (United States)

    Ma, Peng-Cheng; Yan, Lei-Lei; Zhang, Jian; Chen, Gui-Bin; Li, Xiao-Wei; Zhan, You-Bang

    2018-01-01

    Routing of photons plays a key role in optical communication networks and quantum networks. Although the quantum routing of signals has been investigated for various systems, both in theory and experiment, the general form of a quantum router with multi-output terminals still needs to be explored. Here, we propose an experimentally accessible tunable single-photon multi-channel routing scheme using an optomechanics cavity which is Coulomb coupled to a nanomechanical resonator. The router can extract single photons from the coherent input signal and directly modulate them into three different output channels. More importantly, the two output signal frequencies can be selected by adjusting the Coulomb coupling strength. For application purposes, we justify that there is insignificant influence from the vacuum and thermal noises on the performance of the router under cryogenic conditions. Our proposal may pave a new avenue towards multi-channel routers and quantum networks.

  4. Single-ion and single-chain magnetism in triangular spin-chain oxides

    Science.gov (United States)

    Seikh, Md. Motin; Caignaert, Vincent; Perez, Olivier; Raveau, Bernard; Hardy, Vincent

    2017-05-01

    S r4 -xC axM n2Co O9 oxides (x =0 and x =2 ) are found to exhibit magnetic responses typical of single-chain magnets (SCMs) and single-ion magnets (SIMs), two features generally investigated in coordination polymers or complexes. The compound x =0 appears to be a genuine SCM, in that blocking effects associated with slow spin dynamics yield remanence and coercivity in the absence of long-range ordering (LRO). In addition, SIM signatures of nearly identical nature are detected in both compounds, coexisting with SCM in x =0 and with LRO in x =2 . It is also observed that a SCM response can be recovered in x =2 after application of magnetic field. These results suggest that purely inorganic systems could play a valuable role in the topical issue of the interplay among SIM, SCM, and LRO phenomena in low-dimensional magnetism.

  5. Single intravenous and oral dose pharmacokinetics of florfenicol in the channel catfish Ictalurus punctatus

    Science.gov (United States)

    Plasma distribution and elimination of florfenicol in channel catfish were investigated after a single dose (10mg/kg) of intravenous i.v.) or oral administration in freshwater at a mean water temperature of 25.4°C. Florfenicol concentrations in plasma were analyzed by means of liquid chromatography...

  6. Optimization of pumping schemes for 160-Gb/s single channel Raman amplified systems

    DEFF Research Database (Denmark)

    Xu, Lin; Rottwitt, Karsten; Peucheret, Christophe

    2004-01-01

    Three different distributed Raman amplification schemes-backward pumping, bidirectional pumping, and second-order pumping-are evaluated numerically for 160-Gb/s single-channel transmission. The same longest transmission distance of 2500 km is achieved for all three pumping methods with a 105-km...

  7. Automatic detection and classification of artifacts in single-channel EEG

    DEFF Research Database (Denmark)

    Olund, Thomas; Duun-Henriksen, Jonas; Kjaer, Troels W.

    2014-01-01

    artifact classes using the selected features. Single-channel (Fp1-F7) EEG recordings are obtained from experiments with 12 healthy subjects performing artifact inducing movements. The dataset was used to construct and validate the model. Both subject-specific and generic implementation, are investigated...

  8. High-speed indoor optical wireless communication system with single channel imaging receiver.

    Science.gov (United States)

    Wang, Ke; Nirmalathas, Ampalavanapillai; Lim, Christina; Skafidas, Efstratios

    2012-04-09

    In this paper we experimentally investigate a gigabit indoor optical wireless communication system with single channel imaging receiver. It is shown that the use of single channel imaging receiver rejects most of the background light. This single channel imaging receiver is composed of an imaging lens and a small photo-sensitive area photodiode attached on a 2-axis actuator. The actuator and photodiode are placed on the focal plane of the lens to search for the focused light spot. The actuator is voice-coil based and it is low cost and commercially available. With this single channel imaging receiver, bit rate as high as 12.5 Gbps has been successfully demonstrated and the maximum error-free (BER20% has been achieved. When this system is integrated with our recently proposed optical wireless based indoor localization system, both high speed wireless communication and mobility can be provided to users over the entire room. Furthermore, theoretical analysis has been carried out and the simulation results agree well with the experiments. In addition, since the rough location information of the user is available in our proposed system, instead of searching for the focused light spot over a large area on the focal plane of the lens, only a small possible area needs to be scanned. By further pre-setting a proper comparison threshold when searching for the focused light spot, the time needed for searching can be further reduced.

  9. Minimum Symbol Error Rate Detection in Single-Input Multiple-Output Channels with Markov Noise

    DEFF Research Database (Denmark)

    Christensen, Lars P.B.

