WorldWideScience

Sample records for single in-season irrigation

  1. Strategies to evaluate goodness of reference strips for in-season, field scale, irrigated corn nitrogen sufficiency

    Science.gov (United States)

    The nitrogen (N) sufficiency approach to assess plant N status for in-season N management requires a non-N-limiting reference to make N recommendations. Use of reference strips in fields with spatially variable soils and the impact this variability has within N enriched reference strips are not we...

  2. Sprinkler and drip irrigation in the organic tomato for single crops and when intercropped with coriander

    Directory of Open Access Journals (Sweden)

    Waldir Aparecido Marouelli

    Full Text Available The objective of this study was to evaluate the influence of both sprinkler and drip irrigation systems on the organic production of the tomato, cultivar Duradouro, when cultivated both as a single crop and intercropped with coriander. The experiment was carried out in the Distrito Federal, Brazil, using a randomized block design with six replications and a 2 x 2 factorial arrangement for the treatments. There was no significant interaction between the factors of irrigation system and cropping system. The productivity and mass of the tomato fruits were not affected by the treatments, but for the coriander, productivity was higher under the sprinkler system. Drip irrigation hindered the development of late blight (Phytophthora infestans and reduced the percentage of rotten fruit, whereas the incidence of powdery mildew (Leveillula taurica and infestation by the tomato leafminer (Tuta absoluta were higher under the sprinkler system. The volume of soil exploited by the roots of tomato plants was higher with the sprinkler system, while the water productivity index with the drip system was 47% higher than with the sprinkler system. Firmer fruits were produced under drip irrigation. The cultivation system had a significant effect on the occurrence of insect pests, with the tomato intercropped with coriander showing a lower percentage of damaged fruit due to the Tomato Leafminer and to Spodoptera eridania.

  3. Evaluation of apical extrusion of debris and irrigant using two new reciprocating and one continuous rotation single file systems.

    Directory of Open Access Journals (Sweden)

    Gurudutt Nayak

    2014-06-01

    Full Text Available Apical extrusion of debris and irrigants during cleaning and shaping of the root canal is one of the main causes of periapical inflammation and postoperative flare-ups. The purpose of this study was to quantitatively measure the amount of debris and irrigants extruded apically in single rooted canals using two reciprocating and one rotary single file nickel-titanium instrumentation systems.Sixty human mandibular premolars, randomly assigned to three groups (n = 20 were instrumented using two reciprocating (Reciproc and Wave One and one rotary (One Shape single-file nickel-titanium systems. Bidistilled water was used as irrigant with traditional needle irrigation delivery system. Eppendorf tubes were used as test apparatus for collection of debris and irrigant. The volume of extruded irrigant was collected and quantified via 0.1-mL increment measure supplied on the disposable plastic insulin syringe. The liquid inside the tubes was dried and the mean weight of debris was assessed using an electronic microbalance. The data were statistically analysed using Kruskal-Wallis nonparametric test and Mann Whitney U test with Bonferroni adjustment. P-values less than 0.05 were considered significant.The Reciproc file system produced significantly more debris compared with OneShape file system (P0.05. Extrusion of irrigant was statistically insignificant irrespective of the instrument or instrumentation technique used (P >0.05.Although all systems caused apical extrusion of debris and irrigant, continuous rotary instrumentation was associated with less extrusion as compared with the use of reciprocating file systems.

  4. Evaluation of apical extrusion of debris and irrigant using two new reciprocating and one continuous rotation single file systems.

    Science.gov (United States)

    Nayak, Gurudutt; Singh, Inderpreet; Shetty, Shashit; Dahiya, Surya

    2014-05-01

    Apical extrusion of debris and irrigants during cleaning and shaping of the root canal is one of the main causes of periapical inflammation and postoperative flare-ups. The purpose of this study was to quantitatively measure the amount of debris and irrigants extruded apically in single rooted canals using two reciprocating and one rotary single file nickel-titanium instrumentation systems. Sixty human mandibular premolars, randomly assigned to three groups (n = 20) were instrumented using two reciprocating (Reciproc and Wave One) and one rotary (One Shape) single-file nickel-titanium systems. Bidistilled water was used as irrigant with traditional needle irrigation delivery system. Eppendorf tubes were used as test apparatus for collection of debris and irrigant. The volume of extruded irrigant was collected and quantified via 0.1-mL increment measure supplied on the disposable plastic insulin syringe. The liquid inside the tubes was dried and the mean weight of debris was assessed using an electronic microbalance. The data were statistically analysed using Kruskal-Wallis nonparametric test and Mann Whitney U test with Bonferroni adjustment. P-values less than 0.05 were considered significant. The Reciproc file system produced significantly more debris compared with OneShape file system (P0.05). Extrusion of irrigant was statistically insignificant irrespective of the instrument or instrumentation technique used (P >0.05). Although all systems caused apical extrusion of debris and irrigant, continuous rotary instrumentation was associated with less extrusion as compared with the use of reciprocating file systems.

  5. Single and multiple in-season measurements as indicators of at-harvest cotton boll damage caused by verde plant bug (Hemiptera: Miridae).

    Science.gov (United States)

    Brewer, Michael J; Armstrong, J Scott; Parker, Roy D

    2013-06-01

    The ability to monitor verde plant bug, Creontiades signatus Distant (Hemiptera: Miridae), and the progression of cotton, Gossypium hirsutum L., boll responses to feeding and associated cotton boll rot provided opportunity to assess if single in-season measurements had value in evaluating at-harvest damage to bolls and if multiple in-season measurements enhanced their combined use. One in-season verde plant bug density measurement, three in-season plant injury measurements, and two at-harvest damage measurements were taken in 15 cotton fields in South Texas, 2010. Linear regression selected two measurements as potentially useful indicators of at-harvest damage: verde plant bug density (adjusted r2 = 0.68; P = 0.0004) and internal boll injury of the carpel wall (adjusted r2 = 0.72; P = 0.004). Considering use of multiple measurements, a stepwise multiple regression of the four in-season measurements selected a univariate model (verde plant bug density) using a 0.15 selection criterion (adjusted r2 = 0.74; P = 0.0002) and a bivariate model (verde plant bug density-internal boll injury) using a 0.25 selection criterion (adjusted r2 = 0.76; P = 0.0007) as indicators of at-harvest damage. In a validation using cultivar and water regime treatments experiencing low verde plant bug pressure in 2011 and 2012, the bivariate model performed better than models using verde plant bug density or internal boll injury separately. Overall, verde plant bug damaging cotton bolls exemplified the benefits of using multiple in-season measurements in pest monitoring programs, under the challenging situation when at-harvest damage results from a sequence of plant responses initiated by in-season insect feeding.

  6. Economical Evaluation of Single Irrigation Efficient of Rainfed Barley under Different Agronimic Managements at On-farm Areas

    Directory of Open Access Journals (Sweden)

    Ali Reza Tavakoli

    2016-02-01

    Full Text Available Introduction: Two of the main challenges in developing countries are food production and trying to get a high income for good nutrition and reduction of poverty. Cereals and legumes are the most important crops in the rainfed areas of the country occupying the majority of dry land areas. Irrigated production systems had a main role in food production in the past years; but unfortunately, in recent years, with high population and competition of industry and environment with agricultural sectors, getting adequate irrigation water is difficult. The main purpose of this study is to determine the best option of crop agronomic management. Rainfed agriculture is important in the world; because this production system establishes %80 of the agriculture area and prepares %70 of the food in the world. In the Lorestan province, production area for rainfed barley is 120,000 ha and the amount produced is 120000 ton (approximately 1009 kg per ha. The purposes of this study were to evaluate cost, benefit and profit of rainfed barley production, economical and non-economical substitution of treatments in different agronomic management, study of sale return, cost ratio, determining break-even of price and comparing it with the guaranteed price of barley and estimating the value of water irrigation. Materials and Methods: This research was carried out by sample farmers (12 farmers on rainfed barley at the Honam selected site in the Lorestan province during 2005-07. At on-farm areas of the upper Karkheh River Basin (KRB three irrigation levels were analyzed (rainfed, single irrigation at planting time and single irrigation at spring time under two agronomic managements (advanced management (AM and traditional management (TM. Data was analyzed by Partial Budgeting (PB technique, Marginal Benefit-Cost Ratio (MBCR, and economical and non-economical test. For estimation of net benefit the following formula was used: (1 Where: N.B: Net income (Rials/ ha , B(w : Gross

  7. The implementation of biofiltration systems, rainwater tanks and urban irrigation in a single-layer urban canopy model

    Science.gov (United States)

    Demuzere, Matthias; Coutts, Andrew; Goehler, Maren; Broadbent, Ashley; Wouters, Hendrik; van Lipzig, Nicole; Gebert, Luke

    2015-04-01

    Urban vegetation is generally considered as a key tool to modify the urban energy balance through enhanced evapotranspiration (ET). Given that vegetation is most effective when it is healthy, stormwater harvesting and retention strategies (such as water sensitive urban design) could be used to support vegetation and promote ET. This study presents the implementation of a vegetated lined bio-filtration system (BFS) combined with a rainwater tank (RWT) and urban irrigation system in the single-layer urban canopy model Community Land Model-Urban. Runoff from roof and impervious road surface fractions is harvested and used to support an adequate soil moisture level for vegetation in the BFS. In a first stage, modelled soil moisture dynamics are evaluated and found reliable compared to observed soil moisture levels from biofiltration pits in Smith Street, Melbourne (Australia). Secondly, the impact of BFS, RWT and urban irrigation on ET is illustrated for a two-month period in 2012 using varying characteristics for all components. Results indicate that (i) a large amount of stormwater is potentially available for indoor and outdoor water demands, including irrigation of urban vegetation, (ii) ET from the BFS is an order of magnitude larger compared to the contributions from the impervious surfaces, even though the former only covers 10% of the surface fraction and (iii) attention should be paid to the cover fraction and soil texture of the BFS, size of the RWT and the surface fractions contributing to the collection of water in the RWT. Overall, this study reveals that this model development can effectuate future research with state-of-the-art urban climate models to further explore the benefits of vegetated biofiltration systems as a water sensitive urban design tool optimised with an urban irrigation system to maintain healthy vegetation.

  8. Apical extrusion of debris and irrigants using ProTaper hand, M-two rotary and WaveOne single file reciprocating system: An ex vivo study.

    Science.gov (United States)

    Singh, Abhishek; Arunagiri, Doraiswamy; Pushpa, Shankarappa; Sawhny, Asheesh; Misra, Abhinav; Khetan, Kirti

    2015-01-01

    The purpose of this ex vivo study was to evaluate and compare the weight of debris and volume of irrigant extruded apically from teeth using different preparation techniques. Thirty extracted human mandibular premolars with single canals and similar lengths were instrumented using hand ProTaper F2 (25, 0.08; Dentsply Maillefer, Ballaigues, Switzerland), M-two (25, 0.06; VDW, Munich, Germany) and WaveOne Primary (25, 0.08; Dentsply Maillefer, Ballaigues, Switzerland). Debris and irrigant extruded during instrumentation were collected into preweighed Eppendorf tubes. The volume of the irrigant was measured, and then the tubes were stored in an incubator at 70°C for 2 days. The Eppendorf tubes were weighed to obtain the final weight when the extruded debris was included. Three consecutive weights were obtained for each tube. Data were statistically analyzed by one-way analysis of variance and Student's t-test. There were no statistically significant differences among the groups. The WaveOne reciprocating system showed the maximum amount of apical extrusion of debris and irrigant among all the groups. The least amount of debris and irrigant was observed in ProTaper hand instrument (P > 0.05). All instrumentation techniques were associated with debris and irrigant extrusion.

  9. Radiographic Healing after a Root Canal Treatment Performed in Single-rooted Teeth with and without Ultrasonic Activation of the Irrigant : A Randomized Controlled Trial

    NARCIS (Netherlands)

    Liang, Yu-Hong; Jiang, Lei-Meng; Jiang, Lan; Chen, Xiao-Bo; Liu, Ying-Yi; Tian, Fu-Cong; Bao, Xu-Dong; Gao, Xue-Jun; Versluis, Michel; Wu, Min-Kai; van der Sluis, Luc

    2013-01-01

    Introduction: The aim of this study was to compare the outcome of a root canal treatment with and without additional ultrasonic activation of the irrigant. Methods: Single-rooted teeth with radiographic evidence of periapical bone loss were randomly assigned to 2 treatment groups. In both groups

  10. Use of Peristeen® transanal colonic irrigation for bowel management in children: a single-center experience.

    Science.gov (United States)

    Pacilli, Maurizio; Pallot, David; Andrews, Afiya; Downer, Angela; Dale, Louiza; Willetts, Ian

    2014-02-01

    Transanal colonic irrigation has been shown to be effective in bowel management program in adults. However, there exist limited data in children. We appraised the effectiveness of this technique in a series of children with incontinence or constipation and overflow soiling. Following ethical approval, a review of children with incontinence or constipation on a bowel management program with Peristeen® transanal colonic irrigation treated between 2007 and 2012 was performed. Irrigations were performed with a volume of 10-20 ml/kg of water with schedules depending on patient response. Data are reported as median (range). Twenty-three patients were reviewed. Median age at commencement of irrigations was 7 (2-15) years. Median follow-up is 2 (0.7-3.4) years. Diagnoses include the following: spina bifida (n=11), anorectal anomaly (n=6), Hirschsprung's (n=1), and other complex anomalies (n=5). Sixteen (70%) patients had associated anomalies. Twelve (52%) had constipation and overflow soiling, and 11 (48%) had fecal incontinence. Twenty (87%) had associated urinary wetting. Sixteen (70%) children used alternate-day irrigations, 4 (17%) daily irrigations, and 3 (13%) every third-day irrigations. Nine (39%) patients were taking oral laxatives. Sixteen (70%) reported to be clean and 3 (13%) reported a significant improvement, although were having occasional soiling. Four patients (17%) did not tolerate the irrigations and underwent subsequent colostomy formation for intractable soiling. In our experience, Peristeen® transanal colonic irrigation is an effective method of managing patients with focal soiling in childhood. Majority (83%) of children achieve social fecal continence or a significant improvement with occasional soiling. This was accompanied by high parental satisfaction. Peristeen® transanal colonic irrigation is a valid alternative to invasive surgical procedures and should be considered the first line of treatment for bowel management in children with soiling

  11. Development of SCAR markers and PCR assays for single or simultaneous species-specific detection of Phytophthora nicotianae and Pythium helicoides in ebb-and-flow irrigated kalanchoe.

    Science.gov (United States)

    Ahonsi, Monday O; Ling, Yin; Kageyama, Koji

    2010-11-01

    Phytophthora nicotianae and Pythium helicoides are important water-borne oomycete pathogens of irrigated ornamentals particularly ebb-and-flow irrigated kalanchoe in Japan. We developed novel PCR-based sequence characterized amplified region markers and assays for rapid identification and species-specific detection of both pathogens in separate PCR reactions or simultaneously in a duplex PCR.

  12. Irrigation and Autocracy

    DEFF Research Database (Denmark)

    Bentzen, Jeanet Sinding; Kaarsen, Nicolai; Wingender, Asger Moll

    We show that societies with a history of irrigation-based agriculture have been less likely to adopt democracy than societies with a history of rainfed agriculture. Rather than actual irrigation, the empirical analysis is based on how much irrigation potentially can increase yields.Irrigation pot...

  13. Ghana - Agriculture - Irrigation

    Data.gov (United States)

    Millennium Challenge Corporation — The Millennium Development Authority (MiDA) financed the construction of a new irrigation scheme in Kpong and the renovation of two irrigation schemes in Botanga and...

  14. Irrigation as an Historical Climate Forcing

    Science.gov (United States)

    Cook, Benjamin I.; Shukla, Sonali P.; Puma, Michael J.; Nazarenko, Larissa S.

    2014-01-01

    Irrigation is the single largest anthropogenic water use, a modification of the land surface that significantly affects surface energy budgets, the water cycle, and climate. Irrigation, however, is typically not included in standard historical general circulation model (GCM) simulations along with other anthropogenic and natural forcings. To investigate the importance of irrigation as an anthropogenic climate forcing, we conduct two 5-member ensemble GCM experiments. Both are setup identical to the historical forced (anthropogenic plus natural) scenario used in version 5 of the Coupled Model Intercomparison Project, but in one experiment we also add water to the land surface using a dataset of historically estimated irrigation rates. Irrigation has a negligible effect on the global average radiative balance at the top of the atmosphere, but causes significant cooling of global average surface air temperatures over land and dampens regional warming trends. This cooling is regionally focused and is especially strong in Western North America, the Mediterranean, the Middle East, and Asia. Irrigation enhances cloud cover and precipitation in these same regions, except for summer in parts of Monsoon Asia, where irrigation causes a reduction in monsoon season precipitation. Irrigation cools the surface, reducing upward fluxes of longwave radiation (increasing net longwave), and increases cloud cover, enhancing shortwave reflection (reducing net shortwave). The relative magnitude of these two processes causes regional increases (northern India) or decreases (Central Asia, China) in energy availability at the surface and top of the atmosphere. Despite these changes in net radiation, however, climate responses are due primarily to larger magnitude shifts in the Bowen ratio from sensible to latent heating. Irrigation impacts on temperature, precipitation, and other climate variables are regionally significant, even while other anthropogenic forcings (anthropogenic aerosols

  15. Root canal irrigants

    OpenAIRE

    Kandaswamy, Deivanayagam; Venkateshbabu, Nagendrababu

    2010-01-01

    Successful root canal therapy relies on the combination of proper instrumentation, irrigation, and obturation of the root canal. Of these three essential steps of root canal therapy, irrigation of the root canal is the most important determinant in the healing of the periapical tissues. The primary endodontic treatment goal must thus be to optimize root canal disinfection and to prevent reinfection. In this review of the literature, various irrigants and the interactions between irrigants are...

  16. IRRIGATION USING SOLAR PUMP

    OpenAIRE

    Prof. Nitin P.Choudhary*1 & Ms. Komal Singne2

    2017-01-01

    In this report the described design of a PV and soil moisture sensor based automated irrigation system is introduced. This project aims to provide a human friendly, economical and automated water pumping system which eliminates the problems of over irrigation and helps in irrigation water optimization and manage it in accordance with the availability of water. Our project not only tries to modernize the irrigation practices and ensure the optimum yield by carefully fulfilling the requirements...

  17. Irrigation in endodontic treatment.

    Science.gov (United States)

    Basrani, Bettina

    2011-01-01

    The primary endodontic treatment goal is to optimize root canal disinfection and to prevent reinfection. Successful root canal therapy relies on the combination of proper instrumentation, irrigation, and obturation of the root canal system. In this review of the literature, various irrigants and the interactions between irrigants are discussed and new delivery systems are introduced.

  18. A scintigraphic study of colostomy irrigation

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, Shinji; Fujii, Hisao; Nakano, Hiroshige (Nara Medical Univ., Kashihara (Japan))

    1991-09-01

    Colostomy irrigation was investigated by colonoscintigraphy. Twelve rectal cancer and one sigmoid colon cancer patients were examined. The tepid water whose volume was determined by barium enema was mixed with {sup 99m}Tc-DTPA. Dynamic scanning was started on commencement of colostomy irrigation. The sampling time was 3 seconds and scanning was performed for 30 minutes. The mean volume of remnant colon as measured by barium enema was 650 ml. The mean number of mass movements was 4.3. The mean evacuation time was 11 minutes 56 seconds and the mean half emptying time was calculated to be 9.5 minutes. The evacuation time in the patients who underwent colostomy irrigation for more than 2 years was greater than that in the patients who underwent irrigation for less than 2 years. Colonic motility was thought to have weakened. The half emptying time and the number of mass movements in the patients whose irrigation water went into the terminal ileum was more than that in the patients whose irrigation water was within the colon and cecum. Irrigation water which went into the terminal ileum was caused evacuation after the contents of the remnant colon were washed out. In conclusion, patients should have their colostomy irrigated with the tepid water, volume is determined by barium enema. Furthermore single infusion of the water is recommended. (author).

  19. A scintigraphic study of colostomy irrigation

    International Nuclear Information System (INIS)

    Yasuda, Shinji; Fujii, Hisao; Nakano, Hiroshige

    1991-01-01

    Colostomy irrigation was investigated by colonoscintigraphy. Twelve rectal cancer and one sigmoid colon cancer patients were examined. The tepid water whose volume was determined by barium enema was mixed with 99m Tc-DTPA. Dynamic scanning was started on commencement of colostomy irrigation. The sampling time was 3 seconds and scanning was performed for 30 minutes. The mean volume of remnant colon as measured by barium enema was 650 ml. The mean number of mass movements was 4.3. The mean evacuation time was 11 minutes 56 seconds and the mean half emptying time was calculated to be 9.5 minutes. The evacuation time in the patients who underwent colostomy irrigation for more than 2 years was greater than that in the patients who underwent irrigation for less than 2 years. Colonic motility was thought to have weakened. The half emptying time and the number of mass movements in the patients whose irrigation water went into the terminal ileum was more than that in the patients whose irrigation water was within the colon and cecum. Irrigation water which went into the terminal ileum was caused evacuation after the contents of the remnant colon were washed out. In conclusion, patients should have their colostomy irrigated with the tepid water, volume is determined by barium enema. Furthermore single infusion of the water is recommended. (author)

  20. Optimization of modern irrigation for biosaline agriculture

    International Nuclear Information System (INIS)

    Shahid, S.A.; Hasbini, B.

    2007-01-01

    Supplementation water is a must to offset the water requirement to produce profitable crops in most arid and semiarid zones, where fresh water resources are insufficient to meet the pressure of irrigated agriculture. This necessitates the use of poor quality water resources. These waters if not properly managed and used can cause serious soil related problems (salinity, sodicity, destruction of soil structure) in addition to decline in crop yields. Biosaline agriculture (using saline water on saline soils to grow salt-tolerant crops) becomes the only option for the farmer when both soil and water resources are saline and the water resource is scarce. In this regards key design considerations must be taken into account when irrigating with salty waters to optimize water uses and to reduce subsequent soil salinity development. Sprinkler irrigation systems are commonly used in irrigation of large-scale irrigational production systems. However they tend to concentrate salts on the leaves of plants. For this reason discharge and degree of overlap between consecutive sprinkler heads, are key design parameters when applying salty waters. Trickle irrigation is the most efficient system and is gaining importance in the GCC countries in the agriculture and landscape irrigation. The objective of this study was to optimize modern irrigation systems through development of design standards for drip (emitters spacing) and sprinkler irrigation systems (single head jet and overlapping) by applying saline water. The effect of emitter spacing (drip) and overlapping (sprinkler) were tested for the formation of salt contours in soil. The leaching ratio (LR) is the overall soil sanity within rhizosphere divided by the average irrigation water salinity. In this study LR is used to evaluate the effectiveness of irrigation systems in developing soil sanity. From the present investigations it is concluded that when using saline water for irrigation, the soil sanity development can be

  1. Armenia - Irrigation Infrastructure

    Data.gov (United States)

    Millennium Challenge Corporation — This study evaluates irrigation infrastructure rehabilitation in Armenia. The study separately examines the impacts of tertiary canals and other large infrastructure...

  2. The Regularity of Optimal Irrigation Patterns

    Science.gov (United States)

    Morel, Jean-Michel; Santambrogio, Filippo

    2010-02-01

    A branched structure is observable in draining and irrigation systems, in electric power supply systems, and in natural objects like blood vessels, the river basins or the trees. Recent approaches of these networks derive their branched structure from an energy functional whose essential feature is to favor wide routes. Given a flow s in a river, a road, a tube or a wire, the transportation cost per unit length is supposed in these models to be proportional to s α with 0 measure is the Lebesgue density on a smooth open set and the irrigating measure is a single source. In that case we prove that all branches of optimal irrigation trees satisfy an elliptic equation and that their curvature is a bounded measure. In consequence all branching points in the network have a tangent cone made of a finite number of segments, and all other points have a tangent. An explicit counterexample disproves these regularity properties for non-Lebesgue irrigated measures.

  3. Irrigation and Autocracy

    DEFF Research Database (Denmark)

    Bentzen, Jeanet Sinding; Kaarsen, Nicolai; Wingender, Asger Moll

    2017-01-01

    . We argue that the effect has historical origins: irrigation allowed landed elites in arid areas to monopolize water and arable land. This made elites more powerful and better able to oppose democratization. Consistent with this conjecture, we show that irrigation dependence predicts land inequality...

  4. Effective colostomy irrigation.

    Science.gov (United States)

    Mazier, W P; Dignan, R D; Capehart, R J; Smith, B G

    1976-06-01

    The ultimate goal of the cone method of colostomy irrigation is to return patients with colostomies to their former role in society with confidence in themselves to the extent that having a colostomy is not considered a handicap. The results have generally been excellent. We believe all patients with stomas should be afforded the opportunity to attempt colostomy irrigation.

  5. Water quality and irrigation [Chapter 10

    Science.gov (United States)

    Thomas D. Landis; Kim M. Wilkinson

    2009-01-01

    Water is the single most important biological factor affecting plant growth and health. Water is essential for almost every plant process: photosynthesis, nutrient transport, and cell expansion and development. In fact, 80 to 90 percent of a seedling's weight is made up of water. Therefore, irrigation management is the most critical aspect of nursery operations....

  6. Uso de motores monofásicos acoplados mecanicamente em série, em irrigação por pivô central Utilization of mechanically coupled single phase motors in series in central pivot irrigation system

    Directory of Open Access Journals (Sweden)

    Delly Oliveira Filho

    2005-03-01

    Full Text Available A utilização de sistemas de irrigação por pivô central requer elevada potência elétrica, o que, em geral, implica em alto investimento inicial. No Brasil, a maioria das fazendas é eletrificada no sistema monofásico, devido ao fato de sua implantação requerer cerca de 40% do investimento inicial exigido pelo sistema trifásico. Salienta-se que a maior potência disponível no mercado de motores monofásicos no Brasil é de 9,2 kW (12,5 cv. Para suprir demanda de potência acima desta com sistema monofásico, propõe-se acoplar os motores monofásicos mecanicamente em série. Este trabalho teve como objetivo estimar o rendimento de um sistema de acoplamento e sua viabilidade técnico-econômica, comparado-o com outras formas de fornecimento de energia, diesel e sistema elétrico trifásico.The utilization of central pivot irrigation system requires in most cases high electric power which imply in high initial investment. Most of the Brazilian farms are electrified in the single phase electrical system, due to the fact that their implementation requires only about 40% of the initial investment as compared to three phase system. In Brazilian market the highest available power of single phase motors is 9.2 kW (12.5 hp. To supply power demand above this limit with single phase system one could couple mechanically the single phase motors in series. The objective of this work was to estimate the efficiency of such coupling system and to evaluate the economic and technical feasibility compared with other forms of energy supply such as diesel and three phase electrical system.

  7. Drip irrigation using a PLC based adaptive irrigation system

    OpenAIRE

    Shahidian, S.; Serralheiro, R. P.; Teixeira, J. L.; Santos, F. L.; Oliveira, M. R. G.; Costa, J. L.; Toureiro, C.; Haie, Naim; Machado, R. M.

    2009-01-01

    Most of the water used by man goes to irrigation. A major part of this water is used to irrigate small plots where it is not feasible to implement full-scale Evapotranspiration based irrigation controllers. During the growth season crop water needs do not remain constant and varies depending on the canopy, growth stage and climate conditions such as temperature, wind, relative humidity and solar radiation. Thus, it is necessary to find an economic irrigation controller that can adapt the dail...

  8. An assessment of colostomy irrigation.

    Science.gov (United States)

    Laucks, S S; Mazier, W P; Milsom, J W; Buffin, S E; Anderson, J M; Warwick, M K; Surrell, J A

    1988-04-01

    One hundred patients with permanent sigmoid colostomies were surveyed to determine their satisfaction and success with the "irrigation" technique of colostomy management. Most patients who irrigate their colostomies achieve continence. Odors and skin irritation are minimized. The irrigation method is economical, time efficient, and allows a reasonably liberal diet. It avoids bulky appliances and is safe. In appropriately selected patients, the irrigation technique is the method of choice for management of an end-sigmoid colostomy.

  9. Evaluating two irrigation controllers under subsurface drip irrigated tomato crop

    International Nuclear Information System (INIS)

    Al-Ghobari, H.M.; Mohammad, F.S.; El Marazky, M.S.A.

    2016-01-01

    Smart systems could be used to improve irrigation scheduling and save water under Saudi Arabia’s present water crisis scenario. This study investigated two types of evapotranspiration-based smart irrigation controllers, SmartLine and Hunter Pro-C2, as promising tools for scheduling irrigation and quantifying plants’ water requirements to achieve water savings. The effectiveness of these technologies in reducing the amount of irrigation water was compared with the conventional irrigation scheduling method as a control treatment. The two smart irrigation sensors were used for subsurface irrigation of a tomato crop (cv. Nema) in an arid region. The results showed that the smart controllers significantly reduced the amount of applied water and increased the crop yield. In general, the Hunter Pro-C2 system saved the highest amount of water and produced the highest crop yield, resulting in the highest water irrigation efficiency compared with the SmartLine controller and the traditional irrigation schedule. It can be concluded that the application of advanced scheduling irrigation techniques such as the Hunter controller under arid conditions can realise economic benefits by saving large amounts of irrigation water.

  10. Evaluating two irrigation controllers under subsurface drip irrigated tomato crop

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ghobari, H.M.; Mohammad, F.S.; El Marazky, M.S.A.

    2016-07-01

    Smart systems could be used to improve irrigation scheduling and save water under Saudi Arabia’s present water crisis scenario. This study investigated two types of evapotranspiration-based smart irrigation controllers, SmartLine and Hunter Pro-C2, as promising tools for scheduling irrigation and quantifying plants’ water requirements to achieve water savings. The effectiveness of these technologies in reducing the amount of irrigation water was compared with the conventional irrigation scheduling method as a control treatment. The two smart irrigation sensors were used for subsurface irrigation of a tomato crop (cv. Nema) in an arid region. The results showed that the smart controllers significantly reduced the amount of applied water and increased the crop yield. In general, the Hunter Pro-C2 system saved the highest amount of water and produced the highest crop yield, resulting in the highest water irrigation efficiency compared with the SmartLine controller and the traditional irrigation schedule. It can be concluded that the application of advanced scheduling irrigation techniques such as the Hunter controller under arid conditions can realise economic benefits by saving large amounts of irrigation water.

  11. Insight in seasonal affective disorder.

    Science.gov (United States)

    Ghaemi, S N; Sachs, G S; Baldassano, C F; Truman, C J

    1997-01-01

    Lack of insight complicates the evaluation and treatment of patients with psychotic and affective disorders. No studies of insight in seasonal affective disorder (SAD) have been reported. Thirty patients with SAD diagnosed by the Structured Clinical Interview for DSM-III-R but no other axis I conditions were treated short-term with light-therapy. Insight was measured with the Scale to Assess Unawareness of Mental Disorder (SUMD) as modified by the authors to assess the self-report of insight into depressive symptoms. Increasing scores (1 to 5) indicated increasing unawareness of illness (i.e., less insight). SAD patients displayed a moderate amount of insight when depressed (mean SUMD score, 2.5). When recovered, they showed no significant change in insight into past depressive symptoms (mean SUMD score, 2.8). Greater insight into current depressive symptoms correlated with more depressive symptoms on the Hamilton Rating Scale for Depression score ([HRSD] r = .35, P depressive symptoms that does not change after recovery, a result in agreement with studies of insight in psychosis and mania. Further, in SAD, increased severity of illness may be associated with increased insight into depressive symptoms, consistent with the hypothesis of depressive realism.

  12. Spectral entropy as a mean to quantify water stress history for natural vegetation and irrigated agriculture in a water-stressed tropical environment

    Science.gov (United States)

    Kim, Y.; Johnson, M. S.

    2017-12-01

    Spectral entropy (Hs) is an index which can be used to measure the structural complexity of time series data. When a time series is made up of one periodic function, the Hs value becomes smaller, while Hs becomes larger when a time series is composed of several periodic functions. We hypothesized that this characteristic of the Hs could be used to quantify the water stress history of vegetation. For the ideal condition for which sufficient water is supplied to an agricultural crop or natural vegetation, there should be a single distinct phenological cycle represented in a vegetation index time series (e.g., NDVI and EVI). However, time series data for a vegetation area that repeatedly experiences water stress may include several fluctuations that can be observed in addition to the predominant phenological cycle. This is because the process of experiencing water stress and recovering from it generates small fluctuations in phenological characteristics. Consequently, the value of Hs increases when vegetation experiences several water shortages. Therefore, the Hs could be used as an indicator for water stress history. To test this hypothesis, we analyzed Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data for a natural area in comparison to a nearby sugarcane area in seasonally-dry western Costa Rica. In this presentation we will illustrate the use of spectral entropy to evaluate the vegetative responses of natural vegetation (dry tropical forest) and sugarcane under three different irrigation techniques (center pivot irrigation, drip irrigation and flood irrigation). Through this comparative analysis, the utility of Hs as an indicator will be tested. Furthermore, crop response to the different irrigation methods will be discussed in terms of Hs, NDVI and yield.

  13. Optimized Subsurface Irrigation System: The Future of Sugarcane Irrigation

    Directory of Open Access Journals (Sweden)

    M. H. J. P. Gunarathna

    2018-03-01

    Full Text Available Climate change may harm the growth and yield of sugarcane (Saccharum officinarum L. without the introduction of appropriate irrigation facilities. Therefore, new irrigation methods should be developed to maximize water use efficiency and reduce operational costs. OPSIS (optimized subsurface irrigation system is a new solar-powered automatic subsurface irrigation system that creates a phreatic zone below crop roots and relies on capillarity to supply water to the root zone. It is designed for upland crops such as sugarcane. We investigated the performance of OPSIS for irrigating sugarcane and evaluated its performance against sprinkler irrigation under subtropical conditions. We conducted field experiments in Okinawa, Japan, over the period from 2013 to 2016 and took measurements during spring- and summer-planted main crops and two ratoon crops of the spring-planted crop. Compared with sprinkler irrigation, OPSIS produced a significantly higher fresh cane yield, consumed less irrigation water and provided a higher irrigation water use efficiency. We conclude that OPSIS could be adopted as a sustainable solution to sugarcane irrigation in Okinawa and similar environments.

  14. Portable photovoltaic irrigation pumps

    Energy Technology Data Exchange (ETDEWEB)

    Furber, J. D.

    1980-07-01

    Experiences in developing a solar-powered irrigation pump to meet the needs of poor farmers in developing nations are summarized. The design which evolved is small and portable, employing a high-efficiency electric pump, powered by photovoltaic panels. Particular emphasis is placed on how the system works, and on early field problems experienced with the first prototypes. The resolution of these problems and the performance of actual systems in various countries is presented and user responses are noted.

  15. [Irrigation in colostomies].

    Science.gov (United States)

    Campo, Juana; Lecona, Ana; Caparrós, M Rosario; Barbero, M Antonia; Javier Cerdán, F

    2002-01-01

    The degree of acceptation of irrigation from a colostomy varies ostensibly from some cases to others, therefore, we study what occurs in our medium, separating those patients which have previously undergone other procedures (Group A) from those patients who have been informed and trained about the immediate postoperative period (Group B). 48 patients, 22 or 46% of these patients were considered not apt for irrigation. Of the 26 to whom this procedure was proposed, 14 or 54% accepted. Of these, 5 or 36% abandoned its use while 9 continued its use; this is 64% of those who accepted this procedure, 35% of those to whom it was proposed and 19% of the total study group. 189 patients. This procedure was not recommended to 95 patients, 50%. Of the 94 patients to whom this procedure was proposed, 65 or 69% accepted. Of these, 22 or 34% abandoned its use while 43 continued its use; this is 66% of those; who accepted this procedure, 46% of those to whom it was proposed and 23% of the total study group. In our medium, the practice of irrigation oscillates between 19 and 23% of patients who have undergone a colostomy, without any significant difference referring to the moment when a patient started this procedure. A first report on this study was submitted in the III National Congress for Nursing in Colostomies.

  16. ROOT CANAL IRRIGANTS AND IRRIGATION TECHNIQUES: A REVIEW

    OpenAIRE

    Aniketh; Mohamed; Geeta; Nandakishore; Gourav Kumar; Patrick Timothy; Jayson Mathew; Sahle Abdul

    2015-01-01

    Root canal irrigation is not much emphasised in endodontic therapy. Most articles discussed are on root canal shaping and obturation not much emphasis is given for irrigation. There are many irrigation solutions which are introduced into market. The primary objective of root canal therapy is the ret ention of the pulpless or pulpally involved tooth with its associated periapical tissues in a healthy state. Achievement of this objective requires that the pulpal spaces and con...

  17. EFFICACY OF DIFFERENT ENDODONTIC IRRIGATION PROTOCOLS IN CALCIUM HYDROXIDE REMOVAL

    Directory of Open Access Journals (Sweden)

    Elka N. Radeva

    2016-10-01

    Full Text Available Introduction: Calcium hydroxide is widely used in the field of endodontics as a temporary root canal filling. This medicament significantly increases pH and optimizes the treatment outcome. Its total removal before final obturation is very important. Otherwise it could affect the hermetic filling and respectively the endodontic success. Aim: To evaluate the most effective irrigation protocol of calcium hydroxide removal from root canals. Materials and methods: In this study 36 single root canal teeth were observed. They were randomly divided into three groups (n=10 each group according to the technique applied for calcium hydroxide removal - manual irrigation, irrigation and Revo-S rotary instrumentation; and passive ultrasonic irrigation, and a control group (n=6 – irrigation with distilled water only. After calcium hydroxide removals following the procedures above, teeth were separated longitudinally in a buccal-lingual direction and remnants of medicaments were observed in the apical, middle and coronal part of each tooth. Then all of the specimens were observed using scanning electron microscopy and evaluated by a specified scale. The results have undergone statistical analysis. Results: In the case of calcium hydroxide in the apex and in the middle with highest average is Revo-S, followed by Ultrasonic and irrigation. In the coronal part the highest average belongs to Revo-S, irrigation and Ultrasonic. In all groups the highest average is represented by control group. Conclusion: There is not a universal technique for removal of intracanal medicaments and applying more than one protocol is required.

  18. Making the user visible: analysing irrigation practices and farmers’ logic to explain actual drip irrigation performance

    NARCIS (Netherlands)

    Benouniche, M.; Kuper, M.; Hammani, A.; Boesveld, H.

    2014-01-01

    The actual performance of drip irrigation (irrigation efficiency, distribution uniformity) in the field is often quite different from that obtained in experimental stations. We developed an approach to explain the actual irrigation performance of drip irrigation systems by linking measured

  19. Irrigation water management: Basic principles and applications

    OpenAIRE

    Ella, Victor B.

    2007-01-01

    This presentation defines the term, irrigation, as well as explains the common methods of irrigation in attempt to define the fundamental principles needed to wisely design an irrigation system. It outlines a typical drip irrigation set-up, and discusses management of an irrigation system, including water volume application suggestions. LTRA-5 (Agroforestry and Sustainable Vegetable Production)

  20. Agriculture Irrigation and Water Use

    OpenAIRE

    Bajwa, Rajinder S.; Crosswhite, William M.; Hostetler, John E.; Wright, Olivia W.; United States Department of Agriculture, Economic Research Service

    1992-01-01

    The 17 Western States, plus Arkansas, Florida, and Louisiana, account for 91 percent of all U.S. irrigated acreage, with the Western States alone contributing over 85 percent. This report integrates data on the distribution, characteristics, uses, and management of water resources from a wide variety of data sources. The report includes charts and tables on water use in irrigation; farm data comparing selected characteristics of irrigated and nonirrigated farms; and data on water applicatio...

  1. Irrigation management of sigmoid colostomy.

    Science.gov (United States)

    Jao, S W; Beart, R W; Wendorf, L J; Ilstrup, D M

    1985-08-01

    Questionnaires were sent to 270 patients who had undergone abdominoperineal resection and sigmoid colostomy at the Mayo Clinic, Rochester, Minn, during the ten years from 1972 to 1982; 223 patients returned their questionnaires with evaluable data. Sixty percent of the patients were continent with irrigation, and 22% were incontinent with irrigation. Eighteen percent had discontinued irrigation for various reasons. The proportion continent was higher in women, younger patients, and previously constipated patients. A poorly constructed colostomy may cause acute angle, parastoma hernia, stomal prolapse, or stenosis and thus be the cause of failure of irrigation.

  2. Production of mungbean under reclaimed sandy soil and irrigation levels using N-15 labeled

    International Nuclear Information System (INIS)

    Abdallah, A.A.G.; Thabet, E.M.A.

    2000-01-01

    Field experiment were performed at the Atomic Energy Authority, Experimental farm, Inshas, Egypt. During 1998 growing season. In tafla and sand mixture soil (1:7 Wt./Wt.). The treatments were laid out using a single line source sprinkler irrigation system which allows a gradual variation of irrigation from excess to little irrigation in which the calculated amount of irrigation water levels were 2241, 1562 and 1093 m 3 / feddan (W 1 , W 2 and W 3 ). The obtained results indicated that, there was a clear relationship between adequate amount of irrigation water and both total seed yield and total green pods/plot as well as there were significant increase in both characters due to irrigation W 1 and W 2 compared with W 3 . The results also indicated that W 2 irrigation level could be used in irrigation under the same conditions. Water use efficiency was significantly increased with middle irrigation level than with other two irrigation treatments. The result concerned fertilizer use efficiency using N 15 labeled fertilizers and total seed protein content were increased with decreasing irrigation level

  3. Irrigation scheduling of spring wheat using infrared thermometry

    International Nuclear Information System (INIS)

    Stegman, E.C.; Soderlund, M.G.

    1989-01-01

    Irrigation scheduling for spring wheat requires information on different irrigation timing methods. Irrigation timing based on allowable root zone available water depletion and selected crop water stress index (CWSI) thresholds were evaluated in terms of their effect on spring wheat yield. A field study was conducted at Oakes, North Dakota in 1987 and 1988 on a Maddock sandy loam soil with two varieties of spring wheat (Marshall and Wheaton) using a split plot randomized block design. Irrigation was metered to each plot using trickle irrigation tubing. Neutron soil water measurements along with a water balance model were used to time irrigations that were based on different allowed root zone depletions. Infrared thermometer sensors (IRT) were used to measure in situ canopy temperatures and along with measured climatic information were used to time irrigations using the CWSI approach. Additionally, crop phenological stages and final grain yield were measured. The non-water-stressed baselines necessary for the CWSI differed between the two seasons but were similar to those from previous studies. The CWSI methods were feasible from the Feekes scale S4 (beginning pseudo-stem) to S11.2 (mealy ripe). Minimal yield reductions were observed using the CWSI method for thresholds less than 0.4-0.5 during this period. Minimal yield reductions were observed by maintaining the root zone allowable depletion below 50%. The grain yield-evapotranspiration (ET) relationship was linear in both years but with different slopes and intercepts. When analyzed on a relative basis to maximum ET (ETm), a single relationship fit both years’ data with a yield sensitivity factor of 1.58. Irrigations timed at CWSI = 0.5 reduced seasonal water application by 18% relative to treatments irrigated at CWSI = 0.2. (author)

  4. Assessment of Irrigation Water Quality and Suitability for Irrigation in ...

    African Journals Online (AJOL)

    A number of factors like geology, soil, effluents, sewage disposal and other environmental conditions in which the water stays or moves and interacts are among the factors that affect the quality of irrigation water. This study was conducted to determine the quality and suitability of different water sources for irrigation purpose ...

  5. Effect of irrigation on heavy metals content of wastewater irrigated ...

    African Journals Online (AJOL)

    There is an urgent need to educate farmers on the dangers of the presence of heavy metals in soils as well as the quality of irrigation water especially if it comes from tanning industries for increased crop production. Accordingly, soil and irrigation wastewater study was conducted to assess the concentrations of heavy ...

  6. How Patients Experience Antral Irrigation

    Directory of Open Access Journals (Sweden)

    Karin Blomgren

    2015-01-01

    Full Text Available Background Antral irrigation earlier had an important role in the diagnosis and treatment of rhinosinusitis. Nowadays, it is often considered too unpleasant. However, the experience of patients of this procedure has been very seldom evaluated. Nor has the effect on pain in rhinosinusitis been evaluated. The aim of this study was to evaluate patients’ experience of discomfort and pain during antral irrigation. We also assessed facial pain caused by rhinosinusitis before the procedure and pain soon after the procedure. Methods Doctors and 121 patients completed their questionnaires independently after antral irrigation in a university clinic, in a private hospital, and at a communal health center. Results Patients experienced mild pain during antral irrigation (mean and median visual analog scale score: <3. Their experience of pain during antral irrigation was closely comparable to pain during dental calculus scaling. Facial pain assessed before antral irrigation decreased quickly after the procedure. Conclusions Antral irrigation was well tolerated as an outpatient procedure. The procedure seems to relieve facial pain caused by the disease quickly. The role of antral irrigation in the treatment of acute rhinosinusitis will need further investigation.

  7. Irrigation management in organic greenhouse

    NARCIS (Netherlands)

    Voogt, W.; Balendonck, J.; Berkelmans, R.; Enthoven, N.

    2017-01-01

    Irrigation in protected cultivation is essential due to the absence of natural precipitation. High evapotranspiration, due to higher temperature and prolonged cropping period, requires ample an adequate supply of water. The water supply in a greenhouse is solely carried out by irrigation and thus

  8. Scintigraphic assessment of colostomy irrigation.

    Science.gov (United States)

    Christensen, P.; Olsen, N.; Krogh, K.; Laurberg, S.

    2002-09-01

    OBJECTIVE: This study aims to evaluate colonic transport following colostomy irrigation with a new scintigraphic technique. MATERIALS AND METHODS: To label the bowel contents 19 patients (11 uncomplicated colostomy irrigation, 8 complicated colostomy irrigation) took 111In-labelled polystyrene pellets one and two days before investigation. 99mTc-DTPA was mixed with the irrigation fluid to assess its extent within the bowel. Scintigraphy was performed before and after a standardized washout procedure. The colon was divided into three segments 1: the caecum andascending colon; 2: the transverse colon; 3: the descending and sigmoid colon. Assuming ordered evacuation of the colon, the contribution of each colonic segment to the total evacuation was expressed as a percentage of the original segmental counts. These were added to reach a total defaecation score (range: 0-300). RESULTS: In uncomplicated colostomy irrigation, the median defaecation score was 235 (range: 145-289) corresponding to complete evacuation of the descending and transverse colon and 35% evacuation of the caecum/ascending colon. In complicated colostomy irrigation it was possible to distinguish specific emptying patterns. The retained irrigation fluid reached the caecum in all but one patient. CONCLUSION: Scintigraphy can be used to evaluate colonic emptying following colostomy irrigation.

  9. Are There Infinite Irrigation Trees?

    Science.gov (United States)

    Bernot, M.; Caselles, V.; Morel, J. M.

    2006-08-01

    In many natural or artificial flow systems, a fluid flow network succeeds in irrigating every point of a volume from a source. Examples are the blood vessels, the bronchial tree and many irrigation and draining systems. Such systems have raised recently a lot of interest and some attempts have been made to formalize their description, as a finite tree of tubes, and their scaling laws [25], [26]. In contrast, several mathematical models [5], [22], [10], propose an idealization of these irrigation trees, where a countable set of tubes irrigates any point of a volume with positive Lebesgue measure. There is no geometric obstruction to this infinitesimal model and general existence and structure theorems have been proved. As we show, there may instead be an energetic obstruction. Under Poiseuille law R(s) = s -2 for the resistance of tubes with section s, the dissipated power of a volume irrigating tree cannot be finite. In other terms, infinite irrigation trees seem to be impossible from the fluid mechanics viewpoint. This also implies that the usual principle analysis performed for the biological models needs not to impose a minimal size for the tubes of an irrigating tree; the existence of the minimal size can be proven from the only two obvious conditions for such irrigation trees, namely the Kirchhoff and Poiseuille laws.

  10. Irrigating The Environment

    Science.gov (United States)

    Adamson, D.

    2017-12-01

    Water insecurity and water inequality are international issues that reduce economic growth. Countries are adopting alternative approaches to rebalance the share of water between all users to mitigate economic loss for this and future generations. However, recent reforms have struggled to provide the necessary arguments to obtain political protection of the process. In the absence of proof, rent-seeking arguments have challenged the benefit of restoring environmental flows by arguing that policy design fails to maximise the environmental benefits. This is a problem in Australia's Murray-Darling Basin (MDB), where despite establishing 3,200GL of environmental water, the policy is still under threat. Applied water economic policy advice fails, when it does not deal with uncertainty. The state-contingent analysis approach can map how individual decision makers can adapt to alternative states of water supply (i.e. drought, normal and wet) by reallocating inputs to obtain state-described outputs. By modelling changes to the states, or the frequency of the states occurring, climate change can modelled, and decision management responses explored. By treating the environment as another set of production systems, lessons learnt from managing perennial and annual agricultural production systems during the Millennium Drought in the MDB can be applied to explore the limits of irrigating the environment. The demand for water by a production system is a combination of state-general (must be irrigated every year e.g. perennial crop or permanent wetland) and state specific inputs (irrigate in response to the realise state). In simple terms, the greater the component of state-general water requirements a production system has, the less resilience it has when water supply is highly variable and if water is not available then production systems are irreversibly lost. While production systems that only need state-allocable water can adapt to alternative levels of scarcity without

  11. Produção de tomateiro orgânico irrigado por aspersão e gotejamento, em cultivo solteiro e consorciado com coentro Production of organic tomatoes irrigated by sprinkler and drip systems, as single crop and intercropped with coriander

    Directory of Open Access Journals (Sweden)

    Waldir A Marouelli

    2011-09-01

    Full Text Available O uso eficiente da água e a diversificação ambiental são fundamentais para o equilíbrio e a sustentabilidade dos sistemas orgânicos de produção de tomate. O presente estudo teve por objetivo avaliar a produção de tomate de mesa em cultivo solteiro e consorciado com coentro com irrigação por aspersão e gotejamento, em sistema orgânico. O experimento foi conduzido em área de produção orgânica no Distrito Federal. O delineamento foi blocos ao acaso, com tratamentos dispostos num arranjo fatorial 2 x 2 (dois sistemas de irrigação x dois sistemas de cultivo. Não houve interação significativa entre os fatores avaliados, assim como não houve efeito do sistema de cultivo sobre as variáveis avaliadas. Embora o ciclo do tomateiro irrigado por gotejamento tenha diminuído, a produtividade de frutos não foi afetada pelos sistemas de irrigação. A maior redução de estande verificada na aspersão foi compensada por um aumento no número de frutos por planta, sem variação na massa por fruto. O menor volume de solo explorado pelas raízes do tomateiro associado à maior incidência de traça-do-tomateiro (Tuta absoluta e principalmente de oídio (Leveillula taurica pode ter limitado a produtividade do tomateiro irrigado por gotejamento. A taxa de frutos podres na aspersão foi o dobro da verificada no sistema por gotejamento.The efficient use of water and the environmental diversity are crucial to the balance and sustainability of the organic production system of tomatoes. The present study aimed to evaluate the organic production of tomato cultivated as a single crop and in consortium with coriander, under sprinkler and drip irrigation. The experiment was carried out at an organic production area on the Federal District of Brazil. The experimental design was randomized blocks with treatments arranged in a 2 x 2 factorial (two irrigation systems x two cropping schemes. No significant interaction between the both factors occurred

  12. Sensing technologies for precision irrigation

    CERN Document Server

    Ćulibrk, Dubravko; Minic, Vladan; Alonso Fernandez, Marta; Alvarez Osuna, Javier; Crnojevic, Vladimir

    2014-01-01

    This brief provides an overview of state-of-the-art sensing technologies relevant to the problem of precision irrigation, an emerging field within the domain of precision agriculture. Applications of wireless sensor networks, satellite data and geographic information systems in the domain are covered. This brief presents the basic concepts of the technologies and emphasizes the practical aspects that enable the implementation of intelligent irrigation systems. The authors target a broad audience interested in this theme and organize the content in five chapters, each concerned with a specific technology needed to address the problem of optimal crop irrigation. Professionals and researchers will find the text a thorough survey with practical applications.

  13. The limit of irrigation adaption due to the inter-crop conflict of water use under changing climate and landuse

    Science.gov (United States)

    Okada, M.; Iizumi, T.; Sakamoto, T.; Kotoku, M.; Sakurai, G.; Nishimori, M.

    2017-12-01

    Replacing rainfed cropping system by irrigated one is assumed to be an effective measure for climate change adaptation in agriculture. However, in many agricultural impact assessments, future irrigation scenarios are externally given and do not consider variations in the availability of irrigation water under changing climate and land use. Therefore, we assess the potential effects of adaption measure expanding irrigated area under climate change by using a large-scale crop-river coupled model, CROVER [Okada et al. 2015, JAMES]. The CROVER model simulates the large-scale terrestrial hydrological cycle and crop growth depending on climate, soil properties, landuse, crop cultivation management, socio-economic water demand, and reservoir operation management. The bias-corrected GCMs outputs under the RCP 8.5 scenario were used. The future expansion of irrigation area was estimated by using the extrapolation method based on the historical change in irrigated and rainfed areas. As the results, the irrigation adaptation has only a limited effect on the rice production in East Asia due to the conflict of water use for irrigation with the other crops, whose farmlands require unsustainable water extraction with the excessively expanding irrigated area. In contrast, the irrigation adaptation benefits maize production in Europe due to the little conflict of water use for irrigation. Our findings suggest the importance of simulating the river water availability and crop production in a single model for the more realistic assessment in the irrigation adaptation potential effects of crop production under changing climate and land use.

  14. Colostomy irrigation: are we offering it enough?

    Science.gov (United States)

    Woodhouse, Fran

    This article discusses the use of irrigation for suitable colostomists and reasons why it can have a very positive effect on lifestyle. While it is evidence-based it also includes anecdotal tips from patients who irrigate. The suitability of patients to irrigate and ways to 'get started' with irrigation are discussed.

  15. Evaluation model development for sprinkler irrigation uniformity ...

    African Journals Online (AJOL)

    use

    Sprinkle and trickle irrigation. The. Blackburn Press, New Jersey, USA. Li JS, Rao MJ (1999). Evaluation method of sprinkler irrigation nonuniformity. Trans. CSAE. 15(4): 78-82. Lin Z, Merkley GP (2011). Relationships between common irrigation application uniformity indicators. Irrig Sci. Online First™, 27 January. 2011.

  16. Wireless sensor networks for irrigation management

    Science.gov (United States)

    Sustaining an adequate food supply for the world's population will require advancements in irrigation technology and improved irrigation management. Site-specific irrigation and automatic irrigation scheduling are examples of strategies to deal with declining arable land and limited fresh water reso...

  17. Condensation irrigation a system for desalination and irrigation

    International Nuclear Information System (INIS)

    Lindblom, J.; Nordell, B

    2006-01-01

    condensation irrigation is a system for both desalination and irrigation. The principles is that humidified air is let into an underground horizontal pipe system, where the air is cooled by the ground and humidity falls out as fresh water. The humidification could e.g. be achieved by evaporation of seawater in solar stills or any other heat source. By using drainage pipes for underground air transportation the water percolates into the soil, thereby irrigating the land. This study focuses on drinking water production, which means that humid air is led into plan pipes where the condensed water is collected at the pipe endings. Numerical simulations gave a study-state diurnal mean water production of 1.8 kg per meter of pipe over a 50 m pipe. Shorter pipes result in a greater mean production rate. Since the heat transfer of drainage pipes would be greater, current study indicates that condensation irrigation is a promising method for desalination and irrigation. Performed studies in condensation irrigation started at LTU in 2003. Current paper reports the initial theoretical work on the system.(Author)

  18. Coordinated research project of the use of nuclear and related techniques in assessment of irrigation schedules of field crops to increase effective use of water in irrigation projects

    International Nuclear Information System (INIS)

    Anac, M.S.; Tuzel, I.H.; Anac, D.

    1995-01-01

    The study aimed at determining the followings; water consumptions. irrigation water requirements of new cotton variety N 84; specific growth stages of cotton which are less sensitive to stress so that the irrigation could be avoided without significant yield decrease; and interactions between deficit irrigation and nitrogen fertilizer use. The experiment was set up with 6 irrigation and three nitrogen fertilizer (0.60 , 120 kg.ha sup -1 ) treatments. The irrigation treatments employed single stress at vegetative, flowering and boll formation stages, in addition to full irrigation, continuous stress and the traditional practice. In stress conditions available soil water depleted to 75 - 80 %, whereas in normal irrigation the depletion was 40 % in 0.90 m. of root zone. In full irrigation treatment 8 irrigations were applied, whereas 3 or 4 irrigations were needed in continuous stress conditions. The number of irrigations were 6 or 7 for other stress treatments. Irrigation water applications varied form 424 to 751 mm. Seasonal ET were ranged between 659 and 899 mm. The highest monthly ET in august for all of the treatments. Daily ET were found to vary from 2.2 to 12.1 mm/day. The seed cotton yields, ky values and yield - N indices have indicated that the vegetative state was more sensitive to water stress. The stress at boll formation stage had slight effects on these parameters. Under limited water resource conditions, vegetative growth period of cotton should be given preference for irrigation, followed by flowering period. Omitting irrigation in boll formation period would result in 4.3 to 9.1 % water savings. Yield changes with respect to N rates showed that high N doses are accompanied by high yields. Nitrogen recoveries either from fertilizers or soil revealed high uptakes in full irrigation conditions. Nitrogen use efficiencies were also high in these conditions. Average of three years put forth that 19% of N in stress conditions and 29% in full irrigation were

  19. Effects of Sowing Date and Limited Irrigation on Yield and Yield Components of Five Rainfed Wheat Varieties in Maragheh Region

    Directory of Open Access Journals (Sweden)

    A. R. Tavakkoli

    2013-03-01

    Full Text Available In order to investigate the effects of sowing date (SD and single irrigation (SI amounts on yield and yield components of rainfed wheat varieties, a field experiment was conducted as split-split plots arranged in a randomized complete blocks design with three replications during 2002-2004 at main station of Dryland Agricultural Research Institute in Maragheh, Iran. Treatments included three sowing dates (early, normal and late, three levels of single irrigation (rainfed, 50 mm and 100 mm only at planting time and five wheat varieties (three numbered lines, Azar2 and double-cross Shahi. Results revealed that interactions of SD, SI and wheat varieties were significant for grain yield, number of kernels per spike and water productivity (P≤0.01. Single irrigation at normal planting time increased grain yield, straw, biomass, harvest index, and water productivity. Grain yield and water productivity were increased by 131% and 84.8%, respectively. Single irrigation at late planting time was not significant on agronomic traits and produced low water productivity. Regarding the reaction of wheat to planting date and single irrigation, results showed that normal single irrigation can improve yield, yield components and water productivity index. The effectiveness of single irrigation under dryland conditions can be observed in all wheat cultivars. Although this effectiveness on yield and yield components is observable, but it is necessary to select the time of irrigation properly.

