WorldWideScience

Sample records for single inas self-assembled

  1. Self-Assembled InAs Nanowires as Optical Reflectors.

    Science.gov (United States)

    Floris, Francesco; Fornasari, Lucia; Marini, Andrea; Bellani, Vittorio; Banfi, Francesco; Roddaro, Stefano; Ercolani, Daniele; Rocci, Mirko; Beltram, Fabio; Cecchini, Marco; Sorba, Lucia; Rossella, Francesco

    2017-11-21

    Subwavelength nanostructured surfaces are realized with self-assembled vertically-aligned InAs nanowires, and their functionalities as optical reflectors are investigated. In our system, polarization-resolved specular reflectance displays strong modulations as a function of incident photon energy and angle. An effective-medium model allows one to rationalize the experimental findings in the long wavelength regime, whereas numerical simulations fully reproduce the experimental outcomes in the entire frequency range. The impact of the refractive index of the medium surrounding the nanostructure assembly on the reflectance was estimated. In view of the present results, sensing schemes compatible with microfluidic technologies and routes to innovative nanowire-based optical elements are discussed.

  2. Spin effects in InAs self-assembled quantum dots

    Directory of Open Access Journals (Sweden)

    Brasil Maria

    2011-01-01

    Full Text Available Abstract We have studied the polarized resolved photoluminescence in an n-type resonant tunneling diode (RTD of GaAs/AlGaAs which incorporates a layer of InAs self-assembled quantum dots (QDs in the center of a GaAs quantum well (QW. We have observed that the QD circular polarization degree depends on applied voltage and light intensity. Our results are explained in terms of the tunneling of minority carriers into the QW, carrier capture by InAs QDs and bias-controlled density of holes in the QW.

  3. Mid-Infrared Photoconductivity in Self-Assembled InAs Quantum Dots

    Science.gov (United States)

    Berryman, K. W.; Lyon, S. A.; Segev, Mordechai

    1997-03-01

    Observations of mid-infrared photoconductivity in self-assembled InAs quantum dots are observed. The dots, which self-assemble into squat pyramidal shapes approximately 10 nm on a side and 2-3 nm high, are grown using standard molecular beam epitaxy techniques and coherently strained in a matrix of Al_0.3Ga_0.7As which has been grown on a GaAs substrate. Using a variety of cladding structures and dots doped with electrons, normal incidence photoconductivity has been measured at a range of wavelengths in the mid-infrared. Observations at different sample temperatures and applied bias allows discrimination and explanation of different tranistion processes, including excitation of carriers from the ground state of the dots into both excited states and the continuum. Photoluminescence and electroluminescence experiments are in good agreement with the observed optical transitions. The large optical response of these quantum dot samples suggests possible future use as novel mid-infrared detectors. Infrared photoconductivity is investigated for several different dot structures, and the possibility of further optimization of self-assembled quantum dots for both mid-infrared detection and emission will be discussed.

  4. The photoluminescence decay time of self-assembled InAs quantum dots covered by InGaAs layers

    International Nuclear Information System (INIS)

    Shu, G W; Wang, C K; Wang, J S; Shen, J L; Hsiao, R S; Chou, W C; Chen, J F; Lin, T Y; Ko, C H; Lai, C M

    2006-01-01

    The temperature dependence of the time-resolved photoluminescence (PL) of self-assembled InAs quantum dots (QDs) with InGaAs covering layers was investigated. The PL decay time increases with temperature from 50 to 170 K, and then decreases as the temperature increases further above 170 K. A model based on the phonon-assisted transition between the QD ground state and the continuum state is used to explain the temperature dependence of the PL decay time. This result suggests that the continuum states are important in the carrier capture in self-assembled InAs QDs

  5. Self-assembled InAs quantum dots in an InGaAsN matrix on GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Egorov, A.Yu. [Infineon Technologies, Corporate Research Photonics, Muenchen (Germany); Ioffe Physico-Technical Inst., St. Petersburg (Russian Federation); Bedarev, D. [Ioffe Physico-Technical Inst., St. Petersburg (Russian Federation); Bernklau, D.; Riechert, H. [Infineon Technologies, Corporate Research Photonics, Muenchen (Germany); Dumitras, G. [Technical Univ. of Munich, Garching (Germany). Dept. of Physics E16

    2001-04-01

    Self-assembled InAs quantum dots (QDs) are fabricated in In{sub 0.03}Ga{sub 0.97}As{sub 0.99}N{sub 0.01} and In{sub 0.06}Ga{sub 0.94}As{sub 0.98}N{sub 0.02} matrices on GaAs by solid source molecular beam epitaxy. The influence of InAs average layer thickness and matrix material on photoluminescence properties are studied. We observe a photoluminescence peak wavelength up to 1.49 {mu}m from structures with a nominal InAs thickness of four monolayers (ML). For QD structures emitting at 1.3 {mu}m, no saturation of ground state luminescence and no excited state photoluminescence are detected. This should lead to an improved performance of 1.3 {mu}m quantum dot lasers on GaAs. (orig.)

  6. Self-assembled InAs quantum dots. Properties, modification and emission processes

    International Nuclear Information System (INIS)

    Schramm, A.

    2007-01-01

    In this thesis, structural, optical as well as electronic properties of self-assembled InAs quantum dots (QD) were studied by means of atomic force microscopy (AFM), photoluminescence (PL), capacitance spectroscopy (CV) and capacitance transient spectroscopy (DLTS). The quantum dots were grown with molecular beam epitaxy (MBE) and embedded in Schottky diodes for electrical characterization. In this work growth aspects as well as the electronic structures of QD were discussed. By varying the QD growth parameters it is possible to control the structural, and thus the optical and electronic properties of QD. Two methods are presented. Adjusting the QD growth temperature leads either to small QD with a high areal density or to high QDs with a low density. The structural changes of the QD are reflected in the changes of the optical and electronic properties. The second method is to introduce a growth interruption after capping the QD with thin cap layers. It was shown that capping with AlAs leads to a well-developed alternative to control the QD height and thus the ground-state energies of the QD. A post-growth method modifying the QD properties ist rapid thermal annealing (RTA). Raising the RTA temperature causes a lifting of the QD energy states with respect to the GaAs band edge energy due to In/Ga intermixing processes. A further main part of this work covers the emission processes of charge carriers in QD. Thermal emission, thermally assisted tunneling, and pure tunneling emission are studied by capacitance transient spectroscopy techniques. In DLTS experiments a strong impact of the electric field on the activation energies of electrons was found interfering the correct determination of the QD level energies. This behaviour can be explained by a thermally assisted tunneling model. A modified model taking the Coulomb interaction of occupied QD into account describes the emission rates of the electrons. In order to avoid several emission pathes in the experiments

  7. Growth and anisotropic transport properties of self-assembled InAs nanostructures in InP

    Energy Technology Data Exchange (ETDEWEB)

    Bierwagen, O.

    2007-12-20

    Self-assembled InAs nanostructures in InP, comprising quantum wells, quantum wires, and quantum dots, are studied in terms of their formation and properties. In particular, the structural, optical, and anisotropic transport properties of the nanostructures are investigated. The focus is a comprehending exploration of the anisotropic in-plane transport in large ensembles of laterally coupled InAs nanostructures. The self-assembled Stranski-Krastanov growth of InAs nanostructures is studied by gas-source molecular beam epitaxy on both nominally oriented and vicinal InP(001). Optical polarization of the interband transitions arising from the nanostructure type is demonstrated by photoluminescence and transmission spectroscopy. The experimentally convenient four-contact van der Pauw Hall measurement of rectangularly shaped semiconductors, usually applied to isotropic systems, is extended to yield the anisotropic transport properties. Temperature dependent transport measurements are performed in large ensembles of laterally closely spaced nanostructures. The transport of quantum wire-, quantum dash- and quantum dot containing samples is highly anisotropic with the principal axes of conductivity aligned to the <110> directions. The direction of higher mobility is [ anti 110], which is parallel to the direction of the quantum wires. In extreme cases, the anisotropies exceed 30 for electrons, and 100 for holes. The extreme anisotropy for holes is due to diffusive transport through extended states in the [ anti 110], and hopping transport through laterally localized states in the [110] direction, within the same sample. A novel 5-terminal electronic switching device based on gate-controlled transport anisotropy is proposed. The gate-control of the transport anisotropy in modulation-doped, self-organized InAs quantum wires embedded in InP is demonstrated. (orig.)

  8. Growth and anisotropic transport properties of self-assembled InAs nanostructures in InP

    International Nuclear Information System (INIS)

    Bierwagen, O.

    2007-01-01

    Self-assembled InAs nanostructures in InP, comprising quantum wells, quantum wires, and quantum dots, are studied in terms of their formation and properties. In particular, the structural, optical, and anisotropic transport properties of the nanostructures are investigated. The focus is a comprehending exploration of the anisotropic in-plane transport in large ensembles of laterally coupled InAs nanostructures. The self-assembled Stranski-Krastanov growth of InAs nanostructures is studied by gas-source molecular beam epitaxy on both nominally oriented and vicinal InP(001). Optical polarization of the interband transitions arising from the nanostructure type is demonstrated by photoluminescence and transmission spectroscopy. The experimentally convenient four-contact van der Pauw Hall measurement of rectangularly shaped semiconductors, usually applied to isotropic systems, is extended to yield the anisotropic transport properties. Temperature dependent transport measurements are performed in large ensembles of laterally closely spaced nanostructures. The transport of quantum wire-, quantum dash- and quantum dot containing samples is highly anisotropic with the principal axes of conductivity aligned to the directions. The direction of higher mobility is [ anti 110], which is parallel to the direction of the quantum wires. In extreme cases, the anisotropies exceed 30 for electrons, and 100 for holes. The extreme anisotropy for holes is due to diffusive transport through extended states in the [ anti 110], and hopping transport through laterally localized states in the [110] direction, within the same sample. A novel 5-terminal electronic switching device based on gate-controlled transport anisotropy is proposed. The gate-control of the transport anisotropy in modulation-doped, self-organized InAs quantum wires embedded in InP is demonstrated. (orig.)

  9. The role of strain-driven in migration in the growth of self-assembled InAs quantum dots on InP

    CERN Document Server

    Yoon, S H; Lee, T W; Hwang, H D; Yoon, E J; Kim, Y D

    1999-01-01

    Self-assembled InAs quantum dots (SAQDs) were grown on InP by metalorganic chemical vapor deposition. The amount of excess InAs and the aspect ratio of the SAQD increased with temperature and V/III ratio. It is explained that the As/P exchange reaction at the surface played an important role in the kinetics of SAQD formation. Insertion of a lattice-matched InGaAs buffer layer suppressed the excess InAs formation, and lowered the aspect ratio. Moreover, the dots formed on InGaAs buffer layers were faceted, whereas those on InP were hemispherical, confirming the effect of the As/P exchange reaction. The shape of InAs quantum dots on InGaAs buffer layers was a truncated pyramid with four [136] facets and base edges parallel to directions.

  10. Self-assembled single-phase perovskite nanocomposite thin films.

    Science.gov (United States)

    Kim, Hyun-Suk; Bi, Lei; Paik, Hanjong; Yang, Dae-Jin; Park, Yun Chang; Dionne, Gerald F; Ross, Caroline A

    2010-02-10

    Thin films of perovskite-structured oxides with general formula ABO(3) have great potential in electronic devices because of their unique properties, which include the high dielectric constant of titanates, (1) high-T(C) superconductivity in cuprates, (2) and colossal magnetoresistance in manganites. (3) These properties are intimately dependent on, and can therefore be tailored by, the microstructure, orientation, and strain state of the film. Here, we demonstrate the growth of cubic Sr(Ti,Fe)O(3) (STF) films with an unusual self-assembled nanocomposite microstructure consisting of (100) and (110)-oriented crystals, both of which grow epitaxially with respect to the Si substrate and which are therefore homoepitaxial with each other. These structures differ from previously reported self-assembled oxide nanocomposites, which consist either of two different materials (4-7) or of single-phase distorted-cubic materials that exhibit two or more variants. (8-12) Moreover, an epitaxial nanocomposite SrTiO(3) overlayer can be grown on the STF, extending the range of compositions over which this microstructure can be formed. This offers the potential for the implementation of self-organized optical/ferromagnetic or ferromagnetic/ferroelectric hybrid nanostructures integrated on technologically important Si substrates with applications in magnetooptical or spintronic devices.

  11. Exploring single chain amphiphile self-assembly and their possible roles in light transduction

    DEFF Research Database (Denmark)

    Monnard, Pierre-Alain

    2011-01-01

    amphiphiles on the early Earth seems reasonably well-documented either by exo-terrestrial delivery or endogeneous syntheses, a fact that singles them out as potential building blocks of primitive membranes. These studies have highlighted two important aspects of the self-assembly of single chain amphiphiles......Self-assembled structures of single-chain amphiphiles have been used as hosts for biochemical, and chemical reactions. Their use as models for protocells (i.e., precursors to the first biological cells) has been extensively researched by various groups because the availability of single chain...... source studied to date can supply one single type of amphiphile at concentrations conducive to self-assembly. Mixtures of single-chain amphiphiles were therefore proposed to better model primitive membranes and potentially enhance their structural integrity1-3. Recently, we have established that complex...

  12. Self-assembly of complex two-dimensional shapes from single-stranded DNA tiles.

    Science.gov (United States)

    Wei, Bryan; Vhudzijena, Michelle K; Robaszewski, Joanna; Yin, Peng

    2015-05-08

    Current methods in DNA nano-architecture have successfully engineered a variety of 2D and 3D structures using principles of self-assembly. In this article, we describe detailed protocols on how to fabricate sophisticated 2D shapes through the self-assembly of uniquely addressable single-stranded DNA tiles which act as molecular pixels on a molecular canvas. Each single-stranded tile (SST) is a 42-nucleotide DNA strand composed of four concatenated modular domains which bind to four neighbors during self-assembly. The molecular canvas is a rectangle structure self-assembled from SSTs. A prescribed complex 2D shape is formed by selecting the constituent molecular pixels (SSTs) from a 310-pixel molecular canvas and then subjecting the corresponding strands to one-pot annealing. Due to the modular nature of the SST approach we demonstrate the scalability, versatility and robustness of this method. Compared with alternative methods, the SST method enables a wider selection of information polymers and sequences through the use of de novo designed and synthesized short DNA strands.

  13. Coherent dynamics of excitons in a stack of self-assembled InAs quantum dots at 1.5-μm waveband

    International Nuclear Information System (INIS)

    Ishi-Hayase, J.; Akahane, K.; Yamamoto, N.; Kujiraoka, M.; Inoue, J.; Ema, K.; Tsuchiya, M.; Sasaki, M.

    2006-01-01

    We investigate the excitonic dephasing in a stack of self-assembled quantum dots (SAQDs) by using a four-wave-mixing (FWM) technique performed in the optical telecomm-fiber wavelength region at 6 K. A sample used in our experiment is a 150-layer stack of InAs SAQDs embedded in InGaAlAs grown on InP(3 1 1)B substrate fabricated by molecular beam epitaxy. By using a novel strain-controlled technique, the resonant wavelength of the exciton ground state (GS) ranges from 1.25 to 1.5 μm which is much longer than that in typical In(Ga)As SAQDs. In the weak excitation region, the intrinsic dephasing time of excitons at the excitation wavelength of 1.43 μm reaches 770 ps which is much longer than that in most SAQDs with the resonant wavelength of <1 μm. We also find a strong anisotoropy of the signal intensity with respect to the crystal axis attributed to the orientation of InP(3 1 1)B substrate and the elongated shape of QDs

  14. Whispering-gallery-mode microlaser based on self-assembled organic single-crystalline hexagonal microdisks.

    Science.gov (United States)

    Wang, Xuedong; Liao, Qing; Kong, Qinghua; Zhang, Yi; Xu, Zhenzhen; Lu, Xiaomei; Fu, Hongbing

    2014-06-02

    Whispering-gallery-mode (WGM) resonators of semiconductor microdisks have been applied for achieving low-threshold and narrow-linewidth microlasers, but require sophisticated top-down processing technology. Organic single-crystalline hexagonal microdisks (HMDs) of p-distyrylbenzene (DSB) self-assembled from solution can function as WGM microresonators with a cavity quality factor (Q) of 210. Both multiple- and single-mode lasing had been achieved using DSB HMDs with an edge length of 4.3 and 1.2 μm, respectively. These organic microdisks fabricated by bottom-up self-assembly approach may offer potential applications as low-threshold microlaser sources for photonic circuit integration. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. The Structures of Self-Assembled Monolayer Films of Organosulfur Compounds Adsorbed on Gold Single Crystals: Electron Diffraction Studies.

    Science.gov (United States)

    1988-01-01

    AD-M193 125 THE STRUCTURES OF SELF-RSSENSLED MOMOLAYER FILMS OF 1/1 ORGANOSULFUR COMPOUND..(U) HRlYARD UNJY CAMBRIDGE MASS DEPT OF CHEMISTRY L STRONG...VV L- ___ THE STRUCTURES OF SELF-ASSEMBLED MONOLAYER FILMS OF ORGANOSULFUR COMPOUNDS ADSORBED ON GOLD SINGLE CRYSTALS: ELECTRON DIFFRACTION STUDIES...true sulfide phase. V V ’A. LA8700876 REVISED The Structures of Self-Assembled Monolayer Films of Organosulfur Compounds Adsorbed on Gold Single

  16. Single-Molecule Transistor from Graphene Nanoelectrodes and Novel Functional Materials From Self-assembly

    Science.gov (United States)

    Xu, Qizhi

    This thesis introduces a new strategy to fabricate single molecular transistor by utilizing the covalent chemistry to reconnect the molecule with the electroburnt graphene nanogap. We studied the effect of coupling chemistry and molecular length on the efficiency of reconnection between the molecule and the graphene. With this technique, we are also able to observe the Coulomb Blockade phenomenon, which is a characteristics of single-electron transistors. The high yield and versatility of this approach augur well for creating a new generation of sensors, switches, and other functional devices using graphene contacts. This thesis also introduces a new type of organic single-crystal p-n heterojunction inspired from the ball-and-socket shape-complementarity between fullerene and contorted dibenzotetrathienocoronene (c-DBTTC). We studied the influence of temperature, pressure, and time on the self-assembly process of contorted dibenzotetrathienocoronene on the as-grown fullerene crystals. We also utilized fluorescence microscopy to investigate the charge transfer in this type of p-n heterojunction. Finally, this thesis introduces one-dimensional and two-dimensional programming in solid-state materials from superatom macrocycles. We find that the linkers that bridges the two superatoms determine the distance and electronic coupling between the two superatoms in the macrocycle, which in turn determines the way they self-assembled in the solid-state materials. The thesis is composed of four chapters. The first chapter introduces why we are in terested in molecular transistors and new functional materials, and what has been done so far. The second chapter described the approach we developed to assemble single molecule into circuits with graphene electrodes. The third chapter details the method to fabricate the organic single-crystal C60-DBTTC p-n heterojunction, which is of great importance to understand their charge transfer process. The last chapter introduced a new

  17. Self-assembled InAs quantum dots. Properties, modification and emission processes; Selbstorganisierte InAs-Quantenpunkte. Eigenschaften, Modifizierung und Emissionsprozesse

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, A.

    2007-09-06

    In this thesis, structural, optical as well as electronic properties of self-assembled InAs quantum dots (QD) were studied by means of atomic force microscopy (AFM), photoluminescence (PL), capacitance spectroscopy (CV) and capacitance transient spectroscopy (DLTS). The quantum dots were grown with molecular beam epitaxy (MBE) and embedded in Schottky diodes for electrical characterization. In this work growth aspects as well as the electronic structures of QD were discussed. By varying the QD growth parameters it is possible to control the structural, and thus the optical and electronic properties of QD. Two methods are presented. Adjusting the QD growth temperature leads either to small QD with a high areal density or to high QDs with a low density. The structural changes of the QD are reflected in the changes of the optical and electronic properties. The second method is to introduce a growth interruption after capping the QD with thin cap layers. It was shown that capping with AlAs leads to a well-developed alternative to control the QD height and thus the ground-state energies of the QD. A post-growth method modifying the QD properties ist rapid thermal annealing (RTA). Raising the RTA temperature causes a lifting of the QD energy states with respect to the GaAs band edge energy due to In/Ga intermixing processes. A further main part of this work covers the emission processes of charge carriers in QD. Thermal emission, thermally assisted tunneling, and pure tunneling emission are studied by capacitance transient spectroscopy techniques. In DLTS experiments a strong impact of the electric field on the activation energies of electrons was found interfering the correct determination of the QD level energies. This behaviour can be explained by a thermally assisted tunneling model. A modified model taking the Coulomb interaction of occupied QD into account describes the emission rates of the electrons. In order to avoid several emission pathes in the experiments

  18. On-Chip Single-Plasmon Nanocircuit Driven by a Self-Assembled Quantum Dot.

    Science.gov (United States)

    Wu, Xiaofei; Jiang, Ping; Razinskas, Gary; Huo, Yongheng; Zhang, Hongyi; Kamp, Martin; Rastelli, Armando; Schmidt, Oliver G; Hecht, Bert; Lindfors, Klas; Lippitz, Markus

    2017-07-12

    Quantum photonics holds great promise for future technologies such as secure communication, quantum computation, quantum simulation, and quantum metrology. An outstanding challenge for quantum photonics is to develop scalable miniature circuits that integrate single-photon sources, linear optical components, and detectors on a chip. Plasmonic nanocircuits will play essential roles in such developments. However, for quantum plasmonic circuits, integration of stable, bright, and narrow-band single photon sources in the structure has so far not been reported. Here we present a plasmonic nanocircuit driven by a self-assembled GaAs quantum dot. Through a planar dielectric-plasmonic hybrid waveguide, the quantum dot efficiently excites narrow-band single plasmons that are guided in a two-wire transmission line until they are converted into single photons by an optical antenna. Our work demonstrates the feasibility of fully on-chip plasmonic nanocircuits for quantum optical applications.

  19. Complex shapes self-assembled from single-stranded DNA tiles.

    Science.gov (United States)

    Wei, Bryan; Dai, Mingjie; Yin, Peng

    2012-05-30

    Programmed self-assembly of strands of nucleic acid has proved highly effective for creating a wide range of structures with desired shapes. A particularly successful implementation is DNA origami, in which a long scaffold strand is folded by hundreds of short auxiliary strands into a complex shape. Modular strategies are in principle simpler and more versatile and have been used to assemble DNA or RNA tiles into periodic and algorithmic two-dimensional lattices, extended ribbons and tubes, three-dimensional crystals, polyhedra and simple finite two-dimensional shapes. But creating finite yet complex shapes from a large number of uniquely addressable tiles remains challenging. Here we solve this problem with the simplest tile form, a 'single-stranded tile' (SST) that consists of a 42-base strand of DNA composed entirely of concatenated sticky ends and that binds to four local neighbours during self-assembly. Although ribbons and tubes with controlled circumferences have been created using the SST approach, we extend it to assemble complex two-dimensional shapes and tubes from hundreds (in some cases more than one thousand) distinct tiles. Our main design feature is a self-assembled rectangle that serves as a molecular canvas, with each of its constituent SST strands--folded into a 3 nm-by-7 nm tile and attached to four neighbouring tiles--acting as a pixel. A desired shape, drawn on the canvas, is then produced by one-pot annealing of all those strands that correspond to pixels covered by the target shape; the remaining strands are excluded. We implement the strategy with a master strand collection that corresponds to a 310-pixel canvas, and then use appropriate strand subsets to construct 107 distinct and complex two-dimensional shapes, thereby establishing SST assembly as a simple, modular and robust framework for constructing nanostructures with prescribed shapes from short synthetic DNA strands.

  20. Optical spectroscopy of single, planar, self-assembled InAs/InP quantum dots

    International Nuclear Information System (INIS)

    Kim, D.; Williams, R.L.; Lefebvre, J.; Lapointe, J.; Reimer, M.E.; Mckee, J.; Poole, P.J.

    2006-01-01

    We present optical spectra from numerous, single, self-assembled InAs/InP quantum dots. More than 50 individual dots are studied that emit in the 1.1-1.6 mm wavelength range. The dots are of high optical quality as judged by the clean, single exciton emission line at low power, the resolution limited linewidth, and the brightness. Each dot exhibits similar trends in the power evolution spectra, despite large variations in height and diameter. The level splittings in the p -shell increase with decreasing height, which we interpret to be from dot elongation along the [01 anti 1] direction. The evolution of the spectra with increasing power agrees well with predictions from effective bond orbital calculations. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Nucleic Acid Self-Assembly Circuitry Aided by Exonuclease III for Discrimination of Single Nucleotide Variants.

    Science.gov (United States)

    Zhang, Zhuo; Hsing, I-Ming

    2017-11-21

    Robust and rapid discrimination of one base mutations in nucleic acid sequences is important in clinical applications. Here, we report a hybridization-based assay exploiting nucleic acid self-assembly circuitry and enzyme exonuclease III (Exo III) for the differentiation of single nucleotide variants (SNVs). This one-step approach combines the merits of discrimination power of competitive DNA hybridization probes (probe + sink) with catalytic amplification assisted by Exo III. The phosphorothioate bonds modified on a wild-type (WT) specific sink inhibit the Exo III digestion; thus, subsequent catalytic amplification magnifies only the intended SNV targets. The integrated assay exhibits improved SNV discrimination rather than hybridization probes relying solely on competition or amplification and enables SNV detection at 1% abundance. Two frequent cancer-driver mutation sequences (EGFR-L861Q, NRAS-Q61K) were tested. Our strategy allows simple sequence design and can easily adapt to multianalyte SNV detections.

  2. Spectroscopy of size dependent many-particle effects in single self-assembled semiconductor quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Dal Savio, C.

    2006-02-20

    Single InAs quantum dots (QDs) grown with the Stranski-Krastanov method in a In{sub 0.12}Ga{sub 0.88}As quantum well embedded in GaAs and emitting in the near infrared have been optically investigated. To perform QD spectroscopy at low temperatures a very stable micro-photoluminescence ({mu}-PL) microscope set-up fully integrated in a liquid helium (LHe) cryostate has been successfully developed. The system is based on the cold finger technique and a Fourier Transform (FT) spectrometer combined with a nitrogen cooled Ge detector. Photoluminescence of the QDs was excited non resonantly with a He-Ne laser and single dot spectroscopy was carried out at temperatures below 60 K. The experimental set-up allows mapping of the optical emission by recording spectra for every point of a scan grid. This mapping mode is used to acquire optical images and to locate a particular dot for investigation. Series of measurement on a single QD were normally performed over a long time (from a few days to a week), with the need of daily adjustment in the sub-micrometer range. At low excitation power a single sharp line (E{sub x}) arising from recombination of a single exciton in the dot is observed. Varying the excitation density the spectra become more complex, with appearance of the biexciton emission line (E{sub xx}) on the lower energies side of the E{sub x} line, followed by emission from excitons occupying higher shells in the dot. Measured biexciton binding energies and power dependence are in good agreement with values reported in the literature. The temperature dependence of the optical emission was investigated. The energy shows the characteristic decrease related to the shrinking of the semiconductor band gap, while the linewidth evolution is compatible with broadening due to coupling with acoustic and optical phonons. A statistics of biexciton binding energies over a dozen of dots was acquired and the results compared with single QD spectroscopy data available in the

  3. Strain engineering of quantum dots for long wavelength emission: Photoluminescence from self-assembled InAs quantum dots grown on GaAs(001) at wavelengths over 1.55 μm

    International Nuclear Information System (INIS)

    Shimomura, K.; Kamiya, I.

    2015-01-01

    Photoluminescence (PL) at wavelengths over 1.55 μm from self-assembled InAs quantum dots (QDs) grown on GaAs(001) is observed at room temperature (RT) and 4 K using a bilayer structure with thin cap. The PL peak has been known to redshift with decreasing cap layer thickness, although accompanying intensity decrease and peak broadening. With our strain-controlled bilayer structure, the PL intensity can be comparable to the ordinary QDs while realizing peak emission wavelength of 1.61 μm at 4 K and 1.73 μm at RT. The key issue lies in the control of strain not only in the QDs but also in the cap layer. By combining with underlying seed QD layer, we realize strain-driven bandgap engineering through control of strain in the QD and cap layers

  4. The formation of right-handed and left-handed chiral nanopores within a single domain during amino acid self-assembly on Au(111).

    Science.gov (United States)

    Yang, Sena; Jeon, Aram; Driver, Russell W; Kim, Yeonwoo; Jeon, Eun Hee; Kim, Sehun; Lee, Hee-Seung; Lee, Hangil

    2016-05-25

    We report the formation of both right- and left-handed chiral nanopores within a single domain during the self-assembly of an amino acid derivative on an inert Au(111) surface using STM. DFT calculations employed to rationalize this unusual result identified that intermolecular interactions between chiral, windmill-shaped tetramers are crucial for self-assembly.

  5. Review and outlook: from single nanoparticles to self-assembled monolayers and granular GMR sensors

    Directory of Open Access Journals (Sweden)

    Alexander Weddemann

    2010-11-01

    Full Text Available This paper highlights recent advances in synthesis, self-assembly and sensing applications of monodisperse magnetic Co and Co-alloyed nanoparticles. A brief introduction to solution phase synthesis techniques as well as the magnetic properties and aspects of the self-assembly process of nanoparticles will be given with the emphasis placed on selected applications, before recent developments of particles in sensor devices are outlined. Here, the paper focuses on the fabrication of granular magnetoresistive sensors by the employment of particles themselves as sensing layers. The role of interparticle interactions is discussed.

  6. Directed self-assembly of nanoparticle array: A single electron device platform to make novel systems

    Science.gov (United States)

    Ong, Jason Kee Yang

    The biggest attraction of building nanometer structures is the emergence of novel properties and phenomena at these length scales. In the discipline of electronics particularly, nanoscale bridges the gap between the microscopic quantum world to the macroscopic classical world. The bridge can be tailored to effectively affect the material properties. One of the well-known phenomena that is altered at the nanoscale is the electron transport through a metal, i.e. the Ohm's law. As the size of the metal particle reduces to nanometer, Ohm's law breaks down due to trapping of a single electron charge, i.e. local charging, that prohibits the subsequent steam of electrons to pass through. This phenomenon is referred to as the Coulomb blockade, where the current is blocked below a threshold bias, VT. However, to observe a robust VT, the system has to be cooled to cryogenic temperatures. Here, fabrication and construction of a nano-system using directed self-assembled network of 1D necklace of 10 nm Au particles are described, which exhibits a robust single electron effect with a record high VT of 7.5 V at room temperature and a subsequent current, I rise as ( V/VT -- 1)ζ, where ζ is a critical constant, usually around 2. These physical parameters can be precisely tuned by tailoring the dimension and topology of the ensemble. The finding is important as nanoparticle based Single Electron Devices (SEDs) have become of great interest due to their orders of magnitude high sensitivity to gating. For over six decades of research on SEDs, it is clear that V T > 2 V at room temperature is required to make a robust device to eliminate the omnipresent "quantum noise" in these systems. Our system has not only shown a room temperature VT of well above 2 V but also its easy integrability with microelectronics circuits. Detailed scientific studies have been performed on the formation and structure of necklace array to understand the assembly process. Subsequent modification of the

  7. Telecommunication Wavelength-Band Single-Photon Emission from Single Large InAs Quantum Dots Nucleated on Low-Density Seed Quantum Dots.

    Science.gov (United States)

    Chen, Ze-Sheng; Ma, Ben; Shang, Xiang-Jun; He, Yu; Zhang, Li-Chun; Ni, Hai-Qiao; Wang, Jin-Liang; Niu, Zhi-Chuan

    2016-12-01

    Single-photon emission in the telecommunication wavelength band is realized with self-assembled strain-coupled bilayer InAs quantum dots (QDs) embedded in a planar microcavity on GaAs substrate. Low-density large QDs in the upper layer active for ~1.3 μm emission are fabricated by precisely controlling the indium deposition amount and applying a gradient indium flux in both QD layers. Time-resolved photoluminescence (PL) intensity suggested that the radiative lifetime of their exciton emission is 1.5~1.6 ns. The second-order correlation function of g (2)(0) < 0.5 which demonstrates a pure single-photon emission.

  8. Using micro-patterned sensors and cell self-assembly for measuring the oxygen consumption rate of single cells

    International Nuclear Information System (INIS)

    Etzkorn, James R; Parviz, Babak A; Wu, Wen-Chung; Tian, Zhiyuan; Kim, Prince; Jang, Sei-Hum; Jen, Alex K-Y; Meldrum, Deirdre R

    2010-01-01

    We present a method for self-assembling arrays of live single cells on a glass chip using a photopatternable polymer to form micro-traps. We have studied the single-cell self-assembly method and optimized the process to obtain a 52% yield of single-trapped cells. We also report a method to measure the oxygen consumption rate of a single cell using micro-patterned sensors. These molecular oxygen sensors were fabricated around each micro-trap allowing optical interrogation of oxygen concentration in the immediate environment of the trapped cell. Micromachined micro-wells were then used to seal the trap, sensor and cell in order to determine the oxygen consumption rate of single cells. These techniques reported here add to the collection of tools for performing 'singe-cell' biology. An oxygen consumption rate of 1.05 ± 0.28 fmol min −1 was found for a data set consisting of 25 single A549 cells.

  9. Self-assembly surface modified indium-tin oxide anodes for single-layer light-emitting diodes

    CERN Document Server

    Morgado, J; Charas, A; Matos, M; Alcacer, L; Cacialli, F

    2003-01-01

    We study the effect of indium-tin oxide surface modification by self assembling of highly polar molecules on the performance of single-layer light-emitting diodes (LEDs) fabricated with polyfluorene blends and aluminium cathodes. We find that the efficiency and light-output of such LEDs is comparable to, and sometimes better than, the values obtained for LEDs incorporating a hole injection layer of poly(3,4-ethylene dioxythiophene) doped with polystyrene sulphonic acid. This effect is attributed to the dipole-induced work function modification of indium-tin oxide.

  10. Self-Assemblies of Single-Walled Carbon Nanotubes through Tunable Tethering of Pyrenes by Dextrin for Rapidly Chiral Sensing

    OpenAIRE

    Wei, Wei-Li; Chen, Qiushui; Li, Haifang; Lin, Jin-Ming

    2011-01-01

    Pyrene-modified dextrin (Py-Dex) was synthesized via the Schiff base reaction between reducing end of dextrins and 1-aminopyrene, and then self-assemblies of single-walled carbon nanotubes (SWNTs) were fabricated through the tunable tethering of pyrene to SWNTs by dextrin chains. The Py-Dex-SWNTs assemblies were found to be significantly water-soluble because of the synergistic effect of dextrin chains and pyrene moieties. Py-Dex and Py-Dex-SWNTs were adequately characterized by NMR, UV-vis, ...

  11. Self-assembly surface modified indium-tin oxide anodes for single-layer light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Morgado, Jorge [Instituto de Telecomunicacoes and Departamento de Engenharia Quimica, Instituto Superior Tecnico, Avenida Rovisco Pais, P-1049-001 Lisbon (Portugal); Barbagallo, Nunzio [Instituto de Telecomunicacoes and Departamento de Engenharia Quimica, Instituto Superior Tecnico, Avenida Rovisco Pais, P-1049-001 Lisbon (Portugal); Charas, Ana [Instituto de Telecomunicacoes and Departamento de Engenharia Quimica, Instituto Superior Tecnico, Avenida Rovisco Pais, P-1049-001 Lisbon (Portugal); Matos, Manuel [Departamento de Engenharia Quimica, Instituto Superior de Engenharia de Lisboa, Rua Conselheiro Emidio Navarro-1, P-1949-001 Lisbon (Portugal); Alcacer, Luis [Instituto de Telecomunicacoes and Departamento de Engenharia Quimica, Instituto Superior Tecnico, Avenida Rovisco Pais, P-1049-001 Lisbon (Portugal); Cacialli, Franco [Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT (United Kingdom)

    2003-03-07

    We study the effect of indium-tin oxide surface modification by self assembling of highly polar molecules on the performance of single-layer light-emitting diodes (LEDs) fabricated with polyfluorene blends and aluminium cathodes. We find that the efficiency and light-output of such LEDs is comparable to, and sometimes better than, the values obtained for LEDs incorporating a hole injection layer of poly(3,4-ethylene dioxythiophene) doped with polystyrene sulphonic acid. This effect is attributed to the dipole-induced work function modification of indium-tin oxide.

  12. Polarized and resonant Raman spectroscopy on single InAs nanowires

    Science.gov (United States)

    Möller, M.; de Lima, M. M., Jr.; Cantarero, A.; Dacal, L. C. O.; Madureira, J. R.; Iikawa, F.; Chiaramonte, T.; Cotta, M. A.

    2011-08-01

    We report polarized Raman scattering and resonant Raman scattering studies on single InAs nanowires. Polarized Raman experiments show that the highest scattering intensity is obtained when both the incident and analyzed light polarizations are perpendicular to the nanowire axis. InAs wurtzite optical modes are observed. The obtained wurtzite modes are consistent with the selection rules and also with the results of calculations using an extended rigid-ion model. Additional resonant Raman scattering experiments reveal a redshifted E1 transition for InAs nanowires compared to the bulk zinc-blende InAs transition due to the dominance of the wurtzite phase in the nanowires. Ab initio calculations of the electronic band structure for wurtzite and zinc-blende InAs phases corroborate the observed values for the E1 transitions.

  13. Block copolymer systems: from single chain to self-assembled nanostructures.

    Science.gov (United States)

    Giacomelli, Cristiano; Schmidt, Vanessa; Aissou, Karim; Borsali, Redouane

    2010-10-19

    Recent advances in the field of macromolecular engineering applied to the fabrication of nanostructured materials using block copolymer chains as elementary building blocks are described in this feature article. By highlighting some of our work in the area and accounting for the contribution of other groups, we discuss the relationship between the physical-chemical properties of copolymer chains and the characteristics of nano-objects originating from their self-assembly in solution and in bulk, with emphasis on convenient strategies that allow for the control of composition, functionality, and topology at different levels of sophistication. In the case of micellar nanoparticles in solution, in particular, we present approaches leading to morphology selection via macromolecular architectural design, the functionalization of external solvent-philic shells with biomolecules (polysaccharides and proteins), and the maximization of micelle loading capacity by the suitable choice of solvent-phobic polymer segments. The fabrication of nanomaterials mediated by thin block copolymer films is also discussed. In this case, we emphasize the development of novel polymer chain manipulation strategies that ultimately allow for the preparation of precisely positioned nanodomains with a reduced number of defects via block-selective chemical reactivity. The challenges facing the soft matter community, the urgent demand to convert huge public and private investments into consumer products, and future possible directions in the field are also considered herein.

  14. Isolated self-assembled InAs/InP(001) quantum wires obtained by controlling the growth front evolution

    International Nuclear Information System (INIS)

    Fuster, David; Alen, Benito; Gonzalez, Luisa; Gonzalez, Yolanda; Martinez-Pastor, Juan; Gonzalez, Maria Ujue; GarcIa, Jorge M

    2007-01-01

    In this work we explore the first stages of quantum wire (QWR) formation studying the evolution of the growth front for InAs coverages below the critical thickness, θ c , determined by reflection high energy electron diffraction (RHEED). Our results obtained by in situ measurement of the accumulated stress evolution during InAs growth on InP(001) show that the relaxation process starts at a certain InAs coverage θ R c . At this θ R , the spontaneous formation of isolated quantum wires takes place. For θ>θ R this ensemble of isolated nanostructures progressively evolves towards QWRs that cover the whole surface for θ θ c . These results allow for a better understanding of the self-assembling process of QWRs and enable the study of the individual properties of InAs/InP self-assembled single quantum wires

  15. Isolated self-assembled InAs/InP(001) quantum wires obtained by controlling the growth front evolution

    Energy Technology Data Exchange (ETDEWEB)

    Fuster, David [Instituto de Microelectronica de Madrid (CNM, CSIC), Isaac Newton 8, E-28760 Tres Cantos, Madrid (Spain); Alen, Benito [Instituto de Microelectronica de Madrid (CNM, CSIC), Isaac Newton 8, E-28760 Tres Cantos, Madrid (Spain); Gonzalez, Luisa [Instituto de Microelectronica de Madrid (CNM, CSIC), Isaac Newton 8, E-28760 Tres Cantos, Madrid (Spain); Gonzalez, Yolanda [Instituto de Microelectronica de Madrid (CNM, CSIC), Isaac Newton 8, E-28760 Tres Cantos, Madrid (Spain); Martinez-Pastor, Juan [Instituto de Ciencia de los Materiales, Universidad de Valencia, PO Box 2085, E-46071 Valencia (Spain); Gonzalez, Maria Ujue [Instituto de Microelectronica de Madrid (CNM, CSIC), Isaac Newton 8, E-28760 Tres Cantos, Madrid (Spain); GarcIa, Jorge M [Instituto de Microelectronica de Madrid (CNM, CSIC), Isaac Newton 8, E-28760 Tres Cantos, Madrid (Spain)

    2007-01-24

    In this work we explore the first stages of quantum wire (QWR) formation studying the evolution of the growth front for InAs coverages below the critical thickness, {theta}{sub c}, determined by reflection high energy electron diffraction (RHEED). Our results obtained by in situ measurement of the accumulated stress evolution during InAs growth on InP(001) show that the relaxation process starts at a certain InAs coverage {theta}{sub R}<{theta}{sub c}. At this {theta}{sub R}, the spontaneous formation of isolated quantum wires takes place. For {theta}>{theta}{sub R} this ensemble of isolated nanostructures progressively evolves towards QWRs that cover the whole surface for {theta} {theta}{sub c}. These results allow for a better understanding of the self-assembling process of QWRs and enable the study of the individual properties of InAs/InP self-assembled single quantum wires.

  16. Self-Assembly of Single-Crystal Silver Microflakes on Reduced Graphene Oxide and their Use in Ultrasensitive Sensors

    KAUST Repository

    Chen, Ye

    2016-01-19

    Compared to 1D structures, 2D structures have higher specific and active surface, which drastically improves electron transfer and extensibility along 2D plane. Herein, 2D-single crystal silver microflakes (AgMFs) are prepared for the first time in situ on reduced graphene oxide (RGO) by solvothermal synthesis with thickness around 100 nm and length around 10 μm. The oriented attachment mechanism is hypothesized to control the silver crystal growth and self-assembly of reduced silver units to form single-crystal AgMF structure on RGO sheets. Employing it as an electrode to fabricate reliable and extremely sensitive pressure sensors verifies the applicability of this novel 2D structure. Contrary to nanowires, 2D microflakes can intercalate better within the polymer matrix to provide an enhanced network for electron movement. The designed sensor can retain more than 4.7 MPa-1 after 10 000 cycles. The design proves functional for monitoring various actions such as wrist movement, squatting, walking, and delicate finger touch with high durability. A highly sensitive and flexible pressure sensor is fabricated based on the self-assembly of silver microflakes on reduced graphene oxide. This sensor exhibits an excellent pressure sensitivity as it can retain more than 4.7 MPa-1 after 10 000 cycles. This system is successfully used to monitor wrist movement, walking, and squatting and can be applied in touch screen panels, robotic systems, and prosthetics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Efficient sampling of reversible cross-linking polymers: Self-assembly of single-chain polymeric nanoparticles

    Science.gov (United States)

    Oyarzún, Bernardo; Mognetti, Bortolo Matteo

    2018-03-01

    We present a new simulation technique to study systems of polymers functionalized by reactive sites that bind/unbind forming reversible linkages. Functionalized polymers feature self-assembly and responsive properties that are unmatched by the systems lacking selective interactions. The scales at which the functional properties of these materials emerge are difficult to model, especially in the reversible regime where such properties result from many binding/unbinding events. This difficulty is related to large entropic barriers associated with the formation of intra-molecular loops. In this work, we present a simulation scheme that sidesteps configurational costs by dedicated Monte Carlo moves capable of binding/unbinding reactive sites in a single step. Cross-linking reactions are implemented by trial moves that reconstruct chain sections attempting, at the same time, a dimerization reaction between pairs of reactive sites. The model is parametrized by the reaction equilibrium constant of the reactive species free in solution. This quantity can be obtained by means of experiments or atomistic/quantum simulations. We use the proposed methodology to study the self-assembly of single-chain polymeric nanoparticles, starting from flexible precursors carrying regularly or randomly distributed reactive sites. We focus on understanding differences in the morphology of chain nanoparticles when linkages are reversible as compared to the well-studied case of irreversible reactions. Intriguingly, we find that the size of regularly functionalized chains, in good solvent conditions, is non-monotonous as a function of the degree of functionalization. We clarify how this result follows from excluded volume interactions and is peculiar of reversible linkages and regular functionalizations.

  18. Polymerization Induced Self-Assembly of Alginate Based Amphiphilic Graft Copolymers Synthesized by Single Electron Transfer Living Radical Polymerization.

    Science.gov (United States)

    Kapishon, Vitaliy; Whitney, Ralph A; Champagne, Pascale; Cunningham, Michael F; Neufeld, Ronald J

    2015-07-13

    Alginate-based amphiphilic graft copolymers were synthesized by single electron transfer living radical polymerization (SET-LRP), forming stable micelles during polymerization induced self-assembly (PISA). First, alginate macroinitiator was prepared by partial depolymerization of native alginate, solubility modification and attachment of initiator. Depolymerized low molecular weight alginate (∼12 000 g/mol) was modified with tetrabutylammonium, enabling miscibility in anhydrous organic solvents, followed by initiator attachment via esterification yielding a macroinitiator with a degree of substitution of 0.02, or 1-2 initiator groups per alginate chain. Then, methyl methacrylate was polymerized from the alginate macroinitiator in mixtures of water and methanol, forming poly(methyl methacrylate) grafts, prior to self-assembly, of ∼75 000 g/mol and polydispersity of 1.2. PISA of the amphiphilic graft-copolymer resulted in the formation of micelles with diameters of 50-300 nm characterized by light scattering and electron microscopy. As the first reported case of LRP from alginate, this work introduces a synthetic route to a preparation of alginate-based hybrid polymers with a precise macromolecular architecture and desired functionalities. The intended application is the preparation of micelles for drug delivery; however, LRP from alginate can also be applied in the field of biomaterials to the improvement of alginate-based hydrogel systems such as nano- and microhydrogel particles, islet encapsulation materials, hydrogel implants, and topical applications. Such modified alginates can also improve the function and application of native alginates in food and agricultural applications.

  19. Electrochemical characterization of mixed self-assembled films of water-soluble single-walled carbon nanotube-poly(m-aminobenzene sulfonic acid) and Iron(II) tetrasulfophthalocyanine

    CSIR Research Space (South Africa)

    Agboola, BO

    2010-09-01

    Full Text Available The redox activities of water-soluble iron(II) tetrasulfophthalocyanine (FeTSPc) and single-walled carbon nanotube-poly(m-aminobenzene sulfonic acid) (SWCNT-PABS) adsorbed on a gold surface precoated with a self-assembled monolayer (SAM) of 2...

  20. Self-Assembled CNT-Polymer Hybrids in Single-Walled Carbon Nanotubes Dispersed Aqueous Triblock Copolymer Solutions

    Science.gov (United States)

    Vijayaraghavan, D.; Manjunatha, A. S.; Poojitha, C. G.

    2018-04-01

    We have carried out scanning electron microscopy (SEM), differential scanning calorimetry (DSC), small angle X-ray scattering (SAXS), electrical conductivity, and 1H NMR studies as a function of temperature on single-walled carbon nanotubes (SWCNTs) dispersed aqueous triblock copolymer (P123) solutions. The single-walled carbon nanotubes in this system aggregate to form bundles, and the bundles aggregate to form net-like structures. Depending on the temperature and phases of the polymer, this system exhibits three different self-assembled CNT-polymer hybrids. We find CNT-unimer hybrid at low temperatures, CNT-micelle hybrid at intermediate temperatures wherein the polymer micelles are adsorbed in the pores of the CNT nets, and another type of CNT-micelle hybrid at high temperatures wherein the polymer micelles are adsorbed on the surface of the CNT bundles. Our DSC thermogram showed two peaks related to these structural changes in the CNT-polymer hybrids. Temperature dependence of the 1H NMR chemical shifts of the molecular groups of the polymer and the AC electrical conductivity of the composite also showed discontinuous changes at the temperatures at which the CNT-polymer hybrid's structural changes are seen. Interestingly, for a higher CNT concentration (0.5 wt.%) in the system, the aggregated polymer micelles adsorbed on the CNTs exhibit cone-like and cube-like morphologies at the intermediate and at high temperatures respectively.

  1. Evolution between self-assembled single and double ring-like nanostructures

    International Nuclear Information System (INIS)

    Lee, J H; Wang, Zh M; Abuwaar, Z Y; Strom, N W; Salamo, G J

    2006-01-01

    The evolution between lattice-matched GaAs/Al 0.3 Ga 0.7 As single and double ring-like nanostructures is studied, with an emphasis on the construction and destruction of the observed outer ring. Using droplet epitaxy, this was achieved by directly controlling the Ga surface diffusion on GaAs(100). Double ring-like nanostructures were observed at relatively low temperatures under a fixed As 4 flux (beam equivalent pressure (BEP) of 6.4 μTorr) and at a fixed temperature under a high As 4 flux. The construction of the outer ring can be controlled through surface diffusion by varying the substrate temperature or the As 4 flux. Single ring-like nanostructures were realized both at relatively high temperatures under a fixed As 4 flux, and at low temperatures under a relatively low As 4 flux

  2. Self-assembly of a 3d-5f trinuclear single-molecule magnet from a pentavalent uranyl complex

    International Nuclear Information System (INIS)

    Chatelain, Lucile; Pecaut, Jacques; Walsh, James P.S.; Tuna, Floriana; Mazzanti, Marinella

    2014-01-01

    Mixed-metal uranium compounds are very attractive candidates in the design of single-molecule magnets (SMMs), but only one 3d-5f hetero-polymetallic SMM containing a uranium center is known. Herein, we report two trimeric heterodimetallic 3d-5f complexes self-assembled by cation-cation interactions between a uranyl(V) complex and a TPA-capped M II complex (M=Mn (1), Cd (2); TPA=tris(2-pyridylmethyl)amine). The metal centers were strategically chosen to promote the formation of discrete molecules rather than extended chains. Compound 1, which contains an almost linear {Mn-O=U=O-Mn} core, exhibits SMM behavior with a relaxation barrier of 81±0.5 K - the highest reported for a mono-uranium system - arising from intramolecular Mn-U exchange interactions combined with the high Ising anisotropy of the uranyl(V) moiety. Compound 1 also exhibits an open magnetic hysteresis loop at temperatures less than 3 K, with a significant coercive field of 1.9 T at 1.8 K.

  3. Self-assembly of a 3d-5f trinuclear single-molecule magnet from a pentavalent uranyl complex

    Energy Technology Data Exchange (ETDEWEB)

    Chatelain, Lucile; Pecaut, Jacques [CEA-Grenoble (France). Lab. de Reconnaissance Ionique et Chimie de Coordination SCIB; Walsh, James P.S.; Tuna, Floriana [Manchester Univ. (United Kingdom). School of Chemistry and Photon Science Inst.; Mazzanti, Marinella [Ecole Polytechnique Federale de Lausanne (EPFL) (Switzerland). Inst. de Sciences et Ingenierie Chimiques

    2014-12-01

    Mixed-metal uranium compounds are very attractive candidates in the design of single-molecule magnets (SMMs), but only one 3d-5f hetero-polymetallic SMM containing a uranium center is known. Herein, we report two trimeric heterodimetallic 3d-5f complexes self-assembled by cation-cation interactions between a uranyl(V) complex and a TPA-capped M{sup II} complex (M=Mn (1), Cd (2); TPA=tris(2-pyridylmethyl)amine). The metal centers were strategically chosen to promote the formation of discrete molecules rather than extended chains. Compound 1, which contains an almost linear {Mn-O=U=O-Mn} core, exhibits SMM behavior with a relaxation barrier of 81±0.5 K - the highest reported for a mono-uranium system - arising from intramolecular Mn-U exchange interactions combined with the high Ising anisotropy of the uranyl(V) moiety. Compound 1 also exhibits an open magnetic hysteresis loop at temperatures less than 3 K, with a significant coercive field of 1.9 T at 1.8 K.

  4. Self-Assemblies of Single-Walled Carbon Nanotubes through Tunable Tethering of Pyrenes by Dextrin for Rapidly Chiral Sensing

    Directory of Open Access Journals (Sweden)

    Wei-Li Wei

    2011-01-01

    Full Text Available Pyrene-modified dextrin (Py-Dex was synthesized via the Schiff base reaction between reducing end of dextrins and 1-aminopyrene, and then self-assemblies of single-walled carbon nanotubes (SWNTs were fabricated through the tunable tethering of pyrene to SWNTs by dextrin chains. The Py-Dex-SWNTs assemblies were found to be significantly water-soluble because of the synergistic effect of dextrin chains and pyrene moieties. Py-Dex and Py-Dex-SWNTs were adequately characterized by NMR, UV-vis, fluorescence spectroscopy, Raman spectroscopy, matrix-assisted laser desorption/ionization-time of flight mass spectroscopy, and transmission electron microscopy. The tethering effect of dextrin toward pyrene moieties was clearly revealed and was found to be tunable by adjusting the length of dextrin chains. The fluorescence of pyrene moieties was sufficiently quenched by SWNTs with the support of dextrin chains. Furthermore, the Py-Dex-SWNTs assemblies were used for chiral selective sensing by introducing cyclodextrins as chiral binding sites. The rapid chiral sensing was successfully tested for different enantiomers.

  5. Integrative self-assembly of functional hybrid nanoconstructs by inorganic wrapping of single biomolecules, biomolecule arrays and organic supramolecular assemblies.

    Science.gov (United States)

    Patil, Avinash J; Li, Mei; Mann, Stephen

    2013-08-21

    Synthesis of functional hybrid nanoscale objects has been a core focus of the rapidly progressing field of nanomaterials science. In particular, there has been significant interest in the integration of evolutionally optimized biological systems such as proteins, DNA, virus particles and cells with functional inorganic building blocks to construct mesoscopic architectures and nanostructured materials. However, in many cases the fragile nature of the biomolecules seriously constrains their potential applications. As a consequence, there is an on-going quest for the development of novel strategies to modulate the thermal and chemical stabilities, and performance of biomolecules under adverse conditions. This feature article highlights new methods of "inorganic molecular wrapping" of single or multiple protein molecules, individual double-stranded DNA helices, lipid bilayer vesicles and self-assembled organic dye superstructures using inorganic building blocks to produce bio-inorganic nanoconstructs with core-shell type structures. We show that spatial isolation of the functional biological nanostructures as "armour-plated" enzyme molecules or polynucleotide strands not only maintains their intact structure and biochemical properties, but also enables the fabrication of novel hybrid nanomaterials for potential applications in diverse areas of bionanotechnology.

  6. Integrative self-assembly of functional hybrid nanoconstructs by inorganic wrapping of single biomolecules, biomolecule arrays and organic supramolecular assemblies

    Science.gov (United States)

    Patil, Avinash J.; Li, Mei; Mann, Stephen

    2013-07-01

    Synthesis of functional hybrid nanoscale objects has been a core focus of the rapidly progressing field of nanomaterials science. In particular, there has been significant interest in the integration of evolutionally optimized biological systems such as proteins, DNA, virus particles and cells with functional inorganic building blocks to construct mesoscopic architectures and nanostructured materials. However, in many cases the fragile nature of the biomolecules seriously constrains their potential applications. As a consequence, there is an on-going quest for the development of novel strategies to modulate the thermal and chemical stabilities, and performance of biomolecules under adverse conditions. This feature article highlights new methods of ``inorganic molecular wrapping'' of single or multiple protein molecules, individual double-stranded DNA helices, lipid bilayer vesicles and self-assembled organic dye superstructures using inorganic building blocks to produce bio-inorganic nanoconstructs with core-shell type structures. We show that spatial isolation of the functional biological nanostructures as ``armour-plated'' enzyme molecules or polynucleotide strands not only maintains their intact structure and biochemical properties, but also enables the fabrication of novel hybrid nanomaterials for potential applications in diverse areas of bionanotechnology.

  7. Focused ion beam milling of nanocavities in single colloidal particles and self-assembled opals

    International Nuclear Information System (INIS)

    Woldering, Leon A; Otter, A M; Husken, Bart H; Vos, Willem L

    2006-01-01

    We present a new method of realizing single nanocavities in individual colloidal particles on the surface of silicon dioxide artificial opals using a focused ion beam milling technique. We show that both the radius and the position of the nanocavity can be controlled with nanometre precision, to radii as small as 40 nm. The relation between the defect size and the milling time has been established. We confirmed that milling not only occurs on the surface of the spheres, but into and through them as well. We also show that an array of nanocavities can be fashioned. Structurally modified colloids have interesting potential applications in nanolithography, as well as in chemical sensing and solar cells, and as photonic crystal cavities

  8. Evidence of impurities in thiolated single-stranded DNA oligomers and their effect on DNA self-assembly on gold.

    Science.gov (United States)

    Lee, Chi-Ying; Canavan, Heather E; Gamble, Lara J; Castner, David G

    2005-05-24

    The diversity of techniques used in the synthesis, treatment, and purification of the single-stranded DNA oligomers containing a thiol anchor group (SH-ssDNA) has led to a significant variation in the purity of commercially available SH-ssDNA. In this work, we use X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) to study how the impurities present in commercially synthesized SH-ssDNA oligomers affected the structure of the resulting DNA films on Au. XPS results indicate that two of the purchased SH-ssDNA oligomers contain excess carbon and sulfur. The molecular fragmentation patterns obtained with ToF-SIMS were used to determine the identity of several contaminants in the DNA films, including poly(dimethylsiloxane) (PDMS), lipid molecules, and sulfur-containing molecules. In particular, the ToF-SIMS results determined that the excess sulfur detected by XPS was due to the presence of dithiothreitol, a reductant often used to cleave disulfide precursors. Furthermore, we found that the SH-ssDNA self-assembly process is affected by the presence of these contaminants. When relatively pure SH-ssDNA is used to prepare the DNA films, the P, N, O, and C atomic percentages were observed by XPS to increase over a 24-h time period. In contrast, surfaces prepared using SH-ssDNA containing higher levels of contaminants did not follow this trend. XPS result indicates that, after the initial SH-ssDNA adsorption, the remaining material incorporated into these films was due to contamination.

  9. Self-Assembly of Single-Layer CoAl-Layered Double Hydroxide Nanosheets on 3D Graphene Network Used as Highly Efficient Electrocatalyst for Oxygen Evolution Reaction.

    Science.gov (United States)

    Ping, Jianfeng; Wang, Yixian; Lu, Qipeng; Chen, Bo; Chen, Junze; Huang, Ying; Ma, Qinglang; Tan, Chaoliang; Yang, Jian; Cao, Xiehong; Wang, Zhijuan; Wu, Jian; Ying, Yibin; Zhang, Hua

    2016-09-01

    A non-noble metal based 3D porous electrocatalyst is prepared by self-assembly of the liquid-exfoliated single-layer CoAl-layered double hydroxide nanosheets (CoAl-NSs) onto 3D graphene network, which exhibits higher catalytic activity and better stability for electrochemical oxygen evolution reaction compared to the commercial IrO2 nanoparticle-based 3D porous electrocatalyst. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Self-assembling protein arrays on DNA chips by auto-labeling fusion proteins with a single DNA address

    NARCIS (Netherlands)

    Jongsma, M.A.; Litjens, R.H.G.M.

    2006-01-01

    The high-throughput deposition of recombinant proteins on chips, beads or biosensor devices would be greatly facilitated by the implementation of self-assembly concepts. DNA-directed immobilization via conjugation of proteins to an oligonucleotide would be preeminently suited for this purpose. Here,

  11. Self-Assembly of "Chalcone" Type Push-Pull Dye Molecules into Organic Single Crystalline Microribbons and Rigid Microrods for Vis/NIR Range Photonic Cavity Applications.

    Science.gov (United States)

    Vattikunta, Radhika; Venkatakrishnarao, Dasari; Mohiddon, Mahamad Ahamad; Chandrasekar, Rajadurai

    2016-11-04

    A novel supramolecular fluorescent donor-acceptor type dye molecule, (2E,4E)-1-(2-hydroxyphenyl)-5-(pyren-1-yl)penta-2,4-dien-1-one (HPPD) self-assembles in a mixture of ethanol/chloroform through intermolecular π-π stacking (distance ca. 3.384 Å) to form J-aggregated single-crystalline microribbons displaying Fabry-Pèrot (F-P) type visible-range optical resonance. The corresponding borondifluoride dye (HPPD-BF), with a reduced HOMO-LUMO gap, self-assembles into crystalline microrods acting as an F-P type resonator in the near-infrared (NIR) range. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Self-assembled nanostructures

    CERN Document Server

    Zhang, Jin Z; Liu, Jun; Chen, Shaowei; Liu, Gang-yu

    2003-01-01

    Nanostructures refer to materials that have relevant dimensions on the nanometer length scales and reside in the mesoscopic regime between isolated atoms and molecules in bulk matter. These materials have unique physical properties that are distinctly different from bulk materials. Self-Assembled Nanostructures provides systematic coverage of basic nanomaterials science including materials assembly and synthesis, characterization, and application. Suitable for both beginners and experts, it balances the chemistry aspects of nanomaterials with physical principles. It also highlights nanomaterial-based architectures including assembled or self-assembled systems. Filled with in-depth discussion of important applications of nano-architectures as well as potential applications ranging from physical to chemical and biological systems, Self-Assembled Nanostructures is the essential reference or text for scientists involved with nanostructures.

  13. Electrochemical detection of Hg(II in water using self-assembled single walled carbon nanotube-poly(m-amino benzene sulfonic acid on gold electrode

    Directory of Open Access Journals (Sweden)

    Gauta Gold Matlou

    2016-09-01

    Full Text Available This work reports on the detection of mercury using single walled carbon nanotube-poly (m-amino benzene sulfonic acid (SWCNT-PABS modified gold electrode by self-assembled monolayers (SAMs technique. A thiol containing moiety (dimethyl amino ethane thiol (DMAET was used to facilitate the assembly of the SWCNT-PABS molecules onto the Au electrode surface. The successfully assembled monolayers were characterised using atomic force microscopy (AFM. Cyclic voltammetric and electrochemical impedance spectroscopic studies of the modified electrode (Au-DMAET-(SWCNT-PABS showed improved electron transfer over the bare Au electrode and the Au-DMAET in [Fe (CN6]3−/4− solution. The Au-DMAET-(SWCNT-PABS was used for the detection of Hg in water by square wave anodic stripping voltammetry (SWASV analysis at the following optimized conditions: deposition potential of −0.1 V, deposition time of 30 s, 0.1 M HCl electrolyte and pH 3. The sensor showed a good sensitivity and a limit of detection of 0.06 μM with a linear concentration range of 20 ppb to 250 ppb under the optimum conditions. The analytical applicability of the proposed method with the sensor electrode was tested with real water sample and the method was validated with inductively coupled plasma – optical emission spectroscopy. Keywords: Self-assembly, Gold electrode, Carbon nanotubes, Electrochemical detection, Mercury

  14. Single-Crystalline Gold Nanowires Synthesized from Light-Driven Oriented Attachment and Plasmon-Mediated Self-Assembly of Gold Nanorods or Nanoparticles

    Science.gov (United States)

    Yu, Shang-Yang; Gunawan, Hariyanto; Tsai, Shiao-Wen; Chen, Yun-Ju; Yen, Tzu-Chen; Liaw, Jiunn-Woei

    2017-03-01

    Through the light-driven geometrically oriented attachment (OA) and self-assembly of Au nanorods (NRs) or nanoparticles (NPs), single-crystalline Au nanowires (NWs) were synthesized by the irradiation of a linearly-polarized (LP) laser. The process was conducted in a droplet of Au colloid on a glass irradiated by LP near-infrared (e.g. 1064 nm and 785 nm) laser beam of low power at room temperature and atmospheric pressure, without any additive. The FE-SEM images show that the cross sections of NWs are various: tetragonal, pentagonal or hexagonal. The EDS spectrum verifies the composition is Au, and the pattern of X-ray diffraction identifies the crystallinity of NWs with the facets of {111}, {200}, {220} and {311}. We proposed a hypothesis for the mechanism that the primary building units are aligned and coalesced by the plasmon-mediated optical torque and force to form the secondary building units. Subsequently, the secondary building units undergo the next self-assembly, and so forth the tertiary ones. The LP light guides the translational and rotational motions of these building units to perform geometrically OA in the side-by-side, end-to-end and T-shaped manners. Consequently, micron-sized ordered mesocrystals are produced. Additionally, the concomitant plasmonic heating causes the annealing for recrystallizing the mesocrystals in water.

  15. Photovoltaic self-assembly.

    Energy Technology Data Exchange (ETDEWEB)

    Lavin, Judith; Kemp, Richard Alan; Stewart, Constantine A.

    2010-10-01

    This late-start LDRD was focused on the application of chemical principles of self-assembly on the ordering and placement of photovoltaic cells in a module. The drive for this chemical-based self-assembly stems from the escalating prices in the 'pick-and-place' technology currently used in the MEMS industries as the size of chips decreases. The chemical self-assembly principles are well-known on a molecular scale in other material science systems but to date had not been applied to the assembly of cells in a photovoltaic array or module. We explored several types of chemical-based self-assembly techniques, including gold-thiol interactions, liquid polymer binding, and hydrophobic-hydrophilic interactions designed to array both Si and GaAs PV chips onto a substrate. Additional research was focused on the modification of PV cells in an effort to gain control over the facial directionality of the cells in a solvent-based environment. Despite being a small footprint research project worked on for only a short time, the technical results and scientific accomplishments were significant and could prove to be enabling technology in the disruptive advancement of the microelectronic photovoltaics industry.

  16. Macroscopic magnetic Self assembly

    NARCIS (Netherlands)

    Löthman, Per Arvid

    2018-01-01

    Exploring the macroscopic scale's similarities to the microscale is part and parcel of this thesis as reflected in the research question: what can we learn about the microscopic scale by studying the macroscale? Investigations of the environment in which the self-assembly takes place, and the

  17. Dynamic and reversible self-assembly of photoelectrochemical complexes based on lipid bilayer disks, photosynthetic reaction centers, and single-walled carbon nanotubes.

    Science.gov (United States)

    Boghossian, Ardemis A; Choi, Jong Hyun; Ham, Moon-Ho; Strano, Michael S

    2011-03-01

    An aqueous solution containing photosynthetic reaction centers (RCs), membrane scaffold proteins (MSPs), phospholipids, and single-walled carbon nanotubes (SWCNTs) solubilized with the surfactant sodium cholate (SC) reversibly self-assembles into a highly ordered structure upon dialysis of the latter. The resulting structure is photoelectrochemically active and consists of 4-nm-thick lipid bilayer disks (nanodisks, NDs) arranged parallel to the surface of the SWCNT with the RC housed within the bilayer such that its hole injecting site faces the nanotube surface. The structure can be assembled and disassembled autonomously with the addition or removal of surfactant. We model the kinetic and thermodynamic forces that drive the dynamics of this reversible self-assembly process. The assembly is monitored using spectrofluorimetry during dialysis and subsequent surfactant addition and used to fit a kinetic model to determine the forward and reverse rate constants of ND and ND-SWCNT formation. The calculated ND and ND-SWCNT forward rate constants are 79 mM(-1) s(-1) and 5.4 × 10(2) mM(-1) s(-1), respectively, and the reverse rate constants are negligible over the dialysis time scale. We find that the reaction is not diffusion-controlled since the ND-SWCNT reaction, which consists of entities with smaller diffusion coefficients, has a larger reaction rate constant. Using these rate parameters, we were able to develop a kinetic phase diagram for the formation of ND-SWCNT complexes, which indicates an optimal dialysis rate of approximately 8 × 10(-4) s(-1). We also fit the model to cyclic ND-SWCNT assembly and disassembly experiments and hence mimic the thermodynamic forces used in regeneration processes detailed previously. Such forces may form the basis of both synthetic and natural photoelectrochemical complexes capable of dynamic component replacement and repair.

  18. Bacteriochlorophyll Aggregates Self-Assembled on Functionalized Gold Nanorod Cores as Mimics of Photosynthetic Chlorosomal Antennae: A Single Molecule Study

    Czech Academy of Sciences Publication Activity Database

    Furumaki, S.; Vácha, František; Hirata, S.; Vácha, M.

    2014-01-01

    Roč. 8, č. 3 (2014), s. 2176-2182 ISSN 1936-0851 Institutional support: RVO:60077344 Keywords : Single molecule spectroscopy * molecular aggregate * bacteriochlorophyll * chromosome Subject RIV: BO - Biophysics Impact factor: 12.881, year: 2014

  19. Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales

    Science.gov (United States)

    Saranathan, Vinodkumar; Osuji, Chinedum O.; Mochrie, Simon G. J.; Noh, Heeso; Narayanan, Suresh; Sandy, Alec; Dufresne, Eric R.; Prum, Richard O.