    2005-01-01

    Minimum symbol error rate detection in Single-Input Multiple- Output(SIMO) channels with Markov noise is presented. The special case of zero-mean Gauss-Markov noise is examined closer as it only requires knowledge of the second-order moments. In this special case, it is shown that optimal detection...

  10. Transmission of Single-Channel 16-QAM Data Signals at Terabaud Symbol Rates

    DEFF Research Database (Denmark)

    Richter, Thomas; Palushani, Evarist; Schmidt-Langhorst, Carsten

    2012-01-01

    We present latest results for OTDM transmission systems in combination with digital coherent detection achieving record-high serial data rates in a single-wavelength channel. We show serial data transmission of 5.1 Tb/s (640 GBd) over 80-km and 10.2 Tb/s (1.28 TBd) over 29-km dispersion managed f...

  11. Single-channel source separation using non-negative matrix factorization

    DEFF Research Database (Denmark)

    Schmidt, Mikkel Nørgaard

    , in which a number of methods for single-channel source separation based on non-negative matrix factorization are presented. In the papers, the methods are applied to separating audio signals such as speech and musical instruments and separating different types of tissue in chemical shift imaging....

  12. The conserved potassium channel filter can have distinct ion binding profiles: structural analysis of rubidium, cesium, and barium binding in NaK2K.

    Science.gov (United States)

    Lam, Yee Ling; Zeng, Weizhong; Sauer, David Bryant; Jiang, Youxing

    2014-08-01

    Potassium channels are highly selective for K(+) over the smaller Na(+). Intriguingly, they are permeable to larger monovalent cations such as Rb(+) and Cs(+) but are specifically blocked by the similarly sized Ba(2+). In this study, we used structural analysis to determine the binding profiles for these permeant and blocking ions in the selectivity filter of the potassium-selective NaK channel mutant NaK2K and also performed permeation experiments using single-channel recordings. Our data revealed that some ion binding properties of NaK2K are distinct from those of the canonical K(+) channels KcsA and MthK. Rb(+) bound at sites 1, 3, and 4 in NaK2K, as it does in KcsA. Cs(+), however, bound predominantly at sites 1 and 3 in NaK2K, whereas it binds at sites 1, 3, and 4 in KcsA. Moreover, Ba(2+) binding in NaK2K was distinct from that which has been observed in KcsA and MthK, even though all of these channels show similar Ba(2+) block. In the presence of K(+), Ba(2+) bound to the NaK2K channel at site 3 in conjunction with a K(+) at site 1; this led to a prolonged block of the channel (the external K(+)-dependent Ba(2+) lock-in state). In the absence of K(+), however, Ba(2+) acts as a permeating blocker. We found that, under these conditions, Ba(2+) bound at sites 1 or 0 as well as site 3, allowing it to enter the filter from the intracellular side and exit from the extracellular side. The difference in the Ba(2+) binding profile in the presence and absence of K(+) thus provides a structural explanation for the short and prolonged Ba(2+) block observed in NaK2K. © 2014 Lam et al.

  13. An accurate mobility model for the I-V characteristics of n-channel enhancement-mode MOSFETs with single-channel boron implantation

    International Nuclear Information System (INIS)

    Chingyuan Wu; Yeongwen Daih

    1985-01-01

    In this paper an analytical mobility model is developed for the I-V characteristics of n-channel enhancement-mode MOSFETs, in which the effects of the two-dimensional electric fields in the surface inversion channel and the parasitic resistances due to contact and interconnection are included. Most importantly, the developed mobility model easily takes the device structure and process into consideration. In order to demonstrate the capabilities of the developed model, the structure- and process-oriented parameters in the present mobility model are calculated explicitly for an n-channel enhancement-mode MOSFET with single-channel boron implantation. Moreover, n-channel MOSFETs with different channel lengths fabricated in a production line by using a set of test keys have been characterized and the measured mobilities have been compared to the model. Excellent agreement has been obtained for all ranges of the fabricated channel lengths, which strongly support the accuracy of the model. (author)

  14. Phosphodiesterase 3 and 5 and cyclic nucleotide-gated ion channel expression in rat trigeminovascular system

    DEFF Research Database (Denmark)

    Kruse, Lars S; Sandholdt, Nicolai T H; Gammeltoft, Steen

    2006-01-01

    may be associated with mutations in ion channels. The aim of the present study was to describe the expression of phosphodiesterase 3 (PDE3) and 5 (PDE5) and cyclic nucleotide-gated ion channels (CNG) in cerebral arteries, meninges, and the trigeminal ganglion. mRNA for PDE and CNG was determined...... in the rat middle cerebral artery, basilar artery, trigeminal ganglion, and dura mater using real-time PCR. PDE and CNG proteins were identified using Western blot. For comparison, rat aorta and mesenteric artery were analysed. PDE3A, PDE3B, and PDE5A mRNA were detected in all tissues examined except for PDE......3A mRNA in dura mater and the trigeminal ganglion. PDE5A and PDE3A protein expression was present in both cerebral and peripheral arteries, whereas PDE3B protein was present only in the cerebral arteries. The CNGA4 and B1 subunit mRNAs were detected in cerebral arteries and CNGA2 also...