  20. Integrating Growth Stage Deficit Irrigation into a Process Based Crop Model

    Science.gov (United States)

    Lopez, Jose R.; Winter, Jonathan M.; Elliott, Joshua; Ruane, Alex C.; Porter, Cheryl; Hoogenboom, Gerrit

    2017-01-01

    Current rates of agricultural water use are unsustainable in many regions, creating an urgent need to identify improved irrigation strategies for water limited areas. Crop models can be used to quantify plant water requirements, predict the impact of water shortages on yield, and calculate water productivity (WP) to link water availability and crop yields for economic analyses. Many simulations of crop growth and development, especially in regional and global assessments, rely on automatic irrigation algorithms to estimate irrigation dates and amounts. However, these algorithms are not well suited for water limited regions because they have simplistic irrigation rules, such as a single soil-moisture based threshold, and assume unlimited water. To address this constraint, a new modeling framework to simulate agricultural production in water limited areas was developed. The framework consists of a new automatic irrigation algorithm for the simulation of growth stage based deficit irrigation under limited seasonal water availability; and optimization of growth stage specific parameters. The new automatic irrigation algorithm was used to simulate maize and soybean in Gainesville, Florida, and first used to evaluate the sensitivity of maize and soybean simulations to irrigation at different growth stages and then to test the hypothesis that water productivity calculated using simplistic irrigation rules underestimates WP. In the first experiment, the effect of irrigating at specific growth stages on yield and irrigation water use efficiency (IWUE) in maize and soybean was evaluated. In the reproductive stages, IWUE tended to be higher than in the vegetative stages (e.g. IWUE was 18% higher than the well watered treatment when irrigating only during R3 in soybean), and when rainfall events were less frequent. In the second experiment, water productivity (WP) was significantly greater with optimized irrigation schedules compared to non-optimized irrigation schedules in

  1. performance evaluation of sprinkler irrigation system at mambilla

    African Journals Online (AJOL)

    HOD

    ratio (DPR), irrigation productivity (IP), labour requirements and water quality. Standard procedure was ... The exchangeable cations analysis of Kakara irrigation ... Keywords: Tea, irrigation System, Performance Evaluation. 1. INTRODUCTION.

  2. Irrigation in dose assessments models

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, Ulla; Barkefors, Catarina [Studsvik RadWaste AB, Nykoeping (Sweden)

    2004-05-01

    SKB has carried out several safety analyses for repositories for radioactive waste, one of which was SR 97, a multi-site study concerned with a future deep bedrock repository for high-level waste. In case of future releases due to unforeseen failure of the protective multiple barrier system, radionuclides may be transported with groundwater and may reach the biosphere. Assessments of doses have to be carried out with a long-term perspective. Specific models are therefore employed to estimate consequences to man. It has been determined that the main pathway for nuclides from groundwater or surface water to soil is via irrigation. Irrigation may cause contamination of crops directly by e.g. interception or rain-splash, and indirectly via root-uptake from contaminated soil. The exposed people are in many safety assessments assumed to be self-sufficient, i.e. their food is produced locally where the concentration of radionuclides may be the highest. Irrigation therefore plays an important role when estimating consequences. The present study is therefore concerned with a more extensive analysis of the role of irrigation for possible future doses to people living in the area surrounding a repository. Current irrigation practices in Sweden are summarised, showing that vegetables and potatoes are the most common crops for irrigation. In general, however, irrigation is not so common in Sweden. The irrigation model used in the latest assessments is described. A sensitivity analysis is performed showing that, as expected, interception of irrigation water and retention on vegetation surfaces are important parameters. The parameters used to describe this are discussed. A summary is also given how irrigation is proposed to be handled in the international BIOMASS (BIOsphere Modelling and ASSessment) project and in models like TAME and BIOTRAC. Similarities and differences are pointed out. Some numerical results are presented showing that surface contamination in general gives the

  3. Irrigation in dose assessments models

    International Nuclear Information System (INIS)

    Bergstroem, Ulla; Barkefors, Catarina

    2004-05-01

    SKB has carried out several safety analyses for repositories for radioactive waste, one of which was SR 97, a multi-site study concerned with a future deep bedrock repository for high-level waste. In case of future releases due to unforeseen failure of the protective multiple barrier system, radionuclides may be transported with groundwater and may reach the biosphere. Assessments of doses have to be carried out with a long-term perspective. Specific models are therefore employed to estimate consequences to man. It has been determined that the main pathway for nuclides from groundwater or surface water to soil is via irrigation. Irrigation may cause contamination of crops directly by e.g. interception or rain-splash, and indirectly via root-uptake from contaminated soil. The exposed people are in many safety assessments assumed to be self-sufficient, i.e. their food is produced locally where the concentration of radionuclides may be the highest. Irrigation therefore plays an important role when estimating consequences. The present study is therefore concerned with a more extensive analysis of the role of irrigation for possible future doses to people living in the area surrounding a repository. Current irrigation practices in Sweden are summarised, showing that vegetables and potatoes are the most common crops for irrigation. In general, however, irrigation is not so common in Sweden. The irrigation model used in the latest assessments is described. A sensitivity analysis is performed showing that, as expected, interception of irrigation water and retention on vegetation surfaces are important parameters. The parameters used to describe this are discussed. A summary is also given how irrigation is proposed to be handled in the international BIOMASS (BIOsphere Modelling and ASSessment) project and in models like TAME and BIOTRAC. Similarities and differences are pointed out. Some numerical results are presented showing that surface contamination in general gives the

  4. Sustainable irrigation in fruit trees

    Directory of Open Access Journals (Sweden)

    Cristos Xiloyannis

    2010-09-01

    Full Text Available Water management in fruit growing, particularly in areas with high water deficit, low rainfall and limited availability of water for irrigation should aid to save water by: i the choice of high efficiency irrigation methods and their correct management; ii the proper choice of the specie, cultivar and rootstock to optimise plant water use; iii the proper choice of the architecture of the canopy and it’s correct management in order to improve water use efficiency; iv the application of regulated deficit irrigation at growth stages less sensitive to water deficit; v strengthening the role of technical assistance for a rapid transfer of knowledge to the growers on the sustainable use of water in fruit growing.

  5. Sustainable irrigation in fruit trees

    Directory of Open Access Journals (Sweden)

    Cristos Xiloyannis

    Full Text Available Water management in fruit growing, particularly in areas with high water deficit, low rainfall and limited availability of water for irrigation should aid to save water by: i the choice of high efficiency irrigation methods and their correct management; ii the proper choice of the specie, cultivar and rootstock to optimise plant water use; iii the proper choice of the architecture of the canopy and it’s correct management in order to improve water use efficiency; iv the application of regulated deficit irrigation at growth stages less sensitive to water deficit; v strengthening the role of technical assistance for a rapid transfer of knowledge to the growers on the sustainable use of water in fruit growing.

  6. [Continent colostomy and colon irrigation].

    Science.gov (United States)

    Kostov, D; Temelkov, T; Kiriazov, E; Ivanov, K; Ignatov, V; Kobakov, G

    2000-01-01

    The authors have studied a functional activity of a continent colostomy at 20 patients, undergone an abdomeno-perineal extirpation of rectum and carried out periodic colonirrigations, during a period of 6 months. A conus type, closed irrigating system has been used. The degree of an incontinency at patients has been compared before and after the beginning of the colonirrigations. The irrigating procedures have reduced spontaneous defications at patients during a week 28 times and have improved the quality of life significantly. The application of colostomy bags has been restricted in 8 (40%) patients. An intraluminal ultrasonographic investigation has been done at 12 (60%) patients at the end of 6 month irrigating period. No changes of the ultrasonographic image of the precolostomic segment of colon has been observed.

  7. AGROCLIMATIC DETERMINANTS OF IRRIGATION NEEDS

    Directory of Open Access Journals (Sweden)

    Leszek Łabędzki

    2016-05-01

    Full Text Available The paper is a review of the so far used in Poland methods and criteria for assessing the needs of irrigation for planning purposes, the assessment because of the agroclimatic conditions and taking into account the soil water retention. Irrigation needs of the most are determined taking into account crop water deficits. This is the factor that is characterized by a shortage of precipitation in relation to the water requirements of crops. Some methods use only the meteorological parameters that determine the state of the atmosphere-soil-plant system, and some also take into account soil water retention and its availability for plants.

  8. Soil Suitability Classification of Tomas Irrigation Scheme for Irrigated ...

    African Journals Online (AJOL)

    The need for sustainable rice production in Nigeria cannot be over-emphasized. Since rice can be grown both under rain-fed and irrigated conditions, the need for soil suitability evaluation becomes very necessary in order for supply to meet up with demand. Six land qualities viz; climate, soil physical properties, drainage, ...

  9. Modernisation Strategy for National Irrigation Systems in the Philippines: Balanac and Sta. Maria River Irrigation Systems

    NARCIS (Netherlands)

    Delos Reyes, M.L.F.

    2017-01-01

    This book examines the nature and impact of irrigation system rehabilitation on increasing the actual area irrigated by the publicly funded canal irrigation systems of the Philippines. It proposes a system diagnosis approach for the development of a more appropriate and climate-smart irrigation

  10. Sustainable management after irrigation system transfer : experiences in Colombia - the RUT irrigation district

    NARCIS (Netherlands)

    Urrutia Cobo, N.

    2006-01-01

    Colombiais a tropical country located in South America. It has a total area of 114 million ha. In Colombia two irrigation sectors are distinguished: the small-scale irrigation and the large-scale irrigation sector. The small-scale irrigation sector is developed on lands

  11. GSM BASED IRRIGATION CONTROL AND MONITORING SYSTEM

    OpenAIRE

    GODFREY A. MILLS; STEPHEN K. ARMOO; AGYEMAN K. ROCKSON; ROBERT A. SOWAH; MOSES A. ACQUAH

    2013-01-01

    Irrigated agriculture is one of the primary water consumers in most parts of the world. With developments in technology, efforts are being channeled into automation of irrigation systems to facilitate remote control of the irrigation system and optimize crop production and cost effectiveness. This paper describes an on-going work on GSM based irrigation monitoring and control systems. The objective of the work is to provide an approach that helps farmers to easily access, manage and regulate ...

  12. Measuring Transpiration to Regulate Winter Irrigation Rates

    Energy Technology Data Exchange (ETDEWEB)

    Samuelson, Lisa [Auburn University

    2006-11-08

    Periodic transpiration (monthly sums) in a young loblolly pine plantation between ages 3 and 6 was measured using thermal dissipation probes. Fertilization and fertilization with irrigation were better than irrigation alone in increasing transpiration of young loblolly pines during winter months, apparently because of increased leaf area in fertilized trees. Irrigation alone did not significantly increase transpiration compared with the non-fertilized and non-irrigated control plots.

  13. Comparative efficiency of trickle and furrow irrigation

    International Nuclear Information System (INIS)

    Hanif, M.; Qureshi, R.H.; Sandhu, G.R.

    1976-01-01

    Comparison of furrow and trickle methods of irrigation to know their relative efficiency with respect to water applied and fertilizer used on tomatoes, cauliflower and lettuce as test crops using canal water, showed a significant saving of about 44 and 41 per cent respectively for irrigation water and fertilizer applied with trickle as compared to furrow irrigation. Trickle irrigated crops also showed a better response as regards the rate of survival, crop growth and time of maturity

  14. Newer Root Canal Irrigants in Horizon: A Review

    Directory of Open Access Journals (Sweden)

    Sushma Jaju

    2011-01-01

    Full Text Available Sodium hypochloride is the most commonly used endodontic irrigant, despite limitations. None of the presently available root canal irrigants satisfy the requirements of ideal root canal irrigant. Newer root canal irrigants are studied for potential replacement of sodium hypochloride. This article reviews the potential irrigants with their advantages and limitations with their future in endodontic irrigation.

  15. 21 CFR 876.5895 - Ostomy irrigator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ostomy irrigator. 876.5895 Section 876.5895 Food... DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5895 Ostomy irrigator. (a) Identification. An ostomy irrigator is a device that consists of a container for fluid, tubing with a cone-shaped...

  16. Comparative antibacterial efficacies of hydrodynamic and ultrasonic irrigation systems in vitro.

    Science.gov (United States)

    Cachovan, Georg; Schiffner, Ulrich; Altenhof, Saskia; Guentsch, Arndt; Pfister, Wolfgang; Eick, Sigrun

    2013-09-01

    To ensure root canal treatment success, endodontic microbiota should be efficiently reduced. The in vitro bactericidal effects of a hydrodynamic system and a passive ultrasonic irrigation system were compared. Single-rooted extracted teeth (n = 250) were contaminated with suspensions of Enterococcus faecalis ATCC 29212, mixed aerobic cultures, or mixed anaerobic cultures. First, the antibacterial effects of the hydrodynamic system (RinsEndo), a passive ultrasonic irrigation system (Piezo smart), and manual rinsing with 0.9% NaCl (the control) were compared. Colony-forming units were counted. Second, the 2 systems were used with 1.5% sodium hypochlorite (NaOCl) alone or NaOCl + 0.2% chlorhexidine (CHX). The colony-forming units in the treated and untreated roots were determined during a period of 5 days. Both irrigation systems reduced bacterial numbers more effectively than manual rinsing (P irrigation reduced bacterial counts significantly better than hydrodynamic irrigation (P = .042). The NaOCl + CHX combination was more effective than NaOCl alone for both systems (P irrigation was more effective with NaOCl + CHX than the passive ultrasonic irrigation system. Both irrigation systems, when combined with NaOCl + CHX, removed bacteria from root canals. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  17. Speed control variable rate irrigation

    Science.gov (United States)

    Speed control variable rate irrigation (VRI) is used to address within field variability by controlling a moving sprinkler’s travel speed to vary the application depth. Changes in speed are commonly practiced over areas that slope, pond or where soil texture is predominantly different. Dynamic presc...

  18. Position paper : Whole bowel irrigation

    NARCIS (Netherlands)

    2004-01-01

    Whole bowel irrigation (WBI) should not be used routinely in the management of the poisoned patient. Although some volunteer studies have shown substantial decreases in the bioavailability of ingested drugs, no controlled clinical trials have been performed and there is no conclusive evidence that

  19. Modernized Irrigation Technologies in West Africa

    Directory of Open Access Journals (Sweden)

    Hakan Büyükcangaz

    2017-12-01

    Full Text Available Crop production in West Africa is mostly dependent upon rainfed agriculture. Irrigation is a vital need due to uneven distribution of rainfall and seasonality of water resources. However, management and sustainability of irrigation are under risk due to notably weak database, excessive cost, unappropriate soil or land use, environmental problems and extreme pessimism in some quarters since rainfed agriculture is seen as potentially able to support the present population. This paper focuses on modernized irrigation technologies and systems that utilize less water. Information about irrigation systems in Ghana and Liberia were gathered through: 1 Irrigation development authorities in both countries, by reviewing past literatures, online publications, reports and files about irrigation in West Africa, specifically Ghana and Liberia; 2 International Food Policy Research Institute (IFPRI; 3 Collation of information, reports and data from Ghana Irrigation Development Authority (GIDA and 4 International Water Management Institute (IWMI. The result shows that both countries have higher irrigation potential. However, the areas developed for irrigation is still a small portion as compare to the total land available for irrigation. On the other hand, as seen in the result, Liberia as compare to Ghana has even low level of irrigation development.

  20. Modeling irrigation behavior in groundwater systems

    Science.gov (United States)

    Foster, Timothy; Brozović, Nicholas; Butler, Adrian P.

    2014-08-01

    Integrated hydro-economic models have been widely applied to water management problems in regions of intensive groundwater-fed irrigation. However, policy interpretations may be limited as most existing models do not explicitly consider two important aspects of observed irrigation decision making, namely the limits on instantaneous irrigation rates imposed by well yield and the intraseasonal structure of irrigation planning. We develop a new modeling approach for determining irrigation demand that is based on observed farmer behavior and captures the impacts on production and water use of both well yield and climate. Through a case study of irrigated corn production in the Texas High Plains region of the United States we predict optimal irrigation strategies under variable levels of groundwater supply, and assess the limits of existing models for predicting land and groundwater use decisions by farmers. Our results show that irrigation behavior exhibits complex nonlinear responses to changes in groundwater availability. Declining well yields induce large reductions in the optimal size of irrigated area and irrigation use as constraints on instantaneous application rates limit the ability to maintain sufficient soil moisture to avoid negative impacts on crop yield. We demonstrate that this important behavioral response to limited groundwater availability is not captured by existing modeling approaches, which therefore may be unreliable predictors of irrigation demand, agricultural profitability, and resilience to climate change and aquifer depletion.

  1. A risk assessment framework for irrigated agriculture under climate change

    Science.gov (United States)

    Ronco, P.; Zennaro, F.; Torresan, S.; Critto, A.; Santini, M.; Trabucco, A.; Zollo, A. L.; Galluccio, G.; Marcomini, A.

    2017-12-01

    pattern of irrigation systems and networks. The implemented assessment singled out future perspectives of water scarcity risk levels for irrigated agriculture by the administrative extent where individual bodies are in charge of the coordination of public and private irrigation activities (i.e. Reclamation Consortia). Based on the outcomes of the proposed methodology, tailored and knowledge-based adaptation strategies and related actions can be developed, to reduce the risk at both agronomic level (i.e. preferring crops with low vulnerability score, as olive groves) and at structural level (i.e. differentiating the water stocks and supplies and reducing losses and inefficiencies).

  2. Remote Sensing of Irrigated Agriculture: Opportunities and Challenges

    Directory of Open Access Journals (Sweden)

    Chelsea Cervantes

    2010-09-01

    Full Text Available Over the last several decades, remote sensing has emerged as an effective tool to monitor irrigated lands over a variety of climatic conditions and locations. The objective of this review, which summarizes the methods and the results of existing remote sensing studies, is to synthesize principle findings and assess the state of the art. We take a taxonomic approach to group studies based on location, scale, inputs, and methods, in an effort to categorize different approaches within a logical framework. We seek to evaluate the ability of remote sensing to provide synoptic and timely coverage of irrigated lands in several spectral regions. We also investigate the value of archived data that enable comparison of images through time. This overview of the studies to date indicates that remote sensing-based monitoring of irrigation is at an intermediate stage of development at local scales. For instance, there is overwhelming consensus on the efficacy of vegetation indices in identifying irrigated fields. Also, single date imagery, acquired at peak growing season, may suffice to identify irrigated lands, although to multi-date image data are necessary for improved classification and to distinguish different crop types. At local scales, the mapping of irrigated lands with remote sensing is also strongly affected by the timing of image acquisition and the number of images used. At the regional and global scales, on the other hand, remote sensing has not been fully operational, as methods that work in one place and time are not necessarily transferable to other locations and periods. Thus, at larger scales, more work is required to indentify the best spectral indices, best time periods, and best classification methods under different climatological and cultural environments. Existing studies at regional scales also establish the fact that both remote sensing and national statistical approaches require further refinement with a substantial investment of

  3. Irrigation management in Mediterranean salt affected agriculture: how leaching operates

    Directory of Open Access Journals (Sweden)

    Angela Libutti

    2012-03-01

    and relative drainage volumes according to a three steps procedure of covariance analysis. A simple, general and comprehensive leaching model is thus presented. Results showed that salt build up into the soil can be very rapid, generally occurring within a single irrigated summer crop cycle. Rainfalls of the autumn-winter period had a crucial role in the removal of salts brought into the soil by summer irrigation. This paper strongly emphasises that additional fresh water supply is of great importance to establish acceptable soil conditions. Two suitable periods for intentional leaching were identified.

  4. Phosphorus absorption in drip irrigation

    International Nuclear Information System (INIS)

    Guennelon, R.; Habib, R.

    1979-01-01

    Introducing the use of solute phosphate with drip irrigation may be an unsatisfying practice on account of the very weak mobility of PO 4 anion. Nevertheless P can move down to 30-40 cm depth by following the saturated flux along earth-worms holes or crakes, or by displacement in very narrow structural porosity, even in heavy soils. In this case roots cannot easily absorb PO 4 from soil solution, as soon as the soil is quite saturated. On the other hand, it seems that P absorption occurs very quickly and easily when the implantation of 32 P tagged solution is carried out at the border of zone which is concerned by the irrigation effects [fr

  5. Managing Water Resources for Environmentally Sustainable Irrigated Agriculture in Pakistan

    OpenAIRE

    Muhammad Afzal

    1996-01-01

    Pakistan’s agriculture is almost wholly dependent on irrigation and irrigated land supplies more than 90 percent of agricultural production. Irrigation is central to Pakistan’s economy. Massive investments in irrigation contributed to the development of one of the largest Indus Basin Irrigation System. Despite heavy budgetary inputs in irrigation system, it is facing shortage of resources and suffering from operational problems. The sustainability of irrigated agriculture is threatened due to...

  6. IRRIGATION OF ORNAMENTAL PLANT NURSERY

    Directory of Open Access Journals (Sweden)

    Eduardo de Aguiar do Couto

    2013-01-01

    Full Text Available Airports consume significant amounts of water which can be compared to the volume consumed by mid-size cities, thus practices aimed at reducing water consumption are important and necessar y. The objective of this study was to assess the reuse potential of sewage effluent produced at a mid-size international airport for nursery irri gation. The sewage treatment system consisted of a facultative pond followed by a constructed wetland, which were monitored during one hydrological year a nd the parameters COD, pH, solids, nitrogen, phosphorus and Escherichia coli we re analyzed. Removal efficiencies of 85% and 91% were achieved for C OD and solids, respectively. Removal efficiencies for ammonia nitrogen a nd total phosphorus were 77% and 59%, respectively. In terms of E. coli concen tration, the treated effluent met the recommendations by the World Health Organization for reuse in irrigation with the advantage of providing high levels of residual nutrient. The ornamental species Impatiens walleriana was irrigated with treated sewage effluent and plant growth characteristics were evalua ted. The experiment showed that reuse can enhance plant growth without signi ficantly affecting leaf tissue and soil characteristics. This study highlighted th e importance of simple technologies for sewage treatment especially in count ries which still do not present great investment in sanitation and proved that effluent reuse for landscape irrigation can provide great savings of water and financial resources for airport environments.

  7. Proposed Fuzzy-NN Algorithm with LoRaCommunication Protocol for Clustered Irrigation Systems

    Directory of Open Access Journals (Sweden)

    Sotirios Kontogiannis

    2017-11-01

    Full Text Available Modern irrigation systems utilize sensors and actuators, interconnected together as a single entity. In such entities, A.I. algorithms are implemented, which are responsible for the irrigation process. In this paper, the authors present an irrigation Open Watering System (OWS architecture that spatially clusters the irrigation process into autonomous irrigation sections. Authors’ OWS implementation includes a Neuro-Fuzzy decision algorithm called FITRA, which originates from the Greek word for seed. In this paper, the FITRA algorithm is described in detail, as are experimentation results that indicate significant water conservations from the use of the FITRA algorithm. Furthermore, the authors propose a new communication protocol over LoRa radio as an alternative low-energy and long-range OWS clusters communication mechanism. The experimental scenarios confirm that the FITRA algorithm provides more efficient irrigation on clustered areas than existing non-clustered, time scheduled or threshold adaptive algorithms. This is due to the FITRA algorithm’s frequent monitoring of environmental conditions, fuzzy and neural network adaptation as well as adherence to past irrigation preferences.

  8. Ultrasonic flow measurements for irrigation process monitoring

    Science.gov (United States)

    Ziani, Elmostafa; Bennouna, Mustapha; Boissier, Raymond

    2004-02-01

    This paper presents the state of the art of the general principle of liquid flow measurements by ultrasonic method, and problems of flow measurements. We present an ultrasonic flowmeter designed according to smart sensors concept, for the measurement of irrigation water flowing through pipelines or open channels, using the ultrasonic transit time approach. The new flowmeter works on the principle of measuring time delay differences between sound pulses transmitted upstream and downstream in the flowing liquid. The speed of sound in the flowing medium is eliminated as a variable because the flowrate calculations are based on the reciprocals of the transmission times. The transit time difference is digitally measured by means of a suitable, microprocessor controlled logic. This type of ultrasonic flowmeter will be widely used in industry and water management, it is well studied in this work, followed by some experimental results. For pressurized channels, we use one pair of ultrasonic transducer arranged in proper positions and directions of the pipe, in this case, to determine the liquid velocity, a real time on-line analysis taking account the geometries of the hydraulic system, is applied to the obtained ultrasonic data. In the open channels, we use a single or two pairs of ultrasonic emitter-receiver according to the desired performances. Finally, the goals of this work consist in integrating the smart sensor into irrigation systems monitoring in order to evaluate potential advantages and demonstrate their performance, on the other hand, to understand and use ultrasonic approach for determining flow characteristics and improving flow measurements by reducing errors caused by disturbances of the flow profiles.

  9. 75 FR 43958 - Turlock Irrigation District and Modesto Irrigation District; Notice of Application for Amendment...

    Science.gov (United States)

    2010-07-27

    ... to the Turlock Irrigation District's Tuolumne Substation; (2) 23-mile-long, 69-kV Don Pedro-Hawkins Line extending from the Don Pedro switchyard to the Turlock Irrigation District's Hawkins Substation...

  10. Effect of low-cost irrigation methods on microbial contamination of lettuce irrigated with untreated wastewater

    DEFF Research Database (Denmark)

    Keraita, Bernard; Konradsen, Flemming; Drechsel, P.

    2007-01-01

    OBJECTIVE: To assess the effectiveness of simple irrigation methods such as drip irrigation kits, furrow irrigation and use of watering cans in reducing contamination of lettuce irrigated with polluted water in urban farming in Ghana. METHODS: Trials on drip kits, furrow irrigation and watering...... cans were conducted with urban vegetable farmers. Trials were arranged in a completely randomised block design with each plot having all three irrigation methods tested. This was conducted in both dry and wet seasons. Three hundred and ninety-six lettuce, 72 soil, 15 poultry manure and 32 water samples...... were analysed for thermotolerant coliforms and helminth eggs. RESULTS: Lettuce irrigated with drip kits had the lowest levels of contamination, with, on average, 4 log units per 100 g, fewer thermotolerant coliforms than that irrigated with watering cans. However, drip kits often got clogged, required...

  11. Introduction: Panda or Hydra? The untold stories of drip irrigation

    NARCIS (Netherlands)

    Kuper, M.; Venot, J.P.; Zwarteveen, M.; Venot, J.P.; Kuper, M.; Zwarteveen, M.

    2017-01-01

    Irrigated areas in the world are witnessing a transformation from open canal systems to more ‘modern’ irrigation methods such as drip irrigation that convey water through closed pipe systems. Initially associated with hi-tech irrigated agriculture, drip irrigation is now being used by a wide range

  12. Saline water irrigation for crop production

    Energy Technology Data Exchange (ETDEWEB)

    Khan, A R [Directorate of Water Management Research, Indian Council of Agricultural Research (ICAR), Walmi Complex, P.O. - Phulwari Sharif, Patna (India); [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Singh, S S; Singh, S R [Directorate of Water Management Research, Indian Council of Agricultural Research (ICAR), Walmi Complex, P.O. - Phulwari Sharif, Patna (India)

    2001-05-01

    Salinity is one of agriculture's most complex production problems. Excessive salts from irrigation water or high water tables can severely limit crop production. Years of saline water irrigation on poorly drained soils can eventually make economic crop production impossible. About 10% of all land are affected by salinity problems. They occur in every continent in different proportions, more frequently in arid and semi-arid areas. This paper discusses a range of problems related to use of saline water for crop irrigation.

  13. Saline water irrigation for crop production

    International Nuclear Information System (INIS)

    Khan, A.R.; Singh, S.S.; Singh, S.R.

    2001-05-01

    Salinity is one of agriculture's most complex production problems. Excessive salts from irrigation water or high water tables can severely limit crop production. Years of saline water irrigation on poorly drained soils can eventually make economic crop production impossible. About 10% of all land are affected by salinity problems. They occur in every continent in different proportions, more frequently in arid and semi-arid areas. This paper discusses a range of problems related to use of saline water for crop irrigation

  14. Senegal - Irrigation and Water Resource Management

    Data.gov (United States)

    Millennium Challenge Corporation — IMPAQ: This evaluation report presents findings from the baseline data collected for the Irrigation and Water Resources Management (IWRM) project, which serves as...

  15. Role of sediment in the design and management of irrigation canals : Sunsari Morang Irrigation Scheme, Nepal

    NARCIS (Netherlands)

    Paudel, K.

    2010-01-01

    Sediment transport in irrigation canals The sediment transport aspect is a major factor in irrigation development as it determines to a large extent the sustainability of an irrigation scheme, particularly in case of unlined canals in alluvial soils. Investigations in this respect started since

  16. Automation of irrigation systems to control irrigation applications and crop water use efficiency

    Science.gov (United States)

    Agricultural irrigation management to slow water withdrawals from non-replenishing quality water resources is a global endeavor and vital to sustaining irrigated agriculture and dependent rural economies. Research in site-specific irrigation management has shown that water use efficiency, and crop p...

  17. Factors affecting irrigant extrusion during root canal irrigation: a systematic review

    NARCIS (Netherlands)

    Boutsioukis, C.; Psimma, Z.; van der Sluis, L.W.M.

    2013-01-01

    The aim of the present study was to conduct a systematic review and critical analysis of published data on irrigant extrusion to identify factors causing, affecting or predisposing to irrigant extrusion during root canal irrigation of human mature permanent teeth. An electronic search was conducted

  18. Comparison of Vibringe, EndoActivator, and needle irrigation on sealer penetration in extracted human teeth.

    Science.gov (United States)

    Bolles, Jordan A; He, Jianing; Svoboda, Kathy K H; Schneiderman, Emet; Glickman, Gerald N

    2013-05-01

    Vibringe is a new device that allows continuous sonic irrigation of the canal system during endodontic treatment. The aim of this study was to compare the effect of different irrigation systems on sealer penetration into dentinal tubules of extracted single-rooted teeth. Fifty single-rooted human teeth were instrumented and randomly divided into 4 groups: group 1 (control), saline; group 2 (conventional irrigation), 17% EDTA followed by 6% NaOCl; group 3 (EndoActivator), same irrigants as group 2; group 4 (Vibringe), same irrigants as group 2. Obturation of all teeth was done with gutta-percha and SimpliSeal labeled with fluorescent dye. Transverse sections at 1 mm and 5 mm from the root apex were examined by using confocal laser scanning microscopy. Percentage and maximum depth of sealer penetration were measured by using NIS-Elements Br 3.0 imaging software. Groups 3 and 4 had a significantly greater percentage of the canal wall penetrated by sealer at the 5-mm level than group 1 (P irrigation. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  19. Irrigation water quality influences heavy metal uptake by willows in biosolids.

    Science.gov (United States)

    Laidlaw, W Scott; Baker, Alan J M; Gregory, David; Arndt, Stefan K

    2015-05-15

    Phytoextraction is an effective method to remediate heavy metal contaminated landscapes but is often applied for single metal contaminants. Plants used for phytoextraction may not always be able to grow in drier environments without irrigation. This study investigated if willows (Salix x reichardtii A. Kerner) can be used for phytoextraction of multiple metals in biosolids, an end-product of the wastewater treatment process, and if irrigation with reclaimed and freshwater influences the extraction process. A plantation of willows was established directly onto a tilled stockpile of metal-contaminated biosolids and irrigated with slightly saline reclaimed water (EC ∼2 dS/cm) at a wastewater processing plant in Victoria, Australia. Biomass was harvested annually and analysed for heavy metal content. Phytoextraction of cadmium, copper, nickel and zinc was benchmarked against freshwater irrigated willows. The minimum irrigation rate of 700 mm per growing season was sufficient for willows to grow and extract metals. Increasing irrigation rates produced no differences in total biomass and also no differences in the extraction of heavy metals. The reclaimed water reduced both the salinity and the acidity of the biosolids significantly within the first 12 months after irrigation commenced and after three seasons the salinity of the biosolids had dropped to metal extraction. Reclaimed water irrigation reduced the biosolid pH and this was associated with reductions of the extraction of Ni and Zn, it did not influence the extraction of Cu and enhanced the phytoextraction of Cd, which was probably related to the high chloride content of the reclaimed water. Our results demonstrate that flood-irrigation with reclaimed water was a successful treatment to grow willows in a dry climate. However, the reclaimed water can also change biosolids properties, which will influence the effectiveness of willows to extract different metals. Copyright © 2015 Elsevier Ltd. All rights

  20. Using remote sensing to characterize and compare evapotranspiration from different irrigation regimes in the Smith River Watershed of central Montana

    Science.gov (United States)

    Sando, Thomas R.; Caldwell, Rodney R.; Blasch, Kyle W.

    2017-01-01

    According to the 2005 U.S. Geological Survey national water use compilation, irrigation is the second largest use of fresh water in the United States, accounting for 37%, or 484.48 million cubic meters per day, of total freshwater withdrawal. Accurately estimating the amount of water withdrawals and actual consumptive water use (the difference between water withdrawals and return flow) for irrigation at a regional scale is difficult. Remote sensing methods make it possible to compare actual ET (ETa) rates which can serve as a proxy for consumptive water use from different irrigation regimes at a regional scale in a systematic manner. This study investigates crucial components of water use from irrigation such as the difference of ETa rates from flood- and sprinkler-irrigated fields, spatial variability of ETa within a watershed, and the effect of sprinkler irrigation on the water budget of the study area. The mean accumulated ETa depth for the 1,051 square kilometer study area within the upper Smith River watershed was about 467 mm 30-meter per pixel for the 2007 growing season (April through mid-October). The total accumulated volume of ETa for the study area was about 474.705 million cubic meters. The mean accumulated ETa depth from sprinkler-irrigated land was about 687 mm and from flood-irrigated land was about 621 mm from flood-irrigated land. On average, the ETa rate from sprinkler-irrigated fields was 0.25 mm per day higher than flood-irrigated fields over the growing season. Spatial analysis showed that ETa rates within individual fields of a single crop type that are irrigated with a single method (sprinkler or flood) can vary up to about 8 mm per day. It was estimated that the amount of sprinkler irrigation in 2007 accounted for approximately 3% of the total volume of ETa in the study area. When compared to non-irrigated dryland, sprinkler irrigation increases ETa by about 59 to 82% per unit area.

  1. Effect of Intracanal Cryotherapy and Negative Irrigation Technique on Postendodontic Pain.

    Science.gov (United States)

    Al-Nahlawi, Talal; Hatab, Talaat Abo; Alrazak, Mahmoud Abd; Al-Abdullah, Ahmad

    2016-12-01

    To evaluate the effect of intracanal cryotherapy with negative pressure irrigation (EndoVac) on postendodontic pain after vital single-visit root canal treatment (RCT). A total of 75 single-rooted teeth with single root canal were treated endodontically. After root canal preparation with Protaper Universal rotary system and irrigation, teeth were divided randomly into three groups (n = 25) according to additional irrigation protocol as follows: Group I: No additional irrigation was applied (control); group II: A 20 mL of room temperature saline was irrigated during 5 minutes using EndoVac, and group III: A 20 mL of 2 to 4°C cold saline was irrigated during 5 minutes using EndoVac. Pain levels were assessed by visual analog scale (VAS) and verbal evaluation of pain questionnaire after 6, 12, 24, 48 hours, and 7 days of canal obturation. The data were then analyzed using Statistical Package for the Social Sciences (SPSS) 13.0 using Kruskal-Wallis and Mann-Whitney U tests at p-value of 0.05. The results showed that pain levels were high in groups I and II after 6 hours that decreased with time to almost diminish after 1 week, and on the other hand, group III showed no pain among different monitoring periods. Also pain levels in groups II were lower compared with group I after only 6 hours, with significance p cryotherapy eliminated postendodontic pain clinically. Negative pressure reduced postendodontic pain after 6 hours of treatment. The outcome of this study indicates that the use of intracanal cryotherapy technique with negative pressure irrigation eliminates postendodontic pain after single-visit RCTs.

  2. Algorithms for in-season nutrient management in cereals

    Science.gov (United States)

    The demand for improved decision making products for cereal production systems has placed added emphasis on using plant sensors in-season, and that incorporate real-time, site specific, growing environments. The objective of this work was to describe validated in-season sensor based algorithms prese...

  3. improving of irrigation management: a learning based approach

    African Journals Online (AJOL)

    p2333147

    Irrigation farms are small businesses and like any other business, the managers or ... human factors and constraints that impact on the adoption of irrigation ... Informal interaction with other irrigation farmers and social networks played a ...

  4. Green and blue water footprint reduction in irrigated agriculture: effect of irrigation techniques, irrigation strategies and mulching

    Science.gov (United States)

    Chukalla, A. D.; Krol, M. S.; Hoekstra, A. Y.

    2015-12-01

    Consumptive water footprint (WF) reduction in irrigated crop production is essential given the increasing competition for freshwater. This study explores the effect of three management practices on the soil water balance and plant growth, specifically on evapotranspiration (ET) and yield (Y) and thus the consumptive WF of crops (ET / Y). The management practices are four irrigation techniques (furrow, sprinkler, drip and subsurface drip (SSD)), four irrigation strategies (full (FI), deficit (DI), supplementary (SI) and no irrigation), and three mulching practices (no mulching, organic (OML) and synthetic (SML) mulching). Various cases were considered: arid, semi-arid, sub-humid and humid environments in Israel, Spain, Italy and the UK, respectively; wet, normal and dry years; three soil types (sand, sandy loam and silty clay loam); and three crops (maize, potato and tomato). The AquaCrop model and the global WF accounting standard were used to relate the management practices to effects on ET, Y and WF. For each management practice, the associated green, blue and total consumptive WF were compared to the reference case (furrow irrigation, full irrigation, no mulching). The average reduction in the consumptive WF is 8-10 % if we change from the reference to drip or SSD, 13 % when changing to OML, 17-18 % when moving to drip or SSD in combination with OML, and 28 % for drip or SSD in combination with SML. All before-mentioned reductions increase by one or a few per cent when moving from full to deficit irrigation. Reduction in overall consumptive WF always goes together with an increasing ratio of green to blue WF. The WF of growing a crop for a particular environment is smallest under DI, followed by FI, SI and rain-fed. Growing crops with sprinkler irrigation has the largest consumptive WF, followed by furrow, drip and SSD. Furrow irrigation has a smaller consumptive WF compared with sprinkler, even though the classical measure of "irrigation efficiency" for furrow

  5. Modelling human agency in ancient irrigation

    NARCIS (Netherlands)

    Ertsen, M.W.

    2011-01-01

    Human activity is key in understanding ancient irrigation systems. Results of short term actions build up over time, affecting civilizations on larger temporal and spatial scales. Irrigation systems, with their many entities, social and physical, their many interactions within a changing environment

  6. Technical efficiency of irrigated vegetable production among ...

    African Journals Online (AJOL)

    This study was carried out to analyse the technical efficiency of irrigated vegetable production among smallholder farmers in the guinea savannah, Nigeria, and determine the cost and returns on irrigated vegetable production. Two-stage sampling technique was used, purposive selection of two states and three Local ...

  7. Prospects and Constraints of Household Irrigation Practices ...

    African Journals Online (AJOL)

    Constraints and prospects of hand dug wells related to household irrigation were assessed in Hayelom watershed (~1045 ha), by evaluating groundwater suitability for irrigation, soil quality and impact of intervention. 181 hand dug wells have come into existence in the watershed due to intervention and benefiting about ...

  8. Using Automation to Improve Surface Irrigation Management

    Science.gov (United States)

    In the Lower Mississippi Water Resource Area (WRA 08), also called the Mid-South, 2 million ha of cropland (80% of the irrigated farmland) employ surface irrigation, almost equally divided between furrow (52%) and controlled flooding (48%). Because Mid-South farmers experience less-than-optimal surf...

  9. Syringe irrigation: blending endodontics and fluid dynamics

    NARCIS (Netherlands)

    Boutsioukis, C.; van der Sluis, L.W.M.; Basrani, B.

    2015-01-01

    Syringe irrigation remains a widely used irrigant delivery method during root canal treatment. An interdisciplinary approach involving well-established methods from the field of fluid dynamics can provide new insights into the mechanisms involved in cleaning and disinfection of the root canal system

  10. Syringe irrigation: blending endodontics and fluid dynamics

    NARCIS (Netherlands)

    Boutsioukis, Christos; van der Sluis, Lucas; Basrani, Bettina

    2015-01-01

    This book reviews the available information on bacterial disinfection in endodontics, with emphasis on the chemical treatment of root canals based on current understanding of the process of irrigation. It describes recent advances in knowledge of the chemistry associated with irrigants and delivery

  11. Irrigation scheduling with the neutron probe

    International Nuclear Information System (INIS)

    Travers, P.

    1987-01-01

    The operational theory of the neutron probe is briefly outlined and its application and uses discussed in relation to determination of soil compaction and irrigation scheduling. Graphic examples are given of alluvial soil moisture profiles and how this information can be used to improve trickle irrigation in vineyards. 3 refs., 7 figs

  12. Review of ultrasonic irrigation in endodontics: increasing action of irrigating solutions

    Science.gov (United States)

    Mozo, Sandra; Llena, Carmen

    2012-01-01

    Introduction: Effective irrigant delivery and agitation are prerequisites for successful endodontic treatment. Ultrasonic irrigation can be performed with or without simultaneous ultrasonic instrumentation. Existing literature reveals that ultrasonic irrigation may have a very positive effect on chemical, biological and physical debridement of the root canal system as investigated in many in vitro studies. Objective: The purpose of this review article was to summarize and discuss the available information concerning ultrasonic irrigation in endodontics. Methods: This article presents an overview of ultrasonic irrigation methods and their debridement efficacy. In this paper the relevant literature on passive ultrasonic irrigation is reviewed. Information from original scientific papers or reviews listed in MEDLINE and Cochrane were included in the review. Results: The use of ultrasound in the irrigation procedure results in improved canal cleanliness, better irrigant transfer to the canal system, soft tissue debridement, and removal of smear layer and bacteria. There are many in vitro studies, but there is a need to standardize protocols, and correlate the clinical efficacy of ultrasonic devices with improved treatment outcomes. Understanding the basis of ultrasonic irrigation is fundamental for clinicians and researchers to improve the design and use of ultrasonic irrigation. Key words:Ultrasonic irrigation, ultrasound, smear layer, endodontics. PMID:22143738

  13. [Irrigants and intracanal medicaments in endodontics].

    Science.gov (United States)

    Zehnder, Matthias; Lehnert, Birgit; Schönenberger, Kathrin; Waltimo, Tuomas

    2003-01-01

    Modern, biologic root canal therapy should be performed with suitable irrigating solutions and intracanal medicaments. The goal of endodontic treatment is to free the treated tooth from infection and prevent reinfection as thoroughly as possible by means which do not put the organism at risk. In this review of the literature, an evidence-based concept for irrigation and medication of root canal systems is presented. Irrigants and medicaments are discussed with respect to their antimicrobial, tissue-dissolving and endotoxin-decontaminating capacity in relation to their systemic toxicity. Recent findings pertaining to interactions of root canal medicaments and irrigating solutions and their impact on a sound irrigating and medicating concept are discussed.

  14. Efficacy of passive ultrasonic irrigation with natural irrigants (Morinda citrifolia juice, Aloe Vera and Propolis) in comparison with 1% sodium hypochlorite for removal of E. faecalis biofilm: an in vitro study.

    Science.gov (United States)

    Bhardwaj, Anuj; Velmurugan, Natanasabapathy; Ballal, Suma

    2013-01-01

    Present study evaluated the efficacy of natural derivative irrigants, Morinda citrifolia juice (MCJ), Aloe Vera and Propolis in comparison to 1% sodium hypochlorite with passive ultrasonic irrigation for removal of the intraradicular E. faecalis biofilms in extracted single rooted human permanent teeth. Biofilms of E. faecalis were grown on the prepared root canal walls of 60 standardized root halves which were longitudinally sectioned. These root halves were re-approximated and the samples were divided into five groups of twelve each. The groups were, Group A (1% NaOCl), Group B (MCJ), Group C (Aloe vera), Group D (Propolis) and Group E (Saline). These groups were treated with passive ultrasonic irrigation (PUI) along with the respective irrigants. The root halves were processed for scanning electron microscopy. Three images (X2.5), coronal, middle and apical, were taken for the twelve root halves in each of the five groups. The images were randomized and biofilm coverage assessed independently by three calibrated examiners, using a four-point scoring system. 1% NaOCl with passive ultrasonic irrigation (PUI) was effective in completely removing E. faecalis biofilm and was superior to the natural irrigants like MCJ, Aloe vera and Propolis tested in this study. 1% NaOCl used along with passive ultrasonic irrigation was effective in completely removing E. faecalis biofilm when compared to natural irrigants (MCJ, Aloe Vera and Propolis).

  15. Converting Surface Irrigation to Pressurized Irrigation Systems and its Effecton Yield of OrangeTrees (Case Study:North of Khouzestan

    Directory of Open Access Journals (Sweden)

    M. Khorramian

    2017-01-01

    Full Text Available Introduction: North of the Khouzestan is one of the most important citrus production center. Usually border irrigation is used to irrigate citrus in this area. This system has generally low application efficiency. Several investigations in other arid region have demonstrated in addition to improved irrigation efficiency with low-volume pressurized irrigation systems, citrus trees have adapted with these new irrigation systems. However limited information exists on the performance of mature orchards converted from border surface irrigation to pressurized irrigation systems. Therefore, the current research was conducted to evaluate the feasibility of converting surface irrigation to pressurized irrigation systems on mature citrus trees in climate conditions of North Khouzestan. Materials and Methods: This study was conducted during three years at Safiabad Agricultural Research Center to evaluate the yield of citrus trees and the quality of fruits for two Marss and Valencia varieties which grow 7 years previously with surface irrigation and converted to pressurized irrigation systems. The treatments consisted of six irrigation methods including Overhead sprinkle irrigation (OHSI, Under tree sprinkle irrigation(UTSI, Trickle irrigation(TI(six 8 L/h Netafim emitters, Microjet irrigation (MI(two 180 microjet were located under canopy near of the trunk at opposite sides of trunk,Bubbler irrigation(BI(a single located under the canopy of each treeandSurface irrigation(SI method.Soil texture was clay loam well drained without salinity(ECe=0.69ds m-1, with 1.25 percent organic carbon. The experimental design was completely randomized design. The trees were irrigated during spring and summer seasons. For calculating irrigation water depth in TI, MI and BI systems, daily evaporation from a class A evaporation pan of the Safiabad weather station (nearby the experimental field was collected, and evapotranspiration of the citrus trees was calculated applying a

  16. Scheduling of Irrigation and Leaching Requirements

    Directory of Open Access Journals (Sweden)

    Amer Hassan Al-haddad

    2015-03-01

    Full Text Available Iraq depends mainly on Tigris and Euphrates Rivers to provide high percentage of agricultural water use for thousands years. At last years, Iraq is suffering from shortage in water resources due to global climate changes and unfair water politics of the neighboring countries, which affected the future of agriculture plans for irrigation, added to that the lack of developed systems of water management in the irrigation projects and improper allocation of irrigation water, which reduces water use efficiency and lead to losing irrigation water and decreasing in agricultural yield. This study aims at studying the usability of irrigation and leaching scheduling within the irrigating projects and putting a complete annual or seasonal irrigation program as a solution for the scarcity of irrigation water, the increase of irrigation efficiency, lessening the salinity in the projects and preparing an integral irrigation calendar through field measurements of soil physical properties and chemical for project selected and compared to the results of the irrigation scheduling and leaching with what is proposed by the designers. The process is accomplished by using a computer program which was designed by Water Resources Department at the University of Baghdad, with some modification to generalize it and made it applicable to various climatic zone and different soil types. Study area represented by large project located at the Tigris River, and this project was (Al-Amara irrigation project. Sufficient samples of project's soil were collected so as to identify soil physical and chemical properties and the salinity of soil and water as well as identifying the agrarian cycles virtually applied to this project. Finally, a comparison was conducted between the calculated water quantities and the suggested ones by the designers. The research results showed that using this kind of scheduling (previously prepared irrigation and leaching scheduling with its properties

  17. [Effects of different irrigations on the water physiological characteristics of Haloxylon ammodendron in Taklimakan Desert hinterland].

    Science.gov (United States)

    Xie, Ting-ting; Zhang, Xi-ming; Liang, Shao-min; Shan, Li-shan; Yang, Xiao-lin; Hua, Yong-hui

    2008-04-01

    By using heat-balance stem flow gauge and press chamber, the water physiological characteristics of Haloxylon ammodendron under different irrigations in Taklimakan Desert hinterland were measured and analyzed. The results indicated that the diurnal variation curve of H. ammodendron stem sap flow varied with irrigations. When irrigated 35 and 24.5 kg x plant(-1) once time, the diurnal variation of stem sap flow changed in single peak curve and the variation extent was higher; while irrigated 14 kg x plant(-1) once time, the diurnal variation changed in two-peak curve and the variation extent was small. With the decrease of irrigations, the average daily sap flow rate and the daily water consumption of H. ammodendron decreased gradually, the dawn and postmeridian water potential also had a gradual decrease, and the correlations of stem sap flow with total radiation, air temperature, relative humidity, and wind speed enhanced. Under different irrigations, the correlation between stem sap flow rate and total radiation was always the best.

  18. Movement of Irrigation Water in Soil from a Surface Emitter

    Directory of Open Access Journals (Sweden)

    Ibrahim Abbas Dawood

    2016-09-01

    Full Text Available rickle irrigation is one of the most conservative irrigation techniques since it implies supplying water directly on the soil through emitters. Emitters dissipate energy of water at the end of the trickle irrigation system and provide water at emission points. The area wetted by an emitter depends upon the discharge of emitter, soil texture, initial soil water content, and soil permeability. The objectives of this research were to predict water distribution profiles through different soils for different conditions and quantify the distribution profiles in terms of main characteristics of soil and emitter. The wetting patterns were simulated at the end of each hour for a total time of application of 12 hrs, emitter discharges of 0.5, 0.75, 1, 2, 3, 4, and 5 lph, and five initial volumetric soil water contents. Simulation of water flow from a single surface emitter was carried out by using the numerically-based software Hydrus-2D/3D, Version 2.04. Two approaches were used in developing formulas to predict the domains of the wetted pattern. In order to verify the results obtained by implementing the software Hydrus-2D/3D a field experiment was conducted to measure the wetted diameter and compare measured values with simulated ones. The results of the research showed that the developed formulas to express the wetted diameter and depth in terms of emitter discharge, time of application, and initial soil water content are very general and can be used with very good accuracy.

  19. Nucleus management with irrigating vectis

    Directory of Open Access Journals (Sweden)

    Srinivasan Aravind

    2009-01-01

    Full Text Available The main objective in modern cataract surgery is to achieve a better unaided visual acuity with rapid post-surgical recovery and minimal surgery-related complications. Early visual rehabilitation and better unaided vision can be achieved only by reducing the incision size. In manual small incision cataract surgery (MSICS, incision is between 5.5 to 7 mm. Once the nucleus is prolapsed into the anterior chamber, it can be extracted through the tunnel. Nucleus extraction with an irrigating vectis is a very simple technique, which combines mechanical and hydrostatic forces to express out the nucleus. This technique is time-tested with good results and more than 95% of nuclei in MSICS are extracted in this way offering all the merits of phacoemulsification with the added benefits of having wider applicability, better safety, shorter learning curve and lower cost.

  20. The Temporal Variation of Leaf Water Potential in Pistachio under Irrigated and Non-Irrigated Conditions

    Directory of Open Access Journals (Sweden)

    Yusuf AYDIN

    2014-09-01

    Full Text Available The present study was carried out in the experimental field of Pistachio Research Institute on pistachio trees which has uzun variety that was 30 years old. The aim of this research was to determine the Leaf Water Potential (LWP of Pistacia vera L. under irrigated and non-irrigated conditions. In the study, the leaf water potential of pistachio was investigated under fully irrigated and non irrigated conditions. The leaf water potential values were measured one day before and after irrigation by using pressure chamber technique at the beginning, mid and end of irrigation season. According to the results obtained from measurements, the LWP value at the beginning of the irrigation season was -3.7 MPa at noon time due to relatively high temperature for both treatments. At the time of pre-dawn and sunset, this value increased and reached to - 1.6 MPa due to relatively low temperature. In general, the LWP values during the mid of irrigation season, in the irrigated treatments, reached to almost -2.5 MPa in the non-irrigated treatment and the value was measured as -3.68 MPa.

  1. Aflaj’s Irrigation Water Demand/Supply Ratio: Two Case Studies

    Directory of Open Access Journals (Sweden)

    Abdullah Al-Ghafri

    2006-01-01

    Full Text Available Due to the geographical location of Oman in an arid zone, agricultural production depends fully on irrigation. The traditional irrigation systems (Aflaj, sing. falaj supply more than one third of water for agriculture. Falaj is defined in the context of this paper as a canal system which provides water for domestic and agricultural uses. Oman has 3,107 active Aflaj producing about 680 Mm3 of water per year. The main objective of this study was to estimate the irrigation performance of Aflaj in Oman. Falaj al-Dariz and al-Nujaid were chosen as case studies. Both Aflaj are located in an extremely arid environment, where the rainfall is low and evapotranspiration is high. The study utilized an approach to estimate the irrigation performance of Aflaj by considering the falaj as a single unit of irrigation. The irrigation demand/supply ratio (D/S was used in the analysis as a tool of evaluation. Date palm, the dominant crop irrigated by Aflaj, was selected for the analysis. In falaj al-Dariz the date palms were slightly under irrigated on a yearly basis. On a monthly basis, in winter, the D/S was below 0.6 and in summer it was above 1.0. On the other hand, falaj al-Nujaid was supplying too much water than the date palms needed all round the year. In winter the D/S ratio was as low as 0.25. Even in summer, the D/S ratio did not much exceed 1.0.

  2. Biological degradation of chernozems under irrigation

    Directory of Open Access Journals (Sweden)

    Oksana Naydyonova

    2014-12-01

    Full Text Available We studied the changes in the state of microbial cenosis of Ukraine’s chernozems under irrigation. Considerable part of Ukraine’s chernozems is located in the areas where humidification is insufficient and unstable. Irrigation is a soil-reclamation measure for chernozems of Ukrainian Forest-steppe and Steppe which enables getting the assured yield, especially vegetable and fodder crops. At the same time, irrigation is a powerful anthropogenic factor that affects the soil, causes a significant transformation of many of its properties and regimes including biological ones. Often these changes are negative. The purpose of our investigation was to identify changes in the state of microbial cenoses of chernozem soils under irrigation which depend on such factors as the quality of irrigation water, the duration and intensity of irrigation, the initial properties of soil, the structure of crop rotation, usage of fertilizing systems and agroameliorative techniques. We identified direction and evaluated a degree of changes in biological properties of chernozems under influence of irrigation in different agro-irrigational and soil-climatic conditions. In the long-term stationary field experiments we identified the following biological indices of irrigated soils and their non-irrigated analogues: a number of microorganisms which belong to main ecological-trophic groups, activity of soil enzymes (dehydrogenase, invertase, phenol oxidase, soil phytotoxic activity, cellulose destroying capacity of soil, indices of oligotrophy and mineralization, summary biological index (SBI and index of biological degradation (BDI. Results of researches showed that irrigation unbalanced the soil ecosystem and stipulated the forming of microbial cenosis with new parameters. Long-term intensive irrigation of typical chernozem (Kharkiv Region with fresh water under condition of 4-fields vegetable crop rotation led to the degradation changes of its microbial cenosis such as

  3. Irrigation Water Management in Latin America

    Directory of Open Access Journals (Sweden)

    Aureo S de Oliveira

    2009-12-01

    Full Text Available Latin American countries show a great potential for expanding their irrigated areas. Irrigation is important for strengthening local and regional economy and for enhancing food security. The present paper aimed at providing a brief review on key aspects of irrigation management in Latin America. Poor irrigation management can have great impact on crop production and on environment while good management reduces the waste of soil and water and help farmers maximizing their profits. It was found that additional research is needed to allow a better understanding of crop water requirements under Latin American conditions as well as to provide farmers with local derived information for irrigation scheduling. The advantages of deficit irrigation practices and the present and future opportunities with the application of remote sensing tools for water management were also considered. It is clear that due to the importance of irrigated agriculture, collaborative work among Latin American researchers and institutions is of paramount importance to face the challenges imposed by a growing population, environment degradation, and competition in the global market.

  4. The application of parallel wells to support the use of groundwater for sustainable irrigation

    Science.gov (United States)

    Suhardi

    2018-05-01

    The use of groundwater as a source of irrigation is one alternative in meeting water needs of plants. Using groundwater for irrigation requires a high cost because of the discharge that can be taken is limited. In addition, the use of large groundwater can cause environmental damage and social conflict. To minimize costs, maintain quality of the environment and to prevent social conflicts, it is necessary to innovate in the groundwater taking system. The study was conducted with an innovation of using parallel wells. Performance is measured by comparing parallel wells with a single well. The results showed that the use of parallel wells to meet the water needs of rice plants and increase the pump discharge up to 100%. In addition, parallel wells can reduce the influence radius of taking of groundwater compared to single well so as to prevent social conflict. Thus, the use of parallel wells can support the achievement of the use of groundwater for sustainable irrigation.

  5. Ancestral irrigation method by kanis in Bolivia

    Science.gov (United States)

    Roldán-Cañas, José; Chipana, René; Fátima Moreno-Pérez, María

    2015-04-01

    Irrigation in the Andean region is an ancient practice. For centuries, farmers were able to use the waters of rivers, lakes and springs to complement or supplement the scarce rainfall regime. The inter-Andean valleys of the Department of La Paz are the best areas for the study of traditional irrigation systems. This work has been carried out in the community of Jatichulaya located in te town of Charazani, 300 km from the city of La Paz, which lies 3250 meters above sea level. The annual rainfall ranges around 450 mm distributed mainly between the months of December to March. Therefore, water is needed to achieve adequate crop yields. The traditional irrigation system is done by the method of Kanis, consisting of a surface irrigation already developed by traditional Andean cultures of the country, in harmony with the ecological and productive characteristics of the area. Water enters the irrigation plot through a main channel (mama kani) from which the secondary channels (juchuy kanis) are derived. The fundamental characteristic of this irrigation is that these channels are open at the same time the water enters into the plot. The system works properly, adapting to the topography of the area. The irrigation method practiced in this community does not cause water erosion of soils because water management within the plot is based on the ancient knowledge of farmers following the contour lines. This practice allows good irrigation development and soil protection without causing any problems. However, it was evident a high use of labor in irrigation practice. Irrigation scheduling is done according to requests made by the irrigators in a given period. Delivering of water to the farmers is made by the so-called Water Agent (Agente de Aguas) or person in charge of the distribution of water. The Water Agent is elected annually and its functions include the maintenance and care of all system waterworks. The period between August and January is the highest water demand and

  6. Irrigation water sources and irrigation application methods used by U.S. plant nursery producers

    Science.gov (United States)

    Paudel, Krishna P.; Pandit, Mahesh; Hinson, Roger

    2016-02-01

    We examine irrigation water sources and irrigation methods used by U.S. nursery plant producers using nested multinomial fractional regression models. We use data collected from the National Nursery Survey (2009) to identify effects of different firm and sales characteristics on the fraction of water sources and irrigation methods used. We find that regions, sales of plants types, farm income, and farm age have significant roles in what water source is used. Given the fraction of alternative water sources used, results indicated that use of computer, annual sales, region, and the number of IPM practices adopted play an important role in the choice of irrigation method. Based on the findings from this study, government can provide subsidies to nursery producers in water deficit regions to adopt drip irrigation method or use recycled water or combination of both. Additionally, encouraging farmers to adopt IPM may enhance the use of drip irrigation and recycled water in nursery plant production.

  7. effect of deficit irrigation on growth and yield of okro

    African Journals Online (AJOL)

    User

    reduce the demand for irrigation water (Boland et al., 1993). Deficit irrigation is another way in which water use efficiency can be maximized for higher yields per unit of irrigation water. Stegman (1982) reported that the yield of maize, sprinkler irrigated to induce a 30 - 40 percent depletion of available water between.

  8. Using container weights to determine irrigation needs: A simple method

    Science.gov (United States)

    R. Kasten Dumroese; Mark E. Montville; Jeremiah R. Pinto

    2015-01-01

    Proper irrigation can reduce water use, water waste, and incidence of disease. Knowing when to irrigate plants in container nurseries can be determined by weighing containers. This simple method is quantifiable, which is a benefit when more than one worker is responsible for irrigation. Irrigation is necessary when the container weighs some target as a proportion of...