    2010-01-01

    Complex three-dimensional biophotonic nanostructures produce the vivid structural colors of many butterfly wing scales, but their exact nanoscale organization is uncertain. We used small angle X-ray scattering (SAXS) on single scales to characterize the 3D photonic nanostructures of five butterfly species from two families (Papilionidae, Lycaenidae). We identify these chitin and air nanostructures as single network gyroid (I4132) photonic crystals. We describe their optical function from SAXS data and photonic band-gap modeling. Butterflies apparently grow these gyroid nanostructures by exploiting the self-organizing physical dynamics of biological lipid-bilayer membranes. These butterfly photonic nanostructures initially develop within scale cells as a core-shell double gyroid (Ia3d), as seen in block-copolymer systems, with a pentacontinuous volume comprised of extracellular space, cell plasma membrane, cellular cytoplasm, smooth endoplasmic reticulum (SER) membrane, and intra-SER lumen. This double gyroid nanostructure is subsequently transformed into a single gyroid network through the deposition of chitin in the extracellular space and the degeneration of the rest of the cell. The butterflies develop the thermodynamically favored double gyroid precursors as a route to the optically more efficient single gyroid nanostructures. Current approaches to photonic crystal engineering also aim to produce single gyroid motifs. The biologically derived photonic nanostructures characterized here may offer a convenient template for producing optical devices based on biomimicry or direct dielectric infiltration. PMID:20547870

  20. Homogeneous and single-side-operational connector mechanism for self-reconfigurable, self-assembly and self-healing systems

    Science.gov (United States)

    Shen, Wei-Min (Inventor); Kovac, Robert M. (Inventor)

    2012-01-01

    Designs of single-end-operative reconfigurable genderless connectors that include a base, a plurality of movable jaws that are formed on the base and can engage to the jaws of another connector, and an actuator that is mounted on the base and can engage and move the jaws of the reconfigurable connector to connect the reconfigurable connector with another connector.

  1. Self-assembling segmented coiled tubing

    Science.gov (United States)

    Raymond, David W.

    2016-09-27

    Self-assembling segmented coiled tubing is a concept that allows the strength of thick-wall rigid pipe, and the flexibility of thin-wall tubing, to be realized in a single design. The primary use is for a drillstring tubular, but it has potential for other applications requiring transmission of mechanical loads (forces and torques) through an initially coiled tubular. The concept uses a spring-loaded spherical `ball-and-socket` type joint to interconnect two or more short, rigid segments of pipe. Use of an optional snap ring allows the joint to be permanently made, in a `self-assembling` manner.

  2. Self-assembly of self-assembled molecular triangles

    Indian Academy of Sciences (India)

    While the solution state structure of 1 can be best described as a trinuclear complex, in the solidstate well-fashioned intermolecular - and CH- interactions are observed. Thus, in the solid-state further self-assembly of already self-assembled molecular triangle is witnessed. The triangular panels are arranged in a linear ...

  3. OligArch: A software tool to allow artificially expanded genetic information systems (AEGIS to guide the autonomous self-assembly of long DNA constructs from multiple DNA single strands

    Directory of Open Access Journals (Sweden)

    Kevin M. Bradley

    2014-08-01

    Full Text Available Synthetic biologists wishing to self-assemble large DNA (L-DNA constructs from small DNA fragments made by automated synthesis need fragments that hybridize predictably. Such predictability is difficult to obtain with nucleotides built from just the four standard nucleotides. Natural DNA's peculiar combination of strong and weak G:C and A:T pairs, the context-dependence of the strengths of those pairs, unimolecular strand folding that competes with desired interstrand hybridization, and non-Watson–Crick interactions available to standard DNA, all contribute to this unpredictability. In principle, adding extra nucleotides to the genetic alphabet can improve the predictability and reliability of autonomous DNA self-assembly, simply by increasing the information density of oligonucleotide sequences. These extra nucleotides are now available as parts of artificially expanded genetic information systems (AEGIS, and tools are now available to generate entirely standard DNA from AEGIS DNA during PCR amplification. Here, we describe the OligArch (for "oligonucleotide architecting" software, an application that permits synthetic biologists to engineer optimally self-assembling DNA constructs from both six- and eight-letter AEGIS alphabets. This software has been used to design oligonucleotides that self-assemble to form complete genes from 20 or more single-stranded synthetic oligonucleotides. OligArch is therefore a key element of a scalable and integrated infrastructure for the rapid and designed engineering of biology.

  4. Synthesis, transfer printing, electrical and optical properties, and applications of materials composed of self-assembled, aligned single-walled carbon nanotubes

    Science.gov (United States)

    Pint, Cary L.

    Super growth of single-walled carbon nanotubes (SWNTs) has emerged as a unique method for synthesizing self-assembled, pristine, aligned SWNT materials composed of ultra-long (millimeter-long) nanotubes. This thesis focuses on novel routes of synthesizing such self-assembled SWNTs and the challenges that arise in integrating this material into next-generation applications. First of all, this work provides unique insight into growth termination of aligned SWNTs, emphasizing the mechanism that inhibits the growth of infinitely long nanotubes. Exhaustive real-time growth studies, combined with ex-situ and in-situ TEM characterization emphasizes that Ostwald ripening and subsurface diffusion of catalyst particles play a key role in growth termination. As a result, rational steps to solving this problem can enhance growth, and may ultimately lead to the meter or kilometer-long SWNTs that are necessary for a number of applications. In addition, other novel synthesis routes are discussed, such as the ability to form macroscopic fibrils of SWNTs, called "flying carpets" from 40 nm thick substrates, and the ability to achieve supergrowth of SWNTs that are controllably doped with nitrogen. In the latter case, molecular heterojunctions of doped and undoped sections in a single strand of ultralong SWNTs are demonstrated Secondly, as supergrowth is conducted on alumina coated SiO2 substrates, any applications will require that one can transfer the SWNTs to host surfaces with minimal processing. This work demonstrates a unique contact transfer route by which both patterned arrays of SWNTs, or homogenous SWNT carpets, can be transferred to any host surface. In the first case, the SWNTs are grown vertically aligned, and transferred in patterns of horizontally aligned SWNT. This transfer process relies on simple water-vapor etching of amorphous carbons at the catalyst following growth, and strong van der Waals adhesion of the high surface-area SWNT to host surfaces (gecko effect

  5. Self-assembled nanolaminate coatings (SV)

    Energy Technology Data Exchange (ETDEWEB)

    Fan, H.

    2012-03-01

    Sandia National Laboratories (Sandia) and Lockheed Martin Aeronautics (LM Aero) are collaborating to develop affordable, self-assembled, nanocomposite coatings and associated fabrication processes that will be tailored to Lockheed Martin product requirements. The purpose of this project is to develop a family of self-assembled coatings with properties tailored to specific performance requirements, such as antireflective (AR) optics, using Sandia-developed self-assembled techniques. The project met its objectives by development of a simple and economic self-assembly processes to fabricate multifunctional coatings. Specifically, materials, functionalization methods, and associated coating processes for single layer and multiple layers coatings have been developed to accomplish high reflective coatings, hydrophobic coatings, and anti-reflective coatings. Associated modeling and simulations have been developed to guide the coating designs for optimum optical performance. The accomplishments result in significant advantages of reduced costs, increased manufacturing freedom/producibility, improved logistics, and the incorporation of new technology solutions not possible with conventional technologies. These self-assembled coatings with tailored properties will significantly address LMC's needs and give LMC a significant competitive lead in new engineered materials. This work complements SNL's LDRD and BES programs aimed at developing multifunctional nanomaterials for microelectronics and optics as well as structure/property investigations of self-assembled nanomaterials. In addition, this project will provide SNL with new opportunities to develop and apply self-assembled nanocomposite optical coatings for use in the wavelength ranges of 3-5 and 8-12 micrometers, ranges of vital importance to military-based sensors and weapons. The SANC technologies will be applied to multiple programs within the LM Company including the F-35, F-22, ADP (Future Strike Bomber

  6. Programming protein self assembly with coiled coils

    Science.gov (United States)

    Dietz, Hendrik; Bornschlögl, Thomas; Heym, Roland; König, Frauke; Rief, Matthias

    2007-11-01

    The controlled assembly of protein domains into supramolecular structures will be an important prerequisite for the use of functional proteins in future nanotechnology applications. Coiled coils are multimerization motifs whose dimerization properties can be programmed by amino acid sequence. Here, we report programmed supramolecular self-assembly of protein molecules using coiled coils and directly demonstrate its potential on the single molecule level by AFM force spectroscopy. We flanked two different model proteins, Ig27 from human cardiac titin and green fluorescent protein (GFP), by coiled coil binding partners and studied the capability of these elementary building blocks to self-assemble into linear chains. Simple sterical constraints are shown to control the assembly process, providing evidence that many proteins can be assembled with this method. An application for this technique is the design of polyproteins for single molecule force spectroscopy with an integrated force-calibration standard.

  7. Self-assemblies of meso-tetraphenylporphine ligand on surfaces of highly oriented pyrolytic graphite and single-walled carbon nanotubes: insights from scanning tunneling microscopy and molecular modeling.

    Science.gov (United States)

    Bassiouk, Maria; Alvarez-Zauco, Edgar; Basiuk, Vladimir A

    2011-06-01

    The self-assembly of porphyrins into highly organized functional arrays supported on appropriate solid substrates is an area of research with multiple potential applications in the "bottom-up" approach to manufacturing. In order to analyze the self-assembly of meso-tetraphenylporphine (H2TPP) on the surfaces of highly oriented pyrolytic graphite (HOPG) and single-walled carbon nanotubes (SWNTs), we performed molecular mechanics modeling (by MM+ force field) and scanning tunneling microscopy (STM) imaging. Molecular modeling predicted an energetic preference of the H2TPP molecules to adsorb in monolayers on the surfaces of graphite and SWNT sidewall, rather than their stacking or separation. On graphite, the most favorable arrays were predicted to be ribbons composed of interacting parallel chains of H2TPP molecules. On the SWNT sidewall, the energetic preference pointed toward the formation of parallel and interacting long-period helixes, resulting in an almost full coverage of the SWNT surface. These preferable arrays on both carbon materials assure the interaction of every porphyrin unit with as many neighbors as possible, thus lowering the potential energy of the adsorption complexes. STM imaging results are in good agreement with molecular modeling predictions. The formation of self-assembled ribbons was a frequently observed phenomenon on the HOPG surface, while on the SWNT surface a full coverage of the exposed portion of the sidewalls was observed, suggesting the formation of interacting long-period helixes. A preferential adsorption of H2TPP molecules near graphite topographic defects was also observed.

  8. Designing spatial correlation of quantum dots: towards self-assembled three-dimensional structures

    International Nuclear Information System (INIS)

    Bortoleto, J R R; Zelcovit, J G; Gutierrez, H R; Bettini, J; Cotta, M A

    2008-01-01

    Buried two-dimensional arrays of InP dots were used as a template for the lateral ordering of self-assembled quantum dots. The template strain field can laterally organize compressive (InAs) as well as tensile (GaP) self-assembled nanostructures in a highly ordered square lattice. High-resolution transmission electron microscopy measurements show that the InAs dots are vertically correlated to the InP template, while the GaP dots are vertically anti-correlated, nucleating in the position between two buried InP dots. Finite InP dot size effects are observed to originate InAs clustering but do not affect GaP dot nucleation. The possibility of bilayer formation with different vertical correlations suggests a new path for obtaining three-dimensional pseudocrystals

  9. Peptide amphiphile self-assembly

    Science.gov (United States)

    Iscen, Aysenur; Schatz, George C.

    2017-08-01

    Self-assembly is a process whereby molecules organize into structures with hierarchical order and complexity, often leading to functional materials. Biomolecules such as peptides, lipids and DNA are frequently involved in self-assembly, and this leads to materials of interest for a wide variety of applications in biomedicine, photonics, electronics, mechanics, etc. The diversity of structures and functions that can be produced provides motivation for developing theoretical models that can be used for a molecular-level description of these materials. Here we overview recently developed computational methods for modeling the self-assembly of peptide amphiphiles (PA) into supramolecular structures that form cylindrical nanoscale fibers using molecular-dynamics simulations. Both all-atom and coarse-grained force field methods are described, and we emphasize how these calculations contribute insight into fiber structure, including the importance of β-sheet formation. We show that the temperature at which self-assembly takes place affects the conformations of PA chains, resulting in cylindrical nanofibers with higher β-sheet content as temperature increases. We also present a new high-density PA model that shows long network formation of β-sheets along the long axis of the fiber, a result that correlates with some experiments. The β-sheet network is mostly helical in nature which helps to maintain strong interactions between the PAs both radially and longitudinally. Contribution to Focus Issue Self-assemblies of Inorganic and Organic Nanomaterials edited by Marie-Paule Pileni.

  10. Investigation of the geometrical arrangement and single molecule charge transport in self-assembled monolayers of molecular towers based on tetraphenylmethane tripod

    Czech Academy of Sciences Publication Activity Database

    Sebechlebská, T.; Šebera, Jakub; Kolivoška, Viliam; Lindner, M.; Gasior, Jindřich; Meszáros, G.; Valášek, M.; Mayor, M.; Hromadová, Magdaléna

    2017-01-01

    Roč. 258, DEC 20 (2017), s. 1191-1200 ISSN 0013-4686 R&D Projects: GA ČR GJ16-07460Y Grant - others:AV ČR(CZ) MTA-16-02 Program:Bilaterální spolupráce Institutional support: RVO:61388955 Keywords : molecular electronics * multipodal platforms * reductive desorption of self-assembled monolayers Subject RIV: CG - Electrochemistry OBOR OECD: Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis) Impact factor: 4.798, year: 2016

  11. Self-assembly of self-assembled molecular triangles

    Indian Academy of Sciences (India)

    (tmeda), 2,2 -bipyridine (bpy), and 1,10-phenanthroline. (phen), etc. The synthesis and dynamic studies of a vari- ety of designed Pd(II) cages are well studied1a−d but the crystal engineering of Pd(II)-based self-assembled coordination cages has been less explored.4 Recently we have been investigating the significance of ...

  12. Supramolecular self-assembly on the B-Si(111)-(√3x√3) R30° surface: From single molecules to multicomponent networks

    Science.gov (United States)

    Makoudi, Younes; Jeannoutot, Judicaël; Palmino, Frank; Chérioux, Frédéric; Copie, Guillaume; Krzeminski, Christophe; Cleri, Fabrizio; Grandidier, Bruno

    2017-09-01

    Understanding the physical and chemical processes in which local interactions lead to ordered structures is of particular relevance to the realization of supramolecular architectures on surfaces. While spectacular patterns have been demonstrated on metal surfaces, there have been fewer studies of the spontaneous organization of supramolecular networks on semiconductor surfaces, where the formation of covalent bonds between organics and adatoms usually hamper the diffusion of molecules and their subsequent interactions with each other. However, the saturation of the dangling bonds at a semiconductor surface is known to make them inert and offers a unique way for the engineering of molecular patterns on these surfaces. This review describes the physicochemical properties of the passivated B-Si(111)-(√3x√3) R30° surface, that enable the self-assembly of molecules into a rich variety of extended and regular structures on silicon. Particular attention is given to computational methods based on multi-scale simulations that allow to rationalize the relative contribution of the dispersion forces involved in the self-assembled networks observed with scanning tunneling microscopy. A summary of state of the art studies, where a fine tuning of the molecular network topology has been achieved, sheds light on new frontiers for exploiting the construction of supramolecular structures on semiconductor surfaces.

  13. Electrochemical characterization of a 1,8-octanedithiol self-assembled monolayer (ODT-SAM) on a Au(1 1 1) single crystal electrode

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Raya, Daniel; Madueno, Rafael; Sevilla, Jose Manuel; Blazquez, Manuel [Departamento de Quimica Fisica y Termodinamica Aplicada, Universidad de Cordoba, Campus de Rabanales, Ed. Marie Curie, E-14071 Cordoba (Spain); Pineda, Teresa [Departamento de Quimica Fisica y Termodinamica Aplicada, Universidad de Cordoba, Campus de Rabanales, Ed. Marie Curie, E-14071 Cordoba (Spain)], E-mail: tpineda@uco.es

    2008-11-15

    Recently, it has becoming increasingly important to control the organization of self-assembled monolayers (SAMs) of {omega}-functionalized thiols for its potential applications in the construction of more complex molecular architectures. In this paper, we report on the spontaneous formation of a SAM of octanedithiol (ODT) as a function of the modification time. Electrochemical techniques such as cyclic voltammetry, double layer capacitance and electrochemical impedance spectroscopy are used for the characterization of this monolayer. The increase in modification time brings about changes in the octanedithiol self-assembled monolayer (ODT-SAM) reductive desorption voltammograms that indicate an evolution toward a more ordered and compact monolayer. This trend has also been found by following the changes in the electron transfer processes of the redox probe K{sub 3}Fe(CN){sub 6}. In fact, the ODT-SAM formed at low-modification time does not significantly perturb the electrochemical response as it is typical of either a low coverage or of the presence of large defects in the layer. Upon increasing the modification time, the voltammograms of the redox probe adopt a sigmoidal shape indicating the existence of pinholes in the monolayer distributed as an array of microelectrodes. The surface coverage as well as the size and distribution of these pinholes have been determined by the impedance technique that gives a more reliable evaluation of these monolayer structural parameters.

  14. Electrochemical characterization of a 1,8-octanedithiol self-assembled monolayer (ODT-SAM) on a Au(111) single crystal electrode

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Raya, Daniel; Madueno, Rafael; Sevilla, Jose Manuel; Blazquez, Manuel; Pineda, Teresa [Departamento de Quimica Fisica y Termodinamica Aplicada, Universidad de Cordoba, Campus de Rabanales, Cordoba (Spain)

    2008-11-15

    Recently, it has becoming increasingly important to control the organization of self-assembled monolayers (SAMs) of {omega}-functionalized thiols for its potential applications in the construction of more complex molecular architectures. In this paper, we report on the spontaneous formation of a SAM of octanedithiol (ODT) as a function of the modification time. Electrochemical techniques such as cyclic voltammetry, double layer capacitance and electrochemical impedance spectroscopy are used for the characterization of this monolayer. The increase in modification time brings about changes in the octanedithiol self-assembled monolayer (ODT-SAM) reductive desorption voltammograms that indicate an evolution toward a more ordered and compact monolayer. This trend has also been found by following the changes in the electron transfer processes of the redox probe K{sub 3}Fe(CN){sub 6}. In fact, the ODT-SAM formed at low-modification time does not significantly perturb the electrochemical response as it is typical of either a low coverage or of the presence of large defects in the layer. Upon increasing the modification time, the voltammograms of the redox probe adopt a sigmoidal shape indicating the existence of pinholes in the monolayer distributed as an array of microelectrodes. The surface coverage as well as the size and distribution of these pinholes have been determined by the impedance technique that gives a more reliable evaluation of these monolayer structural parameters. (author)

  15. Self-assembly of cyclodextrins

    DEFF Research Database (Denmark)

    Fülöp, Z.; Kurkov, S.V.; Nielsen, T.T.

    2012-01-01

    that increases upon formation of inclusion complexes with lipophilic drugs. However, the stability of such aggregates is not sufficient for parenteral administration. In this review CD polymers and CD containing nanoparticles are categorized, with focus on self-assembled CD nanoparticles. It is described how...

  16. Influence of solution pH on the electron transport of the self-assembled nanoarrays of single-walled carbon nanotube-cobalt tetra-aminophthalocyanine on gold electrodes: Electrocatalytic detection of epinephrine

    Energy Technology Data Exchange (ETDEWEB)

    Ozoemena, Kenneth I. [Chemistry Department, University of Pretoria, Pretoria 0002 (South Africa)], E-mail: kenneth.ozoemena@up.ac.za; Nkosi, Dudu; Pillay, Jeseelan [Chemistry Department, University of Pretoria, Pretoria 0002 (South Africa)

    2008-02-15

    This paper provides first evidence of the impact of solution pH on the heterogeneous electron transfer rate constants of self-assembled films of single-walled carbon nanotubes (SWCNT) and SWCNT integrated to cobalt(II)tetra-aminophthalocyanine (SWCNT-CoTAPc) by sequential self-assembly. Using cyclic voltammetry and electrochemical impedance spectroscopy, we proved that both SAMs exhibit notable differences in their response to different buffered solution pH, with and without the presence of redox probe, [Fe(CN){sub 6}]{sup 4-}/[Fe(CN){sub 6}]{sup 3-}. Surface pK{sub a} value for the Au-Cys-SWCNT-CoTAPc was estimated as ca. 7.8, compared to that of the Au-Cys-SWCNT of about 5.5. Interestingly, both redox-active SAMs gave similar analytical response for epinephrine, giving well-resolved square wave voltammograms, with linear concentration range up to 130 {mu}M, sensitivity of ca. 9.4 x 10{sup -3} AM{sup -1}, and limit of detection ca. 6 {mu}M. This analytical result implies that there is no detectable advantage of one of the SAMs over the other in the electrocatalytic detection of this neurotransmitter.

  17. Self-assembled nanostructures of oligopyridine molecules.

    Science.gov (United States)

    Ziener, Ulrich

    2008-11-27

    The high potential of self-assembly processes of molecular building blocks is reflected in the vast variety of different functional nanostructures reported in the literature. The constituting units must fulfill several requirements like synthetic accessibility, presence of functional groups for appropriate intermolecular interactions and depending on the type of self-assembly processsignificant chemical and thermal stability. It is shown that oligopyridines are versatile building blocks for two- and three-dimensional (2D and 3D) self-assembly. They can be employed for building up different architectures like gridlike metal complexes in solution. By the appropriate tailoring of the heterocycles, further metal coordinating and/or hydrogen bonding capabilities to the heteroaromatic molecules can be added. Thus, the above-mentioned architectures can be extended in one-step processes to larger entities, or in a hierarchical fashion to infinite assemblies in the solid state, respectively. Besides the organizational properties of small molecules in solution, 2D assemblies on surfaces offer certain advantages over 3D arrays. By precise tailoring of the molecular structures, the intermolecular interactions can be fine-tuned expressed by a large variety of resulting 2D patterns. Oligopyridines prove to be ideal candidates for 2D assemblies on graphite and metal sufaces, respectively, expressing highly ordered structures. A slight structural variation in the periphery of the molecules leads to strongly changed 2D packing motifs based on weak hydrogen bonding interactions. Such 2D assemblies can be exploited for building up host-guest networks which are attractive candidates for manipulation experiments on the single-molecule level. Thus, "erasing" and "writing" processes by the scanning tunneling microscopy (STM) tip at the liquid/solid interface are shown. The 2D networks are also employed for performing coordination chemistry experiments at surfaces.

  18. Heterojunction nanowires having high activity and stability for the reduction of oxygen: Formation by self-assembly of iron phthalocyanine with single walled carbon nanotubes (FePc/SWNTs)

    KAUST Repository

    Zhu, Jia

    2014-04-01

    A self-assembly approach to preparing iron phthalocyanine/single-walled carbon nanotube (FePc/SWNT) heterojunction nanowires as a new oxygen reduction reaction (ORR) electrocatalyst has been developed by virtue of water-adjusted dispersing in 1-cyclohexyl-pyrrolidone (CHP) of the two components. The FePc/SWNT nanowires have a higher Fermi level compared to pure FePc (d-band center, DFT. =. -0.69. eV versus -0.87. eV, respectively). Consequently, an efficient channel for transferring electron to the FePc surface is readily created, facilitating the interaction between FePc and oxygen, so enhancing the ORR kinetics. This heterojunction-determined activity in ORR illustrates a new stratagem to preparing non-noble ORR electrocatalysts of significant importance in constructing real-world fuel cells. © 2013 Elsevier Inc.

  19. Self-assembled nanostructured metamaterials

    Science.gov (United States)

    Ponsinet, Virginie; Baron, Alexandre; Pouget, Emilie; Okazaki, Yutaka; Oda, Reiko; Barois, Philippe

    2017-07-01

    The concept of metamaterials emerged in the years 2000 with the achievement of artificial structures enabling nonconventional propagation of electromagnetic waves, such as negative phase velocity or negative refraction. The electromagnetic response of metamaterials is generally based on the presence of optically resonant elements —or meta-atoms— of sub-wavelength size and well-designed morphology so as to provide the desired electric and magnetic optical properties. Top-down technologies based on lithography techniques have been intensively used to fabricate a variety of efficient electric and magnetic resonators operating from microwave to visible light frequencies. However, the technological limits of the top-down approach are reached in visible light where a huge number of nanometre-sized elements is required. We show here that the bottom-up fabrication route based on the combination of nanochemistry and the self-assembly methods of colloidal physics provide an excellent alternative for the large-scale synthesis of complex meta-atoms, as well as for the fabrication of 2D and 3D samples exhibiting meta-properties in visible light. Contribution to the Focus Issue Self-assemblies of Inorganic and Organic Nanomaterials edited by Marie-Paule Pileni.

  20. Chemical reactions directed Peptide self-assembly.

    Science.gov (United States)

    Rasale, Dnyaneshwar B; Das, Apurba K

    2015-05-13

    Fabrication of self-assembled nanostructures is one of the important aspects in nanoscience and nanotechnology. The study of self-assembled soft materials remains an area of interest due to their potential applications in biomedicine. The versatile properties of soft materials can be tuned using a bottom up approach of small molecules. Peptide based self-assembly has significant impact in biology because of its unique features such as biocompatibility, straight peptide chain and the presence of different side chain functionality. These unique features explore peptides in various self-assembly process. In this review, we briefly introduce chemical reaction-mediated peptide self-assembly. Herein, we have emphasised enzymes, native chemical ligation and photochemical reactions in the exploration of peptide self-assembly.

  1. Chemical Reactions Directed Peptide Self-Assembly

    Directory of Open Access Journals (Sweden)

    Dnyaneshwar B. Rasale

    2015-05-01

    Full Text Available Fabrication of self-assembled nanostructures is one of the important aspects in nanoscience and nanotechnology. The study of self-assembled soft materials remains an area of interest due to their potential applications in biomedicine. The versatile properties of soft materials can be tuned using a bottom up approach of small molecules. Peptide based self-assembly has significant impact in biology because of its unique features such as biocompatibility, straight peptide chain and the presence of different side chain functionality. These unique features explore peptides in various self-assembly process. In this review, we briefly introduce chemical reaction-mediated peptide self-assembly. Herein, we have emphasised enzymes, native chemical ligation and photochemical reactions in the exploration of peptide self-assembly.

  2. Self-assembly patterning of organic molecules on a surface

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Minghu; Fuentes-Cabrera, Miguel; Maksymovych, Petro; Sumpter, Bobby G.; Li, Qing

    2017-04-04

    The embodiments disclosed herein include all-electron control over a chemical attachment and the subsequent self-assembly of an organic molecule into a well-ordered three-dimensional monolayer on a metal surface. The ordering or assembly of the organic molecule may be through electron excitation. Hot-electron and hot-hole excitation enables tethering of the organic molecule to a metal substrate, such as an alkyne group to a gold surface. All-electron reactions may allow a direct control over the size and shape of the self-assembly, defect structures and the reverse process of molecular disassembly from single molecular level to mesoscopic scale.

  3. Cathodoluminescence study of excited states and spatial smearing effects in InAs/GaAs self-assembled quantum dots

    International Nuclear Information System (INIS)

    Khatsevich, S.; Madhukar, A.; Rich, D. H.; Kim, Eui-Tae

    2004-01-01

    Full Text:We have examined state-filling and thermal activation of carriers in buried InAs self-assembled quantum dots (SAQDs) with excitation-dependent cathodoluminescence (CL) imaging and spectroscopy. The InAs SAQDs were formed during molecular beam epitaxial growth of InAs on undoped planar GaAs (001). Emission from the excited states was obtained under high electron beam currents, revealing up to three QD excited states in CL spectroscopy. A suppressed relaxation from the first excited state to the ground state at very low excitation densities was observed, demonstrating the presence of a phonon-bottle neck. The dependence of the CL intensity of the ground and the first excited state transitions on excitation density was shown to be linear at all temperatures at low excitation density. This result can be understood by considering that carriers escape and are recaptured as excitons or correlated electron-hole pairs. At sufficiently high excitations, state filling and spatial smearing elects are observed together with a sublinear dependence of the CL intensity on electron beam current. A successive filling of the ground and excited states in adjacent groups of QDs that possess different size distributions is argued to be the cause of the spatial smearing. The intensities of the ground and excited state transitions were analyzed as a function of temperature and excitation to study the thermal activation and reemission of carriers. Thermal quenching of the CL intensity of the QD ground and first excited state transitions at low excitations in 230 to 300 K temperature range is attributed to dissociation and reemission of excitons from the QD states into the WL. At high excitations, significantly reduced activation energies of the ground and excited states are obtained, suggesting that thermal reemission of single holes from QD states into the GaAs barrier is responsible for the observed temperature dependence of the QD luminescence in 230 to 300 K temperature range

  4. Molecular self-assembly advances and applications

    CERN Document Server

    Dequan, Alex Li

    2012-01-01

    In the past several decades, molecular self-assembly has emerged as one of the main themes in chemistry, biology, and materials science. This book compiles and details cutting-edge research in molecular assemblies ranging from self-organized peptide nanostructures and DNA-chromophore foldamers to supramolecular systems and metal-directed assemblies, even to nanocrystal superparticles and self-assembled microdevices

  5. Self-Assembly of Infinite Structures

    Directory of Open Access Journals (Sweden)

    Scott M. Summers

    2009-06-01

    Full Text Available We review some recent results related to the self-assembly of infinite structures in the Tile Assembly Model. These results include impossibility results, as well as novel tile assembly systems in which shapes and patterns that represent various notions of computation self-assemble. Several open questions are also presented and motivated.

  6. Self-assembled nanomaterials for photoacoustic imaging.

    Science.gov (United States)

    Wang, Lei; Yang, Pei-Pei; Zhao, Xiao-Xiao; Wang, Hao

    2016-02-07

    In recent years, extensive endeavors have been paid to construct functional self-assembled nanomaterials for various applications such as catalysis, separation, energy and biomedicines. To date, different strategies have been developed for preparing nanomaterials with diversified structures and functionalities via fine tuning of self-assembled building blocks. In terms of biomedical applications, bioimaging technologies are urgently calling for high-efficient probes/contrast agents for high-performance bioimaging. Photoacoustic (PA) imaging is an emerging whole-body imaging modality offering high spatial resolution, deep penetration and high contrast in vivo. The self-assembled nanomaterials show high stability in vivo, specific tolerance to sterilization and prolonged half-life stability and desirable targeting properties, which is a kind of promising PA contrast agents for biomedical imaging. Herein, we focus on summarizing recent advances in smart self-assembled nanomaterials with NIR absorption as PA contrast agents for biomedical imaging. According to the preparation strategy of the contrast agents, the self-assembled nanomaterials are categorized into two groups, i.e., the ex situ and in situ self-assembled nanomaterials. The driving forces, assembly modes and regulation of PA properties of self-assembled nanomaterials and their applications for long-term imaging, enzyme activity detection and aggregation-induced retention (AIR) effect for diagnosis and therapy are emphasized. Finally, we conclude with an outlook towards future developments of self-assembled nanomaterials for PA imaging.

  7. Experimental evidence for self-assembly of CeO2 particles in solution: Formation of single-crystalline porous CeO2 nanocrystals

    DEFF Research Database (Denmark)

    Tan, Hui Ru; Tan, Joyce Pei Ying; Boothroyd, Chris

    2012-01-01

    Single-crystalline porous CeO2 nanocrystals, with sizes of ∼20 nm and pore diameters of 1-2 nm, were synthesized successfully using a hydrothermal method. Using electron tomography, we imaged the three-dimensional structure of the pores in the nanocrystals and found that the oriented aggregation ...... energy-loss spectroscopy. The oxygen vacancies might play an important role in oxygen diffusion in the crystals and the catalytic activities of single-crystalline porous CeO 2 structures. © 2011 American Chemical Society....

  8. Quantum Sensing of Mechanical Motion with a Single InAs Quantum Dot

    Science.gov (United States)

    2017-03-01

    manipulate s the entangle hanical racker1, Mi a E. Econo el Scheibn arch Laborat e Solutions, I at the Naval ysics, Virginia es...stal waveguide the membrane h resolution ed by sending cavity with a . , resolu single photo ...ability to as enhance the this platform . . . .

  9. High-temperature operating non-volatile memory of printable single-wall carbon nanotubes self-assembled with a conjugate block copolymer.

    Science.gov (United States)

    Hwang, Sun Kak; Choi, Jae Ryung; Bae, Insung; Hwang, Ihn; Cho, Suk Man; Huh, June; Park, Cheolmin

    2013-03-25

    Printable non-volatile polymer memories are fabricated with solution-processed nanocomposite films of poly(styrene-block-paraphenylene) (PS-b-PPP) and single-wall carbon nanotubes (SWNTs). The devices show stable data retention at high temperatures of up to 100 °C without significant performance degradation due to the strong, non-destructive, and isomorphic π-π interactions between the SWNTs and PPP block. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Electronic fine structure and recombination dynamics in single InAs quantum dots

    International Nuclear Information System (INIS)

    Seguin, R.

    2008-01-01

    In the work at hand single InAs/GaAs quantum dots (QDs) are examined via cathodoluminescence spectroscopy. A thorough analysis of the spectra leads to an unambiguous assignment of the lines to the decay of specific excitonic complexes. A special aspect of the Coulomb interaction, the exchange interaction, gives rise to a fine structure in the initial and final states of an excitonic decay. This leads to a fine structure in the emission spectra that again is unique for every excitonic complex. The exchange interaction is discussed in great detail in this work.QDs of different sizes are investigated and the influence on the electronic properties is monitored. Additionally, the structure is modified ex situ by a thermal annealing process. The changes of the spectra under different annealing temperatures are traced. Finally, recombination dynamics of different excitonic complexes are examined by performing time-resolved cathodoluminescence spectroscopy. (orig.)

  11. Electronic fine structure and recombination dynamics in single InAs quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Seguin, R.

    2008-01-28

    In the work at hand single InAs/GaAs quantum dots (QDs) are examined via cathodoluminescence spectroscopy. A thorough analysis of the spectra leads to an unambiguous assignment of the lines to the decay of specific excitonic complexes. A special aspect of the Coulomb interaction, the exchange interaction, gives rise to a fine structure in the initial and final states of an excitonic decay. This leads to a fine structure in the emission spectra that again is unique for every excitonic complex. The exchange interaction is discussed in great detail in this work.QDs of different sizes are investigated and the influence on the electronic properties is monitored. Additionally, the structure is modified ex situ by a thermal annealing process. The changes of the spectra under different annealing temperatures are traced. Finally, recombination dynamics of different excitonic complexes are examined by performing time-resolved cathodoluminescence spectroscopy. (orig.)

  12. DNA–melamine hybrid molecules: from self-assembly to nanostructures

    Directory of Open Access Journals (Sweden)

    Rina Kumari

    2015-06-01

    Full Text Available Single-stranded DNA–melamine hybrid molecular building blocks were synthesized using a phosphoramidation cross-coupling reaction with a zero linker approach. The self-assembly of the DNA–organic hybrid molecules was achieved by DNA hybridization. Following self-assembly, two distinct types of nanostructures in the form of linear chains and network arrays were observed. The morphology of the self-assembled nanostructures was found to depend on the number of DNA strands that were attached to a single melamine molecule.

  13. Polymorphism of lipid self-assembly systems

    International Nuclear Information System (INIS)

    Takahashi, Hiroshi

    2002-01-01

    When lipid molecules are dispersed into an aqueous medium, various self-organized structures are formed, depending on conditions (temperature, concentration, etc), in consequence of the amphipathic nature of the molecules. In addition, lipid self-assembly systems exhibit polymorphic phase transition behavior. Since lipids are one of main components of biomembranes, studies on the structure and thermodynamic properties of lipid self-assembly systems are fundamentally important for the consideration of the stability of biomembranes. (author)

  14. Directed Self-Assembly of Nanodispersions

    Energy Technology Data Exchange (ETDEWEB)

    Furst, Eric M [University of Delaware

    2013-11-15

    Directed self-assembly promises to be the technologically and economically optimal approach to industrial-scale nanotechnology, and will enable the realization of inexpensive, reproducible and active nanostructured materials with tailored photonic, transport and mechanical properties. These new nanomaterials will play a critical role in meeting the 21st century grand challenges of the US, including energy diversity and sustainability, national security and economic competitiveness. The goal of this work was to develop and fundamentally validate methods of directed selfassembly of nanomaterials and nanodispersion processing. The specific aims were: 1. Nanocolloid self-assembly and interactions in AC electric fields. In an effort to reduce the particle sizes used in AC electric field self-assembly to lengthscales, we propose detailed characterizations of field-driven structures and studies of the fundamental underlying particle interactions. We will utilize microscopy and light scattering to assess order-disorder transitions and self-assembled structures under a variety of field and physicochemical conditions. Optical trapping will be used to measure particle interactions. These experiments will be synergetic with calculations of the particle polarizability, enabling us to both validate interactions and predict the order-disorder transition for nanocolloids. 2. Assembly of anisotropic nanocolloids. Particle shape has profound effects on structure and flow behavior of dispersions, and greatly complicates their processing and self-assembly. The methods developed to study the self-assembled structures and underlying particle interactions for dispersions of isotropic nanocolloids will be extended to systems composed of anisotropic particles. This report reviews several key advances that have been made during this project, including, (1) advances in the measurement of particle polarization mechanisms underlying field-directed self-assembly, and (2) progress in the

  15. Heterogeneous electron transfer kinetics and electrocatalytic behaviour of mixed self-assembled ferrocenes and SWCNT layers

    CSIR Research Space (South Africa)

    Nkosi, D

    2010-01-01

    Full Text Available The electron transfer dynamics and electrocatalytic behaviour of ferrocene-terminated self-assembled monolayers (SAMs), co-adsorbed with single-walled carbon nanotubes (SWCNTs) on a gold electrode, have been interrogated for the first time...

  16. Coherence and dephasing in self-assembled quantum dots

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher; Leosson, K.; Birkedal, Dan

    2003-01-01

    We measured dephasing times in InGaAl/As self-assembled quantum dots at low temperature using degenerate four-wave mixing. At 0K, the coherence time of the quantum dots is lifetime limited, whereas at finite temperatures pure dephasing by exciton-phonon interactions governs the quantum dot...... coherence. The inferred homogeneous line widths are significantly smaller than the line widths usually observed in the photoluminescence from single quantum dots indicating an additional inhomogeneours broadening mechanism in the latter....

  17. Self-assembling holographic biosensors and biocomputers.

    Energy Technology Data Exchange (ETDEWEB)

    Light, Yooli Kim; Bachand, George David (Sandia National Laboratories, Albuquerque, NM); Schoeniger, Joseph S.; Trent, Amanda M. (Sandia National Laboratories, Albuquerque, NM)

    2006-05-01

    We present concepts for self-assembly of diffractive optics with potential uses in biosensors and biocomputers. The simplest such optics, diffraction gratings, can potentially be made from chemically-stabilized microtubules migrating on nanopatterned tracks of the motor protein kinesin. We discuss the fabrication challenges involved in patterning sub-micron-scale structures with proteins that must be maintained in aqueous buffers to preserve their activity. A novel strategy is presented that employs dry contact printing onto glass-supported amino-silane monolayers of heterobifunctional crosslinkers, followed by solid-state reactions of these cross-linkers, to graft patterns of reactive groups onto the surface. Successive solution-phase addition of cysteine-mutant proteins and amine-reactive polyethylene glycol allows assembly of features onto the printed patterns. We present data from initial experiments showing successful micro- and nanopatterning of lines of single-cysteine mutants of kinesin interleaved with lines of polyethylene, indicating that this strategy can be employed to arrays of features with resolutions suitable for gratings.

  18. Monitoring the hydration of DNA self-assembled monolayers using an extensional nanomechanical resonator

    DEFF Research Database (Denmark)

    Cagliani, Alberto; Kosaka, Priscila; Tamayo, Javier

    2012-01-01

    We have fabricated an ultrasensitive nanomechanical resonator based on the extensional vibration mode to weigh the adsorbed water on self-assembled monolayers of DNA as a function of the relative humidity. The water adsorption isotherms provide the number of adsorbed water molecules per nucleotide...... for monolayers of single stranded (ss) DNA and after hybridization with the complementary DNA strand. Our results differ from previous data obtained with bulk samples, showing the genuine behavior of these self-assembled monolayers. The hybridization cannot be inferred from the water adsorption isotherms due...... on the interaction between water and self-assembled monolayers of nucleic acids....

  19. MBE and MOCVD growth and properties of self-assembling quantum dot arrays in III-V semiconductor structures

    Science.gov (United States)

    Petroff, P. M.; DenBaars, S. P.

    1994-01-01

    In this paper, we review our latest developments on the growth and properties of self-assembling quantum dot structures. The self-assembling growth technique which was initially developed using molecular beam epitaxy (MBE), has now been extended to metalorganic chemical vapor deposition (MOCVD). The paper first presents structural results based on atomic force and transmission electron microscopy studies of the quantum dot arrays which were obtained by MBE and MOCVD growth. From the detailed structural analysis we have observed that the formation of coherently strained dots of InAs, InAlAs, and InP dots on various cladding layer surfaces. MBE growth of InAs self-assembled dots has achieved the smallest size distribution, with dots as small as 12nm in diameter. For the MOCVD growth of InP dots we have found that the surface morphology and growth temperature of lower cladding layer growth has a profound influence on island size and density. Recent results on the optical and transport properties of the MBE grown self-assembling dot (SAD) arrays are also presented.

  20. Temperature dependent coordinating self-assembly.

    Science.gov (United States)

    Wang, Yijie; Gao, Xuedong; Xiao, Yunlong; Zhao, Qiang; Yang, Jiang; Yan, Yun; Huang, Jianbin

    2015-04-14

    Self-assemblies dominated by coordination interaction are hardly responsive to thermal stimuli. We show that in case the coordinating mode changes with temperature, the resultant assemblies also exhibit temperature dependence. The self-assemblies are constructed with perylene tetracarboxylate and metal ions. Compounds containing a perylene skeleton often self-assemble into micro-belts, which is also true for the combination of perylene tetracarboxylate and metal ions. However, a unique pinecone structure was observed upon increasing the temperature of the coordinating system. The structural transition is triggered by the change of coordinating mode between the carboxylate group and the metal ion. At low temperature, intermolecular coordination occurs which favours the growth of the coordinating self-assembly along the long axis of the perylene. However, upon the elevation of temperature, the coordination is overwhelmed by intra-molecular mode. This is against the extension of the coordinating assembly due to the loss of connection between neighbouring perylenes. As a result, the pinecone structure is observed. We expect that the cases introduced in this work may inspire the design of structurally controllable temperature-dependent soft materials based on coordinating self-assembly.

  1. Size and shape dependent optical properties of InAs quantum dots

    Science.gov (United States)

    Imran, Ali; Jiang, Jianliang; Eric, Deborah; Yousaf, Muhammad

    2018-01-01

    In this study Electronic states and optical properties of self assembled InAs quantum dots embedded in GaAs matrix have been investigated. Their carrier confinement energies for single quantum dot are calculated by time-independent Schrödinger equation in which hamiltonianian of the system is based on effective mass approximation and position dependent electron momentum. Transition energy, absorption coefficient, refractive index and high frequency dielectric constant for spherical, cylindrical and conical quantum dots with different sizes in different dimensions are calculated. Comparative studies have revealed that size and shape greatly affect the electronic transition energies and absorption coefficient. Peaks of absorption coefficients have been found to be highly shape dependent.

  2. Pressure dependence of photoluminescence of InAs/InP self-assembled quantum wires

    International Nuclear Information System (INIS)

    Ruiz-Castillo, M.; Segura, A.; Sans, J.A.; Martinez-Pastor, J.; Fuster, D.; Gonzalez, Y.; Gonzalez, L.

    2007-01-01

    This paper investigates the electronic structure of self-assembled InAs quantum wires (QWrs), grown under different conditions by molecular beam epitaxy on InP, by means of photoluminescence measurements under pressure. In samples with regularly distributed QWrs, room pressure photoluminescence spectra consist of a broad band centred at about 0.85 eV, which can be easily de-convoluted in a few Gaussian peaks. In samples with isolated QWrs, photoluminescence spectra exhibit up to four clearly resolved bands. Applying hydrostatic pressure, the whole emission band monotonously shifts towards higher photon energies with pressure coefficients ranging from 72 to 98 meV/GPa. In contrast to InAs quantum dots on GaAs, quantum wires photoluminescence is observed up to 10 GPa, indicating that InAs QWrs are metastable well above pressure at which bulk InAs undergoes a phase transition to the rock-salt phase (7 GPa). (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Pressure dependence of photoluminescence of InAs/InP self-assembled quantum wires

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Castillo, M.; Segura, A.; Sans, J.A.; Martinez-Pastor, J. [ICMUV, Universitat de Valencia, Ed. Investigacio, 46100 Burjassot (Spain); Fuster, D. [ICMUV, Universitat de Valencia, Ed. Investigacio, 46100 Burjassot (Spain); Instituto de Microelectronica de Madrid (CNM-CSIC), Isaac Newton 8, 28760 Tres Cantos, Madrid (Spain); Gonzalez, Y.; Gonzalez, L. [Instituto de Microelectronica de Madrid (CNM-CSIC), Isaac Newton 8, 28760 Tres Cantos, Madrid (Spain)

    2007-01-15

    This paper investigates the electronic structure of self-assembled InAs quantum wires (QWrs), grown under different conditions by molecular beam epitaxy on InP, by means of photoluminescence measurements under pressure. In samples with regularly distributed QWrs, room pressure photoluminescence spectra consist of a broad band centred at about 0.85 eV, which can be easily de-convoluted in a few Gaussian peaks. In samples with isolated QWrs, photoluminescence spectra exhibit up to four clearly resolved bands. Applying hydrostatic pressure, the whole emission band monotonously shifts towards higher photon energies with pressure coefficients ranging from 72 to 98 meV/GPa. In contrast to InAs quantum dots on GaAs, quantum wires photoluminescence is observed up to 10 GPa, indicating that InAs QWrs are metastable well above pressure at which bulk InAs undergoes a phase transition to the rock-salt phase (7 GPa). (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Remote control of self-assembled microswimmers

    Science.gov (United States)

    Grosjean, G.; Lagubeau, G.; Darras, A.; Hubert, M.; Lumay, G.; Vandewalle, N.

    2015-11-01

    Physics governing the locomotion of microorganisms and other microsystems is dominated by viscous damping. An effective swimming strategy involves the non-reciprocal and periodic deformations of the considered body. Here, we show that a magnetocapillary-driven self-assembly, composed of three soft ferromagnetic beads, is able to swim along a liquid-air interface when powered by an external magnetic field. More importantly, we demonstrate that trajectories can be fully controlled, opening ways to explore low Reynolds number swimming. This magnetocapillary system spontaneously forms by self-assembly, allowing miniaturization and other possible applications such as cargo transport or solvent flows.

  5. Logical NAND and NOR Operations Using Algorithmic Self-assembly of DNA Molecules

    Science.gov (United States)

    Wang, Yanfeng; Cui, Guangzhao; Zhang, Xuncai; Zheng, Yan

    DNA self-assembly is the most advanced and versatile system that has been experimentally demonstrated for programmable construction of patterned systems on the molecular scale. It has been demonstrated that the simple binary arithmetic and logical operations can be computed by the process of self assembly of DNA tiles. Here we report a one-dimensional algorithmic self-assembly of DNA triple-crossover molecules that can be used to execute five steps of a logical NAND and NOR operations on a string of binary bits. To achieve this, abstract tiles were translated into DNA tiles based on triple-crossover motifs. Serving as input for the computation, long single stranded DNA molecules were used to nucleate growth of tiles into algorithmic crystals. Our method shows that engineered DNA self-assembly can be treated as a bottom-up design techniques, and can be capable of designing DNA computer organization and architecture.

  6. Bola-amphiphile self-assembly

    DEFF Research Database (Denmark)

    Svaneborg, Carsten

    2012-01-01

    Bola-amphiphiles are rod-like molecules where both ends of the molecule likes contact with water, while the central part of the molecule dislikes contact with water. What do such molecules do when they are dissolved in water? They self-assemble into micelles. This is a Dissipartive particle...

  7. Stabilization of Self-Assembled Alumina Mesophases

    NARCIS (Netherlands)

    Perez, Lidia Lopez; Perdriau, Sebastien; ten Brink, Gert; Kooi, Bart J.; Heeres, Hero Jan; Melian-Cabrera, Ignacio

    2013-01-01

    An efficient route to stabilize alumina mesophases derived from evaporation-induced self-assembly is reported after investigating various aspects in-depth: influence of the solvent (EtOH, s-BuOH, and t-BuOH) on the textural and structural properties of the mesophases based on aluminum

  8. Self-assembled nanogaps for molecular electronics

    International Nuclear Information System (INIS)

    Tang Qingxin; Tong Yanhong; Jain, Titoo; Hassenkam, Tue; Moth-Poulsen, Kasper; Bjoernholm, Thomas; Wan Qing

    2009-01-01

    A nanogap for molecular devices was realized using solution-based self-assembly. Gold nanorods were assembled to gold nanoparticle-coated conducting SnO 2 :Sb nanowires via thiol end-capped oligo(phenylenevinylene)s (OPVs). The molecular gap was easily created by the rigid molecule itself during self-assembly and the gap length was determined by the molecule length. The gold nanorods and gold nanoparticles, respectively covalently bonded at the two ends of the molecule, had very small dimensions, e.g. a width of ∼20 nm, and hence were expected to minimize the screening effect. The ultra-long conducting SnO 2 :Sb nanowires provided the bridge to connect one of the electrodes of the molecular device (gold nanoparticle) to the external circuit. The tip of the atomic force microscope (AFM) was contacted onto the other electrode (gold nanorod) for the electrical measurement of the OPV device. The conductance measurement confirmed that the self-assembly of the molecules and the subsequent self-assembly of the gold nanorods was a feasible method for the fabrication of the nanogap of the molecular devices.

  9. Self Assembly and Pyroelectric Poling for Organics

    Science.gov (United States)

    2015-07-06

    and semiconducting molecular phosphonic acid (PA) self-assembled monolayers (SAMs) have been developed for applications in organic field-effect...SAM structure and electronic performance of various commonly used organic semiconducting small molecules/polymers. Mechanisms for improving device...Fig. 3). This study represents a major advancement in understanding the mechanisms at play between SAMs and linear organic semiconducting molecules. A

  10. Self-assembly of patchy colloidal dumbbells

    NARCIS (Netherlands)

    Avvisati, Guido; Vissers, Teun; Dijkstra, Marjolein

    2015-01-01

    We employ Monte Carlo simulations to investigate the self-assembly of patchy colloidal dumbbells interacting via a modified Kern-Frenkel potential by probing the system concentration and dumbbell shape. We consider dumbbells consisting of one attractive sphere with diameter sigma(1) and one

  11. Self-assembled nanogaps for molecular electronics

    DEFF Research Database (Denmark)

    Tang, Qingxin; Tong, Yanhong; Jain, Titoo

    2009-01-01

    A nanogap for molecular devices was realized using solution-based self-assembly. Gold nanorods were assembled to gold nanoparticle-coated conducting SnO2:Sb nanowires via thiol end-capped oligo(phenylenevinylene)s (OPVs). The molecular gap was easily created by the rigid molecule itself during self...

  12. Narrow emission linewidths of positioned InAs quantum dots grown on pre-patterned GaAs(100) substrates

    International Nuclear Information System (INIS)

    Skiba-Szymanska, Joanna; Ward, Martin B; Ellis, David J P; Shields, Andrew J; Jamil, Ayesha; Farrer, Ian; Nicoll, Christine A; Griffiths, Jonathan P; Anderson, David; Jones, Geb A C; Ritchie, David A

    2011-01-01

    We report photoluminescence measurements on a single layer of site-controlled InAs quantum dots (QDs) grown by molecular beam epitaxy (MBE) on pre-patterned GaAs(100) substrates with a 15 nm re-growth buffer separating the dots from the re-growth interface. A process for cleaning the re-growth interface allows us to measure single dot emission linewidths of 80 μeV under non-resonant optical excitation, similar to that observed for self-assembled QDs. The dots reveal excitonic transitions confirmed by power dependence and fine structure splitting measurements. The emission wavelengths are stable, which indicates the absence of a fluctuating charge background in the sample and confirms the cleanliness of the re-growth interface.

  13. A Novel Strategy for Synthesis of Gold Nanoparticle Self Assemblies

    NARCIS (Netherlands)

    Verma, Jyoti; Lal, Sumit; van Veen, Henk A.; van Noorden, Cornelis J. F.

    2014-01-01

    Gold nanoparticle self assemblies are one-dimensional structures of gold nanoparticles. Gold nanoparticle self assemblies exhibit unique physical properties and find applications in the development of biosensors. Methodologies currently available for lab-scale and commercial synthesis of gold

  14. Multi-scale ordering of self-assembled InAs/GaAs(001 quantum dots

    Directory of Open Access Journals (Sweden)

    Kiravittaya S

    2006-01-01

    Full Text Available AbstractOrdering phenomena related to the self-assembly of InAs quantum dots (QD grown on GaAs(001 substrates are experimentally investigated on different length scales. On the shortest length-scale studied here, we examine the QD morphology and observe two types of QD shapes, i.e., pyramids and domes. Pyramids are elongated along the 12345678910 directions and are bounded by {137} facets, while domes have a multi-facetted shape. By changing the growth rates, we are able to control the size and size homogeneity of freestanding QDs. QDs grown by using low growth rate are characterized by larger sizes and a narrower size distribution. The homogeneity of buried QDs is measured by photoluminescence spectroscopy and can be improved by low temperature overgrowth. The overgrowth induces the formation of nanostructures on the surface. The fabrication of self-assembled nanoholes, which are used as a template to induce short-range positioning of QDs, is also investigated. The growth of closely spaced QDs (QD molecules containing 2–6 QDs per QD molecule is discussed. Finally, the long-range positioning of self-assembled QDs, which can be achieved by the growth on patterned substrates, is demonstrated. Lateral QD replication observed during growth of three-dimensional QD crystals is reported.

  15. Self-assembly between biomacromolecules and lipids

    Science.gov (United States)

    Liang, Hongjun

    Anionic DNA and cationic lipsomes can self-assemble into a multi-lamellar structure where two-dimensional (2-D) lipid sheets confine a periodic one-dimensional (1-D) lattice of parallel DNA chains, between which Cd2+ ions can condense, and be subsequently reacted with H 2S to template CdS nanorods with crystallographic control analogous to biomineralization. The strong electrostatic interactions align the templated CdS (002) polar planes parallel to the negatively charged sugar-phosphate DNA backbone, which indicates that molecular details of the DNA molecule are imprinted onto the inorganic crystal structure. The resultant nanorods have (002) planes tilted by ˜60° with respect to the rod axis, in contrast to all known II-VI semiconductor nanorods. Rational design of the biopolymer-membrane templates is possible, as demonstrated by the self-assembly between anionic M13 virus and cationic membrane. The filamentous virus has diameter ˜3x larger but similar surface charge density as DNA, the self-assembled complexes maintain the multi-lamellar structure, but pore sizes are ˜10x larger in area, which can be used to package and organize large functional molecules. Not only the counter-charged objects can self-assemble, the like-charged biopolymer and membrane can also self-assemble with the help of multivalent ions. We have investigated anionic lipid-DNA complexes induced by a range of divalent ions to show how different ion-mediated interactions are expressed in the self-assembled structures, which include two distinct lamellar phases and an inverted hexagonal phase. DNA can be selectively organized into or expelled out of the lamellar phases depending on membrane charge density and counterion concentration. For a subset of ion (Zn2+ etc.) at high enough concentration, 2-D inverted hexagonal phase can be formed where DNA strands are coated with anionic lipid tubes via interaction with Zn2+ ions. We suggest that the effect of ion binding on lipid's spontaneous

  16. Surface Brillouin scattering measurement of the elastic constants of single crystal InAs0.91Sb0.09

    International Nuclear Information System (INIS)

    Kotane, L M; Comins, J D; Every, A G; Botha, J R

    2011-01-01

    Surface Brillouin scattering of light has been used to measure the angular dependence of the Rayleigh surface acoustic wave (SAW), pseudo surface acoustic wave (PSAW) and longitudinal lateral wave (LLW) speeds in a (100)-oriented single crystal of the ternary semiconductor alloy InAs 0.91 Sb 0.09 . The wave speed measurements have been used to determine the room temperature values of the elastic constants C 11 , C 12 and C 44 of the alloy. A simple and robust fitting procedure has been implemented for recovering the elastic constants, in which the merit function is constructed from explicit secular functions that determine the surface and lateral wave speeds in the [001] and [011] crystallographic directions. In the fitting, relatively larger weighting factors have been assigned to the SAW and PSAW data because of the greater precision with which the surface modes can be measured as compared with the lateral wave.

  17. Self-assembly of heterojunction quantum dots(HeQuaDs)

    Science.gov (United States)

    Eyink, K. G.; Tomich, D. H.; Grazulis, L.; Pitz, J. J.; Mahalingam, K.; Shank, J.; Munshi, S.; Ulrich, B.

    2006-02-01

    Quantum dots (QDs) have been receiving considerable attention due to the unique properties, which arise due to the confinement of the electron and holes in a lower band gap material. The InAs on GaAs material system is one of the most studied combinations in which quantum dots form during epitaxy. These QDs form in a Stranski Krastanov manner via a self-assembly process in which the dots nucleate at a critical adatom coverage on a wetting layer of InAs. QDs may be vertically aligned by using the residual strain above a buried dot layer to enhance the nucleation of the second layer of dots. In this work, we show the formation of QDs, which are composed of multiple materials, can be formed through a marriage of these two concepts. In this particular demonstration, we formed InAs dots on GaAs andcrowned the QDs with GaSb and encapsulated the entire structure with GaAs. Atomic Force Microscopy shows additional nucleation between the InAs layers has been minimized and cross-sectional transmission electron microscopy shows the formation the composite structure. Transmission electron microscopy indicated a clear boundary between the GaSb and InAs regions. AFM analysis of the HeQuaD structure shows that GaSb material grows mainly on the two (1 1 0) inclined facets. Thus, the HeQuaD is elongated along the (1 1 0) direction. We have also obtained preliminary photoluminescence (PL) from a 3 layer GaS/InAs HeQuaD structure with a peak around 1.3 microns.

  18. Equation of State for Phospholipid Self-Assembly

    DEFF Research Database (Denmark)

    Marsh, Derek

    2016-01-01

    of transfer converge at ∼-18°C. An equation of state for the free energy of self-assembly formulated from this thermodynamic data depends on the heat capacity of transfer as the sole parameter needed to specify a particular lipid. For lipids lacking calorimetric data, measurement of the critical micelle...... concentration at a single temperature suffices to define an effective heat capacity according to the model. Agreement with the experimental temperature dependence of the critical micelle concentration is then good. The predictive powers should extend also to amphiphile partitioning and the kinetics of lipid...

  19. Long lived coherence in self-assembled quantum dots

    DEFF Research Database (Denmark)

    Birkedal, Dan; Leosson, Kristjan; Hvam, Jørn Märcher

    2001-01-01

    We report measurements of ultralong coherence in self-assembled quantum dots. Transient four-wave mixing experiments at 5 K show an average dephasing time of 372 ps, corresponding to a homogeneous linewidth of 3.5 mu eV, which is significantly smaller than the linewidth observed in single-dot...... luminescence. Time-resolved luminescence measurements show a lifetime of the dot ground state of 800 ps, demonstrating the presence of pure dephasing at finite temperature. The homogeneous width is lifetime limited only at temperatures approaching 0 K....

  20. Long coherence times in self-assembled semiconductor quantum dots

    DEFF Research Database (Denmark)

    Birkedal, Dan; Leosson, K.; Hvam, Jørn Märcher

    2002-01-01

    We report measurements of ultra-long coherence in self-assembled quantum dots. Transient four-wave mixing experiments at 5 K show an average dephasing time of 372 ps, corresponding to a homogeneous linewidth of 3.5 mueV, which is significantly smaller than the linewidth observed in single-dot...... luminescence. Time-resolved luminescence measurements show a lifetime of the dot ground state of 800 ps demonstrating the presence of pure dephasing at finite temperature. The homogeneous width is lifetime limited only at temperatures approaching 0 K....

  1. Ternary self-assemblies in water

    DEFF Research Database (Denmark)

    Hill, Leila R.; Blackburn, Octavia A.; Jones, Michael W.

    2013-01-01

    The self-assembly of higher order structures in water is realised by using the association of 1,3-biscarboxylates to binuclear meta-xylyl bridged DO3A complexes. Two dinicotinate binding sites are placed at a right-angle in a rhenium complex, which is shown to form a 1 : 2 complex with α,α'-bis(E......The self-assembly of higher order structures in water is realised by using the association of 1,3-biscarboxylates to binuclear meta-xylyl bridged DO3A complexes. Two dinicotinate binding sites are placed at a right-angle in a rhenium complex, which is shown to form a 1 : 2 complex with α...

  2. Self-assembling membranes and related methods thereof

    Science.gov (United States)

    Capito, Ramille M; Azevedo, Helena S; Stupp, Samuel L

    2013-08-20

    The present invention relates to self-assembling membranes. In particular, the present invention provides self-assembling membranes configured for securing and/or delivering bioactive agents. In some embodiments, the self-assembling membranes are used in the treatment of diseases, and related methods (e.g., diagnostic methods, research methods, drug screening).

  3. SUPPORTING INFORMATION Gold nanodots self-assembled ...

    Indian Academy of Sciences (India)

    VICHU

    Figure S1. Catalytic test reactions carried out for different AuNDs catalysts. Figure S2. Catalytic test reactions carried out for AuNDs prepared using different Au concentrations. Figure S3. AFM images of self-assembled AuNDs and bare PADA films. Figure S4. Recycle study of catalytic plate. Figure S5-S16. 1H and 13C NMR ...

  4. Self-assembled Nanomaterials for Chemotherapeutic Applications

    Science.gov (United States)

    Shieh, Aileen

    The self-assembly of short designed peptides into functional nanostructures is becoming a growing interest in a wide range of fields from optoelectronic devices to nanobiotechnology. In the medical field, self-assembled peptides have especially attracted attention with several of its attractive features for applications in drug delivery, tissue regeneration, biological engineering as well as cosmetic industry and also the antibiotics field. We here describe the self-assembly of peptide conjugated with organic chromophore to successfully deliver sequence independent micro RNAs into human non-small cell lung cancer cell lines. The nanofiber used as the delivery vehicle is completely non-toxic and biodegradable, and exhibit enhanced permeability effect for targeting malignant tumors. The transfection efficiency with nanofiber as the delivery vehicle is comparable to that of the commercially available RNAiMAX lipofectamine while the toxicity is significantly lower. We also conjugated the peptide sequence with camptothecin (CPT) and observed the self-assembly of nanotubes for chemotherapeutic applications. The peptide scaffold is non-toxic and biodegradable, and drug loading of CPT is high, which minimizes the issue of systemic toxicity caused by extensive burden from the elimination of drug carriers. In addition, the peptide assembly drastically increases the solubility and stability of CPT under physiological conditions in vitro, while active CPT is gradually released from the peptide chain under the slight acidic tumor cell environment. Cytotoxicity results on human colorectal cancer cells and non-small cell lung cancer cell lines display promising anti-cancer properties compared to the parental CPT drug, which cannot be used clinically due to its poor solubility and lack of stability in physiological conditions. Moreover, the peptide sequence conjugated with 5-fluorouracil formed a hydrogel with promising topical chemotherapeutic applications that also display

  5. Silk nanofibril self-assembly versus electrospinning.

    Science.gov (United States)

    Humenik, Martin; Lang, Gregor; Scheibel, Thomas

    2018-02-02

    Natural silk fibers represent one of the most advanced blueprints for (bio)polymer scientists, displaying highly optimized mechanical properties due to their hierarchical structures. Biotechnological production of silk proteins and implementation of advanced processing methods enabled harnessing the potential of these biopolymer not just based on the mechanical properties. In addition to fibers, diverse morphologies can be produced, such as nonwoven meshes, films, hydrogels, foams, capsules and particles. Among them, nanoscale fibrils and fibers are particularly interesting concerning medical and technical applications due to their biocompatibility, environmental and mechanical robustness as well as high surface-to-volume ratio. Therefore, we introduce here self-assembly of silk proteins into hierarchically organized structures such as supramolecular nanofibrils and fabricated materials based thereon. As an alternative to self-assembly, we also present electrospinning a technique to produce nanofibers and nanofibrous mats. Accordingly, we introduce a broad range of silk-based dopes, used in self-assembly and electrospinning: natural silk proteins originating from natural spinning glands, natural silk protein solutions reconstituted from fibers, engineered recombinant silk proteins designed from natural blueprints, genetic fusions of recombinant silk proteins with other structural or functional peptides and moieties, as well as hybrids of recombinant silk proteins chemically conjugated with nonproteinaceous biotic or abiotic molecules. We highlight the advantages but also point out drawbacks of each particular production route. The scope includes studies of the natural self-assembly mechanism during natural silk spinning, production of silk fibrils as new nanostructured non-native scaffolds allowing dynamic morphological switches, as well as studying potential applications. This article is categorized under:  Biology-Inspired Nanomaterials

  6. Self-assembly of polar food lipids.

    Science.gov (United States)

    Leser, Martin E; Sagalowicz, Laurent; Michel, Martin; Watzke, Heribert J

    2006-11-16

    Polar lipids, such as monoglycerides and phospholipids, are amphiphilic molecules commonly used as processing and stabilization aids in the manufacturing of food products. As all amphiphilic molecules (surfactants, emulsifiers) they show self-assembly phenomena when added into water above a certain concentration (the critical aggregation concentration). The variety of self-assembly structures that can be formed by polar food lipids is as rich as it is for synthetic surfactants: micelles (normal and reverse micelles), microemulsions, and liquid crystalline phases can be formulated using food-grade ingredients. In the present work we will first discuss microemulsion and liquid crystalline phase formation from ingredients commonly used in food industry. In the last section we will focus on three different potential application fields, namely (i) solubilization of poorly water soluble ingredients, (ii) controlled release, and (iii) chemical reactivity. We will show how the interfacial area present in self-assembly structures can be used for (i) the delivery of functional molecules, (ii) controlling the release of functional molecules, and (iii) modulating the chemical reactivity between reactive molecules, such as aromas.

  7. Self-Assembly of Nanoparticle Surfactants

    Science.gov (United States)

    Lombardo, Michael T.

    Self-assembly utilizes non-covalent forces to organize smaller building blocks into larger, organized structures. Nanoparticles are one type of building block and have gained interest recently due to their unique optical and electrical properties which have proved useful in fields such as energy, catalysis, and advanced materials. There are several techniques currently used to self-assemble nanoparticles, each with its own set of benefits and drawbacks. Here, we address the limited number of techniques in non-polar solvents by introducing a method utilizing amphiphilic gold nanoparticles. Grafted polymer chains provide steric stabilization while small hydrophilic molecules induce assembly through short range attractive forces. The properties of these self-assembled structures are found to be dependent on the polymer and small molecules surface concentrations and chemistries. These particles act as nanoparticle surfactants and can effectively stabilize oil-water interfaces, such as in an emulsion. In addition to the work in organic solvent, similar amphiphilic particles in aqueous media are shown to effectively stabilize oil-in-water emulsions that show promise as photoacoustic/ultrasound theranostic agents.

  8. Self-assembled biomimetic nanoreactors I: Polymeric template

    Science.gov (United States)

    McTaggart, Matt; Malardier-Jugroot, Cecile; Jugroot, Manish

    2015-09-01

    The variety of nanoarchitectures made feasible by the self-assembly of alternating copolymers opens new avenues for biomimicry. Indeed, self-assembled structures allow the development of nanoreactors which combine the efficiency of high surface area metal active centres to the effect of confinement due to the very small cavities generated by the self-assembly process. A novel self-assembly of high molecular weight alternating copolymers is characterized in the present study. The self-assembly is shown to organize into nanosheets, providing a 2 nm hydrophobic cavity with a 1D confinement.