  15. Elevated peritoneal expression and estrogen regulation of nociceptive ion channels in endometriosis.

    Science.gov (United States)

    Greaves, Erin; Grieve, Kelsey; Horne, Andrew W; Saunders, Philippa T K

    2014-09-01

    Ovarian suppression is a common treatment for endometriosis-associated pelvic pain. Its exact mechanism of action is poorly understood, although it is assumed to reflect reduced production/action of estrogens. The objective of the study was to measure the expression of mRNAs encoded by nociceptive genes in the peritoneum of women with chronic pelvic pain (CPP) with or without endometriosis and to investigate whether estrogens alter nociceptive gene expression in human sensory neurons. The study was performed using human tissue analysis and cell culture. The study was conducted at a university research institute. Peritoneal biopsies were obtained from women with CPP and endometriosis (n = 12), CPP and no endometriosis (n = 10), and no pain or endometriosis (n = 5). Endometriosis lesions were obtained from women with endometriosis (n = 18). mRNAs encoding ion channels (P2RX3, SCN9A, SCN11A, TRPA1, TRPV1) and the neurotransmitter TAC1 were measured in human tissue samples and in human embryonic stem cell-derived sensory neurons treated with estrogens. TRPV1, TRPA1, and SCN11A mRNAs were significantly higher in the peritoneum from women with endometriosis (P endometriosis lesions (P endometriosis (P endometriosis-associated pain. Strategies directly targeting ion channels may offer an alternative option for the management of CPP.

  16. Characterizing ligand-gated ion channel receptors with genetically encoded Ca2++ sensors.

    Directory of Open Access Journals (Sweden)

    John G Yamauchi

    2011-01-01

    Full Text Available We present a cell based system and experimental approach to characterize agonist and antagonist selectivity for ligand-gated ion channels (LGIC by developing sensor cells stably expressing a Ca(2+ permeable LGIC and a genetically encoded Förster (or fluorescence resonance energy transfer (FRET-based calcium sensor. In particular, we describe separate lines with human α7 and human α4β2 nicotinic acetylcholine receptors, mouse 5-HT(3A serotonin receptors and a chimera of human α7/mouse 5-HT(3A receptors. Complete concentration-response curves for agonists and Schild plots of antagonists were generated from these sensors and the results validate known pharmacology of the receptors tested. Concentration-response relations can be generated from either the initial rate or maximal amplitudes of FRET-signal. Although assaying at a medium throughput level, this pharmacological fluorescence detection technique employs a clonal line for stability and has versatility for screening laboratory generated congeners as agonists or antagonists on multiple subtypes of ligand-gated ion channels. The clonal sensor lines are also compatible with in vivo usage to measure indirectly receptor activation by endogenous neurotransmitters.

  17. Prospects for the measurement of the single-top $t$-channel cross section in the muon channel with 200~pb$^{-1

    CERN Document Server

    CMS Collaboration

    2009-01-01

    We report on a study aiming at an early observation of single-top events produced in the $t$ channel in proton-proton collisions, at a centre-of-mass energy of $\\sqrt{s} = 10$ TeV, in the decay channel $t\\to bW\\to b\\mu\

  18. Computational Approaches to Studying Voltage-Gated Ion Channel Modulation by General Anesthetics.

    Science.gov (United States)

    Gianti, Eleonora; Carnevale, Vincenzo

    2018-01-01

    Voltage-gated ion channels (VGICs) are responsible for the propagation of electrical signals in excitable cells. Small-molecule modulation of VGICs affects transmission of action potentials in neurons and thus can modulate the activity of the central nervous system. For this reason, VGICs are considered key players in the medically induced state of general anesthesia. Consistently, VGICs have been shown to respond to several general anesthetics. However, in spite of extensive electrophysiological characterizations, modulation of VGICs by anesthetics is still only partially understood. Among the challenging aspects are the presence of multiple binding sites and the observation of paradoxical effects, i.e., evidence, for the same channel, of inhibition and potentiation. In this context, molecular simulations emerged in the recent past as the tool of choice to complement electrophysiology studies with a microscopic picture of binding and allosteric regulation. In this chapter, we describe the most effective computational techniques to study VGIC modulation by general anesthetics. We start by reviewing the VGIC conduction cycle, the corresponding set of channel conformations, and the approaches used to model them. We then review the most successful strategies to identify binding sites and estimate binding affinities. © 2018 Elsevier Inc. All rights reserved.