  9. Local land-atmosphere feedbacks limit irrigation demand

    Science.gov (United States)

    Decker, Mark; Ma, Shaoxiu; Pitman, Andy

    2017-05-01

    Irrigation is known to influence regional climate but most studies forecast and simulate irrigation with offline (i.e. land only) models. Using south eastern Australia as a test bed, we demonstrate that irrigation demand is fundamentally different between land only and land-atmosphere simulations. While irrigation only has a small impact on maximum temperature, the semi-arid environment experiences near surface moistening in coupled simulations over the irrigated regions, a feedback that is prevented in offline simulations. In land only simulations that neglect the local feedbacks, the simulated irrigation demand is 25% higher and the standard deviation of the mean irrigation rate is 60% smaller. These local-scale irrigation-driven feedbacks are not resolved in coarse-resolution climate models implying that use of these tools will overestimate irrigation demand. Future studies of irrigation demand must therefore account for the local land-atmosphere interactions by using coupled frameworks, at a spatial resolution that captures the key feedbacks.

  10. Analysis of Irrigation Water Quality at Kadawa Irrigation Project for Improved Productivity

    Directory of Open Access Journals (Sweden)

    AR Sanda

    2014-09-01

    Full Text Available In the face of water scarcity and the several negative consequences, such as water wastage, flooding, water logging, soil losses and production losses, conserving the finite amount of fresh water is a must. The quality of irrigation water must therefore be ascertained. The chemical quality of three sources of irrigation water from canal and drainage water, namely drainage water, fresh irrigation water from canal, and drainage/irrigation water mixture, were analyzed from Kadawa irrigation Project for year 2013 and 2014 cropping seasons, with the view to evaluating the potential risks associated with their use in irrigation and hence their suitability or otherwise for irrigation purposes. The analysis revealed that the use of drainage water alone for irrigation may result in problems associated with salinity, while a blend of drainage/irrigation water in the ratio of 1:1 is a viable means of water conservation and a good means of crop production. DOI: http://dx.doi.org/10.3126/ije.v3i3.11082 International Journal of Environment Vol.3(3 2014: 235-240

  11. 16. PRE-OPERATIVE BLADDER IRRIGATION

    African Journals Online (AJOL)

    Esem

    effectiveness of using preoperative bladder irrigation with 1% povidone iodine in reducing ... consenting patient who presented to the department of surgery for open ..... infections in a tertiary care center in south-western. Nigeria. International ...

  12. Deciphering groundwater quality for irrigation and domestic

    Indian Academy of Sciences (India)

    Groundwater quality; irrigation and domestic suitability; ionic balance, Suri I and II ... is important for groundwater planning and management in the study area. ... total hardness (TH), Piper's trilinear diagram and water quality index study.

  13. Parasitological Contamination of Wastewater Irrigated and Raw ...

    African Journals Online (AJOL)

    Tadesse

    Occurrence of infective stages of intestinal parasites on wastewater- irrigated vegetables ..... reported the health hazards of agricultural reuse of untreated wastewater through detection of .... State of knowledge in land treatment of wastewater.

  14. An improved delivery system for bladder irrigation.

    Science.gov (United States)

    Moslemi, Mohammad K; Rajaei, Mojtaba

    2010-10-05

    Occasionally, urologists may see patients requiring temporary bladder irrigation at hospitals without stocks of specialist irrigation apparatus. One option is to transfer the patient to a urology ward, but often there are outstanding medical issues that require continued specialist input. Here, we describe an improved system for delivering temporary bladder irrigation by utilizing readily available components and the novel modification of a sphygmomanometer blub. This option is good for bladder irrigation in patients with moderate or severe gross hematuria due to various causes. In this prospective study from March 2007 to April 2009, we used our new system in eligible cases. In this system, an irrigant bag with 1 L of normal saline was suspended 80 cm above the indwelled 3-way Foley catheter, and its drainage tube was inserted into the irrigant port of the catheter. To increase the flow rate of the irrigant system, we inserted a traditional sphygmomanometer bulb at the top of the irrigant bag. This closed system was used for continuous bladder irrigation (CBI) in patients who underwent open prostatectomy, transurethral resection of the prostate (TURP), or transurethral resection of the bladder (TURB). This high-pressure system is also used for irrigation during cystourethroscopy, internal urethrotomy, and transurethral lithotripsy. Our 831 eligible cases were divided into two groups: group 1 were endourologic cases and group 2 were open prostatectomy, TURP, and TURB cases. The maximum and average flow rates were evaluated. The efficacy of our new system was compared prospectively with the previous traditional system used in 545 cases. In group 1, we had clear vision at the time of endourologic procedures. The success rate of this system was 99.5%. In group 2, the incidence of clot retention decreased two fold in comparison to traditional gravity-dependent bladder flow system. These changes were statistically significant (P = 0.001). We did not observe any adverse

  15. Evaluation of Modern Irrigation Techniques with Brackish Water

    OpenAIRE

    Aboulila, Tarek Selim

    2012-01-01

    Modern irrigation techniques are becoming increasingly important in water-scarce countries especially in arid and semiarid regions. Higher crop production and better water use efficiency are usually achieved by drip irrigation as compared to other irrigation methods. Furthermore, by using drip irrigation simultaneously with brackish irrigation water, some of the water stress due to shortage of fresh water resources can be managed. The objective of the current study was to investigate the infl...

  16. Decision support system for surface irrigation design

    OpenAIRE

    Gonçalves, José M.; Pereira, L.S.

    2009-01-01

    The SADREG decision support system was developed to help decision makers in the process of design and selection of farm surface irrigation systems to respond to requirements of modernization of surface irrigation—furrow, basin, and border irrigation. It includes a database, simulation models, user-friendly interfaces, and multicriteria analysis models. SADREG is comprised of two components: design and selection. The first component applies database information, and through several si...

  17. System contemplations for precision irrigation in agriculture

    Science.gov (United States)

    Schubert, Martin J. W.

    2017-04-01

    This communication contemplates political, biological and technical aspects for efficient and profitable irrigation in sustainable agriculture. A standard for irrigation components is proposed. The need for many, and three-dimensionally distributed, soil measurement points is explained, thus enabling the control of humidity in selected layers of earth. Combined wireless and wired data transmission is proposed. Energy harvesting and storage together with mechanical sensor construction are discussed.

  18. Management of poor quality irrigation water

    International Nuclear Information System (INIS)

    Change, M.H.; Leghari, A.M.; Sipio, Q.A.

    2000-01-01

    The effect of poor quality drainage effluent on moderately saline sodic, medium textured soil at different growth stages of wheat and cotton is reported. The irrigation treatments were: I) All canal irrigations, II) one irrigation of 75 mm with saline drainage effluent (EC = 3 dS m1) after four weeks sowing of the crop, III) one irrigation of 75 mm with saline drainage effluent after seven weeks sowing of the crop, and IV) one irrigation of 75 mm with saline drainage effluent after ten weeks sowing of the crop. The treatments receiving saline water gave significant decrease in crop yields as compared to canal irrigation treatment. The higher yield of wheat and seed cotton was recorded T1 followed by T2, T3 and T4. The trend of produce was T1< T2< T3< T4 respectively. Electrical conductivity of the soil (Ece) in T1 was decreased and in other three treatments was increased, whereas, pH decreased in T1 and T2. The SAR of soil decreased in all the treatments as compared with initial values. Treatment receiving an irrigation with saline water after four weeks of sowing (T2) was better in reducing soil salinity as compared to treatments receiving such water after 7 or 10 weeks os sowing. Poor quality water (EC = 3 d Sm/sup -1/) can be managed for irrigation after four weeks of swing of crops provided certain soil and water management practices like good seed bed preparation and proper drainage measures are adopted. (author)

  19. Grower demand for sensor-controlled irrigation

    Science.gov (United States)

    Lichtenberg, Erik; Majsztrik, John; Saavoss, Monica

    2015-01-01

    Water scarcity is likely to increase in the coming years, making improvements in irrigation efficiency increasingly important. An emerging technology that promises to increase irrigation efficiency substantially is a wireless irrigation sensor network that uploads sensor data into irrigation management software, creating an integrated system that allows real-time monitoring and control of moisture status that has been shown in experimental settings to reduce irrigation costs, lower plant loss rates, shorten production times, decrease pesticide application, and increase yield, quality, and profit. We use an original survey to investigate likely initial acceptance, ceiling adoption rates, and profitability of this new sensor network technology in the nursery and greenhouse industry. We find that adoption rates for a base system and demand for expansion components are decreasing in price, as expected. The price elasticity of the probability of adoption suggests that sensor networks are likely to diffuse at a rate somewhat greater than that of drip irrigation. Adoption rates for a base system and demand for expansion components are increasing in specialization in ornamental production: growers earning greater shares of revenue from greenhouse and nursery operations are willing to pay more for a base system and are willing to purchase larger numbers of expansion components at any given price. We estimate that growers who are willing to purchase a sensor network expect investment in this technology to generate significant profit, consistent with findings from experimental studies.

  20. Antibacterial Efficacy of a New Sonic Irrigation Device for Root Canal Disinfection.

    Science.gov (United States)

    Neuhaus, Klaus W; Liebi, Melanie; Stauffacher, Simone; Eick, Sigrun; Lussi, Adrian

    2016-12-01

    Passive ultrasonic irrigation (PUI) is the most widespread method used to activate irrigation solutions. Concerns have been raised that PUI is less effective in curved root canals and is not passive at all. Our aim was to compare a novel passive sonic irrigation (PSI) device (6000 Hz) with PUI and manual irrigation (MI) with respect to their efficiency in removing different endodontic microorganisms from curved and straight root canals. We performed 2 experiments as follows. In a 3-day infection model, we included 8 groups of single or dual microbial species that were rinsed with 0.9% sodium chloride using PSI, PUI, or MI. Colony-forming units (CFUs) were counted after incubation, and log 10 transformations were performed for statistical comparisons. In a 21-d infection model, we tested the same irrigation protocols on 4 groups of microorganisms and used 1.5% sodium hypochlorite as an irrigant. Infection control samples were taken at day 0, 3, 5, and 7 after treatment and were subsequently reincubated. Using sodium chloride as an irrigant, the amount of reduction in CFUs compared with the negative control was approximately 3 log 10 units for PSI at 6000 Hz, 2 log 10 units for PUI, and 1 log 10 unit for MI. PSI reduced the microorganism CFUs significantly better than PUI. Using sodium hypochlorite led to a significant reduction in microorganism CFUs even with MI. After 3 days, compared with MI, microorganism regrowth significantly reduced after PSI and PUI treatment, but in these groups, in at least half of the samples, microorganisms were detectable after 7 days. PSI at 6000 Hz might be at least equal to PUI with respect to reduction of the microbial load in curved and straight root canals. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  1. Water deficit imposed by partial irrigation at different plant growth stages of common bean

    International Nuclear Information System (INIS)

    Calvache, M.; Reichardt, K.

    1995-01-01

    The purpose of this study was to identify specific growth stages of common bean crop, at which the plant is less sensitive to water stress so that irrigation can be omitted without significant decrease in biological nitrogen fixation and yield. Two field experiments were conducted at a University experiments station, Tumbaco, Pichincha, Ecuador, on a sandy loam soil ( Typic durustoll ). The climate is warm and dry ( mean air temperature 16 degree Celcius and mean relative humidity 74% ) during the cropping season and rainfall of 123 mm was recorded during the cropping period. The treatments consisted of combinations of 7 irrigation regimes ( I1 = all normal watering; I2 = all stres; I3 = traditional practice; I4 = single stress at vegetation; I5 flowering; I6 = yield formation and I7 = ripening stages ) and 2 levels of applied N ( 20 and 80 kg/ ha ). Differential irrigation was started after 3 uniform irrigations for germination and crop establishment. Soil moisture was monitored with a neutron probe down to 0.60 m depth, before and 24 h after each irrigation. Biological Nitrogen Fixation was calculated using the N- 15 metodology in the 20 kg N/ ha treatment. From the yield data, it can be concluded that treatments which had irrigation deficit had lower yield than those that had suplementary irrigation. The flowering stage was the most sensitive to number of pods and grain yield. Biological Nitrogen Fixation was significantly affected by water stress at flowering and formation stages. The crop water use efficiency ( kg/ m 3 ) was the lowest at flowering period and the yield response factor ( Ky ) was higher in treatments I2 ( all stress ) and I5 (stress at flowering ). Comparing with traditional practice by farmers of the region, only treatments I1 and I7 had 13 and 10 % higher crop water use effeciency. 15 tabs., 7 refs. ( Author )

  2. Efficient operation of a multi-purpose reservoir in Chile: Tradeoffs between irrigation and hydropower production

    Science.gov (United States)

    Gonzalez Cabrera, J. M., Sr.; Olivares, M. A.

    2015-12-01

    This study proposes a method to develop efficient operational policies for a reservoir the southern Chile. The main water uses in this system are hydropower and irrigation, with conflicting seasonal demands. The conflict between these two uses is currently managed through a so-called "irrigation agreement" which defines a series of operational conditions on the reservoir by restricting volumes used for power production depending on reservoir storage level. Other than that, the reservoir operation is driven by cost-minimization over the power grid. Recent evidence shows an increasing degree of conflict in this basin, which suggests that the static approach of irrigation agreements, might no longer be appropriate. Moreover, this agreement could be revised in light of decreased water availability. This problem poses a challenge related to the spatial scope of analysis. Thus, irrigation benefits are driven by decisions made within the basin, whereas hydropower benefits depend on the operation of the entire power grid. Exploring the tradeoffs between these two water uses involves modeling both scales. The proposed methodology integrates information from both a grid-wide power operations model and a basin-wide agro-economic model into a decision model for optimal reservoir operation. The first model, a hydrothermal coordination tool, schedules power production by each plant in the grid, and allows capturing technical and economic aspects to the operation of hydropower reservoirs. The agro-economic model incorporates economic features of irrigation in the basin, and allows obtaining irrigation water demand functions. Finally, the results of both models are integrated into a single model for optimal reservoir operation considering the tradeoffs between the two uses. The result of the joint operation of water resources, show a flexible coordination of uses, revealing the opportunity cost of irrigation, which it gives the possibility of negotiating transfers of water to

  3. Performing drip irrigation by the farmer managed Seguia Khrichfa irrigation system, Morocco

    NARCIS (Netherlands)

    Kooij, van der S.

    2016-01-01

    Drip irrigation is represented in literature and agricultural policies as a modern and water saving technology. Because this technology is often associated with ‘modern’ agriculture and development, it seems out-of-place in ‘traditional’ farmer managed irrigation systems (FMIS). Thinking along

  4. Irrigation Requirement Estimation Using Vegetation Indices and Inverse Biophysical Modeling

    Science.gov (United States)

    Bounoua, Lahouari; Imhoff, Marc L.; Franks, Shannon

    2010-01-01

    We explore an inverse biophysical modeling process forced by satellite and climatological data to quantify irrigation requirements in semi-arid agricultural areas. We constrain the carbon and water cycles modeled under both equilibrium, balance between vegetation and climate, and non-equilibrium, water added through irrigation. We postulate that the degree to which irrigated dry lands vary from equilibrium climate conditions is related to the amount of irrigation. The amount of water required over and above precipitation is considered as an irrigation requirement. For July, results show that spray irrigation resulted in an additional amount of water of 1.3 mm per occurrence with a frequency of 24.6 hours. In contrast, the drip irrigation required only 0.6 mm every 45.6 hours or 46% of that simulated by the spray irrigation. The modeled estimates account for 87% of the total reported irrigation water use, when soil salinity is not important and 66% in saline lands.

  5. ASPECTS OF DRIP IRRIGATION ON SLOPES

    Directory of Open Access Journals (Sweden)

    Oprea Radu

    2010-01-01

    Full Text Available Nowadays, water and its supply raise problems of strategic importance, of great complexity, being considered one of the keys to sustainable human development. Drip irrigation consists in the slow and controlled administration of water in the area of the root system of the plants for the purposes of fulfilling their physiological needs and is considered to be one of the variants of localized irrigation. Water is distributed in a uniform and slow manner, drop by drop, in a quantity and with a frequency that depend on the needs of the plant, thanks to the exact regulation of the water flow rate and pressure, as well as to the activation of the irrigation based on the information recorded by the tensiometer with regard to soil humidity. This method enables the exact dosage of the water quantity necessary in the various evolution stages of the plant, thus eliminating losses. By applying the irrigation with 5 liters of water per linear meter, at a 7 days interval, in the month of august, for a vine cultivated on a slope, in layers covered with black film and irrigated via dropping, soil humidity immediately after irrigation reaches its highest level, but within the limits of active humidity, on the line of the irrigation band. Three days later, the water content of the soil in the layer is relatively uniform, and, after this interval, it is higher in the points situated at the basis of the film. This technology of cultivation on slopes favors the accumulation, in the soil, of the water resulted from heavy rains and reduces soil losses as a result of erosion.

  6. Chemical colostomy irrigation with glyceryl trinitrate solution.

    Science.gov (United States)

    O'Bichere, A; Bossom, C; Gangoli, S; Green, C; Phillips, R K

    2001-09-01

    Colostomy irrigation may improve patient quality of life, but is time consuming. This study tests the hypothesis that irrigation with glyceryl trinitrate solution, by inducing gastrointestinal smooth muscle relaxation, may accelerate expulsion of stool by passive emptying, thereby reducing irrigation time. Fifteen colostomy irrigators(with more than 3 years' experience) performed washout with tap water compared with water containing 0.025 mg/kg glyceryl trinitrate. Fluid inflow time, total washout time, and hemodynamic changes occurring during glyceryl trinitrate irrigation were documented by an independent observer. Subjects recorded episodes of fecal leakage and overall satisfaction on a visual analog scale. Cramps, headaches, and whether or not a stoma bag was used were expressed as a percentage of number of irrigations. Comparison of fluid inflow time, total washout time, leakage, and satisfaction was by Wilcoxon's signed-rank test and headaches, cramps, and stoma bag use was by McNemar's test. Pulse rate (paired t-test), systolic and diastolic blood pressures (Wilcoxon's test) at 20 and 240 minutes after washout with glyceryl trinitrate solution were compared with baseline. Fifteen patients (9 female), with a mean age of 53 (31-73) years, provided 30 sessions (15 with water and 15 with glyceryl trinitrate). Medians (interquartile ranges) for water vs. glyceryl trinitrate were fluid inflow time 7 (4-10) vs. 4, (3-5; P = 0.001); total washout time 40 (30-55) vs. 21, (15-24; P colostomy irrigation time compared with the generally recommended tap water. Patients suffer fewer leakages and are highly satisfied, but side effects are potential drawbacks. Other colonoplegic agent solutions should now be evaluated.

  7. Irrigation Analysis Based on Long-Term Weather Data

    Directory of Open Access Journals (Sweden)

    James R. Mahan

    2016-08-01

    Full Text Available Irrigation management is based upon delivery of water to a crop in the correct amount and time, and the crop’s water need is determined by calculating evapotranspiration (ET using weather data. In 1994, an ET-network was established in the Texas High Plains to manage irrigation on a regional scale. Though producers used the ET-network, by 2010 public access was discontinued. Why did producers allow a valuable irrigation-management tool to be eliminated? Our objective was to analyze the effect of declining well capacities on the usefulness of cotton ET (ETc for irrigation. Thirty years (1975–2004 of daily ETc data were used to compare irrigation demand vs. irrigation responses at four locations, analyzed for multiple years and range of well capacities for three irrigation-intervals. Results indicated that when well capacities declined to the point that over-irrigation was not possible, the lower well capacities reduced the value of ETc in terms of the number of irrigations and total amount of water applied. At well capacities <1514 L·min−1 the fraction of irrigations for which ETc information was used to determine the irrigation amount was <35% across years and irrigation intervals. The value of an ETc-based irrigation may fall into disuse when irrigation-water supplies decline.

  8. Irrigation Training Manual. Planning, Design, Operation, and Management of Small-Scale Irrigation Systems [and] Irrigation Reference Manual. A Technical Reference to Be Used with the Peace Corps Irrigation Training Manual T0076 in the Selection, Planning, Design, Operation, and Management of Small-Scale Irrigation Systems.

    Science.gov (United States)

    Salazar, LeRoy; And Others

    This resource for trainers involved in irrigated agriculture training for Peace Corps volunteers consists of two parts: irrigation training manual and irrigation reference manual. The complete course should fully prepare volunteers serving as irrigation, specialists to plan, implement, evaluate and manage small-scale irrigation projects in arid,…

  9. The effect of irrigation time and type of irrigation fluid on cartilage surface friction.

    Science.gov (United States)

    Stärke, F; Awiszus, F; Lohmann, C H; Stärke, C

    2018-01-01

    It is known that fluid irrigation used during arthroscopic procedures causes a wash-out of lubricating substances from the articular cartilage surface and leads to increased friction. It was the goal of this study to investigate whether this effect depends on the time of irrigation and type of fluid used. Rabbit hind legs were used for the tests. The knees were dissected and the friction coefficient of the femoral cartilage measured against glass in a boundary lubrication state. To determine the influence of irrigation time and fluid, groups of 12 knees received either no irrigation (control), 15, 60 or 120min of irrigation with lactated Ringer's solution or 60min of irrigation with normal saline or a sorbitol/mannitol solution. The time of irrigation had a significant effect on the static and kinetic coefficient of friction (CoF), as had the type of fluid. Longer irrigation time with Ringer's solution was associated with increased friction coefficients (relative increase of the kinetic CoF compared to the control after 15, 60 and 120min: 16%, 76% and 88% respectively). The sorbitol/mannitol solution affected the static and kinetic CoF significantly less than either Ringer's or normal saline. The washout of lubricating glycoproteins from the cartilage surface and the associated increase of friction can be effectively influenced by controlling the time of irrigation and type of fluid used. The time of exposure to the irrigation fluid should be as short as possible and monosaccharide solutions might offer a benefit compared to salt solutions in terms of the resultant friction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Carbon and water footprints of irrigated corn and non-irrigated wheat in Northeast Spain.

    Science.gov (United States)

    Abrahão, Raphael; Carvalho, Monica; Causapé, Jesús

    2017-02-01

    Irrigation increases yields and allows several crops to be produced in regions where it would be naturally impossible due to limited rainfall. However, irrigation can cause several negative environmental impacts, and it is important to understand these in depth for the correct application of mitigation measures. The life cycle assessment methodology was applied herein to compare the main irrigated and non-irrigated crops in Northeast Spain (corn and wheat, respectively), identifying those processes with greater contribution to environmental impacts (carbon and water footprint categories) and providing scientifically-sound information to facilitate government decisions. Due to concerns about climate change and water availability, the methods selected for evaluation of environmental impacts were IPCC 2013 GWP (carbon footprint) and water scarcity indicator (water footprint). The area studied, a 7.38-km 2 basin, was monitored for 12 years, including the period before, during, and after the implementation of irrigation. The functional unit, to which all material and energy flows were associated with, was the cultivation of 1 ha, throughout 1 year. The overall carbon footprint for irrigated corn was higher, but when considering the higher productivity achieved with irrigation, the emissions per kilogram of corn decrease and finally favor this irrigated crop. When considering the water footprint, the volumes of irrigation water applied were so high that productivity could not compensate for the negative impacts associated with water use in the case of corn. Nevertheless, consideration of productivities and gross incomes brings the results closer. Fertilizer use (carbon footprint) and irrigation water (water footprint) were the main contributors to the negative impacts detected.

  11. Water quality in irrigation and drainage networks of Thessaloniki plain in Greece related to land use, water management, and agroecosystem protection.

    Science.gov (United States)

    Litskas, Vassilis D; Aschonitis, Vassilis G; Antonopoulos, Vassilis Z

    2010-04-01

    A representative agricultural area of 150 ha located in a protected ecosystem (Axios River Delta, Thermaikos Gulf-N. Aegean, Greece) was selected in order to investigate water quality parameters [pH, electrical conductivity (EC(w)), NO(3)-N, NH(4)-N, total phosphorus (TP)] in irrigation and drainage water. In the study area, the cultivated crops are mainly rice, maize, cotton, and fodder. Surface irrigation methods are applied using open channels network, and irrigation water is supplied by Axios River, which is facing pollution problems. The return flow from surface runoff and the surplus of irrigation water are collected to drainage network and disposed to Thermaikos Gulf. A 2-year study (2006-2007) was conducted in order to evaluate the effects of land use and irrigation water management on the drainage water quality. The average pH and NO(3)-N concentration was higher in the irrigation water (8.0 and 1.3 mg/L, respectively) than that in the drainage water (7.6 and 1.0 mg/L, respectively). The average EC(W), NH(4)-N, and TP concentration was higher in the drainage water (1,754 muS/cm, 90.3 microg/L, and 0.2 mg/L, respectively) than that in the irrigation water (477.1 muS/cm, 46.7 microg/L, and 0.1 mg/L, respectively). Average irrigation efficiency was estimated at 47% and 51% in 2006 and 2007 growing seasons (April-October), respectively. The loads of NO(3)-N in both seasons were higher in the irrigation water (35.1 kg/ha in 2006 and 24.9 kg/ha in 2007) than those in the drainage water (8.1 kg/ha in 2006 and 7.6 kg/ha in 2007). The load of TP was higher in the irrigation water in season 2006 (2.8 kg/ha) than that in the drainage water (1.1 kg/ha). Total phosphorus load in 2007 was equal in irrigation and drainage water (1.2 kg/ha). Wetland conditions, due to rice irrigation regime, drainage network characteristics, and the crop distribution in the study area, affect the drainage water ending in the protected ecosystem of Thermaikos Gulf.

  12. Changes in soil quality indicators under long-term sewage irrigation in a sub-tropical environment

    Science.gov (United States)

    Masto, Reginald Ebhin; Chhonkar, Pramod K.; Singh, Dhyan; Patra, Ashok K.

    2009-01-01

    Though irrigation with sewage water has potential benefits of meeting the water requirements, the sewage irrigation may mess up to harm the soil health. To assess the potential impacts of long-term sewage irrigation on soil health and to identify sensitive soil indicators, soil samples were collected from crop fields that have been irrigated with sewage water for more than 20 years. An adjacent rain-fed Leucaena leucocephala plantation system was used as a reference to compare the impact of sewage irrigation on soil qualities. Soils were analyzed for different physical, chemical, biological and biochemical parameters. Results have shown that use of sewage for irrigation improved the clay content to 18-22.7%, organic carbon to 0.51-0.86% and fertility status of soils. Build up in total N was up to 2,713 kg ha-1, available N (397 kg ha-1), available P (128 kg ha-1), available K (524 kg ha-1) and available S (65.5 kg ha-1) in the surface (0.15 m) soil. Long-term sewage irrigation has also resulted a significant build-up of DTPA extractable Zn (314%), Cu (102%), Fe (715%), Mn (197.2), Cd (203%), Ni (1358%) and Pb (15.2%) when compared with the adjacent rain-fed reference soil. Soils irrigated with sewage exhibited a significant decrease in microbial biomass carbon (-78.2%), soil respiration (-82.3%), phosphatase activity (-59.12%) and dehydrogenase activity (-59.4%). An attempt was also made to identify the sensitive soil indicators under sewage irrigation, where microbial biomass carbon was singled out as the most sensitive indicator.

  13. Municipal Treated Wastewater Irrigation: Microbiological Risk Evaluation

    Directory of Open Access Journals (Sweden)

    Antonio Lonigro

    2008-06-01

    Full Text Available Municipal wastewater for irrigation, though treated, can contain substances and pathogens toxic for humans and animals. Pathogens, although not harmful from an agronomical aspect, undoubtedly represent a major concern with regards to sanitary and hygienic profile. In fact, vegetable crops irrigated with treated wastewater exalt the risk of infection since these products can also be eaten raw, as well as transformed or cooked. Practically, the evaluation of the microbiological risk is important to verify if the microbial limits imposed by law for treated municipal wastewater for irrigation, are valid, thus justifying the treatments costs, or if they are too low and, therefore, they don’ t justify them. Different probabilistic models have been studied to assess the microbiological risk; among these, the Beta-Poisson model resulted the most reliable. Thus, the Dipartimento di Scienze delle Produzioni Vegetali of the University of Bari, which has been carrying out researches on irrigation with municipal filtered wastewater for several years, considered interesting to verify if the microbial limits imposed by the italian law n.185/03 are too severe, estimating the biological risk by the probabilistic Beta-Poisson model. Results of field trials on vegetable crops irrigated by municipal filtered wastewater, processed by the Beta-Poisson model, show that the probability to get infection and/or illness is extremely low, and that the actual italian microbial limits are excessively restrictive.

  14. Automated Irrigation System for Greenhouse Monitoring

    Science.gov (United States)

    Sivagami, A.; Hareeshvare, U.; Maheshwar, S.; Venkatachalapathy, V. S. K.

    2018-06-01

    The continuous requirement for the food needs the rapid improvement in food production technology. The economy of food production is mainly dependent on agriculture and the weather conditions, which are isotropic and thus we are not able to utilize the whole agricultural resources. The main reason is the deficiency of rainfall and paucity in land reservoir water. The continuous withdrawal water from the ground reduces the water level resulting in most of the land to come under the arid. In the field of cultivation, use of appropriate method of irrigation plays a vital role. Drip irrigation is a renowned methodology which is very economical and proficient. When the conventional drip irrigation system is followed, the farmer has to tag along the irrigation timetable, which is different for diverse crops. The current work makes the drip irrigation system an automated one, thereby the farmer doesn't want to follow any timetable since the sensor senses the soil moisture content and based on it supplies the water. Moreover the practice of economical sensors and the simple circuitry makes this project as an inexpensive product, which can be bought even by an underprivileged farmer. The current project is best suited for places where water is limited and has to be used in limited quantity.

  15. Automated Irrigation System for Greenhouse Monitoring

    Science.gov (United States)

    Sivagami, A.; Hareeshvare, U.; Maheshwar, S.; Venkatachalapathy, V. S. K.

    2018-03-01

    The continuous requirement for the food needs the rapid improvement in food production technology. The economy of food production is mainly dependent on agriculture and the weather conditions, which are isotropic and thus we are not able to utilize the whole agricultural resources. The main reason is the deficiency of rainfall and paucity in land reservoir water. The continuous withdrawal water from the ground reduces the water level resulting in most of the land to come under the arid. In the field of cultivation, use of appropriate method of irrigation plays a vital role. Drip irrigation is a renowned methodology which is very economical and proficient. When the conventional drip irrigation system is followed, the farmer has to tag along the irrigation timetable, which is different for diverse crops. The current work makes the drip irrigation system an automated one, thereby the farmer doesn't want to follow any timetable since the sensor senses the soil moisture content and based on it supplies the water. Moreover the practice of economical sensors and the simple circuitry makes this project as an inexpensive product, which can be bought even by an underprivileged farmer. The current project is best suited for places where water is limited and has to be used in limited quantity.

  16. Diversity and community structure of cyanobacteria and other microbes in recycling irrigation reservoirs.

    Science.gov (United States)

    Kong, Ping; Richardson, Patricia; Hong, Chuanxue

    2017-01-01

    Recycling irrigation reservoirs (RIRs) are emerging aquatic environments of global significance to crop production, water conservation and environmental sustainability. This study characterized the diversity and population structure of cyanobacteria and other detected microbes in water samples from eight RIRs and one adjacent runoff-free stream at three ornamental crop nurseries in eastern (VA1 and VA3) and central (VA2) Virginia after cloning and sequencing the 16S rRNA gene targeting cyanobacteria and chloroplast of eukaryotic phytoplankton. VA1 and VA2 utilize a multi-reservoir recycling irrigation system with runoff channeled to a sedimentation reservoir which then overflows into transition and retention reservoirs where water was pumped for irrigation. VA3 has a single sedimentation reservoir which was also used for irrigation. A total of 208 operational taxonomic units (OTU) were identified from clone libraries of the water samples. Among them, 53 OTUs (358 clones) were cyanobacteria comprising at least 12 genera dominated by Synechococcus species; 59 OTUs (387 clones) were eukaryotic phytoplankton including green algae and diatoms; and 96 were other bacteria (111 clones). Overall, cyanobacteria were dominant in sedimentation reservoirs, while eukaryotic phytoplankton and other bacteria were dominant in transition/retention reservoirs and the stream, respectively. These results are direct evidence demonstrating the negative impact of nutrient-rich horticultural runoff, if not contained, on natural water resources. They also help in understanding the dynamics of water quality in RIRs and have practical implications. Although both single- and multi-reservoir recycling irrigation systems reduce the environmental footprint of horticultural production, the former is expected to have more cyanobacterial blooming, and consequently water quality issues, than the latter. Thus, a multi-reservoir recycling irrigation system should be preferred where feasible.

  17. INVENTORY OF IRRIGATED RICE ECOSYSTEM USING POLARIMETRIC SAR DATA

    Directory of Open Access Journals (Sweden)

    P. Srikanth

    2012-08-01

    Full Text Available An attempt has been made in the current study to assess the potential of polarimetric SAR data for inventory of kharif rice and the major competing crop like cotton. In the process, physical process of the scattering mechanisms occurring in rice and cotton crops at different phonological stages was studied through the use of temporal Radarsat 2 Fine quadpol SAR data. The temporal dynamics of the volume, double and odd bounce, entropy, anisotropy, alpha parameters and polarimertic signatures, classification through isodata clustering and Wishart techniques were assessed. The Wishart (H-a classification showed higher overall as well as rice and cotton crop accuracies compared to the isodata clustering from Freeman 3-component decomposition. The classification of temporal SAR data sets independently showed that the rice crop forecasting can be advanced with the use of appropriate single date polarimetric SAR data rather than using temporal SAR amplitude data sets with the single polarization in irrigated rice ecosystems

  18. Constructed wetland attenuation of nitrogen exported in subsurface drainage from irrigated and rain-fed dairy pastures.

    Science.gov (United States)

    Tanner, C C; Nguyen, M L; Sukias, J P S

    2005-01-01

    Nitrogen removal performance is reported for constructed wetlands treating subsurface drainage from irrigated and rain-fed dairy pastures in North Island, New Zealand. Flow-proportional sampling of inflow and outflow concentrations were combined with continuous flow records to calculate mass balances for the wetlands. Drainage flows from the irrigated catchment were 2.5-4 fold higher and N exports up to 5 fold higher per unit area than for the rain-fed catchment. Hydraulic and associated N loadings to the wetlands were highly pulsed, associated with rainfall, soil water status, and irrigation events. Transient pulses of organic nitrogen were an important form of N loss from the rain-fed landscape in the first year, and were very effectively removed in the wetland (> 90%). Median nitrate concentrations of approximately 10 g m(-3) in the drainage inflows were reduced by 15-67% during passage through the wetlands and annual nitrate-N loads by 16-61% (38-31 7 g N m(-2)y(-1)). Generation in the wetlands of net ammoniacal-N and organic-N (irrigated site) partially negated reduction in nitrate-N loads. The results show that constructed wetlands comprising 1-2% of catchment area can provide moderate reductions in TN export via pastoral drainage, but performance is markedly influenced by variations in seasonal loading and establishment/maturation factors.

  19. Potato yield and yield structure depending on irrigation

    Directory of Open Access Journals (Sweden)

    Milić Stanko

    2010-01-01

    Full Text Available In the agroclimatic conditions of the Vojvodina Province, the application of an economic water regime and modern technology is necessary for stable and intensive potato production. A two-year experiment on calcareous chernozem was carried out to determine how irrigation and different pre-irrigation soil moisture affect potato yield and distribution of tuber fraction in the potato yield. The block-design trial had four replicates and was adapted for sprinkler irrigation conditions. It included four treatments: irrigation with pre-irrigation moisture levels of 60 % of field water capacity (FC, irrigation with pre-irrigation moisture levels of 70 % (FC, irrigation with pre-irrigation moisture levels of 80% (FC, and a non-irrigated control treatment. Irrigation significantly increased the yield of potato, which increased from 37.27 % to 75.86 %. Under irrigation, the percentage of small fractions decreased in favour of the 55 mm one, or fractions above the 45-55 mm range. On average, irrigated treatments produced significantly more tubers than the conditions of natural water supply. .

  20. Sediment Transport Model for a Surface Irrigation System

    Directory of Open Access Journals (Sweden)

    Damodhara R. Mailapalli

    2013-01-01

    Full Text Available Controlling irrigation-induced soil erosion is one of the important issues of irrigation management and surface water impairment. Irrigation models are useful in managing the irrigation and the associated ill effects on agricultural environment. In this paper, a physically based surface irrigation model was developed to predict sediment transport in irrigated furrows by integrating an irrigation hydraulic model with a quasi-steady state sediment transport model to predict sediment load in furrow irrigation. The irrigation hydraulic model simulates flow in a furrow irrigation system using the analytically solved zero-inertial overland flow equations and 1D-Green-Ampt, 2D-Fok, and Kostiakov-Lewis infiltration equations. Performance of the sediment transport model was evaluated for bare and cropped furrow fields. The results indicated that the sediment transport model can predict the initial sediment rate adequately, but the simulated sediment rate was less accurate for the later part of the irrigation event. Sensitivity analysis of the parameters of the sediment module showed that the soil erodibility coefficient was the most influential parameter for determining sediment load in furrow irrigation. The developed modeling tool can be used as a water management tool for mitigating sediment loss from the surface irrigated fields.

  1. Coil irrigation in sugar cane (Saccharum officinarum

    Directory of Open Access Journals (Sweden)

    Jesús Sánchez Gutiérrez

    2016-01-01

    Full Text Available This study was made at the Basic Seed Bank of the Local Sugar Cane Research Station for the Mideastern Cuba, based in Camaguey, on brown carbonate soil, between 2013 and 12014. Coil irrigation was applied to meet the water requirements for the crop, according to the edafoclimatic conditions and the different phenological phases it has. The Savo method was used to determine useful rain water. Adjustment and complementation of the irrigation program was based on indicators that characterize the exploitation scheme. The machine´s working parameters were determined to meet the water needs, and increase crop´s overall yields. The evaluations and results achieved have contributed to new proposals for management and operation of coil irrigation, and they are important to increase its efficiency.

  2. Critical values for unit root tests in seasonal time series

    NARCIS (Netherlands)

    Ph.H.B.F. Franses (Philip Hans); B. Hobijn (Bart)

    1997-01-01

    textabstractIn this paper, we present tables with critical values for a variety of tests for seasonal and non-seasonal unit roots in seasonal time series. We consider (extensions of) the Hylleberg et al. and Osborn et al. test procedures. These extensions concern time series with increasing seasonal

  3. Crop sensors for automation of in-season nitrogen application

    Science.gov (United States)

    Crop canopy reflectance sensing can be used to assess in-season crop nitrogen (N) health for automatic control of N fertilization. Typically, sensor data are processed to an established index, such as the Normalized Difference Vegetative Index (NDVI) and differences in that index from a well-fertili...

  4. The Jump Training Program. In Season Conditioning for Women's Basketball.

    Science.gov (United States)

    Hannam, Sue; And Others

    1988-01-01

    Women athletes have been successful in maintaining and/or increasing their conditioning and vertical jump levels when they participate in the in-season circuit training program described in this article. An exercise guide, sample individual score card, and photos of women practicing the exercises are included. (IAH)

  5. Dwarf cashew growth irrigated with saline waters

    Directory of Open Access Journals (Sweden)

    Hugo Orlando Carvallo Guerra

    2009-12-01

    Full Text Available The cashew production is one of the most important agricultural activities from the social-economical viewpoint for the North East of Brazil; besides to produce a great deal of hand labor, it is very important as an exporting commodity. The inadequate use of irrigation in the semi arid regions of the North East of Brazil has induced soil salinization and consequently problems for the irrigated agriculture. In spite of this, few works have been conducted to study the effect of saline stress on the growth and development of the cashew. Because of the lack of information for this crop, an experiment was conducted to study the effect of salinity stress on the phytomass production and nutrient accumulation on the different organs of the precocious dwarf cashew (Anacardium occidentale L. clone CCP76. The study was conducted under controlled conditions using as statistical scheme a randomized block design factorial with six replicates. Five salinity treatments were considered for the irrigation water (electrical conductivities of 0.8, 1.6, 2.4, 3.2 and 4.0 dS m-1 at 25oC. The increasing in salinity of the irrigation water reduced the phytomass at different organs of the studied plant. The nitrogen, phosphorus, potassium, chloride and sodium in the plant varied with the salinity of the irrigation water according with the part of the plant analyzed; in some parts increased, in others decreased, in others increased initially and decreased afterwards, and finally, in other part of the plant the salinity of the irrigation water did not affect the nutrient concentration.

  6. Contribution to the improvement of irrigation management practices through water - deficit irrigation

    International Nuclear Information System (INIS)

    Bazza, M.

    1995-01-01

    The study aimed at identifying irrigation management practices which could result in water savings through -water deficit irrigation. Two field experiments, one on wheat and the other on sugar beet, were conducted and consisted of refraining from supplying water during specific stages of the cycle so as to identy the period(s) during which water deficit would have a limited effect on crop production. In the case of wheat, high water deficit occurred during the early and during these stages was the most beneficial for the crop. However, one water application during the tillering stage allowed the yield to be lower only to that of the treatement with three irrigations. Irrigation during the stage of grain filling caused the kernel weight to be as high as under three irrigations. The lowest value corresponded to the treatement with one irrigation during grain filling and that under rainfed conditions. For sugar beet, when water stress was was applied early in the crop cycle, its effect could be almost entirely recovered with adequate watering during the rest of the growing season. On the opposite, good watering early in cycle, followed by a stress, resulted in the second lowest yield. Water deficit during the maturity stage had also a limited effect on yield. The most crucial periods for adequate watering were which correspond to late filiar development and root growth which coincided with the highest water requirements period. For the same amount of water savings through deficit irrigation, it was better to partition the stress throughout the cycle than during the critical stages of the crop. However, at the national level, it would have been more important to practice deficit irrigation and the irrigated area. For both crops, high yields as high as water - use efficiency values could have been obtained. 8 tabs; 5 refs ( Author )

  7. Evaluation of mulched drip irrigation for cotton in arid Northwest China

    NARCIS (Netherlands)

    Wang, Z.; Jin, M.; Simunek, J.; van Genuchten, M.T.

    2014-01-01

    Field experiments were conducted in arid Southern Xinjiang, Northwest China, for 3 years to evaluate sustainable irrigation regimes for cotton. The experiments involved mulched drip irrigation during the growing season and flood irrigation afterward. The drip irrigation experiments included control

  8. Strategy of Irrigation Branch in Russia

    Science.gov (United States)

    Zeyliger, A.; Ermolaeva, O.

    2012-04-01

    At this moment, at the starting time of the program on restoration of a large irrigation in Russia till 2020, the scientific and technical community of irrigation branch does not have clear vision on how to promote a development of irrigated agriculture and without repeating of mistakes having a place in the past. In many respects absence of a vision is connected to serious backlog of a scientific and technical and informational and technological level of development of domestic irrigation branch from advanced one. Namely such level of development is necessary for the resolving of new problems in new conditions of managing, and also for adequate answers to new challenges from climate and degradation of ground & water resources, as well as a rigorous requirement from an environment. In such important situation for irrigation branch when it is necessary quickly generate a scientific and technical politics for the current decade for maintenance of translation of irrigated agriculture in the Russian Federation on a new highly effective level of development, in our opinion, it is required to carry out open discussion of needs and requirements as well as a research for a adequate solutions. From political point of view a framework organized in FP6 DESIRE 037046 project is an example of good practice that can serve as methodical approach how to organize and develop such processes. From technical point of view a technology of operational management of irrigation at large scale presents a prospective alternative to the current type of management based on planning. From point of view ICT operational management demands creation of a new platform for the professional environment of activity. This platform should allow to perceive processes in real time, at their partial predictability on signals of a straight line and a feedback, within the framework of variability of decision making scenarious, at high resolution and the big ex-awning of sensor controls and the gauges

  9. to Irrigation Intervals and Plant Density in Zuru, Northern Guinea

    African Journals Online (AJOL)

    ISSN 0794-5698. Response of Onion (Allium cepa L.) to Irrigation Intervals and Plant Density in ... The treatments were laid out in a split plot design with three replications. Irrigation ..... System and Agronomic Practice in. Tropical Climates.

  10. Low Cost Constant – Head Drip Irrigation Emitter for Climate ...

    African Journals Online (AJOL)

    Low Cost Constant – Head Drip Irrigation Emitter for Climate Change Adaptation in Nigeria: Engineering Design and Calibration. ... The drip system comprises of abarrel, sub-main line, lateral lines, tubes and emitters, it can irrigate140 crop ...

  11. Influence of local topography on precision irrigation management

    Science.gov (United States)

    Precision irrigation management is currently accomplished using spatial information about soil properties through soil series maps or electrical conductivity (EC measurements. Crop yield, however, is consistently influenced by local topography, both in rain-fed and irrigated environments. Utilizing ...

  12. The Reticulation Irrigation Scheme at Sankana, Upper West Region ...

    African Journals Online (AJOL)

    farmers utilizing the irrigation project are food secure. ... The effects of ... Often, lack of maintenance, bad management and financial difficulties decrease the ...... and Mushunje A. (2010), 'Analysis of Irrigation Development Post Fast Track Land ...

  13. Modernisation strategy for National Irrigation Systems in the Philippines

    NARCIS (Netherlands)

    Delos Reyes, Mona Liza Fortunado

    2017-01-01

    The performance of publicly funded canal irrigation systems or more commonly called national irrigation systems (NIS) in the Philippines remained below expectations despite considerable system rehabilitation and improvement efforts. The continued suboptimal performances were attributed to

  14. Evaluation some Forage Legumes in Limited Irrigation Condition

    Directory of Open Access Journals (Sweden)

    Hassan Moniri Far

    2015-11-01

    Full Text Available Forage legumes respond differently to limited irrigation regimes. Their evaluation may, thus, help to select drought tolerant types for limited irrigation conditions. In this study four type of forage legume were studied for two years in Tikma-Dash Research Station of East Azarbaijan Agricultural and Natural Research Center, Tabriz, Iran, in a randomized complete block design using split-plot experiment in 2011-2013 years. Irrigation regimes (without irrigation, one irrigation and two irrigations were assigned to main plots and four forage types (hairy vetch, grass pea, Pannonica sativa and lathyrus were assigned to subplots. The results of analysis of variance showed that the effect of irrigation on plant height, number of shoots, leaf area and plant fresh and dry weights were not significant. Howere, legume types affected these traits significantly (P≤0.01. The effect of irrigation levels and legume types on protein content of hay were significant (P

  15. Automated irrigation systems for wheat and tomato crops in arid ...

    African Journals Online (AJOL)

    2017-04-02

    Apr 2, 2017 ... Many methods have been described and sensors developed to manage irrigation ... time, and automated irrigation systems based on crop water needs can .... output components, and a software program for decision support.

  16. Heavy metals accumulation in edible part of vegetables irrigated ...

    African Journals Online (AJOL)

    Hassana Ibrahim Mustapha

    water quality and permissible levels of metals in food and water. It revealed that the heavy .... irrigation with partially treated or untreated sewage. This was reported by .... Reuse of domestic grey water for irrigation of food crops, unpublished ...

  17. Wireless sensor networks for canopy temperature sensing and irrigation management

    Science.gov (United States)

    For researchers, canopy temperature measurements have proven useful in characterizing crop water stress and developing protocols for irrigation management. Today, there is heightened interest in using remote canopy temperature measurements for real-time irrigation scheduling. However, without the us...

  18. Is the Revitalisation of Smallholder Irrigation Schemes (RESIS ...

    African Journals Online (AJOL)

    2013-09-30

    Sep 30, 2013 ... including rainwater harvesting, flood recession, flood water spreading, river ... Smallholder irrigation systems can comprise farmers who use shared or ...... on Irrigation and Drainage, 15-17 November 2006, Aventura. Swadini.

  19. Economic Analysis of Crop Production under Jibiya Irrigation Project ...

    African Journals Online (AJOL)

    Majority of the farmers were married and can read and write. Most of ... The performance of the farmers, though ... holder irrigation dependent on the shadoof system of lifting water as .... implies that in Jibiya Irrigation Project, women were not.

  20. Performance of arthroscopic irrigation systems assessed with automatic blood detection

    NARCIS (Netherlands)

    Tuijthof, G. J. M.; de Vaal, M. M.; Sierevelt, I. N.; Blankevoort, L.; van der List, M. P. J.

    2011-01-01

    During arthroscopies, bleeding episodes occur as a result of tissue damage. Irrigation systems assist in minimizing these disturbances. The performance of three arthroscopic irrigation systems in clearing bleeding episodes was evaluated objectively. One surgeon performed 99 shoulder arthroscopies

  1. Impact of upstream industrial effluents on irrigation water quality ...

    African Journals Online (AJOL)

    Impact of upstream industrial effluents on irrigation water quality, soils and ... Knowledge of irrigation water quality is critical to predicting, managing and reducing salt ... Presence of heavy metals in concentration higher than the recommended ...

  2. Irrigation of steppe soils in the south of Russia: Problems and solutions (Analysis of Irrigation Practices in 1950-1990)

    Science.gov (United States)

    Minashina, N. G.

    2009-07-01

    Experience in irrigation of chernozems in the steppe zone of Russia for a period from 1950 to 1990 is analyzed. By the end of this period and in the subsequent years, the areas under irrigation reduced considerably, and the soil productivity worsened. This was caused by the improper design of irrigation systems, on the one hand, and by the low tolerance of chernozems toward increased moistening upon irrigation, on the other hand. The analysis of the factors and regimes of soil formation under irrigation conditions shows that irrigation-induced changes in the soil hydrology also lead to changes in the soil physicochemical, biochemical, and other properties. In particular, changes in the composition of exchangeable cations lead to the development of solonetzic process. In many areas, irrigation of chernozems was accompanied by the appearance of solonetzic, vertic, saline, and eroded soils. The development of soil degradation processes is described. In general, the deterioration of irrigated chernozems was related to the absence of adequate experience in irrigation of steppe soils, unskilled personnel, improper regime of irrigation, and excessively high rates of watering. In some cases, the poor quality of irrigation water resulted in the development of soil salinization and alkalization. To improve the situation, the training of personnel is necessary; the strategy of continuous irrigation should be replaced by the strategy of supplementary irrigation in the critical periods of crop development.

  3. Green and blue water footprint reduction in irrigated agriculture: effect of irrigation techniques, irrigation strategies and mulching

    NARCIS (Netherlands)

    Chukalla, Abebe Demissie; Krol, Martinus S.; Hoekstra, Arjen Ysbert

    2015-01-01

    Consumptive water footprint (WF) reduction in irrigated crop production is essential given the increasing competition for freshwater. This study explores the effect of three management practices on the soil water balance and plant growth, specifically on evapotranspiration (ET) and yield (Y) and

  4. Drip Irrigation for Commercial Vegetable and Fruit Production

    OpenAIRE

    Maughn, Tiffany; Allen, Niel; Drost, Dan

    2017-01-01

    Drip irrigation is a highly efficient irrigation method well suited to many fruit and vegetable row crops. Drip tubing or tape discharges water to the soil through emitters positioned close to the plant. The drip tubing can be placed uncovered on the soil surface, under plastic mulch, buried in the soil, or suspended above the ground (e.g., on a trellis system). Water application rate is relatively low and irrigations are usually frequent. Properly designed and maintained drip-irrigation syst...

  5. Ring Irrigation System (RIS) design through customer preference representation

    OpenAIRE

    Ridwan Infandra I.Z.; Rianmora Suchada; Werawatganon Siwat

    2018-01-01

    In agricultural field, irrigation is one of the most interesting considerations affecting the rate of plant growth and development. Micro-irrigation as the dripping or sprinkle method is one of the irrigation types that applies the small amount of water for fulfilling the humidity requirement. The most important factors affecting the demand of water for plants are soil conditions and effect of climatic factors. With less human labour required, to improve the irrigation method from the recent ...

  6. The management perspective on the performance of the irrigation subsector

    OpenAIRE

    Nijman, C.

    1993-01-01

    INVESTMENT IN IRRIGATION has been immense in the past. Estimated average annual investments of US$ 15 billion makes irrigation the largest subsector of the agricultural sector, that is itself by far the largest sector of development investment. Since the mid-1960s the awareness spread that the performance of irrigation investments was far below its potential. The size of this underperformance is well represented by Seckler's alarming conclusion that the average irrigation investment costs twi...

  7. Mapping Irrigation Potential in the Upper East Region of Ghana

    Science.gov (United States)

    Akomeah, E.; Odai, S. N.; Annor, F. O.; Adjei, K. A.; Barry, B.

    2009-04-01

    The Upper East Region together with the other two regions in Northern Ghana (Upper West and Northern Region) is seen as the locus of perennial food deficit (GPRS, 2003). Despite, the provision of over 200 small scale dams and various mechanisms aimed at poverty alleviation, the region is still plagued with poverty and yearly food shortages. To achieve food security and alleviate poverty in the region however, modernization of agriculture through irrigation is deemed inevitable. While it is true that considerable potential still exists for future expansion of irrigation, it cannot be refuted that water is becoming scarcer in the regions where the need for irrigation is most important, hence mapping the irrigation potential of the region will be the first step toward ensuring sound planning and sustainability of the irrigation developments. In this study, an attempt has been made to map out the irrigation potential of the Upper East Region. The river basin approach was used in assessing the irrigation potential. The catchments drained by The White Volta river, Red volta river, River Sissili and River Kulpawn were considered in the assessment. The irrigation potential for the sub basins was computed by combining information on gross irrigation water requirements for the selected cash crops, area of soil suitable for irrigation and available water resources. The capacity of 80%, 70%, 60% and 50% time of exceedance flow of the available surface water resources in the respective sub basins was estimated. The area that can be irrigated with this flow was computed with selected cropping pattern. Combining the results of the potential irrigable areas and the land use map of the respective sub basins, an irrigation potential map has been generated showing potential sites in the upper east region that can be brought under irrigation. Keywords: Irrigation potential, irrigation water requirement, land evaluation, dependable flow

  8. Human intestinal mucus proteins isolated by transanal irrigation and proctosigmoidoscopy

    Directory of Open Access Journals (Sweden)

    Paola Andrea Gómez Buitrago

    2014-10-01

    Full Text Available Human intestinal mucus essentially consists of a network of Mucin2 glycoproteins embedded in many lower molecular weight proteins. This paper contributes to the proteomic study of human intestinal mucus by comparing two sample collection methods (transanal irrigation and brush cytology during proctosigmoidoscopy and analysis techniques (electrophoresis and digestion in solution. The entire sample collection and treatment process is explained, including protein extraction, digestion and desalination and peptide characterisation using a nanoAcquity UPLC chromatograph coupled to an HDMS spectrometer equipped with a nanoESI source. Collecting mucus via transanal irrigation provided a larger sample volume and protein concentration from a single patient. The proctosigmoidoscopy sample could be analysed via digestion in solution after depleting albumin. The analysis indicates that a simple mucus lysis method can evaluate the electrophoresis and digestion in solution techniques. Studying human intestinal mucus complexes is important because they perform two essential survival functions for humans as the first biochemical and physical defences for the gastrointestinal tract and a habitat for intestinal microbiota, which are primarily hosted in the colon and exceeds the human genetic information and cell number 100- and 10-fold (1.

  9. Soil and water management in spate irrigation systems in Eritrea

    NARCIS (Netherlands)

    Hadera, M.T.

    2001-01-01

    Spate irrigation has been practised over 100 years in the Red Sea coastal zone of Eritrea such as the Sheeb area. Main problem of the spate irrigation system is water shortage caused by irregular rainfall in the highlands of Eritrea and breaching of the irrigation structures by destructive

  10. Potentials for Supplemental Irrigation in Some Rainfall Areas of Imo ...

    African Journals Online (AJOL)

    In addition, there were up to five months of the year during which rainwater was much in deficit of evapotranspiration. All these stress the need for irrigation. Analysis of water quality (surface, groundwater, and rainfall runoff) showed their suitability for irrigation. Quantity assessment of supplemental irrigation during the dry ...

  11. Greenhouse evaluation of deficit irrigation on the growth of tomato ...

    African Journals Online (AJOL)

    Deficit irrigation is considered to be an important approach for crop cultivation in dry regions where water resources are scarce. Deficit irrigation can be used also to decrease the level of infections by some moisturedependent plant pests and diseases such as root-knot nematode disease. Therefore, deficit irrigation at levels ...

  12. Field evaluation of deficit irrigation effects on tomato growth ...

    African Journals Online (AJOL)

    Two field experiments were conducted using a common tomato cultivar (GS12) to assess the effect of deficit irrigation (DI) regimes on tomato growth performance, and on root-knot nematode Meloidogyne javanica galling and abundance. Irrigation treatments consisted of five irrigation regimes: 20%, 40%, 60%, 80% and ...

  13. The impact of smallholder irrigation on household welfare: The case ...

    African Journals Online (AJOL)

    The potential of smallholder irrigated agriculture to enhance food security and alleviate rural poverty has led the South African Government to prioritise and invest significantly in irrigation establishment, rehabilitation and revitalisation. The question addressed in this study pertains to the extent to which smallholder irrigation ...

  14. Effects of seven different irrigation techniques on debris and the ...

    African Journals Online (AJOL)

    Aim: Conventional manual irrigation with a syringe and needle remains widely accepted technique in the irrigation procedures. However, its flushing action has some limitations. Currently, several techniques and systems are available and reported to improve the insufficiency of syringe irrigation. The aim of this study was to ...

  15. Critical parameters for maize yield under irrigation farming in the ...

    African Journals Online (AJOL)

    This study examines the critical variables that determine maize yield under irrigation farming in the savanna ecological zone of Kwara State. Seventy-five soil samples were randomly collected from irrigation farm of Oke-Oyi irrigation project of the Lower Niger River Basin Development Authority Ilorin and bulked into 15 ...

  16. Surge flow irrigation under short field conditions in Egypt

    NARCIS (Netherlands)

    Ismail, S.M.; Depeweg, H.; Schultz, E.

    2004-01-01

    Several studies carried out in long furrows have shown that surge flow irrigation offers the potential of increasing the efficiency of irrigation. The effects of surge flow in short fields, such as in Egypt, are still not well known, however. To investigate the effect of surge flow irrigation in

  17. Evaluation of potential water conservation using site-specific irrigation

    Science.gov (United States)

    With the advent of site-specific variable-rate irrigation (VRI) systems, irrigation can be spatially managed within sub-field-sized zones. Spatial irrigation management can optimize spatial water use efficiency and may conserve water. Spatial VRI systems are currently being managed by consultants ...

  18. Scheduling irrigation for jujube ( Ziziphus jujuba Mill. ) | Zhang ...

    African Journals Online (AJOL)

    This study was performed to select suitable indicator for scheduling the irrigation of jujube (Ziziphus jujuba Mill.) grown in the Loess Plateau. The relationships between plant-based indicators and soil matrix potential as well as meteorological factors of jujube under deficit irrigation compared with well irrigation were ...

  19. Limited irrigation research and infrared thermometry for detecting water stress

    Science.gov (United States)

    The USDA-ARS Limited Irrigation Research Farm, located outside of Greeley Colorado, is an experiment evaluating management perspectives of limited irrigation water. An overview of the farm systems is shown, including drip irrigation systems, water budgeting, and experimental design, as well as preli...

  20. Irrigation development and management in Ghana: Prospects and ...

    African Journals Online (AJOL)

    ... existing schemes. It is envisaged that irrigation will be seen in its right perspective as a multidisciplinary activity to ensure the success of schemes. There is the need for running a postgraduate programme in irrigation at the KNUST to enhance the nations efforts at developing and managing irrigation projects successfully.

  1. Technical descriptions of ten irrigation technologies for conserving energy

    Energy Technology Data Exchange (ETDEWEB)

    Harrer, B.J.; Wilfert, G.L.