  9. Interfacial rheological properties of self-assembling biopolymer microcapsules.

    Science.gov (United States)

    Xie, Kaili; de Loubens, Clément; Dubreuil, Frédéric; Gunes, Deniz Z; Jaeger, Marc; Léonetti, Marc

    2017-09-20

    Tuning the mechanical properties of microcapsules through a cost-efficient route of fabrication is still a challenge. The traditional method of layer-by-layer assembly of microcapsules allows building a tailored composite multi-layer membrane but is technically complex as it requires numerous steps. The objective of this article is to characterize the interfacial rheological properties of self-assembling biopolymer microcapsules that were obtained in one single facile step. This thorough study provides new insights into the mechanics of these weakly cohesive membranes. Firstly, suspensions of water-in-oil microcapsules were formed in microfluidic junctions by self-assembly of two oppositely charged polyelectrolytes, namely chitosan (water soluble) and phosphatidic fatty acid (oil soluble). In this way, composite membranes of tunable thickness (between 40 and 900 nm measured by AFM) were formed at water/oil interfaces in a single step by changing the composition. Secondly, microcapsules were mechanically characterized by stretching them up to break-up in an extensional flow chamber which extends the relevance and convenience of the hydrodynamic method to weakly cohesive membranes. Finally, we show that the design of microcapsules can be 'engineered' in an extensive way since they present a wealth of interfacial rheological properties in terms of elasticity, plasticity and yield stress whose magnitudes can be controlled by the composition. These behaviors are explained by the variation of the membrane thickness with the physico-chemical parameters of the process.

  10. Cross-sectional nanophotoluminescence studies of Stark effects in self-assembled quantum dots

    International Nuclear Information System (INIS)

    Htoon, H.; Keto, J. W.; Baklenov, O.; Holmes, A. L. Jr.; Shih, C. K.

    2000-01-01

    By using a cross-sectional geometry, we show the capability to perform single-dot spectroscopy in self-assembled quantum dots using far-field optics. By using this method, we study the quantum-confined Stark effect in self-assembled quantum dots. For single-stack quantum dots (QDs), we find that the spectra are redshifted with an increase in electric field. For vertically coupled double-stack quantum dots, while most of the QDs are redshifted, some QDs show blueshifted spectra, which can be interpreted as an evidence of coupled QD molecules. (c) 2000 American Institute of Physics

  11. Adsorption Dynamics and Self-Assembled L-cysteine on Au(100)

    DEFF Research Database (Denmark)

    Engelbrekt, Christian; Nazmutdinov, Renat R.; Yan, Jiawei

    can be structurally mapped at the single - molecule level . In this work, we have followed the adsorption of L - cysteine on single - crystal Au(100) by measuring the electrode potential dynamics during the adsorption process. In situ STM revealed the structure of the self - assembled ordered layers...

  12. DNA Self-Assembly and Computation Studied with a Coarse-grained Dynamic Bonded Model

    DEFF Research Database (Denmark)

    Svaneborg, Carsten; Fellermann, Harold; Rasmussen, Steen

    2012-01-01

    We utilize a coarse-grained directional dynamic bonding DNA model [C. Svaneborg, Comp. Phys. Comm. (In Press DOI:10.1016/j.cpc.2012.03.005)] to study DNA self-assembly and DNA computation. In our DNA model, a single nucleotide is represented by a single interaction site, and complementary sites can...

  13. Self-assembly of colloidal surfactants

    Science.gov (United States)

    Kegel, Willem

    2012-02-01

    We developed colloidal dumbbells with a rough and a smooth part, based on a method reported in Ref. [1]. Specific attraction between the smooth parts occurs upon addition of non-adsorbing polymers of appropriate size. We present the first results in terms of the assemblies that emerge in these systems. [4pt] [1] D.J. Kraft, W.S. Vlug, C.M. van Kats, A. van Blaaderen, A. Imhof and W.K. Kegel, Self-assembly of colloids with liquid protrusions, J. Am. Chem. Soc. 131, 1182, (2009)

  14. Self-assembled silicon oxide nanojunctions

    International Nuclear Information System (INIS)

    Lin, L W; Tang, Y H; Chen, C S

    2009-01-01

    Novel silicon oxide nanojunction structures with various shapes, such as X type, Y type, T type, ringlike and treelike, are fabricated in a self-assembled manner by the hydrothermal method without any metallic catalyst. In the silicon oxide nanojunctions, both the silicon oxide nanowire part and the junction part consist of the same chemical composition, forming homogeneous homojunctions and being made suitable for application in nanoscale optoelectronics devices. The formation of silicon oxide nanojunctions may be influenced by the surrounding environment in the reaction kettle, growth space among the silicon oxide nanowires and the weight of SiO droplets at the growth tip.

  15. Self-assembly of dodecaphenyl POSS thin films

    Science.gov (United States)

    Handke, Bartosz; Klita, Łukasz; Niemiec, Wiktor

    2017-12-01

    The self-assembly abilities of Dodecaphenyl Polyhedral Oligomeric Silsesquioxane thin films on Si(1 0 0) surfaces were studied. Due to their thermal properties - relatively low sublimation temperature and preservation of molecular structure - cage type silsesquioxanes are ideal material for the preparation of a thin films by Physical Vapor Deposition. The Ultra-High Vacuum environment and the deposition precision of the PVD method enable the study of early stages of thin film growth and its molecular organization. X-ray Reflectivity and Atomic Force Microscopy measurements allow to pursuit size-effects in the structure of thin films with thickness ranges from less than a single molecular layer up to several tens of layers. Thermal treatment of the thin films triggered phase change: from a poorly ordered polycrystalline film into a well-ordered multilayer structure. Self-assembly of the layers is the effect of the π-stacking of phenyl rings, which force molecules to arrange in a superlattice, forming stacks of alternating organic-inorganic layers.

  16. Quantifying quality in DNA self-assembly

    Science.gov (United States)

    Wagenbauer, Klaus F.; Wachauf, Christian H.; Dietz, Hendrik

    2014-01-01

    Molecular self-assembly with DNA is an attractive route for building nanoscale devices. The development of sophisticated and precise objects with this technique requires detailed experimental feedback on the structure and composition of assembled objects. Here we report a sensitive assay for the quality of assembly. The method relies on measuring the content of unpaired DNA bases in self-assembled DNA objects using a fluorescent de-Bruijn probe for three-base ‘codons’, which enables a comparison with the designed content of unpaired DNA. We use the assay to measure the quality of assembly of several multilayer DNA origami objects and illustrate the use of the assay for the rational refinement of assembly protocols. Our data suggests that large and complex objects like multilayer DNA origami can be made with high strand integration quality up to 99%. Beyond DNA nanotechnology, we speculate that the ability to discriminate unpaired from paired nucleic acids in the same macromolecule may also be useful for analysing cellular nucleic acids. PMID:24751596

  17. Self-assembly of patchy colloidal dumbbells.

    Science.gov (United States)

    Avvisati, Guido; Vissers, Teun; Dijkstra, Marjolein

    2015-02-28

    We employ Monte Carlo simulations to investigate the self-assembly of patchy colloidal dumbbells interacting via a modified Kern-Frenkel potential by probing the system concentration and dumbbell shape. We consider dumbbells consisting of one attractive sphere with diameter σ1 and one repulsive sphere with diameter σ2 and center-to-center distance d between the spheres. For three different size ratios, we study the self-assembled structures for different separations l = 2d/(σ1 + σ2) between the two spheres. In particular, we focus on structures that can be assembled from the homogeneous fluid, as these might be of interest in experiments. We use cluster order parameters to classify the shape of the formed structures. When the size of the spheres is almost equal, q = σ2/σ1 = 1.035, we find that, upon increasing l, spherical micelles are transformed to elongated micelles and finally to vesicles and bilayers. For size ratio q = 1.25, we observe a continuously tunable transition from spherical to elongated micelles upon increasing the sphere separation. For size ratio q = 0.95, we find bilayers and vesicles, plus faceted polyhedra and liquid droplets. Our results identify key parameters to create colloidal vesicles with attractive dumbbells in experiments.

  18. Frequency dependence of the radiative decay rate of excitons in self-assembled quantum dots: Experiment and theory

    DEFF Research Database (Denmark)

    Stobbe, Søren; Johansen, Jeppe; Kristensen, Philip Trøst

    2009-01-01

    We analyze time-resolved spontaneous emission from excitons confined in self-assembled InAs quantum dots placed at various distances to a semiconductor-air interface. The modification of the local density of optical states due to the proximity of the interface enables unambiguous determination...... furthermore discuss three models of quantum dot strain and compare the measured wave-function overlap to these models. The observed frequency dependence of the wave-function overlap can be understood qualitatively in terms of the different compressibility of electrons and holes originating from...

  19. Infrared spectroscopy of self-assembled monolayer films on silicon

    Science.gov (United States)

    Rowell, N. L.; Tay, Lilin; Boukherroub, R.; Lockwood, D. J.

    2007-07-01

    Infrared vibrational spectroscopy in an attenuated total reflection (ATR) geometry has been employed to investigate the presence of organic thin layers on Si-wafer surfaces. The phenomena have been simulated to show there can be a field enhancement with the presented single-reflection ATR (SR-ATR) approach which is substantially larger than for conventional ATR or specular reflection. In SR-ATR, a discontinuity of the field normal to the film contributes a field enhancement in the lower index thin film causing a two order of magnitude increase in sensitivity. SR-ATR was employed to characterize a single monolayer of undecylenic acid self-assembled on Si(1 1 1) and to investigate a two monolayer system obtained by adding a monolayer of bovine serum albumin protein.

  20. Self-assembly, Self-organization, Nanotechnology and vitalism

    OpenAIRE

    Bensaude Vincent, Bernadette

    2009-01-01

    International audience; Over the past decades, self-assembly has attracted a lot of research attention and transformed the relations between chemistry, materials science and biology. The paper explores the impact of the current interest in self-assembly techniques on the traditional debate over the nature of life. The first section describes three different research programs of self-assembly in nanotechnology in order to characterize their metaphysical implications: -1- Hybridization ( using ...

  1. Self-assembled software and method of overriding software execution

    Science.gov (United States)

    Bouchard, Ann M.; Osbourn, Gordon C.

    2013-01-08

    A computer-implemented software self-assembled system and method for providing an external override and monitoring capability to dynamically self-assembling software containing machines that self-assemble execution sequences and data structures. The method provides an external override machine that can be introduced into a system of self-assembling machines while the machines are executing such that the functionality of the executing software can be changed or paused without stopping the code execution and modifying the existing code. Additionally, a monitoring machine can be introduced without stopping code execution that can monitor specified code execution functions by designated machines and communicate the status to an output device.

  2. Magnetic self-assembly of small parts

    Science.gov (United States)

    Shetye, Sheetal B.

    Modern society's propensity for miniaturized end-user products is compelling electronic manufacturers to assemble and package different micro-scale, multi-technology components in more efficient and cost-effective manners. As the size of the components gets smaller, issues such as part sticking and alignment precision create challenges that slow the throughput of conventional robotic pick-n-place systems. As an alternative, various self-assembly approaches have been proposed to manipulate micro to millimeter scale components in a parallel fashion without human or robotic intervention. In this dissertation, magnetic self-assembly (MSA) is demonstrated as a highly efficient, completely parallel process for assembly of millimeter scale components. MSA is achieved by integrating permanent micromagnets onto component bonding surfaces using wafer-level microfabrication processes. Embedded bonded powder methods are used for fabrication of the magnets. The magnets are then magnetized using pulse magnetization methods, and the wafers are then singulated to form individual components. When the components are randomly mixed together, self-assembly occurs when the intermagnetic forces overcome the mixing forces. Analytical and finite element methods (FEM) are used to study the force interactions between the micromagnets. The multifunctional aspects of MSA are presented through demonstration of part-to-part and part-to-substrate assembly of 1 mm x 1mm x 0.5 mm silicon components. Part-to-part assembly is demonstrated by batch assembly of free-floating parts in a liquid environment with the assembly yield of different magnetic patterns varying from 88% to 90% in 20 s. Part-to-substrate assembly is demonstrated by assembling an ordered array onto a fixed substrate in a dry environment with the assembly yield varying from 86% to 99%. In both cases, diverse magnetic shapes/patterns are used to control the alignment and angular orientation of the components. A mathematical model is

  3. Searching for avidity by chemical ligation of combinatorially self-assembled DNA-encoded ligand libraries.

    Science.gov (United States)

    Matysiak, Stefan; Hellmuth, Klaus; El-Sagheer, Afaf H; Shivalingam, Arun; Ariyurek, Yavuz; de Jong, Marco; Hollestelle, Martine J; Out, Ruud; Brown, Tom

    2017-12-19

    DNA encoded ligands are self-assembled into bivalent complexes and chemically ligated to link their identities. To demonstrate their potential as a combinatorial screening platform for avidity interactions, the optimal bivalent aptamer design (examplar ligands) for human alpha-thrombin is determined in a single round of selection and the DNA scaffold replaced with minimal impact on the final design.

  4. Molecular Dynamics Study of Alkanethiolate Self-Assembled Monolayer Coated Gold Nanoparticle

    Science.gov (United States)

    2007-06-01

    of Organosulfur Compounds on Au( 111). Implications for Molecular Self-Assembly on Gold 21. Plimpton, S.J., "Fast Parallel Algorithms for Short-Range... Organosulfur Compounds SHAKE Algorithm for Molecular Dynamics." Journal of Adsorbed on Gold Single Crystals: Electron Diffraction Computational Physics, 52

  5. Lithographic stress control for the self-assembly of polymer MEMS structures

    International Nuclear Information System (INIS)

    Lee, S-W; Sameoto, D; Parameswaran, M; Mahanfar, A

    2008-01-01

    We present a novel self-assembly mechanism to produce an assortment of predetermined three-dimensional micromechanical structures in polymer MEMS technology using lithographically defined areas of stress and mechanical reinforcement within a single structural material. This self-assembly technology is based on the tensile stress that arises during the cross-linking of the negative tone, epoxy-based photoresist SU-8. Two different thicknesses of SU-8 are used in a single compliant structure. The first SU-8 layer forms the main structural element and the second SU-8 layer determines the aspects of self-assembly. The second SU-8 layer thickness acts to both to create a stress differential within the structure as well as define the direction in which the induced stress will cause the structure to deform. In this manner, both the magnitude and direction of self-assembled structures can be controlled using a single lithographic step. Although this technique uses a single structural material, the basic concept may be adapted for other processes, with different material choices, for a wide variety of applications

  6. Self-Assembling Brush Polymers Bearing Multisaccharides.

    Science.gov (United States)

    Lee, Jongchan; Kim, Jin Chul; Lee, Hoyeol; Song, Sungjin; Kim, Heesoo; Ree, Moonhor

    2017-06-01

    Three different series of brush polymers bearing glucosyl, maltosyl, or maltotriosyl moiety at the bristle end are successfully prepared by using cationic ring-opening polymerization and two sequential postmodification reactions. All brush polymers, except for the polymer containing 100 mol% maltotriosyl moiety, demonstrate the formation of multibilayer structure in films, always providing saccharide-enriched surface. These self-assembling features are remarkable, regarding the bulkiness of saccharide moieties and the kink in the bristle due to the triazole linker. The saccharide-enriched film surfaces reveal exceptionally high specific binding affinity to concanavalin A but suppress nonspecific binding of plasma proteins severely. Overall, the brush polymers bearing saccharide moieties of various kinds in this study are highly suitable materials for biomedical applications including biosensors. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Controlling water evaporation through self-assembly.

    Science.gov (United States)

    Roger, Kevin; Liebi, Marianne; Heimdal, Jimmy; Pham, Quoc Dat; Sparr, Emma

    2016-09-13

    Water evaporation concerns all land-living organisms, as ambient air is dryer than their corresponding equilibrium humidity. Contrarily to plants, mammals are covered with a skin that not only hinders evaporation but also maintains its rate at a nearly constant value, independently of air humidity. Here, we show that simple amphiphiles/water systems reproduce this behavior, which suggests a common underlying mechanism originating from responding self-assembly structures. The composition and structure gradients arising from the evaporation process were characterized using optical microscopy, infrared microscopy, and small-angle X-ray scattering. We observed a thin and dry outer phase that responds to changes in air humidity by increasing its thickness as the air becomes dryer, which decreases its permeability to water, thus counterbalancing the increase in the evaporation driving force. This thin and dry outer phase therefore shields the systems from humidity variations. Such a feedback loop achieves a homeostatic regulation of water evaporation.

  8. Shape Restoration by Active Self-Assembly

    Directory of Open Access Journals (Sweden)

    D. Arbuckle

    2005-01-01

    Full Text Available Shape restoration is defined as the problem of constructing a desired, or goal, solid shape Sg by growing an initial solid Si, which is a subset of the goal but is otherwise unknown. This definition attempts to capture abstractly a situation that often arises in the physical world when a solid object loses its desired shape due to wear and tear, corrosion or other phenomena. For example, if the top of the femur becomes distorted, the hip joint no longer functions properly and may have to be replaced surgically. Growing it in place back to its original shape would be an attractive alternative to replacement. This paper presents a solution to the shape restoration problem by using autonomous assembly agents (robots that self-assemble to fill the volume between Sg and Si. If the robots have very small dimension (micro or nano, the desired shape is approximated with high accuracy. The assembly agents initially execute a random walk. When two robots meet, they may exchange a small number of messages. The robot behavior is controlled by a finite state machine with a small number of states. Communication contact models chemical communication, which is likely to be the medium of choice for robots at the nanoscale, while small state and small messages are limitations that also are expected of nanorobots. Simulations presented here show that swarms of such robots organize themselves to achieve shape restoration by using distributed algorithms. This is one more example of an interesting geometric problem that can be solved by the Active Self-Assembly paradigm introduced in previous papers by the authors.

  9. Controlled doping by self-assembled dendrimer-like macromolecules

    Science.gov (United States)

    Wu, Haigang; Guan, Bin; Sun, Yingri; Zhu, Yiping; Dan, Yaping

    2017-02-01

    Doping via self-assembled macromolecules might offer a solution for developing single atom electronics by precisely placing individual dopants at arbitrary location to meet the requirement for circuit design. Here we synthesize dendrimer-like polyglycerol macromolecules with each carrying one phosphorus atom in the core. The macromolecules are immobilized by the coupling reagent onto silicon surfaces that are pre-modified with a monolayer of undecylenic acid. Nuclear magnetic resonance (NMR) and X-ray photoelectron spectroscopy (XPS) are employed to characterize the synthesized macromolecules and the modified silicon surfaces, respectively. After rapid thermal annealing, the phosphorus atoms carried by the macromolecules diffuse into the silicon substrate, forming dopants at a concentration of 1017 cm-3. Low-temperature Hall effect measurements reveal that the ionization process is rather complicated. Unlike the widely reported simple ionization of phosphorus dopants, nitrogen and carbon are also involved in the electronic activities in the monolayer doped silicon.

  10. Dynamic simulations of many-body electrostatic self-assembly

    Science.gov (United States)

    Lindgren, Eric B.; Stamm, Benjamin; Maday, Yvon; Besley, Elena; Stace, A. J.

    2018-03-01

    Two experimental studies relating to electrostatic self-assembly have been the subject of dynamic computer simulations, where the consequences of changing the charge and the dielectric constant of the materials concerned have been explored. One series of calculations relates to experiments on the assembly of polymer particles that have been subjected to tribocharging and the simulations successfully reproduce many of the observed patterns of behaviour. A second study explores events observed following collisions between single particles and small clusters composed of charged particles derived from a metal oxide composite. As before, observations recorded during the course of the experiments are reproduced by the calculations. One study in particular reveals how particle polarizability can influence the assembly process. This article is part of the theme issue `Modern theoretical chemistry'.

  11. Self-Assembled PbSe Nanowire:Perovskite Hybrids

    KAUST Repository

    Yang, Zhenyu

    2015-12-02

    © 2015 American Chemical Society. Inorganic semiconductor nanowires are of interest in nano- and microscale photonic and electronic applications. Here we report the formation of PbSe nanowires based on directional quantum dot alignment and fusion regulated by hybrid organic-inorganic perovskite surface ligands. All material synthesis is carried out at mild temperatures. Passivation of PbSe quantum dots was achieved via a new perovskite ligand exchange. Subsequent in situ ammonium/amine substitution by butylamine enables quantum dots to be capped by butylammonium lead iodide, and this further drives the formation of a PbSe nanowire superlattice in a two-dimensional (2D) perovskite matrix. The average spacing between two adjacent nanowires agrees well with the thickness of single atomic layer of 2D perovskite, consistent with the formation of a new self-assembled semiconductor nanowire:perovskite heterocrystal hybrid.

  12. Competition between the In/Ga intermixing and the electronic coupling effects in self-assembled InAs/GaAs double-quantum-dots

    International Nuclear Information System (INIS)

    Pocas, Luiz Carlos; Sawata, Marcella Ferraz; Lourenco, Sidney Alves; Laureto, Edson; Duarte, Jose Leonil; Dias, Ivan Frederico Lupiano; Quivy, A.A.

    2012-01-01

    technique with GaAs spacer layers having different thickness, using photoluminescence technique (PL). PL spectra as a function of the intensity of the excitation laser allowed identifying in a reference sample containing a single layer of QDs, the formation characteristics of self-assembled InAs QDs with bimodal size distribution. The PL results from the samples with stacked InAs/GaAs double-quantum-dots can be explained by a competition between the In/Ga intermixing, which emerge during the growth process, and the electronic coupling dependent on the spacer layer thickness. (author)

  13. Competition between the In/Ga intermixing and the electronic coupling effects in self-assembled InAs/GaAs double-quantum-dots

    Energy Technology Data Exchange (ETDEWEB)

    Pocas, Luiz Carlos; Sawata, Marcella Ferraz [Universidade Tecnologica Federal do Parana (UTFPR), Apucarana, PR (Brazil); Lourenco, Sidney Alves [Universidade Tecnologica Federal do Parana (UTFPR), Londrina, PR (Brazil); Laureto, Edson; Duarte, Jose Leonil; Dias, Ivan Frederico Lupiano [Universidade Estadual de Londrina (UEL), PR (Brazil). Dept. de Fisica; Quivy, A.A. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica

    2012-07-01

    technique with GaAs spacer layers having different thickness, using photoluminescence technique (PL). PL spectra as a function of the intensity of the excitation laser allowed identifying in a reference sample containing a single layer of QDs, the formation characteristics of self-assembled InAs QDs with bimodal size distribution. The PL results from the samples with stacked InAs/GaAs double-quantum-dots can be explained by a competition between the In/Ga intermixing, which emerge during the growth process, and the electronic coupling dependent on the spacer layer thickness. (author)

  14. Self-Assembly of Magnetic Colloids in Soft Confinement

    NARCIS (Netherlands)

    Liu, P.

    2016-01-01

    The central theme in this thesis is the effect of the soft confinements consisting of molecular microtubes and fluid interfaces, on the self-assembly of colloids. We have specially focused on the synthesis of magnetic colloids and the magnetic responses of self-assembled structures including

  15. Self-assembly behaviour of conjugated terthiophene surfactants in water

    NARCIS (Netherlands)

    van Rijn, Patrick; Janeliunas, Dainius; Brizard, Aurelie M.; Stuart, Marc C. A.; Koper, Ger J. M.; Eelkema, Rienk; van Esch, Jan H.

    2011-01-01

    Conjugated self-assembled systems in water are of great interest because of their potential application in biocompatible supramolecular electronics, but so far their supramolecular chemistry remains almost unexplored. Here we present amphiphilic terthiophenes as a general self-assembling platform

  16. Electrostatic Self-Assembly of Polysaccharides into Nanofibers

    DEFF Research Database (Denmark)

    Mendes, Ana Carina Loureiro; Strohmenger, Timm; Goycoolea, Francisco

    2017-01-01

    components were tested and observed to affect the diameter, which ranged from 100 to 500 nm, and morphology of the self-assembled nanofibers. The release of diclofenac, as model drug, from self-assembled xanthan-chitosan nanofibers was demonstrated, suggesting that these nanostructures can be used...

  17. Self-assembled nanofiber coatings for controlling cell responses

    NARCIS (Netherlands)

    Barros, Raquel C.; Gelens, Edith; Bulten, Erna; Tuin, Annemarie; de Jong, Menno R; Kuijer, Roel; van Kooten, Theo G

    Nanofibers are thought to enhance cell adhesion, growth, and function. We demonstrate that the choice of building blocks in self-assembling nanofiber systems can be used to control cell behavior. The use of 2 D-coated, self-assembled nanofibers in controlling lens epithelial cells, fibroblasts, and

  18. Different carboxylic acid homodimers in self-assemblies of adducts ...

    Indian Academy of Sciences (India)

    H2cpa) observed inthe self-assemblies of salts or cocrystals of H2cpa with nitrogen containing compounds are discussed. Pyridiniumsalt of the H2cpa is a self-assembly of Hcpa with the pyridinium cation. The assembly is a combinationof ...

  19. Tetrahymena dynamin-related protein 6 self-assembles ...

    Indian Academy of Sciences (India)

    Usha P Kar

    2017-12-30

    Dec 30, 2017 ... We discuss the self-assembly structure of Drp6 and explain the basis for lack of membrane-stimulated GTPase activity. Keywords. Drp6; dynamin; GTPase activity; membrane remodelling; self-assembly; Tetrahymena. 1. Introduction. The Tetrahymena dynamin-related protein 6 (Drp6) localizes.

  20. Nondeterministic self-assembly of two tile types on a lattice.

    Science.gov (United States)

    Tesoro, S; Ahnert, S E

    2016-04-01

    Self-assembly is ubiquitous in nature, particularly in biology, where it underlies the formation of protein quaternary structure and protein aggregation. Quaternary structure assembles deterministically and performs a wide range of important functions in the cell, whereas protein aggregation is the hallmark of a number of diseases and represents a nondeterministic self-assembly process. Here we build on previous work on a lattice model of deterministic self-assembly to investigate nondeterministic self-assembly of single lattice tiles and mixtures of two tiles at varying relative concentrations. Despite limiting the simplicity of the model to two interface types, which results in 13 topologically distinct single tiles and 106 topologically distinct sets of two tiles, we observe a wide variety of concentration-dependent behaviors. Several two-tile sets display critical behaviors in the form of a sharp transition from bound to unbound structures as the relative concentration of one tile to another increases. Other sets exhibit gradual monotonic changes in structural density, or nonmonotonic changes, while again others show no concentration dependence at all. We catalog this extensive range of behaviors and present a model that provides a reasonably good estimate of the critical concentrations for a subset of the critical transitions. In addition, we show that the structures resulting from these tile sets are fractal, with one of two different fractal dimensions.

  1. Computationally designed peptides for self-assembly of nanostructured lattices.

    Science.gov (United States)

    Zhang, Huixi Violet; Polzer, Frank; Haider, Michael J; Tian, Yu; Villegas, Jose A; Kiick, Kristi L; Pochan, Darrin J; Saven, Jeffery G

    2016-09-01

    Folded peptides present complex exterior surfaces specified by their amino acid sequences, and the control of these surfaces offers high-precision routes to self-assembling materials. The complexity of peptide structure and the subtlety of noncovalent interactions make the design of predetermined nanostructures difficult. Computational methods can facilitate this design and are used here to determine 29-residue peptides that form tetrahelical bundles that, in turn, serve as building blocks for lattice-forming materials. Four distinct assemblies were engineered. Peptide bundle exterior amino acids were designed in the context of three different interbundle lattices in addition to one design to produce bundles isolated in solution. Solution assembly produced three different types of lattice-forming materials that exhibited varying degrees of agreement with the chosen lattices used in the design of each sequence. Transmission electron microscopy revealed the nanostructure of the sheetlike nanomaterials. In contrast, the peptide sequence designed to form isolated, soluble, tetrameric bundles remained dispersed and did not form any higher-order assembled nanostructure. Small-angle neutron scattering confirmed the formation of soluble bundles with the designed size. In the lattice-forming nanostructures, the solution assembly process is robust with respect to variation of solution conditions (pH and temperature) and covalent modification of the computationally designed peptides. Solution conditions can be used to control micrometer-scale morphology of the assemblies. The findings illustrate that, with careful control of molecular structure and solution conditions, a single peptide motif can be versatile enough to yield a wide range of self-assembled lattice morphologies across many length scales (1 to 1000 nm).

  2. Self-assembled nanostructures in oxide ceramics

    Science.gov (United States)

    Ansari, Haris Masood

    Self-assembled nanoislands in the gadolinia-doped ceria (GDC)/ yttria-stabilized zirconia (YSZ) system have recently been discovered. This dissertation is an attempt to study the mechanism by which these nanoislands form. Nanoislands in the GDC/YSZ system form via a strain based mechanism whereby the stress accumulated in the GDC-doped surface layer on the YSZ substrate is relieved by creation of self-assembled nanoislands by a mechanism similar to the ATG instability. Unlike what was previously believed, a modified surface layer is not required prior to annealing, that is, this modification can occur during annealing by surface diffusion of dopants from the GDC sources (distributed on the YSZ surface in either lithographically defined patch or powder form) with simultaneous breakup, which occurs at the hold temperature independent of the subsequent cooling. Additionally, we have developed a simple powder based process of producing nanoislands which bypasses lithography and thin film deposition setups. The versatility of the process is apparent in the fact that it allows us to study the effect of experimental parameters such as soak time, temperature, cooling rate and the effect of powder composition on nanoisland properties in a facile way. With the help of this process, we have shown that nanoislands are not peculiar to Gd containing oxide source materials on YSZ substrates and can also be produced with other source materials such as La2O3, Nd2O3, Sm 2O3, Eu2O3, Tb2O3 and even Y2O3, which is already present in the substrate and hence simplifies the system further. We have extended our work to include YSZ substrates of the (110) surface orientation and have found that instead of nanoisland arrays, we obtain an array of parallel nanobars which have their long axes oriented along the [1-10] direction on the YSZ-(110) surface. STEM EDS performed on both the bars and the nanoislands has revealed that they are solid YSZ-rich solid solutions with the dopant species and

  3. RNA self-assembly and RNA nanotechnology.

    Science.gov (United States)

    Grabow, Wade W; Jaeger, Luc

    2014-06-17

    CONSPECTUS: Nanotechnology's central goal involves the direct control of matter at the molecular nanometer scale to build nanofactories, nanomachines, and other devices for potential applications including electronics, alternative fuels, and medicine. In this regard, the nascent use of nucleic acids as a material to coordinate the precise arrangements of specific molecules marked an important milestone in the relatively recent history of nanotechnology. While DNA served as the pioneer building material in nucleic acid nanotechnology, RNA continues to emerge as viable alternative material with its own distinct advantages for nanoconstruction. Several complementary assembly strategies have been used to build a diverse set of RNA nanostructures having unique structural attributes and the ability to self-assemble in a highly programmable and controlled manner. Of the different strategies, the architectonics approach uniquely endeavors to understand integrated structural RNA architectures through the arrangement of their characteristic structural building blocks. Viewed through this lens, it becomes apparent that nature routinely uses thermodynamically stable, recurrent modular motifs from natural RNA molecules to generate unique and more complex programmable structures. With the design principles found in natural structures, a number of synthetic RNAs have been constructed. The synthetic nanostructures constructed to date have provided, in addition to affording essential insights into RNA design, important platforms to characterize and validate the structural self-folding and assembly properties of RNA modules or building blocks. Furthermore, RNA nanoparticles have shown great promise for applications in nanomedicine and RNA-based therapeutics. Nevertheless, the synthetic RNA architectures achieved thus far consist largely of static, rigid particles that are still far from matching the structural and functional complexity of natural responsive structural elements such

  4. Solvent mediated self-assembly of solids

    Energy Technology Data Exchange (ETDEWEB)

    De Yoreo, J.; Wilson, W.D.; Palmore, T.

    1997-12-12

    Solvent-mediated crystallization represents a robust approach to self-assembly of nanostructures and microstructures. In organic systems, the relative ease with which the structure of hydrogen- bonded molecules can be manipulated allows for generation of a wide variety of nanoscale crystal structures. In living organisms, control over the micron-to-millimeter form of inorganic crystals is achieved through introduction of bio-organic molecules. The purpose of this proposal is to understand the interplay between solution chemistry, molecular structure, surface chemistry, and the processes of nucleation and crystal growth in solvent-mediated systems, with the goal of developing the atomic and molecular basis of a solvent-mediated self-assembly technology. We will achieve this purpose by: (1) utilizing an atomic force microscopy (AFM) approach that provides in situ, real time imaging during growth from solutions, (2) by modifying kinetic Monte Carlo (KMC) models to include solution-surface kinetics, (3) by introducing quantum chemistry (QC) calculations of the potentials of the relevant chemical species and the near-surface structure of the solution, and (4) by utilizing molecular dynamics (MD) simulations to identify the minimum energy pathways to the solid state. Our work will focus on two systems chosen to address both the manometer and micron-to-millimeter length scales of assembly, the family of 2,5- diketopiperazines (X-DKPs) and the system of CaCO{sub 3} with amino acids. Using AFM, we will record the evolution of surface morphology, critical lengths, step speeds, and step-step interactions as a function of supersaturation and temperature. In the case of the X-DKPs, these measurements will be repeated as the molecular structure of the growth unit is varied. In the case of CaCO{sub 3}, they will be performed as a function of solution chemistry including pH, ionic strength, and amino acid content. In addition, we will measure nucleation rates and orientations of

  5. Solid state nanofibers based on self-assemblies : from cleaving from self-assemblies to multilevel hierarchical constructs

    NARCIS (Netherlands)

    Ikkala, Olli; Ras, Robin H. A.; Houbenov, Nikolay; Ruokolainen, Janne; Paakko, Marjo; Laine, Janne; Leskela, Markku; Berglund, Lars A.; Lindstrom, Tom; ten Brinke, Gerrit; Iatrou, Hermis; Hadjichristidis, Nikos; Faul, Charl F. J.; Pääkkö, Marjo; Leskelä, Markku; Lindström, Tom

    2009-01-01

    Self-assemblies and their hierarchies are useful to construct soft materials with structures at different length scales and to tune the materials properties for various functions. Here we address routes for solid nanofibers based on different forms of self-assemblies. On the other hand, we discuss

  6. Fabrication of bioinspired nanostructured materials via colloidal self-assembly

    Science.gov (United States)

    Huang, Wei-Han

    Through millions of years of evolution, nature creates unique structures and materials that exhibit remarkable performance on mechanicals, opticals, and physical properties. For instance, nacre (mother of pearl), bone and tooth show excellent combination of strong minerals and elastic proteins as reinforced materials. Structured butterfly's wing and moth's eye can selectively reflect light or absorb light without dyes. Lotus leaf and cicada's wing are superhydrophobic to prevent water accumulation. The principles of particular biological capabilities, attributed to the highly sophisticated structures with complex hierarchical designs, have been extensively studied. Recently, a large variety of novel materials have been enabled by natural-inspired designs and nanotechnologies. These advanced materials will have huge impact on practical applications. We have utilized bottom-up approaches to fabricate nacre-like nanocomposites with "brick and mortar" structures. First, we used self-assembly processes, including convective self-assembly, dip-coating, and electrophoretic deposition to form well oriented layer structure of synthesized gibbsite (aluminum hydroxide) nanoplatelets. Low viscous monomer was permeated into layered nanoplatelets and followed by photo-curing. Gibbsite-polymer composite displays 2 times higher tensile strength and 3 times higher modulus when compared with pure polymer. More improvement occurred when surface-modified gibbsite platelets were cross-linked with the polymer matrix. We observed ˜4 times higher strength and nearly 1 order of magnitude higher modulus than pure polymer. To further improve the mechanical strength and toughness of inorganicorganic nanocomposites, we exploited ultrastrong graphene oxide (GO), a single atom thick hexagonal carbon sheet with pendant oxidation groups. GO nanocomposite is made by co-filtrating GO/polyvinyl alcohol suspension on 0.2 im pore-sized membrane. It shows ˜2 times higher strength and ˜15 times higher

  7. Electrostatic self-assembly of biomolecules

    Science.gov (United States)

    Olvera de La Cruz, Monica

    2015-03-01

    Charged filaments and membranes are natural structures abundant in cell media. In this talk we discuss the assembly of amphiphiles into biocompatible fibers, ribbons and membranes. We describe one- and two-dimensional assemblies that undergo re-entrant transitions in crystalline packing in response to changes in the solution pH and/or salt concentration resulting in different mesoscale morphologies and properties. In the case of one-dimensional structures, we discuss self-assembled amphiphiles into highly charged nanofibers in water that order into two-dimensional crystals. These fibers of about 6 nm cross-sectional diameter form crystalline arrays with inter-fiber spacings of up to 130 nm. Solution concentration and temperature can be adjusted to control the inter-fiber spacings. The addition of salt destroys crystal packing, indicating that electrostatic repulsions are necessary for the observed ordering. We describe the crystallization of bundles of filament networks interacting via long-range repulsions in confinement by a phenomenological model. Two distinct crystallization mechanisms in the short and large screening length regimes are discussed and the phase diagram is obtained. Simulation of large bundles predicts the existence of topological defects among bundled filaments. Crystallization processes driven by electrostatic attractions are also discussed. Funded by Center for Bio-Inspired Energy Science (CBES), which is an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0000989.

  8. Self-Assembled Monolayers for Dental Implants

    Directory of Open Access Journals (Sweden)

    Sidónio C. Freitas

    2018-01-01

    Full Text Available Implant-based therapy is a mature approach to recover the health conditions of patients affected by edentulism. Thousands of dental implants are placed each year since their introduction in the 80s. However, implantology faces challenges that require more research strategies such as new support therapies for a world population with a continuous increase of life expectancy, to control periodontal status and new bioactive surfaces for implants. The present review is focused on self-assembled monolayers (SAMs for dental implant materials as a nanoscale-processing approach to modify titanium surfaces. SAMs represent an easy, accurate, and precise approach to modify surface properties. These are stable, well-defined, and well-organized organic structures that allow to control the chemical properties of the interface at the molecular scale. The ability to control the composition and properties of SAMs precisely through synthesis (i.e., the synthetic chemistry of organic compounds with a wide range of functional groups is well established and in general very simple, being commercially available, combined with the simple methods to pattern their functional groups on complex geometry appliances, makes them a good system for fundamental studies regarding the interaction between surfaces, proteins, and cells, as well as to engineering surfaces in order to develop new biomaterials.

  9. Self-assembled biomimetic superhydrophobic hierarchical arrays.

    Science.gov (United States)

    Yang, Hongta; Dou, Xuan; Fang, Yin; Jiang, Peng

    2013-09-01

    Here, we report a simple and inexpensive bottom-up technology for fabricating superhydrophobic coatings with hierarchical micro-/nano-structures, which are inspired by the binary periodic structure found on the superhydrophobic compound eyes of some insects (e.g., mosquitoes and moths). Binary colloidal arrays consisting of exemplary large (4 and 30 μm) and small (300 nm) silica spheres are first assembled by a scalable Langmuir-Blodgett (LB) technology in a layer-by-layer manner. After surface modification with fluorosilanes, the self-assembled hierarchical particle arrays become superhydrophobic with an apparent water contact angle (CA) larger than 150°. The throughput of the resulting superhydrophobic coatings with hierarchical structures can be significantly improved by templating the binary periodic structures of the LB-assembled colloidal arrays into UV-curable fluoropolymers by a soft lithography approach. Superhydrophobic perfluoroether acrylate hierarchical arrays with large CAs and small CA hysteresis can be faithfully replicated onto various substrates. Both experiments and theoretical calculations based on the Cassie's dewetting model demonstrate the importance of the hierarchical structure in achieving the final superhydrophobic surface states. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Functional Self-Assembled Nanofibers by Electrospinning

    Science.gov (United States)

    Greiner, A.; Wendorff, J. H.

    Electrospinning constitutes a unique technique for the production of nanofibers with diameters down to the range of a few nanometers. In strong contrast to conventional fiber producing techniques, it relies on self-assembly processes driven by the Coulomb interactions between charged elements of the fluids to be spun to nanofibers. The transition from a macroscopic fluid object such as a droplet emerging from a die to solid nanofibers is controlled by a set of complex physical instability processes. They give rise to extremely high extensional deformations and strain rates during fiber formation causing among others a high orientational order in the nanofibers as well as enhanced mechanical properties. Electrospinning is predominantly applied to polymer based materials including natural and synthetic polymers, but, more recently, its use has been extended towards the production of metal, ceramic and glass nanofibers exploiting precursor routes. The nanofibers can be functionalized during electrospinning by introducing pores, fractal surfaces, by incorporating functional elements such as catalysts, quantum dots, drugs, enzymes or even bacteria. The production of individual fibers, random nonwovens, or orientationally highly ordered nonwovens is achieved by an appropriate selection of electrode configurations. Broad areas of application exist in Material and Life Sciences for such nanofibers, including not only optoelectronics, sensorics, catalysis, textiles, high efficiency filters, fiber reinforcement but also tissue engineering, drug delivery, and wound healing. The basic electrospinning process has more recently been extended towards compound co-electrospinning and precision deposition electrospinning to further broaden accessible fiber architectures and potential areas of application.

  11. Understanding the Elementary Steps in DNA Tile-Based Self-Assembly.

    Science.gov (United States)

    Jiang, Shuoxing; Hong, Fan; Hu, Huiyu; Yan, Hao; Liu, Yan

    2017-09-26

    Although many models have been developed to guide the design and implementation of DNA tile-based self-assembly systems with increasing complexity, the fundamental assumptions of the models have not been thoroughly tested. To expand the quantitative understanding of DNA tile-based self-assembly and to test the fundamental assumptions of self-assembly models, we investigated DNA tile attachment to preformed "multi-tile" arrays in real time and obtained the thermodynamic and kinetic parameters of single tile attachment in various sticky end association scenarios. With more sticky ends, tile attachment becomes more thermostable with an approximately linear decrease in the free energy change (more negative). The total binding free energy of sticky ends is partially compromised by a sequence-independent energy penalty when tile attachment forms a constrained configuration: "loop". The minimal loop is a 2 × 2 tetramer (Loop4). The energy penalty of loops of 4, 6, and 8 tiles was analyzed with the independent loop model assuming no interloop tension, which is generalizable to arbitrary tile configurations. More sticky ends also contribute to a faster on-rate under isothermal conditions when nucleation is the rate-limiting step. Incorrect sticky end contributes to neither the thermostability nor the kinetics. The thermodynamic and kinetic parameters of DNA tile attachment elucidated here will contribute to the future improvement and optimization of tile assembly modeling, precise control of experimental conditions, and structural design for error-free self-assembly.

  12. Growth of InAs Quantum Dots on Germanium Substrate Using Metal Organic Chemical Vapor Deposition Technique

    Directory of Open Access Journals (Sweden)

    Tyagi Renu

    2009-01-01

    Full Text Available Abstract Self-assembled InAs quantum dots (QDs were grown on germanium substrates by metal organic chemical vapor deposition technique. Effects of growth temperature and InAs coverage on the size, density, and height of quantum dots were investigated. Growth temperature was varied from 400 to 450 °C and InAs coverage was varied between 1.40 and 2.35 monolayers (MLs. The surface morphology and structural characteristics of the quantum dots analyzed by atomic force microscope revealed that the density of the InAs quantum dots first increased and then decreased with the amount of InAs coverage; whereas density decreased with increase in growth temperature. It was observed that the size and height of InAs quantum dots increased with increase in both temperature and InAs coverage. The density of QDs was effectively controlled by growth temperature and InAs coverage on GaAs buffer layer.

  13. Circuits and programmable self-assembling DNA structures

    OpenAIRE

    Carbone, Alessandra; Seeman, Nadrian C.

    2002-01-01

    Self-assembly is beginning to be seen as a practical vehicle for computation. We investigate how basic ideas on tiling can be applied to the assembly and evaluation of circuits. We suggest that these procedures can be realized on the molecular scale through the medium of self-assembled DNA tiles. One layer of self-assembled DNA tiles will be used as the program or circuit that leads to the computation of a particular Boolean expression. This layer templates the assembly of tiles, and their as...

  14. Functional self-assembled lipidic systems derived from renewable resources.

    Science.gov (United States)

    Silverman, Julian R; Samateh, Malick; John, George

    2016-01-01

    Self-assembled lipidic amphiphile systems can create a variety of multi-functional soft materials with value-added properties. When employing natural reagents and following biocatalytic syntheses, self-assembling monomers may be inherently designed for degradation, making them potential alternatives to conventional and persistent polymers. By using non-covalent forces, self-assembled amphiphiles can form nanotubes, fibers, and other stimuli responsive architectures prime for further applied research and incorporation into commercial products. By viewing these lipid derivatives under a lens of green principles, there is the hope that in developing a structure-function relationship and functional smart materials that research may remain safe, economic, and efficient.

  15. Magnetic manipulation of self-assembled colloidal asters.

    Energy Technology Data Exchange (ETDEWEB)

    Snezhko, A.; Aranson, I. S. (Materials Science Division)

    2011-09-01

    Self-assembled materials must actively consume energy and remain out of equilibrium to support structural complexity and functional diversity. Here we show that a magnetic colloidal suspension confined at the interface between two immiscible liquids and energized by an alternating magnetic field dynamically self-assembles into localized asters and arrays of asters, which exhibit locomotion and shape change. By controlling a small external magnetic field applied parallel to the interface, we show that asters can capture, transport, and position target microparticles. The ability to manipulate colloidal structures is crucial for the further development of self-assembled microrobots

  16. Self-assembly of subwavelength nanostructures with symmetry breaking in solution

    Science.gov (United States)

    Tian, Xiang-Dong; Chen, Shu; Zhang, Yue-Jiao; Dong, Jin-Chao; Panneerselvam, Rajapandiyan; Zhang, Yun; Yang, Zhi-Lin; Li, Jian-Feng; Tian, Zhong-Qun

    2016-01-01

    Nanostructures with symmetry breaking can allow the coupling between dark and bright plasmon modes to induce strong Fano resonance. However, it is still a daunting challenge to prepare bottom-up self-assembled subwavelength asymmetric nanostructures with appropriate gaps between the nanostructures especially below 5 nm in solution. Here we present a viable self-assembly method to prepare symmetry-breaking nanostructures consisting of Ag nanocubes and Au nanospheres both with tunable size (90-250 nm for Au nanospheres; 100-160 nm for Ag nanocubes) and meanwhile control the nanogaps through ultrathin silica shells of 1-5 nm thickness. The Raman tag of 4-mercaptobenzoic acid (MBA) assists the self-assembly process and endows the subwavelength asymmetric nanostructures with surface-enhanced Raman scattering (SERS) activity. Moreover, thick silica shells (above 50 nm thickness) can be coated on the self-assembled nanostructures in situ to stabilize the whole nanostructures, paving the way toward bioapplications. Single particle scattering spectroscopy with a 360° polarization resolution is performed on individual Ag nanocube and Au nanosphere dimers, correlated with high-resolution TEM characterization. The asymmetric dimers exhibit strong configuration and polarization dependence Fano resonance properties. Overall, the solution-based self-assembly method reported here is opening up new opportunities to prepare diverse multicomponent nanomaterials with optimal performance.Nanostructures with symmetry breaking can allow the coupling between dark and bright plasmon modes to induce strong Fano resonance. However, it is still a daunting challenge to prepare bottom-up self-assembled subwavelength asymmetric nanostructures with appropriate gaps between the nanostructures especially below 5 nm in solution. Here we present a viable self-assembly method to prepare symmetry-breaking nanostructures consisting of Ag nanocubes and Au nanospheres both with tunable size (90-250 nm

  17. Self-Assembling Wireless Autonomous Reconfigurable Modules (SWARM) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Payload Systems Inc. and the MIT Space Systems Laboratory propose Self-assembling, Wireless, Autonomous, Reconfigurable Modules (SWARM) as an innovative approach to...

  18. Self-Assembling Wireless Autonomous Reconfigurable Modules (SWARM), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Payload Systems Inc. and the MIT Space Systems Laboratory propose Self-assembling, Wireless, Autonomous, Reconfigurable Modules (SWARM) as an innovative approach to...

  19. Self-Assembled Nanostructured Health Monitoring Sensors, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the proposed NASA SBIR program is to design, fabricate and evaluate the performance of self-assembled nanostructured sensors for the health...

  20. Self-Assembling Wireless Autonomous Reconfigurable Modules (SWARM), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Payload Systems Inc. and the MIT Space Systems Laboratory propose Self-assembling, Wireless, Autonomous, Reconfigurable Modules (SWARM) as an innovative approach to...

  1. Primordial and Modern Self Assembling Peptides: Synthesis and Characterization

    Science.gov (United States)

    Cusumano, Stephen

    The creation and analysis of self-assembling peptides has become a recent research trend due to the wide range of applications and usages. Modern self-assembling such as lanreotide, which is an established anti-cancer drug in the pharmaceutical industry, can be synthetically made. More primitive peptides, such as those discovered to be present in the famous Miller experiment, which replicated the primordial earth atmosphere, are representative of a different aspect of self-assembling peptides. If these novel peptides are found to self-assemble, this will give researchers new insight on how primitive cells first formed on this planet to give rise to life. Using the established nanotube structure of lanreotide, TEM protocols were developed to obtain similar high quality TEM images of primitive peptides, to observe if any structures have begun to form.

  2. Multiresponsive self-assembled liquid crystals with azobenzene groups.

    Science.gov (United States)

    Xu, Miao; Chen, Liqin; Zhou, Yifeng; Yi, Tao; Li, Fuyou; Huang, Chunhui

    2008-10-15

    An optical and electric field-responsive self-assembled complex containing nitril azobenzene groups and 1,3,5-triazine-2,4-diamine was obtained and characterized. Both the azobenzene precursor and the complex form a liquid-crystalline phase in a certain temperature range. The transition temperature from crystalline phase to liquid-crystalline mesophase was obviously decreased in the complex by the self-assembling. The self-assembled liquid crystals revealed good response to both stimuli of light irradiation and electric field, and the induced molecular orientation could be held even after the removal of the stimuli. The structural and mechanical investigation proved that the formation of hydrogen bonds and assembly-induced molecular dipolar change contributed to the multiresponding action. This kind of self-assembled complex thus has potential applications in imaging and data storage.

  3. Understanding emergent functions in self-assembled fibrous networks

    Science.gov (United States)

    Sinko, Robert; Keten, Sinan

    2015-09-01

    Understanding self-assembly processes of nanoscale building blocks and characterizing their properties are both imperative for designing new hierarchical, network materials for a wide range of structural, optoelectrical, and transport applications. Although the characterization and choices of these material building blocks have been well studied, our understanding of how to precisely program a specific morphology through self-assembly still must be significantly advanced. In the recent study by Xie et al (2015 Nanotechnology 26 205602), the self-assembly of end-functionalized nanofibres is investigated using a coarse-grained molecular model and offers fundamental insight into how to control the structural morphology of nanofibrous networks. Varying nanoscale networks are observed when the molecular interaction strength is changed and the findings suggest that self-assembly through the tuning of molecular interactions is a key strategy for designing nanostructured networks with specific topologies.

  4. RT Self-assembly of Silica Nanoparticles on Optical Fibres

    DEFF Research Database (Denmark)

    Canning, John; Lindoy, Lachlan; Huyang, George

    2013-01-01

    The room temperature deposition of self-assembling silica nanoparticles onto D-shaped optical fibres x201c;D-fibrex201d;), drawn from milled preforms fabricated by modified chemical vapor deposition, is studied and preliminary results reported here.......The room temperature deposition of self-assembling silica nanoparticles onto D-shaped optical fibres x201c;D-fibrex201d;), drawn from milled preforms fabricated by modified chemical vapor deposition, is studied and preliminary results reported here....

  5. High-Resolution Structure of a Self-Assembly-Competent Form of a Hydrophobic Peptide Captured in a Soluble [beta]-Sheet Scaffold

    Energy Technology Data Exchange (ETDEWEB)

    Makabe, Koki; Biancalana, Matthew; Yan, Shude; Tereshko, Valentina; Gawlak, Grzegorz; Miller-Auer, Hélène; Meredith, Stephen C.; Koide, Shohei (UC)

    2010-02-08

    {beta}-Rich self-assembly is a major structural class of polypeptides, but still little is known about its atomic structures and biophysical properties. Major impediments for structural and biophysical studies of peptide self-assemblies include their insolubility and heterogeneous composition. We have developed a model system, termed peptide self-assembly mimic (PSAM), based on the single-layer {beta}-sheet of Borrelia outer surface protein A. PSAM allows for the capture of a defined number of self-assembly-like peptide repeats within a water-soluble protein, making structural and energetic studies possible. In this work, we extend our PSAM approach to a highly hydrophobic peptide sequence. We show that a penta-Ile peptide (Ile{sub 5}), which is insoluble and forms {beta}-rich self-assemblies in aqueous solution, can be captured within the PSAM scaffold in a form capable of self-assembly. The 1.1-{angstrom} crystal structure revealed that the Ile{sub 5} stretch forms a highly regular {beta}-strand within this flat {beta}-sheet. Self-assembly models built with multiple copies of the crystal structure of the Ile5 peptide segment showed no steric conflict, indicating that this conformation represents an assembly-competent form. The PSAM retained high conformational stability, suggesting that the flat {beta}-strand of the Ile{sub 5} stretch primed for self-assembly is a low-energy conformation of the Ile{sub 5} stretch and rationalizing its high propensity for self-assembly. The ability of the PSAM to 'solubilize' an otherwise insoluble peptide stretch suggests the potential of the PSAM approach to the characterization of self-assembling peptides.

  6. Identification of Ina proteins from Fusarium acuminatum

    Science.gov (United States)

    Scheel, Jan Frederik; Kunert, Anna Theresa; Pöschl, Ulrich; Fröhlich-Nowoisky, Janine

    2015-04-01

    Freezing of water above -36° C is based on ice nucleation activity (INA) mediated by ice nucleators (IN) which can be of various origins. Beside mineral IN, biological particles are a potentially important source of atmospheric IN. The best-known biological IN are common plant-associated bacteria. The IN activity of these bacteria is induced by a surface protein on the outer cell membrane, which is fully characterized. In contrast, much less is known about the nature of fungal IN. The fungal genus Fusarium is widely spread throughout the earth. It belongs to the Ascomycota and is one of the most severe fungal pathogens. It can affect a variety of organisms from plants to animals including humans. INA of Fusarium was already described about 30 years ago and INA of Fusarium as well as other fungal genera is assumed to be mediated by proteins or at least to contain a proteinaceous compound. Although many efforts were made the precise INA machinery of Fusarium and other fungal species including the proteins and their corresponding genes remain unidentified. In this study preparations from living fungal samples of F. acuminatum were fractionated by liquid chromatography and IN active fractions were identified by freezing assays. SDS-page and de novo sequencing by mass spectrometry were used to identify the primary structure of the protein. Preliminary results show that the INA protein of F. acuminatum is contained in the early size exclusion chromatography fractions indicating a high molecular size. Moreover we could identify a single protein band from IN active fractions at 130-145 kDa corresponding to sizes of IN proteins from bacterial species. To our knowledge this is for the first time an isolation of a single protein from in vivo samples, which can be assigned as IN active from Fusarium.

  7. Electrical characterization of InAs thin films

    Energy Technology Data Exchange (ETDEWEB)

    Botha, L.; Shamba, P.; Botha, J.R. [Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa)

    2008-07-01

    It is known that parallel conduction as a result of surface and /or interface charge accumulation significantly shields the bulk electrical properties of InAs thin films when characterized using Hall measurements. This parallel conduction in InAs can be modeled by using the two-layer model of Nedoluha and Koch [Zeitschrift fuer Physik 132, 608 (1952)]; where an InAs epilayer is treated as consisting of two conductors connected in parallel viz. a bulk and a surface layer. Here, this two-layer model is used to simulate Hall coefficient and conductivity data of InAs thin films ranging from strongly n-doped (n=10{sup 18} cm{sup -3}) to strongly p-doped (p{proportional_to}10{sup 19} cm{sup -3}) material. Conventional Hall approximations, i.e. those that assume uniform conduction from a single band, are then used to predict the apparent carrier concentration and mobility that will be determined from conventional Hall measurements, with the aim of illustrating the error of such a simplified analysis of InAs Hall data. Results show that, in addition to ignoring parallel conduction, the approximations of conventional Hall data analysis have a further inadequacy for p-type InAs, in that the high electron to hole mobility ratio in InAs is not taken into account. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Electrical characterization of InAs thin films

    International Nuclear Information System (INIS)

    Botha, L.; Shamba, P.; Botha, J.R.

    2008-01-01

    It is known that parallel conduction as a result of surface and /or interface charge accumulation significantly shields the bulk electrical properties of InAs thin films when characterized using Hall measurements. This parallel conduction in InAs can be modeled by using the two-layer model of Nedoluha and Koch [Zeitschrift fuer Physik 132, 608 (1952)]; where an InAs epilayer is treated as consisting of two conductors connected in parallel viz. a bulk and a surface layer. Here, this two-layer model is used to simulate Hall coefficient and conductivity data of InAs thin films ranging from strongly n-doped (n=10 18 cm -3 ) to strongly p-doped (p∝10 19 cm -3 ) material. Conventional Hall approximations, i.e. those that assume uniform conduction from a single band, are then used to predict the apparent carrier concentration and mobility that will be determined from conventional Hall measurements, with the aim of illustrating the error of such a simplified analysis of InAs Hall data. Results show that, in addition to ignoring parallel conduction, the approximations of conventional Hall data analysis have a further inadequacy for p-type InAs, in that the high electron to hole mobility ratio in InAs is not taken into account. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Self-assembled quantum dot structures in a hexagonal nanowire for quantum photonics.

    Science.gov (United States)

    Yu, Ying; Dou, Xiu-Ming; Wei, Bin; Zha, Guo-Wei; Shang, Xiang-Jun; Wang, Li; Su, Dan; Xu, Jian-Xing; Wang, Hai-Yan; Ni, Hai-Qiao; Sun, Bao-Quan; Ji, Yuan; Han, Xiao-Dong; Niu, Zhi-Chuan

    2014-05-01

    Two types of quantum nanostructures based on self-assembled GaAs quantumdots embedded into GaAs/AlGaAs hexagonal nanowire systems are reported, opening a new avenue to the fabrication of highly efficient single-photon sources, as well as the design of novel quantum optics experiments and robust quantum optoelectronic devices operating at higher temperature, which are required for practical quantum photonics applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Self-assembly of bis(phthalocyaninato)terbium on metal surfaces

    International Nuclear Information System (INIS)

    Deng, Zhitao; Rauschenbach, Stephan; Stepanow, Sebastian; Kern, Klaus; Klyatskaya, Svetlana; Ruben, Mario

    2015-01-01

    Single-molecule magnets represent the smallest stable magnetic entities available to technology, with promising applications in data storage and quantum computation in sight. Therefore, an interface between devices and single-molecule magnets must be developed, for which the self-assembly behavior at surfaces is highly relevant. The molecular magnet bis(phthalocyaninato)terbium (TbPc 2 ) represents a molecular system with interesting magnetic properties. In order to fabricate low dimensional nanostructures based on TbPc 2 , the self-assembly behavior on Cu(100), Cu(111) and Au(111) substrates is studied in ultra-high vacuum (UHV). On Cu(100), TbPc 2 does not aggregate even at high coverage, which yields a good zero-dimensional system. On Cu(111), the TbPc 2 molecules self-assemble into ribbon-like islands with a high aspect ratio, or an isotropically growing phase, depending on the coverage. On Au(111), TbPc 2 molecules form two-dimensional domains from the initial growth stage and extend to highly ordered films, which cover entire terraces at high coverage. The molecular ordering of TbPc 2 can be understood based on the behavior of single Pc adlayers, taking into account the molecular double-decker structure. The freedom in the dihedral angle between top and bottom Pc ligands allows one to optimize the molecular ordering through a flexible conformation. (invited comment)

  11. Self-assembled patterns from evaporating layered fluids

    International Nuclear Information System (INIS)

    Govor, L V; Parisi, J; Bauer, G H; Reiter, G

    2009-01-01

    We studied the formation of tree-like patterns of polymer aggregates and rings of nanoparticles during evaporation from a fluid film. We utilize phase separation between two immiscible fluids to generate a double-layer film which dries up in a sequential manner. Both fluid layers may contain a solute, polymer aggregates or nanoparticles. During evaporation of the top layer, instabilities may occur and direct a self-assembly process of the solute which may be further affected by an instability of the bottom layer at a later stage. We present two cases where, after evaporation of the top fluid layer, the solute was adsorbed on the surface of the bottom fluid layer. In comparison to dewetting of a single fluid layer on a solid substrate, the advantage of our double-layer approach lies in the deposition of the solute on the surface of the bottom fluid layer. The relatively high mobility of the solute on such a fluid surface favors the formation of ordered patterns, driven by an instability of the bottom layer.

  12. Magnetic Actuation of Self-assembled Bacteria Inspired Nanoswimmers

    Science.gov (United States)

    Ali, Jamel; Cheang, U. Kei; Martindale, James D.; Jabbarzadeh, Mehdi; Fu, Henry C.; Kim, Min Jun

    2017-11-01

    Currently, there is growing interest in developing nanoscale swimmers for biological and biomedical tasks. Of particular interest is the development of soft stimuli-responsive nanorobots to probe cellular and sub-cellular environments. While there have been a few reports of nanoscale robotic swimmers, which have shown potential to be used for these tasks, they often lack multifuctionality. In particular, no man-made soft nanoscale material has been able to match the ability of natural bacterial flagella to undergo rapid and reversible morphological changes in response to multiple forms of environmental stimuli. Towards this end, we report self-assembled stimuli-responsive nanoscale robotic swimmers composed of single or multiple bacterial flagella and attached to magnetic nanoparticles. We visualize the movement of flagella using high resolution fluorescence microscopy while controlling these swimmers via a magnetic control system. Differences in in propulsion before and after the change in flagellar form are observed. Furthermore, we demonstrate the ability to induce flagellar bundling in multiflagellated nanoswimmers. This work was funded by the National Science Foundation (DMR 1712061 and CMMI 1737682 to M.J.K. and DMR 1650970 and CBET 1651031 to H.C.F.), and the Korea Evaluation Institute of Industrial Technology (MOTIE) (NO. 10052980) award to M.J.K.

  13. Engineering Globular Protein Vesicles through Tunable Self-Assembly of Recombinant Fusion Proteins.

    Science.gov (United States)

    Jang, Yeongseon; Choi, Won Tae; Heller, William T; Ke, Zunlong; Wright, Elizabeth R; Champion, Julie A

    2017-09-01

    Vesicles assembled from folded, globular proteins have potential for functions different from traditional lipid or polymeric vesicles. However, they also present challenges in understanding the assembly process and controlling vesicle properties. From detailed investigation of the assembly behavior of recombinant fusion proteins, this work reports a simple strategy to engineer protein vesicles containing functional, globular domains. This is achieved through tunable self-assembly of recombinant globular fusion proteins containing leucine zippers and elastin-like polypeptides. The fusion proteins form complexes in solution via high affinity binding of the zippers, and transition through dynamic coacervates to stable hollow vesicles upon warming. The thermal driving force, which can be tuned by protein concentration or temperature, controls both vesicle size and whether vesicles are single or bi-layered. These results provide critical information to engineer globular protein vesicles via self-assembly with desired size and membrane structure. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Dynamic transformation of self-assembled structures using anisotropic magnetized hydrogel microparticles

    Science.gov (United States)

    Yoshida, Satoru; Takinoue, Masahiro; Iwase, Eiji; Onoe, Hiroaki

    2016-08-01

    This paper describes a system through which the self-assembly of anisotropic hydrogel microparticles is achieved, which also enables dynamic transformation of the assembled structures. Using a centrifuge-based microfluidic device, anisotropic hydrogel microparticles encapsulating superparamagnetic materials on one side are fabricated, which respond to a magnetic field. We successfully achieve dynamic assembly using these hydrogel microparticles and realize three different self-assembled structures (single and double pearl chain structures, and close-packed structures), which can be transformed to other structures dynamically via tuning of the precessional magnetic field. We believe that the developed system has potential application as an effective platform for a dynamic cell manipulation and cultivation system, in biomimetic autonomous microrobot organization, and that it can facilitate further understanding of the self-organization and complex systems observed in nature.

  15. Influence of topographically patterned angled guidelines on directed self-assembly of block copolymers

    Science.gov (United States)

    Rebello, Nathan; Sethuraman, Vaidyanathan; Blachut, Gregory; Ellison, Christopher J.; Willson, C. Grant; Ganesan, Venkat

    2017-11-01

    Single chain in mean-field Monte Carlo simulations were employed to study the self-assembly of block copolymers (BCP) in thin films that use trapezoidal guidelines to direct the orientation and alignment of lamellar patterns. The present study explored the influence of sidewall interactions and geometry of the trapezoidal guidelines on the self-assembly of perpendicularly oriented lamellar morphologies. When both the sidewall and the top surface exhibit preferential interactions to the same block of the BCP, trapezoidal guidelines with intermediate taper angles were found to result in less defective perpendicularly orientated morphologies. Similarly, when the sidewall and top surface are preferential to distinct blocks of the BCP, intermediate tapering angles were found to be optimal in promoting defect free structures. Such results are rationalized based on the energetics arising in the formation of perpendicularly oriented lamella on patterned substrates.

  16. Room temperature self-assembly of mixed nanoparticles into photonic structures.

    Science.gov (United States)

    Naqshbandi, Masood; Canning, John; Gibson, Brant C; Nash, Melissa M; Crossley, Maxwell J

    2012-01-01

    Manufacturing complex composites and structures using incompatible materials is central to next-generation technologies. In photonics, silica offers passivity, low loss and robustness, making it the ideal material platform for optical transport. However, these properties partly stem from the high-temperature processing conditions necessary for silica waveguide fabrication, restricting the functionalisation of waveguides to robust inorganic dopants. This means for many sensor and active device applications, large numbers of materials are excluded. These include many organic and carbon systems such as dyes and diamond. Here we propose using intermolecular forces to bind nanoparticles together at room temperature and demonstrate the room-temperature self-assembly of long microwires (length ~7 cm, width ~10 μm) with and without rhodamine B. Further we report on mixed self-assembly of silica and single-photon-emitting nitrogen-vacancy-containing diamond nanoparticles, opening up a new direction in material science.

  17. Dual brush process for selective surface modification in graphoepitaxy directed self-assembly

    Science.gov (United States)

    Doise, Jan; Chan, Boon Teik; Hori, Masafumi; Gronheid, Roel

    2017-07-01

    Graphoepitaxy directed self-assembly is a potential low-cost solution for patterning via layers with pitches beyond the reach of a single optical lithographic exposure. In this process, selective control of the interfacial energy at the bottom and sidewall of the template is an important but challenging exercise. A dual brush process is implemented, in which two brushes with distinct end-groups are consecutively grafted to the prepattern to achieve fully independent modification of the bottom and sidewall surface of the template. A comprehensive study of hole pattern quality shows that using a dual brush process leads to a substantial improvement in terms of positional and dimensional variability across the process window. These findings will be useful to others who wish to manipulate polymer-surface interactions in directed self-assembly flows.

  18. DNA self-assembly-driven positioning of molecular components on nanopatterned surfaces

    Science.gov (United States)

    Szymonik, M.; Davies, A. G.; Wälti, C.

    2016-09-01

    We present a method for the specific, spatially targeted attachment of DNA molecules to lithographically patterned gold surfaces—demonstrated by bridging DNA strands across nanogap electrode structures. An alkanethiol self-assembled monolayer was employed as a molecular resist, which could be selectively removed via electrochemical desorption, allowing the binding of thiolated DNA anchoring oligonucleotides to each electrode. After introducing a bridging DNA molecule with single-stranded ends complementary to the electrode-tethered anchoring oligonucleotides, the positioning of the DNA molecule across the electrode gap, driven by self-assembly, occurred autonomously. This demonstrates control of molecule positioning with resolution limited only by the underlying patterned structure, does not require any alignment, is carried out entirely under biologically compatible conditions, and is scalable.

  19. Room temperature Coulomb blockade mediated field emission via self-assembled gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fei [College of Physics and Electronics, Central South University, Changsha, Hunan 410073 (China); College of Science, National University of Defense Technology, Changsha, Hunan 410073 (China); Fang, Jingyue, E-mail: fjynudt@aliyun.com [College of Science, National University of Defense Technology, Changsha, Hunan 410073 (China); Chang, Shengli; Qin, Shiqiao; Zhang, Xueao [College of Science, National University of Defense Technology, Changsha, Hunan 410073 (China); Xu, Hui, E-mail: cmpxhg@csu.edu.cn [College of Physics and Electronics, Central South University, Changsha, Hunan 410073 (China)

    2017-02-05

    Coulomb blockade mediated field-emission current was observed in single-electron tunneling devices based on self-assembled gold nanoparticles at 300 K. According to Raichev's theoretical model, by fixing a proper geometric distribution of source, island and drain, the transfer characteristics can be well explained through a combination of Coulomb blockade and field emission. Coulomb blockade and field emission alternately happen in our self-assembled devices. The Coulomb island size derived from the experimental data is in good agreement with the average size of the gold nanoparticles used in the device. The integrated tunneling can be adjusted via a gate electrode. - Highlights: • The phenomenon of single-electron field emission in a transistor setting using self-assembled gold nanoparticles was investigated. • The transfer characteristics can be well explained by the model that is a combination of Coulomb blockage and field emission. • This transport mechanism is novel and may be used in many applications in field emission devices.