  19. Fabrication of optical channel waveguides in crystals and glasses using macro- and micro ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Bányász, I., E-mail: banyasz@sunserv.kfki.hu [Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Rajta, I.; Nagy, G.U.L. [MTA Atomki, Institute for Nuclear Research, Hungarian Academy of Sciences, P.O. Box 51, H-4001 Debrecen (Hungary); Zolnai, Z. [Research Institute for Technical Physics and Materials Science, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Havranek, V. [Nuclear Physics Institute AV CR, Řež near Prague 250 68 (Czech Republic); Pelli, S. [MDF-Lab, “Nello Carrara” Institute of Applied Physics, IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, FI (Italy); “Enrico Fermi” Center for Study and Research, Piazza del Viminale 2, 00184 Roma (Italy); Veres, M. [Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Berneschi, S.; Nunzi-Conti, G. [MDF-Lab, “Nello Carrara” Institute of Applied Physics, IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, FI (Italy); Righini, G.C. [“Enrico Fermi” Center for Study and Research, Piazza del Viminale 2, 00184 Roma (Italy)

    2014-07-15

    Active and passive optical waveguides are fundamental elements in modern telecommunications systems. A great number of optical crystals and glasses were identified and are used as good optoelectronic materials. However, fabrication of waveguides in some of those materials remains still a challenging task due to their susceptibility to mechanical or chemical damages during processing. Researches were initiated on ion beam fabrication of optical waveguides in tellurite glasses. Channel waveguides were written in Er:TeO{sub 2}–WO{sub 3} glass through a special silicon mask using 1.5 MeV N{sup +} irradiation. This method was improved by increasing N{sup +} energy to 3.5 MeV to achieve confinement at the 1550 nm wavelength, too. An alternative method, direct writing of the channel waveguides in the tellurite glass using focussed beams of 6–11 MeV C{sup 3+} and C{sup 5+} and 5 MeV N{sup 3+}, has also been developed. Channel waveguides were fabricated in undoped eulytine-(Bi{sub 4}Ge{sub 3}O{sub 12}) and sillenite type (Bi{sub 12}GeO{sub 20}) bismuth germanate crystals using both a special silicon mask and a thick SU8 photoresist mask and 3.5 MeV N{sup +} irradiation. The waveguides were studied by phase contrast and interference microscopy and micro Raman spectroscopy. Guiding properties were checked by the end fire method.

  20. Role of crystallographic anisotropy in the formation of surface layers of single NiTi crystals after ion-plasma alloying

    Energy Technology Data Exchange (ETDEWEB)

    Poletika, T. M., E-mail: poletm@ispms.tsc.ru; Girsova, S. L., E-mail: llm@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Meisner, L. L., E-mail: girs@ispms.tsc.ru; Meisner, S. N., E-mail: msn@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Shulepov, I. A., E-mail: iashulepov@tpu.ru [National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation)

    2015-10-27

    The structure of the surface and near-surface layers of single crystals of NiTi, differently oriented relative to the direction of ion beam treatment was investigated. The role of the crystallographic orientation in formation of structure of surface layers after ion-plasma alloying was revealed. It was found that the orientation effects of selective sputtering and channeling determine the thickness of the oxide and amorphous layers, the depth of penetration of ions and impurities, the distribution of Ni with depth.

  1. Rip currents and alongshore flows in single channels dredged in the surf zone

    Science.gov (United States)

    Moulton, Melissa; Elgar, Steve; Raubenheimer, Britt; Warner, John C.; Kumar, Nirnimesh

    2017-01-01

    To investigate the dynamics of flows near nonuniform bathymetry, single channels (on average 30 m wide and 1.5 m deep) were dredged across the surf zone at five different times, and the subsequent evolution of currents and morphology was observed for a range of wave and tidal conditions. In addition, circulation was simulated with the numerical modeling system COAWST, initialized with the observed incident waves and channel bathymetry, and with an extended set of wave conditions and channel geometries. The simulated flows are consistent with alongshore flows and rip-current circulation patterns observed in the surf zone. Near the offshore-directed flows that develop in the channel, the dominant terms in modeled momentum balances are wave-breaking accelerations, pressure gradients, advection, and the vortex force. The balances vary spatially, and are sensitive to wave conditions and the channel geometry. The observed and modeled maximum offshore-directed flow speeds are correlated with a parameter based on the alongshore gradient in breaking-wave-driven-setup across the nonuniform bathymetry (a function of wave height and angle, water depths in the channel and on the sandbar, and a breaking threshold) and the breaking-wave-driven alongshore flow speed. The offshore-directed flow speed increases with dissipation on the bar and reaches a maximum (when the surf zone is saturated) set by the vertical scale of the bathymetric variability.