    1983-05-01

    Technical description of ten technologies which were researched to save energy in irrigated agriculture are presented. These technologies are: well design and development ground water supply system optimization, column and pump redesign, variable-speed pumping, pipe network optimization, reduced-pressure center-pivot systems, low-energy precision application, automated gated-pipe system, computerized irrigation scheduling, and instrumented irrigation scheduling. (MHR)

  2. Modelling the economic trade-offs of irrigation pipeline investments ...

    African Journals Online (AJOL)

    The Soil Water Irrigation Planning and Energy Management (SWIP-E) mathematical programming model was developed and applied in this paper to provide decision support regarding the optimal mainline pipe diameter, irrigation system delivery capacity and size of the irrigation system. SWIP-E unifies the interrelated ...

  3. Tracking antibiotic resistance genes in soil irrigated with dairy wastewater

    Science.gov (United States)

    In southern Idaho, the application of dairy wastewater to agricultural soils is a widely used practice to irrigate crops and recycle nutrients. In this study, small-scale field plots were irrigated monthly (6 times) with dairy wastewater (100%), wastewater diluted to 50% with irrigation (canal) wate...

  4. Sustainable Irrigation Development in the White Volta Sub-Basin

    NARCIS (Netherlands)

    Ofosu, E.A.

    2011-01-01

    This study on sustainable irrigation development identified growing markets for irrigated products as an important driving force behind the expansion of irrigation which has given rise to new technologies. The new technologies have spread because they gave farmers direct control over water sources.

  5. Wastewater Reuse for Agriculture: Development of a Regional Water Reuse Decision-Support Model (RWRM) for Cost-Effective Irrigation Sources.

    Science.gov (United States)

    Tran, Quynh K; Schwabe, Kurt A; Jassby, David

    2016-09-06

    Water scarcity has become a critical problem in many semiarid and arid regions. The single largest water use in such regions is for crop irrigation, which typically relies on groundwater and surface water sources. With increasing stress on these traditional water sources, it is important to consider alternative irrigation sources for areas with limited freshwater resources. One potential irrigation water resource is treated wastewater for agricultural fields located near urban centers. In addition, treated wastewater can contribute an appreciable amount of necessary nutrients for plants. The suitability of reclaimed water for specific applications depends on water quality and usage requirements. The main factors that determine the suitability of recycled water for agricultural irrigation are salinity, heavy metals, and pathogens, which cause adverse effects on human, plants, and soils. In this paper, we develop a regional water reuse decision-support model (RWRM) using the general algebraic modeling system to analyze the cost-effectiveness of alternative treatment trains to generate irrigation water from reclaimed wastewater, with the irrigation water designed to meet crop requirements as well as California's wastewater reuse regulations (Title 22). Using a cost-minimization framework, least-cost solutions consisting of treatment processes and their intensities (blending ratios) are identified to produce alternative irrigation sources for citrus and turfgrass. Our analysis illustrates the benefits of employing an optimization framework and flexible treatment design to identify cost-effective blending opportunities that may produce high-quality irrigation water for a wide range of end uses.

  6. Saline water irrigation of quinoa and chickpea

    DEFF Research Database (Denmark)

    Hirich, A.; Jelloul, A.; Choukr-Allah, R.

    2014-01-01

    A pot experiment was conducted in the south of Morocco to evaluate the response of chickpea and quinoa to different irrigation water salinity treatments (1, 4, 7 and 10 dS m-1 for chickpea and 1, 10, 20 and 30 dS m-1 for quinoa). Increasing salinity affected significantly (P

  7. Irrigation scheduling using soil moisture sensors

    Science.gov (United States)

    Soil moisture sensors were evaluated and used for irrigation scheduling in humid region. Soil moisture sensors were installed in soil at depths of 15cm, 30cm, and 61cm belowground. Soil volumetric water content was automatically measured by the sensors in a time interval of an hour during the crop g...

  8. Measurement Of Technical Efficiency In Irrigated Vegetable ...

    African Journals Online (AJOL)

    This study measured technical efficiency and identified its determinants in irrigated vegetable production in Nasarawa State of Nigeria using a stochastic frontier model. A complete enumeration of 193 NADP-registered vegetable farmers was done. The predicted farm technical efficiency ranges from 25.94 to 96.24 per cent ...

  9. CORRELATION AMONG FLUORIDE AND METALS IN IRRIGATION ...

    African Journals Online (AJOL)

    Preferred Customer

    The levels of fluoride and selected metals in Ethiopian Rift Valley soils and irrigation water in the nearby sources were ... exhaust fumes, process waters and waste from various industrial processes [1]. The uses of ... into four sub-systems: Lake Rudolf, Chew Bahir, the Main Ethiopian Rift (MER) and the Afar. The seismically ...

  10. Irrigation performance assessment in Crimea, Ukraine

    NARCIS (Netherlands)

    Pavlov, S.S.; Roerink, G.J.; Hellegers, P.J.G.J.; Popovych, V.F.

    2006-01-01

    After the collapse of the Soviet Union the performance of irrigated agriculture decreased drastically in Ukraine, due to problems related to the transition from a centrally planned economy to a market economy. Before formulating recommendations on required actions to modify this problematic

  11. Irrigation management of muskmelon with tensiometry

    Directory of Open Access Journals (Sweden)

    Márcio José de Santana

    2017-11-01

    Full Text Available The production and consumption of muskmelon have been increasing (MELO et al., 2014, thus, information on techniques for higher field productions are necessary. The experiment described in the present work was conducted in the IFTM, Uberaba, State of Minas Gerais, Brazil, aiming to evaluate the muskmelon yield under different soil water tensions. A randomized block experimental design was used with five treatments (soil water tensions of 10, 20, 30, 40 and 50 kPa and four replications (plots of two rows of 14 plants. Two harvests were carried out and the fruit yield, stem diameter, number of fruits per plant and efficiency of water use were evaluated. Irrigation was performed with a drip irrigation system and managed with tensiometry. The cultivar Bonus n.2 was used with spacing of 1.0 x 0.6 m. The data of the variables were subjected to the F test and regression test. The treatments showed statistical differences in number of fruits per plant, fruit weight (fruit yield and stem diameter. The highest fruit yield found was 1.36 kg fruit-1 and the highest water use efficiency was 4.08 g mm-1 with irrigation for a soil water tension of 10 kPa. The lowest fruit yield was found with irrigation for a soil water tension of 50 kPa.

  12. New soil water sensors for irrigation management

    Science.gov (United States)

    Effective irrigation management is key to obtaining the most crop production per unit of water applied and increasing production in the face of competing demands on water resources. Management methods have included calculating crop water needs based on weather station measurements, calculating soil ...

  13. FAO study on irrigation potential for Africa

    OpenAIRE

    Food and Agriculture Organization of the United Nations.‏ United Nations Development Programme

    2002-01-01

    Metadata only record To improve the conjunctive use of sub-surface and surface water in order to increase water resources availability for sustainable small-scale irrigation development in support of food security in West Africa, south of the Sahara.

  14. Zone edge effects with variable rate irrigation

    Science.gov (United States)

    Variable rate irrigation (VRI) systems may offer solutions to enhance water use efficiency by addressing variability within a field. However, the design of VRI systems should be considered to maximize application uniformity within sprinkler zones, while minimizing edge effects between such zones alo...

  15. Strategies of smallholder irrigation management in Zimbabwe

    NARCIS (Netherlands)

    Manzungu, E.

    1999-01-01

    The smallholder irrigation sub-sector in Zimbabwe, according to literature sources, is under threat due to what are called management problems. Poor water management and low crop yields have been cited, as has also been poor financial and economic viability, resulting in heavy government

  16. Streamflow Prediction in Ungauged, Irrigated Basins

    Science.gov (United States)

    Zhang, M.; Thompson, S. E.

    2016-12-01

    The international "predictions in ungauged basins" or "PUB" effort has broadened and improved the tools available to support water resources management in sparsely observed regions. These tools have, however, been primarily focused on regions with limited diversion of surface or shallow groundwater resources. Incorporating anthropogenic activity into PUB methods is essential given the high level of development of many basins. We extended an existing stochastic framework used to predict the flow duration curve to explore the effects of irrigation on streamflow dynamics. Four canonical scenarios were considered in which irrigation water was (i) primarily sourced from water imports, (ii) primarily sourced from direct in-channel diversions, (iii) sourced from shallow groundwater with direct connectivity to stream channels, or (iv) sourced from deep groundwater that is indirectly connected to surface flow via a shallow aquifer. By comparing the predicted flow duration curves to those predicted by accounting for climate and geomorphic factors in isolation, specific "fingerprints" of human water withdrawals could be identified for the different irrigation scenarios, and shown to be sensitive to irrigation volumes and scheduling. The results provide a first insight into PUB methodologies that could be employed in heavily managed basins.

  17. New Approaches to Irrigation Scheduling of Vegetables

    Directory of Open Access Journals (Sweden)

    Michael D. Cahn

    2017-04-01

    Full Text Available Using evapotranspiration (ET data for scheduling irrigations on vegetable farms is challenging due to imprecise crop coefficients, time consuming computations, and the need to simultaneously manage many fields. Meanwhile, the adoption of soil moisture monitoring in vegetables has historically been limited by sensor accuracy and cost, as well as labor required for installation, removal, and collection of readings. With recent improvements in sensor technology, public weather-station networks, satellite and aerial imaging, wireless communications, and cloud computing, many of the difficulties in using ET data and soil moisture sensors for irrigation scheduling of vegetables can now be addressed. Web and smartphone applications have been developed that automate many of the calculations involved in ET-based irrigation scheduling. Soil moisture sensor data can be collected through wireless networks and accessed using web browser or smartphone apps. Energy balance methods of crop ET estimation, such as eddy covariance and Bowen ratio, provide research options for further developing and evaluating crop coefficient guidelines of vegetables, while recent advancements in surface renewal instrumentation have led to a relatively low-cost tool for monitoring crop water requirement in commercial farms. Remote sensing of crops using satellite, manned aircraft, and UAV platforms may also provide useful tools for vegetable growers to evaluate crop development, plant stress, water consumption, and irrigation system performance.

  18. Reuse of drainage water from irrigated areas

    NARCIS (Netherlands)

    Willardson, L.S.; Boels, D.; Smedema, L.K.

    1997-01-01

    Increasing competition for water of good quality and the expectation that at least half of the required increase in food production in the near-future decades must come from the world's irrigated land requires to produce more food by converting more of the diverted water into food. Reuse of the

  19. The efficiency of drip irrigation unpacked

    NARCIS (Netherlands)

    Kooij, van der S.; Zwarteveen, M.Z.; Boesveld, H.; Kuper, M.

    2013-01-01

    Drip irrigation figures prominently in water policy debates as a possible solution to water scarcity problems, based on the assertion that it will improve water use efficiencies. We use this article to carefully trace the scientific basis of this assertion. Through a systematic review of the

  20. Solar-thermal jet pumping for irrigation

    Science.gov (United States)

    Clements, L. D.; Dellenback, P. A.; Bell, C. A.

    1980-01-01

    This paper describes a novel concept in solar powered irrigation pumping, gives measured performance data for the pump unit, and projected system performance. The solar-thermal jet pumping concept is centered around a conventional jet eductor pump which is commercially available at low cost. The jet eductor pump is powered by moderate temperature, moderate pressure Refrigerant-113 vapor supplied by a concentrating solar collector field. The R-113 vapor is direct condensed by the produced water and the two fluids are separated at the surface. The water goes on to use and the R-113 is repressurized and returned to the solar field. The key issue in the solar-thermal jet eductor concept is the efficiency of pump operation. Performance data from a small scale experimental unit which utilizes an electrically heated boiler in place of the solar field is presented. The solar-thermal jet eductor concept is compared with other solar irrigation concepts and optimal application situations are identified. Though having lower efficiencies than existing Rankine cycle solar-thermal irrigation systems, the mechanical and operational simplicity of this concept make it competitive with other solar powered irrigation schemes.

  1. Scheduling irrigation for jujube (Ziziphus jujuba Mill.)

    African Journals Online (AJOL)

    USER

    2010-08-30

    Aug 30, 2010 ... indicators for diagnosing plant water information, but it is troublesome to measure leaf water potential using a pressure chamber (Turner, 1981). It is also difficult to achieve automatic and continuous records with the pressure chamber. Definition of threshold values of soil moisture for irrigation management ...

  2. Prospects and Constraints of Household Irrigation Practices ...

    African Journals Online (AJOL)

    Water and soil samples were analyzed for major cations and anions, ... So, attention and investment in these areas have been very limited in Africa and ... The shape of the watershed is almost elliptical (Fig. 1). 2.1. Soil. Texturally ..... quality of the irrigation water, soil factors such as structure, degree of compaction, organic.

  3. More crop per drop - Increasing input efficiency in sprinkler irrigated potatoes.

    Science.gov (United States)

    Kostka, Stan; Fang, Lisa; Ren, Haiqin; Glucksman, Robert; Gadd, Nick

    2014-05-01

    Water scarcity, climate change, and population growth are significant global challenges for producing sufficient food, fiber, and fuel in the 21st century. Feeding an increasingly hungry world necessitates innovative strategies and technologies to maximize crop production outputs while simultaneously increasing crop water productivity. In the 20th century, major advances in precision irrigation enabled producers to increase productivity while more efficiently applying water to crops. While pressurized irrigation systems can deliver water effectively to the soil surface, the efficiency of rootzone delivery may be compromised by intrinsic heterogeneities in soil wetting characteristics related to organic matter, biofilms, and hydrophobic coatings on soil particles and aggregates. Efficiently delivering applied irrigation water throughout the soil matrix is critical to increasing crop productivity. We propose that management of soil water access by surfactants is a viable management option to maintain or increase yields under deficit irrigation. Potato yield and tuber quality under sprinkler irrigation were evaluated under standard production practices or with the inclusion of an aqueous nonionic surfactant formulation (10 wt% alkoxylated polyols and 7% glucoethers) applied at 10L ha-1 between emergence and tuberization. Crop responses from multi-year evaluations conducted on irrigated potatoes in Idaho (USA) were compared to multi-year on farm grower evaluations in Australia and China. Surfactant treatment resulted in statistically significant increases in yield (+5%) and US No. 1 grades (+8%) while reducing culls (-10%) in trials conducted in Idaho, USA. Similar responses were observed in commercial grower evaluations conducted in Australia (+8% total yield, +18% mean tuber weight) and in China in 2011 (+8% total yield and +18% premium, -12% culls). Under diverse production conditions, a single application of the surfactant formulation improved crop water

  4. Intervention processes and irrigation institutions : sustainability of farmer managed irrigation systems in Nepal

    OpenAIRE

    Pant, D.R.

    2000-01-01

    With the support from various donors, His Majesty's Government of Nepal has implemented support programmes with a view to transform water availability, improve production, and increase the institutional capabilities of farmers to develop and sustain efficient, fair and reliable irrigation management practices in irrigation systems in Nepal. In this respect, this study aimed to understand the social, administrative and political processes involved in the social and institutional chang...

  5. Irrigation et paludisme : un couple infernal?

    Directory of Open Access Journals (Sweden)

    Mergeai, G.

    2016-01-01

    Full Text Available Irrigation and Malaria - a Terrible Combination?. Increasing agricultural productivity is a priority in most of the developing countries and using irrigation is one of the most efficient ways of achieving this goal. Almost half a billion people in the world contract malaria every year and approximately one million die as a result. The majority of these victims are farmers or members of their families. In infected areas, malaria continues to have major negative impacts on agricultural productivity. For example, in the Equateur province of the DRC, after access to production means, fevers are considered the second biggest obstacle to the development of agricultural activities. In the Ivory Coast, a study has shown that growers suffering from malaria were about half as productive as their healthy colleagues. The disease often strikes at the start of the rainy season when work begins again in the fields. It reduces the amount of land cultivated and affects the amount of care taken with crops. Agricultural practices influence the risk of contracting malaria. Irrigation, in particular, can encourage the proliferation of vectors of the disease and make it more likely to spread. This tendency can be observed in many locations where irrigated rice production is on the increase. Paradoxically, however, an increased number of mosquitoes does not systematically result in more malaria. In Ethiopia, malaria is more prevalent close to the micro-dams sponsored by the government, whereas, in Tanzania, there is less malaria in irrigated areas. Various theories can be put forward in order to explain this paradox. In particular, increased income due to higher rice yields enables farmers to purchase insecticide-treated mosquito nets. It also allows them to eat better, which strengthens their immune systems. It also appears that the negative impact of irrigation systems is greater in areas, in which immunity levels were low in the population prior to the creation of

  6. Antibacterial Efficacy of Calcium Hypochlorite with Vibringe Sonic Irrigation System on Enterococcus faecalis: An In Vitro Study

    Science.gov (United States)

    Dumani, Aysin; Guvenmez, Hatice Korkmaz; Yilmaz, Sehnaz; Yoldas, Oguz; Kurklu, Zeliha Gonca Bek

    2016-01-01

    Aim. The purpose of this study was to compare the in vitro efficacy of calcium hypochlorite (Ca[OCl]2) and sodium hypochlorite (NaOCl) associated with sonic (Vibringe) irrigation system in root canals which were contaminated with Enterococcus faecalis. Material and Methods. The root canals of 84 single-rooted premolars were enlarged up to a file 40, autoclaved, inoculated with Enterococcus faecalis, and incubated for 21 days. The samples were divided into 7 groups according to the irrigation protocol: G0: no treatment; G1: distilled water; G2: 2.5% NaOCl; G3: 2.5% Ca(OCl)2; G4: distilled water with sonic activation; G5: 2.5% NaOCl with sonic activation; and G6: 2.5% Ca(OCl)2 with sonic activation. Before and after decontamination procedures microbiological samples were collected and the colony-forming units were counted and the percentages of reduction were calculated. Results. Distilled water with syringe irrigation and sonic activation groups demonstrated poor antibacterial effect on Enterococcus faecalis compared to other experimental groups (p irrigation systems with Ca(OCl)2 and NaOCl. Conclusion. The antimicrobial property of Ca(OCl)2 has been investigated and compared with that of NaOCl. Both conventional syringe irrigation and sonic irrigation were found effective at removing E. faecalis from the root canal of extracted human teeth. PMID:27218106

  7. Evaluation of hydraulic performance of downstream-controlled Maira-PHLC irrigation canals under crop-based irrigation operations

    NARCIS (Netherlands)

    Munir, S.; Schultz, B.; Suryadi, F.X.; Bharati, L.

    2012-01-01

    Demand-based irrigation systems are operated according to crop water requirements. As crop water requirements remain variable throughout the growing season, the discharges in the canal also vary to meet demands. The irrigation system under study is a demand-based semi-automatic irrigation system,

  8. Comparison of traditional and ET-based irrigation scheduling of surface-irrigated cotton in the arid southwestern USA

    Science.gov (United States)

    The use of irrigation scheduling tools to produce cotton under-surface irrigation in the arid southwesternUSA is minimal. In the State of Arizona, where traditional irrigation scheduling is the norm, producersuse an average of 1460 mm annually to grow a cotton crop. The purpose of this paper was to ...

  9. Year-Round Irrigation Schedule for a Tomato–Maize Rotation System in Reservoir-Based Irrigation Schemes in Ghana

    Directory of Open Access Journals (Sweden)

    Ephraim Sekyi-Annan

    2018-05-01

    Full Text Available Improving irrigation management in semi-arid regions of Sub-Saharan Africa is crucial to respond to increasing variability in rainfall and overcome deficits in current irrigation schemes. In small-scale and medium-scale reservoir-based irrigation schemes in the Upper East region of Ghana, we explored options for improving the traditional, dry season irrigation practices and assessed the potential for supplemental irrigation in the rainy season. The AquaCrop model was used to (i assess current water management in the typical tomato-maize rotational system; (ii develop an improved irrigation schedule for dry season cultivation of tomato; and (iii determine the requirement for supplemental irrigation of maize in the rainy season under different climate scenarios. The improved irrigation schedule for dry season tomato cultivation would result in a water saving of 130–1325 mm compared to traditional irrigation practices, accompanied by approximately a 4–14% increase in tomato yield. The supplemental irrigation of maize would require 107–126 mm of water in periods of low rainfall and frequent dry spells, and 88–105 mm in periods of high rainfall and rare dry spells. Therefore, year-round irrigated crop production may be feasible, using water saved during dry season tomato cultivation for supplemental irrigation of maize in the rainy season.

  10. Quantitative microbial risk assessment for spray irrigation of dairy manure based on an empirical fate and transport model

    Science.gov (United States)

    Burch, Tucker R; Spencer, Susan K.; Stokdyk, Joel; Kieke, Burney A; Larson, Rebecca A; Firnstahl, Aaron; Rule, Ana M; Borchardt, Mark A.

    2017-01-01

    BACKGROUND: Spray irrigation for land-applying livestock manure is increasing in the United States as farms become larger and economies of scale make manure irrigation affordable. Human health risks from exposure to zoonotic pathogens aerosolized during manure irrigation are not well understood. OBJECTIVES: We aimed to a) estimate human health risks due to aerosolized zoonotic pathogens downwind of spray-irrigated dairy manure; and b) determine which factors (e.g., distance, weather conditions) have the greatest influence on risk estimates. METHODS: We sampled downwind air concentrations of manure-borne fecal indicators and zoonotic pathogens during 21 full-scale dairy manure irri- gation events at three farms. We fit these data to hierarchical empirical models and used model outputs in a quantitative microbial risk assessment (QMRA) to estimate risk [probability of acute gastrointestinal illness (AGI)] for individuals exposed to spray-irrigated dairy manure containing Campylobacter jejuni, enterohemorrhagic Escherichia coli (EHEC), or Salmonella spp. RESULTS: Median risk estimates from Monte Carlo simulations ranged from 10−5 to 10−2 and decreased with distance from the source. Risk estimates for Salmonella or EHEC-related AGI were most sensitive to the assumed level of pathogen prevalence in dairy manure, while risk estimates for C. jejuni were not sensitive to any single variable. Airborne microbe concentrations were negatively associated with distance and positively associated with wind speed, both of which were retained in models as a significant predictor more often than relative humidity, solar irradiation, or temperature. CONCLUSIONS: Our model-based estimates suggest that reducing pathogen prevalence and concentration in source manure would reduce the risk of AGI from exposure to manure irrigation, and that increasing the distance from irrigated manure (i.e., setbacks) and limiting irrigation to times of low wind speed may also reduce risk.

  11. Quantitative assessment of human exposure to extended spectrum and AmpC β-lactamases bearing E. coli in lettuce attributable to irrigation water and subsequent horizontal gene transfer

    DEFF Research Database (Denmark)

    Njage, Patrick Murigu Kamau; Buys, E. M.

    2017-01-01

    and irrigation water E. coli isolates was previously reported. This stochastic modeling was aimed at quantitatively assessing human exposure to ESBL/AmpC bearing E. coli through lettuce attributable to irrigation water and subsequent horizontal gene transfer. Modular process risk approach was used.......15), and prevalence of E. coli in irrigation water (ρ=0.16) had highest influence on consumer exposure. The most effective single methods in reducing consumer exposure were reduction in irrigation water microbial quality variation (87.4% reduction), storage period (49.9-87.4% reduction) and growth rate reduction...... irrigation water quality variation. The exposure levels may impose higher consumer risk than acceptable for irrigation water risk. E. coli contamination and growth related measures, as well as measures to reduce contamination with antimicrobial resistant E. coli from lettuce production environment...

  12. Bayesian Belief Networks Approach for Modeling Irrigation Behavior

    Science.gov (United States)

    Andriyas, S.; McKee, M.

    2012-12-01

    Canal operators need information to manage water deliveries to irrigators. Short-term irrigation demand forecasts can potentially valuable information for a canal operator who must manage an on-demand system. Such forecasts could be generated by using information about the decision-making processes of irrigators. Bayesian models of irrigation behavior can provide insight into the likely criteria which farmers use to make irrigation decisions. This paper develops a Bayesian belief network (BBN) to learn irrigation decision-making behavior of farmers and utilizes the resulting model to make forecasts of future irrigation decisions based on factor interaction and posterior probabilities. Models for studying irrigation behavior have been rarely explored in the past. The model discussed here was built from a combination of data about biotic, climatic, and edaphic conditions under which observed irrigation decisions were made. The paper includes a case study using data collected from the Canal B region of the Sevier River, near Delta, Utah. Alfalfa, barley and corn are the main crops of the location. The model has been tested with a portion of the data to affirm the model predictive capabilities. Irrigation rules were deduced in the process of learning and verified in the testing phase. It was found that most of the farmers used consistent rules throughout all years and across different types of crops. Soil moisture stress, which indicates the level of water available to the plant in the soil profile, was found to be one of the most significant likely driving forces for irrigation. Irrigations appeared to be triggered by a farmer's perception of soil stress, or by a perception of combined factors such as information about a neighbor irrigating or an apparent preference to irrigate on a weekend. Soil stress resulted in irrigation probabilities of 94.4% for alfalfa. With additional factors like weekend and irrigating when a neighbor irrigates, alfalfa irrigation

  13. Modelling energy production by small hydro power plants in collective irrigation networks of Calabria (Southern Italy)

    Science.gov (United States)

    Zema, Demetrio Antonio; Nicotra, Angelo; Tamburino, Vincenzo; Marcello Zimbone, Santo

    2017-04-01

    The availability of geodetic heads and considerable water flows in collective irrigation networks suggests the possibility of recovery potential energy using small hydro power plants (SHPP) at sustainable costs. This is the case of many Water Users Associations (WUA) in Calabria (Southern Italy), where it could theoretically be possible to recovery electrical energy out of the irrigation season. However, very few Calabrian WUAs have currently built SHPP in their irrigation networks and thus in this region the potential energy is practically fully lost. A previous study (Zema et al., 2016) proposed an original and simple model to site turbines and size their power output as well as to evaluate profits of SHPP in collective irrigation networks. Applying this model at regional scale, this paper estimates the theoretical energy production and the economic performances of SHPP installed in collective irrigation networks of Calabrian WUAs. In more detail, based on digital terrain models processed by GIS and few parameters of the water networks, for each SHPP the model provides: (i) the electrical power output; (iii) the optimal water discharge; (ii) costs, revenues and profits. Moreover, the map of the theoretical energy production by SHPP in collective irrigation networks of Calabria was drawn. The total network length of the 103 water networks surveyed is equal to 414 km and the total geodetic head is 3157 m, of which 63% is lost due to hydraulic losses. Thus, a total power output of 19.4 MW could theoretically be installed. This would provide an annual energy production of 103 GWh, considering SHPPs in operation only out of the irrigation season. The single irrigation networks have a power output in the range 0.7 kW - 6.4 MW. However, the lowest SHPPs (that is, turbines with power output under 5 kW) have been neglected, because the annual profit is very low (on average less than 6%, Zema et al., 2016). On average each irrigation network provides an annual revenue from

  14. Automation in irrigation process in family farm with Arduino platform

    Directory of Open Access Journals (Sweden)

    Kianne Crystie Bezerra da Cunha

    2016-03-01

    Full Text Available The small farmers tend not to use mechanical inputs in the irrigation process due to the high cost than conventional irrigation systems have and in other cases, the lack of knowledge and technical guidance makes the farmer theme using the system. Thus, all control and monitoring are made by hand without the aid of machines and this practice can lead to numerous problems from poor irrigation, and water waste, energy, and deficits in production. It is difficult to deduce when to irrigate, or how much water applied in cultivation, measure the soil temperature variables, temperature, and humidity, etc. The objective of this work is to implement an automated irrigation system aimed at family farming that is low cost and accessible to the farmer. The system will be able to monitor all parameters from irrigation. For this to occur, the key characteristics of family farming, Arduino platform, and irrigation were analyzed.

  15. Effects of irrigation strategies and soils on field grown potatoes

    DEFF Research Database (Denmark)

    Ahmadi, Seyed Hamid; Plauborg, Finn; Andersen, Mathias Neumann

    2011-01-01

    Root distribution of field grown potatoes (cv. Folva) was studied in 4.32m2 lysimeters and subjected to full (FI), deficit (DI), and partial root-zone drying (PRD) irrigation strategies. Drip irrigation was applied for all irrigations. Irrigations were run in three different soils: coarse sand......, loamy sand, and sandy loam. Irrigation treatments started after tuber bulking and lasted until final harvest with PRD and DI receiving 65% of FI. Potatoes irrigated with water-saving irrigation techniques (PRD and DI) did not show statistically different dry root mass and root length density (RLD, cm...... density in the furrow. Most roots accumulated in the surface layers of coarse sand as compared to the other soil types. In the deep soil profile (30–70 cm) a higher root density was found in loamy sand compared with the sandy loam and coarse sand. Approximately twice the amounts of roots were found below...

  16. Biochar enhances yield and quality of tomato under reduced irrigation

    DEFF Research Database (Denmark)

    Saleem Akhtar, Saqib; Li, Guitong; Andersen, Mathias Neumann

    2014-01-01

    tBiochar is an amendment that can be used for enhancing soil water storage which may increase cropproductivity. The objective of this study was to investigate the effects of biochar on physiology, yield andquality of tomato under different irrigation regimes. From early flowering to fruit maturity...... stages, theplants were subjected to full irrigation (FI), deficit irrigation (DI) and partial root-zone drying irrigation(PRD) and two levels of biochar (0% and 5% by weight). In FI, the plants were irrigated daily to pot waterholding capacity while in DI and PRD, 70% of FI was irrigated on either...... the whole or one side of the pots,respectively. In PRD, irrigation was switched between sides when the soil water content of the dry sidedecreased to 15%. The results showed that addition of biochar increased the soil moisture contents in DIand PRD, which consequently improved physiology, yield, and quality...

  17. Precision overhead irrigation is suitable for several Central Valley crops

    Directory of Open Access Journals (Sweden)

    Jeffrey P. Mitchell

    2016-04-01

    Full Text Available Overhead systems are the dominant irrigation technology in many parts of the world, but they are not widely used in California even though they have higher water application efficiency than furrow irrigation systems and lower labor requirements than drip systems. With water and labor perennial concerns in California, the suitability of overhead systems merits consideration. From 2008 through 2013, in studies near Five Points, California, we evaluated overhead irrigation for wheat, corn, cotton, tomato, onion and broccoli as an alternative to furrow and drip irrigation. With the exception of tomato, equal or increased yields were achieved with overhead irrigation. Many variables are involved in the choice of an irrigation system, but our results suggest that, with more research to support best management practices, overhead irrigation may be useful to a wider set of California farmers than currently use it.

  18. The fluid mechanics of root canal irrigation.

    Science.gov (United States)

    Gulabivala, K; Ng, Y-L; Gilbertson, M; Eames, I

    2010-12-01

    Root canal treatment is a common dental operation aimed at removing the contents of the geometrically complex canal chambers within teeth; its purpose is to remove diseased or infected tissue. The complex chamber is first enlarged and shaped by instruments to a size sufficient to deliver antibacterial fluids. These irrigants help to dissolve dying tissue, disinfect the canal walls and space and flush out debris. The effectiveness of the procedure is limited by access to the canal terminus. Endodontic research is focused on finding the instruments and clinical procedures that might improve success rates by more effectively reaching the apical anatomy. The individual factors affecting treatment outcome have not been unequivocally deciphered, partly because of the difficulty in isolating them and in making the link between simplified, general experimental models and the complex biological objects that are teeth. Explicitly considering the physical processes within the root canal can contribute to the resolution of these problems. The central problem is one of fluid motion in a confined geometry, which makes the dispersion and mixing of irrigant more difficult because of the absence of turbulence over much of the canal volume. The effects of treatments can be understood through the use of scale models, mathematical modelling and numerical computations. A particular concern in treatment is that caustic irrigant may penetrate beyond the root canal, causing chemical damage to the jawbone. In fact, a stagnation plane exists beyond the needle tip, which the irrigant cannot penetrate. The goal is therefore to shift the stagnation plane apically to be coincident with the canal terminus without extending beyond it. Needle design may solve some of the problems but the best design for irrigant penetration conflicts with that for optimal removal of the bacterial biofilm from the canal wall. Both irrigant penetration and biofilm removal may be improved through canal fluid

  19. The fluid mechanics of root canal irrigation

    International Nuclear Information System (INIS)

    Gulabivala, K; Ng, Y-L; Gilbertson, M; Eames, I

    2010-01-01

    Root canal treatment is a common dental operation aimed at removing the contents of the geometrically complex canal chambers within teeth; its purpose is to remove diseased or infected tissue. The complex chamber is first enlarged and shaped by instruments to a size sufficient to deliver antibacterial fluids. These irrigants help to dissolve dying tissue, disinfect the canal walls and space and flush out debris. The effectiveness of the procedure is limited by access to the canal terminus. Endodontic research is focused on finding the instruments and clinical procedures that might improve success rates by more effectively reaching the apical anatomy. The individual factors affecting treatment outcome have not been unequivocally deciphered, partly because of the difficulty in isolating them and in making the link between simplified, general experimental models and the complex biological objects that are teeth. Explicitly considering the physical processes within the root canal can contribute to the resolution of these problems. The central problem is one of fluid motion in a confined geometry, which makes the dispersion and mixing of irrigant more difficult because of the absence of turbulence over much of the canal volume. The effects of treatments can be understood through the use of scale models, mathematical modelling and numerical computations. A particular concern in treatment is that caustic irrigant may penetrate beyond the root canal, causing chemical damage to the jawbone. In fact, a stagnation plane exists beyond the needle tip, which the irrigant cannot penetrate. The goal is therefore to shift the stagnation plane apically to be coincident with the canal terminus without extending beyond it. Needle design may solve some of the problems but the best design for irrigant penetration conflicts with that for optimal removal of the bacterial biofilm from the canal wall. Both irrigant penetration and biofilm removal may be improved through canal fluid

  20. Root canal debris removal using different irrigating needles: An SEM study

    Directory of Open Access Journals (Sweden)

    Sheetal Ghivari

    2011-01-01

    Full Text Available Aim: This study was carried out to compare the efficacy of three irrigating needle designs in removal of debris from different parts of the root canal. Materials and Methods: Thirty human maxillary canines were prepared using HERO Shaper rotary system and irrigated with 1 ml of 5.25% sodium hypochlorite (NaOCl after each instrument change. Three 25-gauge irrigation needle designs - brush-covered Navi Tip FX (Group I, side-vented needle RC Twents (Group II and single-beveled (Group III irrigating needles - were tested for their efficiency in debris removal in three different parts of the root canal (n=10 canals per group. Following instrumentation, the roots were vertically sectioned and divided into coronal, middle and apical thirds for observation under scanning electron microscope (×200 magnification. Debris on the canal wall was evaluated by using a four-scale scoring system described by Paque and his co-workers. Results: The canals irrigated with brush-covered needle Navi Tip FX (Group I showed lower average debris score, indicating greater removal of debris in coronal third as compared to middle and apical thirds, whereas the canals irrigated with side-vented needle (Group II and single-beveled needle (Group III exhibited lower average score in the middle third than coronal and apical thirds. All the three needle designs exhibited higher debris score in apical third of the root canal. Tukey multiple comparisons test was applied at a significance level of P>0.05. A statistically significant difference (P<0.05 was observed in the debris removal in the coronal and middle thirds of root canals irrigated with brush-covered Navi Tip FX (Group I and side-vented (Group II needles, respectively, when compared with other needle design groups. Conclusion: Within the limitations of this study, it can be concluded that all the needle designs tested were effective in certain regions of the root canal with apical third uncleaned. Side-vented needle by

  1. Double row spacing and drip irrigation as technical options in energy sorghum management

    Directory of Open Access Journals (Sweden)

    Neri Roncucci

    2014-02-01

    Full Text Available The effect of two row spacing configurations and four water supply levels was investigated on sweet and fibre sorghum in Central Italy for two consecutive years. Results highlighted the influence of both irrigation and row spatial configuration on crop productivity. Indeed, several studies have pointed out the positive response of sorghum to irrigation in Mediterranean climate, as in this environment water stress represents one of the main limiting factors on crop productivity. On the other hand, few attempts have been made to explore the role of row spacing on energy sorghum productivity. Results outlined an average increase in sorghum dry biomass yield ranging from +23% to +79% at variable rates of water supply as compared to rainfed control. The positive effect of irrigation was also observed on leaf area index and radiation use efficiency. Moreover, we observed a crop yield increase, from 9% to 20%, under double row spacing compared to the standard planting pattern (i.e. single row spacing. Finally, it was confirmed the efficient use of water by sorghum and the great ability of sorghum to increase its biomass yield in response to increasing volumes of water supplied. Therefore, this work suggests how row spacing configuration and drip irrigation could be feasible technical options to increase sorghum biomass yields in Mediterranean environments. These techniques should be experienced by farmers towards a sustainable intensification of current cropping systems.

  2. Control system design for concrete irrigation channels

    OpenAIRE

    Strecker, Timm; Aamo, Ole Morten; Cantoni, Michael

    2017-01-01

    Concrete channels find use at the periphery of irrigation networks, for expansion and to replace small earthen channels given the relative ease of maintenance and elimination of seepage losses. In design, it is important to account for control system performance when dimensioning the channel infrastructure. In this paper, the design of a distributed controller is investigated in terms managing water-levels, and thereby the depth profile (i.e., amount of concrete) needed to support peak flow l...

  3. Coolidge solar powered irrigation pumping project

    Science.gov (United States)

    Larson, D. L.

    1980-01-01

    A 150 kW solar thermal electric power plant which includes over 2100 square meters of parabolic trough type collectors and an organic Rankine cycle turbine engine was constructed on an irrigated farm. The plant is interconnected with the electrical utility grid. Operation is providing an evaluation of equipment performance and operating and maintenance requirements as well as the desirability of an on farm location.

  4. Irrigation port hydration in phacoemulsification surgery

    Directory of Open Access Journals (Sweden)

    Suzuki H

    2018-01-01

    Full Text Available Hisaharu Suzuki,1 Yoichiro Masuda,2 Yuki Hamajima,1 Hiroshi Takahashi3 1Department of Ophthalmology, Nippon Medical School Musashikosugi Hospital, Kawasaki City, Kanagawa, 2Department of Ophthalmology, The Jikei University, Katsushika Medical Center, Tokyo, 3Department of Ophthalmology, Nippon Medical School, Tokyo, Japan Background: In most cases, hydration is performed by water injection into the stromal tissue with a needle. The technique is simple, however it is sometimes troublesome.Purpose: We describe a simple technique for hydrating the corneal stroma in cataract surgery using an irrigation port.Patients and methods: The technique began by pushing the irrigation port against the corneal stroma for a few seconds during phacoemulsification, which generated edema in the corneal incision that subsequently prevented leakage. This procedure is called the hydration using irrigation port (HYUIP technique. A total of 60 eyes were randomized and placed in two groups, 30 eyes underwent surgeries using the HYUIP technique (HYUIP group and 30 eyes underwent surgeries without the HYUIP technique (control. The three points evaluated during each surgery included 1 the occurrence of anterior chamber collapse during the pulling out of the I/A tip after inserting the intraocular lens, 2 the need for conventional hydration, and 3 watertight completion at the end stage of surgery.Results: The anterior chamber collapse and the need for conventional hydration were significantly smaller in the HYUIP group compared to the control group. Regarding the self-sealing completion, no significant difference was observed between the two groups.Conclusion: The HYUIP technique is an effective method for creating self-sealing wound. In addition, this technique helps to prevent anterior chamber collapse. Keywords: cataract surgery, hydration, irrigation and aspiration, phacoemulsification, wound, self-sealing 

  5. Antimicrobial Irrigants in the Endodontic Therapy

    OpenAIRE

    Iqbal, Azhar

    2012-01-01

    This paper highlights the importance of root canal disinfection. It discusses the different endodontic irrigants available and comments on how these can be used most effectively. Eliminating bacteria from the root canal system is an essential stage in endodontic therapy. An objective of endodontic treatment is removal of diseased tissue, elimination of bacteria from the canal system and prevention of recontamination. (1) Disinfection of the root canal system, as part of endodontic therapy, by...

  6. Online decision support system for surface irrigation management

    Science.gov (United States)

    Wang, Wenchao; Cui, Yuanlai

    2017-04-01

    Irrigation has played an important role in agricultural production. Irrigation decision support system is developed for irrigation water management, which can raise irrigation efficiency with few added engineering services. An online irrigation decision support system (OIDSS), in consist of in-field sensors and central computer system, is designed for surface irrigation management in large irrigation district. Many functions have acquired in OIDSS, such as data acquisition and detection, real-time irrigation forecast, water allocation decision and irrigation information management. The OIDSS contains four parts: Data acquisition terminals, Web server, Client browser and Communication system. Data acquisition terminals are designed to measure paddy water level, soil water content in dry land, ponds water level, underground water level, and canals water level. A web server is responsible for collecting meteorological data, weather forecast data, the real-time field data, and manager's feedback data. Water allocation decisions are made in the web server. Client browser is responsible for friendly displaying, interacting with managers, and collecting managers' irrigation intention. Communication system includes internet and the GPRS network used by monitoring stations. The OIDSS's model is based on water balance approach for both lowland paddy and upland crops. Considering basic database of different crops water demands in the whole growth stages and irrigation system engineering information, the OIDSS can make efficient decision of water allocation with the help of real-time field water detection and weather forecast. This system uses technical methods to reduce requirements of user's specialized knowledge and can also take user's managerial experience into account. As the system is developed by the Browser/Server model, it is possible to make full use of the internet resources, to facilitate users at any place where internet exists. The OIDSS has been applied in

  7. Colonic irrigation for defecation disorders after dynamic graciloplasty.

    Science.gov (United States)

    Koch, Sacha M; Uludağ, Ozenç; El Naggar, Kadri; van Gemert, Wim G; Baeten, Cor G

    2008-02-01

    Dynamic graciloplasty (DGP) improves anal continence and quality of life for most patients. However, in some patients, DGP fails and fecal incontinence is unsolved or only partially improved. Constipation is also a significant problem after DGP, occurring in 13-90%. Colonic irrigation can be considered as an additional or salvage treatment for defecation disorders after unsuccessful or partially successful DGP. In this study, the effectiveness of colonic irrigation for the treatment of persistent fecal incontinence and/or constipation after DGP is investigated. Patients with defecation disorders after DGP visiting the outpatient clinic of the University Hospital Maastricht were selected for colonic irrigation as additional therapy or salvage therapy in the period between January 1999 and June 2003. The Biotrol(R) Irrimatic pump or the irrigation bag was used for colonic irrigation. Relevant physical and medical history was collected. The patients were asked to fill out a detailed questionnaire about colonic irrigation. Forty-six patients were included in the study with a mean age of 59.3 +/- 12.4 years (80% female). On average, the patients started the irrigation 21.39 +/- 38.77 months after the DGP. Eight patients started irrigation before the DGP. Fifty-two percent of the patients used the irrigation as additional therapy for fecal incontinence, 24% for constipation, and 24% for both. Irrigation was usually performed in the morning. The mean frequency of irrigation was 0.90 +/- 0.40 times per day. The mean amount of water used for the irrigation was 2.27 +/- 1.75 l with a mean duration of 39 +/- 23 min. Four patients performed antegrade irrigation through a colostomy or appendicostomy, with good results. Overall, 81% of the patients were satisfied with the irrigation. Thirty-seven percent of the patients with fecal incontinence reached (pseudo-)continence, and in 30% of the patients, the constipation completely resolved. Side effects of the irrigation were

  8. Root Zone Sensors for Irrigation Management in Intensive Agriculture

    Directory of Open Access Journals (Sweden)

    Jochen Hemming

    2009-04-01

    Full Text Available Crop irrigation uses more than 70% of the world’s water, and thus, improving irrigation efficiency is decisive to sustain the food demand from a fast-growing world population. This objective may be accomplished by cultivating more water-efficient crop species and/or through the application of efficient irrigation systems, which includes the implementation of a suitable method for precise scheduling. At the farm level, irrigation is generally scheduled based on the grower’s experience or on the determination of soil water balance (weather-based method. An alternative approach entails the measurement of soil water status. Expensive and sophisticated root zone sensors (RZS, such as neutron probes, are available for the use of soil and plant scientists, while cheap and practical devices are needed for irrigation management in commercial crops. The paper illustrates the main features of RZS’ (for both soil moisture and salinity marketed for the irrigation industry and discusses how such sensors may be integrated in a wireless network for computer-controlled irrigation and used for innovative irrigation strategies, such as deficit or dual-water irrigation. The paper also consider the main results of recent or current research works conducted by the authors in Tuscany (Italy on the irrigation management of container-grown ornamental plants, which is an important agricultural sector in Italy.

  9. Irrigation Capability Evaluation of Illushi Floodplain, Edo State, Nigeria

    Directory of Open Access Journals (Sweden)

    A.S. Umweni

    2014-06-01

    Full Text Available Many irrigation projects, especially in the developing tropical regions, are embarked upon without any land capability assessment, resulting in avoidable and undesirable ecological consequences. The aim of this study is to assess the irrigation capability potentials of the soils of a rice growing Illushi/Ega community in Edo State of Nigeria. Soils of Illushi/Ega (200 ha were studied to establish their irrigation capabilities. Water samples were collected from the rivers within and near the sites at the proposed points of intake structures and analyzed for salinity (ECw, permeability (SAR and ion toxicity [Chlorine (Cl and Boron (B]. Gravity irrigation suitability assessment was carried out following the guidelines of the United States Bureau for Land Reclamation (USBR, 1953 and FAO (1979. Results showed that about 5.5 % of the land was non-irrigable, 11.5 % was marginally irrigable, 30.5% was moderately irrigable and 52.5 % highly irrigable.Thus about 83 % of the total land area was found to be irrigable. The results of analyses of irrigation water [ECw, SAR and Cl and B (ion toxicity problems in water sources were 0.1 – 0.7 dS m-1, 1.2 – 1.7, 0.6 – 1.8 cmol kg-1 and 0.5 – 0.7 mg kg-1] also show that there is no indication of salinity or ion toxicity problem.

  10. Review of root canal irrigant delivery techniques and devices

    Directory of Open Access Journals (Sweden)

    Yeon-Jee Yoo

    2011-05-01

    Full Text Available Introduction Eliminating the residual debris and bacteria in the root canal system is one of the main purposes of the endodontic treatment. However, the complexity on the anatomy of the root canal system makes it difficult to eliminate the bacterial biofilm existing along the root canal surface and necrotic pulp tissue by mechanical instrumentation and chemical irrigation. Recently, more effective irrigant delivery systems for root canal irrigation have been developed. The purpose of this review was to present an overview of root canal irrigant delivery techniques and devices available in endodontics. Review The contents of this paper include as follows; - syringe-needle irrigation, manual dynamic irrigation, brushes - sonic and ultrasonic irrigation, passive ultrasonic irrigation, rotary brush, RinsEndo, EndoVac, Laser Conclusion Though technological advances during the last decade have brought to fruition new agitation devices that rely on various mechanisms, there are few evidence based study to correlate the clinical efficacy of these devices with improved outcomes except syringe irrigation with needle and ultrasonic irrigation. The clinicians should try their best efforts to deliver antimicrobial and tissue solvent solutions in predictable volumes safely to working length.

  11. Rice Photosynthetic Productivity and PSII Photochemistry under Nonflooded Irrigation

    Directory of Open Access Journals (Sweden)

    Haibing He

    2014-01-01

    Full Text Available Nonflooded irrigation is an important water-saving rice cultivation technology, but little is known on its photosynthetic mechanism. The aims of this work were to investigate photosynthetic characteristics of rice during grain filling stage under three nonflooded irrigation treatments: furrow irrigation with plastic mulching (FIM, furrow irrigation with nonmulching (FIN, and drip irrigation with plastic mulching (DI. Compared with the conventional flooding (CF treatment, those grown in the nonflooded irrigation treatments showed lower net photosynthetic rate (PN, lower maximum quantum yield (Fv/Fm, and lower effective quantum yield of PSII photochemistry (ΦPSII. And the poor photosynthetic characteristics in the nonflooded irrigation treatments were mainly attributed to the low total nitrogen content (TNC. Under non-flooded irrigation, the PN, Fv/Fm, and ΦPSII significantly decreased with a reduction in the soil water potential, but these parameters were rapidly recovered in the DI and FIM treatments when supplementary irrigation was applied. Moreover, The DI treatment always had higher photosynthetic productivity than the FIM and FIN treatments. Grain yield, matter translocation, and dry matter post-anthesis (DMPA were the highest in the CF treatment, followed by the DI, FIM, and FIN treatments in turn. In conclusion, increasing nitrogen content in leaf of rice plants could be a key factor to improve photosynthetic capacity in nonflooded irrigation.

  12. Predicting deep percolation with eddy covariance under mulch drip irrigation

    Science.gov (United States)

    Ming, Guanghui; Tian, Fuqiang; Hu, Hongchang

    2016-04-01

    Water is essential for the agricultural development and ecological sustainability of the arid and semi-arid oasis with rare precipitation input and high evaporation demand. Deep percolation (DP) defined as excess irrigation water percolating below the plant root zone will reduce irrigation water use efficiency (WUE). But the DP was often ignored in mulch drip irrigation (MDI) which has reached the area of 1.6 million hectares in Xinjiang, the northwest of China. In this study DP experiments were conducted at an agricultural experiment station located within an irrigation district in the Tarim River Basin for four cotton growing periods. First it was detected the irrigation water infiltrated into the soil layers below 100cm and the groundwater level responded to the irrigation events well. Then DP below 100cm soil layers was calculated using the soil water balance method with the aid of eddy covariance (with the energy balance closure of 0.72). The negative DP (groundwater contribution to the crop-water use through capillary rising) at the seedling and harvesting stages can reach 77mm and has a good negative correlation with the groundwater level and positive correlation with potential evaporation. During the drip irrigation stage approximately 45% of the irrigation became DP and resulted in the low irrigation WUE of 0.6. The DP can be 164mm to 270mm per year which was positive linearly correlated to irrigation depth and negative linear correlated to irrigation interval. It is better to establish the irrigation schedule with small irrigation depth and given frequently to reduce deep percolation and meet crop needs.

  13. Comparative study of irrigation water use and groundwater recharge under various irrigation schemes in an agricultural region, central Taiwan

    Science.gov (United States)

    Chen, Shih-Kai; Jang, Cheng-Shin; Tsai, Cheng-Bin

    2016-04-01

    The risk of rice production has increased notably due to climate change in Taiwan. To respond to growing agricultural water shortage without affecting normal food production in the future, the application of water-saving irrigation will be a substantial resolution. However, the adoption of water-saving irrigation may result in the reducing of groundwater recharge because continuous flooding in the paddy fields could be regarded as an important source for groundwater recharge. The aim of this study was to evaluate the irrigation water-saving benefit and groundwater recharge deficit when adopting the System of Rice Intensification, known as SRI methodology, in the Choushui River alluvial fan (the largest groundwater pumping and the most important rice-cropping region in central Taiwan). The three-dimensional finite element groundwater model, FEMWATER, was applied to simulate the infiltration process and groundwater recharge under SRI methodology and traditional irrigation schemes including continuous irrigation, and rotational irrigation in two rice-crop periods with hydro-climatic data of 2013. The irrigation water use was then calculated by water balance. The results showed that groundwater recharge amount of SRI methodology was slightly lower than those of traditional irrigation schemes, reduced 3.6% and 1.6% in the first crop period, and reduced 3.2% and 1.6% in the second crop period, compared with continuous irrigation and rotational irrigation, respectively. However, the SRI methodology achieved notably water-saving benefit compared to the disadvantage of reducing the groundwater recharge amount. The field irrigation requirement amount of SRI methodology was significantly lower than those of traditional irrigation schemes, saving 37% and 20% of irrigation water in the first crop period, and saving 53% and 35% in the second crop period, compared with continuous irrigation and rotational irrigation, respectively. Therefore, the amount of groundwater pumping for

  14. Irrigation-based livelihood challenges and opportunities : a gendered technology of irrigation development intervention in the Lower Moshi irrigation scheme Tanzania

    NARCIS (Netherlands)

    Kissawike, K.

    2008-01-01

    This thesis is a study of a modernised irrigation scheme in Tanzania. It aims to
    understand how irrigation and agricultural technologies have interacted with local
    society to transform production, paying particular attention to gender relations and
    changes for women farmers. The

  15. Reducing microbial contamination on wastewater-irrigated lettuce by cessation of irrigation before harvesting

    DEFF Research Database (Denmark)

    Keraita, Bernard; Konradsen, Flemming; Drechsel, Pay

    2007-01-01

    OBJECTIVE: To assess the effectiveness of cessation of irrigation before harvesting in reducing microbial contamination of lettuce irrigated with wastewater in urban vegetable farming in Ghana. METHODS: Assessment was done under actual field conditions with urban vegetable farmers in Ghana. Trials...... were arranged in completely randomized block design and done both in the dry and wet seasons. Seven hundred and twenty-six lettuce samples and 36 water samples were analysed for thermotolerant coliforms and helminth eggs. RESULTS: On average, 0.65 log units for indicator thermotolerant coliforms and 0.......4 helminth eggs per 100 g of lettuce were removed on each non-irrigated day from lettuce in the dry season. This corresponded to a daily loss of 1.4 tonnes/ha of fresh weight of lettuce. As an input for exposure analysis to make risk estimates, the decay coefficient, k, for thermotolerant coliforms was 0...

  16. Energy performance of sprinkler irrigated maize, wheat and sunflower in Vigia irrigation district

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Sandra; Rodrigues, Goncalo Caleia; Paredes, Paula; Pereira, Luis S. [Centro de Engenharia dos Biossistemas (CEER/ISA), Lisboa (Portugal)], E-mail: lspereira@isa.utl.pt

    2008-07-01

    The energy potential of a crop may be evaluated through life cycle assessment methodologies. These refer to the computation of the crop's energy balance and other related indicators, such as the energy ratio and the energetic efficiency, that may be used as to assess how a given irrigated crop may be used for production of biofuel. This study concerns sprinkler irrigated sunflower, wheat and maize crops using data relative to the campaign of 2007 in the Vigia Irrigation District, Alentejo. A model was developed and various scenarios were considered. The modelling results lead to the conclusion that the maize crop is the most efficient in producing energy and sunflower is the least one for all the alternative scenarios considered. (author)

  17. Impacts of Irrigation on the Heat Fluxes and Near-Surface Temperature in an Inland Irrigation Area of Northern China

    Directory of Open Access Journals (Sweden)

    Li Jiang

    2014-03-01

    Full Text Available Irrigated agriculture has the potential to alter regional to global climate significantly. We investigate how irrigation will affect regional climate in the future in an inland irrigation area of northern China, focusing on its effects on heat fluxes and near-surface temperature. Using the Weather Research and Forecasting (WRF model, we compare simulations among three land cover scenarios: the control scenario (CON, the irrigation scenario (IRR, and the irrigated cropland expansion scenario (ICE. Our results show that the surface energy budgets and temperature are sensitive to changes in the extent and spatial pattern of irrigated land. Conversion to irrigated agriculture at the contemporary scale leads to an increase in annual mean latent heat fluxes of 12.10 W m−2, a decrease in annual mean sensible heat fluxes of 8.85 W m−2, and a decrease in annual mean temperature of 1.3 °C across the study region. Further expansion of irrigated land increases annual mean latent heat fluxes by 18.08 W m−2, decreases annual mean sensible heat fluxes by 12.31 W m−2, and decreases annual mean temperature by 1.7 °C. Our simulated effects of irrigation show that changes in land use management such as irrigation can be an important component of climate change and need to be considered together with greenhouse forcing in climate change assessments.

  18. Traditional Irrigation Management in Betmera-Hiwane, Ethiopia: The Main Peculiarities for the Persistence of Irrigation Practices

    Institute of Scientific and Technical Information of China (English)

    Solomon Habtu; Kitamura Yoshinobu

    2006-01-01

    Traditional irrigation, as part of the ancient agricultural practices in northern Ethiopia (Tigray), has persisted for long time since 500 B.C.,while many newly introduced irrigation projects have usually failed there. The main objective of this study is thus to investigate the peculiarities pertinent to irrigation management and those having contributed for the persistence of traditional irrigation practices for a long period of time. The experience gained from such areas can definitely help make irrigation management system of new irrigation schemes sustainable. Betmera-Hiwane, one of the ancient traditional irrigation areas in Tigray region, was selected for the field study. Direct observations through field visits accompanied by interviews to farmers, local officials, local knowledgeable individuals and higher officials were made. After analyzing the collected primary and secondary information, the main peculiarities that contributed to the persistence of traditional irrigation areas were identified, and they are: the presence of communally constructed local rules, locally designed hydraulic control structures, ownership feeling of the irrigators and accountability of water distributors to the irrigation management, the culture for mobilizing communal resources and the culture of self-initiating local water management strategies.

  19. Where Does the Irrigation Water Go? An Estimate of the Contribution of Irrigation to Precipitation Using MERRA

    Science.gov (United States)

    Wei, Jiangfeng; Dirmeyer, Paul A.; Wisser, Dominik; Bosilovich, Michael G.; Mocko, David M.

    2013-01-01

    Irrigation is an important human activity that may impact local and regional climate, but current climate model simulations and data assimilation systems generally do not explicitly include it. The European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Re-Analysis (ERA-Interim) shows more irrigation signal in surface evapotranspiration (ET) than the Modern-Era Retrospective Analysis for Research and Applications (MERRA) because ERA-Interim adjusts soil moisture according to the observed surface temperature and humidity while MERRA has no explicit consideration of irrigation at the surface. But, when compared with the results from a hydrological model with detailed considerations of agriculture, the ET from both reanalyses show large deficiencies in capturing the impact of irrigation. Here, a back-trajectory method is used to estimate the contribution of irrigation to precipitation over local and surrounding regions, using MERRA with observation-based corrections and added irrigation-caused ET increase from the hydrological model. Results show substantial contributions of irrigation to precipitation over heavily irrigated regions in Asia, but the precipitation increase is much less than the ET increase over most areas, indicating that irrigation could lead to water deficits over these regions. For the same increase in ET, precipitation increases are larger over wetter areas where convection is more easily triggered, but the percentage increase in precipitation is similar for different areas. There are substantial regional differences in the patterns of irrigation impact, but, for all the studied regions, the highest percentage contribution to precipitation is over local land.

  20. Irrigation and avifaunal change in coastal Northwest Mexico: has irrigated habit attracted threatened migratory species?

    Science.gov (United States)

    Grason, Emily; Navarro-Sigüenza, Adolfo G.

    2015-01-01

    Irrigation in desert ecosystems can either reduce or increase species diversity. Groundwater pumping often lowers water tables and reduces natural wetlands, whereas canal irrigation often creates mesic habitat, resulting in great increases in avian diversity from irrigation. Here we compare a dataset of potential natural vegetation to recent datasets from areal and satellite imagery to show that 60% of the land in the coastal plain of southern Sonora and northern Sinaloa lying below 200 m elevation has been converted by irrigation to more mesic habitats. We then use the record of bird specimens in the world’s museums from this same region of Mexico to examine the avian community before and after the development of extensive irrigation. In general these museum records show an increase in the abundance and diversity of breeding birds associated with mesic habitats. Although thorn forest birds have likely decreased in total numbers, most are common enough in the remaining thorn forest that collection records did not indicate their probable decline. Four migrants having most of their breeding ranges in the US or Canada, Yellow-billed Cuckoo, Cliff Swallow, Bell’s Vireo, and Orchard Oriole, apparently have increased dramatically as breeders in irrigated habitats of NW Mexico. Because these species have decreased or even largely disappeared as breeding birds in parts of the US or Canada, further research should assess whether their increases in new mesic habitats of NW Mexico are linked to their declines as breeding birds in Canada and the US For Bell’s Vireo recent specimens from Sinaloa suggest its new breeding population in NW Mexico may be composed partly of the endangered Least Bell’s Vireo. PMID:26312181

  1. Evaluation of 4% Sodium Hypochlorite in eliminating Enterococcus faecalis from the Root Canal when Used with Three Irrigation Methods: An in vitro Study.