  20. Study of the Gemini Surfactants' Self-Assembly on Graphene Nanosheets: Insights from Molecular Dynamic Simulation.

    Science.gov (United States)

    Poorsargol, M; Sohrabi, B; Dehestani, M

    2018-04-06

    Understanding the mechanism of adsorption and self-assembly of surfactants on graphene is highly important to perform better optimization of the graphene dispersion process. Because of Gemini surfactants' special structure, they have a high charge capacity, high hydrophobicity, and unique self-assembly properties compared to single-chain surfactants. Therefore, Gemini surfactants with their small concentrations are expected to disperse and stabilize graphene nanosheets in aqueous solutions more effectively. We conducted molecular dynamics simulations to study adsorption and self-assembly of single-chain cationic surfactant dodecyltrimethylammonium bromide (C 12 TAB) and its same family Gemini surfactant dimethylene-α,β-bis(dodecyldimethylammonium bromide) ([12-2-12]Br 2 ) on graphene nanosheets. The results showed that assemblies morphology formed on graphene is affected by surfactant structure. We observed that increasing surface coverage, especially for [12-2-12]Br 2 , leads to a transmission in adsorption mechanism and most [12-2-12]Br 2 head groups tend toward the aqueous phase and prevent water molecules from accessing graphene surface. It can be concluded from morphological assessments that [12-2-12]Br 2 is more effective than C 12 TAB in stabilizing graphene aqueous suspensions. Moreover, we investigated the effect of graphene sheet size and Gemini surfactant spacer length on the structure of surfactant assemblies on graphene. The present study results can expand our comprehension of dispersion mechanism of graphene nanosheets by Gemini surfactants.

  1. Self-Assembly for the Synthesis of Functional Biomaterials.

    Science.gov (United States)

    Stephanopoulos, Nicholas; Ortony, Julia H; Stupp, Samuel I

    2013-02-01

    The use of self-assembly for the construction of functional biomaterials is a highly promising and exciting area of research, with great potential for the treatment of injury or disease. By using multiple noncovalent interactions, coded into the molecular design of the constituent components, self-assembly allows for the construction of complex, adaptable, and highly tunable materials with potent biological effects. This review describes some of the seminal advances in the use of self-assembly to make novel systems for regenerative medicine and biology. Materials based on peptides, proteins, DNA, or hybrids thereof have found application in the treatment of a wide range of injuries and diseases, and this review outlines the design principles and practical applications of these systems. Most of the examples covered focus on the synthesis of hydrogels for the scaffolding or transplantation of cells, with an emphasis on the biological, mechanical, and structural properties of the resulting materials. In addition, we will discuss the distinct advantages conferred by self-assembly (compared with traditional covalent materials), and present some of the challenges and opportunities for the next generation of self-assembled biomaterials.

  2. Physical principles for DNA tile self-assembly.

    Science.gov (United States)

    Evans, Constantine G; Winfree, Erik

    2017-06-19

    DNA tiles provide a promising technique for assembling structures with nanoscale resolution through self-assembly by basic interactions rather than top-down assembly of individual structures. Tile systems can be programmed to grow based on logical rules, allowing for a small number of tile types to assemble large, complex assemblies that can retain nanoscale resolution. Such algorithmic systems can even assemble different structures using the same tiles, based on inputs that seed the growth. While programming and theoretical analysis of tile self-assembly often makes use of abstract logical models of growth, experimentally implemented systems are governed by nanoscale physical processes that can lead to very different behavior, more accurately modeled by taking into account the thermodynamics and kinetics of tile attachment and detachment in solution. This review discusses the relationships between more abstract and more physically realistic tile assembly models. A central concern is how consideration of model differences enables the design of tile systems that robustly exhibit the desired abstract behavior in realistic physical models and in experimental implementations. Conversely, we identify situations where self-assembly in abstract models can not be well-approximated by physically realistic models, putting constraints on physical relevance of the abstract models. To facilitate the discussion, we introduce a unified model of tile self-assembly that clarifies the relationships between several well-studied models in the literature. Throughout, we highlight open questions regarding the physical principles for DNA tile self-assembly.

  3. Sequential programmable self-assembly: Role of cooperative interactions

    Science.gov (United States)

    Halverson, Jonathan D.; Tkachenko, Alexei V.

    2016-03-01

    We propose a general strategy of "sequential programmable self-assembly" that enables a bottom-up design of arbitrary multi-particle architectures on nano- and microscales. We show that a naive realization of this scheme, based on the pairwise additive interactions between particles, has fundamental limitations that lead to a relatively high error rate. This can be overcome by using cooperative interparticle binding. The cooperativity is a well known feature of many biochemical processes, responsible, e.g., for signaling and regulations in living systems. Here we propose to utilize a similar strategy for high precision self-assembly, and show that DNA-mediated interactions provide a convenient platform for its implementation. In particular, we outline a specific design of a DNA-based complex which we call "DNA spider," that acts as a smart interparticle linker and provides a built-in cooperativity of binding. We demonstrate versatility of the sequential self-assembly based on spider-functionalized particles by designing several mesostructures of increasing complexity and simulating their assembly process. This includes a number of finite and repeating structures, in particular, the so-called tetrahelix and its several derivatives. Due to its generality, this approach allows one to design and successfully self-assemble virtually any structure made of a "GEOMAG" magnetic construction toy, out of nanoparticles. According to our results, once the binding cooperativity is strong enough, the sequential self-assembly becomes essentially error-free.

  4. Associative Pattern Recognition Through Macro-molecular Self-Assembly

    Science.gov (United States)

    Zhong, Weishun; Schwab, David J.; Murugan, Arvind

    2017-05-01

    We show that macro-molecular self-assembly can recognize and classify high-dimensional patterns in the concentrations of N distinct molecular species. Similar to associative neural networks, the recognition here leverages dynamical attractors to recognize and reconstruct partially corrupted patterns. Traditional parameters of pattern recognition theory, such as sparsity, fidelity, and capacity are related to physical parameters, such as nucleation barriers, interaction range, and non-equilibrium assembly forces. Notably, we find that self-assembly bears greater similarity to continuous attractor neural networks, such as place cell networks that store spatial memories, rather than discrete memory networks. This relationship suggests that features and trade-offs seen here are not tied to details of self-assembly or neural network models but are instead intrinsic to associative pattern recognition carried out through short-ranged interactions.

  5. Synthesis and Self-Assembly of Triangulenium Salts

    DEFF Research Database (Denmark)

    Shi, Dong

    . The formed vesicles showed excellent stability standing over for 7 month at ambient lab conditions or upon heated up to 70 °C as monitored by dynamic light scattering (DLS) method. Chapter 4 reportes the dynamic air–water interfaces catalyzed self-assembly of insoluble aminotriangulenium salts into Stable......–water interfaces and lateral compression of the monolayer results in the collapsing toward the formation of bilayer nanosheets. The nanosheets showed excellent stability after standing over 10 months stocked in a close vial at ambient conditions due to the ionic atmosphere surrounding its charged surfaces...... in the self-assembly of the synthetic amphiphilic triangulenium salt in aqueous media. In this chapter, self-assembled nanotubes, nanorribbons and nanorods are presented and collusions II are made based on the experimental observations. The following chapter 6 repots the chain length effect on the self...

  6. Regulating DNA Self-assembly by DNA-Surface Interactions.

    Science.gov (United States)

    Liu, Longfei; Li, Yulin; Wang, Yong; Zheng, Jianwei; Mao, Chengde

    2017-12-14

    DNA self-assembly provides a powerful approach for preparation of nanostructures. It is often studied in bulk solution and involves only DNA-DNA interactions. When confined to surfaces, DNA-surface interactions become an additional, important factor to DNA self-assembly. However, the way in which DNA-surface interactions influence DNA self-assembly is not well studied. In this study, we showed that weak DNA-DNA interactions could be stabilized by DNA-surface interactions to allow large DNA nanostructures to form. In addition, the assembly can be conducted isothermally at room temperature in as little as 5 seconds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Directed self-assembly of DNA tiles into complex nanocages.

    Science.gov (United States)

    Tian, Cheng; Li, Xiang; Liu, Zhiyu; Jiang, Wen; Wang, Guansong; Mao, Chengde

    2014-07-28

    Tile-based self-assembly is a powerful method in DNA nanotechnology and has produced a wide range of well-defined nanostructures. But the resulting structures are relatively simple. Increasing the structural complexity and the scope of the accessible structures is an outstanding challenge in molecular self-assembly. A strategy to partially address this problem by introducing flexibility into assembling DNA tiles and employing directing agents to control the self-assembly process is presented. To demonstrate this strategy, a range of DNA nanocages have been rationally designed and constructed. Many of them can not be assembled otherwise. All of the resulting structures have been thoroughly characterized by gel electrophoresis and cryogenic electron microscopy. This strategy greatly expands the scope of accessible DNA nanostructures and would facilitate technological applications such as nanoguest encapsulation, drug delivery, and nanoparticle organization. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Guided and magnetic self-assembly of tunable magnetoceptive gels.

    Science.gov (United States)

    Tasoglu, S; Yu, C H; Gungordu, H I; Guven, S; Vural, T; Demirci, U

    2014-09-01

    Self-assembly of components into complex functional patterns at microscale is common in nature, and used increasingly in numerous disciplines such as optoelectronics, microfabrication, sensors, tissue engineering and computation. Here, we describe the use of stable radicals to guide the self-assembly of magnetically tunable gels, which we call 'magnetoceptive' materials at the scale of hundreds of microns to a millimeter, each can be programmed by shape and composition, into heterogeneous complex structures. Using paramagnetism of free radicals as a driving mechanism, complex heterogeneous structures are built in the magnetic field generated by permanent magnets. The overall magnetic signature of final structure is erased via an antioxidant vitamin E, subsequent to guided self-assembly. We demonstrate unique capabilities of radicals and antioxidants in fabrication of soft systems with heterogeneity in material properties, such as porosity, elastic modulus and mass density; then in bottom-up tissue engineering and finally, levitational and selective assembly of microcomponents.

  9. Self-Assembly in Biosilicification and Biotemplated Silica Materials

    Directory of Open Access Journals (Sweden)

    Francisco M. Fernandes

    2014-09-01

    Full Text Available During evolution, living organisms have learned to design biomolecules exhibiting self-assembly properties to build-up materials with complex organizations. This is particularly evidenced by the delicate siliceous structures of diatoms and sponges. These structures have been considered as inspiration sources for the preparation of nanoscale and nanostructured silica-based materials templated by the self-assembled natural or biomimetic molecules. These templates range from short peptides to large viruses, leading to biohybrid objects with a wide variety of dimensions, shapes and organization. A more recent strategy based on the integration of biological self-assembly as the driving force of silica nanoparticles organization offers new perspectives to elaborate highly-tunable, biofunctional nanocomposites.

  10. Self-Assembly in Biosilicification and Biotemplated Silica Materials.

    Science.gov (United States)

    Fernandes, Francisco M; Coradin, Thibaud; Aimé, Carole

    2014-09-04

    During evolution, living organisms have learned to design biomolecules exhibiting self-assembly properties to build-up materials with complex organizations. This is particularly evidenced by the delicate siliceous structures of diatoms and sponges. These structures have been considered as inspiration sources for the preparation of nanoscale and nanostructured silica-based materials templated by the self-assembled natural or biomimetic molecules. These templates range from short peptides to large viruses, leading to biohybrid objects with a wide variety of dimensions, shapes and organization. A more recent strategy based on the integration of biological self-assembly as the driving force of silica nanoparticles organization offers new perspectives to elaborate highly-tunable, biofunctional nanocomposites.

  11. Bioprinting synthetic self-assembling peptide hydrogels for biomedical applications

    International Nuclear Information System (INIS)

    Loo, Yihua; Hauser, Charlotte A E

    2016-01-01

    Three-dimensional (3D) bioprinting is a disruptive technology for creating organotypic constructs for high-throughput screening and regenerative medicine. One major challenge is the lack of suitable bioinks. Short synthetic self-assembling peptides are ideal candidates. Several classes of peptides self-assemble into nanofibrous hydrogels resembling the native extracellular matrix. This is a conducive microenvironment for maintaining cell survival and physiological function. Many peptides also demonstrate stimuli-responsive gelation and tuneable mechanical properties, which facilitates extrusion before dispensing and maintains the shape fidelity of the printed construct in aqueous media. The inherent biocompatibility and biodegradability bodes well for in vivo applications as implantable tissues and drug delivery matrices, while their short length and ease of functionalization facilitates synthesis and customization. By applying self-assembling peptide inks to bioprinting, the dynamic complexity of biological tissue can be recreated, thereby advancing current biomedical applications of peptide hydrogel scaffolds. (paper)

  12. Hydrodynamic Self-Assembly of Topographical Patterns on Soft Materials

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Satish [Univ. of Minnesota, Minneapolis, MN (United States)

    2016-01-06

    The objective of this project is to use theoretical tools to explore fundamentally new ways of creating and controlling surface topography on soft materials (e.g., polymeric liquids, gels, colloidal suspensions) that make use of principles from hydrodynamics and self-assembly. Surface topography is known to have a significant impact on the optical, adhesive, and wetting properties of materials, so improved fundamental understanding of how to create and control it will help enable the tailoring of these properties to desired specifications. Self-assembly is the spontaneous organization of an ordered structure, and hydrodynamics often plays an important role in the self-assembly of soft materials. This research supported through this project has led to the discovery of a number of novel phenomena that are described in published journal articles. In this way, the research significantly adds to the fundamental understanding of the topics investigated.

  13. Raman study of self-assembled InAs/InP quantum wire stacks with varying spacer thickness

    Science.gov (United States)

    Angelova, T.; Cros, A.; Cantarero, A.; Fuster, D.; González, Y.; González, L.

    2008-08-01

    Self-assembled InAs/InP (001) quantum wire stacks have been investigated by means of Raman scattering. The characteristics of the observed vibrational modes show clear evidence of confinement and atomic intermixing between As and P atoms from the wire and the spacer. The change in the intermixing with spacer layer thickness and growth temperature is investigated. Likewise, the effect of annealing on the exchange of As and P atoms is also studied. Resonance effects in confined and interface phonons are discussed for excitation in the vicinity of the InAs E1 critical point. Finally, the energy of the interface modes is related to the structural characteristics of the wires by comparing the experimental data with a lattice dynamic calculation based on the dielectric continuum model.

  14. Phosphorylation Modulates Ameloblastin Self-assembly and Ca2+ Binding

    Directory of Open Access Journals (Sweden)

    Øystein Stakkestad

    2017-07-01

    Full Text Available Ameloblastin (AMBN, an important component of the self-assembled enamel extra cellular matrix, contains several in silico predicted phosphorylation sites. However, to what extent these sites actually are phosphorylated and the possible effects of such post-translational modifications are still largely unknown. Here we report on in vitro experiments aimed at investigating what sites in AMBN are phosphorylated by casein kinase 2 (CK2 and protein kinase A (PKA and the impact such phosphorylation has on self-assembly and calcium binding. All predicted sites in AMBN can be phosphorylated by CK2 and/or PKA. The experiments show that phosphorylation, especially in the exon 5 derived part of the molecule, is inversely correlated with AMBN self-assembly. These results support earlier findings suggesting that AMBN self-assembly is mostly dependent on the exon 5 encoded region of the AMBN gene. Phosphorylation was significantly more efficient when the AMBN molecules were in solution and not present as supramolecular assemblies, suggesting that post-translational modification of AMBN must take place before the enamel matrix molecules self-assemble inside the ameloblast cell. Moreover, phosphorylation of exon 5, and the consequent reduction in self-assembly, seem to reduce the calcium binding capacity of AMBN suggesting that post-translational modification of AMBN also can be involved in control of free Ca2+ during enamel extra cellular matrix biomineralization. Finally, it is speculated that phosphorylation can provide a functional crossroad for AMBN either to be phosphorylated and act as monomeric signal molecule during early odontogenesis and bone formation, or escape phosphorylation to be subsequently secreted as supramolecular assemblies that partake in enamel matrix structure and mineralization.

  15. Hydrazine-mediated construction of nanocrystal self-assembly materials.

    Science.gov (United States)

    Zhou, Ding; Liu, Min; Lin, Min; Bu, Xinyuan; Luo, Xintao; Zhang, Hao; Yang, Bai

    2014-10-28

    Self-assembly is the basic feature of supramolecular chemistry, which permits to integrate and enhance the functionalities of nano-objects. However, the conversion of self-assembled structures to practical materials is still laborious. In this work, on the basis of studying one-pot synthesis, spontaneous assembly, and in situ polymerization of aqueous semiconductor nanocrystals (NCs), NC self-assembly materials are produced and applied to design high performance white light-emitting diode (WLED). In producing self-assembly materials, the additive hydrazine (N2H4) is curial, which acts as the promoter to achieve room-temperature synthesis of aqueous NCs by favoring a reaction-controlled growth, as the polyelectrolyte to weaken inter-NC electrostatic repulsion and therewith facilitate the one-dimensional self-assembly, and in particular as the bifunctional monomers to polymerize with mercapto carboxylic acid-modified NCs via in situ amidation reaction. This strategy is versatile for mercapto carboxylic acid-modified aqueous NCs, for example CdS, CdSe, CdTe, CdSe(x)Te(1-x), and Cd(y)Hg(1-y)Te. Because of the multisite modification with carboxyl, the NCs act as macromonomers, thus producing cross-linked self-assembly materials with excellent thermal, solvent, and photostability. The assembled NCs preserve strong luminescence and avoid unpredictable fluorescent resonance energy transfer, the main problem in design WLED from multiple NC components. These advantages allow the fabrication of NC-based WLED with high color rendering index (86), high luminous efficacy (41 lm/W), and controllable color temperature.

  16. Self-assembled electrical materials from contorted aromatics

    Science.gov (United States)

    Xiao, Shengxiong

    This thesis describes the design, synthesis, self-assembly and electrical properties of new types of contorted polycyclic aromatic hydrocarbons. These topologically interesting contorted aromatics show promising transistor characteristics as new building blocks for organic field-effect transistors (OFETs) at different length scales. In chapter 2, a class of pentacenes that are substituted along their long edges with aromatic rings were synthesized. Their solid-state assemblies were studied by X-ray crystallography. Their performance as thin film transistors (TFTs) and single crystal field effect transistors (SCFETs) were systematically evaluated. A structure-property relationship between these highly phenylated pentacenes was found. Chapter 3 explores the new concept of whether a non-planar aromatic core could yield efficacious electronic materials, as the ultimate success in the organic electronics will require a holistic approach to creating new building blocks. Synthesis, functionalization and assembly of a new type of contorted hexabenzocoronene (HBC) whose aromatic core is heavily distorted away from planarity due to the steric congestion around its proximal carbons were discussed. Structural studies by X-ray crystallography showed that these HBC molecules stack into columnar structures in the solid state, which are ideal for conduction. Chapter 4 describes that microscale liquid crystalline thin film OFETs of tetradodecyloxy HBC showed the best transistor properties of all discotic columnar materials. Chapter 5 details the fabrication and characterization of nanoscale single crystalline fiber OFETs of octadodecyloxyl HBC. In Chapter 6 we show that a molecular scale monolayer of HBC acid chlorides could be self-assembled on SiO2 insulating layer and could be organized laterally between the ends of 2 nm carbon nanotube gaps to form high quality FETs that act as environmental and chemical sensors. Chapter 7 details the enforced one-dimensional photoconductivity

  17. Three's company: co-crystallization of a self-assembled S(4) metallacyclophane with two diastereomeric metallacycle intermediates.

    Science.gov (United States)

    Lindquist, Nathan R; Carter, Timothy G; Cangelosi, Virginia M; Zakharov, Lev N; Johnson, Darren W

    2010-05-28

    Three discrete supramolecular self-assembled arsenic(iii) complexes including an unusual S(4)-symmetric tetranuclear [As(4)L(2)Cl(4)] metallacyclophane and two diastereomeric cis/trans-[As(2)LCl(2)] metallacycle intermediates co-crystallize within a single crystal lattice.

  18. Self-assembled three-dimensional chiral colloidal architecture

    Science.gov (United States)

    Ben Zion, Matan Yah; He, Xiaojin; Maass, Corinna C.; Sha, Ruojie; Seeman, Nadrian C.; Chaikin, Paul M.

    2017-11-01

    Although stereochemistry has been a central focus of the molecular sciences since Pasteur, its province has previously been restricted to the nanometric scale. We have programmed the self-assembly of micron-sized colloidal clusters with structural information stemming from a nanometric arrangement. This was done by combining DNA nanotechnology with colloidal science. Using the functional flexibility of DNA origami in conjunction with the structural rigidity of colloidal particles, we demonstrate the parallel self-assembly of three-dimensional microconstructs, evincing highly specific geometry that includes control over position, dihedral angles, and cluster chirality.

  19. Sambot II: A self-assembly modular swarm robot

    Science.gov (United States)

    Zhang, Yuchao; Wei, Hongxing; Yang, Bo; Jiang, Cancan

    2018-04-01

    The new generation of self-assembly modular swarm robot Sambot II, based on the original generation of self-assembly modular swarm robot Sambot, adopting laser and camera module for information collecting, is introduced in this manuscript. The visual control algorithm of Sambot II is detailed and feasibility of the algorithm is verified by the laser and camera experiments. At the end of this manuscript, autonomous docking experiments of two Sambot II robots are presented. The results of experiments are showed and analyzed to verify the feasibility of whole scheme of Sambot II.

  20. Synthesis of self-assembly plasmonic silver nanoparticles with tunable luminescence color

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ghamdi, Haifa S.; Mahmoud, Waleed E., E-mail: w_e_mahmoud@yahoo.com

    2014-01-15

    Assembly is an elegant and effective bottom-up approach to prepare arrays of nanoparticles from nobel metals. Noble metal nanoparticles are perfect building blocks because they can be prepared with an adequate functionalization to allow their assembly and with controlled sizes. Herein, we report a novel recipe for the synthesis of self-assembled silver nanoparticles with tunable optical properties and sizes. The synthetic route followed here based on the covalent binding among silver nanoparticles by means of poly vinyl alcohol for the first time. The size of silver nanoparticle is governed by varying the amount of sodium borohydride. The as-synthesized nanoparticles were characterized by transmission electron microscopy, x-ray diffraction, energy dispersive x-ray spectroscopy, selected area electron diffraction and UV–vis spectroscopy. Results depicted that self-assembly of mono-dispersed silver nanoparticles with different sizes have been achieved. The silver nanostructure has a single crystalline faced centered cubic structure with growth orientation along (1 1 1) facet. These nanoparticles exhibited localized surface plasmon resonance at 403 nm. The luminescence peaks were red-sifted from violet to green due to the increase of the particle sizes. -- Highlights: • Self-assembled silver nanoparticles based PVA were synthesized. • NaBH{sub 4} amount was found particle size dependent. • Silver nanoparticles strongly affected the surface plasmon resonance. • Highly symmetric luminescence emission band narrow width is obtained. • Dark field image showed a tunable color change from violet to green.

  1. Composition and method for self-assembly and mineralization of peptide amphiphiles

    Science.gov (United States)

    Stupp, Samuel I [Chicago, IL; Beniash, Elia [Newton, MA; Hartgerink, Jeffrey D [Houston, TX

    2009-06-30

    The present invention is directed to a composition useful for making homogeneously mineralized self assembled peptide-amphiphile nanofibers and nanofiber gels. The composition is generally a solution comprised of a positively or negatively charged peptide-amphiphile and a like signed ion from the mineral. Mixing this solution with a second solution containing a dissolved counter-ion of the mineral and/or a second oppositely charged peptide amphiphile, results in the rapid self assembly of the peptide-amphiphiles into a nanofiber gel and templated mineralization of the ions. Templated mineralization of the initially dissolved mineral cations and anions in the mixture occurs with preferential orientation of the mineral crystals along the fiber surfaces within the nanofiber gel. One advantage of the present invention is that it results in homogenous growth of the mineral throughout the nanofiber gel. Another advantage of the present invention is that the nanofiber gel formation and mineralization reactions occur in a single mixing step and under substantially neutral or physiological pH conditions. These homogeneous nanostructured composite materials are useful for medical applications especially the regeneration of damaged bone in mammals. This invention is directed to the synthesis of peptide-amphiphiles with more than one amphiphilic moment and to supramolecular compositions comprised of such multi-dimensional peptide-amphiphiles. Supramolecular compositions can be formed by self assembly of multi-dimensional peptide-amphiphiles by mixing them with a solution comprising a monovalent cation.

  2. Composition and method for self-assembly and mineralization of peptide-amphiphiles

    Science.gov (United States)

    Stupp, Samuel I [Chicago, IL; Beniash, Elia [Newton, MA; Hartgerink, Jeffrey D [Pearland, TX

    2012-02-28

    The present invention is directed to a composition useful for making homogeneously mineralized self assembled peptide-amphiphile nanofibers and nanofiber gels. The composition is generally a solution comprised of a positively or negatively charged peptide-amphiphile and a like signed ion from the mineral. Mixing this solution with a second solution containing a dissolved counter-ion of the mineral and/or a second oppositely charged peptide amphiphile, results in the rapid self assembly of the peptide-amphiphiles into a nanofiber gel and templated mineralization of the ions. Templated mineralization of the initially dissolved mineral cations and anions in the mixture occurs with preferential orientation of the mineral crystals along the fiber surfaces within the nanofiber gel. One advantage of the present invention is that it results in homogenous growth of the mineral throughout the nanofiber gel. Another advantage of the present invention is that the nanofiber gel formation and mineralization reactions occur in a single mixing step and under substantially neutral or physiological pH conditions. These homogeneous nanostructured composite materials are useful for medical applications especially the regeneration of damaged bone in mammals. This invention is directed to the synthesis of peptide-amphiphiles with more than one amphiphilic moment and to supramolecular compositions comprised of such multi-dimensional peptide-amphiphiles. Supramolecular compositions can be formed by self assembly of multi-dimensional peptide-amphiphiles by mixing them with a solution comprising a monovalent cation.

  3. Synthesis of self-assembly plasmonic silver nanoparticles with tunable luminescence color

    International Nuclear Information System (INIS)

    Al-Ghamdi, Haifa S.; Mahmoud, Waleed E.

    2014-01-01

    Assembly is an elegant and effective bottom-up approach to prepare arrays of nanoparticles from nobel metals. Noble metal nanoparticles are perfect building blocks because they can be prepared with an adequate functionalization to allow their assembly and with controlled sizes. Herein, we report a novel recipe for the synthesis of self-assembled silver nanoparticles with tunable optical properties and sizes. The synthetic route followed here based on the covalent binding among silver nanoparticles by means of poly vinyl alcohol for the first time. The size of silver nanoparticle is governed by varying the amount of sodium borohydride. The as-synthesized nanoparticles were characterized by transmission electron microscopy, x-ray diffraction, energy dispersive x-ray spectroscopy, selected area electron diffraction and UV–vis spectroscopy. Results depicted that self-assembly of mono-dispersed silver nanoparticles with different sizes have been achieved. The silver nanostructure has a single crystalline faced centered cubic structure with growth orientation along (1 1 1) facet. These nanoparticles exhibited localized surface plasmon resonance at 403 nm. The luminescence peaks were red-sifted from violet to green due to the increase of the particle sizes. -- Highlights: • Self-assembled silver nanoparticles based PVA were synthesized. • NaBH 4 amount was found particle size dependent. • Silver nanoparticles strongly affected the surface plasmon resonance. • Highly symmetric luminescence emission band narrow width is obtained. • Dark field image showed a tunable color change from violet to green

  4. Fusing Swarm Intelligence and Self-Assembly for Optimizing Echo State Networks.

    Science.gov (United States)

    Martin, Charles E; Reggia, James A

    2015-01-01

    Optimizing a neural network's topology is a difficult problem for at least two reasons: the topology space is discrete, and the quality of any given topology must be assessed by assigning many different sets of weights to its connections. These two characteristics tend to cause very "rough." objective functions. Here we demonstrate how self-assembly (SA) and particle swarm optimization (PSO) can be integrated to provide a novel and effective means of concurrently optimizing a neural network's weights and topology. Combining SA and PSO addresses two key challenges. First, it creates a more integrated representation of neural network weights and topology so that we have just a single, continuous search domain that permits "smoother" objective functions. Second, it extends the traditional focus of self-assembly, from the growth of predefined target structures, to functional self-assembly, in which growth is driven by optimality criteria defined in terms of the performance of emerging structures on predefined computational problems. Our model incorporates a new way of viewing PSO that involves a population of growing, interacting networks, as opposed to particles. The effectiveness of our method for optimizing echo state network weights and topologies is demonstrated through its performance on a number of challenging benchmark problems.

  5. Molecular Self-Assembly of Short Aromatic Peptides: From Biology to Nanotechnology and Material Science

    Science.gov (United States)

    Gazit, Ehud

    2013-03-01

    The formation of ordered amyloid fibrils is the hallmark of several diseases of unrelated origin. In spite of grave clinical consequence, the mechanism of amyloid formation is not fully understood. We have suggested, based on experimental and bioinformatic analysis, that aromatic interactions may provide energetic contribution as well as order and directionality in the molecular-recognition and self-association processes that lead to the formation of these assemblies. This is in line with the well-known central role of aromatic-stacking interactions in self-assembly processes. Our works on the mechanism of aromatic peptide self-assembly, lead to the discovery that the diphenylalanine recognition motif self-assembles into peptide nanotubes with a remarkable persistence length. Other aromatic homodipeptides could self-assemble in nano-spheres, nano-plates, nano-fibrils and hydrogels with nano-scale order. We demonstrated that the peptide nanostructures have unique chemical, physical and mechanical properties including ultra-rigidity as aramides, semi-conductive, piezoelectric and non-linear optic properties. We also demonstrated the ability to use these peptide nanostructures as casting mold for the fabrication of metallic nano-wires and coaxial nano-cables. The application of the nanostructures was demonstrated in various fields including electrochemical biosensors, tissue engineering, and molecular imaging. Finally, we had developed ways for depositing of the peptide nanostructures and their organization. We had use inkjet technology as well as vapour deposition methods to coat surface and from the peptide ``nano-forests''. We recently demonstrated that even a single phenylalanine amino-acid can form well-ordered fibrilar assemblies.

  6. Self-assembling biomolecular catalysts for hydrogen production

    Science.gov (United States)

    Jordan, Paul C.; Patterson, Dustin P.; Saboda, Kendall N.; Edwards, Ethan J.; Miettinen, Heini M.; Basu, Gautam; Thielges, Megan C.; Douglas, Trevor

    2016-02-01

    The chemistry of highly evolved protein-based compartments has inspired the design of new catalytically active materials that self-assemble from biological components. A frontier of this biodesign is the potential to contribute new catalytic systems for the production of sustainable fuels, such as hydrogen. Here, we show the encapsulation and protection of an active hydrogen-producing and oxygen-tolerant [NiFe]-hydrogenase, sequestered within the capsid of the bacteriophage P22 through directed self-assembly. We co-opted Escherichia coli for biomolecular synthesis and assembly of this nanomaterial by expressing and maturing the EcHyd-1 hydrogenase prior to expression of the P22 coat protein, which subsequently self assembles. By probing the infrared spectroscopic signatures and catalytic activity of the engineered material, we demonstrate that the capsid provides stability and protection to the hydrogenase cargo. These results illustrate how combining biological function with directed supramolecular self-assembly can be used to create new materials for sustainable catalysis.

  7. Self-assembled monolayers of metallosalophenes on gold

    NARCIS (Netherlands)

    Beulen, M.W.J.; van Veggel, F.C.J.M.; Reinhoudt, David

    2000-01-01

    Salophene complexes of transition metals exhibit a reversible electro- chemistry. We have synthesized salophene complexes with sulfur-containing substituents aimed at the formation of self-assembled monolayers on a gold surface. Such monolayers have interesting cation complexating properties. The

  8. Self-assembly of hydrofluorinated Janus graphene monolayer

    DEFF Research Database (Denmark)

    Jin, Yakang; Xue, Qingzhong; Zhu, Lei

    2016-01-01

    With remarkably interesting surface activities, two-dimensional Janus materials arouse intensive interests recently in many fields. We demonstrate by molecular dynamic simulations that hydrofluorinated Janus graphene (J-GN) can self-assemble into Janus nanoscroll (J-NS) at room temperature. The van...

  9. Self-Assembly on Gold and Graphene for Molecular Electronics

    DEFF Research Database (Denmark)

    Reeler, Nini Elisabeth Abildgaard

    to take place before full coverage of the AuNPs. After full coverage the negatively charged dithiocarbamate end groups tended to repel each other leading to a stabilization of the AuNPs and clusters in the solution. An additional project concerned the fabrication of various self-assembled monolayers (SAMs...

  10. Encapsulation of gold nanoparticles into self-assembling protein nanoparticles

    OpenAIRE

    Yang Yongkun; Burkhard Peter

    2012-01-01

    Abstract Background Gold nanoparticles are useful tools for biological applications due to their attractive physical and chemical properties. Their applications can be further expanded when they are functionalized with biological molecules. The biological molecules not only provide the interfaces for interactions between nanoparticles and biological environment, but also contribute their biological functions to the nanoparticles. Therefore, we used self-assembling protein nanoparticles (SAPNs...

  11. Self-assembled three-dimensional non-volatile memories

    NARCIS (Netherlands)

    Abelmann, Leon; Tas, Niels Roelof; Berenschot, Johan W.; Elwenspoek, Michael Curt

    2010-01-01

    The continuous increase in capacity of non-volatile data storage systems will lead to bit densities of one bit per atom in 2020. Beyond this point, capacity can be increased by moving into the third dimension. We propose to use self-assembly of nanosized elements, either as a loosely organised

  12. Suprmolecular chirality of self-assembled systems in solution

    NARCIS (Netherlands)

    Mateos timoneda, Miguel; Crego Calama, Mercedes; Reinhoudt, David

    2004-01-01

    Self-assembly plays an important role in the formation of many (chiral) biological structures, such as DNA, α-helices or ß-sheets of proteins. This process, which is the main tool of Supramolecular Chemistry (i.e. the chemistry of the molecular assemblies and of the intermolecular bonds), starts to

  13. Hierarchical self-assembly of complex polyhedral microcontainers

    International Nuclear Information System (INIS)

    Filipiak, David J; Leong, Timothy G; Gracias, David H; Azam, Anum

    2009-01-01

    The concept of self-assembly of a two-dimensional (2D) template to a three-dimensional (3D) structure has been suggested as a strategy to enable highly parallel fabrication of complex, patterned microstructures. We have previously studied the surface-tension-based self-assembly of patterned, microscale polyhedral containers (cubes, square pyramids and tetrahedral frusta). In this paper, we describe the observed hierarchical self-assembly of more complex, patterned polyhedral containers in the form of regular dodecahedra and octahedra. The hierarchical design methodology, combined with the use of self-correction mechanisms, was found to greatly reduce the propagation of self-assembly error that occurs in these more complex systems. It is a highly effective way to mass-produce patterned, complex 3D structures on the microscale and could also facilitate encapsulation of cargo in a parallel and cost-effective manner. Furthermore, the behavior that we have observed may be useful in the assembly of complex systems with large numbers of components

  14. Self-Assembly of Globular Protein-Polymer Diblock Copolymers

    Science.gov (United States)

    Thomas, C. S.; Olsen, B. D.

    2011-03-01

    The self-assembly of globular protein-polymer diblock copolymers into nanostructured phases is demonstrated as an elegant and simple method for structural control in biocatalysis or bioelectronics. In order to fundamentally investigate self-assembly in these complex block copolymer systems, a red fluorescent protein was expressed in E. coli and site-specifically conjugated to a low polydispersity poly(N-isopropyl acrylamide) (PNIPAM) block using thiol-maleimide coupling to form a well-defined model globular protein-polymer diblock. Functional protein materials are obtained by solvent evaporation and solvent annealing above and below the lower critical solution temperature of PNIPAM in order to access different pathways toward self-assembly. Small angle x-ray scattering and microscopy are used to show that the diblock forms lamellar nanostructures and to explore dependence of nanostructure formation on processing conditions. Circular dichroism and UV-vis show that a large fraction of the protein remains in its folded state after conjugation, and wide angle x-ray scattering demonstrates that diblock copolymer self-assembly changes the protein packing symmetry.

  15. Multiphonon capture processes in self-assembled quantum dots

    DEFF Research Database (Denmark)

    Magnúsdóttir, Ingibjörg; Uskov, A.; Bischoff, Svend

    2001-01-01

    We investigate capture of carriers from states in the continuous part of the energy spectrum into the discrete states of self-assembled InAs/GaAs QDs via emission of one or two phonons. We are not aware of any other investigations of two-phonon mediated capture processes in QDs, but we show that ...

  16. Covalently stabilized self-assembled chlorophyll nanorods by olefin metathesis.

    Science.gov (United States)

    Sengupta, Sanchita; Würthner, Frank

    2012-06-11

    A new chlorophyll derivative with peripheral olefinic chains has been synthesised and its self-assembly properties have been studied, revealing formation of well-defined nanorods. These nanorods were stabilized and rigidified by olefin metathesis reaction as confirmed by spectroscopic and microscopic methods.

  17. Synthesis, characterization and self-assembly of Co 3 complexes ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 126; Issue 5. Synthesis, characterization and self-assembly of Co3+ complexes appended with phenol and catechol groups. Afsar Ali Deepak Bansal Rajeev Gupt. Special issue on Chemical Crystallography Volume 126 Issue 5 September 2014 pp 1535-1546 ...

  18. Self-Assembled Microwires of Terephthalic Acid and Melamine

    Directory of Open Access Journals (Sweden)

    Hong Wang

    2017-07-01

    Full Text Available Self-assembled microwires of terephthalic acid (TPA and melamine are prepared through the evaporation of water in a solution mixture of TPA and melamine. The microwires were characterized by using scanning electron microscope (SEM, attenuated total reflection infrared (ATR-IR spectra, and cross-polarized optical microscopy (CPOM. The TPA•M microwires showed semi-conductive properties.

  19. Dynamics of self-assembled cytosine nucleobases on graphene

    Science.gov (United States)

    Saikia, Nabanita; Johnson, Floyd; Waters, Kevin; Pandey, Ravindra

    2018-05-01

    Molecular self-assembly of cytosine (C n ) bases on graphene was investigated using molecular dynamics methods. For free-standing C n bases, simulation conditions (gas versus aqueous) determine the nature of self-assembly; the bases prefer to aggregate in the gas phase and are stabilized by intermolecular H-bonds, while in the aqueous phase, the water molecules disrupt base-base interactions, which facilitate the formation of π-stacked domains. The substrate-induced effects, on the other hand, find the polarity and donor-acceptor sites of the bases to govern the assembly process. For example, in the gas phase, the assembly of C n bases on graphene displays short-range ordered linear arrays stabilized by the intermolecular H-bonds. In the aqueous phase, however, there are two distinct configurations for the C n bases assembly on graphene. For the first case corresponding to low surface coverage, the bases are dispersed on graphene and are isolated. The second configuration archetype is disordered linear arrays assembled with medium and high surface coverage. The simulation results establish the role of H-bonding, vdW π-stacking, and the influence of graphene surface towards the self-assembly. The ability to regulate the assembly into well-defined patterns can aid in the design of self-assembled nanostructures for the next-generation DNA based biosensors and nanoelectronic devices.

  20. Self-assembled monolayers on metal oxides : applications in nanotechnology

    NARCIS (Netherlands)

    Yildirim, O.

    2010-01-01

    The thesis describes the use of phosph(on)ate-based self-assembled monolayers (SAMs) to modify and pattern metal oxides. Metal oxides have interesting electronic and magnetic properties such as insulating, semiconducting, metallic, ferromagnetic etc. and SAMs can tailor the surface properties. FePt

  1. Controlled Self-Assembly of Photofunctional Supramolecular Nanotubes.

    Science.gov (United States)

    Cohen, Erez; Weissman, Haim; Pinkas, Iddo; Shimoni, Eyal; Rehak, Pavel; Král, Petr; Rybtchinski, Boris

    2018-01-23

    Designing supramolecular nanotubes (SNTs) with distinct dimensions and properties is highly desirable, yet challenging, since structural control strategies are lacking. Furthermore, relatively complex building blocks are often employed in SNT self-assembly. Here, we demonstrate that symmetric bolaamphiphiles having a hydrophobic core comprised of two perylene diimide moieties connected via a bipyridine linker and bearing polyethylene glycol (PEG) side chains can self-assemble into diverse molecular nanotubes. The structure of the nanotubes can be controlled by assembly conditions (solvent composition and temperature) and a PEG chain length. The resulting nanotubes differ both in diameter and cross section geometry, having widths of 3 nm (triangular-like cross-section), 4 nm (rectangular), and 5 nm (hexagonal). Molecular dynamics simulations provide insights into the stability of the tubular superstructures and their initial stages of self-assembly, revealing a key role of oligomerization via side-by-side aromatic interactions between bis-aromatic cores. Probing electronic and photonic properties of the nanotubes revealed extended electron delocalization and photoinduced charge separation that proceeds via symmetry breaking, a photofunction distinctly different from that of the fibers assembled from the same molecules. A high degree of structural control and insights into SNT self-assembly advance design approaches toward functional organic nanomaterials.

  2. Photophysical characterization of layer-by-layer self-assembled ...

    Indian Academy of Sciences (India)

    D DEY, M N ISLAM∗, S A HUSSAIN and D BHATTACHARJEE. Department of Physics, Tripura University, Suryamaninagar 799 130, India. *Corresponding author. E-mail: md nurulislam@rediffmail.com. Abstract. This communication reports the photophysical characterization of self- assembled layer-by-layer (LbL) films of ...

  3. Self-assembling electroactive hydrogels for flexible display technology

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Scott L; Wong, Kok Hou; Ladouceur, Francois [School of Electrical Engineering and Telecommunications, University of NSW, Sydney, NSW, 2052 (Australia); Thordarson, Pall, E-mail: f.ladouceur@unsw.edu.a [School of Chemistry, University of NSW, Sydney, NSW, 2052 (Australia)

    2010-12-15

    We have assessed the potential of self-assembling hydrogels for use in conformal displays. The self-assembling process can be used to alter the transparency of the material to all visible light due to scattering by fibres. The reversible transition is shown to be of low energy by differential scanning calorimetry. For use in technology it is imperative that this transition is controlled electrically. We have thus synthesized novel self-assembling hydrogelator molecules which contain an electroactive group. The well-known redox couple of anthraquinone/anthrahydroquinone has been used as the hydrophobic component for a series of small molecule gelators. They are further functionalized with peptide combinations of L-phenylalanine and glycine to provide the hydrophilic group to complete 'head-tail' models of self-assembling gels. The gelation and electroactive characteristics of the series were assessed. Cyclic voltammetry shows the reversible redox cycle to be only superficially altered by functionalization. Additionally, spectroelectrochemical measurements show a reversible transparency and colour change induced by the redox process.

  4. Complex Colloidal Structures by Self-assembly in Electric Fields

    NARCIS (Netherlands)

    Vutukuri, H.R.

    2012-01-01

    The central theme of this thesis is exploiting the directed self-assembly of both isotropic and anisotropic colloidal particles to achieve the fabrication of one-, two-, and three-dimensional complex colloidal structures using external electric fields and/or a simple in situ thermal annealing

  5. Tetrahymena dynamin-related protein 6 self-assembles ...

    Indian Academy of Sciences (India)

    Usha P Kar

    2017-12-30

    Dec 30, 2017 ... readily forms high-molecular-weight self-assembled structures as determined by size exclusion chromatography and chemical ..... further by ion exchange chro- matography resulted in substantial loss of the protein without ..... sociates from nuclear envelope during starvation and early conjugation stages ...

  6. Applications of self-assembled monolayers in materials chemistry

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Self-assembly provides a simple route to organise suitable organic molecules on noble metal and selected nanocluster surfaces by using monolayers of long chain organic molecules with various functionalities like –SH, –COOH, –NH2, silanes etc. These surfaces can be effectively used to build-up interesting ...

  7. Basic building units, self-assembly and crystallization in the ...

    Indian Academy of Sciences (India)

    The one-dimensional ladder appears to be the primary building unit of these structures. At one stage of the building-up process, spontaneous self-assembly of a low-dimensional structure such as the ladder seems to occur, followed by crys tallization of a two- or three-dimensional structure. Accordingly, many of the higher ...

  8. Nanoporous Network Channels from Self-Assembled Triblock Copolymer Supramolecules

    NARCIS (Netherlands)

    du Sart, Gerrit Gobius; Vukovic, Ivana; Vukovic, Zorica; Polushkin, Evgeny; Hiekkataipale, Panu; Ruokolainen, Janne; Loos, Katja; ten Brinke, Gerrit

    2011-01-01

    Supramolecular complexes of a poly(tert-butoxystyrene)-block-polystyrene-block-poly(4-vinylpyridine) triblock copolymers and less than stoichiometric amounts of pentadecylphenol (PDP) are shown to self-assemble into a core-shell gyroid morphology with the core channels formed by the hydrogen-bonded

  9. Self-assembling bilayers of palladiumthiolates in organic media

    Indian Academy of Sciences (India)

    Unknown

    length. There is evidence to suggest that the alkyl chains are orientationally disordered especially prior to melting. Keywords. Self-assembling bilayers; palladiumthiolates; lamellar structures. 1. Introduction. Lipid bilayers have long been recognized as being central to molecular organization. Synthetic analogues mimicking ...

  10. Extending the self-assembly of coiled-coil hybrids

    NARCIS (Netherlands)

    Robson Marsden, Hana

    2009-01-01

    Of the various biomolecular building blocks in use in nature, coiled-coil forming peptides are amongst those with the most potential as building blocks for the synthetic self-assembly of nanostructures. Native coiled coils have the ability to function in, and influence, complex systems composed of

  11. Critical Self-assembly Concentration of Bolaamphiphilic Peptides ...

    African Journals Online (AJOL)

    The study of the self-assembly properties of peptides and proteins is important for the understanding of molecular recognition processes and for the rational design of functional biomaterials. Novel bolaamphiphilic peptides and peptide hybrids incorporating non-natural aminoacids were designed around a model ...

  12. Self-assembling electroactive hydrogels for flexible display technology

    International Nuclear Information System (INIS)

    Jones, Scott L; Wong, Kok Hou; Ladouceur, Francois; Thordarson, Pall

    2010-01-01

    We have assessed the potential of self-assembling hydrogels for use in conformal displays. The self-assembling process can be used to alter the transparency of the material to all visible light due to scattering by fibres. The reversible transition is shown to be of low energy by differential scanning calorimetry. For use in technology it is imperative that this transition is controlled electrically. We have thus synthesized novel self-assembling hydrogelator molecules which contain an electroactive group. The well-known redox couple of anthraquinone/anthrahydroquinone has been used as the hydrophobic component for a series of small molecule gelators. They are further functionalized with peptide combinations of L-phenylalanine and glycine to provide the hydrophilic group to complete 'head-tail' models of self-assembling gels. The gelation and electroactive characteristics of the series were assessed. Cyclic voltammetry shows the reversible redox cycle to be only superficially altered by functionalization. Additionally, spectroelectrochemical measurements show a reversible transparency and colour change induced by the redox process.

  13. Applications of self-assembled monolayers in materials chemistry

    Indian Academy of Sciences (India)

    Self-assembly provides a simple route to organise suitable organic molecules on noble metal and selected nanocluster surfaces by using monolayers of long chain organic molecules with various functionalities like -SH, -COOH, -NH2, silanes etc. These surfaces can be effectively used to build-up interesting nano level ...

  14. Self-assembly of mixed-valence Co(II/III) and Ni(II) clusters: azide-bridged 1D single chain coordination polymers comprised of tetranuclear units, tetranuclear Co(II/III) complexes, ferromagnetically coupled azide-bridged tetranuclear, and hexanuclear Ni(II) complexes: synthesis, structural, and magnetic properties.

    Science.gov (United States)

    Tandon, Santokh S; Bunge, Scott D; Rakosi, Robert; Xu, Zhiqiang; Thompson, Laurence K

    2009-09-07

    One-pot reactions between 2,6-diformyl-4-methylphenol (DFMP) and 2-aminoethanol (AE) in the presence of cobalt(II) salts [Co(ClO4)2, CoCl2, Co(CH3CO2)2, Co(NO3)2] and sodium azide result in the self-assembly of novel one-dimensional single chain mixed-valence cobalt coordination polymers {[Co2(II)Co2(III) (HL)2(OCH3)2(N3)3]ClO(4).5H2O.CH3OH}n (1), {[Co2(II)Co2(III) (HL)2(OCH3)2(N3)3]Cl.H2O}n (2) in which tetra-cobalt cationic units are bridged by symmetrical 1,3-azides, forming single chains; mixed valence neutral tetranuclear clusters [Co2(II)Co2(III) (HL)2(OCH3)2(N3)4]CH3OH.2H2O (3), [Co2(II)Co2(III)(HL)2(OCH3)2(N3)2(CH3CO2)2].2CH3OH.2H2O (4), and the cationic cluster [Co2(II) Co2(III) (HL)2(OCH3)2(CH3OH)2(N3)2](NO3)2 (5). In all these reactions, H3L, the potentially pentadentate (N2O3), trianionic double Schiff base ligand 2,6-bis[(2-hydroxy-ethylimino)-methyl]-4-methylphenol is formed. The reaction between DFMP and AE in the presence of nickel(ii) salts and sodium azide in methanol-water mixture results in the self-assembly of ferromagnetically coupled hexanuclear complexes [Ni6(H2L)2(HL-1)2(H2O)2(N3)6](ClO4)(2).2CH3OH (6), and [Ni6(H2L)2(HL-1)2(CH3OH)2(N3)6](BF4)2 (7), involving double (H3L) and single (H2L-1) Schiff base ligands, and a neutral tetranuclear complex [Ni4(H2L)2(OCH3)2(CH3CO2)2(N3)2] (8) with only double Schiff-base (H3L). In these complexes, the nature of the anion and the reaction conditions seem to play an important role in directing the formation of tetranuclear, hexanuclear or polymeric clusters. All complexes involve divacant double cubane-type cores containing three to four different types of bridging ligands (phenoxy, azido, methoxy/alkoxy, and acetate). Variable temperature magnetic properties of these spin coupled clusters have been investigated and magneto-structural correlations have been established.

  15. Building polyhedra by self-assembly: theory and experiment.

    Science.gov (United States)

    Kaplan, Ryan; Klobušický, Joseph; Pandey, Shivendra; Gracias, David H; Menon, Govind

    2014-01-01

    We investigate the utility of a mathematical framework based on discrete geometry to model biological and synthetic self-assembly. Our primary biological example is the self-assembly of icosahedral viruses; our synthetic example is surface-tension-driven self-folding polyhedra. In both instances, the process of self-assembly is modeled by decomposing the polyhedron into a set of partially formed intermediate states. The set of all intermediates is called the configuration space, pathways of assembly are modeled as paths in the configuration space, and the kinetics and yield of assembly are modeled by rate equations, Markov chains, or cost functions on the configuration space. We review an interesting interplay between biological function and mathematical structure in viruses in light of this framework. We discuss in particular: (i) tiling theory as a coarse-grained description of all-atom models; (ii) the building game-a growth model for the formation of polyhedra; and (iii) the application of these models to the self-assembly of the bacteriophage MS2. We then use a similar framework to model self-folding polyhedra. We use a discrete folding algorithm to compute a configuration space that idealizes surface-tension-driven self-folding and analyze pathways of assembly and dominant intermediates. These computations are then compared with experimental observations of a self-folding dodecahedron with side 300 μm. In both models, despite a combinatorial explosion in the size of the configuration space, a few pathways and intermediates dominate self-assembly. For self-folding polyhedra, the dominant intermediates have fewer degrees of freedom than comparable intermediates, and are thus more rigid. The concentration of assembly pathways on a few intermediates with distinguished geometric properties is biologically and physically important, and suggests deeper mathematical structure.

  16. The dynamic self-assembly of peptides into nanostructures

    Science.gov (United States)

    Perumal, Shiamalee

    Progress in the new and interdisciplinary field of biophysics holds great promise for new understandings and practical applications. Applying the methods of physics and chemistry to biological systems provides us with a valuable insight into the fundamental processes of life. In this study, the advanced physical techniques of neutron reflection and small-angle neutron scattering are applied to investigate the dynamic self-assembly of peptide systems at the solid-liquid and air-liquid interface, and in bulk solution. The characterisation of various peptides and an in-depth evaluation of their interfacial structural conformations and their outstanding ability to form well-defined nanostructures in aqueous solution will be presented in this thesis. The key adsorption factors of peptide concentration, solution pH, temperature, salt addition, and time were found to have imperative and varying effects on these self-assembled peptide structures. The hydrophobic nature of certain ?-sheet forming peptides resulted in an adsorption where the peptides were predominantly afloat on the surface of water. Point mutations of four other analogously designed peptides were reported to self-assemble into either ?-helix or ?-sheet secondary structures in order of increasing hydrophobicity. Short ionic peptides that had the potential to solubilise and stabilise membrane proteins were also discovered to self-assemble into aqueous solution to form a co-existing mixture of nanotube and nanovesicle structures of varying diversity with an unwavering bilayer wall thickness also consistent with interfacial structural parameters. These self-assembled peptide conformations were of course highly dependent on solution conditions and on the physical properties of the interface.

  17. Photocontrolled reversible self-assembly of dodecamer nitrilase.

    Science.gov (United States)

    Yu, Qiao; Wang, Yong; Zhao, Shengyun; Ren, Yuhong

    2017-01-01

    Naturally photoswitchable proteins act as a powerful tool for the spatial and temporal control of biological processes by inducing the formation of a photodimerizer. In this study, a method for the precise and reversible inducible self-assembly of dodecamer nitrilase in vivo (in Escherichia coli ) and in vitro (in a cell-free solution) was developed by means of the photoswitch-improved light-inducible dimer (iLID) system which could induce protein-protein dimerization. Nitrilase was fused with the photoswitch protein AsLOV2-SsrA to achieve the photocontrolled self-assembly of dodecamer nitrilase. The fusion protein self-assembled into a supramolecular assembly when illuminated at 470 nm. Scanning electron microscopy showed that the assembly formed a circular sheet structure. Self-assembly was also induced by light in E. coli . Dynamic light scattering and turbidity assay experiments showed that the assemblies formed within a few seconds under 470-nm light and completely disassembled within 5 min in the dark. Assembly and disassembly could be maintained for at least five cycles. Both in vitro and in vivo, the assemblies retained 90% of the initial activity of nitrilase and could be reused at least four times in vitro with 90% activity. An efficient method was developed for the photocontrolled assembly and disassembly of dodecamer nitrilase and for scaffold-free reversible self-assembly of multiple oligomeric enzymes in vivo and in vitro, providing new ideas and methods for immobilization of enzyme without carrier.

  18. Self-assembling peptide hydrogels immobilized on silicon surfaces

    International Nuclear Information System (INIS)

    Franchi, Stefano; Battocchio, Chiara; Galluzzi, Martina; Navisse, Emanuele; Zamuner, Annj; Dettin, Monica; Iucci, Giovanna

    2016-01-01

    The hydrogels of self-assembling ionic complementary peptides have collected in the scientific community increasing consensus as mimetics of the extracellular matrix that can offer 3D supports for cell growth or be vehicles for the delivery of stem cells or drugs. Such scaffolds have also been proposed as bone substitutes for small defects as they promote beneficial effects on human osteoblasts. In this context, our research deals with the introduction of a layer of self-assembling peptides on a silicon surface by covalent anchoring and subsequent physisorption. In this work, we present a spectroscopic investigation of the proposed bioactive scaffolds, carried out by surface-sensitive spectroscopic techniques such as XPS (X-ray photoelectron spectroscopy) and RAIRS (Reflection Absorption Infrared Spectroscopy) and by state-of-the-art synchrotron radiation methodologies such as angle dependent NEXAFS (Near Edge X-ray Absorption Fine Structure). XPS studies confirmed the change in the surface composition in agreement with the proposed enrichments, and led to assess the self-assembling peptide chemical stability. NEXAFS spectra, collected in angular dependent mode at the N K-edge, allowed to investigate the self-assembling behavior of the macromolecules, as well as to determine their molecular orientation on the substrate. Furthermore, Infrared Spectroscopy measurements demonstrated that the peptide maintains its secondary structure (β-sheet anti-parallel) after deposition on the silicon surface. The complementary information acquired by means of XPS, NEXAFS and RAIRS lead to hypothesize a “layer-by-layer” arrangement of the immobilized peptides, giving rise to an ordered 3D nanostructure. - Highlights: • A self-assembling peptide (SAP) was covalently immobilized of on a flat silicon surface. • A physisorbed SAP layer was grown on top of the covalently immobilized peptide layer. • Molecular order and orientation of the peptide overlayer on the flat silicon

  19. Construction Of Micro- And Nanoporous Hydrogels Via Designed Diblock Copolypeptide Self-Assembly And Oligopeptide Self-Assembly

    Science.gov (United States)

    Pochan, Darrin; Deming, Tim; Schneider, Joel

    2002-03-01

    The design, synthesis, and self-assembly of polypeptides as synthetic materials that possess the ability to aggregate and/or “fold” into specifically defined, a priori designed, functional nanostructures is being pursued via two avenues. First, synthetic block copolypeptides will be discussed that are observed to form novel hydrogels with structural and biological properties tailorable by the choice of amino acid (and consequent secondary structure) in the respective blocks. Specifically ionic, amphiphilic diblocks have been designed for tissue engineering hydrogels on assembly in aqueous solution. A bicontinuous morphology is observed at both the nanoscale and microscale. Second, de novo designed oligopeptides that undergo specific folding events triggered by pH, preceding or concurrent with self-assembly, will be discussed. Specifically, the ability of small (20 amino acid residues) molecules to produce relatively very large (approximately 100 micron diameter) spheres and tubes in additino to hydrogels via a hierarchical self-assembly process will be discussed. The assembled oligopeptides have the added design attribute of being responsive to pH, unfolding/disassembling at pH below 6. Both classes of peptide-based self-assembled materials were characterized via laser scanning confocal and cryotransmission electron microscopy combined with small angle neutron and x-ray scattering.

  20. Self-assembled structural color in nature

    Science.gov (United States)

    Parnell, Andrew

    The vibrancy and variety of structural color found in nature has long been well-known; what has only recently been discovered is the sophistication of the physics that underlies these effects. In the talk I will discuss some of our recent studies of the structures responsible for color in bird feathers and beetle elytra, based on structural characterization using small angle x-ray scattering, x-ray tomography and optical modeling. These have enabled us to study a large number of structural color exhibiting materials and look for trends in the structures nature uses to provide these optical effects. In terms of creating the optical structure responsible for the color of the Eurasian Jay feathers (Garrulus glandarius) the nanostructure is produced by a phase-separation process that is arrested at a late stage; mastery of the color is achieved by control over the duration of this phase-separation process. Our analysis shows that nanostructure in single bird feather barbs can be varied continuously by controlling the time the keratin network is allowed to phase separate before mobility in the system is arrested. Dynamic scaling analysis of the single barb scattering data implies that the phase separation arrest mechanism is rapid and also distinct from the spinodal phase separation mechanism i.e. it is not gelation or intermolecular re-association. Any growing lengthscale using this spinodal phase separation approach must first traverse the UV and blue wavelength regions, growing the structure by coarsening, resulting in a broad distribution of domain sizes. AJP acknowledges financial support via the APS/DPOLY exchange lectureship 2017.

  1. Aerosolized droplet mediated self-assembly of photosynthetic pigment analogues and deposition onto substrates.

    Science.gov (United States)

    Shah, Vivek B; Biswas, Pratim

    2014-02-25

    Self-assembled photosynthetic molecules have a high extinction coefficient and a broad absorption in the infrared region, and these properties can be used to improve the efficiency of solar cells. We have developed a single-step method for the self-assembly of synthetic chlorin molecules (analogues of native bacteriochlorophylls) in aerosolized droplets, containing a single solvent and two solvents, to synthesize biomimetic light-harvesting structures. In the single-solvent approach, assembly is promoted by a concentration-driven process due to evaporation of the solvent. The peak absorbance of Zn(II) 3-(1-hydroxyethyl)-10-phenyl-13(1)-oxophorbine (1) in methanol shifted from 646 nm to 725 nm (∼ 80 nm shift) after assembly, which is comparable to the shift observed in the naturally occurring assembly of bacteriochlorophyll c. Although assembly is thermodynamically favorable, the kinetics of self-assembly play an important role, and this was demonstrated by varying the initial concentration of the pigment monomer. To overcome kinetic limitations, a two-solvent approach using a volatile solvent (tetrahydrofuran) in which the dye is soluble and a less volatile solvent (ethanol) in which the dye is sparingly soluble was demonstrated to be effective. The effect of molecular structure is demonstrated by spraying the sterically hindered Zn(II) 3-(1-hydroxyethyl)-10-mesityl-13(1)-oxophorbine (2), which is an analogue of 1, under similar conditions. The results illustrate a valuable and facile aerosol-based method for the formation of films of supramolecular assemblies.

  2. A Case Study of the Likes and Dislikes of DNA and RNA in Self-Assembly.

    Science.gov (United States)

    Zuo, Hua; Wu, Siyu; Li, Mo; Li, Yulin; Jiang, Wen; Mao, Chengde

    2015-12-07

    Programmed self-assembly of nucleic acids (DNA and RNA) is an active research area as it promises a general approach for nanoconstruction. Whereas DNA self-assembly has been extensively studied, RNA self-assembly lags much behind. One strategy to boost RNA self-assembly is to adapt the methods of DNA self-assembly for RNA self-assembly because of the chemical and structural similarities of DNA and RNA. However, these two types of molecules are still significantly different. To enable the rational design of RNA self-assembly, a thorough examination of their likes and dislikes in programmed self-assembly is needed. The current work begins to address this task. It was found that similar, two-stranded motifs of RNA and DNA lead to similar, but clearly different nanostructures. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Studies on the controlled growth of InAs nanostructures on scission surfaces

    International Nuclear Information System (INIS)

    Bauer, J.

    2006-01-01

    The aim of this thesis was the controlled alignment of self-assembled InAs nano-structures on a {110}-oriented surface. The surface is prestructured with the atomic precision offered by molecular beam epitaxy, using the cleaved edge overgrowth-technique. On all samples grown within this work, the epitaxial template in the first growth step was deposited on a (001)GaAs substrate, while the InAs-layer forming the nanostructures during the second growth step was grown on cleaved {110}-GaAs surfaces. Atomic Force Microscopy (AFM) investigations demonstrate the formation of quantum dot (QD)-like nanostructures on top of the AlAs-stripes. X-ray diffraction measurements on large arrays of aligned quantum dots demonstrate that the quantum dots are formed of pure InAs. First investigations on the optical properties of these nanostructures were done using microphotoluminescence-spectroscopy with both high spatial and spectral resolution. (orig.)

  4. Chiral amplification of oligopeptides in two-dimensional crystalline self-assemblies on water

    DEFF Research Database (Denmark)

    Zepik, H.; Shavit, E.; Tang, M.

    2002-01-01

    Differences in the two-dimensional packing arrangements of racemic and enantiomeric crystalline self-assemblies on the water surface of amphiphilic activated analogs of lysine and glutamic acid have been used to prepare oligopeptides of homochiral sequence and oligopeptides of single handedness...... from chiral nonracemic mixtures. The crystalline structures on the water surface were determined by grazing incidence x-ray diffraction and the diastereomeric composition of the oligopeptides by matrix-assisted laser desorption time-of-flight mass spectrometry with enantio-labeling. These results...... suggest that reactivity of ordered clusters at interfaces might have played a role in the generation of early homochiral biopolymers....

  5. Self-assembly of fully addressable DNA nanostructures from double crossover tiles.

    Science.gov (United States)

    Wang, Wen; Lin, Tong; Zhang, Suoyu; Bai, Tanxi; Mi, Yongli; Wei, Bryan

    2016-09-19

    DNA origami and single-stranded tile (SST) are two proven approaches to self-assemble finite-size complex DNA nanostructures. The construction elements appeared in structures from these two methods can also be found in multi-stranded DNA tiles such as double crossover tiles. Here we report the design and observation of four types of finite-size lattices with four different double crossover tiles, respectively, which, we believe, in terms of both complexity and robustness, will be rival to DNA origami and SST structures. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Interactions between Cytochrome c and DNA Strands Self-Assembled at Gold Electrode

    Science.gov (United States)

    Lao, Ruojun; Wang, Lihua; Wan, Ying; Zhang, Jiong; Song, Shiping; Zhang, Zhizhou; Fan, Chunhai; He, Lin

    2007-01-01

    In this work, we reported the investigation on the interaction between DNA strands self-assembled at gold electrodes and an electron transfer protein, cytochrome c. We observed that cytochrome c exhibited well-defined electrochemistry in both double-stranded and single-stranded DNA films. This suggested that the electron transfer reaction of cytochrome c arose possibly due to the electron hopping along DNA strands rather than wiring along the double helix. We also compared the heterogeneous electron transfer rate of cytochrome c with that of a ruthenium complex, which further confirmed this mechanism.

  7. Photopatterning of self assembled monolayers on oxide surfaces for the selective attachment of biomolecules.

    Science.gov (United States)

    Hazarika, Pompi; Behrendt, Jonathan M; Petersson, Linn; Wingren, Christer; Turner, Michael L

    2014-03-15

    The immobilization of functional biomolecules to surfaces is a critical process for the development of biosensors for disease diagnostics. In this work we report the patterned attachment of single chain fragment variable (scFv) antibodies to the surface of metal oxides by the photodeprotection of self-assembled monolayers, using near-UV light. The photodeprotection step alters the functionality at the surface; revealing amino groups that are utilized to bind biomolecules in the exposed regions of the substrate only. The patterned antibodies are used for the detection of specific disease biomarker proteins in buffer and in complex samples such as human serum. © 2013 Elsevier B.V. All rights reserved.

  8. Enzymatic Ligation Creates Discrete Multi-Nanoparticle Building Blocks for Self-Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Claridge, Shelley A.; Mastroianni, Alexander J.; Au, Yeung B.; Liang, Huiyang W.; Micheel, Christine M.; Frechet, Jean M.J.; Alivisatos, A. Paul

    2008-05-27

    Enzymatic ligation of discrete nanoparticle?DNA conjugates creates nanoparticle dimer and trimer structures in which the nanoparticles are linked by single-stranded DNA, rather than double-stranded DNA as in previous experiments. Ligation is verified by agarose gel and small-angle X-ray scattering. This capability is utilized in two ways: first to create a new class of multiparticle building blocks for nanoscale self-assembly; second to develop a system which can amplify a population of discrete nanoparticle assemblies.

  9. Effect of Bi isovalent dopants on the formation of homogeneous coherently strained InAs quantum dots in GaAs matrices

    International Nuclear Information System (INIS)

    Peleshchak, R. M.; Guba, S. K.; Kuzyk, O. V.; Kurilo, I. V.; Dankiv, O. O.

    2013-01-01

    The distribution of hydrostatic strains in Bi 3+ -doped InAs quantum dots embedded in a GaAs matrix are calculated in the context of the deformation-potential model. The dependences of strains in the material of spherical InAs quantum dots with substitutional (Bi → As) and interstitial (Bi) impurities on the quantum-dot size are derived. The qualitative correlation of the model with the experiment is discussed. The data on the effect of doping on the morphology of self-assembled InAs:Bi quantum dots in a GaAs matrix are obtained.

  10. The self-assembling process and applications in tissue engineering

    Science.gov (United States)

    Lee, Jennifer K.; Link, Jarrett M.; Hu, Jerry C. Y.; Athanasiou, Kyriacos A.

    2018-01-01

    Tissue engineering strives to create neotissues capable of restoring function. Scaffold-free technologies have emerged that can recapitulate native tissue function without the use of an exogenous scaffold. This chapter will survey, in particular, the self-assembling and self-organization processes as scaffold-free techniques. Characteristics and benefits of each process are described, and key examples of tissues created using these scaffold-free processes are examined to provide guidance for future tissue engineering developments. This chapter aims to explore the potential of self-assembly and self-organization scaffold-free approaches, detailing the recent progress in the in vitro tissue engineering of biomimetic tissues with these methods, toward generating functional tissue replacements. PMID:28348174

  11. Molecular Gels Materials with Self-Assembled Fibrillar Networks

    CERN Document Server

    Weiss, Richard G

    2006-01-01

    Molecular gels and fibrillar networks – a comprehensive guide to experiment and theory Molecular Gels: Materials with Self-Assembled Fibrillar Networks provides a comprehensive treatise on gelators, especially low molecular-mass gelators (LMOGs), and the properties of their gels. The structures and modes of formation of the self-assembled fibrillar networks (SAFINs) that immobilize the liquid components of the gels are discussed experimentally and theoretically. The spectroscopic, rheological, and structural features of the different classes of LMOGs are also presented. Many examples of the application of the principal analytical techniques for investigation of molecular gels (including SANS, SAXS, WAXS, UV-vis absorption, fluorescence and CD spectroscopies, scanning electron, transmission electron and optical microscopies, and molecular modeling) are presented didactically and in-depth, as are several of the theories of the stages of aggregation of individual LMOG molecules leading to SAFINs. Several actua...