  2. Radiation-induced effects in MgO single crystal by 200 keV and 1 MeV Ni ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Ryohei; Nakai, Yoshihiro; Hamaguchi, Dai [Kyoto Inst. of Tech. (Japan)] [and others

    1997-03-01

    MgO(100) single crystals were implanted with 1.0 MeV and 200 keV Ni ions between 10{sup 15} and 10{sup 17} ions/cm{sup 2} at room temperature. Before and after thermal annealing the radiation damage and the lattice location of implanted Ni ions were analyzed by using Rutherford backscattering spectrometry with channeling and optical absorption measurements. For 1.0 MeV Ni ions, the disorder of Mg atoms increased slowly with ion dose near surface region, while it increased sharply and saturated with ion dose from 2x10{sup 16} ions/cm{sup 2} near ion range. The radiation damage was recovered and implanted Ni ions diffused to the whole of crystal and occupied substitutional positions after 1400degC annealing. For 200 keV Ni ions, the disorder of Mg atoms increased with dose near ion range and had a maximum at about 5x10{sup 16} ions/cm{sup 2}. This tendency agrees with the behavior of color centers obtained from optical measurements. For thermal annealing the radiation damage did not change during 500degC annealing, but the aggregate centers appeared after 300degC annealing. (author)

  3. ASIC and ENaC type sodium channels: conformational states and the structures of the ion selectivity filters.

    Science.gov (United States)

    Hanukoglu, Israel

    2017-02-01

    The acid-sensing ion channels (ASICs) and epithelial sodium channels (ENaC) are members of a superfamily of channels that play critical roles in mechanosensation, chemosensation, nociception, and regulation of blood volume and pressure. These channels look and function like a tripartite funnel that directs the flow of Na + ions into the cytoplasm via the channel pore in the membrane. The subunits that form these channels share a common structure with two transmembrane segments (TM1 and TM2) and a large extracellular part. In most vertebrates, there are five paralogous genes that code for ASICs (ASIC1-ASIC5), and four for ENaC subunits alpha, beta, gamma, and delta (α, β, γ, and δ). While ASICs can form functional channels as a homo- or heterotrimer, ENaC functions as an obligate heterotrimer composed of α-β-γ or β-γ-δ subunits. The structure of ASIC has been determined in several conformations, including desensitized and open states. This review presents a comparison of the structures of these states using easy-to-understand molecular models of the full complex, the central tunnel that includes an outer vestibule, the channel pore, and ion selectivity filter. The differences in the secondary, tertiary, and quaternary structures of the states are summarized to pinpoint the conformational changes responsible for channel opening. Results of site-directed mutagenesis studies of ENaC subunits are examined in light of ASIC1 models. Based on these comparisons, a molecular model for the selectivity filter of ENaC is built by in silico mutagenesis of an ASIC1 structure. These models suggest that Na + ions pass through the filter in a hydrated state. © 2016 Federation of European Biochemical Societies.

  4. Activity of Palythoa caribaeorum Venom on Voltage-Gated Ion Channels in Mammalian Superior Cervical Ganglion Neurons.

    Science.gov (United States)

    Lazcano-Pérez, Fernando; Castro, Héctor; Arenas, Isabel; García, David E; González-Muñoz, Ricardo; Arreguín-Espinosa, Roberto

    2016-05-05

    The Zoanthids are an order of cnidarians whose venoms and toxins have been poorly studied. Palythoa caribaeorum is a zoanthid commonly found around the Mexican coastline. In this study, we tested the activity of P. caribaeorum venom on voltage-gated sodium channel (NaV1.7), voltage-gated calcium channel (CaV2.2), the A-type transient outward (IA) and delayed rectifier (IDR) currents of KV channels of the superior cervical ganglion (SCG) neurons of the rat. These results showed that the venom reversibly delays the inactivation process of voltage-gated sodium channels and inhibits voltage-gated calcium and potassium channels in this mammalian model. The compounds responsible for these effects seem to be low molecular weight peptides. Together, these results provide evidence for the potential use of zoanthids as a novel source of cnidarian toxins active on voltage-gated ion channels.

  5. Activity of Palythoa caribaeorum Venom on Voltage-Gated Ion Channels in Mammalian Superior Cervical Ganglion Neurons

    Directory of Open Access Journals (Sweden)

    Fernando Lazcano-Pérez

    2016-05-01

    Full Text Available The Zoanthids are an order of cnidarians whose venoms and toxins have been poorly studied. Palythoa caribaeorum is a zoanthid commonly found around the Mexican coastline. In this study, we tested the activity of P. caribaeorum venom on voltage-gated sodium channel (NaV1.7, voltage-gated calcium channel (CaV2.2, the A-type transient outward (IA and delayed rectifier (IDR currents of KV channels of the superior cervical ganglion (SCG neurons of the rat. These results showed that the venom reversibly delays the inactivation process of voltage-gated sodium channels and inhibits voltage-gated calcium and potassium channels in this mammalian model. The compounds responsible for these effects seem to be low molecular weight peptides. Together, these results provide evidence for the potential use of zoanthids as a novel source of cnidarian toxins active on voltage-gated ion channels.