    Science.gov (United States)

    Priyank, Harsh; Pandey, Vinisha; Bagul, Abhishek; Majety, Kishore Kumar; Verma, Parul; Choudhury, Basanta Kumar

    2017-03-01

    Endodontic treatment removes all pathogens, such as Enterococcus faecalis from pulp and root canals. The aim of this study is to assess the usefulness of sodium hypo-chlorite (NaOCl) in removing E. faecalis from the root canal used with three different irrigation methods. This study was conducted on freshly extracted maxillary incisors. After biomechanical preparation, root canals were injected with E. faecalis. Three groups were made which contained 30 teeth in each group; 2 mL of NaOCl solution was used for irrigation followed by agitation with K-files in group I; 2 mL of NaOCl solution was used for irrigation and ultrasonic agitation was done in group II. In group III, an alternate irrigation with NaOCl and 3% hydrogen peroxide was done. The fourth group (control) was irrigated with sterile saline solution. E. fae-calis bacteria were sampled to the root canals with paper points and were transferred to tubes that contained 5 mL of brain heart infusion broth. Tubes were incubated and the presence of broth turbidity was suggestive of bacteria remaining in the root canal. All three groups showed no statistically significant difference. However, difference existed between experimental groups and control groups. The author concluded that all three methods of application of NaOCl were effective in disinfecting the root canal than the saline solution. No single irrigant has 100% efficiency. Thus by this study, a best irrigating solution with maximum properties can be established.

  2. Comparison of Manual and Automatic Irrigation of Pot Experiments

    DEFF Research Database (Denmark)

    Haahr, Vagner

    1975-01-01

    An air-lift principle for transport of water was adapted for automatic irrigation of experimental pots originally constructed for manual irrigation by the weighing method. The two irrigation techniques were compared in an experiment with increasing amounts of nitrogen fertilizer to spring barley....... Productions of grain and straw and chemical composition were almost the same after the two irrigation methods, and it was concluded that the laborious manual watering could be replaced by automatic irrigation. Comparison of the yield from individual plants in the pots showed a large difference between centre...... plants and border plants independent of irrigation principle. The increase in yield per pot with increasing N fertilization was at the highest N level caused only by an increase in yield of the border plants....

  3. Reform of irrigation management and investment policy in African development

    Directory of Open Access Journals (Sweden)

    KW Easter

    2004-11-01

    Full Text Available This paper examines the reform of water and irrigation management in Africa and compares it with similar reforms in Asia.  Several things are evident from the review.  First, Sub-Saharan Africa (SSA is at an earlier stage of irrigation development and reform than Asia.  Second, the articulated need for reform is much stronger in Asia than it is in SSA.  Third, the productivity of small-scale irrigated farms is significantly lower in SSA compared to Asia.  Thus any irrigation investment strategy in SSA should be different from Asia and focus on increasing small-farm productivity as well as small-scale irrigation projects.  Finally, all direct government irrigation investments should be done jointly with decisions regarding the type of project management.

  4. Effect of different rates of irrigation on nitrogen use efficiency and sugarbeet yield

    International Nuclear Information System (INIS)

    Khalifa, Kh.; Sharanek, A.; Ashawwa, F.

    1994-11-01

    Field experiments were conducted separately during three seasons, autumn 1986/1987, spring 1988, and spring 1989, at ACSAD research station in Deir-Ezzor, under flood irrigation system, using two different variets of Sugarbeet, kawipoly in the first season and Kawi-Interpoly in the second and third season. All experiments recieved sililar rate of irrigation to keep the soil moisture contents at three levels offield capacity (85, 75 and 65%). Fertilizer treatment were in the first season 3 rates (0, 120, 240 Kg N/Ha) of ammonium nitrate fertilizer sup 1 sup 5 NH sub 4 sup 1 sup 5 NO sub 3 (double labeled), in the second season two single labeled sup 1 sup 5 NH sub 4 NO sub 3 and NU sub 4 sup 1 sup 5 NO sub 3 were used at two rates (0, 120 Kg N/ha), in the third season labeld urea CO(sup 1 sup 5 NH sub 2) sub 2 and ammonium sulfate (sup 1 sup 5 NH sub 4) sub 4 SO sub 4 fertilizers were used separatly at two rates (0, 120 Kg N/ha). The results showed that nitrogen use efficincy (NUE) varied with type, from, rate of N fertilizer, and rate of irrigation at different growth stages of crop and was in the range (4.5-81.83%). The yield of roots at harvest were segnificantly increased by irrigation and nitrogen fertilization in the first and second season , also I x N had significant interaction effect on yield. Yield of roots in the third season were only increased by nitrogen application with no effect irrigation. 21 refs., 18 tabs

  5. Reclaimed water as a reservoir of antibiotic resistance genes: distribution system and irrigation implications

    Directory of Open Access Journals (Sweden)

    Nicole L Fahrenfeld

    2013-05-01

    Full Text Available Treated wastewater is increasingly being reused to achieve sustainable water management in arid regions. The objective of this study was to quantify the distribution of antibiotic resistance genes (ARGs in recycled water, particularly after it has passed through the distribution system, and to consider point-of-use implications for soil irrigation. Three separate reclaimed wastewater distribution systems in the western U.S. were examined. Quantitative polymerase chain reaction (qPCR was used to quantify ARGs corresponding to resistance to sulfonamides (sul1, sul2, macrolides (ermF, tetracycline (tet(A, tet(O, glycopeptides (vanA, and methicillin (mecA, in addition to genes present in waterborne pathogens Legionella pneumophila (Lmip, Escherichia coli (gadAB, and Pseudomonas aeruginosa (ecfx, gyrB. In a parallel lab study, the effect of irrigating an agricultural soil with secondary, chlorinated, or dechlorinated wastewater effluent was examined in batch microcosms. A broader range of ARGs were detected after the reclaimed water passed through the distribution systems, highlighting the importance of considering bacterial re-growth and the overall water quality at the point of use. Screening for pathogens with qPCR indicated presence of Lmip and gadAB genes, but not ecfx or gyrB. In the lab study, chlorination was observed to reduce 16S rRNA and sul2 gene copies in the wastewater effluent, while dechlorination had no apparent effect. ARGs levels did not change with time in soil slurries incubated after a single irrigation event with any of the effluents. However, when irrigated repeatedly with secondary wastewater effluent (not chlorinated or dechlorinated, elevated levels of sul1 and sul2 were observed. This study suggests that reclaimed water may be an important reservoir of ARGs, especially at the point of use, and that attention should be directed towards the fate of ARGs in irrigation water and the implications for human health.

  6. Sensory analysis and volatile compounds of olive oil (cv. Cobrancosa) from different irrigation regimes

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes-Silva, A. A.; Falco, V.; Correia, C. M.; Villalobos, F. J.

    2013-05-01

    The aim of this study was to assess the effect of different irrigation strategies on the sensory quality of virgin olive oil VOO) from the cv. cobrancosa- integrated into a protected denomination of origin of Azeite de Tras-os-Montes in the Northeast of Portugal. Three irrigation treatments were applied: (T2)-full irrigation, which received a seasonal water equivalent of 100% of the estimated crop evapotranspiration (ET{sub c}), (T1)-continuous deficit irrigation (30% ETc) and (T0)- rainfed treatment. Data were collected from two consecutive crop years (2005-2006). Olive oil samples were analyzed for volatiles by GC-MS and the results compared with sensory evaluation data. Total volatile compounds tended to decrease with the amount of water applied. The characteristics pungent and bitter were more pronounced in olive oils from T0 and T1, which had higher polyphenolic concentrations, with a strong positive relationship with this variable and the bitter attribute. The Principal Components Analysis clearly separates the three olive oils from 2005, the driest year, and aggregates into a single group the three samples from 2006, suggesting no effect of irrigation on volatile compounds in years with a rainy spring and a marked effect in years with severe drought, suggesting that the effect of the trees’ water status on these variables occurs throughout the crop season and not just during the oil accumulation phase. In general, olive oil from the cv. Cobrançosa is more bitter than pungent and has a typical nutty sensory attribute shown by a strong positive relationship between benzaldehyde and the sensory notes of almonds and nuts. (Author) 34 refs.

  7. Developing a Water Quality Index (WQI) for an Irrigation Dam.

    Science.gov (United States)

    De La Mora-Orozco, Celia; Flores-Lopez, Hugo; Rubio-Arias, Hector; Chavez-Duran, Alvaro; Ochoa-Rivero, Jesus

    2017-04-29

    Pollution levels have been increasing in water ecosystems worldwide. A water quality index (WQI) is an available tool to approximate the quality of water and facilitate the work of decision-makers by grouping and analyzing numerous parameters with a single numerical classification system. The objective of this study was to develop a WQI for a dam used for irrigation of about 5000 ha of agricultural land. The dam, La Vega, is located in Teuchitlan, Jalisco, Mexico. Seven sites were selected for water sampling and samples were collected in March, June, July, September, and December 2014 in an initial effort to develop a WQI for the dam. The WQI methodology, which was recommended by the Mexican National Water Commission (CNA), was used. The parameters employed to calculate the WQI were pH, electrical conductivity (EC), dissolved oxygen (DO), total dissolved solids (TDS), total hardness (TH), alkalinity (Alk), total phosphorous (TP), Cl - , NO₃, SO₄, Ca, Mg, K, B, As, Cu, and Zn. No significant differences in WQI values were found among the seven sampling sites along the dam. However, seasonal differences in WQI were noted. In March and June, water quality was categorized as poor. By July and September, water quality was classified as medium to good. Quality then decreased, and by December water quality was classified as medium to poor. In conclusion, water treatment must be applied before waters from La Vega dam reservoir can be used for irrigation or other purposes. It is recommended that the water quality at La Vega dam is continually monitored for several years in order to confirm the findings of this short-term study.

  8. NETWORKS AND INTERMEDIARIES IN SEASONAL AGRICULTURAL LABOR MARKETS IN TURKEY

    Directory of Open Access Journals (Sweden)

    Motoi Kusadokoro

    2016-04-01

    Full Text Available In casual labor markets, intermediaries are used in order to match employers and employees. This function is especially important when the market is imperfect and employers and employees have not formed solid networks. This paper investigates the network effects and the role of intermediaries in the seasonal agricultural labor market in the irrigated area of Adana, Turkey. The network of rural households is divided into one composed mainly of farmers and one composed mainly of seasonal agricultural workers. Our regression analyses show that the seasonal workers who do not have strong networks with farmers have difficulty finding jobs. Middlemen serve to mitigate the seasonal workers’ lack of a network and play a key role in the area’s seasonal agricultural labor market. At the same time, however, blood ties and territorial ties between middlemen and workers may cause middlemen to discriminate among seasonal workers based on their origins.

  9. LOW COST SMART SOLAR POWERED AUTOMATIC IRRIGATION SYSTEM

    OpenAIRE

    Hinsermu Alemayehu*, Kena Likassa

    2016-01-01

    In developing countries Photovoltaic energy can find many applications in agriculture, providing electrical energy in various cases, particularly OFF grid and desert area. Today Modern irrigation methods in developing country are needed to fulfill the food demands. Although in these countries Ethiopia, there are many diesel engine operated and rare solar operated water pumps for irrigation; but due to the running cost of diesel and capital cost of photovoltaic irrigation system. So Photovolta...

  10. Memory of irrigation effects on hydroclimate and its modeling challenge

    Science.gov (United States)

    Chen, Fei; Xu, Xiaoyu; Barlage, Michael; Rasmussen, Roy; Shen, Shuanghe; Miao, Shiguang; Zhou, Guangsheng

    2018-06-01

    Irrigation modifies land-surface water and energy budgets, and also influences weather and climate. However, current earth-system models, used for weather prediction and climate projection, are still in their infancy stage to consider irrigation effects. This study used long-term data collected from two contrasting (irrigated and rainfed) nearby maize-soybean rotation fields, to study the effects of irrigation memory on local hydroclimate. For a 12 year average, irrigation decreases summer surface-air temperature by less than 1 °C and increases surface humidity by 0.52 g kg‑1. The irrigation cooling effect is more pronounced and longer lasting for maize than for soybean. Irrigation reduces maximum, minimum, and averaged temperature over maize by more than 0.5 °C for the first six days after irrigation, but its temperature effect over soybean is mixed and negligible two or three days after irrigation. Irrigation increases near-surface humidity over maize by about 1 g kg‑1 up to ten days and increases surface humidity over soybean (~ 0.8 g kg‑1) with a similar memory. These differing effects of irrigation memory on temperature and humidity are associated with respective changes in the surface sensible and latent heat fluxes for maize and soybean. These findings highlight great need and challenges for earth-system models to realistically simulate how irrigation effects vary with crop species and with crop growth stages, and to capture complex interactions between agricultural management and water-system components (crop transpiration, precipitation, river, reservoirs, lakes, groundwater, etc.) at various spatial and temporal scales.

  11. Response of lupine plants irrigated with saline water to rhizobium inoculation using 15N-isotope dilution

    International Nuclear Information System (INIS)

    Gadalla, A.M.; El-Ghandour, I.A.; Abdel Aziz, H.A.; Hamdy, A.; Aly, M.M.

    2002-01-01

    The lupine Rhizobium symbiosis and contribution of N 2 fixation under different levels of irrigation water salinity were examined. Lysimeter experiment was established under greenhouse conditions during the year 2002-2003. In this experiment, inoculated plants were imposed to different salinity levels of irrigation water and N-fertilizer treatment. Plant height was decreased under different salinity levels, nitrogen treatments and bacterial inoculation. Similar trend was noticed with leaf area. The highest leaf area was recorded with salt tolerant bacterial inoculation (SBI) and splitting N-treatment. Highest values of N-uptake occurred after 100 day intervals under the tested factors. Relative decrease in N-uptake did not exceed 40% of those recorded with the fresh water treatment as affected by experimental factors. Nitrogen uptake by the whole plant reflected an increase at 3 dS/m salinity level of irrigation water. Relative increases were 5% and 15% for normal bacteria inoculation under single dose (NI) and splitting

  12. A Fuzzy analytical hierarchy process approach in irrigation networks maintenance

    Science.gov (United States)

    Riza Permana, Angga; Rintis Hadiani, Rr.; Syafi'i

    2017-11-01

    Ponorogo Regency has 440 Irrigation Area with a total area of 17,950 Ha. Due to the limited budget and lack of maintenance cause decreased function on the irrigation. The aim of this study is to make an appropriate system to determine the indices weighted of the rank prioritization criteria for irrigation network maintenance using a fuzzy-based methodology. The criteria that are used such as the physical condition of irrigation networks, area of service, estimated maintenance cost, and efficiency of irrigation water distribution. 26 experts in the field of water resources in the Dinas Pekerjaan Umum were asked to fill out the questionnaire, and the result will be used as a benchmark to determine the rank of irrigation network maintenance priority. The results demonstrate that the physical condition of irrigation networks criterion (W1) = 0,279 has the greatest impact on the assessment process. The area of service (W2) = 0,270, efficiency of irrigation water distribution (W4) = 0,249, and estimated maintenance cost (W3) = 0,202 criteria rank next in effectiveness, respectively. The proposed methodology deals with uncertainty and vague data using triangular fuzzy numbers, and, moreover, it provides a comprehensive decision-making technique to assess maintenance priority on irrigation network.

  13. Trash-polluted irrigation: characteristics and impact on agriculture

    Science.gov (United States)

    Sulaeman, D.; Arif, SS; Sudarmadji

    2018-04-01

    Trash pollution has been a problem in sustainable water resources management. Trash pollutes not only rivers, lakes and seas, but also irrigation canals and rice fields. This study aimed to identify the characteristics of solid waste (type, time of occurrence and sources of trash) and its impact on agriculture. The study was conducted in four irrigation areas, namely Gamping, Merdiko, Nglaren and Karangploso in Bantul District, Yogyakarta Special Region. We applied the Irrigation Rapid Trash Assessment (IRTA) as our field survey instrument. The results showed that trash was found throughout irrigation canals and rice fields, and the occurrence was influenced by water flow, time and farmer activities. The irrigation was dominantly polluted by plastic trash (52.2%), biodegradable waste (17.91%) and miscellaneous trash (12.3%). The IRTA score showed that Gamping Irrigation Area was at marginal condition, bearing a high risk of disturbing the operation and maintenance of the irrigation canals as well as farmers’ health. Trash in irrigation also generated technical impact of the irrigation operation and maintenance, environmental quality, and social life. This research also offered environmental policy integration approach and water-garbage governance approach as an alternative solution to manage water resources and agriculture in a sustainable manner, under the pressure of increasing amount of trash.

  14. 75 FR 67095 - Rate Adjustments for Indian Irrigation Projects

    Science.gov (United States)

    2010-11-01

    ...; (c) Vehicle and equipment repairs; (d) Equipment costs, including lease fees; (e) Depreciation; (f... Mexico 87104, Telephone: (505) 563-3100. Pine River Irrigation Project..... John Waconda, Superintendent...

  15. 76 FR 58293 - Rate Adjustments for Indian Irrigation Projects

    Science.gov (United States)

    2011-09-20

    ...) Vehicle and equipment repairs; (d) Equipment costs, including lease fees; (e) Depreciation; (f... Mexico 87104, Telephone: (505) 563-3100. Pine River Irrigation Project..... John Waconda, Superintendent...

  16. Uncertainties in modelling the climate impact of irrigation

    Science.gov (United States)

    de Vrese, Philipp; Hagemann, Stefan

    2017-11-01

    Irrigation-based agriculture constitutes an essential factor for food security as well as fresh water resources and has a distinct impact on regional and global climate. Many issues related to irrigation's climate impact are addressed in studies that apply a wide range of models. These involve substantial uncertainties related to differences in the model's structure and its parametrizations on the one hand and the need for simplifying assumptions for the representation of irrigation on the other hand. To address these uncertainties, we used the Max Planck Institute for Meteorology's Earth System model into which a simple irrigation scheme was implemented. In order to estimate possible uncertainties with regard to the model's more general structure, we compared the climate impact of irrigation between three simulations that use different schemes for the land-surface-atmosphere coupling. Here, it can be shown that the choice of coupling scheme does not only affect the magnitude of possible impacts but even their direction. For example, when using a scheme that does not explicitly resolve spatial subgrid scale heterogeneity at the surface, irrigation reduces the atmospheric water content, even in heavily irrigated regions. Contrarily, in simulations that use a coupling scheme that resolves heterogeneity at the surface or even within the lowest layers of the atmosphere, irrigation increases the average atmospheric specific humidity. A second experiment targeted possible uncertainties related to the representation of irrigation characteristics. Here, in four simulations the irrigation effectiveness (controlled by the target soil moisture and the non-vegetated fraction of the grid box that receives irrigation) and the timing of delivery were varied. The second experiment shows that uncertainties related to the modelled irrigation characteristics, especially the irrigation effectiveness, are also substantial. In general the impact of irrigation on the state of the land

  17. Scale Effects of Water Saving on Irrigation Efficiency: Case Study of a Rice-Based Groundwater Irrigation System on the Sanjiang Plain, Northeast China

    Directory of Open Access Journals (Sweden)

    Haorui Chen

    2017-12-01

    Full Text Available This research analyzed the scale effect of water saving in Bielahonghe (BLH Basin, a rice-cultivating district on the Sanjiang Plain, Northeast China. Water budgets with different surface irrigation water supply ratios and water-saving measures were simulated with a semi-distributed water balance model. PFnws, representing the ratio of rice evapotranspiration to net water supply (the total amount of irrigation and precipitation minus the amount of water reused, was employed to assess the water use efficiency. Seven spatial scales (noted from S1 to S7, ranging from a single field (317.87 ha to the whole basin (about 100,800 ha were determined. PFnws values were quantified across scales and several water-saving measures, including water-saving irrigation regimes, canal lining, and a reduction of the surface water supply ratio (SWSR. The results indicated that PFnws increased with scale and could be calculated by a fitted power function (PFnws = 0.736Area0.033, R2 = 0.58. Furthermore, PFnws increased most prominently when the scale increased from S1 to S2. The water-saving irrigation regime (WSIR had the most substantial water-saving effect (WSE at S1. Specifically, PFnws improved by 21.2% at S1 when high-intensity WSIR was applied. Additionally, the WSE values of S3 and S5 were slightly higher than at other scales when the branch canal water delivery coefficient increased from 0.65 to 0.80 through canal lining. Furthermore, the PFnws at each scale varied with SWSR. Specifically, PFnws from S3 to S7 improved as SWSR decreased from 0.4 to 0.3 but remained approximately constant when SWSR decreased from 0.3 to 0.

  18. Modeling nitrate leaching and optimizing water and nitrogen management under irrigated maize in desert oases in Northwestern China.

    Science.gov (United States)

    Hu, Kelin; Li, Yong; Chen, Weiping; Chen, Deli; Wei, Yongping; Edis, Robert; Li, Baoguo; Huang, Yuanfang; Zhang, Yuanpei

    2010-01-01

    Understanding water and N transport through the soil profile is important for efficient irrigation and nutrient management to minimize nitrate leaching to the groundwater, and to promote agricultural sustainable development in desert oases. In this study, a process-based water and nitrogen management model (WNMM) was used to simulate soil water movement, nitrate transport, and crop growth (maize [Zea mays L.]) under desert oasis conditions in northwestern China. The model was calibrated and validated with a field experiment. The model simulation results showed that about 35% of total water input and 58% of the total N input were leached to <1.8 m depth under traditional management practice. Excessive irrigation and N fertilizer application, high nitrate concentration in the irrigation water, together with the sandy soil texture, resulted in large nitrate leaching. Nitrate leaching was significantly reduced under the improved management practice suggested by farm extension personnel; however, the water and nitrate inputs still far exceeded the crop requirements. More than 1700 scenarios combining various types of irrigation and fertilizer practices were simulated. Quantitative analysis was conducted to obtain the best management practices (BMPs) with simultaneous consideration of crop yield, water use efficiency, fertilizer N use efficiency, and nitrate leaching. The results indicated that the BMPs under the specific desert oasis conditions are to irrigate the maize with 600 mm of water in eight times with a single fertilizer application at a rate of 75 kg N ha(-1).

  19. Apical extrusion of debris and irrigants using hand and three rotary instrumentation systems- An in vitro study

    Directory of Open Access Journals (Sweden)

    Koppolu Madhusudhana

    2010-01-01

    Full Text Available Introduction: Sterilization of the root canal is a prime aim of successful endodontics. The cleaning and shaping of the canal is directed as achieving this goal. The extrusion of apical debris has a deleterious effect on the prognosis of root canal treatment. Several instrument designs and instrumentation techniques have been developed to prevent this. Materials and Methods: Forty caries free single rooted human mandibular premolar teeth were divided in four groups of ten teeth each. Teeth in each group were instrumented until the working length with rotary ProTaper, K3, Mtwo systems, and hand K-type stainless steel files. Debris and irrigant extruded from the apical foramen were collected into vials and the amounts were quantitatively determined. The data obtained were analyzed using Kruskal-Wallis one-way analysis of variance and Mann-Whitney U tests. Results: The results show that all instrumentation techniques produced significant amount of extruded debris and irrigant. The engine-driven nickel-titanium systems showed less apical extrusion of debris and irrigant than manual technique. No statistically significant difference was found between the groups at [P > 0.05]. Maximum apical debris and irrigant extrusion was seen with K-file group and least in the Mtwo group. Conclusions: The use of rotary files and techniques to perform instrumentation does show less extrusion of the debris and irrigant from the apex. This can contribute to more successful endodontic therapy.

  20. Apical extrusion of debris and irrigants using hand and three rotary instrumentation systems − An in vitro study.

    Science.gov (United States)

    Madhusudhana, Koppolu; Mathew, Vinod Babu; Reddy, Nelaturi Madhusudhan

    2010-10-01

    Sterilization of the root canal is a prime aim of successful endodontics. The cleaning and shaping of the canal is directed as achieving this goal. The extrusion of apical debris has a deleterious effect on the prognosis of root canal treatment. Several instrument designs and instrumentation techniques have been developed to prevent this. Forty caries free single rooted human mandibular premolar teeth were divided in four groups of ten teeth each. Teeth in each group were instrumented until the working length with rotary ProTaper, K3, Mtwo systems, and hand K-type stainless steel files. Debris and irrigant extruded from the apical foramen were collected into vials and the amounts were quantitatively determined. The data obtained were analyzed using Kruskal-Wallis one-way analysis of variance and Mann-Whitney U tests. The results show that all instrumentation techniques produced significant amount of extruded debris and irrigant. The engine-driven nickel-titanium systems showed less apical extrusion of debris and irrigant than manual technique. No statistically significant difference was found between the groups at [P > 0.05]. Maximum apical debris and irrigant extrusion was seen with K-file group and least in the Mtwo group. The use of rotary files and techniques to perform instrumentation does show less extrusion of the debris and irrigant from the apex. This can contribute to more successful endodontic therapy.

  1. A scintigraphic analysis of colonic movement in patients with colostomy: changes of colonic transit time after acquaintance with irrigation.

    Science.gov (United States)

    Yasuda, S; Fujii, H; Yamamoto, K; Nakagawa, M; Watanabe, I; Nakano, H

    1992-01-01

    For the purpose of making a functional assessment of colostomy irrigation, eight patients were examined. Group A was composed of four patients whose experience of irrigation was less than one year. Group B was composed of four patients who had undergone irrigation for more than two years. The capacity of the remnant colon was determined by a barium enema. Next, 74 MBq of milking technetium 99 diethylene triamine penta-acetic acid (99mTc-DTPA) was instilled with a predetermined amount of water (37 degrees C). A dynamic scan was performed for 45 min. The mean evacuation time of Groups A and B were 6 min 56 s +/- 2 min 33 s and 13 min 27 s +/- 10 min 50 s, respectively. The mean half emptying time of Groups A and B were 142.5 s +/- 7.9 s and 309.0 s +/- 181.9 s. The results suggest that the remnant colon may be habituated with irrigation. Colostomy irrigation which uses a single instillation of a measured volume of tepid water is recommended.

  2. Apical extrusion of debris and irrigants using hand and three rotary instrumentation systems– An in vitro study

    Science.gov (United States)

    Madhusudhana, Koppolu; Mathew, Vinod Babu; Reddy, Nelaturi Madhusudhan

    2010-01-01

    Introduction: Sterilization of the root canal is a prime aim of successful endodontics. The cleaning and shaping of the canal is directed as achieving this goal. The extrusion of apical debris has a deleterious effect on the prognosis of root canal treatment. Several instrument designs and instrumentation techniques have been developed to prevent this. Materials and Methods: Forty caries free single rooted human mandibular premolar teeth were divided in four groups of ten teeth each. Teeth in each group were instrumented until the working length with rotary ProTaper, K3, Mtwo systems, and hand K-type stainless steel files. Debris and irrigant extruded from the apical foramen were collected into vials and the amounts were quantitatively determined. The data obtained were analyzed using Kruskal-Wallis one-way analysis of variance and Mann-Whitney U tests. Results: The results show that all instrumentation techniques produced significant amount of extruded debris and irrigant. The engine-driven nickel-titanium systems showed less apical extrusion of debris and irrigant than manual technique. No statistically significant difference was found between the groups at [P > 0.05]. Maximum apical debris and irrigant extrusion was seen with K-file group and least in the Mtwo group. Conclusions: The use of rotary files and techniques to perform instrumentation does show less extrusion of the debris and irrigant from the apex. This can contribute to more successful endodontic therapy. PMID:22114427

  3. Effects of soil texture and drought stress on the uptake of antibiotics and the internalization of Salmonella in lettuce following wastewater irrigation.

    Science.gov (United States)

    Zhang, Yuping; Sallach, J Brett; Hodges, Laurie; Snow, Daniel D; Bartelt-Hunt, Shannon L; Eskridge, Kent M; Li, Xu

    2016-01-01

    Treated wastewater is expected to be increasingly used as an alternative source of irrigation water in areas facing fresh water scarcity. Understanding the behaviors of contaminants from wastewater in soil and plants following irrigation is critical to assess and manage the risks associated with wastewater irrigation. The objective of this study was to evaluate the effects of soil texture and drought stress on the uptake of antibiotics and the internalization of human pathogens into lettuce through root uptake following wastewater irrigation. Lettuce grown in three soils with variability in soil texture (loam, sandy loam, and sand) and under different levels of water stress (no drought control, mild drought, and severe drought) were irrigated with synthetic wastewater containing three antibiotics (sulfamethoxazole, lincomycin and oxytetracycline) and one Salmonella strain a single time prior to harvest. Antibiotic uptake in lettuce was compound-specific and generally low. Only sulfamethoxazole was detected in lettuce with increasing uptake corresponding to increasing sand content in soil. Increased drought stress resulted in increased uptake of lincomycin and decreased uptake of oxytetracycline and sulfamethoxazole. The internalization of Salmonella was highly dependent on the concentration of the pathogen in irrigation water. Irrigation water containing 5 Log CFU/mL Salmonella resulted in limited incidence of internalization. When irrigation water contained 8 Log CFU/mL Salmonella, the internalization frequency was significantly higher in lettuce grown in sand than in loam (p = 0.009), and was significantly higher in lettuce exposed to severe drought than in unstressed lettuce (p = 0.049). This work demonstrated how environmental factors affected the risk of contaminant uptake by food crops following wastewater irrigation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. STUDY ON MICROBIAL COMMUNITIES AND SOIL ORGANIC MATTER IN IRRIGATED AND NON-IRRIGATED VERTISOL FROM BOIANU

    Directory of Open Access Journals (Sweden)

    Sorina Dumitru

    2012-12-01

    Full Text Available Irrigation, when administered correctly, confers the producers the possibility to overcome drought effects and obtain higher yields, supplementing the quality of food for animals or human consumers. In the mean time, soil erosion, pathogens attack and nutrients or pesticides spreading can be prevented by an adequate management of irrigation water. As a consequence, soil microbial community structure, composition and activities, as well as the organic matter quality can be different from those in non-irrigated soil. Research have been carried out in order to assess changes in bacterial and fungal communities and activity in irrigated Vertisol from Boianu, as compared with non-irrigated. The paper presents the results concerning the taxonomical composition of bacterial and fungalmicroflora in the horizons of the two soil profiles, as well as the level of CO2 released by microorganisms. Chromatographic aspects of humus fractions were used to characterize the organic matter in irrigated and nonirrigated soil. Increased moisture and lowered temperature in Ap horizon of irrigated soil increased bacterial counts(18 x106 viable cells x g-1 dry soil and their metabolic activity expressed by carbon dioxide released (46.838mg CO2 x g-1 dry soil comparatively with non- irrigated soil. Fungal microflora was more abundant after 25-50cm under irrigation. Species diversity slightly increased under irrigation in both upper and lower part of soil profile. In irrigated soil, associations of species belonging to bacterial genera Pseudomonas and Bacillus were dominant in surface and white actinomycetes in the depth. Fungal consortia of Penicillium, Aspergillus and Fusarium dominated in both soil profiles.Irrigation induced changes in the quantity and quality of soil organic matter, as well as in the aspect of their migration pattern, as revealed on circular chromatograms.

  5. Irrigation Depletions 1928-1989 : 1990 Level of Irrigation, Snake Yakima and Deschutes River Basins.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administation; A.G. Crook Company

    1993-07-01

    The vast amount of irrigation in relation to the available water and extensive system of reservoirs located in the Snake River Basin above Brownlee reservoir precludes this area from using methods such as Blaney-Criddle for estimating irrigation depletions. Also the hydrology, irrigation growth patterns, and water supply problems are unique and complex. Therefore regulation studies were utilized to reflect the net effect on streamflow of the changes in irrigated acreage in terms of corresponding changes in storage regulation and in the amount of water depleted and diverted from and returned to the river system. The regulation study for 1990 conditions was conducted by the Idaho Department of Water Resources. The end product of the basin simulation is 61 years of regulated flows at various points in the river system that are based on 1990 conditions. Data used by the Idaho Department of Water Resources is presented in this section and includes natural gains to the river system and diversions from the river system based on a 1990 level of development and operation criteria. Additional information can be obtained for an Idaho Department of Water Resources Open-File Report ``Stream Flows in the Snake River Basin 1989 Conditions of Use and Management`` dated June 1991. Similar considerations apply to the Yakima and Deschutes river basins.

  6. Irrigating lives : development intervention and dynamics of social relationships in an irrigation project

    NARCIS (Netherlands)

    Magadlela, D.

    2000-01-01

    This study is about rural agricultural development and social processes of change in rural Zimbabwe. It is aimed at understanding how irrigation intervention in a remote rural context changed the cultural, social, political and farming lives of people. It is a study of people coping with

  7. Intervention processes and irrigation institutions : sustainability of farmer managed irrigation systems in Nepal

    NARCIS (Netherlands)

    Pant, D.R.

    2000-01-01

    With the support from various donors, His Majesty's Government of Nepal has implemented support programmes with a view to transform water availability, improve production, and increase the institutional capabilities of farmers to develop and sustain efficient, fair and reliable irrigation

  8. 77 FR 16828 - Turlock Irrigation District, & Modesto Irrigation District; Notice of Dispute Resolution Process...

    Science.gov (United States)

    2012-03-22

    ... 8--Salmon and Steelhead Full Life-Cycle Population Models; and Request 9--Effects of the Project and... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Don Pedro Hydroelectric Project Project... relicensing proceeding for the Don Pedro Hydroelectric Project No. 2299-075.\\1\\ Turlock Irrigation District...

  9. Outdoor Irrigation Measurement and Verification Protocol

    Energy Technology Data Exchange (ETDEWEB)

    Kurnik, Charles W. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Stoughton, Kate M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Figueroa, Jorge [Western Resource Advocates, Boulder, CO (United States)

    2017-12-05

    This measurement and verification (M&V) protocol provides procedures for energy service companies (ESCOs) and water efficiency service companies (WESCOs) to determine water savings resulting from water conservation measures (WCMs) in energy performance contracts associated with outdoor irrigation efficiency projects. The water savings are determined by comparing the baseline water use to the water use after the WCM has been implemented. This protocol outlines the basic structure of the M&V plan, and details the procedures to use to determine water savings.

  10. Irrigation of treated wastewater in Braunschweig, Germany

    DEFF Research Database (Denmark)

    Ternes, T.A.; Bonerz, M.; Herrmann, N.

    2007-01-01

    pharmaceuticals and two personal care products (PPCPs; e.g. betablockers, antibiotics, antiphlogistics, carbamazepine, musk fragrances, iodinated contrast media (ICM) and estrogens). No differences in PPCP pollution of the groundwater were found due to irrigation of STP effluents with and without addition....... In the groundwater and lysimeter samples primarily the ICM diatrizoate and iopamidol, the antiepileptic carbamazepine and the antibiotic sulfamethoxazole were detected up to several mu g l(-1), while the acidic pharmaceuticals, musk fragrances, estrogens and betablockers were likely sorbed or transformed while...

  11. Assessing the changes of groundwater recharge / irrigation water use between SRI and traditional irrigation schemes in Central Taiwan

    Science.gov (United States)

    Chen, Shih-Kai; Jang, Cheng-Shin; Tsai, Cheng-Bin

    2015-04-01

    To respond to agricultural water shortage impacted by climate change without affecting rice yield in the future, the application of water-saving irrigation, such as SRI methodology, is considered to be adopted in rice-cultivation in Taiwan. However, the flooded paddy fields could be considered as an important source of groundwater recharge in Central Taiwan. The water-saving benefit of this new methodology and its impact on the reducing of groundwater recharge should be integrally assessed in this area. The objective of this study was to evaluate the changes of groundwater recharge/ irrigation water use between the SRI and traditional irrigation schemes (continuous irrigation, rotational irrigation). An experimental paddy field located in the proximal area of the Choushui River alluvial fan (the largest groundwater pumping region in Taiwan) was chosen as the study area. The 3-D finite element groundwater model (FEMWATER) with the variable boundary condition analog functions, was applied in simulating groundwater recharge process and amount under traditional irrigation schemes and SRI methodology. The use of effective rainfall was taken into account or not in different simulation scenarios for each irrigation scheme. The simulation results showed that there were no significant variations of infiltration rate in the use of effective rainfall or not, but the low soil moisture setting in deep soil layers resulted in higher infiltration rate. Taking the use of effective rainfall into account, the average infiltration rate for continuous irrigation, rotational irrigation, and SRI methodology in the first crop season of 2013 were 4.04 mm/day, 4.00 mm/day and 3.92 mm/day, respectively. The groundwater recharge amount of SRI methodology was slightly lower than those of traditional irrigation schemes, reducing 4% and 2% compared with continuous irrigation and rotational irrigation, respectively. The field irrigation requirement amount of SRI methodology was significantly

  12. Clinical value of colonic irrigation in patients with continence disturbances.

    Science.gov (United States)

    Briel, J W; Schouten, W R; Vlot, E A; Smits, S; van Kessel, I

    1997-07-01

    Continence disturbances, especially fecal soiling, are difficult to treat. Irrigation of the distal part of the large bowel might be considered as a nonsurgical alternative for patients with impaired continence. This study is aimed at evaluating the clinical value of colonic irrigation. Thirty-two patients (16 females; median age, 47 (range, 23-72) years) were offered colonic irrigation on an ambulatory basis. Sixteen patients suffered from fecal soiling (Group I), whereas the other 16 patients were treated for fecal incontinence (Group II). Patients were instructed by enterostomal therapists how to use a conventional colostomy irrigation set to obtain sufficient irrigation of the distal part of their large bowel. Patients with continence disturbances during the daytime were instructed to introduce 500 to 1,000 ml of warm (38 degrees C) water within 5 to 10 minutes after they passed their first stool. In addition, they were advised to wait until the urge to defecate was felt. Patients with soiling during overnight sleep were advised to irrigate during the evening. To determine clinical outcome, a detailed questionnaire was used. Median duration of follow-up was 18 months. Ten patients discontinued irrigation within the first month of treatment. Symptoms resolved completely in two patients. They believed that there was no need to continue treatment any longer. Irrigation had no effect in two patients. Despite the fact that symptoms resolved, six patients discontinued treatment because they experienced pain (n = 2) or they considered the irrigation to be too time-consuming (n = 4). Twenty-two patients are still performing irrigations. Most patients irrigated the colon in the morning after the first stool was passed. Time needed for washout varied between 10 and 90 minutes. Frequency of irrigations varied from two times per day to two times per week. In Group I, irrigation was found to be beneficial in 92 percent of patients, whereas 60 percent of patients in Group II

  13. Irrigation and fertigation frequencies with nitrogen in the watermelon culture

    Directory of Open Access Journals (Sweden)

    Carlos Newdmar Vieira Fernandes

    2014-06-01

    Full Text Available This study evaluates the influence of different irrigation frequencies and different nitrogen fertigation frequencies on the growth performance of the watermelon (Citrullus lanatus culture. Two experiments were conducted at the Paraguay farm in the Cruz municipality, Ceará, Brazil. They was randomized blocks design with six treatments and four replications. The irrigation frequency experiment consisted of the application of different irrigation frequencies. The treatments were: DM - daily irrigation in the morning with 100% daily dosage; DT - daily irrigation in the afternoon, with 100% daily dosage; DMT - twice daily irrigation, with 50% daily dosage in the morning and 50% daily dosage in the afternoon; 2D - irrigation every two days; 3D - irrigation every three days and 4D - irrigation every four days. To the experiment with different nitrogen fertigation frequencies, the treatments used were: 2F - 2 fertigations in a cycle; 4F - 4 fertigations in a cycle; 8F - 8 fertigations in a cycle; 16F - 16 fertigations in a cycle; 32F - 32 fertigations in a cycle and 64F - 64 fertigations in a cycle. We evaluated the marketable yield (PC, fruit weight (M, polar diameter (DP, equatorial diameter (DE, shell thickness (EC and soluble solids (SS. The irrigation frequency treatments influenced all variables significantly, with twice daily irrigation (DMT, 50% in the morning and the 50% in the afternoon promoting the highest productivity (69.79 t ha-1. The different frequencies of fertigation also significantly influenced all variables, except for the shell thickness, the highest yield (80.69 t ha-1 being obtained with treatment 64 fertigations in a cycle.

  14. Distillation irrigation: a low-energy process for coupling water purification and drip irrigation

    Science.gov (United States)

    Constantz, J.

    1989-01-01

    A method is proposed for combining solar distillation and drip irrigation to simultaneously desalinize water and apply this water to row crops. In this paper, the basic method is illustrated by a simple device constructed primarily of sheets of plastic, which uses solar energy to distill impaired water and apply the distillate to a widely spaced row crop. To predict the performance of the proposed device, an empirical equation for distillate production, dp, is developed from reported solar still production rates, and a modified Jensen-Haise equation is used to calculate the potential evapotranspiration, et, for a row crop. Monthly values for et and dp are calculated by using a generalized row crop at five locations in the Western United States. Calculated et values range from 1 to 22 cm month-1 and calculated dp values range from 2 to 11 cm month-1, depending on the location, the month, and the crop average. When the sum of dp plus precipitation, dp + P, is compared to et for the case of 50% distillation irrigation system coverage, the results indicate that the crop's et is matched by dp + P, at the cooler locations only. However, when the system coverage is increased to 66%, the crop's et is matched by dp + P even at the hottest location. Potential advantages of distillation irrigation include the ability: (a) to convert impaired water resources to water containing no salts or sediments; and (b) to efficiently and automatically irrigate crops at a rate that is controlled primarily by radiation intensities. The anticipated disadvantages of distillation irrigation include: (a) the high costs of a system, due to the large amounts of sheeting required, the short lifetime of the sheeting, and the physically cumbersome nature of a system; (b) the need for a widely spaced crop to reduce shading of the system by the crop; and (c) the production of a concentrated brine or precipitate, requiring proper off-site disposal. ?? 1989.

  15. Climate change and irrigation. An Australian response

    International Nuclear Information System (INIS)

    Pigram, J.J.

    1995-01-01

    Climatic changes on a global or regional scale, resulting from human activities, and the likely effects of such changes on Australia were discussed. Irrigation concerns of the Murray-Darling Basin in southeast Australia associated with global climate were described. Potential risks for regional economies and communities (agriculture in this instance) which may be significant, were assessed. Restructuring of the irrigation industry, and appropriate policy initiatives were urged now, while there is still some time to prepare. Application of the 'Precautionary Principle' to reduce global climate change effects was recommended. (This principle states that in areas threatened by severe climatic change lack of full scientific certainty should not be used as an excuse to delay decisive measures designed to mitigate environmental degradation). Bold policy adjustments and the creation of a new institutional framework to promote sustainable resource management were called for. It was suggested that the region could become a 'laboratory' for the whole world for assessing the effectiveness of managerial responses to environmental changes

  16. PRODUCTION OF TOMATO SEEDLINGS UNDER SALINE IRRIGATION

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Brasiliano Campos

    2007-01-01

    Full Text Available Processing tomato is the most important vegetable crop of the Brazilian agribusiness and few researches have been conducted to evaluate the tolerance of this crop to saline stress. In this study, the effects of five levels of salinity of the irrigation water (1, 2, 3, 4 and 5 dS m-1 and three equivalent proportions of Na:Ca:Mg (1:1:0.5, 4:1:0.5 and 7:1:0.5 were tested on the emergence and vigor of processing tomato, cultivar IPA 6. Seeds were sowed in expanded polystyrene tray (128 cells and each tray received 1 L of water after sowing. The trays were piled and, four days after sowing, they were placed on suspended supports in a greenhouse. Irrigation was accomplished daily from the fifth day after sowing. Only dry weight of shoot and root was affected by sodium proportions, while linear reductions of the speed of emergence, stem length and the dry weight of shoot and root were observed with increasing salinity. Root was more affected than shoot by salinity and relative growth ratioincreased with salinity levels on the 14-21 days after sowing period, indicating that the crop showed a certain increase of salinity tolerance with the time of exposure to salts.

  17. Activation of Alkaline Irrigation Fluids in Endodontics

    Directory of Open Access Journals (Sweden)

    Laurence J. Walsh

    2017-10-01

    Full Text Available In conventional endodontic treatment, alkaline solutions of sodium hypochlorite (NaOCl and ethylenediaminetetraacetic acid (EDTA are used in combination to disinfect the root canal system and to eliminate debris and smear layers. An important concept that has emerged over recent years is the use of active physical methods for agitating these fluids to improve their penetration within areas that are not reached by endodontic instruments and to accelerate the chemical actions of these alkaline fluids against planktonic microorganisms, biofilms, soft tissue remnants and smear layers. Ultrasonic agitation and more recently pulsed lasers have emerged as two promising methods for activating endodontic irrigation fluids. Ultrasonic agitation with piezoelectric devices employs a moving tip, while laser agitation uses a stationary tip. Both methods cause cavitation, followed by implosions and shear forces which assist with debridement. Fluid streaming further enhances the activity of the fluids. While agitation enhances performance of irrigants, extrusion of fluids from the root canal during activation is a hazard that must be controlled.

  18. Estimates of Savings Achievable from Irrigation Controller

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Alison; Fuchs, Heidi; Whitehead, Camilla Dunham

    2014-03-28

    This paper performs a literature review and meta-analysis of water savings from several types of advanced irrigation controllers: rain sensors (RS), weather-based irrigation controllers (WBIC), and soil moisture sensors (SMS).The purpose of this work is to derive average water savings per controller type, based to the extent possible on all available data. After a preliminary data scrubbing, we utilized a series of analytical filters to develop our best estimate of average savings. We applied filters to remove data that might bias the sample such as data self-reported by manufacturers, data resulting from studies focusing on high-water users, or data presented in a non-comparable format such as based on total household water use instead of outdoor water use. Because the resulting number of studies was too small to be statistically significant when broken down by controller type, this paper represents a survey and synthesis of available data rather than a definitive statement regarding whether the estimated water savings are representative.

  19. Applicability of 87Sr/86Sr in examining return flow of irrigation water in highly agricultural watersheds in Japan

    Science.gov (United States)

    Yoshida, T.; Nakano, T.; Shin, K. C.; Tsuchihara, T.; Miyazu, S.; Kubota, T.

    2017-12-01

    Water flows in watersheds containing extensive areas of irrigated paddies are complex because of the substantial volumes involved and the repeated cycles of water diversion from, and return to, streams. For better management of low-flow conditions, numerous studies have attempted to quantify the return flow using the stable isotopes of water; however, the temporal variation in these isotopic compositions due to fractionation during evaporation from water surfaces hinders their application to watersheds with extensive irrigated paddies. In this study, we tested the applicability of the strontium isotopes (87Sr/86Sr, hereafter Sr ratio) for studying hydrological processes in a typical agricultural watershed located on the alluvial fan of the Kinu River, namely the Gogyo River, in central Japan. The Sr ratio of water changes only because of interactions with the porous media it flows through, or because of mixing with water that has different Sr ratios. We sampled water both at a single rice paddy, and on the watershed scale in the irrigated and non-irrigated periods. The soil water under the paddy decreased as sampling depth increased, and the soil water at a depth of 1.5 m showed a similar Sr ratio to the spring. The water sampled in the drainage channel with a concrete lined bottom showed a similar Sr ratio to the irrigation water, whereas that with a soil bottom was plotted between the plots of the irrigation water and shallow aquifer. These results suggest the Sr ratio decreases as it mixes with the soil water through percolation; whereas the Sr ratio will be less likely to change when water drains from paddies via surface pathways. The streamflow samples were plotted linearly on the Sr ratio and 1/Sr plot, indicating that the streamflow was composed of two end-members; the irrigation water and the shallow aquifer. The continuous decline in the Sr ratio along the stream suggests an exfiltration of water from the shallow aquifers. The stream water during the non-irrigated

  20. [Optimal irrigation index for cotton drip irrigation under film mulching based on the evaporation from pan with constant water level].

    Science.gov (United States)

    Shen, Xiao-Jun; Zhang, Ji-Yang; Sun, Jing-Sheng; Gao, Yang; Li, Ming-Si; Liu, Hao; Yang, Gui-Sen

    2013-11-01

    A field experiment with two irrigation cycles and two irrigating water quotas at squaring stage and blossoming-boll forming stage was conducted in Urumqi of Xinjiang Autonomous Region, Northwest China in 2008-2009, aimed to explore the high-efficient irrigation index of cotton drip irrigation under film mulching. The effects of different water treatments on the seed yield, water consumption, and water use efficiency (WUE) of cotton were analyzed. In all treatments, there was a high correlation between the cotton water use and the evaporation from pan installed above the plant canopy. In high-yield cotton field (including the treatment T4 which had 10 days and 7 days of irrigation cycle with 30.0 mm and 37.5 mm of irrigating water quota at squaring stage and blossoming-boll forming stage, respectively in 2008, and the treatment T1 having 7 days of irrigation cycle with 22.5 mm and 37.5 mm of irrigating water quota at squaring stage and blossoming-boll forming stage, respectively in 2009), the pan-crop coefficient (Kp) at seedling stage, squaring stage, blossoming-boll forming stage, and boll opening stage was 0.29-0.30, 0.52-0.53, 0.74-0.88, and 0.19-0.20, respectively. As compared with the other treatments, T4 had the highest seed cotton yield (5060 kg x hm(-2)) and the highest WUE (1.00 kg x m(-3)) in 2008, whereas T1 had the highest seed cotton yield (4467 kg x hm(-2)) and the highest WUE (0.99 kg x m(-3)) in 2009. The averaged cumulative pan evaporation in 7 days and 10 days at squaring stage was 40-50 mm and 60-70 mm, respectively, and that in 7 days at blossoming-boll forming stage was 40-50 mm. It was suggested that in Xinjiang cotton area, irrigating 45 mm water for seedling emergence, no irrigation both at seedling stage and at boll opening stage, and irrigation was started when the pan evaporation reached 45-65 mm and 45 mm at squaring stage and blossoming-boll stage, respectively, the irrigating water quota could be determined by multiplying cumulative

  1. Investigating deficit irrigation as a climate-smart farming option

    Science.gov (United States)

    Global water supplies available for irrigation are declining while food demand continues to rise. Deficit irrigation offers a promising strategy to reduce water use with minimal impacts to yields, but is likely to have a range of impacts on soil nutrient cycling processes and climate change mitigati...

  2. Yield response and economics of shallow subsurface drip irrigation systems

    Science.gov (United States)

    Field tests were conducted using shallow subsurface drip irrigation (S3DI) on cotton (Gossypium hirsutum, L.), corn (Zea mays, L.), and peanut (Arachis hypogeae, L.) in rotation to investigate yield potential and economic sustainability of this irrigation system technique over a six year period. Dri...

  3. Agriculture and wildlife: ecological implications of subsurface irrigation drainage

    Science.gov (United States)

    A. Dennis Lemly

    1994-01-01

    Subsurface agricultural irrigation drainage is a wastewater with the potential to severely impact wetlands and wildlife populations. Widespread poisoning of migratory birds by drainwater contaminants has occurred in the western United States and waterfowl populations are threatened in the Pacific and Central flyways. Irrigated agriculture could produce subsurface...

  4. Atmospheric effects of irrigation in monsoon climate: the Indian subcontinent

    NARCIS (Netherlands)

    Tuinenburg, O.A.

    2013-01-01

    During the 20th century, an increasing population increased the demand for food. As a consequence, agricultural activity has expanded and become more intense. A part of this intensification is the use of irrigation systems to water crops. Due to this irrigation, dams and channeling systems,

  5. Salinity guidelines for irrigation: Case studies from Water Research ...

    African Journals Online (AJOL)

    the entire fruit and wine industries are dependent on irrigation. Cropping in the Eastern and Northern Cape also relies heavily on irrigation. ..... The soils were described as deep, fine sandy, dominantly red, ..... crops. For example, leaves of deciduous fruit trees (apri- ..... Laboratory Handbook 60, USDA, Washington. 160 pp.

  6. Performance evaluation of sprinkler irrigation system at Mambilla ...

    African Journals Online (AJOL)

    Variation in discharge can also be adjusted via use of uniform laterals, risers, and nozzles. This study further recommends an incorporation of a soil and water laboratory for the company to aid in monitoring the soil and water quality of the irrigation area. Keywords: Tea, irrigation System, Performance Evaluation ...

  7. Effects of different irrigation regimes on vegetative growth, fruit yield ...

    African Journals Online (AJOL)

    This study was conducted during five growing seasons from 2004 to 2008 to investigate effects of different irrigation regimes on vegetative growth, fruit yield and quality of Salak apricot trees in semiarid climatic conditions. There were six irrigation treatments, five of which (S1, S2, S3, S4 and S5) were based on adjustment ...

  8. Effects of different irrigation programs on yield and quality ...

    African Journals Online (AJOL)

    Evapotranspiration (ET) values varied from 93.1 to 466.3 mm for the treatments. The highest yield was obtained from the S3 and S4 treatments. A significant polynomial correlation was obtained between the yield and irrigation water, and between the yield and ET (P < 0.01). This indicated that when irrigation water and ET ...

  9. Thermal infrared sensors for postharvest deficit irrigation of peach

    Science.gov (United States)

    California has been in a historic drought and the lack of water has been a major problem for agriculture especially for crops that depend on irrigation. A multi-year field study was carried out to demonstrate the feasibility of applying thermal infrared sensors for managing deficit irrigation in an ...

  10. Wireless sensor network effectively controls center pivot irrigation of sorghum

    Science.gov (United States)

    Robust automatic irrigation scheduling has been demonstrated using wired sensors and sensor network systems with subsurface drip and moving irrigation systems. However, there are limited studies that report on crop yield and water use efficiency resulting from the use of wireless networks to automat...

  11. Small private irrigation: Enhancing benefits and managing trade-offs

    NARCIS (Netherlands)

    Giordano, M.; Fraiture, de C.M.S.

    2014-01-01

    Millions of smallholder farmers in sub-Saharan Africa and South Asia benefit from readily available and affordable irrigation technologies. The rapid uptake of small private irrigation in South Asia had a proven positive effect on poverty alleviation. In sub-Saharan Africa similar trends are

  12. [Ecological risks of reclaimed water irrigation: a review].

    Science.gov (United States)

    Chen, Wei-Ping; Zhang, Wei-Ling; Pan, Neng; Jiao, Wen-Tao

    2012-12-01

    Wastewater reclamation and reuse have become an important approach to alleviate the water crisis in China because of its social, economic and ecological benefits. The irrigation on urban green space and farmland is the primary utilization of reclaimed water, which has been practiced world widely. To understand the risk of reclaimed water irrigation, we summarized and reviewed the publications associated with typical pollutants in reclaimed water including salts, nitrogen, heavy metals, emerging pollutants and pathogens, systematically analyzed the ecological risk posed by reclaimed water irrigation regarding plant growth, groundwater quality and public health. Studies showed that salt and salt ions were the major risk sources of reclaimed water irrigation, spreading disease was another potential risk of using reclaimed water, and emerging pollutants was the hot topic in researches of ecological risk. Based on overseas experiences, risk control measures on reclaimed water irrigation in urban green space and farmland were proposed. Five recommendations were given to promote the safe use of reclaimed water irrigation including (1) strengthen long-term in situ monitoring, (2) promote the modeling studies, (3) build up the connections of reclaimed water quality, irrigation management and ecological risk, (4) evaluate the soil bearing capacity of reclaimed water irrigation, (5) and establish risk management system of reclaimed water reuse.

  13. Root Zone Sensors for Irrigation Management in Intensive Agriculture

    NARCIS (Netherlands)

    Pardossi, A.; Incrocci, L.; Incrocci, G.; Marlorgio, F.; Battista, P.; Bacci, L.; Rapi, B.; Marzialetti, P.; Hemming, J.; Balendonck, J.

    2009-01-01

    Crop irrigation uses more than 70% of the world’s water, and thus, improving irrigation efficiency is decisive to sustain the food demand from a fast-growing world population. This objective may be accomplished by cultivating more water-efficient crop species and/or through the application of

  14. land evaluation for improved rice production in watari irrigation

    African Journals Online (AJOL)

    DR. AMINU

    This study aimed at raising irrigated rice production in Watari Irrigation scheme, in Kano state, as to bridge the gap ... land including details about maintenance and ... Area of Kano state and cover a total of 4,574 .... which requires a depth of more than 50cm for efficient .... raise the productivity of the soils to optimum for.

  15. Smallholder irrigation schemes in South Africa: A review of ...

    African Journals Online (AJOL)

    The status and characteristics of the 302 smallholder irrigation schemes found in South Africa are discussed and knowledge on South African smallholder irrigation schemes generated by the Water Research Commission (WRC) over a period of nearly 20 years is reviewed. Themes covered include planning, design and ...

  16. The effects of different irrigation levels on flowering and flower ...

    African Journals Online (AJOL)

    Water usage is a vital issue for all agricultural crops as well as for ornamental crops. To obtain high quality flowers, it is essential to supply water when it is required. A problem which is common with cut flower growers are determining when to irrigate and the amount of water to apply. The effect of two irrigation intervals (I1: ...

  17. Farmers' Willingness to Pay for Private Irrigation Supply in Nandom ...

    African Journals Online (AJOL)

    This study investigated farmers willingness to pay (WTP) for private irrigation in Nandom district, Ghana. The study randomly sampled 236 farmers and analyzed data using descriptive statistics and ordered logit regression model. Results revealed that 94.5 percent of the farmers were WTP for private irrigation services with ...

  18. Enhanced fodder yield of maize genotypes under saline irrigation is ...

    African Journals Online (AJOL)

    Poor quality irrigation water adversely affects the growth and yield of crops. This study was designed to evaluate the growth, fodder yield and ionic concentration of three promising maize (Zea mays L.) genotypes under the influence of varying quality irrigation water, with different salinity levels. The genotypes, such as ...

  19. Irrigation and Rural Welfare: Implications of Schistosomiasis among ...

    African Journals Online (AJOL)

    This paper examines the effects of the prevalence of urinary schistosomiasis infection on the socio-economic health of irrigation farmers in the rural districts of Kazaure Area, Northern Nigeria. It first reviews some general consideration of irrigation environment and schistosomiasis, its major associated health problem.

  20. Remote sensing, GIS and hydrological modelling for irrigation management

    NARCIS (Netherlands)

    Menenti, M.; Azzali, S.; Urso, d' G.

    1996-01-01

    This paper gives an overview of literature and of work done by the authors between 1988 and 1993. It was presented at a NATO expert meeting on sustainability of irrigated agriculture in 1994. The paper deals with crop water requirements and crop waterstress, assessing irrigation performance with

  1. Growth and biomass of Populus irrigated with landfill leachate

    Science.gov (United States)

    Jill A. Zalesny; Ronald S., Jr. Zalesny; David R. Coyle; Richard B. Hall

    2007-01-01

    Resource managers are challenged with waste disposal and leachate produced from its degradation. Poplar (Populus spp.) trees offer an opportunity for ecological leachate disposal as an irrigation source for managed tree systems. Our objective was to irrigate Populus trees with municipal solid waste landfill leachate or fertilized well water (control...

  2. Performance evaluation of a center pivot variable rate irrigation system

    Science.gov (United States)

    Variable Rate Irrigation (VRI) for center pivots offers potential to match specific application rates to non-uniform soil conditions along the length of the lateral. The benefit of such systems is influenced by the areal extent of these variations and the smallest scale to which the irrigation syste...

  3. Irrigation methods for efficient water application: 40 years of South ...

    African Journals Online (AJOL)

    The purpose of an irrigation system is to apply the desired amount of water, at the correct application rate and uniformly to the whole field, at the right time, with the least amount of non-beneficial water consumption (losses), and as economically as possible. We know that irrigated agriculture plays a major role in the ...

  4. The management perspective on the performance of the irrigation subsector

    NARCIS (Netherlands)

    Nijman, C.