  12. Self-assembling enzymes and the origins of the cytoskeleton

    Science.gov (United States)

    Barry, Rachael; Gitai, Zemer

    2011-01-01

    The bacterial cytoskeleton is composed of a complex and diverse group of proteins that self-assemble into linear filaments. These filaments support and organize cellular architecture and provide a dynamic network controlling transport and localization within the cell. Here, we review recent discoveries related to a newly appreciated class of self-assembling proteins that expand our view of the bacterial cytoskeleton and provide potential explanations for its evolutionary origins. Specifically, several types of metabolic enzymes can form structures similar to established cytoskeletal filaments and, in some cases, these structures have been repurposed for structural uses independent of their normal role. The behaviors of these enzymes suggest that some modern cytoskeletal proteins may have evolved from dual-role proteins with catalytic and structural functions. PMID:22014508

  13. Quantitative self-assembly prediction yields targeted nanomedicines

    Science.gov (United States)

    Shamay, Yosi; Shah, Janki; Işık, Mehtap; Mizrachi, Aviram; Leibold, Josef; Tschaharganeh, Darjus F.; Roxbury, Daniel; Budhathoki-Uprety, Januka; Nawaly, Karla; Sugarman, James L.; Baut, Emily; Neiman, Michelle R.; Dacek, Megan; Ganesh, Kripa S.; Johnson, Darren C.; Sridharan, Ramya; Chu, Karen L.; Rajasekhar, Vinagolu K.; Lowe, Scott W.; Chodera, John D.; Heller, Daniel A.

    2018-02-01

    Development of targeted nanoparticle drug carriers often requires complex synthetic schemes involving both supramolecular self-assembly and chemical modification. These processes are generally difficult to predict, execute, and control. We describe herein a targeted drug delivery system that is accurately and quantitatively predicted to self-assemble into nanoparticles based on the molecular structures of precursor molecules, which are the drugs themselves. The drugs assemble with the aid of sulfated indocyanines into particles with ultrahigh drug loadings of up to 90%. We devised quantitative structure-nanoparticle assembly prediction (QSNAP) models to identify and validate electrotopological molecular descriptors as highly predictive indicators of nano-assembly and nanoparticle size. The resulting nanoparticles selectively targeted kinase inhibitors to caveolin-1-expressing human colon cancer and autochthonous liver cancer models to yield striking therapeutic effects while avoiding pERK inhibition in healthy skin. This finding enables the computational design of nanomedicines based on quantitative models for drug payload selection.

  14. Synthesis and Self-Assembly of Triangulenium Salts

    DEFF Research Database (Denmark)

    Shi, Dong

    This thesis describes the design and synthesis of asymmetrically substituted amphiphilic tis(dialkylamino)trioxiatriangulenium (ATOTA+) salts with different counter ions. Attention was focused on exploring the assembling properties of the ATOTA+ salts in aqueous media. A direct vortexing......-processed self-assembling method was developed to make aggregates with uniform morphologies and excellent stabilities in an equilibrium state either with pure ATOTA+ salts or with mixed systems of ATOTA+ salts and lipid molecules in aqueous media. Special emphasis was given to effects of the counterions......-assembly and triangulenium salts. Chapters 3 to 6 are mainly focused on the synthesis and self-assembly of trioxatriangulenium salts in aqueous media. In particular, chapter 3 reports a direct selfassembly of a synthetic triangulenium salt mixed with DMPC lipid (5/95 by molar ratio) to make mono disperse bilayer vesicles...

  15. Environmental and Sensing Applications of Molecular Self-Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Fryxell, Glen E.; Addleman, Raymond S.; Mattigod, Shas V.; Lin, Yuehe; Zemanian, Thomas S.; Wu, Hong; Birnbaum, Jerome C.; Liu, J.; Feng, X.

    2004-03-31

    In the last decade we have witnessed many exciting new discoveries in the ability to manipulate and measure matter at the nanometer scale. Honeycombed pores structures, spheres, icosahedra, nanotubes and nanorods, self-assembled structural hierarchies; the esthetics of the nanometer regime offers Nature’s elegance in its purest form. Understanding the driving forces behind these shapes and the self-assembly processes provides key understanding for this chemistry to be exploited for positive impact on our daily lives. For this to take place, we must not only understand how the nanoscopic structures impact the structural and chemical properties of these novel new materials, but we must also understand the critical problems that we face today and how these nanoscopic properties can be tailored to address these specific needs and critical problems.

  16. Thermomechanical Response of Self-Assembled Nanoparticle Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yifan [Department; James; Chan, Henry [Center; Narayanan, Badri [Center; McBride, Sean P. [Department; Sankaranarayanan, Subramanian K. R. S. [Center; Lin, Xiao-Min [Center; Jaeger, Heinrich M. [Department; James

    2017-07-21

    Monolayers composed of colloidal nanoparticles, with a thickness of less than 10 nm, have remarkable mechanical moduli and can suspend over micrometer-sized holes to form free-standing membranes. In this paper, we discuss experiment's and coarse-grained molecular dynamics simulations characterizing the thermomechanical properties of these self-assembled nanoparticle membranes. These membranes remain strong and resilient up to temperatures much higher than previous simulation predictions and exhibit an unexpected hysteretic behavior during the first heating cooling cycle. We show this hysteretic behavior can be explained by an asymmetric ligand configuration from the self assembly process and can be controlled by changing the ligand coverage or cross-linking the ligand molecules. Finally, we show the screening effect of water molecules on the ligand interactions can strongly affect the moduli and thermomechanical behavior.

  17. Numerical approach on dynamic self-assembly of colloidal particles

    Science.gov (United States)

    Ibrahimi, Muhamet; Ilday, Serim; Makey, Ghaith; Pavlov, Ihor; Yavuz, Özgàn; Gulseren, Oguz; Ilday, Fatih Omer

    Far from equilibrium systems of artificial ensembles are crucial for understanding many intelligent features in self-organized natural systems. However, the lack of established theory underlies a need for numerical implementations. Inspired by a novel work, we simulate a solution-suspended colloidal system that dynamically self assembles due to convective forces generated in the solvent when heated by a laser. In order to incorporate with random fluctuations of particles and continuously changing flow, we exploit a random-walk based Brownian motion model and a fluid dynamics solver prepared for games, respectively. Simulation results manage to fit to experiments and show many quantitative features of a non equilibrium dynamic self assembly, including phase space compression and an ensemble-energy input feedback loop.

  18. DNA-Based Self-Assembly of Fluorescent Nanodiamonds.

    Science.gov (United States)

    Zhang, Tao; Neumann, Andre; Lindlau, Jessica; Wu, Yuzhou; Pramanik, Goutam; Naydenov, Boris; Jelezko, Fedor; Schüder, Florian; Huber, Sebastian; Huber, Marinus; Stehr, Florian; Högele, Alexander; Weil, Tanja; Liedl, Tim

    2015-08-12

    As a step toward deterministic and scalable assembly of ordered spin arrays we here demonstrate a bottom-up approach to position fluorescent nanodiamonds (NDs) with nanometer precision on DNA origami structures. We have realized a reliable and broadly applicable surface modification strategy that results in DNA-functionalized and perfectly dispersed NDs that were then self-assembled in predefined geometries. With optical studies we show that the fluorescence properties of the nitrogen-vacancy color centers in NDs are preserved during surface modification and DNA assembly. As this method allows the nanoscale arrangement of fluorescent NDs together with other optically active components in complex geometries, applications based on self-assembled spin lattices or plasmon-enhanced spin sensors as well as improved fluorescent labeling for bioimaging could be envisioned.

  19. Lipid Self-Assemblies and Nanostructured Emulsions for Cosmetic Formulations

    Directory of Open Access Journals (Sweden)

    Chandrashekhar V. Kulkarni

    2016-10-01

    Full Text Available A majority of cosmetic products that we encounter on daily basis contain lipid constituents in solubilized or insolubilized forms. Due to their amphiphilic nature, the lipid molecules spontaneously self-assemble into a remarkable range of nanostructures when mixed with water. This review illustrates the formation and finely tunable properties of self-assembled lipid nanostructures and their hierarchically organized derivatives, as well as their relevance to the development of cosmetic formulations. These lipid systems can be modulated into various physical forms suitable for topical administration including fluids, gels, creams, pastes and dehydrated films. Moreover, they are capable of encapsulating hydrophilic, hydrophobic as well as amphiphilic active ingredients owing to their special morphological characters. Nano-hybrid materials with more elegant properties can be designed by combining nanostructured lipid systems with other nanomaterials including a hydrogelator, silica nanoparticles, clays and carbon nanomaterials. The smart materials reviewed here may well be the future of innovative cosmetic applications.

  20. Supramolecular Hydrogels Based on DNA Self-Assembly.

    Science.gov (United States)

    Shao, Yu; Jia, Haoyang; Cao, Tianyang; Liu, Dongsheng

    2017-04-18

    viability in the three-dimensional matrix to several weeks and also provides an easy way to prepare interpenetrating double network materials. In this Account, we outline the stream of hydrogels based on DNA self-assembly and discuss the mechanism that brings outstanding properties to the materials. Unlike most reported hydrogel systems, the all-in-one character of the DNA hydrogel avoids the "cask effect" in the properties. We believe the hydrogel will greatly benefit cell behavior studies especially in the following aspects: (1) stem cell differentiation can be studied with solely tunable mechanical strength of the matrix; (2) the dynamic nature of the network can allow cell migration through the hydrogel, which will help to build a more realistic model to observe the migration of cancer cells in vivo; (3) combination with rapidly developing three-dimension printing technology, the hydrogel will boost the construction of three-dimensional tissues and artificial organs.

  1. Self assembling bioactive materials for cell adhesion in tissue repair

    Science.gov (United States)

    Hwang, Julia J.

    This work involved the study of biodegradable and biocompatible materials that have the potential to modify tissue engineering scaffolds through self assembly, generating multiple layers that deliver bioactivity. Diblock biomaterials containing cholesteryl moieties and oligomers of lactic acid units were found to form single crystals when precipitated from hot ethanol and smectic liquid crystalline phases when cast as a film. Cell culture experiments on these films with 3T3 and 3T6 fibroblasts indicated that these ordered materials form surfaces with specific chemistries that favored cell adhesion, spreading, and proliferation suggesting the potential of mediating human tissue repair. The author believes the cholesteryl moieties found on the surface play a key role in determining cell behavior. Cholesteryl-(L-lactic acid) diblock molecules were then functionalized with moieties including vitamin Bx, cholesterol, and the anti-inflammatory drug indomethacin. An unstable activated ester between indomethacin and the diblock molecule resulted in the release of indomethacin into the culture medium which inhibited the proliferation of 3T3 fibroblasts. Finally, a series of molecules were designed to incorporate dendrons based on amino acids at the termini of the diblock structures. It was determined that lysine, a basic amino acid, covalently coupled to cholesteryl-(L-lactic acid) can promote cell adhesion and spreading while negatively charged and zwitterionic 2nd generation dendrons based on aspartic acid do not. Incorporation of the well known arginine-glycine-aspartic acid (RGD) sequence, which is found in many adhesive proteins, to the dendrons imparted integrin-mediated cell adhesion as evidenced by the formation of stress fibers. We also explored the capacity of integrin receptors to bind to ligands that are not the linear form of RGD, but have R, G, and D spatially positioned to mimic the linear RGD environments. For this purpose, the arms of the 2 nd generation

  2. Biocompatible and Biomimetic Self-Assembly of Functional Nanostructures

    Science.gov (United States)

    2010-02-28

    evaporation induced self-assembly of aqueous silica precursors with a biologically compatible surfactant, glycerol monooleate ( GMO ) via dip-coating...film is first deposited, it has a relatively low contact angle with water and remains in a semi-solid state. Upon exposure to UV/ozone, the GMO begins...Figure 8. A) Water contact angle of a GMO -templated silica film as a function of UV light and ozone exposure time, B) Localization of fluorescently

  3. Biocompatible and Biomimetic Self-Assembly of Functional Nanostructures

    Science.gov (United States)

    2017-03-15

    ability to combat antibiotic resistance and fungal infections. In a related way, we assessed encapsulation of bacterial cells in silica based...AFRL-AFOSR-VA-TR-2017-0047 Biocompatible and Biomimetic Self-Assembly of Functional Nanostructures Jeffrey Brinker UNIVERSITY OF NEW MEXICO Final...ORGANIZATION NAME(S) AND ADDRESS(ES) UNIVERSITY OF NEW MEXICO 1700 LOMAS BLVD NE ALBUQUERQUE, NM 87106 US 8. PERFORMING ORGANIZATION REPORT NUMBER 9

  4. Synthesis, characterization and self-assembly with gold nanoparticles

    Indian Academy of Sciences (India)

    Administrator

    molecule of aryl di-isonitrile [1,4-di(4-isocyano- phenylethynyl)-2-ethylbenzene]; Chen et al. 48 have prepared a Au-MPCs based two-dimensional film with a rigid molecule 4,4′-thiobisbenzenethiol. In this paper, we report the controlling of the self-assembly of Au NPs with a rigid molecule TPPY. The tetra- hedral structure ...

  5. Spin State As a Probe of Vesicle Self-Assembly.

    Science.gov (United States)

    Kim, Sanghoon; Bellouard, Christine; Eastoe, Julian; Canilho, Nadia; Rogers, Sarah E; Ihiawakrim, Dris; Ersen, Ovidiu; Pasc, Andreea

    2016-03-02

    A novel system of paramagnetic vesicles was designed using ion pairs of iron-containing surfactants. Unilamellar vesicles (diameter ≈ 200 nm) formed spontaneously and were characterized by cryogenic transmission electron microscopy, nanoparticle tracking analysis, and light and small-angle neutron scattering. Moreover, for the first time, it is shown that magnetization measurements can be used to investigate self-assembly of such functionalized systems, giving information on the vesicle compositions and distribution of surfactants between the bilayers and the aqueous bulk.

  6. Spin State As a Probe of Vesicle Self-Assembly

    OpenAIRE

    Kim, Sanghoon; Bellouard, Christine; Eastoe, Julian; Canilho, Nadia; Rogers, Sarah E; Ihiawakrim, Dris; Ersen, Ovidiu; Pasc, Andreea

    2016-01-01

    A novel system of paramagnetic vesicles was designed using ion pairs of iron-containing surfactants. Unilamellar vesicles (diameter ≈ 200 nm) formed spontaneously and were characterized by cryogenic transmission electron microscopy, nanoparticle tracking analysis, and light and small-angle neutron scattering. Moreover, for the first time, it is shown that magnetization measurements can be used to investigate self-assembly of such functionalized systems, giving information on the vesicle compo...

  7. Phosphorylation Modulates Ameloblastin Self-assembly and Ca2+ Binding

    Czech Academy of Sciences Publication Activity Database

    Stakkestad, O.; Lyngstadaas, S. P.; Thiede, B.; Vondrášek, Jiří; Skalhegg, B. S.; Reseland, J. E.

    2017-01-01

    Roč. 8, Jul 27 (2017), č. článku 531. ISSN 1664-042X Institutional support: RVO:61388963 Keywords : ameloblastin * phosphorylation * self-assembly * Ca2+-binding * enamel * intrinsically disordered proteins Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 4.134, year: 2016 http://journal.frontiersin.org/article/10.3389/fphys.2017.00531/full

  8. Dispersion of nanoparticulate suspensions using self-assembled surfactant aggregates

    Science.gov (United States)

    Singh, Pankaj Kumar

    The dispersion of particles is critical for several industrial applications such as paints, inks, coatings, and cosmetics. Several emerging applications such as abrasives for precision polishing, and drug delivery systems are increasingly relying on nanoparticulates to achieve the desired performance. In the case of nanoparticles, the dispersion becomes more challenging because of the lack of fundamental understanding of dispersant adsorption and interparticle force prediction. Additionally, many of these processes use severe processing environments such as high normal forces (>100 mN/m), high shear forces (>10,000 s -1), and high ionic strengths (>0.1 M). Under such processing conditions, traditionally used dispersants based on electrostatics, and steric force repulsion mechanism may not be adequate. Hence, the development of optimally performing dispersants requires a fundamental understanding of the dispersion mechanism at the atomic/molecular scale. This study explores the use of self-assembled surfactant aggregates at the solid-liquid interface for dispersing nanoparticles in severe processing environments. Surfactant molecules can provide a feasible alternative to polymeric or inorganic dispersants for stabilizing ultrafine particles. The barrier to aggregation in the presence of surfactant molecules was measured using atomic force microscopy. The barrier heights correlated to suspension stability. To understand the mechanism for nanoparticulate suspension stability in the presence of surfactant films, the interface was characterized using zeta potential, contact angle, adsorption, and FT-IR (adsorbed surfactant film structure measurements). The effect of solution conditions such as pH and ionic strength on the suspension stability, and the self-assembled surfactant films was also investigated. It was determined that a transition from a random to an ordered orientation of the surfactant molecules at the interface was responsible for stability of

  9. Self-assembled containers based on extended tetrathiafulvalene.

    Science.gov (United States)

    Bivaud, Sébastien; Goeb, Sébastien; Croué, Vincent; Dron, Paul I; Allain, Magali; Sallé, Marc

    2013-07-10

    Two original self-assembled containers constituted each by six electroactive subunits are described. They are synthesized from a concave tetratopic π-extended tetrathiafulvalene ligand bearing four pyridyl units and cis-M(dppf)(OTf)2 (M = Pd or Pt; dppf = 1,1'-bis(diphenylphosphino)ferrocene; OTf = trifluoromethane-sulfonate) complexes. Both fully characterized assemblies present an oblate spheroidal cavity that can incorporate one perylene molecule.

  10. Nanorings from the self-assembly of amphiphilic molecular dumbbells.

    Science.gov (United States)

    Kim, Jung-Keun; Lee, Eunji; Huang, Zhegang; Lee, Myongsoo

    2006-11-01

    We have prepared amphiphilic dumbbell molecules consisting of hydrophobic alkyl chains and hydrophilic oligoether dendrons at each end of the rod segment. The molecular dumbbells, in aqueous solution, self-assemble into toroids as an intermediate nanostructure between spherical and long cylindrical micelles. The formation of toroidal structure is likely to originate from side by side connections of discrete bundles through the combination of strong hydrophobic interactions and anisotropic aggregation of rod segments.

  11. Electrostatic Force Microscopy of Self Assembled Peptide Structures

    DEFF Research Database (Denmark)

    Clausen, Casper Hyttel; Dimaki, Maria; Pantagos, Spyros P.

    2011-01-01

    In this report electrostatic force microscopy (EFM) is used to study different peptide self-assembled structures, such as tubes and particles. It is shown that not only geometrical information can be obtained using EFM, but also information about the composition of different structures. In partic...... compared to the radius of the AFM tip used. Finally, an agreement between the detected signal and the structure of the hollow peptide tubes is demonstrated....

  12. Structural and thermodynamic analysis of modified nucleosides in self-assembled DNA cross-tiles.

    Science.gov (United States)

    Hakker, Lauren; Marchi, Alexandria N; Harris, Kimberly A; LaBean, Thomas H; Agris, Paul F

    2014-01-01

    DNA Holliday junctions are important natural strand-exchange structures that form during homologous recombination. Immobile four-arm junctions, analogs to Holliday junctions, have been designed to self-assemble into cross-tile structures by maximizing Watson-Crick base pairing and fixed crossover points. The cross-tiles, self-assembled from base pair recognition between designed single-stranded DNAs, form higher order lattice structures through cohesion of self-associating sticky ends. These cross-tiles have 16 unpaired nucleosides in the central loop at the junction of the four duplex stems. The importance of the centralized unpaired nucleosides to the structure's thermodynamic stability and self-assembly is unknown. Cross-tile DNA nanostructures were designed and constructed from nine single-stranded DNAs with four shell strands, four arms, and a central loop containing 16 unpaired bases. The 16 unpaired bases were either 2'-deoxyribothymidines, 2'-O-methylribouridines, or abasic 1',2'-dideoxyribonucleosides. Thermodynamic profiles and structural base-stacking contributions were assessed using UV absorption spectroscopy during thermal denaturation and circular dichroism spectroscopy, respectively, and the resulting structures were observed by atomic force microscopy. There were surprisingly significant changes in the thermodynamic and structural properties of lattice formation as a result of altering only the 16 unpaired, centralized nucleosides. The 16 unpaired 2'-O-methyluridines were stabilizing and produced uniform tubular structures. In contrast, the abasic nucleosides were destabilizing producing a mixture of structures. These results strongly indicate the importance of a small number of centrally located unpaired nucleosides within the structures. Since minor modifications lead to palpable changes in lattice formation, DNA cross-tiles present an easily manipulated structure convenient for applications in biomedical and biosensing devices.

  13. Self-assembled magnetic filter for highly efficient immunomagnetic separation.

    Science.gov (United States)

    Issadore, David; Shao, Huilin; Chung, Jaehoon; Newton, Andita; Pittet, Mikael; Weissleder, Ralph; Lee, Hakho

    2011-01-07

    We have developed a compact and inexpensive microfluidic chip, the self-assembled magnetic filter, to efficiently remove magnetically tagged cells from suspension. The self-assembled magnetic filter consists of a microfluidic channel built directly above a self-assembled NdFeB magnet. Micrometre-sized grains of NdFeB assemble to form alternating magnetic dipoles, creating a magnetic field with a very strong magnitude B (from the material) and field gradient ▽B (from the configuration) in the microfluidic channel. The magnetic force imparted on magnetic beads is measured to be comparable to state-of-the-art microfabricated magnets, allowing for efficient separations to be performed in a compact, simple device. The efficiency of the magnetic filter is characterized by sorting non-magnetic (polystyrene) beads from magnetic beads (iron oxide). The filter enriches the population of non-magnetic beads to magnetic beads by a factor of >10(5) with a recovery rate of 90% at 1 mL h(-1). The utility of the magnetic filter is demonstrated with a microfluidic device that sorts tumor cells from leukocytes using negative immunomagnetic selection, and concentrates the tumor cells on an integrated membrane filter for optical detection.

  14. Sequential self-assembly of DNA functionalized droplets.

    Science.gov (United States)

    Zhang, Yin; McMullen, Angus; Pontani, Lea-Laetitia; He, Xiaojin; Sha, Ruojie; Seeman, Nadrian C; Brujic, Jasna; Chaikin, Paul M

    2017-06-16

    Complex structures and devices, both natural and manmade, are often constructed sequentially. From crystallization to embryogenesis, a nucleus or seed is formed and built upon. Sequential assembly allows for initiation, signaling, and logical programming, which are necessary for making enclosed, hierarchical structures. Although biology relies on such schemes, they have not been available in materials science. Here, we demonstrate programmed sequential self-assembly of DNA functionalized emulsions. The droplets are initially inert because the grafted DNA strands are pre-hybridized in pairs. Active strands on initiator droplets then displace one of the paired strands and thus release its complement, which in turn activates the next droplet in the sequence, akin to living polymerization. Our strategy provides time and logic control during the self-assembly process, and offers a new perspective on the synthesis of materials.Natural complex systems are often constructed by sequential assembly but this is not readily available for synthetic systems. Here, the authors program the sequential self-assembly of DNA functionalized emulsions by altering the DNA grafted strands.

  15. Self-assembly of inorganic nanoparticles: Ab ovo

    Science.gov (United States)

    Kotov, Nicholas A.

    2017-09-01

    There are numerous remarkable studies related to the self-organization of polymers, coordination compounds, microscale particles, biomolecules, macroscale particles, surfactants, and reactive molecules on surfaces. The focus of this paper is on the self-organization of nanoscale inorganic particles or simply nanoparticles (NPs). Although there are fascinating and profound discoveries made with other self-assembling structures, the ones involving NPs deserve particular attention because they (a) are omnipresent in Nature; (b) have relevance to numerous disciplines (physics, chemistry, biology, astronomy, Earth sciences, and others); (c) embrace most of the features, geometries, and intricacies observed for the self-organization of other chemical species; (d) offer new tools for studies of self-organization phenomena; and (e) have a large economic impact, extending from energy and construction industries, to optoelectronics, biomedical technologies, and food safety. Despite the overall success of the field it is necessary to step back from its multiple ongoing research venues and consider two questions: What is self-assembly of nanoparticles? and Why do we need to study it? The reason to bring them up is to achieve greater scientific depth in the understanding of these omnipresent phenomena and, perhaps, deepen their multifaceted impact. Contribution to the Focus Issue Self-assemblies of Inorganic and Organic Nanomaterials edited by Marie-Paule Pileni.

  16. Self-assembly of lipopolysaccharide layers on allantoin crystals.

    Science.gov (United States)

    Vagenende, Vincent; Ching, Tim-Jang; Chua, Rui-Jing; Jiang, Qiu Zhen; Gagnon, Pete

    2014-08-01

    Self-assembly of lipopolysaccharides (LPS) on solid surfaces is important for the study of bacterial membranes, but has not been possible due to technical difficulties and the lack of suitable solid supports. Recently we found that crystals of the natural compound allantoin selectively bind pure LPS with sub-nanomolar affinity. The physicochemical origins of this selectivity and the adsorption mode of LPS on allantoin crystals remain, however, unknown. In this study we present evidence that LPS adsorption on allantoin crystals is initiated through hydrogen-bond attachment of hydrophilic LPS regions. Hydrophobic interactions between alkyl chains of adjacently adsorbed LPS molecules subsequently promote self-assembly of LPS layers. The essential role of hydrogen-bond interactions is corroborated by our finding that allantoin crystals bind to practically any hydrophilic surface chemistry. Binding contributions of hydrophobic interactions between LPS alkyl chains are evidenced by the endothermic nature of the adsorption process and explain why the binding affinity for LPS is several orders of magnitude higher than for proteins (lysozyme, BSA and IgG) and polysaccharides. Self-assembly of LPS layers via hydrogen-bond attachment on allantoin crystals emerges as a novel binding mechanism and could be considered as a practical method for preparing biomimetic membranes on a solid support. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Probabilistic inverse design for self-assembling materials

    Science.gov (United States)

    Jadrich, R. B.; Lindquist, B. A.; Truskett, T. M.

    2017-05-01

    One emerging approach for the fabrication of complex architectures on the nanoscale is to utilize particles customized to intrinsically self-assemble into a desired structure. Inverse methods of statistical mechanics have proven particularly effective for the discovery of interparticle interactions suitable for this aim. Here we evaluate the generality and robustness of a recently introduced inverse design strategy [B. A. Lindquist et al., J. Chem. Phys. 145, 111101 (2016)] by applying this simulation-based machine learning method to optimize for interparticle interactions that self-assemble particles into a variety of complex microstructures as follows: cluster fluids, porous mesophases, and crystalline lattices. Using the method, we discover isotropic pair interactions that lead to the self-assembly of each of the desired morphologies, including several types of potentials that were not previously understood to be capable of stabilizing such systems. One such pair potential led to the assembly of the highly asymmetric truncated trihexagonal lattice and another produced a fluid containing spherical voids, or pores, of designed size via purely repulsive interactions. Through these examples, we demonstrate several advantages inherent to this particular design approach including the use of a parametrized functional form for the optimized interparticle interactions, the ability to constrain the range of said parameters, and compatibility of the inverse design strategy with a variety of simulation protocols (e.g., positional restraints).

  18. Molecular Motions in Functional Self-Assembled Nanostructures

    Directory of Open Access Journals (Sweden)

    Jean-Marc Saiter

    2013-01-01

    Full Text Available The construction of “smart” materials able to perform specific functions at the molecular scale through the application of various stimuli is highly attractive but still challenging. The most recent applications indicate that the outstanding flexibility of self-assembled architectures can be employed as a powerful tool for the development of innovative molecular devices, functional surfaces and smart nanomaterials. Structural flexibility of these materials is known to be conferred by weak intermolecular forces involved in self-assembly strategies. However, some fundamental mechanisms responsible for conformational lability remain unexplored. Furthermore, the role played by stronger bonds, such as coordination, ionic and covalent bonding, is sometimes neglected while they can be employed readily to produce mechanically robust but also chemically reversible structures. In this review, recent applications of structural flexibility and molecular motions in self-assembled nanostructures are discussed. Special focus is given to advanced materials exhibiting significant performance changes after an external stimulus is applied, such as light exposure, pH variation, heat treatment or electromagnetic field. The crucial role played by strong intra- and weak intermolecular interactions on structural lability and responsiveness is highlighted.

  19. Chitosan Based Self-Assembled Nanoparticles in Drug Delivery

    Directory of Open Access Journals (Sweden)

    Javier Pérez Quiñones

    2018-02-01

    Full Text Available Chitosan is a cationic polysaccharide that is usually obtained by alkaline deacetylation of chitin poly(N-acetylglucosamine. It is biocompatible, biodegradable, mucoadhesive, and non-toxic. These excellent biological properties make chitosan a good candidate for a platform in developing drug delivery systems having improved biodistribution, increased specificity and sensitivity, and reduced pharmacological toxicity. In particular, chitosan nanoparticles are found to be appropriate for non-invasive routes of drug administration: oral, nasal, pulmonary and ocular routes. These applications are facilitated by the absorption-enhancing effect of chitosan. Many procedures for obtaining chitosan nanoparticles have been proposed. Particularly, the introduction of hydrophobic moieties into chitosan molecules by grafting to generate a hydrophobic-hydrophilic balance promoting self-assembly is a current and appealing approach. The grafting agent can be a hydrophobic moiety forming micelles that can entrap lipophilic drugs or it can be the drug itself. Another suitable way to generate self-assembled chitosan nanoparticles is through the formation of polyelectrolyte complexes with polyanions. This paper reviews the main approaches for preparing chitosan nanoparticles by self-assembly through both procedures, and illustrates the state of the art of their application in drug delivery.

  20. Molecular pathways for defect annihilation in directed self-assembly

    Science.gov (United States)

    Hur, Su-Mi; Thapar, Vikram; Ramírez-Hernández, Abelardo; Khaira, Gurdaman; Segal-Peretz, Tamar; Rincon-Delgadillo, Paulina A.; Li, Weihua; Müller, Marcus; Nealey, Paul F.; de Pablo, Juan J.

    2015-01-01

    Over the last few years, the directed self-assembly of block copolymers by surface patterns has transitioned from academic curiosity to viable contender for commercial fabrication of next-generation nanocircuits by lithography. Recently, it has become apparent that kinetics, and not only thermodynamics, plays a key role for the ability of a polymeric material to self-assemble into a perfect, defect-free ordered state. Perfection, in this context, implies not more than one defect, with characteristic dimensions on the order of 5 nm, over a sample area as large as 100 cm2. In this work, we identify the key pathways and the corresponding free energy barriers for eliminating defects, and we demonstrate that an extraordinarily large thermodynamic driving force is not necessarily sufficient for their removal. By adopting a concerted computational and experimental approach, we explain the molecular origins of these barriers and how they depend on material characteristics, and we propose strategies designed to overcome them. The validity of our conclusions for industrially relevant patterning processes is established by relying on instruments and assembly lines that are only available at state-of-the-art fabrication facilities, and, through this confluence of fundamental and applied research, we are able to discern the evolution of morphology at the smallest relevant length scales—a handful of nanometers—and present a view of defect annihilation in directed self-assembly at an unprecedented level of detail. PMID:26515095

  1. Effects of monolayer Bi on the self-assembly of DBBA on Au(111)

    Science.gov (United States)

    Tian, Guo; Shen, Yixian; He, Bingchen; Yu, Zhengqing; Song, Fei; Lu, Yunhao; Wang, Pingshan; Gao, Yongli; Huang, Han

    2017-11-01

    The initial growth behaviors of nonplanar 10,10‧-dibromo-9,9‧-bianthryl (DBBA) molecules on the Au(111) substrates, which is either pristine or Bi-3 × √3-Au(111), at low deposition rates have been systematically investigated using low temperature scanning tunneling microscopy (LT-STM) and density functional theories (DFT) calculations. The effects of such substrates on the subsequent graphene nanoribbons (GNRs) formation are addressed. On clean Au(111), DBBA molecules self-assemble into highly ordered commensurate single-molecule chains along Au at a coverage of 0.8 monolayer (ML), and collectively transit into long-range ordered commensurate double-molecule chains along Au but with many single-molecule vacancies at a coverage of 1.2 ML, revealing the delicate competing between intermolecular interactions and molecule-substrate interfacial interactions. The interfacial interactions are further tuned by introducing bismuth to form a Bi-3 × √3-Au(111)surface, where DBBA molecules self-assemble into an unique hexamer phase due to the enhanced intermolecular interactions via Csbnd H…π and halogen bonds. DFT calculations confirm the proposed molecular configuration change of single DBBA molecule when adsorbed on different substrates. The calculated difference in Csbnd Br bond gives further insight into why no GNRs formed on Bi-3 × √3-Au(111).

  2. Self-Assembly of Plasmonic Nanoclusters for Optical Metauids

    Science.gov (United States)

    Schade, Nicholas Benjamin

    I discuss experimental progress towards developing a material with an isotropic, negative index of refraction at optical frequencies. The simplest way to make such a material is to create a metafluid, or a disordered collection of subwavelength, isotropic electromagnetic resonators. Small clusters of metal particles, such as tetrahedra, serve as these constituents. What is needed are methods for manufacturing these structures with high precision and in sufficient yield that their resonances are identical. Jonathan Fan et al. [Science, 328 (5982), 1135-1138, 2010] demonstrated that colloidal self-assembly is a means of preparing electromagnetic resonators from metal nanoparticles. However, the resonances are sensitive to the separation gaps between particles. Standard synthesis routes for metal nanoparticles yield crystals or nanoshells that are inadequate for metafluids due to polydispersity, faceting, and thermal instabilities. To ensure that the separation gaps and resonances are uniform, more monodisperse spherical particles are needed. An additional challenge is the self-assembly of tetrahedral clusters in high yield from these particles. In self-assembly approaches that others have examined previously, the yield of any particular type of cluster is low. In this dissertation I present solutions to several of these problems, developed in collaboration with my research group and others. We demonstrate that slow chemical etching can transform octahedral gold crystals into ultrasmooth, monodisperse nanospheres. The particles can serve as seeds for the growth of larger octahedra which can in turn be etched. The size of the gold nanospheres can therefore be adjusted as desired. We further show that in colloidal mixtures of two sphere species that strongly bind to one another, the sphere size ratio determines the size distribution of self-assembled clusters. At a critical size ratio, tetrahedral clusters assemble in high yield. We explain the experimentally observed

  3. Combustion and self-assembly of nanoenergetic materials

    Science.gov (United States)

    Malchi, Jonathan Yaniv

    The recent worldwide interest in nanotechnology spans a wide variety of scientific fields such as electronics, biology, materials science and medicine. Because of their extremely small dimensions, nanoparticles demonstrate properties different from matter at larger scales. Understanding these unusual properties and utilizing them for macroscale devices is an overall goal for nanotechnology. Moreover, manipulating these small particles into organized structures is crucial for taking full advantage of what nanotechnology has to offer, however it has proven to be a difficult task. Recent work utilizing electrostatic forces shows great potential for the self-assembly of nanoparticles into organized two-dimensional and three-dimensional structures. Overall, this work examines how nanotechnology and self-assembly can benefit the field of energetic materials. Because of aluminum's high energy density and low cost, it has been used in the field of energetic materials for several decades. In order to achieve sufficient energy release rates, aluminum is typically manufactured as a powder having spherical particles with diameters on the micron scale. It is well-known that decreasing the original particle diameter of a fuel particle will increase the burning time and, thus, energy release rate. Therefore, aluminum particles have recently been made to have diameters on the nanoscale, and shown to be advantageous for several applications. The combustion of nanoaluminum (nAl) in various systems is the primary focus of this study. A progression of experiments is used to analyze the combustion of nAl: (1) a fully heterogeneous flame spread system, (2) a semi-homogeneous sonicated thermite system and (3) a quasi-homogeneous self-assembled thermite system. The flame spread experiment physically separates the nAl from the gaseous oxidizer allowing for a well-understood convective, diffusive, reactive system to be analyzed. Because of the simplicity of the experimental setup, variables

  4. Synthesis and characterization of designed BMHP1-derived self-assembling peptides for tissue engineering applications.

    Science.gov (United States)

    Silva, Diego; Natalello, Antonino; Sanii, Babak; Vasita, Rajesh; Saracino, Gloria; Zuckermann, Ronald N; Doglia, Silvia Maria; Gelain, Fabrizio

    2013-01-21

    The importance of self-assembling peptides (SAPs) in regenerative medicine is becoming increasingly recognized. The propensity of SAPs to form nanostructured fibers is governed by multiple forces including hydrogen bonds, hydrophobic interactions and π-π aromatic interactions among side chains of the amino acids. Single residue modifications in SAP sequences can significantly affect these forces. BMHP1-derived SAPs is a class of biotinylated oligopeptides, which self-assemble in β-structured fibers to form a self-healing hydrogel. In the current study, selected modifications in previously described BMHP1-derived SAPs were designed in order to investigate the influence of modified residues on self-assembly kinetics and scaffold formation properties. The Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis demonstrated the secondary structure (β-sheet) formation in all modified SAP sequences, whereas atomic force microscopy (AFM) analysis further confirmed the presence of nanofibers. Furthermore, the fiber shape and dimension analysis by AFM showed flattened and twisted fiber morphology ranging from ∼8 nm to ∼70 nm. The mechanical properties of the pre-assembled and post assembled solution were investigated by rheometry. The shear-thinning behavior and rapid re-healing properties of the pre-assembled solutions make them a preferable choice for injectable scaffolds. The wide range of stiffnesses (G')--from ∼1000 to ∼27,000 Pa--exhibited by the post-assembled scaffolds demonstrated their potential for a variety of tissue engineering applications. The extra cellular matrix (ECM) mimicking (physically and chemically) properties of SAP scaffolds enhanced cell adhesion and proliferation. The capability of the scaffold to facilitate murine neural stem cell (mNSC) proliferation was evaluated in vitro: the increased mNSCs adhesion and proliferation demonstrated the potential of newly synthesized SAPs for regenerative medicine

  5. Self-assembly of fibronectin mimetic peptide-amphiphile nanofibers

    Science.gov (United States)

    Rexeisen, Emilie Lynn

    umbilical vein endothelial cells and alpha5beta1 integrins immobilized on an AFM tip preferred binding to a fibronectin mimetic peptide that contained both hydrophilic and hydrophobic residues in the linker and a medium length spacer. Most cells require a three-dimensional scaffold in order to thrive. To incorporate the fibronectin mimetic peptide into a three-dimensional structure, a single hydrocarbon tail was attached to form a peptideamphiphile. Single-tailed peptide-amphiphiles have been shown to form nanofibers in solution and gel after screening of the electrostatic charges in the headgroup. These gels show promise as scaffolds for tissue engineering. A fibronectin mimetic peptide-amphiphile containing a linker with alternating hydrophobic and hydrophilic residues was designed to form nanofibers in solution. The critical micelle concentration of the peptide-amphiphile was determined to be 38 muM, and all subsequent experiments were performed above this concentration. Circular dichroism (CD) spectroscopy indicated that the peptide headgroup of the peptide-amphiphile forms an alpha+beta secondary structure; whereas, the free peptide forms a random secondary structure. Cryogenic-transmission electron microscopy (cryo-TEM) and small angle neutron scattering showed that the peptide-amphiphile self-assembled into nanofibers. The cryo-TEM images showed single nanofibers with a diameter of 10 nm and lengths on the order of microns. Images of higher peptideamphiphile concentrations showed evidence of bundling between individual nanofibers, which could give rise to gelation behavior at higher concentrations. The peptide-amphiphile formed a gel at concentrations above 6 mM. A 10 mM sample was analyzed with oscillating plate rheometry and was found to have an elastic modulus within the range of living tissue, showing potential as a possible scaffold for tissue engineering.

  6. Nanoscale Control of Molecular Self-Assembly Induced by Plasmonic Hot-Electron Dynamics.

    Science.gov (United States)

    Simoncelli, Sabrina; Li, Yi; Cortés, Emiliano; Maier, Stefan A

    2018-03-27

    Self-assembly processes allow designing and creating complex nanostructures using molecules as building blocks and surfaces as scaffolds. This autonomous driven construction is possible due to a complex thermodynamic balance of molecule-surface interactions. As such, nanoscale guidance and control over this process is hard to achieve. Here we use the highly localized light-to-chemical-energy conversion of plasmonic materials to spatially cleave Au-S bonds on predetermined locations within a single nanoparticle, enabling a high degree of control over this archetypal system for molecular self-assembly. Our method offers nanoscale precision and high-throughput light-induced tailoring of the surface chemistry of individual and packed nanosized metallic structures by simply varying wavelength and polarization of the incident light. Assisted by single-molecule super-resolution fluorescence microscopy, we image, quantify, and shed light onto the plasmon-induced desorption mechanism. Our results point toward localized distribution of hot electrons, contrary to uniformly distributed lattice heating, as the mechanism inducing Au-S bond breaking. We demonstrate that plasmon-induced photodesorption enables subdiffraction and even subparticle multiplexing. Finally, we explore possible routes to further exploit these concepts for the selective positioning of nanomaterials and the sorting and purification of colloidal nanoparticles.

  7. Precipitation synthesis and magnetic properties of self-assembled magnetite-chitosan nanostructures

    International Nuclear Information System (INIS)

    Bezdorozhev, Oleksii; Kolodiazhnyi, Taras; Vasylkiv, Oleg

    2017-01-01

    This paper reports the synthesis and magnetic properties of unique magnetite-chitosan nanostructures synthesized by the chemical precipitation of magnetite nanoparticles in the presence of chitosan. The influence of varying synthesis parameters on the morphology of the magnetic composites is determined. Depending on the synthesis parameters, magnetite-chitosan nanostructures of spherical (9–18 nm), rice-seed-like (75–290 nm) and lumpy (75–150 nm) shapes were obtained via self-assembly. Spherical nanostructures encapsulated by a 9–15 nm chitosan layer were assembled as well. The prospective morphology of the nanostructures is combined with their excellent magnetic characteristics. It was found that magnetite-chitosan nanostructures are ferromagnetic and pseudo-single domain. Rice-seed-like nanostructures exhibited a coercivity of 140 Oe and saturation magnetization of 56.7 emu/g at 300 K. However, a drop in the magnetic properties was observed for chitosan-coated spherical nanostructures due to the higher volume fraction of chitosan. - Highlights: • Magnetite-chitosan nanostructures are synthesized via self-assembly. • Different morphology can be obtained by adjusting the synthesis parameters. • An attractive combination of magnetic properties and morphology is obtained. • Magnetite-chitosan nanostructures are ferrimagnetic and pseudo-single domain.

  8. Precipitation synthesis and magnetic properties of self-assembled magnetite-chitosan nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Bezdorozhev, Oleksii; Kolodiazhnyi, Taras; Vasylkiv, Oleg, E-mail: oleg.vasylkiv@nims.go.jp

    2017-04-15

    This paper reports the synthesis and magnetic properties of unique magnetite-chitosan nanostructures synthesized by the chemical precipitation of magnetite nanoparticles in the presence of chitosan. The influence of varying synthesis parameters on the morphology of the magnetic composites is determined. Depending on the synthesis parameters, magnetite-chitosan nanostructures of spherical (9–18 nm), rice-seed-like (75–290 nm) and lumpy (75–150 nm) shapes were obtained via self-assembly. Spherical nanostructures encapsulated by a 9–15 nm chitosan layer were assembled as well. The prospective morphology of the nanostructures is combined with their excellent magnetic characteristics. It was found that magnetite-chitosan nanostructures are ferromagnetic and pseudo-single domain. Rice-seed-like nanostructures exhibited a coercivity of 140 Oe and saturation magnetization of 56.7 emu/g at 300 K. However, a drop in the magnetic properties was observed for chitosan-coated spherical nanostructures due to the higher volume fraction of chitosan. - Highlights: • Magnetite-chitosan nanostructures are synthesized via self-assembly. • Different morphology can be obtained by adjusting the synthesis parameters. • An attractive combination of magnetic properties and morphology is obtained. • Magnetite-chitosan nanostructures are ferrimagnetic and pseudo-single domain.

  9. Compartmentalization Technologies via Self-Assembly and Cross-Linking of Amphiphilic Random Block Copolymers in Water.

    Science.gov (United States)

    Matsumoto, Mayuko; Terashima, Takaya; Matsumoto, Kazuma; Takenaka, Mikihito; Sawamoto, Mitsuo

    2017-05-31

    Orthogonal self-assembly and intramolecular cross-linking of amphiphilic random block copolymers in water afforded an approach to tailor-make well-defined compartments and domains in single polymer chains and nanoaggregates. For a double compartment single-chain polymer, an amphiphilic random block copolymer bearing hydrophilic poly(ethylene glycol) (PEG) and hydrophobic dodecyl, benzyl, and olefin pendants was synthesized by living radical polymerization (LRP) and postfunctionalization; the dodecyl and benzyl units were incorporated into the different block segments, whereas PEG pendants were statistically attached along a chain. The copolymer self-folded via the orthogonal self-assembly of hydrophobic dodecyl and benzyl pendants in water, followed by intramolecular cross-linking, to form a single-chain polymer carrying double yet distinct hydrophobic nanocompartments. A single-chain cross-linked polymer with a chlorine terminal served as a globular macroinitiator for LRP to provide an amphiphilic tadpole macromolecule comprising a hydrophilic nanoparticle and a hydrophobic polymer tail; the tadpole thus self-assembled into multicompartment aggregates in water.

  10. Investigation of the structural anisotropy in a self-assembling glycinate layer on Cu(100) by scanning tunneling microscopy and density functional theory calculations

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmin, Mikhail [Surface Science Laboratory, Optoelectronics Research Centre, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere (Finland); Ioffe Physical Technical Institute, Russian Academy of Sciences, 26 Polytekhnicheskaya, St Petersburg 194021 (Russian Federation); Lahtonen, Kimmo; Vuori, Leena [Surface Science Laboratory, Optoelectronics Research Centre, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere (Finland); Sánchez-de-Armas, Rocío [Materials Theory Division, Department of Physics and Astronomy, Uppsala University, P.O. Box 516, S75120 Uppsala (Sweden); Hirsimäki, Mika, E-mail: mikahirsi@gmail.com [Surface Science Laboratory, Optoelectronics Research Centre, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere (Finland); Valden, Mika [Surface Science Laboratory, Optoelectronics Research Centre, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere (Finland)

    2017-07-01

    Highlights: • Deprotonation reaction of glycine and self-assembly of glycinate is observed on Cu. • Bias-dependent scanning tunneling microscopy indicates two glycinate geometries. • Density functional theory calculations confirm the two non-identical configurations. • Non-identical adsorption explains the anisotropy in adlayer’s electronic structure. - Abstract: Self-assembling organic molecule-metal interfaces exhibiting free-electron like (FEL) states offers an attractive bottom-up approach to fabricating materials for molecular electronics. Accomplishing this, however, requires detailed understanding of the fundamental driving mechanisms behind the self-assembly process. For instance, it is still unresolved as to why the adsorption of glycine ([NH{sub 2}(CH{sub 2})COOH]) on isotropic Cu(100) single crystal surface leads, via deprotonation and self-assembly, to a glycinate ([NH{sub 2}(CH{sub 2})COO–]) layer that exhibits anisotropic FEL behavior. Here, we report on bias-dependent scanning tunneling microscopy (STM) experiments and density functional theory (DFT) calculations for glycine adsorption on Cu(100) single crystal surface. We find that after physical vapor deposition (PVD) of glycine on Cu(100), glycinate self-assembles into an overlayer exhibiting c(2 × 4) and p(2 × 4) symmetries with non-identical adsorption sites. Our findings underscore the intricacy of electrical conductivity in nanomolecular organic overlayers and the critical role the structural anisotropy at molecule-metal interface plays in the fabrication of materials for molecular electronics.

  11. Imaging and Quantitation of a Succession of Transient Intermediates Reveal the Reversible Self-Assembly Pathway of a Simple Icosahedral Virus Capsid.

    Science.gov (United States)

    Medrano, María; Fuertes, Miguel Ángel; Valbuena, Alejandro; Carrillo, Pablo J P; Rodríguez-Huete, Alicia; Mateu, Mauricio G

    2016-11-30

    Understanding the fundamental principles underlying supramolecular self-assembly may facilitate many developments, from novel antivirals to self-organized nanodevices. Icosahedral virus particles constitute paradigms to study self-assembly using a combination of theory and experiment. Unfortunately, assembly pathways of the structurally simplest virus capsids, those more accessible to detailed theoretical studies, have been difficult to study experimentally. We have enabled the in vitro self-assembly under close to physiological conditions of one of the simplest virus particles known, the minute virus of mice (MVM) capsid, and experimentally analyzed its pathways of assembly and disassembly. A combination of electron microscopy and high-resolution atomic force microscopy was used to structurally characterize and quantify a succession of transient assembly and disassembly intermediates. The results provided an experiment-based model for the reversible self-assembly pathway of a most simple (T = 1) icosahedral protein shell. During assembly, trimeric capsid building blocks are sequentially added to the growing capsid, with pentamers of building blocks and incomplete capsids missing one building block as conspicuous intermediates. This study provided experimental verification of many features of self-assembly of a simple T = 1 capsid predicted by molecular dynamics simulations. It also demonstrated atomic force microscopy imaging and automated analysis, in combination with electron microscopy, as a powerful single-particle approach to characterize at high resolution and quantify transient intermediates during supramolecular self-assembly/disassembly reactions. Finally, the efficient in vitro self-assembly achieved for the oncotropic, cell nucleus-targeted MVM capsid may facilitate its development as a drug-encapsidating nanoparticle for anticancer targeted drug delivery.

  12. Self-assembly of amorphous biophotonic nanostructures by phase separation

    Energy Technology Data Exchange (ETDEWEB)

    Dufresne, Eric R.; Noh, Heeso; Saranathan, Vinodkumar; Mochrie, Simon G.J.; Cao, Hui; Prum, Richard O.; (Yale)

    2009-04-23

    Some of the most vivid colors in the animal kingdom are created not by pigments, but by wavelength-selective scattering of light from nanostructures. Here we investigate quasi-ordered nanostructures of avian feather barbs which produce vivid non-iridescent colors. These {beta}-keratin and air nanostructures are found in two basic morphologies: tortuous channels and amorphous packings of spheres. Each class of nanostructure is isotropic and has a pronounced characteristic length scale of variation in composition. These local structural correlations lead to strong backscattering over a narrow range of optical frequencies and little variation with angle of incidence. Such optical properties play important roles in social and sexual communication. To be effective, birds need to precisely control the development of these nanoscale structures, yet little is known about how they grow. We hypothesize that multiple lineages of birds have convergently evolved to exploit phase separation and kinetic arrest to self-assemble spongy color-producing nanostructures in feather barbs. Observed avian nanostructures are strikingly similar to those self-assembled during the phase separation of fluid mixtures; the channel and sphere morphologies are characteristic of phase separation by spinodal decomposition and nucleation and growth, respectively. These unstable structures are locked-in by the kinetic arrest of the {beta}-keratin matrix, likely through the entanglement or cross-linking of supermolecular {beta}-keratin fibers. Using the power of self-assembly, birds can robustly realize a diverse range of nanoscopic morphologies with relatively small physical and chemical changes during feather development.

  13. Electrochemically controlled self-assembly of block copolymer nanostructures

    Science.gov (United States)

    Eitouni, Hany Basam

    Organometallic block copolymers, wherein one block is composed of alternating ferrocene and dialkylsilane units in the main chain, undergo self-assembly to form microphase-separated ordered structures similarly to typical organic block copolymers. The 1,1'-dimethylsilylferrocenophane monomer was synthesized and polymerized anionically with other monomers to make a variety of different organometallic block copolymers. The phase behavior and thermodynamic interactions of anionically synthesized poly(styrene-block-ferrocenyldimethylsilane) (SF) and poly(isoprene-block-ferrocenyldimethylsilane) (IF) copolymers were examined using depolarized light scattering, small angle x-ray and neutron scattering (SAXS and SANS), and transmission electron microscopy. The temperature-dependence of the Flory-Huggins parameter, chi, and the statistical segment lengths of SF and IF copolymers were determined by SAXS and SANS using the random phase approximation. The thermodynamic interactions in poly(ferrocenyldimethylsilane) diblock copolymers were systematically adjusted by oxidizing the ferrocene moieties with silver salts and examined using SAXS and depolarized light scattering. The polymers retained microphase separated ordered structures upon oxidation and showed systematic changes in the location of the order-disorder transition as a function of extent of oxidation. By controlling the redox properties of the ferrocene moiety in the backbone of the polymer, we present a method for controlling the self-assembled microstructure and hence bulk material properties. Using electrochemical techniques, a novel means of controlling the order-disorder transition of block copolymers was discovered. By applying very small electrical potentials to disordered solutions of organometallic block copolymers, oriented ordered grains were formed near one electrode, the result of electrochemical reactions. After reversing the electrical bias on the system, the ordered grains disappeared and new

  14. Understanding the self-assembly of TCNQ on Cu(111)

    DEFF Research Database (Denmark)

    Stradi, Daniele; Borca, Bogdana; Barja, Sara

    2016-01-01

    The structure of self-assembled monolayers of 7,7',8,8'-tetracyano-p-quinodimethane (TCNQ) adsorbed on Cu(111) has been studied using a combination of scanning tunnelling microscopy (STM) experiments and density functional theory (DFT) calculations. We show that the polymorphism of the self...... perpendicular to the other. Conversely, when the substrate is held at room temperature during deposition and slightly annealed afterwards, a more complex structure with five molecules per unit cell is formed. DFT calculations complement the experimental results by revealing that the building blocks of the two...

  15. Photobleaching-activated micropatterning on self-assembled monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Scrimgeour, Jan; Kodali, Vamsi K; Kovari, Daniel T; Curtis, Jennifer E, E-mail: jennifer.curtis@physics.gatech.ed [School of Physics and Petit Institute for Bioengineering and Biosciences (IBB), Georgia Institute of Technology, 837 State St, Atlanta, GA 30332 (United States)

    2010-05-19

    Functional chemical micropatterns were fabricated by exploiting the photobleaching of dye-coupled species near methacrylate self-assembled monolayers. Using this approach we have demonstrated that multiple chemistries can be coupled to the monolayer using a standard fluorescence microscope. The surface bound functional groups remain active and patterns with feature sizes down to 3 {mu}m can be readily achieved with excellent signal-to-noise ratio. Control over the ligand binding density was demonstrated to illustrate the convenient route provided by this platform for fabricating complex spatial gradients in ligand density.

  16. Self-Assembled Supramolecular Architectures Lyotropic Liquid Crystals

    CERN Document Server

    Garti, Nissim

    2012-01-01

    This book will describe fundamentals and recent developments in the area of Self-Assembled Supramolecular Architecture and their relevance to the  understanding of the functionality of  membranes  as delivery systems for active ingredients. As the heirarchial architectures determine their performance capabilities, attention will be paid to theoretical and design aspects related to the construction of lyotropic liquid crystals: mesophases such as lamellar, hexagonal, cubic, sponge phase micellosomes. The book will bring to the reader mechanistic aspects, compositional c

  17. A 3D Optical Metamaterial Made by Self-Assembly

    KAUST Repository

    Vignolini, Silvia

    2011-10-24

    Optical metamaterials have unusual optical characteristics that arise from their periodic nanostructure. Their manufacture requires the assembly of 3D architectures with structure control on the 10-nm length scale. Such a 3D optical metamaterial, based on the replication of a self-assembled block copolymer into gold, is demonstrated. The resulting gold replica has a feature size that is two orders of magnitude smaller than the wavelength of visible light. Its optical signature reveals an archetypal Pendry wire metamaterial with linear and circular dichroism. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Self-assembled manganese oxide structures through direct oxidation

    KAUST Repository

    Zhao, Chao

    2012-12-01

    The morphology and phase of self-assembled manganese oxides during different stages of thermal oxidation were studied. Very interesting morphological patterns of Mn oxide films were observed. At the initial oxidation stage, the surface was characterized by the formation of ring-shaped patterns. As the oxidation proceeded to the intermediate stage, concentric plates formed to relax the compressive stress. Our experimental results gave a clear picture of the evolution of the structures. We also examined the properties of the structures. © 2012 Elsevier B.V.

  19. Preface: special topic on supramolecular self-assembly at surfaces.

    Science.gov (United States)

    Bartels, Ludwig; Ernst, Karl-Heinz; Gao, Hong-Jun; Thiel, Patricia A

    2015-03-14

    Supramolecular self-assembly at surfaces is one of the most exciting and active fields in Surface Science today. Applications can take advantage of two key properties: (i) versatile pattern formation over a broad length scale and (ii) tunability of electronic structure and transport properties, as well as frontier orbital alignment. It provides a new frontier for Chemical Physics as it uniquely combines the versatility of Organic Synthesis and the Physics of Interfaces. The Journal of Chemical Physics is pleased to publish this Special Topic Issue, showcasing recent advances and new directions.

  20. Formation and Characterization of Silicon Self-assembled Nanodots

    International Nuclear Information System (INIS)

    Idrees, Fatima Aldaw; Sakrani, Samsudi; Othaman, Zulkafli

    2011-01-01

    Silicon self-assembled quantum dots have been successfully prepared on corning glass (7059) substrate. The samples were fabricated using the common technique RF magnetron sputtering system depend on plasma excitation at varying growth parameters and high temperature of more than 500 deg. C. The measurements of average dots size estimated to be 36 nm is confirmed by using AFM. The PL peak located at 570 nm, informed band gap energy = 2.10 eV larger than bulk material band gap, that confirmed the miniaturized of the dots. To measure the Silicon atomic% deposit on corning glass (7059) substrate EDX has been used.

  1. Rapid self-assembly of block copolymers to photonic crystals

    Science.gov (United States)

    Xia, Yan; Sveinbjornsson, Benjamin R; Grubbs, Robert H; Weitekamp, Raymond; Miyake, Garret M; Atwater, Harry A; Piunova, Victoria; Daeffler, Christopher Scot; Hong, Sung Woo; Gu, Weiyin; Russell, Thomas P.

    2016-07-05

    The invention provides a class of copolymers having useful properties, including brush block copolymers, wedge-type block copolymers and hybrid wedge and polymer block copolymers. In an embodiment, for example, block copolymers of the invention incorporate chemically different blocks comprising polymer size chain groups and/or wedge groups that significantly inhibit chain entanglement, thereby enhancing molecular self-assembly processes for generating a range of supramolecular structures, such as periodic nanostructures and microstructures. The present invention also provides useful methods of making and using copolymers, including block copolymers.

  2. Self-assembling peptides form nanodiscs that stabilize membrane proteins

    DEFF Research Database (Denmark)

    Midtgaard, Søren Roi; Pedersen, Martin Cramer; Kirkensgaard, Jacob Judas Kain

    2014-01-01

    New methods to handle membrane bound proteins, e.g. G-protein coupled receptors (GPCRs), are highly desirable. Recently, apoliprotein A1 (ApoA1) based lipoprotein particles have emerged as a new platform for studying membrane proteins, and it has been shown that they can self-assemble in combinat......New methods to handle membrane bound proteins, e.g. G-protein coupled receptors (GPCRs), are highly desirable. Recently, apoliprotein A1 (ApoA1) based lipoprotein particles have emerged as a new platform for studying membrane proteins, and it has been shown that they can self...

  3. Biomimetic self-assembly of a functional asymmetrical electronic device.

    Science.gov (United States)

    Boncheva, Mila; Gracias, David H; Jacobs, Heiko O; Whitesides, George M

    2002-04-16

    This paper introduces a biomimetic strategy for the fabrication of asymmetrical, three-dimensional electronic devices modeled on the folding of a chain of polypeptide structural motifs into a globular protein. Millimeter-size polyhedra-patterned with logic devices, wires, and solder dots-were connected in a linear string by using flexible wire. On self-assembly, the string folded spontaneously into two domains: one functioned as a ring oscillator, and the other one as a shift register. This example demonstrates that biomimetic principles of design and self-organization can be applied to generate multifunctional electronic systems of complex, three-dimensional architecture.

  4. Directed self-assembly graphoepitaxy template generation with immersion lithography

    Science.gov (United States)

    Ma, Yuansheng; Lei, Junjiang; Andres Torres, J.; Hong, Le; Word, James; Fenger, Germain; Tritchkov, Alexander; Lippincott, George; Gupta, Rachit; Lafferty, Neal; He, Yuan; Bekaert, Joost; Vanderberghe, Geert

    2015-07-01

    We present an optimization methodology for the template designs of subresolution contacts using directed self-assembly (DSA) with graphoepitaxy and immersion lithography. We demonstrate the flow using a 60-nm-pitch contact design in doublet with Monte Carlo simulations for DSA. We introduce the notion of template error enhancement factor (TEEF) to gauge the sensitivity of DSA printing infidelity to template printing infidelity and evaluate optimized template designs with TEEF metrics. Our data show that source mask optimization and inverse lithography technology are critical to achieve sub-80 nm non-L0 pitches for DSA patterns using 193i.

  5. Nanoporous network channels from self-assembled triblock copolymer supramolecules.

    Science.gov (United States)

    du Sart, Gerrit Gobius; Vukovic, Ivana; Vukovic, Zorica; Polushkin, Evgeny; Hiekkataipale, Panu; Ruokolainen, Janne; Loos, Katja; ten Brinke, Gerrit

    2011-02-16

    Supramolecular complexes of a poly(tert-butoxystyrene)-block-polystyrene-block-poly(4-vinylpyridine) triblock copolymers and less than stoichiometric amounts of pentadecylphenol (PDP) are shown to self-assemble into a core-shell gyroid morphology with the core channels formed by the hydrogen-bonded P4VP(PDP)complexes. After structure formation, PDP was removed using a simple washing procedure, resulting in well-ordered nanoporous films that were used as templates for nickel plating. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Directed Formation of DNA Nanoarrays through Orthogonal Self-Assembly

    Directory of Open Access Journals (Sweden)

    Eugen Stulz

    2011-06-01

    Full Text Available We describe the synthesis of terpyridine modified DNA strands which selectively form DNA nanotubes through orthogonal hydrogen bonding and metal complexation interactions. The short DNA strands are designed to self-assemble into long duplexes through a sticky-end approach. Addition of weakly binding metals such as Zn(II and Ni(II induces the formation of tubular arrays consisting of DNA bundles which are 50-200 nm wide and 2-50 nm high. TEM shows additional long distance ordering of the terpy-DNA complexes into fibers.

  7. Biomimetic engineering: towards a self-assembled nanotechnology

    International Nuclear Information System (INIS)

    Braach-Maksvytis, V.

    2002-01-01

    Full text: The Nanoscience and Systems program was set up within CSIRO Telecommunications and Industrial Physics three years ago with an emphasis on biomimetic engineering, with the aim of developing new cross-disciplinary research in traditional physics areas. By combining expertise in experimental and theoretical physics with biology and chemistry, new approaches towards understanding and using nanoscale systems and devices are being explored. Research in the program ranges from using self-assembled lipid membranes for surface passivation of GaAs transistors to the electrical properties of nanoparticle films and devices. An overview of the research will be given, highlighting the diversity of nanotechnology applications

  8. Quadrangular prism: a unique self-assembly from amphiphilic hyperbranched PMA-b-PAA.

    Science.gov (United States)

    Xue, Xiaoqiang; Li, Fang; Huang, Wenyan; Yang, Hongjun; Jiang, Bibiao; Zheng, Yiliang; Zhang, Dongliang; Fang, Jianbo; Kong, Lizhi; Zhai, Guangqun; Chen, Jianhai

    2014-02-01

    The novel hyperbranched poly(methyl acrylate)-block-poly(acrylic acid)s (HBPMA-b-PAAs) are successfully synthesized via single-electron transfer-living radical polymerization (SET-LRP), followed with hydrolysis reaction. The copolymer solution could spontaneously form unimolecular micelles composed of the hydrophobic core (PMA) and the hydrophilic shell (PAA) in water. Results show that the size of spherical particles increases from 8.18 to 19.18 nm with increased pH from 3.0 to 12.0. Most interestingly, the unique regular quadrangular prisms with the large microstructure (5.70 μm in length, and 0.47 μm in width) are observed by the self-assembly of unimolecular micelles when pH value is below 2. Such self-assembly behavior of HBPMA-b-PAA in solution is significantly influenced by the pH cycle times and concentration, which show that increased polymer concentration favors aggregate growth. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Building non-tortuous ion-conduction pathways using self-assembled block copolymers

    Science.gov (United States)

    Kim, Onnuri; Park, Moon Jeong

    Ion-containing polymers with self-assembled morphologies are becoming important ingredients of a wide range of electrochemical devices such as lithium-ion batteries, fuel cells and electroactive actuators. Although several studies have reported the relationship between morphologies and ion transport properties of such polymers, the most of quantitative analysis have been limited to two-dimensional morphologies as they occupy a large window of the phase diagrams. In present study, we investigated the effects of morphology on the ion transport efficiency with a focus on three-dimensional symmetry. A range of three-dimensional self-assembled morphologies, i.e., ill-defined cubic, orthorhombic network (O70) , and face-centered cubic phases (fcc) were achieved for a single sulfonated block copolymer upon the addition of non-stoichiometric ionic liquids. The type of three-dimensional lattice was found out to play a crucial role in determining the ion transport properties of composite membranes, where the most efficient ion-conduction was demonstrated for fcc phases with lowest tortuosity of 1 over orthorhombic networks phases (tortuosity:1.5). This intriguing result suggests a new avenue to designing polymer electrolytes with improved transport properties.

  10. Self-assembled H-aggregation induced high performance poly (3-hexylthiophene) Schottky diode

    Science.gov (United States)

    Chaudhary, Vivek; Pandey, Rajiv K.; Prakash, Rajiv; Singh, Arun Kumar

    2017-12-01

    The investigation of size confinement and chain orientation within the microstructure of a polymer thin film is very important for electronic device applications and fundamental research. Here, we present single step methodology for the synthesis of solution-processable poly (3-hexylthiophene) (P3HT) nanofibers via a self-assembly process. The formation of P3HT nanofibers is confirmed by atomic force microscopy. The synthesized nanofibers are characterized by UV-visible absorption, photoluminescence, and Raman spectroscopy. The aggregation type of self-assembled P3HT is studied by both UV-visible absorbance and photoluminescence spectroscopy. The exciton bandwidth in polymer films is calculated by following the Spano's H-aggregate model and found to be 28 meV. Raman spectroscopy is used to identify the various stretching modes present in nanofibers. The structural investigation using grazing angle X-ray diffraction of nanofibers reveals the presence of alkyl chain ordering. We have fabricated organic Schottky diodes with P3HT nanofibers on indium tin oxide (ITO) coated glass with configuration Al/P3HT/ITO, and current density-voltage characteristics are subsequently used for extracting the electronic parameters of the device. We have also discussed the charge transport mechanism at the metal/polymer interface.

  11. Molecular self-assembly in substituted alanine derivatives: XRD, Hirshfeld surfaces and DFT studies

    Science.gov (United States)

    Rajalakshmi, Periasamy; Srinivasan, Navaneethakrishnan; Sivaraman, Gandhi; Razak, Ibrahim Abdul; Rosli, Mohd Mustaqim; Krishnakumar, Rajaputi Venkatraman

    2014-06-01

    The molecular assemblage in the crystal structures of three modified chiral amino acids, two of which are isomeric D- and L-pairs boc-L-benzothienylalanine (BLA), boc-D-benzothienylalanine (BDA) and the other boc-D-naphthylalanine (NDA) differing from this pair very slightly in the chemical modification introduced, is accurately described. The aggregation of amino acid molecules is similar in all the crystals and may be described as a twisted double helical ladder in which two complementary long helical chains formed through O-H⋯O hydrogen bonds are interconnected through the characteristic head-to-tail N-H⋯O hydrogen bonds. Thus the molecular aggregation enabled through classical hydrogen bonds may be regarded as a mimic of the characteristic double helical structure of DNA. Also, precise structural information involving these amino acid molecules with lower symmetry exhibiting higher trigonal symmetry in their self-assembly is expected to throw light on the nature and strength of intermolecular interactions and their role in self-assembly of molecular aggregates, which are crucial in developing new or at least supplement existing crystal engineering strategies. Single crystal X-ray analysis and their electronic structures were calculated at the DFT level with a detailed analysis of Hirshfeld surfaces and fingerprint plots facilitating a comparison of intermolecular interactions in building different supramolecular architectures.