  6. Evidence of the ion's impact position effect on SEB in N-channel power MOSFETs

    International Nuclear Information System (INIS)

    Dachs, C.; Roubaud, F.; Palau, J.M.; Bruguier, G.; Gasiot, J.

    1994-01-01

    Triggering of Single Event Burnout (SEB) in Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs) is studied by means of experiments and simulations based on real structures. Conditions for destructive and nondestructive events are investigated through current duration observations. The effect of the ion's impact position is experimentally pointed out. Finally, further investigation with 2D MEDICI simulations show that the different regions of the MOSFET cell indeed exhibit different sensitivity with respect to burnout triggering

  7. Single channel and WDM transmission of 28 Gbaud zero-guard-interval CO-OFDM.

    Science.gov (United States)

    Zhuge, Qunbi; Morsy-Osman, Mohamed; Mousa-Pasandi, Mohammad E; Xu, Xian; Chagnon, Mathieu; El-Sahn, Ziad A; Chen, Chen; Plant, David V

    2012-12-10

    We report on the experimental demonstration of single channel 28 Gbaud QPSK and 16-QAM zero-guard-interval (ZGI) CO-OFDM transmission with only 1.34% overhead for OFDM processing. The achieved transmission distance is 5120 km for QPSK assuming a 7% forward error correction (FEC) overhead, and 1280 km for 16-QAM assuming a 20% FEC overhead. We also demonstrate the improved tolerance of ZGI CO-OFDM to residual inter-symbol interference compared to reduced-guard-interval (RGI) CO-OFDM. In addition, we report an 8-channel wavelength-division multiplexing (WDM) transmission of 28 Gbaud QPSK ZGI CO-OFDM signals over 4160 km.

  8. Deflection of high energy channeled charged particles by elastically bent silicon single crystals

    International Nuclear Information System (INIS)

    Gibson, W.M.; Kim, I.J.; Pisharodoy, M.; Salman, S.M.; Sun, C.R.; Wang, G.H.; Wijayawardana, R.; Forster, J.S.; Mitchell, I.V.; Baker, S.I.; Carrigan, R.A. Jr.; Toohig, T.E.; Avdeichikov, V.V.; Ellison, J.A.; Siffert, P.

    1984-01-01

    An experiment has been carried out to observe the deflection of charged particles by planar channeling in bent single crystals of silicon for protons with energy up to 180 GeV. Anomolous loss of particles from the center point of a three point bending apparatus was observed at high incident particle energy. This effect has been exploited to fashion a 'dechanneling spectrometer' to study dechanneling effects due to centripital displacement of channeled particle trajectories in a bent crystal. The bending losses generally conform to the predictions of calculations based on a classical model. (orig.)

  9. Characterization of ryanodine receptor type 1 single channel activity using "on-nucleus" patch clamp.

    Science.gov (United States)

    Wagner, Larry E; Groom, Linda A; Dirksen, Robert T; Yule, David I

    2014-08-01

    In this study, we provide the first description of the biophysical and pharmacological properties of ryanodine receptor type 1 (RyR1) expressed in a native membrane using the on-nucleus configuration of the patch clamp technique. A stable cell line expressing rabbit RyR1 was established (HEK-RyR1) using the FLP-in 293 cell system. In contrast to untransfected cells, RyR1 expression was readily demonstrated by immunoblotting and immunocytochemistry in HEK-RyR1 cells. In addition, the RyR1 agonists 4-CMC and caffeine activated Ca(2+) release that was inhibited by high concentrations of ryanodine. On nucleus patch clamp was performed in nuclei prepared from HEK-RyR1 cells. Raising the [Ca(2+)] in the patch pipette resulted in the appearance of a large conductance cation channel with well resolved kinetics and the absence of prominent subconductance states. Current versus voltage relationships were ohmic and revealed a chord conductance of ∼750pS or 450pS in symmetrical 250mM KCl or CsCl, respectively. The channel activity was markedly enhanced by caffeine and exposure to ryanodine resulted in the appearance of a subconductance state with a conductance ∼40% of the full channel opening with a Po near unity. In total, these properties are entirely consistent with RyR1 channel activity. Exposure of RyR1 channels to cyclic ADP ribose (cADPr), nicotinic acid adenine dinucleotide phosphate (NAADP) or dantrolene did not alter the single channel activity stimulated by Ca(2+), and thus, it is unlikely these molecules directly modulate RyR1 channel activity. In summary, we describe an experimental platform to monitor the single channel properties of RyR channels. We envision that this system will be influential in characterizing disease-associated RyR mutations and the molecular determinants of RyR channel modulation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Batrachotoxin-modified sodium channels from squid optic nerve in planar bilayers. Ion conduction and gating properties

    Science.gov (United States)