    1993-01-01

    INVESTMENT IN IRRIGATION has been immense in the past. Estimated average annual investments of US$ 15 billion makes irrigation the largest subsector of the agricultural sector, that is itself by far the largest sector of development investment. Since the mid-1960s the awareness spread that the

  5. Irrigation and nitrogen level affect lettuce yield in greenhouse ...

    African Journals Online (AJOL)

    This study was conducted to investigate the effect of different irrigation and nitrogen levels on lettuce yield characteristics in greenhouse condition from December 2006 to March 2007. Irrigation levels of 100% of total class A pan (S1), 80% of total class A pan (S2), 60% of total class A pan (S3) and nitrogen levels of 0 kg ...

  6. Wastewater Use in Irrigated Agriculture : Confronting the Livelihood ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Wastewater Use in Irrigated Agriculture : Confronting the Livelihood and Environmental Realities. Couverture du livre Wastewater Use in Irrigated Agriculture: Confronting the Livelihood and Environmental Realities. Directeur(s) : Christopher Scott, Naser I. Faruqui et Liqa Raschid. Maison(s) d'édition : CABI, IWMI, CRDI.

  7. Bureaucratic designs : the paradox of irrigation management transfer in Indonesia

    NARCIS (Netherlands)

    Suhardiman, D.

    2008-01-01

    Irrigation Management Transfer (IMT) policy has been formulated and implemented worldwide, relying on three basic assumptions: that the irrigation agency are motivated to adapt their role in the sector's development; that farmers are willing to take over the system management; and that the process

  8. Which Order? Whose Order? Balinese Irrigation Management in Sulawesi, Indonesia

    NARCIS (Netherlands)

    Roth, D.

    2006-01-01

    This paper deals with irrigation management among Balinese migrant settlers in Sulawesi, Indonesia. As settlers in the command area of a state-built irrigation system, they have become part of its blueprinted managerial structure. However, many settlers derived their experience from subak, the

  9. Horizontal distribution of phosphorus in soils of irrigation ditches ...

    African Journals Online (AJOL)

    Horizontal distribution of phosphorus in soils of irrigation ditches. ... correlations were found between soil P and stream water P on one hand, and between soil pH and stream water pH on the other, indicating that the irrigation water may indeed, have had little or no influence on the properties of the ditches' soils.

  10. Automated cycled sprinkler irrigation for spring frost protection of cranberries

    Science.gov (United States)

    Sprinkler irrigation is essential for preventing spring frost bud damage in cranberry (Vaccinium macrocarpon Ait). Risk-averse growers have been reluctant to adopt the intermittent cycling of irrigation pumps as a standard management practice. In the spring of 2013 and 2014, an experiment was conduc...

  11. Peanut canopy temperature and NDVI response to varying irrigation rates

    Science.gov (United States)

    Variable rate irrigation (VRI) systems have the potential to conserve water by spatially allocating limited water resources. In this study, peanut was grown under a VRI system to evaluate the impact of differential irrigation rates on peanut yield. Additionally, we evaluated the impact of differenti...

  12. Salinity guidelines for irrigation: Case studies from Water Research ...

    African Journals Online (AJOL)

    Salinity guidelines for irrigation: Case studies from Water Research Commission projects along the Lower Vaal, Riet, Berg and Breede Rivers. ... It is suggested that a more dynamic approach be used for managing salinity under irrigation at farm level, i.e. the use of models. Amongst others, future research should focus on ...

  13. The Current State of Predicting Furrow Irrigation Erosion

    Science.gov (United States)

    There continues to be a need to predict furrow irrigation erosion to estimate on- and off-site impacts of irrigation management. The objective of this paper is to review the current state of furrow erosion prediction technology considering four models: SISL, WEPP, WinSRFR and APEX. SISL is an empiri...

  14. Irrigated cotton grown on sierozem soils in South Kazakhstan

    Science.gov (United States)

    The Gloldnaya steppe has large areas of fertile sierozem soils that are important for crop production and its accompanying economic development. The soils are fertile loams but because of the steppe’s dry environment, they need to be irrigated. Our objective was to study irrigation management of cot...

  15. Profitability of Irrigated Improved Pecan Orchards in the Southern Plains

    OpenAIRE

    Springer, Job D.; Swinford, Wyatt; Rohla, Charles

    2011-01-01

    The objective was to determine if an irrigated improved pecan orchard is economical relative to agronomic systems commonly implemented by producers that have access to irrigation. Results show that the improved pecan orchard is more profitable than competitive enterprises after a twenty year time frame, but is sensitive to pecan price, pecan yield and attitude toward risk.

  16. Effects of irrigation strategies and soils on field grown potatoes

    DEFF Research Database (Denmark)

    Ahmadi, Seyed Hamid; Andersen, Mathias Neumann; Plauborg, Finn

    2010-01-01

    Yield and water productivity of potatoes grown in 4.32 m2 lysimeters were measured in coarse sand, loamy sand, and sandy loam and imposed to full (FI), deficit (DI), and partial root-zone drying (PRD) irrigation strategies. PRD and DI as water-saving irrigation treatments received 65% of FI after...

  17. Thermal injury of the colon due to colostomy irrigation

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, F.R.; Ott, D.J.; Gelfand, D.W.

    1981-07-15

    A case of thermal burn and stricture of the colon following colostomy irrigation with hot water is described. The initial radiographic features on barium enema simulated nonspecific segmental colitis. Colonic stricture and enterolith formation developed subsequently. This case emphasizes that care should be taken in preparing irrigating and barium enema solutions.

  18. Thermal injury of the colon due to colostomy irrigation

    International Nuclear Information System (INIS)

    Jackson, F.R.; Ott, D.J.; Gelfand, D.W.

    1981-01-01

    A case of thermal burn and stricture of the colon following colostomy irrigation with hot water is described. The initial radiographic features on barium enema simulated nonspecific segmental colitis. Colonic stricture and enterolith formation developed subsequently. This case emphasizes that care should be taken in preparing irrigating and barium enema solutions. (orig.)

  19. ARS irrigation research priorities and projects-An update

    Science.gov (United States)

    The USDA Agricultural Research Service focuses on six areas of research that are crucial to safe and effective use of all water resources for agricultural production: 1) Irrigation Scheduling Technologies for Water Productivity; 2) Water Productivity (WP) at Multiple Scales; 3) Irrigation Applicatio...

  20. Quixotic coupling between irrigation system and maize-cowpea ...

    African Journals Online (AJOL)

    A study was conducted at the Research and Experimental Station, Faculty of Agriculture, Ain Shams University at Shalakan, Kalubia Governorate, Egypt, to evaluate the effect of two irrigation systems (trickle and modified furrow irrigation) and five maize (M)-cowpea (C) intercropping patterns (sole M-30, sole M-15, ridge ...

  1. Size and stochasticity in irrigated social-ecological systems

    Science.gov (United States)

    Puy, Arnald; Muneepeerakul, Rachata; Balbo, Andrea L.

    2017-03-01

    This paper presents a systematic study of the relation between the size of irrigation systems and the management of uncertainty. We specifically focus on studying, through a stylized theoretical model, how stochasticity in water availability and taxation interacts with the stochastic behavior of the population within irrigation systems. Our results indicate the existence of two key population thresholds for the sustainability of any irrigation system: or the critical population size required to keep the irrigation system operative, and N* or the population threshold at which the incentive to work inside the irrigation system equals the incentives to work elsewhere. Crossing irretrievably leads to system collapse. N* is the population level with a sub-optimal per capita payoff towards which irrigation systems tend to gravitate. When subjected to strong stochasticity in water availability or taxation, irrigation systems might suffer sharp population drops and irreversibly disintegrate into a system collapse, via a mechanism we dub ‘collapse trap’. Our conceptual study establishes the basis for further work aiming at appraising the dynamics between size and stochasticity in irrigation systems, whose understanding is key for devising mitigation and adaptation measures to ensure their sustainability in the face of increasing and inevitable uncertainty.

  2. Status and migration of irrigation in the USA

    Science.gov (United States)

    Irrigated agriculture produces 49% of crop market value on 18% of cropped lands in the USA. Irrigation is essential to the most highly productive, intensely managed, and internationally competitive sectors of our agricultural economy, which play a key role in meeting growing global food, fiber, and ...

  3. An overview of soil water sensors for salinity & irrigation management

    Science.gov (United States)

    Irrigation water management has to do with the appropriate application of water to soils, in terms of amounts, rates, and timing to satisfy crop water demands while protecting the soil and water resources from degradation. Accurate irrigation management is even more important in salt affected soils ...

  4. The politics of policy : participatory irrigation management in Andhra Pradesh

    NARCIS (Netherlands)

    Nikku, B.R.

    2006-01-01

    This thesis studies the emergence, process and politics of the Andhra Pradesh reform policy of Participatory Irrigation Management (PIM). The reform has been labeled as the 'A? model' of irrigation reforms and supported by external aid agencies like World Bank. Within a short span of time Andhra

  5. Alfalfa response to irrigation from limited water supplies

    Science.gov (United States)

    A five-year field study (2007-2011) of irrigated alfalfa production with a limited water supply was conducted in southwest Kansas with two years of above-average precipitation, one year of average precipitation, and two years of below-average precipitation. The irrigation treatments were designed to...

  6. NUTRIENT CONTENT IN SUNFLOWERS IRRIGATED WITH OIL EXPLORATION WATER

    Directory of Open Access Journals (Sweden)

    ADERVAN FERNANDES SOUSA

    2016-01-01

    Full Text Available Irrigation using produced water, which is generated during crude oil and gas recovery and treated by the exploration industry, could be an option for irrigated agriculture in semiarid regions. To determine the viability of this option, the effects of this treated water on the nutritional status of plants should be assessed. For this purpose, we examined the nutritional changes in sunflowers after they were irrigated with oil - produced water and the effects of this water on plant biomass and seed production. The sunflower cultivar BRS 321 was grown for three crop cycles in areas irrigated with filtered produced water (FPW, reverse osmosis - treated produced water (OPW, or ground water (GW. At the end of each cycle, roots, shoots, and seeds were collected to examine their nutrient concentrations. Produced water irrigation affected nutrient accumulation in the sunflower plants. OPW irrigation promoted the accumulation of Ca, Na, N, P, and Mg. FPW irrigation favored the accumulation of Na in both roots and shoots, and biomass and seed production were negatively affected. The Na in the shoots of plants irrigated with FPW increased throughout the three crop cycles. Under controlled conditions, it is possible to reuse reverse osmosis - treated produced water in agriculture. However, more long - term research is needed to understand its cumulative effects on the chemical and biological properties of the soil and crop production.

  7. Treadle pump irrigation in Malawi: adoption, gender and benefits

    NARCIS (Netherlands)

    Kamwamba-Mtethiwa, J.; Namara, R.; Fraiture, de C.M.S.; Mangisoni, J.; Owusu, E.

    2012-01-01

    As part of their irrigation strategy, the government and non-governmental organizations (NGOs) in Malawi are actively promoting the use of treadle pumps in smallholder irrigation. The positive impact of treadle pumps on food security and poverty reduction in Malawi and elsewhere in sub-Saharan

  8. Implications of rural irrigation schemes on household economy. A ...

    African Journals Online (AJOL)

    ... and quality of life as measured through the use of standardised HDI. In light of the above, there is a need to fund and develop more rural irrigation schemes so as to ensure livelihood security and rural development in Zimbabwe. Keywords: Rural livelihood, Poverty, Climate change, Irrigation, Lower Gweru, Extension.

  9. Technology transfer: Promoting irrigation progress and best management practices

    Science.gov (United States)

    Educational efforts promoting irrigation best management practices are designed to increase adoption of these practices and increase public understanding of the importance of irrigation. They increase visibility and the impact of the Ogallala Aquifer Program and promote affiliated research and exten...

  10. 77 FR 10767 - Rate Adjustments for Indian Irrigation Projects

    Science.gov (United States)

    2012-02-23

    ... Irrigation Project on the proposed rates about the following issues: (1) The methodology for O&M rate setting..., Irrigation Project Manager, (Project operations and management contracted to Tribes), R.R.1, Box 980, Harlem... Projects AGENCY: Bureau of Indian Affairs, Interior. ACTION: Notice of rate adjustments. SUMMARY: The...

  11. Irrigation Management in the Pamirs in Tajikistan: A Man's Domain?

    NARCIS (Netherlands)

    Bossenbroek, L.; Zwarteveen, M.Z.

    2014-01-01

    Families living in Gorno-Badakhshan—situated in the Pamir Mountains in Tajikistan—depend on irrigated agriculture to meet their subsistence needs. Because men predominate, and are most visible in, the operation and management of irrigation systems in this region, water-related activities are often

  12. Wedlock or deadlock? Feminists' attempts to engage irrigation engineers

    NARCIS (Netherlands)

    Zwarteveen, M.Z.

    2006-01-01

    In this thesis I describe my search for ways of thinking about, and conceptualizing, irrigation realities that allow recognition of gender as constitutive of such realities. This effort logically follows from the realization that in mainstream conceptualizations of irrigation it is difficult to

  13. Relationship Between Preseason Training Load and In-Season Availability in Elite Australian Football Players.

    Science.gov (United States)

    Murray, Nick B; Gabbett, Tim J; Townshend, Andrew D

    2017-07-01

    To investigate the relationship between the proportion of preseason training sessions completed and load and injury during the ensuing Australian Football League season. Single-cohort, observational study. Forty-six elite male Australian football players from 1 club participated. Players were divided into 3 equal groups based on the amount of preseason training completed (high [HTL], >85% sessions completed; medium [MTL], 50-85% sessions completed; and low [LTL], technology was used to record training and game loads, with all injuries recorded and classified by club medical staff. Differences between groups were analyzed using a 2-way (group × training/competition phase) repeated-measures ANOVA, along with magnitude-based inferences. Injury incidence was expressed as injuries per 1000 h. The HTL and MTL groups completed a greater proportion of in-season training sessions (81.1% and 74.2%) and matches (76.7% and 76.1%) than the LTL (56.9% and 52.7%) group. Total distance and player load were significantly greater during the first half of the in-season period for the HTL (P = .03, ES = 0.88) and MTL (P = .02, ES = 0.93) groups than the LTL group. The relative risk of injury for the LTL group (26.8/1000 h) was 1.9 times greater than that for the HTL group (14.2/1000 h) (χ 2 = 3.48, df = 2, P = .17). Completing a greater proportion of preseason training resulted in higher training loads and greater participation in training and competition during the competitive phase of the season.

  14. Practical salinity management for leachate irrigation to poplar trees.

    Science.gov (United States)

    Smesrud, Jason K; Duvendack, George D; Obereiner, James M; Jordahl, James L; Madison, Mark F

    2012-01-01

    Landfill leachate can be beneficially reused for irrigation of fiber crops with appropriate attention to nutrient and salinity management. The Riverbend Landfill in Western Oregon has been effectively practicing irrigation of landfill leachate to poplar trees since 1993. Over that time, the site has been adaptively managed to control salinity impacts to the tree crop while beneficially utilizing the applied water and nutrients during each growing season. Representative leachate irrigation water has ranged in concentration of total dissolved solids from 777 to 6,940 mg/L, chloride from 180 to 1,760 mg/L and boron from 3.2 to 7.3 mg/L. Annual leachate irrigation applications have also ranged between 102 and 812 mm/yr. Important conclusions from this site have included: 1) Appropriate tree clone selection and tree stand spacing, thinning, and harvest rotations are critical to maintaining a productive tree stand that is resilient and resistant to salt stress. The most effective combinations have included clones DN-34, OP-367, 184-411, 49-177, and 15-29 planted at spacing of 3.7-m x 1.8-m to 3.7-m x 3.7-m; 2) Leaf tissue boron levels are closely correlated to soil boron levels and can be managed with leaching. When leaf tissue boron levels exceed 200 to 250 mg/kg, signs of salt stress may emerge and should be monitored closely; 3) Salinity from leachate irrigation can be managed to sustain a healthy tree crop by controlling mass loading rates and providing appropriate irrigation blending if necessary. Providing freshwater irrigation following each leachate irrigation and targeting freshwater irrigation as 30 percent of total irrigation water applied has successfully controlled salt impacts to vegetation; and 4) Drip irrigation generally requires more careful attention to long-term soil salinity management than spray irrigation. Moving drip irrigation tubes periodically to prevent the formation of highly saline zones within the soil profile is important. In this paper, a

  15. Sensor-Based Model Driven Control Strategy for Precision Irrigation

    Directory of Open Access Journals (Sweden)

    Camilo Lozoya

    2016-01-01

    Full Text Available Improving the efficiency of the agricultural irrigation systems substantially contributes to sustainable water management. This improvement can be achieved through an automated irrigation system that includes a real-time control strategy based on the water, soil, and crop relationship. This paper presents a model driven control strategy applied to an irrigation system, in order to make an efficient use of water for large crop fields, that is, applying the correct amount of water in the correct place at the right moment. The proposed model uses a predictive algorithm that senses soil moisture and weather variables, to determine optimal amount of water required by the crop. This proposed approach is evaluated against a traditional irrigation system based on the empirical definition of time periods and against a basic soil moisture control system. Results indicate that the use of a model predictive control in an irrigation system achieves a higher efficiency and significantly reduce the water consumption.

  16. Response of potato to drip and gun irrigation systems

    DEFF Research Database (Denmark)

    Zhenjiang, Zhou; Andersen, Mathias Neumann; Plauborg, Finn

    2015-01-01

    The objective of this study was to evaluate effects of different irrigation and N fertilization regimes by gun irrigation and drip-fertigation on potato production, and subsequently optimize the supply of water and N fertilizer to the growth condition of the specific season and minimize nitrate......-fertigation system (DFdsNds) and two gun irrigation systems (GIdsN120 and GIaN120) to display the differences on growth, yield and water use efficiency of potato. All treatments were irrigated according to model simulated soil water content. For fertilization all treatments received a basic dressing at planting of P......, K, Mg and micronutrients, and in addition 120 kg N/ha in the gun irrigated treatments and 36 kg N/ha in the drip-fertigated. For the latter, portion of 20 kg N/ha was applied whenever plant N concentration approached a critical value as simulated by the Daisy model. As a result differences in soil...

  17. Infrastructure performance of irrigation canal to irrigation efficiency of irrigation area of Candi Limo in Mojokerto District

    Science.gov (United States)

    Kisnanto, S.; Hadiani, R. R. R.; Ikhsan, C.

    2018-03-01

    Performance is a measure of infrastructure success in delivering the benefits corresponding it’s design implementation. Debit efficiency is a comparison between outflow debit and inflow debit. Irrigation canal performance is part of the overall performance aspects of an irrigation area. The greater of the canal performance will be concluded that the canal is increasingly able to meet the planned benefits, need to be seen its comparison between the performance and debit efficiency of the canal. The existing problems in the field that the value of the performance of irrigation canals are not always comparable to the debit efficiency. This study was conducted to describe the relationship between the performance of the canal to the canal debit efficiency. The study was conducted at Candi Limo Irrigation Area in Mojokerto Disctrict under the authority of Pemerintahan Provinsi Jawa Timur. The primary canal and secondary canal are surveyed to obtain data. The physical condition of the primary and secondary canals into the material of this study also. Primary and secondary canal performance based on the physical condition in the field. Measurement inflow and outflow debit into the data for the calculation of the debit efficiency. The instrument used in this study such as the current meter for debit measurements in the field as a solution when there is a building measure in the field were damaged, also using the meter and the camera. Permen PU No.32 is used to determine the value of the performance of the canal, while the efficiency analysis to calculate a comparison value between outflow and inflow debit. The process of data running processing by performing the measurement and calculation of the performance of the canal, the canal debit efficiency value calculation, and display a graph of the relationship between the value of the performance with the debit efficiency in each canal. The expected results of this study that the performance value on the primary canal in the

  18. Global irrigated area map (GIAM), derived from remote sensing, for the end of the last millennium

    Science.gov (United States)

    Thenkabail, P.S.; Biradar, C.M.; Noojipady, P.; Dheeravath, V.; Li, Y.; Velpuri, M.; Gumma, M.; Gangalakunta, O.R.P.; Turral, H.; Cai, X.; Vithanage, J.; Schull, M.A.; Dutta, R.

    2009-01-01

    A Global Irrigated Area Map (GIAM) has been produced for the end of the last millennium using multiple satellite sensor, secondary, Google Earth and groundtruth data. The data included: (a) Advanced Very High Resolution Radiometer (AVHRR) 3-band and Normalized Difference Vegetation Index (NDVI) 10 km monthly time-series for 1997-1999, (b) Syste me pour l'Observation de la Terre Vegetation (SPOT VGT) NDVI 1 km monthly time series for 1999, (c) East Anglia University Climate Research Unit (CRU) rainfall 50km monthly time series for 1961-2000, (d) Global 30 Arc-Second Elevation Data Set (GTOPO30) 1 km digital elevation data of the World, (e) Japanese Earth Resources Satellite-1 Synthetic Aperture Radar (JERS-1 SAR) data for the rain forests during two seasons in 1996 and (f) University of Maryland Global Tree Cover 1 km data for 1992-1993. A single mega-file data-cube (MFDC) of the World with 159 layers, akin to hyperspectral data, was composed by re-sampling different data types into a common 1 km resolution. The MFDC was segmented based on elevation, temperature and precipitation zones. Classification was performed on the segments. Quantitative spectral matching techniques (SMTs) used in hyperspectral data analysis were adopted to group class spectra derived from unsupervised classification and match them with ideal or target spectra. A rigorous class identification and labelling process involved the use of: (a) space-time spiral curve (ST-SC) plots, (b) brightness-greenness-wetness (BGW) plots, (c) time series NDVI plots, (d) Google Earth very-high-resolution imagery (VHRI) 'zoom-in views' in over 11 000 locations, (e) groundtruth data broadly sourced from the degree confluence project (3 864 sample locations) and from the GIAM project (1 790 sample locations), (f) high-resolution Landsat-ETM+ Geocover 150m mosaic of the World and (g) secondary data (e.g. national and global land use and land cover data). Mixed classes were resolved based on decision tree

  19. Irrigation water policy analysis using a business simulation game

    Science.gov (United States)

    Buchholz, M.; Holst, G.; Musshoff, O.

    2016-10-01

    Despite numerous studies on farmers' responses to changing irrigation water policies, uncertainties remain about the potential of water pricing schemes and water quotas to reduce irrigation. Thus far, policy impact analysis is predominantly based upon rational choice models that assume behavioral assumptions, such as a perfectly rational profit-maximizing decision maker. Also, econometric techniques are applied which could lack internal validity due to uncontrolled field data. Furthermore, such techniques are not capable of identifying ill-designed policies prior to their implementation. With this in mind, we apply a business simulation game for ex ante policy impact analysis of irrigation water policies at the farm level. Our approach has the potential to reveal the policy-induced behavioral change of the participants in a controlled environment. To do so, we investigate how real farmers from Germany, in an economic experiment, respond to a water pricing scheme and a water quota intending to reduce irrigation. In the business simulation game, the participants manage a "virtual" cash-crop farm for which they make crop allocation and irrigation decisions during several production periods, while facing uncertain product prices and weather conditions. The results reveal that a water quota is able to reduce mean irrigation applications, while a water pricing scheme does not have an impact, even though both policies exhibit equal income effects for the farmers. However, both policies appear to increase the variation of irrigation applications. Compared to a perfectly rational profit-maximizing decision maker, the participants apply less irrigation on average, both when irrigation is not restricted and when a water pricing scheme applies. Moreover, the participants' risk attitude affects the irrigation decisions.

  20. Stability of Adrenaline in Irrigating Solution for Intraocular Surgery.

    Science.gov (United States)

    Shibata, Yuuka; Kimura, Yasuhiro; Taogoshi, Takanori; Matsuo, Hiroaki; Kihira, Kenji

    2016-01-01

    Intraocular irrigating solution containing 1 µg/mL adrenaline is widely used during cataract surgery to maintain pupil dilation. Prepared intraocular irrigating solutions are recommended for use within 6 h. After the irrigating solution is admistered for dilution, the adrenaline may become oxidized, and this may result in a decrease in its biological activity. However, the stability of adrenaline in intraocular irrigating solution is not fully understood. The aim of this study was to evaluate the stability of adrenaline in clinically used irrigating solutions of varying pH. Six hours after mixing, the adrenaline percentages remaining were 90.6%±3.7 (pH 7.2), 91.1%±2.2 (pH 7.5), and 65.2%±2.8 (pH 8.0) of the initial concentration. One hour after mixing, the percentages remaining were 97.6%±2.0 (pH 7.2), 97.4%±2.7 (pH 7.5), and 95.6%±3.3 (pH 8.0). The degradation was especially remarkable and time dependent in the solution at pH 8.0. These results indicate that the concentration of adrenaline is decreased after preparation. Moreover, we investigated the influence of sodium bisulfite on adrenaline stability in irrigating solution. The percentage adrenaline remaining at 6 h after mixing in irrigating solution (pH 8.0) containing sodium bisulfite at 0.5 µg/mL (concentration in irrigating solution) or at 500 µg/mL (concentration in the undiluted adrenaline preparation) were 57.5 and 97.3%, respectively. Therefore, the low concentration of sodium bisulfite in the irrigating solution may be a cause of the adrenaline loss. In conclusion, intraocular irrigation solution with adrenaline should be prepared just prior to its use in surgery.

  1. Scenario Studies on Effects of Soil Infiltration Rates, Land Slope, and Furrow Irrigation Characteristics on Furrow Irrigation-Induced Erosion.

    Science.gov (United States)

    Dibal, Jibrin M; Ramalan, A A; Mudiare, O J; Igbadun, H E

    2014-01-01

    Furrow irrigation proceeds under several soil-water-furrow hydraulics interaction dynamics. The soil erosion consequences from such interactions in furrow irrigation in Samaru had remained uncertain. A furrow irrigation-induced erosion (FIIE) model was used to simulate the potential severity of soil erosion in irrigated furrows due to interactive effects of infiltration rates, land slope, and some furrow irrigation characteristics under different scenarios. The furrow irrigation characteristics considered were furrow lengths, widths, and stream sizes. The model itself was developed using the dimensional analysis approach. The scenarios studied were the interactive effects of furrow lengths, furrow widths, and slopes steepness; infiltration rates and furrow lengths; and stream sizes, furrow lengths, and slopes steepness on potential furrow irrigation-induced erosion, respectively. The severity of FIIE was found to relate somewhat linearly with slope and stream size, and inversely with furrow lengths and furrow width. The worst soil erosion (378.05 t/ha/yr) was found as a result of the interactive effects of 0.65 m furrow width, 50 m furrow length, and 0.25% slope steepness; and the least soil erosion (0.013 t/ha/yr) was induced by the combined effects of 0.5 l/s, 200 m furrow length, and 0.05% slope steepness. Evidently considering longer furrows in furrow irrigation designs would be a better alternative of averting excessive FIIE.

  2. Irrigated agriculture with limited water supply:Tools for understanding and managing irrigation and crop water use efficiencies

    Science.gov (United States)

    Water availability for irrigated agriculture is declining in both China and the United States due to increased use for power generation, municipalities, industries and environmental protection. Persistent droughts have exacerbated the situation, leading to increases in irrigated area as farmers atte...

  3. Pond and Irrigation Model (PIM): a tool for simultaneously evaluating pond water availability and crop irrigation demand

    Science.gov (United States)

    Ying Ouyang; Gary Feng; Theodor D. Leininger; John Read; Johnie N. Jenkins

    2018-01-01

    Agricultural ponds are an important alternative source of water for crop irrigation to conserve surface and ground water resources. In recent years more such ponds have been constructed in Mississippi and around the world. There is currently, however, a lack of a tool to simultaneously estimate crop irrigation demand and pond water availability. In this study, a Pond-...

  4. Estimating irrigation water use in the humid eastern United States

    Science.gov (United States)

    Levin, Sara B.; Zarriello, Phillip J.

    2013-01-01

    Accurate accounting of irrigation water use is an important part of the U.S. Geological Survey National Water-Use Information Program and the WaterSMART initiative to help maintain sustainable water resources in the Nation. Irrigation water use in the humid eastern United States is not well characterized because of inadequate reporting and wide variability associated with climate, soils, crops, and farming practices. To better understand irrigation water use in the eastern United States, two types of predictive models were developed and compared by using metered irrigation water-use data for corn, cotton, peanut, and soybean crops in Georgia and turf farms in Rhode Island. Reliable metered irrigation data were limited to these areas. The first predictive model that was developed uses logistic regression to predict the occurrence of irrigation on the basis of antecedent climate conditions. Logistic regression equations were developed for corn, cotton, peanut, and soybean crops by using weekly irrigation water-use data from 36 metered sites in Georgia in 2009 and 2010 and turf farms in Rhode Island from 2000 to 2004. For the weeks when irrigation was predicted to take place, the irrigation water-use volume was estimated by multiplying the average metered irrigation application rate by the irrigated acreage for a given crop. The second predictive model that was developed is a crop-water-demand model that uses a daily soil water balance to estimate the water needs of a crop on a given day based on climate, soil, and plant properties. Crop-water-demand models were developed independently of reported irrigation water-use practices and relied on knowledge of plant properties that are available in the literature. Both modeling approaches require accurate accounting of irrigated area and crop type to estimate total irrigation water use. Water-use estimates from both modeling methods were compared to the metered irrigation data from Rhode Island and Georgia that were used to

  5. Release of Growth Factors into Root Canal by Irrigations in Regenerative Endodontics.

    Science.gov (United States)

    Zeng, Qian; Nguyen, Sean; Zhang, Hongming; Chebrolu, Hari Priya; Alzebdeh, Dalia; Badi, Mustafa A; Kim, Jong Ryul; Ling, Junqi; Yang, Maobin

    2016-12-01

    The aim of this study was to investigate the release of growth factors into root canal space after the irrigation procedure of regenerative endodontic procedure. Sixty standardized root segments were prepared from extracted single-root teeth. Nail varnish was applied to all surfaces except the root canal surface. Root segments were irrigated with 1.5% NaOCl + 17% EDTA, 2.5% NaOCl + 17% EDTA, 17% EDTA, or deionized water. The profile of growth factors that were released after irrigation was studied by growth factor array. Enzyme-linked immunosorbent assay was used to validate the release of transforming growth factor (TGF)-β1 and basic fibroblast growth factor (bFGF) at 4 hours, 1 day, and 3 days after irrigation. The final concentrations were calculated on the basis of the root canal volume measured by cone-beam computed tomography. Dental pulp stem cell migration on growth factors released from root segments was measured by using Transwell assay. Total of 11 of 41 growth factors were detected by growth factors array. Enzyme-linked immunosorbent assay showed that TGF-β1 was released in all irrigation groups. Compared with the group with 17% EDTA (6.92 ± 4.49 ng/mL), the groups with 1.5% NaOCl + 17% EDTA and 2.5% NaOCl + 17% EDTA had significantly higher release of TGF-β1 (69.04 ± 30.41 ng/mL and 59.26 ± 3.37 ng/mL, respectively), with a peak release at day 1. The release of bFGF was detected at a low level in all groups (0 ng/mL to 0.43 ± 0.22 ng/mL). Migration assay showed the growth factors released from root segments induced dental pulp stem cell migration. The root segment model in present study simulated clinical scenario and indicated that the current irrigation protocol released a significant amount of TGF-β1 but not bFGF. The growth factors released into root canal space induced dental pulp stem cell migration. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  6. Prevalence and correlates of binge eating in seasonal affective disorder.

    Science.gov (United States)

    Donofry, Shannon D; Roecklein, Kathryn A; Rohan, Kelly J; Wildes, Jennifer E; Kamarck, Marissa L

    2014-06-30

    Eating pathology in Seasonal Affective Disorder (SAD) may be more severe than hyperphagia during winter. Although research has documented elevated rates of subclinical binge eating in women with SAD, the prevalence and correlates of binge eating disorder (BED) in SAD remain largely uncharacterized. We examined the prevalence and correlates of binge eating, weekly binge eating with distress, and BED as defined by the DSM-IV-TR in SAD. We also tested whether binge eating exhibits a seasonal pattern among individuals with BED. Two samples were combined to form a sample of individuals with SAD (N=112). A third sample included non-depressed adults with clinical (n=12) and subclinical (n=11) BED. All participants completed the Questionnaire of Eating and Weight Patterns-Revised (QEWP-R) and modified Seasonal Pattern Assessment Questionnaire (M-SPAQ). In the SAD sample, 26.5% reported binge eating, 11.6% met criteria for weekly binge eating with distress, and 8.9% met criteria for BED. Atypical symptom severity predicted binge eating and BED. In the BED sample, 30% endorsed seasonal worsening of mood, and 26% reported a winter pattern of binge eating. The spectrum of eating pathology in SAD includes symptoms of BED, which are associated with atypical depression symptoms, but typical depression symptoms. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Prevalence and correlates of binge eating in seasonal affective disorder

    Science.gov (United States)

    Donofry, Shannon D.; Roecklein, Kathryn A.; Rohan, Kelly J.; Wildes, Jennifer E.; Kamarck, Marissa L.

    2014-01-01

    Eating pathology in Seasonal Affective Disorder (SAD) may be more severe than hyperphagia during winter. Although research has documented elevated rates of subclinical binge eating in women with SAD, the prevalence and correlates of BED in SAD remain largely uncharacterized. We examined the prevalence and correlates of binge eating, weekly binge eating with distress, and BED as defined by the DSM-IV-TR in SAD. We also tested whether binge eating exhibits a seasonal pattern among individuals with BED. Two samples were combined to form a sample of individuals with SAD (N = 112). A third sample included non-depressed adults with clinical (n=12) and subclinical (n=11) BED. All participants completed the Questionnaire of Eating and Weight Patterns-Revised (QEWP-R) and modified Seasonal Pattern Assessment Questionnaire (M-SPAQ). In the SAD sample, 26.5% reported binge eating, 11.6% met criteria for weekly binge eating with distress, and 8.9% met criteria for BED. Atypical symptom severity predicted binge eating and BED. In the BED sample, 30% endorsed seasonal worsening of mood, and 26% reported a winter pattern of binge eating. The spectrum of eating pathology in SAD includes symptoms of BED, which are associated with atypical depression symptoms, but typical depression symptoms. PMID:24680872

  8. Untangling the effects of shallow groundwater and deficit irrigation on irrigation water productivity in arid region: New conceptual model.

    Science.gov (United States)

    Xue, Jingyuan; Huo, Zailin; Wang, Fengxin; Kang, Shaozhong; Huang, Guanhua

    2018-04-01

    Water scarcity and salt stress are two main limitations for agricultural production. Groundwater evapotranspiration (ET g ) with upward salt movement plays an important role in crop water use and water productivity in arid regions, and it can compensate the impact of deficit irrigation on crop production. Thus, comprehensive impacts of shallow groundwater and deficit irrigation on crop water use results in an improvement of irrigation water productivity (IWP). However, it is difficult to quantify the effects of groundwater and deficit irrigation on IWP. In this study, we built an IWP evaluation model coupled with a water and salt balance model and a crop yield estimation model. As a valuable tool of IWP simulation, the calibrated model was used to investigate the coupling response of sunflower IWP to irrigation water depths (IWDs), groundwater table depth (GTDs) and groundwater salinities (GSs). A total of 210 scenarios were run in which five irrigation water depths (IWDs) and seven groundwater table depths (GTDs) and six groundwater salinities (GSs) were used. Results indicate that increasing GS clearly increases the negative effect on a crop's actual evapotranspiration (ET a ) as salt accumulation in root zone. When GS is low (0.5-1g/L), increasing GTD produces more positive effect than negative effect. In regard to relatively high GS (2-5g/L), the negative effect of shallow-saline groundwater reaches a maximum at 2m GTD. Additionally, the salt concentration in the root zone maximizes its value at 2.0m GTD. In most cases, increasing GTD and GS reduces the benefits of irrigation water and IWP. The IWP increases with decreasing irrigation water. Overall, in arid regions, capillary rise of shallow groundwater can compensate for the lack of irrigation water and improve IWP. By improving irrigation schedules and taking advantages of shallow saline groundwater, we can obtain higher IWP. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Effect of Irrigation and Preplant Nitrogen Fertilizer Source on Maize in the Southern Great Plains

    Directory of Open Access Journals (Sweden)

    Jacob T. Bushong

    2014-01-01

    Full Text Available With the demand for maize increasing, production has spread into more water limited, semiarid regions. Couple this with the increasing nitrogen (N fertilizer costs and environmental concerns and the need for proper management practices has increased. A trial was established to evaluate the effects of different preplant N fertilizer sources on maize cultivated under deficit irrigation or rain-fed conditions on grain yield, N use efficiency (NUE, and water use efficiency (WUE. Two fertilizer sources, ammonium sulfate (AS and urea ammonium nitrate (UAN, applied at two rates, 90 and 180 kg N ha−1, were evaluated across four site-years. Deficit irrigation improved grain yield, WUE, and NUE compared to rain-fed conditions. The preplant application of a pure ammoniacal source of N fertilizer, such as AS, had a tendency to increase grain yields and NUE for rain-fed treatments. Under irrigated conditions, the use of UAN as a preplant N fertilizer source performed just as well or better at improving grain yield compared to AS, as long as the potential N loss mechanisms were minimized. Producers applying N preplant as a single application should adjust rates based on a reasonable yield goal and production practice.

  10. Comparison of two intracanal irrigants' effect on flare-up in necrotic teeth.

    Science.gov (United States)

    Zarei, Mina; Bidar, Maryam

    2006-01-01

    The aim of this study was to compare the efficacy of two irrigants on decreasing the pain and swelling at different times after treatment of necrotic pulp. Fifty patients with single canal tooth and necrotic pulp were selected and divided into two groups, twenty-five in each. Rotary files were used for preparing the canals and 0.2% chlorhexidine gluconate and 2.5% sodium hypochlorite were used for irrigation of canals. Then canals were filled by lateral condensation technique. A questionnaire was given to patients asking for the level of their pain and swelling. The patients were followed for 48h. Visual Analogue Scale (VAS) was used for determination of pain degree. The scale with 4 levels was used for measurement of the intensity of swelling. The data were statistically analyzed using Mann-Witney and Kruskal-Wallis tests. The research showed no significant difference between irrigant solutions in decreasing the amount of pain and swelling after endodontic treatments. No significant relationship was detected between the incidence of pain with swelling, age, and sex. Flare-up in maxilla was more than mandible. According to results of this in vivo study it was concluded that efficacies of 0.2% chlorhexidine gluconate and 2.5% NaOCl are the same.

  11. Multi-Stream Saline-Jet Dissection Using a Simple Irrigation System Defines Difficult Tissue Planes

    Science.gov (United States)

    Ng, Philip CH

    2010-01-01

    Introduction: Single-stream hydro-jet dissection is increasingly used in various laparoscopic procedures, but its use requires special equipment. We describe a simple method for using an irrigation system for saline-jet tissue dissection as a useful adjunct prior to adhesiolysis. Material and Methods: Intraabdominal adhesions prolong laparoscopic procedures, because tissue planes are difficult to identify. We performed multi-jet saline dissection (MSSJ) between 2000 and 2009 in more than 500 patients during laparoscopy involving hernias, gallbladders, appendices, and intestinal obstructions. We use a standard suction irrigation probe, which is attached to a 1-liter saline bag with an inflatable cuff around to create a pressure of 250mm Hg to 300mm Hg. In effect, this is the standard setup generally used for irrigation. After using saline dissection, tissue planes can be better defined and the structures can then be separated. Result and Discussion: Using this method, we have successfully identified tissue planes in spite of dense adhesions, and our conversion rates to open have been reduced dramatically. This method is relatively safer than other modalities of tissue dissection, such as diathermy, ultrasonic, blunt or sharp dissection. The disadvantage is that with tissues saturated with saline it becomes more difficult to use diathermy hemostasis. Care has to be exercised in monitoring the temperature and volume of the fluid used. PMID:20529528

  12. On-irrigator pasture soil moisture sensor

    International Nuclear Information System (INIS)

    Tan, Adrian Eng-Choon; Richards, Sean; Platt, Ian; Woodhead, Ian

    2017-01-01

    In this paper, we presented the development of a proximal soil moisture sensor that measured the soil moisture content of dairy pasture directly from the boom of an irrigator. The proposed sensor was capable of soil moisture measurements at an accuracy of  ±5% volumetric moisture content, and at meter scale ground area resolutions. The sensor adopted techniques from the ultra-wideband radar to enable measurements of ground reflection at resolutions that are smaller than the antenna beamwidth of the sensor. An experimental prototype was developed for field measurements. Extensive field measurements using the developed prototype were conducted on grass pasture at different ground conditions to validate the accuracy of the sensor in performing soil moisture measurements. (paper)

  13. Input and output constraints affecting irrigation development

    Science.gov (United States)

    Schramm, G.

    1981-05-01

    In many of the developing countries the expansion of irrigated agriculture is used as a major development tool for bringing about increases in agricultural output, rural economic growth and income distribution. Apart from constraints imposed by water availability, the major limitations considered to any acceleration of such programs are usually thought to be those of costs and financial resources. However, as is shown on the basis of empirical data drawn from Mexico, in reality the feasibility and effectiveness of such development programs is even more constrained by the lack of specialized physical and human factors on the input and market limitations on the output side. On the input side, the limited availability of complementary factors such as, for example, truly functioning credit systems for small-scale farmers or effective agricultural extension services impose long-term constraints on development. On the output side the limited availability, high risk, and relatively slow growth of markets for high-value crops sharply reduce the usually hoped-for and projected profitable crop mix that would warrant the frequently high costs of irrigation investments. Three conclusions are drawn: (1) Factors in limited supply have to be shadow-priced to reflect their high opportunity costs in alternative uses. (2) Re-allocation of financial resources from immediate construction of projects to longer-term increase in the supply of scarce, highly-trained manpower resources are necessary in order to optimize development over time. (3) Inclusion of high-value, high-income producing crops in the benefit-cost analysis of new projects is inappropriate if these crops could potentially be grown in already existing projects.

  14. Salinity management in southern Italy irrigation areas

    Directory of Open Access Journals (Sweden)

    Massimo Monteleone

    Full Text Available After a synthetic review of the most worrisome pressures applied over soils and waters, general criterions and normative principles that have to lead the technical intervention on soil and water protection are accounted, both with respect to farm activity and land planning. The salinity problem is faced, then, through the analysis of the nature and origin of saline soil and of the complex quantitative relationships able to interpret the accumulation and leaching of soil salts. Having specified the theoretical bases of salinity, the related technical features are then considered in order to define a proper management of soil and waters. Particular relevance is assigned to the irrigation and leaching techniques as well as, more briefly, to other agronomic interventions in order to guarantee the most effective salinity control. Another relevant technical facet of salinity control, although quite often neglected or retained of secondary importance in comparison to irrigation, is the drainage and disposal of leached water. The increased sensibility on the environmental impacts that the disposal of these waters can produce has raised today the level of attention on these procedures that are disciplined by norms of law and, therefore, require appropriate techniques of intervention. Finally, after the different scale orders involved in the management of salinity are defined (from the field and farm level up to the land and basin, the fundamental elements in order to work out a risk analysis and an action program are illustrated; some indications about the most up to date salinity monitoring and mapping methods are also provided, considering their great importance to continuously check the possible broadening of salinization and to carefully maintain its control.

  15. An in vitro comparison of irrigation using photon-initiated photoacoustic streaming, ultrasonic, sonic and needle techniques in removing calcium hydroxide.

    Science.gov (United States)

    Arslan, H; Akcay, M; Capar, I D; Saygili, G; Gok, T; Ertas, H

    2015-03-01

    To evaluate the effect of various techniques including photon-initiated photoacoustic streaming (PIPS), ultrasonic, sonic and needle irrigation on the removal of calcium hydroxide [Ca(OH)2 ] from artificial grooves created in root canals. The root canals of 48 extracted single-rooted teeth with straight canals were prepared using ProTaper rotary instruments up to size 40. After the specimens had been split longitudinally, a standardized groove was prepared in the apical part of one segment that was filled with Ca(OH)2 powder mixed with distilled water. Each tooth was reassembled and the apices closed with wax. The specimens were irrigated for 60 s with one of the following techniques: needle irrigation using 17% EDTA, PIPS with 17% EDTA, ultrasonic irrigation using 17% EDTA and sonic irrigation (EndoActivator) using 17% EDTA. The root segments were then disassembled, and the amount of remaining Ca(OH)2 evaluated under a stereomicroscope at 25× magnification. A pixel count of Ca(OH)2 remaining on the artificially created grooves was recorded as a percentage of the overall groove surface. The data were evaluated statistically using one-way analysis of variance and the least significant difference post hoc tests at 95% confidence level (P = 0.05). Photon-initiated photoacoustic streaming was superior in removing Ca(OH)2 as compared to needle irrigation (P streaming provided complete removal of Ca(OH)2 from artificial grooves in straight root canals. Ultrasonic irrigation enhanced the Ca(OH)2 removal capacity of irrigating solution but did not provide complete removal from artificial grooves. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  16. Research advances on thereasonable water resources allocation in irrigation district

    DEFF Research Database (Denmark)

    Xuebin, Qi; Zhongdong, Huang; Dongmei, Qiao

    2015-01-01

    The rational allocation of water resources for irrigation is important to improve the efficiency in utilization of water resources and ensuring food security, but also effective control measures need to be in place for the sustainable utilization of water resources in an irrigation area. The prog......The rational allocation of water resources for irrigation is important to improve the efficiency in utilization of water resources and ensuring food security, but also effective control measures need to be in place for the sustainable utilization of water resources in an irrigation area...... mechanism of water resources is not perfect, the model for optimal water resources allocation is not practical, and the basic conditions for optimal allocation of water resources is relatively weak. In order to solve those problems in water resources allocation practice, six important as?pects must...... in irrigation districts, studying the water resources control technology in irrigation districts by hydrology ecological system, studying the technologies of real?time risk dispatching and intelligent management in irrigation districts, and finally studying the technology of cou?pling optimal allocation...

  17. [Runoff Pollution Experiments of Paddy Fields Under Different Irrigation Patterns].

    Science.gov (United States)

    Zhou, Jing-wen; Su, Bao-lin; Huang, Ning-bo; Guan, Yu-tang; Zhao, Kun

    2016-03-15

    To study runoff and non-point source pollution of paddy fields and to provide a scientific basis for agricultural water management of paddy fields, paddy plots in the Jintan City and the Liyang City were chosen for experiments on non-point source pollution, and flood irrigation and intermittent irrigation patterns were adopted in this research. The surface water level and rainfall were observed during the growing season of paddies, and the runoff amount from paddy plots and loads of total nitrogen (TN) and total phosphorus (TP) were calculated by different methods. The results showed that only five rain events of totally 27 rainfalls and one artificially drainage formed non-point source pollution from flood irrigated paddy plot, which resulted in a TN export coefficient of 49.4 kg · hm⁻² and a TP export coefficient of 1.0 kg · hm⁻². No any runoff event occurred from the paddy plot with intermittent irrigation even in the case of maximum rainfall of 95.1 mm. Runoff from paddy fields was affected by water demands of paddies and irrigation or drainage management, which was directly correlated to surface water level, rainfall amount and the lowest ridge height of outlets. Compared with the flood irrigation, intermittent irrigation could significantly reduce non-point source pollution caused by rainfall or artificial drainage.

  18. Stakeholder analysis in the management of irrigation in Kampili area

    Science.gov (United States)

    Jumiati; Ali, M. S. S.; Fahmid, I. M.; Mahyuddin

    2018-05-01

    Irrigation has appreciable contribution in building food security, particularly rice crops. This study aims to analyze the role of stakeholders involved in distributing of irrigation water. The study was conducted in the Kampili Irrigation Area in South Sulawesi Province Indonesia, the data were obtained through observation and interviews with stakeholders involved, and analysed by stakeholder analysis, based on the interests and power held by the actors. This analysis is intended to provide an optimal picture of the expected role of each stakeholder in the management of irrigation resources. The results show that there were many stakeholders involved in irrigation management. In the arrangement of irrigation distribution there was overlapping authority of the stakeholders to its management, every stakeholder had different interests and power between each other. The existence have given positive and negative values in distributing irrigation water management, then in the stakeholder collaboration there was contestation between them. This contestation took place between the agriculture department, PSDA province, the Jeneberang River Region Hall, the Farmers Group and the P3A.

  19. Ocean-Atmosphere Interactions Modulate Irrigation's Climate Impacts

    Science.gov (United States)

    Krakauer, Nir Y.; Puma, Michael J.; Cook, Benjamin I.; Gentine, Pierre; Nazarenko, Larissa

    2016-01-01

    Numerous studies have focused on the local and regional climate effects of irrigated agriculture and other land cover and land use change (LCLUC) phenomena, but there are few studies on the role of ocean- atmosphere interaction in modulating irrigation climate impacts. Here, we compare simulations with and without interactive sea surface temperatures of the equilibrium effect on climate of contemporary (year 2000) irrigation geographic extent and intensity. We find that ocean-atmosphere interaction does impact the magnitude of global-mean and spatially varying climate impacts, greatly increasing their global reach. Local climate effects in the irrigated regions remain broadly similar, while non-local effects, particularly over the oceans, tend to be larger. The interaction amplifies irrigation-driven standing wave patterns in the tropics and mid-latitudes in our simulations, approximately doubling the global-mean amplitude of surface temperature changes due to irrigation. The fractions of global area experiencing significant annual-mean surface air temperature and precipitation change also approximately double with ocean-atmosphere interaction. Subject to confirmation with other models, these findings imply that LCLUC is an important contributor to climate change even in remote areas such as the Southern Ocean, and that attribution studies should include interactive oceans and need to consider LCLUC, including irrigation, as a truly global forcing that affects climate and the water cycle over ocean as well as land areas.

  20. Experimental study of faecal continence and colostomy irrigation.

    Science.gov (United States)

    O'Bichere, A; Sibbons, P; Doré, C; Green, C; Phillips, R K

    2000-07-01

    Colostomy irrigation is a useful method of achieving faecal continence in selected conditions, but remains largely underutilized because it is time consuming. This study investigated the effect of modifying irrigation technique (route, infusion regimen and pharmacological manipulation) on colonic emptying time in a porcine model. An end-colostomy and caecostomy were fashioned in six pigs. Twenty markers were introduced into the caecum immediately before colonic irrigation. Irrigation route (antegrade or retrograde), infusion regimen (tap water, polyethylene glycol (PEG), 1.5 per cent glycine) and pharmacological agent (glyceryl trinitrate (GTN) 0.25 mg/kg, diltiazem 3.9 mg/kg, bisacodyl 0.25 mg/kg) were assigned to each animal at random. Colonic transit was assessed by quantifying cumulative expelled markers (CEM) and stool every hour for 12 h. Mean CEM at 6 h for bisacodyl, GTN and diltiazem were 18.17, 12.17 and zero respectively; all pairwise differences in means were significant (P irrigation. PEG and glycine enhance emptying similar to bisacodyl and GTN solution. These findings show promise for improved faecal continence by colostomy irrigation and may justify construction of a Malone conduit at the time of colostomy in selected patients who wish to irrigate. Presented in part to the British Society of Gastroenterology in Glasgow, UK, March 1999, and published in abstract form as Gut 1999; 44(Suppl 1): A135

  1. Efficiency of final irrigation of root canal in removal of smear layer

    Directory of Open Access Journals (Sweden)

    Mitić Aleksandar

    2009-01-01

    Full Text Available Introduction A smear layer forms on the root canal walls as the consequence of root instrumentation. The smear layer formed in such a way considerably influences the quality of root obturation and endodontic treatment outcome. Objective The aim of this study was to ultrastructurally analyze the surface of intracanal dentine after removal of the smear layer by the solution of doxycycline, citric acid and detergent Tween-80 (MTAD. Methods The study involved 60 single-rooted, extracted, human teeth divided into four groups. All samples were instrumented by a step-back technique and manual K-files, and rinsed during instrumentation by 2% CHX and H2O2. The first group of samples was exclusively rinsed by CHX and H2O2; in the second group, besides using CHX and H2O2, MTAD solution was used for the final irrigation. The samples which were rinsed by distilled water (+ control and the samples rinsed by 5.25% NaOCl and 17% Na EDTA (-control served as control groups. All samples were observed under the scanning electronic microscope JEOL-JSM-5300. The coronary, middle and apex thirds of the radix region were analyzed. Results The obtained results of the SEM analysis showed that the application of 2% chlorhexidine and hydrogen peroxide did not give clear dentine walls, and the smear layer could not be removed completely. The application of the same combination (CHX and H2O2, added by the final MTAD irrigation solution, led to the efficient removal of the smear layer, while the morphological structure of dentine surface remained unchanged. Statistical analysis showed that canal walls in the experimental group with MTAD as the final irrigation were significantly clearer compared to the control group (p<0.001. Conclusion Based on the obtained results, it can be concluded that MTAD is an efficient solution for the final irrigation of the canal system.

  2. Effectiveness of different irrigation protocols on calcium hydroxide removal from simulated immature teeth after apexification

    Directory of Open Access Journals (Sweden)

    Evren Ok

    2015-01-01

    Full Text Available Aim: To evaluate the effectiveness of different irrigation solutions and ultrasonic activation of the irrigation solutions on the removal of calcium hydroxide (Ca(OH2 from the simulated immature root canals after apexification. Materials and methods: One-hundred and one single-rooted teeth were used. The root canals were shaped with ProTaper rotary files up to F5. Simulation of roots with immature apices was carried out using size 4 Unicore drills. An injectable Ca(OH2 was injected into each root canal, and packed to the working length. Then, cotton pellets were placed over canal orifices, and apical and coronal parts of the roots were sealed with resin-modified glass ionomer cement, and light cured. Specimens were stored in distilled water for 3 months at 37°C. After 3 months, the temporary coronal seal was removed and the samples were randomly divided into: (a saline (n = 20, (b ultrasonic activation of saline (n = 20, (c sodium hypochlorite (NaOCl (n = 20, (d ultrasonic activation of NaOCl (n = 15, (e chlorhexidine digluconate (CHX (n = 20 and one positive control group (n = 3 and one negative control group (n = 3. The amount of remaining Ca(OH2 on the canal walls was measured under stereomicroscope with 30× magnification. Comparisons between groups were made by the non-parametric Kruskal-Wallis test and Dunn post-test at a significance level of p  0.05 groups. Conclusions: Irrigation solutions and ultrasonic activation of the irrigation solutions could not completely remove Ca(OH2 from the simulated immature root canals.

  3. Irrigation water quality as indicator of sustainable rural development

    Directory of Open Access Journals (Sweden)

    Trajković Slaviša

    2004-01-01

    Full Text Available The sustainable rural development more and more depends on the efficient usage of water resources. Most often, at least in one part of the year, the rain is not sufficient for plant growth and rain plant production significantly depends on the yearly precipitation variation. The increase and stability of the agricultural production is possible in the irrigation conditions. The most part (around 70% of the global water resources is used for food production. Irrigation water quality indicator is used to show if the available water resources have the required quality for application in agriculture. Irrigation is characterised by the complex water-plant-soil relationship, and in that eco-system the man as the end user of the irrigated fields occupies a very important place. That explains the difficulties in producing one universal classification of irrigation water quality. The paper analyses numerous water quality classifications from the aspect of the applicability on the quantifying of this indicator. The adopted classification should possess understandable, qualified and internationally comparable indicator. Thus, local classifications (Neigebauer, Miljkovic cannot be used for this indicator. United Nation Food and Agricultural Organization (FAO and US Salinity Laboratory (USSL classifications are used for the evaluation of the irrigation water quality throughout the world. FAO classification gives the complex picture of the usability of the irrigation water from the point of its influence on the soil and the plants. However, the scope of the analyses is not often suited to the needs of that classification, which makes it difficult to apply. The conclusion is that the USSL (US Salinity Laboratory classification is best suited to this range of chemical water analyses. The evaluation of the irrigation water quality indicator in the Juzna Morava river basin, upstream from the Toplica river estuary is given in this paper. Based on the obtained

  4. Fluid regimens for colostomy irrigation: a systematic review.

    Science.gov (United States)

    Lizarondo, Lucylynn; Aye Gyi, Aye; Schultz, Tim

    2008-09-01

    Background  Various techniques for managing faecal evacuation have been proposed; however, colostomy irrigation is favoured as it leads to better patient outcomes. Alternative fluid regimens for colostomy irrigation have been suggested to achieve effective evacuation. Aim  The objective of this review was to summarise the best available evidence on the most effective fluid regimen for colostomy irrigation. Search strategy  Trials were identified by electronic searches of CINAHL, PubMed, MEDLINE, Current Contents, the Cochrane Library and EMBASE. Unpublished articles and references lists from included studies were also searched. Selection criteria  Randomised controlled trials and before-and-after studies investigating any fluid regimen for colostomy irrigation were eligible for inclusion. Outcomes measured included fluid inflow time, total wash-out time, haemodynamic changes during irrigation, cramps, leakage episodes, quality of life and level of satisfaction. Data collection and analysis  Trial selection, quality appraisal and data extraction were carried out independently by two reviewers. Differences in opinion were resolved by discussion. Main results  The systematic literature search strategy identified two cross-over trials that compared water with another fluid regimen. Owing to the differences in irrigating solutions used, the results were not pooled for analysis. Both the polyethylene glycol electrolyte solution and glyceryl trinitrate performed significantly better than water. Conclusion  There is some evidence to support the effectiveness of fluid regimens other than water, such as polyethylene glycol electrolyte and glyceryl trinitrate, for colostomy irrigation. Further well-designed clinical trials are required to establish solid evidence on the effectiveness of other irrigating solutions that might enhance colonic irrigation. © 2008 The Authors. Journal Compilation © Blackwell Publishing Asia Pty Ltd.

  5. Testing climate-smart irrigation strategies to reduce methane emissions from rice fields

    Science.gov (United States)

    Runkle, B.; Suvocarev, K.; Reba, M. L.

    2017-12-01

    Approximately 11% of the global 308 Tg CH4 anthropogenic emissions are currently attributed to rice cultivation. In this study, the impact of water conservation practices on rice field CH4 emissions was evaluated in Arkansas, the leading state in US rice cultivation. While conserving water, the Alternate Wetting and Drying (AWD) irrigation practice can also reduce CH4 emissions through the deliberate, periodic introduction of aerobic conditions. Seasonal CH4emissions from a pair of adjacent, production-sized rice fields were estimated and compared during the 2015 to 2017 growing seasons using the eddy covariance method on each field. The fields were alternately treated with continuous flood (CF) and AWD irrigation. In 2015, the seasonal cumulative carbon losses by CH4 emission were 30.3 ± 6.3 and 141.9 ± 8.6 kg CH4-C ha-1 for the AWD and CF treatments, respectively. Data from 2016 and 2017 will be analyzed and shown within this presentation; an initial view demonstrates consistent findings to 2015. When accounting for differences in field conditions and soils, the AWD practice is attributable to a 36-51% reduction in seasonal emissions. The substantial decrease in CH4 emissions by AWD supports previous chamber-based research and offers strong evidence for the efficacy of AWD in reducing CH4 emissions in Arkansas rice production. The AWD practice has enabled the sale of credits for carbon offsets trading and this new market could encourage CH4 emissions reductions on a national scale. These eddy covariance towers are being placed into a regional perspective including crop and forest land in the three states comprising the Mississippi Delta: Arkansas, Mississippi, and Louisiana.