  12. Fabrication of Silicon nanostructures by UHV-STM lithography in Self-Assembled Monolayers

    International Nuclear Information System (INIS)

    Sundermann, M.; Brechling, A.; Rott, K.; Meyners, D.; Kleineberg, U.; Heinzmann, U.; Knueller, A.; Eck, W.; Goelzhueuser, A.; Grunze, M.

    2002-01-01

    Our approach utilizes UHV-STM writing in Self-Assembled Monolayers (SAM). SAMs form highly-ordered ultrathin (∼2-3 nm) monomolecular layers on top of pre-activated Si(100) or Si(111) surfaces. After patterning by UHV-STM writing in constant-current mode at different write parameters (gap voltage, electron dose) the modified Self-Assembled Monolayer serves as an etch mask for an anisotropic wet etch transfer (two-step etch process in aqueous solutions of 5 % HF and 1 M KOH), of the write structure into the silicon substrate. The corresponding silicon nano-structures have been analyzed afterwards by AFM or SEM to characterize the pattern accuracy. We have studied the suitability of three different types of SAMs on silicon single-crystals. Alkyl-chain-type SAMs like Octadecylsilane (ODS) monolayer have been formed by immersion of hydroxylated Si(100) in Octadecyltrichlorosilane (CH 3 (CH 27 SiCl 3 ) while SAMs with aromatic spacer groups such as Hydroxybiphenyl (HBP, (C 6 H 6 ) 2 OH) and Ethoxybiphenyl silane (EBP, (C 6 H 6 ) 2 O(CH 2 ) 3 Si(OCH 3 ) 3 ) are formed on Si(111). (Authors)

  13. Photoinitiated Polymerization-Induced Self-Assembly (Photo-PISA): New Insights and Opportunities.

    Science.gov (United States)

    Yeow, Jonathan; Boyer, Cyrille

    2017-07-01

    The polymerization-induced self-assembly (PISA) process is a useful synthetic tool for the efficient synthesis of polymeric nanoparticles of different morphologies. Recently, studies on visible light initiated PISA processes have offered a number of key research opportunities that are not readily accessible using traditional thermally initiated systems. For example, visible light mediated PISA (Photo-PISA) enables a high degree of control over the dispersion polymerization process by manipulation of the wavelength and intensity of incident light. In some cases, the final nanoparticle morphology of a single formulation can be modulated by simple manipulation of these externally controlled parameters. In addition, temporal (and in principle spatial) control over the Photo-PISA process can be achieved in most cases. Exploitation of the mild room temperature polymerizations conditions can enable the encapsulation of thermally sensitive therapeutics to occur without compromising the polymerization rate and their activities. Finally, the Photo-PISA process can enable further mechanistic insights into the morphological evolution of nanoparticle formation such as the effects of temperature on the self-assembly process. The purpose of this mini-review is therefore to examine some of these recent advances that have been made in Photo-PISA processes, particularly in light of the specific advantages that may exist in comparison with conventional thermally initiated systems.

  14. Fabrication of a Polyaniline Ultramicroelectrode via a Self Assembled Monolayer Modified Gold Electrode

    Science.gov (United States)

    Bolat, Gulcin; Kuralay, Filiz; Eroglu, Gunes; Abaci, Serdar

    2013-01-01

    Herein, we report a simple and inexpensive way for the fabrication of an ultramicroelectrode and present its characterization by electrochemical techniques. The fabrication of polyaniline UME involves only two steps: modification of a gold (Au) electrode by self assembled monolayers (SAM) and then electrodeposition of polyaniline film on this thiol-coated Au electrode by using cyclic voltammetry and constant potential electrolysis methods. Two types of self-assembled monolayers (4-mercapto-1-butanol, MB, and 11-mercaptoundecanoic acid, MUA) were used, respectively, to see the effect of chain length on microelectrode formation. Microelectrode fabrication and utility of the surface was investigated by cyclic voltammetric measurements in a redox probe. The thus prepared polyaniline microelectrode was then used for DNA immobilization. Discrimination between double-stranded DNA (dsDNA) and single-stranded DNA (ssDNA) was obtained with enhanced electrochemical signals compared to a polyaniline-coated Au electrode. Different modifications on the electrode surfaces were examined using scanning electron microscopy (SEM). PMID:23797740

  15. Limb derived cells as a paradigm for engineering self-assembling skeletal tissues.

    Science.gov (United States)

    Fernando, Warnakulasuriya A; Papantoniou, Ioannis; Mendes, Luis F; Hall, Gabriella Nilsson; Bosmans, Kathleen; Tam, Wai L; Teixeira, Liliana M; Moos, Malcolm; Geris, Liesbet; Luyten, Frank P

    2017-06-11

    Mimicking developmental events has been proposed as a strategy to engineer tissue constructs for regenerative medicine. However, this approach has not yet been investigated for skeletal tissues. Here, it is demonstrated that ectopic implantation of day-14.5 mouse embryonic long bone anlagen, dissociated into single cells and randomly incorporated in a bioengineered construct, gives rise to epiphyseal growth plate-like structures, bone and marrow, which share many morphological and molecular similarities to epiphyseal units that form after transplanting intact long bone anlage, demonstrating substantial robustness and autonomy of complex tissue self-assembly and the overall organogenesis process. In vitro studies confirm the self-aggregation and patterning capacity of anlage cells and demonstrate that the model can be used to evaluate the effects of large and small molecules on biological behaviour. These results reveal the preservation of self-organizing and self-patterning capacity of anlage cells even when disconnected from their developmental niche and subjected to system perturbations such as cellular dissociation. These inherent features make long bone anlage cells attractive as a model system for tissue engineering technologies aimed at creating constructs that have the potential to self-assemble and self-pattern complex architectural structures. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Self-assembling of calcium salt of the new DNA base 5-carboxylcytosine

    Energy Technology Data Exchange (ETDEWEB)

    Irrera, Simona [Department of Chemistry, SAPIENZA University of Rome, Piazzale A. Moro 5, 00185 Rome (Italy); Department of Chemistry, University College London, 20 Grodon Street, WC1H0AJ London (United Kingdom); Ruiz-Hernandez, Sergio E. [School of Chemistry, Cardiff University Main Building, Park Place, CF103AT Cardiff (United Kingdom); Reggente, Melania [Department of Basic and Applied Sciences for Engineering, SAPIENZA University of Rome, Via A. Scarpa 16, 00161 Rome (Italy); Passeri, Daniele, E-mail: daniele.passeri@uniroma1.it [Department of Basic and Applied Sciences for Engineering, SAPIENZA University of Rome, Via A. Scarpa 16, 00161 Rome (Italy); Natali, Marco [Department of Basic and Applied Sciences for Engineering, SAPIENZA University of Rome, Via A. Scarpa 16, 00161 Rome (Italy); Gala, Fabrizio [Department of Basic and Applied Sciences for Engineering, SAPIENZA University of Rome, Via A. Scarpa 16, 00161 Rome (Italy); Department of Medical-Surgical, Techno-Biomedical Sciences and Translational Medicine of SAPIENZA University of Rome, Sant’Andrea Hospital, Rome (Italy); Zollo, Giuseppe [Department of Basic and Applied Sciences for Engineering, SAPIENZA University of Rome, Via A. Scarpa 16, 00161 Rome (Italy); Rossi, Marco [Department of Basic and Applied Sciences for Engineering, SAPIENZA University of Rome, Via A. Scarpa 16, 00161 Rome (Italy); Research Center for Nanotechnology applied to Engineering of SAPIENZA University of Rome (CNIS), Piazzale A. Moro 5, 00185 Rome (Italy); Portalone, Gustavo, E-mail: gustavo.portalone@uniroma1.it [Department of Chemistry, SAPIENZA University of Rome, Piazzale A. Moro 5, 00185 Rome (Italy)

    2017-06-15

    Highlights: • Ca salt of 5-carboxylcytosine has been deposited on HOPG substrate. • Molecules self-assembled in monolayers and filaments. • Height of the features were measured by atomic force microscopy. • Ab-initio calculations confirmed the AFM results. - Abstract: Supramolecular architectures involving DNA bases can have a strong impact in several fields such as nanomedicine and nanodevice manufacturing. To date, in addition to the four canonical nucleobases (adenine, thymine, guanine and cytosine), four other forms of cytosine modified at the 5 position have been identified in DNA. Among these four new cytosine derivatives, 5-carboxylcytosine has been recently discovered in mammalian stem cell DNA, and proposed as the final product of the oxidative epigenetic demethylation pathway on the 5 position of cytosine. In this work, a calcium salt of 5-carboxylcytosine has been synthesized and deposited on graphite surface, where it forms self-assembled features as long range monolayers and up to one micron long filaments. These structures have been analyzed in details combining different theoretical and experimental approaches: X-ray single-crystal diffraction data were used to simulate the molecule-graphite interaction, first using molecular dynamics and then refining the results using density functional theory (DFT); finally, data obtained with DFT were used to rationalize atomic force microscopy (AFM) results.

  17. Electrical and optical measurements on a single InAs quantum dot using ion-implanted micro-LEDs; Elektrische und optische Untersuchungen an einem einzelnen InAs-Quantenpunkt mit Hilfe ionenstrahlimplantierter Mikro-LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, R.F.

    2006-10-19

    The goal of this present thesis was to electrically and optically address a single InAs quantum dot. Therefore micro-structured quantum-dot-LEDs with an emission area smaller than 1 {mu}m{sup 2} were developed. One major part of this work was contributed to optimizing several steps of the micro-LED fabrication process. To be able to compare the electrical conductivity obtained from Hall-measurements to the expected values, the implantation profile was investigated both theoretically and experimentally. As the thermal annealing step had to be performed in the growth chamber of the MBE-system several annealing parameters had to be modified to achieve optimum electrical conductivity and quantum dot growth. For one of the Be-implanted pin-samples the principle of the single-quantum-dot-LEDs could be proved. The smallest device of this sample, with nominal stripe widths of 150 nm (FIB-stripe) and 400 nm (top-stripe), showed typical features of a single quantum dot. In the high-resolution EL-spectra of this device three extremely sharp emission lines were observed which clearly could be assigned to the electron-hole recombination from a single quantum dot. To further identify the origin of these lines their optical intensities were plotted against the injection current. From this plot it could be deduced, that the first evolving line clearly belongs to the simple exciton 1X. The following lines could be assigned to the decay of the biexciton 2X and the triexciton 3X{sub s}, respectively. With increasing bias all three lines show a pronounced red-shift due to the quantum confined Stark effect (QCSE). To identify the charge state of the observed excitonic lines, additional high-resolution IV curves were taken. (orig.)

  18. Multifunctional hybrid networks based on self assembling peptide sequences

    Science.gov (United States)

    Sathaye, Sameer

    loose packing can be attributed to the designed wedge and trough shapes of the peptides disturbing formation of a uniform bilayer type structure proposed in the case of MAX1 with each hairpin having a flat hydrophobic surface. Although designed changes in hydrophobic shape of the peptide nanofibril core in the new peptides were found to significantly influence the self-assembled nanostructure and network rheological behavior, a lack of direct morphological and rheological evidence to prove shape specific hydrophobic interactions between wedge and trough shaped beta-hairpins was encountered. In the second approach, peptides with established differences in assembly kinetics and bulk mechanical properties of assembled peptide hydrogels were used to develop composite materials with diverse morphological and mechanical properties by blending with the biopolymer hyaluronic acid. The diverse properties of the composites have been correlated to the specific peptide hydrogels used to develop the composite and the different stages of peptide assembly at which blending with hyaluronic acid was carried out. Finally along with overall conclusions, the new area of co-assembly of peptides in solution has been explored and discussed as potential future work following the research discussed in this dissertation. Strategies such as construction of composite hydrogels from blends of MAX1/MAX8 peptide hydrogels and biologically important anionic species such as heparin biopolymer and DNA have been discussed. Another area of future work discussed is the design and study of peptides that can incorporate chemically crosslinkable functional groups in their hydrophobic amino acid side chains that can be covalently crosslinked after peptide assembly into fibrils. Such covalent crosslinking can potentially lead to stiffer individual peptide fibrils due to additional bond formation at the fibrillar core and therefore much stiffer hydrogels due to a synergistic effect. These enhanced stiffness

  19. Self assembly of highly-ordered nanoparticle monolayers.

    Energy Technology Data Exchange (ETDEWEB)

    Bigioni, T. P.; Lin, X.-M.; Nguyen, T. T.; Corwin, E. I.; Witten, T. A.; Jaeger, H. M.; Univ. of Chicago

    2006-01-01

    When a drop of a colloidal solution of nanoparticles dries on a surface, it leaves behind coffee-stain-like rings of material with lace-like patterns or clumps of particles in the interior. These non-uniform mass distributions are manifestations of far-from-equilibrium effects, such as fluid flows and solvent fluctuations during late-stage drying. However, recently a strikingly different drying regime promising highly uniform, long-range-ordered nanocrystal monolayers has been found. Here we make direct, real-time and real-space observations of nanocrystal self-assembly to reveal the mechanism. We show how the morphology of drop-deposited nanoparticle films is controlled by evaporation kinetics and particle interactions with the liquid-air interface. In the presence of an attractive particle-interface interaction, rapid early-stage evaporation dynamically produces a two-dimensional solution of nanoparticles at the liquid-air interface, from which nanoparticle islands nucleate and grow. This self-assembly mechanism produces monolayers with exceptional long-range ordering that are compact over macroscopic areas, despite the far-from-equilibrium evaporation process. This new drop-drying regime is simple, robust and scalable, is insensitive to the substrate material and topography, and has a strong preference for forming monolayer films. As such, it stands out as an excellent candidate for the fabrication of technologically important ultra thin film materials for sensors, optical devices and magnetic storage media.

  20. Silver nanoprisms self-assembly on differently functionalized silica surface

    International Nuclear Information System (INIS)

    Pilipavicius, J; Chodosovskaja, A; Beganskiene, A; Kareiva, A

    2015-01-01

    In this work colloidal silica/silver nanoprisms (NPRs) composite coatings were made. Firstly colloidal silica sols were synthesized by sol-gel method and produced coatings on glass by dip-coating technique. Next coatings were silanized by (3-Aminopropyl)triethoxysilane (APTES), N-[3-(Trimethoxysilyl)propyl]ethylenediamine (AEAPTMS), (3- Mercaptopropyl)trimethoxysilane (MPTMS). Silver NPRs where synthesized via seed-mediated method and high yield of 94±15 nm average edge length silver NPRs were obtained with surface plasmon resonance peak at 921 nm. Silica-Silver NPRs composite coatings obtained by selfassembly on silica coated-functionalized surface. In order to find the most appropriate silanization way for Silver NPRs self-assembly, the composite coatings were characterized by scanning electron microscopy (SEM), dynamic light scattering (DLS), water contact angle (CA) and surface free energy (SFE) methods. Results have showed that surface functionalization is necessary to achieve self-assembled Ag NPRs layer. MPTMS silanized coatings resulted sparse distribution of Ag NPRs. Most homogeneous, even distribution composite coatings obtained on APTES functionalized silica coatings, while AEAPTMS induced strong aggregation of Silver NPRs

  1. Physical principles of filamentous protein self-assembly kinetics

    International Nuclear Information System (INIS)

    Michaels, Thomas C T; Liu, Lucie X; Meisl, Georg; Knowles, Tuomas P J

    2017-01-01

    The polymerization of proteins and peptides into filamentous supramolecular structures is an elementary form of self-organization of key importance to the functioning biological systems, as in the case of actin biofilaments that compose the cellular cytoskeleton. Aberrant filamentous protein self-assembly, however, is associated with undesired effects and severe clinical disorders, such as Alzheimer’s and Parkinson’s diseases, which, at the molecular level, are associated with the formation of certain forms of filamentous protein aggregates known as amyloids. Moreover, due to their unique physicochemical properties, protein filaments are finding extensive applications as biomaterials for nanotechnology. With all these different factors at play, the field of filamentous protein self-assembly has experienced tremendous activity in recent years. A key question in this area has been to elucidate the microscopic mechanisms through which filamentous aggregates emerge from dispersed proteins with the goal of uncovering the underlying physical principles. With the latest developments in the mathematical modeling of protein aggregation kinetics as well as the improvement of the available experimental techniques it is now possible to tackle many of these complex systems and carry out detailed analyses of the underlying microscopic steps involved in protein filament formation. In this paper, we review some classical and modern kinetic theories of protein filament formation, highlighting their use as a general strategy for quantifying the molecular-level mechanisms and transition states involved in these processes. (topical review)

  2. Probabilistic Performance Guarantees for Distributed Self-Assembly

    KAUST Repository

    Fox, Michael J.

    2015-04-01

    In distributed self-assembly, a multitude of agents seek to form copies of a particular structure, modeled here as a labeled graph. In the model, agents encounter each other in spontaneous pairwise interactions and decide whether or not to form or sever edges based on their two labels and a fixed set of local interaction rules described by a graph grammar. The objective is to converge on a graph with a maximum number of copies of a given target graph. Our main result is the introduction of a simple algorithm that achieves an asymptotically maximum yield in a probabilistic sense. Notably, agents do not need to update their labels except when forming or severing edges. This contrasts with certain existing approaches that exploit information propagating rules, effectively addressing the decision problem at the level of subgraphs as opposed to individual vertices. We are able to obey more stringent locality requirements while also providing smaller rule sets. The results can be improved upon if certain requirements on the labels are relaxed. We discuss limits of performance in self-assembly in terms of rule set characteristics and achievable maximum yield.

  3. Silver nanoprisms self-assembly on differently functionalized silica surface

    Science.gov (United States)

    Pilipavicius, J.; Chodosovskaja, A.; Beganskiene, A.; Kareiva, A.

    2015-03-01

    In this work colloidal silica/silver nanoprisms (NPRs) composite coatings were made. Firstly colloidal silica sols were synthesized by sol-gel method and produced coatings on glass by dip-coating technique. Next coatings were silanized by (3-Aminopropyl)triethoxysilane (APTES), N-[3-(Trimethoxysilyl)propyl]ethylenediamine (AEAPTMS), (3- Mercaptopropyl)trimethoxysilane (MPTMS). Silver NPRs where synthesized via seed-mediated method and high yield of 94±15 nm average edge length silver NPRs were obtained with surface plasmon resonance peak at 921 nm. Silica-Silver NPRs composite coatings obtained by selfassembly on silica coated-functionalized surface. In order to find the most appropriate silanization way for Silver NPRs self-assembly, the composite coatings were characterized by scanning electron microscopy (SEM), dynamic light scattering (DLS), water contact angle (CA) and surface free energy (SFE) methods. Results have showed that surface functionalization is necessary to achieve self-assembled Ag NPRs layer. MPTMS silanized coatings resulted sparse distribution of Ag NPRs. Most homogeneous, even distribution composite coatings obtained on APTES functionalized silica coatings, while AEAPTMS induced strong aggregation of Silver NPRs.

  4. Self-Assembling Multifunctional Peptide Dimers for Gene Delivery Systems

    Directory of Open Access Journals (Sweden)

    Kitae Ryu

    2015-01-01

    Full Text Available Self-assembling multifunctional peptide was designed for gene delivery systems. The multifunctional peptide (MP consists of cellular penetrating peptide moiety (R8, matrix metalloproteinase-2 (MMP-2 specific sequence (GPLGV, pH-responsive moiety (H5, and hydrophobic moiety (palmitic acid (CR8GPLGVH5-Pal. MP was oxidized to form multifunctional peptide dimer (MPD by DMSO oxidation of thiols in terminal cysteine residues. MPD could condense pDNA successfully at a weight ratio of 5. MPD itself could self-assemble into submicron micelle particles via hydrophobic interaction, of which critical micelle concentration is about 0.01 mM. MPD showed concentration-dependent but low cytotoxicity in comparison with PEI25k. MPD polyplexes showed low transfection efficiency in HEK293 cells expressing low level of MMP-2 but high transfection efficiency in A549 and C2C12 cells expressing high level of MMP-2, meaning the enhanced transfection efficiency probably due to MMP-induced structural change of polyplexes. Bafilomycin A1-treated transfection results suggest that the transfection of MPD is mediated via endosomal escape by endosome buffering ability. These results show the potential of MPD for MMP-2 targeted gene delivery systems due to its multifunctionality.

  5. Designing self-assembling 3D structures of microcapsules

    Science.gov (United States)

    Li, Like; Shum, Henry; Shklyaev, Oleg; Yashin, Victor; Balazs, Anna

    Self-assembly of complex, three-dimensional structures is commonly achieved by biological cells but difficult to realize in synthetic systems with micron-scale or larger components. Some previous modeling studies have considered only the planar self-assembly of microcapsules on a substrate. In this work, nanoparticles released from the capsules bind to the substrate and to the shells of nearby capsules. The non-uniform nanoparticle deposition on a capsule's surface leads to adhesion gradients, which drive the capsules to effectively ``climb'' on top of one another and self-organize in the vertical direction. We determine conditions that favor this structural organization. In particular, we study how the vertical structuring depends on the background fluid flow, the topography of the microcapsules and the underlying surface, the capsule-capsule interaction and that between the capsules and the substrate. The findings can provide design rules for the autonomous creation of novel nanocomposites, where the layers are formed from nanoparticle-containing and nanoparticle-decorated microcapsules.

  6. Hidden geometries in networks arising from cooperative self-assembly.

    Science.gov (United States)

    Šuvakov, Milovan; Andjelković, Miroslav; Tadić, Bosiljka

    2018-01-31

    Multilevel self-assembly involving small structured groups of nano-particles provides new routes to development of functional materials with a sophisticated architecture. Apart from the inter-particle forces, the geometrical shapes and compatibility of the building blocks are decisive factors. Therefore, a comprehensive understanding of these processes is essential for the design of assemblies of desired properties. Here, we introduce a computational model for cooperative self-assembly with the simultaneous attachment of structured groups of particles, which can be described by simplexes (connected pairs, triangles, tetrahedrons and higher order cliques) to a growing network. The model incorporates geometric rules that provide suitable nesting spaces for the new group and the chemical affinity of the system to accept excess particles. For varying chemical affinity, we grow different classes of assemblies by binding the cliques of distributed sizes. Furthermore, we characterize the emergent structures by metrics of graph theory and algebraic topology of graphs, and 4-point test for the intrinsic hyperbolicity of the networks. Our results show that higher Q-connectedness of the appearing simplicial complexes can arise due to only geometric factors and that it can be efficiently modulated by changing the chemical potential and the polydispersity of the binding simplexes.

  7. Forces that Drive Nanoscale Self-assembly on Solid Surfaces

    International Nuclear Information System (INIS)

    Suo, Z.; Lu, W.

    2000-01-01

    Experimental evidence has accumulated in the recent decade that nanoscale patterns can self-assemble on solid surfaces. A two-component monolayer grown on a solid surface may separate into distinct phases. Sometimes the phases select sizes about 10 nm, and order into an array of stripes or disks. This paper reviews a model that accounts for these behaviors. Attention is focused on thermodynamic forces that drive the self-assembly. A double-welled, composition-dependent free energy drives phase separation. The phase boundary energy drives phase coarsening. The concentration-dependent surface stress drives phase refining. It is the competition between the coarsening and the refining that leads to size selection and spatial ordering. These thermodynamic forces are embodied in a nonlinear diffusion equation. Numerical simulations reveal rich dynamics of the pattern formation process. It is relatively fast for the phases to separate and select a uniform size, but exceedingly slow to order over a long distance, unless the symmetry is suitably broken

  8. Self-assembled rosette nanotubes encapsulate and slowly release dexamethasone

    Directory of Open Access Journals (Sweden)

    Chen Y

    2011-05-01

    Full Text Available Yupeng Chen1,2, Shang Song2, Zhimin Yan3, Hicham Fenniri3, Thomas J Webster2,41Department of Chemistry, Brown University, Providence, RI, USA; 2School of Engineering, Brown University, Providence, RI, USA; 3National Institute for Nanotechnology and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada; 4Department of Orthopedics, Brown University, Providence, RI, USAAbstract: Rosette nanotubes (RNTs are novel, self-assembled, biomimetic, synthetic drug delivery materials suitable for numerous medical applications. Because of their amphiphilic character and hollow architecture, RNTs can be used to encapsulate and deliver hydrophobic drugs otherwise difficult to deliver in biological systems. Another advantage of using RNTs for drug delivery is their biocompatibility, low cytotoxicity, and their ability to engender a favorable, biologically-inspired environment for cell adhesion and growth. In this study, a method to incorporate dexamethasone (DEX, an inflammatory and a bone growth promoting steroid into RNTs was developed. The drug-loaded RNTs were characterized using diffusion ordered nuclear magnetic resonance spectroscopy (DOSY NMR and UV-Vis spectroscopy. Results showed for the first time that DEX can be easily and quickly encapsulated into RNTs and released to promote osteoblast (bone-forming cell functions over long periods of time. As a result, RNTs are presented as a novel material for the targeted delivery of hydrophobic drugs otherwise difficult to deliver.Keywords: nanotubes, drug delivery, self-assembly, physiological conditions

  9. Self-assembly of colloids with magnetic caps

    Energy Technology Data Exchange (ETDEWEB)

    Novak, E.V., E-mail: ekaterina.novak@urfu.ru [Ural Federal University, Lenin Av. 51, Ekaterinburg (Russian Federation); Kantorovich, S.S. [Ural Federal University, Lenin Av. 51, Ekaterinburg (Russian Federation); University of Vienna, Sensengasse 8, Vienna (Austria)

    2017-06-01

    In our earlier work (Steinbach et al., 2016 ) we investigated a homogeneous system of magnetically capped colloidal particles that self-assembled via two structural patterns of different symmetry. The particles could form a compact, equilateral triangle with a three-fold rotational symmetry and zero dipole moment and a staggered chain with mirror symmetry with a net magnetisation perpendicular to the chain. The system exhibited a bistability already in clusters of three particles. Based on observations of a real magnetic particles system, analytical calculations and molecular dynamics simulations, it has been shown that the bistability is a result of an anisotropic magnetisation distribution with rotational symmetry inside the particles. The present study is a logical extension of the above research and forms a preparatory stage for the study of a self-assembly of such magnetic particles under the influence of an external magnetic field. Since the magnetic field is only an additive contribution to the total ground state energy, we can study the interparticle interaction energies of candidate ground state structures based on the field-free terms. - Highlights: • Analytical calculations of the energies of ground state candidates for colloids with magnetic caps. • Computer simulations confirmed the theoretical model. • The structural transition between ground states was found.

  10. Synthesis and self-assembly of complex hollow materials

    KAUST Repository

    Zeng, Hua Chun

    2011-01-01

    Hollow materials with interiors or voids and pores are a class of lightweight nanostructured matters that promise many future technological applications, and they have received significant research attention in recent years. On the basis of well-known physicochemical phenomena and principles, for example, several solution-based protocols have been developed for the general preparation of these complex materials under mild reaction conditions. This article is thus a short introductory review on the synthetic aspects of this field of development. The synthetic methodologies can be broadly divided into three major categories: (i) template-assisted synthesis, (ii) self-assembly with primary building blocks, and (iii) induced matter relocations. In most cases, both synthesis and self-assembly are involved in the above processes. Further combinations of these methodologies appear to be very important, as they will allow one to prepare functional materials at a higher level of complexity and precision. The synthetic strategies are introduced through some simple case studies with schematic illustrations. Salient features of the methods developed have been summarized, and some urgent issues of this field have also been indicated. © 2011 The Royal Society of Chemistry.

  11. Managing lifelike behavior in a dynamic self-assembled system

    Science.gov (United States)

    Ropp, Chad; Bachelard, Nicolas; Wang, Yuan; Zhang, Xiang

    Self-organization can arise outside of thermodynamic equilibrium in a process of dynamic self-assembly. This is observed in nature, for example in flocking birds, but can also be created artificially with non-living entities. Such dynamic systems often display lifelike properties, including the ability to self-heal and adapt to environmental changes, which arise due to the collective and often complex interactions between the many individual elements. Such interactions are inherently difficult to predict and control, and limit the development of artificial systems. Here, we report a fundamentally new method to manage dynamic self-assembly through the direct external control of collective phenomena. Our system consists of a waveguide filled with mobile scattering particles. These particles spontaneously self-organize when driven by a coherent field, self-heal when mechanically perturbed, and adapt to changes in the drive wavelength. This behavior is governed by particle interactions that are completely mediated by coherent wave scattering. Compared to hydrodynamic interactions which lead to compact ordered structures, our system displays sinusoidal degeneracy and many different steady-state geometries that can be adjusted using the external field.

  12. Free surface BCP self-assembly process characterization with CDSEM

    Science.gov (United States)

    Levi, Shimon; Weinberg, Yakov; Adan, Ofer; Klinov, Michael; Argoud, Maxime; Claveau, Guillaume; Tiron, Raluca

    2016-03-01

    A simple and common practice to evaluate Block copolymers (BCP) self-assembly performances, is on a free surface wafer. With no guiding pattern the BCP designed to form line space pattern for example, spontaneously rearranges to form a random fingerprint type of a pattern. The nature of the rearrangement is dictated by the physical properties of the BCP moieties, wafer surface treatment and the self-assembly process parameters. Traditional CDSEM metrology algorithms are designed to measure pattern with predefined structure, like linespace or oval via holes. Measurement of pattern with expected geometry can reduce measurement uncertainty. Fingerprint type of structure explored in this dissertation, poses a challenge for CD-SEM measurement uncertainty and offers an opportunity to explore 2D metrology capabilities. To measure this fingerprints we developed a new metrology approach that combines image segmentation and edge detection to measure 2D pattern with arbitrary rearrangement. The segmentation approach enabled to quantify the quality of the BCP material and process, detecting 2D attributes such as: CD and CDU at one axis, and number of intersections, length and number of PS fragments, etched PMMA spaces and donut shapes numbers on the second axis. In this paper we propose a 2D metrology to measure arbitrary BCP pattern on a free surface wafer. We demonstrate experimental results demonstrating precision data, and characterization of PS-b-PMMA BCP, intrinsic period L0 = 38nm (Arkema), processed at different bake time and temperatures.

  13. Aqueous Two Phase System Assisted Self-Assembled PLGA Microparticles

    Science.gov (United States)

    Yeredla, Nitish; Kojima, Taisuke; Yang, Yi; Takayama, Shuichi; Kanapathipillai, Mathumai

    2016-06-01

    Here, we produce poly(lactide-co-glycolide) (PLGA) based microparticles with varying morphologies, and temperature responsive properties utilizing a Pluronic F127/dextran aqueous two-phase system (ATPS) assisted self-assembly. The PLGA polymer, when emulsified in Pluronic F127/dextran ATPS, forms unique microparticle structures due to ATPS guided-self assembly. Depending on the PLGA concentration, the particles either formed a core-shell or a composite microparticle structure. The microparticles facilitate the simultaneous incorporation of both hydrophobic and hydrophilic molecules, due to their amphiphilic macromolecule composition. Further, due to the lower critical solution temperature (LCST) properties of Pluronic F127, the particles exhibit temperature responsiveness. The ATPS based microparticle formation demonstrated in this study, serves as a novel platform for PLGA/polymer based tunable micro/nano particle and polymersome development. The unique properties may be useful in applications such as theranostics, synthesis of complex structure particles, bioreaction/mineralization at the two-phase interface, and bioseparations.

  14. Hierarchical Self-Assembly of Light Guided Spinning Microgears

    Science.gov (United States)

    Aubret, Antoine; Youssef, Mena; Sacanna, Stefano; Palacci, Jeremie; Sacanna Group, NYU Team

    2017-11-01

    In this work, we demonstrate the self-assembly of microgears obtained from the guided construction of tailored self-propelled particles used as primary building blocks. The experiment relies on our control of phoretic phenomena: the migration of particles in a solute gradient. We activate a photocatalytic material, the hematite, and trigger the decomposition of hydrogen peroxide to set concentration gradient. We use this effect to engineer phototactic swimmers, attracted to the region of high illumination. We guide the swimmers to form robust and highly persistent microgears. They interact with each other through hydrodynamics and diffusiophoretically through the chemical clouds of fuel consumption. Multiple rotors are studied and we specifically address the dynamics of two rotors. We show that the microgears move collectively or synchronize thanks to the interaction of their chemical clouds. Increasing the number of microrotors (N = 2 - 7), we form an active crystal which can rotate, re-organize, change shape, and exhibit phase synchronization between its individual components. Such crystal made of non-equilibrium rotating gears at the microscale is unique. Our study paves the way for better understanding and control of emergent phenomena in collection of active spinning particles. It is a promising avenue for the creation of cutting-edge materials using emergent behavior from hierarchical self-assembly to unveil untapped functionalities. This work is supported by NSF CAREER DMR 1554724.

  15. Characterization and Application of DNA-templated Silver Nanoclusters and Polarized Spectroscopy of Self-Assembled Nanostructures

    DEFF Research Database (Denmark)

    Carro-Temboury, Miguel R.

    In this thesis two different systems are investigated envisioning their potential applications: DNA-templated silver nanoclusters (DNA-AgNCs) and ionic self-assembled (ISA) nanostructures based on azo-dyes. Mainly Visible-NIR spectroscopy was used to probe electronic transitions with absorbance...... other applications are possible such as detection of analytes, pH detection or their use as active layer of Organic Light Emitting Diodes (OLEDs). The fluorophores studied here, DNAAgNCs, are few nanometer sized and formed by a few to ca. 20 silver atoms templated by one or two single stranded DNA (ss...... fluorescence decay time as a function of emission wavelength (Average decay time spectra). This proved to be a robust method to characterize the complexity of the system due to the multi-exponential decay of the emitters. In order to study the electroluminescence from the C24-AgNCs in Self-Assembled Monolayer...

  16. Structure formation of lipid membranes: Membrane self-assembly and vesicle opening-up to octopus-like micelles

    Science.gov (United States)

    Noguchi, Hiroshi

    2013-02-01

    We briefly review our recent studies on self-assembly and vesicle rupture of lipid membranes using coarse-grained molecular simulations. For single component membranes, lipid molecules self-assemble from random gas states to vesicles via disk-shaped clusters. Clusters aggregate into larger clusters, and subsequently the large disks close into vesicles. The size of vesicles are determined by kinetics than by thermodynamics. When a vesicle composed of lipid and detergent types of molecules is ruptured, a disk-shaped micelle called bicelle can be formed. When both surfactants have negligibly low critical micelle concentration, it is found that bicelles connected with worm-like micelles are also formed depending on the surfactant ratio and spontaneous curvature of the membrane monolayer.

  17. Facile fabrication of a superhydrophobic cage by laser direct writing for site-specific colloidal self-assembled photonic crystal.

    Science.gov (United States)

    Yoo, Jae-Hyuck; Kwon, Hyuk-Jun; Paeng, Dongwoo; Yeo, Junyeob; Elhadj, Selim; Grigoropoulos, Costas P

    2016-04-08

    Micron-sized ablated surface structures with nano-sized 'bumpy' structures were produced by femtosecond (fs) laser ablation of polytetrafluoroethylene (PTFE) film under ambient conditions. Upon just a single step, the processed surface exhibited hierarchical micro/nano morphology. In addition, due to the tribological properties of PTFE, polydimethylsiloxane (PDMS) could be replicated from the laser-ablated PTFE surface without anti-adhesive surface treatment. By controlling the design of the ablated patterns, tunable wettability and superhydrophobicity were achieved on both PTFE and PDMS replica surfaces. Furthermore, using fs laser ablation direct writing, a flexible superhydrophobic PDMS cage formed by superhydrophobic patterns encompassing the unmodified region was demonstrated for aqueous droplet positioning and trapping. Through evaporation-driven colloidal self-assembly in this superhydrophobic cage, a colloidal droplet containing polystyrene (PS) particles dried into a self-assembled photonic crystal, whose optical band gap could be manipulated by the particle size.

  18. Adsorption behavior of DNA-wrapped carbon nanotubes on self-assembled monolayer surfaces.

    Science.gov (United States)

    Zangmeister, Rebecca A; Maslar, James E; Opdahl, Aric; Tarlov, Michael J

    2007-05-22

    We have examined the adsorption of DNA-wrapped single-walled carbon nanotubes (DNA-SWNTs) on hydrophobic, hydrophilic, and charged surfaces of alkylthiol self-assembled monolayers (SAMs) on gold. Our goal is to understand how DNA-SWNTs interact with surfaces of varying chemical functionality. These samples were characterized using reflection absorption FTIR (RAIRS), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. We have found that DNA-SWNTs preferentially adsorb to positively charged amine-terminated SAMs and to bare gold surfaces versus hydrophobic methyl-terminated or negatively charged carboxylic acid-terminated SAMs. Examination of the adsorption on gold of single-strand DNA (ssDNA) of the same sequence used to wrap the SWNTs suggests that the DNA wrapping plays a role in the adsorption behavior of DNA-SWNTs.

  19. Biocompatible or biodegradable hyperbranched polymers: from self-assembly to cytomimetic applications.

    Science.gov (United States)

    Jin, Haibao; Huang, Wei; Zhu, Xinyuan; Zhou, Yongfeng; Yan, Deyue

    2012-09-21

    Self-assembly of amphiphilic hyperbranched polymers (HBPs) is a newly emerging research area and has attracted increasing attention due to the great advantages in biomedical applications. This tutorial review focuses on the self-assembly of biocompatible or biodegradable amphiphilic HBPs and their cytomimetic applications, and specialities or advantages therein owing to the hyperbranched structure have also been summarized. As shown here, various supramolecular structures including micelles, vesicles, tubes, fibers and films have been prepared through the primary self-assembly processes. The primary self-assemblies can be further assembled into more complex structures through hierachical self-assembly processes. Besides, the hyperbranched polymer vesicles have demonstrated great potential to be used as model membranes to mimic cellular behaviors, such as fusion, fission and cell aggregation. Other biomedical applications of HBPs as well as their self-assemblies are also briefly summarized.

  20. Chemical and entropic control on the molecular self-assembly process

    OpenAIRE

    Packwood, Daniel M.; Han, Patrick; Hitosugi, Taro

    2017-01-01

    Molecular self-assembly refers to the spontaneous assembly of molecules into larger structures. In order to exploit molecular self-assembly for the bottom-up synthesis of nanomaterials, the effects of chemical control (strength of the directionality in the intermolecular interaction) and entropic control (temperature) on the self-assembly process should be clarified. Here we present a theoretical methodology that unambiguously distinguishes the effects of chemical and entropic control on the ...

  1. Combing and self-assembly phenomena in dry films of Taxol-stabilized microtubules

    Directory of Open Access Journals (Sweden)

    Rose Franck

    2007-01-01

    Full Text Available AbstractMicrotubules are filamentous proteins that act as a substrate for the translocation of motor proteins. As such, they may be envisioned as a scaffold for the self-assembly of functional materials and devices. Physisorption, self-assembly and combing are here investigated as a potential prelude to microtubule-templated self-assembly. Dense films of self-assembled microtubules were successfully produced, as well as patterns of both dendritic and non-dendritic bundles of microtubules. They are presented in the present paper and the mechanism of their formation is discussed.

  2. Protective Coatings for Space System Components Fabricated Using Ionic Self Assembled Monolayer Processes

    National Research Council Canada - National Science Library

    Miler, Mike

    1997-01-01

    Self-assembled multilayer thin film fabrication methods offer unique opportunities to incorporate multiple functionalities into coatings for space system materials and structures as well as consumer products...

  3. Applications of molecular self-assembly in tissue engineering

    Science.gov (United States)

    Harrington, Daniel Anton

    This thesis studied the application of three self-assembling molecular systems, as potential biomaterials for tissue engineering applications. Cholesteryl-(L-lactic acid)n molecules form thermotropic liquid crystals, which could be coated onto the inner and outer pores of biodegradable PLLA scaffolds, while retaining the lamellar order of the neat material. Primary bovine chondrocytes were cultured on these structures, demonstrating improved attachment and extended retention of phenotype on the C-LA-coated scaffolds. No difference in fibronectin adsorption to C-LA and PLLA surfaces was observed, suggesting a strong role for cholesterol in influencing cell phenotype. A family of peptide-amphiphiles, bearing the "RGD" adhesion sequence from fibronectin, was also assessed in the contexts of cartilage and bladder repair. These molecules self-assemble into one-dimensional fibers, with diameters of 6--8 nm, and lengths of 500 nm or greater. Chondrocytes were seeded and cultured on covalently-crosslinked PA gels and embedded within calcium-triggered PA gels. Cells became dormant over time, but remained viable, suggesting an inappropriate display of the adhesion sequence to cells. A family of "branched" PA molecules with lysine dendron headgroups was designed, in an effort to increase the spatial separation between molecules in the assembled state, and to theoretically improve epitope accessibility. These molecules coated reliably onto PGA fiber scaffolds, and dramatically increased the attachment of human bladder smooth muscle cells, possibly through better epitope display or electrostatic attraction. They also formed strong gels with several negatively-charged biologically-relevant macromolecules. In a third system, amphiphilic segmented dendrimers based on phenylene vinylene and L-lysine entered cells through an endocytic pathway with no discernible toxic effect on cell proliferation or morphology. These amphiphiles formed complex aggregates in aqueous solution, likely

  4. From dynamic self-assembly to networked chemical systems.

    Science.gov (United States)

    Grzybowski, Bartosz A; Fitzner, Krzysztof; Paczesny, Jan; Granick, Steve

    2017-09-18

    Although dynamic self-assembly, DySA, is a relatively new area of research, the past decade has brought numerous demonstrations of how various types of components - on scales from (macro)molecular to macroscopic - can be arranged into ordered structures thriving in non-equilibrium, steady states. At the same time, none of these dynamic assemblies has so far proven practically relevant, prompting questions about the field's prospects and ultimate objectives. The main thesis of this Review is that formation of dynamic assemblies cannot be an end in itself - instead, we should think more ambitiously of using such assemblies as control elements (reconfigurable catalysts, nanomachines, etc.) of larger, networked systems directing sequences of chemical reactions or assembly tasks. Such networked systems would be inspired by biology but intended to operate in environments and conditions incompatible with living matter (e.g., in organic solvents, elevated temperatures, etc.). To realize this vision, we need to start considering not only the interactions mediating dynamic self-assembly of individual components, but also how components of different types could coexist and communicate within larger, multicomponent ensembles. Along these lines, the review starts with the discussion of the conceptual foundations of self-assembly in equilibrium and non-equilibrium regimes. It discusses key examples of interactions and phenomena that can provide the basis for various DySA modalities (e.g., those driven by light, magnetic fields, flows, etc.). It then focuses on the recent examples where organization of components in steady states is coupled to other processes taking place in the system (catalysis, formation of dynamic supramolecular materials, control of chirality, etc.). With these examples of functional DySA, we then look forward and consider conditions that must be fulfilled to allow components of multiple types to coexist, function, and communicate with one another within the

  5. Principles Governing the Self Assembly of Polypeptide Nanoparticles

    Science.gov (United States)

    Wahome, Newton

    Self assembling systems on the nanometer scale afford the advantage of being able to control submicron level events. In this study, we focus on the self-assembling polypeptide nanoparticles (SAPN). The SAPN scaffold is made up of oligomerizing domains that align along the principle rotational axes of icosahedral symmetry. By aligning them along these axes, a particle with spherical geometry can be achieved. This particle can be utilized as a vaccine, as a drug delivery vehicle, or as a biomedical imaging device. This research will try to answer why the SAPN self-assembles into distinct molecular weight ranges while mostly maintaining a spherical morphology. The first means will be theoretical and computational, where we will utilize a mathematical formalism to find out how the packing of SAPN's monomeric units can occur within symmetric space. Then molecular dynamics will be run within this symmetric space to test the per amino acid residue susceptibility of SAPN towards becoming polymorphic in nature. Means for examining the aggregation propensity of SAPN will be also be tested. Specifically, the relationship of different sequences of SAPN with pH will be elucidated. Co-assembly of SAPN to reduce the surface density of an aggregation prone epitope will be tested. Also, aggregation reduction consisting of the exchange of an anionic denaturant with a positively charged suppressor in order to mitigate a priori peptide association and misfolding, will also be attempted. SAPN has been shown to be an immunogenic platform for the presentation of pathogen derived antigens. We will attempt to show the efficacy of presenting an antigen from HIV-1 which is structurally restrained to best match the native conformation on the virus. Immunological studies will be performed to test the effect of this approach, as well testing the antigenicity of the nanoparticle in the absence of adjuvant. Finally, the antigen presenting nanoparticles will undergo formulation testing, to measure

  6. From self-assembly fundamental knowledge to nanomedicine developments.

    Science.gov (United States)

    Monduzzi, Maura; Lampis, Sandrina; Murgia, Sergio; Salis, Andrea

    2014-03-01

    This review highlights the key role of NMR techniques in demonstrating the molecular aspects of the self-assembly of surfactant molecules that nowadays constitute the basic knowledge which modern nanoscience relies on. The aim is to provide a tutorial overview. The story of a rigorous scientific approach to understand self-assembly in surfactant systems and biological membranes starts in the early seventies when the progresses of SAXRD and NMR technological facilities allowed to demonstrate the existence of ordered soft matter, and the validity of Tanford approach concerning self-assembly at a molecular level. Particularly, NMR quadrupolar splittings, NMR chemical shift anisotropy, and NMR relaxation of dipolar and quadrupolar nuclei in micellar solutions, microemulsions, and liquid crystals proved the existence of an ordered polar-apolar interface, on the NMR time scale. NMR data, rationalized in terms of the two-step model of relaxation, allowed to quantify the dynamic aspects of the supramolecular aggregates in different soft matter systems. In addition, NMR techniques allowed to obtain important information on counterion binding as well as on size of the aggregate through molecular self-diffusion. Indeed NMR self-diffusion proved without any doubt the existence of bicontinuous microemulsions and bicontinuous cubic liquid crystals, suggested by pioneering and brilliant interpretation of SAXRD investigations. Moreover, NMR self-diffusion played a fundamental role in the understanding of microemulsion and emulsion nanostructures, phase transitions in phase diagrams, and particularly percolation phenomena in microemulsions. Since the nineties, globalization of the knowledge along with many other technical facilities such as electron microscopy, particularly cryo-EM, produced huge progresses in surfactant and colloid science. Actually we refer to nanoscience: bottom up/top down strategies allow to build nanodevices with applications spanning from ICT to food

  7. Structural and electrochemical characterization of fullerene-based surfaces of C-60 mono- or bis-adducts grafted onto self-assembled monolayers

    NARCIS (Netherlands)

    Cecchet, Francesca; Rapino, Stefania; Margotti, Massimo; Da Ros, Tatiana; Prato, Maurizio; Paolucci, Francesco; Rudolf, Petra

    2006-01-01

    Single layers Of C-60 mono- and bis-adducts have been obtained by functionalizing an acid-terminated self-assembled monolayer (SAM) of thiols on gold. X-ray photoelectron spectroscopy demonstrated the grafting onto the SAM by covalent bonding, via the formation of an amide bond, while cyclic

  8. TOPICAL REVIEW: Strain compensation technique in self-assembled InAs/GaAs quantum dots for applications to photonic devices

    Science.gov (United States)

    Tatebayashi, J.; Nuntawong, N.; Wong, P. S.; Xin, Y.-C.; Lester, L. F.; Huffaker, D. L.

    2009-04-01

    We report the strain compensation (SC) technique for a stacked InAs/GaAs self-assembled quantum dot (QD) structure grown by metalorganic chemical vapour deposition (MOCVD). Several techniques are used to investigate the effect of the SC technique: the high-resolution x-ray diffraction (XRD) technique is used to quantify the reduction in overall strain, atomic force spectroscopy is used to reveal that the SC layer improves the QD uniformity and reduces the defect density and photoluminescence characterization is used to quantify the optical property of stacked InAs QDs. In addition, experimental and mathematical evaluation of reduction in the strain field in the compensated structure is conducted. We identify two types of strain in stacked QD samples, homogeneous and inhomogeneous strain. XRD spectra indicate that vi > 36% reduction in the homogeneous strain can be accomplished. Inhomogeneous strain field is investigated by studying the strain coupling probability as a function of the spacer thickness, indicating that 19% reduction in inhomogeneous strain within SC structures has been evaluated. Next, device application of SC techniques including lasers and modulators is reported. Room temperature ground-state lasing from 6-stack InAs QDs with GaP SC is realized at a lasing wavelength of 1265 nm with a threshold current density of 108 A cm-2. The electro-optic (EO) properties of 1.3 µm self-assembled InAs/GaAs QDs are investigated. The linear and quadratic EO coefficients are 2.4 × 10-11 m V-1 and 3.2 × 10-18 m2 V-2, respectively, which are significantly larger than those of GaAs bulk materials. Also, the linear EO coefficient is almost comparable to that of lithium niobate.

  9. pH-dependent and pH-independent self-assembling behavior of surfactant-like peptides

    DEFF Research Database (Denmark)

    Gurevich, Leonid; Fojan, Peter

    2012-01-01

    Self-assembly of amphiphilic peptides designed during the last years by several research groups leads to a large variety of 3D-structures that already found applications in stabilization of large protein complexes, cell culturing systems etc. In this report, we present synthesis and characterizat......Self-assembly of amphiphilic peptides designed during the last years by several research groups leads to a large variety of 3D-structures that already found applications in stabilization of large protein complexes, cell culturing systems etc. In this report, we present synthesis...... and characterization of two novel families of amphiphilic peptides KAn and KAnW (n=6,5,4) that exhibits clear charge separation controllable by pH of the environment. As the pH changes from acidic to basic, the charge on the ends of the peptide molecule varies eventually leading to reorganization of KAn micelles...... formation of ordered aggregates with well-defined secondary structure from short unstructured peptides and provide a simple system where factors responsible for self-assembly can be singled out and studied one by one. The ability to control the shape and structure of peptide aggregates can provide basis...

  10. Tile-based self-assembly of a triple-helical polysaccharide into cell wall-like mesoporous nanocapsules.

    Science.gov (United States)

    Wu, Chaoxi; Wang, Xiaoying; Wang, Jianjing; Zhang, Zhen; Wang, Zhiping; Wang, Yifei; Tang, Shunqing

    2017-07-20

    Tile-based self-assembly is a robust system in the construction of three-dimensional DNA nanostructures but it has been rarely applied to other helical biopolymers. β-Glucan is an immunoactive natural polymer which exists in a triple helical conformation. Herein, we report that β-glucan, after modification using two types of short chain acyl groups, can self-assemble into tiles with inactivated sticky ends at the interface of two solvents. These tiles consist of a single layer of helices laterally aligned, and the sticky ends can be activated when a few acyl groups at the ends are removed; these tiles can further pack into mesoporous nanocapsules, in a similar process as the sticky DNA tiles pack into complex polyhedral nano-objects. These nanocapsules were found to have targeted effects to antigen presenting cells in a RAW264.7 cell model. Our study suggests that tile-based self-assembly can be a general strategy for helical biopolymers, and on fully exploiting this strategy, various new functional nanostructures will become accessible in the future.

  11. Mechanical properties of polyelectrolyte multilayer self-assembled films

    International Nuclear Information System (INIS)

    Dai Xinhua; Zhang Yongjun; Guan Ying; Yang Shuguang; Xu Jian

    2005-01-01

    The mechanical properties of electrostatic self-assembled multilayer films from polyacrylic acid (PAA) and C 60 -ethylenediamine adduct (C 60 -EDA) or poly(allylamine hydrochloride) (PAH) were evaluated by atomic force microscopy (AFM) wear experiments. Because of the higher molecular weight of PAH, the wear resistance of the (PAH/PAA) 10 film is higher than that of the (PAH/PAA) 2 (C 60 -EDA/PAA) 8 film; that is, the former is mechanically more stable than the latter. The mechanical stability of both films can be improved significantly by heat treatment, which changes the nature of the linkage from ionic to covalent. The AFM measurement also reveals that the (PAH/PAA) 2 (C 60 -EDA/PAA) 8 film is softer than the (PAH/PAA) 10 film. The friction properties of the heated films were measured. These films can be developed as potential lubrication coatings for microelectromechanical systems

  12. Geometrical frustration yields fiber formation in self-assembly.

    Science.gov (United States)

    Lenz, Martin; Witten, Thomas A

    2017-11-01

    Controlling the self-assembly of supramolecular structures is vital for living cells, and a central challenge for engineering at the nano- and microscales [1, 2]. Nevertheless, even particles without optimized shapes can robustly form well-defined morphologies. This is the case in numerous medical conditions where normally soluble proteins aggregate into fibers [3, 4]. Beyond the diversity of molecular mechanisms involved [5, 6], we propose that fibers generically arise from the aggregation of irregular particles with short-range interactions. Using a minimal model of ill-fitting, sticky particles, we demonstrate robust fiber formation for a variety of particle shapes and aggregation conditions. Geometrical frustration plays a crucial role in this process, and accounts for the range of parameters in which fibers form as well as for their metastable character.

  13. Geometrical frustration yields fibre formation in self-assembly

    Science.gov (United States)

    Lenz, Martin; Witten, Thomas A.

    2017-11-01

    Controlling the self-assembly of supramolecular structures is vital for living cells, and a central challenge for engineering at the nano- and microscales. Nevertheless, even particles without optimized shapes can robustly form well-defined morphologies. This is the case in numerous medical conditions where normally soluble proteins aggregate into fibres. Beyond the diversity of molecular mechanisms involved, we propose that fibres generically arise from the aggregation of irregular particles with short-range interactions. Using a minimal model of ill-fitting, sticky particles, we demonstrate robust fibre formation for a variety of particle shapes and aggregation conditions. Geometrical frustration plays a crucial role in this process, and accounts for the range of parameters in which fibres form as well as for their metastable character.

  14. Phase Diagrams of Electrostatically Self-Assembled Amphiplexes

    Energy Technology Data Exchange (ETDEWEB)

    V Stanic; M Mancuso; W Wong; E DiMasi; H Strey

    2011-12-31

    We present the phase diagrams of electrostatically self-assembled amphiplexes (ESA) comprised of poly(acrylic acid) (PAA), cetyltrimethylammonium chloride (CTACl), dodecane, pentanol, and water at three different NaCl salt concentrations: 100, 300, and 500 mM. This is the first report of phase diagrams for these quinary complexes. Adding a cosurfactant, we were able to swell the unit cell size of all long-range ordered phases (lamellar, hexagonal, Pm3n, Ia3d) by almost a factor of 2. The added advantage of tuning the unit cell size makes such complexes (especially the bicontinuous phases) attractive for applications in bioseparation, drug delivery, and possibly in oil recovery.

  15. Lithographically-directed self-assembly of nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Liddle, J. Alexander; Cui, Yi; Alivisatos, Paul

    2004-09-21

    The combination of lithography and self-assembly provides apowerful means of organizing solution-synthesized nanostructures for awide variety of applications. We have developed a fluidic assembly methodthat relies on the local pinning of a moving liquid contact line bylithographically produced topographic features to concentratenanoparticles at those features. The final stages of the assembly processare controlled first by long-range immersion capillary forces and then bythe short-range electrostatic and Van der Waal's interactions. We havesuccessfully assembled nanoparticles from 50 nm to 2 nm in size usingthis technique and have also demonstrated the controlled positioning ofmore complex nanotetrapod structures. We have used this process toassemble Au nanoparticles into pre-patterned electrode structures andhave performed preliminary electrical characterization of the devices soformed. The fluidic assembly method is capable of very high yield, interms of positioning nanostructures at each lithographically-definedlocation, and of excellent specificity, with essentially no particledeposition between features.

  16. Self-assembled tunable photonic hyper-crystals.

    Science.gov (United States)

    Smolyaninova, Vera N; Yost, Bradley; Lahneman, David; Narimanov, Evgenii E; Smolyaninov, Igor I

    2014-07-16

    We demonstrate a novel artificial optical material, the "photonic hyper-crystal", which combines the most interesting features of hyperbolic metamaterials and photonic crystals. Similar to hyperbolic metamaterials, photonic hyper-crystals exhibit broadband divergence in their photonic density of states due to the lack of usual diffraction limit on the photon wave vector. On the other hand, similar to photonic crystals, hyperbolic dispersion law of extraordinary photons is modulated by forbidden gaps near the boundaries of photonic Brillouin zones. Three dimensional self-assembly of photonic hyper-crystals has been achieved by application of external magnetic field to a cobalt nanoparticle-based ferrofluid. Unique spectral properties of photonic hyper-crystals lead to extreme sensitivity of the material to monolayer coatings of cobalt nanoparticles, which should find numerous applications in biological and chemical sensing.

  17. Thermosensitive Self-Assembling Block Copolymers as Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Giovanni Filippo Palmieri

    2011-04-01

    Full Text Available Self-assembling block copolymers (poloxamers, PEG/PLA and PEG/PLGA diblock and triblock copolymers, PEG/polycaprolactone, polyether modified poly(Acrylic Acid with large solubility difference between hydrophilic and hydrophobic moieties have the property of forming temperature dependent micellar aggregates and, after a further temperature increase, of gellifying due to micelle aggregation or packing. This property enables drugs to be mixed in the sol state at room temperature then the solution can be injected into a target tissue, forming a gel depot in-situ at body temperature with the goal of providing drug release control. The presence of micellar structures that give rise to thermoreversible gels, characterized by low toxicity and mucomimetic properties, makes this delivery system capable of solubilizing water-insoluble or poorly soluble drugs and of protecting labile molecules such as proteins and peptide drugs.

  18. Bioengineering towards self-assembly of particulate vaccines.

    Science.gov (United States)

    Rehm, Bernd H A

    2017-12-01

    There is an unmet demand for safe and efficient vaccines for prevention of various infectious diseases. Subunit vaccines comprise selected pathogen specific antigens are a safe alternative to whole organism vaccines. However they often lack immunogenicity. Natural and synthetic self-assembling polymers and proteins will be reviewed in view their use to encapsulate and/or display antigens to serve as immunogenic antigen carriers for induction of protective immunity. Recent advances made in in vivo assembly of antigen-displaying polyester inclusions will be a focus. Particulate vaccines are inherently immunogenic due to enhanced uptake by antigen presenting cells which process antigens mediating adaptive immune responses. Bioengineering approaches enable the design of tailor-made particulate vaccines to fine tune immune responses towards protective immunity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. A self assembled monolayer based microfluidic sensor for urea detection

    Science.gov (United States)

    Srivastava, Saurabh; Solanki, Pratima R.; Kaushik, Ajeet; Ali, Md. Azahar; Srivastava, Anchal; Malhotra, B. D.

    2011-07-01

    Urease (Urs) and glutamate dehydrogenase (GLDH) have been covalently co-immobilized onto a self-assembled monolayer (SAM) comprising of 10-carboxy-1-decanthiol (CDT) via EDC-NHS chemistry deposited onto one of the two patterned gold (Au) electrodes for estimation of urea using poly(dimethylsiloxane) based microfluidic channels (2 cm × 200 μm × 200 μm). The CDT/Au and Urs-GLDH/CDT/Au electrodes have been characterized using Fourier transform infrared (FTIR) spectroscopy, contact angle (CA), atomic force microscopy (AFM) and electrochemical cyclic voltammetry (CV) techniques. The electrochemical response measurement of a Urs-GLDH/CDT/Au bioelectrode obtained as a function of urea concentration using CV yield linearity as 10 to 100 mg dl-1, detection limit as 9 mg dl-1 and high sensitivity as 7.5 μA mM-1 cm-2.

  20. Communication: Programmable self-assembly of thin-shell mesostructures

    Science.gov (United States)

    Halverson, Jonathan D.; Tkachenko, Alexei V.

    2017-10-01

    We study numerically the possibility of programmable self-assembly of various thin-shell architectures. They include clusters isomorphic to fullerenes C20 and C60, finite and infinite sheets, tube-shaped and toroidal mesostructures. Our approach is based on the recently introduced directionally functionalized nanoparticle platform, for which we employ a hybrid technique of Brownian dynamics with stochastic bond formation. By combining a number of strategies, we were able to achieve a near-perfect yield of the desired structures with a reduced "alphabet" of building blocks. Among those strategies are the following: the use of bending rigidity of the interparticle bond as a control parameter, programming the morphology with a seed architecture, use of chirality-preserving symmetries for reduction of the particle alphabet, and the hierarchic approach.

  1. Electrochromic properties of self-assembled nanoparticle multilayer films

    International Nuclear Information System (INIS)

    Xue Bo; Li Hong; Zhang Lanlan; Peng Jun

    2010-01-01

    Hexagonal tungsten bronze (HTB) nanocrystal and TiO 2 nanoparticles were assembled into thin films by layer-by-layer self-assembly method. HTB nanocrystals were synthesized by hydrothermal route at 155 o C. UV-Vis spectra showed that the HTB/TiO 2 films exhibit a linear increase in film thickness with assembly exposure steps. The electrochromic property of the film was carefully investigated. Cyclic voltammetry indicated that the redox peak was around -0.5 V. The electrochromic contrast, coloration efficiency, switching speed, stability and optical memory were carefully investigated. The films vary from white to blue and finally dark brown. The electrochromic contrast is 63.9% at 633 nm. The coloration efficiency of the films is relatively high. The response time is less than 3 s.

  2. Bioactive self-assembled peptide nanofibers for corneal stroma regeneration.

    Science.gov (United States)

    Uzunalli, G; Soran, Z; Erkal, T S; Dagdas, Y S; Dinc, E; Hondur, A M; Bilgihan, K; Aydin, B; Guler, M O; Tekinay, A B

    2014-03-01

    Defects in the corneal stroma caused by trauma or diseases such as macular corneal dystrophy and keratoconus can be detrimental for vision. Development of therapeutic methods to enhance corneal regeneration is essential for treatment of these defects. This paper describes a bioactive peptide nanofiber scaffold system for corneal tissue regeneration. These nanofibers are formed by self-assembling peptide amphiphile molecules containing laminin and fibronectin inspired sequences. Human corneal keratocyte cells cultured on laminin-mimetic peptide nanofibers retained their characteristic morphology, and their proliferation was enhanced compared with cells cultured on fibronectin-mimetic nanofibers. When these nanofibers were used for damaged rabbit corneas, laminin-mimetic peptide nanofibers increased keratocyte migration and supported stroma regeneration. These results suggest that laminin-mimetic peptide nanofibers provide a promising injectable, synthetic scaffold system for cornea stroma regeneration. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Graphene growth by conversion of aromatic self-assembled monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Turchanin, Andrey [Institute of Physical Chemistry, Friedrich Schiller University Jena (Germany); Jena Center for Soft Matter (JCSM), Jena (Germany); Center for Energy and Environmental Chemistry Jena (CEEC), Jena (Germany); Abbe Center of Photonics (ACP), Jena (Germany)

    2017-11-15

    Despite present diversity of graphene production methods there is still a high demand for improvement of the existing production schemes or development of new. Here a method is reviewed to produce graphene employing aromatic self-assembled monolayers (SAMs) as molecular precursors. This method is based on electron irradiation induced crosslinking of aromatic SAMs resulting in their conversion into carbon nanomembranes (CNMs) with high thermal stability and subsequent pyrolysis of CNMs into graphene in vacuum or in the inert atmosphere. Depending on the production conditions, such as chemical structure of molecular precursors, irradiation and annealing parameters, various properties of the produced graphene sheets including shape, crystallinity, thickness, optical properties and electric transport can be adjusted. The assembly of CNM/graphene van der Waals heterostructures opens a flexible route to non-destructive chemical functionalization of graphene for a variety of applications in electronic and photonic devices. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Self assembled monolayers of octadecyltrichlorosilane for dielectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vijay, E-mail: cirivijaypilani@gmail.com [Centre for Nanoscience and Engineering, Indian Institute of Science-Bangalore (India); Mechanical Engineering Department, Birla Institute of Technology and Science-Pilani (India); Puri, Paridhi; Nain, Shivani [Mechanical Engineering Department, Birla Institute of Technology and Science-Pilani (India); Bhat, K. N. [Centre for Nanoscience and Engineering, Indian Institute of Science-Bangalore (India); Sharma, N. N. [Mechanical Engineering Department, Birla Institute of Technology and Science-Pilani (India); School of Automobile, Mechanical & Mechatronics, Manipal University-Jaipur (India)

    2016-04-13

    Treatment of surfaces to change the interaction of fluids with them is a critical step in constructing useful microfluidics devices, especially those used in biological applications. Selective modification of inorganic materials such as Si, SiO{sub 2} and Si{sub 3}N{sub 4} is of great interest in research and technology. We evaluated the chemical formation of OTS self-assembled monolayers on silicon substrates with different dielectric materials. Our investigations were focused on surface modification of formerly used common dielectric materials SiO{sub 2}, Si{sub 3}N{sub 4} and a-poly. The improvement of wetting behaviour and quality of monolayer films were characterized using Atomic force microscope, Scanning electron microscope, Contact angle goniometer, Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) monolayer deposited oxide surface.

  5. Magnetic ToF GISANS on self-assembled nanoparticles

    Science.gov (United States)

    Glavic, Artur; Josten, Elisabeth; Petracic, Oleg; Lauter, Valeria

    2013-03-01

    Nanoparticle superlattices can be considered as novel type of materials with controllable electronic, optical and magnetic properties. Their building blocks are nanoparticles (or ``nanocrystals'') from a metallic, metal-oxide, or semiconducting material or hybrid between different materials. Using self-assembling techniques it is possible to create a large amount of highly ordered 3D structures, which we have investigated for their structural and magnetic properties. The lateral ordering is quantified using electron microscopy and grazing incidence small angle X-ray scattering (GISAXS). The macroscopic magnetic behavior and correlations are investigated by superconducting quantum interference device (SQUID) magnetometry. Utilizing the time of flight (ToF) magnetism reflectometer at SNS the magnetic correlations have been studied with polarized GISANS and PNR. This research at ORNL's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy.

  6. Nanophotonic Fabrication Self-Assembly and Deposition Techniques

    CERN Document Server

    Yatsui, Takashi

    2012-01-01

    Nanophotonics, a novel optical technology, utilizes the local interaction between nanometric particles via optical near fields. The optical near fields are the elementary surface excitations on nanometric particles, i.e. dressed photons that carry material energy. Of the variety of qualitative innovations in optical technology realized by nanophotonics, this books focuses on fabrication. To fabricate nano-scale photonic devices with nanometer-scale controllability in size and position, we developed a self-assembly method for size- and position-controlled ultra-long nanodot chains using a novel effect of near-field optical desorption. A novel deposition and etching scheme under nonresonant conditions is also demonstrated and its origin is reviewed.

  7. Functional Molecular Junctions Derived from Double Self-Assembled Monolayers.

    Science.gov (United States)

    Seo, Sohyeon; Hwang, Eunhee; Cho, Yunhee; Lee, Junghyun; Lee, Hyoyoung

    2017-09-25

    Information processing using molecular junctions is becoming more important as devices are miniaturized to the nanoscale. Herein, we report functional molecular junctions derived from double self-assembled monolayers (SAMs) intercalated between soft graphene electrodes. Newly assembled molecular junctions are fabricated by placing a molecular SAM/(top) electrode on another molecular SAM/(bottom) electrode by using a contact-assembly technique. Double SAMs can provide tunneling conjugation across the van der Waals gap between the terminals of each monolayer and exhibit new electrical functions. Robust contact-assembled molecular junctions can act as platforms for the development of equivalent contact molecular junctions between top and bottom electrodes, which can be applied independently to different kinds of molecules to enhance either the structural complexity or the assembly properties of molecules. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Nanoscale Nitrogen Doping in Silicon by Self-Assembled Monolayers.

    Science.gov (United States)

    Guan, Bin; Siampour, Hamidreza; Fan, Zhao; Wang, Shun; Kong, Xiang Yang; Mesli, Abdelmadjid; Zhang, Jian; Dan, Yaping

    2015-07-31

    This Report presents a nitrogen-doping method by chemically forming self-assembled monolayers on silicon. Van der Pauw technique, secondary-ion mass spectroscopy and low temperature Hall effect measurements are employed to characterize the nitrogen dopants. The experimental data show that the diffusion coefficient of nitrogen dopants is 3.66 × 10(-15) cm(2) s(-1), 2 orders magnitude lower than that of phosphorus dopants in silicon. It is found that less than 1% of nitrogen dopants exhibit electrical activity. The analysis of Hall effect data at low temperatures indicates that the donor energy level for nitrogen dopants is located at 189 meV below the conduction band, consistent with the literature value.