    1989-01-01

    Squid optic nerve sodium channels were characterized in planar bilayers in the presence of batrachotoxin (BTX). The channel exhibits a conductance of 20 pS in symmetrical 200 mM NaCl and behaves as a sodium electrode. The single-channel conductance saturates with increasing the concentration of sodium and the channel conductance vs. sodium concentration relation is well described by a simple rectangular hyperbola. The apparent dissociation constant of the channel for sodium is 11 mM and the maximal conductance is 23 pS. The selectivity determined from reversal potentials obtained in mixed ionic conditions is Na+ approximately Li+ greater than K+ greater than Rb+ greater than Cs+. Calcium blocks the channel in a voltage-dependent manner. Analysis of single-channel membranes showed that the probability of being open (Po) vs. voltage relation is sigmoidal with a value of 0.5 between -90 and -100 mV. The fitting of Po requires at least two closed and one open state. The apparent gating charge required to move through the whole transmembrane voltage during the closed-open transition is four to five electronic charges per channel. Distribution of open and closed times are well described by single exponentials in most of the voltage range tested and mean open and mean closed times are voltage dependent. The number of charges associated with channel closing is 1.6 electronic charges per channel. Tetrodotoxin blocked the BTX-modified channel being the blockade favored by negative voltages. The apparent dissociation constant at zero potential is 16 nM. We concluded that sodium channels from the squid optic nerve are similar to other BTX- modified channels reconstituted in bilayers and to the BTX-modified sodium channel detected in the squid giant axon. PMID:2536797

  11. Hierarchically porous carbon with high-speed ion transport channels for high performance supercapacitors

    Science.gov (United States)

    Lu, Haoyuan; Li, Qingwei; Guo, Jianhui; Song, Aixin; Gong, Chunhong; Zhang, Jiwei; Zhang, Jingwei

    2018-01-01

    Hierarchically porous carbons (HPC) are considered as promising electrode materials for supercapacitors, due to their outstanding charge/discharge cycling stabilities and high power densities. However, HPC possess a relatively low ion diffusion rate inside the materials, which challenges their application for high performance supercapacitor. Thus tunnel-shaped carbon pores with a size of tens of nanometers were constructed by inducing the self-assembly of lithocholic acid with ammonium chloride, thereby providing high-speed channels for internal ion diffusion. The as-formed one-dimensional pores are beneficial to the activation process by KOH, providing a large specific surface area, and then facilitate rapid transport of electrolyte ions from macropores to the microporous surfaces. Therefore, the HPC achieve an outstanding gravimetric capacitance of 284 F g-1 at a current density of 0.1 A g-1 and a remarkable capacity retention of 64.8% when the current density increases by 1000 times to 100 A g-1.

  12. Activation of mutated TRPA1 ion channel by resveratrol in human prostate cancer associated fibroblasts (CAF).

    Science.gov (United States)

    Vancauwenberghe, Eric; Noyer, Lucile; Derouiche, Sandra; Lemonnier, Loïc; Gosset, Pierre; Sadofsky, Laura R; Mariot, Pascal; Warnier, Marine; Bokhobza, Alexandre; Slomianny, Christian; Mauroy, Brigitte; Bonnal, Jean-Louis; Dewailly, Etienne; Delcourt, Philippe; Allart, Laurent; Desruelles, Emilie; Prevarskaya, Natalia; Roudbaraki, Morad

    2017-08-01

    Previous studies showed the effects of resveratrol (RES) on several cancer cells, including prostate cancer (PCa) cell apoptosis without taking into consideration the impact of the tumor microenvironment (TME). The TME is composed of cancer cells, endothelial cells, blood cells, and cancer-associated fibroblasts (CAF), the main source of growth factors. The latter cells might modify in the TME the impact of RES on tumor cells via secreted factors. Recent data clearly show the impact of CAF on cancer cells apoptosis resistance via secreted factors. However, the effects of RES on PCa CAF have not been studied so far. We have investigated here for the first time the effects of RES on the physiology of PCa CAF in the context of TME. Using a prostate cancer CAF cell line and primary cultures of CAF from prostate cancers, we show that RES activates the N-terminal mutated Transient Receptor Potential Ankyrin 1 (TRPA1) channel leading to an increase in intracellular calcium concentration and the expression and secretion of growth factors (HGF and VEGF) without inducing apoptosis in these cells. Interestingly, in the present work, we also show that when the prostate cancer cells were co-cultured with CAF, the RES-induced cancer cell apoptosis was reduced by 40%, an apoptosis reduction canceled in the presence of the TRPA1 channel inhibitors. The present work highlights CAF TRPA1 ion channels as a target for RES and the importance of the channel in the epithelial-stromal crosstalk in the TME leading to resistance to the RES-induced apoptosis. © 2017 Wiley Periodicals, Inc.

  13. Monoterpenoids induce agonist-specific desensitization of transient receptor potential vanilloid-3 (TRPV3) ion channels.