  6. Changes of soil organic matter and microbial activity in irrigated and non irrigated olive groves

    Science.gov (United States)

    Kavvadias, Victor; Papadopoulou, Maria; Theocharopoulos, Sideris; Vavoulidou, Evagelia; Doula, Maria; Reppas, Spiros

    2014-05-01

    The implementation of olive cultivation techniques in Greece has not been systematically tested under the prevailing Mediterranean conditions. A LIFE+ project was initiated (oLIVE-CLIMA; LIFE 11/ENV/000942) aiming to introduce new management practices in olive tree crops that lead to increased carbon dioxide uptake by plants as well as carbon sequestration from the atmosphere and reverse the trend of soil organic matter decline, erosion and desertification. This paper presents data on soil organic matter and microbial activity from a soil campaign in a pilot region in Greece, and particularly in the area of Chora, prefecture of Messinia, South west Peloponnese. The soil campaign took place during the period December 2012-February 2013. Twelve soil parcels of olive groves were selected (6 irrigated and 6 rainfed) and in each soil parcel six composite soil samples were taken from 0-10 cm depth at equal intervals along a straight line of the trunk of the tree to the middle of the distance from the nearest tree of the next tree series. The first three samples were under olive tree canopy. An additional composite sample was taken at depth of 10-40 cm. Soil samples were analyzed for soil physicochemical and biological properties. In this study results for total organic carbon (TOC), soil basal microbial respiration (BR), microbial biomass C (MB-C) from the region of Messinia, are presented. Organic matter was determined by dichromate oxidation. The microbial activity was measured by the amount of CO2 evolution, while microbial biomass C was determined by substrate-induced respiration, after the addition of glucose. The results showed considerable differences in TOC, BR and MB-C associated with the sampling position and soil depth. The higher TOC, BR and MB-C values, in most cases, were determined in samples taken from points under the canopy, but not close to the tree trunk compared to the sampling points outside the canopy. This indicates the positive effect of

  7. AgIIS, Agricultural Irrigation Imaging System, design and application

    Science.gov (United States)

    Haberland, Julio Andres

    Remote sensing is a tool that is increasingly used in agriculture for crop management purposes. A ground-based remote sensing data acquisition system was designed, constructed, and implemented to collect high spatial and temporal resolution data in irrigated agriculture. The system was composed of a rail that mounts on a linear move irrigation machine, and a small cart that runs back and forth on the rail. The cart was equipped with a sensors package that measured reflectance in four discrete wavelengths (550 nm, 660 nm, 720 nm, and 810 nm, all 10 nm bandwidth) and an infrared thermometer. A global positioning system and triggers on the rail indicated cart position. The data was postprocessed in order to generate vegetation maps, N and water status maps and other indices relevant for site-specific crop management. A geographic information system (GIS) was used to generate images of the field on any desired day. The system was named AgIIS (A&barbelow;gricultural I&barbelow;rrigation I&barbelow;maging S&barbelow;ystem). This ground based remote sensing acquisition system was developed at the Agricultural and Biosystems Engineering Department at the University of Arizona in conjunction with the U.S. Water Conservation Laboratory in Phoenix, as part of a cooperative study primarily funded by the Idaho National Environmental and Engineering Laboratory. A second phase of the study utilized data acquired with AgIIS during the 1999 cotton growing season to model petiole nitrate (PNO3 -) and total leaf N. A latin square experimental design with optimal and low water and optimal and low N was used to evaluate N status under water and no water stress conditions. Multivariable models were generated with neural networks (NN) and multilinear regression (MLR). Single variable models were generated from chlorophyll meter readings (SPAD) and from the Canopy Chlorophyll Content Index (CCCI). All models were evaluated against observed PNO3- and total leaf N levels. The NN models

  8. Optodynamic Phenomena During Laser-Activated Irrigation Within Root Canals

    Science.gov (United States)

    Lukač, Nejc; Gregorčič, Peter; Jezeršek, Matija

    2016-07-01

    Laser-activated irrigation is a powerful endodontic treatment for smear layer, bacteria, and debris removal from the root canal. In this study, we use shadow photography and the laser-beam-transmission probe to examine the dynamics of laser-induced vapor bubbles inside a root canal model and compare ultrasonic needle irrigation to the laser method. Results confirm important phenomenological differences in the two endodontic methods with the laser method resulting in much deeper irrigation. Observations of simulated debris particles show liquid vorticity effects which in our opinion represents the major cleaning mechanism.

  9. A Reevaluation of Price Elasticities for Irrigation Water

    Science.gov (United States)

    Howitt, Richard E.; Watson, William D.; Adams, Richard M.

    1980-08-01

    The effectiveness of pricing systems in the allocation of irrigation water is linked with the price elasticity of demand of farmers for water. Using microeconomic theory, it is shown that omission of the elasticity of demand for the crop produced leads to an inelastic bias in the demand for irrigated water. Linear programing approaches omit the product elasticity of demand and are consequently biased, whereas quadratic programing approaches to estimating derived demands for irrigation water include product demand functions. The difference between the resulting estimates are empirically demonstrated for regional derived demand functions estimated from a model of California's agricultural industry.

  10. In-season training periodization of professional soccer players

    Directory of Open Access Journals (Sweden)

    A Los Arcos

    2017-04-01

    Full Text Available The aim of this study was to quantify the seasonal perceived respiratory and muscular training loads (i.e., sRPEres-TL and sRPEmus-TL completed by elite-oriented young professional soccer players. Twentyfour players (20.3 ± 2.0 years belonging to the same reserve team of a Spanish La Liga club participated in this study. Only the players that were available to train for a whole week with the team and also to play the weekly game were considered: Starters, players that participated in the match for at least 45 min and Non- Starters, players that did not participate or played less than 45 minutes in the match. The competitive period was analysed after the division into 5x6-8 week blocks and 35x1 week microcycles. Data were also analysed with respect to number of days before the immediate match. Weekly TL variation across the in-season blocks was trivial-small for both groups except between Block 2 and Block 3 (ES= moderate. Substantial TL differences (ES= small–very likely were found between training days, the TL pattern being a progressive increase up to MD-3 followed by a decrease until MD-1. Except for the match, sRPEres-/sRPEmus-TL was very similar between Starters and Non-Starters. In summary, perceived TL across the season displayed limited variation. Coaches periodized training contents to attain the highest weekly TL 72 hours before the match to progressively unload the players between MD-3 and the match day. The data revealed that the TL arising from the weekly game was solely responsible for the observed higher weekly TL of Starters in comparison with Non-Starters.

  11. Optimization of irrigation water in stone fruit and table grapes

    Science.gov (United States)

    de la Rosa, Jose Mª; Castillo, Cristina; Temnani, Abdel; Pérez-Pastor, Alejandro

    2017-04-01

    In water scarcity areas, it must be highlighted that the maximum productions of the crops do not necessarily imply maximum profitability. Therefore, during the last years a special interest in the development of deficit irrigation strategies based on significant reductions of the seasonal ET without affecting production or quality has been observed. The strategies of regulated deficit irrigation (RDI) are based on the reduction of water supply during non critical periods, the covering of water needs during critical periods and maximizing, at the same time, the production by unit of applied water. The main objective of this experiment was to implement, demonstrate and disseminate a sustainable irrigation strategy based on deficit irrigation to promote its large scale acceptance and use in woody crops in Mediterranean agroecosystems, characterized by water scarcity, without affecting the quality standards demanded by exportation markets. Five demonstration plots were established in representative crops of the irrigating community of Campotejar (Murcia, Spain): i) Peach trees, cv. catherina in the "Periquitos" farm; ii) Apricot trees, cv. "Red Carlet" in "La Hoya del Fenazar" farm; iii) Nectarine trees, cv. Viowhite in "Agrícola Don Fernando" farm; iv) Table grape, cv "Crimson Seedless" in "La Hornera" farm; and v) Paraguayan cv. carioca in "The Hornera" farm. In each demonstration plot, at least two irrigation treatments were established: i) Control (CTL), irrigated to ensure non-limiting water conditions (120% of crop evapotranspiration) and ii) Regulated deficit irrigation (RDI) irrigated as CTL during critical periods and decreasing irrigation in non-critical periods. The plant water status indicators evaluated were midday stem water potential and Trunk Diameter Fluctuation derived indices: maximum daily shrinkage (MDS) and trunk daily growth rate (TGR); vegetative growth of the different crops from trunk diameter and pruning dry weight, fruit growth and fruit

  12. Irrigation Scheduling for Green Bell Peppers Using Capacitance Soil Moisture Sensors

    NARCIS (Netherlands)

    Zotarelli, L.; Dukes, M.D.; Scholberg, J.M.S.; Femminella, K.; Munoz-Carpena, R.

    2011-01-01

    Vegetable production areas are intensively managed with high inputs of fertilizer and irrigation. The objectives of this study were to evaluate the interaction between N-fertilizer rates and irrigation scheduling using soil moisture sensor irrigation controllers (SMS) on yield, irrigation water use

  13. The phenology of malaria mosquitos in irrigated rice fields in Mali

    NARCIS (Netherlands)

    Klinkenberg, E.; Takken, W.; Huibers, F.P.; Touré, Y.T.

    2003-01-01

    A field study was carried out in the large-scale rice irrigation scheme of the Office du Niger in Mali to investigate the relation between anopheline mosquito larval development and small-scale differences in irrigation practices, such as water level, irrigation application and irrigation frequency.

  14. Estimation of furrow irrigation sediment loss using an artificial neural network

    Science.gov (United States)

    The area irrigated by furrow irrigation in the U.S. has been steadily decreasing but still represents about 20% of the total irrigated area in the U.S. Furrow irrigation sediment loss is a major water quality issue and a method for estimating sediment loss is needed to quantify the environmental imp...

  15. Alternate partial root-zone drying irrigation improves fruit quality in tomatoes

    DEFF Research Database (Denmark)

    Sun, Y.; Holm, Peter Engelund; Liu, Fulai

    2014-01-01

    Alternate partial root-zone drying (PRD) irrigation and deficit irrigation (DI) are water-saving irrigation strategies. Here, comparative effects of PRD and DI on fruit quality of tomato (Solanum lycopersicum L.) were investigated. The results showed that the irrigation treatments had no effect o...

  16. Assessing the Efficacy of the SWAT Auto-Irrigation Function to Simulate Irrigation, Evapotranspiration, and Crop Response to Management Strategies of the Texas High Plains

    Directory of Open Access Journals (Sweden)

    Yong Chen

    2017-07-01

    Full Text Available In the semi-arid Texas High Plains, the underlying Ogallala Aquifer is experiencing continuing decline due to long-term pumping for irrigation with limited recharge. Accurate simulation of irrigation and other associated water balance components are critical for meaningful evaluation of the effects of irrigation management strategies. Modelers often employ auto-irrigation functions within models such as the Soil and Water Assessment Tool (SWAT. However, some studies have raised concerns as to whether the function is able to adequately simulate representative irrigation practices. In this study, observations of climate, irrigation, evapotranspiration (ET, leaf area index (LAI, and crop yield derived from an irrigated lysimeter field at the USDA-ARS Conservation and Production Research Laboratory at Bushland, Texas were used to evaluate the efficacy of the SWAT auto-irrigation functions. Results indicated good agreement between simulated and observed daily ET during both model calibration (2001–2005 and validation (2006–2010 periods for the baseline scenario (Nash-Sutcliffe efficiency; NSE ≥ 0.80. The auto-irrigation scenarios resulted in reasonable ET simulations under all the thresholds of soil water deficit (SWD triggers as indicated by NSE values > 0.5. However, the auto-irrigation function did not adequately represent field practices, due to the continuation of irrigation after crop maturity and excessive irrigation when SWD triggers were less than the static irrigation amount.

  17. Impact of post-infiltration soil aeration at different growth stages of sub-surface trickle-irrigated tomato plants

    Science.gov (United States)

    Li, Yuan; Jia, Zong-xia; Niu, Wen-Quan; Wang, Jing-wei

    2016-07-01

    Sensitivity to low rhizosphere soil aeration may change over time and therefore plant response may also depend on different growth stages of a crop. This study quantified effects of soil aeration during 5 different periods, on growth and yield of trickle-irrigated potted single tomato plants. Irrigation levels were 0.6 to 0.7 (low level) or 0.7 to 0.8 (high level) of total water holding capacity of the pots. Soil was aerated by injecting 2.5 l of air into each pot through the drip tubing immediately after irrigation. Fresh fruit yield, above ground plant dry weight, plant height, and leaf area index response to these treatments were measured. For all these 4 response variables, means of post-infiltration aeration between 58 to 85 days after sowing were 13.4, 43.5, 13.7, and 37.7% higher than those for the non-aerated pots, respectively. The results indicated that: post-infiltration soil aeration can positively impact the yield and growth of sub-surface trickle-irrigated potted tomato plants; positive effects on plant growth can be obtained with aeration during the whole growth period or with aeration for partial periods; positive growth effects of partial periods of aeration appears to persist and result in yield benefit.

  18. Research progress of antagonistic interactions among root canal irrigations disease

    Directory of Open Access Journals (Sweden)

    Chen QU

    2013-07-01

    Full Text Available Root canal therapy is the most effective way to treat various pulposis and periapical disease. Simple mechanical apparatus can not clean root canal thoroughly, but may affect tight filling instead. It can achieve a satisfactory cleansing effect only when it is combined with a chemical solution. Irrigation fluid for root canal should possess the properties of tissue dissolution, antimicrobial, lubrication, and removal of smear layer. So far, no solution is able to fulfill all these functions. Therefore, a combined use of multiple irrigation solutions is suggested. It can not only achieve good effect in cleaning and disinfection, also it can lower the concentration of different solutions, thus reducing the side effects. Nevertheless, some experiments proved that antagonism existed among the chemicals used for irrigations. The purpose of present article is to review the antagonistic effect among the chemicals used for irrigation when they are used together for root canal treatment.

  19. Sustainable irrigation and nitrogen management of fertigated vegetable crops

    NARCIS (Netherlands)

    Thompson, R.B.; Incrocci, L.; Voogt, W.; Pardossi, A.; Magán, J.J.

    2017-01-01

    Fertigation in combination with drip irrigation is being increasingly used in vegetable crop production. From a nutrient management perspective, this combination provides the technical capacity for precise nitrogen (N) nutrition, both spatially and temporally. With these systems, N and other

  20. comparative profitability analysis of selected rainfed and irrigated

    African Journals Online (AJOL)

    PROF EKWUEME

    KEYWORDS: Rainfed, irrigated, food crops, profitability, Adamawa, Nigeria. INTRODUCTION .... some or all of three motives (Olayide and Heady, 1982). The major resources .... The third stage was the purposive selection of villages based on ...

  1. Collective action and participation in irrigation water management: A ...

    African Journals Online (AJOL)

    A case study of Mooi River Irrigation Scheme in KwaZulu-Natal. Province ..... Seven principal components were extracted using Pearson cor- relations. By applying the ..... OLSON M (1965) The Logic of Collective Action: Public Goods and the.

  2. Heavy metal pollution of vegetable crops irrigated with wastewater ...

    African Journals Online (AJOL)

    144) and edible parts of both exotic and traditional vegetables (samples = 240) irrigated with wastewater from some parts of Accra were studied. The concentrations of heavy metals in mg/l were quantified in wastewater from Accra and ...

  3. Improving efficiencies of irrigation and nitrogen uptake in wheat

    International Nuclear Information System (INIS)

    Bazza, M.

    2000-01-01

    Three years of field studies and lysimeter experiments on irrigated wheat had the objective of finding ways of managing irrigation and N fertilization to minimize losses and reduce contamination of groundwater. Applied N had significant positive effects on crop-water consumptive use. The highest N losses occurred during early growth. Irrigation had little effect on N loss when it was practiced efficiently. Under the prevailing conditions, it is recommended that no N be applied to wheat at planting, in order to limit N losses by leaching caused by the high precipitation that usually occurs during early development when crop-N requirements are small. No more than 120 kg N ha -1 should be applied in total to minimize groundwater pollution and maximize N-uptake efficiency and economic returns. Also, for economic and environmental reasons, irrigation should be limited to 80% of the total requirement and to depths of 40 to 60 mm. (author)

  4. Irrigation and nitrogen level affect lettuce yield in greenhouse ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-17

    Dec 17, 2008 ... and it achieves very high irrigation efficiency and uses. *Corresponding ... serious harmful effect on lettuce growing (Table 1). During the ... Seeds were sown in a seed bed under greenhouse conditions on. October 20th in ...

  5. Simulated evapotranspiration from a landfill irrigated with landfill leachate

    International Nuclear Information System (INIS)

    Aronsson, P.

    1996-01-01

    Evapotranspiration from a landfill area, irrigated with leachate water, was simulated with the SOIL model. Three different types of vegetation (bare soil, grass ley, and willow) were used both with and without irrigation. The highest simulated evapotranspiration (604 mm) during the growing season was found from an irrigated willow stand with a high interception capacity. The lowest evapotranspiration (164 mm) was found from the bare soil. The relatively high evapotranspiration from the willow was probably caused by the high LAI (Leaf Area Index) and the low aerodynamic resistance within the willow stand. The results indicate that it is possible to reduce most of the leakage water from a landfill by irrigation of willow stands. 9 refs, 4 figs, 1 tab

  6. 49 Trace Metals' Contamination of Stream Water and Irrigated Crop ...

    African Journals Online (AJOL)

    ABUBAKAR AHMED

    human consumption as they pose serious health risks due to contamination with the metals. For environmental ... mining activities, industrial and domestic effluents, urban ... drinking and bathing water, irrigation, food, fuel and energy.

  7. Modelling the economic trade-offs of irrigation pipeline investments ...

    African Journals Online (AJOL)

    2016-10-04

    Oct 4, 2016 ... results were obtained from the methods the following critical assumptions were ... system design, irrigation water management and the use of alternative ... to provide decision support regarding pipeline investments. SWIP-E ...

  8. Evaluation of 14 winter bread wheat genotypes in normal irrigation ...

    African Journals Online (AJOL)

    Evaluation of 14 winter bread wheat genotypes in normal irrigation and stress conditions after anthesis stage. ... African Journal of Biotechnology ... Using biplot graphic method, comparison of indices amounts and mean rating of indices for ...

  9. Behavior of durum wheat genotypes under normal irrigation and ...

    African Journals Online (AJOL)

    Behavior of durum wheat genotypes under normal irrigation and drought stress conditions in the greenhouse. ... African Journal of Biotechnology ... Genotypes were grouped in cluster analysis (using Ward's method) based on Yp, Ys and ...

  10. Soil nitrate testing supports nitrogen management in irrigated annual crops

    Directory of Open Access Journals (Sweden)

    Patricia A. Lazicki

    2016-12-01

    Full Text Available Soil nitrate (NO3− tests are an integral part of nutrient management in annual crops. They help growers make field-specific nitrogen (N fertilization decisions, use N more efficiently and, if necessary, comply with California's Irrigated Lands Regulatory Program, which requires an N management plan and an estimate of soil NO3− from most growers. As NO3− is easily leached into deeper soil layers and groundwater by rain and excess irrigation water, precipitation and irrigation schedules need to be taken into account when sampling soil and interpreting test results. We reviewed current knowledge on best practices for taking and using soil NO3− tests in California irrigated annual crops, including how sampling for soil NO3− differs from sampling for other nutrients, how tests performed at different times of the year are interpreted and some of the special challenges associated with NO3− testing in organic systems.

  11. Integrating Water Supply Constraints into Irrigated Agricultural Simulations of California

    Science.gov (United States)

    Winter, Jonathan M.; Young, Charles A.; Mehta, Vishal K.; Ruane, Alex C.; Azarderakhsh, Marzieh; Davitt, Aaron; McDonald, Kyle; Haden, Van R.; Rosenzweig, Cynthia E.

    2017-01-01

    Simulations of irrigated croplands generally lack key interactions between water demand from plants and water supply from irrigation systems. We coupled the Water Evaluation and Planning system (WEAP) and Decision Support System for Agrotechnology Transfer (DSSAT) to link regional water supplies and management with field-level water demand and crop growth. WEAP-DSSAT was deployed and evaluated over Yolo County in California for corn, rice, and wheat. WEAP-DSSAT is able to reproduce the results of DSSAT under well-watered conditions and reasonably simulate observed mean yields, but has difficulty capturing yield interannual variability. Constraining irrigation supply to surface water alone reduces yields for all three crops during the 1987-1992 drought. Corn yields are reduced proportionally with water allocation, rice yield reductions are more binary based on sufficient water for flooding, and wheat yields are least sensitive to irrigation constraints as winter wheat is grown during the wet season.

  12. Energy savings potential from energy-conserving irrigation systems

    Energy Technology Data Exchange (ETDEWEB)

    Wilfert, G.L.; Patton, W.P.; Harrer, B.J.; Clark, M.A.

    1982-11-01

    This report systematically compares, within a consistent framework, the technical and economic characteristics of energy-conserving irrigation systems with those of conventional irrigation systems and to determine total energy savings. Levelized annual costs of owning and operating both energy-conserving and conventional irrigation systems have been developed and compared for all 17 states to account for the differences in energy costs and irrigation conditions in each state. Market penetration of energy-conserving systems is assessed for those systems having lower levelized annual costs than conventional systems performing the same function. Annual energy savings were computed by matching the energy savings per system with an assumed maximum market penetration of 100 percent in those markets where the levelized annual costs of energy-conserving systems are lower than the levelized annual costs of conventional systems.

  13. Effect of irrigation frequency and application levels of sulphur ...

    African Journals Online (AJOL)

    Administrator

    2011-09-21

    Sep 21, 2011 ... both years of experimentation, application of two irrigations significantly increased the India ... marginal lands with poor fertility under rainfed conditions. ... and 40 kg K20 ha-1 as muriate of potash was applied to each plot.

  14. Evapotranspiration-based irrigation scheduling of lettuce and broccoli

    Science.gov (United States)

    Estimation of crop evapotranspiration supports efficient irrigation water management, which in turn supports water conservation, mitigation of groundwater depletion/degradation, energy savings, and crop quality maintenance. Past research in California has revealed strong relationships between fract...

  15. Water users associations and irrigation water productivity in northern China

    NARCIS (Netherlands)

    Zhang, L.; Heerink, N.; Dries, L.K.E.; Qu, F.

    2013-01-01

    Traditional irrigation water management systems in China are increasingly replaced by user-based, participatory management through water users associations (WUAs) with the purpose to promote, economically and ecologically beneficial, water savings and increase farm incomes. Existing research shows

  16. Effects of ten years treated wastewater drip irrigation on soil ...

    African Journals Online (AJOL)

    SWEET

    soil contamination and the cumulative impact of wastewater, we compared two plots, all under orange- ... A slight increase in the concentration of soil enteric bacteria and soil fungal densities was ..... could be used for fruit tree irrigation.

  17. Grey mould development in greenhouse tomatoes under drip and furrow irrigation

    OpenAIRE

    Aissat , Kamel; Nicot , Philippe ,; Guechi , Abdelhadi; Bardin , Marc; Chibane , Mohamed

    2008-01-01

    Several methods can be used to provide water to plants in cropping systems where irrigation is necessary. For instance, drip irrigation has recently received much attention due to its advantages for water conservation. The type of irrigation can also impact the development of several pathogens responsible for soilborne diseases. Here, we studied the effect of drip irrigation and furrow irrigation on the development of grey mould, caused by the airborne fungus Botrytis cinerea, on tomato plant...

  18. Column leaching experiments of a uranium ore by atomizing irrigation technique

    International Nuclear Information System (INIS)

    Zeng Yingying; Lei Zeyong; Chen Haihui

    2007-01-01

    Column leaching experiments ora uranium ore were made by atomizing irrigation technique. The leaching results are compared with the results obtained by spray irrigation and drip irrigation techniques respectively under the same conditions of column leaching experiments. The results show that the atomizing irrigation technique has more uniform solution distribution, higher leaching rate, shorter leaching period, and less ratio of liquid to solid. Consequently, the atomizing irrigation technique is suitable to the ore. (authors)

  19. Evaluation of best management practices under intensive irrigation using SWAT model

    OpenAIRE

    Dechmi, Farida; Skhiri, Ahmed

    2013-01-01

    Land management practices such as conservation tillage and optimum irrigation are routinely used to reduce non-point source pollution and improve water quality. The calibrated and validated SWAT-IRRIG model is the first modified SWAT version that reproduces well the irrigation return flows (IRF) when the irrigation source is outside of the watershed. The application of this SWAT version in intensive irrigated systems permits to better evaluate the best management practices (BMPs) in such syst...

  20. Irrigation in the Lower Durance: positive impacts of the agriculture

    International Nuclear Information System (INIS)

    Lacroix, M.; Blavoux, B.

    1995-01-01

    The water of river Durance is used to produce hydroelectricity and as stretch of water for tourism and since the thirteenth century for irrigation. The inherited situation is a well extended network of gravitation irrigation canals. This system is spendthrift of water, the water supplies are roughly 5 times the farming needs. The impact of this irrigation on the alluvial aquifer of the Lower Durance is the generalisation of the highest level of the water table in summer on the plain though the water budget has an average deficit of 550 mm. In addition, the nitrate concentration is maintained to an average of 17 mg/l in groundwater and 5 mg/l in streams by dilution. In fact, the irrigation dictates an average input of water with 25.4 mg/l of NO 3- . The natural isotopic tracing (oxygen 18) allows to say that 50 to 75% of the water of the alluvial aquifer come from irrigation. To improve the knowledge about the efficiency of irrigation, a mathematical groundwater model has been created. As a result, 53% of the water is lost while reaching the agricultural parcels, 19% is infiltrated during watering at the parcel and only 28% are used to satisfy the needs of plants. The realisation of this model has allowed to simulate the impact on groundwater of changes in irrigation practices which would lead to reduce the consummation of water. In the case of Lower Durance, the reduction of irrigation losses would have a strong impact on the quantity and quality of water in the alluvial aquifer. (J.S.). 10 refs., 9 figs., 2 tabs

  1. Temperature-controlled irrigated tip radiofrequency catheter ablation

    DEFF Research Database (Denmark)

    Petersen, H H; Chen, X; Pietersen, Adrian

    1998-01-01

    INTRODUCTION: In patients with ventricular tachycardias due to structural heart disease, catheter ablation cures radiofrequency ablation. Irrigated tip radiofrequency ablation using power control and high infusion rates enlarges lesion......: We conclude that temperature-controlled radiofrequency ablation with irrigated tip catheters using low target temperature and low infusion rate enlarges lesion size without increasing the incidence of cratering and reduces coagulum formation of the tip....

  2. Automated irrigation systems for wheat and tomato crops in arid ...

    African Journals Online (AJOL)

    The results revealed that the water use efficiency (WUE) and irrigation water use efficiency (IWUE) were typically higher in the AIS than in the conventional irrigation control system (CIS). Under the AIS treatment, the WUE and IWUE values were 1.64 and 1.37 k·gm-3 for wheat, and 7.50 and 6.50 kg·m-3 for tomato crops; ...

  3. Irrigation and climate information in Burkina Faso (AARC) | Page 2 ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Supplemental irrigation in farming systems : history of a practice and outlooks for Burkina Faso. Études. Adoption et impacts de l'irrigation de complément en zone sahélienne : modélisation bioéconomique d'une exploitation à Kongoussi. Études. Analyse comparative des modes d'exhaure et de deux techniques culturales ...

  4. Effect of Deficit irrigation on the Productivity of Processing Potato

    International Nuclear Information System (INIS)

    Darwish, T.M.; Atallah, T.W.

    2003-01-01

    The area under potatoes in Lebanon has extended to over 15.000 ha to form 17% of irrigated arable land. More farmers rely on processing varieties for prices and marketing reasons. Studies focused so far on irrigation and fertilization of table potatoes. The current recommendations indicate excess N fertilizer input exceeding 600 kg N/ha in the form of compound fertilizers. Potato is irrigated with macro sprinklers with a water input reaching 850 mm/season. Water mismanagement and shortage eventually influence the yield quantity and quality of processing potatoes. Therefore, deficit irrigation is an important water saving tool regarding the increasing pressure on limited water resources in the dry areas. Information on potato response to water stress imposed at different crop stages is available. The aim of this paper is to study the impact of continuous deficit irrigation imposed from the stage of maximum plant development-flowering stage until physiological maturity on the performance of processing potato (Santana) and water and fertilizer use efficiency. Fertilizer placement and irrigation were done through fertigation using drip system. A neutron probe was used to assess water consumption from the soil. The 15 N methodology was used to follow the N recovery as affected by water deficit

  5. Estimation of Maize photosynthesis Efficiency Under Deficit Irrigation and Mulch

    International Nuclear Information System (INIS)

    Al-Hadithi, S.

    2004-01-01

    This research aims at estimating maize photosynthesis efficiency under deficit irrigation and soil mulching. A split-split plot design experiment was conducted with three replicates during the fall season 2000 and spring season 2001 at the experimental Station of Soil Dept./ Iraq Atomic Energy Commission. The main plots were assigned to full and deficit irrigation treatments: (C) control. The deficit irrigation treatment included the omission of one irrigation at establishment (S1, 15 days), vegetation (S2, 35 days), flowering (S3, 40 days) and yield formation (S4, 30 days) stages. The sub-plots were allocated for the two varieties, Synthetic 5012 (V1) and Haybrid 2052 (V2). The sub-sub-plots were assigned to mulch (M1) with wheat straw and no mulch (M0). Results showed that the deficit irrigation did not affect photosynthesis efficiency in both seasons, which ranged between 1.90 to 2.15% in fall season and between 1.18 and 1.45% in spring season. The hybrid variety was superior 9.39 and 9.15% over synthetic variety in fall and spring seasons, respectively. Deficit irrigation, varieties and mulch had no significant effects on harvest index in both seasons. This indicates that the two varieties were stable in their partitioning efficiency of nutrient matter between plant organ and grains under the condition of this experiment. (Author) 21 refs., 3 figs., 6 tabs

  6. Coastal surface water suitability analysis for irrigation in Bangladesh

    Science.gov (United States)

    Mahtab, Mohammad Hossain; Zahid, Anwar

    2018-03-01

    Water with adequate quality and quantity is very important for irrigation to ensure the crop yields. Salinity is common problem in the coastal waters in Bangladesh. The intensity of salinity in the coastal zone in Bangladesh is not same. It fluctuates over the year. Sodium is another hazard which may hamper permeability and ultimately affects the fertility. It can reduce the crop yields. Although surface water is available in the coastal zone of Bangladesh, but its quality for irrigation needs to be monitored over the year. This paper will investigate the overall quality of coastal surface waters. Thirty-three water samples from different rivers were collected both in wet period (October-December) and in dry period (February-April). Different physical and chemical parameters are considered for investigation of the adequacy of water with respect to international irrigation water quality standards and Bangladesh standards. A comparison between the dry and wet period coastal surface water quality in Bangladesh will also be drawn here. The analysis shows that coastal surface water in Bangladesh is overall suitable for irrigation during wet period, while it needs treatment (which will increase the irrigation cost) for using for irrigation during dry period. Adaptation to this situation can improve the scenario. An integrated plan should be taken to increase the water storing capacity in the coastal area to harvest water during wet period.

  7. Conserving energy through new irrigation technologies. Technical briefing report

    Energy Technology Data Exchange (ETDEWEB)

    1982-07-01

    The benefits and applications of five irrigation technologies are explored: mobile drop-tube irrigation, computerized scheduling, reduced-pressure center pivots, well design and development, and automated gated-pipe systems. Perhaps the most promising of the new irrigation technologies is the low-energy, precision-application (LEPA) system. This mobile system used one-half the energy of conventional sprinkler systems and distributes water with greater efficiency through a series of low-pressure drop tubes suspended above the crop. Computerized methods of irrigation scheduling have been developed to help farmers conserve water and energy. Special computer programs determine when a crop needs water and how much to apply for optimal plant growth, thus preventing the unnecessary costs of pumping more water than the crop needs. Field test results show that replacing traditional scheduling methods of irrigation with computerized scheduling can reduce energy and water use by as much as 35%. The irrigation industry is actively promoting reduced-pressure water application methods, particularly for center-pivot systems. Reduced-pressure systems expend less energy but produce the same crop yields as conventional high-pressure systems, as long as excessive water runoff does not occur. If well design and development techniques are applied when a well is drilled into an unconsolidated acquifer, the well's life expectancy, as well as its operating efficiency, can increase, the later by as much as 40%.

  8. The Power to Resist: Irrigation Management Transfer in Indonesia

    Directory of Open Access Journals (Sweden)

    Diana Suhardiman

    2013-02-01

    Full Text Available In the last two decades, international donors have promoted Irrigation Management Transfer (IMT as an international remedy to management problems in government irrigation systems in many developing countries. This article analyses the political processes that shape IMT policy formulation and implementation in Indonesia. It links IMT with the issue of bureaucratic reform and argues that its potential to address current problems in government irrigation systems cannot be achieved if the irrigation agency is not convinced about the need for management transfer. IMT’s significance cannot be measured only through IMT outcomes and impacts, without linking these with how the irrigation agency perceives the idea of management transfer in the first place, how this perception (redefines the agency’s position in IMT, and how it shapes the agency’s action and strategy in the policy formulation and implementation. I illustrate how the irrigation agency contested the idea of management transfer by referring to IMT policy adoption in 1987 and its renewal in 1999. The article concludes that for management transfer to be meaningful it is pertinent that the issue of bureaucratic reform is incorporated into current policy discussions.

  9. Bureaucratic Reform in Irrigation: A Review of Four Case Studies

    Directory of Open Access Journals (Sweden)

    Diana Suhardiman

    2014-10-01

    Full Text Available Poor performance of government-managed irrigation systems persists globally. This paper argues that addressing performance requires not simply more investment or different policy approaches, but reform of the bureaucracies responsible for irrigation management. Based on reform experiences in The Philippines, Mexico, Indonesia, and Uzbekistan, we argue that irrigation (policy reform cannot be treated in isolation from the overall functioning of government bureaucracies and the wider political structure of the states. Understanding of how and why government bureaucracies shape reform processes and outcomes is crucial to increase the actual significance of reforms. To demonstrate this, the paper links reform processes in the irrigation sector with the wider discourse of bureaucratic reform in the political science, public administration, and organisational science literature. Doing so brings to light the need for systematic comparative research on the organisational characteristic of the irrigation bureaucracies, their bureaucratic identities, and how these are shaped by various segments within the bureaucracies to provide the insights needed to improve irrigation systems performance.

  10. Influencing Factors and Simplified Model of Film Hole Irrigation

    Directory of Open Access Journals (Sweden)

    Yi-Bo Li

    2017-07-01

    Full Text Available Film hole irrigation is an advanced low-cost and high-efficiency irrigation method, which can improve water conservation and water use efficiency. Given its various advantages and potential applications, we conducted a laboratory study to investigate the effects of soil texture, bulk density, initial soil moisture, irrigation depth, opening ratio (ρ, film hole diameter (D, and spacing on cumulative infiltration using SWMS-2D. We then proposed a simplified model based on the Kostiakov model for infiltration estimation. Error analyses indicated SWMS-2D to be suitable for infiltration simulation of film hole irrigation. Additional SWMS-2D-based investigations indicated that, for a certain soil, initial soil moisture and irrigation depth had the weakest effects on cumulative infiltration, whereas ρ and D had the strongest effects on cumulative infiltration. A simplified model with ρ and D was further established, and its use was then expanded to different soils. Verification based on seven soil types indicated that the established simplified double-factor model effectively estimates cumulative infiltration for film hole irrigation, with a small mean average error of 0.141–2.299 mm, a root mean square error of 0.177–2.722 mm, a percent bias of −2.131–1.479%, and a large Nash–Sutcliffe coefficient that is close to 1.0.

  11. TRANSPORT OF SOLUTES IN THE FIELD AS AFFECTED BY IRRIGATION

    Directory of Open Access Journals (Sweden)

    Alessandro Comegna

    2007-09-01

    Full Text Available This study documents and compares the transport of a conservative solute in near saturated soil profiles under flood and sprinkler irrigation. The experiments were carried out on a clay Vertic-Usthortens soil located near Potenza (Italy. Two 2x2 m2 plots were clipped of their native grass vegetation. After spraying on the surface a Cl- pulse as KCl salt; water was applied in five increments over two months as flood irrigation on the first plot and as sprinkler irrigation on the second one. Chloride resident concentration Cr, was sampled by soil coring at four different days after chemical application. Cr(z,t profiles were analyzed by spatial moment method. The recovered mass of Cl- and location of center of mass were comparable for the two types of irrigation. The spread around the center of mass, however, was higher for the flood-irrigated plot. In the flood-irrigated plot, more mass leached below the depth of 90 cm. The velocity of the center of mass was consistently 10-20% larger than the piston displacement velocity. To evaluate the nature of transport, the Cr(z,t distributions were modelled using quasi-steady solution of convection-dispersion equation(CDE. At the scale of our experiments the profiles of Cl- resident concentration are well-simulated.

  12. Participatory management reforms in irrigation sector of sindh

    International Nuclear Information System (INIS)

    Lashari, B.K.

    2009-01-01

    Pakistan has been making efforts to restructuring the century old irrigation system by involving beneficiaries (water users) at various units of the irrigation system management. The main purposes of reforms are to improve O and M (Operation and Maintenance) of irrigation system, to make balance in expenditure and revenue, to improve crop production through efficient use of water, to maintain affordable drainage system and to adopt PWRM (Participatory Water Resource Management) approach. In these reforms, the Sindh provincial irrigation department was transferred to an autonomous body as SmA (Sindh Irrigation and Drainage Authority). Under SmA, CAWB (Canal Area Water Board) at each canal command area, water users association at watercourse level and Farmer Organizations at each secondary canal (Distributary/ Minor) command area were being formed. So far 335 FOs (Farmers Organizations) have been formed in Sindh. To evaluate the performance of FOs in their day to day activities such as water distribution, O and M of irrigation channels, conflict management and revenue (Abiana) collection, IMI (Institutional Maturity Index) of FOs is conducted. The objective IMI analysis was to assess the maturity of FOs in terms of organizational aspects, conflict resolution, financial aspects, water distribution, operation and maintenance, environmental aspects and capacity building of FOs. The IMI analyses identified the weaker aspects of the FOs and need of focus these aspects for improved performance of FOs through effective social mobilization and capacity building activities. (author)

  13. Economic risk assessment of drought impacts on irrigated agriculture

    Science.gov (United States)

    Lopez-Nicolas, A.; Pulido-Velazquez, M.; Macian-Sorribes, H.

    2017-07-01

    In this paper we present an innovative framework for an economic risk analysis of drought impacts on irrigated agriculture. It consists on the integration of three components: stochastic time series modelling for prediction of inflows and future reservoir storages at the beginning of the irrigation season; statistical regression for the evaluation of water deliveries based on projected inflows and storages; and econometric modelling for economic assessment of the production value of agriculture based on irrigation water deliveries and crop prices. Therefore, the effect of the price volatility can be isolated from the losses due to water scarcity in the assessment of the drought impacts. Monte Carlo simulations are applied to generate probability functions of inflows, which are translated into probabilities of storages, deliveries, and finally, production value of agriculture. The framework also allows the assessment of the value of mitigation measures as reduction of economic losses during droughts. The approach was applied to the Jucar river basin, a complex system affected by multiannual severe droughts, with irrigated agriculture as the main consumptive demand. Probability distributions of deliveries and production value were obtained for each irrigation season. In the majority of the irrigation districts, drought causes a significant economic impact. The increase of crop prices can partially offset the losses from the reduction of production due to water scarcity in some districts. Emergency wells contribute to mitigating the droughts' impacts on the Jucar river system.

  14. Reuse of reclaimed wastewater for golf course irrigation in Tunisia.

    Science.gov (United States)

    Bahri, A; Basset, C; Oueslati, F; Brissaud, F

    2001-01-01

    In Tunisia, golf courses are irrigated with secondary treated effluent stored in landscape impoundments. The impact of the conveyance and storage steps on the physical-chemical and biological quality of irrigation water was evaluated on three golf courses over two years. It was found that the water quality varies all along the water route, from the wastewater treatment plant up to the irrigation site: nutrient and bacteria contents decreased along the route in the three cases. This variation depends on the wastewater quality, the length of the pipes conveying water, the number of regulation reservoirs and ponds, the water residence time in pipes, reservoirs and ponds, and the operation of the ponds. The bacteriological quality of irrigation water deteriorates during the irrigation period in the three golf courses as the ponds are operated as continuous flow reactors. The results obtained in this study indicate the inability of golf water supplies, as currently managed, to properly sanitize reclaimed wastewater and meet target quality criteria recommended by WHO (1989) for water intended for recreational use. For a safe reuse of reclaimed wastewater for golf course irrigation, changes in the design and operation of the ponds should be planned or additional treatment steps provided.

  15. Development of Solar Powered Irrigation System

    International Nuclear Information System (INIS)

    Abdelkerim, A I; Eusuf, M M R Sami; Salami, M J E; Aibinu, A; Eusuf, M A

    2013-01-01

    Development of a solar powered irrigation system has been discussed in this paper. This system would be SCADA-based and quite useful in areas where there is plenty of sunshine but insufficient water to carry out farming activities, such as rubber plantation, strawberry plantation, or any plantation, that requires frequent watering. The system is powered by solar system as a renewable energy which uses solar panel module to convert Sunlight into electricity. The development and implementation of an automated SCADA controlled system that uses PLC as a controller is significant to agricultural, oil and gas monitoring and control purpose purposes. In addition, the system is powered by an intelligent solar system in which solar panel targets the radiation from the Sun. Other than that, the solar system has reduced energy cost as well as pollution. The system is equipped with four input sensors; two soil moisture sensors, two level detection sensors. Soil moisture sensor measures the humidity of the soil, whereas the level detection sensors detect the level of water in the tank. The output sides consist of two solenoid valves, which are controlled respectively by two moistures sensors

  16. Nitrogen-use efficiency of irrigated wheat

    International Nuclear Information System (INIS)

    Uvalle-Bueno, X.; Osorio-Alatorre, R.; Ortiz-Monasterio, I.

    2000-01-01

    Field experiments with irrigated wheat were conducted from 1994 to 1998, using 15 N, with the objective of identifying appropriate ways of managing applied N to maximize economic profit, minimize N losses and avoid environmental pollution. Fertilizer application was partitioned with one third applied at sowing and two thirds added at Zadoks growth-stage 30 (Z-30), or two thirds at sowing and one third at Z-30, at total rates of 84, 167 and 250 kg N ha -1 . Urea and ammonium sulphate were compared as N-sources at sowing, whereas ammonium nitrate was used at Z-30. The optimum agronomic rate based on the average of the first two years was 178 kg N ha -1 . The economic optimum was 118 kg N ha -1 . The uptake of N from ammonium fertilizer was 20% higher than that from nitrate. Soil mineral N was relatively high at sowing and subsequent mineralization resulted in uptake of 90 kg N ha -1 from the zero-applied-N control plots. Soil-supplied N is, however, not considered when farmers decide on the rate of fertilizer to be applied, potentially resulting in high losses. Nitrogen-15 constituted a useful tool for understanding the relative contributions of soil and fertilizer to the N-nutrition of wheat. (author)

  17. Normative structures, collaboration and conflict in irrigation; a case study of the Pillaro North Canal Irrigation System, Ecuadorian Highlands

    Directory of Open Access Journals (Sweden)

    Jaime Hoogesteger

    2015-03-01

    Full Text Available This paper analyzes conflict and collaboration and their relation to normative structures based on a case study of the history and external interventions of the Píllaro North Canal Irrigation System in the Ecuadorian Highlands. It does so by using Ostrom’s framework for analyzing the sustainability of socio-ecological systems together with an analysis of the normative structures that define the governance systems through which the interactions in irrigation systems are mediated. I argue that the external interventions by the state and NGOs imposed a new governance system that undermined the existing normative structures and related organizations, leading to internal conflicts. The case study suggests that a reformulation of irrigation policies and state intervention methodologies in user managed supra-community irrigation systems in the Andes could lead to higher levels of cooperation.

  18. INTEGRATED WATER MANAGEMENT AND DURABILITY OF LANDSCAPE OF PUBLIC IRRIGATED AREAS IN TUNISIA: CASES OF PUBLIC IRRIGATED AREAS OF CHOTT-MARIEM AND MORNAG

    OpenAIRE

    Abdelkarim Hamrita; Amira Boussetta; Rafael Mata Olmo; Mehdi Saqalli; Hichem Rejeb

    2017-01-01

    An important part of the landscape of irrigated areas in Tunisia is the result of morphology, organization and operation of agricultural policies implemented since independence, aimed at optimizing the exploitation of the best soils and natural resources, particularly water and productive crop intensification. The sustainability of the landscape of public irrigated areas has a strong bonding with the resources of irrigation water and their states of management. The scarcity of irrigation wate...

  19. Nitrogen utilization efficiency and yield response of drip-irrigated tomatoes grown in the glass house

    International Nuclear Information System (INIS)

    Elinc, F.; Deviren, A.; Oeztuerk, A.

    1996-01-01

    This greenhouse study conducted on a Mediterranean Terra Rose soil, as a single crop production, heated only for anti frost, was designed to investigate the response of drip-irrigated tomatoes (Lycopersicon esculentum Mill.) to four nitrogen levels continually applied with the irrigation stream. Water containing 0, 50, 100 or 150 mgN/l and uniformly supplied with 60 and 180 mg/l of P and K, respectively, were applied two times a week. Three adjacent plants in each plot were fertigated with N 15 labeled NH 4 S 2 O 4 (2% a.e. enrichment). For each plant the amount of water, P,K and the N 15 applied through the bottles was equivalent to that amount applied through a single dripper. These treatments were compared with banded application of NH 4 S 2 O 4 at the rate of 400 kgN/ha that was equivalent to 100 mgN/l treatment. The resulting N application totals ranged from 200 to 600 kgN/ha.The total amount of water applied was 427mm. The results obtainedshowed that the percentage fertilizer utilization by the tomatoes was the highest in 50 mgN/l (200 kgN/ha) treatment, 100 mgN/l (400 kgN/ha) treatment, was on the second row, the percentage fertilizer utilization in 150 mgN/l (600 kgN/ha) and soil applications (400 kgN/ha) were the same and were significantly lower than the other treatments. The highest yield was achieved in the 100 and 150 mgN/l (400 and 600 kgN/ha) treatments. This experiment demonstrated that the amount of N fertilizer by applying in the irrigation water is to be recommended 100 mgN/l for tomatoes to obtain high yield in production under greenhouse conditions

  20. Irrigation ponds: Possibility and potentials for the treatment of drainage water from paddy fields in Zhanghe Irrigation System

    Institute of Scientific and Technical Information of China (English)

    DONG Bin; MAO Zhi; BROWN Larry; CHEN XiuHong; PENG LiYuan; WANG JianZhang

    2009-01-01

    Excessive application of fertilizers and pesticides as well as discharge of undecontaminated and un-recycled waste of livestock and poultry into farmland has caused serious non-point source pollution (NSP) of farmland in China.With the traditional mode of irrigation and drainage in rice-based irrigation systems, the pollution of farmland drainage water has become more and more serious.Traditional ir-rigation and drainage systems only focus on issues concerning water quantity, i.e.the capacity of irri-gation in drought and drainage in waterlogging period, yet have no requirement on water quality im-provement, how to clean the water quality of farmland drainage through remodeling the existing irriga-tion and drainage systems has a very important realistic meaning.Pond is an important irrigation facil-ity in rice-based irrigation systems in southern China, which has the functions of not only a storage of water from canals but also collections of surface runoffs and farmland drainage for recycling use.Such water storage features of pond provide the possibility and potential capacity for drainage water treat-ment by managing such features as treatment basins as the growth of aquatic plants as well as living of fishes, batrachia and microorganisms in pond forms a soil-plant-microorganism ecological system.To explore the potential capacity of pond for drainage water nutrient reduction, the Zhanghe Irrigation System of Hubei, a typical "melon-on-the-vine" system in southern China is selected as the research site.The results of pond survey and field experiments demonstrate that plenty of ponds are suitable for collecting and cleaning paddy field drainage, and the ponds are favorable in reducing N, P nutrients in the drainage water.Other issues, e.g.how to maximize such capacity and what strategies should be sought to make existing treatment basins hydraulically more efficient, are also discussed.

  1. Irrigation ponds:Possibility and potentials for the treatment of drainage water from paddy fields in Zhanghe Irrigation System

    Institute of Scientific and Technical Information of China (English)

    BROWN; Larry

    2009-01-01

    Excessive application of fertilizers and pesticides as well as discharge of undecontaminated and unrecycled waste of livestock and poultry into farmland has caused serious non-point source pollution (NSP) of farmland in China. With the traditional mode of irrigation and drainage in rice-based irrigation systems, the pollution of farmland drainage water has become more and more serious. Traditional irrigation and drainage systems only focus on issues concerning water quantity, i.e. the capacity of irrigation in drought and drainage in waterlogging period, yet have no requirement on water quality improvement. how to clean the water quality of farmland drainage through remodeling the existing irrigation and drainage systems has a very important realistic meaning. Pond is an important irrigation facility in rice-based irrigation systems in southern China, which has the functions of not only a storage of water from canals but also collections of surface runoffs and farmland drainage for recycling use. Such water storage features of pond provide the possibility and potential capacity for drainage water treatment by managing such features as treatment basins as the growth of aquatic plants as well as living of fishes, batrachia and microorganisms in pond forms a soil-plant-microorganism ecological system. To explore the potential capacity of pond for drainage water nutrient reduction, the Zhanghe Irrigation System of Hubei, a typical "melon-on-the-vine" system in southern China is selected as the research site. The results of pond survey and field experiments demonstrate that plenty of ponds are suitable for collecting and cleaning paddy field drainage, and the ponds are favorable in reducing N, P nutrients in the drainage water. Other issues, e.g. how to maximize such capacity and what strategies should be sought to make existing treatment basins hydraulically more efficient, are also discussed.

  2. Manejo da irrigação em pastagem irrigada por pivô-central Irrigated pasture: water management under center pivot irrigation

    Directory of Open Access Journals (Sweden)

    Alexandre C. Xavier

    2004-12-01

    Full Text Available A aplicação de lâminas de irrigação em pastagem irrigada sob pivô-central é, de maneira geral, realizada sem um critério técnico pertinente ao sistema, pois se deve considerar que para um mesmo período a pastagem se encontra em diferentes estádios de desenvolvimento em cada parcela, apresentando taxas de evapotranspiração diferenciadas dentro da área irrigada; todavia, usualmente se aplica uma única lâmina para toda a área. Neste trabalho foi desenvolvido um modelo para aplicação de lâminas de irrigação distinta para cada parcela do pivô o qual, de modo geral, considera: i a capacidade do pivô-central de aplicar lâminas distintas na área; ii o nível de desenvolvimento da cultura em cada parcela; iii o período de retorno do gado a determinada parcela (ciclo de pastejo; e iv o potencial de desenvolvimento da pastagem de certa região. Para modelar o coeficiente de cultura (Kc foram utilizadas duas metodologias, a primeira com taxa de variação do Kc constante com o número de dias em que a parcela está em descanso (k, e a segunda, com taxa de variação do Kc na forma senoidal com k. O modelo foi aplicado para pastagens hipotéticas nas regiões de Piracicaba e Pereira Barreto, para avaliação e, como resultado, observou-se que o modelo se mostrou sensível ao nível de desenvolvimento de cada parcela e às condições de variação do clima de cada região.The application of irrigation depths in irrigated pasture under center pivot machines, in a general way, is accomplished without a pertinent technical criterion, because it should be considered that for any time period, the pasture plots are at different development stages (rotary pasture, presenting different evapotranspiration rates inside the irrigated area. Furthermore, farmers usually apply a single irrigation depth for the whole area. In this study a model was developed for the application of different irrigation depths in each portion of the pivot (pizza

  3. Evaluation of the Effect of Different Irrigation Levels of Drip Irrigation (Tape on Yield and Yield Components of Corn

    Directory of Open Access Journals (Sweden)

    mohammad karimi

    2016-02-01

    Full Text Available Introduction: One of the serious problems in the further development of maize cultivation is increasing irrigation efficiency. Using conventional irrigation causes a shortage of water resources to increase the acreage of the crop. With regard to the development of maize cultivation, agronomic and executable methods must be studied to reduce water consumption. Using drip irrigation system is most suitable for row crops. Hamedi et al. (2005 compared drip (tape and surface irrigation systems on yield of maize in different levels of water requirement and indicated that drip irrigation increases the amount of yield to 2015 kg/ha and water use efficiency to 3 time. Kohi et al. (2005 investigated the effects of deficit irrigation use of drip (tape irrigation on water use efficiency on maize in planting of one and two rows. The results showed that maximum water use efficiency related to crop density, water requirement and planting pattern 85000, 125% and two rows, respectively with 1.46 kg/m3. Jafari and Ashrafi (2011 studied the effects of irrigation levels, plant density and planting pattern in drip irrigation (tape on corn. The results showed that the amount of irrigation water and crop density on the level of 1% and their interactions and method of planting were significant at the 5 and 10% on water use efficiency, respectively. The yield was measured under different levels of irrigation, crop density and method of planting and the difference was significant on the level of 1%. Lamm et al. (1995 studied water requirement of maize in field with silt loam texture under sub drip irrigation and reported that water use reduced to 75%; but yield of maize remained at maximum amount of 12.5 t/ha. The objective of this study was to evaluate the drip (tape irrigation method for corn production practices in the Qazvin province in Iran. Materials and Methods: In this study, yield and yield components of corn (SC 704 were investigated under different levels of

  4. Willingness to Pay Additional Water Rate and Irrigation Knowledge of Farmers in Dinar Karakuyu Irrigation Areas in Turkey

    Directory of Open Access Journals (Sweden)

    Mevlüt Gül

    2017-08-01

    Full Text Available Water which has become commodity product which is an important product today. Turkey is not a water rich country. In this study, agricultural enterprises in the field of Irrigation Project in Dinar Karakuyu which was implemented in 1992 by DSI. The study analysed which factors affect the willingness to pay additional irrigation water rate with the help of logit model and the irrigation knowledge of farmers was determined by Likert scale. Dinar Karakuyu irrigation network has begun to lose the function in the region. It was supposed 100% irrigation rate but decreased by approximately 9% today. In this context, DSI (General Directorate of State Hydraulic Works plans to rehabilitation work in the same area. The main material of this study was data obtained from 67 agricultural enterprises through a survey covered by the Irrigation Rehabilitation Project in the province of Afyonkarahisar Karakuyu Dinar. The data was gathered with the help of questionnaires which were answered by farmers in Karakuyu Dinar region. The results indicated that 74.6% of farmers were willingness to pay additional water charge. The data were statistically analysed with the use of the logit model. The model results show that agricultural income, farmers’ educational level, computer ownership, attendance of agricultural training activities, family size and agricultural experience were positive factors affect farmers’ willingness to pay additional water fee.

  5. Effects of soil texture and drought stress on the uptake of antibiotics and the internalization of Salmonella in lettuce following wastewater irrigation

    International Nuclear Information System (INIS)

    Zhang, Yuping; Sallach, J. Brett; Hodges, Laurie; Snow, Daniel D.; Bartelt-Hunt, Shannon L.; Eskridge, Kent M.; Li, Xu

    2016-01-01

    Treated wastewater is expected to be increasingly used as an alternative source of irrigation water in areas facing fresh water scarcity. Understanding the behaviors of contaminants from wastewater in soil and plants following irrigation is critical to assess and manage the risks associated with wastewater irrigation. The objective of this study was to evaluate the effects of soil texture and drought stress on the uptake of antibiotics and the internalization of human pathogens into lettuce through root uptake following wastewater irrigation. Lettuce grown in three soils with variability in soil texture (loam, sandy loam, and sand) and under different levels of water stress (no drought control, mild drought, and severe drought) were irrigated with synthetic wastewater containing three antibiotics (sulfamethoxazole, lincomycin and oxytetracycline) and one Salmonella strain a single time prior to harvest. Antibiotic uptake in lettuce was compound-specific and generally low. Only sulfamethoxazole was detected in lettuce with increasing uptake corresponding to increasing sand content in soil. Increased drought stress resulted in increased uptake of lincomycin and decreased uptake of oxytetracycline and sulfamethoxazole. The internalization of Salmonella was highly dependent on the concentration of the pathogen in irrigation water. Irrigation water containing 5 Log CFU/mL Salmonella resulted in limited incidence of internalization. When irrigation water contained 8 Log CFU/mL Salmonella, the internalization frequency was significantly higher in lettuce grown in sand than in loam (p = 0.009), and was significantly higher in lettuce exposed to severe drought than in unstressed lettuce (p = 0.049). This work demonstrated how environmental factors affected the risk of contaminant uptake by food crops following wastewater irrigation. - Highlights: • Higher sand content in soil caused higher internalization of sulfamethoxazole and Salmonella in lettuce. • Drought

  6. Performance of irrigated green corn cultivars in different plant populations at sowing

    Directory of Open Access Journals (Sweden)

    José C. Soares Neto

    Full Text Available ABSTRACT This study aimed to evaluate the yield of green corn hybrids grown under irrigation in different plant populations at sowing. The assay was carried out in the experimental area located in the city of Arapiraca, Alagoas State, Brazil, from November 2015 to January 2016. A randomized complete block design (RCBD was used, in a 2 x 5 factorial scheme with four replicates. A double- and a single-cross hybrid (AG 1051 and BM 3061, which are suitable for green corn production, were cultivated in five spacings between plants at sowing (15.0, 17.5, 20.0, 22.5 and 25.0 cm. The characteristics photosynthetic rate (PR, ear length with rusk (HEL and without husk (UEL, husked ear weight (HEW, unhusked ear weight (UEW, percentage of marketable ears (%ME and weight of husk (HW were evaluated. The double- and single-cross hybrids AG 1051 and BM 3061 showed green ears with commercial standard. The cultivar BM 3061 showed the best results for most of the characteristics related to the performance of green corn (PR, HEL, UEL, UEW, HEW, %ME. The spacing of 17.5 cm between plants at sowing was the most indicated for irrigated green corn cultivation.

  7. The Effects of Two Different Deficit Irrigation Managements on the Root Length of Maize

    Directory of Open Access Journals (Sweden)

    M. Gheysari

    2015-06-01

    Full Text Available The response of root to water stress is one of the most important parameters for researchers. Study of growth and distribution of root under different irrigation managements helpsresearchersto a better understanding of soil water content, and the availability of water and nutrition in water stress condition. To investigate the effects of four levels of irrigation under two different deficit irrigation managements on the root length of maize, a study was conducted in 2009. Irrigation managements included fixed irrigation interval-variable irrigation depth (M1 and variable irrigation interval-fixed irrigation depth (M2. Maize plants were planted in 120 large 110-liter containers in a strip-plot design in a randomized complete block with three replications. Root data sampling was done after root washing in five growth stages. The results showed that the effect of irrigation levels on root length was significant (P

  8. Effects of different deficit irrigation on sugar accumulation of pineapple during development

    Science.gov (United States)

    Feng, Haiyan; Du, Liqing; Liu, Shenghui; Zhang, Xiumei

    2017-08-01

    The potted pineapple cultivar ‘Comte de paris’ was used to study the influence of deficit irrigation on fruit sugar accumulation in greenhouse during the fruit enlargement period. The study included a control (normal irrigation) and two treatment groups, moderate deficit (50% of the control irrigation) and severe deficit (25% of the control irrigation). The results indicated that the deficit irrigation significantly decreased the sucrose accumulation. The sucrose content in the fruits of moderate deficit irrigation was the lowest. During the mature period, the deficit irrigation decreased the sucrose phosophate synthase activity(SPS) an increased the sucrose synthase (SS) and neutral invertase (NI). The moderate deficit irrigation significantly improved the acid invertase activity(AI). However, it was inhibited by the severe deficit irrigation. In general, the moderate treatment reduced the SPS activity and enhanced the NI and AI activities, while the severe treatment decreased the SPS and AI activities.