  9. Tuning electronic transport in a self-assembled nanocomposite.

    Science.gov (United States)

    Chang, Wei Sea; Liu, Heng-Jui; Tra, Vu Thanh; Chen, Jhih-Wei; Wei, Tzu-Chiao; Tzeng, W Y; Zhu, Yuanmin; Kuo, Ho-Hung; Hsieh, Ying-Hui; Lin, Jheng-Cyuan; Zhan, Qian; Luo, Chih Wei; Lin, Jiunn-Yuan; He, Jr-Hau; Wu, Chung Lin; Chu, Ying-Hao

    2014-06-24

    Self-assembled nanocomposites with a high interface-to-volume ratio offer an opportunity to overcome limitations in current technology, where intriguing transport behaviors can be tailored by the choice of proper interactions of constituents. Here we integrated metallic perovskite oxide SrRuO3-wurzite semiconductor ZnO nanocomposites to investigate the room-temperature metal-insulator transition and its effect on photoresponse. We demonstrate that the band structure at the interface can be tuned by controlling the interface-to-volume ratio of the nanocomposites. Photoinduced carrier injection driven by visible light was detected across the nanocomposites. This work shows the charge interaction of the vertically integrated multiheterostructures by incorporating a controllable interface-to-volume ratio, which is essential for optimization of the design and functionality of electronic devices.

  10. Modeling self-assembly and phase behavior in complex mixtures.

    Science.gov (United States)

    Balazs, Anna C

    2007-01-01

    Using a variety of computational techniques, I investigate how the self-assembly of complex mixtures can be guided by surfaces or external stimuli to form spatially regular or temporally periodic patterns. Focusing on mixtures in confined geometries, I examine how thermodynamic and hydrodynamic effects can be exploited to create regular arrays of nanowires or monodisperse, particle-filled droplets. I also show that an applied light source and chemical reaction can be harnessed to create hierarchically ordered patterns in ternary, phase-separating mixtures. Finally, I consider the combined effects of confining walls and a chemical reaction to demonstrate that a swollen polymer gel can be driven to form dynamically periodic structures. In addition to illustrating the effectiveness of external factors in directing the self-organization of multicomponent mixtures, the selected examples illustrate how coarse-grained models can be used to capture both the equilibrium phase behavior and the dynamics of these complex systems.

  11. Engineering self-assembled bioreactors from protein microcompartments

    Energy Technology Data Exchange (ETDEWEB)

    Savage, David [Univ. of California, Berkeley, CA (United States)

    2016-10-12

    The goals of this research are to understand how organisms such as bacteria segregate certain metabolic processes inside of specific structures, or “microcompartments,” in the cell and apply this knowledge to develop novel engineered microcompartments for use in nanotechnology and metabolic engineering. For example, in some bacteria, self-assembling protein microcompartments called carboxysomes encapsulate the enzymes involved in carbon fixation, enabling the cell to utilize carbon dioxide more effectively than if the enzymes were free in the cell. The proposed research will determine how structures such as carboxysomes assemble and function in bacteria and develop a means for creating novel, synthetic microcompartments for optimizing production of specific energy-rich compounds.

  12. Modelling the self-assembly of virus capsids

    Science.gov (United States)

    Johnston, Iain G.; Louis, Ard A.; Doye, Jonathan P. K.

    2010-03-01

    We use computer simulations to study a model, first proposed by Wales (2005 Phil. Trans. R. Soc. A 363 357), for the reversible and monodisperse self-assembly of simple icosahedral virus capsid structures. The success and efficiency of assembly as a function of thermodynamic and geometric factors can be qualitatively related to the potential energy landscape structure of the assembling system. Even though the model is strongly coarse-grained, it exhibits a number of features also observed in experiments, such as sigmoidal assembly dynamics, hysteresis in capsid formation and numerous kinetic traps. We also investigate the effect of macromolecular crowding on the assembly dynamics. Crowding agents generally reduce capsid yields at optimal conditions for non-crowded assembly, but may increase yields for parameter regimes away from the optimum. Finally, we generalize the model to a larger triangulation number T = 3, and observe assembly dynamics more complex than that seen for the original T = 1 model.

  13. Crystalline particles from self-assembled divinyl oligomers

    International Nuclear Information System (INIS)

    Naves, Alliny F.; Carmona-Ribeiro, Ana M.; Casarano, Romeu; Catalani, Luiz Henrique; Kawano, Yoshio; Petri, Denise F.S.

    2009-01-01

    Ethylene glycol dimethacrylate (EGDMA) and/or triethylene glycol dimethacrylate (TEGDMA) oligomers formation was catalyzed in aqueous medium by horseradish peroxidase (HRP) in the presence of H 2 O 2 at room temperature. EGDMA and/or TEGDMA oligomers were characterized by means of gel permeation chromatography, infrared vibrational spectroscopy and 1 H NMR spectroscopy. Self-assembling of oligomers led to right-angled crystalline particles, as evidenced by scanning electron microscopy and differential scanning calorimetry. EGDMA, TEGDMA and EGDMA-co-TEGDMA oligomers synthesized in the presence of HRP-H 2 O 2 system presented pendant vinyl groups along the chains, good solubility in chloroform, and well-defined melting point. These features evidenced few cross-linking or cyclization and revealed that the catalytic properties of HRP led to oligomeric materials with new characteristics

  14. Sulfonation of alkyl phenyl ether self-assembled monolayers.

    Science.gov (United States)

    Katash, Irit; Luo, Xianglin; Sukenik, Chaim N

    2010-02-02

    The sulfonation of phenyl ether decorated self-assembled monolayers (SAMs) was studied with an eye toward creating surfaces with a particularly high negative charge density based on a close-packed array of phenyl rings with more than one sulfonic acid group per molecule. The product distribution and kinetics of this process were studied by ultraviolet, infrared, and photoelectron spectroscopies and by monitoring changes in the thickness and wetting properties of the SAM. The sulfonation chemistry could be effected without undermining monolayer integrity and the isomer distribution of ortho- and para-monosulfonated material, along with the percentages of mono- and disulfonated molecules could be established throughout the process. As doubly sulfonated molecules appeared, the reaction slowed drastically. Ultimately, sulfonation stops completely with approximately 60% of the molecules disulfonated and 20% each of the two monosulfonated isomers. This striking constraint on monolayer reactivity and the relationship between the surface chemistry and variations in SAM structure are discussed.

  15. Key aromatic/hydrophobic amino acids controlling a cross-amyloid peptide interaction versus amyloid self-assembly.

    Science.gov (United States)

    Bakou, Maria; Hille, Kathleen; Kracklauer, Michael; Spanopoulou, Anna; Frost, Christina V; Malideli, Eleni; Yan, Li-Mei; Caporale, Andrea; Zacharias, Martin; Kapurniotu, Aphrodite

    2017-09-01

    The interaction of the intrinsically disordered polypeptide islet amyloid polypeptide (IAPP), which is associated with type 2 diabetes (T2D), with the Alzheimer's disease amyloid-β (Aβ) peptide modulates their self-assembly into amyloid fibrils and may link the pathogeneses of these two cell-degenerative diseases. However, the molecular determinants of this interaction remain elusive. Using a systematic alanine scan approach, fluorescence spectroscopy, and other biophysical methods, including heterocomplex pulldown assays, far-UV CD spectroscopy, the thioflavin T binding assay, transmission EM, and molecular dynamics simulations, here we identified single aromatic/hydrophobic residues within the amyloid core IAPP region as hot spots or key residues of its cross-interaction with Aβ40(42) peptide. Importantly, we also find that none of these residues in isolation plays a key role in IAPP self-assembly, whereas simultaneous substitution of four aromatic/hydrophobic residues with Ala dramatically impairs both IAPP self-assembly and hetero-assembly with Aβ40(42). Furthermore, our experiments yielded several novel IAPP analogs, whose sequences are highly similar to that of IAPP but have distinct amyloid self- or cross-interaction potentials. The identified similarities and major differences controlling IAPP cross-peptide interaction with Aβ40(42) versus its amyloid self-assembly offer a molecular basis for understanding the underlying mechanisms. We propose that these insights will aid in designing intervention strategies and novel IAPP analogs for the management of type 2 diabetes, Alzheimer's disease, or other diseases related to IAPP dysfunction or cross-amyloid interactions. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Preparation and characterization of lanthanum-based thin films on sulfonated self-assembled monolayer of 3-mercaptopropyl trimethoxysilane

    Energy Technology Data Exchange (ETDEWEB)

    Tao Bai [School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200030 (China); Cheng Xianhua [School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200030 (China) and State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)]. E-mail: Xhcheng@sjtu.edu.cn

    2006-12-05

    Silane coupling regent (3-mercaptopropyl trimethoxysilane (MPTS)) is prepared on a single-crystal silicon substrate to form two-dimensional self-assembled monolayer (SAM). The terminal thiol groups (-SH) in the film is oxidized to sulfonic acid groups (-SO{sub 3}H) in situ to enhance the chemisorption property of the film. Lanthanum-based thin films are deposited on the oxidized MPTS-SAM by means of chemisorption with the -SO{sub 3}H group. The surface energy, chemical composition, phase transformation and surface morphology of the films are analyzed using contact angle measurements, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy. The results show that MPTS is a self-assembled layer on the substrate and that the terminal -SH groups of the self-assembled MPTS films are closer to the air/silane interface than the silicon atoms. The study also shows that the treatment of SAM with 30% nitric acid (HNO{sub 3}) at 80 deg. C in sufficient duration can completely transform the terminal groups in the top-most layer into desirable sulfonate groups. Then the substrates coated with the sulfonated MPTS-SAM were immersed in the RE solution to form lanthanum-based thin films. The experimental results indicate that the lanthanum-based thin films are adsorbed on oxidized MPTS-SAM and that the lanthanum element with different states of oxidation exists in the thin films that are deposited on the surface of self-assembly monolayers. Also, shape analyses of the La{sup 3+} XPS peaks reveal that the rare-earth film can react with the substrate by chemical bonding and that some lanthanum molecules are adsorbed on the MPTS-SAM. The above results show that it is the -SO{sub 3}H group that has good chemisorption trend.

  17. Guided self-assembly of nanostructured titanium oxide

    International Nuclear Information System (INIS)

    Wang Baoxiang; Rozynek, Zbigniew; Fossum, Jon Otto; Knudsen, Kenneth D; Yu Yingda

    2012-01-01

    A series of nanostructured titanium oxide particles were synthesized by a simple wet chemical method and characterized by means of small-angle x-ray scattering (SAXS)/wide-angle x-ray scattering (WAXS), atomic force microscope (AFM), scanning electron microscope (SEM), transmission electron microscope (TEM), thermal analysis, and rheometry. Tetrabutyl titanate (TBT) and ethylene glycol (EG) can be combined to form either TiO x nanowires or smooth nanorods, and the molar ratio of TBT:EG determines which of these is obtained. Therefore, TiO x nanorods with a highly rough surface can be obtained by hydrolysis of TBT with the addition of cetyl-trimethyl-ammonium bromide (CTAB) as surfactant in an EG solution. Furthermore, TiO x nanorods with two sharp ends can be obtained by hydrolysis of TBT with the addition of salt (LiCl) in an EG solution. The AFM results show that the TiO x nanorods with rough surfaces are formed by the self-assembly of TiO x nanospheres. The electrorheological (ER) effect was investigated using a suspension of titanium oxide nanowires or nanorods dispersed in silicone oil. Oil suspensions of titanium oxide nanowires or nanorods exhibit a dramatic reorganization when submitted to a strong DC electric field and the particles aggregate to form chain-like structures along the direction of applied electric field. Two-dimensional SAXS images from chains of anisotropically shaped particles exhibit a marked asymmetry in the SAXS patterns, reflecting the preferential self-assembly of the particles in the field. The suspension of rough TiO x nanorods shows stronger ER properties than that of the other nanostructured TiO x particles. We find that the particle surface roughness plays an important role in modification of the dielectric properties and in the enhancement of the ER effect. (paper)

  18. Self-assembling hybrid diamond-biological quantum devices

    Science.gov (United States)

    Albrecht, A.; Koplovitz, G.; Retzker, A.; Jelezko, F.; Yochelis, S.; Porath, D.; Nevo, Y.; Shoseyov, O.; Paltiel, Y.; Plenio, M. B.

    2014-09-01

    The realization of scalable arrangements of nitrogen vacancy (NV) centers in diamond remains a key challenge on the way towards efficient quantum information processing, quantum simulation and quantum sensing applications. Although technologies based on implanting NV-centers in bulk diamond crystals or hybrid device approaches have been developed, they are limited by the achievable spatial resolution and by the intricate technological complexities involved in achieving scalability. We propose and demonstrate a novel approach for creating an arrangement of NV-centers, based on the self-assembling capabilities of biological systems and their beneficial nanometer spatial resolution. Here, a self-assembled protein structure serves as a structural scaffold for surface functionalized nanodiamonds, in this way allowing for the controlled creation of NV-structures on the nanoscale and providing a new avenue towards bridging the bio-nano interface. One-, two- as well as three-dimensional structures are within the scope of biological structural assembling techniques. We realized experimentally the formation of regular structures by interconnecting nanodiamonds using biological protein scaffolds. Based on the achievable NV-center distances of 11 nm, we evaluate the expected dipolar coupling interaction with neighboring NV-centers as well as the expected decoherence time. Moreover, by exploiting these couplings, we provide a detailed theoretical analysis on the viability of multiqubit quantum operations, suggest the possibility of individual addressing based on the random distribution of the NV intrinsic symmetry axes and address the challenges posed by decoherence and imperfect couplings. We then demonstrate in the last part that our scheme allows for the high-fidelity creation of entanglement, cluster states and quantum simulation applications.

  19. Mixed carboranethiol self-assembled monolayers on gold surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Yavuz, Adem [Micro and Nanotechnology Department, Graduate School of Natural and Applied Science, Middle East Technical University, Ankara 06800 (Turkey); Sohrabnia, Nima [Department of Chemistry, Middle East Technical University, Ankara 06800 (Turkey); Yilmaz, Ayşen [Micro and Nanotechnology Department, Graduate School of Natural and Applied Science, Middle East Technical University, Ankara 06800 (Turkey); Department of Chemistry, Middle East Technical University, Ankara 06800 (Turkey); Danışman, M. Fatih, E-mail: danisman@metu.edu.tr [Micro and Nanotechnology Department, Graduate School of Natural and Applied Science, Middle East Technical University, Ankara 06800 (Turkey); Department of Chemistry, Middle East Technical University, Ankara 06800 (Turkey)

    2017-08-15

    Highlights: • M1 binds to the gold surface preferentially when co-deposited with M9 or O1. • Contact angles show similar trends regardless of the gold substrate roughness. • Contact angles were lower, with higher hysteresis, on template stripped gold. • Mixed carboranethiol SAMs have similar morphological properties regardless of mixing ratio. - Abstract: Carboranethiol self-assembled monolayers on metal surfaces have been shown to be very convenient systems for surface engineering. Here we have studied pure and mixed self-assembled monolayers (SAMs) of three different carboranethiol (CT) isomers on gold surfaces. The isomers were chosen with dipole moments pointing parallel to (m-1-carboranethiol, M1), out of (m-9-carboranethiol, M9) and into (o-1-carboranethiol, O1) the surface plane, in order to investigate the effect of dipole moment orientation on the film properties. In addition, influence of the substrate surface morphology on the film properties was also studied by using flame annealed (FA) and template stripped (TS) gold surfaces. Contact angle measurements indicate that in M1/M9 and M1/O1 mixed SAMs, M1 is the dominant species on the surface even for low M1 ratio in the growth solution. Whereas for O1/M9 mixed SAMs no clear evidence could be observed indicating dominance of one of the species over the other one. Though contact angle values were lower and hysteresis values were higher for SAMs grown on TS gold surfaces, the trends in the behavior of the contact angles with changing mixing ratio were identical for SAMs grown on both substrates. Atomic force microscopy images of the SAMs on TS gold surfaces indicate that the films have similar morphological properties regardless of mixing ratio.

  20. Self-assembled ordered carbon-nanotube arrays and membranes.

    Energy Technology Data Exchange (ETDEWEB)

    Overmyer, Donald L.; Siegal, Michael P.; Yelton, William Graham

    2004-11-01

    Imagine free-standing flexible membranes with highly-aligned arrays of carbon nanotubes (CNTs) running through their thickness. Perhaps with both ends of the CNTs open for highly controlled nanofiltration? Or CNTs at heights uniformly above a polymer membrane for a flexible array of nanoelectrodes or field-emitters? How about CNT films with incredible amounts of accessible surface area for analyte adsorption? These self-assembled crystalline nanotubes consist of multiple layers of graphene sheets rolled into concentric cylinders. Tube diameters (3-300 nm), inner-bore diameters (2-15 nm), and lengths (nanometers - microns) are controlled to tailor physical, mechanical, and chemical properties. We proposed to explore growth and characterize nanotube arrays to help determine their exciting functionality for Sandia applications. Thermal chemical vapor deposition growth in a furnace nucleates from a metal catalyst. Ordered arrays grow using templates from self-assembled hexagonal arrays of nanopores in anodized-aluminum oxide. Polymeric-binders can mechanically hold the CNTs in place for polishing, lift-off, and membrane formation. The stiffness, electrical and thermal conductivities of CNTs make them ideally suited for a wide-variety of possible applications. Large-area, highly-accessible gas-adsorbing carbon surfaces, superb cold-cathode field-emission, and unique nanoscale geometries can lead to advanced microsensors using analyte adsorption, arrays of functionalized nanoelectrodes for enhanced electrochemical detection of biological/explosive compounds, or mass-ionizers for gas-phase detection. Materials studies involving membrane formation may lead to exciting breakthroughs in nanofiltration/nanochromatography for the separation of chemical and biological agents. With controlled nanofilter sizes, ultrafiltration will be viable to separate and preconcentrate viruses and many strains of bacteria for 'down-stream' analysis.

  1. Origami inspired self-assembly of patterned and reconfigurable particles.

    Science.gov (United States)

    Pandey, Shivendra; Gultepe, Evin; Gracias, David H

    2013-02-04

    There are numerous techniques such as photolithography, electron-beam lithography and soft-lithography that can be used to precisely pattern two dimensional (2D) structures. These technologies are mature, offer high precision and many of them can be implemented in a high-throughput manner. We leverage the advantages of planar lithography and combine them with self-folding methods(1-20) wherein physical forces derived from surface tension or residual stress, are used to curve or fold planar structures into three dimensional (3D) structures. In doing so, we make it possible to mass produce precisely patterned static and reconfigurable particles that are challenging to synthesize. In this paper, we detail visualized experimental protocols to create patterned particles, notably, (a) permanently bonded, hollow, polyhedra that self-assemble and self-seal due to the minimization of surface energy of liquefied hinges(21-23) and (b) grippers that self-fold due to residual stress powered hinges(24,25). The specific protocol described can be used to create particles with overall sizes ranging from the micrometer to the centimeter length scales. Further, arbitrary patterns can be defined on the surfaces of the particles of importance in colloidal science, electronics, optics and medicine. More generally, the concept of self-assembling mechanically rigid particles with self-sealing hinges is applicable, with some process modifications, to the creation of particles at even smaller, 100 nm length scales(22, 26) and with a range of materials including metals(21), semiconductors(9) and polymers(27). With respect to residual stress powered actuation of reconfigurable grasping devices, our specific protocol utilizes chromium hinges of relevance to devices with sizes ranging from 100 μm to 2.5 mm. However, more generally, the concept of such tether-free residual stress powered actuation can be used with alternate high-stress materials such as heteroepitaxially deposited semiconductor

  2. Layer-by-Layer Self-Assembled Graphene Multilayer Films via Covalent Bonds for Supercapacitor Electrodes

    Directory of Open Access Journals (Sweden)

    Xianbin Liu

    2015-05-01

    Full Text Available To maximize the utilization of its single-atom thin nature, a facile scheme to fabricate graphene multilayer films via a layer-by-layer self-assembled process was presented. The structure of multilayer films was constructed by covalently bonding graphene oxide (GO using p-phenylenediamine (PPD as a covalent cross-linking agent. The assembly process was confirmed to be repeatable and the structure was stable. With the π-π conjugated structure and a large number of spaces in the framework, the graphene multi‐ layer films exhibited excellent electrochemical perform‐ ance. The uniform ultrathin electrode exhibited a capacitance of 41.71 μF/cm2 at a discharge current of 0.1 μA/cm2, and displayed excellent stability of 88.9 % after 1000 charge-discharge cycles.

  3. DNA biosensor by self-assembly of carbon nanotubes and DNA to detect riboflavin

    Energy Technology Data Exchange (ETDEWEB)

    Li Jing [College of Chemistry and Chemical Engineering. Chongqing University, ChongQing, 400044 (China); Zhang Yunhuai, E-mail: xp2031@163.com [College of Chemistry and Chemical Engineering. Chongqing University, ChongQing, 400044 (China); Yang Tongyi [School of Life Science. NanJing University, Nanjing, 210093 (China); Zhang Huai [Liming Research Institute of Chemical Industry, LuoYang, 471001 (China); Yang Yixuan [State Key Laboratory of Chemical Resource Engineering. Beijing University of Chemical Technology, Beijing 100029 (China); Xiao Peng [College of Mathematics and Physics, Chongqing University, Chongqing 400044 (China)

    2009-10-15

    The fabrication of biosensors via self-assembly of single-walled carbon nanotubes (SWNTs) and DNA on a platinum electrode was presented in this paper. The carboxylic SWNTs were assembled on an amine-modified platinum electrode surface and followed by the assembly of NH{sub 2}-DNA with the carboxyl-amine coupling. The decorated surface was characterized by Field Emission Electron Microscopy (FEG-SEM) and electrochemical experiments, which showed that the reaction of DNA-SWNTs biosensor was quasi-reversible. The mechanism of DNA and riboflavin (VB{sub 2}) was studied by cyclic voltammetry and UV-Vis spectroscopy. The fabricated SWNTs-reinforced biosensor exhibits high sensitivity and low detection limit for the tested VB{sub 2} compared to the reported methods.

  4. Direct self-assembling and patterning of semiconductor quantum dots on transferable elastomer layer

    Energy Technology Data Exchange (ETDEWEB)

    Coppola, Sara [Institute of Applied Sciences and Intelligent System- CNR, Via Campi Flegrei 34, Pozzuoli, 80078 (Italy); Vespini, Veronica, E-mail: v.vespini@isasi.cnr.it [Institute of Applied Sciences and Intelligent System- CNR, Via Campi Flegrei 34, Pozzuoli, 80078 (Italy); Olivieri, Federico [Institute of Applied Sciences and Intelligent System- CNR, Via Campi Flegrei 34, Pozzuoli, 80078 (Italy); University of Naples Federico II, Department of Chemical Materials and Production Engineering, Piazzale Tecchio 80, Naples 80125 (Italy); Nasti, Giuseppe; Todino, Michele; Mandracchia, Biagio; Pagliarulo, Vito; Ferraro, Pietro [Institute of Applied Sciences and Intelligent System- CNR, Via Campi Flegrei 34, Pozzuoli, 80078 (Italy)

    2017-03-31

    Highlights: • A quantum dots self-patterning on micrometrical polymeric array is proposed. • The effect of a quantum dots mix on the array is evaluated. • A PDMS membrane is exploited to transfer the pattern on it. - Abstract: Functionalization of thin and stretchable polymer layers by nano- and micro-patterning of nanoparticles is a very promising field of research that can lead to many different applications in biology and nanotechnology. In this work, we present a new procedure to self-assemble semiconductor quantum dots (QDs) nanoparticles by a simple fabrication process on a freestanding flexible PolyDiMethylSiloxane (PDMS) membrane. We used a Periodically Poled Lithium Niobate (PPLN) crystal to imprint a micrometrical pattern on the PDMS membrane that drives the QDs self-structuring on its surface. This process allows patterning QDs with different wavelength emissions in a single step in order to tune the overall emission spectrum of the composite, tuning the QDs mixing ratio.

  5. A self-assembled nanoscale robotic arm controlled by electric fields

    Science.gov (United States)

    Kopperger, Enzo; List, Jonathan; Madhira, Sushi; Rothfischer, Florian; Lamb, Don C.; Simmel, Friedrich C.

    2018-01-01

    The use of dynamic, self-assembled DNA nanostructures in the context of nanorobotics requires fast and reliable actuation mechanisms. We therefore created a 55-nanometer–by–55-nanometer DNA-based molecular platform with an integrated robotic arm of length 25 nanometers, which can be extended to more than 400 nanometers and actuated with externally applied electrical fields. Precise, computer-controlled switching of the arm between arbitrary positions on the platform can be achieved within milliseconds, as demonstrated with single-pair Förster resonance energy transfer experiments and fluorescence microscopy. The arm can be used for electrically driven transport of molecules or nanoparticles over tens of nanometers, which is useful for the control of photonic and plasmonic processes. Application of piconewton forces by the robot arm is demonstrated in force-induced DNA duplex melting experiments.

  6. Thermal treatment effects in the self-assembly of FePt nanoparticle arrays

    International Nuclear Information System (INIS)

    Simeonidis, K.; Mourdikoudis, S.; Tsiaoussis, I.; Dendrinou-Samara, C.; Angelakeris, M.; Kalogirou, O.

    2008-01-01

    This work concentrates on the influence of synthetic mechanisms of FePt nanoparticles on their self-arrangement and some structural and magnetic properties as studied by means of different electron microscopy techniques and SQUID magnetometry. High-reflux points associated with long boiling durations seem adequate to increase the iron precursor's decomposition yield and facilitate the simultaneous cubic to tetragonal FePt transformation, in single-phase FePt nanoparticles. Nevertheless, such conditions also result in the loss of long-range arrangement and in the appearance of coalescence effects. A core-shell structure comprising of FePt and Fe 3 O 4 is favored under mild thermal conditions during synthesis, which seems to confront the undesirable atomic diffusion. Additionally, particle isolation due to the surfactant coating leads in an hcp-symmetry self-assembly. Moreover, working at lower temperatures allows a homogeneous mixture between different phases producing binary composite arrays

  7. Multiple-trapping in pentacene field-effect transistors with a nanoparticles self-assembled monolayer

    Directory of Open Access Journals (Sweden)

    Keanchuan Lee

    2012-06-01

    Full Text Available A silver nanoparticles self-assembled monolayer (SAM was incorporated in pentacene field-effect transistor and its effects on the carrier injection and transport were investigated using the current-voltage (I − V and impedance spectroscopy (IS measurements. The I − V results showed that there was a significant negative shift of the threshold voltage, indicating the hole trapping inside the devices with about two orders higher in the contact resistance and an order lower in the effective mobility when a SAM was introduced. The IS measurements with the simulation using a Maxwell-Wagner equivalent circuit model revealed the existence of multiple trapping states for the devices with NPs, while the devices without NPs exhibited only a single trap state.

  8. Electronic properties of excited states in single InAs quantum dots; Elektronische Struktur angeregter Zustaende einzelner InAs-Quantenpunkte

    Energy Technology Data Exchange (ETDEWEB)

    Warming, Till

    2009-02-20

    The application of quantum-mechanical effects in semiconductor nanostructures enables the realization of novel opto-electronic devices. Examples are given by single-photon emitters and emitters of entangled photon pairs, both being essential for quantum cryptography, or for qubit systems as needed for quantum computing. InAs/GaAs quantum dots are one of the most promising candidates for such applications. A detailed knowledge of the electronic properties of quantum dots is a prerequisite for this development. The aim of this work is an experimental access to the detailed electronic structure of the excited states in single InAs/GaAs quantum dots including few-particle effects and in particular exchange interaction. The experimental approach is micro photoluminescence excitation spectroscopy ({mu}PLE). One of the main difficulties using {mu}PLE to probe single QDs is the unambiguous assignment of the observed resonances in the spectrum to specific transitions. By comparing micro photoluminescence ({mu}PL) and {mu}PLE spectra, the identification of the main resonances becomes possible. The key is given by the fine structure of the hot trion. Excitation spectroscopy on single charged QDs enables for the first time the complete observation of a non-trivial fine structure of an excitonic complex in a QD, the hot trion. Modelling based on eight-band k.p theory in combination with a configuration interaction scheme is in excellent agreement. Therewith the simulation also enables realistic predictions on the fine structure of the ground-state exciton which is of large importance for single quantum dot devices. Theory concludes from the observed transitions that the structural symmetry of the QDs is broken. Micro photoluminescence excitation spectroscopy combined with resonantly excited micro photoluminescence enables an optical access to the single particle states of the hole without the influence of few-particle coulomb interactions. Based on this knowledge the exciton

  9. Synthesis, characterization, and self-assembly of bicarbamates and tri-carbamates

    Science.gov (United States)

    Singh, Rajiv Kumar

    Recent decades have witnessed the discovery of a wide variety of nanomaterials. These nanomaterials vary from zero-dimensional nanodots to three-dimensional nanoflowers. However the properties of these nanomaterials have not been fully explored. A majority of the nonmaterials discovered so far are inorganic. There is little information about nanomaterials which are entirely based on organic compounds. Therefore this thesis focuses on the synthesis of two-dimensional nanosheets based on organic frameworks. In this study, a number of two-armed and three-armed carboxamides and carbamates have been synthesized, characterized and self-assembly process was studied. The self-assembly of these amides and carbamates were studied in a large number of single solvents as well as combination of solvents. Two-armed amides and carbamates having aromatic cores are found to have poor solubility in all but DMF and DMSO. The two-armed amides and carbamates having linker alkyl chain are found to have good solubility and crystal formation in a few solvents, but the quality of the crystal is not good enough for the XRD analysis. The polar solvents along with a trace amount of water are found to be more effective in getting perfect crystals of three-armed carbamates for X-ray crystallography. Carbamates with side-arms of three carbons and a cyclohexyl ring form perfect quality crystals in EtOAc, MeCN, and THF:H2O. In the process of growing single crystal several crystallization techniques were used. Slow evaporation process is found to be more efficient in getting good quality crystal. The crystal structures of carbamates have been determined as a part of the project. The morphology of the nanosheets was also studied by the transmission electron microscope (TEM). The TEM image of the carbamates reveals that its morphology is two-dimensional sheet. Additionally, data from powdered XRD have also revealed the formation of same or similar crystalline isoform from a variety of conditions.

  10. Surface Tension Directed Fluidic Self-Assembly of Semiconductor Chips across Length Scales and Material Boundaries

    Directory of Open Access Journals (Sweden)

    Shantonu Biswas

    2016-03-01

    Full Text Available This publication provides an overview and discusses some challenges of surface tension directed fluidic self-assembly of semiconductor chips which are transported in a liquid medium. The discussion is limited to surface tension directed self-assembly where the capture, alignment, and electrical connection process is driven by the surface free energy of molten solder bumps where the authors have made a contribution. The general context is to develop a massively parallel and scalable assembly process to overcome some of the limitations of current robotic pick and place and serial wire bonding concepts. The following parts will be discussed: (2 Single-step assembly of LED arrays containing a repetition of a single component type; (3 Multi-step assembly of more than one component type adding a sequence and geometrical shape confinement to the basic concept to build more complex structures; demonstrators contain (3.1 self-packaging surface mount devices, and (3.2 multi-chip assemblies with unique angular orientation. Subsequently, measures are discussed (4 to enable the assembly of microscopic chips (10 μm–1 mm; a different transport method is introduced; demonstrators include the assembly of photovoltaic modules containing microscopic silicon tiles. Finally, (5 the extension to enable large area assembly is presented; a first reel-to-reel assembly machine is realized; the machine is applied to the field of solid state lighting and the emerging field of stretchable electronics which requires the assembly and electrical connection of semiconductor devices over exceedingly large area substrates.

  11. Engineered Bacterial Metal-binding Proteins for Nanoscale Self-assembly and heavy Metal Tolerance

    Science.gov (United States)

    Hall Sedlak, Ruth Amanda

    Implementing biological principles in material synthesis and assembly is one way to expand our abilities to efficiently assemble nanoscale materials and devices. Specifically, recent advances in identifying peptides that bind inorganic materials with high affinity and specificity has spurred investigation of protein models for nanoscale inorganic assembly. This dissertation presents the results of my studies of several E. coli proteins engineered to bind inorganic materials through simple peptide motifs. I demonstrate that these proteins modulate the self-assembly of DNA-based nanostructures and can introduce heavy metal tolerance into metal-sensitive bacteria. Chapter 2 explores use of the engineered F plasmid DNA relaxase/helicase TraI for the self-assembly of complex DNA-protein-gold nanostructures. The full-length protein is engineered with a gold binding motif at an internal permissive site (TraI369GBP1-7x), while a truncated version of TraI is engineered with the same gold binding motif at the C-terminus (TraI361GBP1-7x). Both constructs bind gold nanoparticles while maintaining their DNA binding activity, and transmission electron microscopy reveals TraI369GBP1-7x utilizes its non-specific DNA binding activity to decorate single-stranded and double-stranded DNA with gold nanoparticles. The self assembly principles demonstrated in this work will be fundamental to constructing higher ordered hybrid nanostructures through DNA-protein-nanoparticle interactions. Chapter 3 studies the effects of expressing inorganic binding peptides within cells. I identified a silver binding peptide that, when fused to the periplasmic maltose binding protein, protects E. coli from silver toxicity in batch culture and reduces silver ions to silver nanoparticles within the bacterial periplasm. Engineered metal-ion tolerant microorganisms such as this E. coli could potentially be used in applications ranging from remediation to interrogation of biomolecule-metal interactions in vivo

  12. Ordering and dynamics of oligo(phenylene ethynylene) self-assembled monolayers on Au(111)

    NARCIS (Netherlands)

    Wu, Hairong; Sotthewes, Kai; Schön, Peter Manfred; Vancso, Gyula J.; Zandvliet, Henricus J.W.

    2015-01-01

    Self-assembled monolayers of 4-[4′-(phenylethynyl)-phenylethynyl]-benzenethiolate (PPB-S) molecules on flame annealed Au(111) have been investigated by ultra-high vacuum scanning tunneling microscopy. We have found a hitherto unknown self-assembled monolayer phase. This phase consists of a

  13. Comparative self-assembly studies and self-sorting of two ...

    Indian Academy of Sciences (India)

    The propensity for self-assembly of NDI-1 was greater due to symmetrical placement of two amide groups on either arms of this chromophore which allowed -stacking in tandem with hydrogen-bonding, while NDI-2 formed thermally more stable self-assembled fibres possibly due to location of two amide groups in close ...

  14. From self-organization to self-assembly: a new materialism?

    Science.gov (United States)

    Vincent, Bernadette Bensaude

    2016-09-01

    While self-organization has been an integral part of academic discussions about the distinctive features of living organisms, at least since Immanuel Kant's Critique of Judgement, the term 'self-assembly' has only been used for a few decades as it became a hot research topic with the emergence of nanotechnology. Could it be considered as an attempt at reducing vital organization to a sort of assembly line of molecules? Considering the context of research on self-assembly I argue that the shift of attention from self-organization to self-assembly does not really challenge the boundary between chemistry and biology. Self-assembly was first and foremost investigated in an engineering context as a strategy for manufacturing without human intervention and did not raise new perspectives on the emergence of vital organization itself. However self-assembly implies metaphysical assumptions that this paper tries to disentangle. It first describes the emergence of self-assembly as a research field in the context of materials science and nanotechnology. The second section outlines the metaphysical implications and will emphasize a sharp contrast between the ontology underlying two practices of self-assembly developed under the umbrella of synthetic biology. And unexpectedly, we shall see that chemists are less on the reductionist side than most synthetic biologists. Finally, the third section ventures some reflections on the kind of design involved in self-assembly practices.

  15. Three-dimensional visualization and characterization of polymeric self-assemblies by Transmission Electron Microtomography

    NARCIS (Netherlands)

    H. Jinnai (Hiroshi); T. Higuchi (Takeshi); X. Zhuge (Jason); A. Kumamoto (Akihito); K.J. Batenburg (Joost); Y. Ikuhara (Yuichi)

    2017-01-01

    textabstractSelf-assembling structures and their dynamical processes in polymeric systems have been investigated using three-dimensional transmission electron microscopy (3D-TEM). Block copolymers (BCPs) self-assemble into nanoscale periodic structures called microphase-separated structures, a deep

  16. Macroscopic equivalence for microscopic motion in a turbulence driven three-dimensional self-assembly reactor

    NARCIS (Netherlands)

    Hageman, T. A. G.; Löthman, P. A.; Dirnberger, M.; Elwenspoek, M.; Manz, A; Abelmann, L.

    We built and characterised a macroscopic self-assembly reactor that agitates magnetic, centimeter-sized particles with a turbulent water flow. By scaling up the self-assembly processes to the centimeter-scale, the characteristic time constant scale also drastically increases. This makes the system a

  17. Challenges and advances in the field of self-assembled membranes

    NARCIS (Netherlands)

    van Rijn, Patrick; Tutus, Murat; Kathrein, Christine; Zhu, Leilei; Wessling, Matthias; Schwaneberg, Ulrich; Boeker, Alexander

    2013-01-01

    Self-assembled membranes are of vital importance in biological systems e. g. cellular and organelle membranes, however, more focus is being put on synthetic self-assembled membranes not only as an alternative for lipid membranes but also as an alternative for lithographic methods. More

  18. A self-assembled monolayer-assisted surface microfabrication and release technique

    NARCIS (Netherlands)

    Kim, B.J.; Liebau, M.; Huskens, Jurriaan; Reinhoudt, David; Brugger, J.P.

    2001-01-01

    This paper describes a method of thin film and MEMS processing which uses self-assembled monolayers as ultra-thin organic surface coating to enable a simple removal of microfabricated devices off the surface without wet chemical etching. A 1.5-nm thick self-assembled monolayer of

  19. Synthesis of nanocrystals and nanocrystal self-assembly

    Science.gov (United States)

    Chen, Zhuoying

    Chapter 1. A general introduction is presented on nanomaterials and nanoscience. Nanoparticles are discussed with respect to their structure and properties. Ferroelectric materials and nanoparticles in particular are highlighted, especially in the case of the barium titanate, and their potential applications are discussed. Different nanocrystal synthetic techniques are discussed. Nanoparticle superlattices, the novel "meta-materials" built from self-assembly at the nanoscale, are introduced. The formation of nanoparticle superlattices and the importance and interest of synthesizing these nanostructures is discussed. Chapter 2. Advanced applications for high k dielectric and ferroelectric materials in the electronics industry continues to demand an understanding of the underlying physics in decreasing dimensions into the nanoscale. The first part of this chapter presents the synthesis, processing, and electrical characterization of nanostructured thin films (thickness ˜100 nm) of barium titanate BaTiO3 built from uniform nanoparticles (alcohols were used to study the effect of size and morphological control over the nanocrystals. Techniques including X-ray diffraction, transmission electron microscopy, selected area electron diffraction, and high-resolution electron microscopy are used to examine crystallinity and morphology. Chapter 3. By investigating the self-assembly of cadmium selenide-gold (CdSe-Au) nanoparticle mixtures by transmission electron microscopy after solvent evaporation, the effect of solvents in the formation process of CdSe-Au binary nanoparticle superlattices (BNSLs) was studied. 1-dodecanethiol was found to be critical in generating conditions necessary for superlattice formation, prior to the other factors that likely determine structure, highlighting the dual role of this organic polar molecule as both ligand and high boiling point/crystallization solvent. The influence of thiol was investigated under various concentrations (and also

  20. Synthetic Molecular Machines for Active Self-Assembly: Prototype Algorithms, Designs, and Experimental Study

    Science.gov (United States)

    Dabby, Nadine L.

    Computer science and electrical engineering have been the great success story of the twentieth century. The neat modularity and mapping of a language onto circuits has led to robots on Mars, desktop computers and smartphones. But these devices are not yet able to do some of the things that life takes for granted: repair a scratch, reproduce, regenerate, or grow exponentially fast--all while remaining functional. This thesis explores and develops algorithms, molecular implementations, and theoretical proofs in the context of "active self-assembly" of molecular systems. The long-term vision of active self-assembly is the theoretical and physical implementation of materials that are composed of reconfigurable units with the programmability and adaptability of biology's numerous molecular machines. En route to this goal, we must first find a way to overcome the memory limitations of molecular systems, and to discover the limits of complexity that can be achieved with individual molecules. One of the main thrusts in molecular programming is to use computer science as a tool for figuring out what can be achieved. While molecular systems that are Turing-complete have been demonstrated [Winfree, 1996], these systems still cannot achieve some of the feats biology has achieved. One might think that because a system is Turing-complete, capable of computing "anything," that it can do any arbitrary task. But while it can simulate any digital computational problem, there are many behaviors that are not "computations" in a classical sense, and cannot be directly implemented. Examples include exponential growth and molecular motion relative to a surface. Passive self-assembly systems cannot implement these behaviors because (a) molecular motion relative to a surface requires a source of fuel that is external to the system, and (b) passive systems are too slow to assemble exponentially-fast-growing structures. We call these behaviors "energetically incomplete" programmable

  1. Molecular self-assembly for biological investigations and nanoscale lithography

    Science.gov (United States)

    Cheunkar, Sarawut

    Small, diffusible molecules when recognized by their binding partners, such as proteins and antibodies, trigger enzymatic activity, cell communication, and immune response. Progress in analytical methods enabling detection, characterization, and visualization of biological dynamics at the molecular level will advance our exploration of complex biological systems. In this dissertation, analytical platforms were fabricated to capture membrane-associated receptors, which are essential proteins in cell signaling pathways. The neurotransmitter serotonin and its biological precursor were immobilized on gold substrates coated with self-assembled monolayers (SAMs) of oligo(ethylene glycol)alkanethiols and their reactive derivatives. The SAM-coated substrates present the biologically selective affinity of immobilized molecules to target native membrane-associated receptors. These substrates were also tested for biospecificity using antibodies. In addition, small-molecule-functionalized platforms, expressing neurotransmitter pharmacophores, were employed to examine kinetic interactions between G-protein-coupled receptors and their associated neurotransmitters. The binding interactions were monitored using a quartz crystal microbalance equipped with liquid-flow injection. The interaction kinetics of G-protein-coupled serotonin 1A receptor and 5-hydroxytyptophan-functionalized surfaces were studied in a real-time, label-free environment. Key binding parameters, such as equilibrium dissociation constants, binding rate constants, and dissociative half-life, were extracted. These parameters are critical for understanding and comparing biomolecular interactions in modern biomedical research. By integrating self-assembly, surface functionalization, and nanofabrication, small-molecule microarrays were created for high-throughput screening. A hybrid soft-lithography, called microcontact insertion printing, was used to pattern small molecules at the dilute scales necessary for highly

  2. Directed self-assembly of mesoscopic components for led applications

    Science.gov (United States)

    Tkachenko, Anton

    Light-emitting diodes (LEDs) constitute a rapidly evolving and fast growing technology that promises to replace incandescent bulbs and compact fluorescent lights in many illumination applications. Large-area LED luminaires have a capability to transform lighting by providing a venue for development of smart lighting systems with additional benefits, such as visible light communications, sensing, health and productivity improvement through color temperature control, capability of creating "virtual sky" ceiling, and many others. The objective of this work is to explore directed self-assembly (DSA) approaches suitable for cost-effective assembly of large amount of LEDs and other mesoscopic (i.e. millimeter and sub-millimeter) electronic components and thus to enable manufacturing of smart lighting luminaires. Existing alternative approaches for assembly of semiconductor dies are examined including transfer printing, laser-assisted die transfer, and various directed self-assembly approaches using shape-recognition, magnetic and capillary forces, etc. After comparing their advantages and limitations, we developed two approaches to magnetic force-assisted DSA of LEDs on a large-area substrate in liquid and air medium. The first approach involves pick-up of buoyant and magnetic dies from the liquid surface onto the flexible substrate in a roll-to-roll process. The possibility of high-speed assembly of LED dies is demonstrated, but with a low yield due to the influence of the capillary force of the carrier liquid and the difficulty in ensuring reliable supply of dies to the assembly interface. To overcome the aforementioned challenges this process was modified to assemble the dies by sinking them onto the receiving substrate with a stencil mask on top, demonstrating LED assembly with a very low error rate but at a lower speed. A solder-assisted self-alignment is used to further improve placement precision and to ensure the proper orientation of the dies. The second

  3. Self-Assembly of Small Molecules for Organic Photovoltaic Applications

    Science.gov (United States)

    Aytun, Taner

    Organic photovoltaic (OPV) solar cells aim to provide efficient, flexible and lightweight photovoltaics (PV) with simple processing and low-cost. Advances in device optimization, structural and molecular design, as well as mechanistic understanding have helped increase device efficiency and performance. Within the framework of active layer optimization, systematically improving bulk heterojunction (BHJ) morphology could improve the power conversion efficiency of OPVs. However, most strategies aimed at improving morphology focus on annealing methods or the use of solvent additives. Rational approaches in supramolecular self-assembly can potentially offer additional control over the morphology of BHJ active layers and lead to improved power conversion efficiencies. In Chapter 2, the author explores the effect of molecular shape on the assembly of electron donating small molecules, and its ensuing effect on OPV performance. Two tripodal 'star-shaped' donor molecules with diketopyrrolopyrrole (DPP) side chains were used to generate solution-processed BHJ OPVs. It was found that the tripod molecules neither aggregate in solution nor form crystalline domains in thin films when a branched alkyl solubilizing group is used. On the other hand, linear alkyl chains promote the formation of one-dimensional (1D) nanowires and crystalline domains as well. This work demonstrated that the one-dimensional assembly of donor molecules enhances the performance of the corresponding solution-processed OPVs by 50%. This is attributed to the reduction of trap states in the 1D nanowires, resulting in a significant increase in the fill factor of the devices. In Chapter 3, experiments are described in which the electron donor is a hairpin-shaped molecule containing a trans-1,2-diamidocyclohexane core and two DPP conjugated segments, and a fullerene derivative as the electron acceptor. Self-assembly of the donor molecule is driven by the synergistic interaction between hydrogen bonds and pi

  4. Investigation of the structural anisotropy in a self-assembling glycinate layer on Cu(100) by scanning tunneling microscopy and density functional theory calculations

    Science.gov (United States)

    Kuzmin, Mikhail; Lahtonen, Kimmo; Vuori, Leena; Sánchez-de-Armas, Rocío; Hirsimäki, Mika; Valden, Mika

    2017-07-01

    Self-assembling organic molecule-metal interfaces exhibiting free-electron like (FEL) states offers an attractive bottom-up approach to fabricating materials for molecular electronics. Accomplishing this, however, requires detailed understanding of the fundamental driving mechanisms behind the self-assembly process. For instance, it is still unresolved as to why the adsorption of glycine ([NH2(CH2)COOH]) on isotropic Cu(100) single crystal surface leads, via deprotonation and self-assembly, to a glycinate ([NH2(CH2)COO-]) layer that exhibits anisotropic FEL behavior. Here, we report on bias-dependent scanning tunneling microscopy (STM) experiments and density functional theory (DFT) calculations for glycine adsorption on Cu(100) single crystal surface. We find that after physical vapor deposition (PVD) of glycine on Cu(100), glycinate self-assembles into an overlayer exhibiting c(2 × 4) and p(2 × 4) symmetries with non-identical adsorption sites. Our findings underscore the intricacy of electrical conductivity in nanomolecular organic overlayers and the critical role the structural anisotropy at molecule-metal interface plays in the fabrication of materials for molecular electronics.

  5. Collagen I Self-Assembly: Revealing the Developing Structures that Generate Turbidity

    Science.gov (United States)

    Zhu, Jieling; Kaufman, Laura J.

    2014-01-01

    Type I collagen gels are routinely used in biophysical studies and bioengineering applications. The structural and mechanical properties of these fibrillar matrices depend on the conditions under which collagen fibrillogenesis proceeds, and developing a fuller understanding of this process will enhance control over gel properties. Turbidity measurements have long been the method of choice for monitoring developing gels, whereas imaging methods are regularly used to visualize fully developed gels. In this study, turbidity and confocal reflectance microscopy (CRM) were simultaneously employed to track collagen fibrillogenesis and reconcile the information reported by the two techniques, with confocal fluorescence microscopy (CFM) used to supplement information about early events in fibrillogenesis. Time-lapse images of 0.5 mg/ml, 1.0 mg/ml, and 2.0 mg/ml acid-solubilized collagen I gels forming at 27°C, 32°C, and 37°C were collected. It was found that in situ turbidity measured in a scanning transmittance configuration was interchangeable with traditional turbidity measurements using a spectrophotometer. CRM and CFM were employed to reveal the structures responsible for the turbidity that develops during collagen self-assembly. Information from CRM and transmittance images was collapsed into straightforward single variables; total intensity in CRM images tracked turbidity development closely for all collagen gels investigated, and the two techniques were similarly sensitive to fibril number and dimension. Complementary CRM, CFM, and in situ turbidity measurements revealed that fibril and network formation occurred before substantial turbidity was present, and the majority of increasing turbidity during collagen self-assembly was due to increasing fibril thickness. PMID:24739181

  6. One-pot reaction for the preparation of biofunctionalized self-assembled monolayers on gold surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Raigoza, Annette F.; Fies, Whitney; Lim, Amber; Onyirioha, Kristeen; Webb, Lauren J., E-mail: lwebb@cm.utexas.edu

    2017-02-01

    Highlights: • One-pot synthesis of α-helical-terminated self-assembled monolayers on Au(111). • Synthesis of high density, structured, and covalently bound α-helices on Au(111). • Characterization by surface-averaged and single molecule techniques. • Peptide-terminated surfaces for fabrication of biomaterials and sensors. - Abstract: The Huisgen cycloaddition reaction (“click” chemistry) has been used extensively to functionalize surfaces with macromolecules in a straightforward manner. We have previously developed a procedure using the copper(I)-catalyzed click reaction to tether synthetic α-helical peptides carrying two alkyne groups to a well-ordered azide-terminated alkanethiol self-assembled monolayer (SAM) on a Au(111) surface. While convenient, click-based strategies potentially pose significant problems from reagents, solvents, and reaction temperatures that may irreversibly damage some molecules or substrates. Tuning click chemistry conditions would allow individual optimization of reaction conditions for a wide variety of biomolecules and substrate materials. Here, we explore the utility of simultaneous SAM formation and peptide-attachment chemistry in a one-pot reaction. We demonstrate that a formerly multistep reaction can be successfully carried out concurrently by mixing azide-terminated alkanethiols, CuCl, and a propargylglycine-containing peptide over a bare gold surface in ethanol and reacting at 70 °C. X-ray photoelectron spectroscopy (XPS), surface infrared spectroscopy, surface circular dichroic (CD) spectroscopy, and scanning tunneling microscopy (STM) were used to determine that this one-pot reaction strategy resulted in a high density of surface-bound α-helices without aggregation. This work demonstrates the simplicity and versatility of a SAM-plus-click chemistry strategy for functionalizing Au surfaces with structured biomolecules.

  7. Folding and self-assembly of polypeptides: Dynamics and thermodynamics from molecular simulation

    Science.gov (United States)

    Fluitt, Aaron Michael

    Empowered by their exquisite three-dimensional structures, or "folds," proteins carry out biological tasks with high specificity, efficiency, and fidelity. The fold that optimizes biological function represents a stable configuration of the constituent polypeptide molecule(s) under physiological conditions. Proteins and polypeptides are not static, however: battered by thermal motion, they explore a distribution of folds that is determined by the sequence of amino acids, the presence and identity of other molecules, and the thermodynamic conditions. In this dissertation, we apply molecular simulation techniques to the study of two polypeptides that have unusually diffuse distributions of folds under physiological conditions: polyglutamine (polyQ) and islet amyloid polypeptide (IAPP). Neither polyQ nor IAPP adopts a predominant fold in dilute aqueous solution, but at sufficient concentrations, both are prone to self-assemble into stable, periodic, and highly regular aggregate structures known as amyloid. The appearance of amyloid deposits of polyQ in the brain, and of IAPP in the pancreas, are associated with Huntington's disease and type 2 diabetes, respectively. A molecular view of the mechanism(s) by which polyQ and IAPP fold and self-assemble will enhance our understanding of disease pathogenesis, and it has the potential to accelerate the development of therapeutics that target early-stage aggregates. Using molecular simulations with spatial and temporal resolution on the atomic scale, we present analyses of the structural distributions of polyQ and IAPP under various conditions, both in and out of equilibrium. In particular, we examine amyloid fibers of polyQ, the IAPP dimer in solution, and single IAPP fragments at a lipid bilayer. We also benchmark the molecular models, or "force fields," available for such studies, and we introduce a novel simulation algorithm.

  8. Ultrasensitive electrochemical biosensor based on the oligonucleotide self-assembled monolayer-mediated immunosensing interface

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dengyou; Luo, Qimei [Science College of Hunan Agricultural University, Changsha 410128 (China); Deng, Fawen [The Fourth Hospital of Chansha, Changsha 410006 (China); Li, Zhen [Science College of Hunan Agricultural University, Changsha 410128 (China); Li, Benxiang, E-mail: 172170960@qq.com [Science College of Hunan Agricultural University, Changsha 410128 (China); Shen, Zhifa, E-mail: shenzhifa@wmu.edu.cn [Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035 (China)

    2017-06-08

    Highly sensitive and selective quantitation of a variety of proteins over a wide concentration range is highly desirable for increased accuracy of biomarker detection or for multidisease diagnostics. In the present contribution, using human immunoglobulin G (HIgG) as the model target protein, an electrochemical ultrasensitive immunosensing platform was developed based on the oligonucleotide self-assembled monolayer-mediated (OSAM) sensing interface. For this immunosensor, the “signal-on” signaling mechanism and enzymatic signal amplification effect were integrated into one sensing architecture. Moreover, the thiolated flexible single-stranded DNAs immobilized onto gold electrode surface not only performs the wobbling motion to facilitate the electron transfer between the electrode surface and biosensing layer but also fundamentally prohibiting the direct interaction of proteins with gold substrate. Thus, the electrochemical signal could be efficiently enhanced and the unspecific adsorption or cross-reaction might be eliminated. As a result, utilizing the newly-proposed immunosensor, the HIgG can be detected down to 0.5 ng/mL, and the high detection specificity is offered. The successful design of OSAM and the highly desirable detection capability of new immunosensor are expected to provide a perspective for fabricating new robust immunosensing platform and for promising potential of oligonucleotide probe in biological research and biomedical diagnosis. - Highlights: • An electrochemical ultrasensitive immunosensing platform was developed based on the oligonucleotide self-assembled monolayer (OASM). • OASM severs as a flexible monolayer to promote electron transfer and prohibits the direct interaction of proteins with gold substrate. • The electrochemical signal is efficiently enhanced and the unspecific adsorption or cross-reaction is eliminated. • Target protein can be detected down to 0.5 ng/mL, and the high detection specificity can be obtained.

  9. Engineering cellular fibers for musculoskeletal soft tissues using directed self-assembly.

    Science.gov (United States)

    Schiele, Nathan R; Koppes, Ryan A; Chrisey, Douglas B; Corr, David T

    2013-05-01

    Engineering strategies guided by developmental biology may enhance and accelerate in vitro tissue formation for tissue engineering and regenerative medicine applications. In this study, we looked toward embryonic tendon development as a model system to guide our soft tissue engineering approach. To direct cellular self-assembly, we utilized laser micromachined, differentially adherent growth channels lined with fibronectin. The micromachined growth channels directed human dermal fibroblast cells to form single cellular fibers, without the need for a provisional three-dimensional extracellular matrix or scaffold to establish a fiber structure. Therefore, the resulting tissue structure and mechanical characteristics were determined solely by the cells. Due to the self-assembly nature of this approach, the growing fibers exhibit some key aspects of embryonic tendon development, such as high cellularity, the rapid formation (within 24 h) of a highly organized and aligned cellular structure, and the expression of cadherin-11 (indicating direct cell-to-cell adhesions). To provide a dynamic mechanical environment, we have also developed and characterized a method to apply precise cyclic tensile strain to the cellular fibers as they develop. After an initial period of cellular fiber formation (24 h postseeding), cyclic strain was applied for 48 h, in 8-h intervals, with tensile strain increasing from 0.7% to 1.0%, and at a frequency of 0.5 Hz. Dynamic loading dramatically increased cellular fiber mechanical properties with a nearly twofold increase in both the linear region stiffness and maximum load at failure, thereby demonstrating a mechanism for enhancing cellular fiber formation and mechanical properties. Tissue engineering strategies, designed to capture key aspects of embryonic development, may provide unique insight into accelerated maturation of engineered replacement tissue, and offer significant advances for regenerative medicine applications in tendon

  10. Anandamide and analogous endocannabinoids: a lipid self-assembly study

    Energy Technology Data Exchange (ETDEWEB)

    Sagnella, Sharon M.; Conn, Charlotte E.; Krodkiewska, Irena; Mulet, Xavier; Drummond, Calum J.

    2014-09-24

    Anandamide, the endogenous agonist of the cannabinoid receptors, has been widely studied for its interesting biological and medicinal properties and is recognized as a highly significant lipid signaling molecule within the nervous system. Few studies have, however, examined the effect of the physical conformation of anandamide on its function. The study presented herein has focused on characterizing the self-assembly behaviour of anandamide and four other endocannabinoid analogues of anandamide, viz., 2-arachidonyl glycerol, arachidonyl dopamine, 2-arachidonyl glycerol ether (noladin ether), and o-arachidonyl ethanolamide (virodhamine). Molecular modeling of the five endocannabinoid lipids indicates that the highly unsaturated arachidonyl chain has a preference for a U or J shaped conformation. Thermal phase studies of the neat amphiphiles showed that a glass transition was observed for all of the endocannabinoids at {approx} -110 C with the exception of anandamide, with a second glass transition occurring for 2-arachidonyl glycerol, 2-arachidonyl glycerol ether, and virodhamine (-86 C, -95 C, -46 C respectively). Both anandamide and arachidonyl dopamine displayed a crystal-isotropic melting point (-4.8 and -20.4 C respectively), while a liquid crystal-isotropic melting transition was seen for 2-arachidonyl glycerol (-40.7 C) and 2-arachidonyl glycerol ether (-71.2 C). No additional transitions were observed for virodhamine. Small angle X-ray scattering and cross polarized optical microscopy studies as a function of temperature indicated that in the presence of excess water, both 2-arachidonyl glycerol and anandamide form co-existing Q{sub II}{sup G} (gyroid) and Q{sub II}{sup D} (diamond) bicontinuous cubic phases from 0 C to 20 C, which are kinetically stable over a period of weeks but may not represent true thermodynamic equilibrium. Similarly, 2-arachidonyl glycerol ether acquired an inverse hexagonal (HII) phase in excess water from 0 C to 40 C, while

  11. White-Emissive Self-Assembled Organic Microcrystals.

    Science.gov (United States)

    Li, Zhi Zhou; Liang, Feng; Zhuo, Ming Peng; Shi, Ying Li; Wang, Xue Dong; Liao, Liang Sheng

    2017-05-01

    Organic semiconductor micro-/nanocrystals with regular shapes have been demonstrated for many applications, such as organic field-effect transistors, organic waveguide devices, organic solid-state lasers, and therefore are inherently ideal building blocks for the key circuits in the next generation of miniaturized optoelectronics. In the study, blue-emissive organic molecules of 1,4-bis(2-methylstyryl)benzene (o-MSB) can assemble into rectangular microcrystals at a large scale via the room-temperature solution-exchange method. Because of the Förster resonance energy transfer, the energy of the absorbed photons by the host matrix organic molecules of o-MSB can directly transfer to the dopant organic molecules of tetracene or 1,2:8,9-dibenzopentacene (DBP), which then emit visible photons in different colors from blue to green, and to yellow. More impressively, by modulating the doping molar ratios of DBP to o-MSB, bright white-emissive organic microcrystals with well-preserved rectangular morphology can be successfully achieved with a low doping ratio of 1.5%. These self-assembled organic semiconductor microcrystals with multicolor emissions can be the white-light sources for the integrated optical circuits at micro-/nanoscale. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Fatigue crack propagation in self-assembling nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Klingler, Andreas; Wetzel, Bernd [Institute for Composite Materials (IVW GmbH) Technical University of Kaiserslautern, 67633 Kaiserslautern (Germany)

    2016-05-18

    Self-assembling block-copolymers allow the easy manufacturing of nanocomposites due to the thermodynamically driven in situ formation of nanosized phases in thermosetting resins during the curing process. Complex mechanical dispersion processes can be avoided. The current study investigates the effect of a block-copolymer on the fatigue crack propagation resistance of a cycloaliphatic amine cured epoxy resin. It was found that a small amount of MAM triblock-copolymer significantly increases the resistance to fatigue crack propagation of epoxy. Crack growth rate and the Paris law exponent for fatigue-crack growth were considerably reduced from m=15.5 of the neat epoxy to m=8.1 of the nanocomposite. To identify the related reinforcing and fracture mechanisms structural analyses of the fractured surfaces were performed by scanning electron microscope. Characteristic features were identified to be deformation, debonding and fracture of the nano-phases as well as crack pinning. However, the highest resistance against fatigue crack propagation was achieved in a bi-continuous microstructure that consisted of an epoxy-rich phase with embedded submicron sized MAM inclusions, and which was surrounded by a block-copolymer-rich phase that showed rupture and plastic deformation.

  13. Intrinsic disorder modulates protein self-assembly and aggregation.

    Science.gov (United States)

    De Simone, Alfonso; Kitchen, Craig; Kwan, Ann H; Sunde, Margaret; Dobson, Christopher M; Frenkel, Daan

    2012-05-01

    Protein molecules have evolved to adopt distinctive and well-defined functional and soluble states under physiological conditions. In some circumstances, however, proteins can self-assemble into fibrillar aggregates designated as amyloid fibrils. In vivo these processes are normally associated with severe pathological conditions but can sometimes have functional relevance. One such example is the hydrophobins, whose aggregation at air-water interfaces serves to create robust protein coats that help fungal spores to resist wetting and thus facilitate their dispersal in the air. We have performed multiscale simulations to address the molecular determinants governing the formation of functional amyloids by the class I fungal hydrophobin EAS. Extensive samplings of full-atom replica-exchange molecular dynamics and coarse-grained simulations have allowed us to identify factors that distinguish aggregation-prone from highly soluble states of EAS. As a result of unfavourable entropic terms, highly dynamical regions are shown to exert a crucial influence on the propensity of the protein to aggregate under different conditions. More generally, our findings suggest a key role that specific flexible structural elements can play to ensure the existence of soluble and functional states of proteins under physiological conditions.

  14. Nanoscale isoindigo-carriers: self-assembly and tunable properties

    Directory of Open Access Journals (Sweden)

    Tatiana N. Pashirova

    2017-02-01

    Full Text Available Over the last decade isoindigo derivatives have attracted much attention due to their high potential in pharmacy and in the chemistry of materials. In addition, isoindigo derivatives can be modified to form supramolecular structures with tunable morphologies for the use in drug delivery. Amphiphilic long-chain dialkylated isoindigos have the ability to form stable solid nanoparticles via a simple nanoprecipitation technique. Their self-assembly was investigated using tensiometry, dynamic light scattering, spectrophotometry, and fluorometry. The critical association concentrations and aggregate sizes were measured. The hydrophilic–lipophilic balance of alkylated isoindigo derivatives strongly influences aggregate morphology. In the case of short-chain dialkylated isoindigo derivatives, supramolecular polymers of 200 to 700 nm were formed. For long-chain dialkylated isoindigo derivatives, micellar aggregates of 100 to 200 nm were observed. Using micellar surfactant water-soluble forms of monosubstituted 1-hexadecylisoindigo as well as 1,1′-dimethylisoindigo were prepared for the first time. The formation of mixed micellar structures of different types in micellar anionic surfactant solutions (sodium dodecyl sulfate was determined. These findings are of practical importance and are of potential interest for the design of drug delivery systems and new nanomaterials.

  15. Self assembly and magnetism of living biological molecules

    Directory of Open Access Journals (Sweden)

    Sutiman Bambang Sumitro

    2013-03-01

    Full Text Available Biological molecules are essentially nano size structure. All of them are complex structure with specifi c function dedicated to perform normal ordered organizational system. The forces for their work are non-covalent interactions; include spontaneous folding of proteins, DNA, RNA and other bio-macromolecules, ligand-receptors interactions, assembly-disassembly of macromolecule, and transportation or movement of many other nano size sub cellular components. The non-covalent interactions are weak bonds system that is low energetic chemical and physical forces. The energetic forces are mainly atomic forces such as electromagnetic force emergence from electron spinning and transitions at every atom of the complex macromolecular structure. The energy will work along with different level of energy, and atomic positioning within macromolecules. This paper review and discuss the role of magnetism on molecular working process as part of thermodynamically open systems to develop order, which is constantly receiving, transforming and dissipating energy, can and do continually exhibit self assembly and organization, along with the self repairing, and perpetuation.

  16. Self-assembled discrete molecules for sensing nitroaromatics.

    Science.gov (United States)

    Shanmugaraju, Sankarasekaran; Mukherjee, Partha Sarathi

    2015-04-27

    Efficient sensing of trace amount nitroaromatic (NAC) explosives has become a major research focus in recent time due to concerns over national security as well as their role as environment pollutants. NO2 -containing electron-deficient aromatic compounds, such as picric acid (PA), trinitrotoluene (TNT), and dinitrotoluene (DNT), are the common constituents of many commercially available chemical explosives. In this article, we have summarized our recent developments on the rational design of electron-rich self-assembled discrete molecular sensors and their efficacy in sensing nitroaromatics both in solution as well as in vapor phase. Several π-electron-rich fluorescent metallacycles (squares, rectangles, and tweezers/pincers) and metallacages (trigonal and tetragonal prisms) have been synthesized by means of metal-ligand coordination-bonding interactions, with enough internal space to accommodate electron-deficient nitroaromatics at the molecular level by multiple supramolecular interactions. Such interactions subsequently result in the detectable fluorescence quenching of sensors even in the presence of trace quantities of nitroaromatics. The fascinating sensing characteristics of molecular architectures discussed in this article may enable future development of improved sensors for nitroaromatic explosives. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Self-assembly mechanism for limit-periodic structure

    Science.gov (United States)

    Marcoux, Catherine; Socolar, Joshua

    2015-03-01

    Limit-periodic (LP) structures, which are the union of an infinite set of periodic lattices with ever increasing lattice constants, present a challenge for self-assembly protocols. We consider the possibility of forming a LP phase in a slow quench of a collection of colloidal particles designed to mimic the Taylor-Socolar monotile system. A toy model with discrete tile orientations and mismatch energies yields the LP state through an infinite sequence of phase transitions. Here we present the results of Monte Carlo simulations of slow quenches of identical hard disks with embedded magnetic dipoles, allowing for continuous rotations of the close-packed disks. Surprisingly, an extremely slow quench still results in the spontaneous emergence of the LP state even when the system has a periodic ground state. The series of phase transitions preempts the formation of the periodic phase, leading to low energy states separated from the ground state by insurmountable free energy barriers. Supported by the NSF Research Triangle MRSEC (DMR-1121107).

  18. Copper pattern on self-assembled monolayer through microcontact printing.

    Science.gov (United States)

    Liu, Zheng-Chun; Yang, Fei-Peng; Xu, Xiao-Wen; Guo, Can; Liu, Jian-Xin

    2010-05-01

    Cu pattern on 3-mercaptopropyltrimethoxysilane self-assembled monolayers (MPTS-SAMs) modified glass substrate was achieved by a combination of hydrophobic treatment through microcontact printing, activation and electroless plating. The MPTS-SAMs modified glass substrate was selectively deactivated by microcontact printing 1-hexadecanethiol ethanol solution. X-ray photoelectron spectroscopy (XPS) and water contact angle measurements confirmed that a selectively deactivated pattern was obtained, which was attributed to the formation of disulfide linkages between MPTS and 1-hexadecanethiol. The substrate was selectively activated by dipping into Ag colloids solution and then applied for electroless Cu plating. XPS spectra suggested an ideal catalytic pattern on the substrate due to the deposition of Ag particles on the MPTS and the formation of S-Ag bonds. SEM showed that the microstructure of Cu pattern on MPTS-SAMs was in good agreement with the corresponding silicon master with a resolution of 10 microm. The average electrical resistivity was about 1.8 x 10(-6) omegacm, measured by four-point probe technique. The results suggested that microcontact printing deactivating reagents on SAMs is a potential technique for Cu patterns preparation.

  19. Molecular Self-Assembly Strategy for Generating Catalytic Hybrid Polypeptides.

    Science.gov (United States)

    Maeda, Yoshiaki; Fang, Justin; Ikezoe, Yasuhiro; Pike, Douglas H; Nanda, Vikas; Matsui, Hiroshi

    2016-01-01

    Recently, catalytic peptides were introduced that mimicked protease activities and showed promising selectivity of products even in organic solvents where protease cannot perform well. However, their catalytic efficiency was extremely low compared to natural enzyme counterparts presumably due to the lack of stable tertiary fold. We hypothesized that assembling these peptides along with simple hydrophobic pockets, mimicking enzyme active sites, could enhance the catalytic activity. Here we fused the sequence of catalytic peptide CP4, capable of protease and esterase-like activities, into a short amyloidogenic peptide fragment of Aβ. When the fused CP4-Aβ construct assembled into antiparallel β-sheets and amyloid fibrils, a 4.0-fold increase in the hydrolysis rate of p-nitrophenyl acetate (p-NPA) compared to neat CP4 peptide was observed. The enhanced catalytic activity of CP4-Aβ assembly could be explained both by pre-organization of a catalytically competent Ser-His-acid triad and hydrophobic stabilization of a bound substrate between the triad and p-NPA, indicating that a design strategy for self-assembled peptides is important to accomplish the desired functionality.