    Science.gov (United States)

    Sherkheli, Muhammad Azhar; Benecke, Heike; Doerner, Julia Franca; Kletke, Olaf; Vogt-Eisele, A K; Gisselmann, Guenter; Hatt, Hanns

    2009-01-01

    Transient receptor potential vanilloid-3 (TRPV3) is a thermo-sensitive ion channel expressed in skin keratinocytes and in a variety of neural cells. It is activated by warmth as well as monoterpenoids including camphor, menthol, dihydrocarveol and 1,8-cineol. TRPV3 is described as a putative nociceptor and previous studies revealed sensitization of the channel during repeated short-term stimulation with different agonists. In the present investigation TRPV3 was transiently expressed in either Xenopus oocytes or HEK293 cells. Whole-cell voltage-clamp techniques were used to characterize the behavior of TRPV3 when challenged with different agonists. Similarly, a human keratinocyte-derived cell line (HaCaT cells) was used to monitor the behavior of native TRPV3 when challenged with different agonists. We report here that prolonged exposure (5-15 minutes) of monoterpenoids results in agonist-specific desensitization of TRPV3. Long-term exposure to camphor and 1,8-cineol elicits desensitizing currents in TRPV3 expressing oocytes, whereas the non-terpenoid agonist 2-APB induces sustained currents. Agonist-specific desensitization of endogenous TRPV3 was also found in HaCaT cells, which may be taken as a representative for the native system. Terpenoids have a long history of use in therapeutics, pharmaceuticals and cosmetics but knowledge about underpinning molecular mechanisms is incomplete. Our finding on agonist-induced desensitization of TRPV3 by some monoterpenoids displays a novel mechanism through which TRP channels could be functionally modulated. Desensitization of TRPV3 channels might be the molecular basis of action for some of the medicinal properties of camphor and 1,8-cineol.

  14. Rutherford backscattering, nuclear reaction and channeling studies of nitrogen implanted single-crystal stainless steel

    International Nuclear Information System (INIS)

    Ferguson, M.M.; Ewan, G.T.; Mitchell, I.V.; Plattner, H.H.

    1983-01-01

    The three different methods were used to investigate a single crystal of stainless steel implanted to different doses by 40 keV 15 N 2 + ions. Conclusions are drawn on the position of nitrogen; comparison is made with implantation of deuterium and neon. (G.Q.)

  15. Seeking structural specificity: direct modulation of pentameric ligand-gated ion channels by alcohols and general anesthetics.

    Science.gov (United States)

    Howard, Rebecca J; Trudell, James R; Harris, R Adron

    2014-01-01

    Alcohols and other anesthetic agents dramatically alter neurologic function in a wide range of organisms, yet their molecular sites of action remain poorly characterized. Pentameric ligand-gated ion channels, long implicated in important direct effects of alcohol and anesthetic binding, have recently been illuminated in renewed detail thanks to the determination of atomic-resolution structures of several family members from lower organisms. These structures provide valuable models for understanding and developing anesthetic agents and for allosteric modulation in general. This review surveys progress in this field from function to structure and back again, outlining early evidence for relevant modulation of pentameric ligand-gated ion channels and the development of early structural models for ion channel function and modulation. We highlight insights and challenges provided by recent crystal structures and resulting simulations, as well as opportunities for translation of these newly detailed models back to behavior and therapy.

  16. Perturbation analysis of spontaneous action potential initiation by stochastic ion channels

    KAUST Repository

    Keener, James P.

    2011-07-01

    A stochastic interpretation of spontaneous action potential initiation is developed for the Morris-Lecar equations. Initiation of a spontaneous action potential can be interpreted as the escape from one of the wells of a double well potential, and we develop an asymptotic approximation of the mean exit time using a recently developed quasistationary perturbation method. Using the fact that the activating ionic channel\\'s random openings and closings are fast relative to other processes, we derive an accurate estimate for the mean time to fire an action potential (MFT), which is valid for a below-threshold applied current. Previous studies have found that for above-threshold applied current, where there is only a single stable fixed point, a diffusion approximation can be used. We also explore why different diffusion approximation techniques fail to estimate the MFT. © 2011 American Physical Society.

  17. Microphase separation and the formation of ion conductivity channels in poly(ionic liquid)s: A coarse-grained molecular dynamics study

    Science.gov (United States)

    Weyman, Alexander; Bier, Markus; Holm, Christian; Smiatek, Jens

    2018-05-01

    We study generic properties of poly(ionic liquid)s (PILs) via coarse-grained molecular dynamics simulations in bulk solution and under confinement. The influence of different side chain lengths on the spatial properties of the PIL systems and on the ionic transport mechanism is investigated in detail. Our results reveal the formation of apolar and polar nanodomains with increasing side chain length in good agreement with previous results for molecular ionic liquids. The ion transport numbers are unaffected by the occurrence of these domains, and the corresponding values highlight the potential role of PILs as single-ion conductors in electrochemical devices. In contrast to bulk behavior, a pronounced formation of ion conductivity channels in confined systems is initiat