  9. New technologies for modernization and management of irrigation piping

    Directory of Open Access Journals (Sweden)

    Alessandro Santini

    2006-07-01

    Full Text Available Improving the efficiency of irrigation piping-systems represents a fundamental prerequisite to achieve a sustainable irrigation under both the environmental the economic point of view. Such an issue is important not only in areas with limited water-budget, but even in those areas where the increasing reduction of the water availability has become a worrying perspective. In the last twenty years, the reduction in water-availability and the increasing costs of system-management have highly limited the cultivated areas which are irrigated by means of water-distribution nets. In the recent years, most of the Italian investments in the irrigation-field have been oriented toward upgrading the open-channels irrigation nets, which were built starting from 50’, by substituting these latter with pipes. The modernization of the piping-systems has been achieved via innovative design solutions, such as back and loading water tanks or towers, which have lead to an improvement into the flexibility of the net management. Nearby the employment of such technologies, nowadays it is also possible to use the knowledge of the physical processes involved in the management of an irrigation system, starting from energy as well as mass exchange in the continuum soil-plant-atmosphere till to a detailed hydraulic description of a water distribution net under different flow regimes. Such a type of knowledge may be used to improve as well as buildup mathematical models for a decisions-support toward the management of complex irrigation districts. The acquirement of the data needed to implement such models has been deeply improved thanks to Geographical Information Systems (GIS, and techniques to analyze satellite-data coming from the Earth observation, which enable to characterize and monitor vegetation at different spatial, spectral and radiometric resolutions.

  10. Expanding the Annual Irrigation Maps (AIM) Product to the entire High Plains Aquifer (HPA): Addressing the Challenges of Cotton and Deficit-Irrigated Fields

    Science.gov (United States)

    Rapp, J. R.; Deines, J. M.; Kendall, A. D.; Hyndman, D. W.

    2017-12-01

    The High Plains Aquifer (HPA) is the most extensively irrigated aquifer in the continental United States and is the largest major aquifer in North America with an area of 500,000 km2. Increased demand for agricultural products has led to expanded irrigation extent, but brought with it declining groundwater levels that have made irrigation unsustainable in some locations. Understanding these irrigation dynamics and mapping irrigated areas through time are essential for future sustainable agricultural practices and hydrological modeling. Map products using remote sensing have only recently been able to track annual dynamics at relatively high spatial resolution (30 m) for a large portion of the northern HPA. However follow-on efforts to expand these maps to the entire HPA have met with difficulty due to the challenge of distinguishing irrigation in crop types that are commonly deficit- or partially-irrigated. Expanding these maps to the full HPA requires addressing unique features of partially irrigated fields and irrigated cotton, a major water user in the southern HPA. Working in Google Earth Engine, we used all available Landsat imagery to generate annual time series of vegetation indices. We combined this information with climate covariables, planting dates, and crop specific training data to algorithmically separate fully irrigated, partially irrigated, and non-irrigated field locations. The classification scheme was then applied to produce annual maps of irrigation across the entire HPA. The extensive use of ancillary data and the "greenness" time series for the algorithmic classification generally increased accuracy relative to previous efforts. High-accuracy, representative map products of irrigation extent capable of detecting crop type and irrigation intensity within aquifers will be an essential tool to monitor the sustainability of global aquifers and to provide a scientific bases for political and economic decisions affecting those aquifers.

  11. Assessing the efficacy of the SWAT auto-irrigation function to simulate Irrigation, evapotranspiration and crop response to irrigation management strategies of the Texas High Plains

    Science.gov (United States)

    The Soil and Water Assessment Tool (SWAT) model is widely used for simulation of hydrologic processes at various temporal and spatial scales. Less common are long-term simulation analyses of water balance components including agricultural management practices such as irrigation management. In the se...

  12. Non-climatic factors and long-term, continental-scale changes in seasonally frozen ground

    Science.gov (United States)

    Shiklomanov, Nikolay I.

    2012-03-01

    surface and subsurface moisture regimes. As a result, the ground temperature and the related depth of freezing propagation are characterized by very high variability over short lateral distances. The data used for analysis by Frauenfeld and Zhang are single-point measurements obtained from a network of stations sparsely distributed over a very large spatial domain. Since no variability in edaphic conditions was considered, the presented results should be interpreted with some degree of caution. In addition, long-term soil observations at a single point using unautomated techniques unavoidably cause site disturbance, which may significantly modify the ground thermal regime over time. I would like to emphasize that the generalized continental trend in the depth of seasonal freezing presented by Frauenfeld and Zhang is very likely associated with changes in atmospheric forcing. However, any long-term continental trends of such a spatially heterogeneous and sensitive parameter as shallow soil temperature potentially include a significant non-climatic component. Although the single-point temperature data used by Frauenfeld and Zhang might not be sufficient to fully evaluate the localized effects on the overall trend, they are a terrific asset for further studies on climate and ground thermal regime. Detailed spatial assessment of the available ground temperature records over relatively homogeneous regions is a necessary next step in the assessment of climate-induced changes in seasonally frozen ground. Such an analysis is likely to show significant regional differences in long-term freeze propagation trends over Northern Eurasia and reveal region-specific sensitivities of the ground thermal regime to climatic forcing. References Brown R D and Robinson D A 2011 Northern hemisphere spring snow cover variability and change over 1922-2010 including an assessment of uncertainty Cryosphere 5 219-29 Callaghan T V, Tweedie C E and Webber P J 2011 Multi-decadal changes in tundra

  13. Evaluation of conventional, protaper hand and protaper rotary instrumentation system for apical extrusion of debris, irrigants and bacteria- An in vitro randomized trial

    OpenAIRE

    Kalra, Pinky; Rao, Arathi; Suman, Ethel; Shenoy, Ramya; Suprabha, Baranya-Shrikrishna

    2017-01-01

    Background Endodontic instrumentation carries the risk of over extrusion of debris and bacteria. The technique used and the type of instrumentation influences this risk. Aim The purpose of this study was to evaluate and compare the K-file, ProTaper hand and ProTaper rotary instrumentation systems for the amount of apically extruded debris, irrigant solution and intracanal bacteria. Design Experimental single blinded randomized type of in vitro study with sample of 30 single rooted teeth. Endo...

  14. In-season monitoring of hip and groin strength, health and function in elite youth soccer

    DEFF Research Database (Denmark)

    Wollin, Martin; Thorborg, Kristian; Welvaert, Marijke

    2018-01-01

    OBJECTIVES: The primary purpose of this study was to describe an early detection and management strategy when monitoring in-season hip and groin strength, health and function in soccer. Secondly to compare pre-season to in-season test results. DESIGN: Longitudinal cohort study. METHODS: Twenty......-seven elite male youth soccer players (age: 15.07±0.73years) volunteered to participate in the study. Monitoring tests included: adductor strength, adductor/abductor strength ratio and hip and groin outcome scores (HAGOS). Data were recorded at pre-season and at 22 monthly intervals in-season. Thresholds.......09, CI95%: 0.04, 0.13 respectively). HAGOS subscale scores were lowest at baseline with all, except Physical Activity, showing significant improvements at time-point one (ptime-loss were classified minimal or mild. CONCLUSIONS: In-season monitoring aimed at early detection...

  15. APPLICATION OF DRIP IRRIGATION ON COTTON PLANT GROWTH (Gossypium sp.

    Directory of Open Access Journals (Sweden)

    Syahruni Thamrin

    2017-12-01

    Full Text Available The condition of cotton planting in South Sulawesi is always constrained in the fulfillment of water. All plant growth stages are not optimal to increase production, so it is necessary to introduce good water management technology, such as through water supply with drip irrigation system. This study aims to analyze the strategy of irrigation management in cotton plants using drip irrigation system. Model of application by designing drip irrigation system and cotton planting on land prepared as demonstration plot. Observations were made in the germination phase and the vegetative phase of the early plants. Based on the result of drip irrigation design, the emitter droplet rate (EDR was 34.266 mm/hour with an operational time of 4.08 min/day. From the observation of cotton growth, it is known that germination time lasted from 6 to 13 days after planting, the average plant height reached 119.66 cm, with the number of leaves averaging 141.93 pieces and the number of bolls averaging 57.16 boll.

  16. Ring Irrigation System (RIS design through customer preference representation

    Directory of Open Access Journals (Sweden)

    Ridwan Infandra I.Z.

    2018-01-01

    Full Text Available In agricultural field, irrigation is one of the most interesting considerations affecting the rate of plant growth and development. Micro-irrigation as the dripping or sprinkle method is one of the irrigation types that applies the small amount of water for fulfilling the humidity requirement. The most important factors affecting the demand of water for plants are soil conditions and effect of climatic factors. With less human labour required, to improve the irrigation method from the recent days, analyzing water used or water permeation automatically through the soil moisture has been raised as the interesting topic. Proposed in this research is the ring irrigation system (RIS which is introduced as an alternative channel for emitters that drip water directly onto the soil at the plant’s root zone where the soil conditions before and after watering can be quickly detected by the sensors. This RIS can be used for the potted plant, green house, or other small farm fields. Product design and development (PDD is applied in this research for assisting the designer to understand and create the RIS prototype properly according to the customer’s requirements where the suggested functions obtained will be added and tested.

  17. Computer-based irrigation scheduling for cotton crop

    International Nuclear Information System (INIS)

    Laghari, K.Q.; Memon, H.M.

    2008-01-01

    In this study a real time irrigation schedule for cotton crop has been tested using mehran model, a computer-based DDS (Decision Support System). The irrigation schedule was set on selected MAD (Management Allowable Depletion) and the current root depth position. The total 451 mm irrigation water applied to the crop field. The seasonal computed crop ET (Evapotranspiration) was estimated 421.32 mm and actual (ET/sub ca/) observed was 413 mm. The model over-estimated seasonal ET by only 1.94. WUE (Water Use Efficiency) for seed-cotton achieved 6.59 Kg (ha mm)/sup -1/. The statistical analysis (R/sup 2/=0.96, ARE%=2.00, T-1.17 and F=550.57) showed good performance of the model in simulated and observed ET values. The designed Mehran model is designed quite versatile for irrigation scheduling and can be successfully used as irrigation DSS tool for various crop types. (author)

  18. Analytical Solution for Optimum Design of Furrow Irrigation Systems

    Science.gov (United States)

    Kiwan, M. E.

    1996-05-01

    An analytical solution for the optimum design of furrow irrigation systems is derived. The non-linear calculus optimization method is used to formulate a general form for designing the optimum system elements under circumstances of maximizing the water application efficiency of the system during irrigation. Different system bases and constraints are considered in the solution. A full irrigation water depth is considered to be achieved at the tail of the furrow line. The solution is based on neglecting the recession and depletion times after off-irrigation. This assumption is valid in the case of open-end (free gradient) furrow systems rather than closed-end (closed dike) systems. Illustrative examples for different systems are presented and the results are compared with the output obtained using an iterative numerical solution method. The final derived solution is expressed as a function of the furrow length ratio (the furrow length to the water travelling distance). The function of water travelling developed by Reddy et al. is considered for reaching the optimum solution. As practical results from the study, the optimum furrow elements for free gradient systems can be estimated to achieve the maximum application efficiency, i.e. furrow length, water inflow rate and cutoff irrigation time.

  19. Alkaline Sodium Hypochlorite Irrigant and Its Chemical Interactions

    Directory of Open Access Journals (Sweden)

    Patricia P. Wright

    2017-09-01

    Full Text Available Endodontic irrigating solutions may interact chemically with one another. This is important, because even when solutions are not admixed, they will come into contact with one another during an alternating irrigation technique, forming unwanted by-products, which may be toxic or irritant. Mixing or alternating irrigants can also reduce their ability to clean and disinfect the root canal system of teeth by changing their chemical structure with subsequent loss of the active agent, or by inducing precipitate formation in the root canal system. Precipitates occlude dental tubules, resulting in less penetration of antimicrobials and a loss of disinfection efficacy. Sodium hypochlorite is not only a very reactive oxidizing agent, but is also the most commonly used endodontic irrigant. As such, many interactions occurring between it and other irrigants, chelators and other antimicrobials, may occur. Of particular interest is the interaction between sodium hypochlorite and the chelators EDTA, citric acid and etidronate and between sodium hypochlorite and the antimicrobials chlorhexidine, alexidine, MTAD and octenisept.

  20. Fluctuation of blood pressure and pulse rate during colostomy irrigation.

    Science.gov (United States)

    Sadahiro, S; Noto, T; Tajima, T; Mitomi, T; Miyazaki, T; Numata, M

    1995-06-01

    The aim of this study was to determine the effects of colostomy irrigation on the vital signs of patients with left colostomy. Twenty-two consecutive patients who underwent abdominoperineal resection for cancer of the lower rectum and had left lower quadrant end colostomy were included in this study. Subjective symptoms, blood pressure, and pulse rate during the first irrigation were investigated. Fluctuation of blood pressure during instillation was 8.0/8.5 mmHg (average) and 25.0/17.9 mmHg during evacuation. Fluctuation of pulse rate was 5.5 per minute (average) during instillation and 11.5 per minute during evacuation. The number of subjects who showed more than 20% fluctuation of systolic pressure was 12 (54.5 percent) and that of diastolic pressure was 14 (63.6 percent). One of 22 patients complained of illness during irrigation. Although colostomy irrigation showed no significant effects on vital signs in the majority of patients, it caused a significant reduction in both blood pressure and pulse rate in a small number of patients. Careful attention should be paid to vital signs considering the possibility of such effects, especially on the initial irrigation.

  1. Colostomy irrigation in the elderly. Effective recovery regardless of age.

    Science.gov (United States)

    Venturini, M; Bertelli, G; Forno, G; Grandi, G; Dini, D

    1990-12-01

    One hundred forty elderly cancer outpatients with colostomy in the authors' rehabilitation department were included in an analysis of the feasibility, effectiveness, and safety of periodic irrigation of remaining colon with lukewarm tap water with the aim of regaining full continence. Sixteen patients did not have a sufficiently long remaining bowel (cecostomy, transverse colostomy) and 17 were considered unsuitable to learn the technique because of advanced neoplastic disease with poor life expectancy, intercurrent disease, or stomal problems. One hundred seven patients were proposed to perform the irrigation: 17 refused to do so with the remaining 90 able to learn the method without problems. Nearly all patients achieved full continence for at least 24 hours. Three patients refused to continue, and nine interrupted for minor complications. The median duration of irrigation in the whole group is 257 days (range, 1 to 2669 days): 32 patients have been irrigating from one to five years, and 9 patients for more than 5 years. Based on these results, we recommend irrigation as standard rehabilitative treatment for elderly patients.

  2. Estimation of evapotranspiration rate in irrigated lands using stable isotopes

    Science.gov (United States)

    Umirzakov, Gulomjon; Windhorst, David; Forkutsa, Irina; Brauer, Lutz; Frede, Hans-Georg

    2013-04-01

    Agriculture in the Aral Sea basin is the main consumer of water resources and due to the current agricultural management practices inefficient water usage causes huge losses of freshwater resources. There is huge potential to save water resources in order to reach a more efficient water use in irrigated areas. Therefore, research is required to reveal the mechanisms of hydrological fluxes in irrigated areas. This paper focuses on estimation of evapotranspiration which is one of the crucial components in the water balance of irrigated lands. Our main objective is to estimate the rate of evapotranspiration on irrigated lands and partitioning of evaporation into transpiration using stable isotopes measurements. Experiments has done in 2 different soil types (sandy and sandy loam) irrigated areas in Ferghana Valley (Uzbekistan). Soil samples were collected during the vegetation period. The soil water from these samples was extracted via a cryogenic extraction method and analyzed for the isotopic ratio of the water isotopes (2H and 18O) based on a laser spectroscopy method (DLT 100, Los Gatos USA). Evapotranspiration rates were estimated with Isotope Mass Balance method. The results of evapotranspiration obtained using isotope mass balance method is compared with the results of Catchment Modeling Framework -1D model results which has done in the same area and the same time.

  3. Hydrological drought index insurance for irrigation districts in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Maestro, T.; Bielza, M.; Garrido, A.

    2016-11-01

    Hydrological droughts are a major risk for irrigated agriculture in many regions of the world. The aim of this article is to propose an insurance tool to help irrigators manage the risk of water scarcity in the framework of the Spanish Crop Insurance System (SCIS). Only the United States Insurance System provides this type of coverage, but has very restrictive conditions. To determine the type of insurance scheme that better fits with the SCIS and to the Spanish irrigated agriculture, an expert panel was held with the participation of all stakeholders involved in crop insurance. Following the expert panel conclusions, an hydrological drought index insurance (HDII) addressed to irrigation districts (ID) is proposed. It would compensate water deficits suffered in the whole ID. We detail the conditions that the ID should fulfill to be eligible for HDII. HDII is applied to the Bardenas Irrigation District V (ID-V) in Spain, and the hedging effectiveness of the instrument is analyzed comparing ID-V’s gross margins with and without the insurance contract. Results suggest that the proposed insurance scheme could provide an effective means of reducing farmers’ vulnerability to water shortages and there is no major impediment for it to be included as a new line in the SCIS. This type of insurance can be generalized to any ID fulfilling the conditions mentioned in this paper. (Author)

  4. Irrigation offsets wheat yield reductions from warming temperatures

    Science.gov (United States)

    Tack, Jesse; Barkley, Andrew; Hendricks, Nathan

    2017-11-01

    Temperature increases due to climate change are expected to cause substantial reductions in global wheat yields. However, uncertainty remains regarding the potential role for irrigation as an adaptation strategy to offset heat impacts. Here we utilize over 7000 observations spanning eleven Kansas field-trial locations, 180 varieties, and 29 years to show that irrigation significantly reduces the negative impact of warming temperatures on winter wheat yields. Dryland wheat yields are estimated to decrease about eight percent for every one-degree Celsius increase in temperature, yet irrigation completely offsets this negative impact in our sample. As in previous studies, we find that important interactions exist between heat stress and precipitation for dryland production. Here, uniquely, we observe both dryland and irrigated trials side-by-side at the same locations and find that precipitation does not provide the same reduction in heat stress as irrigation. This is likely to be because the timing, intensity, and volume of water applications influence wheat yields, so the ability to irrigate—rather than relying on rainfall alone—has a stronger influence on heat stress. We find evidence of extensive differences of water-deficit stress impacts across varieties. This provides some evidence of the potential for adapting to hotter and drier climate conditions using optimal variety selection. Overall, our results highlight the critical role of water management for future global food security. Water scarcity not only reduces crop yields through water-deficit stress, but also amplifies the negative effects of warming temperatures.

  5. Kalanchoe crop development under different levels of irrigation

    Directory of Open Access Journals (Sweden)

    Fátima Cibele Soares

    Full Text Available ABSTRACT Despite its importance in the floriculture sector, irrigation management of kalanchoe is characterized by empiricism, being necessary further studies on the use of water by this crop. Thus, the objective of this study is to analyze the several effects of irrigation levels on the growth of kalanchoe crop conducted in greenhouse in the municipality of Alegrete, state of Rio Grande do Sul. The experiment was conducted in a 7 x 15 m protected environment. The experimental design was completely randomized, with four treatments (irrigation levels corresponding to 40, 60, 80 and 100% of the pot water retention capacity - PC and four repetitions, totaling sixteen plots. The crop cycle was 224 days after transplanting and the applied average depths were: 451.82; 367.38; 282.94; 198.51 mm for treatments: 100; 80; 60 and 40% of PC, respectively. Canopy area and number of leaves per plant were evaluated over the crop cycle. In the end of the cycle, the canopy diameter, number of inflorescences per plant and the number of flowers per plant were evaluated. No significant differences were found only to the canopy area, by the F test. Irrigation water depths between 40 and 70% of the pot capacity were more appropriate for the crop growth in the study region. The cultivar presented the best development at irrigation levels below the maximum vessel water retention capacity, that is, it is resistant to drought.

  6. Evaluation of dripper clogging using magnetic water in drip irrigation

    Science.gov (United States)

    Khoshravesh, Mojtaba; Mirzaei, Sayyed Mohammad Javad; Shirazi, Pooya; Valashedi, Reza Norooz

    2018-06-01

    This study was performed to investigate the uniformity of distribution of water and discharge variations in drip irrigation using magnetic water. Magnetic water was achieved by transition of water using a robust permanent magnet connected to a feed pipeline. Two main factors including magnetic and non-magnetic water and three sub-factor of salt concentration including well water, addition of 150 and 300 mg L-1 calcium carbonate to irrigation water with three replications were applied. The result of magnetic water on average dripper discharge was significant at ( P ≤ 0.05). At the final irrigation, the average dripper discharge and distribution uniformity were higher for the magnetic water compared to the non-magnetic water. The magnetic water showed a significant effect ( P ≤ 0.01) on distribution uniformity of drippers. At the first irrigation, the water distribution uniformity was almost the same for both the magnetic water and the non-magnetic water. The use of magnetic water for drip irrigation is recommended to achieve higher uniformity.

  7. Evaluation of the dose to man in relation to the behavior of tritium from irrigation water in agricultural crops

    International Nuclear Information System (INIS)

    Kirchmann, R.; Bruwaene, R. van; Koch, G.; Grauby, A.; Delmas, J.; Athalye, V.

    1977-01-01

    A research program on the transfer of tritium from the irrigation water in the soil-plant environment provides valuable ecological information on the effects of tritium releases from nuclear installations under temperate humide and mediterranean climatic conditions. Field studies are carried out on experimental plots by spraying the crops with irrigation water contaminated with tritium on a single dose, the reference level chosen is 1 nCi/litre. The following crops are investigated: prairie, rye-grass, potato, pea, barley, carrot and sugarbeet as temperate region cultures, and vineyard, olive-tree and orange-tree as mediterranean cultures. Soil and plants samples are collected for radioassay to determine the tritium incorporation in tissue water and organic matter fractions. The tritium activity in these crops after harvest is correlated to the level of radiation dose received through human diet [fr

  8. Influence of a passive sonic irrigation system on the elimination of bacteria from root canal systems: a clinical study.

    Science.gov (United States)

    Huffaker, S Kirk; Safavi, Kamran; Spangberg, Larz S W; Kaufman, Blythe

    2010-08-01

    The present investigation evaluated the ability of a new passive sonic irrigation (sonic group) system (EndoActivator) to eliminate cultivable bacteria from root canals in vivo and compared it with that of standard syringe irrigation (control group). Data were obtained by using bacteriologic sampling of root canals treated by endodontic residents. Sampling results from 1 session of treatment were then compared with results obtained after intervisit calcium hydroxide disinfection and a second session of treatment. There was no significant difference in the ability of sonic group and control group to eliminate cultivable bacteria from root canals (P > .05). A second session and intervisit calcium hydroxide disinfection were able to eliminate cultivable bacteria from significantly more teeth than a single session of treatment (P treatment of apical periodontitis. Copyright 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  9. The Impact of Regular and Periodic Irrigation on the Fertility and Productivity of an Ordinary Chernozem of the Azov Irrigation System

    Science.gov (United States)

    Shchedrin, V. N.

    2016-02-01

    The effect of regular and periodic irrigation on the fertility and productivity of an ordinary chernozem cultivated under different conditions within the same cereal-fodder crop rotation is discussed. The investigation object is located in the area of the Azov irrigation system on the second terrace of the Don River in Rostov oblast. Irrigation water for the system is taken from the Veselovsk water reservoir. Its salinity is 1.7-2.1 g/dm3, and the salt composition is sulfate-sodium. The field experiments were performed in 2006-2013 on three experimental plots. Two of them were regularly irrigated; the third plot was periodically irrigated with alternation of 2-year-long periods with and without irrigation. Our study proved that periodic irrigation could be applied in the chernozemic zone. This new irrigation mode contributes to the preservation of the natural soil-forming process and stops the development of unfavorable processes typical of the lands irrigated with water of inadequate quality. In eight years of cultivation of the ordinary chernozem with periodic irrigation, the soil humus content increased by 10% (from 3.80 to 4.15%), and the yield reached 66.0 t/ha of fodder units. This was 9% higher than the yield obtained upon regular irrigation without agroameliorative measures and 12% lower than the yield upon regular irrigation in combination with soil-protective measures. Our data suggest that periodic irrigation is promising for the chernozemic zone, because it ensures lower water loads and preservation of the irrigated chernozems.

  10. The synergistic effect of ultrasonic activation and irrigation on Enterococcus faecalis biofilm

    Directory of Open Access Journals (Sweden)

    Abeer A Al-Mahdi

    2016-01-01

    Full Text Available Aim: The aim of this investigation was to compare the efficacy of passive ultrasonic irrigation (PUI with either 2.5% sodium hypochlorite (NaOCl or saline, with that of conventional syringe irrigation on intraradicular Enterococcus faecalis biofilm. Materials and Methods: Biofilms of E. faecalis were established over 21 days in 80 single roots that had undergone biomechanical preparation followed by gamma radiation. Biofilms were treated for 1 min with 2.5% NaOCl/PUI (Group 1, 2.5% NaOCl (Group 2, sterile saline/PUI (Group 3, and sterile saline (Group 4. The positive control (n = 4 was used to confirm the presence of biofilm before various treatments. Additional four samples that served as a negative control were used to confirm the sterility of the samples. Biofilm eradication was evaluated by Colony Forming Unit (CFU quantification and scanning electron microscopy (SEM. Results: The median of CFUs of S1 was significantly higher than that of S2 in all experimental groups. SEM examination showed a significant difference between the positive control and the experimental groups (P < 0.001, with the highest score of biofilm in the positive control group followed by Group 4 and both groups were not statistically significant from each other (P = 0.067. Following various treatments, the highest scores of biofilm were observed in the coronal third and the least were in the apical third. Conclusions: PUI did not increase the effectiveness of NaOCl irrigation on biofilm removal, however, PUI enhanced biofilm disturbance when used with saline. The least mean score of remaining biofilm was in the apical third of all treatment groups compared to other thirds.

  11. Methods to estimate irrigated reference crop evapotranspiration - a review.

    Science.gov (United States)

    Kumar, R; Jat, M K; Shankar, V

    2012-01-01

    Efficient water management of crops requires accurate irrigation scheduling which, in turn, requires the accurate measurement of crop water requirement. Irrigation is applied to replenish depleted moisture for optimum plant growth. Reference evapotranspiration plays an important role for the determination of water requirements for crops and irrigation scheduling. Various models/approaches varying from empirical to physically base distributed are available for the estimation of reference evapotranspiration. Mathematical models are useful tools to estimate the evapotranspiration and water requirement of crops, which is essential information required to design or choose best water management practices. In this paper the most commonly used models/approaches, which are suitable for the estimation of daily water requirement for agricultural crops grown in different agro-climatic regions, are reviewed. Further, an effort has been made to compare the accuracy of various widely used methods under different climatic conditions.

  12. Conjunctive irrigation through groundwater for crop production in Eastern India

    International Nuclear Information System (INIS)

    Singh, S.S.; Singh, J.P.; Singh, S.R.; Khan, A.R.

    2002-05-01

    Ground water is the most reliable source for irrigation, quantum of which varies from place to place, rainfall, infiltration, geographical strata and surface ecology. The development of ground water in conjunction with surface within canal commands not only assures a reliable source of irrigation, it also helps in alleviation of water logging in the command due to excess seepage and unscientific water use by facilitating vertical drainage mechanism. The ground water resource needs to be developed in order to enhance area and timeliness of irrigation supply and overall agricultural productivity of land. In the high potential - low productivity areas in Assam, Bihar and West Bengal, A.P. and NE states, there is an immense potential to improve agricultural productivity through systematic groundwater exploitation. (author)

  13. Irrigation System through Intelligent Agents Implemented with Arduino Technology

    Directory of Open Access Journals (Sweden)

    Rodolfo SALAZAR

    2013-11-01

    Full Text Available The water has become in recent years a valuable and increasingly scarce. Its proper use in agriculture has demanded incorporate new technologies, mainly in the area of ICT. In this paper we present a smart irrigation system based on multi-agent architecture using fuzzy logic. The architecture incorporates different types of intelligent agents that an autonomous way monitor and are responsible for deciding if required enable / disable the irrigation system. This project proposes a real and innovative solution to the problem of inadequate water use with current irrigation systems employed in agricultural projects. This article presents the different technologies used, their adaptation to the solution of the problem and briefly discusses the first results obtained.

  14. Apple tree production in Italy: rootstocks, cultivars, fertilization, and irrigation

    Directory of Open Access Journals (Sweden)

    Giovambattista Sorrenti

    2012-11-01

    Full Text Available Italy is one of the main apple producers in Europe, primarily intended for fresh consumption, both in the domestic and foreign markets. Fruit yield and quality depends on the cultivar, rootstock, and management practices, such as the fertilization and irrigation adopted in the orchard. This review aims at reporting the main apple cultivars and rootstocks, the management of fertilization and irrigation, as well as their adaptation to apple tree orchards in Italy. The programs for genetic improvement carried out in this country involved the selection of apple tree cultivars and rootstocks which enable a high fruit yield and quality, in order to meet the requirements from the consumer market. In the fertilization and irrigation management, nutrients and water are supplied in amounts next to the actual need of the plants, providing an adequate nutrition, a satisfactory yield, and high quality fruits, besides preventing, whenever possible, nutrients and water losses in the environment.

  15. Optimal design of pressurized irrigation systems. Application cases (Ecuador

    Directory of Open Access Journals (Sweden)

    Carmen Mireya Lapo Pauta

    2013-05-01

    Full Text Available This paper presents research completed with the intention of finding the most economical solution in the design of pressurized irrigation networks, while efficiently meet service delivery. A systematic methodology is proposed that combines two optimization techniques through a “hybrid method” in, which linear programming, nonlinear programming and genetic algorithms are fused. The overall formulations of the problem of optimal dimensioning consist of minimizing an objective function constituted through the associated cost of the pipes that form the network. This methodology was implemented in three networks a fictitious irrigation and two irrigation networks (Tuncarta and Cariyacu located in the cities of Loja and Chimborazo which yielded optimal design  solutions. Finally different scenarios were simulated in both models to obtain an overview of the operation of the hydraulic variables

  16. Closed chamber globe stabilization and needle capsulorhexis using irrigation hand piece of bimanual irrigation and aspiration system

    Directory of Open Access Journals (Sweden)

    Rai Harminder K

    2005-08-01

    Full Text Available Abstract Background The prerequisites for a good capsulorhexis include a deep, well maintained anterior chamber, globe stabilization and globe manipulation. This helps to achieve a capsulorhexis of optimal size, shape and obtain the best possible position for a red glow under retroillumination. We report the use of irrigation handpiece of bimanual irrigation aspiration system to stabilize the globe, maintain a deep anterior chamber and manipulate the globe to a position of optimal red reflex during needle capsulorhexis in phacoemulsification. Methods Two side ports are made with 20 G MVR 'V' lance knife (Alcon, USA. The irrigation handpiece with irrigation on is introduced into the anterior chamber through one side port and the 26-G cystitome (made from 26-G needle is introduced through the other. The capsolurhexis is completed with the needle. Results Needle capsulorhexis with this technique was used in 30 cases of uncomplicated immature senile cataracts. 10 cases were done under peribulbar anaesthesia and 20 under topical anaesthesia. A complete capsulorhexis was achieved in all cases. Conclusion The irrigating handpiece maintains deep anterior chamber, stabilizes the globe, facilitates pupillary dilatation, and helps in maintaining the eye in the position with optimal red reflex during needle capsulorhexis. This technique is a safe and effective way to perform needle capsulorhexis.

  17. Yield loss and economic thresholds of yellow nutsedge in irrigated rice as a function of the onset of flood irrigation

    Directory of Open Access Journals (Sweden)

    Nixon da Rosa Westendorff

    2014-03-01

    Full Text Available Yellow nutsedge (Cyperus esculentus is adapted to flooding and reduces yield in irrigated rice. Information on the competitive ability of this weed with the crop and the size of the economic damage caused is lacking. Mathematical models quantify the damage to crops and support control decision-making. This study aimed to determine yield losses and economic thresholds (ET of this weed in the culture according to weed population and time of onset of irrigation of the crop. The field study was conducted in the agricultural year of 2010/2011 in Pelotas/RS to evaluate the competitive ability of BRS Querência in competition with different population levels of yellow nutsedge and two periods of onset of flood irrigation (14 and 21 days after emergence. The hyperbolic model satisfactorily estimated yield losses caused by yellow nutsedge. Population of yellow nutsedge was the variable most fitted to the model. The delay of seven days for the beginning of rice irrigation causes decrease in competitive ability of BRS Querência, and based on the ET calculated to the price paid for rice, it is necessary between two and thirteen plants m-2 weed to justify the control in the first and second period of irrigation, respectively. Increases in yield, price paid for rice and control efficiency of the herbicide, besides reduction of costs of controlling promote reduction of ET of yellow nutsedge in rice crops, justifying the adoption of control measures even at smaller weed population.

  18. Atrial fibrillation ablation using a closed irrigation radiofrequency ablation catheter.

    Science.gov (United States)

    Golden, Keith; Mounsey, John Paul; Chung, Eugene; Roomiani, Pahresah; Morse, Michael Andew; Patel, Ankit; Gehi, Anil

    2012-05-01

    Catheter ablation is an effective therapy for symptomatic, medically refractory atrial fibrillation (AF). Open-irrigated radiofrequency (RF) ablation catheters produce transmural lesions at the cost of increased fluid delivery. In vivo models suggest closed-irrigated RF catheters create equivalent lesions, but clinical outcomes are limited. A cohort of 195 sequential patients with symptomatic AF underwent stepwise AF ablation (AFA) using a closed-irrigation ablation catheter. Recurrence of AF was monitored and outcomes were evaluated using Kaplan-Meier survival analysis and Cox proportional hazards models. Mean age was 59.0 years, 74.9% were male, 56.4% of patients were paroxysmal and mean duration of AF was 5.4 years. Patients had multiple comorbidities including hypertension (76.4%), tobacco abuse (42.1%), diabetes (17.4%), and obesity (mean body mass index 30.8). The median follow-up was 55.8 weeks. Overall event-free survival was 73.6% with one ablation and 77.4% after reablation (reablation rate was 8.7%). Median time to recurrence was 26.9 weeks. AF was more likely to recur in patients being treated with antiarrhythmic therapy at the time of last follow-up (recurrence rate 30.3% with antiarrhythmic drugs, 13.2% without antiarrhythmic drugs; hazard ratio [HR] 2.2, 95% confidence interval [CI] 1.1-4.4, P = 0.024) and in those with a history of AF greater than 2 years duration (HR 2.7, 95% CI 1.1-6.9, P = 0.038). Our study represents the largest cohort of patients receiving AFA with closed-irrigation ablation catheters. We demonstrate comparable outcomes to those previously reported in studies of open-irrigation ablation catheters. Given the theoretical benefits of a closed-irrigation system, a large head-to-head comparison using this catheter is warranted. ©2012, The Authors. Journal compilation ©2012 Wiley Periodicals, Inc.

  19. Phosphorus distribution in sandy soil profile under drip irrigation system

    International Nuclear Information System (INIS)

    El-Gendy, R.W.; Rizk, M.A.; Abd El Moniem, M.; Abdel-Aziz, H.A.; Fahmi, A.E.

    2009-01-01

    This work aims at to studying the impact of irrigation water applied using drip irrigation system in sandy soil with snap bean on phosphorus distribution. This experiment was carried out in soils and water research department farm, nuclear research center, atomic energy authority, cairo, Egypt. Snap bean was cultivated in sandy soil and irrigated with 50,37.5 and 25 cm water in three water treatments represented 100, 75 and 50% ETc. Phosphorus distribution and direction of soil water movement had been detected in three sites on the dripper line (S1,S2 and S3 at 0,12.5 and 25 cm distance from dripper). Phosphorus fertilizer (super phosphate, 15.5% P 2 O 5 in rate 300 kg/fed)was added before cultivation. Neutron probe was used to detect the water distribution and movement at the three site along soil profile. Soil samples were collected before p-addition, at end developing, mid, and late growth stages to determine residual available phosphorus. The obtained data showed that using 50 cm water for irrigation caused an increase in P-concentration till 75 cm depth in the three sites of 100% etc treatment, and covered P-requirements of snap bean for all growth stages. As for 37.5 and 25 cm irrigation water cannot cover all growth stages for P-requirements of snap bean. It could be concluded that applied irrigation water could drive the residual P-levels till 75 cm depth in the three sites. Yield of the crop had been taken as an indicator as an indicator profile. Yield showed good response according to water quantities and P-transportation within the soil profile

  20. Aspects of irrigation development in the Netherlands East Indies

    Directory of Open Access Journals (Sweden)

    Maurits W. Ertsen

    2006-04-01

    Full Text Available The ‘Romijn’ discharge measurement structure was developed in the Netherlands East Indies. By the end of the colonial period in the 1930s, it had become the standard structure in irrigation. The Romijn design is not only still the main discharge measurement structure in Indonesia, it is also used in Dutch water management practice and education. The question of continuity is at the heart of concepts such as ‘technological tradition’ or ‘technological regime’, and this continuity links the information embodied in a community of practitioners with the hardware and software the members master. Such communities define accepted modes of technical operation. Engineering education is an important mechanism in preference-guided selection of design solutions, and obtaining an engineering degree is much like passing the preparatory requirements for community membership. When, in 1967, a civil engineering student from Delft Polytechnic presented his final paper for an irrigation design to his supervisors, the first question they asked was why he had not used a Romijn weir as an off-take structure. The Dutch irrigation regime, which consists of the explicit and implicit rules of Dutch irrigation design, is the central subject of this paper. In this paper I shall discuss two related issues: (1 how the Netherlands East Indies irrigation regime developed, and (2 how the (discontinuities in irrigation education and practice following Indonesian independence can be understood. Naturally, while discussion of these issues, to a certain extent at least, depends on the data available, it also depends on the researcher’s perspective.

  1. Testing an Irrigation Decision Support Tool for California Specialty Crops

    Science.gov (United States)

    Johnson, L.; Cahn, M.; Benzen, S.; Zaragoza, I.; Murphy, L.; Melton, F. S.; Martin, F.; Quackenbush, A.; Lockhart, T.

    2015-12-01

    Estimation of crop evapotranspiration supports efficiency of irrigation water management, which in turn can mitigate nitrate leaching, groundwater depletion, and provide energy savings. Past research in California and elsewhere has revealed strong relationships between photosynthetically active vegetation fraction (Fc) and crop evapotranspiration (ETc). Additional research has shown the potential of monitoring Fc by satellite remote sensing. The U.C. Cooperative Extension developed and operates CropManage (CM) as on-line database irrigation (and nitrogen) scheduling tool. CM accounts for the rapid growth and typically brief cycle of cool-season vegetables, where Fc and fraction of reference ET can change daily during canopy development. The model automates crop water requirement calculations based on reference ET data collected by California Dept. Water Resources. Empirically-derived equations are used to estimate daily Fc time-series for a given crop type primarily as a function of planting date and expected harvest date. An application programming interface (API) is under development to provide a check on modeled Fc of current crops and facilitate CM expansion to new crops. The API will enable CM to extract field scale Fc observations from NASA's Satellite Irrigation Management Support (SIMS). SIMS is mainly Landsat based and currently monitors Fc over about 8 million irrigation acres statewide, with potential for adding data from ESA/Sentinel for improved temporal resolution. In the current study, a replicated irrigation trial was performed on romaine lettuce at the USDA Agricultural Research Station in Salinas, CA. CropManage recommendations were used to guide water treatments by drip irrigation at 50%, 75%, 100% ETc replacement levels, with an added treatment at 150% ET representing grower standard practice. Experimental results indicate that yields from the 100% and 150% treatments were not significantly different and were in-line with industry average, while

  2. Review. Deficit irrigation in fruit trees and vines in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Sanchez, M. C.; Domingo, R.; Castel, J. R.

    2010-07-01

    Water has become the most precious of natural resources in many areas of Spain and, since agriculture is the major consumer of water, improvements in water use efficiency are increasingly sought. Regulated deficit irrigation (RDI) is an irrigation strategy based on applying only a fraction of the plant water requirements during certain periods of plant development. The paper reviews the available information on RDI strategies, in woody tree crops and vines based on studies by Spanish research groups. Both the promising results obtained and the drawbacks are covered. (Author) 130 refs.

  3. The maximum economic depth of groundwater abstraction for irrigation

    Science.gov (United States)

    Bierkens, M. F.; Van Beek, L. P.; de Graaf, I. E. M.; Gleeson, T. P.

    2017-12-01

    Over recent decades, groundwater has become increasingly important for agriculture. Irrigation accounts for 40% of the global food production and its importance is expected to grow further in the near future. Already, about 70% of the globally abstracted water is used for irrigation, and nearly half of that is pumped groundwater. In many irrigated areas where groundwater is the primary source of irrigation water, groundwater abstraction is larger than recharge and we see massive groundwater head decline in these areas. An important question then is: to what maximum depth can groundwater be pumped for it to be still economically recoverable? The objective of this study is therefore to create a global map of the maximum depth of economically recoverable groundwater when used for irrigation. The maximum economic depth is the maximum depth at which revenues are still larger than pumping costs or the maximum depth at which initial investments become too large compared to yearly revenues. To this end we set up a simple economic model where costs of well drilling and the energy costs of pumping, which are a function of well depth and static head depth respectively, are compared with the revenues obtained for the irrigated crops. Parameters for the cost sub-model are obtained from several US-based studies and applied to other countries based on GDP/capita as an index of labour costs. The revenue sub-model is based on gross irrigation water demand calculated with a global hydrological and water resources model, areal coverage of crop types from MIRCA2000 and FAO-based statistics on crop yield and market price. We applied our method to irrigated areas in the world overlying productive aquifers. Estimated maximum economic depths range between 50 and 500 m. Most important factors explaining the maximum economic depth are the dominant crop type in the area and whether or not initial investments in well infrastructure are limiting. In subsequent research, our estimates of

  4. Decontamination of soils by irrigation with solutions containing complexing agents

    International Nuclear Information System (INIS)

    Pimpl, M.; Schuettelkopf, H.

    1982-01-01

    Experiments in laboratory scale were performed to increase the mobility of Pu, Am, and Cm in soil. Soil columns of 30 cm in diameter and 40 cm of length were contaminated on the surface with 5 μCi of Pu, Am, and Cm, applied as nitrates. By irrigation with 0.1 M DTPA-solution the actinides were mobilized and migrated with the irrigation solution through the columns. The migration velocity was measured and compared to the calculated one. Conclusions for the application of this procedure in field experiments are drawn. (author)

  5. Soil properties evolution after irrigation with reclaimed water

    Science.gov (United States)

    Leal, M.; González-Naranjo, V.; de Miguel, A.; Martínez-Hernández, V.; Lillo, J.

    2012-04-01

    Many arid and semi-arid countries are forced to look for new and alternative water sources. The availability of suitable quality water for agriculture in these regions often is threatened. In this context of water scarcity, the reuse of treated wastewater for crop irrigation could represent a feasible solution. Through rigorous planning and management, irrigation with reclaimed water presents some advantages such as saving freshwater, reducing wastewater discharges into freshwater bodies and decreasing the amount of added fertilizers due to the extra supply of nutrients by reclaimed water. The current study, which involves wastewater reuse in agriculture, has been carried out in the Experimental Plant of Carrión de los Céspedes (Sevile, Spain). Here, two survey parcels equally designed have been cultivated with Jatropha curcas L, a bioenergetic plant and a non-interfering food security crop. The only difference between the two parcels lies on the irrigation water quality: one is irrigated with groundwater and another one with reclaimed water. The main aim of this study focuses on analysing the outstanding differences in soil properties derived from irrigation with two water qualities, due to their implications for plant growth. To control and monitor the soil variables, soil samples were collected before and after irrigation in the two parcels. pH, electrical conductivity, cation exchange capacity, exchangeable cations (Ca2+, Mg2+, Na+ and K+), kjeldahl nitrogen, organic matter content and nutrients (boron, phosphorus, nitrogen, potassium) were measured. Data were statistically analyzed using the R package. To evaluate the variance ANOVA test was used and to obtain the relations between water quality and soil parameters, Pearson correlation coefficient was computed. According to other authors, a decrease in the organic matter content and an increase of parameters such as pH, electrical conductivity and some exchangeable cations were expected. To date and after

  6. Climate forcing and desert malaria: the effect of irrigation.

    Science.gov (United States)

    Baeza, Andres; Bouma, Menno J; Dobson, Andy P; Dhiman, Ramesh; Srivastava, Harish C; Pascual, Mercedes

    2011-07-14

    Rainfall variability and associated remote sensing indices for vegetation are central to the development of early warning systems for epidemic malaria in arid regions. The considerable change in land-use practices resulting from increasing irrigation in recent decades raises important questions on concomitant change in malaria dynamics and its coupling to climate forcing. Here, the consequences of irrigation level for malaria epidemics are addressed with extensive time series data for confirmed Plasmodium falciparum monthly cases, spanning over two decades for five districts in north-west India. The work specifically focuses on the response of malaria epidemics to rainfall forcing and how this response is affected by increasing irrigation. Remote sensing data for the Normalized Difference Vegetation Index (NDVI) are used as an integrated measure of rainfall to examine correlation maps within the districts and at regional scales. The analyses specifically address whether irrigation has decreased the coupling between malaria incidence and climate variability, and whether this reflects (1) a breakdown of NDVI as a useful indicator of risk, (2) a weakening of rainfall forcing and a concomitant decrease in epidemic risk, or (3) an increase in the control of malaria transmission. The predictive power of NDVI is compared against that of rainfall, using simple linear models and wavelet analysis to study the association of NDVI and malaria variability in the time and in the frequency domain respectively. The results show that irrigation dampens the influence of climate forcing on the magnitude and frequency of malaria epidemics and, therefore, reduces their predictability. At low irrigation levels, this decoupling reflects a breakdown of local but not regional NDVI as an indicator of rainfall forcing. At higher levels of irrigation, the weakened role of climate variability may be compounded by increased levels of control; nevertheless this leads to no significant decrease

  7. Effect of irrigation frequencies on grain yield of maize

    International Nuclear Information System (INIS)

    Ahmad, M.; Chaudhry, M.H.; Amjed, M.T.

    2008-01-01

    To find out the water requirement and its application frequencies in spring Maize a trial was designed. The trial was comprised of five maize varieties (Ev-5098, EV-6098, EV-1098, Composite-20 and Pack Afgoyee) and five irrigation frequencies (7,8,9,10 and 11). The trial was sown in split plot design with three replication, keeping varieties in main plots and irrigation frequencies in sub plots. The plot size was 5m x 4.5 with 75cm apart rows and plant to plant distance was 15 com to maintain the 88888 plants per hectare. The trial was conducted during spring 2000 and 2001. Data were collected for days to 50% silking. Plant height (cm), cob height (cm) and grain yield per hectare. The data were analyzed and results obtained which revealed highly significant differences among varieties and also among irrigation frequencies in all the characters studied during both the years and in pooled analysis over years. The interaction between varieties and irrigation frequencies was highly significant for grain yield kg ha/sup -1/ and significant for other characters studied in year wise as well as in pooled analysis. Years effect was also high significant which is clear from the table of weather data which shows that temperature remained high during the crop season of 2001 as compared to 2000 along with high temperature more rains were also received in March. April and May in 2001 while in 2000 rain was received only in February. Three was gradual decrease in days to 50% silking with the increase in number of irrigations in all the varieties while plant height, cob height and grain yield increased with every addition of irrigation. Trend of increase or decrease remained the same during both the year. All the varieties separately or in combine showed better results during spring 2001, maximum grain yield was obtained by EV-5098 (full duration variety) with 11 irrigations during both the years 2000 and 2001 i.e. 3511 and 6140 kg ha/sup -1/ while EV-1098 (short duration variety

  8. Diagnosis of regional evaporation by remote sensing to support irrigation performance assessment

    NARCIS (Netherlands)

    Bastiaanssen, W.G.M.; Wal, van der T.; Visser, T.N.M.

    1996-01-01

    Performance assessment indicators, being functions of evaporation, are useful tools to evaluate the actual functioning of an irrigation system. The spatial variability of evaporation in large irrigation schemes makes its determination with conventional point measurements almost impossible. A new

  9. Evaluation of soil and water salinity for irrigation in North-eastern ...

    African Journals Online (AJOL)

    GREG

    2013-05-08

    May 8, 2013 ... For sound land use and water management in irrigated area, knowledge of the chemical ... Nowadays, soil salinity has become important problem in irrigated ... hoe, shovel, plastic bags, hard paper or labeling, markers, rope,.

  10. Effects of irrigation on the seasonal abundance of Empoasca vitis in north-Italian vineyards.

    Science.gov (United States)

    Fornasiero, D; Duso, C; Pozzebon, A; Tomasi, D; Gaiotti, F; Pavan, F

    2012-02-01

    The effect of irrigation on the abundance of Empoasca vitis (Göthe) populations was investigated in four vineyards located in northeastern Italy. In two experiments, we compared leafhopper population densities in plots irrigated (micro-spray irrigation system) or nonirrigated. In another experiment, we studied the effect of various irrigation systems on E. vitis populations over two successive seasons. In particular, five treatments were compared: control (not irrigated), traditional drip system, three types of subirrigation varying in distance from the row (40, 135, and 95 cm). In this vineyard, stem water potential was monitored with a pressure chamber. E. vitis population densities were affected by irrigation, with higher densities of this pest recorded on irrigated vines. Highest E. vitis densities were detected in drip irrigation plots compared with nonirrigated plots where water stress was highest. Moderate water stress (subirrigation plots) was associated with intermediate leafhopper densities. Implications for integrated pest management are discussed.

  11. 76 FR 35886 - Orange Cove Irrigation District, and Friant Power Authority; Notice of Availability of...

    Science.gov (United States)

    2011-06-20

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 11068-014--California] Orange Cove Irrigation District, and Friant Power Authority; Notice of Availability of Environmental... has prepared an Environmental Assessment (EA) regarding Orange Cove Irrigation District's and Friant...

  12. Maintaining the flow: Maintenance service provision in the Alto Río Lerma Irrigation District, Mexico

    NARCIS (Netherlands)

    Urban, K.; Wester, P.

    2003-01-01

    Through irrigation management transfer inMexico poorly functioning governancemechanisms for maintenance were replaced.New actors, new roles, and newresponsibilities in the maintenance ofMexican irrigation systems wereestablished. This article analyzes themaintenance service delivery mechanisms inthe

  13. Evaluation of the wettability of a resin-based sealer in contact with some herbal irrigants

    Directory of Open Access Journals (Sweden)

    Mohammadreza Nabavizade

    2018-01-01

    Conclusion: Under the experimental condition of this study, CC was able to increase dentin wettability and therefore may be regarded as a promising irrigant after careful evaluation of other properties of this irrigant.

  14. Charts for Guiding Adjustments of Irrigation Interval to Actual Weather Conditions

    International Nuclear Information System (INIS)

    Kipkorir, E.C.

    2002-01-01

    Major problems in irrigation management at short time-step during the season are unreliability of rainfall and absence of guidance. By considering the climate of region, crop and soil characteristics, the irrigation method and local irrigation practices, this paper presents the concept of irrigation charts. The charts are based on soil water technique. As an example irrigation chart for a typical irrigation system located in the semi-arid area in Naivasha, Kenya is presented. The chart guides the user in adjustment of irrigation interval to the actual weather conditions throughout the growing season. It is believed that the simplicity of the chart makes it a useful tool for a better utilisation of the limited irrigation water

  15. Irrigation and Nitrogen Regimes Promote the Use of Soil Water and Nitrate Nitrogen from Deep Soil Layers by Regulating Root Growth in Wheat.

    Science.gov (United States)

    Liu, Weixing; Ma, Geng; Wang, Chenyang; Wang, Jiarui; Lu, Hongfang; Li, Shasha; Feng, Wei; Xie, Yingxin; Ma, Dongyun; Kang, Guozhang

    2018-01-01

    Unreasonably high irrigation levels and excessive nitrogen (N) supplementation are common occurrences in the North China Plain that affect winter wheat production. Therefore, a 6-yr-long stationary field experiment was conducted to investigate the effects of irrigation and N regimes on root development and their relationship with soil water and N use in different soil layers. Compared to the non-irrigated treatment (W0), a single irrigation at jointing (W1) significantly increased yield by 3.6-45.6%. With increases in water (W2, a second irrigation at flowering), grain yield was significantly improved by 14.1-45.3% compared to the W1 treatments during the drier growing seasons (2010-2011, 2012-2013, and 2015-2016). However, under sufficient pre-sowing soil moisture conditions, grain yield was not increased, and water use efficiency (WUE) decreased significantly in the W2 treatments during normal precipitation seasons (2011-2012, 2013-2014, and 2014-2015). Irrigating the soil twice inhibited root growth into the deeper soil depth profiles and thus weakened the utilization of soil water and NO 3 -N from the deep soil layers. N applications increased yield by 19.1-64.5%, with a corresponding increase in WUE of 66.9-83.9% compared to the no-N treatment (N0). However, there was no further increase in grain yield and the WUE response when N rates exceeded 240 and 180 kg N ha -1 , respectively. A N application rate of 240 kg ha -1 facilitated root growth in the deep soil layers, which was conducive to utilization of soil water and NO 3 -N and also in reducing the residual NO 3 -N. Correlation analysis indicated that the grain yield was significantly positively correlated with soil water storage (SWS) and nitrate nitrogen accumulation (SNA) prior to sowing. Therefore, N rates of 180-240 kg ha -1 with two irrigations can reduce the risk of yield loss that occurs due to reduced precipitation during the wheat growing seasons, while under better soil moisture conditions, a

  16. Behavioural modelling of irrigation decision making under water scarcity

    Science.gov (United States)

    Foster, T.; Brozovic, N.; Butler, A. P.

    2013-12-01

    Providing effective policy solutions to aquifer depletion caused by abstraction for irrigation is a key challenge for socio-hydrology. However, most crop production functions used in hydrological models do not capture the intraseasonal nature of irrigation planning, or the importance of well yield in land and water use decisions. Here we develop a method for determining stochastic intraseasonal water use that is based on observed farmer behaviour but is also theoretically consistent with dynamically optimal decision making. We use the model to (i) analyse the joint land and water use decision by farmers; (ii) to assess changes in behaviour and production risk in response to water scarcity; and (iii) to understand the limits of applicability of current methods in policy design. We develop a biophysical model of water-limited crop yield building on the AquaCrop model. The model is calibrated and applied to case studies of irrigated corn production in Nebraska and Texas. We run the model iteratively, using long-term climate records, to define two formulations of the crop-water production function: (i) the aggregate relationship between total seasonal irrigation and yield (typical of current approaches); and (ii) the stochastic response of yield and total seasonal irrigation to the choice of an intraseasonal soil moisture target and irrigated area. Irrigated area (the extensive margin decision) and per-area irrigation intensity (the intensive margin decision) are then calculated for different seasonal water restrictions (corresponding to regulatory policies) and well yield constraints on intraseasonal abstraction rates (corresponding to aquifer system limits). Profit- and utility-maximising decisions are determined assuming risk neutrality and varying degrees of risk aversion, respectively. Our results demonstrate that the formulation of the production function has a significant impact on the response to water scarcity. For low well yields, which are the major concern

  17. Behaviour Of Saline Irrigation Water Components In Pakistani Barley And Calcareous Soil Under Scheduling Irrigation Using Neutron Scattering Technique

    International Nuclear Information System (INIS)

    RIZK, M.A.

    2010-01-01

    This study aims to investigate the behaviour of cation uptake by Pakistani barley (genotype PK-30163) as affected by saline irrigation water, as well as cation distribution within the soil profile. This experiment was carried out at Soil and Water Research Department, Nuclear Research Centre, Atomic Energy Authority, Inshas, Egypt. The soil was transferred from Wadi Sudr (South Sinai, Egypt). It is salted affected soil (calcareous soil, EC = 4.3 dS/m) and was irrigated using ground water irrigation (12.5 dS/m). Nine used lysimeters were irrigated with three artificial saline water (0.3, 4 and 8 dS/m) using drip irrigation system. The irrigation schedule was carried out using neutron scattering technique according to the hydro physical properties of the soil. Pakistani barley (halophytic plant) was used to remove salts from the soil especially sodium cations. The cation uptake and cation distribution (Na, K, Ca, Mg) within the soil profile were studied.The data indicated that roots of barley collected within 0-15 cm layer showed high cation uptake that made the salt concentrations in this layer low. Sodium uptake ratio was 43, 37 and 47% from total cation uptake by using fresh water (0.3 dS/m), 4 and 8 dS/m, respectively. The maximum uptake for Na, K, Ca and Mg was 20.51, 19.13, 3.98 and 12.81 g/lys at 5.69, 3.05, 6.56 and 4.15 dS/m, respectively. It was found that Pakistani barley preferred Mg uptake rather than Ca uptake.

  18. Dealing with drought in irrigated agriculture through insurance schemes: an application to an irrigation district in Southern Spain

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, M.; Bielza, J.; Garrido, A.; Iglesias, A.

    2015-07-01

    Hydrological drought is expected to have an increasing impact on both crop and fruit yields in arid and semi-arid regions. Some existing crop insurance schemes provide coverage against water deficits in rain-fed agriculture. The Prevented Planting Program in the USA covers against drought for irrigated agriculture. However, drought insurance for irrigated agriculture is still a challenge for companies and institutions because of the complexity of the design and implementation of this type of insurance. Few studies have attempted to evaluate the risk of loss due to irrigation water scarcity using both stand-alone production functions and crop simulation models. This paper’s contributions are that it evaluates the suitability of AquaCrop for calculating drought insurance premiums for irrigated agriculture and that it discusses contract conditions and insurance design for hydrological drought risk coverage as part of a traditional insurance product, with on-field loss assessment in combination with a trigger index. This method was applied to an irrigation district in southern Spain. Our insurance premium calculation showed that it is feasible to apply this method provided that its data requirements are met, such as a large enough set of reliable small-scale yield and irrigation time series data, especially soil data, to calibrate AquaCrop. The choice of a trigger index should not be underestimated because it proved to have a decisive influence on insurance premiums and indemnities. Our discussion of the contract conditions shows that hydrological drought insurance must comply with a series of constraints in order to avoid moral hazard and basis risk. (Author)

  19. Dealing with drought in irrigated agriculture through insurance schemes: an application to an irrigation district in Southern Spain

    Directory of Open Access Journals (Sweden)

    Jorge Ruiz

    2015-12-01

    Full Text Available Hydrological drought is expected to have an increasing impact on both crop and fruit yields in arid and semi-arid regions. Some existing crop insurance schemes provide coverage against water deficits in rain-fed agriculture. The Prevented Planting Program in the USA covers against drought for irrigated agriculture. However, drought insurance for irrigated agriculture is still a challenge for companies and institutions because of the complexity of the design and implementation of this type of insurance. Few studies have attempted to evaluate the risk of loss due to irrigation water scarcity using both stand-alone production functions and crop simulation models. This paper’s contributions are that it evaluates the suitability of AquaCrop for calculating drought insurance premiums for irrigated agriculture and that it discusses contract conditions and insurance design for hydrological drought risk coverage as part of a traditional insurance product, with on-field loss assessment in combination with a trigger index. This method was applied to an irrigation district in southern Spain. Our insurance premium calculation showed that it is feasible to apply this method provided that its data requirements are met, such as a large enough set of reliable small-scale yield and irrigation time series data, especially soil data, to calibrate AquaCrop. The choice of a trigger index should not be underestimated because it proved to have a decisive influence on insurance premiums and indemnities. Our discussion of the contract conditions shows that hydrological drought insurance must comply with a series of constraints in order to avoid moral hazard and basis risk.

  20. Control of soil moisture with radio frequency in a photovoltaic-powered drip irrigation system

    OpenAIRE

    DURSUN, Mahir; ÖZDEN, Semih

    2015-01-01

    Solar-powered irrigation systems are becoming increasingly widespread. However, the initial setup costs of these systems are very high. To reduce these costs, both the energy usage and the prevention of losses from irrigation systems are very important. In this study, a drip irrigation control system of 1000 dwarf cherry trees was controlled using soil moisture sensors in order to prevent excessive water consumption and energy losses in a solar-powered irrigation system. The control sys...