  20. Proton electroinsertion in self-assembled materials for neutralization pseudocapacitors.

    Science.gov (United States)

    Facci, Tiago; Gomes, Wellington J A S; Bravin, Bruno; Araújo, Diógenes M; Huguenin, Fritz

    2014-01-14

    We propose novel pseudocapacitors that can store energy related to the partial entropy change associated with proton concentration variations following neutralization reactions. In this situation, it is possible to obtain electrochemical energy after the complete charge/discharge cycle conducted in electrolytic solutions with different proton concentrations. To this end, we prepared modified electrodes from phosphomolybdic acid (PMA), poly(3,4-ethylenedioxythiophene/poly(styrenesulfonate) (PEDOT-PSS), and polyallylamine (PAH) by the layer-by-layer (LbL) method and investigated their electrochemical behavior, aiming to use them in these neutralization pseudocapacitors. We analyzed the potentiodynamic profile of the current density at several scan rates, to evaluate the reversibility of the proton electroinsertion process, which is crucial to maximum energy storage efficiency. On the basis of the proposed reaction mechanism and by using frequency-domain measurements and models, we determined rate constants at different potentials. Our results demonstrated that the conducting polymer affects the self-assembled matrixes, ensuring that energy storage is high (22.5 kJ mol(-1)). The process involved neutralization of a hydrochloric acid solution from pH = 1 to pH = 6, which corresponds to 40% of the neutralization enthalpy.

  1. Anisotropic Self-Assembly of Organic–Inorganic Hybrid Microtoroids

    KAUST Repository

    Al-Rehili, Safa’a

    2016-10-24

    Toroidal structures based on self-assembly of predesigned building blocks are well-established in the literature, but spontaneous self-organization to prepare such structures has not been reported to date. Here, organic–inorganic hybrid microtoroids synthesized by simultaneous coordination-driven assembly of amphiphilic molecules and hydrophilic polymers are reported. Mixing amphiphilic molecules with iron(III) chloride and hydrophilic polymers in water leads, within minutes, to the formation of starlike nanostructures. A spontaneous self-organization of these nanostructures is then triggered to form stable hybrid microtoroids. Interestingly, the toroids exhibit anisotropic hierarchical growth, giving rise to a layered toroidal framework. These microstructures are mechanically robust and can act as templates to host metallic nanoparticles such as gold and silver. Understanding the nature of spontaneous assembly driven by coordination multiple non-covalent interactions can help explain the well-ordered complexity of many biological organisms in addition to expanding the available tools to mimic such structures at a molecular level.

  2. Formation and size distribution of self-assembled vesicles.

    Science.gov (United States)

    Huang, Changjin; Quinn, David; Sadovsky, Yoel; Suresh, Subra; Hsia, K Jimmy

    2017-03-14

    When detergents and phospholipid membranes are dispersed in aqueous solutions, they tend to self-assemble into vesicles of various shapes and sizes by virtue of their hydrophobic and hydrophilic segments. A clearer understanding of such vesiculation processes holds promise for better elucidation of human physiology and disease, and paves the way to improved diagnostics, drug development, and drug delivery. Here we present a detailed analysis of the energetics and thermodynamics of vesiculation by recourse to nonlinear elasticity, taking into account large deformation that may arise during the vesiculation process. The effects of membrane size, spontaneous curvature, and membrane stiffness on vesiculation and vesicle size distribution were investigated, and the critical size for vesicle formation was determined and found to compare favorably with available experimental evidence. Our analysis also showed that the critical membrane size for spontaneous vesiculation was correlated with membrane thickness, and further illustrated how the combined effects of membrane thickness and physical properties influenced the size, shape, and distribution of vesicles. These findings shed light on the formation of physiological extracellular vesicles, such as exosomes. The findings also suggest pathways for manipulating the size, shape, distribution, and physical properties of synthetic vesicles, with potential applications in vesicle physiology, the pathobiology of cancer and other diseases, diagnostics using in vivo liquid biopsy, and drug delivery methods.

  3. Self-Assembly of Protein Nanostructures to Enhance Biosensor Sensitivity

    Science.gov (United States)

    Olsen, Bradley; Dong, Xuehui; Obermeyer, Allie

    The Langmuir adsorption isotherm predicts that the number of bound species on a surface at a given concentration will be directly proportional to the number of binding sites on the surface. Therefore, the number of binding events in a biosensor may be increased at a given analyte concentration if the surface density of binding domains is increased. Here, we demonstrate the formation of block copolymers where one block is a human IgG antibody or a nanobody and self-assemble these molecules into nanostructured films with a high density of binding sites. The type of nanostructure formed and the rate of transport through the protein-polymer layers are explored as a function of coil fraction of the protein-polymer conjugate block copolymers, showing optima for transport and assembly that depend upon the identity of the protein. For small enough analytes, binding to the antibodies and nanobodies is linear with film thickness, indicating that the entire film is accessible. Consistent with the enhanced number of binding sites and the prediction of the Langmuir isotherm, the films improve sensitivity by several orders of magnitude relative to chemisorbed protein layers used in current sensor designs. Current research is integrating this new material technology into prototype sensors. Work supported by the Air Force Office of Scientific Reesearch (AFOSR).

  4. MODELING THE SELF-ASSEMBLY OF ORDERED NANOPOROUS MATERIALS

    Energy Technology Data Exchange (ETDEWEB)

    Monson, Peter [University of Massachusetts; Auerbach, Scott [University of Massachusetts

    2017-11-13

    This report describes progress on a collaborative project on the multiscale modeling of the assembly processes in the synthesis of nanoporous materials. Such materials are of enormous importance in modern technology with application in the chemical process industries, biomedicine and biotechnology as well as microelectronics. The project focuses on two important classes of materials: i) microporous crystalline materials, such as zeolites, and ii) ordered mesoporous materials. In the first case the pores are part of the crystalline structure, while in the second the structures are amorphous on the atomistic length scale but where surfactant templating gives rise to order on the length scale of 2 - 20 nm. We have developed a modeling framework that encompasses both these kinds of materials. Our models focus on the assembly of corner sharing silica tetrahedra in the presence of structure directing agents. We emphasize a balance between sufficient realism in the models and computational tractibility given the complex many-body phenomena. We use both on-lattice and off-lattice models and the primary computational tools are Monte Carlo simulations with sampling techniques and ensembles appropriate to specific situations. Our modeling approach is the first to capture silica polymerization, nanopore crystallization, and mesopore formation through computer-simulated self assembly.

  5. Coding for hydrogel organization through signal guided self-assembly.

    Science.gov (United States)

    Yan, Kun; Ding, Fuyuan; Bentley, William E; Deng, Hongbing; Du, Yumin; Payne, Gregory F; Shi, Xiao-Wen

    2014-01-21

    Complex structured soft matter may have important applications in the field of tissue engineering and biomedicine. However, the discovery of facile methods to exquisitely manipulate the structure of soft matter remains a challenge. In this report, a multilayer hydrogel is fabricated from the stimuli-responsive aminopolysaccharide chitosan by using spatially localized and temporally controlled sequences of electrical signals. By programming the imposed cathodic input signals, chitosan hydrogels with varying layer number and thickness can be fabricated. The inputs of electrical signals induce the formation of hydrogel layers while short interruptions create interfaces between each layer. The thickness of each layer is controlled by the charge transfer (Q = ∫idt) during the individual deposition step and the number of multilayers is controlled by the number of interruptions. Scanning electron micrographs (SEMs) reveal organized fibrous structures within each layer that are demarcated by compact orthogonal interlayer structures. This work demonstrates for the first time that an imposed sequence of electrical inputs can trigger the self-assembly of multilayered hydrogels and thus suggests the broader potential for creating an electrical "code" to generate complex structures in soft matter.

  6. Programmed self-assembly of DNA/RNA for biomedical applications

    Science.gov (United States)

    Wang, Pengfei

    Three self-assembly strategies were utilized for assembly of novel functional DNA/RNA nanostructures. RNA-DNA hybrid origami method was developed to fabricate nano-objects (ribbon, rectangle, and triangle) with precisely controlled geometry. Unlike conventional DNA origami which use long DNA single strand as scaffold, a long RNA single strand was used instead, which was folded by short DNA single strands (staples) into prescribed objects through sequence specific hybridization between RNA and DNA. Single stranded tiles (SST) and RNA-DNA hybrid origami were utilized to fabricate a variety of barcode-like nanostructures with unique patterns by expanding a plain rectangle via introducing spacers (10-bp dsDNA segment) between parallel duplexes. Finally, complex 2D array and 3D polyhedrons with multiple patterns within one structure were assembled from simple DNA motifs. Two demonstrations of biomedical applications of DNA nanotechnology were presented. Firstly, lambda-DNA was used as template to direct the fabrication of multi-component magnetic nanoparticle chains. Nuclear magnetic relaxation (NMR) characterization showed superb magnetic relaxativity of the nanoparticle chains which have large potential to be utilized as MRI contrast agents. Secondly, DNA nanotechnology was introduced into the conformational study of a routinely used catalytic DNAzyme, the RNA-cleaving 10-23 DNAzyme. The relative angle between two flanking duplexes of the catalytic core was determined (94.8°), which shall be able to provide a clue to further understanding of the cleaving mechanism of this DNAzyme from a conformational perspective.

  7. Dipole-Assisted Self-Assembly of Light-Emitting p-nP Needles on Mica

    DEFF Research Database (Denmark)

    Balzer, Frank; Rubahn, Horst-Günter

    2001-01-01

    We report on dipole-assisted, self-assembled formation of p-6P and p-5P needles on cleaved and heated mica (0001) surfaces. Low-energy electron diffraction (LEED) reveals that the needles are single crystalline with the (1) face parallel to the surface, consisting of parallel stacks of laying...... molecules oriented along the direction of microscopic dipoles on the mica surface. They have submicrometer cross-sectional dimensions and lengths as large as millimeters. Moreover, due to the strong dipole confinement of individual molecules, the needles form large domains with parallel oriented entities...

  8. Fabrication of nanoscale gaps using a combination of self-assembled molecular and electron beam lithographic techniques

    International Nuclear Information System (INIS)

    Negishi, R.; Hasegawa, T.; Terabe, K.; Aono, M.; Ebihara, T.; Tanaka, H.; Ogawa, T.

    2006-01-01

    We have developed and tested a new method of fabricating nanogaps using a combination of self-assembled molecular and electron beam lithographic techniques. The method enables us to control the gap size with an accuracy of approximately 2 nm and designate the positions where the nanogaps should be formed with high-resolution patterning by using electron beam lithography. We have demonstrated the utility of the fabricated nanogaps by measuring a single electron tunneling phenomenon through dodecanethiol-coated Au nanoparticles placed in the fabricated nanogap

  9. Bioinspired synthesis and self-assembly of hybrid organic–inorganic nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Honghu [Iowa State Univ., Ames, IA (United States)

    2016-12-17

    Nature is replete with complex organic–inorganic hierarchical materials of diverse yet specific functions. These materials are intricately designed under physiological conditions through biomineralization and biological self-assembly processes. Tremendous efforts have been devoted to investigating mechanisms of such biomineralization and biological self-assembly processes as well as gaining inspiration to develop biomimetic methods for synthesis and self-assembly of functional nanomaterials. In this work, we focus on the bioinspired synthesis and self-assembly of functional inorganic nanomaterials templated by specialized macromolecules including proteins, DNA and polymers. The in vitro biomineralization process of the magnetite biomineralizing protein Mms6 has been investigated using small-angle X-ray scattering. Templated by Mms6, complex magnetic nanomaterials can be synthesized on surfaces and in the bulk. DNA and synthetic polymers have been exploited to construct macroscopic two- and three-dimensional (2D and 3D) superlattices of gold nanocrystals. Employing X-ray scattering and spectroscopy techniques, the self-assembled structures and the self-assembly mechanisms have been studied, and theoretical models have been developed. Our results show that specialized macromolecules including proteins, DNA and polymers act as effective templates for synthesis and self-assembly of nanomaterials. These bottom-up approaches provide promising routes to fabricate hybrid organic–inorganic nanomaterials with rationally designed hierarchical structures, targeting specific functions.

  10. Quantitative computational models of molecular self-assembly in systems biology

    Science.gov (United States)

    Thomas, Marcus; Schwartz, Russell

    2017-06-01

    Molecular self-assembly is the dominant form of chemical reaction in living systems, yet efforts at systems biology modeling are only beginning to appreciate the need for and challenges to accurate quantitative modeling of self-assembly. Self-assembly reactions are essential to nearly every important process in cell and molecular biology and handling them is thus a necessary step in building comprehensive models of complex cellular systems. They present exceptional challenges, however, to standard methods for simulating complex systems. While the general systems biology world is just beginning to deal with these challenges, there is an extensive literature dealing with them for more specialized self-assembly modeling. This review will examine the challenges of self-assembly modeling, nascent efforts to deal with these challenges in the systems modeling community, and some of the solutions offered in prior work on self-assembly specifically. The review concludes with some consideration of the likely role of self-assembly in the future of complex biological system models more generally.

  11. Quantitative computational models of molecular self-assembly in systems biology.

    Science.gov (United States)

    Thomas, Marcus; Schwartz, Russell

    2017-05-23

    Molecular self-assembly is the dominant form of chemical reaction in living systems, yet efforts at systems biology modeling are only beginning to appreciate the need for and challenges to accurate quantitative modeling of self-assembly. Self-assembly reactions are essential to nearly every important process in cell and molecular biology and handling them is thus a necessary step in building comprehensive models of complex cellular systems. They present exceptional challenges, however, to standard methods for simulating complex systems. While the general systems biology world is just beginning to deal with these challenges, there is an extensive literature dealing with them for more specialized self-assembly modeling. This review will examine the challenges of self-assembly modeling, nascent efforts to deal with these challenges in the systems modeling community, and some of the solutions offered in prior work on self-assembly specifically. The review concludes with some consideration of the likely role of self-assembly in the future of complex biological system models more generally.

  12. Development of simulation approach for two-dimensional chiral molecular self-assembly driven by hydrogen bond at the liquid/solid interface

    Science.gov (United States)

    Qin, Yuan; Yao, Man; Hao, Ce; Wan, Lijun; Wang, Yunhe; Chen, Ting; Wang, Dong; Wang, Xudong; Chen, Yonggang

    2017-09-01

    Two-dimensional (2D) chiral self-assembly system of 5-(benzyloxy)-isophthalic acid derivative/(S)-(+)-2-octanol/highly oriented pyrolytic graphite was studied. A combined density functional theory/molecular mechanics/molecular dynamics (DFT/MM/MD) approach for system of 2D chiral molecular self-assembly driven by hydrogen bond at the liquid/solid interface was thus proposed. Structural models of the chiral assembly were built on the basis of scanning tunneling microscopy (STM) images and simplified for DFT geometry optimization. Merck Molecular Force Field (MMFF) was singled out as the suitable force field by comparing the optimized configurations of MM and DFT. MM and MD simulations for hexagonal unit model which better represented the 2D assemble network were then preformed with MMFF. The adhesion energy, evolution of self-assembly process and characteristic parameters of hydrogen bond were obtained and analyzed. According to the above simulation, the stabilities of the clockwise and counterclockwise enantiomorphous networks were evaluated. The calculational results were supported by STM observations and the feasibility of the simulation method was confirmed by two other systems in the presence of chiral co-absorbers (R)-(-)-2-octanol and achiral co-absorbers 1-octanol. This theoretical simulation method assesses the stability trend of 2D enantiomorphous assemblies with atomic scale and can be applied to the similar hydrogen bond driven 2D chirality of molecular self-assembly system.

  13. Preparation and Investigation of the Microtribological Properties of Graphene Oxide and Graphene Films via Electrostatic Layer-by-Layer Self-Assembly

    Directory of Open Access Journals (Sweden)

    Yongshou Hu

    2015-01-01

    Full Text Available Graphene oxide (GO films with controlled layers, deposited on single-crystal silicon substrates, were prepared by electrostatic self-assembly of negatively charged GO sheets. Afterward, graphene films were prepared by liquid-phase reduction of as-prepared GO films using hydrazine hydrate. The microstructures and microtribological properties of the samples were studied using X-ray photoelectron spectroscopy, Raman spectroscopy, X-ray diffraction, UV-vis absorption spectroscopy, water contact angle measurement, and atomic force microscopy. It is found that, whether GO films or graphene films, the adhesion force and the coefficients of friction both show strong dependence on the number of self-assembled layers, which both allow a downward trend as the number of self-assembled layers increases due to the interlayer sliding and the puckering effect when the tip slipped across the top surface of the films. Moreover, in comparison with the GO films with the same self-assembled layers, the graphene films possess lower adhesion force and coefficient of friction attributed to the difference of surface functional groups.

  14. Noncovalent functionalization of solid-state nanopores via self-assembly of amphipols

    Science.gov (United States)

    Pérez-Mitta, Gonzalo; Burr, Loïc; Tuninetti, Jimena S.; Trautmann, Christina; Toimil-Molares, María Eugenia; Azzaroni, Omar

    2016-01-01

    In recent years there has been increasing interest in the development of new methods for conferring functional features to nanopore-based fluidic devices. In this work, we describe for the first time the noncovalent integration of amphoteric-amphipathic polymers, also known as ``amphipols'', into single conical nanopores in order to obtain signal-responsive chemical nanodevices. Highly-tapered conical nanopores were fabricated by single-sided chemical etching of polycarbonate foils. After etching, the surface of the conical nanopores was chemically modified, by first metallizing the surface via gold sputtering and then by amphiphilic self-assembly of the amphipol. The net charge of adsorbed amphipols was regulated via pH changes under the environmental conditions. The pH-dependent chemical equilibrium of the weak acidic and basic monomers facilitates the regulation of the ionic transport through the nanopore by adjusting the pH of the electrolyte solution. Our results demonstrate that functional amphipathic polymers are powerful building blocks for the surface modification of nanopores and might ultimately pave the way to a new means of integrating functional and/or responsive units within nanofluidic structures.In recent years there has been increasing interest in the development of new methods for conferring functional features to nanopore-based fluidic devices. In this work, we describe for the first time the noncovalent integration of amphoteric-amphipathic polymers, also known as ``amphipols'', into single conical nanopores in order to obtain signal-responsive chemical nanodevices. Highly-tapered conical nanopores were fabricated by single-sided chemical etching of polycarbonate foils. After etching, the surface of the conical nanopores was chemically modified, by first metallizing the surface via gold sputtering and then by amphiphilic self-assembly of the amphipol. The net charge of adsorbed amphipols was regulated via pH changes under the environmental

  15. Docking System Design and Self-Assembly Control of Distributed Swarm Flying Robots

    Directory of Open Access Journals (Sweden)

    Hongxing Wei

    2012-11-01

    Full Text Available This paper presents a novel docking system design and the distributed self-assembly control strategy for a Distributed Swarm Flying Robot (DSFR. The DSFR is a swarm robot comprising many identical robot modules that are able to move on the ground, dock with each other and fly coordinately once self-assembled into a robotic structure. A generalized adjacency matrix method is proposed to describe the configurations of robotic structures. Based on the docking system and the adjacency matrix, experiments are performed to demonstrate and verify the self-assembly control strategy.

  16. Polymersomes with asymmetric membranes and self-assembled superstructures using pentablock quintopolymers resolved by electron tomography

    KAUST Repository

    Haataja, J. S.

    2018-01-09

    Polystyrene-block-poly(1,4-isoprene)-block-poly(dimethyl siloxane)-block-poly(tert-butyl methacrylate)-block-poly(2-vinyl pyridine), PS-b-PI-b-PDMS-b-PtBMA-b-P2VP, self-assembles in acetone into polymersomes with asymmetric (directional) PI-b-PDMS membranes. The polymersomes, in turn, self-assemble into superstructures. Analogically to supravesicular structures at a smaller length scale, we refer to them as suprapolymersome structures. Electron tomograms are shown to be invaluable in the structural assessment of such complex self-assemblies.

  17. Tuning the size of a redox-active tetrathiafulvalene-based self-assembled ring

    Directory of Open Access Journals (Sweden)

    Sébastien Bivaud

    2015-06-01

    Full Text Available The synthesis of a new Pd coordination-driven self-assembled ring M6L3 constructed from a concave tetrapyridyl π-extended tetrathiafulvalene ligand (exTTF is described. The same ligand is also able to self-assemble in a M4L2 mode as previously described. Herein, we demonstrate that the bulkiness of the ancillary groups in the Pd complex allows for modulating the size and the shape of the resulting discrete self-assembly, which therefore incorporate two (M4L2 or three (M6L3 electroactive exTTF sidewalls.

  18. Self-assembling protein nanoparticles in the design of vaccines

    Directory of Open Access Journals (Sweden)

    Jacinto López-Sagaseta

    2016-01-01

    Full Text Available For over 100 years, vaccines have been one of the most effective medical interventions for reducing infectious disease, and are estimated to save millions of lives globally each year. Nevertheless, many diseases are not yet preventable by vaccination. This large unmet medical need demands further research and the development of novel vaccines with high efficacy and safety. Compared to the 19th and early 20th century vaccines that were made of killed, inactivated, or live-attenuated pathogens, modern vaccines containing isolated, highly purified antigenic protein subunits are safer but tend to induce lower levels of protective immunity. One strategy to overcome the latter is to design antigen nanoparticles: assemblies of polypeptides that present multiple copies of subunit antigens in well-ordered arrays with defined orientations that can potentially mimic the repetitiveness, geometry, size, and shape of the natural host-pathogen surface interactions. Such nanoparticles offer a collective strength of multiple binding sites (avidity and can provide improved antigen stability and immunogenicity. Several exciting advances have emerged lately, including preclinical evidence that this strategy may be applicable for the development of innovative new vaccines, for example, protecting against influenza, human immunodeficiency virus, and respiratory syncytial virus. Here, we provide a concise review of a critical selection of data that demonstrate the potential of this field. In addition, we highlight how the use of self-assembling protein nanoparticles can be effectively combined with the emerging discipline of structural vaccinology for maximum impact in the rational design of vaccine antigens.

  19. Spin Properties of Transition-Metallorganic Self-Assembled Molecules

    International Nuclear Information System (INIS)

    Yu, Zhi Gang

    2010-01-01

    This report summarizes SRI's accomplishments on the project, 'Spin Properties of Transition-Metallorganic Self-Assembled Molecules' funded by the Office of Basic Energy Sciences, US Department of Energy. We have successfully carried out all tasks identified in our proposal and gained significant knowledge and understanding of spin-polarized electronic structure, spin relaxation, and spin-dependent transport in transition-metallorganic molecules and enhohedral fullerenes. These molecules contain integrated spin and charge components and will enable us to achieve sophisticated functions in spintronics and quantum computing at molecular level with simple circuitry and easy fabrication. We have developed microscopic theories that describe the underlying mechanisms of spin-dependent porcesses and constructed quantitative modeling tools that compute several important spin properties. These results represent the basic principles governing the spin-dependent behaviors in nanostructures containing such molecules. Based on these results we have shown that novel device functions, such as electrically controlled g-factor and noninvasive electrical detection of spin dynamics, can be achieved in these nanostructures. Some of our results have been published in peer-reviewed journals and presented at professional conferences. In addition, we have established a close collaboration with experimentalists at Oxford University, UK (Dr. J. Morton and Prof. G. Briggs), Princeton University (Dr. A. Tyryshkin and Prof. S. Lyon), University of Delaware (Prof. E. Nowak), and University of California (Profs. R. Kawakami and J. Shi), who have been studying related systems and supplying us with new experimental data. We have provided our understanding and physical insights to the experimentalists and helped analyze their experimental measurements. The collaboration with experimentalists has also broadened our research scope and helped us focus on the most relevant issues concerning these

  20. Spin Properties of Transition-Metallorganic Self-Assembled Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Zhi Gang Yu

    2010-06-30

    This report summarizes SRI's accomplishments on the project, 'Spin Properties of Transition-Metallorganic Self-Assembled Molecules' funded by the Office of Basic Energy Sciences, US Department of Energy. We have successfully carried out all tasks identified in our proposal and gained significant knowledge and understanding of spin-polarized electronic structure, spin relaxation, and spin-dependent transport in transition-metallorganic molecules and enhohedral fullerenes. These molecules contain integrated spin and charge components and will enable us to achieve sophisticated functions in spintronics and quantum computing at molecular level with simple circuitry and easy fabrication. We have developed microscopic theories that describe the underlying mechanisms of spin-dependent porcesses and constructed quantitative modeling tools that compute several important spin properties. These results represent the basic principles governing the spin-dependent behaviors in nanostructures containing such molecules. Based on these results we have shown that novel device functions, such as electrically controlled g-factor and noninvasive electrical detection of spin dynamics, can be achieved in these nanostructures. Some of our results have been published in peer-reviewed journals and presented at professional conferences. In addition, we have established a close collaboration with experimentalists at Oxford University, UK (Dr. J. Morton and Prof. G. Briggs), Princeton University (Dr. A. Tyryshkin and Prof. S. Lyon), University of Delaware (Prof. E. Nowak), and University of California (Profs. R. Kawakami and J. Shi), who have been studying related systems and supplying us with new experimental data. We have provided our understanding and physical insights to the experimentalists and helped analyze their experimental measurements. The collaboration with experimentalists has also broadened our research scope and helped us focus on the most relevant issues

  1. Surface Mediated Self-Assembly of Amyloid Peptides

    Science.gov (United States)

    Fakhraai, Zahra

    2015-03-01

    Amyloid fibrils have been considered as causative agents in many neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, type II diabetes and amyloidosis. Amyloid fibrils form when proteins or peptides misfold into one dimensional crystals of stacked beta-sheets. In solution, amyloid fibrils form through a nucleation and growth mechanism. The rate limiting nucleation step requires a critical concentration much larger than those measured in physiological conditions. As such the exact origins of the seeds or oligomers that result in the formation of fully mature fibrils in the body remain topic intense studies. It has been suggested that surfaces and interfaces can enhance the fibrillization rate. However, studies of the mechanism and kinetics of the surface-mediated fibrillization are technologically challenging due to the small size of the oligomer and protofibril species. Using smart sample preparation technique to dry the samples after various incubation times we are able to study the kinetics of fibril formation both in solution and in the vicinity of various surfaces using high-resolution atomic force microscopy. These studies elucidate the role of surfaces in catalyzing amyloid peptide formation through a nucleation-free process. The nucleation free self-assembly is rapid and requires much smaller concentrations of peptides or proteins. We show that this process resembles diffusion limited aggregation and is governed by the peptide adhesion rate, two -dimensional diffusion of the peptides on the surface, and preferential interactions between the peptides. These studies suggest an alternative pathway for amyloid formation may exist, which could lead to new criteria for disease prevention and alternative therapies. Research was partially supported by a seed grant from the National Institute of Aging of the National Institutes of Health (NIH) under Award Number P30AG010124 (PI: John Trojanowski) and the University of Pennsylvania.

  2. Engineering Fluorogen Activating Proteins into Self-Assembling Materials

    Science.gov (United States)

    Saunders, Matthew J.; Liu, Wen; Szent-Gyorgyi, Christopher; Wen, Yi; Drennen, Zachary; Waggoner, Alan S.; Meng, Wilson S.

    2013-01-01

    We present herein characteristics of a conjugate in which dL5, a fluorogen-activating protein (FAP) and AEAEAKAK, an amphiphilic peptide are combined to form a solid-phase fluorescence-detection platform. The FAP dL5 is a covalently linked dimer of two identical light chain variable fragments which activates the fluorescence of the fluorogen malachite green (MG). The amphiphilic peptide of sequence AEAEAKAK is a building block of stimuli-responsive materials that undergoes sol-gel phase transition at high ionic strengths. We hypothesize that the novel bi-functional protein containing both the FAP and the amphiphile, termed dL5_EAK, co-assembles with the self-assembling peptide [AEAEAKAK]2 (EAK16-II) to form an insoluble membrane composite whereby the fluorescence enhancement function of the FAP domain remains intact. Denaturing polyacrylamide electrophoresis indicated that greater than 78% of dL5_EAK incorporates into the EAK16-II membrane. Conversely, less than 32% of dL5 without the EAK sequence associates with the insoluble fraction of EAK16-II in buffers. Membranes containing dL5_EAK and EAK16-II exhibited at least 4-fold higher fluorescence intensity compared to mixtures containing dL5 and EAK16-II. Scanning electron microscopy revealed the presence of particulates, presumably FAPs, scattering on the membrane fibrils. The evidence suggests a system of materials that can be developed into in situ-forming local sensors by immobilizing dL5 into coacervate, on which MG can be detected. It is envisioned that dL5 membranes can be established in diseased locales to monitor infiltration and migration of inflammatory cells marked with antibodies conjugated to MG. PMID:23573960

  3. Evaporation, diffusion and self-assembly at drying interfaces.

    Science.gov (United States)

    Roger, K; Sparr, E; Wennerström, H

    2018-04-18

    Water evaporation from complex aqueous solutions leads to the build-up of structure and composition gradients at their interface with air. We recently introduced an experimental setup for quantitatively studying such gradients and discussed how structure formation can lead to a self-regulation mechanism for controlling water evaporation through self-assembly. Here, we provide a detailed theoretical analysis using an advection/diffusion transport equation that takes into account thermodynamically non-ideal conditions and we directly relate the theoretical description to quantitative experimental data. We derive that the concentration profile develops according to a general square root of time scaling law, which fully agrees with experimental observations. The evaporation rate notably decreases with time as t-1/2, which shows that diffusion in the liquid phase is the rate limiting step for this system, in contrast to pure water evaporation. For the particular binary system that was investigated experimentally, which is composed of water and a sugar-based surfactant (α-dodecylmaltoside), the interfacial layer consists in a sequence of liquid crystalline phases of different mesostructures. We extract values for mutual diffusion coefficients of lamellar, hexagonal and micellar cubic phases, which are consistent with previously reported values and simple models. We thus provide a method to estimate the transport properties of oriented mesophases. The macroscopic humidity-independence of the evaporation rate up to 85% relative humidities is shown to result from both an extremely low mutual diffusion coefficient and the large range of water activities corresponding to relative humidities below 85%, at which the lamellar phase exists. Such a humidity self-regulation mechanism is expected for a large variety of complex system.

  4. Self-assembled nanoparticles of glycol chitosan – Ergocalciferol succinate conjugate, for controlled release

    DEFF Research Database (Denmark)

    Quinones, Javier Perez; Gothelf, Kurt Vesterager; Kjems, Jørgen

    2012-01-01

    Glycol chitosan was linked to vitamin D2 hemisuccinate (ergocalciferol hemisuccinate) for controlled release through water-soluble carbodiimide activation. The resulting conjugate formed self-assembled nanoparticles in aqueous solution with particle size of 279 nm and ergocalciferol hemisuccinate...

  5. Self-assembling peptide-based building blocks in medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Acar, Handan; Srivastava, Samanvaya; Chung, Eun Ji; Schnorenberg, Mathew R.; Barrett, John C.; LaBelle, James L.; Tirrell, Matthew

    2017-02-01

    Peptides and peptide-conjugates, comprising natural and synthetic building blocks, are an increasingly popular class of biomaterials. Self-assembled nanostructures based on peptides and peptide-conjugates offer advantages such as precise selectivity and multifunctionality that can address challenges and limitations in the clinic. In this review article, we discuss recent developments in the design and self-assembly of various nanomaterials based on peptides and peptide-conjugates for medical applications, and categorize them into two themes based on the driving forces of molecular self-assembly. First, we present the self-assembled nanostructures driven by the supramolecular interactions between the peptides, with or without the presence of conjugates. The studies where nanoassembly is driven by the interactions between the conjugates of peptide-conjugates are then presented. Particular emphasis is given to in vivo studies focusing on therapeutics, diagnostics, immune modulation and regenerative medicine. Finally, challenges and future perspectives are presented.

  6. Self-assembly and flux closure studies of magnetic nanoparticle rings

    DEFF Research Database (Denmark)

    Wei, Alexander; Kasama, Takeshi; Dunin-Borkowski, Rafal E.

    2011-01-01

    Thermoremanent magnetic nanoparticles (MNPs) can self-assemble into rings through dipolar interactions, when dispersed under appropriate conditions. Analysis of individual MNP rings and clusters by off-axis electron holography reveals bistable flux closure (FC) states at ambient temperatures...

  7. Integrating DNA strand-displacement circuitry with DNA tile self-assembly

    Science.gov (United States)

    Zhang, David Yu; Hariadi, Rizal F.; Choi, Harry M.T.; Winfree, Erik

    2013-01-01

    DNA nanotechnology has emerged as a reliable and programmable way of controlling matter at the nanoscale through the specificity of Watson–Crick base pairing, allowing both complex self-assembled structures with nanometer precision and complex reaction networks implementing digital and analog behaviors. Here we show how two well-developed frameworks, DNA tile self-assembly and DNA strand-displacement circuits, can be systematically integrated to provide programmable kinetic control of self-assembly. We demonstrate the triggered and catalytic isothermal self-assembly of DNA nanotubes over 10 μm long from precursor DNA double-crossover tiles activated by an upstream DNA catalyst network. Integrating more sophisticated control circuits and tile systems could enable precise spatial and temporal organization of dynamic molecular structures. PMID:23756381

  8. Application of self-consistent field theory to self-assembled bilayer membranes

    International Nuclear Information System (INIS)

    Zhang Ping-Wen; Shi An-Chang

    2015-01-01

    Bilayer membranes self-assembled from amphiphilic molecules such as lipids, surfactants, and block copolymers are ubiquitous in biological and physiochemical systems. The shape and structure of bilayer membranes depend crucially on their mechanical properties such as surface tension, bending moduli, and line tension. Understanding how the molecular properties of the amphiphiles determine the structure and mechanics of the self-assembled bilayers requires a molecularly detailed theoretical framework. The self-consistent field theory provides such a theoretical framework, which is capable of accurately predicting the mechanical parameters of self-assembled bilayer membranes. In this mini review we summarize the formulation of the self-consistent field theory, as exemplified by a model system composed of flexible amphiphilic chains dissolved in hydrophilic polymeric solvents, and its application to the study of self-assembled bilayer membranes. (topical review)

  9. Encapsulating fluorescein using adipic acid self-assembly on the surface of PPI-3 dendrimer.

    Science.gov (United States)

    Chai, Minghui; Holley, Aaron K; Kruskamp, Michael

    2007-01-14

    A water-soluble self-assembly has been formed by associating adipic acid molecules onto the surface of the third generation poly(propyleneimine) dendrimer and this system has been used to encapsulate fluorescein.

  10. Ionic Self Assembled Monolayer (ISAM) Processes for Electronic Materials and Devices

    National Research Council Canada - National Science Library

    Miller, Mike

    1997-01-01

    .... Ionic self-assembled monolayer (ISAM) techniques for the fabrication of multilayer nanoparticle/polymer structures offer low manufacturing costs, advantages of processing at ambient temperature and pressure, ability to produce devices...

  11. Self-assembly and headgroup effect in nanostructured organogels via cationic amphiphile-graphene oxide composites.

    Directory of Open Access Journals (Sweden)

    Tifeng Jiao

    Full Text Available Self-assembly of hierarchical graphene oxide (GO-based nanomaterials with novel functions has received a great deal of attentions. In this study, nanostructured organogels based on cationic amphiphile-GO composites were prepared. The gelation behaviors of amphiphile-GO composites in organic solvents can be regulated by changing the headgroups of amphiphiles. Ammonium substituted headgroup in molecular structures in present self-assembled composites is more favorable for the gelation in comparison to pyridinium headgroup. A possible mechanism for headgroup effects on self-assembly and as-prepared nanostructures is proposed. It is believed that the present amphiphile-GO self-assembled system will provide an alternative platform for the design of new GO nanomaterials and soft matters.

  12. Distinct self-assembly of dithiol monolayers on Au(1 1 1) in water and hexane

    Science.gov (United States)

    Sharif, Aisyah M.; Laffir, Fathima R.; Buckley, D. Noel; Silien, Christophe

    2014-09-01

    The self-assembly of 1,4-benzenedimethanethiol on Au(1 1 1), at low concentration in water and in hexane which are respectively polar and non-polar solvent, has been studied by scanning tunneling microscopy (STM). The data reveal that, on clean Au(1 1 1), a complete and ordered self-assembled monolayer (SAM) of lying-down dithiols can form within a few seconds in water. While in hexane the adsorption is initially impeded by the rapid growth of an ordered hexane film that is gradually replaced by disordered domains of dithiol until completion of a saturated monolayer. Complemented by X-ray photoelectron spectroscopy measurements, the STM images resolve the progression of the self-assembly in both these polar and non-polar solvent, and highlight how the self-assembly depends on the trio solvent, dithiol, and substrate.

  13. Self-assembled peptide-based nanostructures: Smart nanomaterials toward targeted drug delivery.

    Science.gov (United States)

    Habibi, Neda; Kamaly, Nazila; Memic, Adnan; Shafiee, Hadi

    2016-02-01

    Self-assembly of peptides can yield an array of well-defined nanostructures that are highly attractive nanomaterials for many biomedical applications such as drug delivery. Some of the advantages of self-assembled peptide nanostructures over other delivery platforms include their chemical diversity, biocompatibility, high loading capacity for both hydrophobic and hydrophilic drugs, and their ability to target molecular recognition sites. Furthermore, these self-assembled nanostructures could be designed with novel peptide motifs, making them stimuli-responsive and achieving triggered drug delivery at disease sites. The goal of this work is to present a comprehensive review of the most recent studies on self-assembled peptides with a focus on their "smart" activity for formation of targeted and responsive drug-delivery carriers.

  14. Cytoskeletal motor-driven active self-assembly in in vitro systems.

    Science.gov (United States)

    Lam, A T; VanDelinder, V; Kabir, A M R; Hess, H; Bachand, G D; Kakugo, A

    2016-01-28

    Molecular motor-driven self-assembly has been an active area of soft matter research for the past decade. Because molecular motors transform chemical energy into mechanical work, systems which employ molecular motors to drive self-assembly processes are able to overcome kinetic and thermodynamic limits on assembly time, size, complexity, and structure. Here, we review the progress in elucidating and demonstrating the rules and capabilities of motor-driven active self-assembly. We focus on the types of structures created and the degree of control realized over these structures, and discuss the next steps necessary to achieve the full potential of this assembly mode which complements robotic manipulation and passive self-assembly.

  15. Self Assembly of Ionic Liquids at the Air/Water Interface

    Czech Academy of Sciences Publication Activity Database

    Minofar, Babak

    2015-01-01

    Roč. 3, aug (2015), s. 27-40 ISSN 2245-4551 Institutional support: RVO:67179843 Keywords : Ionic liquids * air/ water interface * self assembly * ion- water interaction * ion-ion interaction Subject RIV: CE - Biochemistry

  16. Amphiphilic building blocks for self-assembly: from amphiphiles to supra-amphiphiles.

    Science.gov (United States)

    Wang, Chao; Wang, Zhiqiang; Zhang, Xi

    2012-04-17

    The process of self-assembly spontaneously creates well-defined structures from various chemical building blocks. Self-assembly can include different levels of complexity: it can be as simple as the dimerization of two small building blocks driven by hydrogen bonding or as complicated as a cell membrane, a remarkable supramolecular architecture created by a bilayer of phospholipids embedded with functional proteins. The study of self-assembly in simple systems provides a fundamental understanding of the driving forces and cooperativity behind these processes. Once the rules are understood, these guidelines can facilitate the research of highly complex self-assembly processes. Among the various components for self-assembly, an amphiphilic molecule, which contains both hydrophilic and hydrophobic parts, forms one of the most powerful building blocks. When amphiphiles are dispersed in water, the hydrophilic component of the amphiphile preferentially interacts with the aqueous phase while the hydrophobic portion tends to reside in the air or in the nonpolar solvent. Therefore, the amphiphiles aggregate to form different molecular assemblies based on the repelling and coordinating forces between the hydrophilic and hydrophobic parts of the component molecules and the surrounding medium. In contrast to conventional amphiphiles, supra-amphiphiles are constructed on the basis of noncovalent interactions or dynamic covalent bonds. In supra-amphiphiles, the functional groups can be attached to the amphiphiles by noncovalent synthesis, greatly speeding their construction. The building blocks for supra-amphiphiles can be either small organic molecules or polymers. Advances in the development of supra-amphiphiles will not only enrich the family of conventional amphiphiles that are based on covalent bonds but will also provide a new kind of building block for the preparation of complex self-assemblies. When polymers are used to construct supra-amphiphiles, the resulting

  17. Self assembly of rectangular shapes on concentration programming and probabilistic tile assembly models.

    Science.gov (United States)

    Kundeti, Vamsi; Rajasekaran, Sanguthevar

    2012-06-01

    Efficient tile sets for self assembling rectilinear shapes is of critical importance in algorithmic self assembly. A lower bound on the tile complexity of any deterministic self assembly system for an n × n square is [Formula: see text] (inferred from the Kolmogrov complexity). Deterministic self assembly systems with an optimal tile complexity have been designed for squares and related shapes in the past. However designing [Formula: see text] unique tiles specific to a shape is still an intensive task in the laboratory. On the other hand copies of a tile can be made rapidly using PCR (polymerase chain reaction) experiments. This led to the study of self assembly on tile concentration programming models. We present two major results in this paper on the concentration programming model. First we show how to self assemble rectangles with a fixed aspect ratio ( α:β ), with high probability, using Θ( α + β ) tiles. This result is much stronger than the existing results by Kao et al. (Randomized self-assembly for approximate shapes, LNCS, vol 5125. Springer, Heidelberg, 2008) and Doty (Randomized self-assembly for exact shapes. In: proceedings of the 50th annual IEEE symposium on foundations of computer science (FOCS), IEEE, Atlanta. pp 85-94, 2009)-which can only self assembly squares and rely on tiles which perform binary arithmetic. On the other hand, our result is based on a technique called staircase sampling . This technique eliminates the need for sub-tiles which perform binary arithmetic, reduces the constant in the asymptotic bound, and eliminates the need for approximate frames (Kao et al. Randomized self-assembly for approximate shapes, LNCS, vol 5125. Springer, Heidelberg, 2008). Our second result applies staircase sampling on the equimolar concentration programming model (The tile complexity of linear assemblies. In: proceedings of the 36th international colloquium automata, languages and programming: Part I on ICALP '09, Springer-Verlag, pp 235

  18. Multifunctional self-assembled composite colloids and their application to SERS detection

    Science.gov (United States)

    La Porta, Andrea; Sánchez-Iglesias, Ana; Altantzis, Thomas; Bals, Sara; Grzelczak, Marek; Liz-Marzán, Luis M.

    2015-06-01

    We present a simple method for the co-encapsulation of gold nanostars and iron-oxide nanoparticles into hybrid colloidal composites that are highly responsive to both light and external magnetic fields. Self-assembly was driven by hydrophobic interactions between polystyrene capped gold nanostars and iron oxide nanocrystals stabilized with oleic acid, upon addition of water. A block copolymer was then used to encapsulate the resulting spherical colloidal particle clusters, which thereby became hydrophilic. Electron microscopy analysis unequivocally shows that each composite particle comprises a single Au nanostar surrounded by a few hundreds of iron oxide nanocrystals. We demonstrate that this hybrid colloidal system can be used as an efficient substrate for surface enhanced Raman scattering, using common dyes as model molecular probes. The co-encapsulation of iron oxide nanoparticles renders the system magnetically responsive, so that application of an external magnetic field leads to particle accumulation and limits of detection are in the nM range.We present a simple method for the co-encapsulation of gold nanostars and iron-oxide nanoparticles into hybrid colloidal composites that are highly responsive to both light and external magnetic fields. Self-assembly was driven by hydrophobic interactions between polystyrene capped gold nanostars and iron oxide nanocrystals stabilized with oleic acid, upon addition of water. A block copolymer was then used to encapsulate the resulting spherical colloidal particle clusters, which thereby became hydrophilic. Electron microscopy analysis unequivocally shows that each composite particle comprises a single Au nanostar surrounded by a few hundreds of iron oxide nanocrystals. We demonstrate that this hybrid colloidal system can be used as an efficient substrate for surface enhanced Raman scattering, using common dyes as model molecular probes. The co-encapsulation of iron oxide nanoparticles renders the system magnetically

  19. Effective interactions between nanoparticles: Creating temperature-independent solvation environments for self-assembly

    Science.gov (United States)

    Yadav, Hari O. S.; Shrivastav, Gourav; Agarwal, Manish; Chakravarty, Charusita

    2016-06-01

    correlation of mass dipoles on the two nanoparticles. One expects therefore that during self-assembly using solvent evaporation, temperature can be used as a structure-directing factor as long as good solvent conditions are maintained. It also suggests that disordered configurations may emerge as solvent quality decreases due to increasing role of short-range attractions and ligand fluctuation-driven anisotropy. The possibilities of using structural estimators of various thermodynamic quantities to analyse the interplay of ligand fluctuations and solvent quality in self-assembly as well as to design solvation environments are discussed.

  20. Length distribution of stiff, self-assembled polymers at thermal equilibrium.

    Science.gov (United States)

    Lee, Chiu Fan

    2012-10-17

    We investigate the length distribution of self-assembled, long and stiff polymers at thermal equilibrium. Our analysis is based on calculating the partition functions of stiff polymers of variable lengths in the elastic regime. Our conclusion is that the length distribution of this self-assembled system follows closely the exponential distribution, except at the short length limit. We then discuss the implications of our results on the experimentally observed length distributions in amyloid fibrils.

  1. Hyper-Assembly of Self-Assembled Glycoclusters Mediated by Specific Carbohydrate-Carbohydrate Interactions.

    Science.gov (United States)

    Yan, Gengwei; Yamaguchi, Takumi; Suzuki, Tatsuya; Yanaka, Saeko; Sato, Sota; Fujita, Makoto; Kato, Koichi

    2017-05-04

    Hybridization of a self-assembled, spherical complex with oligosaccharides containing Lewis X, a functional trisaccharide displayed on various cell surfaces, yielded well-defined glycoclusters. The self-assembled glycoclusters exhibited homophilic hyper-assembly in aqueous solution in a Ca 2+ -dependent manner through specific carbohydrate-carbohydrate interactions, offering a structural scaffold for functional biomimetic systems. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A Complete Physical Germanium-on-Silicon Quantum Dot Self-Assembly Process

    OpenAIRE

    Alkhatib, Amro; Nayfeh, Ammar

    2013-01-01

    Achieving quantum dot self-assembly at precise pre-defined locations is of vital interest. In this work, a novel physical method for producing germanium quantum dots on silicon using nanoindentation to pre-define nucleation sites is described. Self-assembly of ordered ~10?nm height germanium quantum dot arrays on silicon substrates is achieved. Due to the inherent simplicity and elegance of the proposed method, the results describe an attractive technique to manufacture semiconductor quantum ...

  3. Template-directed self-assembly of dynamic covalent capsules with polar interiors.

    Science.gov (United States)

    Galán, Albano; Escudero-Adán, Eduardo C; Ballester, Pablo

    2017-11-01

    Chiral polyimine molecular capsules with polar interiors have been prepared through template covalent dynamic self-assembly. An aryl-extended tetraaldehyde calix[4]pyrrole scaffold was condensed with suitable diamines as linkers using templates for efficient self-assembly. The capsular complexes were characterized in solution, gas phase and the solid-state. Unprecedented transfer of asymmetry was observed from a chiral diamine linker to the resulting supramolecular capsular assembly.

  4. A Self-Assembled Electro-Active M8L4 Cage Based on Tetrathiafulvalene Ligands

    Directory of Open Access Journals (Sweden)

    Sébastien Goeb

    2014-01-01

    Full Text Available Two self-assembled redox-active cages are presented. They are obtained by coordination-driven self-assembly of a tetra-pyridile tetrathiafulvalene ligand with cis-M(dppf(OTf2 (M = Pd or Pt; dppf = 1,1′-bis(diphenylphosphinoferrocene; OTf = trifluoromethane-sulfonate complexes. Both species are fully characterized and are constituted of 12 electro-active subunits that can be reversibly oxidized.

  5. Formation of Mesostructured Nanoparticles through Self-Assembly and Aerosol Process

    Energy Technology Data Exchange (ETDEWEB)

    Brinker, C. Jeffrey; Fan, Hongyou; Lu, Yunfeng; Rieker, Thomas; Stump, Arron; Ward, Timothy L.

    1999-05-07

    Silica nanoparticles exhibiting hexagonal, cubic, and vesicular mesostructures have been prepared using aerosol assisted, self-assembled process. This process begins with homogennous aerosol droplets containing silica source, water, ethanol, and surfactant, in which surfactant concentration is far below the critical micelle concentration (cmc). Solvent evaporation enriches silica and surfactant inducing interfacial self-assembly confined to a spherical aerosol droplet and results in formation of completely solid, ordered spherical particles with stable hexagonal, cubic, or vesicular mesostructures.

  6. pH-responsive self-assembly of polysaccharide through a rugged energy landscape

    OpenAIRE

    Morrow, Brian H.; Payne, Gregory F.; Shen, Jana

    2015-01-01

    Self-assembling polysaccharides can form complex networks with structures and properties highly dependent on the sequence of triggering cues. Controlling the emergence of such networks provides an opportunity to create soft matter with unique features; however, it requires a detailed understanding of the subtle balance between the attractive and repulsive forces that drives the stimuli-induced self-assembly. Here we employ all-atom molecular dynamics simulations on the order of 100 ns to stud...

  7. Ultrashort Cationic Naphthalene-Derived Self-Assembled Peptides as Antimicrobial Nanomaterials

    OpenAIRE

    Laverty, Garry; McCloskey, Alice P; Gilmore, Brendan F; Jones, David S; Zhou, Jie; Xu, Bing

    2014-01-01

    Self-assembling dipeptides conjugated to naphthalene show considerable promise as nanomaterial structures, biomaterials, and drug delivery devices. Biomaterial infections are responsible for high rates of patient mortality and morbidity. The presence of biofilm bacteria, which thrive on implant surfaces, are a huge burden on healthcare budgets, as they are highly resistant to current therapeutic strategies. Ultrashort cationic self-assembled peptides represent a highly innovative and cost-eff...

  8. Bilayer self-assembly on a hydrophilic, deterministically nano-patterned surface

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Gregory Scott [ORNL; Jung, Seung-Yong [ORNL; Browning, Jim [ORNL; Keum, Jong Kahk [ORNL; Lavrik, Nickolay V [ORNL; Alemseghed, Mussie G [ORNL; Collier, Pat [ORNL

    2013-01-01

    We present measurements of the in-situ, microscopic architecture of a self-assembled bilayer at the interface between a regularly nano-patterned surface and an aqueous sub-phase using neutron reflectometry. The substrate is patterned with a rectangular array of nano-scaled holes. Because of the high quality of the pattern, using neutron reflectometry, we are able to map the surface-normal density distribution of the patterned silicon, the penetration of water into the pattern, and the distribution of a deposited film inside and outside of the etched holes. In this study, 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) single bilayers were deposited on the hydrophilic patterned surface. For bilayers deposited either by vesicle fusion (VF) or by the Langmuir Schaefer (L-S) technique, the most consistent model found to fit the data shows that the lipids form bilayer coatings on top of the substrate as well as the bottoms of the holes in an essentially conformal fashion. However, while there is a single bilayer on the unetched silicon surface, the lipids coating the bottoms of the holes form a complex bimodal structure consistent with a rough surface produced by the etching process. This study provides insight into film transfer both outside and inside regular nano-patterned features.

  9. Morphologically and size uniform monodisperse particles and their shape-directed self-assembly

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Joshua E.; Bell, Howard Y.; Ye, Xingchen; Murray, Christopher Bruce

    2017-09-12

    Monodisperse particles having: a single pure crystalline phase of a rare earth-containing lattice, a uniform three-dimensional size, and a uniform polyhedral morphology are disclosed. Due to their uniform size and shape, the monodisperse particles self assemble into superlattices. The particles may be luminescent particles such as down-converting phosphor particles and up-converting phosphors. The monodisperse particles of the invention have a rare earth-containing lattice which in one embodiment may be an yttrium-containing lattice or in another may be a lanthanide-containing lattice. The monodisperse particles may have different optical properties based on their composition, their size, and/or their morphology (or shape). Also disclosed is a combination of at least two types of monodisperse particles, where each type is a plurality of monodisperse particles having a single pure crystalline phase of a rare earth-containing lattice, a uniform three-dimensional size, and a uniform polyhedral morphology; and where the types of monodisperse particles differ from one another by composition, by size, or by morphology. In a preferred embodiment, the types of monodisperse particles have the same composition but different morphologies. Methods of making and methods of using the monodisperse particles are disclosed.

  10. Two-Dimensional Fluidization of Nanomaterials via Biomimetic Membranes towards Assisted Self Assembly

    Science.gov (United States)

    Kelly, Kathleen

    Materials that take advantage of the exceptional properties of nano-meter sized aggregates of atoms are poised to play an important role in future technologies. Prime examples for such nano-materials that have an extremely large surface to volume ratio and thus are physically determined by surface related effects are quantum dots (qdots) and carbon nanotubes (CNTs). The production of such manmade nano-objects has by now become routine and even commercialized. However, the controlled assembly of individual nano-sized building blocks into larger structures of higher geometric and functional complexity has proven to be much more challenging. Yet, this is exactly what is required for many applications that have transformative potential for new technologies. If the tedious procedure to sequentially position individual nano-objects is to be forgone, the assembly of such objects into larger structures needs to be implicitly encoded and many ways to bestow such self-assembly abilities onto nano objects are being developed. Yet, as overall size and complexity of such self-assembled structures increases, kinetic and geometric frustration begin to prevent the system to achieve the desired configuration. In nature, this problem is solved by relying on guided or forced variants of the self-assembly approach. To translate such concepts into the realm of man-made nano-technology, ways to dynamically manipulate nano-materials need to be devised. Thus, in the first part of this work, I provide a proof of concept that supported lipid bilayers (SLBs) that exhibit free lateral diffusion of their constituents can be utilized as a two-dimensional platform for active nano-material manipulation. We used streptavidin coated quantum dots (Q-dots) as a model nano-building-block. Q-dots are 0-dimensional nanomaterials engineered to be fluorescent based solely on their diameter making visualization convenient. Biotinylated lipids were used to tether Q-dots to a SLB and we observed that the 2

  11. Hierarchical self-assembly of telechelic star polymers: from soft patchy particles to gels and diamond crystals

    International Nuclear Information System (INIS)

    Capone, Barbara; Coluzza, Ivan; Blaak, Ronald; Likos, Christos N; Verso, Federica Lo

    2013-01-01

    The design of self-assembling materials in the nanometer scale focuses on the fabrication of a class of organic and inorganic subcomponents that can be reliably produced on a large scale and tailored according to their vast applications for, e.g. electronics, therapeutic vectors and diagnostic imaging agent carriers, or photonics. In a recent publication (Capone et al 2012 Phys. Rev. Lett. 109 238301), diblock copolymer stars have been shown to be a novel system, which is able to hierarchically self-assemble first into soft patchy particles and thereafter into more complex structures, such as the diamond and cubic crystal. The self-aggregating single star patchy behavior is preserved from extremely low up to high densities. Its main control parameters are related to the architecture of the building blocks, which are the number of arms (functionality) and the fraction of attractive end-monomers. By employing a variety of computational and theoretical tools, ranging from the microscopic to the mesoscopic, coarse-grained level in a systematic fashion, we investigate the crossover between the formation of microstructure versus macroscopic phase separation, as well as the formation of gels and networks in these systems. We finally show that telechelic star polymers can be used as building blocks for the fabrication of open crystal structures, such as the diamond or the simple-cubic lattice, taking advantage of the strong correlation between single-particle patchiness and lattice coordination at finite densities. (paper)

  12. Hierarchical self-assembly of telechelic star polymers: from soft patchy particles to gels and diamond crystals

    Science.gov (United States)

    Capone, Barbara; Coluzza, Ivan; Blaak, Ronald; Lo Verso, Federica; Likos, Christos N.

    2013-09-01

    The design of self-assembling materials in the nanometer scale focuses on the fabrication of a class of organic and inorganic subcomponents that can be reliably produced on a large scale and tailored according to their vast applications for, e.g. electronics, therapeutic vectors and diagnostic imaging agent carriers, or photonics. In a recent publication (Capone et al 2012 Phys. Rev. Lett. 109 238301), diblock copolymer stars have been shown to be a novel system, which is able to hierarchically self-assemble first into soft patchy particles and thereafter into more complex structures, such as the diamond and cubic crystal. The self-aggregating single star patchy behavior is preserved from extremely low up to high densities. Its main control parameters are related to the architecture of the building blocks, which are the number of arms (functionality) and the fraction of attractive end-monomers. By employing a variety of computational and theoretical tools, ranging from the microscopic to the mesoscopic, coarse-grained level in a systematic fashion, we investigate the crossover between the formation of microstructure versus macroscopic phase separation, as well as the formation of gels and networks in these systems. We finally show that telechelic star polymers can be used as building blocks for the fabrication of open crystal structures, such as the diamond or the simple-cubic lattice, taking advantage of the strong correlation between single-particle patchiness and lattice coordination at finite densities.

  13. Self-assembly of microcapsules via colloidal bond hybridization and anisotropy

    Science.gov (United States)

    Evers, Chris H. J.; Luiken, Jurriaan A.; Bolhuis, Peter G.; Kegel, Willem K.

    2016-06-01

    Particles with directional interactions are promising building blocks for new functional materials and may serve as models for biological structures. Mutually attractive nanoparticles that are deformable owing to flexible surface groups, for example, may spontaneously order themselves into strings, sheets and large vesicles. Furthermore, anisotropic colloids with attractive patches can self-assemble into open lattices and the colloidal equivalents of molecules and micelles. However, model systems that combine mutual attraction, anisotropy and deformability have not yet been realized. Here we synthesize colloidal particles that combine these three characteristics and obtain self-assembled microcapsules. We propose that mutual attraction and deformability induce directional interactions via colloidal bond hybridization. Our particles contain both mutually attractive and repulsive surface groups that are flexible. Analogously to the simplest chemical bond—in which two isotropic orbitals hybridize into the molecular orbital of H2—these flexible groups redistribute on binding. Via colloidal bond hybridization, isotropic spheres self-assemble into planar monolayers, whereas anisotropic snowman-shaped particles self-assemble into hollow monolayer microcapsules. A modest change in the building blocks thus results in much greater complexity of the self-assembled structures. In other words, these relatively simple building blocks self-assemble into markedly more complex structures than do similar particles that are isotropic or non-deformable.

  14. Amphiphiles Self-Assembly: Basic Concepts and Future Perspectives of Supramolecular Approaches

    Directory of Open Access Journals (Sweden)

    Domenico Lombardo

    2015-01-01

    Full Text Available Amphiphiles are synthetic or natural molecules with the ability to self-assemble into a wide variety of structures including micelles, vesicles, nanotubes, nanofibers, and lamellae. Self-assembly processes of amphiphiles have been widely used to mimic biological systems, such as assembly of lipids and proteins, while their integrated actions allow the performance of highly specific cellular functions which has paved a way for bottom-up bionanotechnology. While amphiphiles self-assembly has attracted considerable attention for decades due to their extensive applications in material science, drug and gene delivery, recent developments in nanoscience stimulated the combination of the simple approaches of amphiphile assembly with the advanced concept of supramolecular self-assembly for the development of more complex, hierarchical nanostructures. Introduction of stimulus responsive supramolecular amphiphile assembly-disassembly processes provides particularly novel approaches for impacting bionanotechnology applications. Leading examples of these novel self-assembly processes can be found, in fact, in biosystems where assemblies of different amphiphilic macrocomponents and their integrated actions allow the performance of highly specific biological functions. In this perspective, we summarize in this tutorial review the basic concept and recent research on self-assembly of traditional amphiphilic molecules (such as surfactants, amphiphile-like polymers, or lipids and more recent concepts of supramolecular amphiphiles assembly which have become increasingly important in emerging nanotechnology.

  15. Self-assembled peptide nanomaterials for biomedical applications: promises and pitfalls

    Directory of Open Access Journals (Sweden)

    Sun L

    2016-12-01

    Full Text Available Linlin Sun,1,2 Chunli Zheng,3 Thomas J Webster1,2,4 1Wenzhou Institute of Biomaterials and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China; 2Department of Chemical Engineering, Northeastern University, Boston, MA, USA; 3Pharmaceutical Research Institute, China Pharmaceutical University, Nanjing, People’s Republic of China; 4Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia Abstract: Over the last several decades, a great number of advances have been made in the area of self-assembled supramolecules for regenerative medicine. Such advances have involved the design, preparation, and characterization of brand new self-assembled peptide nanomaterials for a variety of applications. Among all biomolecules considered for self-assembly applications, peptides have attracted a great deal of attention as building blocks for bottom-up fabrication, due to their versatility, ease of manufacturing, low costs, tunable structures, and versatile properties. Herein, some of the more exciting new designs of self-assembled peptides and their associated unique features are reviewed and several promising applications of how self-assembled peptides are advancing drug delivery, tissue engineering, antibacterial therapy, and biosensor device applications are highlighted. Keywords: self-assembly, peptides, biomedical applications, drug delivery, antibacterial therapy, biosensor devices

  16. Micellar Self-Assembly of Recombinant Resilin-/Elastin-Like Block Copolypeptides.

    Science.gov (United States)

    Weitzhandler, Isaac; Dzuricky, Michael; Hoffmann, Ingo; Garcia Quiroz, Felipe; Gradzielski, Michael; Chilkoti, Ashutosh

    2017-08-14

    Reported here is the synthesis of perfectly sequence defined, monodisperse diblock copolypeptides of hydrophilic elastin-like and hydrophobic resilin-like polypeptide blocks and characterization of their self-assembly as a function of structural parameters by light scattering, cryo-TEM, and small-angle neutron scattering. A subset of these diblock copolypeptides exhibit lower critical solution temperature and upper critical solution temperature phase behavior and self-assemble into spherical or cylindrical micelles. Their morphologies are dictated by their chain length, degree of hydrophilicity, and hydrophilic weight fraction of the ELP block. We find that (1) independent of the length of the corona-forming ELP block there is a minimum threshold in the length of the RLP block below which self-assembly does not occur, but that once that threshold is crossed, (2) the RLP block length is a unique molecular parameter to independently tune self-assembly and (3) increasing the hydrophobicity of the corona-forming ELP drives a transition from spherical to cylindrical morphology. Unlike the self-assembly of purely ELP-based block copolymers, the self-assembly of RLP-ELPs can be understood by simple principles of polymer physics relating hydrophilic weight fraction and polymer-polymer and polymer-solvent interactions to micellar morphology, which is important as it provides a route for the de novo design of desired nanoscale morphologies from first principles.

  17. Synthesis and Self-Assembly of Gold Nanoparticles by Chemically Modified Polyol Methods under Experimental Control

    Directory of Open Access Journals (Sweden)

    Nguyen Viet Long

    2013-01-01

    Full Text Available In our present research, bottom-up self-assembly of gold (Au nanoparticles on a flat copper (Cu substrate is performed by a facile method. The very interesting evidence of self-assembly of Au nanoparticles on the top of the thin assembled layer was observed by scanning electron microscopy (SEM. We had discovered one of the most general and simple methods for the self-assembly of metal nanoparticles. The general physical and chemical mechanisms of the evaporation process of the solvents can be used for self-assembly of the as-prepared nanoparticles. The important roles of molecules of the used solvents are very critical to self-assembly of the as-prepared Au nanoparticles in the case without using any polymers for those processes. It is clear that self-assembly of such one nanosystem of the uniform Au nanoparticles is fully examined. Finally, an exciting surface plasmon resonance (SPR phenomenon of the pure Au nanoparticles in the solvent was fully discovered in their exciting changes of the narrow and large SPR bands according to synthesis time. The SPR was considered as the collective oscillation of valence electrons of the surfaces of the pure Au nanoparticles in the solvent by incident ultraviolet-visible light. Then, the frequency of light photons matches the frequency of the oscillation of surface electrons of the Au nanoparticles that are excited.

  18. Double smectic self-assembly in block copolypeptide complexes

    KAUST Repository

    Haataja, Johannes S.

    2012-11-12

    We show double smectic-like self-assemblies in the solid state involving alternating layers of different polypeptide α-helices. We employed rod-coil poly(γ-benzyl l-glutamate)-block-poly(l-lysine) (PBLG-b-PLL) as the polymeric scaffold, where the PLL amino residues were ionically complexed to di-n-butyl phosphate (diC4P), di(2-ethylhexyl) phosphate (diC2/6P), di(2-octyldodecyl) phosphate (diC8/12P), or di-n-dodecyl phosphate (diC12P), forming PBLG-b-PLL(diC4P), PBLG-b-PLL(diC2/6P), PBLG-b-PLL(diC8/12P), and PBLG-b-PLL(diC12P) complexes, respectively. The complexes contain PBLG α-helices of fixed diameter and PLL-surfactant complexes adopting either α-helices of tunable diameters or β-sheets. For PBLG-b-PLL(diC4P), that is, using a surfactant with short n-butyl tails, both blocks were α-helical, of roughly equal diameter and thus with minor packing frustrations, leading to alternating PBLG and PLL(diC4P) smectic layers of approximately perpendicular alignment of both types of α-helices. Surfactants with longer and branched alkyl tails lead to an increased diameter of the PLL-surfactant α-helices. Smectic alternating PBLG and PLL(diC2/6P) layers involve larger packing frustration, which leads to poor overall order and suggests an arrangement of tilted PBLG α-helices. In PBLG-b-PLL(diC8/12P), the PLL(diC8/12P) α-helices are even larger and the overall structure is poor. Using a surfactant with two linear n-dodecyl tails leads to well-ordered β-sheet domains of PLL(diC12P), consisting of alternating PLL and alkyl chain layers. This dominates the whole assembly, and at the block copolypeptide length scale, the PBLG α-helices do not show internal order and have poor organization. Packing frustration becomes an important aspect to design block copolypeptide assemblies, even if frustration could be relieved by conformational imperfections. The results suggest pathways to control hierarchical liquid-crystalline assemblies by competing interactions and by

  19. Self-assembly via anisotropic interactions : Modeling association kinetics of patchy particle systems and self-assembly induced by critical Casimir forces

    NARCIS (Netherlands)

    Newton, A.C.

    2017-01-01

    Self-assembly, the non-dissipative spontaneous formation of structural order spans many length scales, from amphiphilic molecules forming micelles to stars forming galaxies. This thesis mainly deals with systems on the colloidal length scale where the size of a particle is between a nanometer and a

  20. Self-assembled albumin nanoparticles for combination therapy in prostate cancer

    Directory of Open Access Journals (Sweden)

    Lian H

    2017-10-01

    Full Text Available Huibo Lian,1 Jinhui Wu,2 Yiqiao Hu,2 Hongqian Guo1 1Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, 2State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing, Jiangsu, People’s Republic of China Abstract: Resistance to regular treatment strategies is a big challenge in the treatment of castration-resistant prostate cancer. Combination of photothermal and photodynamic therapy (PTT/PDT with chemotherapy offers unique advantages over monotherapy alone. However, free drugs, such as photosensitizers and chemotherapeutic agents, lack tumor-targeted accumulation and can be easily eliminated from the body. Moreover, most of the PTT drugs are hydrophobic and their organic solvents have in vivo toxicity, thereby limiting their potential in clinical translation. Herein, simple multifunctional nanoparticles (NPs using IR780 (a near-infrared dye and docetaxel (DTX-loaded nanoplatform based on human serum albumin (HSA (HSA@IR780@DTX was developed for targeted imaging and for PTT/PDT with chemotherapy for the treatment of castration-resistant prostate cancer treatment. In this platform, HSA is a biocompatible nanocarrier that binds to both DTX and IR780. DTX and IR780, as hydrophobic drug, can induce the self-assembly of HSA proteins. Transmission electron microscopic imaging showed that NPs formed by self-assembly are spherical with a smooth surface with a hydrodynamic diameter of 146.5±10.8 nm. The cytotoxicity of HSA@IR780@DTX NPs with or without laser irradiation in prostate cancer cells (22RV1 was determined via CCK-8 assay. The antitumor effect of HSA@IR780@DTX plus laser irradiation was better than either HSA@IR780@DTX without laser exposure or single PTT heating induced by HSA@IR780 NPs under near-infrared laser, suggesting a significant combined effect in comparison to monotherapy. Near-infrared fluorescence imaging showed that HSA@IR780@DTX NPs could preferentially